Skip to content

Commit a1e8227

Browse files
committed
Updated benchmark results
1 parent 1298b2e commit a1e8227

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

docs/src/index.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -127,8 +127,8 @@ r.converged # whether the procedure converged
127127
- [Hamerly()](https://www.researchgate.net/publication/220906984_Making_k-means_Even_Faster) - Hamerly is good for moderate number of clusters (< 50?) and moderate dimensions (<100?).
128128
- [Elkan()](https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf) - Recommended for high dimensional data.
129129
- [Yinyang()](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ding15.pdf) - Recommended for large dimensions and/or large number of clusters.
130-
- [Coreset()](http://proceedings.mlr.press/v51/lucic16-supp.pdf) - Recommended for very fast clustering of very large datasets, when extreme accuracy is not important. *Experimental Implementation*
131-
- [MiniBatch()](https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf) - Recommended for extremely large datasets, when extreme accuracy is not important.
130+
- [Coreset()](http://proceedings.mlr.press/v51/lucic16-supp.pdf) - Recommended for very fast clustering of very large datasets, when extreme accuracy is not important.
131+
- [MiniBatch()](https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf) - Recommended for extremely large datasets, when extreme accuracy is not important. *Experimental Implementation*
132132
- [Geometric()](http://cs.baylor.edu/~hamerly/papers/sdm2016_rysavy_hamerly.pdf) - (Coming soon)
133133

134134
### Practical Usage Examples
@@ -188,17 +188,17 @@ Currently, the benchmark speed tests are based on the search for optimal number
188188

189189
_________________________________________________________________________________________________________
190190

191-
|1 million sample (secs)|100k sample (secs)|10k sample (secs)|1k sample (secs)|package |language |
192-
|:---------------------:|:----------------:|:---------------:|:--------------:|:---------------------:|:---------:|
193-
| 538.53100 | 33.15700 | 0.74238 | 0.01710 | Clustering.jl | Julia |
194-
| 220.35700 | 20.93600 | 0.82430 | 0.02639 | mlpack |C++ Wrapper|
195-
| 20.55400 | 2.91300 | 0.17559 | 0.00609 | Lloyd | Julia |
196-
| 11.51800 | 0.96637 | 0.09990 | 0.00635 | Hamerly | Julia |
197-
| 14.01900 | 1.13100 | 0.07912 | 0.00646 | Elkan | Julia |
198-
| 9.97000 | 1.14600 | 0.10834 | 0.00704 | Yinyang | Julia |
199-
| 1,430.00000 | 146.00000 | 5.77000 | 0.34400 | Sklearn KMeans | Python |
200-
| 30.10000 | 3.75000 | 0.61300 | 0.20100 |Sklearn MiniBatchKMeans| Python |
201-
| 218.20000 | 15.51000 | 0.73370 | 0.01947 | Knor | R |
191+
|1 million sample (secs)|100k sample (secs)|10k sample (secs)|1k sample (secs)|package |language |process |
192+
|-----------------------|------------------|-----------------|----------------|------------------------|-----------|----------|
193+
|282.7 |15.27 |0.7324 |0.01682 |Knor |R |full scan |
194+
|854 |87 |6.11 |0.000719 |Sklearn KMeans |Python |full scan |
195+
|11.2 |1.41 |0.000317 |0.000141 |Sklearn MiniBatch Kmeans|Python |stochastic|
196+
|254.481 |18.517 |0.000794956 |0.000031211 |Mlpack |C++ Wrapper|full scan |
197+
|653.178 |45.468 |0.000824115 |0.000017301 |Clustering.jl |Julia |full scan |
198+
|19.955 |2.758 |0.000166957 |0.000009206 |ParallelKMeans Lloyd |Julia |full scan |
199+
|11.234 |1.654 |0.000109074 |0.000012819 |ParallelKMeans Hamerly |Julia |full scan |
200+
|19.394 |1.436 |0.000109262 |0.000013726 |ParallelKMeans Elkan |Julia |full scan |
201+
|14.080 |0.000972914 |0.000095325 |0.000009802 |ParallelKMeans YingYang |Julia |stochastic|
202202

203203
_________________________________________________________________________________________________________
204204

@@ -215,7 +215,7 @@ ________________________________________________________________________________
215215
- 0.1.8 Minor cleanup
216216
- 0.1.9 Added travis support for Julia 1.5
217217
- 0.2.0 Updated MLJ Interface
218-
- 0.2.1 Mini-batch implementation
218+
- 0.2.1 Initial Mini-batch implementation
219219
- 0.2.2 Updated MLJInterface
220220
- 1.0.0 Stable public release
221221

0 commit comments

Comments
 (0)