Skip to content

Conversation

@lucaslie
Copy link
Member

@lucaslie lucaslie commented Nov 26, 2025

Description

Support for https://huggingface.co/nvidia/Nemotron-Flash-3B-Instruct

fixes #9150

Try it out yourself

Build from source on this branch

Check out docs

Example

Run an example prompt

cd examples/auto_deploy
python build_and_run_ad.py --model nvidia/Nemotron-Flash-3B-Instruct --args.yaml-extra nemotron_flash.yaml

trtllm-serve

Spin up a server

trtllm-serve serve nvidia/Nemotron-Flash-3B-Instruct \
--backend _autodeploy \
--trust_remote_code \
--extra_llm_api_options examples/auto_deploy/nemotron_flash.yaml

More infos in the docs.

Send a request to the server

curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "nvidia/Nemotron-Flash-3B-Instruct",
        "messages":[{"role": "user", "content": "Where is New York?"}],
        "max_tokens": 16,
        "temperature": 0
    }'

More infos in the docs

Summary by CodeRabbit

Release Notes

  • New Features

    • Added support for NVIDIA Nemotron-Flash-3B-Instruct model deployment.
    • Introduced delta-rule-based attention mechanism with optimized Triton kernels for improved inference performance.
  • Documentation

    • Updated supported models list with Nemotron-Flash-3B-Instruct.
    • Added example deployment configuration for the new model.
  • Performance

    • Enhanced tensor contiguity handling in normalization and convolution operations for better GPU memory efficiency.

✏️ Tip: You can customize this high-level summary in your review settings.

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • Update tava architecture diagram if there is a significant design change in PR.

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>
@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 27, 2025

📝 Walkthrough

Walkthrough

Introduces support for NemotronFlash-3B-Instruct model by adding a custom model implementation with delta-rule attention kernels, registering it with a factory, and providing example deployment configuration and documentation.

Changes

Cohort / File(s) Summary
Documentation & Configuration
docs/source/features/auto_deploy/support_matrix.md, tensorrt_llm/_torch/auto_deploy/config/default.yaml
Added nvidia/Nemotron-Flash-3B-Instruct to supported models list. Added insert_cached_delta_rule transform entry with backend fla_delta.
Example Files
examples/auto_deploy/.gitignore, examples/auto_deploy/nemotron_flash.yaml
Added !nemotron_flash.yaml to .gitignore exceptions. Created new example deployment config with torch-cudagraph backend, chunked prefill, block reuse disabled, and CUDA graph batch sizes for NemotronFlashForCausalLM.
Attention Interface & Core Ops
tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py
Added delta_dtype field to CacheConfig with torch.float32 default; updated validator for coercion.
Delta Rule Kernels
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py, fused_recurrent.py, wy_fast.py, utils.py
New modules implementing delta-rule forward passes: chunk_delta_rule_fwd (composite), fused_recurrent_delta_rule_fwd_kernel (Triton), prepare_wy_repr_fwd/recompute_w_u_fwd (Triton-based WY computation), and environment-driven autotune cache configuration utilities.
FLA Delta Backend
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py, fla_delta.py
New cached attention backend (FlaDeltaBackend) with metadata preparation, prefill/decode split, and cache initialization. Defines fla_cached_delta_rule op and wrapper fla_chunked_delta_rule custom_op.
Auxiliary Custom Ops
tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py, mamba/torch_causal_conv.py, rms_norm.py
Added _torch_l2norm and fla_l2norm custom_ops with fake variants. Updated torch_causal_conv and rms_norm to ensure tensor contiguity via .contiguous().
Model Implementation
tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py
New comprehensive NemotronFlash model with specialized tokenizer (memory token injection), multi-variant decoder layers (attention, FFN, Mamba2, hybrid), rotary embeddings, and causal LM head. Includes NemotronFlashPreTrainedModel, NemotronFlashModel, and NemotronFlashForCausalLM with GenerationMixin.
Model Factory & Registration
tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py, nemotron_flash.py, models/__init__.py
Created custom subpackage; added NemotronFlashForCausalLMFactory with custom init_tokenizer (injects num_memory_tokens and vocab_size_model). Updated models/init.py imports to expose custom and nemotron_flash modules.
Transform Registry
tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py
Added InsertCachedDeltaRule transform class, registered under insert_cached_delta_rule key, inheriting from InsertCachedAttention.

Sequence Diagram(s)

sequenceDiagram
    participant Tokenizer as NemotronFlashTokenizer
    participant Model as NemotronFlashModel
    participant Decoder as DecoderLayer
    participant Attention as Attention/Mamba/FFN
    participant Delta as DeltaRule Backend

    Tokenizer->>Model: input_ids (+ memory tokens)
    Model->>Model: embed tokens
    Model->>Decoder: hidden_states, position_ids
    
    loop For each decoder layer
        Decoder->>Attention: hidden_states
        alt Layer Type
            Attention->>Delta: q, k, v, beta (via cached_delta_rule)
            Delta->>Delta: prefill: chunk_delta_rule_fwd
            Delta->>Delta: decode: fused_recurrent_delta_rule_fwd
            Delta->>Delta: update delta_cache with final_state
            Delta-->>Attention: output
        else Mamba2
            Attention->>Attention: apply SSM
        else FFN
            Attention->>Attention: apply MLP
        end
        Attention-->>Decoder: output
        Decoder->>Decoder: residual + norm
        Decoder-->>Model: next hidden_states
    end
    
    Model->>Model: final RMSNorm
    Model->>Model: TruncatedLinear LM head
    Model-->>Tokenizer: logits
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~60 minutes

  • Triton kernel implementations (fused_recurrent.py, wy_fast.py): Complex loop structures, shared memory management, variable-length sequence handling, and template parameters require careful validation of correctness and memory safety.
  • FLA backend logic (fla_backend_delta.py): Prefill/decode phase splitting, cache management, metadata preparation, and state handling across batches demands thorough control-flow analysis.
  • Large model implementation (modeling_nemotron_flash.py): Extensive class hierarchy with multiple decoder variants, memory token injection, rotary embedding logic, and GenerationMixin integration; each layer type requires individual understanding.
  • Cross-component integration: Delta rule kernels must be validated in context of the backend ops and custom_op registration; factory tokenizer initialization must be checked against model config expectations.
  • Auxiliary changes (l2norm, contiguous() fixes): Generally straightforward but should be validated for consistency across similar ops.

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 7.23% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Description check ⚠️ Warning The PR description is incomplete and does not properly follow the provided template structure. Critical sections are missing or unfilled. Complete the PR description by: (1) Adding a proper title in the format [TICKET][type] Summary; (2) Filling in the Description section with a clear explanation of what changed and why; (3) Providing a Test Coverage section listing relevant tests that safeguard the changes; (4) Ensuring all PR Checklist items are reviewed and documented appropriately.
✅ Passed checks (1 passed)
Check name Status Explanation
Title check ✅ Passed The PR title '[#9150][feat] AutoDeploy Nemotron-Flash support' clearly summarizes the main change: adding AutoDeploy support for the Nemotron-Flash model.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 16

🧹 Nitpick comments (14)
tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py (1)

1-1: Missing NVIDIA copyright header at top of file

Per project guidelines, each TensorRT-LLM OSS Python file should start with the standard NVIDIA copyright header including the current year. Please add the project-standard header above the module docstring when you next touch this file.

tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py (1)

1-1: Add NVIDIA copyright header

This file also appears to be missing the standard NVIDIA copyright header at the very top. Please prepend the project-standard header comment above the module docstring to align with the TensorRT-LLM coding guidelines.

tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (2)

1-10: Add NVIDIA copyright header at top of file

Per TensorRT‑LLM guidelines, all open‑source .py files should start with an NVIDIA copyright header including the current year. Consider adding it above the module docstring while you are touching this file.


35-39: Re‑check delta_dtype default vs CacheConfig.__or__ merge semantics

delta_dtype now defaults to torch.float32, so it is never None. With __or__ implemented as:

merged_kwargs[field_name] = getattr(self, field_name) or getattr(other, field_name)

the left‑hand delta_dtype will always win, and a right‑hand config cannot override it unless the left explicitly sets delta_dtype=None.

If the intended usage is “later/override configs can change delta_dtype when merging”, you may want delta_dtype to default to None and apply the float32 default at use‑site instead, or adjust the merge logic to give other precedence.

Also applies to: 52-62

examples/auto_deploy/nemotron_flash.yaml (1)

8-8: Minor formatting inconsistency in the list.

There's a missing space after the comma between 64 and 96.

Apply this diff:

-cuda_graph_batch_sizes: [1, 2, 4, 8, 16, 24, 32, 64,96, 128, 256, 320, 384]
+cuda_graph_batch_sizes: [1, 2, 4, 8, 16, 24, 32, 64, 96, 128, 256, 320, 384]
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py (1)

93-114: Consider adding docstrings to public functions.

The prepare_wy_repr_fwd and recompute_w_u_fwd functions appear to be part of the public API. Per coding guidelines, interfaces used outside a file should prefer docstrings over comments.

Example for prepare_wy_repr_fwd:

def prepare_wy_repr_fwd(
    k: torch.Tensor,
    v: torch.Tensor,
    beta: torch.Tensor,
    cu_seqlens: Optional[torch.LongTensor],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """Prepare the WY representation for delta-rule attention.

    Args:
        k: Key tensor of shape [B, T, H, K].
        v: Value tensor of shape [B, T, H, V].
        beta: Beta tensor of shape [B, T, H].
        cu_seqlens: Cumulative sequence lengths for variable-length batches.

    Returns:
        Tuple of (w, u, A) tensors for the delta-rule computation.
    """
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py (1)

18-21: Prefix unused unpacked variables with underscore.

The variables A and final_state returned by chunk_delta_rule_fwd are not used. Per Python convention (and Ruff RUF059), prefix them with an underscore to indicate intentional non-use.

-    o, A, final_state = chunk_delta_rule_fwd(
+    o, _A, _final_state = chunk_delta_rule_fwd(
         q, k, v, beta, scale, initial_state=None, output_final_state=False, cu_seqlens=None
     )
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py (2)

66-68: Specify device for batch_info_tensor to ensure consistency.

The tensor is created on CPU by default while other tensors use seq_len_sanitized.device. While tolist() works regardless, explicit device placement prevents potential issues and clarifies intent.

     batch_info_tensor = torch.tensor(
-        [num_prefill, num_prefill_tokens, num_decode], dtype=torch.int32
+        [num_prefill, num_prefill_tokens, num_decode],
+        dtype=torch.int32,
+        device=seq_len_sanitized.device,
     )

91-91: Fake implementation should match device placement of real implementation.

If the real implementation specifies a device for batch_info_tensor, the fake should match for consistency during tracing.

-        torch.empty(3, dtype=torch.int32),  # host tensor
+        torch.empty(3, dtype=torch.int32, device=seq_len_sanitized.device),
tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (3)

162-162: Use Optional[int] instead of implicit None default.

PEP 484 prohibits implicit Optional. Since layer_idx can be None, it should be explicitly typed as Optional[int].

-    layer_idx: int = None,
+    layer_idx: Optional[int] = None,

581-587: Hardcoded device="cuda" may fail on CPU-only systems.

Consider making the device configurable or inferring it from the model's device placement.

     def _init_rope(self):
         self.rotary_emb = LlamaRotaryEmbedding(
             config=self.config,
             dim=self.kq_head_dim,
             base=self.rope_theta,
-            device=torch.device("cuda"),
+            device=None,  # Will be moved to correct device during model loading
         )

74-74: Remove return type annotation from __init__.

__init__ methods should not have return type annotations (they implicitly return None). The same applies to lines 97 and 168.

-    def __init__(self, hidden_size: int, eps: float = 1e-5) -> "NemotronFlashRMSNorm":
+    def __init__(self, hidden_size: int, eps: float = 1e-5) -> None:
tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py (2)

5-5: Prefer importing the module to preserve namespace instead of the function

The current import brings l2norm_fwd directly into this module’s namespace:

from tensorrt_llm._torch.modules.fla.l2norm import l2norm_fwd

Guidelines recommend maintaining module namespaces. Consider importing the submodule and calling through it:

-import torch
-
-from tensorrt_llm._torch.modules.fla.l2norm import l2norm_fwd
+import torch
+
+from tensorrt_llm._torch.modules.fla import l2norm as fla_l2norm_mod

And later:

-def fla_l2norm(x: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
-    y = l2norm_fwd(x, eps)
+def fla_l2norm(x: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
+    y = fla_l2norm_mod.l2norm_fwd(x, eps)

As per coding guidelines, imports should preserve a module namespace.


27-29: Address unused eps arguments in fake kernels (Ruff ARG001)

Ruff correctly flags eps as unused in the fake implementations. To keep signatures aligned with the real ops while silencing the warning, you can explicitly discard eps:

 @_torch_l2norm.register_fake
 def _torch_l2norm_fake(x: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
-    return torch.empty_like(x)
+    del eps
+    return torch.empty_like(x)
@@
 @fla_l2norm.register_fake
 def fla_l2norm_fake(x: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
-    return torch.empty_like(x)
+    del eps
+    return torch.empty_like(x)

This keeps the API consistent and resolves the static-analysis warning.

Also applies to: 38-40

📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between dbbed1f and 2e92a07.

📒 Files selected for processing (19)
  • docs/source/features/auto_deploy/support_matrix.md (1 hunks)
  • examples/auto_deploy/.gitignore (1 hunks)
  • examples/auto_deploy/nemotron_flash.yaml (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/config/default.yaml (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/utils.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/models/__init__.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py (1 hunks)
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: The code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces; do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used (e.g., use from package.subpackage import foo and then foo.SomeClass() instead of from package.subpackage.foo import SomeClass)
Python filenames should use snake_case (e.g., some_file.py)
Python class names should use PascalCase (e.g., class SomeClass)
Python function and method names should use snake_case (e.g., def my_awesome_function():)
Python local variable names should use snake_case, with prefix k for variable names that start with a number (e.g., k_99th_percentile = ...)
Python global variables should use upper snake_case with prefix G (e.g., G_MY_GLOBAL = ...)
Python constants should use upper snake_case (e.g., MY_CONSTANT = ...)
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings for Python classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description (e.g., self.x = 5 followed by """<type>: Description of 'x'""" )
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except clause to the smallest set of specific errors possible instead of catching all exceptions
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible and use the else block to implement the logic

Files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py
  • tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py
  • tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py
  • tensorrt_llm/_torch/auto_deploy/models/__init__.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py
**/*.{cpp,h,cu,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

All TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top

Files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py
  • tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py
  • tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py
  • tensorrt_llm/_torch/auto_deploy/models/__init__.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py
🧠 Learnings (9)
📚 Learning: 2025-08-09T02:04:49.623Z
Learnt from: Fridah-nv
Repo: NVIDIA/TensorRT-LLM PR: 6760
File: tensorrt_llm/_torch/auto_deploy/models/quant_config_reader.py:81-98
Timestamp: 2025-08-09T02:04:49.623Z
Learning: In TensorRT-LLM's auto_deploy module, torch.dtype values in configuration dictionaries must be stored as string representations (e.g., "float16" instead of torch.float16) because OmegaConf.merge does not support torch.dtype types. These string representations are converted to actual torch.dtype objects in downstream code.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py
📚 Learning: 2025-08-06T03:47:16.802Z
Learnt from: venkywonka
Repo: NVIDIA/TensorRT-LLM PR: 6650
File: tests/integration/test_lists/qa/llm_perf_cluster.yml:33-37
Timestamp: 2025-08-06T03:47:16.802Z
Learning: Ministral is a valid and distinct model family from Mistral AI, separate from their regular Mistral models. Ministral 8B is specifically designed for edge computing and on-device applications, released in October 2024. In TensorRT-LLM test configurations, "ministral_8b" and "ministral_8b_fp8" are correct model identifiers and should not be changed to "mistral_8b".

Applied to files:

  • docs/source/features/auto_deploy/support_matrix.md
📚 Learning: 2025-08-06T03:47:16.802Z
Learnt from: venkywonka
Repo: NVIDIA/TensorRT-LLM PR: 6650
File: tests/integration/test_lists/qa/llm_perf_cluster.yml:33-37
Timestamp: 2025-08-06T03:47:16.802Z
Learning: Ministral is a valid model name from Mistral AI, distinct from the regular Mistral models. In TensorRT-LLM test configurations, "ministral_8b" and "ministral_8b_fp8" are correct model identifiers and should not be changed to "mistral_8b".

Applied to files:

  • docs/source/features/auto_deploy/support_matrix.md
📚 Learning: 2025-09-09T18:31:44.336Z
Learnt from: venkywonka
Repo: NVIDIA/TensorRT-LLM PR: 7658
File: .github/CODEOWNERS:160-164
Timestamp: 2025-09-09T18:31:44.336Z
Learning: The teams NVIDIA/trt-llm-release-nim-branch-approval and NVIDIA/trt-llm-release-branch-approval exist in the NVIDIA organization and are valid for use in .github/CODEOWNERS files, even if they may not be accessible via external API queries due to permissions.

Applied to files:

  • docs/source/features/auto_deploy/support_matrix.md
📚 Learning: 2025-09-04T07:33:10.618Z
Learnt from: MrGeva
Repo: NVIDIA/TensorRT-LLM PR: 7219
File: tensorrt_llm/_torch/auto_deploy/compile/backends/torch_cudagraph.py:162-168
Timestamp: 2025-09-04T07:33:10.618Z
Learning: When users explicitly provide cuda_graph_batch_sizes in TorchCudagraphCompiler, respect their choices and only sanitize the values (clamp, dedupe, sort) without forcing additional batch sizes like 1 or max_batch_size. Only add commonly-used batch sizes when falling back to the heuristic.

Applied to files:

  • examples/auto_deploy/nemotron_flash.yaml
📚 Learning: 2025-10-20T16:54:09.824Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py:6-6
Timestamp: 2025-10-20T16:54:09.824Z
Learning: In tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py, the import `from ...modules.mamba.layernorm_gated import _layer_norm_fwd` is correct and should not be changed to modules.fla.layernorm_gated. The _layer_norm_fwd function exists in both modules/mamba/layernorm_gated.py and modules/fla/layernorm_gated.py, but the mamba version is the intended implementation for this use case.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py
  • tensorrt_llm/_torch/auto_deploy/models/__init__.py
  • tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py
📚 Learning: 2025-10-20T17:09:21.560Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py:180-182
Timestamp: 2025-10-20T17:09:21.560Z
Learning: In tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py, the _gated_rmsnorm_replacement function does not need to cast the output of torch.ops.auto_deploy.torch_rmsnorm_gated back to the input dtype, even though the custom op returns fp32. The dtype handling is managed elsewhere or the fp32 output is acceptable for downstream consumers.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py
📚 Learning: 2025-08-27T14:41:56.665Z
Learnt from: ixlmar
Repo: NVIDIA/TensorRT-LLM PR: 7294
File: tensorrt_llm/_torch/modules/rms_norm.py:96-99
Timestamp: 2025-08-27T14:41:56.665Z
Learning: In tensorrt_llm/_torch/modules/rms_norm.py, the RMSNorm class uses a custom sentinel (_ARGUMENT_NOT_SPECIFIED_SENTINEL) instead of Ellipsis (...) for detecting unspecified optional arguments. Other modules in the codebase may use Ellipsis as a sentinel but do not forward it to RMSNorm methods, so there's no need for backward compatibility with Ellipsis in RMSNorm.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py
📚 Learning: 2025-07-22T02:20:31.841Z
Learnt from: venkywonka
Repo: NVIDIA/TensorRT-LLM PR: 6019
File: tests/unittest/llmapi/lora_test_utils.py:125-214
Timestamp: 2025-07-22T02:20:31.841Z
Learning: The .nemo format requires configuration files to have a .yaml extension even if the content is JSON format, as this is a constraint of NeMo's loading/unloading mechanisms. Changing the extension would cause complications with NeMo compatibility.

Applied to files:

  • examples/auto_deploy/.gitignore
🧬 Code graph analysis (13)
tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (2)
tensorrt_llm/llmapi/llm_args.py (1)
  • Field (63-90)
tensorrt_llm/builder.py (1)
  • default (45-50)
tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py (3)
tensorrt_llm/_torch/auto_deploy/transform/interface.py (1)
  • TransformRegistry (507-535)
tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (1)
  • register (906-914)
tensorrt_llm/_torch/auto_deploy/transform/library/kvcache.py (1)
  • InsertCachedAttention (80-215)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/utils.py (1)
tensorrt_llm/_torch/autotuner.py (1)
  • autotune (219-251)
tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py (2)
tensorrt_llm/_torch/modules/fla/l2norm.py (2)
  • l2norm (133-136)
  • l2norm_fwd (74-122)
tensorrt_llm/functional.py (1)
  • sum (3253-3275)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py (4)
tensorrt_llm/_torch/modules/fla/chunk_scaled_dot_kkt.py (1)
  • chunk_scaled_dot_kkt_fwd (88-143)
tensorrt_llm/_torch/modules/fla/index.py (1)
  • prepare_chunk_indices (17-23)
tensorrt_llm/_torch/modules/fla/solve_tril.py (1)
  • solve_tril (360-426)
tensorrt_llm/_torch/modules/fla/utils.py (1)
  • check_shared_mem (300-306)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py (2)
tensorrt_llm/functional.py (1)
  • chunk (3826-3861)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py (1)
  • chunk_delta_rule_fwd (13-42)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py (3)
tensorrt_llm/_torch/modules/fla/chunk_delta_h.py (1)
  • chunk_gated_delta_rule_fwd_h (236-294)
tensorrt_llm/_torch/modules/fla/chunk_o.py (1)
  • chunk_fwd_o (124-169)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py (1)
  • prepare_wy_repr_fwd (93-114)
tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py (1)
tests/unittest/_torch/attention/sparse/test_dsa_indexer.py (1)
  • cdiv (44-46)
tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py (3)
tensorrt_llm/_torch/auto_deploy/models/factory.py (1)
  • ModelFactoryRegistry (354-376)
tensorrt_llm/_torch/auto_deploy/models/hf.py (2)
  • AutoModelForCausalLMFactory (100-521)
  • _get_model_config (198-213)
tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (1)
  • NemotronFlashPreTrainedTokenizerFast (19-62)
tensorrt_llm/_torch/auto_deploy/models/custom/__init__.py (1)
tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (2)
  • NemotronFlashForCausalLM (1023-1085)
  • NemotronFlashPreTrainedTokenizerFast (19-62)
tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py (2)
tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (1)
  • to (501-508)
tensorrt_llm/_torch/auto_deploy/shim/interface.py (1)
  • to (42-46)
tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py (1)
tensorrt_llm/functional.py (1)
  • conv1d (3548-3585)
tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (4)
tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py (1)
  • NemotronFlashForCausalLMFactory (6-20)
tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py (4)
  • triton_rmsnorm_gated (87-139)
  • _ (29-40)
  • _ (59-61)
  • _ (81-83)
tensorrt_llm/_torch/auto_deploy/custom_ops/torch_attention.py (1)
  • torch_attention (96-212)
tensorrt_llm/_torch/auto_deploy/models/hf.py (1)
  • register_custom_model_cls (503-517)
🪛 Ruff (0.14.6)
tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py

28-28: Unused function argument: eps

(ARG001)


39-39: Unused function argument: eps

(ARG001)

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py

18-18: Unpacked variable A is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


18-18: Unpacked variable final_state is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


26-26: Unused function argument: q

(ARG001)


27-27: Unused function argument: k

(ARG001)


29-29: Unused function argument: beta

(ARG001)


30-30: Unused function argument: scale

(ARG001)

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py

31-31: Unused function argument: cache_loc

(ARG001)


32-32: Unused function argument: pages_per_seq

(ARG001)


34-34: Unused function argument: page_size

(ARG001)


35-35: Unused function argument: chunk_size

(ARG001)


77-77: Unused function argument: input_pos

(ARG001)


78-78: Unused function argument: cache_loc

(ARG001)


79-79: Unused function argument: pages_per_seq

(ARG001)


81-81: Unused function argument: page_size

(ARG001)


82-82: Unused function argument: chunk_size

(ARG001)


176-176: Unused function argument: q

(ARG001)


177-177: Unused function argument: k

(ARG001)


179-179: Unused function argument: beta

(ARG001)


181-181: Unused function argument: cu_seqlens

(ARG001)


182-182: Unused function argument: slot_idx

(ARG001)


183-183: Unused function argument: use_initial_states

(ARG001)


184-184: Unused function argument: batch_info_tensor

(ARG001)


186-186: Unused function argument: delta_cache

(ARG001)


188-188: Unused function argument: scale

(ARG001)


246-246: Unused class method argument: source_attn_node

(ARG003)

tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py

47-47: Prefer TypeError exception for invalid type

(TRY004)


47-47: Avoid specifying long messages outside the exception class

(TRY003)


162-162: PEP 484 prohibits implicit Optional

Convert to T | None

(RUF013)


166-166: Unused method argument: config

(ARG002)


167-167: Unused method argument: kwargs

(ARG002)


233-233: Unused method argument: kwargs

(ARG002)


365-365: Unused method argument: kwargs

(ARG002)


443-443: Avoid specifying long messages outside the exception class

(TRY003)


548-551: Avoid specifying long messages outside the exception class

(TRY003)


594-594: Unused method argument: kwargs

(ARG002)


725-725: Unused method argument: kwargs

(ARG002)


759-759: Unused method argument: position_ids

(ARG002)


759-759: Unused method argument: kwargs

(ARG002)


810-810: Avoid specifying long messages outside the exception class

(TRY003)


826-826: Unused method argument: position_ids

(ARG002)


826-826: Unused method argument: kwargs

(ARG002)


855-855: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


917-917: Avoid specifying long messages outside the exception class

(TRY003)


948-948: Unused static method argument: local_metadata

(ARG004)


949-949: Unused static method argument: strict

(ARG004)


950-950: Unused static method argument: missing_keys

(ARG004)


951-951: Unused static method argument: unexpected_keys

(ARG004)


952-952: Unused static method argument: error_msgs

(ARG004)


977-977: Unused method argument: kwargs

(ARG002)


980-980: Avoid specifying long messages outside the exception class

(TRY003)


982-982: Avoid specifying long messages outside the exception class

(TRY003)


1024-1024: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


1026-1026: Unused method argument: kwargs

(ARG002)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (21)
tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py (1)

73-77: Contiguous output for torch_rmsnorm looks correct

The added .contiguous() on (weight * input.to(input_dtype)) is reasonable: it preserves shape and dtype while ensuring a contiguous layout, which should help downstream consumers that assume contiguity, at the cost of at most one extra copy when needed. No correctness issues from this change.

tensorrt_llm/_torch/auto_deploy/custom_ops/mamba/torch_causal_conv.py (1)

24-36: Causal conv output contiguity change is appropriate

Wrapping the conv1d(...)[..., :seq_len].transpose(1, 2) path and adding .contiguous() ensures the returned tensor is contiguous after the transpose, without changing semantics. This is consistent with similar contiguity guarantees elsewhere and should make downstream code more robust to layout assumptions.

tensorrt_llm/_torch/auto_deploy/custom_ops/attention_interface.py (1)

41-49: Validator extension for delta_dtype looks consistent with existing pattern

Including "delta_dtype" in _coerce_dtype keeps behavior aligned with dtype and mamba_dtype and supports string values like "float16"/"float32" coming from configuration (e.g., OmegaConf) that are then converted to torch.dtype. This matches the existing approach in auto_deploy where dtypes are stored as strings in configs and coerced later. Based on learnings, this change looks correct and complete.

examples/auto_deploy/.gitignore (1)

8-8: LGTM!

The unignore pattern follows the existing convention for tracking deployment config files.

examples/auto_deploy/nemotron_flash.yaml (1)

1-11: Configuration looks well-structured.

The settings appropriately configure the NemotronFlash model with chunked prefill, cuda graph compilation, and correctly disables block reuse for hybrid/SSM models.

The max_seq_len: 2097152 (2M tokens) is very large. Please verify this is the intended context length for the Nemotron-Flash-3B-Instruct model.

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/wy_fast.py (2)

28-91: Kernel implementation is well-structured.

The Triton kernel correctly handles both fixed-length and variable-length sequences with proper boundary checks. Using allow_tf32=False in the dot operations ensures numerical precision for the delta-rule computation.


117-152: Function implementation looks correct.

The dynamic tiling based on shared memory availability (check_shared_mem()) is a good approach for hardware adaptability. The kernel launch parameters align properly with the kernel signature.

docs/source/features/auto_deploy/support_matrix.md (1)

86-86: LGTM!

The new model entry is correctly placed in alphabetical order within the nvidia models section.

tensorrt_llm/_torch/auto_deploy/models/__init__.py (1)

1-4: LGTM!

The import changes correctly register the nemotron_flash and custom modules, ensuring the model factory and custom implementations are available when the package is loaded. This follows the pattern described in the TODO comment.

tensorrt_llm/_torch/auto_deploy/transform/library/ssm_cache.py (1)

16-20: LGTM!

The new InsertCachedDeltaRule transform follows the established pattern of its sibling classes (SSMCacheTransform, InitializeCausalConvCache) and is correctly registered with the TransformRegistry.

tensorrt_llm/_torch/auto_deploy/config/default.yaml (1)

155-157: LGTM!

The new insert_cached_delta_rule transform entry is correctly configured with the cache_init stage and fla_delta backend, following the established pattern for other cache initialization transforms in this file.

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/chunk.py (1)

13-42: LGTM!

The chunk_delta_rule_fwd function correctly orchestrates the delta-rule forward pass by:

  1. Computing the WY representation via prepare_wy_repr_fwd
  2. Running the gated delta-rule forward pass via chunk_gated_delta_rule_fwd_h
  3. Computing the output via chunk_fwd_o

The implementation follows the expected pattern from the FLA library.

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_delta.py (1)

24-32: Fake implementation is correct.

The fake variant correctly returns an empty tensor matching v's shape for shape inference purposes. The unused arguments (q, k, beta, scale) are expected—fake implementations only need to produce correctly shaped output tensors.

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/delta_rule/fused_recurrent.py (2)

9-109: Triton kernel implementation looks correct.

The kernel properly handles:

  • Variable-length sequences via cu_seqlens
  • Initial and final state management
  • Headwise vs scalar beta modes
  • Correct mask handling for partial tiles

One minor note: the variable all (lines 47, 51) shadows the Python built-in, but this is acceptable within Triton kernel scope and is common practice in adapted FLA code.


121-160: Wrapper implementation is correct.

The wrapper correctly:

  • Computes block sizes using triton.next_power_of_2
  • Validates that NK == 1 (single K-block constraint)
  • Allocates output tensors with appropriate shapes
  • Launches the kernel with proper grid dimensions
tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py (1)

5-20: I'll verify the concerns raised in this review comment. The reviewer wants to ensure that num_memory_tokens and vocab_size attributes are always present in the NemotronFlash model config to avoid runtime AttributeError.

Let me start by exploring the codebase structure and locating the relevant configuration files.
<function_calls>


#!/bin/bash

Find files related to NemotronFlash configuration and modeling

fd -e py -path "nemotron" | grep -E "(config|model)" | head -20


</function_calls>

Now let me search for where the model config is defined and used:
<function_calls>


#!/bin/bash

Search for NemotronFlash config class definition

rg -n "class.*NemotronFlash.*Config" --type py


</function_calls>

Let me also check the specific file mentioned in the review:
<function_calls>


#!/bin/bash

List files in the custom directory related to Nemotron

fd -e py "nemotron" tensorrt_llm/_torch/auto_deploy/models/custom/


</function_calls>

Let me examine the init_tokenizer method and trace where model_config comes from:
<function_calls>


#!/bin/bash

Search for _get_model_config method

rg -n "_get_model_config" --type py -B 2 -A 5


</function_calls>

Let me search for the custom imports and custom.py file:
<function_calls>


#!/bin/bash

Find the custom module/file

fd -type f "custom*" tensorrt_llm/_torch/auto_deploy/models/ | grep -v pycache


</function_calls>

Let me check the structure of the auto_deploy/models directory:
<function_calls>


#!/bin/bash

List directory structure

find tensorrt_llm/_torch/auto_deploy/models -type f -name "*.py" | grep -v pycache | head -30


</function_calls>

Let me search more broadly for num_memory_tokens attribute:
<function_calls>


#!/bin/bash

Search for num_memory_tokens in the entire codebase

rg -n "num_memory_tokens" --type py -B 3 -A 3


</function_calls>

<function_calls>


#!/bin/bash

Search for vocab_size in model configs and NemotronFlash related code

rg -n "vocab_size" --type py tensorrt_llm/_torch/auto_deploy/ -B 2 -A 2


</function_calls>

Let me look at the file under review more closely:
<function_calls>


#!/bin/bash

Read the nemotron_flash.py file

cat -n tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py


</function_calls>

<function_calls>


#!/bin/bash

Search for AutoModelForCausalLMFactory parent class

rg -n "class AutoModelForCausalLMFactory" --type py -A 10


</function_calls>

Let me check if there's a init.py or custom.py in the models directory:
<function_calls>


#!/bin/bash

Check the directory contents

ls -la tensorrt_llm/_torch/auto_deploy/models/


</function_calls>

<function_calls>


#!/bin/bash

If custom is a directory, list its contents

ls -la tensorrt_llm/_torch/auto_deploy/models/custom/ 2>/dev/null || echo "custom directory not found or not accessible"


</function_calls>

Let me search for where model_config attributes are accessed in the codebase:
<function_calls>


#!/bin/bash

Search for model_config.num_memory_tokens usage

rg -n "model_config.num_memory_tokens" --type py -B 3 -A 3


</function_calls>

<function_calls>


#!/bin/bash

Search for model_config.vocab_size usage

rg -n "model_config.vocab_size" --type py -B 3 -A 3


</function_calls>

Let me check the imports and base classes more carefully:
<function_calls>


#!/bin/bash

Find and read auto_deploy related files

find tensorrt_llm/_torch/auto_deploy -name "*.py" -type f | grep -v pycache | sort


</function_calls>

Let me check the file size first and then examine it:
<function_calls>


#!/bin/bash

Check file sizes

wc -l tensorrt_llm/_torch/auto_deploy/.py 2>/dev/null
wc -l tensorrt_llm/_torch/auto_deploy/
/*.py 2>/dev/null | head -20


</function_calls>

Let me examine the factory base class:
<function_calls>


#!/bin/bash

Find the AutoModelForCausalLMFactory definition

rg -n "class AutoModelForCausalLMFactory" --type py -A 50 | head -80


</function_calls>

Let me search for where _get_model_config is implemented:
<function_calls>


#!/bin/bash

Find _get_model_config implementation

rg -n "def _get_model_config" --type py -A 15


</function_calls>

Let me look for how model config is loaded and check if there's any validation:
<function_calls>


#!/bin/bash

Search for pretrained config loading

rg -n "from_pretrained|PretrainedConfig" --type py tensorrt_llm/_torch/auto_deploy/ -B 1 -A 1 | head -40


</function_calls>

Let me check if NemotronFlash is a Hugging Face model and search for its actual configuration:
<function_calls>


#!/bin/bash

Search for NemotronFlash references in the entire codebase

rg -n "NemotronFlash" --type py -C 3 | head -100


</function_calls>

Let me examine the nemotron_flash.py file directly to understand its full content:
<function_calls>


#!/bin/bash

Get full content of nemotron_flash.py

wc -l tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py


</function_calls>

<function_calls>


#!/bin/bash

Read the entire file

cat tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py


</function_calls>

<function_calls>


#!/bin/bash

Search for custom module or package related to NemotronFlash

rg -n "NemotronFlashPreTrainedTokenizerFast" --type py -B 5 -A 5


</function_calls>

Let me check the directory structure more carefully:
<function_calls>


#!/bin/bash

List all Python files in auto_deploy/models

find tensorrt_llm/_torch/auto_deploy/models -name "*.py" -type f | sort


</function_calls>

Now let me search for where the model is instantiated or used to understand what config attributes are actually required:
<function_calls>


#!/bin/bash

Search for actual config attributes initialization or assignment

rg -n "num_memory_tokens.*=" --type py -B 2 -A 2


</function_calls>

<function_calls>


#!/bin/bash

Look for test files that might use NemotronFlash

find . -path "test" -name "nemotron" -type f 2>/dev/null


</function_calls>

Let me check if there's any documentation or model card reference:
<function_calls>


#!/bin/bash

Search for README or documentation mentioning NemotronFlash

find tensorrt_llm -name "README*" -o -name "*.md" | xargs grep -l "nemotron" 2>/dev/null


</function_calls>

Let me search for actual Python model configs in the repo:
<function_calls>


#!/bin/bash

Search for PretrainedConfig usage that might define num_memory_tokens

rg -n "PretrainedConfig|modeling_" --type py tensorrt_llm/_torch/ -l | head -20


</function_calls>

Let me check if config.json files exist:
<function_calls>


#!/bin/bash

Search for config.json references or example configs

find tensorrt_llm -name "config.json" 2>/dev/null | head -5


</function_calls>

Let me search in the imports for clues about NemotronFlash model structure:
<function_calls>


#!/bin/bash

Check if NemotronFlash config comes from transformers or is custom

rg -n "from.*transformers.*import|from.*custom.*import" tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py


</function_calls>

Let me examine the parent class and understand the initialization flow:
<function_calls>


#!/bin/bash

Search for all factory classes to understand the pattern

rg -n "class.*Factory.*AutoModel" --type py -B 2 -A 15 | head -100


</function_calls>

Let me search for error handling related to config attributes:
<function_calls>


#!/bin/bash

Search for try-except or getattr usage around config attributes

rg -n "getattr|hasattr|try:" --type py tensorrt_llm/_torch/auto_deploy/ -B 2 -A 2 | head -80


</function_calls>

Let me check the actual NemotronFlash model on Hugging Face by searching for references in code:
<function_calls>


#!/bin/bash

Look for any references to model identifiers or huggingface hub

rg -n "nvidia/Nemotron|huggingface" --type py tensorrt_llm/_torch/ -i


</function_calls>

Let me check if there's a setup or configuration that defines what attributes a NemotronFlash config must have:
<function_calls>


#!/bin/bash

Search for class definitions that might define model config structure

ast-grep --pattern 'class $_ {
$$$
num_memory_tokens
$$$
}'


</function_calls>

Let me try a different approach - search for how PreTrainedTokenizerFast is used:
<function_calls>


#!/bin/bash

Search for PreTrainedTokenizerFast usage and requirements

rg -n "PreTrainedTokenizerFast|from_pretrained" --type py tensorrt_llm/_torch/auto_deploy/ -B 3 -A 8 | head -120


</function_calls>

Let me check if there's model validation logic anywhere:
<function_calls>


#!/bin/bash

Search for validation or requirement checks

rg -n "assert|raise|ValueError.*config" --type py tensorrt_llm/_torch/auto_deploy/ -B 1 -A 1 | head -60


</function_calls>

Let me check if there's any existing attribute access to understand if this is being done safely:
<function_calls>


#!/bin/bash

Look at how the factory processes model configs in general

rg -n "model_config." --type py tensorrt_llm/_torch/auto_deploy/ -C 2


</function_calls>

Let me search for imports from transformers to understand if NemotronFlash is a standard Hugging Face model:
<function_calls>


#!/bin/bash

Check transformers imports and see if NemotronFlash is standard or custom

rg -n "from transformers import" --type py tensorrt_llm/_torch/auto_deploy/


</function_calls>

Let me check more carefully in the repository for NemotronFlash implementation:
<function_calls>


#!/bin/bash

Search for all references to Nemotron across the entire repo

rg -r "nemotron" --type py -i | head -30


</function_calls>

Let me check if there's a model registry or mapping:
<function_calls>


#!/bin/bash

Search for ModelFactoryRegistry and its definitions

rg -n "ModelFactoryRegistry" --type py -B 2 -A 5 | head -80


</function_calls>

Let me examine if there's any documentation about the specific attributes needed:
<function_calls>


#!/bin/bash

Look for comments or docstrings mentioning num_memory_tokens

rg -n "memory.*token" --type py -i -B 2 -A 2


</function_calls>

Let me check the imports at the top of the file being reviewed:
<function_calls>


#!/bin/bash

Get the first 30 lines of nemotron_flash.py

head -30 tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py


</function_calls>

Let me search for the parent class factory implementation:
<function_calls>


#!/bin/bash

Find where AutoModelForCausalLMFactory is defined

fd -type f -name "*.py" -path "auto_deploy" | xargs grep -l "class AutoModelForCausalLMFactory"


</function_calls>

<function_calls>


#!/bin/bash

Read the parent factory class

find tensorrt_llm -name "*.py" -type f | xargs grep -l "class AutoModelForCausalLMFactory" | head -1 | xargs cat


</function_calls>

Let me search for the actual factory pattern and base implementation:
<function_calls>


#!/bin/bash

Find all factory files

find tensorrt_llm/_torch/auto_deploy -name "factory" -o -name "base" | grep -v pycache


</function_calls>

<function_calls>


#!/bin/bash

Look at what files are in auto_deploy

ls -la tensorrt_llm/_torch/auto_deploy/


</function_calls>

<function_calls>


#!/bin/bash

Read the init.py or main file

head -100 tensorrt_llm/_torch/auto_deploy/init.py 2>/dev/null || cat tensorrt_llm/_torch/auto_deploy.py 2>/dev/null || echo "Neither found"


</function_calls>

Let me search in a different way - looking for the actual import statement:
<function_calls>


#!/bin/bash

Look for all imports in nemotron_flash.py with context

cat tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py | head -50


</function_calls>

<function_calls>


#!/bin/bash

Look at all Python files in the models directory

ls -la tensorrt_llm/_torch/auto_deploy/models/*.py 2>/dev/null | head -20


</function_calls>

Let me check if these files exist at all:
<function_calls>


#!/bin/bash

Verify the path exists and check full structure

if [ -d "tensorrt_llm/_torch/auto_deploy" ]; then
echo "auto_deploy exists"
find tensorrt_llm/_torch/auto_deploy -type f -name "*.py" | head -20
else
echo "Path does not exist, searching for auto_deploy"
find tensorrt_llm -type d -name "auto_deploy" 2>/dev/null
fi


</function_calls>

Let me try a broader search:
<function_calls>


#!/bin/bash

Search for nemotron_flash.py anywhere

find . -name "nemotron_flash.py" -type f 2>/dev/null


</function_calls>

<function_calls>


#!/bin/bash

Search for NemotronFlashForCausalLMFactory

rg "NemotronFlashForCausalLMFactory" -type py


</function_calls>

Let me check what Python files are actually in the repo:
<function_calls>


#!/bin/bash

Get a general overview of the repo structure

git ls-files "*.py" | head -30


</function_calls>

<function_calls>


#!/bin/bash

Search for files with "nemotron" in any form

git ls-files | grep -i nemotron


</function_calls>

<function_calls>


#!/bin/bash

Search for any _torch directory

git ls-files | grep "_torch" | head -20


</function_calls>

<function_calls>


#!/bin/bash

Get top-level directories

git ls-tree -d HEAD | head -20


</function_calls>

Based on my investigation, I need to provide the rewritten review comment. The verification revealed that the files and paths referenced in the review comment do not exist in the current state of the repository. The file tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py cannot be located, and the class NemotronFlashForCausalLMFactory does not appear in the codebase. This indicates the code snippet shown in the review comment may be from a feature branch, proposed change, or the paths are incorrect.

The file being reviewed does not exist in the current codebase. The path tensorrt_llm/_torch/auto_deploy/models/nemotron_flash.py and all referenced components (NemotronFlashForCausalLMFactory, AutoModelForCausalLMFactory, NemotronFlashPreTrainedTokenizerFast) cannot be verified as they are not present in the repository. Without access to the actual implementation, the configuration class definition, and the parent factory classes, it is impossible to verify whether num_memory_tokens and vocab_size attributes are guaranteed to exist in the NemotronFlash model config.

tensorrt_llm/_torch/auto_deploy/custom_ops/fla/fla_backend_delta.py (2)

95-170: LGTM!

The prefill/decode separation logic correctly handles both phases with appropriate cache state management. The use of index_copy_ for updating the delta cache is efficient.


193-256: LGTM!

The FlaDeltaBackend class correctly implements the AttentionDescriptor interface. The unused source_attn_node parameter in get_global_buffer_initializers is required by the interface contract.

tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py (2)

1088-1090: LGTM!

The model registration correctly hooks NemotronFlashForCausalLM into the factory system using the expected config_cls_name pattern.


998-1001: I'll verify whether global_attn_idx is always iterable as assumed in line 1000. Let me search the codebase for how this attribute is defined and used.
<function_calls>

#!/bin/bash

Search for global_attn_idx usage and definition

rg -n "global_attn_idx" --type=py -C3


</function_calls>

#!/bin/bash

Get more context on config.global_attn_idx

rg -n "config.global_attn_idx|.global_attn_idx\s*=" --type=py -B2 -A2


</function_calls>

#!/bin/bash

Check the specific file around line 925 and 1000

head -n 1005 tensorrt_llm/_torch/auto_deploy/models/custom/modeling_nemotron_flash.py | tail -n 85 | cat -n


</function_calls>

tensorrt_llm/_torch/auto_deploy/custom_ops/l2norm.py (1)

32-35: Core Fla-backed fla_l2norm binding looks correct

The fla_l2norm custom op cleanly delegates to l2norm_fwd(x, eps) and returns its output without side effects beyond tensor math. This matches the intended linkage to the Triton-backed Fla kernel and keeps the signature simple.

@lucaslie
Copy link
Member Author

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25902 [ run ] triggered by Bot. Commit: 2e92a07

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>
@lucaslie
Copy link
Member Author

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25915 [ run ] triggered by Bot. Commit: cd66e88

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25902 [ run ] completed with state ABORTED. Commit: 2e92a07
LLM/main/L0_MergeRequest_PR #19643 (Blue Ocean) completed with status: ABORTED

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25915 [ run ] completed with state SUCCESS. Commit: cd66e88
/LLM/main/L0_MergeRequest_PR pipeline #19650 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

@lucaslie lucaslie merged commit 2f8bd6f into NVIDIA:main Nov 27, 2025
11 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

[Feature]: Nemotron-Flash Support via AutoDeploy

3 participants