|
29 | 29 | `LUFactorization(pivot=LinearAlgebra.RowMaximum())` |
30 | 30 |
|
31 | 31 | Julia's built in `lu`. Equivalent to calling `lu!(A)` |
32 | | - |
| 32 | +
|
33 | 33 | * On dense matrices, this uses the current BLAS implementation of the user's computer, |
34 | 34 | which by default is OpenBLAS but will use MKL if the user does `using MKL` in their |
35 | 35 | system. |
|
135 | 135 | `QRFactorization(pivot=LinearAlgebra.NoPivot(),blocksize=16)` |
136 | 136 |
|
137 | 137 | Julia's built in `qr`. Equivalent to calling `qr!(A)`. |
138 | | - |
| 138 | +
|
139 | 139 | * On dense matrices, this uses the current BLAS implementation of the user's computer |
140 | 140 | which by default is OpenBLAS but will use MKL if the user does `using MKL` in their |
141 | 141 | system. |
|
242 | 242 | function do_factorization(alg::CholeskyFactorization, A, b, u) |
243 | 243 | A = convert(AbstractMatrix, A) |
244 | 244 | if A isa SparseMatrixCSC |
245 | | - fact = cholesky!(A; shift = alg.shift, check = false, perm = alg.perm) |
| 245 | + fact = cholesky(A; shift = alg.shift, check = false, perm = alg.perm) |
246 | 246 | elseif alg.pivot === Val(false) || alg.pivot === NoPivot() |
247 | 247 | fact = cholesky!(A, alg.pivot; check = false) |
248 | 248 | else |
|
346 | 346 | `SVDFactorization(full=false,alg=LinearAlgebra.DivideAndConquer())` |
347 | 347 |
|
348 | 348 | Julia's built in `svd`. Equivalent to `svd!(A)`. |
349 | | - |
| 349 | +
|
350 | 350 | * On dense matrices, this uses the current BLAS implementation of the user's computer |
351 | 351 | which by default is OpenBLAS but will use MKL if the user does `using MKL` in their |
352 | 352 | system. |
|
444 | 444 | `GenericFactorization(;fact_alg=LinearAlgebra.factorize)`: Constructs a linear solver from a generic |
445 | 445 | factorization algorithm `fact_alg` which complies with the Base.LinearAlgebra |
446 | 446 | factorization API. Quoting from Base: |
447 | | - |
| 447 | +
|
448 | 448 | * If `A` is upper or lower triangular (or diagonal), no factorization of `A` is |
449 | 449 | required. The system is then solved with either forward or backward substitution. |
450 | 450 | For non-triangular square matrices, an LU factorization is used. |
|
666 | 666 | """ |
667 | 667 | `UMFPACKFactorization(;reuse_symbolic=true, check_pattern=true)` |
668 | 668 |
|
669 | | -A fast sparse multithreaded LU-factorization which specializes on sparsity |
| 669 | +A fast sparse multithreaded LU-factorization which specializes on sparsity |
670 | 670 | patterns with “more structure”. |
671 | 671 |
|
672 | 672 | !!! note |
@@ -850,7 +850,7 @@ Only supports sparse matrices. |
850 | 850 |
|
851 | 851 | ## Keyword Arguments |
852 | 852 |
|
853 | | -* shift: the shift argument in CHOLMOD. |
| 853 | +* shift: the shift argument in CHOLMOD. |
854 | 854 | * perm: the perm argument in CHOLMOD |
855 | 855 | """ |
856 | 856 | Base.@kwdef struct CHOLMODFactorization{T} <: AbstractFactorization |
@@ -916,12 +916,12 @@ end |
916 | 916 | ## RFLUFactorization |
917 | 917 |
|
918 | 918 | """ |
919 | | -`RFLUFactorization()` |
| 919 | +`RFLUFactorization()` |
920 | 920 |
|
921 | 921 | A fast pure Julia LU-factorization implementation |
922 | 922 | using RecursiveFactorization.jl. This is by far the fastest LU-factorization |
923 | 923 | implementation, usually outperforming OpenBLAS and MKL for smaller matrices |
924 | | -(<500x500), but currently optimized only for Base `Array` with `Float32` or `Float64`. |
| 924 | +(<500x500), but currently optimized only for Base `Array` with `Float32` or `Float64`. |
925 | 925 | Additional optimization for complex matrices is in the works. |
926 | 926 | """ |
927 | 927 | struct RFLUFactorization{P, T} <: AbstractFactorization |
@@ -1179,7 +1179,7 @@ end |
1179 | 1179 | # But I'm not sure it makes sense as a GenericFactorization |
1180 | 1180 | # since it just uses `LAPACK.getrf!`. |
1181 | 1181 | """ |
1182 | | -`FastLUFactorization()` |
| 1182 | +`FastLUFactorization()` |
1183 | 1183 |
|
1184 | 1184 | The FastLapackInterface.jl version of the LU factorization. Notably, |
1185 | 1185 | this version does not allow for choice of pivoting method. |
@@ -1210,7 +1210,7 @@ function SciMLBase.solve!(cache::LinearCache, alg::FastLUFactorization; kwargs.. |
1210 | 1210 | end |
1211 | 1211 |
|
1212 | 1212 | """ |
1213 | | -`FastQRFactorization()` |
| 1213 | +`FastQRFactorization()` |
1214 | 1214 |
|
1215 | 1215 | The FastLapackInterface.jl version of the QR factorization. |
1216 | 1216 | """ |
|
0 commit comments