@@ -33,7 +33,7 @@ Julia's built in `lu`. Equivalent to calling `lu!(A)`
3333* On dense matrices, this uses the current BLAS implementation of the user's computer,
3434which by default is OpenBLAS but will use MKL if the user does `using MKL` in their
3535system.
36- * On sparse matrices, this will use UMFPACK from SuiteSparse . Note that this will not
36+ * On sparse matrices, this will use UMFPACK from SparseArrays . Note that this will not
3737cache the symbolic factorization.
3838* On CuMatrix, it will use a CUDA-accelerated LU from CuSolver.
3939* On BandedMatrix and BlockBandedMatrix, it will use a banded LU.
@@ -139,7 +139,7 @@ Julia's built in `qr`. Equivalent to calling `qr!(A)`.
139139* On dense matrices, this uses the current BLAS implementation of the user's computer
140140which by default is OpenBLAS but will use MKL if the user does `using MKL` in their
141141system.
142- * On sparse matrices, this will use SPQR from SuiteSparse
142+ * On sparse matrices, this will use SPQR from SparseArrays
143143* On CuMatrix, it will use a CUDA-accelerated QR from CuSolver.
144144* On BandedMatrix and BlockBandedMatrix, it will use a banded QR.
145145"""
@@ -681,7 +681,7 @@ patterns with “more structure”.
681681
682682!!! note
683683
684- By default, the SuiteSparse .jl are implemented for efficiency by caching the
684+ By default, the SparseArrays .jl are implemented for efficiency by caching the
685685 symbolic factorization. I.e., if `set_A` is used, it is expected that the new
686686 `A` has the same sparsity pattern as the previous `A`. If this algorithm is to
687687 be used in a context where that assumption does not hold, set `reuse_symbolic=false`.
@@ -692,11 +692,11 @@ Base.@kwdef struct UMFPACKFactorization <: AbstractFactorization
692692end
693693
694694@static if VERSION < v " 1.9.0-DEV.1622"
695- const PREALLOCATED_UMFPACK = SuiteSparse . UMFPACK. UmfpackLU (C_NULL , C_NULL , 0 , 0 ,
695+ const PREALLOCATED_UMFPACK = SparseArrays . UMFPACK. UmfpackLU (C_NULL , C_NULL , 0 , 0 ,
696696 [0 ], Int[], Float64[], 0 )
697- finalizer (SuiteSparse . UMFPACK. umfpack_free_symbolic, PREALLOCATED_UMFPACK)
697+ finalizer (SparseArrays . UMFPACK. umfpack_free_symbolic, PREALLOCATED_UMFPACK)
698698else
699- const PREALLOCATED_UMFPACK = SuiteSparse . UMFPACK. UmfpackLU (SparseMatrixCSC (0 , 0 , [1 ],
699+ const PREALLOCATED_UMFPACK = SparseArrays . UMFPACK. UmfpackLU (SparseMatrixCSC (0 , 0 , [1 ],
700700 Int[],
701701 Float64[]))
702702end
@@ -722,17 +722,17 @@ function init_cacheval(alg::UMFPACKFactorization, A::AbstractSparseArray, b, u,
722722 A = convert (AbstractMatrix, A)
723723 zerobased = SparseArrays. getcolptr (A)[1 ] == 0
724724 @static if VERSION < v " 1.9.0-DEV.1622"
725- res = SuiteSparse . UMFPACK. UmfpackLU (C_NULL , C_NULL , size (A, 1 ), size (A, 2 ),
725+ res = SparseArrays . UMFPACK. UmfpackLU (C_NULL , C_NULL , size (A, 1 ), size (A, 2 ),
726726 zerobased ?
727727 copy (SparseArrays. getcolptr (A)) :
728- SuiteSparse . decrement (SparseArrays. getcolptr (A)),
728+ SparseArrays . decrement (SparseArrays. getcolptr (A)),
729729 zerobased ? copy (rowvals (A)) :
730- SuiteSparse . decrement (rowvals (A)),
730+ SparseArrays . decrement (rowvals (A)),
731731 copy (nonzeros (A)), 0 )
732- finalizer (SuiteSparse . UMFPACK. umfpack_free_symbolic, res)
732+ finalizer (SparseArrays . UMFPACK. umfpack_free_symbolic, res)
733733 return res
734734 else
735- return SuiteSparse . UMFPACK. UmfpackLU (SparseMatrixCSC (size (A)... , getcolptr (A),
735+ return SparseArrays . UMFPACK. UmfpackLU (SparseMatrixCSC (size (A)... , getcolptr (A),
736736 rowvals (A), nonzeros (A)))
737737 end
738738end
@@ -744,9 +744,9 @@ function SciMLBase.solve!(cache::LinearCache, alg::UMFPACKFactorization; kwargs.
744744 cacheval = @get_cacheval (cache, :UMFPACKFactorization )
745745 if alg. reuse_symbolic
746746 # Caches the symbolic factorization: https://github.com/JuliaLang/julia/pull/33738
747- if alg. check_pattern && ! (SuiteSparse . decrement (SparseArrays. getcolptr (A)) ==
747+ if alg. check_pattern && ! (SparseArrays . decrement (SparseArrays. getcolptr (A)) ==
748748 cacheval. colptr &&
749- SuiteSparse . decrement (SparseArrays. getrowval (A)) ==
749+ SparseArrays . decrement (SparseArrays. getrowval (A)) ==
750750 cacheval. rowval)
751751 fact = lu (SparseMatrixCSC (size (A)... , getcolptr (A), rowvals (A),
752752 nonzeros (A)))
@@ -773,7 +773,7 @@ A fast sparse LU-factorization which specializes on sparsity patterns with “le
773773
774774!!! note
775775
776- By default, the SuiteSparse .jl are implemented for efficiency by caching the
776+ By default, the SparseArrays .jl are implemented for efficiency by caching the
777777 symbolic factorization. I.e., if `set_A` is used, it is expected that the new
778778 `A` has the same sparsity pattern as the previous `A`. If this algorithm is to
779779 be used in a context where that assumption does not hold, set `reuse_symbolic=false`.
@@ -816,9 +816,9 @@ function SciMLBase.solve!(cache::LinearCache, alg::KLUFactorization; kwargs...)
816816 if cache. isfresh
817817 cacheval = @get_cacheval (cache, :KLUFactorization )
818818 if cacheval != = nothing && alg. reuse_symbolic
819- if alg. check_pattern && ! (SuiteSparse . decrement (SparseArrays. getcolptr (A)) ==
819+ if alg. check_pattern && ! (SparseArrays . decrement (SparseArrays. getcolptr (A)) ==
820820 cacheval. colptr &&
821- SuiteSparse . decrement (SparseArrays. getrowval (A)) == cacheval. rowval)
821+ SparseArrays . decrement (SparseArrays. getrowval (A)) == cacheval. rowval)
822822 fact = KLU. klu (SparseMatrixCSC (size (A)... , getcolptr (A), rowvals (A),
823823 nonzeros (A)))
824824 else
@@ -1378,4 +1378,4 @@ for alg in InteractiveUtils.subtypes(AbstractFactorization)
13781378 maxiters:: Int , abstol, reltol, verbose:: Bool ,
13791379 assumptions:: OperatorAssumptions )
13801380 end
1381- end
1381+ end
0 commit comments