|
| 1 | +using Test |
| 2 | +import SpecialFunctions |
| 3 | +using Flux: Tracker |
| 4 | +using CuArrays |
| 5 | + |
| 6 | +n = 1000 |
| 7 | + |
| 8 | +xs_lgamma = randn(Float32, n); xs_lgamma_cu = cu(xs_lgamma) |
| 9 | +xs_digamma = randn(Float32, n); xs_digamma_cu = cu(xs_digamma) |
| 10 | +xs_trigamma = randn(Float32, n); xs_trigamma_cu = cu(xs_trigamma) |
| 11 | +xs_lbeta_tuple = (randn(Float32, n), randn(Float32, n)) |
| 12 | +xs_lbeta_tuple = map(xs -> abs.(xs), xs_lbeta_tuple); xs_lbeta_cu_tuple = map(cu, xs_lbeta_tuple) |
| 13 | + |
| 14 | +catgrads(grads) = cat(map(ta -> ta.data, grads)...; dims=1) |
| 15 | +g∑fx(f, xs) = catgrads(Tracker.gradient(_xs -> sum(f.(_xs)), xs)) |
| 16 | +g∑fx(f, xs, ys) = catgrads(Tracker.gradient((_xs, _ys) -> sum(f.(_xs, _ys)), xs, ys)) |
| 17 | + |
| 18 | +results = Dict() |
| 19 | +@testset "Forward evaluation" begin |
| 20 | + fn = :lgamma |
| 21 | + @testset "$fn" begin |
| 22 | + lgamma_val_cpu = @time SpecialFunctions.lgamma.(xs_lgamma) |
| 23 | + lgamma_val_gpu = @time CuArrays.lgamma.(xs_lgamma_cu) |
| 24 | + lgamma_val_gpu = Array(lgamma_val_gpu) |
| 25 | + for i = 1:n |
| 26 | + @test lgamma_val_cpu[i] ≈ lgamma_val_gpu[i] |
| 27 | + end |
| 28 | + results[fn] = (lgamma_val_cpu, lgamma_val_gpu) |
| 29 | + end |
| 30 | + |
| 31 | + fn = :digamma |
| 32 | + @testset "$fn" begin |
| 33 | + digamma_val_cpu = @time SpecialFunctions.digamma.(xs_digamma) |
| 34 | + digamma_val_gpu = @time CuArrays.digamma.(xs_digamma_cu) |
| 35 | + digamma_val_gpu = Array(digamma_val_gpu) |
| 36 | + for i = 1:n |
| 37 | + @test digamma_val_cpu[i] ≈ digamma_val_gpu[i] |
| 38 | + end |
| 39 | + results[fn] = (digamma_val_cpu, digamma_val_gpu) |
| 40 | + end |
| 41 | + |
| 42 | + fn = :trigamma |
| 43 | + @testset "$fn" begin |
| 44 | + trigamma_val_cpu = @time SpecialFunctions.trigamma.(xs_trigamma) |
| 45 | + trigamma_val_gpu = @time CuArrays.trigamma.(xs_trigamma_cu) |
| 46 | + trigamma_val_gpu = Array(trigamma_val_gpu) |
| 47 | + for i = 1:n |
| 48 | + @test trigamma_val_cpu[i] ≈ trigamma_val_gpu[i] |
| 49 | + end |
| 50 | + results[fn] = (trigamma_val_cpu, trigamma_val_gpu) |
| 51 | + end |
| 52 | + |
| 53 | + fn = :lbeta |
| 54 | + @testset "$fn" begin |
| 55 | + lbeta_val_cpu = @time SpecialFunctions.lbeta.(xs_lbeta_tuple...) |
| 56 | + lbeta_val_gpu = @time CuArrays.lbeta.(xs_lbeta_cu_tuple...) |
| 57 | + lbeta_val_gpu = Array(lbeta_val_gpu) |
| 58 | + for i = 1:n |
| 59 | + @test lbeta_val_cpu[i] ≈ lbeta_val_gpu[i] |
| 60 | + end |
| 61 | + results[fn] = (lbeta_val_cpu, lbeta_val_gpu) |
| 62 | + end |
| 63 | + |
| 64 | +end |
| 65 | + |
| 66 | +@testset "Gradient evaluation" begin |
| 67 | + fn = :lgamma |
| 68 | + @testset "$fn" begin |
| 69 | + lgamma_grad_cpu = @time g∑fx(SpecialFunctions.lgamma, xs_lgamma) |
| 70 | + lgamma_grad_gpu = @time g∑fx(CuArrays.lgamma, xs_lgamma_cu) |
| 71 | + lgamma_grad_gpu = Array(lgamma_grad_gpu) |
| 72 | + for i = 1:n |
| 73 | + @test lgamma_grad_cpu[i] ≈ lgamma_grad_gpu[i] |
| 74 | + end |
| 75 | + end |
| 76 | + |
| 77 | + fn = :digamma |
| 78 | + @testset "$fn" begin |
| 79 | + digamma_grad_cpu = @time g∑fx(SpecialFunctions.digamma, xs_digamma) |
| 80 | + digamma_grad_gpu = @time g∑fx(CuArrays.digamma, xs_digamma_cu) |
| 81 | + digamma_grad_gpu = Array(digamma_grad_gpu) |
| 82 | + for i = 1:n |
| 83 | + @test digamma_grad_cpu[i] ≈ digamma_grad_gpu[i] |
| 84 | + end |
| 85 | + end |
| 86 | + |
| 87 | + fn = :lbeta |
| 88 | + @testset "$fn" begin |
| 89 | + lbeta_grad_cpu = @time g∑fx(SpecialFunctions.lbeta, xs_lbeta_tuple...) |
| 90 | + lbeta_grad_gpu = @time g∑fx(CuArrays.lbeta, xs_lbeta_cu_tuple...) |
| 91 | + lbeta_grad_gpu = Array(lbeta_grad_gpu) |
| 92 | + for i = 1:n |
| 93 | + @test lbeta_grad_cpu[i] ≈ lbeta_grad_gpu[i] |
| 94 | + end |
| 95 | + end |
| 96 | +end |
0 commit comments