@@ -79,16 +79,16 @@ class DoubleMLCVAR(LinearScoreMixin, DoubleML):
7979 >>> import numpy as np
8080 >>> import doubleml as dml
8181 >>> from doubleml.datasets import make_irm_data
82- >>> from sklearn.ensemble import RandomForestClassifier
82+ >>> from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
8383 >>> np.random.seed(3141)
84- >>> ml_g = RandomForestClassifier (n_estimators=100, max_features=20, max_depth=10, min_samples_leaf=2)
84+ >>> ml_g = RandomForestRegressor (n_estimators=100, max_features=20, max_depth=10, min_samples_leaf=2)
8585 >>> ml_m = RandomForestClassifier(n_estimators=100, max_features=20, max_depth=10, min_samples_leaf=2)
8686 >>> data = make_irm_data(theta=0.5, n_obs=500, dim_x=20, return_type='DataFrame')
8787 >>> obj_dml_data = dml.DoubleMLData(data, 'y', 'd')
8888 >>> dml_cvar_obj = dml.DoubleMLCVAR(obj_dml_data, ml_g, ml_m, treatment=1, quantile=0.5)
8989 >>> dml_cvar_obj.fit().summary
90- coef std err t P>|t| 2.5 % 97.5 %
91- d 1.462533 0.075714 19.316536 3.899567e-83 1.314136 1.61093
90+ coef std err t P>|t| 2.5 % 97.5 %
91+ d 1.591441 0.095781 16.615498 5.382582e-62 1.403715 1.779167
9292 """
9393
9494 def __init__ (self ,
0 commit comments