@@ -310,7 +310,7 @@ def __add__(self, other):
310310 # compute standard errors (Uses factor 1/n for scaling!)
311311 sigma2_hat = np .divide (np .mean (np .square (scaled_psi ), axis = 0 ), var_scaling_factors .reshape (- 1 , 1 ))
312312 all_ses = np .sqrt (sigma2_hat )
313- thetas , ses = _aggregate_coefs_and_ses (all_thetas , all_ses , var_scaling_factors )
313+ thetas , ses = _aggregate_coefs_and_ses (all_thetas , all_ses )
314314
315315 doubleml_dict = {
316316 "thetas" : thetas ,
@@ -358,7 +358,7 @@ def __sub__(self, other):
358358 # compute standard errors
359359 sigma2_hat = np .divide (np .mean (np .square (scaled_psi ), axis = 0 ), var_scaling_factors .reshape (- 1 , 1 ))
360360 all_ses = np .sqrt (sigma2_hat )
361- thetas , ses = _aggregate_coefs_and_ses (all_thetas , all_ses , var_scaling_factors )
361+ thetas , ses = _aggregate_coefs_and_ses (all_thetas , all_ses )
362362
363363 doubleml_dict = {
364364 "thetas" : thetas ,
@@ -507,8 +507,8 @@ def _calc_sensitivity_analysis(self, cf_y, cf_d, rho, level):
507507 all_sigma_upper [i_theta , i_rep ] = np .sqrt (sigma2_upper_hat )
508508
509509 # aggregate coefs and ses over n_rep
510- theta_lower , sigma_lower = _aggregate_coefs_and_ses (all_theta_lower , all_sigma_lower , self . _var_scaling_factors )
511- theta_upper , sigma_upper = _aggregate_coefs_and_ses (all_theta_upper , all_sigma_upper , self . _var_scaling_factors )
510+ theta_lower , sigma_lower = _aggregate_coefs_and_ses (all_theta_lower , all_sigma_lower )
511+ theta_upper , sigma_upper = _aggregate_coefs_and_ses (all_theta_upper , all_sigma_upper )
512512
513513 # per repetition confidence intervals
514514 quant = norm .ppf (level )
0 commit comments