Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
"""VQLS implementation using Classiq"""
import numpy as np
from classiq import Model
from classiq.applications.chemistry import HVAParameters
from classiq.applications.combinatorial_optimization import (
# QAOAConfig,
OptimizerConfig,
)
from classiq.execution import OptimizerType

# from classiq import construct_combinatorial_optimization_model

matrix_a = np.random.rand(2, 2)


# hamiltonian variational ansatz
ansatz = HVAParameters(reps=3)
# state preparation of b
# matrix decomposition of A into linear combination of unitaries (vqls-prototype defaults to symmetric)

# optimizer to minimize cost function
optimizer_config = OptimizerConfig(opt_type=OptimizerType.COBYLA, max_iteration=250)
# Note : maybe see https://pennylane.ai/qml/demos/tutorial_vqls
hadamard_test_paulistring = 1
Model.vqe(
hamiltonian=hadamard_test_paulistring,
optimizer=optimizer_config,
max_iteration=250,
maximize=False,
initial_point=ansatz,
)

# cost function
# global_cost_function
# local_cost_function
#
# # todo: fix this rest
#
# # Quantum circuit parameters
# num_qubits = A.shape[0]
# depth = 2
# num_iterations = 100
#
# # Prepare initial state
# initial_state = np.ones(num_qubits) / np.sqrt(num_qubits)
#
# # Create a quantum circuit (Classiq syntax might vary)
# qc = QuantumCircuit(num_qubits)
# qc.initialize(initial_state, range(num_qubits))
#
# # Variational form construction (Classiq syntax might vary)
# for d in range(depth):
# for i in range(num_qubits):
# qc.rx(qc.circuit_parameters[f'rx_{d}_{i}'], i)
#
# # Define an optimizer (Classiq syntax might vary)
# optimizer = Optimizer(max_iterations=num_iterations)
#
# # Define the Hamiltonian minimization problem (Classiq syntax might vary)
# hamiltonian_problem = HamiltonianMinimizationProblem(
# ansatz=qc, # Use your constructed quantum circuit
# hamiltonian=A, # Use your matrix A
# target_vector=b, # Use your vector b
# optimizer=optimizer
# )
#
# # Execute the Hamiltonian minimization problem and obtain results (Classiq syntax might vary)
# result = hamiltonian_problem.execute()
#
# # Extract the solution vector
# solution_vector = result.optimal_parameters
# solution = np.dot(A, solution_vector)
#
# print("Solution vector:", solution_vector)
# print("Solution:", solution)