@@ -115,9 +115,9 @@ def test_to_numpy_python_types(data, expected_dtype):
115115
116116
117117@pytest .mark .parametrize (("dtype" , "expected_dtype" ), np_dtype_params )
118- def test_to_numpy_ndarray_numpy_dtypes_numeric (dtype , expected_dtype ):
118+ def test_to_numpy_numpy_numeric (dtype , expected_dtype ):
119119 """
120- Test the _to_numpy function with NumPy arrays of NumPy numeric dtypes.
120+ Test the _to_numpy function with NumPy arrays of numeric dtypes.
121121
122122 Test both 1-D and 2-D arrays which are not C-contiguous.
123123 """
@@ -137,9 +137,9 @@ def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype):
137137
138138
139139@pytest .mark .parametrize ("dtype" , [None , np .str_ , "U10" ])
140- def test_to_numpy_ndarray_numpy_dtypes_string (dtype ):
140+ def test_to_numpy_numpy_string (dtype ):
141141 """
142- Test the _to_numpy function with NumPy arrays of string types .
142+ Test the _to_numpy function with NumPy arrays of string dtypes .
143143 """
144144 array = np .array (["abc" , "defg" , "12345" ], dtype = dtype )
145145 result = _to_numpy (array )
@@ -177,9 +177,9 @@ def test_to_numpy_ndarray_numpy_dtypes_string(dtype):
177177# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html
178178########################################################################################
179179@pytest .mark .parametrize (("dtype" , "expected_dtype" ), np_dtype_params )
180- def test_to_numpy_pandas_series_numpy_dtypes_numeric (dtype , expected_dtype ):
180+ def test_to_numpy_pandas_numeric (dtype , expected_dtype ):
181181 """
182- Test the _to_numpy function with pandas.Series of NumPy numeric dtypes.
182+ Test the _to_numpy function with pandas.Series of numeric dtypes.
183183 """
184184 series = pd .Series ([1 , 2 , 3 , 4 , 5 , 6 ], dtype = dtype )[::2 ] # Not C-contiguous
185185 result = _to_numpy (series )
@@ -207,9 +207,9 @@ def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype):
207207 ),
208208 ],
209209)
210- def test_to_numpy_pandas_series_pandas_dtypes_string (dtype ):
210+ def test_to_numpy_pandas_string (dtype ):
211211 """
212- Test the _to_numpy function with pandas.Series of pandas string types .
212+ Test the _to_numpy function with pandas.Series of string dtypes .
213213
214214 In pandas, string arrays can be specified in multiple ways.
215215
@@ -229,7 +229,7 @@ def test_to_numpy_pandas_series_pandas_dtypes_string(dtype):
229229 pytest .param ("date64[ms][pyarrow]" , "datetime64[ms]" , id = "date64[ms]" ),
230230 ],
231231)
232- def test_to_numpy_pandas_series_pyarrow_dtypes_date (dtype , expected_dtype ):
232+ def test_to_numpy_pandas_date (dtype , expected_dtype ):
233233 """
234234 Test the _to_numpy function with pandas.Series of PyArrow date32/date64 types.
235235 """
@@ -282,9 +282,9 @@ def test_to_numpy_pandas_series_pyarrow_dtypes_date(dtype, expected_dtype):
282282 pytest .param ("float64" , np .float64 , id = "float64" ),
283283 ],
284284)
285- def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric (dtype , expected_dtype ):
285+ def test_to_numpy_pyarrow_numeric (dtype , expected_dtype ):
286286 """
287- Test the _to_numpy function with PyArrow arrays of PyArrow numeric types.
287+ Test the _to_numpy function with PyArrow arrays of numeric types.
288288 """
289289 data = [1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 6.0 ]
290290 if dtype == "float16" : # float16 needs special handling
@@ -313,9 +313,9 @@ def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric(dtype, expected_dtype):
313313 pytest .param ("float64" , np .float64 , id = "float64" ),
314314 ],
315315)
316- def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric_with_na (dtype , expected_dtype ):
316+ def test_to_numpy_pyarrow_numeric_with_na (dtype , expected_dtype ):
317317 """
318- Test the _to_numpy function with PyArrow arrays of PyArrow numeric types and NA.
318+ Test the _to_numpy function with PyArrow arrays of numeric types and NA.
319319 """
320320 data = [1.0 , 2.0 , None , 4.0 , 5.0 , 6.0 ]
321321 if dtype == "float16" : # float16 needs special handling
@@ -339,9 +339,9 @@ def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric_with_na(dtype, expected_d
339339 "string_view" ,
340340 ],
341341)
342- def test_to_numpy_pyarrow_array_pyarrow_dtypes_string (dtype ):
342+ def test_to_numpy_pyarrow_string (dtype ):
343343 """
344- Test the _to_numpy function with PyArrow arrays of PyArrow string types.
344+ Test the _to_numpy function with PyArrow arrays of string types.
345345 """
346346 array = pa .array (["abc" , "defg" , "12345" ], type = dtype )
347347 result = _to_numpy (array )
@@ -357,9 +357,9 @@ def test_to_numpy_pyarrow_array_pyarrow_dtypes_string(dtype):
357357 pytest .param ("date64[ms]" , "datetime64[ms]" , id = "date64[ms]" ),
358358 ],
359359)
360- def test_to_numpy_pyarrow_array_pyarrow_dtypes_date (dtype , expected_dtype ):
360+ def test_to_numpy_pyarrow_date (dtype , expected_dtype ):
361361 """
362- Test the _to_numpy function with PyArrow arrays of PyArrow date types.
362+ Test the _to_numpy function with PyArrow arrays of date32/date64 types.
363363
364364 date32[day] and date64[ms] are stored as 32-bit and 64-bit integers, respectively,
365365 representing the number of days and milliseconds since the UNIX epoch (1970-01-01).
0 commit comments