|
| 1 | +# Heyting fields |
| 2 | + |
| 3 | +```agda |
| 4 | +module commutative-algebra.heyting-fields where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import commutative-algebra.commutative-rings |
| 11 | +open import commutative-algebra.invertible-elements-commutative-rings |
| 12 | +open import commutative-algebra.local-commutative-rings |
| 13 | +open import commutative-algebra.trivial-commutative-rings |
| 14 | +
|
| 15 | +open import foundation.conjunction |
| 16 | +open import foundation.dependent-pair-types |
| 17 | +open import foundation.negation |
| 18 | +open import foundation.propositions |
| 19 | +open import foundation.sets |
| 20 | +open import foundation.subtypes |
| 21 | +open import foundation.universe-levels |
| 22 | +
|
| 23 | +open import ring-theory.rings |
| 24 | +``` |
| 25 | + |
| 26 | +</details> |
| 27 | + |
| 28 | +## Idea |
| 29 | + |
| 30 | +A |
| 31 | +{{#concept "Heyting field" WDID=Q5749811 WD="Heyting field" Agda=Heyting-Field}} |
| 32 | +is a [local commutative ring](commutative-algebra.local-commutative-rings.md) |
| 33 | +with the properties: |
| 34 | + |
| 35 | +- it is [nontrivial](commutative-algebra.trivial-commutative-rings.md): 0 ≠ 1 |
| 36 | +- any |
| 37 | + [non](foundation.negation.md)-[invertible](commutative-algebra.invertible-elements-commutative-rings.md) |
| 38 | + element is [equal](foundation.identity-types.md) to zero |
| 39 | + |
| 40 | +Note that this is distinct from the classical notion of a field, called |
| 41 | +[discrete field](commutative-algebra.discrete-fields.md) in constructive |
| 42 | +contexts, which asserts that every element is |
| 43 | +[either](foundation.exclusive-disjunction.md) invertible or equal to zero. A |
| 44 | +Heyting field is a discrete field if and only if its equality relation is |
| 45 | +[decidable](foundation.decidable-equality.md), which would not include e.g. the |
| 46 | +[real numbers](real-numbers.dedekind-real-numbers.md). |
| 47 | + |
| 48 | +## Definition |
| 49 | + |
| 50 | +```agda |
| 51 | +is-heyting-field-prop-Local-Commutative-Ring : |
| 52 | + {l : Level} → Local-Commutative-Ring l → Prop l |
| 53 | +is-heyting-field-prop-Local-Commutative-Ring R = |
| 54 | + ( is-nontrivial-commutative-ring-Prop |
| 55 | + ( commutative-ring-Local-Commutative-Ring R)) ∧ |
| 56 | + ( Π-Prop |
| 57 | + ( type-Local-Commutative-Ring R) |
| 58 | + ( λ x → |
| 59 | + hom-Prop |
| 60 | + ( ¬' |
| 61 | + ( is-invertible-element-prop-Commutative-Ring |
| 62 | + ( commutative-ring-Local-Commutative-Ring R) |
| 63 | + ( x))) |
| 64 | + ( is-zero-prop-Local-Commutative-Ring R x))) |
| 65 | +
|
| 66 | +is-heyting-field-Local-Commutative-Ring : |
| 67 | + {l : Level} → Local-Commutative-Ring l → UU l |
| 68 | +is-heyting-field-Local-Commutative-Ring R = |
| 69 | + type-Prop (is-heyting-field-prop-Local-Commutative-Ring R) |
| 70 | +
|
| 71 | +Heyting-Field : (l : Level) → UU (lsuc l) |
| 72 | +Heyting-Field l = |
| 73 | + type-subtype (is-heyting-field-prop-Local-Commutative-Ring {l}) |
| 74 | +``` |
| 75 | + |
| 76 | +## Properties |
| 77 | + |
| 78 | +```agda |
| 79 | +module _ |
| 80 | + {l : Level} |
| 81 | + (F : Heyting-Field l) |
| 82 | + where |
| 83 | +
|
| 84 | + local-commutative-ring-Heyting-Field : Local-Commutative-Ring l |
| 85 | + local-commutative-ring-Heyting-Field = pr1 F |
| 86 | +
|
| 87 | + commutative-ring-Heyting-Field : Commutative-Ring l |
| 88 | + commutative-ring-Heyting-Field = |
| 89 | + commutative-ring-Local-Commutative-Ring local-commutative-ring-Heyting-Field |
| 90 | +
|
| 91 | + ring-Heyting-Field : Ring l |
| 92 | + ring-Heyting-Field = ring-Commutative-Ring commutative-ring-Heyting-Field |
| 93 | +
|
| 94 | + type-Heyting-Field : UU l |
| 95 | + type-Heyting-Field = type-Ring ring-Heyting-Field |
| 96 | +
|
| 97 | + set-Heyting-Field : Set l |
| 98 | + set-Heyting-Field = set-Ring ring-Heyting-Field |
| 99 | +
|
| 100 | + zero-Heyting-Field : type-Heyting-Field |
| 101 | + zero-Heyting-Field = zero-Ring ring-Heyting-Field |
| 102 | +
|
| 103 | + one-Heyting-Field : type-Heyting-Field |
| 104 | + one-Heyting-Field = one-Ring ring-Heyting-Field |
| 105 | +
|
| 106 | + add-Heyting-Field : |
| 107 | + type-Heyting-Field → type-Heyting-Field → type-Heyting-Field |
| 108 | + add-Heyting-Field = add-Ring ring-Heyting-Field |
| 109 | +
|
| 110 | + mul-Heyting-Field : |
| 111 | + type-Heyting-Field → type-Heyting-Field → type-Heyting-Field |
| 112 | + mul-Heyting-Field = mul-Ring ring-Heyting-Field |
| 113 | +
|
| 114 | + neg-Heyting-Field : type-Heyting-Field → type-Heyting-Field |
| 115 | + neg-Heyting-Field = neg-Ring ring-Heyting-Field |
| 116 | +``` |
| 117 | + |
| 118 | +## External links |
| 119 | + |
| 120 | +- [Heyting field](https://ncatlab.org/nlab/show/Heyting+field) at $n$Lab |
0 commit comments