@@ -378,7 +378,7 @@ def make_iivm_data(n_obs=500, dim_x=20, theta=1., alpha_x=0.2, return_type='Doub
378378 :math:`\\ beta_j=\\ frac{1}{j^2}`.
379379
380380 The data generating process is inspired by a process used in the simulation experiment of Farbmacher, Gruber and
381- Klaaßen (2020).
381+ Klaassen (2020).
382382
383383 Parameters
384384 ----------
@@ -716,7 +716,7 @@ def make_did_SZ2020(n_obs=500, dgp_type=1, cross_sectional_data=False, return_ty
716716
717717 f_{reg}(W) &= 210 + 27.4 \\ cdot W_1 +13.7 \\ cdot (W_2 + W_3 + W_4),
718718
719- f_{ps}(W) &= \\ Xi \\ cdot (-W_1 + 0.5 \\ cdot W_2 -0.25 \\ cdot W_3 - 0.1 \\ cdot W_4).
719+ f_{ps}(W) &= 0.75 \\ cdot (-W_1 + 0.5 \\ cdot W_2 -0.25 \\ cdot W_3 - 0.1 \\ cdot W_4).
720720
721721
722722 Let :math:`X= (X_1, X_2, X_3, X_4)^T \\ sim \\ mathcal{N}(0, \\ Sigma)`, where :math:`\\ Sigma` is a matrix with entries
@@ -728,13 +728,13 @@ def make_did_SZ2020(n_obs=500, dgp_type=1, cross_sectional_data=False, return_ty
728728
729729 .. math::
730730
731- Y_0(0) = f_{reg}(W_{reg}) + \\ nu(W_{reg}, D) + \\ varepsilon_0,
731+ Y_0(0) & = f_{reg}(W_{reg}) + \\ nu(W_{reg}, D) + \\ varepsilon_0,
732732
733- Y_1(d) = 2 \\ cdot f_{reg}(W_{reg}) + \\ nu(W_{reg}, D) + \\ varepsilon_1(d),
733+ Y_1(d) & = 2 \\ cdot f_{reg}(W_{reg}) + \\ nu(W_{reg}, D) + \\ varepsilon_1(d),
734734
735- p(W_{ps}) = \\ frac{\\ exp(f_{ps}(W_{ps}))}{1 + \\ exp(f_{ps}(W_{ps}))},
735+ p(W_{ps}) & = \\ frac{\\ exp(f_{ps}(W_{ps}))}{1 + \\ exp(f_{ps}(W_{ps}))},
736736
737- D = 1\\ {p(W_{ps}) \\ ge U\\ },
737+ D & = 1\\ {p(W_{ps}) \\ ge U\\ },
738738
739739 where :math:`\\ varepsilon_0, \\ varepsilon_1(d), d=0, 1` are independent standard normal random variables,
740740 :math:`U \\ sim \\ mathcal{U}[0, 1]` is a independent standard uniform
@@ -743,17 +743,17 @@ def make_did_SZ2020(n_obs=500, dgp_type=1, cross_sectional_data=False, return_ty
743743
744744 .. math::
745745
746- DGP1 W_{reg} = Z \\ quad W_{ps} = Z
746+ DGP1: \\ quad W_{reg} & = Z \\ quad W_{ps} = Z
747747
748- DGP2 W_{reg} = Z \\ quad W_{ps} = X
748+ DGP2: \\ quad W_{reg} & = Z \\ quad W_{ps} = X
749749
750- DGP3 W_{reg} = X \\ quad W_{ps} = Z
750+ DGP3: \\ quad W_{reg} & = X \\ quad W_{ps} = Z
751751
752- DGP4 W_{reg} = X \\ quad W_{ps} = X
752+ DGP4: \\ quad W_{reg} & = X \\ quad W_{ps} = X
753753
754- DGP5 W_{reg} = Z \\ quad W_{ps} = 0
754+ DGP5: \\ quad W_{reg} & = Z \\ quad W_{ps} = 0
755755
756- DGP6 W_{reg} = X \\ quad W_{ps} = 0,
756+ DGP6: \\ quad W_{reg} & = X \\ quad W_{ps} = 0,
757757
758758 such that the last two settings correspond to an experimental setting with treatment probability
759759 of :math:`P(D=1) = \\ frac{1}{2}.`
@@ -765,7 +765,7 @@ def make_did_SZ2020(n_obs=500, dgp_type=1, cross_sectional_data=False, return_ty
765765
766766 Y = T \\ cdot Y_1(D) + (1-T) \\ cdot Y_0(0),
767767
768- where :math:`T = 1\\ {U_T\\ le \\ lambda_T \\ }` with :math:`U_T \\ mathcal{U}[0, 1]` and :math:`\\ lambda_T=0.5`.
768+ where :math:`T = 1\\ {U_T\\ le \\ lambda_T \\ }` with :math:`U_T\\ sim \\ mathcal{U}[0, 1]` and :math:`\\ lambda_T=0.5`.
769769 The true average treatment effect on the treated is zero for all data generating processes.
770770
771771 Parameters
@@ -785,7 +785,7 @@ def make_did_SZ2020(n_obs=500, dgp_type=1, cross_sectional_data=False, return_ty
785785 or ``(x, y, d, t)``.
786786 **kwargs
787787 Additional keyword arguments to set non-default values for the parameter
788- :math:`xi=0.75`, :math:`c=0.0` and :math:`\\ lambda_t =0.5`.
788+ :math:`xi=0.75`, :math:`c=0.0` and :math:`\\ lambda_T =0.5`.
789789
790790 References
791791 ----------
0 commit comments