diff --git a/Anusha/Module0/Matplotlib.ipynb b/Anusha/Module0/Matplotlib.ipynb new file mode 100644 index 0000000..289b27f --- /dev/null +++ b/Anusha/Module0/Matplotlib.ipynb @@ -0,0 +1,1212 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# **Matplotlib**" + ], + "metadata": { + "id": "oDpi82DW8b0b" + } + }, + { + "cell_type": "markdown", + "source": [ + "Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations" + ], + "metadata": { + "id": "WJP6Cm5r8i_y" + } + }, + { + "cell_type": "markdown", + "source": [ + "Version: 3.10.0" + ], + "metadata": { + "id": "JYE_m95j8nYj" + } + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ], + "metadata": { + "id": "rdKR6i8v8hni" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "The simplest way of creating a Figure with an Axes is using pyplot.subplots" + ], + "metadata": { + "id": "B7OqxdeQ9T71" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots() # Create a figure containing a single Axes.\n", + "ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.\n", + "plt.show() # Show the figure." + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "bZsKL4h_8vkO", + "outputId": "26fded28-ba7a-4acf-beaa-e4994a93a0fd" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT0xJREFUeJzt3Xd8FGXiBvBndjfZ1N1AIIV0CB0SOiQhAgoiIIIKKqIgAj/1QOHOcnJF7/TuYuMUy6lIs8ChgIAiiCBSQkInIaG3FNIJZDd1k+zO748NOUEC2ZR9tzzfz2f+yGYm+2Qc2SfzzrwjybIsg4iIiEgQhegARERE5NxYRoiIiEgolhEiIiISimWEiIiIhGIZISIiIqFYRoiIiEgolhEiIiISimWEiIiIhFKJDtAYJpMJubm58Pb2hiRJouMQERFRI8iyjNLSUnTo0AEKRcPnP+yijOTm5iIkJER0DCIiImqC7OxsBAcHN/h9uygj3t7eAMy/jEajEZyGiIiIGkOv1yMkJKT+c7whdlFGrg3NaDQalhEiIiI7c7tLLHgBKxEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnVrDLyxhtvQJIkzJ8//5brrVmzBt26dYObmxt69+6NzZs3N+dtiYiIyIE0uYwcPHgQn376KaKiom65XlJSEqZMmYKZM2fi6NGjmDhxIiZOnIj09PSmvjURERE5kCaVkbKyMkydOhWfffYZ2rRpc8t1Fy1ahHvuuQcvvvgiunfvjtdffx39+vXDhx9+2KTARERE5FiaVEbmzJmDcePGYeTIkbddNzk5+TfrjR49GsnJyQ1uYzAYoNfrr1uI7IW+qgYf/HwWOSWVoqMQEdkFi8vI6tWrceTIESQkJDRq/fz8fPj7+1/3mr+/P/Lz8xvcJiEhAVqttn4JCQmxNCaRMG//eBoLt53BzBUHUV1rEh2HiMjmWVRGsrOzMW/ePKxcuRJubm6tlQkLFiyATqerX7Kzs1vtvYha0tXyaqw5bD5eT+WX4oMdZwUnIiKyfRaVkcOHD6OwsBD9+vWDSqWCSqXCrl278P7770OlUsFoNP5mm4CAABQUFFz3WkFBAQICAhp8H7VaDY1Gc91CZA9WHchCVY0JbTxcAAD/2XkeaZd0glMREdk2i8rIXXfdhbS0NKSkpNQvAwYMwNSpU5GSkgKlUvmbbWJiYvDzzz9f99q2bdsQExPTvORENsZQa8SKpAwAwCvje2BcVCCMJhnPr0mBofa3RZ2IiMxUlqzs7e2NXr16Xfeap6cnfH1961+fNm0agoKC6q8pmTdvHoYNG4aFCxdi3LhxWL16NQ4dOoTFixe30K9AZBu+T81DUakB/ho1xvXugGFd/LD/QjHOFJRh0fazeOmebqIjEhHZpBafgTUrKwt5eXn1X8fGxmLVqlVYvHgxoqOjsXbtWmzYsOE3pYbInsmyjCV7LgAAnoiNgKtKgbaervjHxN4AgE92nUdKdonAhEREtkuSZVkWHeJ29Ho9tFotdDodrx8hm5R49jIeW7ofHq5KJL98F7R114wAwLzVR7ExJRed2nvih+fi4eby2+FMIiJH1NjPbz6bhqgFfFZ3VuShASHXFREA+Nv4nmjnpcb5onK8u/2MiHhERDaNZYSomc4UlGLXmSJIEjAjLvw332/j6Yp/3W8elvxs9wUczrxq5YRERLaNZYSomZbuuQgAGN0jAGG+njdd5+6eAXigbxBMMvDimlRU1fDuGiKia1hGiJqhqNSA9Sk5AIDZd0Tcct1Xx/eEn7caFy6X452tp60Rj4jILrCMEDXDl/syUV1rQp8QH/QLvfVDI7UeLnjjQfPdNUv3XsShjCvWiEhEZPNYRoiaqKrGiK/2ZQIAZsd3hCRJt93mzm7+mNQ/GLIMvLAmFZXVHK4hImIZIWqib4/k4Ep5NYJ83DG6p//tN6jz13t7IEDjhoziCry19VQrJiQisg8sI0RNYDLJWJpovp33yaERUCkb/7+S1v1/wzXL92Zg34XiVslIRGQvWEaImmDnmUKcLyqHt1qFhwYEW7z98K5+eGRgCADgpbXHUFFd29IRiYjsBssIURMsqbudd8rgUHi7udxm7Zv787ju6KB1Q9aVCry5hcM1ROS8WEaILHQ8V4ek88VQKiRMjw1v8s/xdnPBm5OiAACfJ2ci6fzlFkpIRGRfWEaILHTtrMi43oEI8nFv1s+K79wejw4OBWAerikzcLiGiJwPywiRBfJ1Vfg+NRcAMCv+1pOcNdafxnZHkI87Ll2tRMLmky3yM4mI7AnLCJEFViRloNYkY1BEW0QF+7TIz/RSq/B23XDNyv1ZSDzL4Roici4sI0SNVG6oxar95knOZg1tmbMi18RGtsPjQ8IAAH9cdwylVTUt+vOJiGwZywhRI605lA19VS3CfT0wsnvjJzlrrJfHdENIW3fklFTiXxyuISInwjJC1AhGk4xlezMAADOHRkChuP3U75byVKvw9qRoAMB/D2Rj15miFn8PIiJbxDJC1AjbTuQj60oFfDxc8GB/yyc5a6whHX3xRN3twi+vOwY9h2uIyAmwjBA1wrXbeacODoWHq6pV3+ule7oizNcDeboq/GPTiVZ9LyIiW8AyQnQbR7Ou4lDmVbgoJUyPCW/19/NwNQ/XSBLwzaFL+OVUYau/JxGRSCwjRLexJNF8VuS+6CD4adys8p6DItriyTjzHTsvf3sMugoO1xCR42IZIbqF7CsV2JKWB6DlJjlrrBfu7oqO7TxRoDfg75uOW/W9iYisiWWE6BZWJGXAJANDI9uhe6DGqu/t7qrE25OjIEnAt0dysP1EgVXfn4jIWlhGiBqgr6rB1wezAVj/rMg1/cPaYnZ8RwDAgvVpKKmoFpKDiKg1sYwQNeDrA9koM9Sis58XhnVpLyzHH0Z1Qaf2nigqNeBv33G4hogcD8sI0U3UGE1Yvtd84eqs+AhIUstPctZYbi5KvDM5GgoJ2JCSi63H84VlISJqDSwjRDexJT0fuboqtPNyxYQ+QaLjoG9oGzw1rBMA4M/r03ClnMM1ROQ4WEaIbiDLMpbsuQAAeHxIONxclIITmc0f2Rmd/bxwuawar3K4hogcCMsI0Q0OZlzFsUs6qFUKPDYkVHScemqVebhGqZDwfWouNtfdckxEZO9YRohu8FndWZEH+gXD10stOM31okN88EzdcM1fNqTjcplBcCIiouZjGSH6lYuXy7H9pHk+j5lDxdzOezvP3hWJbgHeuFJejVc2pouOQ0TUbCwjRL+yLPEiZBm4s5sfIv28RMe5qV8P12xOy8emY7miIxERNQvLCFGdkopqrDlcN8mZjZ4VuaZXkBZzRkQCAP66IR1FpRyuISL7xTJCVGfl/ixU1ZjQI1CDmE6+ouPc1twRkegeqMHVihr8ZUMaZFkWHYmIqElYRogAGGqNWJGUAQCYfYfYSc4ay1WlwMLJ0VApJGw9XoDvUjlcQ0T2iWWECMD3qXkoKjXAX6PGuN4dRMdptB4dNHjurs4AgFc2HkehvkpwIiIiy7GMkNP79SRnT8RGwFVlX/9bPDO8E3oFaaCrrMGf1nO4hojsj339q0vUCvaeK8ap/FJ4uCrx6CDbmeSssVyUCrwzORouSgnbTxZi/dEc0ZGIiCzCMkJOb0mi+azIQwNCoPVwEZymaboFaDB/ZBcAwN++O458HYdriMh+sIyQUztbUIqdp4sgScCMuHDRcZrlqTs6IipYC31VLRZ8e4zDNURkN1hGyKkt2XMRADC6RwDCfD0Fp2keldJ8d42rUoFfThdh7eFLoiMRETUKywg5raJSA9anmK+vmBVv25OcNVZnf2/8fpR5uOa1708gT1cpOBER0e2xjJDT+nJfJqprTegT4oP+YW1Ex2kxs+Mj0CfEB6WGWvxxHe+uISLbxzJCTqmqxoiv9mUCMJ8VsYdJzhpLVXd3jatKgd1nivD1wWzRkYiIbollhJzSt0dycKW8GkE+7rinZ4DoOC0u0s8LL97dFQDwjx9OIqeEwzVEZLssKiMff/wxoqKioNFooNFoEBMTgy1btjS4/ooVKyBJ0nWLm5tbs0MTNYfJJGNp3e28M+LCoVI6Zid/cmgE+oe1QZmhFn9cy7triMh2WfSvcHBwMN544w0cPnwYhw4dwp133okJEybg+PHjDW6j0WiQl5dXv2RmZjY7NFFz7DxTiPNF5fBWq/DwwBDRcVqNUiHh7UlRUKsUSDx3GasOZImORER0UxaVkfHjx2Ps2LHo3LkzunTpgn/+85/w8vLCvn37GtxGkiQEBATUL/7+/s0OTdQc127nfWRQCLzd7HOSs8bq2N4LL93TDQDwzx9OIvtKheBERES/1eTz00ajEatXr0Z5eTliYmIaXK+srAxhYWEICQm57VmUawwGA/R6/XULUUs4nqtD0vliKBUSnohzjNt5b2dGbDgGhbdFRbURL609BpOJwzVEZFssLiNpaWnw8vKCWq3G008/jfXr16NHjx43Xbdr165YtmwZNm7ciK+++gomkwmxsbG4dOnWkzElJCRAq9XWLyEhjnsqnaxrad1ZkbG9AxHk4y44jXUoFBLemhQFNxcFki8UY+V+DpUSkW2RZAuvaquurkZWVhZ0Oh3Wrl2LJUuWYNeuXQ0Wkl+rqalB9+7dMWXKFLz++usNrmcwGGAwGOq/1uv1CAkJgU6ng0ajsSQuUb18XRWGvrkDtSYZ382NQ1Swj+hIVrVi70X87fsTcHdRYuv8OxDq6yE6EhE5OL1eD61We9vPb4vPjLi6uiIyMhL9+/dHQkICoqOjsWjRokZt6+Ligr59++LcuXO3XE+tVtffsXNtIWquz5MzUGuSMSi8rdMVEQCYFhOOwRFtUVljxAtrUzlcQ0Q2o9n3NJpMpuvOYtyK0WhEWloaAgMDm/u2RBYpN9Ri5a8mOXNGCoWEtydFw8NViQMXr+Dz5AzRkYiIAFhYRhYsWIDdu3cjIyMDaWlpWLBgAXbu3ImpU6cCAKZNm4YFCxbUr//aa6/hp59+woULF3DkyBE89thjyMzMxKxZs1r2tyC6jbWHL0FfVYtwXw/c1d157+gK9fXAgjHmu2ve/PEUMi6XC05ERASoLFm5sLAQ06ZNQ15eHrRaLaKiorB161aMGjUKAJCVlQWF4n/95urVq5g9ezby8/PRpk0b9O/fH0lJSY26voSopRhNMpYmmi9cnTk0AkqF40z93hRTB4dhS3o+ks4X44U1qfj6qRin3ydEJJbFF7CK0NgLYIhu5sf0fDz91WFo3V2QvOBOeLha1MEdUvaVCtzz3m6UVxvxl3HdMSu+o+hIROSAWu0CViJ7s2SPeer3x4aEsojUCWnrgT+PM5+hfHvraZwvKhOciIicGcsIObSjWVdxKPMqXJQSpsWEi45jU6YMCkF853Yw1Jrw4ppUGHl3DREJwjJCDm1J3bUi90UHwV/DhzT+miRJeOPBKHipVTiSVVL/8EAiImtjGSGHlX2lAlvS8gCYL1yl3wryccdf7+0OAHjnpzM4V1gqOBEROSOWEXJYK5IyYJKBoZHt0KMDL3xuyEMDQjCsS3tU15rw/JpjqDWaREciIifDMkIOSV9Vg68PZgMAZjrpJGeNZR6u6Q1vNxVSs0uweA+Ha4jIulhGyCF9fSAbZYZadPbzwvAu7UXHsXmBWne8cq/57pr3tp3FmQIO1xCR9bCMkMOpNZqwfK/5wtVZ8RGQJE7o1RiT+gfjzm5+qDaa8Pw3qajhcA0RWQnLCDmczen5yNVVoZ2XKyb0CRIdx25IkoSEB3pD46ZCWo4On+46LzoSETkJlhFyKLIs109y9viQcLi5KAUnsi/+Gjf8fUJPAMCin8/iZJ5ecCIicgYsI+RQDmZcxbFLOqhVCjw2JFR0HLs0sU8QRvXwR41RxgtrOFxDRK2PZYQcyrWzIg/0C4avl1pwGvskSRL+eX8v+Hi44HiuHv/5hcM1RNS6WEbIYVy8XI5tJwsAcJKz5vLzdsPf7zMP13yw4yyO5+oEJyIiR8YyQg5jWeJFyDJwZzc/RPp5iY5j9+6L7oB7egag1iTj+W9SUV3L4Roiah0sI+QQSiqqseaweZKzWTwr0iIkScI/7u+Ftp6uOJVfig93nBUdiYgcFMsIOYSV+7NQVWNCj0ANYjr5io7jMNp5qfFa3d01H+08j/QcDtcQUctjGSG7Z6g1YkVSBgBOctYa7o3qgHG9A2GsG64x1BpFRyIiB8MyQnbv+9Q8FJUa4K9R496oDqLjOKTXJvSEr6crTheU4v2fOVxDRC2LZYTs2q8nOZseGw5XFQ/p1uDrpcY/JvYCAHy88zxSs0vEBiIih8J/ucmu7T1XjFP5pXB3UWLqoDDRcRzamN6BuC+6A0wy8MKaVFTVcLiGiFoGywjZtSWJ5rMiDw0IhtbDRXAax/f3+3qinZcaZwvL8N52DtcQUctgGSG7dbagFDtPF0GSgCd5O69VtPF0xb/uNw/XLN59HkeyrgpORESOgGWE7NbSxIsAgLt7+CPM11NwGudxd88A3N83iMM1RNRiWEbILhWVGvDt0RwAwOz4joLTOJ9Xx/eAn7caF4rK8e9tZ0THISI7xzJCdumrfZmorjUhOsQH/cPaiI7jdHw8XJHwQG8AwGd7LuBw5hXBiYjInrGMkN2pqjHiy32ZAIDZnORMmLu6++PBfsGQZeCFNcdQWc3hGiJqGpYRsjvrj+bgSnk1gnzccU/PANFxnNor43vAX6PGxcvleHvradFxiMhOsYyQXTGZ/jfJ2Yy4cKiUPIRF0rq74I0HowAAy5Mu4sBFDtcQkeX4LznZlV1ninC+qBzeahUeHhgiOg4BGNHVDw8NMA/XvLg2FRXVtaIjEZGdYRkhu/JZ3VmRRwaFwNuNk5zZir/c2wOBWjdkFlfgrR85XENElmEZIbtxPFeHpPPFUCokPBHHSc5sicbNBW/WDdesSMpA8vliwYmIyJ6wjJDdWLrHPMnZ2N6BCPJxF5yGbnRHl/aYMigUgHm4ptzA4RoiahyWEbIL+boqfJeaCwCYxanfbdafx3VHkI87Ll2txBtbTomOQ0R2gmWE7MLnyRmoNckYFN4W0SE+ouNQA7zUKrw1yTxc8+W+TOw9d1lwIiKyBywjZPPKDbVYWTfJ2cx4nhWxdXGR7fDYEPNwzUtrj6G0qkZwIiKydSwjZPPWHr4EfVUtwn09MLK7v+g41AgLxnRHcBt35JRU4l+bOVxDRLfGMkI2zWiSsWyv+cLVmUMjoFRw6nd74KlW4e1J0QCA/x7Iwu4zRYITEZEtYxkhm7btRAEyiyugdXfBg/2DRcchC8R08sX0mDAAwMvrjkHP4RoiagDLCNm0pYnmSc4eGxIKD1eV4DRkqT+O6YbQth7I1VXhn5tOio5DRDaKZYRsVkp2CQ5mXIWLUsK0mHDRcagJPFxVeGdyNCQJ+PpQNn45XSg6EhHZIJYRslnXHoh3X3QQ/DVugtNQUw2KaIsZsea7oF5edwy6Sg7XENH1WEbIJl26WoEt6fkAzBeukn17cXRXRLTzRIHegNc3nRAdh4hsDMsI2aTlezNgNMkYGtkOPTpoRMehZnJ3VeLtSVGQJPOt2j+fLBAdiYhsCMsI2Rx9VQ2+PpgNgJOcOZIB4W3rp/Jf8G0aSiqqBSciIlvBMkI25+sD2Sgz1KKznxeGd2kvOg61oOfv7oqO7T1RWGrA37/ncA0RmVlURj7++GNERUVBo9FAo9EgJiYGW7ZsueU2a9asQbdu3eDm5obevXtj8+bNzQpMjq3WaMLyX01yJkmc5MyRuLko8c7kaCgkYP3RHPx0PF90JCKyARaVkeDgYLzxxhs4fPgwDh06hDvvvBMTJkzA8ePHb7p+UlISpkyZgpkzZ+Lo0aOYOHEiJk6ciPT09BYJT45nc3o+cnVV8PV0xcS+QaLjUCvoF9oGs+/oCAD40/p0XC3ncA2Rs5NkWZab8wPatm2Lt99+GzNnzvzN9x5++GGUl5dj06ZN9a8NGTIEffr0wSeffNLo99Dr9dBqtdDpdNBoeDGjo5JlGRM+2otjl3SYP7Iz5o/sIjoStZKqGiPu/SAR5wrLcF90B7w/pa/oSETUChr7+d3ka0aMRiNWr16N8vJyxMTE3HSd5ORkjBw58rrXRo8ejeTk5Fv+bIPBAL1ef91Cju9gxlUcu6SDq0qBx4eEiY5DrcjNRYmFk6OhVEj4LjUXW9LyREciclo/pufh6S8Pw2hq1rmJZrG4jKSlpcHLywtqtRpPP/001q9fjx49etx03fz8fPj7X/+UVX9/f+Tn33qcOCEhAVqttn4JCQmxNCbZoWuTnD3YLwi+XmrBaai1RYf44Olh5uGav2xIR3GZQXAiIudSVWPEqxvT8fRXR/Dj8XysOZQtLIvFZaRr165ISUnB/v378cwzz2D69Ok4caJlr4pfsGABdDpd/ZKdLW4HkXVcvFyObXVzT3CSM+fx3F2d0dXfG8Xl1Xjlu5tfe0ZELS/jcjke/DgJnydnAgCeGtZR6MNILS4jrq6uiIyMRP/+/ZGQkIDo6GgsWrTopusGBASgoOD6yY0KCgoQEBBwy/dQq9X1d+xcW8ixLd97EbIMjOjaHpF+3qLjkJWoVea7a5QKCT8cy8OmY7miIxE5vO9Tc3HvB4k4nqtHW09XLJ8xEAvGdIeLUtxsH81+Z5PJBIPh5qdXY2Ji8PPPP1/32rZt2xq8xoScU0lFNdYcugQAmB3fUXAasrbewVrMGd4JAPDXDekoKuVwDVFrqKoxYsG3aXj2v0dRZqjFoPC22PxcPEZ09RMdDRY9k33BggUYM2YMQkNDUVpailWrVmHnzp3YunUrAGDatGkICgpCQkICAGDevHkYNmwYFi5ciHHjxmH16tU4dOgQFi9e3PK/CdmtlfuzUFljRPdADWI6+YqOQwLMvbMzfjpRgFP5pfjrhnR8/Fg/zjFD1ILOF5VhzsojOJVfCkkC5o6IxLy7OkMl8GzIr1mUorCwENOmTUPXrl1x11134eDBg9i6dStGjRoFAMjKykJe3v+uio+NjcWqVauwePFiREdHY+3atdiwYQN69erVsr8F2a3qWhM+T8oAAMyO5yRnzspVpcDCh6KhUkj48Xg+vj/Gu2uIWsr6o5cw/oNEnMovRTsvV3zx5CA8f3dXmykiQAvMM2INnGfEca07fAnPr0mFv0aNPS/dCVeV7fzPQdb33vYzeG/7Wfh4uOCn398BP2830ZGI7FZltRGvbEzHmsPmYfCYjr5Y9Egf+Gms9/9Vq88zQtRcsizjs7rbeafHhrOIEOaMiESPQA1KKmrw5/XpsIO/lYhs0pmCUtz3YSLWHL4ESQLmj+yMr2YNtmoRsQT/9Sdhks4X41R+KdxdlHh0UKjoOGQDXJTm4RoXpYRtJwqwISVHdCQiuyLLMr45lI37PkzE2cIytPdWY+WswZg/sguUCtsdBmcZIWGunRV5aEAwfDxcBachW9E9UIN5d3UGALy68TgK9FWCExHZh3JDLZ7/JhUvrT2GqhoT4ju3w5Z58Yjt1E50tNtiGSEhzhaUYufpIkgSMCOOk5zR9Z4e1gm9g7TQV9XiT9+mcbiG6DZO5ukx/sNEfHs0BwoJeHF0V3w+YxDa2cls1iwjJMTSxIsAgLt7+CO8nafgNGRrVEoF3pkcDVelAj+fKsS6IxyuIboZWZaxan8WJn60FxeKyhGgccPq/4vBnBGRUNjwsMyNWEbI6i6XGfDtUfOHyyxOckYN6BrgjfmjzMM1f//+OPJ0lYITEdmW0qoaPLc6BX9anwZDrQkjurbH5nnxGBTRVnQ0i7GMkNV9mZyJ6loTokN8MCCsjeg4ZMP+L74jokN8UFpVi5fXcbiG6Jr0HB3Gf5CI71NzoVJIWDCmG5ZOH4i2nvZ5/R3LCFlVVY0RX+0zP5hp1lBOcka3plIqsHByFFxVCuw6U1T/2AAiZyXLMr5IzsAD/0lCRnEFgnzc8fVTMXhqWCe7Gpa5EcsIWdX6ozkoLq9GkI87xvS69QMTiQAg0s8bz4/qAgB4fdMJ5JRwuIack66yBr9beQSvbDyOaqMJI7v744fnhqK/A5xhZhkhqzGZ5PoLV2fEhdvUVMRk22bFd0TfUB+UGmrx8rpjHK4hp5OaXYJ7P9iDLen5cFFK+Ou9PfDZtP4OMy0CPw3IanadKcK5wjJ4q1V4eGCI6DhkR5QKCe9MjoZapcCes5fx3wPZoiMRWYUsm/+Im/RJErKvVCKkrTvWPh2LmQ42zM0yQlazJNE8ydkjg0Lg7eYiOA3Zm07tvfDi6K4AgH/+cALZVyoEJyJqXSUV1Zj9xWG8vukEaowyxvQKwKZn4xEd4iM6WotjGSGrOJ6rw95zxVAqJDzBSc6oiWbERWBAWBuUVxvxx3XHYDJxuIYc0+HMqxj3fiK2nyyAq1KB1yb0xH+m9oPW3TH/kGMZIatYusd8rcjY3oEI8nEXnIbslVIh4e3J0XBzUSDpfDFWHsgSHYmoRZlMMj7ddR4Pf5qMnJJKhPt64NvfxWJaTLhDDcvciGWEWl2+rgrfpeYCMN/OS9QcEe088cd7ugEAEjafRFYxh2vIMVwpr8bMzw8iYcsp1JpkjI/ugO+fHYpeQVrR0Vodywi1us+TM1BrkjEovK1DjnWS9U2PCcegiLaoqDbixbWpHK4hu3fg4hWMXbQHv5wuglqlwL/u7433H+njNNfXsYxQqyo31GJl3SRnM+N5VoRahkIh4Z1J0fBwVWL/xSv4su4YI7I3JpOMj345hymf7UO+vgod23tiw5w4PDo41KGHZW7EMkKtau3hS9BX1SLc1wMju/uLjkMOJNTXAy+PMQ/XvLHlFDIulwtORGSZy2UGTF9+AG9vPQ2jScYDfYPw/dyh6B6oER3N6lhGqNUYTTKW7TVfuPrk0Ago7XiqYrJNjw0OQ0xHX1TWcLiG7EvS+csYs2gP9py9DDcXBd6aFIWFD0XDU60SHU0IlhFqNdtOFCCzuAJadxdM6h8sOg45IIVCwluTouDpqsTBjKtYnpQhOhLRLRlNMt7bfgaPLdmPolIDOvt54bu5Q/HQgBCnGpa5EcsItZqldZOcTR0cCg9X52z71PpC2nrgT+O6AwDe+vEULhSVCU5EdHOF+io8vnQ/3tt+FiYZeGhAML6bOxRd/L1FRxOOZYRaRUp2CQ5mXIWLUsL02HDRccjBPTooFEMj28FQa8KLa4/ByOEasjF7zhZh7Pt7kHS+GB6uSvz7oWi8NSka7q5K0dFsAssItYole8xnRcZHd4C/xk1wGnJ0kiThjQd7w0utwuHMq1hW90BGItFqjSa8s/U0pi07gMtl1egW4I3v5g7FA/04dP1rLCPU4i5drcCW9HwAwKyhHQWnIWcR3MYDf6kbrnn7p9M4V8jhGhIrX1eFRz/bjw9/OQdZBh4dHIoNc+IQ6eclOprNYRmhFrdibwaMJhlxkb7o0cH5blEjcR4eGII7urRHda0JL6xJ5XANCfPL6UKMfX8PDmRcgZdahfen9MW/7u8NNxcOy9wMywi1KH1VDVYfND/efVY8z4qQdUmShDcf7A1vNxVSskvwWd1wIZG11BhNSNhyEjOWH8SV8mr07KDBpmeH4r7oDqKj2TSWEWpR3xzMRpmhFpF+XhjWub3oOOSEArXu+Ou9PQAA//7pDM4WlApORM4ip6QSD3+ajE93mUvw9JgwrHsmFuHtPAUns30sI9Riao0mLN+bAcD8QDwFJzkjQSb3D8aIru1RbTTh+TWpqDWaREciB7ftRAHGLtqDI1kl8HZT4eOp/fD3Cb04LNNILCPUYrak5yOnpBK+nq6Y2DdIdBxyYpIkIeGBKGjcVDh2SYdPd3O4hlpHda0Jr286gdlfHIKusgbRwVr88Gw8xvQOFB3NrrCMUIuQZbn+dt7HY8L41wAJF6B1w9/u6wkAeG/7GZzK1wtORI4m+0oFJn+ajKV1t5I/GReBNU/HItTXQ3Ay+8MyQi3iUOZVpF7SwVWlwGNDwkTHIQIA3N83CCO7+6HGKOOFNamo4XANtZAf0/Mw9v09SM0ugdbdBZ9NG4BXxveAq4ofq03BvUYt4rO60+AP9gtCOy+14DREZpIk4V/394bW3QXpOXp8vPO86Ehk5wy1Rry6MR1Pf3UEpVW16Bvqgx+eG4pRPfhU8uZgGaFmy7hcjm0nCwAAM4dGCE5DdD0/jRtem2Aernn/57M4nqsTnIjsVcblcjz4cRI+T84EADw1rCO+eSoGwW04LNNcLCPUbMv2XoQsAyO6tkekHx/4RLbnvugOGN3TH7UmGS+sOYbqWg7XkGU2HcvFvR8kIj1HjzYeLlj+xEAsGNMdLkp+jLYE7kVqlpKKaqw5dAkAJzkj2yVJEv4xsTfaeLjgZJ4eH/1yTnQkshNVNUb8aX0a5q46ijJDLQaGt8HmefEY0c1PdDSHwjJCzbJyfxYqa4zoHqhBbCdf0XGIGtTeW43XJvQCAHz0yzmk53C4hm7tfFEZJn60F6v2Z0GSgLkjIvHf2UMQqHUXHc3hsIxQk1XXmvB5UgYA8yRnksRJzsi23RsViLG9A+qGa1JhqDWKjkQ2av3RSxj/QSJO5ZfC19MVXzw5CC+M7goVh2VaBfcqNdn3qbkoLDXAz1uN8XzuAtkBSZLw+oRe8PV0xan8UnzwM4dr6HqV1Ua8tDYVv/86FRXVRsR09MWWefGI5+MtWhXLCDWJLMtYUjfRz/TYcN5bT3bD10uNf0w0D9d8vOs8jl0qERuIbMbZglJM+CgR3xy6BEkC5t3VGV/NGgw/jZvoaA6PnyDUJEnni3EyTw93FyWmDg4VHYfIImN6B+LeqEAYTTKe/4bDNQSsOZSN8R8m4kxBGdp7q7Fy5mD8flQXKPmMLatgGaEmuTb1+0MDguHj4So4DZHlXpvQC+28XHG2sAzvbT8rOg4JUm6oxR++ScGLa4+hqsaE+M7tsPm5eMRGthMdzamwjJDFzhWW4pfTRZAkYEYcJzkj+9TW0xX/mNgbAPDprvM4mnVVcCKytlP5etz3YSK+PZIDhQS8cHcXfD5jENp7cxZpa2MZIYst2WO+VuTuHv4Ib+cpOA1R093TKwAT+3SASQZeWJOKqhoO1zgDWZbx3wNZmPDhXpwvKoe/Ro3/zh6CuXd2hoLDMkKwjJBFLpcZ8O3RHACc5Iwcw9/u64n23mqcLyrHu9vOiI5Dray0qgbPrU7Bgm/TYKg1YXjX9tj8XDwGd+Q8SSKxjJBFvkzORHWtCdEhPhgQ1kZ0HKJm8/Fwxb/uNw/XLN5zAYczrwhORK0lPUeH8R8k4vvUXCgVEhaM6YZl0wfClw/3FM6iMpKQkICBAwfC29sbfn5+mDhxIk6fPn3LbVasWAFJkq5b3Nx4m5Q9qqox4qt95gdEcZIzciSjevjjgX5BkGXghTXHUFnN4RpHIssyvkzOwAP/SUJGcQU6aN3wzVMxeGpYJw7L2AiLysiuXbswZ84c7Nu3D9u2bUNNTQ3uvvtulJeX33I7jUaDvLy8+iUzM7NZoUmM9UdzUFxejSAfd4zpFSA6DlGLevXenvDXqHHxcjne+enWf2SR/dBX1WDOqiP468bjqDaaMLK7PzbPi0d/ntm1KSpLVv7xxx+v+3rFihXw8/PD4cOHcccddzS4nSRJCAjgh5c9M5lkLK2b5GxGXDinRCaHo/VwwRsPRGHGioNYtvci7ukVgIHhbUXHomZIzS7B3P8eQfaVSrgoJfzxnm6YybO6NqlZnyg6nflBU23b3vp/2LKyMoSFhSEkJAQTJkzA8ePHb7m+wWCAXq+/biGxdp0pwrnCMnipVXh4YIjoOEStYkQ3P0zuHwxZBl5ck4qK6lrRkagJZFnGssSLmPRJErKvVCK4jTvWPB2LWfEdWURsVJPLiMlkwvz58xEXF4devXo1uF7Xrl2xbNkybNy4EV999RVMJhNiY2Nx6dKlBrdJSEiAVqutX0JC+OEn2pJE8yRnjwwMgbebi+A0RK3nL/f2QKDWDRnFFXjrRw7X2JuSimr835eH8dqmE6gxyrinZwB+eC4efUJ8REejW5BkWZabsuEzzzyDLVu2IDExEcHBwY3erqamBt27d8eUKVPw+uuv33Qdg8EAg8FQ/7Ver0dISAh0Oh00Gk1T4lIzHM/VYdz7iVAqJOx6cTiC23iIjkTUqnadKcL0ZQcAAKv/bwiG8LZPu3Ak6yqeXXUUOSWVcFUq8Odx3TEtJoxnQwTS6/XQarW3/fxu0pmRuXPnYtOmTfjll18sKiIA4OLigr59++LcuYaflqlWq6HRaK5bSJxr14qM6RXAIkJOYViX9pgyyHxG9qW1x1Bu4HCNLTOZZCzefR4PfZKMnJJKhPl64NvfxWJ6bDiLiJ2wqIzIsoy5c+di/fr12LFjByIiLJ8K3Gg0Ii0tDYGBgRZvS9ZXoK/C96m5ADjJGTmXP43tjiAfd2RdqcCbP54SHYcacKW8GrO+OIR/bT6FWpOMe6MCsenZoegVpBUdjSxgURmZM2cOvvrqK6xatQre3t7Iz89Hfn4+Kisr69eZNm0aFixYUP/1a6+9hp9++gkXLlzAkSNH8NhjjyEzMxOzZs1qud+CWs3nSRmoMcoYGN6GY67kVLzdXPDmg1EAgC+SM5F07rLgRHSjgxlXMO79PdhxqhCuKgX+dX9vfDClL69rs0MWlZGPP/4YOp0Ow4cPR2BgYP3y9ddf16+TlZWFvLy8+q+vXr2K2bNno3v37hg7diz0ej2SkpLQo0ePlvstqFVUVNdi5f4sADwrQs5paOd2mDo4FADw4tpjKONwjU0wmWR89Ms5PLJ4H/J0VejYzhMb58Th0cGhHJaxU02+gNWaGnsBDLWsL5Iz8MrG4wjz9cCO54dDyZkKyQmVGWpxz3u7celqJR4dHFo/dTyJcbnMgN9/nYI9Z81nqu7vG4R/TOwFT7VF02aRlbTqBazk+Iy/muRs5tAIFhFyWl5qFd6aZB6uWbU/C3vOFglO5LySzxdj7KI92HP2MtxcFHjrwSj8+6FoFhEHwDJCN7X9ZAEyiyugdXfBpP6W3TFF5GhiO7XDtJgwAMAf1x5DaVWN4ETOxWiSsWj7WUxdsg+FpQZ09vPCd3OH4qGBIRyWcRAsI3RTS/aYJzmbOjgUHq78q4Poj/d0Q2hbD+TqqvDPH06KjuM0Ckur8PjS/Xh3+xmYZGBy/2BsnBuHLv7eoqNRC2IZod9IyS7BwYyrcFFKmB4bLjoOkU3wVKvwdt1wzeqD2dh5ulBwIseXePYyxi7ag6TzxfBwVeLfD0Xj7cnR/APJAbGM0G9cOysyProD/DVugtMQ2Y7BHX0xIy4cAPDyujToKjlc0xpqjSYs/Ok0Hl+2H5fLqtEtwBvfzR2KB/pxyNhRsYzQdS5drcCW9HwAwKyhvJ2X6EYvje6GcF8P5Our8I9NJ0THcTj5uio8umQ/PthxDrIMTBkUig1z4hDp5yU6GrUilhG6zoq9GTCaZMRF+qJHB95GTXQjd1cl3p4cDUkC1hy+hB2nCkRHchg7Txdi7Pt7cODiFXi6KvH+lL5IeKA33FyUoqNRK2MZoXqlVTVYfTAbAM+KEN3KwPC2mBlnfhzGy+vSoKvgcE1z1BhNeGPLKTyx/CCulFejR6AGm56Lx33RHURHIythGaF6Xx/MRpmhFpF+XhjWpb3oOEQ27YXRXdGxnScKSw34+/fHRcexW7kllXhk8T58sus8AGBaTBi+/V0sItp5Ck5G1sQyQgDMF4wt35sBwDzJmYKTnBHdkpuLebhGIQHfHs3BthMcrrHU9hMFGPv+HhzOvApvtQr/mdoPr03oxWEZJ8QyQgCALen5yCmphK+nK+7vGyQ6DpFd6B/WBrPrntv0p/VpuFpeLTiRfaiuNeEfm05g1heHUFJRg6hgLX54Lh5je/Np7s6KZYQgy3L97byPDQnjXyVEFvj9qC7o1N4TRaUG/I3DNbeVfaUCkz9NxpK6x008GReBtU/HItTXQ3AyEollhHAo8ypSL+ngqlLg8bopr4mocdxclFj4UB8oJGBjSi5+rLs1nn7rx/R8jH1/D1KzS6BxU2Hx4/3xyvgecFXxo8jZ8Qig+rMiD/YLQjsvteA0RPanT4gPnh7WCQDwlw1puMLhmusYao3423fH8fRXh1FaVYu+oT7YPC8ed/cMEB2NbATLiJPLuFyOn+ouvJs5NEJwGiL7NW9kZ3Tx98Llsmq8sjFddBybkVlcjkkfJ2NFUgYA4Kk7OuKbp2IQ3IbDMvQ/LCNObtnei5BlYETX9oj044OniJpKrVLincnRUCokbDqWhx+O5YmOJNymY7kY934i0nJ0aOPhgmVPDMCCsd3houRHD12PR4QTK6moxppDlwAAs+I5yRlRc0UF++B3w83DNX/dmI7LZQbBicSoqjHiz+vTMHfVUZQZajEwvA02z4vHnd38RUcjG8Uy4sRW7s9CZY0R3QM1iO3kKzoOkUN49s7O6BbgjSvl1fjrhnTIsiw6klVdKCrD/f9Jwsr9WZAkYM6ITvjv7CEI1LqLjkY2jGXESVXXmvB53RjurKERkCROckbUElxVCrwzORoqhYQt6fnY5ETDNRuO5uDeDxJxMk8PX09XfD5jEF4c3Q0qDsvQbfAIcVLfp+aisNQAP281xvP5D0QtqleQFnNGRAIwD9cUllYJTtS6KquN+OPaY5j/dQoqqo0Y0rEtNs+Lxx18rAQ1EsuIE5JluX7Coemx4bzHn6gVzBkRiR6BGpRU1ODP6x13uOZsQSkmfJSIrw9lQ5KAeXd1xspZQ+CvcRMdjewIP4WcUNL5YpzM08PdRYmpg0NFxyFySNeGa1yUEradKMDGlFzRkVrcmkPZuO/DvThTUIb23mqsnDkYvx/VBUo+24osxDLihK5NcjZ5QDB8PFwFpyFyXD06aPDcnZ0BAK9+dxyFescYrik31OIP36TgxbXHUFljxNDIdtj8XDxiI9uJjkZ2imXEyZwrLMUvp4sgSeZnQhBR63p6eCf0CtJAV1mDP61Ps/vhmlP5etz3YSK+PZIDhQS8cHcXfP7kILT35uzN1HQsI05mad21IqO6+yO8nafgNESOz0WpwMLJfeCilLD9ZCG+PZIjOlKTyLKM1QeyMOHDvThfVA5/jRr/nT0Ec+/szGEZajaWESdyucyAdXX/EM6+g5OcEVlL1wBvzB/ZBQDwt++PI19nX8M1ZYZazFudgpe/TYOh1oRhXdpj83PxGNyR8xNRy2AZcSJf7ctEda0J0cFaDAhrIzoOkVN56o6OiA7WorSqFgu+PWY3wzXHc3UY/0EivkvNhVIh4Y/3dMPyJwbClw/VpBbEMuIkqmqM+DI5E4B56ndOckZkXSql+e4aV6UCv5wuwprDl0RHuiVZlvFlcgbu/08SLl4uRwetG755agieGd4JCg7LUAtjGXESG47moLi8GkE+7hjTi4/tJhKhs783/nC3ebjm9e9PILekUnCim9NX1WDOqiP468bjqK41YWR3P/zwXDz6h7UVHY0cFMuIEzCZ/jfJ2Yy4cE7NTCTQ7PiO6Bvqg1JDLf64zvaGa45dKsG97ydic1o+VAoJfxnXHZ9NG4A2npwGgFoPP5WcwK6zRThXWAYvtQoPDQwRHYfIqSkVEt6ZHA21SoE9Zy9j9cFs0ZEAmIdlliVexIMfJyHrSgWC27hj7TOxHNYlq2AZcQLXJjl7ZGAING4ugtMQUaf2XnhxdFcAwD9/OIlLVyuE5tFV1OCpLw/jtU0nUGOUMbqnP354Lh59QnyE5iLnwTLi4E7k6rH3XDGUCglPxIWLjkNEdWbERWBAWBuUCR6uOZp1FWPf34OfThTAVanA3+/riU8e6w+tO/9wIethGXFwSxLNZ0XG9ApAcBsPwWmI6BqlQsJbk6Lg5qLA3nPFWLk/y6rvbzLJ+Gz3BUz+JBk5JZUI8/XAumdiMT02nMMyZHUsIw6sQF+F71PND+eaFc9JzohsTcf2XnhpdDcAwL82n0T2FesM11wtr8asLw7hn5tPotYkY1xUIL5/dih6B2ut8v5EN2IZcWCfJ2WgxihjYHgbjv0S2agnYsMxKLwtKqqNeGntMZhMrTtccyjjCsa+vwc7ThXCVaXAPyb2wodT+vJ6MhKKZcRBVVTX1p/2nTmUZ0WIbJVCIeHtyVFwd1Ei+UIxvtqf2SrvYzLJ+M/Oc3h48T7k6arQsZ0nNvwuDo8NCeOwDAnHMuKg1h6+BF1lDcJ8PTCqh7/oOER0C2G+nnh5jHm4JmHzKWQWl7foz79cZsATKw7irR9Pw2iSMbFPB3z37FD06KBp0fchaiqWEQdkNJnnCwCAJ+Mi+ERNIjvw+JAwDOnYFpU1Rry4puWGa/ZdKMbYRXuw+0wR3FwUeOvBKLz7cB94qVUt8vOJWgLLiAPafrIAGcUV0Lq7YPKAYNFxiKgRFAoJb0+KhoerEgcyrmBFUkazfp7RJGPR9rN49LN9KCw1INLPCxvnDMVDA0M4LEM2h2XEAS3dYz4r8ujgUHi48q8fInsR0tYDC8Z2BwC8tfUULl5u2nBNYWkVpi3bj3e3n4FJBib1D8Z3c+PQNcC7JeMStRiWEQeTml2CAxlX4KKU8ERsuOg4RGShqYNCERfpi6oaE15ckwqjhcM1e89dxthFidh7rhjuLkosnByNdyZH8w8TsmksIw7m2gPxxkd3gL/GTXAaIrKUQiHhzQej4OmqxKHMq1i+92Kjtqs1mvDvn07jsaX7cbnMgK7+3vj+2aF4sD+Hasn2sYw4kJySSmxOywMAzOLtvER2K7iNB/5ybw8AwNtbT+N8Udkt1y/QV+HRJfvx/o5zkGVgyqAQbJwbh0g/L2vEJWo2lhEHsjzxIowmGXGRvrxlj8jOPTIwBPGd28FQa8ILtxiu2Xm6EGMW7cGBi1fg6arEokf6IOGBKLi5KK2cmKjpLCojCQkJGDhwILy9veHn54eJEyfi9OnTt91uzZo16NatG9zc3NC7d29s3ry5yYHp5kqrauofRc6zIkT2T5LMwzXeahWOZpXUP337mlqjCW/+eApPLD+IK+XV6BGowffPDsWEPkGCEhM1nUVlZNeuXZgzZw727duHbdu2oaamBnfffTfKyxu+4jspKQlTpkzBzJkzcfToUUycOBETJ05Eenp6s8PT/3x9MBtlhlpE+nlhWJf2ouMQUQvo4OOOv9YN1yzcdgZnC0oBALkllXhk8T58vPM8APMcJd/+LhYd23NYhuyTJDfjudVFRUXw8/PDrl27cMcdd9x0nYcffhjl5eXYtGlT/WtDhgxBnz598MknnzTqffR6PbRaLXQ6HTQaDj/cqNZowrC3dyKnpBIJD/TGlEGhoiMRUQuRZRkzVhzEztNFiA7WYs6ISLy07hhKKmrgrVbhjQejMC4qUHRMoptq7Od3s64Z0el0AIC2bds2uE5ycjJGjhx53WujR49GcnJyg9sYDAbo9frrFmrYlvR85JRUwtfTFff35SlaIkciSRLeeCAK3m4qpF7S4f++PIySihpEBWvxw3PxLCLkEJpcRkwmE+bPn4+4uDj06tWrwfXy8/Ph73/9s1H8/f2Rn5/f4DYJCQnQarX1S0hISFNjOjxZluvHkh8bEsaL1ogcUIDWDa+O71n/9Yy4cKx5Ogahvh4CUxG1nCbPgjNnzhykp6cjMTGxJfMAABYsWIA//OEP9V/r9XoWkgYcyryK1Es6uKoUeDwmTHQcImolD/YLgpuLAr6easR08hUdh6hFNamMzJ07F5s2bcLu3bsRHHzrCXUCAgJQUFBw3WsFBQUICAhocBu1Wg21Wt2UaE7n2lmRB/oGoZ0X9xmRo5IkCfdGdRAdg6hVWDRMI8sy5s6di/Xr12PHjh2IiIi47TYxMTH4+eefr3tt27ZtiImJsSwp/UbG5XL8dMJc9GYOvf1/CyIiIltk0ZmROXPmYNWqVdi4cSO8vb3rr/vQarVwd3cHAEybNg1BQUFISEgAAMybNw/Dhg3DwoULMW7cOKxevRqHDh3C4sWLW/hXcT7L916ELAPDu7ZHZ38+AIuIiOyTRWdGPv74Y+h0OgwfPhyBgYH1y9dff12/TlZWFvLy8uq/jo2NxapVq7B48WJER0dj7dq12LBhwy0veqXbK6moxjeHLgEAZsdzkjMiIrJfFp0ZacyUJDt37vzNa5MnT8bkyZMteSu6jVUHslBZY0S3AG/E8mI2IiKyY3w2jR2qrjXh86QMAOazIpIkiQ1ERETUDCwjdmjTsVwU6A3w81ZjfDSvriciIvvGMmJnZFnGZ3suAgCmx4bDVcX/hEREZN/4SWZnks8X42SeHu4uSkwdzGfQEBGR/WMZsTOf1U1yNnlAMHw8XAWnISIiaj6WETtyrrAUv5wugiQBT8ZxkjMiInIMLCN2ZGmi+VqRUd39Ed7OU3AaIiKilsEyYieKywxYdyQHADCLk5wREZEDYRmxE1/uy0R1rQnRwVoMDG8jOg4REVGLYRmxA1U1RnyZnAkAmMlJzoiIyMGwjNiBDUdzUFxejSAfd4ztFSA6DhERUYtiGbFxsixjSd2Fq0/EhkOl5H8yIiJyLPxks3E7zxThXGEZvNQqPDwoRHQcIiKiFscyYuOW1k39/vDAEGjcXASnISIianksIzbsRK4eiecuQyEBM+LCRcchIiJqFSwjNuzaJGdjegciuI2H4DREREStg2XERhXoq/BdqnmSs9mc5IyIiBwYy4iN+jwpAzVGGQPD26BPiI/oOERERK2GZcQGVVTXYuX+LADAzKE8K0JERI6NZcQGrT18CbrKGoT5emBUD3/RcYiIiFoVy4iNMZpkLKu7cPXJuAgoFZz6nYiIHBvLiI3ZfrIAGcUV0Lq7YPKAYNFxiIiIWh3LiI25NsnZo4ND4eGqEpyGiIio9bGM2JDU7BIcyLgCF6WEJ2LDRcchIiKyCpYRG3LtgXjjozrAX+MmOA0REZF1sIzYiJySSmxOywMAzIyPEJyGiIjIelhGbMSKvRdhNMmI7eSLnh20ouMQERFZDcuIDSitqsHqA9kAOPU7ERE5H5YRG/D1wWyUGmrRqb0nhnVpLzoOERGRVbGMCFZrNGH53gwAwKz4jlBwkjMiInIyLCOC/Xg8HzkllfD1dMX9fYNExyEiIrI6lhGBZFnGZ3WTnD02JAxuLkrBiYiIiKyPZUSgw5lXkZpdAleVAo/HhImOQ0REJATLiECf7bkAAHigbxDaeakFpyEiIhKDZUSQzOJy/HSiAAAwcygnOSMiIufFMiLIssSLkGVgeNf26OzvLToOERGRMCwjAugqavDNoUsAgFlDOckZERE5N5YRAVYeyERljRHdArwRF+krOg4REZFQLCNWVl1rwudJGQDMk5xJEic5IyIi58YyYmWbjuWiQG+An7ca90V3EB2HiIhIOJYRK5JlGUvqJjmbHhsOVxV3PxERET8NrSj5fDFO5Onh7qLE1MGhouMQERHZBJYRK1qSaD4rMql/MHw8XAWnISIisg0sI1ZyrrAUO04VQpKAJznJGRERUT2WEStZmpgBABjZ3R8R7TzFhiEiIrIhFpeR3bt3Y/z48ejQoQMkScKGDRtuuf7OnTshSdJvlvz8/KZmtjvFZQZ8e8Q8ydnseE5yRkRE9GsWl5Hy8nJER0fjo48+smi706dPIy8vr37x8/Oz9K3t1pf7MmGoNSE6WIuB4W1ExyEiIrIpKks3GDNmDMaMGWPxG/n5+cHHx8fi7exdVY0RXyZnAgBmcpIzIiKi37DaNSN9+vRBYGAgRo0ahb17995yXYPBAL1ef91irzYczUFxeTWCfNwxtleA6DhEREQ2p9XLSGBgID755BOsW7cO69atQ0hICIYPH44jR440uE1CQgK0Wm39EhIS0toxW4Usy/W38z4RGw6VktcLExER3UiSZVlu8saShPXr12PixIkWbTds2DCEhobiyy+/vOn3DQYDDAZD/dd6vR4hISHQ6XTQaDRNjWt1v5wuxIzlB+GlViFpwZ3QuLmIjkRERGQ1er0eWq32tp/fFl8z0hIGDRqExMTEBr+vVquhVqutmKh1LK2b+v3hgSEsIkRERA0QMm6QkpKCwMBAEW9tNSdy9Ug8dxkKCZgRFy46DhERkc2y+MxIWVkZzp07V//1xYsXkZKSgrZt2yI0NBQLFixATk4OvvjiCwDAe++9h4iICPTs2RNVVVVYsmQJduzYgZ9++qnlfgsbtLTuWpExvQMR3MZDcBoiIiLbZXEZOXToEEaMGFH/9R/+8AcAwPTp07FixQrk5eUhKyur/vvV1dV4/vnnkZOTAw8PD0RFRWH79u3X/QxHU6CvwnepOQA4yRkREdHtNOsCVmtp7AUwtuLtrafw0S/nMSCsDdY+Eys6DhERkRCN/fzmvaYtrKK6Fl/tM58ZmsWzIkRERLfFMtLC1h2+BF1lDcJ8PTCqh7/oOERERDaPZaQFGU1y/YWrT8ZFQKng1O9ERES3wzLSgn4+WYCM4gpo3FSY1D9YdBwiIiK7wDLSgpbUTXI2dUgYPNVC5pMjIiKyOywjLSQ1uwQHMq5ApZAwPSZcdBwiIiK7wTLSQq49EO++6A4I0LoJTkNERGQ/WEZaQE5JJTan5QEAZsZHCE5DRERkX1hGWsCKvRdhNMmI7eSLnh20ouMQERHZFZaRZiqtqsHqA9kAgFk8K0JERGQxlpFm+vpgNkoNtejU3hPDu/iJjkNERGR3WEaaodZowvK9GQCAmUM7QsFJzoiIiCzGMtIMPx7PR05JJdp6uuKBfkGi4xAREdkllpEmkmUZn9VNcvbYkDC4uSgFJyIiIrJPLCNNdDjzKlKzS+CqUuDxIWGi4xAREdktlpEmujb1+/19gtDeWy04DRERkf1iGWmCzOJybD2RD4CTnBERETUXy0gTLN+bAVkGhnVpjy7+3qLjEBER2TWWEQvpKmrwzSHzJGez4zsKTkNERGT/WEYstPJAJiqqjegW4I24SF/RcYiIiOwey4gFqmtN+DwpAwAwK74jJImTnBERETUXy4gFNh3LRYHeAD9vNe6L7iA6DhERkUNgGWkkWZbrb+edHhsOVxV3HRERUUvgJ2ojJZ8vxok8PdxdlJg6OFR0HCIiIofBMtJISxLNZ0Um9Q+Gj4er4DRERESOg2WkEc4VlmLHqUJIEvDkUE5yRkRE1JJYRhphaWIGAGBkd39EtPMUG4aIiMjBsIzcRnGZAd8euQSAk5wRERG1BpaR2/hqXxYMtSZEBWsxMLyN6DhEREQOh2XkFqpqjPhyXwYATnJGRETUWlhGbmFjSg4ul1Wjg9YNY3oFiI5DRETkkFhGGvDrSc5mxEXARcldRURE1Br4CduAXWeKcLawDF5qFR4eFCI6DhERkcNiGWnAtbMiDw8MgcbNRXAaIiIix8UychMn8/RIPHcZCgl4IjZcdBwiIiKHxjJyE9fOiozpHYiQth6C0xARETk2lpEbFOqr8F1qDgBgFqd+JyIianUsIzf4PDkDNUYZA8LaoG8oJzkjIiJqbSwjv1JRXYuV+7MAALPieVaEiIjIGlhGfmXd4UsoqahBaFsPjOrBSc6IiIisgWWkjskkY2mi+cLVJ+PCoVRw6nciIiJrYBmps/1kATKKK6BxU2HyAE5yRkREZC0sI3WW1J0VeXRwGDzVKsFpiIiInAfLCIBjl0pw4OIVqBQSJzkjIiKyMpYR/G+Ss/HRHRCgdROchoiIyLlYXEZ2796N8ePHo0OHDpAkCRs2bLjtNjt37kS/fv2gVqsRGRmJFStWNCFq68gpqcQPaXkAgJmc5IyIiMjqLC4j5eXliI6OxkcffdSo9S9evIhx48ZhxIgRSElJwfz58zFr1ixs3brV4rCtYcXeizCaZMR09EWvIK3oOERERE7H4is1x4wZgzFjxjR6/U8++QQRERFYuHAhAKB79+5ITEzEu+++i9GjR1v69i2qtKoGqw9kAwBm38GzIkRERCK0+jUjycnJGDly5HWvjR49GsnJyQ1uYzAYoNfrr1taw9cHs1FqqEWn9p4Y3sWvVd6DiIiIbq3Vy0h+fj78/f2ve83f3x96vR6VlZU33SYhIQFarbZ+CQlp+Xk/ao0mLN+bAQCYObQjFJzkjIiISAibvJtmwYIF0Ol09Ut2dnaLv4dSIeFfD/TG2N4BeKBfUIv/fCIiImqcVp/dKyAgAAUFBde9VlBQAI1GA3d395tuo1aroVarWzWXJEkY1qU9hnVp36rvQ0RERLfW6mdGYmJi8PPPP1/32rZt2xATE9Pab01ERER2wOIyUlZWhpSUFKSkpAAw37qbkpKCrKwsAOYhlmnTptWv//TTT+PChQt46aWXcOrUKfznP//BN998g9///vct8xsQERGRXbO4jBw6dAh9+/ZF3759AQB/+MMf0LdvX7zyyisAgLy8vPpiAgARERH44YcfsG3bNkRHR2PhwoVYsmSJ8Nt6iYiIyDZIsizLokPcjl6vh1arhU6ng0ajER2HiIiIGqGxn982eTcNEREROQ+WESIiIhKKZYSIiIiEYhkhIiIioVhGiIiISCiWESIiIhKKZYSIiIiEYhkhIiIioVhGiIiISKhWf2pvS7g2SaxerxechIiIiBrr2uf27SZ7t4syUlpaCgAICQkRnISIiIgsVVpaCq1W2+D37eLZNCaTCbm5ufD29oYkSS32c/V6PUJCQpCdnc1n3twG95VluL8aj/uq8bivGo/7qvFac1/JsozS0lJ06NABCkXDV4bYxZkRhUKB4ODgVvv5Go2GB2sjcV9Zhvur8bivGo/7qvG4rxqvtfbVrc6IXMMLWImIiEgolhEiIiISyqnLiFqtxquvvgq1Wi06is3jvrIM91fjcV81HvdV43FfNZ4t7Cu7uICViIiIHJdTnxkhIiIi8VhGiIiISCiWESIiIhKKZYSIiIiEcugysnv3bowfPx4dOnSAJEnYsGHDbbfZuXMn+vXrB7VajcjISKxYsaLVc9oCS/fVzp07IUnSb5b8/HzrBBYoISEBAwcOhLe3N/z8/DBx4kScPn36ttutWbMG3bp1g5ubG3r37o3NmzdbIa1YTdlXK1as+M1x5ebmZqXE4nz88ceIioqqn3gqJiYGW7ZsueU2znhMAZbvK2c9pm7mjTfegCRJmD9//i3Xs/ax5dBlpLy8HNHR0fjoo48atf7Fixcxbtw4jBgxAikpKZg/fz5mzZqFrVu3tnJS8SzdV9ecPn0aeXl59Yufn18rJbQdu3btwpw5c7Bv3z5s27YNNTU1uPvuu1FeXt7gNklJSZgyZQpmzpyJo0ePYuLEiZg4cSLS09OtmNz6mrKvAPNMkL8+rjIzM62UWJzg4GC88cYbOHz4MA4dOoQ777wTEyZMwPHjx2+6vrMeU4Dl+wpwzmPqRgcPHsSnn36KqKioW64n5NiSnQQAef369bdc56WXXpJ79ux53WsPP/ywPHr06FZMZnsas69++eUXGYB89epVq2SyZYWFhTIAedeuXQ2u89BDD8njxo277rXBgwfLTz31VGvHsymN2VfLly+XtVqt9ULZsDZt2shLliy56fd4TF3vVvuKx5Qsl5aWyp07d5a3bdsmDxs2TJ43b16D64o4thz6zIilkpOTMXLkyOteGz16NJKTkwUlsn19+vRBYGAgRo0ahb1794qOI4ROpwMAtG3btsF1eGyZNWZfAUBZWRnCwsIQEhJy2794HZHRaMTq1atRXl6OmJiYm67DY8qsMfsK4DE1Z84cjBs37jfHzM2IOLbs4kF51pKfnw9/f//rXvP394der0dlZSXc3d0FJbM9gYGB+OSTTzBgwAAYDAYsWbIEw4cPx/79+9GvXz/R8azGZDJh/vz5iIuLQ69evRpcr6Fjyxmusbmmsfuqa9euWLZsGaKioqDT6fDOO+8gNjYWx48fb9UHZtqCtLQ0xMTEoKqqCl5eXli/fj169Ohx03Wd/ZiyZF858zEFAKtXr8aRI0dw8ODBRq0v4thiGaEm6dq1K7p27Vr/dWxsLM6fP493330XX375pcBk1jVnzhykp6cjMTFRdBSb19h9FRMTc91fuLGxsejevTs+/fRTvP76660dU6iuXbsiJSUFOp0Oa9euxfTp07Fr164GP2SdmSX7ypmPqezsbMybNw/btm2z6Yt2WUZ+JSAgAAUFBde9VlBQAI1Gw7MijTBo0CCn+lCeO3cuNm3ahN27d9/2r6uGjq2AgIDWjGgzLNlXN3JxcUHfvn1x7ty5VkpnO1xdXREZGQkA6N+/Pw4ePIhFixbh008//c26zn5MWbKvbuRMx9Thw4dRWFh43Rlro9GI3bt348MPP4TBYIBSqbxuGxHHFq8Z+ZWYmBj8/PPP1722bdu2W45D0v+kpKQgMDBQdIxWJ8sy5s6di/Xr12PHjh2IiIi47TbOemw1ZV/dyGg0Ii0tzSmOrRuZTCYYDIabfs9Zj6mG3Gpf3ciZjqm77roLaWlpSElJqV8GDBiAqVOnIiUl5TdFBBB0bLXapbE2oLS0VD569Kh89OhRGYD873//Wz569KicmZkpy7Isv/zyy/Ljjz9ev/6FCxdkDw8P+cUXX5RPnjwpf/TRR7JSqZR//PFHUb+C1Vi6r9599115w4YN8tmzZ+W0tDR53rx5skKhkLdv3y7qV7CaZ555RtZqtfLOnTvlvLy8+qWioqJ+nccff1x++eWX67/eu3evrFKp5HfeeUc+efKk/Oqrr8ouLi5yWlqaiF/Bapqyr/7+97/LW7dulc+fPy8fPnxYfuSRR2Q3Nzf5+PHjIn4Fq3n55ZflXbt2yRcvXpSPHTsmv/zyy7IkSfJPP/0kyzKPqV+zdF856zHVkBvvprGFY8uhy8i1209vXKZPny7LsixPnz5dHjZs2G+26dOnj+zq6ip37NhRXr58udVzi2DpvnrzzTflTp06yW5ubnLbtm3l4cOHyzt27BAT3sputp8AXHesDBs2rH7fXfPNN9/IXbp0kV1dXeWePXvKP/zwg3WDC9CUfTV//nw5NDRUdnV1lf39/eWxY8fKR44csX54K3vyySflsLAw2dXVVW7fvr1811131X+4yjKPqV+zdF856zHVkBvLiC0cW5Isy3LrnXchIiIiujVeM0JERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQn1/8/OqLUCqM0CAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Parts of a Figure**" + ], + "metadata": { + "id": "UpJr1i-I9cOu" + } + }, + { + "cell_type": "markdown", + "source": [ + "Figure" + ], + "metadata": { + "id": "-Zw5mp4XIAbW" + } + }, + { + "cell_type": "code", + "source": [ + "fig = plt.figure() # an empty figure with no Axes\n", + "fig, ax = plt.subplots() # a figure with a single Axes\n", + "fig, axs = plt.subplots(2, 2) # a figure with a 2x2 grid of Axes\n", + "# a figure with one Axes on the left, and two on the right:\n", + "fig, axs = plt.subplot_mosaic([['left', 'right_top'],\n", + " ['left', 'right_bottom']])" + ], + "metadata": { + "id": "k_PnqhgX9Yu3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "0a797d12-f36d-4364-d604-27eef093aac8" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHMNJREFUeJzt3W9s3VX9wPFP29FbCLRM59ptFisoogIbbqwWJIipNoFM98A4wWxz4Y/gJLhGZWOwiug6EciiKy5MEB+omxAwxi1DrC4GqVnY1gRkg8DATWMLE9fOIi1rv78Hhvqr62C39M9O+3ol98GO59zvuR5G39x/LciyLAsAgAQUjvUGAACOlXABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkpF3uPzhD3+IefPmxfTp06OgoCB++ctfvuWabdu2xUc+8pHI5XLxvve9L+6///4hbBUAmOjyDpeurq6YOXNmNDU1HdP8F154IS677LK45JJLorW1Nb761a/GVVddFY888kjemwUAJraCt/NLFgsKCuLhhx+O+fPnH3XOjTfeGJs3b46nnnqqf+zzn/98HDx4MLZu3TrUSwMAE9Ckkb5AS0tL1NbWDhirq6uLr371q0dd093dHd3d3f1/7uvri1deeSXe+c53RkFBwUhtFQAYRlmWxaFDh2L69OlRWDg8b6sd8XBpa2uL8vLyAWPl5eXR2dkZ//73v+PEE088Yk1jY2PceuutI701AGAU7N+/P9797ncPy32NeLgMxYoVK6K+vr7/zx0dHXHaaafF/v37o7S0dAx3BgAcq87OzqisrIxTTjll2O5zxMOloqIi2tvbB4y1t7dHaWnpoM+2RETkcrnI5XJHjJeWlgoXAEjMcL7NY8S/x6Wmpiaam5sHjD366KNRU1Mz0pcGAMaZvMPlX//6V7S2tkZra2tE/Ofjzq2trbFv376I+M/LPIsWLeqff+2118bevXvjG9/4RuzZsyfuvvvu+MUvfhHLli0bnkcAAEwYeYfLE088Eeedd16cd955ERFRX18f5513XqxatSoiIv7+97/3R0xExHvf+97YvHlzPProozFz5sy4884740c/+lHU1dUN00MAACaKt/U9LqOls7MzysrKoqOjw3tcACARI/Hz2+8qAgCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGUMKl6ampqiqqoqSkpKorq6O7du3v+n8tWvXxgc+8IE48cQTo7KyMpYtWxavvfbakDYMAExceYfLpk2bor6+PhoaGmLnzp0xc+bMqKuri5deemnQ+T/72c9i+fLl0dDQELt374577703Nm3aFDfddNPb3jwAMLHkHS533XVXXH311bFkyZL40Ic+FOvXr4+TTjop7rvvvkHnP/7443HhhRfGFVdcEVVVVfGpT30qLr/88rd8lgYA4H/lFS49PT2xY8eOqK2t/e8dFBZGbW1ttLS0DLrmggsuiB07dvSHyt69e2PLli1x6aWXHvU63d3d0dnZOeAGADApn8kHDhyI3t7eKC8vHzBeXl4ee/bsGXTNFVdcEQcOHIiPfexjkWVZHD58OK699to3famosbExbr311ny2BgBMACP+qaJt27bF6tWr4+67746dO3fGQw89FJs3b47bbrvtqGtWrFgRHR0d/bf9+/eP9DYBgATk9YzLlClToqioKNrb2weMt7e3R0VFxaBrbrnllli4cGFcddVVERFxzjnnRFdXV1xzzTWxcuXKKCw8sp1yuVzkcrl8tgYATAB5PeNSXFwcs2fPjubm5v6xvr6+aG5ujpqamkHXvPrqq0fESVFRUUREZFmW734BgAksr2dcIiLq6+tj8eLFMWfOnJg7d26sXbs2urq6YsmSJRERsWjRopgxY0Y0NjZGRMS8efPirrvuivPOOy+qq6vjueeei1tuuSXmzZvXHzAAAMci73BZsGBBvPzyy7Fq1apoa2uLWbNmxdatW/vfsLtv374Bz7DcfPPNUVBQEDfffHP87W9/i3e9610xb968+M53vjN8jwIAmBAKsgRer+ns7IyysrLo6OiI0tLSsd4OAHAMRuLnt99VBAAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoYULk1NTVFVVRUlJSVRXV0d27dvf9P5Bw8ejKVLl8a0adMil8vFmWeeGVu2bBnShgGAiWtSvgs2bdoU9fX1sX79+qiuro61a9dGXV1dPPPMMzF16tQj5vf09MQnP/nJmDp1ajz44IMxY8aM+Mtf/hKnnnrqcOwfAJhACrIsy/JZUF1dHeeff36sW7cuIiL6+vqisrIyrr/++li+fPkR89evXx/f+973Ys+ePXHCCScMaZOdnZ1RVlYWHR0dUVpaOqT7AABG10j8/M7rpaKenp7YsWNH1NbW/vcOCgujtrY2WlpaBl3zq1/9KmpqamLp0qVRXl4eZ599dqxevTp6e3uPep3u7u7o7OwccAMAyCtcDhw4EL29vVFeXj5gvLy8PNra2gZds3fv3njwwQejt7c3tmzZErfcckvceeed8e1vf/uo12lsbIyysrL+W2VlZT7bBADGqRH/VFFfX19MnTo17rnnnpg9e3YsWLAgVq5cGevXrz/qmhUrVkRHR0f/bf/+/SO9TQAgAXm9OXfKlClRVFQU7e3tA8bb29ujoqJi0DXTpk2LE044IYqKivrHPvjBD0ZbW1v09PREcXHxEWtyuVzkcrl8tgYATAB5PeNSXFwcs2fPjubm5v6xvr6+aG5ujpqamkHXXHjhhfHcc89FX19f/9izzz4b06ZNGzRaAACOJu+Xiurr62PDhg3xk5/8JHbv3h3XXXdddHV1xZIlSyIiYtGiRbFixYr++dddd1288sorccMNN8Szzz4bmzdvjtWrV8fSpUuH71EAABNC3t/jsmDBgnj55Zdj1apV0dbWFrNmzYqtW7f2v2F33759UVj43x6qrKyMRx55JJYtWxbnnntuzJgxI2644Ya48cYbh+9RAAATQt7f4zIWfI8LAKRnzL/HBQBgLAkXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASMaQwqWpqSmqqqqipKQkqqurY/v27ce0buPGjVFQUBDz588fymUBgAku73DZtGlT1NfXR0NDQ+zcuTNmzpwZdXV18dJLL73puhdffDG+9rWvxUUXXTTkzQIAE1ve4XLXXXfF1VdfHUuWLIkPfehDsX79+jjppJPivvvuO+qa3t7e+MIXvhC33nprnH766W95je7u7ujs7BxwAwDIK1x6enpix44dUVtb+987KCyM2traaGlpOeq6b33rWzF16tS48sorj+k6jY2NUVZW1n+rrKzMZ5sAwDiVV7gcOHAgent7o7y8fMB4eXl5tLW1Dbrmsccei3vvvTc2bNhwzNdZsWJFdHR09N/279+fzzYBgHFq0kje+aFDh2LhwoWxYcOGmDJlyjGvy+VykcvlRnBnAECK8gqXKVOmRFFRUbS3tw8Yb29vj4qKiiPmP//88/Hiiy/GvHnz+sf6+vr+c+FJk+KZZ56JM844Yyj7BgAmoLxeKiouLo7Zs2dHc3Nz/1hfX180NzdHTU3NEfPPOuusePLJJ6O1tbX/9ulPfzouueSSaG1t9d4VACAveb9UVF9fH4sXL445c+bE3LlzY+3atdHV1RVLliyJiIhFixbFjBkzorGxMUpKSuLss88esP7UU0+NiDhiHADgreQdLgsWLIiXX345Vq1aFW1tbTFr1qzYunVr/xt29+3bF4WFvpAXABh+BVmWZWO9ibfS2dkZZWVl0dHREaWlpWO9HQDgGIzEz29PjQAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkIwhhUtTU1NUVVVFSUlJVFdXx/bt2486d8OGDXHRRRfF5MmTY/LkyVFbW/um8wEAjibvcNm0aVPU19dHQ0ND7Ny5M2bOnBl1dXXx0ksvDTp/27Ztcfnll8fvf//7aGlpicrKyvjUpz4Vf/vb39725gGAiaUgy7IsnwXV1dVx/vnnx7p16yIioq+vLyorK+P666+P5cuXv+X63t7emDx5cqxbty4WLVo06Jzu7u7o7u7u/3NnZ2dUVlZGR0dHlJaW5rNdAGCMdHZ2RllZ2bD+/M7rGZeenp7YsWNH1NbW/vcOCgujtrY2Wlpajuk+Xn311Xj99dfjHe94x1HnNDY2RllZWf+tsrIyn20CAONUXuFy4MCB6O3tjfLy8gHj5eXl0dbWdkz3ceONN8b06dMHxM//WrFiRXR0dPTf9u/fn882AYBxatJoXmzNmjWxcePG2LZtW5SUlBx1Xi6Xi1wuN4o7AwBSkFe4TJkyJYqKiqK9vX3AeHt7e1RUVLzp2jvuuCPWrFkTv/3tb+Pcc8/Nf6cAwISX10tFxcXFMXv27Ghubu4f6+vri+bm5qipqTnquttvvz1uu+222Lp1a8yZM2fouwUAJrS8Xyqqr6+PxYsXx5w5c2Lu3Lmxdu3a6OrqiiVLlkRExKJFi2LGjBnR2NgYERHf/e53Y9WqVfGzn/0sqqqq+t8Lc/LJJ8fJJ588jA8FABjv8g6XBQsWxMsvvxyrVq2Ktra2mDVrVmzdurX/Dbv79u2LwsL/PpHzwx/+MHp6euKzn/3sgPtpaGiIb37zm29v9wDAhJL397iMhZH4HDgAMLLG/HtcAADGknABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAwpXJqamqKqqipKSkqiuro6tm/f/qbzH3jggTjrrLOipKQkzjnnnNiyZcuQNgsATGx5h8umTZuivr4+GhoaYufOnTFz5syoq6uLl156adD5jz/+eFx++eVx5ZVXxq5du2L+/Pkxf/78eOqpp9725gGAiaUgy7IsnwXV1dVx/vnnx7p16yIioq+vLyorK+P666+P5cuXHzF/wYIF0dXVFb/+9a/7xz760Y/GrFmzYv369YNeo7u7O7q7u/v/3NHREaeddlrs378/SktL89kuADBGOjs7o7KyMg4ePBhlZWXDcp+T8pnc09MTO3bsiBUrVvSPFRYWRm1tbbS0tAy6pqWlJerr6weM1dXVxS9/+cujXqexsTFuvfXWI8YrKyvz2S4AcBz4xz/+MTbhcuDAgejt7Y3y8vIB4+Xl5bFnz55B17S1tQ06v62t7ajXWbFixYDYOXjwYLznPe+Jffv2DdsDZ2jeqGfPfo09Z3H8cBbHF+dx/HjjFZN3vOMdw3afeYXLaMnlcpHL5Y4YLysr8w/hcaK0tNRZHCecxfHDWRxfnMfxo7Bw+D7EnNc9TZkyJYqKiqK9vX3AeHt7e1RUVAy6pqKiIq/5AABHk1e4FBcXx+zZs6O5ubl/rK+vL5qbm6OmpmbQNTU1NQPmR0Q8+uijR50PAHA0eb9UVF9fH4sXL445c+bE3LlzY+3atdHV1RVLliyJiIhFixbFjBkzorGxMSIibrjhhrj44ovjzjvvjMsuuyw2btwYTzzxRNxzzz3HfM1cLhcNDQ2DvnzE6HIWxw9ncfxwFscX53H8GImzyPvj0BER69ati+9973vR1tYWs2bNiu9///tRXV0dEREf//jHo6qqKu6///7++Q888EDcfPPN8eKLL8b73//+uP322+PSSy8dtgcBAEwMQwoXAICx4HcVAQDJEC4AQDKECwCQDOECACTjuAmXpqamqKqqipKSkqiuro7t27e/6fwHHnggzjrrrCgpKYlzzjkntmzZMko7Hf/yOYsNGzbERRddFJMnT47JkydHbW3tW54dxy7fvxdv2LhxYxQUFMT8+fNHdoMTSL5ncfDgwVi6dGlMmzYtcrlcnHnmmf49NUzyPYu1a9fGBz7wgTjxxBOjsrIyli1bFq+99too7Xb8+sMf/hDz5s2L6dOnR0FBwZv+DsI3bNu2LT7ykY9ELpeL973vfQM+gXzMsuPAxo0bs+Li4uy+++7L/vznP2dXX311duqpp2bt7e2Dzv/jH/+YFRUVZbfffnv29NNPZzfffHN2wgknZE8++eQo73z8yfcsrrjiiqypqSnbtWtXtnv37uyLX/xiVlZWlv31r38d5Z2PP/mexRteeOGFbMaMGdlFF12UfeYznxmdzY5z+Z5Fd3d3NmfOnOzSSy/NHnvsseyFF17Itm3blrW2to7yzseffM/ipz/9aZbL5bKf/vSn2QsvvJA98sgj2bRp07Jly5aN8s7Hny1btmQrV67MHnrooSwisocffvhN5+/duzc76aSTsvr6+uzpp5/OfvCDH2RFRUXZ1q1b87rucREuc+fOzZYuXdr/597e3mz69OlZY2PjoPM/97nPZZdddtmAserq6uxLX/rSiO5zIsj3LP7X4cOHs1NOOSX7yU9+MlJbnDCGchaHDx/OLrjgguxHP/pRtnjxYuEyTPI9ix/+8IfZ6aefnvX09IzWFieMfM9i6dKl2Sc+8YkBY/X19dmFF144ovucaI4lXL7xjW9kH/7whweMLViwIKurq8vrWmP+UlFPT0/s2LEjamtr+8cKCwujtrY2WlpaBl3T0tIyYH5ERF1d3VHnc2yGchb/69VXX43XX399WH8T6EQ01LP41re+FVOnTo0rr7xyNLY5IQzlLH71q19FTU1NLF26NMrLy+Pss8+O1atXR29v72hte1wayllccMEFsWPHjv6Xk/bu3RtbtmzxJahjYLh+do/5b4c+cOBA9Pb2Rnl5+YDx8vLy2LNnz6Br2traBp3f1tY2YvucCIZyFv/rxhtvjOnTpx/xDyf5GcpZPPbYY3HvvfdGa2vrKOxw4hjKWezduzd+97vfxRe+8IXYsmVLPPfcc/HlL385Xn/99WhoaBiNbY9LQzmLK664Ig4cOBAf+9jHIsuyOHz4cFx77bVx0003jcaW+X+O9rO7s7Mz/v3vf8eJJ554TPcz5s+4MH6sWbMmNm7cGA8//HCUlJSM9XYmlEOHDsXChQtjw4YNMWXKlLHezoTX19cXU6dOjXvuuSdmz54dCxYsiJUrV8b69evHemsTzrZt22L16tVx9913x86dO+Ohhx6KzZs3x2233TbWW2OIxvwZlylTpkRRUVG0t7cPGG9vb4+KiopB11RUVOQ1n2MzlLN4wx133BFr1qyJ3/72t3HuueeO5DYnhHzP4vnnn48XX3wx5s2b1z/W19cXERGTJk2KZ555Js4444yR3fQ4NZS/F9OmTYsTTjghioqK+sc++MEPRltbW/T09ERxcfGI7nm8GspZ3HLLLbFw4cK46qqrIiLinHPOia6urrjmmmti5cqVUVjov99Hy9F+dpeWlh7zsy0Rx8EzLsXFxTF79uxobm7uH+vr64vm5uaoqakZdE1NTc2A+RERjz766FHnc2yGchYREbfffnvcdtttsXXr1pgzZ85obHXcy/cszjrrrHjyySejtbW1//bpT386LrnkkmhtbY3KysrR3P64MpS/FxdeeGE899xz/fEYEfHss8/GtGnTRMvbMJSzePXVV4+IkzeCMvOr+kbVsP3szu99wyNj48aNWS6Xy+6///7s6aefzq655prs1FNPzdra2rIsy7KFCxdmy5cv75//xz/+MZs0aVJ2xx13ZLt3784aGhp8HHqY5HsWa9asyYqLi7MHH3ww+/vf/95/O3To0Fg9hHEj37P4Xz5VNHzyPYt9+/Zlp5xySvaVr3wle+aZZ7Jf//rX2dSpU7Nvf/vbY/UQxo18z6KhoSE75ZRTsp///OfZ3r17s9/85jfZGWeckX3uc58bq4cwbhw6dCjbtWtXtmvXriwisrvuuivbtWtX9pe//CXLsixbvnx5tnDhwv75b3wc+utf/3q2e/furKmpKd2PQ2dZlv3gBz/ITjvttKy4uDibO3du9qc//an/f7v44ouzxYsXD5j/i1/8IjvzzDOz4uLi7MMf/nC2efPmUd7x+JXPWbznPe/JIuKIW0NDw+hvfBzK9+/F/ydchle+Z/H4449n1dXVWS6Xy04//fTsO9/5Tnb48OFR3vX4lM9ZvP7669k3v/nN7IwzzshKSkqyysrK7Mtf/nL2z3/+c/Q3Ps78/ve/H/Tf/2/8/7948eLs4osvPmLNrFmzsuLi4uz000/PfvzjH+d93YIs81wZAJCGMX+PCwDAsRIuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQjP8DPZCkbwFa2SAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMY5JREFUeJzt3Xts1HW+//FXW5gpRlpwu52W7mgDHq8IXVuYLUiIm1mbaOryx8auGNolXlatRJmzK61cqqKU9cJpIkUi6+0PXXCNGCNNXe1KDNo95BSa6AoYLNqu2RnocZlhi7bQ+fz+8Md4SlvkW+b2oc9H8v2jX7+f+b6rfl959Tu3DGOMEQAAgAUyUz0AAADA2aK4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrOC4uH3zwgSorKzVt2jRlZGTozTff/ME1O3fu1LXXXiu3261LL71UL7300hhGBWArcgNAvDguLn19fZo9e7aam5vP6vhDhw7ppptu0vXXX6/Ozk498MADuuOOO/TOO+84HhaAncgNAPGScS5fspiRkaHt27dr0aJFox6zYsUK7dixQ5988kls369//WsdPXpUra2tYz01AEuRGwDOxYREn6C9vV1+v3/IvoqKCj3wwAOjrunv71d/f3/s52g0qq+//lo/+tGPlJGRkahRAYzCGKNjx45p2rRpysxM/EvjyA3g/JCI7Eh4cQkGg/J4PEP2eTweRSIRffPNN5o0adKwNY2NjXrkkUcSPRoAh3p6evSTn/wk4echN4DzSzyzI+HFZSzq6+sVCARiP4fDYV188cXq6elRTk5OCicDxqdIJCKv16vJkyenepRRkRtA+klEdiS8uBQUFCgUCg3ZFwqFlJOTM+JfTZLkdrvldruH7c/JySGAgBRK1lMu5AZwfolndiT8yery8nK1tbUN2ffuu++qvLw80acGYClyA8BoHBeXf//73+rs7FRnZ6ek79622NnZqe7ubknf3a6trq6OHX/33Xerq6tLDz74oPbv369Nmzbptdde0/Lly+PzGwBIe+QGgLgxDr3//vtG0rCtpqbGGGNMTU2NWbhw4bA1JSUlxuVymenTp5sXX3zR0TnD4bCRZMLhsNNxAcTBuV6D5AYwPiXiOjynz3FJlkgkotzcXIXDYZ6rBlLAxmvQxpmB800irkO+qwgAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGCNMRWX5uZmFRcXKzs7Wz6fT7t37z7j8U1NTbr88ss1adIkeb1eLV++XN9+++2YBgZgJ3IDQDw4Li7btm1TIBBQQ0OD9uzZo9mzZ6uiokKHDx8e8fhXX31VdXV1amho0L59+/T8889r27Zteuihh855eAB2IDcAxEuGMcY4WeDz+TRnzhxt3LhRkhSNRuX1erVs2TLV1dUNO/6+++7Tvn371NbWFtv3n//5n/rv//5v7dq1a8Rz9Pf3q7+/P/ZzJBKR1+tVOBxWTk6Ok3EBxEEkElFubu6Yr0FyAxifzjU7RuLojsvAwIA6Ojrk9/u/f4DMTPn9frW3t4+4Zt68eero6IjdFu7q6lJLS4tuvPHGUc/T2Nio3Nzc2Ob1ep2MCSCNkBsA4mmCk4N7e3s1ODgoj8czZL/H49H+/ftHXLN48WL19vbquuuukzFGJ0+e1N13333GW7719fUKBAKxn0/95QTAPuQGgHhK+LuKdu7cqXXr1mnTpk3as2eP3njjDe3YsUNr164ddY3b7VZOTs6QDcD4QW4AGI2jOy55eXnKyspSKBQasj8UCqmgoGDENatXr9aSJUt0xx13SJKuueYa9fX16a677tLKlSuVmck7soHzGbkBIJ4cXf0ul0ulpaVDXjAXjUbV1tam8vLyEdccP358WMhkZWVJkhy+LhiAhcgNAPHk6I6LJAUCAdXU1KisrExz585VU1OT+vr6tHTpUklSdXW1ioqK1NjYKEmqrKzUhg0b9NOf/lQ+n08HDx7U6tWrVVlZGQsiAOc3cgNAvDguLlVVVTpy5IjWrFmjYDCokpIStba2xl54193dPeQvpVWrVikjI0OrVq3SV199pR//+MeqrKzU448/Hr/fAkBaIzcAxIvjz3FJhUS8DxzA2bPxGrRxZuB8k/LPcQEAAEgligsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrjKm4NDc3q7i4WNnZ2fL5fNq9e/cZjz969Khqa2tVWFgot9utyy67TC0tLWMaGICdyA0A8TDB6YJt27YpEAho8+bN8vl8ampqUkVFhQ4cOKD8/Pxhxw8MDOgXv/iF8vPz9frrr6uoqEhffvmlpkyZEo/5AViA3AAQLxnGGONkgc/n05w5c7Rx40ZJUjQaldfr1bJly1RXVzfs+M2bN+vJJ5/U/v37NXHixDENGYlElJubq3A4rJycnDE9BoCxO9drkNwAxqdEXIeOnioaGBhQR0eH/H7/9w+QmSm/36/29vYR17z11lsqLy9XbW2tPB6PZs6cqXXr1mlwcHDU8/T39ysSiQzZANiJ3AAQT46KS29vrwYHB+XxeIbs93g8CgaDI67p6urS66+/rsHBQbW0tGj16tV6+umn9dhjj416nsbGRuXm5sY2r9frZEwAaYTcABBPCX9XUTQaVX5+vp577jmVlpaqqqpKK1eu1ObNm0ddU19fr3A4HNt6enoSPSaANEJuABiNoxfn5uXlKSsrS6FQaMj+UCikgoKCEdcUFhZq4sSJysrKiu278sorFQwGNTAwIJfLNWyN2+2W2+12MhqANEVuAIgnR3dcXC6XSktL1dbWFtsXjUbV1tam8vLyEdfMnz9fBw8eVDQaje377LPPVFhYOGL4ADi/kBsA4snxU0WBQEBbtmzRyy+/rH379umee+5RX1+fli5dKkmqrq5WfX197Ph77rlHX3/9te6//3599tln2rFjh9atW6fa2tr4/RYA0hq5ASBeHH+OS1VVlY4cOaI1a9YoGAyqpKREra2tsRfedXd3KzPz+z7k9Xr1zjvvaPny5Zo1a5aKiop0//33a8WKFfH7LQCkNXIDQLw4/hyXVODzGIDUsvEatHFm4HyT8s9xAQAASCWKCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDXGVFyam5tVXFys7Oxs+Xw+7d69+6zWbd26VRkZGVq0aNFYTgvAcmQHgHPluLhs27ZNgUBADQ0N2rNnj2bPnq2KigodPnz4jOu++OIL/e53v9OCBQvGPCwAe5EdAOLBcXHZsGGD7rzzTi1dulRXXXWVNm/erAsuuEAvvPDCqGsGBwd122236ZFHHtH06dN/8Bz9/f2KRCJDNgB2S3R2kBvA+OCouAwMDKijo0N+v//7B8jMlN/vV3t7+6jrHn30UeXn5+v2228/q/M0NjYqNzc3tnm9XidjAkgzycgOcgMYHxwVl97eXg0ODsrj8QzZ7/F4FAwGR1yza9cuPf/889qyZctZn6e+vl7hcDi29fT0OBkTQJpJRnaQG8D4MCGRD37s2DEtWbJEW7ZsUV5e3lmvc7vdcrvdCZwMQDobS3aQG8D44Ki45OXlKSsrS6FQaMj+UCikgoKCYcd//vnn+uKLL1RZWRnbF41GvzvxhAk6cOCAZsyYMZa5AViE7AAQL46eKnK5XCotLVVbW1tsXzQaVVtbm8rLy4cdf8UVV+jjjz9WZ2dnbLv55pt1/fXXq7Ozk+eggXGC7AAQL46fKgoEAqqpqVFZWZnmzp2rpqYm9fX1aenSpZKk6upqFRUVqbGxUdnZ2Zo5c+aQ9VOmTJGkYfsBnN/IDgDx4Li4VFVV6ciRI1qzZo2CwaBKSkrU2toae9Fdd3e3MjP5QF4AQ5EdAOIhwxhjUj3ED4lEIsrNzVU4HFZOTk6qxwHGHRuvQRtnBs43ibgO+fMGAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGmMqLs3NzSouLlZ2drZ8Pp9279496rFbtmzRggULNHXqVE2dOlV+v/+MxwM4f5EdAM6V4+Kybds2BQIBNTQ0aM+ePZo9e7YqKip0+PDhEY/fuXOnbr31Vr3//vtqb2+X1+vVDTfcoK+++uqchwdgD7IDQDxkGGOMkwU+n09z5szRxo0bJUnRaFRer1fLli1TXV3dD64fHBzU1KlTtXHjRlVXV5/VOSORiHJzcxUOh5WTk+NkXABxEI9rMNnZQW4AqZeI69DRHZeBgQF1dHTI7/d//wCZmfL7/Wpvbz+rxzh+/LhOnDihiy66aNRj+vv7FYlEhmwA7JWM7CA3gPHBUXHp7e3V4OCgPB7PkP0ej0fBYPCsHmPFihWaNm3akAA7XWNjo3Jzc2Ob1+t1MiaANJOM7CA3gPEhqe8qWr9+vbZu3art27crOzt71OPq6+sVDodjW09PTxKnBJBuziY7yA1gfJjg5OC8vDxlZWUpFAoN2R8KhVRQUHDGtU899ZTWr1+v9957T7NmzTrjsW63W26328loANJYMrKD3ADGB0d3XFwul0pLS9XW1hbbF41G1dbWpvLy8lHXPfHEE1q7dq1aW1tVVlY29mkBWInsABAvju64SFIgEFBNTY3Kyso0d+5cNTU1qa+vT0uXLpUkVVdXq6ioSI2NjZKkP/zhD1qzZo1effVVFRcXx57PvvDCC3XhhRfG8VcBkM7IDgDx4Li4VFVV6ciRI1qzZo2CwaBKSkrU2toae9Fdd3e3MjO/v5Hz7LPPamBgQL/61a+GPE5DQ4Mefvjhc5segDXIDgDx4PhzXFKBz2MAUsvGa9DGmYHzTco/xwUAACCVKC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWGFNxaW5uVnFxsbKzs+Xz+bR79+4zHv/nP/9ZV1xxhbKzs3XNNdeopaVlTMMCsBvZAeBcOS4u27ZtUyAQUENDg/bs2aPZs2eroqJChw8fHvH4jz76SLfeeqtuv/127d27V4sWLdKiRYv0ySefnPPwAOxBdgCIhwxjjHGywOfzac6cOdq4caMkKRqNyuv1atmyZaqrqxt2fFVVlfr6+vT222/H9v3sZz9TSUmJNm/efFbnjEQiys3NVTgcVk5OjpNxAcRBPK7BZGcHuQGkXiKuwwlODh4YGFBHR4fq6+tj+zIzM+X3+9Xe3j7imvb2dgUCgSH7Kioq9Oabb456nv7+fvX398d+DofDkr77FwAg+U5dew7/zolJRnaQG0D6OdfsGImj4tLb26vBwUF5PJ4h+z0ej/bv3z/immAwOOLxwWBw1PM0NjbqkUceGbbf6/U6GRdAnP3v//6vcnNzHa9LRnaQG0D6Gmt2jMRRcUmW+vr6IX9pHT16VJdccom6u7vj9osnWiQSkdfrVU9PjzW3qZk5OWycORwO6+KLL9ZFF12U6lFGRW6kho0zS3bObePMicgOR8UlLy9PWVlZCoVCQ/aHQiEVFBSMuKagoMDR8ZLkdrvldruH7c/NzbXmP9YpOTk5zJwEzJwcmZlj+wSFZGQHuZFaNs4s2Tm3jTOPNTtGfCwnB7tcLpWWlqqtrS22LxqNqq2tTeXl5SOuKS8vH3K8JL377rujHg/g/EN2AIgXx08VBQIB1dTUqKysTHPnzlVTU5P6+vq0dOlSSVJ1dbWKiorU2NgoSbr//vu1cOFCPf3007rpppu0detW/c///I+ee+65+P4mANIa2QEgHhwXl6qqKh05ckRr1qxRMBhUSUmJWltbYy+i6+7uHnJLaN68eXr11Ve1atUqPfTQQ/qP//gPvfnmm5o5c+ZZn9PtdquhoWHE28DpipmTg5mTIx4zJzs7xuu/52SzcWbJzrmZ+TuOP8cFAAAgVfiuIgAAYA2KCwAAsAbFBQAAWIPiAgAArJE2xcXGr7t3MvOWLVu0YMECTZ06VVOnTpXf7//B3zERnP57PmXr1q3KyMjQokWLEjvgCJzOfPToUdXW1qqwsFBut1uXXXZZ0v//cDpzU1OTLr/8ck2aNEler1fLly/Xt99+m6RppQ8++ECVlZWaNm2aMjIyzvhdYqfs3LlT1157rdxuty699FK99NJLCZ/zdORGcpAbyWNTdqQsN0wa2Lp1q3G5XOaFF14wf//7382dd95ppkyZYkKh0IjHf/jhhyYrK8s88cQT5tNPPzWrVq0yEydONB9//HHazrx48WLT3Nxs9u7da/bt22d+85vfmNzcXPOPf/wjbWc+5dChQ6aoqMgsWLDA/PKXv0zOsP+f05n7+/tNWVmZufHGG82uXbvMoUOHzM6dO01nZ2fazvzKK68Yt9ttXnnlFXPo0CHzzjvvmMLCQrN8+fKkzdzS0mJWrlxp3njjDSPJbN++/YzHd3V1mQsuuMAEAgHz6aefmmeeecZkZWWZ1tbW5AxsyI10nfkUciPxc6c6O1KVG2lRXObOnWtqa2tjPw8ODppp06aZxsbGEY+/5ZZbzE033TRkn8/nM7/97W8TOuf/5XTm0508edJMnjzZvPzyy4kacZixzHzy5Ekzb94888c//tHU1NQkPYCczvzss8+a6dOnm4GBgWSNOIzTmWtra83Pf/7zIfsCgYCZP39+QucczdkE0IMPPmiuvvrqIfuqqqpMRUVFAicbitxIDnIjeWzOjmTmRsqfKjr1dfd+vz+272y+7v7/Hi9993X3ox0fb2OZ+XTHjx/XiRMnkvaldWOd+dFHH1V+fr5uv/32ZIw5xFhmfuutt1ReXq7a2lp5PB7NnDlT69at0+DgYNrOPG/ePHV0dMRuCXd1damlpUU33nhjUmYeCxuvQRtnPh258cNszA1pfGRHvK7BlH87dDK+7j7exjLz6VasWKFp06YN+4+YKGOZedeuXXr++efV2dmZhAmHG8vMXV1d+utf/6rbbrtNLS0tOnjwoO69916dOHFCDQ0NaTnz4sWL1dvbq+uuu07GGJ08eVJ33323HnrooYTPO1ajXYORSETffPONJk2alNDzkxvkxmhszA1pfGRHvHIj5XdcxqP169dr69at2r59u7Kzs1M9zoiOHTumJUuWaMuWLcrLy0v1OGctGo0qPz9fzz33nEpLS1VVVaWVK1dq8+bNqR5tVDt37tS6deu0adMm7dmzR2+88YZ27NihtWvXpno0pBFyI3FszA1p/GZHyu+4JOPr7uNtLDOf8tRTT2n9+vV67733NGvWrESOOYTTmT///HN98cUXqqysjO2LRqOSpAkTJujAgQOaMWNGWs0sSYWFhZo4caKysrJi+6688koFg0ENDAzI5XKl3cyrV6/WkiVLdMcdd0iSrrnmGvX19emuu+7SypUr4/p18PEy2jWYk5OT8LstErmRLORGcnJDGh/ZEa/cSPlvZePX3Y9lZkl64okntHbtWrW2tqqsrCwZo8Y4nfmKK67Qxx9/rM7Ozth288036/rrr1dnZ6e8Xm/azSxJ8+fP18GDB2NhKUmfffaZCgsLkxI+Y5n5+PHjwwLmVICaNP0qMRuvQRtnlsiNRM8spT43pPGRHXG7Bh29lDdBtm7datxut3nppZfMp59+au666y4zZcoUEwwGjTHGLFmyxNTV1cWO//DDD82ECRPMU089Zfbt22caGhpS8rZGJzOvX7/euFwu8/rrr5t//vOfse3YsWNpO/PpUvHuAKczd3d3m8mTJ5v77rvPHDhwwLz99tsmPz/fPPbYY2k7c0NDg5k8ebL505/+ZLq6usxf/vIXM2PGDHPLLbckbeZjx46ZvXv3mr179xpJZsOGDWbv3r3myy+/NMYYU1dXZ5YsWRI7/tTbGn//+9+bffv2mebm5pS8HZrcSL+ZT0duJG7uVGdHqnIjLYqLMcY888wz5uKLLzYul8vMnTvX/O1vf4v9s4ULF5qampohx7/22mvmsssuMy6Xy1x99dVmx44dSZ7Y2cyXXHKJkTRsa2hoSNuZT5eKADLG+cwfffSR8fl8xu12m+nTp5vHH3/cnDx5Mm1nPnHihHn44YfNjBkzTHZ2tvF6vebee+81//rXv5I27/vvvz/i/5+n5qypqTELFy4ctqakpMS4XC4zffp08+KLLyZt3lPIjfSb+XTkhjM2ZUeqciPDmDS8nwQAADCClL/GBQAA4GxRXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1nBcXD744ANVVlZq2rRpysjI0JtvvvmDa3bu3Klrr71Wbrdbl156qV566aUxjArAVuQGgHhxXFz6+vo0e/ZsNTc3n9Xxhw4d0k033RT7kq0HHnhAd9xxh9555x3HwwKwE7kBIF7O6SP/MzIytH37di1atGjUY1asWKEdO3bok08+ie379a9/raNHj6q1tXXENf39/erv74/9HI1G9fXXX+tHP/qRMjIyxjougDEyxujYsWOaNm3asG+jdYrcAMaPeGbHKRPi8ihn0N7eLr/fP2RfRUWFHnjggVHXNDY26pFHHknwZACc6unp0U9+8pOEn4fcAM4v8cyOhBeXYDAoj8czZJ/H41EkEtE333yjSZMmDVtTX1+vQCAQ+zkcDuviiy9WT0+PcnJyEj0ygNNEIhF5vV5Nnjw5KecjN4DzQyKyI+HFZSzcbrfcbvew/Tk5OQQQkELp/JQLuQGkr3hmR8LfDl1QUKBQKDRkXygUUk5Ozoh/NQEAuQFgNAkvLuXl5Wpraxuy791331V5eXmiTw3AUuQGgNE4Li7//ve/1dnZqc7OTknfvW2xs7NT3d3dkr57nrm6ujp2/N13362uri49+OCD2r9/vzZt2qTXXntNy5cvj89vACDtkRsA4sY49P777xtJw7aamhpjjDE1NTVm4cKFw9aUlJQYl8tlpk+fbl588UVH5wyHw0aSCYfDTscFEAfneg2SG8D4lIjr8Jw+xyVZIpGIcnNzFQ6HeZEdkAI2XoM2zgycbxJxHfJdRQAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANYYU3Fpbm5WcXGxsrOz5fP5tHv37jMe39TUpMsvv1yTJk2S1+vV8uXL9e23345pYAB2IjcAxIPj4rJt2zYFAgE1NDRoz549mj17tioqKnT48OERj3/11VdVV1enhoYG7du3T88//7y2bdumhx566JyHB2AHcgNAvDguLhs2bNCdd96ppUuX6qqrrtLmzZt1wQUX6IUXXhjx+I8++kjz58/X4sWLVVxcrBtuuEG33nrrD/61BeD8QW4AiBdHxWVgYEAdHR3y+/3fP0Bmpvx+v9rb20dcM2/ePHV0dMQCp6urSy0tLbrxxhtHPU9/f78ikciQDYCdyA0A8TTBycG9vb0aHByUx+MZst/j8Wj//v0jrlm8eLF6e3t13XXXyRijkydP6u677z7jLd/GxkY98sgjTkYDkKbIDQDxlPB3Fe3cuVPr1q3Tpk2btGfPHr3xxhvasWOH1q5dO+qa+vp6hcPh2NbT05PoMQGkEXIDwGgc3XHJy8tTVlaWQqHQkP2hUEgFBQUjrlm9erWWLFmiO+64Q5J0zTXXqK+vT3fddZdWrlypzMzh3cntdsvtdjsZDUCaIjcAxJOjOy4ul0ulpaVqa2uL7YtGo2pra1N5efmIa44fPz4sZLKysiRJxhin8wKwDLkBIJ4c3XGRpEAgoJqaGpWVlWnu3LlqampSX1+fli5dKkmqrq5WUVGRGhsbJUmVlZXasGGDfvrTn8rn8+ngwYNavXq1KisrY0EE4PxGbgCIF8fFpaqqSkeOHNGaNWsUDAZVUlKi1tbW2Avvuru7h/yltGrVKmVkZGjVqlX66quv9OMf/1iVlZV6/PHH4/dbAEhr5AaAeMkwFtx3jUQiys3NVTgcVk5OTqrHAcYdG69BG2cGzjeJuA75riIAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1xlRcmpubVVxcrOzsbPl8Pu3evfuMxx89elS1tbUqLCyU2+3WZZddppaWljENDMBO5AaAeJjgdMG2bdsUCAS0efNm+Xw+NTU1qaKiQgcOHFB+fv6w4wcGBvSLX/xC+fn5ev3111VUVKQvv/xSU6ZMicf8ACxAbgCIlwxjjHGywOfzac6cOdq4caMkKRqNyuv1atmyZaqrqxt2/ObNm/Xkk09q//79mjhx4lmdo7+/X/39/bGfI5GIvF6vwuGwcnJynIwLIA4ikYhyc3PHfA2SG8D4dK7ZMRJHTxUNDAyoo6NDfr//+wfIzJTf71d7e/uIa9566y2Vl5ertrZWHo9HM2fO1Lp16zQ4ODjqeRobG5WbmxvbvF6vkzEBpBFyA0A8OSouvb29GhwclMfjGbLf4/EoGAyOuKarq0uvv/66BgcH1dLSotWrV+vpp5/WY489Nup56uvrFQ6HY1tPT4+TMQGkEXIDQDw5fo2LU9FoVPn5+XruueeUlZWl0tJSffXVV3ryySfV0NAw4hq32y23253o0QCkKXIDwGgcFZe8vDxlZWUpFAoN2R8KhVRQUDDimsLCQk2cOFFZWVmxfVdeeaWCwaAGBgbkcrnGMDYAW5AbAOLJ0VNFLpdLpaWlamtri+2LRqNqa2tTeXn5iGvmz5+vgwcPKhqNxvZ99tlnKiwsJHyAcYDcABBPjj/HJRAIaMuWLXr55Ze1b98+3XPPPerr69PSpUslSdXV1aqvr48df8899+jrr7/W/fffr88++0w7duzQunXrVFtbG7/fAkBaIzcAxIvj17hUVVXpyJEjWrNmjYLBoEpKStTa2hp74V13d7cyM7/vQ16vV++8846WL1+uWbNmqaioSPfff79WrFgRv98CQFojNwDEi+PPcUmFRLwPHMDZs/EatHFm4HyT8s9xAQAASCWKCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGuMqbg0NzeruLhY2dnZ8vl82r1791mt27p1qzIyMrRo0aKxnBaA5cgOAOfKcXHZtm2bAoGAGhoatGfPHs2ePVsVFRU6fPjwGdd98cUX+t3vfqcFCxaMeVgA9iI7AMSD4+KyYcMG3XnnnVq6dKmuuuoqbd68WRdccIFeeOGFUdcMDg7qtttu0yOPPKLp06ef08AA7ER2AIgHR8VlYGBAHR0d8vv93z9AZqb8fr/a29tHXffoo48qPz9ft99++1mdp7+/X5FIZMgGwF7JyA5yAxgfHBWX3t5eDQ4OyuPxDNnv8XgUDAZHXLNr1y49//zz2rJly1mfp7GxUbm5ubHN6/U6GRNAmklGdpAbwPiQ0HcVHTt2TEuWLNGWLVuUl5d31uvq6+sVDodjW09PTwKnBJBuxpId5AYwPkxwcnBeXp6ysrIUCoWG7A+FQiooKBh2/Oeff64vvvhClZWVsX3RaPS7E0+YoAMHDmjGjBnD1rndbrndbiejAUhjycgOcgMYHxzdcXG5XCotLVVbW1tsXzQaVVtbm8rLy4cdf8UVV+jjjz9WZ2dnbLv55pt1/fXXq7Ozk1u5wDhBdgCIF0d3XCQpEAiopqZGZWVlmjt3rpqamtTX16elS5dKkqqrq1VUVKTGxkZlZ2dr5syZQ9ZPmTJFkobtB3B+IzsAxIPj4lJVVaUjR45ozZo1CgaDKikpUWtra+xFd93d3crM5AN5AQxFdgCIhwxjjEn1ED8kEokoNzdX4XBYOTk5qR4HGHdsvAZtnBk43yTiOuTPGwAAYA2KCwAAsAbFBQAAWIPiAgAArEFxAQAA1qC4AAAAa1BcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDXGVFyam5tVXFys7Oxs+Xw+7d69e9Rjt2zZogULFmjq1KmaOnWq/H7/GY8HcP4iOwCcK8fFZdu2bQoEAmpoaNCePXs0e/ZsVVRU6PDhwyMev3PnTt166616//331d7eLq/XqxtuuEFfffXVOQ8PwB5kB4B4yDDGGCcLfD6f5syZo40bN0qSotGovF6vli1bprq6uh9cPzg4qKlTp2rjxo2qrq4+q3NGIhHl5uYqHA4rJyfHybgA4iAe12Cys4PcAFIvEdehozsuAwMD6ujokN/v//4BMjPl9/vV3t5+Vo9x/PhxnThxQhdddNGox/T39ysSiQzZANgrGdlBbgDjg6Pi0tvbq8HBQXk8niH7PR6PgsHgWT3GihUrNG3atCEBdrrGxkbl5ubGNq/X62RMAGkmGdlBbgDjQ1LfVbR+/Xpt3bpV27dvV3Z29qjH1dfXKxwOx7aenp4kTgkg3ZxNdpAbwPgwwcnBeXl5ysrKUigUGrI/FAqpoKDgjGufeuoprV+/Xu+9955mzZp1xmPdbrfcbreT0QCksWRkB7kBjA+O7ri4XC6Vlpaqra0tti8ajaqtrU3l5eWjrnviiSe0du1atba2qqysbOzTArAS2QEgXhzdcZGkQCCgmpoalZWVae7cuWpqalJfX5+WLl0qSaqurlZRUZEaGxslSX/4wx+0Zs0avfrqqyouLo49n33hhRfqwgsvjOOvAiCdkR0A4sFxcamqqtKRI0e0Zs0aBYNBlZSUqLW1Nfaiu+7ubmVmfn8j59lnn9XAwIB+9atfDXmchoYGPfzww+c2PQBrkB0A4sHx57ikAp/HAKSWjdegjTMD55uUf44LAABAKlFcAACANSguAADAGhQXAABgDYoLAACwBsUFAABYg+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANaguAAAAGtQXAAAgDUoLgAAwBoUFwAAYA2KCwAAsAbFBQAAWIPiAgAArDGm4tLc3Kzi4mJlZ2fL5/Np9+7dZzz+z3/+s6644gplZ2frmmuuUUtLy5iGBWA3sgPAuXJcXLZt26ZAIKCGhgbt2bNHs2fPVkVFhQ4fPjzi8R999JFuvfVW3X777dq7d68WLVqkRYsW6ZNPPjnn4QHYg+wAEA8ZxhjjZIHP59OcOXO0ceNGSVI0GpXX69WyZctUV1c37Piqqir19fXp7bffju372c9+ppKSEm3evHnEc/T396u/vz/2czgc1sUXX6yenh7l5OQ4GRdAHEQiEXm9Xh09elS5ubljeoxEZwe5AaSfeGTHMMaB/v5+k5WVZbZv3z5kf3V1tbn55ptHXOP1es1//dd/Ddm3Zs0aM2vWrFHP09DQYCSxsbGl2fb55587iYykZge5wcaWvttYs2MkE+RAb2+vBgcH5fF4huz3eDzav3//iGuCweCIxweDwVHPU19fr0AgEPv56NGjuuSSS9Td3R2/xpZgp1qmTX/tMXNy2DjzqbsXF1100ZjWJyM7yI3UsHFmyc65bZz5XLNjJI6KS7K43W653e5h+3Nzc635j3VKTk4OMycBMydHZmb6vhGR3EgtG2eW7JzbxpnjmR2OHikvL09ZWVkKhUJD9odCIRUUFIy4pqCgwNHxAM4/ZAeAeHFUXFwul0pLS9XW1hbbF41G1dbWpvLy8hHXlJeXDzlekt59991Rjwdw/iE7AMSN0xfFbN261bjdbvPSSy+ZTz/91Nx1111mypQpJhgMGmOMWbJkiamrq4sd/+GHH5oJEyaYp556yuzbt880NDSYiRMnmo8//visz/ntt9+ahoYG8+233zodN2WYOTmYOTniMXOys2O8/ntONhtnNsbOuZn5O46LizHGPPPMM+biiy82LpfLzJ071/ztb3+L/bOFCxeampqaIce/9tpr5rLLLjMul8tcffXVZseOHec0NAA7kR0AzpXjz3EBAABIlfR9iwAAAMBpKC4AAMAaFBcAAGANigsAALBG2hQXG7/u3snMW7Zs0YIFCzR16lRNnTpVfr//B3/HRHD67/mUrVu3KiMjQ4sWLUrsgCNwOvPRo0dVW1urwsJCud1uXXbZZUn//8PpzE1NTbr88ss1adIkeb1eLV++XN9++22SppU++OADVVZWatq0acrIyNCbb775g2t27typa6+9Vm63W5deeqleeumlhM95OnIjOciN5LEpO1KWG6l+W5Mx332+g8vlMi+88IL5+9//bu68804zZcoUEwqFRjz+ww8/NFlZWeaJJ54wn376qVm1apXjz4ZJ9syLFy82zc3NZu/evWbfvn3mN7/5jcnNzTX/+Mc/0nbmUw4dOmSKiorMggULzC9/+cvkDPv/OZ25v7/flJWVmRtvvNHs2rXLHDp0yOzcudN0dnam7cyvvPKKcbvd5pVXXjGHDh0y77zzjiksLDTLly9P2swtLS1m5cqV5o033jCShn0Z4um6urrMBRdcYAKBgPn000/NM888Y7Kyskxra2tyBjbkRrrOfAq5kfi5U50dqcqNtCguc+fONbW1tbGfBwcHzbRp00xjY+OIx99yyy3mpptuGrLP5/OZ3/72twmd8/9yOvPpTp48aSZPnmxefvnlRI04zFhmPnnypJk3b5754x//aGpqapIeQE5nfvbZZ8306dPNwMBAskYcxunMtbW15uc///mQfYFAwMyfPz+hc47mbALowQcfNFdfffWQfVVVVaaioiKBkw1FbiQHuZE8NmdHMnMj5U8VDQwMqKOjQ36/P7YvMzNTfr9f7e3tI65pb28fcrwkVVRUjHp8vI1l5tMdP35cJ06ciOs3Zp7JWGd+9NFHlZ+fr9tvvz0ZYw4xlpnfeustlZeXq7a2Vh6PRzNnztS6des0ODiYtjPPmzdPHR0dsVvCXV1damlp0Y033piUmcfCxmvQxplPR278MBtzQxof2RGvazDl3w6djK+7j7exzHy6FStWaNq0acP+IybKWGbetWuXnn/+eXV2diZhwuHGMnNXV5f++te/6rbbblNLS4sOHjyoe++9VydOnFBDQ0Nazrx48WL19vbquuuukzFGJ0+e1N13362HHnoo4fOO1WjXYCQS0TfffKNJkyYl9PzkBrkxGhtzQxof2RGv3Ej5HZfxaP369dq6dau2b9+u7OzsVI8zomPHjmnJkiXasmWL8vLyUj3OWYtGo8rPz9dzzz2n0tJSVVVVaeXKldq8eXOqRxvVzp07tW7dOm3atEl79uzRG2+8oR07dmjt2rWpHg1phNxIHBtzQxq/2ZHyOy42ft39WGY+5amnntL69ev13nvvadasWYkccwinM3/++ef64osvVFlZGdsXjUYlSRMmTNCBAwc0Y8aMtJpZkgoLCzVx4kRlZWXF9l155ZUKBoMaGBiQy+VKu5lXr16tJUuW6I477pAkXXPNNerr69Ndd92llStXKjMz/f6+GO0azMnJSfjdFoncSBZyIzm5IY2P7IhXbqT8t7Lx6+7HMrMkPfHEE1q7dq1aW1tVVlaWjFFjnM58xRVX6OOPP1ZnZ2dsu/nmm3X99ders7NTXq837WaWpPnz5+vgwYOxsJSkzz77TIWFhUkJn7HMfPz48WEBcypATZp+lZiN16CNM0vkRqJnllKfG9L4yI64XYOOXsqbIMn+uvtUzLx+/XrjcrnM66+/bv75z3/GtmPHjqXtzKdLxbsDnM7c3d1tJk+ebO677z5z4MAB8/bbb5v8/Hzz2GOPpe3MDQ0NZvLkyeZPf/qT6erqMn/5y1/MjBkzzC233JK0mY8dO2b27t1r9u7daySZDRs2mL1795ovv/zSGGNMXV2dWbJkSez4U29r/P3vf2/27dtnmpubU/J2aHIj/WY+HbmRuLlTnR2pyo20KC7G2Pl1905mvuSSS4ykYVtDQ0Pazny6VASQMc5n/uijj4zP5zNut9tMnz7dPP744+bkyZNpO/OJEyfMww8/bGbMmGGys7ON1+s19957r/nXv/6VtHnff//9Ef//PDVnTU2NWbhw4bA1JSUlxuVymenTp5sXX3wxafOeQm6k38ynIzecsSk7UpUbGcak4f0kAACAEaT8NS4AAABni+ICAACsQXEBAADWoLgAAABrUFwAAIA1KC4AAMAaFBcAAGANigsAALAGxQUAAFiD4gIAAKxBcQEAANb4f6Ovs8jzI3seAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAANaZJREFUeJzt3X9MVGei//EPoAw2FbTLMiB3WlZ7rW39QQuVRWuabmZLtg1d/9iUqw2wxh+rpY11sluhKtTaittrXZKKJWV12+S2i12jTVMIbsuWNFb2mgVJ3K0/YtHims4o13XGxQrKPN8/+nV2KaAOMj+OvF/J+YPH53A+03qefDwzZ06MMcYIAADAAmIjHQAAAOBGUVwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlBF1cPvvsM+Xn52vSpEmKiYnRBx98cN19mpub9eCDD8pms+nuu+/W22+/PYyoAKyKdQPASAm6uHR3d2vWrFmqrq6+ofknTpzQE088oUcffVTt7e16/vnntWTJEu3duzfosACsiXUDwEiJuZmHLMbExGjPnj2aP3/+kHNWr16t+vp6/fWvfw2M/dd//ZfOnz+vxsbG4R4agEWxbgC4GWNCfYCWlhY5nc5+Y3l5eXr++eeH3Kenp0c9PT2Bn/1+v86dO6fvfe97iomJCVVUAEMwxujChQuaNGmSYmND/9E41g3g1hCKtSPkxcXtdstut/cbs9vt8vl8+uabbzRu3LgB+1RWVmr9+vWhjgYgSKdOndJ//Md/hPw4rBvArWUk146QF5fhKCsrk8vlCvzs9Xp155136tSpU0pMTIxgMmB08vl8cjgcGj9+fKSjDIl1A4g+oVg7Ql5cUlNT5fF4+o15PB4lJiYO+q8mSbLZbLLZbAPGExMTWYCACArXWy6sG8CtZSTXjpC/WZ2bm6umpqZ+Yx9//LFyc3NDfWgAFsW6AWAoQReXf/7zn2pvb1d7e7ukb29bbG9vV2dnp6RvL9cWFRUF5i9fvlwdHR164YUXdOTIEW3btk3vv/++Vq1aNTKvAEDUY90AMGJMkD799FMjacBWXFxsjDGmuLjYPPLIIwP2yczMNPHx8Wby5Mnmd7/7XVDH9Hq9RpLxer3BxgUwAm72HGTdAEanUJyHN/U9LuHi8/mUlJQkr9fLe9VABFjxHLRiZuBWE4rzkGcVAQAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAAAy6C4AAiL6upqZWRkKCEhQTk5OTpw4MA151dVVemee+7RuHHj5HA4tGrVKl26dClMaQFEK4oLgJDbuXOnXC6XKioq1NbWplmzZikvL09nzpwZdP57772n0tJSVVRU6PDhw9q+fbt27typF198MczJAUQbiguAkNuyZYuWLl2qRYsW6b777lNNTY1uu+027dixY9D5+/fv19y5c7Vw4UJlZGToscce04IFC655laanp0c+n6/fBuDWQ3EBEFK9vb1qbW2V0+kMjMXGxsrpdKqlpWXQfebMmaPW1tZAUeno6FBDQ4Mef/zxIY9TWVmppKSkwOZwOEb2hQCICmMiHQDAra2rq0t9fX2y2+39xu12u44cOTLoPgsXLlRXV5cefvhhGWN05coVLV++/JpvFZWVlcnlcgV+9vl8lBfgFsQVFwBRp7m5WRs3btS2bdvU1tam3bt3q76+Xhs2bBhyH5vNpsTExH4bgFsPV1wAhFRycrLi4uLk8Xj6jXs8HqWmpg66z7p161RYWKglS5ZIkmbMmKHu7m4tW7ZMa9asUWws/+YCRivOfgAhFR8fr6ysLDU1NQXG/H6/mpqalJubO+g+Fy9eHFBO4uLiJEnGmNCFBRD1uOICIORcLpeKi4uVnZ2t2bNnq6qqSt3d3Vq0aJEkqaioSOnp6aqsrJQk5efna8uWLXrggQeUk5Oj48ePa926dcrPzw8UGACjE8UFQMgVFBTo7NmzKi8vl9vtVmZmphobGwMf2O3s7Ox3hWXt2rWKiYnR2rVrdfr0aX3/+99Xfn6+Xn311Ui9BABRIsZY4Lqrz+dTUlKSvF4vH7gDIsCK56AVMwO3mlCch3zGBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBQAAWAbFBUBYVFdXKyMjQwkJCcrJydGBAweuOf/8+fMqKSlRWlqabDabpk6dqoaGhjClBRCtxkQ6AIBb386dO+VyuVRTU6OcnBxVVVUpLy9PR48eVUpKyoD5vb29+vGPf6yUlBTt2rVL6enp+uqrrzRhwoTwhwcQVSguAEJuy5YtWrp0qRYtWiRJqqmpUX19vXbs2KHS0tIB83fs2KFz585p//79Gjt2rCQpIyMjnJEBRCneKgIQUr29vWptbZXT6QyMxcbGyul0qqWlZdB9PvzwQ+Xm5qqkpER2u13Tp0/Xxo0b1dfXN+Rxenp65PP5+m0Abj0UFwAh1dXVpb6+Ptnt9n7jdrtdbrd70H06Ojq0a9cu9fX1qaGhQevWrdPrr7+uV155ZcjjVFZWKikpKbA5HI4RfR0AogPFBUDU8fv9SklJ0VtvvaWsrCwVFBRozZo1qqmpGXKfsrIyeb3ewHbq1KkwJgYQLnzGBUBIJScnKy4uTh6Pp9+4x+NRamrqoPukpaVp7NixiouLC4zde++9crvd6u3tVXx8/IB9bDabbDbbyIYHEHWGdcUl2Nsaq6qqdM8992jcuHFyOBxatWqVLl26NKzAAKwlPj5eWVlZampqCoz5/X41NTUpNzd30H3mzp2r48ePy+/3B8aOHTumtLS0QUsLgNEj6OJy9bbGiooKtbW1adasWcrLy9OZM2cGnf/ee++ptLRUFRUVOnz4sLZv366dO3fqxRdfvOnwAKzB5XKptrZW77zzjg4fPqwVK1aou7s7cJdRUVGRysrKAvNXrFihc+fOaeXKlTp27Jjq6+u1ceNGlZSUROolAIgSQb9VFOxtjfv379fcuXO1cOFCSd/e0rhgwQL97//+701GB2AVBQUFOnv2rMrLy+V2u5WZmanGxsbAB3Y7OzsVG/uvf0c5HA7t3btXq1at0syZM5Wenq6VK1dq9erVkXoJAKJEUMXl6m2N//4vo+vd1jhnzhz9z//8jw4cOKDZs2ero6NDDQ0NKiwsHPI4PT096unpCfzMbY2A9T377LN69tlnB/2z5ubmAWO5ubn685//HOJUAKwmqOJyrdsajxw5Mug+CxcuVFdXlx5++GEZY3TlyhUtX778mm8VVVZWav369cFEAwAAo0DIb4dubm7Wxo0btW3bNrW1tWn37t2qr6/Xhg0bhtyH2xoBAMBggrriMpzbGtetW6fCwkItWbJEkjRjxgx1d3dr2bJlWrNmTb/3ta/itkYAADCYoK64DOe2xosXLw4oJ1e/m8EYE2xeAAAwigV9V5HL5VJxcbGys7M1e/ZsVVVVDbitMT09XZWVlZKk/Px8bdmyRQ888IBycnJ0/PhxrVu3Tvn5+f2+XAoAAOB6gi4uwd7WuHbtWsXExGjt2rU6ffq0vv/97ys/P1+vvvrqyL0KAAAwKsQYC7xf4/P5lJSUJK/Xq8TExEjHAUYdK56DVswM3GpCcR7ykEUAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAYVNdXa2MjAwlJCQoJydHBw4cuKH96urqFBMTo/nz54c2IICoR3EBEBY7d+6Uy+VSRUWF2traNGvWLOXl5enMmTPX3O/kyZP65S9/qXnz5oUpKYBoRnEBEBZbtmzR0qVLtWjRIt13332qqanRbbfdph07dgy5T19fn55++mmtX79ekydPvubv7+npkc/n67cBuPVQXACEXG9vr1pbW+V0OgNjsbGxcjqdamlpGXK/l19+WSkpKVq8ePF1j1FZWamkpKTA5nA4RiQ7gOhCcQEQcl1dXerr65Pdbu83brfb5Xa7B91n37592r59u2pra2/oGGVlZfJ6vYHt1KlTN50bQPQZE+kAAPBdFy5cUGFhoWpra5WcnHxD+9hsNtlsthAnAxBpFBcAIZecnKy4uDh5PJ5+4x6PR6mpqQPmf/nllzp58qTy8/MDY36/X5I0ZswYHT16VFOmTAltaABRibeKAIRcfHy8srKy1NTUFBjz+/1qampSbm7ugPnTpk3ToUOH1N7eHtiefPJJPfroo2pvb+fzK8AoxhUXAGHhcrlUXFys7OxszZ49W1VVVeru7taiRYskSUVFRUpPT1dlZaUSEhI0ffr0fvtPmDBBkgaMAxhdKC4AwqKgoEBnz55VeXm53G63MjMz1djYGPjAbmdnp2JjuQgM4NpijDEm0iGux+fzKSkpSV6vV4mJiZGOA4w6VjwHrZgZuNWE4jzknzcAAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4AAMAyKC4Awqa6uloZGRlKSEhQTk6ODhw4MOTc2tpazZs3TxMnTtTEiRPldDqvOR/A6EBxARAWO3fulMvlUkVFhdra2jRr1izl5eXpzJkzg85vbm7WggUL9Omnn6qlpUUOh0OPPfaYTp8+HebkAKJJjDHGRDrE9fh8PiUlJcnr9SoxMTHScYBRZyTOwZycHD300EPaunWrJMnv98vhcOi5555TaWnpdffv6+vTxIkTtXXrVhUVFYUlM4CbE4rzkCsuAEKut7dXra2tcjqdgbHY2Fg5nU61tLTc0O+4ePGiLl++rDvuuGPQP+/p6ZHP5+u3Abj1UFwAhFxXV5f6+vpkt9v7jdvtdrnd7hv6HatXr9akSZP6lZ9/V1lZqaSkpMDmcDhuOjeA6ENxARD1Nm3apLq6Ou3Zs0cJCQmDzikrK5PX6w1sp06dCnNKAOEwJtIBANz6kpOTFRcXJ4/H02/c4/EoNTX1mvtu3rxZmzZt0ieffKKZM2cOOc9ms8lms41IXgDRiysuAEIuPj5eWVlZampqCoz5/X41NTUpNzd3yP1ee+01bdiwQY2NjcrOzg5HVABRjisuAMLC5XKpuLhY2dnZmj17tqqqqtTd3a1FixZJkoqKipSenq7KykpJ0q9//WuVl5frvffeU0ZGRuCzMLfffrtuv/32iL0OAJFFcQEQFgUFBTp79qzKy8vldruVmZmpxsbGwAd2Ozs7FRv7r4vAb775pnp7e/Wzn/2s3++pqKjQSy+9FM7oAKII3+MC4LqseA5aMTNwq+F7XAAAwKhGcQEAAJZBcQEAAJYxrOISzBNeJen8+fMqKSlRWlqabDabpk6dqoaGhmEFBgAAo1fQdxVdfcJrTU2NcnJyVFVVpby8PB09elQpKSkD5vf29urHP/6xUlJStGvXLqWnp+urr77ShAkTRiI/AAAYRYIuLlu2bNHSpUsD371QU1Oj+vp67dixY9AnvO7YsUPnzp3T/v37NXbsWElSRkbGzaUGAACjUlBvFQ3nCa8ffvihcnNzVVJSIrvdrunTp2vjxo3q6+sb8jg85RUAAAwmqOIynCe8dnR0aNeuXerr61NDQ4PWrVun119/Xa+88sqQx+EprwAAYDAhv6vI7/crJSVFb731lrKyslRQUKA1a9aopqZmyH14yisAABhMUJ9xGc4TXtPS0jR27FjFxcUFxu6991653W719vYqPj5+wD485RUAAAwmqCsuw3nC69y5c3X8+HH5/f7A2LFjx5SWljZoaQEAABhK0G8VuVwu1dbW6p133tHhw4e1YsWKAU94LSsrC8xfsWKFzp07p5UrV+rYsWOqr6/Xxo0bVVJSMnKvAgAAjApB3w4d7BNeHQ6H9u7dq1WrVmnmzJlKT0/XypUrtXr16pF7FQAAYFTg6dAArsuK56AVMwO3Gp4ODQAARjWKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKC4Cwqa6uVkZGhhISEpSTk6MDBw5cc/4f/vAHTZs2TQkJCZoxY4YaGhrClBRAtKK4AAiLnTt3yuVyqaKiQm1tbZo1a5by8vJ05syZQefv379fCxYs0OLFi3Xw4EHNnz9f8+fP11//+tcwJwcQTXhWEYDrGolzMCcnRw899JC2bt0qSfL7/XI4HHruuedUWlo6YH5BQYG6u7v10UcfBcZ++MMfKjMzUzU1NWHJDODmhOI8DPrp0AAQrN7eXrW2tqqsrCwwFhsbK6fTqZaWlkH3aWlpkcvl6jeWl5enDz74YND5PT096unpCfzs9XolfbtwAoiMq+ffSF4jobgACLmuri719fXJbrf3G7fb7Tpy5Mig+7jd7kHnu93uQedXVlZq/fr1A8YdDscwUwMYKf/3f/+npKSkEfldFBcAt4SysrJ+V2jOnz+vu+66S52dnSO2YIaaz+eTw+HQqVOnLPP2lhUzS9bMbcXMXq9Xd955p+64444R+50UFwAhl5ycrLi4OHk8nn7jHo9Hqampg+6Tmpoa1HybzSabzTZgPCkpyTKL/FWJiYlkDhMr5rZi5tjYkbsXiLuKAIRcfHy8srKy1NTUFBjz+/1qampSbm7uoPvk5ub2my9JH3/88ZDzAYwOXHEBEBYul0vFxcXKzs7W7NmzVVVVpe7ubi1atEiSVFRUpPT0dFVWVkqSVq5cqUceeUSvv/66nnjiCdXV1ekvf/mL3nrrrUi+DAARRnEBEBYFBQU6e/asysvL5Xa7lZmZqcbGxsAHcDs7O/tdTp4zZ47ee+89rV27Vi+++KL+8z//Ux988IGmT59+Q8ez2WyqqKgY9O2jaEXm8LFibjJ/i+9xAXBdnIMAogWfcQEAAJZBcQEAAJZBcQEAAJZBcQEAAJZBcQFgWdXV1crIyFBCQoJycnJ04MCBa87/wx/+oGnTpikhIUEzZsxQQ0NDmJL+SzCZa2trNW/ePE2cOFETJ06U0+m87msMhWD/O19VV1enmJgYzZ8/P7QBBxFs5vPnz6ukpERpaWmy2WyaOnVq1P/9kKSqqirdc889GjdunBwOh1atWqVLly6FJetnn32m/Px8TZo0STExMUM+R+zfNTc368EHH5TNZtPdd9+tt99+O/gDGwvwer1GkvF6vZGOAoxK0XgO1tXVmfj4eLNjxw7zt7/9zSxdutRMmDDBeDyeQed//vnnJi4uzrz22mvmiy++MGvXrjVjx441hw4ditrMCxcuNNXV1ebgwYPm8OHD5uc//7lJSkoyf//736M281UnTpww6enpZt68eeanP/1peML+f8Fm7unpMdnZ2ebxxx83+/btMydOnDDNzc2mvb09qnO/++67xmazmXfffdecOHHC7N2716SlpZlVq1aFJW9DQ4NZs2aN2b17t5Fk9uzZc835HR0d5rbbbjMul8t88cUX5o033jBxcXGmsbExqONSXABcVzSeg7NnzzYlJSWBn/v6+sykSZNMZWXloPOfeuop88QTT/Qby8nJMb/4xS9CmvPfBZv5u65cuWLGjx9v3nnnnVBFHGA4ma9cuWLmzJljfvvb35ri4uKwF5dgM7/55ptm8uTJpre3N1wRBxVs7pKSEvOjH/2o35jL5TJz584Nac7B3EhxeeGFF8z999/fb6ygoMDk5eUFdSzeKgJgOb29vWptbZXT6QyMxcbGyul0qqWlZdB9Wlpa+s2XpLy8vCHnj7ThZP6uixcv6vLlyyP6wLprGW7ml19+WSkpKVq8eHE4YvYznMwffvihcnNzVVJSIrvdrunTp2vjxo3q6+sLV+xh5Z4zZ45aW1sDbyd1dHSooaFBjz/+eFgyB2ukzkG+OReA5XR1damvry/wrbtX2e12HTlyZNB93G73oPPdbnfIcv674WT+rtWrV2vSpEkDFv9QGU7mffv2afv27Wpvbw9DwoGGk7mjo0N/+tOf9PTTT6uhoUHHjx/XM888o8uXL6uioiIcsYeVe+HCherq6tLDDz8sY4yuXLmi5cuX68UXXwxH5KANdQ76fD598803Gjdu3A39Hq64AIAFbNq0SXV1ddqzZ48SEhIiHWdQFy5cUGFhoWpra5WcnBzpODfM7/crJSVFb731lrKyslRQUKA1a9aopqYm0tGuqbm5WRs3btS2bdvU1tam3bt3q76+Xhs2bIh0tJDiigsAy0lOTlZcXJw8Hk+/cY/Ho9TU1EH3SU1NDWr+SBtO5qs2b96sTZs26ZNPPtHMmTNDGbOfYDN/+eWXOnnypPLz8wNjfr9fkjRmzBgdPXpUU6ZMiarMkpSWlqaxY8cqLi4uMHbvvffK7Xart7dX8fHxIc0sDS/3unXrVFhYqCVLlkiSZsyYoe7ubi1btkxr1qzp9+yvaDDUOZiYmHjDV1skrrgAsKD4+HhlZWWpqakpMOb3+9XU1KTc3NxB98nNze03X5I+/vjjIeePtOFklqTXXntNGzZsUGNjo7Kzs8MRNSDYzNOmTdOhQ4fU3t4e2J588kk9+uijam9vl8PhiLrMkjR37lwdP348ULIk6dixY0pLSwtLaZGGl/vixYsDysnV8mWi8DGEI3YOBve54ciIxjsagNEkGs/Buro6Y7PZzNtvv22++OILs2zZMjNhwgTjdruNMcYUFhaa0tLSwPzPP//cjBkzxmzevNkcPnzYVFRUROR26GAyb9q0ycTHx5tdu3aZr7/+OrBduHAhajN/VyTuKgo2c2dnpxk/frx59tlnzdGjR81HH31kUlJSzCuvvBLVuSsqKsz48ePN73//e9PR0WH++Mc/milTppinnnoqLHkvXLhgDh48aA4ePGgkmS1btpiDBw+ar776yhhjTGlpqSksLAzMv3o79K9+9Stz+PBhU11dze3QAEIjWs/BN954w9x5550mPj7ezJ492/z5z38O/NkjjzxiiouL+81///33zdSpU018fLy5//77TX19fZgTB5f5rrvuMpIGbBUVFVGb+bsiUVyMCT7z/v37TU5OjrHZbGby5Mnm1VdfNVeuXAlz6uByX7582bz00ktmypQpJiEhwTgcDvPMM8+Yf/zjH2HJ+umnnw769/NqxuLiYvPII48M2CczM9PEx8ebyZMnm9/97ndBHzfGmCi8nvQdPp9PSUlJ8nq9SkxMjHQcYNThHAQQLfiMCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKCwAAsAyKC4CQ++yzz5Sfn69JkyYpJiZGH3zwwXX3aW5u1oMPPiibzaa7775bb7/9dshzAoh+FBcAIdfd3a1Zs2apurr6huafOHFCTzzxRODhfM8//7yWLFmivXv3hjgpgGg3JtIBANz6fvKTn+gnP/nJDc+vqanRD37wA73++uuSpHvvvVf79u3Tb37zG+Xl5Q26T09Pj3p6egI/+/1+nTt3Tt/73vcUExNzcy8AwLAYY3ThwgVNmjRpwJOsh4viAiDqtLS0yOl09hvLy8vT888/P+Q+lZWVWr9+fYiTARiOU6dO6T/+4z9G5HdRXABEHbfbLbvd3m/MbrfL5/Ppm2++0bhx4wbsU1ZWJpfLFfjZ6/Xqzjvv1KlTp3gwJBAhPp9PDodD48ePH7HfSXEBcEuw2Wyy2WwDxhMTEykuQISN5Nu1fDgXQNRJTU2Vx+PpN+bxeJSYmDjo1RYAowfFBUDUyc3NVVNTU7+xjz/+WLm5uRFKBCBaUFwAhNw///lPtbe3q729XdK3tzu3t7ers7NT0refTykqKgrMX758uTo6OvTCCy/oyJEj2rZtm95//32tWrUqEvEBRBGKC4CQ+8tf/qIHHnhADzzwgCTJ5XLpgQceUHl5uSTp66+/DpQYSfrBD36g+vp6ffzxx5o1a5Zef/11/fa3vx3yVmgAo0eMMcZEOsT1+Hw+JSUlyev18iE7IAKseA5aMTNwqwnFecgVFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBkUFwAAYBnDKi7V1dXKyMhQQkKCcnJydODAgRvar66uTjExMZo/f/5wDgsAAEa5oIvLzp075XK5VFFRoba2Ns2aNUt5eXk6c+bMNfc7efKkfvnLX2revHnDDgsAAEa3oIvLli1btHTpUi1atEj33XefampqdNttt2nHjh1D7tPX16enn35a69ev1+TJk697jJ6eHvl8vn4bAABAUMWlt7dXra2tcjqd//oFsbFyOp1qaWkZcr+XX35ZKSkpWrx48Q0dp7KyUklJSYHN4XAEExMAANyigiouXV1d6uvrk91u7zdut9vldrsH3Wffvn3avn27amtrb/g4ZWVl8nq9ge3UqVPBxAQAALeoMaH85RcuXFBhYaFqa2uVnJx8w/vZbDbZbLYQJgMAAFYUVHFJTk5WXFycPB5Pv3GPx6PU1NQB87/88kudPHlS+fn5gTG/3//tgceM0dGjRzVlypTh5AYAAKNQUG8VxcfHKysrS01NTYExv9+vpqYm5ebmDpg/bdo0HTp0SO3t7YHtySef1KOPPqr29nY+uwIAAIIS9FtFLpdLxcXFys7O1uzZs1VVVaXu7m4tWrRIklRUVKT09HRVVlYqISFB06dP77f/hAkTJGnAOAAAwPUEXVwKCgp09uxZlZeXy+12KzMzU42NjYEP7HZ2dio2li/kBQAAIy/GGGMiHeJ6fD6fkpKS5PV6lZiYGOk4wKhjxXPQipmBW00ozkMujQAAAMuguAAAAMuguAAIi2AfzlpVVaV77rlH48aNk8Ph0KpVq3Tp0qUwpQUQrSguAEIu2IezvvfeeyotLVVFRYUOHz6s7du3a+fOnXrxxRfDnBxAtKG4AAi5YB/Oun//fs2dO1cLFy5URkaGHnvsMS1YsOC6V2kA3PooLgBCajgPZ50zZ45aW1sDRaWjo0MNDQ16/PHHhzwOT5UHRoeQPqsIAK71cNYjR44Mus/ChQvV1dWlhx9+WMYYXblyRcuXL7/mW0WVlZVav379iGYHEH244gIg6jQ3N2vjxo3atm2b2tratHv3btXX12vDhg1D7sNT5YHRgSsuAEIq2IezStK6detUWFioJUuWSJJmzJih7u5uLVu2TGvWrBn027l5qjwwOnDFBUBIBftwVkm6ePHigHISFxcnSbLAl30DCCGuuAAIuWAezipJ+fn52rJlix544AHl5OTo+PHjWrdunfLz8wMFBsDoRHEBEHLBPpx17dq1iomJ0dq1a3X69Gl9//vfV35+vl599dVIvQQAUYKHLAK4Liueg1bMDNxqeMgiAAAY1SguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAADAMiguAMKiurpaGRkZSkhIUE5Ojg4cOHDN+efPn1dJSYnS0tJks9k0depUNTQ0hCktgGg1JtIBANz6du7cKZfLpZqaGuXk5Kiqqkp5eXk6evSoUlJSBszv7e3Vj3/8Y6WkpGjXrl1KT0/XV199pQkTJoQ/PICoQnEBEHJbtmzR0qVLtWjRIklSTU2N6uvrtWPHDpWWlg6Yv2PHDp07d0779+/X2LFjJUkZGRnXPEZPT496enoCP/t8vpF7AQCiBm8VAQip3t5etba2yul0BsZiY2PldDrV0tIy6D4ffvihcnNzVVJSIrvdrunTp2vjxo3q6+sb8jiVlZVKSkoKbA6HY8RfC4DIo7gACKmuri719fXJbrf3G7fb7XK73YPu09HRoV27dqmvr08NDQ1at26dXn/9db3yyitDHqesrExerzewnTp1akRfB4DowFtFAKKO3+9XSkqK3nrrLcXFxSkrK0unT5/Wf//3f6uiomLQfWw2m2w2W5iTAgg3iguAkEpOTlZcXJw8Hk+/cY/Ho9TU1EH3SUtL09ixYxUXFxcYu/fee+V2u9Xb26v4+PiQZgYQvXirCEBIxcfHKysrS01NTYExv9+vpqYm5ebmDrrP3Llzdfz4cfn9/sDYsWPHlJaWRmkBRjmKC4CQc7lcqq2t1TvvvKPDhw9rxYoV6u7uDtxlVFRUpLKyssD8FStW6Ny5c1q5cqWOHTum+vp6bdy4USUlJZF6CQCiBG8VAQi5goICnT17VuXl5XK73crMzFRjY2PgA7udnZ2Kjf3Xv6McDof27t2rVatWaebMmUpPT9fKlSu1evXqSL0EAFEixhhjIh3ienw+n5KSkuT1epWYmBjpOMCoY8Vz0IqZgVtNKM5D3ioCAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWQXEBAACWMaziUl1drYyMDCUkJCgnJ0cHDhwYcm5tba3mzZuniRMnauLEiXI6ndecDwAAMJSgi8vOnTvlcrlUUVGhtrY2zZo1S3l5eTpz5syg85ubm7VgwQJ9+umnamlpkcPh0GOPPabTp0/fdHgAADC6xBhjTDA75OTk6KGHHtLWrVslSX6/Xw6HQ88995xKS0uvu39fX58mTpyorVu3qqioaNA5PT096unpCfzs8/nkcDjk9XqVmJgYTFwAI8Dn8ykpKclS56AVMwO3mlCch0Fdcent7VVra6ucTue/fkFsrJxOp1paWm7od1y8eFGXL1/WHXfcMeScyspKJSUlBTaHwxFMTAAAcIsKqrh0dXWpr69Pdru937jdbpfb7b6h37F69WpNmjSpX/n5rrKyMnm93sB26tSpYGICAIBb1JhwHmzTpk2qq6tTc3OzEhIShpxns9lks9nCmAwAAFhBUFdckpOTFRcXJ4/H02/c4/EoNTX1mvtu3rxZmzZt0h//+EfNnDkz+KQALC+YOxL/XV1dnWJiYjR//vzQBgQQ9YIqLvHx8crKylJTU1NgzO/3q6mpSbm5uUPu99prr2nDhg1qbGxUdnb28NMCsKxg70i86uTJk/rlL3+pefPmhSkpgGgW9O3QLpdLtbW1euedd3T48GGtWLFC3d3dWrRokSSpqKhIZWVlgfm//vWvtW7dOu3YsUMZGRlyu91yu9365z//OXKvAkDU27Jli5YuXapFixbpvvvuU01NjW677Tbt2LFjyH36+vr09NNPa/369Zo8eXIY0wKIVkEXl4KCAm3evFnl5eXKzMxUe3u7GhsbAx/Y7ezs1Ndffx2Y/+abb6q3t1c/+9nPlJaWFtg2b948cq8CQFQb7h2JL7/8slJSUrR48eLrHqOnp0c+n6/fBuDWM6wP5z777LN69tlnB/2z5ubmfj+fPHlyOIcAcAu51h2JR44cGXSfffv2afv27Wpvb7+hY1RWVmr9+vU3GxVAlONZRQCizoULF1RYWKja2lolJyff0D58jQIwOoT1dmgAo1OwdyR++eWXOnnypPLz8wNjfr9fkjRmzBgdPXpUU6ZM6bcPX6MAjA5ccQEQcsHekTht2jQdOnRI7e3tge3JJ5/Uo48+qvb2dr5NGxjFuOICICxcLpeKi4uVnZ2t2bNnq6qqasAdienp6aqsrFRCQoKmT5/eb/8JEyZI0oBxAKMLxQVAWBQUFOjs2bMqLy+X2+1WZmbmgDsSY2O5CAzg2oJ+OnQk8JRXILKseA5aMTNwq4n406EBAAAiieICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICAAAsg+ICIGyqq6uVkZGhhIQE5eTk6MCBA0POra2t1bx58zRx4kRNnDhRTqfzmvMBjA4UFwBhsXPnTrlcLlVUVKitrU2zZs1SXl6ezpw5M+j85uZmLViwQJ9++qlaWlrkcDj02GOP6fTp02FODiCaxBhjTKRDXI/P51NSUpK8Xq8SExMjHQcYdUbiHMzJydFDDz2krVu3SpL8fr8cDoeee+45lZaWXnf/vr4+TZw4UVu3blVRUVFYMgO4OaE4D7niAiDkent71draKqfTGRiLjY2V0+lUS0vLDf2Oixcv6vLly7rjjjsG/fOenh75fL5+G4BbD8UFQMh1dXWpr69Pdru937jdbpfb7b6h37F69WpNmjSpX/n5d5WVlUpKSgpsDofjpnMDiD4UFwBRb9OmTaqrq9OePXuUkJAw6JyysjJ5vd7AdurUqTCnBBAOYyIdAMCtLzk5WXFxcfJ4PP3GPR6PUlNTr7nv5s2btWnTJn3yySeaOXPmkPNsNptsNtuI5AUQvbjiAiDk4uPjlZWVpaampsCY3+9XU1OTcnNzh9zvtdde04YNG9TY2Kjs7OxwRAUQ5bjiAiAsXC6XiouLlZ2drdmzZ6uqqkrd3d1atGiRJKmoqEjp6emqrKyUJP36179WeXm53nvvPWVkZAQ+C3P77bfr9ttvj9jrABBZFBcAYVFQUKCzZ8+qvLxcbrdbmZmZamxsDHxgt7OzU7Gx/7oI/Oabb6q3t1c/+9nP+v2eiooKvfTSS+GMDiCK8D0uAK7LiuegFTMDtxq+xwUAAIxqFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZFBcAAGAZwyou1dXVysjIUEJCgnJycnTgwIFrzv/DH/6gadOmKSEhQTNmzFBDQ8OwwgKwNtYOADcr6OKyc+dOuVwuVVRUqK2tTbNmzVJeXp7OnDkz6Pz9+/drwYIFWrx4sQ4ePKj58+dr/vz5+utf/3rT4QFYB2sHgJEQY4wxweyQk5Ojhx56SFu3bpUk+f1+ORwOPffccyotLR0wv6CgQN3d3froo48CYz/84Q+VmZmpmpqaQY/R09Ojnp6ewM9er1d33nmnTp06pcTExGDiAhgBPp9PDodD58+fV1JS0rB+R6jXDtYNIPqMxNoxgAlCT0+PiYuLM3v27Ok3XlRUZJ588slB93E4HOY3v/lNv7Hy8nIzc+bMIY9TUVFhJLGxsUXZ9uWXXwazZIR17WDdYGOL3m24a8dgxigIXV1d6uvrk91u7zdut9t15MiRQfdxu92Dzne73UMep6ysTC6XK/Dz+fPnddddd6mzs3PkGluIXW2ZVvrXHpnDw4qZr169uOOOO4a1fzjWDtaNyLBiZsmaua2Y+WbXjsEEVVzCxWazyWazDRhPSkqyzP+sqxITE8kcBmQOj9jY6L0RkXUjsqyYWbJmbitmHsm1I6jflJycrLi4OHk8nn7jHo9Hqampg+6Tmpoa1HwAtx7WDgAjJajiEh8fr6ysLDU1NQXG/H6/mpqalJubO+g+ubm5/eZL0scffzzkfAC3HtYOACMm2A/F1NXVGZvNZt5++23zxRdfmGXLlpkJEyYYt9ttjDGmsLDQlJaWBuZ//vnnZsyYMWbz5s3m8OHDpqKiwowdO9YcOnToho956dIlU1FRYS5duhRs3Ighc3iQOTxGInO4147R+t853KyY2Rhr5ibzt4IuLsYY88Ybb5g777zTxMfHm9mzZ5s///nPgT975JFHTHFxcb/577//vpk6daqJj483999/v6mvr7+p0ACsibUDwM0K+ntcAAAAIiV6bxEAAAD4DooLAACwDIoLAACwDIoLAACwjKgpLlZ83H0wmWtrazVv3jxNnDhREydOlNPpvO5rDIVg/ztfVVdXp5iYGM2fPz+0AQcRbObz58+rpKREaWlpstlsmjp1atj/fgSbuaqqSvfcc4/GjRsnh8OhVatW6dKlS2FKK3322WfKz8/XpEmTFBMTow8++OC6+zQ3N+vBBx+UzWbT3XffrbfffjvkOb+LdSM8WDfCx0prR8TWjUjf1mTMt9/vEB8fb3bs2GH+9re/maVLl5oJEyYYj8cz6PzPP//cxMXFmddee8188cUXZu3atUF/N0y4My9cuNBUV1ebgwcPmsOHD5uf//znJikpyfz973+P2sxXnThxwqSnp5t58+aZn/70p+EJ+/8Fm7mnp8dkZ2ebxx9/3Ozbt8+cOHHCNDc3m/b29qjN/O677xqbzWbeffddc+LECbN3716TlpZmVq1aFbbMDQ0NZs2aNWb37t1G0oCHIX5XR0eHue2224zL5TJffPGFeeONN0xcXJxpbGwMT2DDuhGtma9i3Qh97kivHZFaN6KiuMyePduUlJQEfu7r6zOTJk0ylZWVg85/6qmnzBNPPNFvLCcnx/ziF78Iac5/F2zm77py5YoZP368eeedd0IVcYDhZL5y5YqZM2eO+e1vf2uKi4vDvgAFm/nNN980kydPNr29veGKOECwmUtKSsyPfvSjfmMul8vMnTs3pDmHciML0AsvvGDuv//+fmMFBQUmLy8vhMn6Y90ID9aN8LHy2hHOdSPibxX19vaqtbVVTqczMBYbGyun06mWlpZB92lpaek3X5Ly8vKGnD/ShpP5uy5evKjLly+P6BMzr2W4mV9++WWlpKRo8eLF4YjZz3Ayf/jhh8rNzVVJSYnsdrumT5+ujRs3qq+vL2ozz5kzR62trYFLwh0dHWpoaNDjjz8elszDYcVz0IqZv4t14/qsuG5Io2PtGKlzMOJPhw7H4+5H2nAyf9fq1as1adKkAf8TQ2U4mfft26ft27ervb09DAkHGk7mjo4O/elPf9LTTz+thoYGHT9+XM8884wuX76sioqKqMy8cOFCdXV16eGHH5YxRleuXNHy5cv14osvhjzvcA11Dvp8Pn3zzTcaN25cSI/PusG6MRQrrhvS6Fg7RmrdiPgVl9Fo06ZNqqur0549e5SQkBDpOIO6cOGCCgsLVVtbq+Tk5EjHuWF+v18pKSl66623lJWVpYKCAq1Zs0Y1NTWRjjak5uZmbdy4Udu2bVNbW5t2796t+vp6bdiwIdLREEVYN0LHiuuGNHrXjohfcbHi4+6Hk/mqzZs3a9OmTfrkk080c+bMUMbsJ9jMX375pU6ePKn8/PzAmN/vlySNGTNGR48e1ZQpU6IqsySlpaVp7NixiouLC4zde++9crvd6u3tVXx8fNRlXrdunQoLC7VkyRJJ0owZM9Td3a1ly5ZpzZo1io2Nvn9fDHUOJiYmhvxqi8S6ES6sG+FZN6TRsXaM1LoR8VdlxcfdDyezJL322mvasGGDGhsblZ2dHY6oAcFmnjZtmg4dOqT29vbA9uSTT+rRRx9Ve3u7HA5H1GWWpLlz5+r48eOBxVKSjh07prS0tLAsPsPJfPHixQELzNUF1ETpo8SseA5aMbPEuhHqzFLk1w1pdKwdI3YOBvVR3hAJ9+PuI5F506ZNJj4+3uzatct8/fXXge3ChQtRm/m7InF3QLCZOzs7zfjx482zzz5rjh49aj766COTkpJiXnnllajNXFFRYcaPH29+//vfm46ODvPHP/7RTJkyxTz11FNhy3zhwgVz8OBBc/DgQSPJbNmyxRw8eNB89dVXxhhjSktLTWFhYWD+1dsaf/WrX5nDhw+b6urqiNwOzboRfZm/i3UjdLkjvXZEat2IiuJijDUfdx9M5rvuustIGrBVVFREbebvisQCZEzwmffv329ycnKMzWYzkydPNq+++qq5cuVK1Ga+fPmyeemll8yUKVNMQkKCcTgc5plnnjH/+Mc/wpb3008/HfTv59WcxcXF5pFHHhmwT2ZmpomPjzeTJ082v/vd78KW9yrWjejL/F2sG8Gx0toRqXUjxpgovJ4EAAAwiIh/xgUAAOBGUVwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBlUFwAAIBl/D9nLUBsA6KoaQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Axes" + ], + "metadata": { + "id": "iAzjNUQtIMWs" + } + }, + { + "cell_type": "markdown", + "source": [ + "primary interface for configuring most parts of your plot (adding data, controlling axis scales and limits, adding labels etc." + ], + "metadata": { + "id": "zc-15TOjIUSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "Axis" + ], + "metadata": { + "id": "cnQEk7TGIb4O" + } + }, + { + "cell_type": "markdown", + "source": [ + "set the scale and limits and generate ticks (the marks on the Axis) and ticklabels (strings labeling the ticks)" + ], + "metadata": { + "id": "MI6U13eGIl-G" + } + }, + { + "cell_type": "markdown", + "source": [ + "Artist" + ], + "metadata": { + "id": "2GZv5WABIrrN" + } + }, + { + "cell_type": "markdown", + "source": [ + "includes Text objects, Line2D objects, collections objects, Patch objects, etc" + ], + "metadata": { + "id": "YG24C4ddI1NK" + } + }, + { + "cell_type": "markdown", + "source": [ + "# **Types of inputs to plotting functions**" + ], + "metadata": { + "id": "sdRDTn82I4pQ" + } + }, + { + "cell_type": "code", + "source": [ + "b = np.matrix([[1, 2], [3, 4]])\n", + "b_asarray = np.asarray(b)" + ], + "metadata": { + "id": "DgTqic6tIH9l" + }, + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "np.random.seed(19680801) # seed the random number generator.\n", + "data = {'a': np.arange(50),\n", + " 'c': np.random.randint(0, 50, 50),\n", + " 'd': np.random.randn(50)}\n", + "data['b'] = data['a'] + 10 * np.random.randn(50)\n", + "data['d'] = np.abs(data['d']) * 100\n", + "\n", + "fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')\n", + "ax.scatter('a', 'b', c='c', s='d', data=data)\n", + "ax.set_xlabel('entry a')\n", + "ax.set_ylabel('entry b')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "rwZcuRbPIafJ", + "outputId": "77c2c5c6-ae57-4134-9605-6f20f704d186" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0, 0.5, 'entry b')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWQJJREFUeJzt3Xd4VFX6wPHvvdPSCyUNQu8daSKKCCgIIk1FRcSyuj8XK6Krri66FtRdXXVXsSEsNhQVQVAU6dIJID1IkRpIgPQyk5l7fn8EIoGEzEwmmSTzfp4nz8Pccu6bm5D3nnNP0ZRSCiGEEEIEDN3fAQghhBCiaknyF0IIIQKMJH8hhBAiwEjyF0IIIQKMJH8hhBAiwEjyF0IIIQKMJH8hhBAiwJj9HUBlMwyDY8eOER4ejqZp/g5HCCGEqDRKKbKzs0lISEDXy67f1/rkf+zYMRITE/0dhhBCCFFlDh8+TMOGDcvcX+uTf3h4OFB0IyIiIvwcjRBCCFF5srKySExMLM59ZfF78j969Ch//etf+eGHH8jLy6NFixZMnz6d7t27A0VNGJMnT+aDDz4gIyODPn36MHXqVFq2bOlW+Web+iMiIiT5CyGECAjlveb2a4e/9PR0+vTpg8Vi4YcffmDnzp289tprREdHFx/z6quv8tZbb/Huu++ybt06QkNDGTRoEAUFBX6MXAghhKi5NH8u7PPEE0+watUqVq5cWep+pRQJCQk8+uijTJo0CYDMzExiY2OZMWMGN998c7nXyMrKIjIykszMTKn5CyGEqNXczXl+rfnPmzeP7t27c+ONNxITE0PXrl354IMPivcfOHCA48ePM3DgwOJtkZGR9OrVizVr1pRapt1uJysrq8SXEEKIyqdUAfl588jOfpvs7DfJzfkfTucRL8pRFBp2DGVUQpQC/PzOf//+/UydOpWJEyfy1FNPsWHDBh588EGsVivjx4/n+PHjAMTGxpY4LzY2tnjf+aZMmcJzzz1X6bELIYQo4nKlkJPzIXm5n6BUNmACNMAFmWCzDSAs/F5stssvWo6hDNac+oGVafPJKEzDrFnoEnUFV8eNIdJStyq+lYDh12Z/q9VK9+7dWb16dfG2Bx98kA0bNrBmzRpWr15Nnz59OHbsGPHx8cXH3HTTTWiaxhdffHFBmXa7HbvdXvz5bM9HafYXQgjfczi2curULSgjC3CVcZQJcBEe8QRhYQ+U2Rnt68NT2ZC+uMQ2HZ1QcyQPtHyFCEsdn8ZeG9WIZv/4+HjatWtXYlvbtm05dOgQAHFxcQCcOHGixDEnTpwo3nc+m81W3LNfevgLIUTlcRbu5dTJG1BGJmUnfor3ZWe9TG7O+6UecSRv7wWJH8DAINeZydLUOT6IWJzl1+Tfp08fkpOTS2zbs2cPjRs3BqBp06bExcWxePEfvxBZWVmsW7eO3r17V2msQgghSkrPeBSl8gH3381nZf0Dp/PgBdu3ZKxCx1TqOQYGm9OXexumKIVfk/8jjzzC2rVreemll9i7dy+fffYZ77//PhMmTACKxik+/PDDvPDCC8ybN49t27Zx++23k5CQwIgRI/wZuhBCBLTCwt0UOjZw8Rp/aXTycj++YKvdyLvoWXZDhnf7kl+Tf48ePZgzZw6ff/45HTp04Pnnn+eNN95g7Nixxcc8/vjjPPDAA9x777306NGDnJwcFi5cSFBQkB8jF0KIwJab+z8oo6Z+cS5ycz9BqZLJPCGoKUYZDxIaGvFBjb24liiLXzv8VQUZ5y+EEL6XeqI/Tudur8+vH7MEi6VN8ecCVx6v7L6PAlc+qpTXCDcnPkyX6IuPFhA1pMOfEEKImqloSF8FzjdKnh9kCuGupk8TbAoBwIQJ7UyKGhBzI52j+lToeqIkv8/tL4QQoubRtNCKna+HXbAtMaQlT7R9j60ZqzhecIhgUxhdoq6gri22lBJERUjyF0II4TGLpQtO537A6fnJWhAmU+nv8K26je51+lcsOFEuafYXQgjhsdCw2/Eq8WMiJGQMuh7i65CEByT5CyGE8JjF0hWzuR2epxEXoaHjKyMk4QFJ/kIIITymaRpR0f+i6O2x+6kkLOwvJXr5C/+Q5C+EEMIrVmsX6tT9H2hWLj7mvyjVhISMJzziqSqJTVycdPgTQgjhtaCgK6lf/weys9+iIP87iqb6NQHqzJcLs7kNYeF/ITh4ZJmL+lQXLsPO7zlLOJz7C3ZXJiYtiDq2FrSKHE6YJb78AmoImeRHCCGET7hcJ8nPn4PLeRhFIboeTVDQ1VitXf0dWrmUUmxP/5ht6R9TaORS1FpRNNmQho7CoEHIZVwW+1dCzPX9GuvFuJvzJPkLIYQIaEoZrDrxIvuyf7jocRomgkxRXJv4HuGWhCqKzjMyw58QQgjhhm3pM8tN/AAKFwWuDBYdfQiX4aiCyCqPJH8hhBABy2kUsO30J24fr3CRXXiUgzlLL36cUmQ4skkrSKfQKKxomD4nHf6EEEIErAPZi3Cqiy8nfD4NnV0Zs2kWMeiCfS5l8NPxNcw7upxDeccBCNKtXBPXm5ENryImqE6J45VSfukEKclfCCFEwDqUswLQKBqZ4B6FwUn7Tgqc6QSZo4u3u5SLl3Z+xNpT2zg3nRcYDuYfW8mS1A280uke6mtryc2ZgdO1D5QdTQvGbGlHaOgdBAcPRdNsPvv+yiLJXwghRMAqcKXjSeI/l93IIog/kv8Xh35i3altUEqJBi76hW1CpV9Fpu7k3AcOpfIodGwiw7GRzIyniYj4K6FhlTsLoiR/IYQQAcusB3l9rumcGnqh4WTe0eWlPkZoKO6M2UDv8EPnbL3w8QBAqQwyM5/E5TpMeMTfKu2VgHT4E0IIEbCibS3QLjo7YekseijB5rrFn3dm7SfbWXrfgdF1t3Jp2KFS95UlJ+cdcnPe9zgud0nyF0IIEbBaRY5A4fLoHA2dVpEjMGmW4m15zoJSj61vzmFQ1G94U4HPynoJw8jw/EQ3SLO/EEKIM9PaLuVA9iLyXacwa0HEhXSjVcRwQi0x/g6v0kRZmxAb3JXU/K1uPwQoFK0ihpfYVtcWWeqxV0buw6U0TJo3/Qqc5OV9SVjYvV6ce3GS/IUQIsAdyV3DyuPP4jCyObcjWlrBdrae/h9tIkfTo/4D6Fr1SBkFuXZ2rN+HyWKifc/mWKwVi6tP7FPMP3QXhUYu6sy794vpWf8hIqwNS2xrGdaIhKD6HCtIK95m1lz0jTjgZeIvkpszjdDQe3z+7l+a/YUQIoAdyV3N4mOP4TByzmz5I1EVJUKD3ZlfserEi1SH2eDTjqXzf/1e4Olb/suTN7zJI0P/SW52foXKDLc04NqG7xJsOvsO/8JEW9QvQKNHvYdoG3XThfs1jVsbDy6xLd6SRbDurEBkCpfrMIZxqgJllE6SvxBCBCinYWfF8cn8sQJfWRT7s3/kUO7yKoqsbB+98C1px9KLPx/YeYSv3l5U4XKjbE0Z0eRzesc8TqS1cYl9Zi2YNlE3MKLxZ7SLHlNmGVfF9uCOpsMAMKETrPtmZj9lZPqknHNVjzYcIYQQVe73nJ/PrGBXvqJZ7b6icVi/yg2qHCkH0jBcJZvmjx/yTc3YoofQKnIELSOGk+dMxW5kYdJshJpjMevuTbxzY+LVdItux4JjKzmRu8wncWma98MRyyLJXwghALvTSY7dgc1sJtRqqfbrzvvCvqyFuDu7ncLgRP4m8p2nCTbXKff4ytKme1N++/UghlEUs2EoWnVpXM5ZntE0jVBLLKHEenV+s7AGPNDqZlyufpw4Pq+C0VjQTXXLP8xDkvyFEAGroNDJgt3J/C9pCztTU4u3RwcHcUuXTtzcuSMJtXgp8HznSTyd3S7f5d/kP/6JYRzZe4KkpTsBGHhjL66/u5/f4rkYkykOm+0K7PbV4OFwwjMlEBw8Smr+QgjhKz8k7+GphYvItjsuGIOdnl/Au2s3MHXNem7p0olnBvTDYvJ8IpjqzuRmU/a5zFUw7/zFBIcG8fxnE8g8mYPJrBMeHerXeMoTGnoXdvtKL892ERp2p0/jOUs6/AkhAs6XW7fz4NwF5NiL1mQvrRO7oRQK+HzLVv5vzjwKXd7U3Kq3uOBLPJrdLsgUTZglvhIjco+maUTVD6/2iR/AFjQQk7kZeDyLoAmr9VKs1k6VEZYkfyFEYFlz8DBP//hzuf3bz1LAiv2/8+IS//d097XWkSPdnthGQ6d15KhqM9a/ptA0E3XrfoqmReD+A4AJkymB6DofVFpckvyFEAHlzVVrPD5HAZ9t2cqJ7Jxyj61JIqyJNA8fQmnj2s+loWMzRdI6cmTVBFbLmM2NqR/zHSZTwpktZaVe/czxralXfx6mSujoV/JKQggRAPaeOsXGI0cxvJys5sut230ckf/1jnmcxNA+Zz6VNrmNjs0UwTUN3vJrR7+azmxuRv2YpURG/ROzuWWpx1gsXYiK/i/1YxZgMnk30sDteCq1dCGEqEZmb92BSdNweZH8DaX4bMtWHuhzaSVE5j8m3Uq/+CkcyP6JXRmzOWXfXbzPqkfQOnIkbaNuKLGCnfCOrocQGjqWkJBbKSz8FadzL8rIRdPDsVjaYrG0rbJYJPkLIQLGoYwMr2v9AGm5uRS6XLWu57+umWgecS3NI64lpzCFfFc6Zs1GhLVRiZXrhG9omobV2gWrtYvfYpDkL4QIGAWFTg9HtV/I7qx9yf9cYZb4i/bod7kM0jNy0XWd6KiQgJgMqTaS5C+ECBiRQUHomuZ17V/XNEKtgVkTdhQ6+XLORr75bhOnThd1fGyYEM1NI7szbHAXdN3/DwFKKdYeOczs7dv5PSMDh8tF3ZAQrm7eghFt2xJmtfo7xGpDkr8QImD0TGzA/N3JXp2raxrdGiQEZE3XUejksWdm8+v2IyVW9jtyLJ3X317Ejt3HePKRIX69N0v27+eF5cv4PSOjRL8ODVh58CAvrVjOuM6debTP5VhrccuNu6S3vxAiYFzfri3BZu/qPIZS3N6ti3fnGgY7txxk2Q9bWfjNRlb8uI39ySleleUPX87ZeEHiP9ePi3ew9BfvHqp84Ytt27hn7rcczMgAKNGh8+y/CpxOPkxK4s4532B3VmSZ3dpBav5CiIARZrMyumN7Pt+y1aMe/xpQJySYgS2ae3S97Mx8Fs3dxLzP1nD8aPoF+5u3jWf4rZdx5eCO2IKq5+sEl8vgm+82lZn4AXRd4+u5SfS/ok0VRlZk2YEDPPXzIrcnbFp35AiTflzIf4ZeV9mhVWtS8xdCBJSHLu9NQkQEJjebqDWKemf/c+hgjzr6rfhxG2P7v8wH//qe48cuTPwA+5OP8/ozX3PbwFfYueWg22VXpfSM3OJ3/GUxDMXu36q+JUMpxcsrV3h0jqEUC/bsKbGQUyCS5C+ECCjRwcF8fPNotx4AdE3DpOu8MWwIfZs2cfsaP3y1gZcmzcJR6CxaN6CMaqk6syxtbnYBj981jU2r97p9jaqi6+6lCd0P7/u3HE9hz6lTHo/gMGkan279tVJiqikk+QshAk7DyEjm3H4r4y7pQoilqLndpGlonEn4Z/7dt2kTvhg7hiFtWrld9voVybz1j2+LPriZlQxD4XIaPPfQJxzYc9yj76WyRUeF0DAh+qLH6LpG186NqiiiP3y1Y6fbLTjncinFNzt34qiFizW5S975CyECUlRwEE8P6MfEK/owf3cySUeOkm13EGQ20yg6khs6tqdhZKRHZSqlmPryfK/iUUpRWOhkxn8W8dx/xnlVRmXQNI2bRnbn9bcXlXmMYShuHNGjCqMqciQr06vZGgHsLheZBQXUD63+KwNWBkn+QoiAFmK1cFOnDtzUqUOFy/p1/X5SDp/2+nzDpVi/PJnUlAxi4qMqHI+vDBvchR27j/Hj4h3ouoZx5nXF2X/fObYPPbo2qfK4Cl1Gxc43KnZ+TSbN/kII4SPzPl+LyVSxP6uaBt/P3uCjiHxD1zWefGQIk5+4nnatEzCbdawWEz0uacK/nr+RO27tU34hlaBeaIjXfQ00ICooyLcB1SBS8xdCCB8wDIN1y3bjqmBt1DAUvyzazh0PXu2jyHxD0zT6X9HGL8P5yjK4RUvmJ3s+v4BJ07isUaPi/h6BSGr+QgjhA/l5jgon/rOyMvN8Uk5td3Xz5kQHB3t8nkspbu/StRIiqjkk+QshhA8YPkr8vi6rNrOYTNzbrbtH55g0jabR0fRr0qRygqohqk3yf/nll9E0jYcffrh4W0FBARMmTKBu3bqEhYUxevRoTpw44b8ghRCiDCFhvnt/HBrueW02UN3TvTvDWrd261iTphEZFMSMkaMwuTl/QW1VLb77DRs28N5779GpU6cS2x955BG+++47Zs+ezfLlyzl27BijRo3yU5RCCFE2k0mndceGFV7dzmTS6dyzqY+iqv10TeP1wddyZ9euaFDquP+z25rVqcO3t9xKoodDOGsjvyf/nJwcxo4dywcffEB09B8TSWRmZjJt2jRef/11+vfvT7du3Zg+fTqrV69m7dq1foxYCCFKN/zW3sXD4LzlchkMG3OpjyIKDCZd55l+V7H8rru5t3uPEr34dU3jqqbNmDlqND+Mu93juRtqK7/39p8wYQJDhw5l4MCBvPDCC8Xbk5KSKCwsZODAgcXb2rRpQ6NGjVizZg2XXlr6fw673Y7dbi/+nJWVVXnBCyHEOS6/pgPvvPQdOdkFXp2v6RrNW8fTsn0DH0cWGBpGRvLY5ZczqU8fCpxOCl0uwmw2v0w9XN35teY/a9YsNm3axJQpUy7Yd/z4caxWK1FRUSW2x8bGcvx42dNfTpkyhcjIyOKvxMREX4cthBClslrN3PLnq7w+XxmKcRMG+DCiwKRpGsEWCxFBQZL4y+C35H/48GEeeughPv30U4J8ONHCk08+SWZmZvHX4cOHfVa2EEKUZ9TtfRg0qptX5/7p0cH0urL6jKMXtZffkn9SUhKpqalccsklmM1mzGYzy5cv56233sJsNhMbG4vD4SAjI6PEeSdOnCAuLq7Mcm02GxERESW+hBCiqmiaxkOTRzDq9qJZ7/RyZvwzmXQ0TWPC34Zxwx1XVEWIQvjvnf+AAQPYtm1biW133nknbdq04a9//SuJiYlYLBYWL17M6NGjAUhOTubQoUP07t3bHyELIYRbdF3n3seG0KtfG+Z9tpbVS3aiUfROH1U0ha/LZWC2mBkwrAvX33IpzVrH+zvsSpWZkcfChVtZ+P2vnDyZjd3uJCjIQnxCFNcN68rAgR0IDrH6O0yPnJ3UqaJTOvuDppSXSyJVgn79+tGlSxfeeOMNAO677z6+//57ZsyYQUREBA888AAAq1evdrvMrKwsIiMjyczMlFYAIaqQy+Vi/feb+XH6UlL2nyA/p4CwqFCadEzkunuvpu2lrdAC5H3syROZLP1+K2nHMynIsxMaFkRC47pcNaQzYRG1e0z/yZPZfPj+UpYu2YnLZXB+xtE0UApsNgtDhnbmzruvJDTU5p9gPfDJ52uYMfMXTCaNBydczdBrO/s7JMD9nOf33v4X8+9//xtd1xk9ejR2u51Bgwbxzjvv+DssIcRFOAudfP3vBXz7n+85efQ0ukkvMWPd/q2/s+h/y2nSIZExj49gwNgrav1DQL3YSG68079N+kopdu1OYcXKZHJyC4iOCmXggHY0blSv0q55YH8qj0/6nIzMPAxX6fXMsw8Ddnshc79NIinpAK/+8xbqx1Tfytq+/alMm74CAJcLXn/zRy67tAXR0TVneeBqVfOvDFLzF6Lq5GXn848b/sWmn7dR3p8WTdNQSjF8wmDue+MOTCZTFUUZeFJTs5j8/LfsTk45p4la4XIpel/anKf+OowwH9e2U1Iy+Mufp5OTU+DR3Acmk0ZcXBRvv3sH4dV0psOkTb8z6YkvSmz734d/olGjun6K6A/u5rya96JCCFEtOQudPDvyVTYv2V5u4geKj5n7zkLen/RxZYcXsDIz83hg4qf8trdoiLTLZZz5Krr/69bv57EnvsDhcPrsmkopnnlqNrm5niX+ovgUKSkZvDJlvs/i8bUO7RvQKLFO8edOHRNp2LDORc6ofqp1s78Qoub47MVv2LJ0h1uJvwQF37y5gA5XtOWKUb0qJ7gAoJRi1qGlfHFoGQUuB12jW/DXtjcz+6skTp7MLjMJG4Zid3IKPy/ZyZDBnUo9xlNbNh/kwIE0r883DMWa1b9x7Gg6CQ2iyz+hitlsFt5+63aWr9iN2WziqivbVHha56omNX8hRIU57IXM+c/3nif+M3Rd4+t/f+fjqALL10dW8v6+BWQW5mI3Cll/KpnHN73PvAWby619axrMmZvks1jmfpuEyVSxZKjrGt99t9lHEfleWKiNodd2ZtDVHbBaa149WpK/EKLCfvl6LTnpuV6fbxiKHauSObD9kA+jCizfHV1T4rOBwW/HUsjJsZdxxh+Ugv0H0rx+eDvXqVM5/LJyT/FrBW8ZhmLBd5t9+jpC/EGSvxCiwua/t6jiq9mZdRZOW+KjiAJPoVFKkvRDS/SB/ak+eYgAyM21k5Yq67NUBkn+QogKO/JbSsVXs3MaHN2b4qOIAs/l9TuinZPtdTTq1QsnKqr8HvO6rtG6VbxPhlzm5Hi3qFFZsn1cnigiyV8IUWH23PKblt2Rm5nnk3IC0Z+aD6F/bJfiz7FB0bza9V5GDLuk3FYZw1CMHH6JT+Iwm307ZNPi4/JEkZrXS0EIUe3YQm3kZedXuJzQyBAfRBOYrLqZp9vfxgOtRlLgclDPFolJ06k/Kpoly3Zx5Gh6qa0zmqbRtUsj+vdr65M4In38M4yQ34lKITV/IUSFNWwZ75N3/g1a1O757SsiM6+A5bv2My9pJ/M37WJV8u/kOwovOC7SEkpsUDQmrejPe1iojbdeH0uPbk2BoiZ+s7loMSFd1xh0dQde+sdon81P37ZdApGRFZ+cR9M0WrSMpX79cB9EJc4nNX8hRIVd9+er2bZyV4XKcDkNBt/d30cR1R47jpzg89VbWLB5N4XnTJMMEGKzcEPPjtx0aSea1C97PHxkZAgvv3gjR46eZsXKPcXT+17Vrw316vo2uZrNJoYNv4TPPlldoX4gSilGjurhw8jEuWR6XyFEhTnshdyccA/ZXg7303WNtr1b8cbKF3wcme8UOAtJLyhAA+oGh2Dx8XTEx7Ky+fLXbexOO0l0cDBD27Ri7uod/PBrMiZdw1VGIj27709X9eDBQX2qxWQzaalZ3DLm7Qr1+g8JsfLVnIew2Sw+jKz2qxUL+wghagarzcKIB4bwyfNfefUH3zAUox8ZVgmRVcz+9NN8tn0ryw4e4EBGOsaZ782i67SqW49rmrXg5vYdiQkNq9B1Vhz4nf/7Zh5Ow8BQChPw7S/bMZ1p1S8r8Z+778OlGziVncc/brza7wsl1Y+J4IYbezL7y3Vel3H3Pf0k8VciSf5CCJ+49W+j2P7LLn5dvrPEKn7l0mDUg0Or1dS+GQX5PLt8CXP37MakabjOe6ApNAx2pKWy62Qab65fw71du/Nwr8uwmT3/k5pjd3D/t/MpdLk4exU9G/QLX+eXa87GHTSsG8mfB/j/Xt7z56s4fjyDlSuTwcPnwRtu6smIkd0rJzABSIc/IYSPmC1mnvv2cbr27+BWzVM70zw9/C+Dufdf4yo7PLdtSz3BwE+mM/+3ZIALEv+5DKUwlOK9TRsYOutjjmV7PiHN98l7yCssLM6PmhNMdu/n53lv8Tqy830z9LIiTCadZ/4+kuuGdS3+fPHji77ju+/px//dN6DS4wt0kvyFED4THBbMC/Of5O4pY6nXoGiVM/28P/omc9HnRm0b8teZDzDhrbuqzXK+O9NSufmbL0gvKLho0j+fAn7PSOeGr2aRlutZv4djmVmY9T/ukanA44pyCYVOF99tqljnS18xmXUefmQwb/5nHH37tcFk0tC0otEGZ7/QwGo1M2RoF96f9iduHXuZ319bBALp8CeEqBQul4v132/mx+lLSTlwgvzsAsKiQmnSIZHr/nw1bS9tVa3+yBc4Cxn02f84mpXlUeI/l0nT6JPYiBnXj3b7e/tq2w6e+OGnog8KbKcqNiuvBjSqF8X8x+6oVvcXID09l2VLd3IyLYf8fAchoTbi4yPpd1U7QkNt/g6vVnA351Uo+R8+fBiAxMREb4uodJL8hRDu+NeaX5i6cT1GherdRf59zRBGtHZv0pxch4PL3vmAPIcDCsGWWeHLA7Di73+mTphMkBNo3M15Hjf7O51OnnnmGSIjI2nSpAlNmjQhMjKSp59+msJCL3qoCCGEn+UVFjL9100+SfwaMDVpvdujHkKtVt4ZcR1Wsxndh+2wWdXgvb+ovjxO/g888ADvv/8+r776Kps3b2bz5s28+uqrTJs2jQcffLAyYhRCiEr1477fyPNR5UUBe06dZEdaqtvn9GnSmCX33Mn17dr4JAYAs49m7BO1k8fjUj777DNmzZrFtddeW7ytU6dOJCYmcssttzB16lSfBiiEuLj8PAcF9kKio0P9HUqNten4Mcy6jtPwYIjiRWhAUsoxOsTEun1ObHgYd/a8hB/W7vZJDFEhQT4pR9ROHj8a2mw2mjRpcsH2pk2bYrVafRGTEMJNGzfsZ9SIN7hh5Ju8/+4Sf4dTY21PTfVZ4gcw6Tq7TqZ5fF6bhBjiIis2YZBJ1+jdshFhQdKBTpTN4+R///338/zzz2O3//E+yW638+KLL3L//ff7NDghxMXN/N8vFBY6Afhi1lpysmXtc29kOXz7ftxQihwvytR1jVv7dKUinfRdhuLWy7p4X4AICG41+48aNarE559//pmGDRvSuXNnAH799VccDgcDBsjEDEJUpXr1ws4M51IEB1ux2mTSTm/YfDzPgAZYTd79LEb1aM9/flx1wSI+bl1Xg3rhofRt29SraweSQqOQXGc24ZYITFrg/b9x6zuOjIws8Xn06NElPlfnoX5C1GYPPDQIs9lERnoet43vg9UaeH/EfKF13XrsOXXS6/H9pWlRp45X50WFBvPU8Kt47pvFHp+rofHiTYMw6dLZ72LWnFzGl4en41RObHoQ45tMoGPUJf4Oq0q59Zdi+vTplR2HEMIL0dGhPPX0cH+HUeN1io1jXrJvOtpB0ZTAHT3o7He+Gy/tRHpeAW8tXOXW8fqZ9wQv3zyYy1o19vq6geC37F18duiD4s92o4BpB97giTZTiAtu4MfIqpY8HgohAt6Q5q0qNq3eeeoEB3Npg4q1iN7bvydTbh5MnbBgoGj2wPOZzqyPkBAdwQf3jGJIV98NFaytdmZtQafkax6XMtiTs8NPEfmHtBEKUQn27zjCj5+t5uiBVApy7IRFhdC8QyKDb+tD/YRof4dXq6SfyOCHaUvYk7QPp8NJTKP6DLrzKlp3b+52GbFhYVzbohUL9+6pcNO/rmmM79QViw/6EQy7pC2DO7di2c79fLpqC0n7j/yx8p+mcWXbZtx6WRd6tUisdlP5VldmzcKFqyeoM9sDh8ztL4QPrV+0jc/f+IHdSb9jMum4zum0pesaCrj0mo6MnTSU5h1qfl+ZA9kn+fHYTk7Zc3Apg3BLED3qNuGymGboWuU2LLqcLt57bCbz3l6IYaiiGfVU0WIyLqdBm14teebLicQk1nOrvOM52Qz4ZHqFJvvRNY2G4RH8OHY8QWbfJxOnyyCnwI6ua4TZbOi6JHxPpRak8PKuJ3EqFwoDHZ1gUyh/a/cK4ZbI8guo5qpkbv+aQJK/qCpf/udHpr84F03XUEbZ/610k47JrPO3D+6h1zUdqzBC31BKsThlN5/sX8f6k7+jaxr6OW3mTmWQEBzJ2Ga9uKHJJYRbfD/ZjGEYvHzbWyz9YlWZS+CZzDpRMZG8veEV6sa719ry3Z7dPPjjAq9i0gCzrvPl6JvpEhfvVRmiavyeu4+vD/+PU46TxAU1YEyjO4kNSvB3WD5Racl///79NGvWrMIBVhVJ/qIqzP1wKe8+Pdvt4zWt6CHgpS8fpNNlrSoxMt9yGE6e3jSX+Ue2oaNddC58DY2GoVF8eNk4EkO96/leluVfruaFm/9d7nG6Seey4T2Y/NUkt8v+bPtWnl66CE3TMNz882jSNMy6zgfXjeCKRk3cvpYQvlZpC/u0aNGCq666ik8++YSCAplQRIhjB1J575mvPDpHKTAMxUv3fEihw1lJkfmWSxlMXD+bBUe2A5S7CI5CcSwvk1tXTCMlz0dL1Z3xzVvfo7sxd73hMlj17XpOHjvtdtm3dujErFFjSAgLBy7eD/BsJ7z29WNYcMvtkvhFjeFx8t+0aROdOnVi4sSJxMXF8ec//5n169dXRmxC1AgL/rcSzYt3r8pQZJ7KYc0Pv1ZCVL73fvJKlhxPRnmw8p1LGWQ48vnL2s/cXuWuPKdS0tm5OhnDg0lwfvl6nUfX6NmgIT+NvYOXrrqaVnVL7zOgAd3iG/D2tcP45sZbaR7t29YNISqTx739u3Tpwptvvslrr73GvHnzmDFjBpdffjmtWrXirrvuYty4cdSvX78yYhWi2rHnO1j4ySqPEtG5dF1j3kfL6Du8m48j8618p4MZe1d7da5LGSRnnWDtyQP0rl/xV4aZaVkeHa+bdDLSPG95CLZYuKVDJ27p0In0/Hy2p53gZF4emqaREBZOu/oxhMl6JqKGqnCHP7vdzjvvvMOTTz6Jw+HAarVy00038corrxAf7/9OL/LOX1SmpKU7efqW/1a4nC92vkpEnYot6FIZNp/+nXd/W8La1N8pdHnfe9+k6fSLa8V/et1c4ZiO7TvO+JYPuH28Ztbp+9RwLO3jybMXEhkSxFWdm9OlWYIMjxO1jrs5z+tx/hs3buSjjz5i1qxZhIaGMmnSJO6++26OHDnCc889x/Dhw+V1gKj1Mk9l+6ScrNO51S75r03by/0b/geA09Ap6lbvXbJ0KYOlKcmkFWRTPyi8QnHFNY0hplE9Ug+dLPfYguZ1ye3ThK9OnsC8Mu3MKwuNmUuSaB5fl6dvHkDX5oEzq5sQZ3mc/F9//XWmT59OcnIyQ4YMYebMmQwZMgT9zFzSTZs2ZcaMGaUu+ytETedyGWzZdpidu4+RvPc4vycd8Em51W3ErVKKf+1agDqTLovCq1gt2UBxODe9wslf13WGTxjMh09+etEhlfntY8m5svnZ4M9Zsrfo84Hjp7nnra94+y8j6dW6UYViEqKm8Tj5T506lbvuuos77rijzGb9mJgYpk2bVuHghKgucvPsfPPdJubM38yp0zl/TK6SnosvRrGHR4f6oBTfSSnIYH+O5+vRlyfH6Zulc4f++WoWfrSEo/uOYzgv7G/hrBtCTt8z/QvKaNo3lEIZikfen8fC5/9ERIjv5yMQorry6CWe0+lk7NixjBs37qLv861WK+PHj69wcEJUBxs3/87tf57GtI9/4dTpHKBomJ5hKIywIFQFZlnTdI1WXRsTVa9itWFfcxnedWAsT6jZNx3kQiNCePXnv5PYuqjJ/vxhf/kd48uc/OdcSkG+vZDv1u30SVxC1BQeJX+z2cxrr72G01kzxiULURFKKT6etYZHn/6S0xm5pTfNm3Sc9cI8GPx23jUMxfC7+1UkzErRICSahOCo4s9FleeKvZrQgIYhvlvXoF6DukxNeoW/ff4w7Xq3whJkwWTWqd80hsJ2seDBQ9lXv2zzWVxC1AQeN/v379+f5cuXyzt9UasdzD3I6zPnsWV+PlBU0y+Ls344llTPO/5pukZoRDCXD6t+64jrms6DbQbxxOYv0ACTbuCsUG9/jcvqNyc22LcjbixWC/3G9KHfmD7F246eymTo5I/cLkMBx077dhIiIao7j5P/tddeyxNPPMG2bdvo1q0boaEl31Vef/31PgtOCH9YfXI1by36nJT57i28o4KsOBpEYT2a4f5FzlRK//rOnVht1XM1sWviO6Kj8d/kRRzMPYXT5X1ZLqW4tVlPr88/mn+UdEc6GhqxQbHUs5W9WI/uxfA9GfInAo3Hyf8vf/kLUNTr/3yapuFyVeAvhBB+dtpxmvd3TSf12yagKVDuJQVnbCSaS2E5nlnugDhd19B0jcffvpPu/dv7IuxKMzC+AwPi2nPSns2Hv63ik33rPG78N2kaiaF1uCK2hUfnuZSL1SdX83PqzxzKO1RiX7uIdlwTew2dozpfcF69iFBCg6zkFjjcuo6mQbNYmZ1PBBaPk79RSR2BhKgOVqStIHNtNK5cs9uJHwBNo7BBNEawFUtKBlpB4QUPAWc/d7ysFeOfGEbb7jVjgSxN06gfFMGk9tfwW1Ya69MOlDuv/1kmTSPUbOPd3mM9WuLX7rLz373/ZXvWdrRSHqV2Z+1mZ9ZOBsYM5JZGt5Qo22I2MeqyDny2bDOui7yuOUspuKlvF7djE6I28Pgl3syZM7HbLxyu43A4mDlzpk+CEsJfDuccIXNDlGeJ/xyuOqEUtEugoHUcrrphuEJtGEEWXGE2nDER5LdvwB1Tbqoxif9cFt3E271upm9cS4BSk/K5dDTq2sL45Iq7aHSRVf0KnIVsPpHCisO/sz7lCCdyc3h3/7vsyNoBUOpaAgZFlZCfU3/m26PfXrB/TN/OmHS93JkJdE2jXkQIg7rVnJUVhfAFj6f3NZlMpKSkEBMTU2L7qVOniImJqXbN/jK9r/DEP+a/y+Kpns0d7wmTSef6azvz8H1XV9o1KptLGcw79Cuf7F/HrszjmM7UupVS6JqGUxlEW0O4uWkPxjbrSR1b6XMYHMzM4NOdW/h811ayHX800dcJz6Vzq9/djkdH57XOrxFljSqxffm2fUz8YD5KqVKX5jXpGsFWC9MevonWDWU9ElE7VNr0vkqpUjvHHDlyhMjISE+LE6JasZ2IBT0TjMrpAOZyGWzbebRSyq4qJk1nZOOujGzclW3pR/nx6A5O23MpVC4iLMF0r9eYgfFtseimMsv4Ytc2nlrxE1DUGfBc8fVPYSj3R+opFCtOruD6hJKdja/s2JwPH7qBN+f+wpb9x9A0DV3TMFRRq8Hl7ZsycWRfGsf4bvihEDWF28m/a9euaJqGpmkMGDAAs/mPU10uFwcOHGDw4MEeXXzKlCl888037N69m+DgYC677DJeeeUVWrduXXxMQUEBjz76KLNmzcJutzNo0CDeeecdYmNjPbqWEO44dcjpdZO/uw4cPInT6cJsLjs51hQdoxvQMdqzufE/37mVJ88k/vNpKOpHZZc1KV+pFIq1p9ZekPwBujZvwIyJY9h77CRrkw+RV+AgIiSIfp2aExddvSZWEqIquZ38R4wYAcCWLVsYNGgQYWF/LEJitVpp0qQJo0eP9ujiy5cvZ8KECfTo0QOn08lTTz3FNddcw86dO4uHED7yyCMsWLCA2bNnExkZyf3338+oUaNYtWqVR9cSwh1padkVncumXC6XQXZOAdFR1WtK36qwN/0Uf1u5qMz9JpPLo8R/Vo4z56L7WyTUo0VC2cMDhQg0bif/yZMnA9CkSRPGjBlDUFDF58FeuHBhic8zZswgJiaGpKQk+vbtS2ZmJtOmTeOzzz6jf//+AEyfPp22bduydu1aLr300grHIMS53Okd7gsXmzSoNpu5ffNFO+EZhncTCVn06jlXghDVlcfv/M/O2e9wOEhNTb1g6F+jRt6vjpWZWTTLVp06RT2Dk5KSKCwsZODAgcXHtGnThkaNGrFmzZpSk7/dbi8xGiErq/I6b4naJzysahZ3CQ4umuM+OzOPA7tTqBcfRUKjulVybX/JcTiYnbz9gnf85zKUTm6+lZAgh9stADo6LcI8m0NAiEDncfL/7bffuOuuu1i9enWJ7Wc7Anrb298wDB5++GH69OlDhw4dADh+/DhWq5WoqKgSx8bGxnL8+PFSy5kyZQrPPfecVzEI0bJ5LLv3pOB0Vd58FjH1wgkJtvL1tBXMeH0hzsKi/zO9B7bn8dduJijYN4vfVDebTxwj3411QY6m1aFlYun/v0tjYDAgZkBFQqswQylWHTrIpmMpOA2DhpERDGnZinCbza9xCVEWj5P/HXfcgdlsZv78+cTHx/tsWswJEyawfft2fvnllwqV8+STTzJx4sTiz1lZWSQmujdNqxBtWsYxZ37lJX5d12jXJoFf1+7jw1cWlNi3bslOPn7jJ+558rpKu74/ZTncW873+KkomsSnYTa7yu3xr6OTGJJIy7CWPojQO4v27eUfS5dxNDsLk6ajaUWrIj67ZAm3d+nCpD6XYzHV/M6donbxOPlv2bKFpKQk2rRp47Mg7r//fubPn8+KFSto2LBh8fa4uDgcDgcZGRklav8nTpwgLi6u1LJsNhs2edoWXurVvSkmXau0d/+Gobiid0uWztuMyaTjOqeFwTAUi+Yk1drkb3UzAboME1v3NqZrqwMYuirzAUBHJ9ISyUMtH/Lb3Pxzdu5k0o9/9F1yKaO4w6jd5eLDpCQOpGcwddgwTLr3CyMJ4Wse/za2a9eOkydP+uTiSinuv/9+5syZw5IlS2jatGmJ/d26dcNisbB48eLibcnJyRw6dIjevXv7JAYhzhUdFUq/K9pgMlVOMokID+LKPq1xOl2lDipwVWT1nGquaaT74+mz84JJSm5Gdm4wAGefxTQ09DN/tjpGdmRy+8lEW/0zTv9ETg5/XfQTirIHiChg8f59fLp1axVGJkT5PK75v/LKKzz++OO89NJLdOzYEYulZC9bT2bRmzBhAp999hlz584lPDy8+D1+ZGQkwcHBREZGcvfddzNx4kTq1KlDREQEDzzwAL1795ae/qLS3HpDL5as2F0pZY+98VIsFhOXD+rI4m83ldinmzT6DrlwoZraokV0XbrGxPNr2vFSZ9w7X25+EJuSmxEWnE983UwGt2hIiMVGXFAcV9S74qIr+1WFWdu2ufV9AMzYvIlxnTvL6oGi2vB4el/9TNPV+b/E3nT4K+s/wvTp07njjjuAPyb5+fzzz0tM8lNWs//5ZHpf4Y1pH6/k4y/W4Nn/jrKZdI3mzWKY+vo4zCYdpRQfvDyfOdP/6OPSqlNDXvjwbsKjQnxz0Wpo7m+7eGjxgvIPPIdJ0xjYpAXvDRpeSVF5p//0j/g9I8Pt438Ydzut68lcA6JyVdr0vkuXLq1QYOdy57kjKCiIt99+m7fffttn1xWiPLfffBkbNv9O8m/HKzwmX9c1bEEWnp50HWbTHw/P9z45jOvGXkbyr4eoHx9F+25Nan3NcEizVszcvpktqSkXHfJ3lq5p2MxmHut5eRVE55nMggKPjs8oyK+kSITwnMfJ/8orr6yMOISoViwWE/987kYmPv0Fe/enev0AYDqT+F9/YQyNEy8cx5/QqG6tH99/LovJxLRrRzJ2/mx2nUq7aLO5SdOwmcxMv3YULaKr3z0Ks1pJ9+ABINwqHZFF9eFV99OVK1dy2223cdlll3H0aNEiJR9//HGFh+kJUZ2Ehwfx5pSbGTSgaN4Jb2rlzZrUZ+pr42jbOt7X4dVYUUHBzB5+M+M7dCX4zBohZxff1ShK+hpwecPGzBl1K70SqudQ3WtbtsLk5u9EXFiYNPmLasXjmv/XX3/NuHHjGDt2LJs2bSqeTS8zM5OXXnqJ77//3udBCuEvISE2nnj4Wvpd3pr/vr+Ew0dPYzJpuFyl11iLVo1ThIXauPWGXowZ3bO4qV/8IcRiZXKf/kzqeTlz9uxkzbHDZNkLCDZbaBFdl5vbdqRRRJS/w7yoWzt14oOkjeUep2sat3fpIkP9RLXicYe/rl278sgjj3D77bcTHh7Or7/+SrNmzdi8eTPXXnttmTPv+Yt0+BO+opRi644j/PDzdrbtOMLRlPQSHQKjo0Jo2zqBfpe3pt/lrbFZPX62FjXMh0lJvLRieZn7dU2jS1w8n95wAzaz/D6IyldpHf6Sk5Pp27fvBdsjIyPJ8KDnqxA1jaZpdO6QSOcORc3Q+QUOsrIKMAyDkBAbkRHBfo5QVLU/detGiMXCKytXkO1wYNaLRnIoih4Wh7ZqxZSrr5HEL6odj38j4+Li2Lt3L02aNCmx/ZdffqFZs2a+ikuIai84yEpwUO2ch1+479ZOnRjVri0LkvewKSWFQsNFYkQko9q1o4G0NopqyuPkf8899/DQQw/x0UcfoWkax44dY82aNUyaNIlnnnmmMmIUwmOFhS52Jh8jP99BnehQWjaPrfXD6IT/BJktjG7fntHt2/s7FCHc4nHyf+KJJzAMgwEDBpCXl0ffvn2x2WxMmjSJBx54oDJiFG46kJPCstRfSXfkUGA4CDUFER9ch4Fx3ahjDfd3eFXC7nDy6ZdrmTN/E1nZfwzDapgQza039mLI1R3lIUAIEfA87vB3lsPhYO/eveTk5NCuXTvCwsJ8HZtP1PYOf4WGk5Vp2/jm8C/syPodk1bUo1ipos5GLmWgaxp963diRMM+dIxsWmuTn93hZNLTX7Jt59EyJ5C6cXg3JtzTv9beAyFEYKu0Dn9nWa1W2rVr5+3pwgdO27N4/NcP2JdzrHictEuds0rcmfznUooVaVtZmrqFQXHdmdTmJsx67VtidNrMlWy/SOIHmD03iQ7tGtLv8tZVGJkQQlQvMvC0hkoryOD/Nr7B77lFQyuNMtcVK3L2oeCn40k8tXUaTqN2rR6XX+Bg7g9byl1oRdc1Zn+7oYqiEkKI6kmSfw2U77Tz+Jb3Oe3ILlHTd4dCsfH0Hl5Lnu3W2go1RdLmgxQUFJZ7nGEotu86xun03CqISgghqidJ/jXQt0dXcTAv1ePEf5ZCsTBlA7uzD/s4Mv/JzvFskRVPjxdCiNpEkn8N41IGc46sQpXTzF8ek6bz7ZHasxZDhIcT7MiEPEKIQCbJv4bZcCqZNHtGhctxKYMlJ7aQWVg7mr+7d2lMSEj5E+7oukaXjolERYZUQVRCCFE9SfKvYX5IWY/uox9b0QPAZp+U5WtKKfKdp7G7stw63mazMPK6S8odwmcYiptGdPdFiEIIUWPJhNM1TErBKQy8e9d/PpOmk1qQccH29Px8DmVkYtI0WtStS5Clan9NDuYsZ/PJd8ksPAhAXHA3etR/gDq2Vhc9785b+7Bn73E2bv6d8/syapqGUorbb+5Nn0tbVlbo1crerYdYNmcj6WlZFOTZCQkLJq5RXQbedCmxjer6OzwhhB9J8q9hcp2+66imUCXK23PyJG+vXsfC5N9wncmeYVYrN3XqwH29exIdXPSe3FnoIj01E5fTIKpeOEGhNp/FdDBnGctSngL+qMGfyN/MD4fv47pG04m0NirzXIvFxMuTRzN77ka+npdE2smc4n0tmtXn1ht60b9vW5/FWh057IWsnLeJuR8u5bdfD2Ey6SjAMAz0M0vKfvLaAnr0b8+wu/rRvX87mfBIiAAkyb+GCTb5LtFqaISYi8rbeOQod3z5DYUuV3HiB8hxOPhf0mYW/baPd666hrWzN/L9x7+Qk5EHgNli4orrL2HYXf1o261pheJRSpF0cipFif+PGBQGLuVge/on9Il96qJlmM0mbhndi5tG9GDf72nk5dmpEx1Ko4a1v6abkZbNM2P/y96th9H0M5M+uc6Z9Omcfyct28WGxTu4cmR3Jr4xDqvNUuXxCiH8R5J/DVPfFsn+nJQK9/YHMJRBtDWMHLuDe7+ei8PlKnWSHJdSpG9NYeILL6MbJZOIs9DFim+TWPr1Bm6bNJRbHx3idU0yz3WS7MLShx8qXBzNXet2WSaTTqvmsV7FURNlpGXz8NBXSTuaDoAyLv77cfZnuGJuEpkns/nHpxOwWOXPgRCBQjr81TD9Y7v6JPFDUd36yvqdmbdzF1l2e5mz49lSCoibcxRVaJRI/GedrV1+8q8FfPv+Eq/jMZXzLKprUjstjcNeyDNj/0va0fRSfz4XowzFr7/s4T+Pf15J0QkhqiNJ/jXMlTGdCTNXfIy6CZ1L67YlLrgO83fv4WJ19Xor0kBx0WPOmjFlHrnZ+V7FFGSOpn5QR7RSfi01dJqGD/Sq3LLk5hRw5NApTp3M9mm5VW3lvE3s3XrY48R/llKKn75Yw++7jvk4MiFEdSXtfDWMVTdzfYPezDq4tNz5/C/GhcGIhn0AyMjPL7MkyykHIUfd72TosBeyZPZ6ht11pVdx9az/EAuPTMBQThRF6w9o6ISaY2kffYtXZZ5vz+4UZv3vF1atSC5uHm/ZOo4bbu1Nv6vb17gOcHOnLUPTtXKb+s+nrGC/xoq9vxVVT2fcgf8yVHVnbJO+JIbUq6RohRDVgdT8a6DRDa8gwhLq9Xh/HZ0uUc3pXqdo6FzdkBDKynehB3JRHuRCDVj/8zav4gKoF9SOoYnTaBo+kCBTFCHmGNpH38LQxA8JMkV5Xe5Za1Ym89CfPmL1yj0lkuXePSeYMnkO7775U41a82Dv1kP8tuWg54k/CHKeCqHgBhuqbtEP2Gk2mH9kI+PXvMWuzCOVEa4QopqQ5F8D1bFF8M8u92LVTcVL+bpLR6dhSD2e73gnulb04x/evu0F4+KLj3cY7rX3n6EUZJ8ZCeCtaFszroibzJhm33Nj02/pVm8CQeboCpUJcCotmxf+9jUu14V9F84m/DlfrGfZzzsqfK2qsmzORkxmz/8bF4yw4WpsAl3j3Cc/FwZ2VyFPb/0Uw8u1I4QQ1Z8k/xqqRXgD/tPtASItoW49AJw9om1EIv/p9gBhlj/6DQxt04q6ISHopVT/DauOJ28XNA3Co6rn1Lnfz9tUYuhbaTRd4+vP3R9V4G/paVllPriVRVnAfpUVTKX/3hgojuWns/H0Ph9EKISojuSdfzViKAcZeT+RX7gHTTMTbutFmK1nme+gW4Q3YFqvScw9spq5R1eRUZiLjlaiL4AJHRcGjUJiGZV4BYPje2DVS/7Ygy0Wpt0wgnFffE2ew1FinH9u01Dqrzjp9veggJ4DO3r2jXvI4XTy89a97DySistl0KBuBEMuaUOdsIs/dKxYsgujnOZxZSj27Erh9Kkc6tQN82XYlcKe70AZntXQjTo6BF/8gVFHY292Cj3rBsZsiEIEGkn+bnI4XWz8/Qgns3NxGoqokCC6N2lARHCQT8o/lfstB9OfxWVkoGE+M5zPRZC5Bc3rvUmItX2p50Vbw7mj2SBuazKQVSe3s+TEFk47sshz2gm3hJAQXJchCT1pH9Hkoh3ZOsTF8t0dY/lwfRJfb9tBvtMJQFSjaOq0KyBjd2q5iRPAarPQ/8aeXt2D8iil+GTFZt77aS1Z+XbMpqKGK5eheG3eSq7v3pa/juxHiK30BX7ycu1uXys/zwE1YF6gkLAgdJOOy+n+A4DmKP/nqFBYdRlaKURtJcm/HCcyc/hyw1ZmrdtKel7JIWxWs4lhndtyy6WdaZcQ4/U1TuZ+w4FTE4s/K5zF/y5w7mfXiRtpF/stwday57Y36yaujOnMlTGdvY6jYWQkz17dnyf69eV4Tg5mXSM+PJy9vQ8xafhrKIxyO5bd8eT1hIZXznK5/56/khlLk4o/O89pwncpxdwNO9mTcpKPJtxIsPXCxBUTG8nJ1OxyO/TpukZUnVDfBV6JYhPretzsr6Ur9EMujIZ60Tv/0o+iT/02FY5PCFE9yTv/i/h5x14GvfYR7y1bf0Hih6LWgG837+CGtz/lrUWrveolbhgFHDo9+WJHYCg7hzJe9LhsbwVZzDSJjqJhZCQmXaf1JU14duZ9WK1m9FLeE5vO1MBve+w6Rtzbv1JiWrnrQInEXxpDKXYdSeWtBatK3X/t9V3LT/wmncuvakuoD9crqEwDb7oUw8Nmfw0I+tZeZuLX0RgU34X44Ip3shRCVE+S/Mvw4/Y9PPTZdxSWMeXtWa4zNeF3l63j1R9WeHyd03kLcKnyJplxkVWwAruz9Klvq0K3q9rx/i+TuXHCNYSd06HPbDFx5cju/Pv7xxhbgal9y/PJ8k2Yyqyl/sFQiq/XbiPP7rhg35UD2hGfEIVuKv3XXtOK8uGYcZdVON6qEtuoLj36ty/zeyqLdaOT4Jn54FJgKHAqtDNjOq+Iacdf242qjHCFENWENPuX4kDaaR774gfAo47u/G/VJtolxDCsi/srx+UV7jrzjt9ZzpGKfEcyNnOiBxH5VkzDOtzx1HBue+w60tOycBW6iKofQVBI6e/YfeVUdh5r9hxy+/iCQidLt+9jaLeSPwdbkIVX/juOvz7wCSlH04uX+YWipn6z2cTTL46mZet4n8Zf2Ybd1Y8Niz0fnmj7uRDLeieOyy0YsTrDbryCYS160jqiQSVEKYSoTiT5l+LTNVtQXsygrwHvL1/PdZ3buF0DLm0q27IPNnkYUeUwW0zUT6i6JuGTWbkeHW/SNU5k5pS6Ly4+ig8+/T+WL97Bwu+2kHo8k5BQG30HtOPa67vWiB7+5+vevx1XjuzOirlJHk/2o2cpgr53cPffR3LDJVdXUoRCiOpGkv95cu0Ovtm0o7g53xMK2Jd6mi2HUujaOMGtc8Js3Tme/X65x2mYCbV28jim2sBq9uyhx1AXP8dqM3P1kM5cPcT7zpHViaZpTHxjHFmnctiyMtnjvicj/9yf0ff5dt0EIUT1Ju/8z7N4514KCstrgi+bSdf4dpP7TbBRwf2xmGK5+I/CRHTIUCymGjD2rBI0rBdJVIj7QyqVUlzSNLCarq02C//4dAIDx1wK/NEJsyy6rqHpGn+aPIp7nh1d49YzEEJUjCT/8xzLyMake39bXIbiWIb7q8Rpmplmdd9Aw0TpPw4TFlMMidF/8zqmms5iMnFTn86lzkB4Pk2Dtg1jaJcYWwWRVS9mi4mJb4xj6tKnuXbc5ViDioY76rqGyawXJ/jIumHc8si1zEx6kdH3DZTEL0QAkmb/8xS6XB7Oln8hT1sOIoJ60zp2FofT/0Gu49dz9uhEB19DozrPYTV5P49AbXDL5Z35eu020nPzy51s6OGhl1dRVNVTk7YJTHj5Zu58egTrf95OemoWBXl2QsKCiG1Ul+5XtcdsqR79R4QQ/iHJ/zwRwUEXHdpXHg08aqI+K9zWjXZxc8lz7Cqe3jfM2h2rOfBqsKWpGx7Kh/fdwL3vfs3J7NwLJrY5OwzwxVsH07t1Yz9EWP2EhAXRb0R3f4chhKiGJPmfp0eTBhVK/gA9mzX0+twQa1tCrO4PFQwkzePqMufx25mzfgefrdxMSnrR65UQq4URvdpzc58uNImRiWmEEKI8kvzP065BLO0bxLDrWJpXDwEWs4nhXdtVQmSQdjyTH+ds5ODeogVt6sdFMvD6rrRsFzid2yJCghjfrxu3X3kJOQUOnC6DiBBbhfppCCFEoJHkX4rbenflya9+9Pg8k64xrHNbny32c1ZudgFvPvctKxdtRwOUKlp4xaTrzP10DS3bN2DSizfQuHng9AvQNI3w4JoxBa8QQlQ3kvxLMaRTa77dtJMNB464Xfs3aRp1QkN4YGBvn8aSm13AxNvf4/D+NJRRcuKhs2vT79t9jIfHTuW1/91Ls2o+O53TcLL+9BaWp63htCODEFMQ3et0pl/9ywi31LwJdoQQoibSlDer0dQgWVlZREZGkpmZSUREhNvnZRfYuXfGN2w7cqLcBwCTrhEVHMxHd4+mZWy9ioZcwpTHZrHyp+3l9nDXTRrRdcOYsXASFkv1fKY7nHeMKbv+wylHOhpa8RyKGhomzcRfWoynT70efo5SCCFqLndznrwoLUN4kI3pd9/Ibb27EGQxo8EFQwB1TUPT4MrWzfjyL7f6PPGfPJHJCjcSP4DhUpxKzWbN4l0+jcFXTtpP89yO10h3ZAKUmDxZoXAqJ2/9No2k9K3+ClEIIQJG9awiVhNBFjNPDO3HAwMv47stu5i3ZRepWbm4DIOokCD6t23OjT06EhcZXinX/3FOUtE7fjeP13WN775YS9/BHSslnoqYd+wncp35GFx8+dmZB2ZzSVRHmXhGCCEqkSR/N4TarNzcqzM396raueAP7U/zaHEhw1Ac3JdaafF4q8BlZ2nq6nITP8Bxexo7s/bQPrJ1FUQmhBCBqUY0+7/99ts0adKEoKAgevXqxfr16/0dUpVwOQ3P1hQ+e041c6IgDYfhcOtYHY39ue4v3yuEEMJz1T75f/HFF0ycOJHJkyezadMmOnfuzKBBg0hNrX41XF+LiY9E1z1o/tagflxk5QXkJc+eXzx50SGEEMIb1T75v/7669xzzz3ceeedtGvXjnfffZeQkBA++ugjf4dW6QZe37V4OJ87NGDw6Oo3nWtsUD0smntvmAwMGoV4P0OiEEKI8lXr5O9wOEhKSmLgwD/WGtd1nYEDB7JmzZpSz7Hb7WRlZZX4qqmatY6nbedEdJMbtX8NLFYzA4d1rfzALkIphXJsQuXPQeV9jsr/jiB1jCvqX4ruxq9bPWs0HSPbVEGkQggRuKp1h7+TJ0/icrmIjS25uE1sbCy7d+8u9ZwpU6bw3HPPVUV4VWLi86N56NapFOQXYpTVCnDm2WDSizcQFhFcdcGdQxk5kD8HlTcTXAcv2H99SC/W6JEUGAp1kWb92xqPRteq9TOpEELUeLXur+yTTz5JZmZm8dfhw4f9HVKFJDatz+sf/5l6sUWTNZToA3Bm8gGbzcJT/7yZvoP8M8RPFe5CnbwGlf0CuErvrBerbeBvcWsI010X7NPR0ND4U7Nb6V2v+r22EEKI2qZa1/zr1auHyWTixIkTJbafOHGCuLi4Us+x2WzYbLVrzvcmLWKZvmAia5fvZv6sdRz47QQup4v6cVEMHt2dAcO6EBrm2/UE3KUKd6NO3wzKwcU76hk0t2XzVuIqfslry/K8S0gvzCbIZKNnna4MjL2CerY6VRW2EEIEtGqd/K1WK926dWPx4sWMGDECAMMwWLx4Mffff79/g6tiJrOJPgPa02dAe3+HUkwZeaj0u88k/gtr9KUJ0gsZGLaDgXWi0et8ULkBCiGEKFW1Tv4AEydOZPz48XTv3p2ePXvyxhtvkJuby5133unv0ETBd2CkeXGiCxzLUc69aOYWPg9LCCHExVX75D9mzBjS0tL4+9//zvHjx+nSpQsLFy68oBOgqFpKKVTex3g/Lt+EyvsMLeLvPo5MCCFEeWRVP+EVVbgTdWpEBUsJRotNQnNzDoBAo4xcCvO/wlnwC2gWLMHXYg4agqaZ/B2aEKKacjfnyV9d4R2XL0ZR5IORCaa6PiirdjFcp8g7ORrDdeDMFg1nwXxMtv6E1PkATbP4NT4hRM1W64b6iSqi7D4qqMBH5dQu9ux/YrgOUvRKRcGZRZFc9iUU5s32Z2hCiFpAkr/wjuajZYx9VU4topSiMO8bSh9BoVGY91VVhySEqGUk+QvvWNpRsV8fDUyJkvxL5aLsFhGFUjV3ymohRPUgyT/AGMpg/andTN+/kIUpGyhwubfU7vk0UyzYBgDedz7TQsahaR6sWhggNM2MbulE6f89TZisvas6JCFELSMd/nzIUA6y7NtxGrnYTPUJs7auVsnNUAbPbf+YFWlbMWk6LmUw88Ai3u7+ANFWz2vgWshtKPsiL6OxQPAoL8+t/Wzhj5J/+g5KDqXUQbNhC7vbf4EJIWoFSf4+YCgHBzI+4HDWpxQa6cXbQy3NaRr1f8SHXefH6P6w7tRuVqRtBcClijqQnSg4zWcHlzCh5XDPC7ReCrarwL6csx3S3KWFPYSmy9DLsliCroLo9yjIehF1ZqEkk6UzQZHPo5ub+Dc4IUSNJ8m/ggzlYNPxP5NesI7zJ7vJLdzP9rTHyCs8SPPoCf4J8BzbMvYX1/jPMlD8mr7Pq/I0TYPIf6PS74DCrbj9ABA8DkL/5NU1A4kleDDmoEEo1zHQLOimGH+HJISoJeSdfwXtz3iX9IL1lD7LnTpzzH85nb++SuMqTWxQnRKJH0DXdOKDvR9nr+khaHVmQtBwin6dSvuVOvvqIwgt/K9oEU9Xq9ch1ZmmaejmBpL4hRA+Jcm/Agzl4HDWp5RX49UwcShrZtUEdRED4y6hni0SXSv6sevoaMDNja+qULmaFoQe9Qpa/WUQeh/o5z1MmJqhRTyHFrMaLfRuSfxCCOFn0uxfARkFW3Aa5Q+7UrhIy1uGUi6/Ts0aag7ine4P8cnvi9iSvo+GIfUZ23gAbSMa+aR8zRSHFv4QhD+EUnZQeaCFyWx0QghRzUjyrwCnkePB0S5cqgCzFlpp8bijvi2SR1rfUOnX0TQbaLZKv44QQgjPSbN/BdjM9dw+VteCMWkhlRiNEEII4R5J/hUQYe1IsDmx3OM0TCSEDZd33UIIIaoFSf4VoGkaTaPuLe8oQCMx4raqCEkIIYQolyT/CkoIG03jyLuAohr+uTRMaJjoFPNvwqzN/RGeEEIIcQHp8FdBmqbRqs5j1AnqxaGsjzmVvwpQ6JqV+LDhNIoYR5i1pb/DFEIIIYpJ8veReiF9qRfSF0M5cBn5mPUwvw7rE0IIIcoiyd/HdM2KbrL6OwwhhBCiTPLOXwghhAgwkvyFEEKIACPJXwghhAgwkvyFEEKIACPJv4ot3rmPW96dxbtL16FUacsACyGEEJVLevtXsae/+YnM/AJ+PZzCNR1a0qx+HX+HJIQQIsBIzb+KNa4bBUCI1UKd0GD/BiOEECIgSc2/ir1/x0hW7PmdTg3jiAqR5C+EEKLqSfKvYhHBQVzXuY2/wxBCCBHApNlfCCGECDCS/IUQQogAI8lfCCGECDCS/IUQQogAI8lfCCGECDCS/IUQQogAU+uH+p2dQjcrK8vPkQghhBCV62yuK2/6+Fqf/LOzswFITEz0cyRCCCFE1cjOziYyMrLM/Zqq5avLGIbBsWPHCA8PR9O0CpeXlZVFYmIihw8fJiIiwgcRBi65l74h99F35F76htxH3/H0XiqlyM7OJiEhAV0v+81+ra/567pOw4YNfV5uRESE/FL7iNxL35D76DtyL31D7qPveHIvL1bjP0s6/AkhhBABRpK/EEIIEWAk+XvIZrMxefJkbDabv0Op8eRe+obcR9+Re+kbch99p7LuZa3v8CeEEEKIkqTmL4QQQgQYSf5CCCFEgJHkL4QQQgQYSf5CCCFEgJHk76G3336bJk2aEBQURK9evVi/fr2/Q6rWVqxYwbBhw0hISEDTNL799tsS+5VS/P3vfyc+Pp7g4GAGDhzIb7/95p9gq7EpU6bQo0cPwsPDiYmJYcSIESQnJ5c4pqCggAkTJlC3bl3CwsIYPXo0J06c8FPE1dfUqVPp1KlT8aQpvXv35ocffijeL/fROy+//DKapvHwww8Xb5N76Z5nn30WTdNKfLVp06Z4f2XcR0n+Hvjiiy+YOHEikydPZtOmTXTu3JlBgwaRmprq79CqrdzcXDp37szbb79d6v5XX32Vt956i3fffZd169YRGhrKoEGDKCgoqOJIq7fly5czYcIE1q5dy6JFiygsLOSaa64hNze3+JhHHnmE7777jtmzZ7N8+XKOHTvGqFGj/Bh19dSwYUNefvllkpKS2LhxI/3792f48OHs2LEDkPvojQ0bNvDee+/RqVOnEtvlXrqvffv2pKSkFH/98ssvxfsq5T4q4baePXuqCRMmFH92uVwqISFBTZkyxY9R1RyAmjNnTvFnwzBUXFyc+uc//1m8LSMjQ9lsNvX555/7IcKaIzU1VQFq+fLlSqmi+2axWNTs2bOLj9m1a5cC1Jo1a/wVZo0RHR2tPvzwQ7mPXsjOzlYtW7ZUixYtUldeeaV66KGHlFLyO+mJyZMnq86dO5e6r7Luo9T83eRwOEhKSmLgwIHF23RdZ+DAgaxZs8aPkdVcBw4c4Pjx4yXuaWRkJL169ZJ7Wo7MzEwA6tSpA0BSUhKFhYUl7mWbNm1o1KiR3MuLcLlczJo1i9zcXHr37i330QsTJkxg6NChJe4ZyO+kp3777TcSEhJo1qwZY8eO5dChQ0Dl3cdav7CPr5w8eRKXy0VsbGyJ7bGxsezevdtPUdVsx48fByj1np7dJy5kGAYPP/wwffr0oUOHDkDRvbRarURFRZU4Vu5l6bZt20bv3r0pKCggLCyMOXPm0K5dO7Zs2SL30QOzZs1i06ZNbNiw4YJ98jvpvl69ejFjxgxat25NSkoKzz33HFdccQXbt2+vtPsoyV+IGmbChAls3769xDtB4ZnWrVuzZcsWMjMz+eqrrxg/fjzLly/3d1g1yuHDh3nooYdYtGgRQUFB/g6nRrv22muL/92pUyd69epF48aN+fLLLwkODq6Ua0qzv5vq1auHyWS6oIfliRMniIuL81NUNdvZ+yb31H33338/8+fPZ+nSpSWWqo6Li8PhcJCRkVHieLmXpbNarbRo0YJu3boxZcoUOnfuzJtvvin30QNJSUmkpqZyySWXYDabMZvNLF++nLfeeguz2UxsbKzcSy9FRUXRqlUr9u7dW2m/k5L83WS1WunWrRuLFy8u3mYYBosXL6Z3795+jKzmatq0KXFxcSXuaVZWFuvWrZN7eh6lFPfffz9z5sxhyZIlNG3atMT+bt26YbFYStzL5ORkDh06JPfSDYZhYLfb5T56YMCAAWzbto0tW7YUf3Xv3p2xY8cW/1vupXdycnLYt28f8fHxlfc76XVXwQA0a9YsZbPZ1IwZM9TOnTvVvffeq6KiotTx48f9HVq1lZ2drTZv3qw2b96sAPX666+rzZs3q4MHDyqllHr55ZdVVFSUmjt3rtq6dasaPny4atq0qcrPz/dz5NXLfffdpyIjI9WyZctUSkpK8VdeXl7xMf/3f/+nGjVqpJYsWaI2btyoevfurXr37u3HqKunJ554Qi1fvlwdOHBAbd26VT3xxBNK0zT1008/KaXkPlbEub39lZJ76a5HH31ULVu2TB04cECtWrVKDRw4UNWrV0+lpqYqpSrnPkry99B//vMf1ahRI2W1WlXPnj3V2rVr/R1StbZ06VIFXPA1fvx4pVTRcL9nnnlGxcbGKpvNpgYMGKCSk5P9G3Q1VNo9BNT06dOLj8nPz1d/+ctfVHR0tAoJCVEjR45UKSkp/gu6mrrrrrtU48aNldVqVfXr11cDBgwoTvxKyX2siPOTv9xL94wZM0bFx8crq9WqGjRooMaMGaP27t1bvL8y7qMs6SuEEEIEGHnnL4QQQgQYSf5CCCFEgJHkL4QQQgQYSf5CCCFEgJHkL4QQQgQYSf5CCCFEgJHkL4QQQgQYSf5CCCFEgJHkL4QQQgQYSf5CCK89++yzdOnSxd9hCCE8JMlfCFHpCgsL/R2CEOIckvyFCFCGYTBlyhSaNm1KcHAwnTt35quvvirev2zZMjRNY/HixXTv3p2QkBAuu+wykpOTAZgxYwbPPfccv/76K5qmoWkaM2bMAEDTNKZOncr1119PaGgoL7zwAi1atOBf//pXiRi2bNmCpmns3bu31Bg3bNjA1VdfTb169YiMjOTKK69k06ZNlXNDhAggkvyFCFBTpkxh5syZvPvuu+zYsYNHHnmE2267jeXLl5c47m9/+xuvvfYaGzduxGw2c9dddwEwZswYHn30Udq3b09KSgopKSmMGTOm+Lxnn32WkSNHsm3bNu6++27uuusupk+fXqLs6dOn07dvX1q0aFFqjNnZ2YwfP55ffvmFtWvX0rJlS4YMGUJ2draP74YQAaZiCxEKIWqigoICFRISolavXl1i+913361uueUWpdQfyzH//PPPxfsXLFigAJWfn6+UUmry5Mmqc+fOF5QPqIcffrjEtqNHjyqTyaTWrVunlFLK4XCoevXqqRkzZrgdt8vlUuHh4eq7775z+xwhxIWk5i9EANq7dy95eXlcffXVhIWFFX/NnDmTffv2lTi2U6dOxf+Oj48HIDU1tdxrdO/evcTnhIQEhg4dykcffQTAd999h91u58YbbyyzjBMnTnDPPffQsmVLIiMjiYiIICcnh0OHDrn9vQohLmT2dwBCiKqXk5MDwIIFC2jQoEGJfTabrcRni8VS/G9N04Ci/gLlCQ0NvWDbn/70J8aNG8e///1vpk+fzpgxYwgJCSmzjPHjx3Pq1CnefPNNGjdujM1mo3fv3jgcjnKvL4QomyR/IQJQu3btsNlsHDp0iCuvvNLrcqxWKy6Xy+3jhwwZQmhoKFOnTmXhwoWsWLHiosevWrWKd955hyFDhgBw+PBhTp486XW8QogikvyFCEDh4eFMmjSJRx55BMMwuPzyy8nMzGTVqlVEREQwfvx4t8pp0qQJBw4cYMuWLTRs2JDw8PALWg7OZTKZuOOOO3jyySdp2bIlvXv3vmj5LVu25OOPP6Z79+5kZWXx2GOPERwc7NH3KoS4kLzzFyJAPf/88zzzzDNMmTKFtm3bMnjwYBYsWEDTpk3dLmP06NEMHjyYq666ivr16/P555+Xe87dd9+Nw+HgzjvvLPfYadOmkZ6eziWXXMK4ceN48MEHiYmJcTs+IUTpNKWU8ncQQojAsXLlSgYMGMDhw4eJjY31dzhCBCRJ/kKIKmG320lLS2P8+PHExcXx6aef+jskIQKWNPsLIarE559/TuPGjcnIyODVV1/1dzhCBDSp+QshhBABRmr+QgghRICR5C+EEEIEGEn+QgghRICR5C+EEEIEGEn+QgghRICR5C+EEEIEGEn+QgghRICR5C+EEEIEmP8HO0PjeX2nPUgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Coding styles**" + ], + "metadata": { + "id": "RqDO_RhBoHfT" + } + }, + { + "cell_type": "markdown", + "source": [ + "The explicit and the implicit interfaces" + ], + "metadata": { + "id": "IvjkxqOaoPqB" + } + }, + { + "cell_type": "code", + "source": [ + "x = np.linspace(0, 2, 100) # Sample data.\n", + "\n", + "# Note that even in the OO-style, we use `.pyplot.figure` to create the Figure.\n", + "fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')\n", + "ax.plot(x, x, label='linear') # Plot some data on the Axes.\n", + "ax.plot(x, x**2, label='quadratic') # Plot more data on the Axes...\n", + "ax.plot(x, x**3, label='cubic') # ... and some more.\n", + "ax.set_xlabel('x label') # Add an x-label to the Axes.\n", + "ax.set_ylabel('y label') # Add a y-label to the Axes.\n", + "ax.set_title(\"Simple Plot\") # Add a title to the Axes.\n", + "ax.legend() # Add a legend." + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "iWV0Uws0oGay", + "outputId": "628a8fd8-b4c2-4358-9180-448ff5b8b0b0" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVGtJREFUeJzt3Xd4VFX6wPHvzCQz6RMSUiEkAULvVZp0kFVX7KIoILBIU2Bp+pO2SBMUpKwKK0UsiAVwFUVAgkvvSg0QEnoIAdKTmSRzf38MGRgSIIEkN8m8n+eZZ5gz59773lzCy7nn3HM0iqIoCCGEEMJhaNUOQAghhBAlS5K/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EGVYWFgYffv2VeXYkydPRqPRlPhxIyMj0Wg0REZGlvixhSgvJPkLUQodPnyY5557jtDQUFxcXKhUqRJdu3ZlwYIFaodWbJYvX45Go7G9XFxcqFGjBsOGDePKlStFcoz169czefLkItmXEGWZk9oBCCHs7dixg44dO1KlShUGDhxIYGAg58+fZ9euXXz00UcMHz7cVjcqKgqttnz9H/5f//oX4eHhZGZmsm3bNj7++GPWr1/PkSNHcHNze6h9r1+/nkWLFsl/AITDk+QvRCkzbdo0jEYje/fuxdvb2+67+Ph4u88Gg6EEIysZPXr0oFmzZgAMGDAAX19fPvzwQ9atW0evXr1Ujk6I8qF8NRmEKAeio6OpW7dunsQP4O/vb/f5zj7/3Fvn27Zt480338TPzw9vb28GDRqE2WwmMTGR1157jQoVKlChQgXGjh3L7Qt7xsbGotFomDNnDnPnziU0NBRXV1fat2/PkSNHChT/F198QdOmTXF1dcXHx4eXXnqJ8+fPP9DPAqBTp04AxMTE3LPet99+aztuxYoV6d27NxcvXrR937dvXxYtWgRg170ghCOSlr8QpUxoaCg7d+7kyJEj1KtX74H2MXz4cAIDA5kyZQq7du1i8eLFeHt7s2PHDqpUqcL06dNZv349s2fPpl69erz22mt223/++eekpKQwdOhQMjMz+eijj+jUqROHDx8mICDgrsedNm0aEyZM4IUXXmDAgAFcvXqVBQsW8Oijj3Lw4MF8/0NzP9HR0QD4+vretc7y5cvp168fzZs3Z8aMGVy5coWPPvqI7du32447aNAgLl26xMaNG1m5cmWh4xCiXFGEEKXKb7/9puh0OkWn0ymtWrVSxo4dq2zYsEExm8156oaGhip9+vSxfV62bJkCKN27d1csFoutvFWrVopGo1HeeOMNW1l2drZSuXJlpX379raymJgYBVBcXV2VCxcu2Mp3796tAMrIkSNtZZMmTVJu/yckNjZW0el0yrRp0+xiPHz4sOLk5JSn/E65sW/atEm5evWqcv78eWXVqlWKr6+vXTxbtmxRAGXLli2KoiiK2WxW/P39lXr16ikZGRm2/f30008KoEycONFWNnToUEX+2RNCUeS2vxClTNeuXdm5cyd///vf+fPPP3n//ffp3r07lSpV4scffyzQPvr37293S7tly5YoikL//v1tZTqdjmbNmnHmzJk82/fs2ZNKlSrZPrdo0YKWLVuyfv36ux7zhx9+wGKx8MILL5CQkGB7BQYGEhERwZYtWwoUe5cuXfDz8yMkJISXXnoJDw8P1qxZYxfP7fbt20d8fDxDhgzBxcXFVv74449Tq1Ytfv755wIdVwhHIrf9hSiFmjdvzg8//IDZbObPP/9kzZo1zJ07l+eee45Dhw5Rp06de25fpUoVu89GoxGAkJCQPOU3btzIs31ERESesho1arB69eq7HvPUqVMoipLvtgDOzs73jDnXokWLqFGjBk5OTgQEBFCzZs17PtFw9uxZAGrWrJnnu1q1arFt27YCHVcIRyLJX4hSTK/X07x5c5o3b06NGjXo168f3377LZMmTbrndjqdrsDlym0D/h6GxWJBo9Hwyy+/5HscDw+PAu2nRYsWttH+QojiIclfiDIiNyFevny52I916tSpPGUnT54kLCzsrttUq1YNRVEIDw+nRo0axRidvdDQUMA650HukwG5oqKibN8DMrpfiJukz1+IUmbLli35tsZz+9vzu71d1NauXWv3mNyePXvYvXs3PXr0uOs2zzzzDDqdjilTpuSJX1EUrl27ViyxNmvWDH9/fz755BNMJpOt/JdffuH48eM8/vjjtjJ3d3cAEhMTiyUWIcoKafkLUcoMHz6c9PR0nn76aWrVqoXZbGbHjh188803hIWF0a9fv2KPoXr16rRt25bBgwdjMpmYN28evr6+jB079q7bVKtWjffee4+3336b2NhYevbsiaenJzExMaxZs4Z//OMfjB49ushjdXZ2ZtasWfTr14/27dvTq1cv26N+YWFhjBw50la3adOmALz55pt0794dnU7HSy+9VOQxCVHaSfIXopSZM2cO3377LevXr2fx4sWYzWaqVKnCkCFDePfddx/oWfnCeu2119BqtcybN4/4+HhatGjBwoULCQoKuud248ePp0aNGsydO5cpU6YA1kGG3bp14+9//3uxxdu3b1/c3NyYOXMm48aNw93dnaeffppZs2bZ/byeeeYZhg8fzqpVq/jiiy9QFEWSv3BIGqWoRvsIIcq82NhYwsPDmT17drG00oUQpYP0+QshhBAORpK/EEII4WAk+QshhBAORvr8hRBCCAcjLX8hhBDCwUjyF0IIIRxMmX7O32KxcOnSJTw9PWXaTiGEEA5PURRSUlIIDg6+54JYZTr5X7p0Kc8qZUIIIYSjO3/+PJUrV77r92U6+Xt6egLWk/Ty8lI5GiGEEEJdycnJhISE2PLj3ZTp5J97q9/Ly0uSvxBCCHHT/brCZcCfEEII4WAk+QshhBAORtXkn5OTw4QJEwgPD8fV1ZVq1aoxderUfNcyF0IIIUTRULXPf9asWXz88cesWLGCunXrsm/fPvr164fRaOTNN98skmMoikJ2djY5OTlFsj+hDp1Oh5OTkzzSKYQQRUDV5L9jxw6eeuopHn/8cQDCwsL4+uuv2bNnT5Hs32w2c/nyZdLT04tkf0Jdbm5uBAUFodfr1Q5FCCEe2qoTq3DSOvFcjedK/NiqJv/WrVuzePFiTp48SY0aNfjzzz/Ztm0bH374Yb71TSYTJpPJ9jk5Ofmu+7ZYLMTExKDT6QgODkav10ursYxSFAWz2czVq1eJiYkhIiLinpNXCCFEaXcw/iCz9swiW8km2COY1sGtS/T4qib/8ePHk5ycTK1atdDpdOTk5DBt2jReeeWVfOvPmDGDKVOmFGjfZrMZi8VCSEgIbm5uRRm2UIGrqyvOzs6cPXsWs9mMi4uL2iEJIcQDSchI4J+R/yRbyaZHWA9aBbUq8RhUbT6tXr2aL7/8kq+++ooDBw6wYsUK5syZw4oVK/Kt//bbb5OUlGR7nT9//r7HkBZi+SHXUghR1mVZshi9dTRXM65SzViNya0nq3JXWtWW/5gxYxg/fjwvvfQSAPXr1+fs2bPMmDGDPn365KlvMBgwGAwlHaYQQghRJD7a/xH7r+zH3dmduR3n4uaszp1pVZtS6enpeVpzOp0Oi8WiUkRCCCFE8fgt9jdWHLPe2X6vzXuEG8NVi0XV5P/kk08ybdo0fv75Z2JjY1mzZg0ffvghTz/9tJphqa5Dhw6MGDECsD4BMW/ePFXjEUII8XDOJJ5hwvYJAPSr248uoV1UjUfV2/4LFixgwoQJDBkyhPj4eIKDgxk0aBATJ05UM6xSZe/evbi7u6sdhhBCiAeUYk7hrS1vkZ6dTvPA5rzZpGjmsXkYqiZ/T09P5s2bJy3be/Dz81M7BACysrJwdnZWOwwhhChTLIqFd7a9Q2xyLIHugcx+dDZOWvXX1HOo4dOKopBuzi7x18NMV3znbX+NRsN//vMfnn76adzc3IiIiODHH3+02+bIkSP06NEDDw8PAgICePXVV0lISLB9/+uvv9K2bVu8vb3x9fXliSeeIDo62vZ9bGwsGo2Gb775hvbt2+Pi4sKXX375wOcghBCO6tO/PiXyfCR6rZ55Hebh6+qrdkhAGV/St7AysnKoM3FDiR/32L+646Yvuh/1lClTeP/995k9ezYLFizglVde4ezZs/j4+JCYmEinTp0YMGAAc+fOJSMjg3HjxvHCCy/w+++/A5CWlsaoUaNo0KABqampTJw4kaeffppDhw7ZDcAcP348H3zwAY0bN5bn6oUQopC2nt/Kvw/9G4AJrSZQt2JdlSO6xaGSf3nRt29fevXqBcD06dOZP38+e/bs4bHHHmPhwoU0btyY6dOn2+ovXbqUkJAQ20yKzz77rN3+li5dip+fH8eOHaNevXq28hEjRvDMM8+UzEkJIUQ5EpsUy9v/exuAF2u+SM/qPdUN6A4OlfxdnXUc+1d3VY5blBo0aGD7s7u7O15eXsTHxwPw559/smXLFjw8PPJsFx0dTY0aNTh16hQTJ05k9+7dJCQk2B6tPHfunF3yb9asWZHGLYQQjiDVnMqbW94kJSuFxv6NGdd8nNoh5eFQyV+j0RTp7Xe13DnwTqPR2BJ4amoqTz75JLNmzcqzXVBQEGB9xDI0NJQlS5YQHByMxWKhXr16mM1mu/rylIEQQhSORbEw/n/jiUmKwd/Nnw87fIizrvQNli77mVDYadKkCd9//z1hYWE4OeW9vNeuXSMqKoolS5bQrl07ALZt21bSYQohRLm08OBCtl7YikFnYH7H+VR0rah2SPlyqNH+jmDo0KFcv36dXr16sXfvXqKjo9mwYQP9+vUjJyeHChUq4Ovry+LFizl9+jS///47o0aNUjtsIYQo8zbEbmDJ4SUATGo1qVQN8LuTJP9yJjg4mO3bt5OTk0O3bt2oX78+I0aMwNvbG61Wi1arZdWqVezfv5969eoxcuRIZs+erXbYQghRpkVdj7LN4Ne3bl+erPakyhHdm0Z5mIfQVZacnIzRaCQpKQkvLy+77zIzM4mJiSE8PFweUysn5JoKIUqjhIwEev3ci7i0OFoHt+bfnf+NTlu0A70L6l558XbS8hdCCCEekDnHzMgtI4lLiyPMK4z3H31ftcRfGJL8hRBCiAegKApTdk7h0NVDeOo9WdBpAUaDUe2wCkSSvxBCCPEAVhxdwY/RP6LT6JjTfg5hxjC1QyowSf5CCCFEIf1x4Q8+3P8hAGOaj6F1cGuVIyocSf5CCCFEIURdj2LM1jEoKDxX4zlervWy2iEVmiR/IYQQooASMhIY9vsw0rPTaRHYgndavINGo1E7rEKT5C+EEEIUQGZ2Jm/+/qZtZH9pnbq3ICT5CyGEEPdhUSy8u/1dDiccxmgwsqjzojIzsj8/kvyFEEKI+1h0aBEbYjfgpHViboe5VPGqonZID0WSv7CZPHkyjRo1Krb9d+jQgREjRhTb/oUQojisPb2WxX8tBqxz9jcPbK5yRA9PVvUTRS4yMpKOHTty48YNvL29beU//PBDnuWIhRCiNNt1eRdTdkwBYGD9gfSs3lPdgIqIJH9RYGazGb1e/8Db+/j4FGE0QghRvKIToxm1ZRTZSjY9wnswvPFwtUMqMo51219RwJxW8q9Crp2UlpbGa6+9hoeHB0FBQXzwwQd2t8w1Gg1r166128bb25vly5fbPo8bN44aNWrg5uZG1apVmTBhAllZWXbbzJw5k4CAADw9Penfvz+ZmZl23/ft25eePXsybdo0goODqVmzJgArV66kWbNmeHp6EhgYyMsvv0x8fDwAsbGxdOzYEYAKFSqg0Wjo27cvkPe2v8lkYty4cYSEhGAwGKhevTqfffZZoX5WQghRHBIyEhiyaQgpWSk08W/Ce23eK5OP9N2NY7X8s9JhenDJH/edS6B3L3D1MWPGsHXrVtatW4e/vz/vvPMOBw4cKFR/vKenJ8uXLyc4OJjDhw8zcOBAPD09GTt2LACrV69m8uTJLFq0iLZt27Jy5Urmz59P1apV7fazefNmvLy82Lhxo60sKyuLqVOnUrNmTeLj4xk1ahR9+/Zl/fr1hISE8P333/Pss88SFRWFl5cXrq6u+cb42muvsXPnTubPn0/Dhg2JiYkhISGhwOcohBDFIT0rnWGbh3Ep7RKhXqF81PEj9LoHv+tZGjlW8i8DUlNT+eyzz/jiiy/o3LkzACtWrKBy5cqF2s+7775r+3NYWBijR49m1apVtuQ/b948+vfvT//+/QF477332LRpU57Wv7u7O//5z3/sbve//vrrtj9XrVqV+fPn07x5c1JTU/Hw8LDd3vf397fr87/dyZMnWb16NRs3bqRLly62fQkhhJqyLdmM+WMMR68dxdvgzb87/xtvF2+1wypyjpX8nd2srXA1jltA0dHRmM1mWrZsaSvz8fGx3XIvqG+++Yb58+cTHR1Namoq2dnZdms7Hz9+nDfeeMNum1atWrFlyxa7svr16+fp59+/fz+TJ0/mzz//5MaNG1gsFgDOnTtHnTp1ChTfoUOH0Ol0tG/fvlDnJYQQxUVRFN7b9R5/XPgDg87Aws4Ly/wjfXfjWMlfoynU7ffSSqPRoNwxjuD2/vydO3fyyiuvMGXKFLp3747RaGTVqlV88MEHhT6Wu7v9zystLY3u3bvTvXt3vvzyS/z8/Dh37hzdu3fHbDYXeL936woQQgi1LDm8hO9PfY9Wo+X9R9+noV9DtUMqNo414K8MqFatGs7OzuzevdtWduPGDU6ePGn77Ofnx+XLl22fT506RXp6uu3zjh07CA0N5f/+7/9o1qwZERERnD171u44tWvXtjsGwK5du+4b34kTJ7h27RozZ86kXbt21KpVyzbYL1funYKcnJy77qd+/fpYLBa2bt1632MKIURxW3d6HQsOLgBgfIvxdKrSSeWIipck/1LGw8OD/v37M2bMGH7//XeOHDlC37590WpvXapOnTqxcOFCDh48yL59+3jjjTfsnp+PiIjg3LlzrFq1iujoaObPn8+aNWvsjvPWW2+xdOlSli1bxsmTJ5k0aRJHjx69b3xVqlRBr9ezYMECzpw5w48//sjUqVPt6oSGhqLRaPjpp5+4evUqqampefYTFhZGnz59eP3111m7di0xMTFERkayevXqwv7IhBDioWy/uJ3JOyYD8Hq91+lVq5e6AZUASf6l0OzZs2nXrh1PPvkkXbp0oW3btjRt2tT2/QcffEBISAjt2rXj5ZdfZvTo0bi53RpX8Pe//52RI0cybNgwGjVqxI4dO5gwYYLdMV588UUmTJjA2LFjadq0KWfPnmXw4MH3jc3Pz4/ly5fz7bffUqdOHWbOnMmcOXPs6lSqVIkpU6Ywfvx4AgICGDZsWL77+vjjj3nuuecYMmQItWrVYuDAgaSlpRXmRyWEEA/lSMIRRkaOJFvJ5vGqj/NWk7fUDqlEaJQ7O4/LkOTkZIxGI0lJSXaD2QAyMzOJiYkhPDwcFxcXlSIsOh06dKBRo0bMmzdP7VBUU96uqRBCXbFJsbz2y2vcMN2gdXBrFnZaWGZX6ct1r7x4O2n5CyGEcDhX06/yxqY3uGG6QV3fumV6ed4HIclfCCGEQ0kxpzB402Aupl6kimcVFnVehLtz2X8SrDAc61G/MiwyMlLtEIQQoszLzM5k2OZhRN2IwtfFl0+6foKvq6/aYZU41Vv+Fy9epHfv3vj6+uLq6kr9+vXZt2+f2mEJIYQoZ7IsWYzZOoYD8QfwcPbgk66fEOIZonZYqlC15X/jxg3atGlDx44d+eWXX/Dz8+PUqVNUqFBBzbCEEEKUMxbFwqTtk4i8EIlBZ2BBpwXU8qmldliqUTX5z5o1i5CQEJYtW2YrCw8PVzEiIYQQ5Y2iKMzeO5v/nvkvOo2OOe3n0CywmdphqUrV2/4//vgjzZo14/nnn8ff35/GjRuzZMmSu9Y3mUwkJyfbvYQQQoh7WfzXYr44/gUAU9tMpUNIB3UDKgVUTf5nzpzh448/JiIigg0bNjB48GDefPNNVqxYkW/9GTNmYDQaba+QEMfsqxFCCFEwXxz7goWHFgIwtvlYnqz2pMoRlQ6qTvKj1+tp1qwZO3bssJW9+eab7N27l507d+apbzKZMJlMts/JycmEhIQ4xCQ/Qq6pEKJw1pxaw8QdEwEY0nAIgxvdfxbTsq5MTPITFBSUZwnY2rVrc+7cuXzrGwwGvLy87F7C3vLly/H29r5nncmTJ9OoUaMSiUcIIdSwIXYDk3dOBuC1Oq/xRsM37r2Bg1E1+bdp04aoqCi7spMnTxIaGqpSRI5h9OjRbN68We0whBCiWPzvwv8Y/7/xWBQLz0Y8y+hmo9FoNGqHVaqomvxHjhzJrl27mD59OqdPn+arr75i8eLFDB06VM2wyj0PDw98fR1vUgshRPm3+/Ju60I9lmweC3uMCY9MkMSfD1WTf/PmzVmzZg1ff/019erVY+rUqcybN49XXnmlWI6nKArpWekl/irssAqLxcL7779P9erVMRgMVKlShWnTphEZGYlGoyExMdFW99ChQ2g0GmJjY+32sXbtWiIiInBxcaF79+6cP3/e9l1+t/2XLl1K3bp1MRgMBAUF3XUlPiGEKK0OXDnA8N+HY8ox0SGkA9PbTUen1akdVqmk+vS+TzzxBE888USJHCsjO4OWX7UskWPdbvfLu3Fzdrt/xZvefvttlixZwty5c2nbti2XL1/mxIkTBd4+PT2dadOm8fnnn6PX6xkyZAgvvfQS27dvz7f+xx9/zKhRo5g5cyY9evQgKSnprnWFEKI0Onz1MEM2DyEjO4M2wW34oP0HOGsdZ6GewlI9+Qt7KSkpfPTRRyxcuJA+ffoAUK1aNdq2bVvg+f2zsrJYuHAhLVta/6OzYsUKateuzZ49e2jRokWe+u+99x7//Oc/eeutW+tYN2/e/OFPRgghSsCJ6ycYtGkQaVlpNA9sztyOc9Hr9GqHVao5VPJ3dXJl98u7VTluQR0/fhyTyUTnzp0f+HhOTk52ybtWrVp4e3tz/PjxPMk/Pj6eS5cuPdTxhBBCLSdvnGTgbwNJMafQyK8RCzstLNS/uY7KoZK/RqMp1O13Nbi63v0vrVZrHaJx+xiCrKysYjueEEKUZqdvnGbgbwNJNCVS17cu/+7y71L/b3xpofqqfsJeREQErq6u+T6K5+fnB8Dly5dtZYcOHcpTLzs7225lxKioKBITE6ldu3aeup6enoSFhcmjf0KIMuVM4hn6/9af65nXqe1Tm0+7foqn3lPtsMoMh2r5lwUuLi6MGzeOsWPHotfradOmDVevXuXo0aO89tprhISEMHnyZKZNm8bJkyf54IMP8uzD2dmZ4cOHM3/+fJycnBg2bBiPPPJIvv39YB39/8Ybb+Dv70+PHj1ISUlh+/btDB8+vLhPVwghCi0mKcaW+Gv51GJJtyUYDUa1wypTJPmXQhMmTMDJyYmJEydy6dIlgoKCeOONN3B2dubrr79m8ODBNGjQgObNm/Pee+/x/PPP223v5ubGuHHjePnll7l48SLt2rXjs88+u+vx+vTpQ2ZmJnPnzmX06NFUrFiR5557rrhPUwghCu1M0hkGbBhAQkYCNSrUYElXSfwPQtW5/R/WveYwlnngyx+5pkI4tjOJZ3h9w+tcy7xGde/qfNb9M3xcfNQOq1QpE3P7CyGEEAURnRhNvw39uJZ5jRoVarC0+1JJ/A9Bkr8QQohS7dSNU7y+4XVbH/9n3T6jgksFtcMq06TPXwghRKkVdT2Kgb8N5IbpBrV9asvgviIiLX8hhBCl0pGEI7y+4XVumG5Qx7eOJP4iVO6TfxkezyjuINdSCMdxMP4gA38bSLI5mYZ+DflPt/9I4i9C5Tb5OztbF3RIT09XORJRVHKvZe61FUKUT3vj9jJo4yBSs1JpGtBUJvApBuW2z1+n0+Ht7U18fDxgffZd1nQumxRFIT09nfj4eLy9vdHpZIlOIcqrbRe3MXLLSDJzMmkV1IqPOn0kc/UXg3Kb/AECAwMBbP8BEGWbt7e37ZoKIcqfjWc3MvaPsWRbsmlXqR1zO87FoDOoHVa5VK6Tv0ajISgoCH9//4deAEeoy9nZWVr8QpRj606vY+KOiVgUC91CuzGz3UycddLFV1zKdfLPpdPpJHEIIUQp9dXxr5ixZwYAT1d/mkmtJqHTyr/ZxalAyT85ObnAO7zXdIJCCCFELkVRWHJ4CQsOLgCgd+3ejGk+Bq2m3I5FLzUKlPy9vb3vO1hOURQ0Gg05OTlFEpgQQojyy6JYmL13Nl8c/wKAQQ0GMbTRUBmYXUIKlPy3bNlS3HEIIYRwEFmWLCZtn8R/z/wXgHHNx9G7Tm+Vo3IsBUr+7du3L+44hBBCOIDM7EzGbB1D5IVIdBodU9tM5clqT6odlsN5oI6V//3vf/Tu3ZvWrVtz8eJFAFauXMm2bduKNDghhBDlR5IpiUEbBxF5IRKDzsBHHT+SxK+SQif/77//nu7du+Pq6sqBAwcwmUwAJCUlMX369CIPUAghRNkXlxZH31/7ciD+AJ7Onnza9VPah8hdZbUUOvm/9957fPLJJyxZssRumtU2bdpw4MCBIg1OCCFE2RedGE3v9b05nXgaf1d/lvdYTtOApmqH5dAK/Zx/VFQUjz76aJ5yo9FIYmJiUcQkhBCinDgYf5Bhm4eRbE4m3BjOp10+JcgjSO2wHF6hW/6BgYGcPn06T/m2bduoWrVqkQQlhBCi7Nt4diMDNgywrcz3+WOfS+IvJQqd/AcOHMhbb73F7t270Wg0XLp0iS+//JLRo0czePDg4ohRCCFEGfP50c/5Z+Q/MVvMdAjpwJJuS/B28VY7LHFToW/7jx8/HovFQufOnUlPT+fRRx/FYDAwevRohg8fXhwxCiGEKCPunLznxZov8naLt2W63lJGoyiK8iAbms1mTp8+TWpqKnXq1MHDw6OoY7uv5ORkjEYjSUlJMq2wEEKoLCM7g//b9n9sPLsRgFFNR9G3bl+Zta8EFTQvPvDCPnq9Hk9PTzw9PVVJ/EIIIUqPhIwE3vz9TQ4nHMZZ68y0ttPoEd5D7bDEXRS6zz87O5sJEyZgNBoJCwsjLCwMo9HIu+++K8vmCiGEA4pOjOaVn1/hcMJhjAYjS7otkcRfyhW65T98+HB++OEH3n//fVq1agXAzp07mTx5MteuXePjjz8u8iCFEEKUTjsv7eSfkf8kJSuFKp5V+HeXfxPqFap2WOI+Ct3nbzQaWbVqFT162P+vbv369fTq1YukpKQiDfBepM9fCCHUszpqNdN3TydHyaGJfxM+6viRjOhXWbH1+RsMBsLCwvKUh4eHo9frC7s7IYQQZUy2JZvZe2fz1YmvAHii6hNMaT0FvU5yQFlR6D7/YcOGMXXqVNuc/gAmk4lp06YxbNiwBw5k5syZaDQaRowY8cD7EEIIUbySzckM3TzUlvjfavIW09tOl8RfxhSo5f/MM8/Yfd60aROVK1emYcOGAPz555+YzWY6d+78QEHs3buXTz/9lAYNGjzQ9kIIIYrf2eSzDP99ODFJMbg6uTK97XS6hHZROyzxAAqU/I1Go93nZ5991u5zSEjIAweQmprKK6+8wpIlS3jvvfceeD9CCCGKz46LOxj9x2hSzCkEuAWwoNMCavvWVjussu3iAbiwF1oOKvFDFyj5L1u2rNgCGDp0KI8//jhdunS5b/I3mUx23Q3JycnFFpcQQghQFIXPj33Oh/s/xKJYaOjXkLkd5uLn5qd2aGVTThYcWwe7P4ULe0CjhZp/A+8Hb0Q/iAee5KcorFq1igMHDrB3794C1Z8xYwZTpkwp5qiEEEIAmHJM/Gvnv/gx+kcAelbvyYRHJkj//oNIjYf9y2HfUki5bC3TOkO9Z0HJKfFwHij5f/fdd6xevZpz585hNpvtvjtw4ECB9nH+/HneeustNm7ciIuLS4G2efvttxk1apTtc3Jy8kN1OQghhMhfXFocI7aM4Oi1o+g0OkY3G80rtV+RqXoL6+J+2L0Yjv4AOTfzpUcANOsPTfuCZ4AqYRU6+c+fP5//+7//o2/fvqxbt45+/foRHR3N3r17GTp0aIH3s3//fuLj42nSpImtLCcnhz/++IOFCxdiMpnQ6ewXgjAYDBgMhsKGLIQQohD2xu1l9NbRXM+8jtFgZPajs2kV3ErtsMqObBMcXQt7FsPFfbfKKzWFFoOg7tPgpO7dk0In/3//+98sXryYXr16sXz5csaOHUvVqlWZOHEi169fL/B+OnfuzOHDh+3K+vXrR61atRg3blyexC+EEKJ4KYrCF8e/4IN9H5Cj5FDLpxbzOs6jkkcltUMrG5IuWm/r718O6QnWMp0e6j4DLf4BlZuqGt7tCp38z507R+vWrQFwdXUlJSUFgFdffZVHHnmEhQsXFmg/np6e1KtXz67M3d0dX1/fPOVCCCGKV3pWOlN2TmF9zHrAOnHPxFYTcXVyVTmyUk5RIOYP2LsETqy/1X/vGQzNX4cmfcDDX90Y81Ho5B8YGMj169cJDQ2lSpUq7Nq1i4YNGxITE8MDrg4shBBCRTFJMYyKHMXpxNM4aZz4Z7N/Sv/+/WQmwZ+rYO9/IOHkrfKwdtBiINR8HHSqjqm/p0JH1qlTJ3788UcaN25Mv379GDlyJN999x379u3LMxlQYUVGRj7U9kIIIQrnt9jfmLB9AunZ6fi5+jGn/RyaBDS5/4aO6vJfsO8z+OtbyEqzluk9oOFL0HwA+JeNuQ8KvbCPxWLBYrHg5GT9f8OqVavYsWMHERERDBo0qETn95eFfYQQ4sFk5WQx98BcVh5bCUCzgGbMbj+biq4VVY6sFMrKhGNrYe9n1mfzc/nVsib8Bi+CS+nIQQXNi4VO/qWJJH8hhCi8S6mXGLN1DH8l/AVAv7r9eLPJmzhpS+9talVci7YO4Dv0JWTcsJZpnaD2361JP7Q1lLKukSJd1e+vv/4q8IFlfn4hhCi9tp7fyjvb3iHZnIyn3pP32rxHpyqd1A6r9MjJghM/w/5lcCbyVrlXZetz+U1eU+3Z/KJUoOTfqFEjNBrNfQf0aTQacnJKfqYiIYQQ95aVk8WCgwtYdtQ6XXs933rMbj+byp6VVY6slEg8B/tXwMGVkHrlZqEGIrpaJ+SJ6Ara8vMIeoGSf0xMTHHHIYQQopicTznPuD/GcTjBOrfKK7VfYVTTUTJNb04WnNxgfS7/9CbgZgPX3R+avGp9TK9CqJoRFpsCJf/Q0PJ58kIIUd5tiN3A5B2TSc1KxVPvyb9a/0uW4b0RCwdWwsEvIDXuVnnVDtDsdetCOzpntaIrETK6QwghyqGM7Aze3/s+3538DoBGfo2Y9egsgj2CVY5MJdlmiPrZemv/TCS3Wvl+0OgVaNoHfKqqGWGJkuQvhBDlzPFrxxn7x1hik2PRoGFA/QEMaTTEMUfzJ5yCA5/Doa9uTbkL1lZ+077WyXhUnmdfDQ74N0EIIconi2Jh5bGVzDswj2xLNv6u/kxrN41Hgh5RO7SSZU6HY+usSf/cjlvlHoHQ+BVo/Cr4hKsXXykgyV8IIcqBK2lXeHf7u+y6vAuATiGdmNJ6Ct4u3uoGVlIUBS4egIOfw+HvwWxddwaNFiK6WwfwRXQv1VPulqRC/xT69OlD//79efTRR4sjHiGEEIX0a8yvTN01lWRzMi46F8a2GMtzEc85xtz8aQnw12rr4L34o7fKK4RZW/iNXgYvBx3ncA+FTv5JSUl06dKF0NBQ+vXrR58+fahUSZZ7FEKIkpZkSmL67um2lfjq+tZlervpVDWW84FrOdkQ/bv1mfyoX8CSZS13crHOvtfkVQhtC1qtunGWYg80ve/Vq1dZuXIlK1as4NixY3Tp0oX+/fvz1FNP4excco9HyPS+QghHtfPSTiZsn8CV9CtoNVoG1h/IoIaDcNaW40fUrp60TrX75yr7R/SCGkHj3lD/OXCtoFp4pUGJze1/4MABli1bxn/+8x88PDzo3bs3Q4YMISIi4mF2WyCS/IUQjiY9K50P93/IN1HfAFDFswrT202noV9DlSMrJhmJcHSNNelf2Hur3NXHuqBO494QWE+18EqbIp3b/24uX77Mxo0b2bhxIzqdjr/97W8cPnyYOnXq8P777zNy5MiH2b0QQojb7Ivbx4TtE7iQegGAF2u+yKimo3BzdlM5siJmyYEzW6yP5x3/CXJM1nKNzjrNbqOXocZj4GRQN84yrNDJPysrix9//JFly5bx22+/0aBBA0aMGMHLL79s+1/GmjVreP311yX5CyFEEUjPSmfBwQV8efxLFBSC3IP4V5t/lb9H+OKPw59fWwfwpVy+Ve5XGxr1srb0PQPVi68cKXTyDwoKwmKx0KtXL/bs2UOjRo3y1OnYsSPe3t5FEJ4QQji2PZf3MGnHJFtr/+nqTzO2+Vg89B4qR1ZE0hLg8HfWpH/50K1y1wpQ/3lo2AuCG5e6pXPLukIn/7lz5/L888/j4uJy1zre3t6yGJAQQjyEtKw0Ptz3IatPrgYg0D2Qya0m06ZSG5UjKwJZmRC1Hv76xrqgjiXbWq51sj6L3/AlqNFdbusXo0In/1dffbU44hBCCHHT1vNbeW/3e8SlWUe0v1DjBUY2HVm2W/sWi3W2vb++gaPrwJR067vgxtYWfr1nwb2iejE6EJnqSAghSomEjARm7ZnFr7G/AlDZozKTW0+mZVBLlSN7CPHHrQn/r28h+cKtcq/K0OAFayvfr6Z68TkoSf5CCKEyRVFYe3otc/bNIdmcjE6j47U6rzG40WBcnVzVDq/wki7Cke+sCf/K4VvlBi+o85R14F5oG5mER0WS/IUQQkXRidFM3TWV/Vf2A1DbpzaTW0+mjm8dlSMrpPTrcPxH6+C92G3YlszVOlsfz2vwovXxPOe7jxcTJUeSvxBCqCAzO5PFfy1m2dFlZFuycXVyZUjDIfSu07vsLL1rToeTv1gT/qmNt6bZBajSGho8D3V6gpuPaiGK/JWRv2FCCFF+/HHhD2bsnmF7fK9D5Q683fJtgj3KwAI02WaI3gxHvocT6yEr7dZ3AfWsU+zWexa8q6gXo7gvSf5CCFFCLqZeZNaeWWw5vwUAfzd/3mnxDp2qdCrdK/DlZEPs/6wJ//h/ITPx1nfeoTcT/nMQUMa6KhyYJH8hhChmphwTK46uYMlfS8jMycRJ48SrdV5lUMNBuDu7qx1e/iwWOLcTjv4Ax9ZB2tVb33kEQN1nrEm/UlOZgKcMkuQvhBDFRFEUtpzfwuy9s223+JsHNuedFu9QvUJ1laPLh8UCF/fBkR/g2Fr7KXZdfaDO36239EPbgFanWpji4UnyF0KIYnAm8Qyz9s5ix6UdAPi7+jOq2Sj+Fv630nWLX1Hgwj7rynnH1tk/i28wQq3HrQm/anvQlePlgh2MJH8hhChCSaYkPvnzE1adWEW2ko2z1pk+dfswsP7A0rP6Xm4L/9g6OLrWPuHrPaHW36y39at1lCl2yylJ/kIIUQSyLFmsjlrNvw/9m2RzMmAdxT+m+RiqeJWCke+WHDi/25rwj/0IKZdufaf3gJo9oO7TUK2zPIvvACT5CyHEQ1AUha0XtvLBvg+ITY4FoLp3dcY0H0Pr4NbqBpeTDWe3WZP9iZ8g9cqt7/Se1oRf5ymo3hmcy+BMguKBSfIXQogHdDThKHP2zWHflX0A+Lj4MLTRUJ6JeEa9iXqyMuFMpPWRvKj1kHH91ncG480Wfk+o2lFa+A5Mkr8QQhTShZQLzD84n19ifgFAr9XTu05vBtQfgKfes+QDMqXAqd/gxM9w8jcwp9z6ztXHOmivTk8IfxSc9CUfnyh1VE3+M2bM4IcffuDEiRO4urrSunVrZs2aRc2assKTEKL0uZZxjcV/LWb1ydVkW7LRoOGJqk8wvPFwgjyCSjaY1KvWqXWP/9fa0s8x3/rOMxhqPwG1n7ROs6uTdp6wp+rfiK1btzJ06FCaN29OdnY277zzDt26dePYsWO4u5fSiS+EEA4n1ZzKimMrWHF0BRnZGQA8EvQIo5qOorZv7ZIL5PoZa+v+xM9wbhe2xXMAfKpZE36tJ60T78iKeeIeNIqiKPevVjKuXr2Kv78/W7du5dFHH71v/eTkZIxGI0lJSXh5eZVAhEIIR5KRncGqE6tYemQpiaZEAOr51uOtpm/xSNAjxR+AxQKXDkLUz9Z59K8et/8+qKE12dd+AvxqyUx7osB5sVTdC0pKSgLAxyf/FaBMJhMmk8n2OTk5uUTiEkI4FnOOme9OfseSw0tIyEgAIMwrjOGNh9M1tGvxTtKTlQExf1gH60X9Cqlxt77T6CCsLdR6wjpwzzuk+OIQRcJiUbiWZiYuKZO45EzikjKIS87kclKmreyXt9phcCrZGRNLTfK3WCyMGDGCNm3aUK9evXzrzJgxgylTppRwZEIIR5GVk8Xa6LUs+WsJl9OsU9tW8qjEGw3f4ImqTxTfCP6UK3BqgzXZn9kCWem3vtN7QPUu1kF7EV3BtULxxCAKLSvHQnyKibikjFvJ3JbkrQk+PiWTrJx732CPTzYR4lOyE0CVmtv+gwcP5pdffmHbtm1Urlw53zr5tfxDQkLktr8Q4qHkl/T9Xf35R4N/8EzEMzgX9bS2igJxh+Hkr9bXxf3233tVsrbsa/SA8HYyy54KMsw5tiQel2xN7lduJvTclntCqomCZFCNBvw8DAQaXQj0ciHI6EKg0ZVAo4FAL1cahXjjqi+aln+Zuu0/bNgwfvrpJ/7444+7Jn4Ag8GAwSC/BEKIomHKMbHm1BqWHllqS/p+rn70r9+fZyOexcWpCJ+DN6fBma3WFv7J3+xn2AMIbgw1HoOaf4PA+tJ/X0wURSE5M/tmyzyDK3fcgs9tsSdlZBVof846DQE3E3rA7Yndy4VAo4Egoyt+ngacdaVrAKaqyV9RFIYPH86aNWuIjIwkPDxczXCEEA4iPSudb09+y4qjK7iaYV2qtliS/vUzcGojnNwAsdsg59adS5zdoGoHa8Kv0R08A4vmmA4sv/71y7cl9dzydHNOgfbnptfZWut3ttpzk72vux6ttuz9R03V5D906FC++uor1q1bh6enJ3Fx1oEtRqMRV1eZalIIUbSSTEmsOrGKL49/yQ3TDQAC3QN5vd7rPF396YdP+lmZcHa7NeGf3gjXTtt/713FmuwjulsH7skMewWWlWPhSnKmfUs9KZPLybduxxekfz2X0dX5ZiK/mdC9bt6Gv5nYA40ueBqcStcKjEVI1T7/u/1Qly1bRt++fe+7vTzqJ4QoiLi0OFYeW8l3J78jPds6mC7EM4QB9QfwZNUnH65P//oZOL3ZmvBj/2c/WE/rBKGtIaKb9VWxhtzOz0du/3qe2/DF0L+e22Ivqj720qZM9PmXkrGGQohy6tSNU6w4uoKfY34m25INQM0KNXm93ut0C+v2YKP3TanWW/jRm+H0Jmvyv51nkHVUfvWu1tv6Lo7bMFEUheSMbFtiv7NfPTfRP2z/+u2fS2P/emlUKgb8CSFEUVEUhd1xu1l+dDnbL263lTcLaEb/+v1pE9ymcLdyLRa4cuRmst9snVnPcluy0jpBlVZQrZO1dR9Q1yFa97f3r9u12G/rX7+clElGVuH61/MbOFfW+9dLI0n+QohywZRjYv2Z9Xxx/AtO3jgJgFajpUuVLvSp24cGfg0KvrPky9bn7aN/t86bn3bV/nvvUOsyuNW7WBfLMaiwmE8xMmdbiE+xHwGf27+e++cH6V+/M6EH3nwFeLng5VJ++9dLI0n+QogyLSEjgW+ivmF11GquZ1qXr3V1cuXp6k/Tu05vQjwLMAueKdU6UC96izXpXz1h/72zu/V5+2qdrUnfp2qZbd3f3r9+52343PdraYXvXw+yjYp3nP71skySvxCizFEUhT+v/slXJ75i49mNtv78QPdAXq71Ms9EPIPRYLz7DnKyrBPrnIm0Pnt/YQ/c3IeVBoIbWZN9tY5QuUWpXwo3t3/9cnKG3W333NvxD9K/HnhbQs9N5IFeLgR5W9+lf73skuQvhCgzMrIz+DXmV74+8TXHr99a5KahX0N61+lNlypd8h/El9tvH/MHxGyFszvAnGpfxzvUmuirdoDw9uCW/xojarBYFBLSTFxJMt1zYpqH7V8P8rp1K97HTfrXyzNJ/kKIUi86MZpvT37Lj6d/JCUrBQC9Vs/fqv6NXrV6Uce3jv0GigIJJ63JPvZ/EPM/yLhuX8fVB6q2tyb6qh3AR51JxvLrX79z4Fxh+tcruDnnO2DOluzL+fPromAk+QshSqXM7Ew2nt3I96e+Z/+VW3PfV/KoxPM1nueZiGeo4HJzkRtFgWvR1kQfu836nnrFfod6D+sz9+GPWl8B9Yt9zft0c/ZdH2/L/ZyQarr/jrjVv34rkbvm89ibCy7O0r8u7k+SvxCiVIm6HsUPp37gv2f+S4rZ2srXarR0qNyBF2q+QKvgVmjRQMIpOLIGYrdbE/7tS98COLlASAtrog97FCo1gSJaoOf2/nW7BV9ub7EnF7x/Xa/TEmA02PWvB952C17610VRk+QvhFBdkimJ9THrWXt6LceuHbOVB7kH8XTE0zxdtSeB6detffU7llgTflq8/U50euvAvLC21lfl5g80fe6d/et3PreeO1I+M8tSoP25584Pf3MK2dxb79K/LtQkyV8IoYpsSzY7Lu3gx+gf+f3c72TdnDjHSeNEx8rtedanIY+kJqI7uhV+mQmZifY70BmsLfvQNhDW5mayv/eaILf3r995Cz43yV9JziTbUvD+9TtnmLt9IZggowueLkW8HLAQRUCSvxCixCiKwvHrx/lv9H9ZH7Pe9lw+QA23YJ7WB/C3G1fx2bEKspfZb+zsfivZh7aGSk3tWvbp5mzirqbazQd/Z5IvaP+6VgMVPQwEebsS6GWw61+/PblL/7ooqyT5CyGK3fnk86yPWc/6mPWcSbo1F34FjTM9sjQ8FX+e2qZz2N34dq0AVVqhVGlFakBzLrrW4HJqjjW5n8okbt/J2wbSZZCcmZ3nuPnJ7V8P8nK1m2EuOPd2vNEFPw8DTtK/LsoxSf5CiGJxJe0KG89u5JczP/PXtSO2cr2i0DEtnSdT02idkUnuTfF098pc9mrIaZd6HNLU5lCGP3EXs7h8LIPMrOvArvse827967mPuwUZXfBx18tjbsLhSfIXQhSZq+lX+S3qO3478zMHUs/ayrWKwiMZmfRIS6dzWjpuioaTmqp8mVOdvTk12GepwZVMH7h2+94S7fYt/etCFB1J/kKIQst9fj3+2g0ux2zmr/jfOJx1ipNOGSi3taobZ2bSPS2dlqkaYrOqc8ASwTdKBIcs1cjA2l+v1YCfl4GGRmv/unX6WNdbj7pJ/7oQRU6SvxDCRlEUkjKy8swwZ32lYbhxmoDUw/hqj5LqcY7D7maOudyc894ZQEP9TBONUw24p4RxNrsuP3vUZZ1fNQK9ra32rl4uvCb960KoSpK/EA4i9/n1O1dwu3LHCm/W59cVqmjiaaiJpoH2DH/XRmNxvchudyd+r+zKeefc2+t6tIpCzWwX6uqqU9u3K36hHfCrWFH614UoxST5C1EOmLMtXEm+o7V+20j4K8mmezy/rlBZc5X6mhhe0MZQ3/kMDXUxWLQZbHd1YaubK8tcXUnR3VroRo+WR4wRdAp/jPYRPanoVrHkTlYI8dAk+QtRyqWZsvOZGz6DuCQTcTeXb01INRdoXzqNhSYeibR0OU993Vkick4TnHESl+xkLMBxvZ7/ubnwqasHhw0+WG5rtVdw9qRtSHs6VulEm+A2uDm7FdMZCyGKmyR/IVSSX/+69XZ8BnHJJuKSrPPGpxTi+fXb54IP9tRRS3eRqtnRBGacwjvxOM4JR9GYU+HmlPNXdDp+dXVhh5sfu9zcuKGxvzMQUSGC9pXb075ye+pXrI9OK4PuhCgPJPkLUQxyLArXUk1czjONbIZdojdlF25++CCjqy25BxitE9MEGl0Idk7HOzkKzZUj1nXr4w7DqSiw2C8sk6LRsNfDi90+QezWa4nOSbvtWwV3Z3ceCXqEdpXa0aZSGwLdA4vwpyKEKC0k+QtRSA/Xv56Xj7vebgW3IK9bE9MEe1ufabc9v55ttq5TH/+nNcmfPgpxR/KuaHdTmquRAwER7HX3ZB8ZHE2/jAUFyIAc0KChXsV6tApuRZvgNtT3q4+zVp6VF6K8k+QvxG3Szdn2S7TeMRK+MP3rWg34e+Ymcuv88LdPTBNkdMXfy5D/8+sWCySehfi9cOIYxB+H+GPWxG+5SzdAhTAS/WtxwOjHAZ2FA5lXOJYUTY4SD+m3VsAL8wqjZVBLWga1pEVgC4wG44P8qIQQZZgkf+EQ7PrXb1v45UpSJpeTb96OT8os+PzwTlq7meXunJAmyOhKRQ/9/Z9ft1jgRixcjbIm+KsnrO8JJyErPf9tDEYIqIPiV5tzPpU56KzhkOkah64dJTrpGFy1r17ZozLNA5vbXnIrXwghyV+UeXf2r985YC63v72g/eseBqc808bePp1skNGVCm7OhXt+PdsMN2KsST4hChJOWRP91ZOQnZH/NjoD+NUA/zrgX5sUn3COOGk5nHGZvxIO89fV/dy4vinPZlWNVWkS0IQm/k1oFtCMII+ggscphHAIkvxFqXZ7/7otsd/2iFtcUibxKaYC96/7uusJyK/FfluSf6j54dOuwbXTcO2UtfWecPP9egwoOflvo9NDxRrWl39t8KuFybcaJxQTR24c52jCUY4mRBITvQwF+/PUa/XUrViXRv6NaOTXiMb+jangUuHB4xdCOARJ/kI1d39+/dbnwvav39liL1D/emGZUuD6GbgWbX1dj76Z8E9Dxo27b6f3gIoRULGmtUVfsSb41ybVzZeTyWc4fv04x64d4/jp5ZzZd4acfP6zUMmjEg0qNqCBXwPq+9Wntk9t9Dr9w5+TEMKhSPIXRU5RFBLTs+yfXU8ugufX72il3/65yOeHT79uvU1/PebWe27CT4u/97bGEPCtdqs1XzECfCOweAZyIfUip26c4mTiSU7GbebEsUVcSL2Q7258XHyo61uXehXrUa9iPer41qGiq8ykJ4R4eJL8RaEUV/967i33/FrtxTI/fLYZks5bB9slnoUbZ61J/kas9ZWZdO/t3XzBt7r15VPVmux9I8CnKhZnF+LS4ohOjCY6MZrTlzYRfexTopOiybhL/36AWwC1fGpRx7cOtX1qU9u3NgFuATIvvhCiWEjyFzam7Bzik0337F+/kmIip5D967cncuvENK4EGg0P379+L1mZkHwREs9Zk3ziOftX8iXgPufhEQg+4VAh3Pqem+QrhIOrN+lZ6ZxLOUdsciyxSbHEnNxFTFIMscmxd03yBp2BqsaqRFSIoEaFGtTyqUXNCjXxdvEu8h+BEELcjSR/B3Fn//qdLfW4pEyupRW8fz3gjkfbbn8v0v71/FhyIDXemtyTLtx8v2hN8skXIfH8/W/NAzi5QoVQ8A6FCmF3vEJB706yOZkLKRe4kHKBcynnOB+7lvOHz3M2+Szx6Xc/hpPGiTBjGNW8q1lfxmpEVIigimcVmSJXCKE6Sf5lXG7/en5TyN5eVuD+dSet3S34IO/chJ77uFsBn19/UOY0SImDlMuQfNn6nnLZmtSTL1tb7Klxd5/o5nbObtb+d+8Q8K5y62WsAhVCUdwqkpKdyuXUy1xOu8yl1EtcSjnGpbhNXEy9yIWUCySbk+95iAqGCoR6hVLFqwpVjVUJN4ZT1ViVSp6VZKY8IUSpJcm/FMuxKCTc7F/PnYTmcj5Tyj5M/3qQd+7gOeuc8YV+fr1AJ5IN6dcg9Yq1RZ4ab/1z7nvKFWtCT7kC5pSC7VOjA88g8AoGYyUwVrYmemNl8KqExViZRK2GqxkJxKfHcyX9CvHp8cQnHyYubiNxqXHEpceRlpV230P5uPhQ2aMyVbyqUMWzCpU9rX8O8wqT2fGEEGWSJH+V5Pav242Ev9m/njvzXGH71/O7DW9bCMbogoehiC53Tpb1kbb065CeAGkJN9+v3fqcdvXWe/o17tu/fjtnd/AKsiZ3z0BrgvcMxuIZQJKLkRsGN67pNFw3JXIt4xrXMq9Z31OPcC1hK1czrpKQkUB2Qe4OAEaDkWD3YII9br7cg6nkUYnKnpWp5FFJlq4VQpQ7pSL5L1q0iNmzZxMXF0fDhg1ZsGABLVq0UDusB5ZmyrabRja3f/321nph+9ftZ5i7dQs+yOiCv5cBg1Mh+5EVxTp9bEaidWR7ZhJkJt78nGhN7hm579etiT434ZvuMxI+XxpwrwjufmS7+5Pq4UuKmzfJBk+SDe4kOetJ1jmRrNWQlJNJkimJRFOi9T3tT25ciyTJnIRFKdhdDusRNVRwqYC/m7/tFeAWYH25BxDkHkSAW4AkdyGEw1E9+X/zzTeMGjWKTz75hJYtWzJv3jy6d+9OVFQU/v7+aodn5/b+desIeJNd/3puci9s//rtz6vfs3892wxZaWBOh6wMMF+FlHS4lgbmVDCl3vaeYn03pdz2SoLMZDAlW9/vNuNc7vliXfY9U6shU6PFpNGQodGQadCTqdGS4eJBhsGTdIMHGXp30p0NpDkbSNM5ka7Vkq7RkEoOaZZsUnNMpGWlkZKVQkb2GUg9A6kPdh089Z74uvji4+Jje1V0q0hF14pUdLG++7n54evqK/3uQgiRD42iKIW4H1v0WrZsSfPmzVm4cCEAFouFkJAQhg8fzvjx4++5bXJyMkajkaSkJLy8vB46lkvxMew7vpHkDDPJGVkkZWaRcvPPKZlZpGaaybFY0KCgQ0GDBS0KWixosaBDQUsOOo0FF52C0QAeeg3uzuDuDG5OCm5OFgw6BRetBSeyUSxZYMnCkpOFJceMkmNGycki5+afc3LMWCzW7yyKhRwNWNCQA+RorO/ZN8uyNZCNhhwNZGs0ZN8sy9JoyMb6bnsBZo0Gs1aLWet0812LWaPBBJhQMN1c/LW4uDq54qn3xEvvhZfeC6PBiJfeC2+DN0aD0fbycfHB2+BNBZcKGPVGnHWS0IUQIj8FzYuqtvzNZjP79+/n7bfftpVptVq6dOnCzp0789Q3mUyYTCbb5+Tke4/ELqzf9nzDB9e+tC/UAR43Xw8rtymddY86upsvG/3Nl3sRBHA/d7+lrtVoMegMuDq54urkiovOBRcnF9yc3XBzcrOVuzu74+bsZn13sr57OHvgofewvjt74Kn3xEPvgZNW9RtPQgjhkFT91zchIYGcnBwCAgLsygMCAjhx4kSe+jNmzGDKlCnFFo+vpzfBcQq5Y91zR71rrB9uvlv7km3f2AbGa27VuVnDur39u0ajtX2n0WhtL51GBxotWq0OrUaHRqNDp3NCo3Gylumc0Wmd0er06LROaDVanDRO6LQ6tDe3d9I64aR1QqfR4ax1tn3O/bOz1tn60t1612v16HV6DDoDzlpnDDoDBieD9f3my0XngpPWSWabE0KIcqJMNb3efvttRo0aZfucnJxMSEhIke3/yfZv8GT7N4psf0IIIURppGryr1ixIjqdjitXrtiVX7lyhcDAwDz1DQYDBoOhpMITQgghyqVimqatYPR6PU2bNmXz5s22MovFwubNm2nVqpWKkQkhhBDll+q3/UeNGkWfPn1o1qwZLVq0YN68eaSlpdGvXz+1QxNCCCHKJdWT/4svvsjVq1eZOHEicXFxNGrUiF9//TXPIEAhhBBCFA3Vn/N/GEX9nL8QQghRlhU0L6ra5y+EEEKIkqf6bf+HkXvToqgn+xFCCCHKotx8eL+b+mU6+aekWJd/Lcpn/YUQQoiyLiUlBaPx7kuOl+k+f4vFwqVLl/D09Cyy2edyJw46f/58mR9HUJ7OBcrX+ZSnc4HydT7l6VxAzqc0K45zURSFlJQUgoOD0Wrv3rNfplv+Wq2WypUrF8u+vby8yvxfrFzl6VygfJ1PeToXKF/nU57OBeR8SrOiPpd7tfhzyYA/IYQQwsFI8hdCCCEcjCT/OxgMBiZNmlQu1hAoT+cC5et8ytO5QPk6n/J0LiDnU5qpeS5lesCfEEIIIQpPWv5CCCGEg5HkL4QQQjgYSf5CCCGEg5HkL4QQQjiYcp/8Fy1aRFhYGC4uLrRs2ZI9e/bcs/63335LrVq1cHFxoX79+qxfv97ue0VRmDhxIkFBQbi6utKlSxdOnTpVnKdgpzDns2TJEtq1a0eFChWoUKECXbp0yVO/b9++aDQau9djjz1W3KcBFO5cli9fnidOFxcXuzpl6dp06NAhz/loNBoef/xxWx21rs0ff/zBk08+SXBwMBqNhrVr1953m8jISJo0aYLBYKB69eosX748T53C/i4WlcKezw8//EDXrl3x8/PDy8uLVq1asWHDBrs6kydPznNtatWqVYxnYVXYc4mMjMz371lcXJxdvbJybfL7ndBoNNStW9dWR61rM2PGDJo3b46npyf+/v707NmTqKio+26nVs4p18n/m2++YdSoUUyaNIkDBw7QsGFDunfvTnx8fL71d+zYQa9evejfvz8HDx6kZ8+e9OzZkyNHjtjqvP/++8yfP59PPvmE3bt34+7uTvfu3cnMzCx15xMZGUmvXr3YsmULO3fuJCQkhG7dunHx4kW7eo899hiXL1+2vb7++utSdy5gnQXr9jjPnj1r931ZujY//PCD3bkcOXIEnU7H888/b1dPjWuTlpZGw4YNWbRoUYHqx8TE8Pjjj9OxY0cOHTrEiBEjGDBggF3CfJDrXVQKez5//PEHXbt2Zf369ezfv5+OHTvy5JNPcvDgQbt6devWtbs227ZtK47w7RT2XHJFRUXZxerv72/7rixdm48++sjuPM6fP4+Pj0+e3xs1rs3WrVsZOnQou3btYuPGjWRlZdGtWzfS0tLuuo2qOUcpx1q0aKEMHTrU9jknJ0cJDg5WZsyYkW/9F154QXn88cftylq2bKkMGjRIURRFsVgsSmBgoDJ79mzb94mJiYrBYFC+/vrrYjgDe4U9nztlZ2crnp6eyooVK2xlffr0UZ566qmiDvW+Cnsuy5YtU4xG4133V9avzdy5cxVPT08lNTXVVqbWtbkdoKxZs+aedcaOHavUrVvXruzFF19Uunfvbvv8sD+folKQ88lPnTp1lClTptg+T5o0SWnYsGHRBfYACnIuW7ZsUQDlxo0bd61Tlq/NmjVrFI1Go8TGxtrKSsO1URRFiY+PVwBl69atd62jZs4pty1/s9nM/v376dKli61Mq9XSpUsXdu7cme82O3futKsP0L17d1v9mJgY4uLi7OoYjUZatmx5130WlQc5nzulp6eTlZWFj4+PXXlkZCT+/v7UrFmTwYMHc+3atSKN/U4Pei6pqamEhoYSEhLCU089xdGjR23flfVr89lnn/HSSy/h7u5uV17S1+ZB3O/3pih+PmqyWCykpKTk+b05deoUwcHBVK1alVdeeYVz586pFOH9NWrUiKCgILp27cr27dtt5WX92nz22Wd06dKF0NBQu/LScG2SkpIA8vy9uZ2aOafcJv+EhARycnIICAiwKw8ICMjT35UrLi7unvVz3wuzz6LyIOdzp3HjxhEcHGz3F+mxxx7j888/Z/PmzcyaNYutW7fSo0cPcnJyijT+2z3IudSsWZOlS5eybt06vvjiCywWC61bt+bChQtA2b42e/bs4ciRIwwYMMCuXI1r8yDu9nuTnJxMRkZGkfzdVdOcOXNITU3lhRdesJW1bNmS5cuX8+uvv/Lxxx8TExNDu3btbMuMlxZBQUF88sknfP/993z//feEhITQoUMHDhw4ABTNvytquXTpEr/88kue35vScG0sFgsjRoygTZs21KtX76711Mw5ZXpVP1FwM2fOZNWqVURGRtoNlHvppZdsf65fvz4NGjSgWrVqREZG0rlzZzVCzVerVq1o1aqV7XPr1q2pXbs2n376KVOnTlUxsof32WefUb9+fVq0aGFXXlauTXn21VdfMWXKFNatW2fXT96jRw/bnxs0aEDLli0JDQ1l9erV9O/fX41Q81WzZk1q1qxp+9y6dWuio6OZO3cuK1euVDGyh7dixQq8vb3p2bOnXXlpuDZDhw7lyJEjJTLW4EGV25Z/xYoV0el0XLlyxa78ypUrBAYG5rtNYGDgPevnvhdmn0XlQc4n15w5c5g5cya//fYbDRo0uGfdqlWrUrFiRU6fPv3QMd/Nw5xLLmdnZxo3bmyLs6xem7S0NFatWlWgf5RK4to8iLv93nh5eeHq6lok11sNq1atYsCAAaxevTrPrdk7eXt7U6NGjVJ3bfLTokULW5xl9dooisLSpUt59dVX0ev196xb0tdm2LBh/PTTT2zZsuW+S86rmXPKbfLX6/U0bdqUzZs328osFgubN2+2a0HerlWrVnb1ATZu3GirHx4eTmBgoF2d5ORkdu/efdd9FpUHOR+wjhSdOnUqv/76K82aNbvvcS5cuMC1a9cICgoqkrjz86DncrucnBwOHz5si7MsXhuwPuZjMpno3bv3fY9TEtfmQdzv96YorndJ+/rrr+nXrx9ff/213eOXd5Oamkp0dHSpuzb5OXTokC3OsnhtwDqy/vTp0wX6T3NJXRtFURg2bBhr1qzh999/Jzw8/L7bqJpzHmq4YCm3atUqxWAwKMuXL1eOHTum/OMf/1C8vb2VuLg4RVEU5dVXX1XGjx9vq799+3bFyclJmTNnjnL8+HFl0qRJirOzs3L48GFbnZkzZyre3t7KunXrlL/++kt56qmnlPDwcCUjI6PUnc/MmTMVvV6vfPfdd8rly5dtr5SUFEVRFCUlJUUZPXq0snPnTiUmJkbZtGmT0qRJEyUiIkLJzMwsVecyZcoUZcOGDUp0dLSyf/9+5aWXXlJcXFyUo0eP2p1vWbk2udq2bau8+OKLecrVvDYpKSnKwYMHlYMHDyqA8uGHHyoHDx5Uzp49qyiKoowfP1559dVXbfXPnDmjuLm5KWPGjFGOHz+uLFq0SNHpdMqvv/5qq3O/n09pOp8vv/xScXJyUhYtWmT3e5OYmGir889//lOJjIxUYmJilO3btytdunRRKlasqMTHx5eqc5k7d66ydu1a5dSpU8rhw4eVt956S9FqtcqmTZtsdcrStcnVu3dvpWXLlvnuU61rM3jwYMVoNCqRkZF2f2/S09NtdUpTzinXyV9RFGXBggVKlSpVFL1er7Ro0ULZtWuX7bv27dsrffr0sau/evVqpUaNGoper1fq1q2r/Pzzz3bfWywWZcKECUpAQIBiMBiUzp07K1FRUSVxKoqiFO58QkNDFSDPa9KkSYqiKEp6errSrVs3xc/PT3F2dlZCQ0OVgQMHlsgvfWHPZcSIEba6AQEByt/+9jflwIEDdvsrS9dGURTlxIkTCqD89ttvefal5rXJfTzszldu/H369FHat2+fZ5tGjRoper1eqVq1qrJs2bI8+73Xz6c4FfZ82rdvf8/6imJ9lDEoKEjR6/VKpUqVlBdffFE5ffp0qTuXWbNmKdWqVVNcXFwUHx8fpUOHDsrvv/+eZ79l5dooivVRN1dXV2Xx4sX57lOta5PfeQB2vwulKefIkr5CCCGEgym3ff5CCCGEyJ8kfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQtxTbGwsGo2GQ4cOFXibvn375lltrbAiIyPRaDQkJiY+1H6EEHlJ8hdCCCEcjCR/IYQQwsFI8hfCgVy9epXAwECmT59uK9uxYwd6vT7P0qJ3k5OTQ//+/QkPD8fV1ZWaNWvy0Ucf5Vt3ypQp+Pn54eXlxRtvvIHZbLZ9Z7FYmDFjhm0/DRs25Lvvvnu4ExRCFIiT2gEIIUqOn58fS5cupWfPnnTr1o2aNWvy6quvMmzYMDp37lygfVgsFipXrsy3336Lr68vO3bs4B//+AdBQUG88MILtnqbN2/GxcWFyMhIYmNj6devH76+vkybNg2AGTNm8MUXX/DJJ58QERHBH3/8Qe/evfHz86N9+/bFcv5CCCtZ1U8IBzR06FA2bdpEs2bNOHz4MHv37sVgMORbNzY2lvDwcA4ePEijRo3yrTNs2DDi4uJsLfe+ffvy3//+l/Pnz+Pm5gbAJ598wpgxY0hKSiIrKwsfHx82bdpEq1atbPsZMGAA6enpfPXVV0RGRtKxY0du3LiBt7d3kZ6/EI5OWv5COKA5c+ZQr149vv32W/bv33/XxH83ixYtYunSpZw7d46MjAzMZnOe/xg0bNjQlvgBWrVqRWpqKufPnyc1NZX09HS6du1qt43ZbKZx48YPfF5CiIKR5C+EA4qOjubSpUtYLBZiY2OpX79+gbddtWoVo0eP5oMPPqBVq1Z4enoye/Zsdu/eXeB9pKamAvDzzz9TqVIlu+8K+x8RIUThSfIXwsGYzWZ69+7Niy++SM2aNRkwYACHDx/G39+/QNtv376d1q1bM2TIEFtZdHR0nnp//vknGRkZuLq6ArBr1y48PDwICQnBx8cHg8HAuXPnpH9fCBVI8hfCwfzf//0fSUlJzJ8/Hw8PD9avX8/rr7/OTz/9VKDtIyIi+Pzzz9mwYQPh4eGsXLmSvXv3Eh4eblfPbDbTv39/3n33XWJjY5k0aRLDhg1Dq9Xi6enJ6NGjGTlyJBaLhbZt25KUlMT27dvx8vKiT58+xXHqQoibJPkL4UAiIyOZN28eW7ZswcvLC4CVK1fSsGFDPv74YwYPHnzffQwaNIiDBw/y4osvotFo6NWrF0OGDOGXX36xq9e5c2ciIiJ49NFHMZlM9OrVi8mTJ9u+nzp1Kn5+fsyYMYMzZ87g7e1NkyZNeOedd4r0nIUQeclofyGEEMLByCQ/QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIP5fxyzH4CSvAGMAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = np.linspace(0, 2, 100) # Sample data.\n", + "\n", + "plt.figure(figsize=(5, 2.7), layout='constrained')\n", + "plt.plot(x, x, label='linear') # Plot some data on the (implicit) Axes.\n", + "plt.plot(x, x**2, label='quadratic') # etc.\n", + "plt.plot(x, x**3, label='cubic')\n", + "plt.xlabel('x label')\n", + "plt.ylabel('y label')\n", + "plt.title(\"Simple Plot\")\n", + "plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "PHWE0eZ2oYST", + "outputId": "4894ad4e-7349-4d7b-a143-12336a7914d8" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVGtJREFUeJzt3Xd4VFX6wPHvzCQz6RMSUiEkAULvVZp0kFVX7KIoILBIU2Bp+pO2SBMUpKwKK0UsiAVwFUVAgkvvSg0QEnoIAdKTmSRzf38MGRgSIIEkN8m8n+eZZ5gz59773lzCy7nn3HM0iqIoCCGEEMJhaNUOQAghhBAlS5K/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EEII4WAk+QshhBAORpK/EGVYWFgYffv2VeXYkydPRqPRlPhxIyMj0Wg0REZGlvixhSgvJPkLUQodPnyY5557jtDQUFxcXKhUqRJdu3ZlwYIFaodWbJYvX45Go7G9XFxcqFGjBsOGDePKlStFcoz169czefLkItmXEGWZk9oBCCHs7dixg44dO1KlShUGDhxIYGAg58+fZ9euXXz00UcMHz7cVjcqKgqttnz9H/5f//oX4eHhZGZmsm3bNj7++GPWr1/PkSNHcHNze6h9r1+/nkWLFsl/AITDk+QvRCkzbdo0jEYje/fuxdvb2+67+Ph4u88Gg6EEIysZPXr0oFmzZgAMGDAAX19fPvzwQ9atW0evXr1Ujk6I8qF8NRmEKAeio6OpW7dunsQP4O/vb/f5zj7/3Fvn27Zt480338TPzw9vb28GDRqE2WwmMTGR1157jQoVKlChQgXGjh3L7Qt7xsbGotFomDNnDnPnziU0NBRXV1fat2/PkSNHChT/F198QdOmTXF1dcXHx4eXXnqJ8+fPP9DPAqBTp04AxMTE3LPet99+aztuxYoV6d27NxcvXrR937dvXxYtWgRg170ghCOSlr8QpUxoaCg7d+7kyJEj1KtX74H2MXz4cAIDA5kyZQq7du1i8eLFeHt7s2PHDqpUqcL06dNZv349s2fPpl69erz22mt223/++eekpKQwdOhQMjMz+eijj+jUqROHDx8mICDgrsedNm0aEyZM4IUXXmDAgAFcvXqVBQsW8Oijj3Lw4MF8/0NzP9HR0QD4+vretc7y5cvp168fzZs3Z8aMGVy5coWPPvqI7du32447aNAgLl26xMaNG1m5cmWh4xCiXFGEEKXKb7/9puh0OkWn0ymtWrVSxo4dq2zYsEExm8156oaGhip9+vSxfV62bJkCKN27d1csFoutvFWrVopGo1HeeOMNW1l2drZSuXJlpX379raymJgYBVBcXV2VCxcu2Mp3796tAMrIkSNtZZMmTVJu/yckNjZW0el0yrRp0+xiPHz4sOLk5JSn/E65sW/atEm5evWqcv78eWXVqlWKr6+vXTxbtmxRAGXLli2KoiiK2WxW/P39lXr16ikZGRm2/f30008KoEycONFWNnToUEX+2RNCUeS2vxClTNeuXdm5cyd///vf+fPPP3n//ffp3r07lSpV4scffyzQPvr37293S7tly5YoikL//v1tZTqdjmbNmnHmzJk82/fs2ZNKlSrZPrdo0YKWLVuyfv36ux7zhx9+wGKx8MILL5CQkGB7BQYGEhERwZYtWwoUe5cuXfDz8yMkJISXXnoJDw8P1qxZYxfP7fbt20d8fDxDhgzBxcXFVv74449Tq1Ytfv755wIdVwhHIrf9hSiFmjdvzg8//IDZbObPP/9kzZo1zJ07l+eee45Dhw5Rp06de25fpUoVu89GoxGAkJCQPOU3btzIs31ERESesho1arB69eq7HvPUqVMoipLvtgDOzs73jDnXokWLqFGjBk5OTgQEBFCzZs17PtFw9uxZAGrWrJnnu1q1arFt27YCHVcIRyLJX4hSTK/X07x5c5o3b06NGjXo168f3377LZMmTbrndjqdrsDlym0D/h6GxWJBo9Hwyy+/5HscDw+PAu2nRYsWttH+QojiIclfiDIiNyFevny52I916tSpPGUnT54kLCzsrttUq1YNRVEIDw+nRo0axRidvdDQUMA650HukwG5oqKibN8DMrpfiJukz1+IUmbLli35tsZz+9vzu71d1NauXWv3mNyePXvYvXs3PXr0uOs2zzzzDDqdjilTpuSJX1EUrl27ViyxNmvWDH9/fz755BNMJpOt/JdffuH48eM8/vjjtjJ3d3cAEhMTiyUWIcoKafkLUcoMHz6c9PR0nn76aWrVqoXZbGbHjh188803hIWF0a9fv2KPoXr16rRt25bBgwdjMpmYN28evr6+jB079q7bVKtWjffee4+3336b2NhYevbsiaenJzExMaxZs4Z//OMfjB49ushjdXZ2ZtasWfTr14/27dvTq1cv26N+YWFhjBw50la3adOmALz55pt0794dnU7HSy+9VOQxCVHaSfIXopSZM2cO3377LevXr2fx4sWYzWaqVKnCkCFDePfddx/oWfnCeu2119BqtcybN4/4+HhatGjBwoULCQoKuud248ePp0aNGsydO5cpU6YA1kGG3bp14+9//3uxxdu3b1/c3NyYOXMm48aNw93dnaeffppZs2bZ/byeeeYZhg8fzqpVq/jiiy9QFEWSv3BIGqWoRvsIIcq82NhYwsPDmT17drG00oUQpYP0+QshhBAORpK/EEII4WAk+QshhBAORvr8hRBCCAcjLX8hhBDCwUjyF0IIIRxMmX7O32KxcOnSJTw9PWXaTiGEEA5PURRSUlIIDg6+54JYZTr5X7p0Kc8qZUIIIYSjO3/+PJUrV77r92U6+Xt6egLWk/Ty8lI5GiGEEEJdycnJhISE2PLj3ZTp5J97q9/Ly0uSvxBCCHHT/brCZcCfEEII4WAk+QshhBAORtXkn5OTw4QJEwgPD8fV1ZVq1aoxderUfNcyF0IIIUTRULXPf9asWXz88cesWLGCunXrsm/fPvr164fRaOTNN98skmMoikJ2djY5OTlFsj+hDp1Oh5OTkzzSKYQQRUDV5L9jxw6eeuopHn/8cQDCwsL4+uuv2bNnT5Hs32w2c/nyZdLT04tkf0Jdbm5uBAUFodfr1Q5FCCEe2qoTq3DSOvFcjedK/NiqJv/WrVuzePFiTp48SY0aNfjzzz/Ztm0bH374Yb71TSYTJpPJ9jk5Ofmu+7ZYLMTExKDT6QgODkav10ursYxSFAWz2czVq1eJiYkhIiLinpNXCCFEaXcw/iCz9swiW8km2COY1sGtS/T4qib/8ePHk5ycTK1atdDpdOTk5DBt2jReeeWVfOvPmDGDKVOmFGjfZrMZi8VCSEgIbm5uRRm2UIGrqyvOzs6cPXsWs9mMi4uL2iEJIcQDSchI4J+R/yRbyaZHWA9aBbUq8RhUbT6tXr2aL7/8kq+++ooDBw6wYsUK5syZw4oVK/Kt//bbb5OUlGR7nT9//r7HkBZi+SHXUghR1mVZshi9dTRXM65SzViNya0nq3JXWtWW/5gxYxg/fjwvvfQSAPXr1+fs2bPMmDGDPn365KlvMBgwGAwlHaYQQghRJD7a/xH7r+zH3dmduR3n4uaszp1pVZtS6enpeVpzOp0Oi8WiUkRCCCFE8fgt9jdWHLPe2X6vzXuEG8NVi0XV5P/kk08ybdo0fv75Z2JjY1mzZg0ffvghTz/9tJphqa5Dhw6MGDECsD4BMW/ePFXjEUII8XDOJJ5hwvYJAPSr248uoV1UjUfV2/4LFixgwoQJDBkyhPj4eIKDgxk0aBATJ05UM6xSZe/evbi7u6sdhhBCiAeUYk7hrS1vkZ6dTvPA5rzZpGjmsXkYqiZ/T09P5s2bJy3be/Dz81M7BACysrJwdnZWOwwhhChTLIqFd7a9Q2xyLIHugcx+dDZOWvXX1HOo4dOKopBuzi7x18NMV3znbX+NRsN//vMfnn76adzc3IiIiODHH3+02+bIkSP06NEDDw8PAgICePXVV0lISLB9/+uvv9K2bVu8vb3x9fXliSeeIDo62vZ9bGwsGo2Gb775hvbt2+Pi4sKXX375wOcghBCO6tO/PiXyfCR6rZ55Hebh6+qrdkhAGV/St7AysnKoM3FDiR/32L+646Yvuh/1lClTeP/995k9ezYLFizglVde4ezZs/j4+JCYmEinTp0YMGAAc+fOJSMjg3HjxvHCCy/w+++/A5CWlsaoUaNo0KABqampTJw4kaeffppDhw7ZDcAcP348H3zwAY0bN5bn6oUQopC2nt/Kvw/9G4AJrSZQt2JdlSO6xaGSf3nRt29fevXqBcD06dOZP38+e/bs4bHHHmPhwoU0btyY6dOn2+ovXbqUkJAQ20yKzz77rN3+li5dip+fH8eOHaNevXq28hEjRvDMM8+UzEkJIUQ5EpsUy9v/exuAF2u+SM/qPdUN6A4OlfxdnXUc+1d3VY5blBo0aGD7s7u7O15eXsTHxwPw559/smXLFjw8PPJsFx0dTY0aNTh16hQTJ05k9+7dJCQk2B6tPHfunF3yb9asWZHGLYQQjiDVnMqbW94kJSuFxv6NGdd8nNoh5eFQyV+j0RTp7Xe13DnwTqPR2BJ4amoqTz75JLNmzcqzXVBQEGB9xDI0NJQlS5YQHByMxWKhXr16mM1mu/rylIEQQhSORbEw/n/jiUmKwd/Nnw87fIizrvQNli77mVDYadKkCd9//z1hYWE4OeW9vNeuXSMqKoolS5bQrl07ALZt21bSYQohRLm08OBCtl7YikFnYH7H+VR0rah2SPlyqNH+jmDo0KFcv36dXr16sXfvXqKjo9mwYQP9+vUjJyeHChUq4Ovry+LFizl9+jS///47o0aNUjtsIYQo8zbEbmDJ4SUATGo1qVQN8LuTJP9yJjg4mO3bt5OTk0O3bt2oX78+I0aMwNvbG61Wi1arZdWqVezfv5969eoxcuRIZs+erXbYQghRpkVdj7LN4Ne3bl+erPakyhHdm0Z5mIfQVZacnIzRaCQpKQkvLy+77zIzM4mJiSE8PFweUysn5JoKIUqjhIwEev3ci7i0OFoHt+bfnf+NTlu0A70L6l558XbS8hdCCCEekDnHzMgtI4lLiyPMK4z3H31ftcRfGJL8hRBCiAegKApTdk7h0NVDeOo9WdBpAUaDUe2wCkSSvxBCCPEAVhxdwY/RP6LT6JjTfg5hxjC1QyowSf5CCCFEIf1x4Q8+3P8hAGOaj6F1cGuVIyocSf5CCCFEIURdj2LM1jEoKDxX4zlervWy2iEVmiR/IYQQooASMhIY9vsw0rPTaRHYgndavINGo1E7rEKT5C+EEEIUQGZ2Jm/+/qZtZH9pnbq3ICT5CyGEEPdhUSy8u/1dDiccxmgwsqjzojIzsj8/kvyFEEKI+1h0aBEbYjfgpHViboe5VPGqonZID0WSv7CZPHkyjRo1Krb9d+jQgREjRhTb/oUQojisPb2WxX8tBqxz9jcPbK5yRA9PVvUTRS4yMpKOHTty48YNvL29beU//PBDnuWIhRCiNNt1eRdTdkwBYGD9gfSs3lPdgIqIJH9RYGazGb1e/8Db+/j4FGE0QghRvKIToxm1ZRTZSjY9wnswvPFwtUMqMo51219RwJxW8q9Crp2UlpbGa6+9hoeHB0FBQXzwwQd2t8w1Gg1r166128bb25vly5fbPo8bN44aNWrg5uZG1apVmTBhAllZWXbbzJw5k4CAADw9Penfvz+ZmZl23/ft25eePXsybdo0goODqVmzJgArV66kWbNmeHp6EhgYyMsvv0x8fDwAsbGxdOzYEYAKFSqg0Wjo27cvkPe2v8lkYty4cYSEhGAwGKhevTqfffZZoX5WQghRHBIyEhiyaQgpWSk08W/Ce23eK5OP9N2NY7X8s9JhenDJH/edS6B3L3D1MWPGsHXrVtatW4e/vz/vvPMOBw4cKFR/vKenJ8uXLyc4OJjDhw8zcOBAPD09GTt2LACrV69m8uTJLFq0iLZt27Jy5Urmz59P1apV7fazefNmvLy82Lhxo60sKyuLqVOnUrNmTeLj4xk1ahR9+/Zl/fr1hISE8P333/Pss88SFRWFl5cXrq6u+cb42muvsXPnTubPn0/Dhg2JiYkhISGhwOcohBDFIT0rnWGbh3Ep7RKhXqF81PEj9LoHv+tZGjlW8i8DUlNT+eyzz/jiiy/o3LkzACtWrKBy5cqF2s+7775r+3NYWBijR49m1apVtuQ/b948+vfvT//+/QF477332LRpU57Wv7u7O//5z3/sbve//vrrtj9XrVqV+fPn07x5c1JTU/Hw8LDd3vf397fr87/dyZMnWb16NRs3bqRLly62fQkhhJqyLdmM+WMMR68dxdvgzb87/xtvF2+1wypyjpX8nd2srXA1jltA0dHRmM1mWrZsaSvz8fGx3XIvqG+++Yb58+cTHR1Namoq2dnZdms7Hz9+nDfeeMNum1atWrFlyxa7svr16+fp59+/fz+TJ0/mzz//5MaNG1gsFgDOnTtHnTp1ChTfoUOH0Ol0tG/fvlDnJYQQxUVRFN7b9R5/XPgDg87Aws4Ly/wjfXfjWMlfoynU7ffSSqPRoNwxjuD2/vydO3fyyiuvMGXKFLp3747RaGTVqlV88MEHhT6Wu7v9zystLY3u3bvTvXt3vvzyS/z8/Dh37hzdu3fHbDYXeL936woQQgi1LDm8hO9PfY9Wo+X9R9+noV9DtUMqNo414K8MqFatGs7OzuzevdtWduPGDU6ePGn77Ofnx+XLl22fT506RXp6uu3zjh07CA0N5f/+7/9o1qwZERERnD171u44tWvXtjsGwK5du+4b34kTJ7h27RozZ86kXbt21KpVyzbYL1funYKcnJy77qd+/fpYLBa2bt1632MKIURxW3d6HQsOLgBgfIvxdKrSSeWIipck/1LGw8OD/v37M2bMGH7//XeOHDlC37590WpvXapOnTqxcOFCDh48yL59+3jjjTfsnp+PiIjg3LlzrFq1iujoaObPn8+aNWvsjvPWW2+xdOlSli1bxsmTJ5k0aRJHjx69b3xVqlRBr9ezYMECzpw5w48//sjUqVPt6oSGhqLRaPjpp5+4evUqqampefYTFhZGnz59eP3111m7di0xMTFERkayevXqwv7IhBDioWy/uJ3JOyYD8Hq91+lVq5e6AZUASf6l0OzZs2nXrh1PPvkkXbp0oW3btjRt2tT2/QcffEBISAjt2rXj5ZdfZvTo0bi53RpX8Pe//52RI0cybNgwGjVqxI4dO5gwYYLdMV588UUmTJjA2LFjadq0KWfPnmXw4MH3jc3Pz4/ly5fz7bffUqdOHWbOnMmcOXPs6lSqVIkpU6Ywfvx4AgICGDZsWL77+vjjj3nuuecYMmQItWrVYuDAgaSlpRXmRyWEEA/lSMIRRkaOJFvJ5vGqj/NWk7fUDqlEaJQ7O4/LkOTkZIxGI0lJSXaD2QAyMzOJiYkhPDwcFxcXlSIsOh06dKBRo0bMmzdP7VBUU96uqRBCXbFJsbz2y2vcMN2gdXBrFnZaWGZX6ct1r7x4O2n5CyGEcDhX06/yxqY3uGG6QV3fumV6ed4HIclfCCGEQ0kxpzB402Aupl6kimcVFnVehLtz2X8SrDAc61G/MiwyMlLtEIQQoszLzM5k2OZhRN2IwtfFl0+6foKvq6/aYZU41Vv+Fy9epHfv3vj6+uLq6kr9+vXZt2+f2mEJIYQoZ7IsWYzZOoYD8QfwcPbgk66fEOIZonZYqlC15X/jxg3atGlDx44d+eWXX/Dz8+PUqVNUqFBBzbCEEEKUMxbFwqTtk4i8EIlBZ2BBpwXU8qmldliqUTX5z5o1i5CQEJYtW2YrCw8PVzEiIYQQ5Y2iKMzeO5v/nvkvOo2OOe3n0CywmdphqUrV2/4//vgjzZo14/nnn8ff35/GjRuzZMmSu9Y3mUwkJyfbvYQQQoh7WfzXYr44/gUAU9tMpUNIB3UDKgVUTf5nzpzh448/JiIigg0bNjB48GDefPNNVqxYkW/9GTNmYDQaba+QEMfsqxFCCFEwXxz7goWHFgIwtvlYnqz2pMoRlQ6qTvKj1+tp1qwZO3bssJW9+eab7N27l507d+apbzKZMJlMts/JycmEhIQ4xCQ/Qq6pEKJw1pxaw8QdEwEY0nAIgxvdfxbTsq5MTPITFBSUZwnY2rVrc+7cuXzrGwwGvLy87F7C3vLly/H29r5nncmTJ9OoUaMSiUcIIdSwIXYDk3dOBuC1Oq/xRsM37r2Bg1E1+bdp04aoqCi7spMnTxIaGqpSRI5h9OjRbN68We0whBCiWPzvwv8Y/7/xWBQLz0Y8y+hmo9FoNGqHVaqomvxHjhzJrl27mD59OqdPn+arr75i8eLFDB06VM2wyj0PDw98fR1vUgshRPm3+/Ju60I9lmweC3uMCY9MkMSfD1WTf/PmzVmzZg1ff/019erVY+rUqcybN49XXnmlWI6nKArpWekl/irssAqLxcL7779P9erVMRgMVKlShWnTphEZGYlGoyExMdFW99ChQ2g0GmJjY+32sXbtWiIiInBxcaF79+6cP3/e9l1+t/2XLl1K3bp1MRgMBAUF3XUlPiGEKK0OXDnA8N+HY8ox0SGkA9PbTUen1akdVqmk+vS+TzzxBE888USJHCsjO4OWX7UskWPdbvfLu3Fzdrt/xZvefvttlixZwty5c2nbti2XL1/mxIkTBd4+PT2dadOm8fnnn6PX6xkyZAgvvfQS27dvz7f+xx9/zKhRo5g5cyY9evQgKSnprnWFEKI0Onz1MEM2DyEjO4M2wW34oP0HOGsdZ6GewlI9+Qt7KSkpfPTRRyxcuJA+ffoAUK1aNdq2bVvg+f2zsrJYuHAhLVta/6OzYsUKateuzZ49e2jRokWe+u+99x7//Oc/eeutW+tYN2/e/OFPRgghSsCJ6ycYtGkQaVlpNA9sztyOc9Hr9GqHVao5VPJ3dXJl98u7VTluQR0/fhyTyUTnzp0f+HhOTk52ybtWrVp4e3tz/PjxPMk/Pj6eS5cuPdTxhBBCLSdvnGTgbwNJMafQyK8RCzstLNS/uY7KoZK/RqMp1O13Nbi63v0vrVZrHaJx+xiCrKysYjueEEKUZqdvnGbgbwNJNCVS17cu/+7y71L/b3xpofqqfsJeREQErq6u+T6K5+fnB8Dly5dtZYcOHcpTLzs7225lxKioKBITE6ldu3aeup6enoSFhcmjf0KIMuVM4hn6/9af65nXqe1Tm0+7foqn3lPtsMoMh2r5lwUuLi6MGzeOsWPHotfradOmDVevXuXo0aO89tprhISEMHnyZKZNm8bJkyf54IMP8uzD2dmZ4cOHM3/+fJycnBg2bBiPPPJIvv39YB39/8Ybb+Dv70+PHj1ISUlh+/btDB8+vLhPVwghCi0mKcaW+Gv51GJJtyUYDUa1wypTJPmXQhMmTMDJyYmJEydy6dIlgoKCeOONN3B2dubrr79m8ODBNGjQgObNm/Pee+/x/PPP223v5ubGuHHjePnll7l48SLt2rXjs88+u+vx+vTpQ2ZmJnPnzmX06NFUrFiR5557rrhPUwghCu1M0hkGbBhAQkYCNSrUYElXSfwPQtW5/R/WveYwlnngyx+5pkI4tjOJZ3h9w+tcy7xGde/qfNb9M3xcfNQOq1QpE3P7CyGEEAURnRhNvw39uJZ5jRoVarC0+1JJ/A9Bkr8QQohS7dSNU7y+4XVbH/9n3T6jgksFtcMq06TPXwghRKkVdT2Kgb8N5IbpBrV9asvgviIiLX8hhBCl0pGEI7y+4XVumG5Qx7eOJP4iVO6TfxkezyjuINdSCMdxMP4gA38bSLI5mYZ+DflPt/9I4i9C5Tb5OztbF3RIT09XORJRVHKvZe61FUKUT3vj9jJo4yBSs1JpGtBUJvApBuW2z1+n0+Ht7U18fDxgffZd1nQumxRFIT09nfj4eLy9vdHpZIlOIcqrbRe3MXLLSDJzMmkV1IqPOn0kc/UXg3Kb/AECAwMBbP8BEGWbt7e37ZoKIcqfjWc3MvaPsWRbsmlXqR1zO87FoDOoHVa5VK6Tv0ajISgoCH9//4deAEeoy9nZWVr8QpRj606vY+KOiVgUC91CuzGz3UycddLFV1zKdfLPpdPpJHEIIUQp9dXxr5ixZwYAT1d/mkmtJqHTyr/ZxalAyT85ObnAO7zXdIJCCCFELkVRWHJ4CQsOLgCgd+3ejGk+Bq2m3I5FLzUKlPy9vb3vO1hOURQ0Gg05OTlFEpgQQojyy6JYmL13Nl8c/wKAQQ0GMbTRUBmYXUIKlPy3bNlS3HEIIYRwEFmWLCZtn8R/z/wXgHHNx9G7Tm+Vo3IsBUr+7du3L+44hBBCOIDM7EzGbB1D5IVIdBodU9tM5clqT6odlsN5oI6V//3vf/Tu3ZvWrVtz8eJFAFauXMm2bduKNDghhBDlR5IpiUEbBxF5IRKDzsBHHT+SxK+SQif/77//nu7du+Pq6sqBAwcwmUwAJCUlMX369CIPUAghRNkXlxZH31/7ciD+AJ7Onnza9VPah8hdZbUUOvm/9957fPLJJyxZssRumtU2bdpw4MCBIg1OCCFE2RedGE3v9b05nXgaf1d/lvdYTtOApmqH5dAK/Zx/VFQUjz76aJ5yo9FIYmJiUcQkhBCinDgYf5Bhm4eRbE4m3BjOp10+JcgjSO2wHF6hW/6BgYGcPn06T/m2bduoWrVqkQQlhBCi7Nt4diMDNgywrcz3+WOfS+IvJQqd/AcOHMhbb73F7t270Wg0XLp0iS+//JLRo0czePDg4ohRCCFEGfP50c/5Z+Q/MVvMdAjpwJJuS/B28VY7LHFToW/7jx8/HovFQufOnUlPT+fRRx/FYDAwevRohg8fXhwxCiGEKCPunLznxZov8naLt2W63lJGoyiK8iAbms1mTp8+TWpqKnXq1MHDw6OoY7uv5ORkjEYjSUlJMq2wEEKoLCM7g//b9n9sPLsRgFFNR9G3bl+Zta8EFTQvPvDCPnq9Hk9PTzw9PVVJ/EIIIUqPhIwE3vz9TQ4nHMZZ68y0ttPoEd5D7bDEXRS6zz87O5sJEyZgNBoJCwsjLCwMo9HIu+++K8vmCiGEA4pOjOaVn1/hcMJhjAYjS7otkcRfyhW65T98+HB++OEH3n//fVq1agXAzp07mTx5MteuXePjjz8u8iCFEEKUTjsv7eSfkf8kJSuFKp5V+HeXfxPqFap2WOI+Ct3nbzQaWbVqFT162P+vbv369fTq1YukpKQiDfBepM9fCCHUszpqNdN3TydHyaGJfxM+6viRjOhXWbH1+RsMBsLCwvKUh4eHo9frC7s7IYQQZUy2JZvZe2fz1YmvAHii6hNMaT0FvU5yQFlR6D7/YcOGMXXqVNuc/gAmk4lp06YxbNiwBw5k5syZaDQaRowY8cD7EEIIUbySzckM3TzUlvjfavIW09tOl8RfxhSo5f/MM8/Yfd60aROVK1emYcOGAPz555+YzWY6d+78QEHs3buXTz/9lAYNGjzQ9kIIIYrf2eSzDP99ODFJMbg6uTK97XS6hHZROyzxAAqU/I1Go93nZ5991u5zSEjIAweQmprKK6+8wpIlS3jvvfceeD9CCCGKz46LOxj9x2hSzCkEuAWwoNMCavvWVjussu3iAbiwF1oOKvFDFyj5L1u2rNgCGDp0KI8//jhdunS5b/I3mUx23Q3JycnFFpcQQghQFIXPj33Oh/s/xKJYaOjXkLkd5uLn5qd2aGVTThYcWwe7P4ULe0CjhZp/A+8Hb0Q/iAee5KcorFq1igMHDrB3794C1Z8xYwZTpkwp5qiEEEIAmHJM/Gvnv/gx+kcAelbvyYRHJkj//oNIjYf9y2HfUki5bC3TOkO9Z0HJKfFwHij5f/fdd6xevZpz585hNpvtvjtw4ECB9nH+/HneeustNm7ciIuLS4G2efvttxk1apTtc3Jy8kN1OQghhMhfXFocI7aM4Oi1o+g0OkY3G80rtV+RqXoL6+J+2L0Yjv4AOTfzpUcANOsPTfuCZ4AqYRU6+c+fP5//+7//o2/fvqxbt45+/foRHR3N3r17GTp0aIH3s3//fuLj42nSpImtLCcnhz/++IOFCxdiMpnQ6ewXgjAYDBgMhsKGLIQQohD2xu1l9NbRXM+8jtFgZPajs2kV3ErtsMqObBMcXQt7FsPFfbfKKzWFFoOg7tPgpO7dk0In/3//+98sXryYXr16sXz5csaOHUvVqlWZOHEi169fL/B+OnfuzOHDh+3K+vXrR61atRg3blyexC+EEKJ4KYrCF8e/4IN9H5Cj5FDLpxbzOs6jkkcltUMrG5IuWm/r718O6QnWMp0e6j4DLf4BlZuqGt7tCp38z507R+vWrQFwdXUlJSUFgFdffZVHHnmEhQsXFmg/np6e1KtXz67M3d0dX1/fPOVCCCGKV3pWOlN2TmF9zHrAOnHPxFYTcXVyVTmyUk5RIOYP2LsETqy/1X/vGQzNX4cmfcDDX90Y81Ho5B8YGMj169cJDQ2lSpUq7Nq1i4YNGxITE8MDrg4shBBCRTFJMYyKHMXpxNM4aZz4Z7N/Sv/+/WQmwZ+rYO9/IOHkrfKwdtBiINR8HHSqjqm/p0JH1qlTJ3788UcaN25Mv379GDlyJN999x379u3LMxlQYUVGRj7U9kIIIQrnt9jfmLB9AunZ6fi5+jGn/RyaBDS5/4aO6vJfsO8z+OtbyEqzluk9oOFL0HwA+JeNuQ8KvbCPxWLBYrHg5GT9f8OqVavYsWMHERERDBo0qETn95eFfYQQ4sFk5WQx98BcVh5bCUCzgGbMbj+biq4VVY6sFMrKhGNrYe9n1mfzc/nVsib8Bi+CS+nIQQXNi4VO/qWJJH8hhCi8S6mXGLN1DH8l/AVAv7r9eLPJmzhpS+9talVci7YO4Dv0JWTcsJZpnaD2361JP7Q1lLKukSJd1e+vv/4q8IFlfn4hhCi9tp7fyjvb3iHZnIyn3pP32rxHpyqd1A6r9MjJghM/w/5lcCbyVrlXZetz+U1eU+3Z/KJUoOTfqFEjNBrNfQf0aTQacnJKfqYiIYQQ95aVk8WCgwtYdtQ6XXs933rMbj+byp6VVY6slEg8B/tXwMGVkHrlZqEGIrpaJ+SJ6Ara8vMIeoGSf0xMTHHHIYQQopicTznPuD/GcTjBOrfKK7VfYVTTUTJNb04WnNxgfS7/9CbgZgPX3R+avGp9TK9CqJoRFpsCJf/Q0PJ58kIIUd5tiN3A5B2TSc1KxVPvyb9a/0uW4b0RCwdWwsEvIDXuVnnVDtDsdetCOzpntaIrETK6QwghyqGM7Aze3/s+3538DoBGfo2Y9egsgj2CVY5MJdlmiPrZemv/TCS3Wvl+0OgVaNoHfKqqGWGJkuQvhBDlzPFrxxn7x1hik2PRoGFA/QEMaTTEMUfzJ5yCA5/Doa9uTbkL1lZ+077WyXhUnmdfDQ74N0EIIconi2Jh5bGVzDswj2xLNv6u/kxrN41Hgh5RO7SSZU6HY+usSf/cjlvlHoHQ+BVo/Cr4hKsXXykgyV8IIcqBK2lXeHf7u+y6vAuATiGdmNJ6Ct4u3uoGVlIUBS4egIOfw+HvwWxddwaNFiK6WwfwRXQv1VPulqRC/xT69OlD//79efTRR4sjHiGEEIX0a8yvTN01lWRzMi46F8a2GMtzEc85xtz8aQnw12rr4L34o7fKK4RZW/iNXgYvBx3ncA+FTv5JSUl06dKF0NBQ+vXrR58+fahUSZZ7FEKIkpZkSmL67um2lfjq+tZlervpVDWW84FrOdkQ/bv1mfyoX8CSZS13crHOvtfkVQhtC1qtunGWYg80ve/Vq1dZuXIlK1as4NixY3Tp0oX+/fvz1FNP4excco9HyPS+QghHtfPSTiZsn8CV9CtoNVoG1h/IoIaDcNaW40fUrp60TrX75yr7R/SCGkHj3lD/OXCtoFp4pUGJze1/4MABli1bxn/+8x88PDzo3bs3Q4YMISIi4mF2WyCS/IUQjiY9K50P93/IN1HfAFDFswrT202noV9DlSMrJhmJcHSNNelf2Hur3NXHuqBO494QWE+18EqbIp3b/24uX77Mxo0b2bhxIzqdjr/97W8cPnyYOnXq8P777zNy5MiH2b0QQojb7Ivbx4TtE7iQegGAF2u+yKimo3BzdlM5siJmyYEzW6yP5x3/CXJM1nKNzjrNbqOXocZj4GRQN84yrNDJPysrix9//JFly5bx22+/0aBBA0aMGMHLL79s+1/GmjVreP311yX5CyFEEUjPSmfBwQV8efxLFBSC3IP4V5t/lb9H+OKPw59fWwfwpVy+Ve5XGxr1srb0PQPVi68cKXTyDwoKwmKx0KtXL/bs2UOjRo3y1OnYsSPe3t5FEJ4QQji2PZf3MGnHJFtr/+nqTzO2+Vg89B4qR1ZE0hLg8HfWpH/50K1y1wpQ/3lo2AuCG5e6pXPLukIn/7lz5/L888/j4uJy1zre3t6yGJAQQjyEtKw0Ptz3IatPrgYg0D2Qya0m06ZSG5UjKwJZmRC1Hv76xrqgjiXbWq51sj6L3/AlqNFdbusXo0In/1dffbU44hBCCHHT1vNbeW/3e8SlWUe0v1DjBUY2HVm2W/sWi3W2vb++gaPrwJR067vgxtYWfr1nwb2iejE6EJnqSAghSomEjARm7ZnFr7G/AlDZozKTW0+mZVBLlSN7CPHHrQn/r28h+cKtcq/K0OAFayvfr6Z68TkoSf5CCKEyRVFYe3otc/bNIdmcjE6j47U6rzG40WBcnVzVDq/wki7Cke+sCf/K4VvlBi+o85R14F5oG5mER0WS/IUQQkXRidFM3TWV/Vf2A1DbpzaTW0+mjm8dlSMrpPTrcPxH6+C92G3YlszVOlsfz2vwovXxPOe7jxcTJUeSvxBCqCAzO5PFfy1m2dFlZFuycXVyZUjDIfSu07vsLL1rToeTv1gT/qmNt6bZBajSGho8D3V6gpuPaiGK/JWRv2FCCFF+/HHhD2bsnmF7fK9D5Q683fJtgj3KwAI02WaI3gxHvocT6yEr7dZ3AfWsU+zWexa8q6gXo7gvSf5CCFFCLqZeZNaeWWw5vwUAfzd/3mnxDp2qdCrdK/DlZEPs/6wJ//h/ITPx1nfeoTcT/nMQUMa6KhyYJH8hhChmphwTK46uYMlfS8jMycRJ48SrdV5lUMNBuDu7qx1e/iwWOLcTjv4Ax9ZB2tVb33kEQN1nrEm/UlOZgKcMkuQvhBDFRFEUtpzfwuy9s223+JsHNuedFu9QvUJ1laPLh8UCF/fBkR/g2Fr7KXZdfaDO36239EPbgFanWpji4UnyF0KIYnAm8Qyz9s5ix6UdAPi7+jOq2Sj+Fv630nWLX1Hgwj7rynnH1tk/i28wQq3HrQm/anvQlePlgh2MJH8hhChCSaYkPvnzE1adWEW2ko2z1pk+dfswsP7A0rP6Xm4L/9g6OLrWPuHrPaHW36y39at1lCl2yylJ/kIIUQSyLFmsjlrNvw/9m2RzMmAdxT+m+RiqeJWCke+WHDi/25rwj/0IKZdufaf3gJo9oO7TUK2zPIvvACT5CyHEQ1AUha0XtvLBvg+ITY4FoLp3dcY0H0Pr4NbqBpeTDWe3WZP9iZ8g9cqt7/Se1oRf5ymo3hmcy+BMguKBSfIXQogHdDThKHP2zWHflX0A+Lj4MLTRUJ6JeEa9iXqyMuFMpPWRvKj1kHH91ncG480Wfk+o2lFa+A5Mkr8QQhTShZQLzD84n19ifgFAr9XTu05vBtQfgKfes+QDMqXAqd/gxM9w8jcwp9z6ztXHOmivTk8IfxSc9CUfnyh1VE3+M2bM4IcffuDEiRO4urrSunVrZs2aRc2assKTEKL0uZZxjcV/LWb1ydVkW7LRoOGJqk8wvPFwgjyCSjaY1KvWqXWP/9fa0s8x3/rOMxhqPwG1n7ROs6uTdp6wp+rfiK1btzJ06FCaN29OdnY277zzDt26dePYsWO4u5fSiS+EEA4n1ZzKimMrWHF0BRnZGQA8EvQIo5qOorZv7ZIL5PoZa+v+xM9wbhe2xXMAfKpZE36tJ60T78iKeeIeNIqiKPevVjKuXr2Kv78/W7du5dFHH71v/eTkZIxGI0lJSXh5eZVAhEIIR5KRncGqE6tYemQpiaZEAOr51uOtpm/xSNAjxR+AxQKXDkLUz9Z59K8et/8+qKE12dd+AvxqyUx7osB5sVTdC0pKSgLAxyf/FaBMJhMmk8n2OTk5uUTiEkI4FnOOme9OfseSw0tIyEgAIMwrjOGNh9M1tGvxTtKTlQExf1gH60X9Cqlxt77T6CCsLdR6wjpwzzuk+OIQRcJiUbiWZiYuKZO45EzikjKIS87kclKmreyXt9phcCrZGRNLTfK3WCyMGDGCNm3aUK9evXzrzJgxgylTppRwZEIIR5GVk8Xa6LUs+WsJl9OsU9tW8qjEGw3f4ImqTxTfCP6UK3BqgzXZn9kCWem3vtN7QPUu1kF7EV3BtULxxCAKLSvHQnyKibikjFvJ3JbkrQk+PiWTrJx732CPTzYR4lOyE0CVmtv+gwcP5pdffmHbtm1Urlw53zr5tfxDQkLktr8Q4qHkl/T9Xf35R4N/8EzEMzgX9bS2igJxh+Hkr9bXxf3233tVsrbsa/SA8HYyy54KMsw5tiQel2xN7lduJvTclntCqomCZFCNBvw8DAQaXQj0ciHI6EKg0ZVAo4FAL1cahXjjqi+aln+Zuu0/bNgwfvrpJ/7444+7Jn4Ag8GAwSC/BEKIomHKMbHm1BqWHllqS/p+rn70r9+fZyOexcWpCJ+DN6fBma3WFv7J3+xn2AMIbgw1HoOaf4PA+tJ/X0wURSE5M/tmyzyDK3fcgs9tsSdlZBVof846DQE3E3rA7Yndy4VAo4Egoyt+ngacdaVrAKaqyV9RFIYPH86aNWuIjIwkPDxczXCEEA4iPSudb09+y4qjK7iaYV2qtliS/vUzcGojnNwAsdsg59adS5zdoGoHa8Kv0R08A4vmmA4sv/71y7cl9dzydHNOgfbnptfZWut3ttpzk72vux6ttuz9R03V5D906FC++uor1q1bh6enJ3Fx1oEtRqMRV1eZalIIUbSSTEmsOrGKL49/yQ3TDQAC3QN5vd7rPF396YdP+lmZcHa7NeGf3gjXTtt/713FmuwjulsH7skMewWWlWPhSnKmfUs9KZPLybduxxekfz2X0dX5ZiK/mdC9bt6Gv5nYA40ueBqcStcKjEVI1T7/u/1Qly1bRt++fe+7vTzqJ4QoiLi0OFYeW8l3J78jPds6mC7EM4QB9QfwZNUnH65P//oZOL3ZmvBj/2c/WE/rBKGtIaKb9VWxhtzOz0du/3qe2/DF0L+e22Ivqj720qZM9PmXkrGGQohy6tSNU6w4uoKfY34m25INQM0KNXm93ut0C+v2YKP3TanWW/jRm+H0Jmvyv51nkHVUfvWu1tv6Lo7bMFEUheSMbFtiv7NfPTfRP2z/+u2fS2P/emlUKgb8CSFEUVEUhd1xu1l+dDnbL263lTcLaEb/+v1pE9ymcLdyLRa4cuRmst9snVnPcluy0jpBlVZQrZO1dR9Q1yFa97f3r9u12G/rX7+clElGVuH61/MbOFfW+9dLI0n+QohywZRjYv2Z9Xxx/AtO3jgJgFajpUuVLvSp24cGfg0KvrPky9bn7aN/t86bn3bV/nvvUOsyuNW7WBfLMaiwmE8xMmdbiE+xHwGf27+e++cH6V+/M6EH3nwFeLng5VJ++9dLI0n+QogyLSEjgW+ivmF11GquZ1qXr3V1cuXp6k/Tu05vQjwLMAueKdU6UC96izXpXz1h/72zu/V5+2qdrUnfp2qZbd3f3r9+52343PdraYXvXw+yjYp3nP71skySvxCizFEUhT+v/slXJ75i49mNtv78QPdAXq71Ms9EPIPRYLz7DnKyrBPrnIm0Pnt/YQ/c3IeVBoIbWZN9tY5QuUWpXwo3t3/9cnKG3W333NvxD9K/HnhbQs9N5IFeLgR5W9+lf73skuQvhCgzMrIz+DXmV74+8TXHr99a5KahX0N61+lNlypd8h/El9tvH/MHxGyFszvAnGpfxzvUmuirdoDw9uCW/xojarBYFBLSTFxJMt1zYpqH7V8P8rp1K97HTfrXyzNJ/kKIUi86MZpvT37Lj6d/JCUrBQC9Vs/fqv6NXrV6Uce3jv0GigIJJ63JPvZ/EPM/yLhuX8fVB6q2tyb6qh3AR51JxvLrX79z4Fxh+tcruDnnO2DOluzL+fPromAk+QshSqXM7Ew2nt3I96e+Z/+VW3PfV/KoxPM1nueZiGeo4HJzkRtFgWvR1kQfu836nnrFfod6D+sz9+GPWl8B9Yt9zft0c/ZdH2/L/ZyQarr/jrjVv34rkbvm89ibCy7O0r8u7k+SvxCiVIm6HsUPp37gv2f+S4rZ2srXarR0qNyBF2q+QKvgVmjRQMIpOLIGYrdbE/7tS98COLlASAtrog97FCo1gSJaoOf2/nW7BV9ub7EnF7x/Xa/TEmA02PWvB952C17610VRk+QvhFBdkimJ9THrWXt6LceuHbOVB7kH8XTE0zxdtSeB6detffU7llgTflq8/U50euvAvLC21lfl5g80fe6d/et3PreeO1I+M8tSoP25584Pf3MK2dxb79K/LtQkyV8IoYpsSzY7Lu3gx+gf+f3c72TdnDjHSeNEx8rtedanIY+kJqI7uhV+mQmZifY70BmsLfvQNhDW5mayv/eaILf3r995Cz43yV9JziTbUvD+9TtnmLt9IZggowueLkW8HLAQRUCSvxCixCiKwvHrx/lv9H9ZH7Pe9lw+QA23YJ7WB/C3G1fx2bEKspfZb+zsfivZh7aGSk3tWvbp5mzirqbazQd/Z5IvaP+6VgMVPQwEebsS6GWw61+/PblL/7ooqyT5CyGK3fnk86yPWc/6mPWcSbo1F34FjTM9sjQ8FX+e2qZz2N34dq0AVVqhVGlFakBzLrrW4HJqjjW5n8okbt/J2wbSZZCcmZ3nuPnJ7V8P8nK1m2EuOPd2vNEFPw8DTtK/LsoxSf5CiGJxJe0KG89u5JczP/PXtSO2cr2i0DEtnSdT02idkUnuTfF098pc9mrIaZd6HNLU5lCGP3EXs7h8LIPMrOvArvse827967mPuwUZXfBx18tjbsLhSfIXQhSZq+lX+S3qO3478zMHUs/ayrWKwiMZmfRIS6dzWjpuioaTmqp8mVOdvTk12GepwZVMH7h2+94S7fYt/etCFB1J/kKIQst9fj3+2g0ux2zmr/jfOJx1ipNOGSi3taobZ2bSPS2dlqkaYrOqc8ASwTdKBIcs1cjA2l+v1YCfl4GGRmv/unX6WNdbj7pJ/7oQRU6SvxDCRlEUkjKy8swwZ32lYbhxmoDUw/hqj5LqcY7D7maOudyc894ZQEP9TBONUw24p4RxNrsuP3vUZZ1fNQK9ra32rl4uvCb960KoSpK/EA4i9/n1O1dwu3LHCm/W59cVqmjiaaiJpoH2DH/XRmNxvchudyd+r+zKeefc2+t6tIpCzWwX6uqqU9u3K36hHfCrWFH614UoxST5C1EOmLMtXEm+o7V+20j4K8mmezy/rlBZc5X6mhhe0MZQ3/kMDXUxWLQZbHd1YaubK8tcXUnR3VroRo+WR4wRdAp/jPYRPanoVrHkTlYI8dAk+QtRyqWZsvOZGz6DuCQTcTeXb01INRdoXzqNhSYeibR0OU993Vkick4TnHESl+xkLMBxvZ7/ubnwqasHhw0+WG5rtVdw9qRtSHs6VulEm+A2uDm7FdMZCyGKmyR/IVSSX/+69XZ8BnHJJuKSrPPGpxTi+fXb54IP9tRRS3eRqtnRBGacwjvxOM4JR9GYU+HmlPNXdDp+dXVhh5sfu9zcuKGxvzMQUSGC9pXb075ye+pXrI9OK4PuhCgPJPkLUQxyLArXUk1czjONbIZdojdlF25++CCjqy25BxitE9MEGl0Idk7HOzkKzZUj1nXr4w7DqSiw2C8sk6LRsNfDi90+QezWa4nOSbvtWwV3Z3ceCXqEdpXa0aZSGwLdA4vwpyKEKC0k+QtRSA/Xv56Xj7vebgW3IK9bE9MEe1ufabc9v55ttq5TH/+nNcmfPgpxR/KuaHdTmquRAwER7HX3ZB8ZHE2/jAUFyIAc0KChXsV6tApuRZvgNtT3q4+zVp6VF6K8k+QvxG3Szdn2S7TeMRK+MP3rWg34e+Ymcuv88LdPTBNkdMXfy5D/8+sWCySehfi9cOIYxB+H+GPWxG+5SzdAhTAS/WtxwOjHAZ2FA5lXOJYUTY4SD+m3VsAL8wqjZVBLWga1pEVgC4wG44P8qIQQZZgkf+EQ7PrXb1v45UpSJpeTb96OT8os+PzwTlq7meXunJAmyOhKRQ/9/Z9ft1jgRixcjbIm+KsnrO8JJyErPf9tDEYIqIPiV5tzPpU56KzhkOkah64dJTrpGFy1r17ZozLNA5vbXnIrXwghyV+UeXf2r985YC63v72g/eseBqc808bePp1skNGVCm7OhXt+PdsMN2KsST4hChJOWRP91ZOQnZH/NjoD+NUA/zrgX5sUn3COOGk5nHGZvxIO89fV/dy4vinPZlWNVWkS0IQm/k1oFtCMII+ggscphHAIkvxFqXZ7/7otsd/2iFtcUibxKaYC96/7uusJyK/FfluSf6j54dOuwbXTcO2UtfWecPP9egwoOflvo9NDxRrWl39t8KuFybcaJxQTR24c52jCUY4mRBITvQwF+/PUa/XUrViXRv6NaOTXiMb+jangUuHB4xdCOARJ/kI1d39+/dbnwvav39liL1D/emGZUuD6GbgWbX1dj76Z8E9Dxo27b6f3gIoRULGmtUVfsSb41ybVzZeTyWc4fv04x64d4/jp5ZzZd4acfP6zUMmjEg0qNqCBXwPq+9Wntk9t9Dr9w5+TEMKhSPIXRU5RFBLTs+yfXU8ugufX72il3/65yOeHT79uvU1/PebWe27CT4u/97bGEPCtdqs1XzECfCOweAZyIfUip26c4mTiSU7GbebEsUVcSL2Q7258XHyo61uXehXrUa9iPer41qGiq8ykJ4R4eJL8RaEUV/967i33/FrtxTI/fLYZks5bB9slnoUbZ61J/kas9ZWZdO/t3XzBt7r15VPVmux9I8CnKhZnF+LS4ohOjCY6MZrTlzYRfexTopOiybhL/36AWwC1fGpRx7cOtX1qU9u3NgFuATIvvhCiWEjyFzam7Bzik0337F+/kmIip5D967cncuvENK4EGg0P379+L1mZkHwREs9Zk3ziOftX8iXgPufhEQg+4VAh3Pqem+QrhIOrN+lZ6ZxLOUdsciyxSbHEnNxFTFIMscmxd03yBp2BqsaqRFSIoEaFGtTyqUXNCjXxdvEu8h+BEELcjSR/B3Fn//qdLfW4pEyupRW8fz3gjkfbbn8v0v71/FhyIDXemtyTLtx8v2hN8skXIfH8/W/NAzi5QoVQ8A6FCmF3vEJB706yOZkLKRe4kHKBcynnOB+7lvOHz3M2+Szx6Xc/hpPGiTBjGNW8q1lfxmpEVIigimcVmSJXCKE6Sf5lXG7/en5TyN5eVuD+dSet3S34IO/chJ77uFsBn19/UOY0SImDlMuQfNn6nnLZmtSTL1tb7Klxd5/o5nbObtb+d+8Q8K5y62WsAhVCUdwqkpKdyuXUy1xOu8yl1EtcSjnGpbhNXEy9yIWUCySbk+95iAqGCoR6hVLFqwpVjVUJN4ZT1ViVSp6VZKY8IUSpJcm/FMuxKCTc7F/PnYTmcj5Tyj5M/3qQd+7gOeuc8YV+fr1AJ5IN6dcg9Yq1RZ4ab/1z7nvKFWtCT7kC5pSC7VOjA88g8AoGYyUwVrYmemNl8KqExViZRK2GqxkJxKfHcyX9CvHp8cQnHyYubiNxqXHEpceRlpV230P5uPhQ2aMyVbyqUMWzCpU9rX8O8wqT2fGEEGWSJH+V5Pav242Ev9m/njvzXGH71/O7DW9bCMbogoehiC53Tpb1kbb065CeAGkJN9+v3fqcdvXWe/o17tu/fjtnd/AKsiZ3z0BrgvcMxuIZQJKLkRsGN67pNFw3JXIt4xrXMq9Z31OPcC1hK1czrpKQkUB2Qe4OAEaDkWD3YII9br7cg6nkUYnKnpWp5FFJlq4VQpQ7pSL5L1q0iNmzZxMXF0fDhg1ZsGABLVq0UDusB5ZmyrabRja3f/321nph+9ftZ5i7dQs+yOiCv5cBg1Mh+5EVxTp9bEaidWR7ZhJkJt78nGhN7hm579etiT434ZvuMxI+XxpwrwjufmS7+5Pq4UuKmzfJBk+SDe4kOetJ1jmRrNWQlJNJkimJRFOi9T3tT25ciyTJnIRFKdhdDusRNVRwqYC/m7/tFeAWYH25BxDkHkSAW4AkdyGEw1E9+X/zzTeMGjWKTz75hJYtWzJv3jy6d+9OVFQU/v7+aodn5/b+desIeJNd/3puci9s//rtz6vfs3892wxZaWBOh6wMMF+FlHS4lgbmVDCl3vaeYn03pdz2SoLMZDAlW9/vNuNc7vliXfY9U6shU6PFpNGQodGQadCTqdGS4eJBhsGTdIMHGXp30p0NpDkbSNM5ka7Vkq7RkEoOaZZsUnNMpGWlkZKVQkb2GUg9A6kPdh089Z74uvji4+Jje1V0q0hF14pUdLG++7n54evqK/3uQgiRD42iKIW4H1v0WrZsSfPmzVm4cCEAFouFkJAQhg8fzvjx4++5bXJyMkajkaSkJLy8vB46lkvxMew7vpHkDDPJGVkkZWaRcvPPKZlZpGaaybFY0KCgQ0GDBS0KWixosaBDQUsOOo0FF52C0QAeeg3uzuDuDG5OCm5OFgw6BRetBSeyUSxZYMnCkpOFJceMkmNGycki5+afc3LMWCzW7yyKhRwNWNCQA+RorO/ZN8uyNZCNhhwNZGs0ZN8sy9JoyMb6bnsBZo0Gs1aLWet0812LWaPBBJhQMN1c/LW4uDq54qn3xEvvhZfeC6PBiJfeC2+DN0aD0fbycfHB2+BNBZcKGPVGnHWS0IUQIj8FzYuqtvzNZjP79+/n7bfftpVptVq6dOnCzp0789Q3mUyYTCbb5+Tke4/ELqzf9nzDB9e+tC/UAR43Xw8rtymddY86upsvG/3Nl3sRBHA/d7+lrtVoMegMuDq54urkiovOBRcnF9yc3XBzcrOVuzu74+bsZn13sr57OHvgofewvjt74Kn3xEPvgZNW9RtPQgjhkFT91zchIYGcnBwCAgLsygMCAjhx4kSe+jNmzGDKlCnFFo+vpzfBcQq5Y91zR71rrB9uvlv7km3f2AbGa27VuVnDur39u0ajtX2n0WhtL51GBxotWq0OrUaHRqNDp3NCo3Gylumc0Wmd0er06LROaDVanDRO6LQ6tDe3d9I64aR1QqfR4ax1tn3O/bOz1tn60t1612v16HV6DDoDzlpnDDoDBieD9f3my0XngpPWSWabE0KIcqJMNb3efvttRo0aZfucnJxMSEhIke3/yfZv8GT7N4psf0IIIURppGryr1ixIjqdjitXrtiVX7lyhcDAwDz1DQYDBoOhpMITQgghyqVimqatYPR6PU2bNmXz5s22MovFwubNm2nVqpWKkQkhhBDll+q3/UeNGkWfPn1o1qwZLVq0YN68eaSlpdGvXz+1QxNCCCHKJdWT/4svvsjVq1eZOHEicXFxNGrUiF9//TXPIEAhhBBCFA3Vn/N/GEX9nL8QQghRlhU0L6ra5y+EEEKIkqf6bf+HkXvToqgn+xFCCCHKotx8eL+b+mU6+aekWJd/Lcpn/YUQQoiyLiUlBaPx7kuOl+k+f4vFwqVLl/D09Cyy2edyJw46f/58mR9HUJ7OBcrX+ZSnc4HydT7l6VxAzqc0K45zURSFlJQUgoOD0Wrv3rNfplv+Wq2WypUrF8u+vby8yvxfrFzl6VygfJ1PeToXKF/nU57OBeR8SrOiPpd7tfhzyYA/IYQQwsFI8hdCCCEcjCT/OxgMBiZNmlQu1hAoT+cC5et8ytO5QPk6n/J0LiDnU5qpeS5lesCfEEIIIQpPWv5CCCGEg5HkL4QQQjgYSf5CCCGEg5HkL4QQQjiYcp/8Fy1aRFhYGC4uLrRs2ZI9e/bcs/63335LrVq1cHFxoX79+qxfv97ue0VRmDhxIkFBQbi6utKlSxdOnTpVnKdgpzDns2TJEtq1a0eFChWoUKECXbp0yVO/b9++aDQau9djjz1W3KcBFO5cli9fnidOFxcXuzpl6dp06NAhz/loNBoef/xxWx21rs0ff/zBk08+SXBwMBqNhrVr1953m8jISJo0aYLBYKB69eosX748T53C/i4WlcKezw8//EDXrl3x8/PDy8uLVq1asWHDBrs6kydPznNtatWqVYxnYVXYc4mMjMz371lcXJxdvbJybfL7ndBoNNStW9dWR61rM2PGDJo3b46npyf+/v707NmTqKio+26nVs4p18n/m2++YdSoUUyaNIkDBw7QsGFDunfvTnx8fL71d+zYQa9evejfvz8HDx6kZ8+e9OzZkyNHjtjqvP/++8yfP59PPvmE3bt34+7uTvfu3cnMzCx15xMZGUmvXr3YsmULO3fuJCQkhG7dunHx4kW7eo899hiXL1+2vb7++utSdy5gnQXr9jjPnj1r931ZujY//PCD3bkcOXIEnU7H888/b1dPjWuTlpZGw4YNWbRoUYHqx8TE8Pjjj9OxY0cOHTrEiBEjGDBggF3CfJDrXVQKez5//PEHXbt2Zf369ezfv5+OHTvy5JNPcvDgQbt6devWtbs227ZtK47w7RT2XHJFRUXZxerv72/7rixdm48++sjuPM6fP4+Pj0+e3xs1rs3WrVsZOnQou3btYuPGjWRlZdGtWzfS0tLuuo2qOUcpx1q0aKEMHTrU9jknJ0cJDg5WZsyYkW/9F154QXn88cftylq2bKkMGjRIURRFsVgsSmBgoDJ79mzb94mJiYrBYFC+/vrrYjgDe4U9nztlZ2crnp6eyooVK2xlffr0UZ566qmiDvW+Cnsuy5YtU4xG4133V9avzdy5cxVPT08lNTXVVqbWtbkdoKxZs+aedcaOHavUrVvXruzFF19Uunfvbvv8sD+folKQ88lPnTp1lClTptg+T5o0SWnYsGHRBfYACnIuW7ZsUQDlxo0bd61Tlq/NmjVrFI1Go8TGxtrKSsO1URRFiY+PVwBl69atd62jZs4pty1/s9nM/v376dKli61Mq9XSpUsXdu7cme82O3futKsP0L17d1v9mJgY4uLi7OoYjUZatmx5130WlQc5nzulp6eTlZWFj4+PXXlkZCT+/v7UrFmTwYMHc+3atSKN/U4Pei6pqamEhoYSEhLCU089xdGjR23flfVr89lnn/HSSy/h7u5uV17S1+ZB3O/3pih+PmqyWCykpKTk+b05deoUwcHBVK1alVdeeYVz586pFOH9NWrUiKCgILp27cr27dtt5WX92nz22Wd06dKF0NBQu/LScG2SkpIA8vy9uZ2aOafcJv+EhARycnIICAiwKw8ICMjT35UrLi7unvVz3wuzz6LyIOdzp3HjxhEcHGz3F+mxxx7j888/Z/PmzcyaNYutW7fSo0cPcnJyijT+2z3IudSsWZOlS5eybt06vvjiCywWC61bt+bChQtA2b42e/bs4ciRIwwYMMCuXI1r8yDu9nuTnJxMRkZGkfzdVdOcOXNITU3lhRdesJW1bNmS5cuX8+uvv/Lxxx8TExNDu3btbMuMlxZBQUF88sknfP/993z//feEhITQoUMHDhw4ABTNvytquXTpEr/88kue35vScG0sFgsjRoygTZs21KtX76711Mw5ZXpVP1FwM2fOZNWqVURGRtoNlHvppZdsf65fvz4NGjSgWrVqREZG0rlzZzVCzVerVq1o1aqV7XPr1q2pXbs2n376KVOnTlUxsof32WefUb9+fVq0aGFXXlauTXn21VdfMWXKFNatW2fXT96jRw/bnxs0aEDLli0JDQ1l9erV9O/fX41Q81WzZk1q1qxp+9y6dWuio6OZO3cuK1euVDGyh7dixQq8vb3p2bOnXXlpuDZDhw7lyJEjJTLW4EGV25Z/xYoV0el0XLlyxa78ypUrBAYG5rtNYGDgPevnvhdmn0XlQc4n15w5c5g5cya//fYbDRo0uGfdqlWrUrFiRU6fPv3QMd/Nw5xLLmdnZxo3bmyLs6xem7S0NFatWlWgf5RK4to8iLv93nh5eeHq6lok11sNq1atYsCAAaxevTrPrdk7eXt7U6NGjVJ3bfLTokULW5xl9dooisLSpUt59dVX0ev196xb0tdm2LBh/PTTT2zZsuW+S86rmXPKbfLX6/U0bdqUzZs328osFgubN2+2a0HerlWrVnb1ATZu3GirHx4eTmBgoF2d5ORkdu/efdd9FpUHOR+wjhSdOnUqv/76K82aNbvvcS5cuMC1a9cICgoqkrjz86DncrucnBwOHz5si7MsXhuwPuZjMpno3bv3fY9TEtfmQdzv96YorndJ+/rrr+nXrx9ff/213eOXd5Oamkp0dHSpuzb5OXTokC3OsnhtwDqy/vTp0wX6T3NJXRtFURg2bBhr1qzh999/Jzw8/L7bqJpzHmq4YCm3atUqxWAwKMuXL1eOHTum/OMf/1C8vb2VuLg4RVEU5dVXX1XGjx9vq799+3bFyclJmTNnjnL8+HFl0qRJirOzs3L48GFbnZkzZyre3t7KunXrlL/++kt56qmnlPDwcCUjI6PUnc/MmTMVvV6vfPfdd8rly5dtr5SUFEVRFCUlJUUZPXq0snPnTiUmJkbZtGmT0qRJEyUiIkLJzMwsVecyZcoUZcOGDUp0dLSyf/9+5aWXXlJcXFyUo0eP2p1vWbk2udq2bau8+OKLecrVvDYpKSnKwYMHlYMHDyqA8uGHHyoHDx5Uzp49qyiKoowfP1559dVXbfXPnDmjuLm5KWPGjFGOHz+uLFq0SNHpdMqvv/5qq3O/n09pOp8vv/xScXJyUhYtWmT3e5OYmGir889//lOJjIxUYmJilO3btytdunRRKlasqMTHx5eqc5k7d66ydu1a5dSpU8rhw4eVt956S9FqtcqmTZtsdcrStcnVu3dvpWXLlvnuU61rM3jwYMVoNCqRkZF2f2/S09NtdUpTzinXyV9RFGXBggVKlSpVFL1er7Ro0ULZtWuX7bv27dsrffr0sau/evVqpUaNGoper1fq1q2r/Pzzz3bfWywWZcKECUpAQIBiMBiUzp07K1FRUSVxKoqiFO58QkNDFSDPa9KkSYqiKEp6errSrVs3xc/PT3F2dlZCQ0OVgQMHlsgvfWHPZcSIEba6AQEByt/+9jflwIEDdvsrS9dGURTlxIkTCqD89ttvefal5rXJfTzszldu/H369FHat2+fZ5tGjRoper1eqVq1qrJs2bI8+73Xz6c4FfZ82rdvf8/6imJ9lDEoKEjR6/VKpUqVlBdffFE5ffp0qTuXWbNmKdWqVVNcXFwUHx8fpUOHDsrvv/+eZ79l5dooivVRN1dXV2Xx4sX57lOta5PfeQB2vwulKefIkr5CCCGEgym3ff5CCCGEyJ8kfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQgghHIwkfyGEEMLBSPIXQtxTbGwsGo2GQ4cOFXibvn375lltrbAiIyPRaDQkJiY+1H6EEHlJ8hdCCCEcjCR/IYQQwsFI8hfCgVy9epXAwECmT59uK9uxYwd6vT7P0qJ3k5OTQ//+/QkPD8fV1ZWaNWvy0Ucf5Vt3ypQp+Pn54eXlxRtvvIHZbLZ9Z7FYmDFjhm0/DRs25Lvvvnu4ExRCFIiT2gEIIUqOn58fS5cupWfPnnTr1o2aNWvy6quvMmzYMDp37lygfVgsFipXrsy3336Lr68vO3bs4B//+AdBQUG88MILtnqbN2/GxcWFyMhIYmNj6devH76+vkybNg2AGTNm8MUXX/DJJ58QERHBH3/8Qe/evfHz86N9+/bFcv5CCCtZ1U8IBzR06FA2bdpEs2bNOHz4MHv37sVgMORbNzY2lvDwcA4ePEijRo3yrTNs2DDi4uJsLfe+ffvy3//+l/Pnz+Pm5gbAJ598wpgxY0hKSiIrKwsfHx82bdpEq1atbPsZMGAA6enpfPXVV0RGRtKxY0du3LiBt7d3kZ6/EI5OWv5COKA5c+ZQr149vv32W/bv33/XxH83ixYtYunSpZw7d46MjAzMZnOe/xg0bNjQlvgBWrVqRWpqKufPnyc1NZX09HS6du1qt43ZbKZx48YPfF5CiIKR5C+EA4qOjubSpUtYLBZiY2OpX79+gbddtWoVo0eP5oMPPqBVq1Z4enoye/Zsdu/eXeB9pKamAvDzzz9TqVIlu+8K+x8RIUThSfIXwsGYzWZ69+7Niy++SM2aNRkwYACHDx/G39+/QNtv376d1q1bM2TIEFtZdHR0nnp//vknGRkZuLq6ArBr1y48PDwICQnBx8cHg8HAuXPnpH9fCBVI8hfCwfzf//0fSUlJzJ8/Hw8PD9avX8/rr7/OTz/9VKDtIyIi+Pzzz9mwYQPh4eGsXLmSvXv3Eh4eblfPbDbTv39/3n33XWJjY5k0aRLDhg1Dq9Xi6enJ6NGjGTlyJBaLhbZt25KUlMT27dvx8vKiT58+xXHqQoibJPkL4UAiIyOZN28eW7ZswcvLC4CVK1fSsGFDPv74YwYPHnzffQwaNIiDBw/y4osvotFo6NWrF0OGDOGXX36xq9e5c2ciIiJ49NFHMZlM9OrVi8mTJ9u+nzp1Kn5+fsyYMYMzZ87g7e1NkyZNeOedd4r0nIUQeclofyGEEMLByCQ/QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIOR5C+EEEI4GEn+QgghhIP5fxyzH4CSvAGMAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Making a helper functions" + ], + "metadata": { + "id": "YphkNaO9ovDA" + } + }, + { + "cell_type": "code", + "source": [ + "def my_plotter(ax, data1, data2, param_dict):\n", + " \"\"\"\n", + " A helper function to make a graph.\n", + " \"\"\"\n", + " out = ax.plot(data1, data2, **param_dict)\n", + " return out" + ], + "metadata": { + "id": "6oq-76btodnO" + }, + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "data1, data2, data3, data4 = np.random.randn(4, 100) # make 4 random data sets\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(5, 2.7))\n", + "my_plotter(ax1, data1, data2, {'marker': 'x'})\n", + "my_plotter(ax2, data3, data4, {'marker': 'o'})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 285 + }, + "id": "GqLZwSvhpv83", + "outputId": "91710811-69cd-4043-d18b-3da74ab030df" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD7CAYAAADtjwp1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqVNJREFUeJzsnXd4FGUXxc9s37RN772RBgkt9N5Bqh1RsRcUFbt+FmxYQQHFhmIDFERQQXqvoQUS0hvpPdlN282W+f6YncnMtmwqAfb3PHnI9gF25r7vveeeS5AkScKGDRs2bNi4AeBd6wOwYcOGDRs2ugtbULNhw4YNGzcMtqBmw4YNGzZuGGxBzYYNGzZs3DDYgpoNGzZs2LhhsAU1GzZs2LBxw2ALajZs2LBh44ZBcK0PwBI6nQ6lpaVwdHQEQRDX+nBs2OgQJEmioaEBvr6+4PGu/frRdj7ZuJ6x9nzq00GttLQUAQEB1/owbNjoEkVFRfD397/Wh2E7n2zcELR3PvXpoObo6AiA+ks4OTld46OxYaNjKBQKBAQEMN/ja43tfLJxPWPt+dSngxqdInFycrKdhDauW/pKqs92Ptm4EWjvfLr2iX4bNmzYsGGjm7AFNRs2bNiwccPQp9OPNmzYsNFbaHUkkvJrUdmghKejBIkhruDz+kbq2Ib12IKajS6xal8W+DwCSydFGD22+kA2tDoSz02JvAZHZsOG9exOLcPyf9JQJlcy9/nIJHhrdgymx/lcwyOz0VFs6UcbXYLPI7ByXxZWH8jm3L/6QDZW6gOeOVaZeB379av2ZXXrsdqwYYrdqWV44tcLnIAGAOVyJZ749QJ2p5ZdoyPrPbQ6Eqdya7AjuQSncmug1V2/YzZtOzUbXYLeoa3clwWtjsRdiQHYcq4YK/dlYdmUSJM7OBo6ILLfB2gLiMtsOzwbPYxWR2L5P2kwdQknARAAlv+Thikx3jdsKvJG26Xadmo2uoxWR2JkmBu+OJCNESsOcgKapR3X0kkRWDYlkrPTYwc0SwHxZmPFihUYOnQoHB0d4enpiXnz5iEzM/NaH9Z1T1J+rdEOjQ0JoEyuRFJ+be8dVC9yI+5SbUHNRpfh8wiczK1hbvMIMAGtvRTk0kkReGpCOFbuy0L4a7tsAc0MR44cwZIlS3D69Gns27cParUaU6dORVNT07U+tOuaygbzAa0zz7ueaG+XClC71OstFWlLP9roMksnReB0Xg0T2HQkcNe3p3A6r9aqAJUY4gocAjQ6EiI+zxbQTLB7927O7Q0bNsDT0xPnz5/H2LFjr9FRXf94Okq69XnXEx3ZpY4Ic+u9A+siPbpTs6VMbg5WH8jGydwaRHg6MPedzqvFyDA3qwLU3rQK5vdWrc6seMRGG3K5HADg6upq9jkqlQoKhYLzY4NLYogrfGQSmMslEKDqS4kh5v+de4LeEG7cqLvUHg1qtpTJjQ+7BvbwmBDOYydza9oNUKsPZOPX01eZ2yNC3UyqKW20odPp8Oyzz2LUqFGIi4sz+7wVK1ZAJpMxPzYzY2P4PAJvzY4BAKPARt9+a3ZMr4pEdqeWYfRHB3H3d6fxzOZk3P3daYz+6GC317du1F1qjwa13bt3Y/HixYiNjUV8fDw2bNiAwsJCnD9/3uTzbSvL6w+tjmRSjGsO5HAeSwxxsbjCZAdEdwcxAKC+RW0kHrHBZcmSJUhNTcXmzZstPu/VV1+FXC5nfoqKinrpCK8vpsf5YN2iQfCWcS/e3jIJ1i0a1KsKwN4SbpAkiZSSeovPuVa71K7SqzW19lImK1aswPLly3vzkGx0Ebqx+sWtl1Bc38J5LCm/DgIzc49WH8jGiZxqJiAeyapCdaMK6WUKfHvvYAC47grUvcFTTz2Ff//9F0ePHm13nI1YLIZYLO6lI7u+mR7ngykx3piy8gjyqpvw4rRIPD4uvFd3aL3VXqDW6vDmjivYlFRo9jnXapfaHfSa+tGalIltZXl98sX+LGw5V2x0v0wqwMncGiz87jTnfnqHNircnam5BbnaMY/vuVKOpZMibE4kLEiSxFNPPYW//voLBw8eREhISPsvssFgTY2KzyPg5UTt1gJc7Xv9Yt4b7QXyZjXu/yHJKKA52wk5t6/FLrW76LWdGp0yOX78uNnn2FaW1yd5VVSNVCzgwc9Zirxq6rZCqcGQIBeczK3Bqn1ZeHBUCH46VWBSth/o1hbUdqeW4+Exob37l+jjLFmyBBs3bsSOHTvg6OiI8vJyAIBMJoNUKr3GR9e36Uhzsb2YDwBoVml69RiBnhdu5Fc34aENZ5FX3QQRn4dWrQ4AMCPOG2vuHoizBXU3hO9lrwS1jqRMbFxf6HQksiobAQCLRwbD30WKN3ZcAQCQJDA9zhtjIz2wcl8WvtDXyEzJ/INYQe18YdvJZYNi3bp1AIDx48dz7v/xxx+xePHi3j+g6wS6RmW4L6NrVIa7ETsRdUls7ERQ66ohck8KN07l1uDxX89D3qKGr0yCAf7O2H2lHC52QrwzNw4CPu+6ku1bokeDGkmSePrpp/HXX3/h8OHDtpTJDcjOlDKklyngIBbg8XFhKFdwV5Hbk0vw79Nj8Pn+LNAZn/H9PIzeJ8jNnvmdJIF9aRW4Z1hQjx67JfqaUTNJ2uqLHaUzNSp7MXVJbG7VWv0ZSfm12JdWju3JpahtamUe66jVVGKIKzwdxahsUJl8nACVFuyocOP3s4V4/a9UaHQk4gOc8fyUSDy44SwAYPncOHg43ljZsR6tqS1ZsgS//vorNm7cyKRMysvL0dLS0v6LbfR5NFod4934yJhQuNiLEOphz3lOaokCb/99BewSxp3fnEZ+Nbetg11TA4A9VypwLemKUbONvkFnalT2Iir92NTa/k6NLb3/4UQBJ6ABHVcskiRpVNui6YxwQ6sj8cGudLz8Zwo0OhK3DPDBbw8Pw0e7M6DRkZgW64XZA66/mll79GhQW7duHeRyOcaPHw8fHx/m5/fff+/Jj7XRS/x5oRj51U1wtRfhIX2PmljAN3rehpMFWDYlEvMSfAEALWot5q49jkrWrs7VXgQHcVvi4FRuNeQt6h7+G5iH7Uv54tZLKK5rtvlSXmd0pkZlp/8ONrWTfjQnvWfTUaupj3ZnIKui0eRjHRVuNKk0eOyX8/j2aB4A4JlJEVhz90D8eDwfV0oVcLYT4t15cSCIG29x1uPpRxs3Jkq1Fl/sp3YxT44P4wQkQ2RSIZ6eGI6rNc3453IZtDoSCqUGM1cfw8EXxsNJIgRBEAh0tUNaGdWbqNaSOJRRiXkD/Xrl72OKpZMiUFLfgt/PFmHruWKQMF0PtNE36UyNit6pNavMpx8tpTUNsdZq6p9LpfjuWD5zW8Qn8OU9g9Dcqu1wfa60vgUP/XQO6WUKiAQ8fHLbAMxN8EN6mQKrD1Ln7PI5sTdszdpmaGyjU2w8U4hSuRI+MgkWDefWvoaHtuX8hXwC8hY1LhTWI9jdHrcPbhMKVTe24pGfzkGppi4gtFiEvrDsuVLe03+NdtHpV9gkYPOlvM5ozwILMG4upmtqTa0as20A7aU1TWFp15hZ3oCX/7zMuW9Ogh+mxHhjboIfRoS5tRvQ6GNdfSAbM744hvQyBdwdRNj0yHDMTfCDWqvDi1svQa0lMSXGC3PifTt0/NcTtqBmwyzmhng2qTT4ZA/l4bl0UgQkQm7KcVb/thTJxChPAMCO5BIAwNOTIiDit33tzuTX4pnNF6HVkYysv5+3IwDgcGYVE/CuBS2tWmzXH7eAR9h8Ka8zLFlg0bwwNZITMGhJ/9WaZrNWVZ2R1JvbFSmUajz+63k0t2oR7ePEHMu9w60XSbFreyv3ZUHeooaAR+C5yZEYHOQCAPjmSC5SSxSQSYV4f/6NmXaksQU1G2YxJ5Z49OdzaFFr4SwV4rbBxi0aiSFtaZb+fjIAwL+Xy6DW6uDnLEWsrxMAKlCI+DzsuVKBuWuPI1ffGuAoEcLPWYoWtRZHs6qu2RTs5/9IhlpLQsgnkLp8ms2+6zrEnAUWzdbzJVDr+7WANkl/RnmDWauqgupmqz/fktWUTkdi2e+XkF/dBF+ZBGMi3KHVkRjgL0N8gLNV72+utqfVkfjf9lTsTi1DZnkD005zI6cdaWyjZ2yYhT3Vmr798e4MnNCPmFk+NxZCvvG6KMS9TQF5MrcG7g4iVDe24nh2NVJK5LhYVA8Bj4BGRyLW1xFpZQqkllI/AFBU2wxPJzFK6lvw+f5spJUpen0K9uoD2diVSqU/p8V6QyLkm/z3sNH3oS2w6B6yguomrNLXg0/l1eCN7alYsaA/CIKAndBY6ERDtwFsPlsIbycxKhQqi3W19hSLXx3Owf70CogEPHy1aDCe3nQBALDITCuLYR/c4CAXvP33lXZbFtzsRVBrSUyO9sLchBs37UhjC2o2LPLQ6BCklymwcl8Wp9csytsRsweYPkFEgrZAdzK3BgMDnFHd2IqPdmcgo7wBy6ZEoqlVg2+O5OFKqQITozxxMKOSeU1+dRNzoqaVKfDMpIheDyCHWMczg6U4o2fHnciptgW16wg+j2CEGiRJ4tzVOhzLrgYAbD5bhHBPBzw8JhQFNZYniNDCj+cmR+Dz/ZZ37N4W+tQOZ1biM/3i6N25sahrbkVRbQucJALMNlHvMuWK4iwVot6CQpg+1jK5Ek4SAT64wdOONLagZsMItVaHY9lV2H6xFPvSKtCir2uxVckvTO0HnpVqrItF9QColM5TE8KxdFIE6ppa8dvpQjSqNDiYUYmhwS44W1AHAEYrz2vhEu4ooU4NPo/gNIvTs+N6e+doo/sgCAJvzY7F9M+PQqP/Ur+/Kx3BbvZWN10Hu9vjgwX98eq2FO57A3hwVDAmx3ibVSwW1Tbjmc3JIEng7sRA3Dk0EA/pm6FvHxIAqYi7WzTnimIpoBny9pxYeDrd2GlHGltNzQYAavV6/mot3tieimEfHMCDG87h70ulTEBj4yOTYFK0p8X3G2YmEIXrB4m62Ivw0Giqt81OxGcCGhv6erA7tfdVkLSrg1ZHYv1xSmpt61O7cQj3dGC+fwDlYrN080VOfc0Sx7OrOXVeehE0JsIdb8yONatYbGnV4tGfz0Heokagqx1mxHmhoLoJBzOpzMA9wwI5z+9I+4A5BgU4Y/41bI3pbWxB7SYnp7IRn+3NxLhPDuPWdafwy+mrqG1qhbuDCItHBmOCCUurMrkSaw7mmHi3Nm4x41Tw+f62C8FDY0LgbCc0uzqmd4Z708oZaX1vkFaqQEZ5AwDqIrVyXxbCX9tlC2g3GE9PioCXU5tFVHOrFl8esvy9ptlyvphjZ9WgpJq1o/UiKFOQJInFPyYhXf/dKqxtxn0/nMWsNcdAksDocHeEejhwXtOZ9gE2BIC19wy6KdKONLagdhNSoVDi+2N5uGXNMUxeeQRrDuagsLYZdiI+Fgz0w08PJuL0q5Pgai/CocwqzmtHh7tbpQIcHmq60bSgphkf/pcOAHCSCDHSChPVCoUKl4rrrf8LdpG/LlJjdAQ8grlYaXSkrU/tGmHN2JjO4CAW4LWZ0cxtsYCHFnXbTs3UJGwCwB1DzJuySy0ITV7dloIzJsbGNOkbvWN9HY0e66wjP819I4Lg63xzTXGw1dRuEhRKNXanlmNHcglO5taANnsR8AiMjfTA3ARfTInxYiTNAFBWb+zR+cK0fkjQy40tXVz+vWze7+7rI3mwEwmwZEI4TudZNxvq/V3p2Pr4SKue2xU0Wh22J5dSv+tIJOvrgXxWn5otsPUchgq/uiYV3t2ZbtXYmM4wJ94Xv50pRFJ+LULc7VGuUKK+mapVuTuKUcXajdHCj31plebeDp/vz8aZvFrclRjAqGYBICm/BpvPWp4P+felMrw0PZqTtuyK/D7Ozwlvz4nt9OuvV2xB7QZGpdHicGYVdiSXYH96JVo1batQX5kET4wPw6wBvnC1FzH3sx3oqw0MWqfGeDEBrSsXdh+ZBFodiUd/PmdkAsuGR7SlIK+UKECSZI+nUY7nVHMuZDT/PTMGu1PLbXL+HsSUws8U5sbGdAaCILB8TixuWXOcETKt1acghwa7YGacD57adBE8Ati/bBzOXa3DnxeKQRCAr0yKEhMLv1N5NTiVVwOZVIj5A/0wOdoLT2280O6xmLLTYqdHLbHh/qEQi/jYlFSIvy+VwkHMx/f3Db2p0o40tvTjDYZOR+J0Xg1e3XYZQ9/bj8d+OY9dKeVo1egQ7umAF6ZG4qHRISiVK1HXrDYKaLQDfVqpAvvS2pzyCQJ4fmo/q4/D1FiWu4YGgEdQJ++4fh44lk2lNl+bGQVfE82xU2K8IBFSX9EWtRapJQqrP7+zbLtQYnSfl5MYEZ4OHJNjWwN292KNQTBNR42C2yPax4lx8PiP5ai/K6UcWpKEm70IOhJILqrHa3q14+KRwXB3EBm9z4lXJuLZyRHwlUkgb1Fjw8kCLFp/xmqlIjvdeCavBhM/O9Lua1ztRBgf7QkPRxF2663l3poda7bh/EbHtlO7QUgvU2D7xRL8famUc2HwdpJgToIv5sT7ItbXiVm5yaRCzq7DUNn35G/nOe8/L8GPsa+ylmEhrpwaQoSXI0aFu+NYdjUWfHUSABDr64QHR4XAUSI0kkdnlDdg6+Mjccsaalr67LXHkfvBzB4b+9KgVGNvmrHSckyEB/PvRu/QuquuY6NzCj9rjYKt5bkpkfj3cilyq7h9ai9uvczUye77IQlaHQl/FylemNoPoz46yHlutLcj/JyleHZyJJ6eGIFj2VVY/OPZDh0HnW7ccq4IL25t84MkYNzqQnPqtYnQ6ki8sOUyWjU6jO/nYdLp52bBFtSuY4rrmvH3pVLsuFiKzIoG5n5HiQAz43wwd6AvhoWYlhaz3THo4ObnLEVuVSMe2nAWBzK4dYNnJ3c83TZrgA8nqLnaCzE3wY9pegWAd+dRU3dvG+xvFNSu1jRDqdZiboIvdujrXG//fQXvzI3tkbTKf6nlUKqNJd1jItw5t22px+6lKwq/rgopaGRSIV6eHsUJJADQqtExaXt6IbNiQX9odCRTe6OJ8mlb9PF5BGd00qBAZ1wqlptdDNEDQIcEueCj3RlYdziXeczbSYK7EgPw+f5sRHg6oKVVi2J92nPN3QMhFvDx7dFcJBfVw1EsYNxRblZsQe06o765FTtTyrDjYimSCtoChojPw4QoD8wf6Ifx/TyNTIZNsXRSBFbty2JWgCX1LShJNj3Adeqqo/B1lsJHJoGPTApfZ+pPH2cJfPV/Okm4Aw5HhnGDgaNYiCHBLsztOD8nDAqkbpuy2wKA/21Pxc8PJTJB7ZfTV+HhKO6RwLL1fDHrWAVoUGlAENROzUbP0ZXA1J0+hrcO8sfGpEJcLKwHALw/Pw6/ni5Eellb2vuOIf4YE+GB1BK50eujvNvk/OllCsZ5f8mEMLw4LQqv/HnZrFiEBLBgkB+WbLyAvay0v4jPwwOjgrHtAvXdzK7kzlsT8gnkVDbi073UwvSNW2LgI7u51I6G2ILadYBSrcX+9Apsv1iKI1mVUGupMEQQVIpvXoIfZsT5QGZmaq45Vh/I5qQ0ZvX3gYNYgN/PGZ94Ko0O+dVNRhOr2TiIBVTQc5bCVyaBp8GYeI2O5ASOSK+2la1OR0Iq5Bs1e2eUN+DfS2UYHurKKCVX7stCclEdflic2JG/rkWK65o5E5AfHhOKVfuzEOcr49QdbXQ/nQlM9M6mO91meDwC78yJw+y1VLo7Kb8W6+8fgpEftqUZ6VpxYa2xqTG9U5M3U877SrUOYyLcsWxKP+RVNTITH8zx5aFco/tatTqs+C/D5PMJAE/8egHB7nZo1egwNtIDt1toN7hZsAW1PopWR+JkbjW2XyzFnivlaGRN4o32ccK8BF/MSfDt9KqMrqGNCnfDiZwaRPs4YmdKGaJ9uHWzx8aGYtnUSFTIVSiVt6BM3oLSeiXK5C0oq1eiVE79Xt+sRqNKg+zKRqPVJM3jv3LrdNsulCDEzR7+rlIo1TqT7iUAFcTuHRHEkf8fyqjC7tSybpF1A+D4+AW52TEegIapRxvdDz33rFyu7FBdzZxRcFfo7y9jft+RXMpxHQGApzdexNYnRhoFNRGfBw8HMXQ6Es/+fhFXa5rh7yLF6rsGQkeSeO73ZKPUtpBPYN2iwSiTt+CN7Vc6fKz0v1V+dTPsRXx8eJOnHWlsQa0PQZIkUkrk2H6xFP9cLuVIy/2cpZib4It5A/04O5zOwBaFRHg64ERODcQCPh4YFYwfTxQwz3MQC/D4uDCIBXwEutkx885M0dyqocxT65VU8NMHvvZ6cz6zYqRMo0rDWFUBQJiHPXKrmrB0czJ+flBkttHbWrQGO8ifH0zEretOAbClHnsDeu7ZE79esCiIoJEIefj8zoRuW9AYMqu/D3amUCrIOWtPcB47d7UOG88U4moNN6gNDHQGQRD44kAWDmVWQSzg4etFg+FiL8Ln+7Nwqdg4XXnrIH9otDq8v5MyI7AT8a32njRk4bDAm67J2hy2oNYHuFrThO0XS7EjuQR5rPSes50Qs/r7YN5APwwOdLHaQLg9tDqSUTnS9YKCmiZEeHIteh4ZEwoXK1NvdiIBwjwcEGZg82MqqL04rR8+25vJ9KCNDHPDSf04G3Owe+wWjwrBsawq7E2rwCM/ncPvj41ADMueaJW+LcFU3Y3dh0fz7O/JzO8udkI0qbSoblTBTsTHoCBni8dlo3ug554Z9qm52AlRZyDIEPAITIr26rFj8XMxDg53JwZgUxL1XX5zRyq0JDf0xvnJcDCjgtnxvz+/P+L8ZLhUVM9YytHjlmioAaFU/9rocHfIW9RIMVGrs4Y4X1n7T7pJsPWpXSOqG1XYcCIf8748gXGfHMaq/VnIq26CRMjDLQN88P19Q5D02mS8P78/hga7dltAA6i6AH3BD3ajZp/VN6uxhbVbcbUX4aExISZf3xEG+HNPtvtHBGHJhHBsfnQEAGo3+MPioRgVTu22Xprefi/c/rQKrL57IHydJWhQaXD/j0koYqWD6OGmd317ivM6dh8eTW5VI/65VMrcfnhMKNM/NzzUDWJB+4IbG93D9DgfHH95IjY9MhxOUmq9vW7RYDw2NpTzvEaVFmesdKLpDPYi7lqfmtTQZuCt0ZEwiGmQCvl4dnMyAGpq9W2D/dHSqsVzvydDqyORGOJqtAPdlUK1jyweGYxwTweklMgh5nfuPL9ZHPitwRbUepEmlQZ/XSzG/T8kYdgHB/D2P2lILqoHj6BqN5/dHo9z/5uCtQsHYXKMF2cuWU8hFfHhbeKEeHJ8GBzEXd/IJxhM8F2mb+AeEuQCP2cpGlUavPDHJaaxemyEh1mHf5qTudVo1eowL4FyHq9qUOHe9WdQ3ch1AjmdV4sHNyShulFl0mFfqyPxzOaLnNdMi/VmWg5s9bTeh557Nkw/PT21RI5ZJsyx96dXGN3XXUhF3PNOqyOh0baFpCgT/ZprD+VAodRgUKAz3rglBgCw4r905FU3wdtJgnh/mZGcn88j8O7cWAzwl2HDyQIAwJMTwjt8vCI+geK6ZrR0MnV5o2FLP/Yw5maTAUC8vwxzE/xwS7zPNR2xbhg8vZ0kWDTc9PTdjsI+0QQ8AjIppdDk8QjMSfDFusO5+FdfvxDyCXg6iY1MX2N9nfDAqBC8sOUSAECtJXEooxIvTY+CRkfi26N5KKhpxgM/nsW4SA+sPZSDZVMi8e+lUhzMqMKw9w9AS5JGDvvfHcvjuJREeDrAz1nKtErY6mnXjgF+MuxLq0BKiZwjlafZcLIAb82O6RFhBNtVhk6Nf30kl0mF3jEkAO/8m2b0OncHEb66ZzBEAh6OZFXh51NXAQAf3zYA/9ueynmuiM/D9/cPgau9CLeuo4wInpoQzmROOkKrlsSLWy/jnX/TMC/BD3cODUCc382bjrQFtR6AJElcKKzD9oul2JlSxvE3DHazw9wEP8wb6IcQ945/gXsCQyXX0kkRVvW5WQM7pWnoYD4vwY/TZKrVkbjrm9NG75FepsDAQGckBrsyAWftwRzMTfDDazOj0arRYcPJAqSUyJFSIsczkyKQGOLKNJVrSWOH/eyKBqzcyxWpzIjzRlJBLVo1OvjKJAjz6Bv/PzcjA/Q7/MvFckyP9QYA9PeTQanWMuraU7k1GBnevbvp4rpmZuwQAHxx10BM/Owwp9Z1Os+4/svnEfhy4SB4yySoa2rFi/oF2OKRweDzCKNzbOfS0XC1F2HO2hNQaXSY0M8D/i5SPPtHstXH6ukoxnNTIlHTqMLv54pQVNuCX05fxS+nryLOzwl3DQ3EnARfo/7RGx1bUOtGciobKMHHpRIU1bY1Mbs7iHDLAEq5GO8v61Oy23IDJ4cgN7tu63U5mMFNETWw2hIAoJ+3I6K8HZmLiI4ERyhDoyMpyf0782Ix/fNjAKgmVKVaC4mQj8FBLkz6BqBmxO250mZ3JTBw2NdodXh+yyW0GgyEnB7nwzS5sq2xbPQ+A/Q7jfzqJhTXUeeSl5MYHyzoj8T3DwAAFn5/Blnvzei2ND1Jknjtr7Yd1QB/GTwcxVg2JRLL/2nbmbGbo2k8HcUYFuoGjVaHJ349j8oGFXxlErwwtR/i3t7Dee5fT45EiLs97l2fhJL6FoS422NQoAteMXDUscRDo4Px2sy2loYnx4fjZG4NNp8txN4rFUgtUeB/Jal4f2c6Zg3wwV1DAzA4yOWm+E7bgpoZrFXQlcuV+OdSKbYnl+BKaVsqy17Ex7RYb8wd6IdRYW4QmHHMuNZ8fYTb8LlsSqRZd4+OoFRr8dbf7ffezBvohw8NmkvZsm5XexFqm1rxz6VSPDk+DA+NDmHk/fvTKzA52guv/cW9GNBybJr/nhmD/1gO+3wegcsGEusgNztE+zi21dMibfW0a4mLvQgBrlIU1bbgeA71f+IoEcLTUcL5Dryy7TI+uz2+Wy7W2y6U4GhW2/xAWl5/7/Ag/H62iLODM6RMrsSKXen4/WwRY15cKldiyPv7OM8bEeqGgYEueOefNJzKq4G9iI+BAc5WtbawGRLkyhE88XgERke4Y3SEO2qbWrHtQjE2ny1CTmUjtp4vxtbzxQj3dMBdQwMwf6Af3Bysc/83HAWUGOLaY96r3YUtqJmBVtABXK8/WnAwNcYLC787jVN53Nlk4yI9MHegH6ZEe0Eq6j7lXEdl6tZQqVBiU1Ih575bBvh26Thpvjqcy9mt0rRqdMzKmiRJjmoRoP7d2QV1OxEfI8J8sPNyGVbuy8KqOxOYC9pTGy9iVLgbM8jz6YnhSCtVcHwrCQIIcLXjeF2aOienx3mjskGFzIoGEAQwKqzvBbWjR4/ik08+wfnz51FWVoa//voL8+bNu9aH1WMM8HdGUW0LTuiDmpOEulw9MT6M+Q7QDfxPd9E2rapBxdTJpsd6Y/eVcjTrMwsCPg/L58Tizm+NU+NsvjmaZ3SfYcP1g6NDsO1CMX44QR2/t0yCbRepGp6DWMAxWbDEO/+mYWqst8kA42ovwsNjQvHQ6BBcKKzD5qQi/Hu5DDmVjXhvZzo+2p2BqbHeuGtoAEaFuZtVVpsaBdSds+x6ir65fegDGI4ZUWm0eHrjRUYSvjetghm2OSTIBe/Oi0PS65OxfvFQzIn37daABrQFWcORJ6Zk6tby7dE8qDTck87SfDNrya9uMtoB0uRVU/WQVo0OL269jN/OcINq5rvTkRDQVuQurW/B0xPDwSOAfWkVyK1sxKLhgczjJ3La6htDgl0RalAHI0kw9cEnxofBw1EMHQmjnrzpLNXjAD+Z1f15vUlTUxPi4+Px5ZdfXutD6RXi9e0gdG+Xk15k5O4gxpCgNg/Rz/ZlYUc7FlTt8dbfqZC3qBHr64Rnp1ABsoklchoW6obZJlSYHYG2jmMbd9NTAe4cEsDpxWyPMrkSp/NqLE4EJwgCg4Nc8cnt8Uh6fRLenx+H/n4yqLUkdl4uw73rkzD2k0NYcyDbqAxhbhQQPctud6r5IcDXGttOzQKmnOyBNrduiZCHOfG+iPZxglTIx9mCWjhJhHCUCJg/HSWCbkk9so9FqdbisXFh+OlkgZFM3VqqG1X49cxVo/sLaprg4Sju9M6QJEm89fcVtGoo3zt2TQQADmZUwsdJisd/PY9TJgruAj4Pg4NckVxEpQd1JCAW8DF/oD/+vFCMT/dm4sfFQ/HraW4w5BFUoy7bEYVmX1oFpsR44atDuahqUMHZjjJWpgUHPjIJ4v2dmbrc2Mi+qXqcMWMGZsyYca0Po9cY4O/Muc0WPEyO8cK5q3XM7Re3Xoa/ixSDgzruBbk7tQy7UsrB5xH4+LYBjEK3uVXDeY6hKrejlMqVmPvlCaP737glBnuulBvVeNtjyW8XOHPaLO2iHCVC3DMsCPcMC0JqiRx/nCvCXxdLUFzXgs/2ZWHV/ixM6OeJO4cGYFykh9lRQCSo8sDyf9IwJcb0TvFaYwtq7bB0UgS+2J9t5CAAUKmFP84Vm3gVFzsRXx/ghHDS/8nclnIDIPU767ZUCAeRADx9gCFJEqv2Z+MrvWqwMwENoOTs7NQI7XaQX9WEocGu7aZfl5lJde5OLcfRrCqI+Dy8MzcOs/Wz0Gi+PpyLP88XI7eqyWS6JaNcYVT4v1rThGcmRWBHcgmOZVfj/NU6I/PjaB8nfL4/GxodiQn9PBDj68QYxD618QJemxmNNQepXe7yObH4ZE8m89ppenVdW39a3wxqHUWlUkGlauvdUyh6fshqdxLnJwNBgEnv0w3ZADVA9sP/MsAjgGEhbjiVV4NHfj6Pv54ciaAOyOLlzWq8sYOq/T4+LhSxvjJmZIxaS0Kl0eJQRiWe+PVCh3wpO8K7JtoDrMFw8Ki1E8Hj/GSI85Ph1RnR+C+1DJvPFiEpvxYHMipxIKMSzlKhxaGm3T3Lrrvp0aB2I9QAVh+gAhp90Z8R543hoW5oUKrRoNRAodRAof+dua+F+pO+6Da3atHcqkWFQtXOp5mGIAAHERXkJKy0JgGqFvDx7gwmEDpJ6Z0iHUSp23YiPlNMr21qxS+n2nZpo8PdEephj59PXUW+3siXvTNUa3UYGuyKC1fr8PmBbLOBtEmlYeoSj48LRYi7vVHQUuj/zXxkEnwwvz8e2MAdorj9YqlRUCusbcZ4/SrytzOF+HRvppH5cU1jK66UKiDgEfjfLTFYxdpZqzQ6RrQyI84bXk4Szu6xUalGWpkCtU2tVOE+0Nn8f8Z1xIoVK7B8+fJrfRidxkFMWa/l6HfU7J1amIcDQj3skVfVhPkD/dCo0iClRI4HNpzFX0+Msnpixfu70lDVoEKYhz2enkh9p+1Z51hDi6bDA0yvFR3dRUlFfCwY5I8Fg/yRW9WIP84WYev5YtRYWYLorll23U2PBjW6BvDggw9iwYIFPflRPYKhCwV9O9rHyardkVqrQyMr6CkMgl7bfYa3qQCpaNGgVasDSVJyeENJPAlqvpg18HkEHMQCOEkFRgKORpUGf+kbTtcdzkWcrwyOEgHGRLijQqFkvOsAyzvD1QezUSZXIsBViicnhIM0sbsFqDlq6+8fis/3twWe+0cE4adTV/F3cgnuSgzkPL+gmhKTPDUxHFvOF+NsQR0MKVdQJ9jikcHYebkMZ/Kp1Obquwdi6aY215DHx4Vho0Edz9/VDkf11lgjwty7Rf3ZF3j11VexbNky5rZCoUBAQMA1PKKOM8BfxgQ1R4N+qykxXvjmSB6O51Tj+/uHYN6XJ5BX1YTHfz2Pnx5MbFfqfyy7Cn+cKwZBAB/dOoCpvQr4PIgFPKg0OpzMq+70AFNziAQ8fL1oECZGeeHpTRc5Nm1dpbO7qDAPB7w6MxrPT+2HdYdzsGp/druvuZaGEZbo0aB2PdcATNkqsXcv7NvmEPJ5cLEXdUl0oFRrmSD3/bF8bGSpFd3sRahpasXAAGeEejiYDZBaHQmtjoS8Rc2ZxkuTXFTPub1k4wWzx/PTyQJsu1DMpE4dxdROsFyhZNJ3cb4yHM6sBJ9n+qKy8ZHhqGlsZQxiAeCpiRHYlFSIUrkSlwyOp7C2ianj3TkkwGIgFwl4WLkvCyJ9YNIY1CkWrT/DqCUBatTIs5Mjcbde2Tb2BpLyi8ViiMXWSbf7KgP8ZIzDBzv9CABT9UHtUGYlPrsjHj8sHorb1p3EqbwavP5XCj6+bYBZqX+TSsMINu4fEYwhwdxanL1YAJWmFaV13RvQ7ER8fH//EIwMc8ehzMpuDWhsOruLEgl4eGpiBH44UWDyWkEjkwoR62vs9NIX6FM1tb5UA2A72bNh+wb2BhIhHxIhH5uSCrExqRDLpkRi9QGqdnTP8CAI9LWvCVGeJoMsSZJo0QdGRYsa7/ybxgQfgJq26yOT4HKxnLl/aLALGpQak305NU2t7aYn/kstx3+p5WYfH/D2XqP7PtubiVa9vx5bkg8A+9MrsT+9Ek+OD4OYtfrmE4RRrfOrw7l4fFwovj5Cyau/0KtFEwKccaVUzgloAPDi1H5obtXg3FWbNVZfZADLO9Rwp5YQ4MIs7M7k1WJ0hDvWLhyEh346iy3nixHsbo8lZrwUP92bieK6Fvg5S/HiNGMTbTsRH7VNQFpZ912DHMQC/PRgIgYHuaC5VYP//ZXa/osALJ0YjtJ6JbZeaL9+T9OVXdTu1HIoLAQ0AJC3qDFixQHMSfDFnUMD+5SpRJ8Kan2pBmCp56szwoyuwg6yaw/lADoSJXUt+OyOeOZxUxAEATuRAHYiAaQiPmdXNn+gH1bekQCASpVGv7EbGh2J1XcPxN4rFUwdynA0zJ1DAzA1xovZQf5y+iqyKqgU0aBAZzhJhSiua2HSRtbQ3tw1AIw4hvk3MZHeDPd0wJQYLyao0XOvMsoVzMRwGplUiBFhbjieXQ21loS/ixTBFmbGXWsaGxuRk9OWCs7Pz0dycjJcXV0RGBho4ZXXL/1YswObDNLvfB6BSdGe+ONcMfallWN0hDsmRHli+ZxYvLHjCj7Zk4lAVzvMjuf2Xp6/WssoXVcs6A97E8bdtJn33924k1p//xAM1rcifL4/GyX1xn2cplhzMAeToj3bfyK6PhH8QHoFntl8kakhGo7L8XISY2SYO5KL6pFf3YRNSUXYlFSEKG9HfWO3v8l6Zm82cfepoHYj1AB6CnaQFfAItILq4QKsD7I/nShgdio8Anh2ctvrhHweAlztkF/dhO+P5eMHfXPr6HA3/PzgMPR/ew+aWrVM7cvPWYqlkyKgUKrxxQHqQvvitH5YMiEcRbXNRgIQQ7UiGy8nMe4ZFgR5i5ozDLQzlNW3cEyKaQybYAFq8KqQz2PqaX3dGuvcuXOYMGECc5s+V+6//35s2LDhGh1Vz6JmpY/zq5uMjHqnxHjjj3PF2J9eibfnkCAIAveOCEZ+dTN+OJGP57dcgq+zlAkmSrUWL229DJIEbh3kByGfhx3JJRYvtGF6QQrQ/gBTS3x9JBdDgl2RXqbA98eMG7XNQYLKVtBMi/XC3isVRsdDH3lnJ4Ifz67GE79d4ASxXx5MBAjCKBiRJIkz+bXYnFSIXanlyChvwNv/pOGD/zIwM84bdyUGYliIKwiC6PUm7j4V1G6EGkBvwNdfeK1d6QGUGOR7VsC4OzHQSPoc7EYFNTqw9Pdzwi8PDQNBEOjn7YgLhfUYFOQCNwcxszNcuTcL1Y0qhLrb4+ExIbhYWIdHfj6H6kZuitIwoLGdQz69PZ5J+xEA5zhpJkZ54GAGFXymxniZ9N8DqIZZU/Zc9LRsNmllCqw+kM2kXcf28VEz48ePNyu+uVFhp4vTyhRGu67R4e6QCHkoqW9BWpkCsfphma/PikZhbTP2p1fg0Z/P4a8nRyHQzQ5fHspBblUTHCUCHM+pxp8sR376Qjst1puTet/0yHCcya/Fsj+SjXb71uAg5kOt1eFQZhXe+ecKLhTWo7PVi1kDfPDlwkEmA4V3FwJFUn4tHvn5HKcBfG6CL0aYMYwmCALDQ90wPNQNy5vV2J5cgk1Jhcgob8D25FJsTy5FiLs94v2dsd1EY7y17QedoU8FNRvWwdcPEiyTt0CnI60aIPrzqbbCr5BPMPJlNmzV39hID6y/fwizc4nyccKFwnpklDfg5elRAKhZVz+fKgAAvDM3DgfTK/Hs78lQaXSI8XHC7UP8OUawbKbHeWPnZcqVIJY1tXfeQD8mqPEIMCc/HdBm9vdGpKej2aBmihGhrjiVVwsPBzGq9DPX7EV8PDQ6hBH98AhgZB+0xrrZYYsVLhfXGz0uFfExOtwD+9MrsC+tgvku8XkEvrgrAXd8cwpXShV4YEMS3p/fn5kKQYup2NAX2lsH+TH3zUvwhYDPw8+nCjoV0ABqqCnNT6esUyub47ZBlNn49DgfTInx7paUXnJRPR7ccJaz8LQX8fHazGirXi+zE+L+kcG4b0QQLhfLsflsIf5OLkV+dRPyTRiUAz3bxN2j2uXGxkYkJycjOTkZQFsNoLCw0PILbViE3qmptSQqG0z3vq1iWWo1t2rwHcuXLt7f2cjzUd6i5gSKLxcO5AS5aB9K6ZSuL5zrdCTe2JEKHQncMsAHV0rleOK3C1BpdJgY5Yktj48wmiDMZqJ+krCfsxSuLHXoAdbwR5lUaDSo9L+Ucnx+oH25Mc2yKZFIDHHDvSOCmIAGABOjvbBsaj9MjfECAMQHOFvd22Sj91Ao2UFNDp2JLQ79f7jPYKFjLxZg/f1D4e0kQW5VE+769jQ0OhISM1J/Uv+zlbV7255cikHv7jPZRtJdfHp7vNXP9XBsy2TRA1XnJvhhRJhbpwLDlVI57lt/Bo0qDWJ8nJgevWcnR8Krg9O0CYJAfIAzViwYgKTXJxtNLDeE3X7QnfToTu1mrAH0BuydWUl9C7xlxl8+tiOIVMhHXTN1cRDwCJy7WsexgmrVUOMyaBzEAiOlWbR+2m9GGZWW2XK+CBcL6yEW8NDcqsUKvdP+4pHBeOMWKqdv2FfH5jt9TaGyQYmfTxWgqLYZhzOrGOsqAMwxs+nIWlnAb7P5WrErnfMYPaOL7mWyqR77JoqWtu9Qg1KDgpomhHpwfTsnRnuCIIArpQqU1FOKRoASJ+RXN+HeEUEcBxllBzwWu4uxEe44ylId03x2ezyGBLuYeEUb7KkVno7dV57JrmjAveuTmIndoR4OSCtTIMLTAYtHBXfpve3FAsRYKfnv7ibuHg1qN2MNoDcQGAS1wUHGJwW7p04ibFuZagxaFUiSxKvbUjjqxlaNDlodyVn59dMHtXKFEnlVjcy4GJVGh4MZleARlIfdA6NCAACf7M7A5nPmFY10zUKtJfHmjvZH1HQGjZbE6gPZWDIhHH9dbFt9iwU8jO/nAa2OZMaaVCpMn1idnYBgo3tg79QAIKVEbhTU3B3EGBzognNX63AgvQL3jQg2WXO6FtBqxAUD/UwGtdUHsxmFrrnX01dQHgGrR8a0R0F1E+75/gxqm1oR5+eEF6dF4Z7vqV7N5XNju2xAUGFiAog5uruJ+8awTrjJ4LEUeiV15sUiSydFYHykB0f5t2RCmIGXYw7+vFAMPo/AD4uHQMTnoVWrY5SVNI4SIQJcqRXwgxvOGu2igt3tsfNyGYJf2YngV3biy8O5qGnsuuO/NTxlohfJz1nKTFl4ceslTpp2XKQH7MUCXCmVo75ZDRGfh81ni7p1AoKN7sGwX+pSkdzk86awUpDmHOZ7G/pbMzXGC8/+ccnkcywFNABwsRdibgIljnGxE3XLd7G4rhn3fH8GlQ0q9PNyxE8PJOLTvZlMKaErtWWtjsRPJwsw+bMjOJ1nOa1IgBLndLb9wBw2och1iIDP3qmZPymUai2SDYrrL06LYn7/83wxVumtqt6dG4eJUV4IdLNDTmUjMssboNbqUFTXgowyBc5drWPstQpMnIh5VU3Ig+misCXGRLgj3t8ZXjIJvJ0kKJO3dHjntvZQDmNrRMPnGTvA0MzoT6Ue6YGQE6I8EOsrw8p9WVBptHhyfDjWH8/v9AQEG92HQi/msBfx0dSqNSkWASjX/hX/ZeBUbjWyKhr6hFejt0yCOfE++OZo59pU6AG5O5KpXjl5ixq7U8u6pBasUChxz/dnUFLfglB3e/zycCIOZVbh/NU62In4eH2WdeIQU6QUy/HaXylIKaEWHvEBzpgV582UJrqz/cAStqB2nbFqXxZn9Vpa37YaNUyV/XGuCPUGO6rVB7KxdFIEjmRV4fktbavHH07kcyZIP/zzuU4fo0jAw9BgF86sMxpPRzGza3J3EOPnBxM5vWGfsmof1pIQIENykRyOYgFuHeyPDScLUFjbgtUHsvHg6BDGgQWglJ8To6hV/VGWK/+i4ZSQ5MtDuYy7vy2gXXsa9OnH0RHu2HOlAldKFdBodUbjnNgGx501Du9u3r4lBq8YTGXvCIazDTU6sksy+JpGFe75/gyu1jQjwFWK3x4ZBrGAjw//o+rNSydFwEcm7fD7NijV+GxvFn4+VQAdCThKBHhpehQWJgaCzyMQ6GbXre0H7WELatcZfB7BSf3R6Ue2VyVJUqpIUzsew9lwNB1x/6B5ZUYUwjwc4O0kgZdMDHd7MUfEMnXVEcZpBKACyhPjwxiZf7SPIwiCgE5H4kh2FX44ns+x8DKFnYgPjZbkzJ6iZ6+tWzQYm89SefyxEe7Q6kjsTi3nNJOOCneHTCpEo0qDC/p5XGP1IhH25AIRn2cLaH0AWigSH+CMEzk1aFRpkFPViChvYxECbXB8LbET8XHPsEB8dywfz/ye3COilM7I4OXNaixan4ScykZ4O0mw8eHh8JFJ8fbfV1Dd2IowD3s8qK+HWwtJktiVUo7l/1xhFqpzE3zx+qxoTp3MmvaD7nQcsQW164wnx4fhy0M5TKots6IBMW/uRrN+Sq+5oNUZNj0yHN4yCdwdRHhhyyXsudImmc58bzrEAsvTvdkBDaBEIcWsCQECHoGNZwqx/nieUWO0OW4b7I+fTfT63DMsEKMj3LHsj2QAwL0jgjElxgsLvzvNeR6tejydWwONjkSQmx0C3ezw6rbLzHP4PAKtWh2zq7Vx7aCFIs5SEeL8nHA6rxaXi+Qmg9rUPhDU1FodnpkciV9PF5p10OkKnXHhb1Cqcd+PSUgvU8DdQYyNjwxDgKsd0ssUTJ/p8jlx7U41YFNY04w3/07F4UwqhR/sZod358WZVRHT7Qem6G7HEVtQ6yOQJIkGlQYVciXKFUqUy5WoUNC/q5jfqxtVMBSUNrd27uTZ99xYhHk4cHZXJ3OrsfC7Mwh2s8OIMGpu3JKNF5n6E01hTTMiWL581rBkQhiT2gOAQ5lVOKQ/KRzEAtw1NAAHMirNNmwCVI8dYBzUXpzWD1/sz2JWjMFudiitb+FM1+YRbYKCY4w1ljvK5C2ciQG5H8xkdr7AtfH6tEFBp9qdpAIM8HfG6bxaXCquxx1Dje3zKINjIWqaLJvxdpSnJoRh7aHc9p8IauFW39zaIwGNTWFtEydI0DudcoUStY0quNqL4C2TIs7PCQ9tOIdLRfVwsRPit4eHIdTDASRJ4k19n+nM/t4YbaWbTqtGh++O5WH1gWyoNDqI+Dw8Pj4MT44PY0b3dARa1GNYA+2K44gtqPUCaq0OVQ0qlCuUbUGL9XuFggpanQ1OhkR5OzKSeUNDUprDL4xHsLvxhOBQd0ouXVTXgqs1TXjsl/McyyBaYpxe3mAU1Ng1vY/0xWE24Z4OiPRy4Ozg/F2keGBUCO4Y4g9HiZBjkUUQVAM2uy5oTijw9KaLTOqSIIAAVzv8cCKfswAYFuLGSKLZU65HrDjIPOfiG1MAdHzMkI2egRaKOEmEGOBPuYXQQgRDKINjL2YaPVsO3xU6el6O/uhQN3yqZV75MwWl9UrcNyIIv5y6iu+O56FJZXyctJrZUSzAzw8OY1pztieX4GwBNUH+f7NirPrMM3k1eH17KlOqGBnmhnfnxSHMoMXCWrQ60uwA1q44jtiCWhcgSRIKpYbaRclNBypzuytzOEkE8JZJ4OVEqQFN/f7wT2dxqdj0iQ2AE4QGB7ngjEHH/ohQN5MBbdW+LPCINvPhcZ8c5jze388JAIGUEjl+OVWAOSwfPnZNDwD+uWzsbv7c78ay5m1PjoRGS6K6sRVppVwj4ifGhRk585uzGTqWXY1Z/X2wM6UMvjIpxAIeM4eLhlY9FtU2I6+6CXwewZnd9vTEcM7su94eM2TDmLadmhAh+u9sepkCKo3WZPqbNjh2sRNCLOSjvBtk/T+cKOjye3Q3JKixSl+0465D154fHx+K/vpFQYNSjQ92UYvOpyaGw9fZsjiktqkVK3alY8t5arHgZi/C/26JxrwEvy4ZgB9Mr7DYdtHZgafXXVBbpe8bMrVy7s5GWbVWh8oGKjCZ212Vy5VWpxkEPAJSER/2Ij4GBbmYDFpeThJIRe1v4av0KTaCAEgSCHGzQ35NM4Ld7Izk9oYBDQCu1jRBoVSjVaODSqPT/6lFVYOKM4TUEKmIz/TVnC2ow/wvTyDKxxHJRfVIL2tAqLs9zhbUYsKnh1FsoX+OTeL7B8w+ZhjQ2mNnCuUlGexuh5QSuZH4ZZq+nkY3XId7OHA+4/mpxnO1bDu0awutfnSUCODvIoWLnRB1zWpklDUgnjVrjYY2OK5rVuOVGaH48L+Oq2n7Ol6OYlSYscczx6+nC/H4uHDweQQ+35+NqgYVQvQm5OYgSRJbzhXjg//SmWzJwmGBeHlaVIct5eTNaqSUyHG5pB6pJXJcLpZbfY3oqOPIdRfU2PZP3CZi7k7BHJZ3V201rJom63dXMqlQrwCUoKZRhSulCkyK8sTdiYFM0Np45ipW7c/GI2NCu3ShXH0gG6X61Q3V16XE5BgvXClVcFxBLFEqV5oc1NkeSflc/7uLRfW4yNrp5FU3Ic9CPcwcdIqETYSnA8cyyxKGw0KD3OyNdmmD9QsJoK2ellnRtqM99tIE2Ohb6HQkY7XmJBGCIAj093fG0awqXC6RmwxqUhEfYyI8sC+tAmsPdmxR1FegA7chbvYiLJkQjrGRHpj35Qk0WrChM4Te8bjai5hZcm/PiTUr9sqqaMD//kpFUgG1KI7ydsT78/ubdC8yRN6ixpUSuT6IyZFSLEdhreUmc0t01HHkugtqpmoddEB7ZlIEbh3sj/NX65igRQeqik7sroR8Ap6OEng5ic2mBE3trujjiQ9wxuQYL6w+kI1V+7O7pe9JqyMR4CJFUR3l+VgmV6K0XomVdyRg+Arzux5LOIoF4PMJo542NtNjvSEV8dGq0TE7ou7gwPPjkFHWgCUbLzD3DQx0xh1DAvDqthSjpmpD4nyd8O/SMVjw1QlcKKwHAHg4iPHLaW6ackYctUvT6kgcN2gbmBPviwDXvjsc9GalsVXDLCwdJdSlKt5fRgW1onpgeJDJ102J8cK+tIoOXfT7EqYCGkBNnX/nX9NTL6yhUqHE5/uzoNWRmBbrhXGRxkrFllYt1hzMxrdH86DRkZAK+Vg2JRKLRwWbtM5qUKqRWqKgdl8lcqQU15s0ZwCAIDc7RHg64NzVOovXGprODjy97oIawA1sq/ZngSSp/pDVB9vPMdOwd1feTmLW7/qAJZPA1U5k1VgXU8enVGuxcl8W1hzMhlpLdlsj73NTInGhsI4KavqdR3F9C97fyTXsjfV1whVWjSrUwx73jwg2OWvMz0XK1OEIAhDyuDun/54Zw7j0A8Cljw5anTpoj0mfHTG6z0kiZJqwX54ehcoGJTPJ2pDp+mD104OJ6K/ffdLfAfboGjr1eLm4nhEf0HxxV0KX/x42uh+6niYW8Bhl3QB/ZwCUY785JkZZNyW6rzIjzhv/pZZ3+/tmVzbgTH4tJEIe3rjFWBxyKKMSb+xIZc7tydFeWD43ljGIblJpcKVUgcvF9UjR78TyzLTiBLhK0d9Phv5+zhjgL0OsrxOOZlfjw11tqcyhwS6YEu3V7Y4j12VQA6jAQQc0wLRCydNRjAn9PBHmaQ8vp47XrroCrQhSa0kI+aZrgJ2F9n6k02nZFQ0cwYO7g5gT0ABKHHL/yGDcOTQAUW/sBgBIhDwo1TqOsIQkAaGAAPufc19aBSeomfuKeTiKmXofm1B3+w6lJY+w2gc+25uJJoP/2/GRHiitb0FWZSMzmsZwRA0ACPTBOc7PidmJGTZ3//3UqD497fpmhm68dpK21W9oBWR2ZQOaWzWwMzHeyN1BbKSy7WssGOiHbRdLTD62+0r3BzRvJwn+0BuMLxkfDn+XtsxEuVyJd/69gl0p1Of6yiR4eUYU/Jyl2JNazuzCcqsaTZZk/Jz1Acxfpg9kMo7g6nJxPR7+6RzO6c0O/JyleHVmFGb19wFBdL/jyHUb1FYfyAZJttVTaG84NpUNKvxxvggh7vbo7ydDnK8MpB/g6iCCFD0b1HKr2k4otZbEx7sz8NL0KAuvsB7apZ8eOWMY0LW6tl1WuIcDcqoa4awv7EqEfOaEivOVMV80Nmxp8OwBvkyqd/5APzy7+SKKDHZpT00IR6tWh2+Pmt5NbXp0OIZ90JYa9XISW21lZPh/CgCn8mqYlOQXB7JBEITJRQq925zBOjHYjenx/jJm5W+j70E3XjtJ2i5T1OKU+v5cKVVgaDCVmqpramV2D6kl8j4d0ACYDWgALNbyR4W7oUKuRI6VZgU05fopFMFudnhEP+eMNh9+f1c6R+FLEASe+z3Z5HRuH5mECVx0EDM3OaBSocTHezKxVa+alAr5eHJ8GB4ZG8rpaevOgafAdRrU2KIQdk3tsbGhGBbqipRiBVJLqS93mVxJme1WNTHGoAAQ4m6POD8Z4nyd0N9Phlg/GWTSjil6LB3fV4dz8eCoYGy7WIL6ZjW+OpwLPo8wqbDrKHRK1EkiNNmHVteshoNYgPkD/ZCUT4lH2H+32fG+2HaxhAlokV4O+GHxUHx7NM/IrYOW5ptzKhkS5IIXpvXDxcI6k0HNXsSHh4MYQj7BTA4eEeqG7clcyf+4SA9UKJScXaM52DW2uma1yZQqm0MZlbhvRBAz9Zhm25Oj2v0sG9cOOv1oONsvwMUOFQoVHv/lPIYGuyKlRI6S+u5Jh3s6ijA73hfrjxd0y/t1N6dya0wGG3MY1qRbNTocz67GnivljETfEPrf0stJzEkhxvnJOENKzaFUa7H+eD6+PJTDLLgXDPTDS9OjTM5+BCw7jnSU6y6oGQY0gFtjsxcL8MzktlRfdaMKKSVyRo2TWkINEqRHjf9zqe3iGuhqR+3o9CuROD8nONuJ0BEMj296nA/u+f401FoSaw7mgE8QeLaLLQf0Tk1LUjZPhhZTfB6Br+4ZhLGRHnjgxyRkVjRyghpb6i7gEdj6xEg4SYRwsRNZlSpkmxKfu1qHD3al41yB6TETg4NdweMR8JFJGQWUYUBzthNyUo40ThKBUf3rmUkRqG1uZXwaI70cEOxmz5nabci5q3WIX76XczH4YfEQ20iZPk6D/v8+uageaw9mc85fgBJOsFN1wW52zLmbWqrgnNvW4O8ixcaHh6OkvqXbg5q7gxjVje1nJ9hK4LsTA6HSaLHtQgni/WW4VCy3OqAJCEBDAs9PjWR60gBK+WzKrNzNXoT4AGfOLqyjk69JksR/qeX4YFc6U5cbGOiMN2+JwcDA9lWT3cV1F9S0OtOiC3ONsu4OVF1tQr+24jEtu6dTFSklVM9EYW0zCmubOeo+fxcpE+joE8bV3nygMzy+xBBXfHTrACzTz1Pan16BZyZHdKmOQ+/UtFqdSc/E9+fFMZOt5frVrkwqhFZH4t1/0xhJL0ClFJ30K+E4P5lVQhv2bDJXexFnh2aYWnTRpz29ZRKzst5HxoRiz5VyTvF/SrQngt3tjTz0xvfzwMBAF+y4WAKFUoMPbx2AQYEu+HRPJtYeyjF7zIYXA9qp30bfgV6AphZT5yR7ofLpXtN+pq/NjEKcnwyxvm2ZluSienxm5vnmCPWwx28PD4OPTIqkAutaYzpCk5VKzLOvT8aIDw+guVWLRcMDmWG8HU2navTfd3ZAM0Wouz1+WDwUQW52XbomXSmV451/0pi+WG8nCV6ZEYW5Cb69XrO+7oKapcZqa8UYbg5ijI30YC78AFDf3IrUEn2g06cur9Y0o7iuBcV1LRw1kp8z5akW5ytDnD6v7K7PK5s6vgWD/FFQ3YTVB3OQWqpg5P2dYdW+LOTqd1paE6u2ocEuuCsxkLlNBzUBj4dHfz6HAxmVAICxkR44mlWFfekVUGt1yK1qxCMmVnDPTo7AouFBcHcQQ96ixp7Ucqw/ns/0eBmOxzCsldECDjVLTSnkE3B3EDOF4U8Mxs0I+QS+u38olmy8gBa1llExSoQ8xPlRQgF6l0W/f0FNW3AfEuRislZIs3bhQLOPAb3X4H8zU9WgYhaU9OLSkrvEoEBnxPg4YUacDwLd7DDmY8qK6s6hgZwsRHWjCk/8eh6tWp3VuyOA8hR9bVsKcquautRTZQ5zbUS3DfZnak5LJ4Yjs6IBza1auNmLEO3txEzhaFFrGbOF7iSvugl3fXsaz06OwG2D/Y1G+rRHdaMKn+3NxOazRSBJKt352LgwPD4u1KSIpze47oJaT+FsJ8LoCHeOsSfdRJhaKkeKvhcjv7oJJfUtKKlv4bjW+8gkiPWlt+5OiPOTcZoGn5sSiYKaZvx9qRSrD2TD01GMRWb6bCzB5xFM3elAunHKbXQ415hUrleQPfLLOeZLt+rOBEyL9cawDw6gulGFuLf2mOwFWzIhDM9Obrt4y6RC3DE0AEFudrjz29NGzzcFXQ+5qO8hA4CHRofi6yPmG2PVWhJLfruAnSll4PMI3DEkAJuSCjEwwIXplaF7kOz1QY1tguwgsfy1zihrwC0DzD/e1QZ/G1wqG5RUACtuy47QwgU2BAFG1NXfT4afThUwg2kvFNbjQmE9DmRU4q3ZMQh0tUNhbTNSiuXMOavR6vD0xosokysR4m6H12fF4JlNF9HUqm3XB/IvC8KNnmQrq641OcYL+9OpRefIcHc0q7WcUoC9SGBV752DmI97hgcZTSwQCXhYMj4cj40LhYBHYNuFEny+PwulciVe2ZaCb4/m4fmp/TAjzrstG2RmJEyrRocNJ/Ox5kAO0yA/O94Xr+hVk9cSW1CzgEwqxMhwd4xkBQqFUo20UgVnlZlf3YQyuRJlciX2swKNp6OYU6N7fmokiuuacaGwHm/uSMWp3Br083bs0I5g6aQI7L5SjjQTDiJ3DQ3AM6wgRJIks1IlScDdQYTv7huCWF8Z/r5UwjzGDmj3jQhCS6sWW84Xm11p5VRZnwr5+kgu6ptbje6zxGNjQ/GNPqW5ZHwYk58fGuyiP14tIzpxEAtAkiSnhYEeh2EKP2cp1h7KgUhgfl6apQb/G3VwaHfNs+poABvAOj9ifJ2YRdDu1DImoLGh3dsHBjmjsLYZl4rrMTrCHQ1KNR7+6RyT/iqsbcHDP7VlHswFNHsRH0OCXRHm4YAwT3uEeTjgmyO5zPSIrjKrvzd2plgn0Y/0csQ9350BAPxzqdSoJmhtM/mnt8cbtdaMDnfHu/PiGP9MALhjaADmJPji19NX8dXhXORVN2HJxguI83PCi9Oi0KzS4J1/jaX28xP88F9qGdNk3d9Phrdmx2BIcMeapHsKW1DrIE4SIYaHumF4aJtSp1GlQRqrRpeq7+mobFDhQEYlk/IDqIZggEqn7Uwpw86UMpAkyQlG7e0IBvjJjMx/AeCduXGc27tYJ5OvTIJv7h2Co9lVePzX8yYl9RP6eWD5nFi8sOWy/lhNX9TMDRQNcJWavBBtPltk4tlc2NZA7FRiUkFtW1DTOwuwWw7sRXzUGKRAaYaHuuJ0HlfAcndiAHSkeZPiJpUGZfIWxAc4Y0q0J1buy8IX+gXGjRrQOjvPqlKh5KQPU0rkJr9XBEHVbtgLvFg/mcneQqDNvd0U9P/aJf3O/5M9mfj5VIHR51pjQk2A6oH7YfFQJoCrtTrGmaY76EjPGd0/2hUeHBWMvWkVHJu4ocEu+OWhRJO1LYmQj4fHhOLOoQH4/lg+vj+Wh9QSBe7/Icnk+5fLlVinX5R6OIrx0rR+uHWQf6dMKnoKW1DrBhzEAiSGuHLsXJpb2YGO2tllVzaYVC+t2p+Nvy6WYNYAHxTWNOOfy2V4bnKE2QuouS8Qe2X986kCzuTrIcGuuP2bk1CqqV2Zp6MY9w4Pwmcsmf7bc2JBEARIfeLeXHrd3EBPUwHNEonBLkgqoGpfbGsgOq3r5SRmghKPAKOg+lIvCBHwCAj4PGSZaQMYF+lpFNRCPRz09bwWfHU4B2X1SpTWt6BUTv1J1yDZaHXd30DfV7B2nlWFQomUYm4AqzTRaE8QlPFAf4MdmLkAZoqk/FqL9TWAW0+2tufRENoFftgH+8EjCKi1OrMWVZ1Fa97hrUfYlFSIFjX3Q31k0nbFGo4SIZ6bEon7RgRhzcEcjpjMFA5iPvYvG9dtbVDdiS2o9RB2IgGGBLtytuQtrVqklSlwpVSOrw/nMsbEAFBQ08wZoLlqP+UXSeMrkyDEwx4iPs9samTm6mMY38/D5PTfv1mpjOmx3pg30A+GSZkWtRa5VY3MTqmuWQ15ixoiPg9CPgE+jwBBEIxQpavQAc0UI8PcsPGR4UxtzdlOBBGfh9UHsrFeP3ONbihnz2Bj89FuY+XXk79dMPFMy/B5VI/djTYJu715VgDwzOZkOEpSUd1ovBvmGQYwfxlifJyYOmdn6agrO42hNZy1mPq7Xa+wA1pisCuSCmpxtqAWJElapUJ0cxBjWqx3u0GtUaVFWqmi23rLuhNbUOtFpCI+Bge5YHCQC+4bEYxNSYV4dVuKVa8tlSs5QdAUmeUNyLSieXn3lXKTaZHpnx/j3F53OJfTsNxd6iuRgIdgNzuzMmVPRzF+ejARAFUHBCiVZeT//gMAxPg4Ia1MgerGViz87rTV0wloAlyl8HOWws1BjBPZ1ag32J05iAUIcbdHSokcz02OwDOTI2/ISdjW7IhUGh1Uja3gEdSQV3r3Re/AekLhZq0ru69MwpwTvjIJFiYG4vXtqR3+vHfnxjJZgFvWHO/w6/si/i5SfH3vYCS+vx9lciVK6ls41liG6HQkkovrsfdKBbZdMN2UbUhnFx89jS2oXUPuTgxEfnWTSSeOcE8H9PNyxIXCunYvPNZAN1X7u0jh5SRBSokcrSYUjzKp0GQKDug+OfFXCwdhUrQn0ssaMHP1MaPHR4a54Z1/0lBa38KpR9KklbWtxjsa0ABgUpQXdCSJ388WcUQyw0NdcceQAORXN2HNwRyzDf7s273Nl19+iU8++QTl5eWIj4/HmjVrkJiY2Kn3svaitHRSRK9KtBNDXOGjn0BhCtq9nb3IW7doMCpNCFIsQb/PwmGUCrmzUy76Im/eEgNXexFi/WS4VFSPswW1RkFNpdHiVG4N9qZVYF9ahUnfVkt0dCRMb2ELar2Iqf4nOzPGyjmVjYj3d8bB58czI1+yKho6tZIMcJVi/7JxWHsoByv3ZeH2wf7gEdSgTwDwc5agpF6JqTFe+Pa+IXjsl3PYc6UC786LQ3WDCmqtDo+ODYVaS+L743km05sd4eGfz2FkmJvZgGToONIV3p8fh9f/4q7e2akVR7EAD4wKxm2DAxDoRp30q8yoHK/1JOzff/8dy5Ytw9dff41hw4bh888/x7Rp05CZmQlPz44701t7UfrheB5K6lowJcYTYyI8upxebA8+j8Cbt8TgCQup4tsG+2PNwbZme1d7EZ79/WKHP+ut2TEgALz05+UOX9Q7gik7u55kTATVg5sY7KIPanWYP9AfCqUahzOrsPdKOQ5nVnVqPE9nR8L0FgRJdnc7X/ehUCggk8kgl8vh5OTU/gv6OOY8K4eFuJqcUA1Qw/m+umcQQj0ccCizEg/8eJZ5zNlOaNVcIoBSCcb4OkGp1iGlpM25w0EsQItay1yo/ZylRj56TlIBHMVC6EiyW3aNfYUFg/zwyW3xPWaX1d3f32HDhmHo0KFYu3YtAECn0yEgIABPP/00XnnllQ4fj1ZHYvRHB1EuV5qVvBumnEUCHkaFuWFKjDcmR3vCs4NWStbSqNIg7q09Jh+L9HJAZYOK892nJ0TYifgmJ3YYQgC4Y0gA3p8fhwc2nDWa3tBdvDw9ymRttzsYE+Fu9rhnxHnjy4WDsC+9Ao/9ch4AZbhwKreaaYcBKHssQ/Xw5GgvjIlwx9t6T1VTI2FoAVFvYu35ZAtqvQx7oGl9cyuyKhpwKq8Wj44NxT+XSpmg4e8sRU2TCi1qHRzEAnx82wCrRA5xfk5ILel4sbwvIRLwTKZGAapW0B2z3IR8Atnvz+zy+1iiO7+/ra2tsLOzw9atWzFv3jzm/vvvvx/19fXYsWOH0WtUKhVUqrbdh0KhQEBAAOd4aPUjYPritXbhQLg5iLE/rQL70itw1WAAZHyAM6bGeGFKjBciPB26zRKptL4FIz88CAEP+OWhYahsUKGuqRVvs6T+Ud6OHANsSynL7sLNXoiaJusWkgMDnbHtiZG4d30SjudQweeXhxJx73quXD7K2xHVja1Wu58AwB1D/PHO3DijNoBhIa64UFgHtZYEn0fA30Vq9H8W5mGPqbHesBfxsSO5lJkwH+nlgDduiWF2eZ1t9egprD2fbOnHXsawNgMAIW52cLGjRrW/828aWjU6FNe34JlJETiVW4OkglpOQGM73huSWqKAVMhHi1oLdwcRqhtbkRjsgvfm90dKsRzPb7nUs39BcE1ZLUGnPdn8+/RohHk4YMzHBxlV2rOTI/D5/mwQBHD85Yn4Yn82Vu3vmLffi9P6QasjsXJfFnN815Oasbq6GlqtFl5eXM9KLy8vZGSY3gmsWLECy5cvt/i+0+N8sG7RoHbnWQ0PdcPrs6KRXdmIffoaTHJRPS7pfz7Zk4kgNztMjqYC3JAglw5bLrGhzYxlUhFGhFHmByRJcoLa5GgvTlAztGzrLBsfHoZ71p8xqiG/cUsMwtztsXjDWdMvNODRMaEgCAIxvk5MUMsoMxZyvTS9Hx7cYGxRZ/G9x4aZvD/ax4nJ+mh1JCegDQlywYe3DoCAR+C9nemMUYSznRDPT4nE3YmBnP+z7h4J01v0SlDrzuL2jcDSSRH4Yn82tPqzJr+m2WSK4osD2Vh1ZzwGBjozDhsAjAIa27UgyNUOAwKc8c+lUiYoiIV8RHo54icDme7AQGdcLKzHoEBnZJQ3mEzb0PPqOqJ83PToMNy67lS7zzMMaAB1gr2xgyshT9S3RfD1u4CUkvp23zvEzQ63DQnAJ3syIeQTUKq1HPHHjahmNOTVV1/FsmXLmNv0Ts0Qay9eBEEg0ssRkV6OWDIhHJUKJQ5kVGJfWgWO51Tjak0z1h/Px/rj+XC2E2JiP09MjvHC2EiPDvWpAaxZaqw+qF/PFHKeY2hgbcrqraMsnRiO384UGn3Xf3owEeMiPTDm44NWv5ev3i7qKGsCxfu70o2e19GA5ucsRZiHvcl6mCkpvoOYj0aVFiIBD5/vz8Lu1DJodFTt8t7hQXh2coTZaSTdORKmt+jxoNbdxe3epKeMbVcfyDYKFEODXZBT2WjU/Pnc7+3vrHaxzJav1jZj/iA/zuOz433x+f4s/GZwUfB1lmJCP0+mzvf1kVxOYAt2s0NBTTP6+8uQwnLQt0SYh337T7LA3isVHD88N3sRI+Dg8ajgRPvjmePRMaF4bVY0fj5VAIByDO+rakZrcXd3B5/PR0UF1++zoqIC3t7eJl8jFoshFrc//wro3MXL00mCuxMDcXdiIJpUGhzLrsa+tAoczKhAXbMa2y6WYNvFEoj4PIwMd2N2ce2NNKEsuygREU9/O7moHu/8Y3luXmdhZxZWHzQ96WFIkAtaWrUWDQb4PIIjIrrz21NYsaC/VTMCab69dzAe1dfA2PjIJOjn5YjDWZS445nNydidatyWc8sAH0yN9ca4CA+8/Odl7L5Sjka9Aw9bmBXj44TVdycg3NPR6mO7Xuh8fsBKVq5ciUceeQQPPPAAYmJi8PXXX8POzg4//PBDT390l6GNbVcbjGOhV/md2YazxSLJb06Fs34lWi5X4sxrk7H3ubGYGOXRzrtwMVxVGjo9yKRCXC6uB0Cp/b5cOAgAcDq3Bk9NCMeyKZE4mVtttFMrqGlGqLu91QENoNzOK004PCwY6IdVd8a3+/oP9TtWetqxi50Q649RzdWtGl27VkJPTwzHa7OiAQBHs6iUT4CrnVk147IpkddMzdgRRCIRBg8ejAMH2mTnOp0OBw4cwIgRI67hkVHYiwWYHueNz+6Ix7n/TcEfj43AI2NCEOxmh1atDoczq/C/7akY9sEBzF17HGsOZCOjXAHDkv7u1DKM/uggPtlDLTZyq5swYsUBPLghyWzKvatYkypvatXghxPcJn8Rn8CtrAWk4fdIqdZZtSilCXS1MxnQ1i0ahCUTwnFYv+OTt6jx96VSo+NeMNAPaxcOwpx4X8jshJjR3/RiBwDSyxRm7e6ud3p0p9ba2orz58/j1VdfZe7j8XiYPHkyTp0yTk+ZKmxfS7rb2NbUa/94fARmrT6GoroW3PXtKWx7chR+WJyIz/dl4XMrZpuZ4kRONeNiDlCNleev1gMAlk2NxJQYL0iFlGdiViW1ijydV4uHRocwbh007Q0MNUTeojYpxX57biw2nCho9/WtGh0mRXmCBHAwoxI5VU0mR+yYgj1ZXK3V4VQuFdRemxnNjKwxpK/v0NgsW7YM999/P4YMGYLExER8/vnnaGpqwgMPPHCtD40Dn0cwtnGvzYxGblUj9qZVYH9aBS4W1eNSsRyXiuX4bF8WAlylzA6urqkVT228aKTENFykifg8PDslAh/v5o4s8tDXkHsi9JXUtRiNSJoY5YU4Pxn+ZPksdgVzI29oIQ+Np6MYM/v7GKUaZXZtqdqC6ia8vPWy2c8iAby6LQVTYrz7fI2so/RoUOtocduawnZvs3RSBNRaHVbuy2KCm0TIw8+nCvDbmasQ8Hjg8wgIeJSNFJ9HQMAnwCf0v9OP8wkU1lI7nyulcjz523nweTwIeAQkQj7UWg0uFNaj/9t7cPvgAAj4BAb4yziDMwHKdLg9B3FDtRM7yAzwlyGrogGOEkrK/9vpQvB5wMOjQ/DwmFBsOVdkNG26I5hqlg5ys8OGEwUccYwl7MUCjq1XvhWBlUdQK2Va/HGxsB5NrVq42osQ43NjKGfvvPNOVFVV4c0330R5eTkSEhKwe/duo/OrL0EQBMI9HRHu6Ygnx4ejskGJg+mV2J9egWPZ1SiqbcGPJwrw44mCdsfDAICDiI/3F/Rn/D/ZzI73tfp9TEHPGDTF/K9OGt1nJ+IzVm1s7k4MxKakQqP7uwN3BzHOvDYJn+83XvBKhXw0qjT46lAOvj2a125fXF2zGmsPZnPM1G8EelTSX1paCj8/P5w8eZKTInnppZdw5MgRnDlzhvN8ayTI14IGpRr93957zT7/RsFRImBUbQBVfzNnjsyG7kECgAAXKYpMSPpT3p6Kx345j5O5NVg2JRJqrQ5rDuZgTrwvVt9teShoT9HXWlL62vE0t2pwXF+H232lnPPdMMeL0yKx5VwxCmqa4eUkhq+zlJnVd8+wQIyJcDdSclrD4EBn+LnY4e9LpVZ7SN4zLBCTY7w4vaPx/jIsmRBuMo0IACNC3XAqzzoXnCA3O6MF6iszojAzzgeTVx0xansJcrNDc6u2Q03kzlIhzr8x5brYrfUJSX9Hi9sdKWz3Jj8apM3mD/TDY+NCodGS0OpIaHQkdCTJuq1j7mceZ27r2u5nvZ7eDXYU2rS0K4gFPOaYehLDi5Y1AQ0A5yQdG+lhJHgBqP+jk7k1GBnmhpX7suCtFyOMYQ19tdG3sBMJMDXWG1NjveEgERidZ6aga20AsHxOLAYFuiDxA6rO+NuZQrw/v3+bklOhxDO/J1t1LHcMDcBreucZidC0y4/x8fOZmjhNmKeDxXEz1ga04y9PgL+LHVbuzeSIV8ZFeuCdf6+gVaMzCnqGAdAa6lvUSMqvve4Ujpbo0aDGLm7TDaN0cfupp57qyY/uNug62HOTI3Aih+oZ++tiCYLd7Lp92754VDBGfXiQc/GfEeeNdYsG46mNF/Dv5TKj1/zx+AiQJIk7vz2NJDOuJDTxAc5IK5UbFdzbk0K72olQ29z5HqBFwwORWd7A2HLRPDMpAl90sG5oKqAFuko5tcqPd2fgK70RM91IaqPvsju1zKqAZsjjvxrXbj/enYG7hgZiWIirUS8jj4DJ0U/OdkJkljdCqyMR3wGl75VSBeMbSbPNRH3tifFhUKl1RkITczwwKggqjQ4nc6rhJeMqRWd80eaV2pkgZoq+akzcWXpc0n+9FLdNYSjsmJvQhBlfHEOLWotV+7NBEN07Y6tcruQENA8HMdYtGgwAWLtwEOqbzzBNnGwIgvLKa88XUqvT4Y/HRqBFrUVSfq3JvLwp1B0cCmXoczd/oB/u+Z5KNc+I88Z/qeUIdbe3etXaHoW1LRzxTawvJQqJ9HKAt6xvmq7aoLA0ELQzfHU4l1nQGKIjKUeQcE9Hji3dqDA3bDlPDbJ1dxCjVWtdUDuZW4NHfm6/x2ydmeMxx48nruLHE1c79BqaztTz+qoxcWfpcUn/nXfeiU8//RRvvvkmEhISkJyc3OeL2zSG046D3e3xyowoANSFu6YDtjbtcTy7GrcaFKOrGlXYcq5tavQvDyUi1pebS96o37n46Rs9gbZxLYaklihwxzencK6gDksmhOPuxECrjq2hA6anIj4PQW5tbuBeTmJ8sCsDSrUOo8Pd8eI0Sp2YV93U7s6yI4gFPCZNeSybKvaPte3S+jzWjL+hCXKzw+lXJ+G7+4bgjiH+cLM3/T23RJNKy9TgaPalVaJBqUGou327FmzzB/phdHhbSrunZPEEgFB3O85ntceCgX74Vy+w8nQU4/dHh5sUsrA/w6cPGxN3Fpv3YwfR6Ugs/P40TufVYmiwC35/dESXR5lvTirE/7anQqMjMTTYBd/eOwQ/nSrA5/uzIRLw8MdjI5AQ4AyAGjQa/WZbrxaPAL5eNBhTYrwQ+9YeNLdq8e7cWLyxo+ONqjwCyHpvBj7anYHvjlmXKjGFOQ++cE8HtGp0ZqXLXUXAIzAp2pOZnD0vwRehHg7d3jxvLX3t+9vXjgcAdiSX4JnNye0+z9tJjP3Pj+c4k2h1JL4+koOvDuWiyQoT4+4g3l+GSx3o2+wKmx4ZjgBXKUZ/dMjoMX8XKV6eHoWnNxlPJhga7IIvFw6Cp5MEu1PLTKZpr6UxcWex9vvb4zu1Gw0ej8Ant8XDXsTH2YI6/NjOhFhL6HQkPtqdgVe2pUCjIzEvwRe/PjwMLvYiLJ0YgSkxXmjV6PD4L+eZvLehvF1HAk9vuojzV+uY3VpnAhr9XmsO5mBvWkX7T7aAuZV3TmVjtwa0kWFuSF0+DVOiKWcajY5kAhoAFNU2d3vzvI3uxdrU10e3DjCy2tqXVo5P92T1WkAD0OmANjHKEydemdih16zal4X7fkgy+djOpWMws79xMFo8MhgbHxnOTE+YHueDrxcNgo9BGt5bJrmuAlpHsAW1ThDgase4Vny8OwO5VR1PQSjVWjy96SKTb39mUgRW3ZkAsYBSXvF4BFbeEY8wD3uUK5RY8tsFtGp0Jn0PVRodHtxw1qqRG5ZYOjEcXxzI7rYCNJtnJ0cYOaW8PjPa4mtenNYPqcunmXxMwCOw8ZHhcBAL8N39Q7FMv+Nih6nz+jTTyn1ZePLX81BptF1qnrfR/dADQS0tL7xlEow2SCXTtbg+m2ZiEevrhB8WD4VPB8f0JBXUIs+MQvjnkwVIM2g7eGBUMN6eEwuhgZH09DgfHH95IjY9Mhxf3JWATY8Mx/GXJ96QAQ2wBbVOszAxEKPD3aHS6PDClksdksNXN6pw93ensTOlDEI+FbyemxJpNLbDUSLEd/cNgaNYgLMFdXjn3ytGzdgi/RdYodRw5qD5dkIgYc73rqucenUieASBgxncxtYLhXVmXkF50z0xLgwOYgG+uXew0eOGAhDa8oqu5w3wlzEpW4Dyx4x+Y7ctoPUx+DwCb82OAQCTgY0A8PbsGKNddUdqcdeauQm+AMCMeOkOPtuXhdlrucKwhRZq5LS359wEP4wIc7uhsxS2oNZJCILAR7dRKZGLhfX4/ph106BzKhsw/6sTuFhYD5lUiF8eGoYFg/zNPj/UwwFf3J0AggB+PV3IkbTHBzjjo9v6m3xdaTef8HcnGru7W8PHtw3AlnPFTA8eQVDzowBYFIr8+vAwplbJbjmgnfqVauNd6WPjQnFVn96saWzFlVLuAkBHUosAW0DrG2h1JE7l1kCl0eHZyRFwEHP7w3xMpMhaWinlbk85dvQEH+zKwMTPDmP6F0e79D7j+3nAXmS+h+7c1TqT54Uh9L/7juQSnMqtuS68TzuCTSjSRX4/W4iX/0yBSMDDzqdHI8KLumCbcvg/kVONx389jwalBjKpANueHIUwDweL76/W6lChUOJ/21Nx2IQ9FtttozuZE+8LX5kE3x3Ph1ZHwt1BzBliaGmmGxu6N4ieSPD8lEjYiQV491/LMu6CD2cxv0/67DDTqL3unkGM7Re941JrdTieU43XtqUYrd6jfZzg7iDCsexqxo29t3Zqfe3725eOx9QASpoJ/Tzw6NhQDA12RUl9Cy4W1uNCYR0uFtYjvUzRrv3TjcgXdyVgRKgbHvv1vJF6k41YQGB4qDvGRXpgbKQHwjzsORmgvjb4syP0CUeRm4E7hgTgv9RyHM6swgtbLuHPJ0ZCwOcxDv8AlRr742wRXvsrhTkhFyYGIcjVDmXyFpTWK1Emb0G5XMn8XipXolzegqoGlcmGUZqOBLQgNzvcOsjfKueSvy+VIs7PCUFudsirajKaymutYzp97PTSqZ+3I1qsWE3SrD6QzXEeoWdIBbnaYeW+LBxIr0BRXYvRgMinJoRjToIvdqeWc1KON8Mctb4OPW3b3DfISSrE+uMFeHrTRc5cPRpPRzEGBjjjZF6NVdZaAMAn0K4xdn8/J6R009T4zHeno6pRZVK52Bl8naWYteY4qhpUcBQL4GIvMim6UmlIHMmqwhG9h6WfsxRjIz0wLtIDza0aPP/HJaN/93K5Ek/8euGGEY7YdmrdQLlciSmrjqBBqcGL0/phyYRwAG0qu8QQFyTlt9WPPBzFEPAIVDaorNr68wjAz0VqcpbTHUP8sT+90uzUX3ommiHPTY6Ai70IbxooJQ+9MB4f787AfyZmNQW4mj6GnoC2CXr77yuMG7m/ixRjItyxKanI6Pn0lG8A+Oz2eNw62N+sKKS3xCJ97fvbF45HqyMx+qODVtfDRHweYv2cMDDABYOCnDEw0AW+MgkIgmCCI9C+gXGEpwM2PTocQ97b38W/Qfv8/uhwDAt1A0mSGPr+flQ3tuL5KZH4rBM2eKZ4d14cdDoSb/1tXuUc5e2IvKomq8bqAFTt0lsmwfGXJ/bZepttp9aLeMskeHt2LJ7fcgmf78/CpGhPRHk7YemkCJTUt+D3s9yLMHt3JeAR8HKSwNdZAm+ZFL4yCXxk+t+dJdh5uQzfHM3D7YMDsPdKOVINFE9/nCuGJQJc7aBU61CuaLuIhHnYY0KUJyI8HbFybxbqW9oGkx7JrMS6RYOxYlc6Z9o2gA4HNG8nMcoVKib1ODDAGWVyJedYzLE7tRwPjwmFC2sib3FdCyegOYgFmBbrjbkJvojyccSwDw6AJNv8Hg2b52no2zdaLeF6wFqBx6LhgZg/0B+xvk5mvRinx/lg3aJBFg2MPR3FqG9WI7uyEbtSjG3mLOHnLOWIr6zB26mtmZkgCMT6OuFIVjUOZ1kebJv7wUzUNrUis7wBi9afsfjcN7anWnycADUC6vwbk3GuoA5HsqqwJ7UcZRbOOxJUK86N4ANpC2rdxIJBfvgvtQz70yvx/B+XsH3JKAj5PLw2MxpbzhVBR1I7rv/NioGPTAIfZyqAuTmILa6MBvg7w14swMp9WbCzUCQ2x7HsasT6OnECSW5VE+asPWHy+W//k4b0sgYsnxsLOxEff18qtWg8PDjImZnVZkiVfuf0ztw41DW1Mh6aoyM8cOs641EebL46nAuRgGfk30fjI5Pg0AvjmQve35dKQZLUCpXu0bHUWG1LPV4brPUZHBrsisFBLu0+b3qcT5uBcYMSP50swIXCesxL8MWdQwORGOKKX04V4O1/0oyyEuyZg6YwDGgxPk4Y38/DrA0XAJTr699TYrzQoFTj/FUqQ2PuHKFZtS8To8I9MCLMDY+ODcW3BgvKQYHOGBPhgczyBiQX1VtcGNIB6o5vTkEs4EOl0Vmd8r8RfCBtQa2bIAgCH8zvj7MFR3GlVIGvDuXimckR+OlkAaO6a9Xq0KjSYIaJpklLLJ0UAR1JtuvV+M9To3H/j0lGqUhrxmiw+f1cEX4/V4SJUZ4WA9rEKA/8sDgRwa/sNPm4VkdiboIvFg0LZIrVWh1p1cWqtqnV6CIEUPLoHcmluH2wP2cFf0xfQxgbabPG6stY22zdET9CWq4OUA33FwrroSPB3HffiGDsTCkzMtTuqBFAhUKJlJL2m69/O1No0njbEmsP5WLtoVw4igUmbeni/GR4dnIECIKw2oUlvayhQ8cA3Bg+kDZJfzfi6STBO3NjAQBrDmbjf9tTmNpN1vszsGxKpEmHC2t4dnIkaBGTuX3d7LXHzdbWzEGAstUxxUETAz/Z2IuFFs2OIzwdsGJBfyagLZ0UgeemRKJBqTb7mvaob1brP7ttPUaSJI5lU0bPNr/Hvk17zdZd9SPs7+8MALhcXM/cx+MR+PDWAZ16PzY1Ta3M94xNvH/bVPUfHxiKuxMD0NmylDmf1Z9PXcWDG87iRE61VbL9ziCTCiHkE2hu7fyQYJpr2TZg26l1M3PiffFfSjl2XynHr6cL8cykCCbVRf/ZGfXd6gPZIFk7vq4Q6CpFYW0LI7eP9HLkrGI/vT0eL2y51O77/HOpFP+wJlQbsm7RYNiJuF8xkiTxkoUx8+1Bq7q2XSjBvIF+8HKSIKeyEeUKJcQCHoaYCdA2+gZ0s/UTv14wmlBNx4G3TDRbW8sAPyrAFNQ0Q96shkxv6FvXwcVeR2BbZw0NdkVNg8qkmKmrHMqsanfqPY2XkxgnX5kEPo+AVkeisLYZm5Ou4puj5j1d5S1q3Pb1KRAElZrt5+WIKG9H9PN2Qj9vRwS72UHAb38fdK3bBmxBrZshCALvzY/D4axKKNU66AzEpZ0RKRiq9cZ8dBBFdS1GFwXDib1SIQ++zlKjFGJhbQtGhrlhaLArp/WAxkHMR9o70xDz5h6rj9EUn+/PQrSPE7IrG+BqJ8KCQf64dd1Js/PbnCQC/PfsWIz68CBzn49Mgln9ffD9ce7JmFnRgOErDmBwoAtz8gwLdbN6wKONa4c5gYd3N1z4XOxFTK0spUSO0XrRUE+55RgS91bXzpmuQi8Fls+JZRYGfB6BEHd7vDozBgMDXYz+3WVSIYYEuUCl0SGjvAHVjSpcrWnG1Zpmjg+sSMBDhKcDoryd9MGOCnoejmImG2OuXaM32wZsQa0HcHcQ47PbE7Bk4wV8dTgXU2K8MECfFgE6vkMz7LMqqmtBgIsURXVUcDqZWwMCVO0szMOeCWL+LnbY8dQo3PnNaaNawLp7BjOrWJIksYpVrzuZW9NuH1rBh7Mw/8sTuFhUb/Y5/14u4ww2/aGdQZDRPk748zxXzTk3wQ9+LpRRc5iHPeQtaka6T5KUiwLN0awqfHMkFzPifBDIGn9jo+9hKPDwdKRSjt0hJ+/vL0NhbTMuFddjUJAzvjiQjaNZ1u1wridc7ISoa+am8ttbGFjz717TqEJmeQMyyhv0fyqQVdGIFrUWV0oVRjV6Fzsh+nk7ItLLETuSS022V5CgAu7yf9IwJca7R9sGbH1qPciSjRew83IZIjwd8O/S0YxZcUdgO5OYCnBaHWlytwUAQ4JcsPWJkahQKDHvyxOc1VmYhz12Lh3D7Gzi3trDNDaHezrAw0GMU3k1WDox3OQqN++DmXj0l3PYn2657tYR6EDNZu9zY7FiVzoOZVYh0tMBWpJEblUTNj0yHMHudvg7uRQr/ssweq9YXyfM7O+D6XHe7bq29BR97fvb146np/j2aC4+2JUBPo+At5OEo2L0dpJAS5I94sJDE+PjiMzyhnabvbuTd+fFItzDsdsWBobo9ClMOtBlViiQUd6Aguomi+YQptj0yPBOtQ3Y+tT6AO/OjcOZvBpkVzbi8/3ZeHl6VIffgy1LN+y7Yu/4SJLEzpQyZFW0mabS3zUvJwnW3z8Ut399khnTkVvVhGc2X8RX9wwGn0cg3NMByfpdV05lI3IqG8EjqN2eKe7/McloDI4pCAIYHe7OKbDfPtgfW84b99cZBjQAeHnrZWY3GORujxR9/cJBLICPTIo4fQ2FRwDL58Zhd2oZTufVMivKT/Zkop+XI6bHeWNmfx9EejkYGUfbuLGgexu1OtJIlv/Bgji892+61UHNWSrk9HG2x1f3DEKIuz1e3noJl7vJncQapsV4M60sPQGPRyDY3R7B7vaYHufN3K9Ua5FT2YiM8gbsvFxqVc2vp9sGbOrHHsTVXoT35lGGw98cybXoSm8Nz1lwwHhmciR2LBmNGJ+2FQx7MneMrxPWLBzIec2eKxV4c0cqSJKEl5PY6D3HRHiYdS04ll3d7pRgAEh6bTImRlHzzoR8AjuWjMLHtw0wqQ6bm+CLSC/uroqd3tyXVsH05/x0qgAH0iuYxvb5A/1x7/Ag/PbwcJx9fTI+urU/xkV6QMgnkFnRgC8OZGPa50cxaeURfLInA6klcvThJIWNTqDSaLHmQDZeZAmR7hjCNQuXCgXIs2IxRtORgAYAT/52ATO+ONarAe1aIhHyEecnw22D/fHo2DCrXtPTbQO2nVoPMz3OG/MSfLE9uRQvbLmEXayUX3cjFfHxzb2DMeZjym+uoKYZJEkyO5OJUV54ZlIEvmC1FPx2phBeThJ4m1jlCXiEUdPm8FBXnM4z765vyMp9Wdh6ngo8r8+MRnyAs0k/y8UjqVlQOZUNmLyyzc2cVmgasvV8Mbaydnt/XiiGo0SAaB9HRHk7YW6CH+4cGgh5sxr70yvwX2o5jmZXIa+qCV8eysWXh3IR6GqHGXHemNHfB/H+MtsO7jpCqyM5daFWjRbL/0kzClhuDm2Ltbdmx+C3M1d79TjbUysbir06y9YLxXhsbFiP1CitoaVVi20XLLsb0VZcnW3XsBZbTa0XqG9uxdRVR1HZoMIjY0Lw+qyYHv08djP0W7Nj8MCoELOP05hyV6DtrWhifJzw/vw4zP/KshsIjbOdkOkrmxHnja/uGQSCIJBcVI95X3IdTdbdMwgz+vvg490ZjGMDPQlgVLgbTuTUIDHElRlXMyXGCxeu1qHGjFSbRwAh7vaI8nFCjA+l1gpwtUN6mQK7U8txKJNSp9L4OUsxLdYbM/t7Y1CgCzP2piv0te9vXzuezmLJ4d/DUYw3bonB4cxKbLtQwnns2EsTmAVfdxLkZscM1mVPzdj4yDC8ui3F5NBd+tv10rQofLTHuCZs7RQMNoap0t6S0WdXNGDJxguc0oe5do2uqB+t/f7a0o+9gLOdCCsWUGnI74/n41yB9TudrvLeznSczOU2jH69yHjopil3BcPlzuKRwZzBm+1Rz1JmhbJGYJSYSFsOCXaFTkfil1PUSvqW/j7Ifn8mlk2JxImcGgCAo77hmkcA3947GG/c0rY4+PT2eDw0OgSjwt3gai+CjqTqhjsvl+GTPZl46KdzmLrqKN7ccQW1Ta2YE++LcZEeCHKzA59HoKS+BT+cyMdtX5/C8BUH8OaO1Bty1tT1Di0ZN+f1+OqMKMyJ90U8S20MUPZpn5gIHp1hTLg75/aRFycwZQE6oN05JAAjw9zNTpH31s+KSyqoMXrMTsjDx7cOwCR92t4QH5kEn942ALcazGE0TJXSMvrdqR3zvOwIW84VYc7aE8iqaISHoxgbHx6GrxcNMhri621iNl5PYUs/9hKTor1w22B/bD1fjBe2XMJ/z4yFtBNejh1FqyPx1MaL+PupUYzoY1K0J8QCntl+MXPcEu9j9Jq/nhwJlUaHu749bfZ19wwLhIDXtn4qrjM+0T0cxXhhyyU0qDQQCXj49I54AJQY5mRuNU7n1SKrgrL9sRcLQBAEjmZTRenHx4XhtsFtJzipV7ellSmQXkZJktPLFMitaoK8RY0z+bU4Y2FAaWWDCj+fuoqfT12Fu4MIU2KoHdzwUDesPZhjNCePhlajWvKctNF5tDoSy/9JM5uuIwB8sicTcxP80J/l8gFQAo6Jnx3p0uffNTQAH946AJUKJRI/OAAAGKe3ZXOWCpnnuTuI8drMaKPFpLu9CG/MjmFSg/+llpkUVjSrdVj2xyWsXTgQbg4ixrR8epw37h8RhMQQanL1bUMC8KeFlF9PyuibVBq8sSOV2Q2PDnfHqjsT4OFIpXt7ql3DGmxBrRd545YYHM+uRkFNMz7anYG358T2+GfG+TkhtUSBx345j62Pj4RUxIeQz8Oi4UFYb9DQbIkxEe6wEwnwyp9cN5C9aRWQWqgR+jlL8P587nRuc87n9KTqWwdxfR2HBlN1PNqSy0EsMLDG4q6cCYKAp5MEnk4SjO/XttpVabTIrqCUWullCn2wa7BoLVbd2IpNSYXYlFQIZzsh/JyluFKqgEanw7Ip/ZjnsdstbPQM+9PKLTr8s53mBwY6cx7rqEM/zehwNxAEgWPZ1Uxf547kNhcduoeykqWmXD4nFn+cK8L7u9I57/X1vYMxJJiqJ2l1ZLtu++/tTMexlybAy0mCNQdzsDu1HC52IiSGtMnh+TzAksFQT7jvZ5QrsOS3C8itagKPoIb1Pjk+nJOyZ/tx9ja2oNaLyKRCfHhrfyz+8Sw2nCzA9Dhq9d+TfHPvEMxZcxxXShV4ddtlrLozAQRB4LbB/h0Kav+bFYPqRhU2G4zRKahuMjl7jUYmFRndZ0o12dyqQaE+VXPrID/OY3QK0MWeGmVjLxYgs6IBVQ0qSIV8DLbSGkssoJRadBsAwN3VMcGurAE5VY1Gqcf6ZjWTUl19IAf70irw0vQopBTLe2U+282KTkdi89midqel01Q2KDmS/WgfJ3x7LM/CK8yzZEI4TuXV4lh2NZpVlGhq28W2Wp1WS0KrI/H1kTbn/l2pZdh5mRtEA1ylHCPvpPxao8ZpNnQwOltQh+en9oOnoxhv/n0Fm5IKUdOowuq7B0LI51ndI9YdMnqSJPH72SK89fcVqDQ6eDmJsfqugRjWw9ewjmILar3M+H6euGtoADafLcKLWy9h9zNjOea83Y2bvQhrFw7CovVnsD25FHF+Mjw8JhTRegFFWpkCI0LdcCrPOLfPJtzTATFv7mZu06nUVo0OD48JwffHTAfItDIFlv2RjJV3JDD3maqp7b1SgaZWLQJd7Yxc/LX64l6L3mjVQSzAsSxqlzY81LVTTe00XdnVpZc14IEfzwJAjwe0999/Hzt37kRycjJEIhHq6+t77LP6Eqklcry+PRWXLDjXGOLpKMFzvycztwkCULR0zqQ3pUQBe32ZoEmlYVLZNBodiV9PcxWVOy+XGU3anpfgx1HXXq2xrq2ADkb3jgiGh6MYSzcnY29aBWatPoZGlcao7m2OrsroG1UavLYtBX/rvV7H9/PAZ7fHc9SlfQWbUOQa8PqsaPg5U1OkPzThhtEVdDoSbGV6SX0LRoS54Y1Z0QCAD3al47g+bUfXodpz5Z4c7YnP92cx9bRBgc54fFwoAOBodhUivRwtvn7bhRLc/e0paHUkSNK4IRYANiVRozrmD/Qzktbr9MtRur3AQSxg6mljesiVn97V3TbYH2/cEoPfHh6O8/+bjKTXJmHDA0PxyowoptdOyDddY+tOWltbcfvtt+OJJ57o0c/pK8hb1HhrRypuWXO8QwHNTsRHPy9Hjn1aWgdHL7H5O7kEdvpFZ1OrBn8ZKCqLapvx8W7uOewkEcDZjpuh2JxUxBFsZFdaNxaGHYymx/nglwcTIRHykFvVhApF+w3kXZ16AFALi1tWH8Pfl0rB5xF4ZUYUfrh/aJ8MaIAtqF0THCVCfKQfhfHL6as4kWM8zqKzNBis3uhd0f0jg3HrIH/oSOCpTRdQVNuMuQm+EPAIjsu4KSZGeWENyyrrvXn9Ee5JmZmqtSRW7jW26GI3gQPAqbxaTPz0MN79N42x42JDCzcWGKQeAWo1DFC9MAAg4BOMtH9spLvR83sKelc3vp8nWjU6Zk6eWkt2apxQR1i+fDmee+459O/fv/0nX8eQJIntF0sQv3wvfjrF3QHdPtgf78+PAwHz45eaW7UY9N6+bjue1FIFHMTUTq1BqcH2ZCqojdCn3JIKahmXHhqFUmPUalLdqOIoES8W1lv8XHPBaEiwKxyszOx0deoBSZL45VQBFqw7iYKaZvjKJPjjseF4fFxYt7S89BS2oHaNGB3hjkXDAwEAL2293KUZY2wUBrJeeldEEATenx+HeH8Z6pvVePSX85CK+JhgRjbM5rW/UpjfE0NcEeNLBazZ8b4AYHIKb1qZ8er4am2zRVPjIUEuCHKzN7qf3qnRfWVppQqoNDr4yCTXxNeRLQrp6py8nkSlUkGhUHB++jI5lQ2Y/vkxPMtKHQLAtFgv7HtuLD65PR73DAvCOhOScR+ZBA+NDjEb7LqCWkN9/07m1qBCoYJMKsSUGK8OvQe9zlz+TxpyKxtxobCeOVbDY7YUjJLyaxlD7/boioxeoVRjycYLeGPHFbRqdJgc7Yldz4zB4KCebZzuDmw1tWvIqzOicSSrCkW1LfhgVzpWLOj6IEO5QVArZaX6JEI+vr53MGavOY70MgVe2noZtwzwwT7WeIn2eGBkMPP77AG++GRPZpePmWaBvu/GUBpP19RoZwZaaTYmwr3XXUAMTaWBrs3J60lWrFiB5cuXX+vDaJfmVg0+/C8DPxvszAYHueB/s6IxMJBbY7XkNF9Y04x96e1/nyf088CsAT4oqVNiU1KhyYUZDVsEAgCzBvjgEmsIKQCsujMer21LQYvavBSRFn98eZjKeoyN9MDdiQEdGsFjreDjqQlheG5Kv07t0C4X1+OpjRdRWNsMIZ/Ay9OjqAXDdeK4Ywtq1xB7sQCf3BaPu749jU1JRZge58P0vXSWegNFlaEow0cmxVf3DMbC707j38tlRmMk2oO9QvU04RfZHvTQQlPM6u9jUhpvTrLcU/U0SxiaStN0Zk7eK6+8go8++sjic9LT0xEV1XEjbAB49dVXsWzZMua2QqFAQEBAp96rqxjaWiWGuIJHUOOJnt50kfNcZzshVt810OKixVAyTk9avmilv+q8gX6Ym0Clup+aGI7xnxxiDLV9ZRIsHBaIT/VpdUPrLR7BlfXvWDIK8QHOeO/fdLSo299FHc6kJlssGOTX4RE81go+RoV7dDigkSSJH08UYMV/6VBrSfi7SLF24aAOGS70BXosqN2saq2OMjzUDYtHBmPDyQK8vPUy9jw3FjJWI2dHMdypFRuIMuhRNm/NjsEbO65Y5bTP5ocT+RDweDiSVYUz+eYVk9ueHImfThZwTv5lUyJR36zGDydMKyV/OlVgUhqv1RlHNYIARoX3Xj2NxlJjdUd3aM8//zwWL15s8TmhoaEdek82YrEYYvG1L+absrXycBCjqtFY6LB24UDMjPPpUM3Gkm2WOdjBgUeAo2odEuyKJRPCmaBmyK+nCzm34/UXfZlUaNa2jU1tkxoOYgGmxlBu9x3p6UoMcYWPTIJyudJkE3pn/RXlzWq8uPUSMxR0eqw3PrptQJeuRdeKHgtqtFprxIgRWL9+fU99zA3BS9P74XBmJQpqmvHev2n45Pb4Tr8XHdRc7UWobWo12qnRs9eemxyBeH9ZuyIRQz7YZZ1aM85XZrLeZcpNhGblviw8OjbUKDikmDjG/n4yuNqLrmsXDw8PD3h49P5uszcxNwnZMKC9eUsM7h0RBCG/Y2V+c+9vDlMX/ZqmVo7YY3CQCwiCwB1D/Bk3D3MMD217H19nicUJAAQo0/HmVi1m9vfulKMQvSB94tcLZv0VOyoMuVhYh6c2XkRJfQtEfB5enxWN+0YEXTfpRkN6LKjRufwNGzb01EfcMNiJBPjk9njc8c0pbDlfjOlx3pgU3bFCNA0d1GJ8nHA8pxrlCiUzSBTg1n/ifDtvanvnkAA8ODoEK/dlYs8V4xrGx7sz8P3xfAwPdcXIMHfmM2kbHXN8ezQPOy+XYVCQCwYFOmNQoAtTU2MzJsL9pnLxKCwsRG1tLQoLC6HVapGcnAwACA8Ph4PDtRmC2h7t2VoBgFTIx7n/Te5Ur6Y1728ICSqAsi/6hr6ng/Q1vCfHh7cb1NjpZkMZPxv602jR0wID38aOMD3OB+sWDepQLc4UOh2J9cfz8dHuDGh0JILc7LD27kFGFmPXG32qpqZSqaBSta3g+rpaqzsZGuyKh0aF4Pvj+Xh1Wwr2Pudi8SQxBx3Uwj0dcDqvBhodiQqFEr7OUuY5SydFQK3VcWT61kK7hx/PqcZzUyLN1uS+P55vsvZkakI30DZihgCl2Cypb8E/l0pNPhegxCJbzhXfNC4eb775Jn766Sfm9sCB1Gy8Q4cOYfz48dfoqCyTlF/bbkqwRa3F5WJ5pyyVrHl/UxzNrsaUGC8I9LvCIlZQkwr5iPKh+i6D3EwPyAWAuxMDsCmpiHHS351ahoMZ5qfAe8skmNnfB+uP58PPWYrE4K6pCDtaizOkrqkVz2+5xBzzrAE++HBBfzhKrr90oyF9StK/YsUKyGQy5udaFbWvFS9M64dQD3tUNqiw/B/rLIEAqk5Gy8npoOZiJ2Jkz6sMAkmrRocQd2PpvCGu9sZBVSLgw9lOiJL6Fsz78oTZQaGzB/gYBZsHR4eYfO7CYYHIWzELy6ZEggTVFP78lEhM6OdhNqd/MwU0gMp4kCRp9NNXAxpgvVKvsxZO1r7uvhFB2PTIcLw9JwYEQTX6P/bLecZ0gO2kHx8gg5DPg1KtxfNbLpl8v1sG+DD1MK2OZFKgzQb9ajTPTY7E8ZcnIq+KGs2yYJBft/R50bW4uQl+GBHmZnVAO1tQi5mrj+FgRiVEAh7enx+HtXcPvCECGtDBoPbKK6+AIAiLPxkZnXfIePXVVyGXy5mfoqKi9l90AyER8vHp7fHgEcBfF0uw54p5T0U2dJ1s9YFsyFuoQrWznZBJuDeqKF/FX05fxSM/n8PAd/Zi2R+mT1gaT0exUf+Mj0yCBpUGEgEfMqmQkUGbGjBqaHUFmLbHAoD358UBoHaQy6ZEYuv5YpAAfnwgERffmGI0DRugmp5vloB2vWKtUq+zFk7Wvm5GnA9GhLlh8cgQrLtnMMQCHg5kVOLu786gulHFST8OCnRBUW0zFnx10mgeG83diYEQ8Kmzgx5OamlywOazhahsUOKo3sln/kBjg4HeQKcj8eWhHNz17WmUyZUIdbfH9idH4Z5h12/9zBQdSj/eLGqta8mgQBc8OjYMXx/Jxet/pWBosKvJHRMbdp0s0JVKMx7LrmKUj/+llps0HY72cUR6mWm7HroXzNtJAqVGi/pmNZZOisAHu9JRrlCin5cjsyssVyjh7yLl7NrKTVj4mBOJsE8oQ2k8j0cgyM2eM4BQyCfQqtVh9YFsW2Drw/SUUq8r7z89zhsbHxmGh346h0tF9bh13UkoWdPdm1Qa3LLmOOQtarjZi+DvIjUSU320OwMvTaPaLBpVGqsmB3x5KAdaHYmBgc4IvQaGAdWNKiz74xKOZlH2cvMH+uG9eXE96jt7rejQTs3DwwNRUVEWf0SijteBbHB5dnIEIjwdUN3Yijd3WB5PQUPvcgprqcCyP52b3xfwCCSGuGJUOFW7eG5yBL6/fyjaW6DdOyIIo/XS+QqFEl8vGgwBj0BmBTcYGqYhK000s6abcBmZFmssiFk6KYKjZtQZ9H4dfWlCn3XxsNEGrdQDOuaa0ZH3f2NWjNmAZu79Bwe54s8nRsLfRYqrNc0cD8WfTl2FvEWNAf4yvDUnBvkmjIcvF8vxo74txdrp1IcyqGDSFYFIZzmdV4OZXxzD0awqSPQDSFfeEX9DBjSgB2tqhYWFSE5O5qi1kpOT0djY2P6Lb3IkQj4+uyMefB6Bfy8bj7Ewx9JJEWZtgi6+OQV/PDYCQ4JcsWxKJJ6ZHIkfj+czPpECHmE0gwoAGpRqRr14MrcGo8Ld8Z4+XWiJChP1DnbPGk2MT/tKq9wq7nfGXixggrgtsPVtaKVeT0xC3p1ahnd3mq49t/f+YR4O2PbkSJOp7dHh7qhUKLF0U7JZd/8DeoEFaaX2sqS+BUI+gdkDen7yM41WR+KL/dlY+N1pVDaoEO7pgL+fGo07hgbcUOlGQ3osVF+Paq2+xAB/Zzw5PgxrDubgjR2pGBbqCvd2XLFXH8gGiTbXjlsH+eHPCyUI93RgisD0DkihVON71jy1T24fgH1pFbho8J6Xiupx11DKozK5sB4trVrclRiIlBI5fjtDNaGOCnfDiRxuI3a5iZRMdqXxgsbVvv3itM5A0m8vor62nXHxsNH7dFWpZ4r2+tPemBXdbsD0dJTgsbFhHEFIkJsdTuRUWwxV4yI9cESfxqONhy2lQO3EfDSptJgU5dUpRXNnqGxQ4rnfk5nz8vbB/lg+NxZ2ohtzd8amx3Zq16Naq6/x9MQIRHk7orapFW9sTwVpYXgSu2cr94OZWDYlEn/qC92l9S1Gr2UrIhcOC8SceD9mJA2b0/m1yK1qhK9MglatDuf1Iz1oM2MAJutylayUzuoD2UYKTBprTnJ/lzZptZ2Iz7kYGqYqbfRNOqvUM0V7/WkEgHd3pre72NmVUmakcLxa09zu3uu5yW3ft8qG1nZTrHz9rsjUBIqe4ERONWZ+cRwncmogFfKx8o54fHJ7/E0R0IA+Jum3wUUk4OHT2+Mh4BH4L7Uc/5hJQ5oz2V06MRwANY6D7QnZ3KrBjyy3/Ldmx+BycT0USm6q5d7hQSBJ4NnNyfDUKxxP5lKBjz2jqtaENVCDSoMmlYY5NnMB2cWKoMa+ON2odQAb1tNefxotzqDHExmi0eqwYlc6nvztAuf+YSHWTVB/4tfzWMwy9o72cTKbYn1qYjgUSg1c7IScIbQ9gUarw8q9mVi0nlJ1Rnk74p+nR1+TOt61xBbU+jhxfjI8pQ9Ob+5INdmbY85kd9nUfrDTW/GwB3OO/ugQ8/v+ZeMgFvBxzMQu7fVZ0Rga7IIGlQbJ+kGNJ3OpdEZqKaUIWzgsED4y09Lq1/5KYYLtUDMKNxcr0o/soGbtLCkbNy5d6X+raVThvh+S8M3RPM79UiEPdw4JtOp9yxRKLBoexNx+5c8UTI3xxvGXJ2LTI8PxxV0J2PTIcBx/eSLTLjAn3hciQc9dbsvlSiz8/gxWH8wBSVLN4duXjEK4Z990m+lJbEHtOmDJhHDE+jqhvlmN17alGO16nrPQhByh/1LT6sS/L5UyO6uEAGfmS39MP0maTX2zGl/dM5jTh3apuB4KpZrZqU3s54n19w81+dk7kksZL0e2SMTLScxMjbZqp0bagpqNNqztT6tuUGFHcglO5dZAqyNxqages9ccx8ncGogEPKqXU0+LWof3dqVbfQxq1uiIU3k12JhUaJRibVFrmV7TntwtHc6sxMzVx5CUXwt7ER9f3JWAFQsGQCLsuLfkjYAtqF0HCPk8fHZHPIR8AvvTK/HXRdNNoabwc6H61krrW5BT2YClrDEf6+8fAoASjVwwMYm3QqGEh6MY39w7mFllkiRwLKuaEX3E+ckQ4+uECf1MG/Nuu1AMeYsa21nHPDnaC/Tmy5qgpuOkH2/OE9VGG3R/mqWqHI+g6mrPbE7G3d+dxqB39+HWdSdRKlfCy1GMVo3OaExTnRUO+zQP/3SOc3vFrnRONgQA/kspg1KtQ5iHPQb0gJ+iWqvDR7szsPjHs6htakWMjxP+XTqGGalzs2ILatcJUd5OeFZfoH777ysm1YVsaOssP73nY3ZlAx7/ta2GEOvjBDe9mpJeyQJUHS9A38Bdoe81iw9wZlw/AGDJxgvQ6ki4O4jgpZ+pZjgGhhYCVDe2YuYXx6BhBaZGFVW7E/AIq5zKbTs1G2ws9b/RGGpE5C1qaHQk+vs5mX1RRzS0bRPlqYntTa1avGqQRaEdSRYM8u92CX1pfQvu+vY01h2mBpjeNyII254caZX93Y2OLahdRzw2NhQD/GVQKDV4ddtli2pI2jorR7+j2ny2iPkdAKfGxU49zo33RbQ35d5fwWqgvn1IANwduLuqWF8Zc7K2GkzyFPIJTImmCuOGK1g6FdmeYz+NRmsLaja4mOt/a09UWVLfwmm2Noc1rSYAlbn48NYBEAl4OJpVha3nKVf/4rpmnMqj6s/zutkW60B6BWauPobzV+vgKBbgq3sG4Z25cTdtutEQW1C7jhDwefjs9niIBDwcyqzCFgtjMejm5EOZVMBix79Qd3u8PSeWuc0Widw/Mhhe+hqa4cn/79NjOLcDXduk9sey2gLjhH4eUKp1SC6WY1qst9Gx0d531vbssPvUbOpHGzTT43w44ow3ZkUb7dAMqW1SW36CnjduiWXe96cHTNeMaYLc7JjxR+/+m4YKhZJZuI0IdWOyJV2lVaPDe/+m4aGfzqG+mXI92bl0DGb2772G7usBW1C7zojwcsTzrBPIcBfERqsjTeby35/fn+kdu1rTxLiUDw12QZyfjFn9lhtYXXnLJJzd2i+nrzL1LrZd0JqFgxDl7YiqBhWu1jQhMbhNKs3nERgXSdXfrF0N29SPNszBFme4W7nztwZvJwnzvuP6eeLrRYPNPvdkTjUeGBmMeH0W5fW/UvHnBWrB2V29aUW1zbjjm1OMYcKDo0Kw5fERCLQwHudmxRbUrkMeHhOKgYHOaFBp8Mqf5tOQfB6By8VyTgkhzs8JX+zPwsp9WeDzCKNd2uoD2UgupBqsK0z4NxruvFbtp5qqE/Qj7QHAXsTH+sVD4eEoRkZ5A5IK6pjHtDoS25OpWoP1O7W23207NRvm6KzbPxvaIcTQZNlJav57d/+PZzH+08OYk+CnF3NVIK+qCRIhDzO6YRe1O7Ucs1YfQ3JRPZwkAnx772C8OTsGYoEt3WgKW1C7DuHzCHx6ezzEAh6OZVdjU5LpET1LJ0VgZJgbpwCuUutwmtWUSrt2eztJkF3RiJX7suCkn2FmKqgZWnWtOZiD3allHImzSqODn7MU3983xMg54rGxoTisT4m62Fm3U9Po2t7btlOzYQ5rVJEOYgH8nM0HPxLAKzOijL63tDWbue9suVyJ9/5Nw3TWom9osGuXvq8qjRZv/30Fj/96HgqlBgMDnbHrmTGYaiKlb6MNW1C7TgnzcMCL0/oBAN7fmcaZ3kuz+kA2TubWML1qAOW/ODLMjTEDpgNMmKc9vjiQjWVTIvHYuDAAxjU1gBtUbtGbsy774xJSWQ4jtGjkSFaVkVXRKzOiEK9PieZUWGduzYpptqBmwyztTQUgAHx6+wCceGUSPpgfByeJ6e/SS1svY/GPSfjlVAEzLoluJTFsA6Chv+VnWVmJS3rDgs5wtaYJt607hQ0nCwAAj44NxR+PjeBYxtkwje0KcR3z4KgQ7L1SgaSCWry09TJ+e3gYM1GXbZ3lLZPgpa2XAVA+dCdzazA81A0LEwOxMYkyJT6RU8O4ktBz0uQtaijVWo6qqog1E218P0/UNrXiZG4N4wkJULtBSKhUY6yvE66wAt7hzCr4u9rhUrGc6X1bfSAbWh1p1sPRZpNlw1poVeTyf9I4VlreMgnemh3DmBwvHBaEO4cGIim/FiX1zahqUKG4rgWHM6tQUk/9eTizCthxBf28HBHt4wjAsuyfBLcOrVBqsDu1rMOTCHZeLsMrf15Gg4qy1/rsjnhMjDIe0WTDNLYrxHUMj0fg49sGYMYXx3Aqrwa/nrmK+0YEA+BaZ328u20auZYkMTLMDVodiaWTIpigxp4k7SQRQCLkQanWoUKhRJBbW+9LaknbwMSz+bVYu3AQZq85zhGsqDTU0MXHx4VhPWsSAAA8+ss5+OrVYPMH+XGCrzm0HPWjrY5gwzLWTgWgRSaAG3MfSZLIqmjEwYxKHMyowPmrdcisaDCaH2gt/9t+BcND3ayqHyvVWry3Mw2/nqbOySFBLlizcCB8ZN2jnrxZsKUfr3OC3e3xygxqCu+KXRm4qh9qSFtnrT6Qja8O56KfN7XSjPeX4WRuDfg8An+co2pxIj6PmSQNUJOovU3I+rU6EmmsQZ8n86rhai/Ct/dxlWGtGipfuDetnGm0plFrSUZteTSr2siI2RTsnZqjmZSRDRtsOjsVgCAI9PN2xBPjw7Dl8ZG48MYUfHFXAmZ1cA7aP0+NRrinA6obVXjnn7aZb1odiVO5NRz7LgDIq2rE/K9OMgHtyfFh2PzocFtA6wS2K8QNwL3Dg/BfahlO59XixS2XsfnR4eDxCM4uaFCgCxatP4P86iYsnRiOlfpRMMtYwY++b+mkCHg6SVBQ08xJp+RVNUKppgIWjwCKaltQVNuMWF9u28BfF0vw/NR+RnZegwOdkVfdhDp9XeKviyXtBjTAln60ce1wthNhboIf5ib4YXfKTlg56BoHMirw8W0DcNu6k9h2sQS3xPugVaMzSov6yCSYEeeN388WoalVCzd7EVbemcC0vdjoOLYrxA0Aj0fgk9viMf3zo0gqqMWGkwV4cHQIJwWp05Hwc5aipL4FOVXUbm54qCtnVA0AJrDRDdiVrKBGO/MPDXaBjgTOX63DqdwaBLjaIdjNDgX6HdiagzkYGuzKKCsdxAI0qjTwdJJQJ+wnhwFQriPtBTTAwPvxJpkJZaPvIbMTMWbgBCzX1z7fn43P92dDKuSjRa3Fst8vQd6iNnpNmVyJH/RjoIaHuuKLuwYy556NzmFLP94gBLja4bVZ0QCAj/dkIK+qkePez+MRuFXfCJpaUo9lUyKx+dERnPegXUi0OhLeek9HtsfklRIq9RjrK8PIMKoOQc9XazCYxXb/j0nQkdRKlE5BPjQ6hHFaEPIJqLUkk/K0BLumZks/2rhW0GOcXprWz8ieSyI0fSltUVP15XoTAY2Ng1iAnx8cZgto3YAtqN1ALEwMxOhwdyjVOryw5ZKRnP62wQEAgKK6Ftw62PQoDHqSNGOV1dBWU6N3arG+TvoCOzVfjSRJNBjUzug4VCZXMn58e66UM+nQ7PdnMm0F7QU2W/rRRl+AzhIM8Hdm7Llo6LT8xChP5K+YiacmhHfovRtVGo6C2EbnsQW1GwiCIPDRbQPgIBbgQmE91h/nDkIMdLPD8FBXkCSw7bx530igLf1Yod+p6XQks1OL85NhUKALRAIeKhtUSC9rYMQhAJj+OYBy4teRVA3uu2P5RtO5rQls7AkCQr7tK2vj2kArb5taNYwQZXa8L+c5Cwb5gSAIvDCtH35/dLjZXjhTWDv81IZlbFeIGww/ZyneuIVKQ366Nws5lVwp8h1DqN3alvPFnFqVIW07NepEK6prRoNKA5GAh3BPB0iEfAwJojwd96VVcF6brldICvkEM3LGQSwwKQphpzzNQacfbY3XNq4ldJagiZWV+J8+5U8zObqtn2xYqBu2PjESblZ6nHaHzZcNW1C7IbljSADG9/NAq0aH57dchoZlYTUjzgcOYgEKa5uRVFBr9j1oSX+5XAmSJJGq36VFezsyuyW6rrY3rZzz2n8vlzEpxhlxlKWPTCo0KwqhU56mIEmSSWXagpqNawldU2tq1TL3GdbADMe/RHo54p+nx0BgRUtBXVP7I3FstI8tqN2AEASBDxcMgKNEgEtF9fjmaFsaUiriM/ZWlkbXeOqFIiqNDooWTVs9za9Nvj8ijBoMynYMAYApMZ5MAIvxoWazFdW1WCUKMcRWT7PRV6Bras2snVoLK8CZw9dZio9u7d/u897dmW4xY2HDOmxB7QbFWybB27OpmWmf789CRnlb4Lldn4LclVJm1BxNIxHyIaONjRuUjJNIHKsnbYC/jFm9shkb0dZjQzuNjAh17dQJq+GMnbk53UQKCgrw0EMPISQkBFKpFGFh/2/v7oOiutc7gH93gV1EcQXlHY1CSNSgJhpJNJlUChqSNIZYvZN2Mq1TxzgOjmPU5qKdDPXm5lLTNEykNmrvDJk7yb1Gr7apZurUkIo3TQxeuRpRUSBGWd4Rs6DI257TP86ewy7s8rJvZ/fs9zNzZhbYZX6L5/js7/d7zvOko6ioCP39/WoPLaQoy492gWz4KsVlswXOJE8bu2Zjs6UXlTddr57Q+DCoadiaxSnInRePAauInUcvKZX0F8+ahrS4yXgwYMUX3ze5fL39EqQ8G8tMmar8PCJMP6JFByDN7mRyUFuzONXlEuNo2CAUqKmpgSAIOHjwIK5cuYKSkhIcOHAAu3fvVntoISVKThSx+yB4rMqxwMDu/7js9LXjTQJhsojnGNQ0TKfT4VevLoBpUgSqG7vw0Zl65ftywsiRcSxBXmz4CZ33+xGu1+GRBKncVoktY1HeV7P3v9fbUGK7idt8Vwpq7lYXZ4NQIC8vD2VlZVi1ahXS0tKwevVq7Ny5E8ePH1d7aCFFWX7sl4Jaa1cvvq5td3jO5UbnM7XxJoEwWcRzDGoaFz81Er94RVqG3Fdeiyu2vbE1T6QgTK/DhVt3Ud/uvAWMPFMrvyZlN2YkRCsb4WF6HT44fUOp42jv/+qk2pKCICoztdQY92rYse2McxaLBbGxI2fJ9vr6+tDV1eVwkPuGsh+l5cfPLzZCEKXCw/v/erHyvDYnfQjH6vXmqjkpTRyDWghYvSgZeY8lYlAQsePIJfQPCoifGqnUl3OVMCJndl0yy/tpQ0uPcir+p9/dhjHc8TR6cnYMtuZkoONeH/oHBeh1GFGBYbzsG4SG6vLjcHV1dSgtLcWmTZtGfV5xcTFMJpNyzJw5008j1KbJhqHlR1EUceyCtPS4ZnEqXlww1LjznS+ujXjtWL3eAKDo5fnjLrxMrjGohQCdTodfvpqJ2MkG1LR041+/krIQf/akVFXkeJXZIe1fljAsEGWmOBYulgOb/R4aACywPc9sm6UlTo10+6Zp+xJZWpupFRYWQqfTjXrU1NQ4vKaxsRF5eXlYt24dNm7cOOrv37VrFywWi3I0NDjvkE7jE6UkigzianMXrrd2wxCux0sLkqDTDQWjE5ec71PLvd6Gf8BLNEXio9cXT7jvGjmnrf8lyKUZU4x455VMFPy2CvvP1GPl/ET8+dwExE42oK27D2dr20c0IkyINjp8bZ8kIpMr/A8KolLkVQ5yjbb9tBQ3lx4BbS8/7tixA+vXrx/1OWlpacrjpqYmZGdnY/ny5Th06NCYv99oNMJoNI75PBofOfu2p9+K47YEkZXzEmCKkrKEd656BO//j7SXPLy5rmy8vd7IfT6bqTENOfC8tDAJLy1MglUQsePoRYgQkf+4VOTYfglSTgKx/0Sp0wHzkqZiX3mtkgQCQAlohjC9UrBVLpnlaZIIMLxBqLaCWlxcHObOnTvqYTBIzSUbGxuxYsUKLFmyBGVlZdDrucjib1G2RBHLgwF8flFeekxRfr7xuaEPIHJSljPu9nqj8fHZlcE05MD0ziuZmDHFgBut9/Dhl7VYZ1uC/PJaq9JWQ04COfl9s/K69Lgp+PUfbuKD0zeUi9C+X9uNd1/ACtsenZwB1viTlESSMs39mZrVah/UQvM+NTmgzZo1C++//z7a29vR0tKClpaWsV9MXhMZLp1/t+70oONeP2KjIvCcXd8zY/jQ+fmhG4UGyDt8FtSYhhyYYicb8Mt8qbrBgYp69A5YkZkyFQNWEf9pa+op75UdOvuDsokdbgt0w5uK2tdzXPmYtHx5vaUb+8pr7WZqHgQ1tp3B6dOnUVdXh/LycqSmpiIpKUk5yD9OVTdj42/OO3yvd1BQMoNl9jM3UWR1EDX4dQ1jrDRkpiD7R15mIvIfT4YgAjuPXsJqW6XxI39sUC5EObDJl2VNS7dDALNvQCoz2JJBZk+PglUQvbKnZmWDUKxfv95WA3PkQb53qroZmz+pQvs9x62Tnn4rNn9ShVPVQysau18cKnD8Xy4SRsi3/BbUxpOGzBRk//nH1Y8hPtqI+vb7qGu7B0OYHjUt3Q51HLfmZEBO6grXO3apftNJxX2jbWM8yTQJ23IzlHvUPFl+ZEURUpNVELHnxNVRG3zuOXFV+fA1Y8pQYs7f//57H4+OnJlwUPNlGjJTkP1nWpQBxWukZcijF8yYPkVKSDjyx6G/+b7yWoiiFNAGhbG7VMsztX6rgLs9A+ix1chL9iCoDVq1m9JPga/yZieaLa5LV4kYWbPxiVnTAMChxyD5z4T/l/BlGjJTkP0rZ14C1i5Jxe8vmJUL9/OLTdj94jwcOvuD0z00AC5byBhtLe37Bq3K0mNctNFpavN42c/UpoTonhqpx52ajb96dQFe+PAPAIA/3b6LJ2bF+GRs5NyE/5eIi4tDXFzc2E+ENEPLzs5mGnIAe/sv5uPr2g602Er7WB4MYMeRS/jicvOILtUARg1scmWR/kFByXx0N0mkxJZl+Wd22WXyTG1feS2sguhWgWSiiXCnZuO8pKH7OXcdv4xT257z+rjINZ9FGaYhBwfTpAj807BeT5cbLW51qZaDWt+goGQ+urufJt9W8Lvzt5WvjeF6ZcbIe3vIH9yt2TjNdkN2TUu3k1eRL/ksqDENOXiseDQery0dSsppuNuDtUtSnT53tC7V8n06fQN2Qc3NmZocQA9XSnt8kw1hKP2qbsRtBES+5G7Nxr1/uVB53Gx54MMR0nA+C2pMQw4u//DSPETblvdEUaoHaW94JRFnDOFDiSLeqCayNSdDuTm8q3eQAY1U4U7NxlXzh0rO/eLEVZ+PkYZw550AANGREVj1WCKO2YLZ0QtmFGQ/DJ1O53Cj9WiU5ccB61DLGQ8yHwHgb5fNVkp4GcL0DGikionWbLQvcPzf1dxy8SdmbpDiX362CAtTpQr7t+70oPJmp9PKIa7Yz9Qa73qWKCKTKzZEhOnQbxXGvK2AyFcmWrNx1wtzlccPbLe3kO8xqJGD3218GlMnSRP4v/r3cxNa8pP31AasIrp6pe7AnlQT2Vdei5Iva7F95SOoffdFbF/5CD6wFVsmCnR/9+wc5XHpVzxn/YVBjRxMNobj13+zFAAgiBNb8hveLDQmKkKpbD5RzmaIcvIIAxsFA/segv82StV+8i4GNRrh3A93AEgBbSJLfoZhQc2jljNOaksCY99WQBRI7LOKBZ6zfsFEEXIwfIY0nkoisnC9DnqdNMMDPKv5ONqN1UwWoWDx87y5OHxeui3lWJUZ655kPVtfY1AjhaslP2D0SiIynU4HQ7gevQNSzTtP9tOItCBmskF5/Nax7xnU/IBBjRSjLfnJPx+LMTxMCWqeZj4SaUHWnFhU3uwEb9H1DwY1Unhjyc8+WcST5UcirXg3PxMrS84CAM7/2Imls133lCTPMVGEvMo+WcSTRBEirchIiFYe//wYe6z5GoMaeZXDTI3Lj0QAhpqH/tB+X+WRaB+DGnmVwXYDdrQxHKZJESqPhigw/PPaoQLHZV/fxLf1d3hbio9wT408Jvc+25qToczU5Fkae58RSY1zZXtOSgWOk0yRKHp5vtOCyOQ+ztTIY3Lvs33ltcqeWmrMJPY+IwJwqroZmz+pGvH9FksvNn9ShVPVzSqMSrs4UyOP2d/L9lCslBxy514/W8VQyLMKIvacuApnC40ipJ5se05cxcr5ifzw5yWcqZFXyOWrbnVK1fn/1PATAxqFvMqbnWi29Lr8uQig2dKLypud/huUxjGokddszclAuO3TZkSYjgGNQl5bt+uA5s7zaGwMauQ1+8prMSiIMITpMWAVWUmfQl58dOTYT5rA82hsDGrkFfZ1I2+8+wJbxBBBKpGVZIqEq90yHaQsyKw5rDLiLQxq5DH2PiNyLkyvQ9HL8wFgRGCTvy56eT6TRLyIQY08xt5nRK7lZSbho9cXI9HkuMSYaIrER68v5n1qXqYTxcCtHd3V1QWTyQSLxYKpU6eqPRyiCfHm+bt69WpcvHgRbW1tiImJQW5uLvbu3Yvk5GRVxkMTZxVEVN7sRFt3L+KjpSVHztDGb7znL2dqREEgOzsbR44cwfXr13Hs2DHU19dj7dq1ag+LJiBMr8Oy9Ol45fEULEufzoDmI7z5migIvPnmm8rjhx56CIWFhcjPz8fAwAAiIlhjk0gW0EFNXhnt6upSeSREEyeft95e4e/s7MSnn36K5cuXjxrQ+vr60NfXp3xtsVgcxkUUTMZ9PYkBrKGhQYR00z0PHkF7NDQ0eOV6eOutt8SoqCgRgPj000+LHR0doz6/qKhI9ffOg4e3j7Gup4BOFBEEAU1NTYiOjoZOFxzrz11dXZg5cyYaGhpCcjM+1N8/MPQ3uH37NnQ6HZKTk6HXj9y+LiwsxN69e0f9XdeuXcPcuXMBAB0dHejs7MStW7ewZ88emEwmnDx50uW1MXymJggCOjs7MX36dL9dT6FyPvB9+p4oiuju7nZ5PckCOqgFo1DPMAv19w+M/2/Q3t6OO3fujPq70tLSYDAYRnzfbDZj5syZ+Oabb7Bs2TKPx+wroXI+8H0GjoDeUyPSsri4OMTFxbn1WkEQAMBhJkZEDGpEAe+7777D+fPn8eyzzyImJgb19fV4++23kZ6eHtCzNCI18D41LzMajSgqKoLRaFR7KKoI9fcPeP9vEBUVhePHjyMnJwePPvooNmzYgIULF6KioiLg/86hcj7wfQYO7qkREZFmcKZGRESawaBGRESawaBGRESawaBGRESawaBGRESawaDmIz/++CM2bNiAOXPmYNKkSUhPT0dRURH6+/vVHppP7d+/H7Nnz0ZkZCSeeuopVFZWqj0kvyguLsbSpUsRHR2N+Ph45Ofn4/r162oPK2Bo+XrQ+jkfbOc2g5qP1NTUQBAEHDx4EFeuXEFJSQkOHDiA3bt3qz00n/nss8+wfft2FBUVoaqqCosWLcLzzz+PtrY2tYfmcxUVFSgoKMC5c+dw+vRpDAwMYNWqVbh//77aQwsIWr0eQuGcD7pz2yvlw2lc3nvvPXHOnDlqD8NnsrKyxIKCAuVrq9UqJicni8XFxSqOSh1tbW0iALGiokLtoQQsLVwPoXjOB/q5zZmaH1ksFsTGxqo9DJ/o7+/HhQsXkJubq3xPr9cjNzcX3377rYojU4fcu0yr/97eEOzXQ6ie84F+bjOo+UldXR1KS0uxadMmtYfiEx0dHbBarUhISHD4fkJCAlpaWlQalToEQcC2bdvwzDPPIDMzU+3hBCQtXA+heM4Hw7nNoDZBhYWF0Ol0ox41NTUOr2lsbEReXh7WrVuHjRs3qjRy8peCggJUV1fj8OHDag/F53g9hJZgOLdZpX+CduzYgfXr14/6nLS0NOVxU1MTsrOzsXz5chw6dMjHo1PPjBkzEBYWhtbWVofvt7a2IjExUaVR+d+WLVtw8uRJnD17FqmpqWoPx+dC+XoItXM+aM5ttTf1tMxsNosZGRnia6+9Jg4ODqo9HJ/LysoSt2zZonxttVrFlJQUTW+aywRBEAsKCsTk5GTxxo0bag8nIGnxegiFcz7Yzm0GNR8xm83iww8/LObk5Ihms1lsbm5WDq06fPiwaDQaxY8//li8evWq+MYbb4jTpk0TW1pa1B6az23evFk0mUzimTNnHP6te3p61B5aQNDq9RAK53ywndsMaj5SVlYmAnB6aFlpaak4a9Ys0WAwiFlZWeK5c+fUHpJfuPq3LisrU3toAUHL14PWz/lgO7fZT42IiDSD2Y9ERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZDGpERKQZ/w8m1SHljQXTlwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Styling Artists**" + ], + "metadata": { + "id": "w4sA20qYp3Cn" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7))\n", + "x = np.arange(len(data1))\n", + "ax.plot(x, np.cumsum(data1), color='blue', linewidth=3, linestyle='--')\n", + "l, = ax.plot(x, np.cumsum(data2), color='orange', linewidth=2)\n", + "l.set_linestyle(':')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 268 + }, + "id": "-WqyFDompzHk", + "outputId": "af446bee-171a-4bb2-9ed0-d31ab84b19eb" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAD7CAYAAAAVb/GCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARApJREFUeJzt3Xd8U9X7B/BPutKWLigdFFpoWWVvKiCiUgVEhhMVERRRloKo/EBZDgQXioioqKBfUXCwZQhlFKSU1YKsUqTsDqC0aUub0uT8/nho09skbdImuU3yvF+vvMgduffkNuTJOfec5yiEEAKMMcaYk3CRuwCMMcaYLXHgY4wx5lQ48DHGGHMqHPgYY4w5FQ58jDHGnAoHPsYYY06FAx9jjDGn4iZ3AWpKq9Xi6tWr8PX1hUKhkLs4jDHGZCCEQF5eHsLCwuDiUnmdzu4D39WrVxEeHi53MRhjjNUCly5dQqNGjSrdx+4Dn6+vLwB6s35+fjKXhjHGmBxUKhXCw8PLYkJl7D7wlTZv+vn5ceBjjDEnZ8otL6t2bomPj8egQYMQFhYGhUKBtWvXSraPGjUKCoVC8ujfv781i8QYY8zJWTXwFRQUoEOHDli8eLHRffr374/09PSyx6+//mrNIjHGGHNyVm3qHDBgAAYMGFDpPkqlEqGhodYsBmOMMVZG9nF8u3btQnBwMFq2bIlx48bhxo0ble6vVquhUqkkD8YYY8xUsga+/v3746effkJcXBw+/PBD7N69GwMGDIBGozH6mnnz5sHf37/swUMZGGOMmUNhq4loFQoF1qxZg6FDhxrd59y5c2jatCm2b9+Ovn37GtxHrVZDrVaXLZd2Yc3NzeVenYwx5qRUKhX8/f1NigWyN3WWFxUVhfr16+Ps2bNG91EqlWVDF3gIgxPRaoCcf+UuBWPMAdSqwHf58mXcuHEDDRo0kLsorDZR3wB2DwT+7gHknpK7NIwxO2fVwJefn4/k5GQkJycDANLS0pCcnIyLFy8iPz8fb775Jvbv34/z588jLi4OQ4YMQbNmzdCvXz9rFovZm5PzgfStQEkBsPcJqv0xxlg1WTXwHTp0CJ06dUKnTp0AAFOmTEGnTp0wa9YsuLq64tixYxg8eDBatGiB0aNHo0uXLtizZw+USqU1i8XsTbt3gID2gDII6PIFoHABbh4DLq2Wu2SMMTtks84t1mLODU1mx/LTAIUb4N0I2NoNyD4MuPsDj2YBrh5yl44xJjO77dzCmFE+kUCdcEChAPyiad3tXCBzp7zlYozZHbtPUs2cUMQTQGE6EP4oUK+T3KVhjNkZDnysdrr2D3D0baDpi0D4Y4Cbl25boyH0YIyxauDAx2qn/74DsnbTAwAinzXv9UJQsyhjjFXA9/iY7WXtAQozjG8XWt1gdXd/qvEZ3VfQ/gBQfBNIXQJs7SHt8Vm63V6kfgPsfYo69DDGLI4DH7MtrQb452lgbSMgfqguKJ1ZDJz8GFCl0HCFfgeBB/YCXb+UNnOWJwQda6U7HTf7MHBwPHBjP5D2k26/1K+BzV2As98Ct/Ot/hZrJP8ccHAckL4ZuLxe7tIw5pA48DHbytwBFF4BhIaCnsKF7ucdngQkT6V/AWqmDOpVeRPn4UnAxVV0nL2PAcH3AV5htK3wCqAtoeB49hvg5hHgwMtA/n+Aphgoulbz95IRB6iza36c8q5uBiCA2ypAc8uyx2aMAeDAx2zNrwXQ5i3AOxyIHEnrLv5BgRAAQh8w/Vj1e+ieNxwMuLgC3b8FBiQD/Q8BLm7U/OlyZ5xf3c7A9QRgYwvg4NiavQ/1DSD+EWB9JHDyw5odqzxtCeAZTM8bPGi54zLGyvAAdiYPoaXamIsrLd88RmnJGg0F/JqbeAwBZMYBHoFVD2vIPgwU5wD7ngWK7txffOhfIKAtBcfMXYBnCBAYoytTZZL+Dzj1ET1v9hLQ/RvTymwKoQVyjlG2GgX/NmXMFObEAu7VyeShcAHKd7qs254eZh1DAYTGmrZvvS70b+upwJEpQNhDVAahBbZ0oyZQAIj5Dmg6uurjtZgAFGcDF1YCbWeZV+6qKFyAuh3peenvUnN7qAoBpP9NzaWNhnIPV8bK4Z+TzLFpS6TLzV6mjjP3/gX4t6YgEzVKtz3sIdOOWycCiFkKDL0IeNQDrh8ASgotVmzcTAYOvwZsaE7PzaEtAQ69AuzqD/w7W1fDZYwB4MDHbOXWFeDCb4CmyDbnu/IXsL0PsLGVdDiDmzcQ2FW6b/NxQPjjQPTrgJeZU2KlfAH87gv8HQNkH6p5uUtd3w+kfE410Stm9u48MgVIXQyEDQT6/GX+e3IWQgC3ruqvT1sBrIsEtnTnlHgOigMfs41zy4F/hgGrQ4Erm6x/vn9nA1nxQP5Z4NKfle+rDAR6/w50/sT883iG6jrm3Ewy//WlinOAdVFA4ovURNnwYVqvcAWKMs07VvRrNJNFxt90D5Tpu3kU2PEAsKWL/hCXvBSg4DyQfRDQqGUpHrMuDnzM+oQAzv+Pnt/OBQLaWP+c7d4pt2Dmxzw7CTg8GdjcCcjYrltfdB1IHANcXkdzAwJUewzoQM2lfq2qX97MHUBBGvDf9zSkwbsR0Gcj8Ng1oNtX5h3LJxK4Zx1w39/SZlymcz2BfhQUZeg6KZXS3qbmayjoRxFzONy5hdlG54U05q44G6jT2PrnazgQ6LOBmjkbDTbvtaoUIGUhPc/cpetAc3UTpVL77zug1VSg04fUaeah5JqXt+AS4OpJTcGlQzoaDjTttaXjIcsL6iFdLsoCTn0MtH+PzuNMiq4BnkHSdf53fnzViQTqVugR3HEePewt4w8zGQc+Zn0KBRDWjx62VNpcaK6QPneeKIDCcveA0jfX/NjGRE+iYRHX9gJBPaXbtCWA6hTVRP1bS+9RaoqB+MFA6INAqymGj315A7B/JA3bcPMB2s22bNlrs+uJwM4HgfbvAy1f0a2v2wHouYLS4bkamfi69MfErctUQ8xOAjrM5R6yDoDH8TGpvLOU7kt9HWjzNuDdUO4SySN9GwUYj7q6dSW3qEky/W+g8wIaIG8LV7cAuwbQ8+jXdfcihQASngPO/0zLbWcD7efovz7nODXbihLA1Rt4LAtwq2OTosvq1mXgr7bUvA4Ad/8ORDxu/nF2PQxc/YueD0oFfJtZrozMYngcH6ueS6uBPXcSQvtFAx3ny1seOTUwkEHGzZtqepXV9jTFps0If2kN9RgsKQA8AoDOnxrft3RMH6Dfgab0S9jV03CZARqk33oaoC2maZ6cIegBgFdDoMUrwIn3gZD7TB+qUlH9u3SB7/p+DnwOgAMf0wm5X3efqefPgLsFatCX11MPw/p3OW4TUcEF4MA4ygfa6BGg+5LK9xeCZl74bylda+/wygOfVyjQdAzg2xQIvEu3XqGgZkuvMLrGQb2MH6PDe+a9J0egUND79m1Kkxe7eVfvOGEPUe/O+j30m6GZXeKmTiZ1dAbg7kt5NL1Ca3YsIYB1TYBbFwGfpsDAk6bVhuxNcS7wRwA9D4wB+u037XXZR4BtvenHxuM3rFY8xpwBN3Wy6uvwvv46oaUZDly9gaiRph/r+n4KegDg29z+gl72ESB9C3DuR2reDH8cCOyun8vTw58Ce/FNXYJpUygDgX4HAHcfy5bbHDePUW/Pzp+aV/baSqsBxG3n67nKzMLj+JyZKgU4NocGTxujKaIMKAfHA4dfNZzpwpiANsBdy4AG/YEmw2tYWBmcWQQcfRvIOwOcXgBs60kZUQzplwg8dh3oU0mWFa1GulynMV0jWwzvKKUpptkwdg+mv3vii9Q5ZmM09Vq0d+d+ADa2pnuo9t2YxayIA19tkPMvsG8EfSHZ0r/vAsffofRM1/4xvI+rJ9VmAJoj7soG04/v7kcDqO/bXPm8erVVcB/9dQ0GGN5XGai7h3nxd6DgonS7OhtY6QacXSrvF3LyNGDvE/R3/PcdXXJuz1AaKgHY7/i14hz6oVKQBux51Pwcp1UpuQVk7aG8rMyuceCTm7YE2PM4/ere+0TlwS/nhOXOW5SlS+Xl4kbZR4zp/Cl1nOi7A2j+suXKUNs16Ad0X0ozwcd8Tzk9K5sySVsCHHkD2PskffGWT1pdmvPxwEvAibnWLXdlIsvVvAvOAw+fAho/Q/MY5p2lzDQ7+8tWvBq5rQIC2tHziCernqrKHPnngN/9ge33ACeduLezg+B7fHIryacsEnlnaNlYV/lr/wDb7gaC76UZBm5dooG3LV+t3nk9g4GHTwLH59L5K7vPpAykL39TqVIA7wjAzat6ZastvBoAzV6k50G9gKYvVL5/ST5weQ09zz4MXPhV95rzK+hf9wAgqorjWFO9LpR1psED1ItX4QL0WkG10E3tgNw7P65uHNJP5l3b1YkA7t9OKeUsGfQAoE4TGgZyO5cGswvhuL2UnYBVa3zx8fEYNGgQwsLCoFAosHbtWsl2IQRmzZqFBg0awMvLC7GxsUhNTbVmkWofjwDgntVAqzeB2HjjN+VP3Rm0nLUL2Pc0kDyVfnlWvG9kDp8o4K7vjWf8qIxGbfieUN5/9Kt45wPUvOdMPAKA3msouHVdDEQ9r9vWbg7Q8UPgwQTAO0ymAt7R6UNKw1Y+zZlCAbScRM/d/YA8O/1/qFAA4UMtf99U4QI0fprmamz/nv02BzMAVg58BQUF6NChAxYvNtwh4KOPPsIXX3yBr7/+GomJiahTpw769euHoiIbTV1Tm3T6CAjuLV1XUkA9BQGaYsa3BQ3KLb3PVJhOGeTlcOIDYGtX4MjruoTNQlBzbVEW1VCT3pSnbHKq2x4Ykga0GC+tEdRtT5Pg+kfLV7aqNHkW6LIIGHoZaPK03KWpfbovoYmKm72o37OX2RWbjeNTKBRYs2YNhg4dCoBqe2FhYXj99dfxxhtvAAByc3MREhKC5cuX46mnnjLpuA47jk+jBnYPouB2/9/U7Ca0dF8m7yw1tzQZLk8WidzTwOb2lMVe4QYMOKK7t5KdROm1lIFA7B5AWc/25WPORQhAU1j9AerMIZgTC2Tr3JKWloaMjAzExsaWrfP390dMTAwSEhKMvk6tVkOlUkkedun8SiBzt/HthycBGduA3OMUAIWg5hafKKDBg5SxozpBT1MMHBgLnP8VKKzmzNy+TWnaHxcl1WJKgx5A91Ye3Afcu4WDHrMNVQrwRz1g10Dgyka5S8PsgGyBLyODvnRDQkIk60NCQsq2GTJv3jz4+/uXPcLDw61aTqsozgUOjQfi7gV2DqDegBVFv073KVy9gC4LLXcjPfsgDUbf90z1myJd3IE204GBx4G2M/W3+0QBdezw78KkSgppNnJTHZ0BHHqF5hO05ZCNKxsArZqmjVKlWP98QktN+YVmThDMag27G84wffp05Obmlj0uXbokd5HMd+4H3b07z2DDWf79mlNPynv/qjwHY+5JYP8LQMoXpp07Y4fuecj9ppfZEN9mnCHDUV3dDPzVGkh4Frjyl3SbOpvu41aU9hNw5ktg10OUt9RWXNzo3jcANDRz7kVzZWwH1jWmHtalkyszuyNb4AsNpTyQmZnSX02ZmZll2wxRKpXw8/OTPOxO8/GU0SSgA039Y4x3I8oqb0xJAU2Uem4ZdTYxVHOsqNUbwP3bgNbTdROsMlZRcS7dTwaoZUBoqWn8wDhgbUP6vFXkcadpu0E/GjZhK9GvAUMvAQOOVj7O0hK8G9N0RwBwYaV1z8WsRrbAFxkZidDQUMTFxZWtU6lUSExMRI8ePSp5pQNwVVJGkwFJgF+L6h/n1KfAoQn0XKOmyUqr4uZFAa/jB9wcyYxrPAwI6k2fld5/3Bn6IOhHlqYIOLdc15u3VI+f6AedHNNZKRTUc9ba/JrTDBlhDwEtXuW0aHbKqgPY8/Pzcfbs2bLltLQ0JCcno169eoiIiMDkyZPx/vvvo3nz5oiMjMTMmTMRFhZW1vPT4dX0vl2rNymIetSjMUYlefRL/No++tVdfsZpxsyhUAD3bgTcfHWfU68GNCA/7Wf64aYpks7tV7e94eBTcAlIXUIJ0BXV/K0ttEDhVWoFKa+k0PaJEh7Yy8MZLCkrnpqqfZva7pzCinbu3CkA6D1GjhwphBBCq9WKmTNnipCQEKFUKkXfvn1FSkqKWefIzc0VAERubq4V3oGdyT0jxArQY+dAuUvDHFFhlhDqbNP3v3FIiNUN6DOZNL365z06S4jf6wqRvk237lqiEH8GC3Flc/WPy+Sl1Qixvjl9Pnb0F6KkqNqHMicW8Hx8trT/ebpH0GK8daaAEQJYHQyor9Ng90EVeridWUwzq9fvaf/pxJh9uLIJiB9ENTafpjTms3SC45IC4PIGmiS2shrUlY00pAcAXDyAQWcBhSvdawSAet2AbouBwG7WfS/M8tK3ATsfpOch9wN94yrfvxJ2MY7P6eSeovsix9+hyUet8XtDoQB6rQQePgM8fFq6rTiHphXaEUs90hizhYYPAZ0XUs/kB/frgh4AnPmK0u9tagdkVZILNvgeoOGdwNdhLt2b9vAHwh+lddkHAbVME/nmn6u87KxydTsCHeZRLtTm42x2Wk5SbSvX/qFfqUIDNHvJegluQ/saXp8Vr8svGMSBj9lQy4lA87HSYTslt4BTH9Fz1WnAo67x17v7UQ7Uy6tpMmCA7i3e/TtNAeXiDoTZeEYJjZpy0t44QK0oA09y0urq8AwC2kyj/go2xIHPVpq9SBlXziwGmr5o+/MH9QJ6rgAydwCNrDzWibGKKo5VdfMG7v4NODaTmv8D2lTxeldqEi1P4UK9T+XgqqTMRQClFSzKArxCKn+NMVl7gNOf0vCmdnOcM4DauLMQ3+NjjMnHUJ7NkgLg4Hig21fSXqO1TeoS4PBk4L6tQMi91TuGEMDfPYEb+2m5zwbjU5PZq+Jc+vu6uFv1NHyPz9nlnwP++wFIfNH5pgZi9kWh0E8ufWIeZYH5uxdQdE2ecpki6gWgz8bqBz2A3n/Z5M4KSvwut5QvgS3dKUtNTeSeBhJfok5IVzZIt2XsAFK/AW7n1+wc1cSBzxGlLAISRwP/fQ9c3yd3aRgzXd5ZIGUhPS9IA4qqmUjdFlyVNKFveel/A5vaA1t7UCJ6U0Q+B7SYCAy7BYQ/YvlymkOdDSS9Tgnma9JhSGiBQxOB/5ZSDT51iXT7yfnAwbHAmjDb5FetgAOftalSgV2DgNSvgVtXbHPOoJ6657sHAfGPyPLhYsxsdSKBNm9RZpT7tkpn/rAHRZlAzr/UdKm+bnifW1elywoXoOsi8/LeCmFaikJzXd0MaIuB9K3AjRrM9alwAe7bTCkS3XxoeFX5SbN972Ss8gwBfK2cZs4ADnzWdnUjPQ6OA87/YptzBt1DXYR73smsf3ktsLmzLjE2Y7WViyvN/HHvX0D9u+QujfmEhmZUAQzfn8w7S0mu44cCNw6Zf/yCC0DydGBDMyDtxxoV1aBbF2msJKAbQlJdLu70PfRIOo2zLO3Aoi2h9IrufjQBd3Wz+dQA9+q0tmvlmhptddPaK4S6CGfFU5qpwnSg2cuVdxlnjNVc1Ch6aDWgRFUVnPwIECXA5XVAYAwQ2FV/n9t51GQa8Zhu3bV/qDZcmEnNhAAN5Wg62rLlbzOdml0ztktbjqrLxQ1w8dFf1zfuzhyj8vRg5Rqftd29Cuh/COj0KY33saXge4BBqTTot+0M256bMWfm4iodwnE9Ecg+DNTtAHiFUW2n+Xj916UsAtZGAHsf19UISwqBf54CNjSnTiLe4XdqSQpp82F5FROIm8Pdl+41KlyBnOOmJ9vIOQ7EP2p6hyQZh21wjc/aFC40RYstp2kpz60O3TNhjNlecQ5w4CWqnQV2p+w1TV8Eco5R9pmKhAa4nUPPC68A6AqcWaSbCulmEo1/9GlKg78N0ZYA6yJpvszGz1CwzdwJtJtlerlPfgicXkDjEx8+U/V0T0IL7B9Fwf1GInD/dsC/lennszEOfIwxZi1uvpSuEKAsL1fWA42GGM8r2mwMBRzPYN2kulEvUMe4/74FOn5Y9WD/a/8A6mv0uJ6gW99oCAVBU5VONpy5verAl3sSUJ2h5x71AJ9I088jA27qZIwxa3FxpWDlGUwD8sMeqnx/tzpAbDzQ9UtdU6BnfaDrQmDo5aqDHkDNnP539gss10Ho7LfGX6NKAbZ0A/59h8bfhfSloN1wEOAdUfU5A9oCg85QkDa3h6oMOHOLtfzmQx/A3n8CoQ9QuzljzPkIAWhuWS8LjaYYcPXQX593FnD3B/Y+QZ1gGj+tnzqu1KlPgaQ36Hmnj4HoKdTsauVsK5bEmVtqA/cA+nfPY8AFEweyMsYcj0Jh+aCnvQ2cXkjZbXYPNLyPbzO6Dxi7C4gcYTzoAdJxvg0HUd8EOwp65uJ7fNbiHU7/1utCHzrGGLMUhRt1esn/j4JU0TXjnV1MEfMtdX7J2KEbXF6V4lzg4m9A1POVB9VaiGt8lnLrqrRrcb8E4JHLQJ91tb69mzFmZxQKIOJJeh79BjVpAjRdUlVKbhle790IiHrO8DCD4hz9Y6wOoR6rW7rY3ZyEHPgsZddDwJ/1gN2DjY+tYYwxS2n2Ig2N6DiP7vHdugL8GUhZYa5s1N+/OAc4OpPyY5b2NK3KiQ+A1Q2AP+rSeMJSbt66Ae65xylVmx3hwGcJxTdpXM5tFX34bDy3FGPMCflEATFLdSm/rqynDnWX1xnOs/nf98CJ94HbucC/c2jd5Q2V1xLz/qNE4W4+QHGFmV4iRwEtXgUeSJBmmbEDHPgs4bYKiHicEq4G3yN3aRhjzkh7m76DABqzV1HzsTSswsUdUAbRoPb4wdRUaSxvaNRIAIo7vVIrTB8V9RwNs6jf3aJvwxZ4OIMlCQFoigA3L3nLwRhzTkJLtb3A7obv1WVsB3yaAXUigL/aAKrTtL7zZ0D0ZMPHvHmMssnU71Gre3qaEwvsqytObadQcNBjjMlH4QLUjzG+PTRW97zXKkoz5uYDtHzV+GvqtrdY8WoLDnyMMeaM6rYH+iVSHwUZpgaSk3O9W2vgHpyMMXvl4k73/ZwMB77qKM4FDk6kf4+/A6xvCux/Hsg/J3fJGGOMVUH2wDdnzhwoFArJIzraxvPWmUN1Bvg7BkhdDOwbDmTuooB3bjmgqL03fhljjJFacY+vTZs22L59e9mym1utKJZhLm66iRavJ1DGBBcPwKshUCdc3rIxxhirUq2IMG5ubggNDZW7GKbxiaJZ1ZOmAr3/oGVNEVBwUe6SMcYYM4HsTZ0AkJqairCwMERFRWH48OG4eNF4EFGr1VCpVJKHTRTnAsdmAVe3AvW6Af0PUdADKBenn4mJXRljjMlK9sAXExOD5cuXY8uWLViyZAnS0tLQu3dv5OXlGdx/3rx58Pf3L3uEh9uoefH6PuD4e8Cu/hQAnaz7L2OMOYpal7klJycHjRs3xoIFCzB69Gi97Wq1Gmq1LrecSqVCeHi49TO3HJ0BnJhLz3utAho/ab1zMcYYM4tdZ24JCAhAixYtcPbsWYPblUollEqljUsFoPl4wL8tcG0vENzb9udnjDFmEbWuvS4/Px///fcfGjRoIHdRpLzDgCZPAd2+BLxqWdkYY4yZTPbA98Ybb2D37t04f/489u3bh0ceeQSurq54+umn5S4aY4wxByR7U+fly5fx9NNP48aNGwgKCsLdd9+N/fv3IygoSO6iMcYYc0CyB76VK1fKXYSqXd0MeIXRPT6eZJYxxuya7IGv1hOCpu4oygK8I4Ah5w3Pc8UYY8wuyH6Pr9bL/4+CHgD4t+agxxhjdo5rfFVx96PZia/tBULuk7s0jDHGaogDX1U8g4HoyfRgjDFm97ipkzHGmFPhwGeItgQ4Phe4nS93SRhjjFkYB76KhAASRwPHZgA7+9GsDIwxxhwGB76Kru8H0n6i59kHgZvJshaHMcaYZXHnlor8WwP3rAWy9tDzkD4mv/T334ELF4BHHwWioqxXRMYYY9VX66YlMpc5U1FY2zPPAL/+CgQEAElJQJMmshaHMcachjmxgJs6LUijoX9zcoDPPpO1KMwBaDTAlSv0IyorS+7SMOY4OPBZyKFDwI0buuVffwVu35avPMw+3bgBjB4NNGoEKJX0b+fOQHg4NaUzxmqOA1952UnUuUVTDIA6eC5aBLRtC7RoAXTsCLi6Alev6r/U3x+Ii9MtX7sGbN1qm2Izx/HGG8APP1BNr7QFAQCKi4HXX6fPJGOsZjjwlXdyPvB3D+CPAEB1Bj/+CLz6KnDiBJCaChw9Cmi1QL9++sGveXPgrruk6/73P5uVnDmAW7eAVauMb790iT6DjLGa4cBXSgjKxwkAClecSY/CxImGdz1+HOjZEzhzRrr+ueeky+vW0f0+xkwRFwcUFla+z8aNtikLY46MA18poQHazgKaPAtNw8fxzHA3FBQY3z0/X/8e3pNPAu7uumW1GvjjD+sUlzme9eulyz16AC++KF3HgY+xmuNxfKVc3IDmLwPNX8b0qcDhw9LNTz4JxMZSDc7NjZYbNpTuExgIDBwIrF2rW/e//+l/eTFWkVYLbNggXffYY0D79sB33wHBwfTZGjRInvIx5kg48FXw11/Axx9L10VHU4eDOnWqfv2IEdLAFx8PnD/PY/pY5Q4eBDIzpesGDwYiIoDERKBrV8CF22cYswj+r1TOd98BQ4dK13l4ACtXmhb0APpVXreudB13cmFVqdjMGR1NHaaUSqB7d8sEvX37KIA2bw4EBQEtWwI//ljz4zJmbzjwAdCoCzB3ehrGjBEoKZFu++gjoEMH04+lVALDhknXvfceMHs23fNjzJCKgW/wYMuf48IFasI/exa4fp06Z40aRQGRMWfCgQ/Ab19sw9vtonBpUTie6bmibP2wYTScwVwjRkiXb98G3n0X6NQJSEmpYWGZQ/r5Z/qB1K0bLVsj8KlUhtdPnCgdM8iYo+PAB2Borz0AgEb1riCvyBcAMHUq8MsvgEJh/vF69KDOLxXl5wNhYTUpKXNUHToAM2YABw7Q4PWKY0ItwVjgS0qiZn7GnAUHPgBeIW1R4BuLvCIfHEzriWXLgA8/rP59FYWC7p1Mm0aZXkp99RXg62uZMjPHFRYm/dxUlJcHbNpkOIvL7t3A+PGGWxb69KFOWn/+CbRuLd321lvSlHuMOTKenaGcnTs0cHVzxT33WKhwAJKTaThDs2bUSYax6iguBr75hsbx7dpFy0uWAGPHSvcbNEg31m/gQApoPXvqH2/HDqBvX+m6sWPpmIzZI3NiAQc+GygpoXRUtbR4zA4IQeNG09Ol64cNAxYsoFrimTPUU7O8L78EJkwwfMwnn5QmvlYoKNl6586WLTtjtmB30xItXrwYTZo0gaenJ2JiYnDgwAG5i2RRbm4c9Jg+tdr0pNMKBQ1or2jVKgp2o0ZRguvyAgKAkSONH/OTTwBvb92yEPrHYMwRyR74Vq1ahSlTpmD27Nk4cuQIOnTogH79+iGLJyBjDm7GDOoItWePafvPng307q2/Pj+f7ilXzPzy0kuAj4/x40VEUFNoeTt3ml4exuyV7E2dMTEx6NatG7788ksAgFarRXh4OF555RVMmzatytfbQ1MnYxWdP081tWKaAQuDBwOffw5ERlb+Oq0WWLaMeh1nZxvfz9UVSEujefwqU1QENG0qnW2kb19g+3ZT3gVjtYfdNHUWFxfj8OHDiI2NLVvn4uKC2NhYJCQkGHyNWq2GSqWSPOzJrVv0i5o7ETi3GTN0QQ8ANm82bSydiwtNVHv6NDVvGhtu88QTVQc9APD0pN7H5cXFAXv3Vv1axuyVrIHv+vXr0Gg0CAkJkawPCQlBRkaGwdfMmzcP/v7+ZY9wU/531wKZmTSRrZ8fcM891OXcyFtkDu7IEWDFCum6ceOo56+pgoKo5nf+PPDZZ8Ddd+uCYGAgMHeu6ccaMwZo0EC6rrTGJwTVBm/eNP14jNV2st/jM9f06dORm5tb9rh06ZLcRTJJ/frAuXPSX/WJifKVh8lnxgzpsp8fMHNm9Y4VEQFMnkytCFeu0Di+tDQgKsr0Y5Sv9Q0aRD0758yh5YICoEULoFEjYM0a04+pVtPwnenTgSlTqGfphAnSXqSMyUXW2Rnq168PV1dXZFZIS5+ZmYnQ0FCDr1EqlVAqlbYonkW5ulKC4J07desOHACGDJGvTMz2MjKALVuk66ZPpx9GNdWggX7NzVRjxlCtseJQBh8f4KmngO+/p9RmgwdXPri+1PjxNFi+oq++Mjz+kDFbkrXG5+HhgS5duiAuLq5snVarRVxcHHr06CFjyawjJka6bO81PiEo20dRkdwlsR9//ikdwuDjU718sJbm5aUf9NRqSmf20ku0fPUqsH9/1cc6dcpw0Cs1Zw4nbGfykr2pc8qUKVi6dCl+/PFHnDp1CuPGjUNBQQGef/55uYtmcRUD38GD1EvP3ixZQt3q69WjmkpICE+9ZKrffpMuDxkiHUtXmyiVNA5w9mxdLc+U5s47HbSNysyk8YeMyUX2wDds2DB88sknmDVrFjp27Ijk5GRs2bJFr8OLI+jeXbqsUlGTUPneffbg4kXq9ZeTQ8sqFfDcc8DChbIWq9a7elV/jJyhZOa1ydCh1DRbem96zZrKB93n5urP8derF90nLO/zz00fvM+Ypcke+ABg4sSJuHDhAtRqNRITExFTsWrkIMLCqJNAed98A7RtS/OxlX4RFBQAr72mn57KGj76CHjhBWp2NfWLqE0bw+snTwbeecd6X2hC0JfqkSPWOb61VWzm9PMDHnxQvvKY4pFHpMvnzgHHjhnff/ly+vyWcnWlWU4++ki6X1ISEB9vsWIyZpZaEficiaGYnppKNaacHPpC6NKFfhGPHGndX8UlJcAXX1C3+LvuovkCTfkyatvW+LY5c6gXn6WbcDUa4OWXaeza66/bZ23BUDOnp6c8ZTFVx45A48bSdcaaO7Va/WbOoUOp5+nDD0t7mvr6Uu9TxuTAgc/GKjZ3lpo5E/jnHwpApVPKbNtGg4mtZdMm6gJf6uhR06ZNio4G5s+nFFnvvqu//fPPqRZZcTb76ioqoibBpUtpedcuKrs9uXKF/r7lPfGEPGUxh0KhX+szFvgSEmh29/JeeYX+dXUFJk2izDSffw5cvkw/YhiThbBzubm5AoDIzc2Vuygm2bVLCKqv6B4REUIUFQlx/boQDRtKtz3yiPXK8tBD0nN171694yxZIoRCof++hgwRorCwZmVUqYS4/379Y7duLURJCe1TWCjEjh1CLFpUs3NZ08KF0vL7+dHf3B7s3q1//f/7z/C+SUlCjB4thKenEO3bC6HV6rap1bq/GWOWZk4s4MBnY3l5Qnh4SL9E/vxTt/3LL6XbXFyEuHTJ8uU4f14/WH3/ffWPt2KFEK6u+l+QffoIUfFPk5cnxDvvCPH660KkpRk/ZnGxEHffrX9MpVKIVavouvTtS1+yAL2fGzeq/x6sqVcv6Xt47jm5S2S6khIhgoKk5f/kk8pfc/26EMnJtikfY0KYFwu4qdPGfHyAN9/ULY8YIW1KGjFCmlFfq6UOMJa2dKl+R4thw6T7lPbaNMUzzwDr1unfs9q9myZELe25qlZTEuTZs4FPPwUeeMD4mK5fftHPGenrS70Mn3yS0nb9849uHKEQ1AxamawsYOtW09+XJWg0lJA6IEC3rrb35izP1VU/0cLKldRZx1hHo8BAoEMH65eNsWqxQSC2Knur8ZU6dEiIhAQhNBr9bePGSX9dh4RQM5GlFBcLERoqPceECbRNq6Vmw3vuEaJjR1peskSIp56iGuHFi5UfOz6emvEq1tLGj6ftY8fqb9uyRf84Wq0QbdtK9wsKEuLwYel+sbGG34chO3bQ+/b2FuLECdOvl6Wo1UL89ZcQY8ZY9u9pC3/9pf93A4R47TXLHJ+bQFlNcVOnnTt2TP8LZuVKyx3/zz/1j3/smBAZGRTwyq//4QdqTiy/bubMyo+flCREcLD0NY8+SgF3+nT9c7/+uv4xNm/W32/9ev395s2T7tOqlf4+Wq0Qc+ZQs3Hpfm3aCFFQUK3L55SKioTw9dX/mzz0UM2PvX27EM2aCXHyZM2PxZwXBz4H0Lu39Aumd++aHa+4WIgNG4R44gm6R1b+2D170j4lJUJER0u3BQbq7796ddXnO3KE7r0pFEJ88IG0k0PnztLjdeig//qKwTY62nDtODFR/8v46lX9/caP19/vhRdMunTsjmee0b+GUVHVP15RkRBvvqm719yxo/10+GG1Dwc+B7BypeFaWXWkp1NNyFBTFSDEjz/q9t20yfh+ANWabt407byrVlHNraI9e/SPm5Gh237kiP72pUsNn+P2bf2m1Z9/1t+vsJC+WCse9/HHhZg6VYgFC/SbUauyYQMds0EDakINCaFeuX37CvH221RDzckx75i12ZkzQoSH665dWBg1NRv6QWKK+fP1/x5VtSYwZgwHPgegVtMXafkvhbFjq3esJ580HsjCw4W4dUu6/+OPG9+/R4+av7fiYv1msxUrdNuHD5duCw6ufFjE4MGm1eRSUoTw8ak8sH/9tWnvYf16w71Yyz9WrnS8e1eFhUKkptIwk5q6dYuanMtfs7p1az4Ehjkn7tXpADw8dFnxS/38M5CXZ95xTp7UzxgCAO7uwGOP0YSjXl7SbZ9/Lu1ZWt4DD5h3fkPc3YF775WuK5349OJF6jFY3iuvVJ7h5P77pctbtwL9+1OP0vJatKi6h+zEifqvqyg+nnplVjVj+ltv0dx2jsTTkybMNSXRQVW8vPQn5L1507x5/xirFhsEYqty1BqfEDROrXyHDHNqJOXFx9Ng4tJjfPxx1ePdPv/ccC1m797qvZeKKg7obtSI7gNOnixd7+1NY8IqY6gzUPmmzJQU6f4TJ1ZeU6tfn8Y5GpKUZLjXqrGHm5sQH35okUvmsComKOjbV+4SMXtkTixQCCGE3MG3JlQqFfz9/ZGbmws/Pz+5i2NxQ4fS+LhSHTpQPk+FwrzjlJRQbcfHh3KAmrJ/9+50rlK+vjT/nru7eec25NQpoHVr6bqjR2lM47lzunUTJwKLFlV+LK0WCA0Frl0zvN3dnfJCNmxIy0JQOrjkZEoEfvy4rsZZqmNHGiNYfsqg1FSarDUrS7rviBGUaxWg2QkOHqR5644cAerUoVkr7Gncnq398gswfLh03blzlN6MMVOZFQusHoatzJFrfELod+v39TVeG7G0xESqsdT0HqMhWq1+erYvvqCsLtOnU3YbNzfjqbEqeuop47Wut96q/LUajRADB+q/rvwYtfPnpR07Sh9Dh1IHG1Z9t24JERDAnVxYzXDnFgei0QgRGSlEp05CfPstBQZb2raNmgvffNPyPRRHjpR+2Q0erNuWmirE8uWmH+vwYemwi+ho+vL891/TXp+TI0TLlrrX16kjHVf26KP6Qa9PH+6IYSkVm58bNXK8jkHMurip08Fcu0YznZvbvFnbrVgBPPusbrmmTakXLlBnklat9JtRTZGSQs27KhXNKF++bDdvUoeZAwdouUsXYMcOSvXGai45mabFKm/zZrrm1XXlCjU9V+ezwOyPObGAe3XagaAg04NeUhJN95Kfb9UiWURsrHQ5L08XWKqjcWPqqVrdL7qWLYE//qDpc8oHPQCoW5fuC/buTfMRbt3KQc+SOnYEOneWrvv+++ofb+lSmvS5TRuax5Gx8rjG50Cys4GuXakjR+vWwOrV9GVem3XoQDN616tHyaunTqX3UFsVFNAjOFjukjier74CJkzQLbu7U60tKEi6n1YLuFTykz09nTrGlE9+nppKwzCY4+IanxPSaqmWUjqr9cmTQLdu0l6ZtdGCBdQLMiuLxhvW5qAHUC9NDnrW8cwz0vGat28DS5bolrOzqZXA2xt46inabsjHH+vP+JGcbPHiMjvGgc9OCUGzkJf+B583j+6JlNeuHTX11GZ9+1Kwc3WVuyRMbgEB+rPSL1yoa7YfNw6Ii6PP/KpV9KOpoqws4Ouv9defOmXx4jI7xoHPDp08CfTrR/PcLVwI7NkDzJol3SckBPj9d8oAw5i9KD9Xpa8v3Z/TaCibTsUMRF98oV/r+/RToLBQ/7inT1u+rMx+ucldAGaer74CXn1Vly7rvfcAf39q6izl4kK/iMPC5CkjY9XVrh3w/PN0j27iROpUpNFQh6OKrl6lH3fPPEPLN24AixcbPi7X+Fh5XOOzM926SYNcfj51ACjvnXeAPn1sWy7GLOWHH4CZMynoAdS78+hRw/t+9hk1+wP0A/Cbb2g4S0UpKdL/N8y5ceCzM9260S9iY+6/H5g+3XblYcyacnKAt982vv3QIWDfPnru5kapz/79l24BlHfrFnDpktWKyewMBz479MEHhseQBQXRDA7cUYQ5isuXgcBA6Tp/f+nyZ59Jl11daUaPiv9H+D4fKyVr4GvSpAkUCoXkMX/+fDmLZBdCQvQ7swCUbaRBA9uXhzFraduWanCffUYBb+hQYPZs6T5r1uiG8ZRSKIDoaOk6DnyslOw1vnfffRfp6ellj1deeUXuItmFV17RpXNSKID586mnJ2OOxt0dmDyZBqF/+SUwerRuPkBvb5rX78sv9V9X8V6fqR1cCgookPI9Qccle69OX19fhIaGyl0Mu+PhAWzYACQk0Pindu3kLhFj1lU+g8sLL9B9vDp1aPooQ/mn+vWjAfHR0RQE27ev+hx//03TTGVlAffcQ2nqeEiQ45E1ZVmTJk1QVFSE27dvIyIiAs888wxee+01uLkZj8dqtRrqcmkZVCoVwsPDOWUZY07k3DmgeXOqlbVqRR1cAgJqdsy1a4Fhw4DiYt26n36iQMhqP7tJWfbqq69i5cqV2LlzJ15++WV88MEHmDp1aqWvmTdvHvz9/cse4eHhNiotY6y2iIoCPvmEmvnPngX+/LNmx/v1V+Dxx6VBDwDi42t2XFY7WbzGN23aNHz44YeV7nPq1ClEV7zzDOCHH37Ayy+/jPz8fCiVSoOv5RofY6xUbi5lb6lfv/rHWL6cmk4NfRO2a0dJ1FntZ06Nz+KB79q1a7hx40al+0RFRcHDQMP5iRMn0LZtW5w+fRotTZxWgGdnYIxV1/nzdA+wYlLrUi4uFFx9fGxaLFYN5sQCi3duCQoKQlDFeURMlJycDBcXFwRz+nvGmA2sWmU86AF0D/HQIeDee21WJGYDsvXqTEhIQGJiIu677z74+voiISEBr732Gp599lnULc1VxBhjFqDRABcuUD7Pbt106199leauXLeOekl37kw9Oo8c0e2TmMiBz9HIFviUSiVWrlyJOXPmQK1WIzIyEq+99hqmTJkiV5EYYw5m716a3PbMGaCoCGjalDrDlPLyAgYNoodGQ2P4pk3TD3zMscgW+Dp37oz9+/fLdXrGmBPw8pJ2TklLowBYfsLbUq6ulOYsJkY6Ae7+/dTxRaGwfnmZbcieuYUxxqylYh85rZYywFQmJka6nJ5OOUOZ4+DAxxhzWD4+QMWhvlXl7GzRggbDe3oCvXoBU6Zwbc/RyJ6yjDHGrCk6WjolUVU5O11cgIMHgcaNKU8oczwc+BhjDi06mnJullq9mu79hYcDAwboT3MEAM2a2a58zPY48DHGHFrHjtLlo0d1M7q7udFQhU8/NS2JNXMMfI+PMebQnnoKaNTI8LaSEmD7dsO1Pua4OPAxxhyatzc1dRqb/axjR7qfx5wHBz7GmMOLjgZ27QIaNNDfNmSIaccoKrJokZiMOPAxxpxCy5YU/MLCdOtcXakp1JD0dJrZfcQIGuLg5UVpz5hhWi0l/b59W+6SVI0DH2PMabRoQWnMhgyhJs5ly6g2aMiFC8ArrwA//6wb9N6zJ3DihM2KazdycmjG+shIICKCUsTVZrLOwG4JPC0RY8wahKBAVzGzYt26wMaNtI2R4cOBX37RLT/4ILB1q23LYDczsDPGWG2lUAB//AG0aSNdf/MmEBsL/PuvPOWqbVaulAY9APj7byAlRZ7ymIIDH2OMGdGwIRAfr1+7KywExo6l+1rO7NIlYNw4w9u++sq2ZTEHBz7GGKtEvXo0HGLgQOn6ffuA//1PnjLVBlot8PzzdH/PkGXLgLw8mxbJZBz4GGOsCt7ewJ9/6qcymzrV+Be/o0tPp2mejMnLq70/DDjwMcaYCZRKYOFC6bqsLGD2bHnKI7eGDYHkZODFF2m5USOgb1/pPl9+SZ2EjLl0CRg9mpqObYl7dTLGmBmGDAHWr9ctu7gASUnOnetz/XqaxLekBHjgAem27dv1A2J6Ok0P9dxzNNfh4MFUo3arQfZo7tXJGGNW8vnn0hnctVqgf3/g22/tY/C2McXFwFtvAa1aUe22aVNg6FBgxgxg82ZAozH+2sGDKdl337764yIXLZIuX7hASQTuv183we/69cDLL1deO7QkDnyMMWaGyEhg2jTpuvR0YOZMQK2Wp0yW4O5Ota7TpykInjsHrFsHzJ0LPPQQMGZM1cdQKICJE3XLH30EPPusLmimpNDkvoYkJNjufikHPsYYM9PUqZQFprwZM2jG94quXQM2bQI++wzYssV2tRpzKRTAo48a375sGbBqVdXHee45wNeXns+YAQQFUWo4IYAXXgCuXNF/zV13AXv2UHIAW+DAxxhjZvLyAnbs0N3PatIEeOkl/f1yc4HgYBoKMWUKTXw7eDCQkWHT4pZZswbYvdv49soCH0Dv8erVyvfx9QUWLKDnxcUU/ISgwLpiBXWKKW/AALoPGBhYdfkthTu3MMZYDezYQU2cAwYY3t6ypX7uynr1gCVLgCeftH75AOp0MmMG8OGHFIiPHNEPQAAFqPffp/t8BQU0VvHbb/X3mz+fxvAFBxs/58mT1AR8771U4yuVmko9OU+dAkaNAj74gJpZa8qcWMCBjzHGrGjECEp0bcirr1JnGYXCeue/fZs6qWzapFvXsyewcyfg4VH164cNA377TX+9uzvw7rv69zvlwr06GWOslujenZpGDc3y/sUX0oBkDXPn6p9j3z7T7tcBwOLFQEiI/vrbt6k2a4+sFvjmzp2Lnj17wtvbGwEBAQb3uXjxIgYOHAhvb28EBwfjzTffRElJibWKxBhjNvfii4BKBZw9Czz+uP72zz+33rkPHaKmy/Lc3SmYPfusaceoX99wc2doKPDwwzUvoxysFviKi4vxxBNPYJyRDKYajQYDBw5EcXEx9u3bhx9//BHLly/HrFmzrFUkxhizOS8vGphdvz41Gc6fL92+fbt15vgrKqIeluXH37m50fnGjzeveXXwYLofV96YMZa5NycLYWXLli0T/v7+eus3bdokXFxcREZGRtm6JUuWCD8/P6FWq00+fm5urgAgcnNzLVFcxhizqsJCIerXF4K6ktDj5Zctf5433pCeAxBizpzqHy8/X4hhw4Tw9xfi8cfpfdQm5sQC2e7xJSQkoF27dggp13jcr18/qFQqnKjk549arYZKpZI8GGPMXnh6UpaS8n76CcjOttw59u4FPv1Uuq5LF8rMUl116tDcezk5wO+/S7PX2BvZAl9GRoYk6AEoW86oZJDLvHnz4O/vX/YIDw+3ajkZY8zSxo2T5qUsLAS++85yx58yRTpQXqkEfvzRjpsmLcyswDdt2jQoFIpKH6dPn7ZWWQEA06dPR25ubtnj0qVLVj0fY4xZWsOG+h1dFi+m8XY1df48cPCgdN377+vPJO/MzMqF/frrr2NUxTucFURFRZl0rNDQUBw4cECyLjMzs2ybMUqlEkql0qRzMMZYbTVpEjUdlrp4kXJjPvZYzY67YYN0OTAQmDy5Zsd0NGYFvqCgIAQFBVnkxD169MDcuXORlZWF4DvD/7dt2wY/Pz+0bt3aIudgjLHa6q67aIzfgQN0v+zZZ4G2bWt+3HXrpMsPP1yz6X4ckdUux8WLF5GdnY2LFy9Co9EgOTkZANCsWTP4+PjgwQcfROvWrTFixAh89NFHyMjIwIwZMzBhwgSu0THGnMKMGTSUYcwYy+SqzMnRz8U5eHDNj+torJaybNSoUfjxxx/11u/cuRP33nsvAODChQsYN24cdu3ahTp16mDkyJGYP38+3Mz4ecIpyxhjzkAIIDERSEujlGONG+vvs3Il8PTTumUPD+DGDcOzRjgaztXJGGN27sYNyoN59900j92vv1LHFYBmQNiwAejTR/qazEyagWH9eiAujiaGtXZKtNqCAx9jjNm5tWuBRx4xvr2yWRYAIC8PuH6dJs51BpykmjHG7Fx8fOXbs7JoWqPiYsPbfX2dJ+iZiwMfY4zVQlUFPoBmWXjjDeuXxdFwJ1fGGKuFnnsOaNSImjPr1KFhCYMGASNH6u71AcCiRTTha6dONOlrz55yldh+8D0+xhizI0lJFNyKivS3TZpk3WmOajO+x8cYYw6qUyfgq68Mb7PEAHhnwIGPMcbszPPPG05DxoHPNHyPjzHG7NCCBXQfcP9+4PhxenC2R9Nw4GOMMTukUFCzZ6dOcpfE/nBTJ2OMMafCgY8xxphT4cDHGGPMqXDgY4wx5lQ48DHGGHMqdt+rszTxjEqlkrkkjDHG5FIaA0xJRmb3gS8vLw8AEB4eLnNJGGOMyS0vLw/+/v6V7mP3uTq1Wi2uXr0KX19fKBSKah9HpVIhPDwcly5d4pyfFfC1MY6vjXF8bYzja2Ncda+NEAJ5eXkICwuDi0vld/Hsvsbn4uKCRo0aWex4fn5+/EE0gq+NcXxtjONrYxxfG+Oqc22qqumV4s4tjDHGnAoHPsYYY06FA98dSqUSs2fPhlKplLsotQ5fG+P42hjH18Y4vjbG2eLa2H3nFsYYY8wcXONjjDHmVDjwMcYYcyoc+BhjjDkVDnyMMcacCgc+xhhjToUDH4DFixejSZMm8PT0RExMDA4cOCB3kWxu3rx56NatG3x9fREcHIyhQ4ciJSVFsk9RUREmTJiAwMBA+Pj44LHHHkNmZqZMJZbP/PnzoVAoMHny5LJ1znxtrly5gmeffRaBgYHw8vJCu3btcOjQobLtQgjMmjULDRo0gJeXF2JjY5GamipjiW1Do9Fg5syZiIyMhJeXF5o2bYr33ntPkkTZma5NfHw8Bg0ahLCwMCgUCqxdu1ay3ZRrkZ2djeHDh8PPzw8BAQEYPXo08vPzzS+McHIrV64UHh4e4ocffhAnTpwQY8aMEQEBASIzM1PuotlUv379xLJly8Tx48dFcnKyeOihh0RERITIz88v22fs2LEiPDxcxMXFiUOHDom77rpL9OzZU8ZS296BAwdEkyZNRPv27cWkSZPK1jvrtcnOzhaNGzcWo0aNEomJieLcuXNi69at4uzZs2X7zJ8/X/j7+4u1a9eKo0ePisGDB4vIyEhRWFgoY8mtb+7cuSIwMFBs3LhRpKWlid9//134+PiIhQsXlu3jTNdm06ZN4u233xarV68WAMSaNWsk2025Fv379xcdOnQQ+/fvF3v27BHNmjUTTz/9tNllcfrA1717dzFhwoSyZY1GI8LCwsS8efNkLJX8srKyBACxe/duIYQQOTk5wt3dXfz+++9l+5w6dUoAEAkJCXIV06by8vJE8+bNxbZt20SfPn3KAp8zX5v/+7//E3fffbfR7VqtVoSGhoqPP/64bF1OTo5QKpXi119/tUURZTNw4EDxwgsvSNY9+uijYvjw4UII5742FQOfKdfi5MmTAoA4ePBg2T6bN28WCoVCXLlyxazzO3VTZ3FxMQ4fPozY2NiydS4uLoiNjUVCQoKMJZNfbm4uAKBevXoAgMOHD+P27duSaxUdHY2IiAinuVYTJkzAwIEDJdcAcO5rs379enTt2hVPPPEEgoOD0alTJyxdurRse1paGjIyMiTXxt/fHzExMQ5/bXr27Im4uDicOXMGAHD06FHs3bsXAwYMAODc16YiU65FQkICAgIC0LVr17J9YmNj4eLigsTERLPOZ/ezM9TE9evXodFoEBISIlkfEhKC06dPy1Qq+Wm1WkyePBm9evVC27ZtAQAZGRnw8PBAQECAZN+QkBBkZGTIUErbWrlyJY4cOYKDBw/qbXPma3Pu3DksWbIEU6ZMwVtvvYWDBw/i1VdfhYeHB0aOHFn2/g39H3P0azNt2jSoVCpER0fD1dUVGo0Gc+fOxfDhwwHAqa9NRaZci4yMDAQHB0u2u7m5oV69emZfL6cOfMywCRMm4Pjx49i7d6/cRakVLl26hEmTJmHbtm3w9PSUuzi1ilarRdeuXfHBBx8AADp16oTjx4/j66+/xsiRI2Uunbx+++03rFixAr/88gvatGmD5ORkTJ48GWFhYU5/beTm1E2d9evXh6urq17vu8zMTISGhspUKnlNnDgRGzduxM6dOyXzHIaGhqK4uBg5OTmS/Z3hWh0+fBhZWVno3Lkz3Nzc4Obmht27d+OLL76Am5sbQkJCnPbaNGjQAK1bt5asa9WqFS5evAgAZe/fGf+Pvfnmm5g2bRqeeuoptGvXDiNGjMBrr72GefPmAXDua1ORKdciNDQUWVlZku0lJSXIzs42+3o5deDz8PBAly5dEBcXV7ZOq9UiLi4OPXr0kLFktieEwMSJE7FmzRrs2LEDkZGRku1dunSBu7u75FqlpKTg4sWLDn+t+vbti3///RfJycllj65du2L48OFlz5312vTq1Utv2MuZM2fQuHFjAEBkZCRCQ0Ml10alUiExMdHhr82tW7f0ZgJ3dXWFVqsF4NzXpiJTrkWPHj2Qk5ODw4cPl+2zY8cOaLVaxMTEmHfCGnXNcQArV64USqVSLF++XJw8eVK89NJLIiAgQGRkZMhdNJsaN26c8Pf3F7t27RLp6ellj1u3bpXtM3bsWBERESF27NghDh06JHr06CF69OghY6nlU75XpxDOe20OHDgg3NzcxNy5c0VqaqpYsWKF8Pb2Fj///HPZPvPnzxcBAQFi3bp14tixY2LIkCEO22W/vJEjR4qGDRuWDWdYvXq1qF+/vpg6dWrZPs50bfLy8kRSUpJISkoSAMSCBQtEUlKSuHDhghDCtGvRv39/0alTJ5GYmCj27t0rmjdvzsMZqmvRokUiIiJCeHh4iO7du4v9+/fLXSSbA2DwsWzZsrJ9CgsLxfjx40XdunWFt7e3eOSRR0R6erp8hZZRxcDnzNdmw4YNom3btkKpVIro6Gjx7bffSrZrtVoxc+ZMERISIpRKpejbt69ISUmRqbS2o1KpxKRJk0RERITw9PQUUVFR4u233xZqtbpsH2e6Njt37jT4HTNy5EghhGnX4saNG+Lpp58WPj4+ws/PTzz//PMiLy/P7LLwfHyMMcacilPf42OMMeZ8OPAxxhhzKhz4GGOMORUOfIwxxpwKBz7GGGNOhQMfY4wxp8KBjzHGmFPhwMcYY8ypcOBjjDHmVDjwMcYYcyoc+BhjjDmV/weMVDHYX6FkAAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Colors" + ], + "metadata": { + "id": "QEV-Q_FSqHKI" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7))\n", + "ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 285 + }, + "id": "anZOfiVCqDFg", + "outputId": "41be79e1-287a-4467-d7b9-e92d0e26a03a" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD7CAYAAADtjwp1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMXtJREFUeJzt3Xl0FNedL/BvN0vTWI1ARkhghJFNPEmMDpg1QWxyAG9gZBNP5j1PAoF4LEtgR5B5wZPxcHISD2bsWJhNODbbm8FvcAhCAw4gLIOQPBBjsRnHkODASAIjNiG1pKYl1PX+kLvR0t2qqq7qulX9/Zyjc4JpqUs3Tf3q3vv7/a5NkiQJREREFmA3+gKIiIi0wqBGRESWwaBGRESWwaBGRESWwaBGRESWwaBGRESWwaBGRESW0d3oCwjH5/Ph0qVLcLlcsNlsRl8OEREZRJIkuN1uDBo0CHZ76PmY0EHt0qVLSElJMfoyiIhIEJWVlRg8eHDIvxc6qLlcLgCtv0SfPn0MvhoiIjJKXV0dUlJSAnEhFKGDmn/JsU+fPgxqRETU5VYUE0WIiMgyGNSISFMejwfV1dXweDxGXwrFIAY1ItJEWVkZnp4zB3EuF5KTkxHncuHpOXPw8ccfR/U6GFRjG4MaEUUsPz8fkydPxp6ycsRPmY/EOa8gfsp87Ckrx6RJk7B+/Xrdr0GUoErGsol8nlpdXR3i4+NRW1vLRBEiQZWVlWHy5MmIGzUT/b73HGy21mdlX7MXPm89av97GxpO7EFpaSnS09N1uYb8/Hzk5OTAkTgEzuEz0L1fMm7XXIbndBG8Vyuwbt06ZGVl6fLeFB1y4wGDGhFF5Ok5c7CnrBwD5q2GzWbHrarP4T5aiMa/HAEkH2Czw96zFyZ9ZywOHjyo+fuHCqoAIEk+1BS/g/pju3UNqqQ/ufGAy49EpJrH40FhYSGcw2fAZrPDffwPqN66FM3Xq9AvYwES57yCfhkLYL8rASUlJVi1apXm1/BmXh4ciUM6BTQAsNns6Pe95+BIHIK8vDzN35vEI3SdGhGJra6uDr6WFnTvl4xbVZ/jRlE+XKM7z5hcY2ahpvgd/PSnP8Xo0aM1mzH5g2r8lPmdApqfzWaHc/gMFOzcCI/HA6fTqcl7k5g4UyMi1fr06QN7t264XXMZ7qOF6HF3SvgZU39tZ0xtg2o43fsmw9fSgrq6Os3em8Ska1Bbvnw5xo4dC5fLhQEDBiAzMxNnz57V8y2JKIqcTidmz56Nxs/2ovEvRxA34pHwM6a0GSjYuVOzdPu2QTWc2zcvw96tG/fmY4CuQa2kpAQ5OTk4cuQI9u/fj+bmZsyYMQMNDQ16vi0RRdHi3Fx4r1YCki/iGZPSGjN/UPWcLoIk+YK+RpJ88JwuwlOZmVx6jAG6BrW9e/di3rx5ePDBBzFixAhs3rwZFRUVKC8vD/p6r9eLurq6dl9EJLaJEyfirbfeAgDVM6ZIasxag2oFaorf6RTY/NmP3qsVyM3NVfibkRlFdU+ttrYWAJCQkBD075cvX474+PjAF4+dITKHF198EZOnTEHDyT2KZ0yRFm5PnDgR69atQ/2x3biyeRHqjhai8S9/RN3RQlzZvAj1x3Zj3bp1TOePEVGrU/P5fHjyySdx8+ZNlJWVBX2N1+uF1+sN/Nl/1ADr1IjEp6ZeTMsas48//hh5eXko2LkTvpYW2Lt1w1OZmcjNzWVAswC5dWpRS+nPycnB6dOnQwY0AHA4HHA4HNG6JCLSkH/GlJ2djebKU62dPfom4/bN9p092gYYOTVmzZWnkJeX12VgSk9PR3p6OjweD+rq6tCnTx/uoWnILOMaleXHhQsXYvfu3Thw4EDYE0uJyNyysrJQWlqKJyaNQW3JRlzd8SvUlmzEE5PGoLS0tF2rqo6F28HcqTGTnzHpdDqRlJQk9I3XTMzWU1PXmZokSVi0aBEKCgpw8OBBpKam6vl2RCQAuTMmNTVmDFTR1banZvyU+YGemnvKirCzYJKQPTV1DWo5OTl47733UFhYCJfLhcuXWzOj4uPj+eEksjin0xn23zlrzMRWVlaGnJycoPud/g4x2dnZSEtLE2rPUtflx/z8fNTW1mLq1KkYOHBg4Gvbtm16vi0RmQBrzMRm1p6augY1SZKCfs2bN0/PtyUiBYw8VJM1ZmLSa78zGtj7kShGiZAA4M+YdJfvQvXGbNQe+b2uNWY8FVseM/fUZFAjikEinFQNtAbWov37Ybfb4b1WhZslm3B1x69w8+CGoBmTcgQLXCIEcDMx834nj54hijGiJAC0y6ybuuDOadWf7YP3WiWmTZum6P3LysrwZl4eCgsLA8XXs2fPxn2pqXjzzTdNlcFnNP9+556yIrjGzIJ0uxlSUyNsPXvD3qO1lljU/U6efE0UYzqeVN2RJPlwZfMiPDFpDLZv367LNWh9WnXbAOkcPiMQuBo/2wfv1Qo4hqQh6e9e5anYCpSVlWHSpEno3m8gbt+sDpxi3vsb34FrzJNoPPtxVMdOuI4iRGQ8UQ7V1LKTiJyZp7t8N7wXz6DX4G+rfp9Y89lnnwE2GwAb+mXcmUm7T+xB9XtLAbQ+TIg2bgxqRDFEhIJnrQOrnAB568JJuD8tbBfUlL5PLPE/KLjCPCjUH9uNtLQ0A68yOCaKEMUQERIAtMysk5t6HjfiETT++TB8zd5Ofy9iBp/RzFqjBjCoEcUUEQqetQysSgIkJB+kpkZV7xNLzFyjBjCoEZmGVjVWRhc8axlYlQRI2Oyw9eyt6n1iiZlr1AAGNSLhaV1jJcKhmloFVrkB0n1iD5wPfCeQjq70fWKJCEvUkWCiCJHA9OqSnpWVhbS0tK8P1dzY4VDNrbpntKk5ey2Uxbm52FkwGTXF74QsD7h9owp2XzPqjhaqfp9Y0bFGLVTZh6gzXNapEQlK61quUIw8/FGr06rXr1+P7OzsO3VqHQLXkiVLcP78eZ6KLVO0PntKyI0HDGpEghKhSDpatAiscgKkWU5vFkFXDwrR7sTCoEZkYh6PB3EuF+KnzEefsbNDvq7uaCFqSzai3u3mTfprkQYuBr47tJpJa4EdRYhMTIQiabPq6nDSUEL1jlyyeHHMLlHKPcVcJMx+JBKQ2TPQzEaUUwtE5XQ6kZSUJHxAAzhTIxKS2TPQzESUUwv8zDQrEhFnakSCMrpIOlbo2RJKScE8z3zTBoMakaBEKJI2MzkBRa+WUEoDFJc/tcOgRiSwrKwslJaW4olJY1BbshFXd/wKtSUbVZ8KHQuUBBQ9WkIpDVBtlz8HzFuNPmNno/ew8egzdjYGzFuNuFEzkZ2dzRmbTEzpJzIJ7rV0LdRhoaFqq7QunVBTtBxL9YiRkBsPOFMjMgkzZaAZQc2MR+tTC5Tuz5m9I76IGNQsQqsO7kRmpTbhQ6uEHDUByuwd8UXEoGZyzJiKHB8IzC+SGY9WCTlqAhTrEbXHoGZizJiKDB8IrCPSGY8WCTlqApQIh7ZaDYuvTUq0glGz0etIFzOxUuKJFjOeSFtCqS2Yl3N0Tuvy51bZ1xLLOFMzKT0LRq0u1lOorThD1XLGE0lCjpr9OdYjaosp/SbEDu6RieUUaqUp72Yiyhlgao9sUdoR30ozbTl49IyFVVdXIzk5GYlzXkHvYeNDvq7xL3/E1R2/wuXLl5GUlBTFKxRXLD8QiHLT15MoZ4B99NFHeDMvD3v27FF8ZEtXwSpWTxMQok7t0KFDmDVrFgYNGgSbzYadO3fq+XYxgxlT6sVyCnUsLFnLSfjQM9vVv7Q7fcYMfLB7NyRJwmOPP479RUXYvn27rKATbvmTyWFd0zWoNTQ0YMSIEVi7dq2ebxNzmDGlXqw+EJilyFeLgJOeno7t27ej3u3G5cuXUe92Y/v27ZAkSde9xGABp+/UBTjw6eeYNm1axAEn1veC5dI1qD322GP49a9/jaeeekrPt4lJ7OCuTqw+EIg+Q9UjeaXtjEfvGU5xcTGys7Nx18jHdAs4sTDT1oJQ2Y9erxd1dXXtvig4ZkypF4sPBCLPUPUOOFrMcELNIAPLjdOnAwDqT+zFtZ2v4VbVnwKvCRVwlMxKzTLTFoFQQW358uWIj48PfKWkpBh9SUJjB3d1YvGBQNQZajSW1CKZ4YSbQQaCcWk5+mb8BIlzXkG/jAVovl6F6q0/h/v4H9q9jz/gFBcXK56Vij7TFknUsh9tNhsKCgqQmZkZ8jVerxderzfw57q6OqSkpDD7UYZYS+/VgtIUarMTMftR7/KKSLJduyp/kCQJrtGzQo6lu3w3kp5dgV6Dvw3gTjayzWZTXFIRy1m7fnKzH4XqKOJwOOBwOIy+DFNyOp2W+xDrLdIOEmoY+fDhn6FmZ2ejufJUyJT3aAU0/5Ja/JT5MpbUNsLj8SgeMzUzHKfTKatjj7t8F3r/TXrI2d+tCyfh/rQwENRuXTgBAKq6AKntVhKLhFp+JDJCNI50EaWLh0hL1tFYUlO7lyhnybJ7wmC4y3cF/Xk2mx1xIx5B458Pw9fshST5UH+6GN0T7lGd6BGLe8Fq6DpTq6+vx7lz5wJ/Pn/+PE6cOIGEhAQMGTJEz7cmEoZofSaNmKEG4w84zdeq0DLwAdh69oa9R+eVmkiSV9TMcOTOIF0jH0PNgQ3wNXuDXnf3vsmA5IPPW4/aA9sgNTXCNfJZ1bNSPWbaRn8G9KBrUPv000+RkZER+PPixYsBAHPnzsXmzZv1fGsiIYjceNroJevy8nIkJyXjUslm3CzZBNjs6P2N78A1NjOwZKfFkprShsFKZpCQfJCaGoEQwRg2G6r/3y9w+0ZV6/coXAbtKCsrC2lpaV/vBW/ssBe8VfZnyMpdSXQNalOnToXAXbiIdCdnGau58hTy8vJMfzNRwj977dk/Bf0e/klg9lp/ch+qt/4cCTNeQNzIRzXpUK90hqNkyRI2O2w9e3f6O0nywX38A0ACeibei4TpL+DK+69oUlIR6UxbtJUDrQmVKEJkNC2XY6KRCGFGcmavN4ryUf/J79Fce0WT5BUlMxy5S5bu4x+ge98k2Lr36PR3NcXv4HbNVxjwg1/DOXQEAKD3N76D+pP7NEv0UDPTFnnlQCtMFCGCPokcrC0KTlYSRr9BSLyru6bJK6HaZwW7ectJyrh98yvcrvmqU63jpXdfgLt8NxJmvBAIaADgGjsbzdcrDU30iIWuJJypUczTazlG5C4eRpGdhPHQ4/iqZCNGjRql+TXImeHIWbLMX7eu0+zPZrNBkiT0+sZ3EDfy0XY/03HPt+AYMhzu8l1oqjiJ3mmPRLWkIlZWDhjUKKbpuRzD2qLO1NaNGUHukmV6ejqKi4vx5pt52LtvL6SWFtz6yxFUvfV3uOvB76HX0JGBwNV0tQI/+9nPcP78+YgSPdQw09hHgkGNYpraRA65e29KM+9EF+meo9lmr3KSMkLN9BtO7oH72C64j+0KGriinU5vtrFXi3tqFLPUNIlVuvdmZJ9JLc8N02rPUdQelF0JVaAfrndl8oJ1cI2eBZvNFvQ8tWgU/Xf8Hcw49krFRFDT81DAWGb2cVW6HLNq1SpV3eSj3cVD66QXrbvom6kzRlefcbmJF+vWrYvG5XbJTGOvVtQaGqsht4FlKFYuMDSSVcZVUZPYgxvg8/nCNrCV0wxY7yWnrprwKk160asJ8vr165GdnX3nOoMkTBhZKyXnM27WJsOij30ocuOBZYOa1v+4qZXVxlVul/iEHrdxo7m7bt3ktaBHANKzi76opyTI/YxXV1cjOTkZiXNeQe9h40P+PH93/suXLyMpKSmKv0looo59ODEd1EQ8YsMKrDiucn8n2GzoO3WB0E/kWgegaM1EROo/qOQzPmrUKFPO1NoSaey7IjceWHJPLRYKDI1gxXGVk8jx2muvQfL5hC6i1uNk5GgVj0c7YSIcJZ9xvRMvorFnLdLYa8VyQY3HnuvDyuPaVSLHokWLhE+F1iMAWSEFXElgUPMZ1yPxQpRjiszKckGNrYn0YfVxDddCyQyp0HoEILm/t/v4B/D5fHj27/9emBuvmsCg5jOudcmG1pmmschyQc0KT5ciipVxDbUcI3oqtF6BV1YPxJqv4HpopjA3XrWBQe1nXKuSjXA1bwPmrUbcqJnIzs4W5sFBVJZMFNEzYyuWxfq4ip4KHe30+/qTe9F8vQoJM16A66HHhUgWinQMIv2MR5J4Eev/vrrC7EeLZemJIJbGNdTNSfRUaL0Cr//33rFjR+sZiTY7ej/wXbjGzA4c6AkYf+ONNDAY9RkXueZNlAzJmA5qgPhP1WZl9XGVW1guyj/0YPQKvB6PB3fFxaHPhP+FPuOehj3Iac+AcSnsWgUGIz7jIta8idZkQW48sGxDY62OPaf2oj2u0QweSo6gUXNAY7REejJyKHV1dZB8PvRMui9kQAOM6/KuVRd6I+4dou1Zm/l0bMvO1NoS+anazPQc12g/JcbS0qpaWs2E9PrctL2+uJGPQmpqhK1n704BWO5M0l8OACAqtVyi7KmJ+m8hpouvO7JigaEI9BpXI9KaIyksN3tjZ7kiTfHXu/7K6XQiPT0dtR9vRWXeM6ha80NU5j2DqwX/iltVfwpcX1cZoG2vMzU1FfcPGxaVcgVRMmzN3mQhJmZqZB5GPCWqnYGItucQDXL+/3GX74Zr1Ew0V50K7EFJkqR7z1D/klm3vgPheuiJwHvUn9yH5uuV6Dc9C7dvVIX9/Bjd29ToPWuRE1ZiPlGEzMmIJRg1m/Q7duzQ/OZnlmVypSn+7vJdsNlsuj6oyAu2uwC0Bq5g/9+IsuymJNFH68+MiAkrflx+JNMxqhWX0k3606dPa1oka7a2SG2LjW8eeBdXd/wKNQc2oEf/IUh6dgVcDz0O4M5Sld3RGz0S7tF1OUvOklnPuwdjytSpIR82RFl2C9fdxk+vz4xoCStqMKiRodruRxnViktpN46169ZpdvPTev8wWvt76enp+Pd//3fAZkP8xGeRkvs7JGa+3K5mDQCk283wNXlw14jHdHtQkfswdNeIx1BaWhr0PUTsbRpqz1rPPWcztITrCoMaGSLYk+Y/PP887Ha7IU+Jcjfps7OzNbv5adkWyYjZnpwUf6mpEZAkXR9UtHgYMktv02i00hIlYUUty9apkbhC1cAUHS6Czyeh8dReuMbMCrmnpsdTor8xbXZ2NporT7XfpP+sCN5rrftkDz74oCa1UIC85a7mylPIy8sLu4djVE2RnKUqW8/egM2m6kFF7n6RFktmZll20+ozE07Yfwtt9oxFTYbiTI2iqqsnTefffBfea5WGPCX694rGfyv1zl7RR+/g1rUKTJo8GWlpaZrd/LRa7jKyCa6cpSpb9x6w93Si4eQe2ctZSmedWiyZ6bHspvVScDSXSLVq0mwEBjWKqq6eNBNnL0V3VwLc5bs0OcpDqVOnTuHQoRL07D8Y8ROfRf/MpeiX8RN88sUFTJo0CVu2bNHk5qfVcpecJ/ceCffgF//8zzJ++1ZKbsZylqp83kY037go60FF7X6RFktmWi276bUUHO0lUjkJKyLi8qOFiJ4S7n/SjJ8yP+yTpmvsHNw8uAGPTngI/7VLfZsipePRdtbTMUi4xsxCTfE7yM7Oxpo1a7CzoAA1xe+ETP1uvfltDfleWsz45I7nXSMeQ8lH72DVqlV48cUXw/7+Suvu5CxV5efnA0CXy1n+Wrauxj8tLa3T9WixZKbFz9BzKdioJVKRW8IFE5WZ2tq1azF06FD06tUL48ePxyeffBKNt40ZZkkJV/KkKfl8WL9+vaqnRLXjITel+6OPPor4YEgtlruUjCcAvPTSSyHHIJKMOjlLVXJeE2lKfaj3eHTCQygsLMTcuXPDjpPc3yUUvZeCrZCZGA26F19v27YNP/rRj7B+/XqMHz8eK1euxO9+9zucPXsWAwYMCPu9LL7umtEdEJSIRrcCteOh5tqOHTsWUTf8SIt9lVxzzYENcPS/BzMnj+tUtK5l0bGc2XGw12j92fB4PNi/fz82bNyI3bt3q+r4onSmH43GAaIUiBtBmI4i48ePx9ixY7FmzRoAgM/nQ0pKChYtWoSlS5eG/V4GtfDM+AHX8x9+JOMRSSeFSJZ9I22L9PScOdhTWo4BPw49nl9tWIge/VPguOfbQQOCCI10te5kEe2HvWi2lzK6lZZRhOgo0tTUhPLyckybNu3OG9rtmDZtGg4fPtzp9V6vF3V1de2+KDRROiAooWcNTCTjEcl+RSSNnSPNMlucmwvvtfDj2Xy9Eq4xs4MmEIhSdKzlfpERGaHRTOIwc2ZiNOiaKHLt2jW0tLR0eqJKSkrCmTNnOr1++fLl+OUvf6nnJVmG3CSB1pvRRng8HiHW2PWqgYl0PPz7FXvKiqJeI6fk/LOOr5k4cSJWrlyJl156CZ7zx+Ea+VibXoytjXwTZryAXoO/jbqjhZ0CglZnkEVKy/GPRi1XW2VlZXj9jTcAIGpJHHqdmWcFQqX0v/zyy6itrQ18VVZWGn1JwjJLB4Rg9HjS1GI8jO6kEG7GFy755cUXX8TkKVPga7iBmgMb2vRiTAn0YgwVEEQqOtZi/KM98/Qn2BQdPoEeialwn9wb1SQOHqvVma4ztf79+6Nbt26Bg/b8/OvnHTkcDjgcoU/UpTtEuhmpofWTphbjIWonBTlp4q/++tet+4kjH0P8hB/A7ogLtK4KV2ZQXl6O5KRkXDn+h6jPUDvSYvyjOfPsWALivfgFqrcujajUgyKna1Dr2bMnRo8ejeLiYmRmZgJoTRQpLi7GwoUL9XxryzNyuUxLWtXAaDUeWVlZSEtL+zqrUX2NnFbk1s6VlpYGAsLti5/LCgj+YNkjfgBu37yi+Gasx9JXpOOv9cNeuN+x4zJnr8EPImHGC7hRlI9bF04ibsQjQjwUxZqopPTPnTsXb7/9NsaNG4eVK1fi/fffx5kzZ7o8h4fZj+GZMftRT1qPh5H7Ff73/ofnn0fR4ROyMxPlnsXVcazqT+zFjaJ89Lg7pd3NuPGzfWi6Vtkuoy5ah6OqHX8tsjm7+h3DZTveqvoT3J8WovHPh4GvlyIzMzPxs5/9TPX4cO9MoJR+AFizZg1ef/11XL58GSNHjsSqVaswfnzotF0/BrWuxWp6byhmH4+ON1MA6JGYGkj2CKbuaCFuHtyAv375ZWB/paubYLAbf+ebsQ333DMI27ZtC9yMzVAXGenDjZzf8amnnuqyBMHX7EXjmTJc/0Oe6sM0Y/F09VCECmpqMajJo+Sk3Fhg1vEIdTN1n9yL221OlG7rVtXnqDmwGU2XvgAAWTe9rmqqfM1eSE2NqP/sI9SV/d9ATZVWM+FozDrUPtzI/R0//PBDTJ8xQ8hGAlbFoBaDuETRnpnGQ87N1F2+G0nPrgjM2NzH/4AbRfnonnBPayq/zJue2kLnSJf1oj3rUPNwo+R39EmSkI0ErIpBjchE5NxM/Z1BEjNfxq2qz1G9dSlco5Xf9NR0vwAQUccMI2cdch9ulI5L0b59mD59ui6BR4QuL6KRGw/YpZ80ZabZkZHajhMAWYXjcSMeQc2BDfA1e+E+Wogedw9WVWCsJlO0urpadaq83AzOYN33tSA3w1ZpOcDw4cOFbCQQ64QqvibzMstJAUpofcgjEHyc5nz/+/K77Us+NHx+EI1/OYy4EY+qLjBWWugcSaq8Wdq5qfkdRW0kEMsY1ChikRxbEm1yApVeATrUOH109DMA8losAcCNfasBSYropucvdA52fE71phy4y3dh5cqVgVlGuGNPfM1etDTUoKXJ06kOUJTeknKoPdpF68M0zd5YwWgMahQRI5rHqr3OrgKVx+PBihUrdAnQ4cYp6cdr0b3fQLiPfxD2Ztr42T5kZmbi/Pnzmtz0gs0yag68i6ZrVQCA3MWL241Rx9ndrarPcbXgX1GZ9wyq1vwQVSv/FreuVOB73/te4D3MNuuIpFWXVi2reG5aZLinRhGJdvNYNbpqM7V48WL89fx57Ny5E5LPB9foWZrv/XQ1TgmPvYQr73XdYmnYsL/F0KFDNesm429X9tZbbyE3NxeO/kPgTJsR8sRm/x6S5+zHuF1fg+53D0a/jAWB1zee2oucnBzYbDZkZWWZbtYhSqu0xbm52FkwmS23VGD2I6kWzTOk1JKXKr8LPfsmQerRG5LvNgYtWKtpxpnccbq6czkaz36M7gmDg3bbdwwZjqbK0ygtLYUkSZqlfCtNH1+3bh1ycnKCBv9grzdjJp8ItY5mbySgNWY/ku5EObYkHDkzSc/547DffQ9unTuKfhkLNM84kztOdz34cGtQ6zcQNQc2tHb1sNnR+4HvIuHRhXDc801c2bwIeXl52L59u2YzCqWz7Q+Li9FrwL2yX2/GWYcIR7uI1ofULBjUSDXRl5bkpka7Rj6Gmo/eBaAs+ULuTU7JOMFmQ+Ls1hPhpaZG2Hr2DnTbB9AuqGpx01OaPn7jxg3F6eaiLOmpoVXDbbVECK5mw6BGqol+UoCSmSQgATa7LgFa7ji5j3+AnoO+eSeI9eh8DFPHoBrpTU/pbPvSpUuKXl9dXQ2n04m5c+dy1hEBo4OrmTD7kSJi9MGa4SibIdnhHDYO9Sf36ZJxJmecbtdcgiNpWJfXGiyoqs28UzrbHjRokOzX22w23Hf//YFs09+8+SZyc3M1S32PhB41iCQGBjWKSLh6pyubF6H+2G7DlpbkpkbXn9yH3g98F33GPYXm65W6BGg54zRy5Eg0V52K+snJStLHExISZL3effwD2Ho60Xfqgk5lEVu2bDHstGYrNgmg9pj9SJoQIVssGKWNgv1NgjueK6ZVxlm4cdIyo1EJpdmPcjNKk/73a+iVMjwqv4Mc7HpvbmxoTIYQcUM7VGp042f74L1aAceQNCT93avtzhWr+3QnPH8+DEgS7HY7nnrqKU0DdKhxMiqNW+n7hnp9w8k9aLpehX7TX0CfUU90eh+j0vfZ9d78GNSI2gg1Q0pNTcVvfvOboDfzW1f+BytWrMCiRYuiGqCNmvUqfd9gr/f5fHA9NBMJ058P+T5G1C2asVaO2mNQIwoi2AxJ1KVTo2a9St/X/3qPx4PU1FTF57TpzQxNAqhrLL4mCiJYarSotUBGpXErfV//6z0ej5B1i2ZoEkDaYfYj0de0akgbq0RtxCt6kwCri3b5BIMaEWlGxLpFUYOt1RlVPsHlRyLSRFlZGd78+qBPd/kueP56DK6HHheiJZYZ+0+aWVcnY+hZPsFEESKKWMcaMKmlGQ1/KkHz1QsAJNjsdjwtsyxCr71Ndr2PDr3KJ5j9SERREe4m1tLkQU3xO2g4VYSysrKwNzH/TK+wsDCQhTp79mwsWbxYs5mdqJmuVqJX+QSDGhFFhdqbWNsZ2ebNm6Pa7UO0TFer0LN8gin9RKQ7pUfXeDwelJeXt5+R2e3w+SQ4/2YCEmf/XNMTx0Nh13t9iFA+wexHIlJN6U1s1apVmDx5MvaUlSN+yvzWZsdTF6B7wiB4zv436k/sbfd9/kNHHYlDkPd1Ekoo7LxvPBHKJxjUiEg1JTcxm92Ol19+GXGjZmLAvNXoM3Y2eg8bjz5jZ2PQT/LhGj0TN4rycavqT+2+985Mb2fQgMXO++IQoXyCQY1IYKLPPpTcxAYOHAhH4pBOySTAnRlZj7tT4P60sNPPaLtc1VZ+fn7nmV+bY27Wr1+v3S9Lshhdq8igRiQgpbMPI4OfnJvYrSv/g8tffQXn8Blh997iRjyCxj8fhq/Z2+7vgi1XlZWVIScnJ+jMb8C81YgbNRPZ2dmazdhEf8AQhdFnLOoW1F599VVMmDABvXv3Rt++ffV6GyLLUTL7EGHpTc5NbMWKFfD5fLL23iD5IDU1Bv5bqOWqN/Pyupz5ydmL64oIY2w2WVlZKC0txROTxqC2ZCOu7vgVaks24olJY1BaWqprPaBuKf3Lli1D3759UVVVhQ0bNuDmzZuKfwZT+inWKClcPXXqlFCHXoarARs1apTsVO+aAxuQkvs72Hs4QhbrRqvzPg8WjZxW5ROGp/T/8pe/BABs3rxZr7cgEoKWNU9yZh/Nlafwi1/8AocOHQoa/PRKg+9KV6cdzJ49G3vKiuAaMytkPZv7xB/Qo/+9uHXhRNjWWtFIHW+7vCnKGJtRtMsnhNpT83q9qKura/dFJCqtl6X8NV9d7Ts5h89AyaFDcPTXf+lNjVCnHcjZe7t94yJuX/+fLperopE6Hq3lTdKWUEFt+fLliI+PD3ylpKQYfUlEQemRdSd39tHNdTcgSXCmdR38QqXBG0HO3lt+fj4a6utx+fJl1Lvd2L59e9BZkN6p40oeMEQaY1IY1JYuXQqbzRb268yZM6ov5uWXX0ZtbW3gq7KyUvXPItKLXll3cmcfzddb/10oWXoThZwEArnn2umZOq5meZPEoGhPbcmSJZg3b17Y19x3332qL8bhcMDhcKj+fqJokLvvlZeXp2ivxT/76Grf6dbZQ7DZbKY99FKrk8b9M7/s7Gw0V54K2XlfzX6XCJ0xSB1FQS0xMRGJiYl6XQuR8NT0OlRyw5Zz7lfTtSpMmjwZn5wOH/xEP/RSiwSCrKwspKWlfZ11ubFD1uVW1Qkcch8wRB/jWKRb9mNFRQVu3LiBiooKtLS04MSJEwCAYcOGIS4uTq+3JdKV3ll3cmcfw4cPx+TJ5jj0Uu+O+FrN/DriwaLmpFtQ+5d/+Rds2bIl8OeHHnoIAHDgwAFMnTpVr7cl0lU0lqXkzj70WnrTSjTOR2tL69RxPZc3ST88T41IIb0OQQymq9mHqIdeWqloWdQxjjU8JJRIJ3odVx8JkQ69FHF8tCDSGMciwzuKEFmViMtSIh16qTY7VPSgIdIYU2hCFV8TmYWahq2x0OVdTdEyGwaTlhjUiFRKT0/H9u3bUe92h+2AEUs3bU1OwuZ5aBQB7qkR6chKCRNyKOqef3ADfD4fXKNnWWrvjfQhNx5wpkakk2DttHrdOxJ3fXsy+j/7huaHWIpASU/G5IED0WvAvWwYTJpiUCPSSduECe/FL3C14F9RmfcMqtb8EFUrf4Db7uvoET9A1k3bTPtxcnsyfiXjJGw2DCalGNSIdNA2YaL+xF5Ub12K5utV6JexAIlzXkG/jAW4fb0KTTevYMeOHSFv2mbcj5PTjf+1116DJPMkbDYMJiUY1Ih04E+YkFqacKMoH67RMzFwwZp2Hf0HLlgD1+iZkCQJH374YaefocfxNtHSVXbookWL2DCYdMFEESId+BMmuiUMAXwtGLhgTcjuI5feeQEzp4xFQUFB4L9bqYA5VP2Z0s4sotexkb6YKEJkIKfTiZkzZ6L56gXEjXgk7L6R66HH8V+7drVbgrTSqcuRnITtvVqBhx9+2HRLsGQcdhQh0smC+fPxX4WFijv66328jSjkdGb5wQ9+gIULF8KROATxU+YHSiL2lBVhZ8Eky5VEUOQY1Ih0Mn36dNjsdsX7Rnofb2OUYMuH4U4kePjh/4OFCxcGXYJ1jZmFmuJ3kJ2djbS0NOGXYCl6uPxIpBOn04nMzEw0fravy5qttgdNWu3U5a4yOEN1ZvmwuNgyS7AUPQxqRDpanJuLpmuVXe4b5ebmBv67kgJm0U9dVpLB2XbvTU0PSSKAy49EulLb0d8Kpy637aiidPnQqkuwpD8GNSKdyT3Jui0Rj7dRSu0RNID1lmApelinRhRFSmutzHrqsqLGxiUbUe92dxqPaJ4wTuLjIaFEAlJ60GR6ejrS09NNV3isxfKhFZZgKfoY1IhMwGynLmuxfGiFJViKPmY/EpHmtMrgVHPCOMU27qkRkS607l9ptiVY0hb31IgoKkIFG62XD822BEvG4PIjEaki56w3Lh9StHH5kYgUy8/PR05ODhyJQ1pnYF83Gm47A+sYsLh8SJGQGw8Y1IhIESud9UbmwfPUiEgXVjrrjayHQY0oxng8HlRXV6tqAsxGwyQ6BjWiGCEnsaMrajqFEEWTbkHtwoULWLBgAVJTU+F0OnH//fdj2bJlaGpq0ustiSgEJUfAhMNGwyQ63erUzpw5A5/Ph7fffhvDhg3D6dOn8dxzz6GhoQFvvPGGXm9LRB1EcgRMR/5OIXvKiuAaMytko2EznPVG1hTV7MfXX38d+fn5+Otf/yrr9cx+JIqc1t3umf1IRhCyo0htbS0SEhJC/r3X64XX6w38mevxRJHxJ3bET5kvI7FjIzweT5ezKzYaJpFFLVHk3LlzWL16NZ5//vmQr1m+fDni4+MDXykpKdG6PCJL0iuxg51CSFSKlx+XLl2KFStWhH3NF198gW9+85uBP1+8eBFTpkzB1KlT8e6774b8vmAztZSUFC4/EqmkxWGdct7DKp1CrPS7WI1uy49LlizBvHnzwr7mvvvuC/zvS5cuISMjAxMmTMBvf/vbsN/ncDjgcDiUXhIRhRCNxA4rNBouKyvDm3l5KCwsDJwwPnv2bCxZvJjLqCaja6LIxYsXkZGRgdGjR+M//uM/0K1bN0Xfz0QRosgxsSM8NX0sKfoM7/148eJFTJ06Fffeey+2bNnSLqAlJ4df3/djUCNSr+1S2pYtW5CdnX3nxh0ksSMWb9wM+OZhePbj/v37ce7cOZw7dw6DBw9u93cC91AmMr1QS2lr165FcXExCnZuDPz3pzIzkZu7NWZv2HL6WDZXnkJeXl7MjpHZsEs/kYXIWUqbO3cukyEQnSQa0o7hMzUiii4tO4fEAjXlDgxq4mNDYyKL4JEwyrCPpTUxqBFZAI+EUc5f7uA5XQRJ8gV9DftYmg+DGpEF8EgYdRbn5sJ7tQI1xe90Cmz+7Efv1Qrk5uYadIWkFPfUiCyAS2nqsI+l9XCmRmQBXEpTj30srYUp/UQWwULiyLH3o7iY0k8UY7iUFjkr9LGMdQxqRBaSlZWFtLQ05OXlsXMIxSQuPxJZFJfSyEq4/EgU44xeSmNQJSMw+5GINFVWVoan58xBnMuF5ORkxLlceHrOHHz88cdGXxrFAAY1ItJMfn4+Jk+ejD1l5YifMh+Jc15B/JT52FNWjkmTJmH9+vVGXyJZHPfUiEgTLCkgPcmNB5ypEZEm2FCZRMCgRkQRY0NlEgWDGhFFjA2VSRQMakQUMTZUJlEwqBFRxNhQmUTBoEZEmuDZZCQCdhQhIk2woTKJgEGNiDTDhspkNBZfE5Eu2PuRtMSGxkRkKKMbKlNsEjqo+SeRrGkhIopt/jjQ1eKi0EHN7XYDAFJSUgy+EiIiEoHb7UZ8fHzIvxd6T83n8+HSpUtwuVyw2Wy6v19dXR1SUlJQWVnJPbwOODbBcVxC49iExrEJLdTYSJIEt9uNQYMGwW4PXY0m9EzNbrdj8ODBUX/fPn368IMWAscmOI5LaByb0Dg2oQUbm3AzND8WXxMRkWUwqBERkWUwqLXhcDiwbNkyOBwOoy9FOByb4DguoXFsQuPYhBbp2AidKEJERKQEZ2pERGQZDGpERGQZDGpERGQZDGpERGQZDGpERGQZDGohPPnkkxgyZAh69eqFgQMH4oc//CEuXbpk9GUZ7sKFC1iwYAFSU1PhdDpx//33Y9myZWhqajL60oTw6quvYsKECejduzf69u1r9OUYau3atRg6dCh69eqF8ePH45NPPjH6kgx36NAhzJo1C4MGDYLNZsPOnTuNviRhLF++HGPHjoXL5cKAAQOQmZmJs2fPKv45DGohZGRk4P3338fZs2fx+9//Hl9++SW+//3vG31Zhjtz5gx8Ph/efvttfP7558jLy8P69evxT//0T0ZfmhCamprwzDPP4IUXXjD6Ugy1bds2LF68GMuWLcOxY8cwYsQIPPLII7hy5YrRl2aohoYGjBgxAmvXrjX6UoRTUlKCnJwcHDlyBPv370dzczNmzJiBhoYGZT9IIlkKCwslm80mNTU1GX0pwvm3f/s3KTU11ejLEMqmTZuk+Ph4oy/DMOPGjZNycnICf25paZEGDRokLV++3MCrEgsAqaCgwOjLENaVK1ckAFJJSYmi7+NMTYYbN25g69atmDBhAnr06GH05QintrYWCQkJRl8GCaKpqQnl5eWYNm1a4L/Z7XZMmzYNhw8fNvDKyExqa2sBQPG9hUEtjJ///Oe46667cPfdd6OiogKFhYVGX5Jwzp07h9WrV+P55583+lJIENeuXUNLSwuSkpLa/fekpCRcvnzZoKsiM/H5fPjpT3+K9PR0DB8+XNH3xlRQW7p0KWw2W9ivM2fOBF7/j//4jzh+/DiKiorQrVs3/OhHP+ry1FWzUjo2AHDx4kU8+uijeOaZZ/Dcc88ZdOX6UzM2RKReTk4OTp8+jf/8z/9U/L1Cn6emtSVLlmDevHlhX3PfffcF/nf//v3Rv39/PPDAA/jWt76FlJQUHDlyBN/97nd1vtLoUzo2ly5dQkZGBiZMmIDf/va3Ol+dsZSOTazr378/unXrhurq6nb/vbq6GsnJyQZdFZnFwoULsXv3bhw6dEjVeZoxFdQSExORmJio6nt9Ph8AwOv1anlJwlAyNhcvXkRGRgZGjx6NTZs2hT2F1goi+dzEop49e2L06NEoLi5GZmYmgNZ/P8XFxVi4cKGxF0fCkiQJixYtQkFBAQ4ePIjU1FRVPyemgppcf/zjH3H06FFMnDgR/fr1w5dffolXXnkF999/vyVnaUpcvHgRU6dOxb333os33ngDV69eDfwdn8KBiooK3LhxAxUVFWhpacGJEycAAMOGDUNcXJyxFxdFixcvxty5czFmzBiMGzcOK1euRENDA3784x8bfWmGqq+vx7lz5wJ/Pn/+PE6cOIGEhAQMGTLEwCszXk5ODt577z0UFhbC5XIF9l/j4+PhdDrl/yBdcjFN7tSpU1JGRoaUkJAgORwOaejQoVJWVpZUVVVl9KUZbtOmTRKAoF8kSXPnzg06NgcOHDD60qJu9erV0pAhQ6SePXtK48aNk44cOWL0JRnuwIEDQT8fc+fONfrSDBfqvrJp0yZFP4fnqRERkWVYezOEiIhiCoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZBoMaERFZxv8H3i0rtUw1S7kAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Linewidths, linestyles, and markersizes" + ], + "metadata": { + "id": "EuTfg73WqQqi" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7))\n", + "ax.plot(data1, 'o', label='data1')\n", + "ax.plot(data2, 'd', label='data2')\n", + "ax.plot(data3, 'v', label='data3')\n", + "ax.plot(data4, 's', label='data4')\n", + "ax.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 288 + }, + "id": "_VTv8uu8qKco", + "outputId": "a3fa99a0-3a7b-4748-be19-19840f067c79" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD+CAYAAAC9QpvGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAj4tJREFUeJztnXecE3X+/58zadsrW4EFdkWqioLAAlZQUMSz3Vc8C9hOUBHFAtg5RPTwTgX96alnOfX0inooKBYQywkIKJ4U6UhdWLbX1Pn9kUw2ZSaZZJPdZZnn47EPJZnMfDKZmffn8y6vtyBJkoSOjo6Ojk4nQGzvAejo6Ojo6MQK3ajp6Ojo6HQadKOmo6Ojo9Np0I2ajo6Ojk6nQTdqOjo6OjqdBt2o6ejo6Oh0GnSjpqOjo6PTadCNmo6Ojo5Op0E3ajo6Ojo6nQbdqOno6OjodBqM8dz5Cy+8wAsvvMCePXsAGDBgAA8//DAXXHCBps+7XC4OHjxIamoqgiDEcaQ6Ojo6Oh0ZSZKoq6ujsLAQUVRfjwnx1H786KOPMBgM9O7dG0mSeOONN1iwYAE//vgjAwYMCPv5/fv3071793gNT0dHR0fnGGPfvn1069ZN9f24GjUlsrKyWLBgATfeeGPYbWtqasjIyGDfvn2kpaW1weh0dHR0dDoitbW1dO/enerqatLT01W3i6v70Ren08m//vUvGhoaKC0tVdzGarVitVq9/66rqwMgLS1NN2o6Ojo6OmFDUXFPFPn5559JSUnBYrEwZcoUPvjgA/r376+47fz580lPT/f+6a5HHR0dHZ1IiLv70WazsXfvXmpqavj3v//NK6+8wldffaVo2AJXavJys6amRl+p6ejo6BzH1NbWkp6eHtYetHlMbcyYMZSUlPCXv/wl7LZav4SOjo6OTnSUNZRR2Vyp+n5WQhb5yfltOCJltNqDNoupybhcLr/VmI6Ojo5O+2Bz2pi4ZCIVzRWq22QnZPPZFZ9hNpjbcGTRE1ejNnv2bC644AKKioqoq6vj73//OytXruTTTz+N52F1dHR0dDRgEk3kJ+dT2VyJRLDTTkAgPzkfk2hqh9FFR1wTRY4cOcJ1111Hnz59GD16NGvXruXTTz/lvPPOi+dhdXR0dHQ0IAgC006dpmjQACQkpp067ZgSv4jrSu2vf/1rPHevo6Ojo9NKRhSOYED2ALZUbsElubyvi4JIv6x+jCgc0Y6jixxd+1FHR0fnOEZerfkaNACX5DrmVmmgGzUdHR2d4x55tSYKbpMgCiIDsgccc6s00I2ajo6OznFP4GrtWF2lgW7UdHR0dHRoWa0Bx+wqDdqhTk1HRyc6jpUiWZ1jE0EQmH7adJ74/gmmnzb9mFylQTsoikSCriiio+PG5rRx/r/P71RFsjo6kaDVHujuRx2dYwC5SFZAefZ8LBbJ6ujEA92o6egcA3TGIlkdnXigx9Q6KXr8pfPR2YpkdXTigW7UOiGdUaRUp2W1NuWLKX6vH8vp1zo6sUZ3P3ZC9PhL56UzFcnq6MQD3ah1QvT4S+elMxXJ6ujEA92odVICZ/Qy+sz+2KezFMnq6MQD3ah1UjqbSKlOC3KRbHF68TFdJKujEw/0RJFOTGC2nJ4l13koLSxl8SWL23sYOjodDn2lFsjG92FBb9j0QXuPpNXo8RcdHZ3jjePPqIUyWvXlsOROaDgCH013//sYR4+/6OjoHE8cX+5H2Wg117iNVo9RkJLjfk+SYMldYK13/9taD0tnwJVvtttwY0FnESnV0dE5drAfPIijqkr1fWNmJqbCwrgc+/gRNJYk+Me1sPVjkJwgGKDv+BajtfE9+PcNwZ+74jUYeJlnm/fhk5lw4R9hwKWtG4+Ojo5OJ8R+8CA7x12AZLOpbiOYzZQs+yQiw6bVHhw/K7VN78MvH7X8W3LClg/dhqrnGe5VGgL41XYJ7pVdzzPc/1Rb5enohKE9Z646Om2Jo6oqpEEDkGw2HFVVcbnmjw+jVl+ubrQ+mg7dh3vcjoGLVsn9+pK73P/sZK5JnbYhXjNXHR2dYOKaKDJ//nxOP/10UlNTyc3N5ZJLLmHr1q3xPGQwfrEyFaO14zP3yk3x8073Cu+Xj1q28V3l6eiEIZKZq46OTuuIq1H76quvuO2221i9ejWff/45drud888/n4aGhnge1p8jW/wNUhCe4mTBoPK+CKIRgnQUPa7Jjpgh2YnKEnR0dHQiIa7ux2XLlvn9+/XXXyc3N5f169dz5plnxvPQLeT2g74TWhJEAhEMcMIY2LcammsJWs2Jonu1p7bK62huyFAZnjo6xxh6C6WOw7HyW7RpTK2mpgaArKwsxfetVitWq9X779ra2tYfVBDgoqdhz9cKRksASyr85nn3+0rZjy6H+r5lN+SRLW7j2d500rIEnfajPRNc9BZKHYdIfov2ps2Mmsvl4s4772TkyJEMHDhQcZv58+czZ86c2B88Jcdt2IKMluR+PSUHBlwGGz/wT/nvc6F7s1CrvL7jO4ZBg9AZnnJZgo6ORto7wUVuoVTZXKnYcUJvodR2RPJbqAV62oo2UxS57bbb2LhxI++++67qNrNnz6ampsb7t2/fvtgNYMBlbjekHDsTDNDv4paHvbyis6S4/21Jdf/b+5pCTM2SCuP/HLsxtga/DE9ftMf+nC6JVTsrWLzhAKt2VuB0ddgSRp02oL0TXPQWSh2HSH4LY2Ymgjn0ylkwmzFmZsZjqG2zUrv99ttZsmQJX3/9Nd26dVPdzmKxYLFY4jMIPzdkjbJBSsmBi55pKbCWY1HhVnlxRJP7p6AgfIZnGDfkso2HmPPRZg7VNHtfK0hP4JEJ/Rk3sKCV30JHJzoCRblldHHutkfrb2EqLKRk2Sft5raOq1GTJIlp06bxwQcfsHLlSnr16hXPw4VHzWj5MvCyYFedkmuy7/i4u/Q0u3/eWojJ1+0YSJjY37KNh5j61g9B5rCsppmpb/3AC9ecphu2ViDPXMP9jsbMTL1IOwB5hTDliyl+r+vi3G1PJL+FqbCw3a7TuBq12267jb///e8sXryY1NRUysrKAEhPTycxMTGeh1ZHyWiFQ8sqLw4SWprdP2IXTOEyPFVif06XxJyPNis6FSTczsw5H23mvP75GMTO8QBpa8NhKiyk5P23cfzlopYkHl8sKRhv+ReAXqStgN5CqeNwLPwWcTVqL7zwAgBnn3223+uvvfYakydPjuehY0+oVV57p9ELhM/wVIn9fb+70s/lGIgEHKpp5vvdlZSWZMdy1O2CptWvQaLk+ZmYzr4+NgeVJCrW/oHKrKZg7zCA0ETWurmkn/Rwu8oLdVQCVwj6Kq2VtGICfiz8FnF3P3YqlFZ5HSWNXkuGpwJH6tQNWjTbdXQ0rX6dAo6lczANuSgmkxNb2f+Y2LiRisJc1W2yG37mo6PbW32szsqIwhEMSCpkU+NBBiQVdqiVwTFFDCbg8mptU8WmDtnO6vjrpxZr5DT6jiChFS7DU4Hc1ARNu9a6XafB1uienMQAU95J5JtSEFQmeYIkkW9KwZjdOybH64wIDUeZvm8bxTYb0/dtQ2g4GrN92w8epGnTJtU/+8GDMTtWLHC6JLYt/xvN80vYuuJN7VnKahPwCJHbWRWnF3fIdlbHh6BxvAgllCyr+7epG1JD7C+Aob2yKEhPoKymWdkzBuSnJzC0l3LBfKdFcsWsxk8QRaaNeJQp/52pfChBYNqIR8Gq+LYq8Y4NRpLgElc8D+PSuhoW13oStTR6Q5wuie93V3KkrpncVPd17Bsbbu9avEhZtvEQCz/8jnesM7HQSP5X9zFhdRJ3XDwifDJXDOtYSwtLWXzJ4ii+QfzRjVq0aBFKbjc35DOhMzx9MIgCj0zoz9S3flAyzQA8MqF/p0kSiYzYTU5qmwaR2pRBQ0IVLp+ZrShJJDdnUts0CETt9V5t8TBu79RsL1E+jLWUqbR3m5RIcGcpr+cF0wski80IAiRLzUxreoGpbyWEzlLuaBPwOKIbtWiRhZLVaE8JrQgzPMcNLOCFa04LegDkt0OdWsdKaQ89OdGqhed0SfxhyRaOOC4lqeg1v21cgsCR8sv4w5ItnDlBu25eWz2M2zM1G4j6YdzZylTkLOXx4mrGGdZ6XzcKLi4wrGW8czVzPkpQzlLuqBPwOKEbtWjRIpTcSgmttnT/jBtYwHn980O6akISg5KGDukKUpmcRKKFt35PnWeycCJCUwFCwkFcgoAoSUjNhTgaenOIZjYdqCG1Db7SMUOUD+NIylSOFb7fXYmt5jDzLH/FJYHvbemSYJ7pFc6t6aecpdyRJ+BxQDdq0aJFKLmVElpt7f4xiEJ0afsxKmnokK4glcmJFi28FGMXRIw+maMCDeUXkFT0KuBepTWWX4Ds6C03JJCmcRJzXPRei/JhHEmZyqDYjTauHKltYp7pVZJpJnCeKXrckI+ZXuVI3VlAgMdDAtJGw6/fumPFgNHiwpTsmYx3NA3bVqIbtdYQZRp9JLS7+yccHaWkQSOaVr+ihNHiItTkRE1dQUZCYsvmkZyx7Usmnt7d+7qzoTfOpm4YEvfjbOqGs6El4zGrVw/Nk5jjwqhF6Q2JqEzlGNFC7uHcyyAft2Mgshtyg3Mv9oOCisejZcIqiBIl449gSnZ1LA3bGHBcGrWY9gVqQwmtWI07pnGrY6wzgOrqd+cK+MLdIcJvFhticqKmhSdJAq7mrjgbelNGM09/sZ2MJBM1jXYkBKxHxmLJ/wjrkbG413QtGaYGUejYkxgf4h7/jNIbElGZyjFSfnnSqcP5cukwznCtxSi4gt53SCLfiEM589Th2LZsDu/xcAk4rKL7Om8DDdu25LgzajHv0RRFGn00xGrcMY1bqQbxca9erXUweFLofbQDiqvf/v2hcU1EkxO11ZogSFjLzwcEbwzH+x7gbOxN464Z3n/DsZdh2mbxzyi8IZGUqdi2lEU/tjbEYBCRxv+Zho/OI1VqDIqpNZCINP5PkV1Dghi2jvVY5LgrvpZjIUJQixY3UfVoktPok3NhwjNxmfXEatwxaycSMoiP+7Wld2tqedMhUGo9pGFyMqJwBD1S+iBJ7t9FkoQgt6IEVDfauXPMieSn+68i8tPDpGJ3UNq0LU2EogJymQooNmICWiYR7d0mJRLOHTKQ3cMfU4yp7R7+GOcOUe5TqYo5qVO5HWWOu5WallhIVFpm0QglR0Dcxh0t4YL4AC47vH8TXBeiSNM3a5ITYzrEiImwxg/cv8vZOdfyRv2Dnn+3rNIC6dkliW9nnht9hqkPHaYwui2IwhuitUylw9TiaWTQuBuQalbA1k8QJCeSp5nxoAsCV7IaOPOeTuV2lDnujBpE36OpvWuoOlRvqXBBfJldK9Xja4FZk2P+Hq/RaieKycmIwpG8ulk5+cOX3NSE6DNMAzjWHsatJooJh9YylQ6fjOWLICBc9Azs+QaaaxDkZsbRUHxOTIfWUTgujVo0PZo6Qg1Vh+otFTKI77ehcpGsQtakcf3C6FcfcWj9o5VhxdkkN0ygQXzPm/zhS7ykxo6Fh7F11y7F16MyuFFMOGI1iehQRGHgIyWcvFhH5rgwakpZgxmWDErSS9hdsxsX4fsCdZQaqkj7GQVenCfHsnGCahDfF5UiWYWsSdOhTyl59mkcucNU96b4MGzn1j8GUWDu2EuZ+laPoPeO1USQWHHo3vsUX+9IeorHJHEMd2iRF4uINp5wdnqjpiVrEDpmXyAlIulnpHRxDnOU82gsBzTgMlj/Buz+Sn2bwCLZENJHpjWPYrp9vXaj1EHq5DqS1Fg4YlrSEiUdRU+xM9KaeGvM5cXaYcLZ6Y1aOOUHmY7YF0gNLf2M1C7OivoIpeDDIQhw2SvwdD9wOVS28SmSjbUOXQeqk2u11FgbEIvSEKdL4uf9nUfSqyMY+VgSbbw1EnkxTdd0O004O71RC5c1CJCfnB/bvkARLrf9bqqdK+C/C2HkdChxB3IDbyq5n9ET3z+hOO5QF2eNORmbaMSsZoCIImsuNRcu/JN7RhZ01IAi2Vjq0Pms+MoMIpUGuUJFgGUzID0Pktzfo60eTG0Rw2lNvEOLvFeo0hB59e84dIhXwlxHxwIxr1vtIEQTb41EXkzTNd5OE85Ob9QgfNbgO+PfiZ1Ba6qCL+7UvNxWvKmyLLDlRfcfyjdVqH5GoS7O8qRMbhozkzRbA/MvPYmTuqUHbRNVEH/IZEhIDV8kGyshaJ9ZoA2JiYX5VBgN/tusaJnIHIsPJiW0xjtCrT4uLrmYTRWbFN8LVRrit/r3uY7kLe+/sC+lJV2w7tqlGkvraLTWyHcmIpIXC0c7tro5Loxam2YNfv3niJbbWtyj6ZZ0tldtRxAETSuOcBddeVIm5UmZHMrrwdABXUN/n0jQIhnmyZq071yJwV6P6POdXQg4jcmYtBSE+qz4TEC+00GlQURS+C07y4NJa7xDy+rDIBiQkDSXhiit/uXrCNyPrgc2Ofj2ov6t+IZtT9zqP6NMjmjPsqGI5MVC0c6tbo4LowaRZw1GzZ6vIcuzAtGw3NbiHt1Vs4uJSycC2lYcMbs4I8C7Mhg5FfZ/y1FnI7WWVDjpQti1hHRzOtmJbpfFdzuPssZ6JS+Lr/jtQ0TijobJXLTHwbhw4gg+Kz5BcjKtqoYp+bmKm7Z5YXociCTeoWX10S2lG7/W/er3eqhJ3rGmfB9oHCqaKqi11bZskJ4K+e6VQoYlgxMzT2RH9Y7Y1H9GmRzR3mVDkciLhaSdW90cN0YtkqxBJTRlFBlkdXe/V8Mut0ek9WaAzcFmk0FxpdGyJ20rjsCLc7y4mkdMb/CofRIfu4bHvG4qaGWQkwpyGsHaxxU/4+qRwpI9Qxgn/oBRcOGQRD53DWapazjrtQSjA+rkRjQ1M8BqZYvZ7N9Zuj0K0+NApPGOcKuPWUNn8dyG5zRP8jqS8n24mKKacfC9mmwGmH6LgYp096upplQ/gwbBzwhNq6iCgqiTI9q7bEiWF5v61g9KTkNyGquYN6I7ti2bFT/vXUW2Qa/JUMTVqH399dcsWLCA9evXc+jQIT744AMuueSSeB4yJFqyBtUImVEkAZ89hLHsa0xJgT+i5C5OfnoAXPaXYFeEJCEsncG0ymqm5HcJOQatKw7fi7MLNTxueoU0GplveoXvrf2oID2mdVNaM0y930MSkOwZPGy/hjMsm0mTGmkgkQftN0QUjLbX2nH0v9errn9nQz2Pd8lCvh1rE6EivRUu5nYs6A4k0nhHuDjyyK4jEQRB8yQvktW/MTF+El5aYopajIPZCX33SRxsck8W8wryqM0uUjXymldRz96BqY2SI+KRtalWmtLf0Mgfv1yA+JmNPSqf9VtFxrnXZCjiatQaGho45ZRTuOGGG7jssvZXgg6XNRgO1Yyiw5uhdjkkqX1SAqcVPpwW7IrwLNVHAAOsVjabze7VmiS5VyMeRET6ZYdYcQQ8gMcNLOCFq0/F8v5kkl3NCJ5GggsS38B6+esxrZvS4kL1396tj9hIBvfbb/KuIitoSVoJ9xD3f8i4z2c68CQtkwqbAZ6fFeUqrZ0LugOJ1KWsJY4cySQvEteUQRTiIuEV6xqq6R/5tAsy76Dm9Xn8vuIBINjIa15FfTwXU3L8kyPimbWpVJpyclMZe9+LYBXZBr0m1YirUbvgggu44IIL4nmIsAS7KoarZg2GQ3VmZJDgxNFk7fqafIddfQe2xmBXhGepLmz92D8uFGBwXYSYSas8gMcJq0Ba4/W7GAUX50irgVVAbCcZaiuDQAREHE2FXn3Epa7hLLUOb3nfWI1gbKBJyGJzRU3Q5+XZp9bZ+A3droh8lRbD+ppYyQ1FE+8IF0eOZJIXzjUF/qopsZbwiiSmGA2CzcEgc0nUnhwvtkZIjjI5okl7R4N4Z20GlqY0bYqiRU8b9pr0pUPF1KxWK1ZrS3FwbW1tiK3DE0u5F00zo8I8Ptt7ALOaC07JFeETGxrRVMsAq5VNFgsJLhc2QcAlCKHjHWoP4PF/btOUWq2rNQkXyY3jafL0GvPfiYOkXs8hGuuZtwHYEPx5efaplVNyTtG8rZcY1dfE8vqL1KiAtjhyqNKQQNpTNSUwphgYJ45JoopAqzw5AKhN6MIlR0iSO3Na61A7WtcOJdqo12QgHaqf2vz580lPT/f+de/ePep9ya6KQzXNjBdX871lKheKq72uimUbD0W0P039zFK7YQoTU3IhYF883b/PmGepLiAxvbKaYpuNW6pqvAkPIeMd8gNYCsi4/Pv/hU+pjTHyykAU3JeVgECCIcH7b1EQ6ZHSh4tOODuoeSaAIBmQ7Bmq5xhayht21+zWNqhI72m/+pqAHS25U3N/ON/rz5dorz9oMSqR9GSTfxOIjWrOuIEFfDvzXN65eTjPThzEOzcP59uZ58bEoDldEqt2VrB4wwFW7azA6Wq5dn3d0dmeOHEONcw3vUI2NYrbRYNs5EsLS6PbgaDySJV7wKklR2x63/3wj4DA+01GFMTYKyRFsIr0ow16TQbSoYza7Nmzqamp8f7t27cvqv34uioCb4Aszw0w56PNfjdNOOSZkVoihITEtNKHEPpOQD6tksKmIhKCrZ6yd6b6v+FphFhqdbD4QBk31jUyQEh0v6V2gdaXY188HVfAA9gFcPAH9ZYwvrPGGCKfI9n9KCFx88k3e//tklxs2TySJV9soKR6PyfU7KekuuVvqOMo96RdTFaNuvtSLm+Y9c0sTWOK4CfWXl8ThnCuMoj8+pOJ1KgIgsD0rMEUO1xMzx4Sk5m77Jr6zaCulJZkxyThaNnGQ4x6cgVXvbya6e9u4KqXVzPqyRVe498SU5SYZ3qVZDxxYpp5zPSqdz+xLFOJCnMSihOiUKsU70QqMgLvN5mY199GuIoMYuBlcO/2Nku26lDuR4vFgsViafV+WlwVATeA5L4BptrvikzuxUPYfmZdR8JFfZB2folgrw8Mi3kxCi7yD3yOs2wzhnxPsWrAUl2wpDJ95B944ucXlF0hkkTZ36fSxdaAKPg/HEXcD3NBUFmoxDGlNjD54KaBN/HB1k/Z37gNZ1M3ssq78MoXT6rLKy2BIUaBO28xUp7W8r0EBCwGC1anVVOGpcymAzUM1doQOEb1NTu/fJPFzQ/yqOh2jQXthgjlhjz4ppQPAnfqfDPYtrjjHWodDEq/XsTi5hooXwgnTepwjSF9E0DkmCrAESvc9u+dzG7sy/Be2eR2KeeU2p8ZJ671ftYouLjAsJaLnKtZn3o2Q3tlec9Hu3DG3fDDgwEvhkiO8JlIGS2AKIErhDEKyBrVVH+78X3s/5qJY8h01R5qIRN3vKvIjnXdqNGhjFqskF0QF4mrGWcIvgHGO1ez1DU8YldFqIyy35T8hi2V7pXP3lOnk//jn8l12ilUeHjLNVkZDXn4OTkC+iSVloxjcck4xbE4D28m/+Dnqu41efIsIQREr+KbUhuYfCAhcHTvaJyp1ViPjKXA1hhWL9DkkEhpdFGe1vLl5FXfoh8XRTSeysbQySR+xKK+pr6cnqvux0Qd802vsMZTQqFEJNdfVIW57djBQGu6ud+q1iem6suzW9x/5MC2TBfNeyFBAHuDAYdVRJLgEV5jy6mnY9uyGUd5OZhMYA+RtBUvis+FxgnYf1iGoxm3O7LnKBxHs3B+1DJhMqSmYszJgcrd8N0yjBaQkp3cf7OA02ZQ3b0hI41/5LWU/oSNm9aXY3/3Lna+n4j0j+eB5xX3q1rUHeUqsj2Jq1Grr69nx44d3n/v3r2bDRs2kJWVRVFRUdyOm5uaQDY1zDP9FZfU8oAH9wrmcdMrrLb2i8pVIc+MNlds9lsxPP59QJFxtxyyHC4+3bufhIDjyzVZDys91DT2Sfq+Po8a5+mMEddjFILddQ5J5GepJ6eKgU0a459S65t8sGpnBeXlPaBcdtvt17SP4vRifhV+9Zt93jTwJlbsXeGZPITotu1DVlIE6cwhG59qmAx4jIjJ2RjkGVAikusvqsLcGCS8RFMLFUm6+fo9dS1xR09MVTI0IAjBq3EBKHA6sHgM2s6luUg+q5qcz2f611AZjXR7bhHOurpWa1FqbueSlYl9yCx2zl2H5JTHtgWYqvo5yEEQJYrHH8FS6GRzprIIg4BA/+yuQRmNw/JL6ZHSh1/rt9IjpQ/D8j1TZc/16KhrQnKp1hu5N1Uq6g5YRQqi5He+Fb9/FLWHsSauRm3dunWcc07LcnfGDPeDbdKkSbz++utxO+7Qnpk8lfg6ya5mAt39oudh81TiGwzuMZFVOysiSrfWnOUnCdjtWVgE/4e4KMD9thupIL1V/v8j9Vb+YL+BUssmUqXGIMPdQCI32e7ho17vU1j2ZZum1PqNM8rA/cQ+E1m+dz7QMvsURdF77msT3XVo5hC2zWYwcvKAHpEdOIr6Gjlt37jlA07/5SPv4jnQMyATa0UXRWIgKBttLVQk6eb+14eAtfx8kopeDfoMnm8xraoaAdwrtFBuOgCHA2NODgknntjqYvBI2rk0baryMWjakFwCTqsYsdybnGF7xD4KS34VW34dxRnbvnRno/KdJ4ksSokXX33VZCgZfwSHVSEN47evQ1avuOpSRkJcjdrZZ5+NpJQtEWcMR3/hHJ/6rEDkeq3fPfkG39W1XEBa061940ZqCILEkfJL+dRp8a6mZLfjx67hFET4UAusd+qSYqGCdB6w38hzZn+XXIvhzODAyMcpXHJem6XUKo3TD0HbCqt/dn8GNATXDHljCMIWpt8CqY0CLlsOzQf/D/kHl3/2mVcO45RuUQg2R1BfIz9UbDWHWWF5CBfqnoEK0hXT77XIL0VEjARlo62FiiTdPHBi52zojbOpG2LCAb/VmoBIf8HCiObIXYrR9hdT2k+8H9qRyL35F6P3pnGXe9FQRjMPvvUlo1PvwxRx+q8Puf0oKzyPLgeWYxRcmJKdmJJb7l9JAkk0Ip46rEPFaTtlTE2Ojbi2foyoEBtxIfKpczDfNfvPiLQqE8hxo/lr5uPCxb66fUGJI4WJJ/BLw4k8SD6llk1eKaiH7O4VQCQyVUr1TplJRpLNBpbYhnORc7Wq4Tyt/4nAMy1qI3G8+JTGmZ9mISPJRE2j3X3zSdoSbk2iSbFmyPeBWZEuUJEOCRWXUZ7RUv4hT07OizbNXGN9TctDReJFT0KSmmdAdkMG1nRpjZV1Xfis9vHHKOGlNbVQYZOqPA/nYJ3SNVxYvZVZBckBx3IxbcSjCAeneFzDkaHVILWnSj49z0SoW6m4WguMlYXOsJV4zPQqgr2B4EmNdpwS3HD0Kt7hv0HeIFnwyCW5kJbchTDxraiPE2s6p1HzPJTEPV8jNdf6JUpICNR7YlqBBCoThDI6pYWlfHjph/z3wH8VE0ceHDGDun7FzPloM/fXtUhBmdLzeCGCQlU1aaCqRjnZQuABjxtS1XBqjNNFRIAsl9o4D9dava/5r6PCIKgXBgdmWL51za2s3VMV227TAUk7gZMB34fKicJ+v4SkQGQ35H8uyeKkU4f7jU1rrMxZV6d97DEUlNVqnIIOobHdk2HzB6zkXmaIv2ONqx9/sP2VxAM2zrGZ2WM2geBOdeqV3ovTmntgH/YIpq9iX2MJ7a+Sz5kz4It1jGiqYYDNwRaLWTWjMZTAdbjrUSvf765kc20CD4jB3iBBgDKDwd2Yd9cy+P45KDnXb5v26hjeOY0atBQ0B8RGBCRme2JaSkSabh0qpVboKng01Aaxqm4K16YmsCiCB26o2ZgvFaT7aShGajhDoThzbaqCf8xwB5DfuRNx5siwEkbpSSYSjAaojsHxgRkpl/Dar1VMOvkajAYxPt2mQ0wGfB8q26RuLAuRtCMbkUGDoyzohchWJ61NePHbVfS9CMOmm3vk3SzWGp5Jeo11tcWUf5yG5BI8aRW+WbLb2fPMFW6jcutYqFqpafyR0FqVfPlate4KTM7SSGImXPQMwiczmTbgeqZsd7uH5XN9uPGwN2lnw+EjiAkH/MfmSEFypIe/HjUixzuXuGRv0DqMgoQkgV3AvzHvlr+4/3xor8a8ndeogWJs5GD+uSzd3RK0D5TbkSmradKURBIupTZQQy0SwrUb8WWpazj/Fc/g+RtOY1FxbApiQ89cE4FEJINEbZfrOGy9DDEg70W+ySSgutHO2zeehuFoPq7/Po8YIt1aDtqHOn4qcAcg/OUB7MtOi/nMWUmzsbxJ/aEymwspEbdQ4qz3d9MgIMQilvljhO6dGArKRtuLMOS9EVBuYHLUM6h5M3tcoccl2Ww4htwBO7/XPP62QMsqTxOeidQISWJA5Q9eb8SQvCGMfW+sX9JOci//j7ocKTTsmAWSscV7Q1PUQ2mJdwo8YL+e0Zb1SJKEIHTsxryd26gpxEYOjJwHu91lBtkBbVl8a4rmLt1CZUPLBRoqiaQ1LW1CEWnmYHWTHVEQYtZSRsvMVXAKPG7dT3Kv4Pox35sM4GiDld+UDsD+6TIclVXM/nY2u2t3e24UgV5pvZg/aj7GLDmLbFOb9peSDdnnm8v4z4aDfr9/froRoWge9Y6WVaPvQ8UBXOkoYPW+7fjOS4UYlVAYytcjiFmRpVT7TOrs9eCwGaHnKBD6wCb/JKdQsaLW9CJUvTcCyw0iif0kZrqLnD/6f9o/E2e03CuREFjvaTaYQybtyO2ckNwrp0rSWWCawmOOP2O0uMKm42M04igvp8nnujhZgmGOcnbbjGQk12PyWfUJ0GEb83ZuowaQkoN92KM4ls2HwdPpj4NhjnIq6pu53/h3DA0OHAkGkpP8a4p8H2gQOomktS1t1Igm5b+12nexIvAmg5bvIwftf5s50/OgdJ+ve0bfxwZrPkeONJPbVMHJETznWhvgV0py8eVwjZ3EumSMidWqD5VmexeWO9M5T258ioih73iEABem71i1uqqMiS7llOoz74V+Fyl/R8+kzr7xG3YuTfQ81LbAX64I2n+4WFG0EzfFe0O13EA7xiGXI5hfiThN3+mSWLtmM9Vl5WQlmRnQNd27so7abRgDlMYaGFMOlbQjt3PCRzl11G9uhk3bMW392H3tyJOa8+d6P+coL2f/tDvAbmf/lOBaukcBm2jk5jH3sczo79LsqI15O71Rsx88yM7pzyLZjLDYXVH/qM/7++iCIEqUjD/CBcnBNUUy4ZJIIlE7Vxqj0gPZd6Z0JElbWne7a995CLzJlOqyfB+U3ZJO5N43mymrWe19f5ij3O+3UsNRXs6vV/0u6gC/WpKLLxICtvLzMajUULm/71getOcxwtP4VDKnIFz0tN92rXFTBaZUA7B5AYy7IWgl6Gc4Cychuf4Vct/hVrytmbj53Rshyw208fP+Ggb36+9O01/3nrdJrB9jHsE45HK/77Ns4yEWvfMtj3/wB9I9qjZ7oxpB9HSZfgembt1aFEU8aMmqVG3vJAk4m7t62znlpycwfWwXigqr2ZwxFfZ/C6Z6MCfDFXdDkuBN4mjatCms8orZ5aCX2el1acqZkGqrNd+VfKxaL0VCpzdqmoK/LgGHVcSQ7PSrKQrajug0+0KqMpSVI1x1B6iM8VHcM6WbxsykPIRhE43VdMmwk5pWxuaKw0HvxzMTSZD8NfclScDlucmU6rK8n/M8KB/85jG2bzkDR6PVL8a5rb6bpuM76+qidlNqTcYBcHhqqIyJB5FQfqhUILDANJWHDG9gufipIGMTazcVLju8fxNc1zKhill8J4DWTNy8hCs30MDsD36m8Ycm5p2Xx7mbF0CWg6BkmM0L4NyJ3lfkiUtxdWVYmbZ4knLmmSQOGBDVZ1VLLASJGUPuIGf4yeSmJjCoKIUL3h9Lxc+e+FtOKu4oNLDC/dlIWzi9Ovl0/peYz7YtjZy+7m7v6/JqbZPZAoL73jfYu1Fb2YtlVbFrvRQJnd6oRYJIi+q3mrQRRObiC6fK0KtM4klb6IJks8tBsdmBWtMTQXCQ2Os5moz1XPWx8jahMpFUjW7Nbk0J+IGBYt9VWrheW0Pzh9O4awaOxuagGOcN3K34mVgSSTKOW/HiPAxFrwW87P9QGdrrQgziwzEboyBKGC0hsth2rfSTvoq54Ywl4coNNFJW04Rt8Z24jPWIYQrMI5m4dHTUknZuHDyupUu300WKsQuVhC+a1/oLiALuiXzxjVC/0vv7OSWR4RV5bCqsdu9bkGgoO4+pb/+ouJ9ou5RHgm7UApBrino79rNdUl4pROLi06LKoAV5pqSUxJCXlkxmWiEHGrdH3AU3lNHtVSbxpIaxFdts/CqZvQ1Nuyf35qaLfkteWmJYd0Oojgp3G/+p4ehAzYHw26gQaQxyXFMFFT5xBFGS6GezcaOlEeGkKNRLVChY8EcsxcXQVIXxP1djMoZKzdYufdXuhCw30E5vuRbL83FZ3NiP/34ChUv4uTELx6FDoNGFH4q21jdUmnBeXHKxV80oMGnHK5vlGElS0VbFfbYqicPz+0m7vwZrDQ0k8reaKTgz38KQuB9nUzccHjeo8rG11wJHS6c3apG2rHIi8plzsKJBi0azT4sqgxbkmVJpSTYPjO8f5KdefSgxKuWHcEZXC1fW1rNccLtjXZKL2cPvYqgg4qgqU20DIscQQnVUOFXcxR4t7S7SozcmkUxQulDDE+ZX+alKYmq+e1wuQWBaVS3C0rug15kxMyqW4uIWN1XCnxVS833RLn3VIQgoN/AW8aaIYJAQQugm2kQjteZkyqUMby2W1CgEiRt7+exeUoG/iRKvnT+e9ZyoaYjSI9OhR/AzID23u9eFHU3CTyRo0d40CAaG5A0BgmWzlOTGYpLEkZLD9qGPkfH1gzxqn0QlGRiOjMWS/xHWI2MJJ7AQbRhHK53eqG06UCN7kzUg4DKl8FDzDUoysEBk8lYyoVQZitN7ANsj2p9S7VuslR8ATaLBkkFicMkoBmSL3sy40+mpWZkhVEcF0ewK219KMJsxpGr/hQMJlGnKaawizdYQfBwk7jf+HbPLzkjs7jiCxcIAq5URTU0g2OJnVAZcBuvfgN1fqW8Tq8avAUoxccNTbmDb+rFfEW/2LRJpAaVVLmciTfuuB8ngNmieFZecuGC22sOLG7sE7nX+gymohxV8mbX3OXbbgveZvS+bz3p9hnD4aMRxS8EgYbRonzhqmXB2S+mG2WBWcLEqi0PHqoHoluzRTLe2PIOcjS3ak1qJV6Z2pzdqlY22CIyahOk3z/IYpcEahq0IcIZSZZjYZyIwV/mDgYR44MRS+UGmKsPA8zN7k9To9NaTeY8nSfSy2/mj1Yb5mueZXrvDmxnnrKrWnLgxtG8/1Y4KlhQnPS8sZ6u1G30EBRejJ8MtVCq/H7u+hIAgvUEUeGRCf6a+9QO5jVW8HKqBKbBb7ELJ+CNMr6zmiexMple6VeO16ilGhSDAZa/A0/1AZWxlRjOVJWeCQdIcCw2iqQq+uNNd0/nRdGiqgS/nxcfAedxYpj1f+xXxynqeMu6koy401hYRuAKQBb0X8KKmQyZi5VZj9Ikuvm78Zo1xy4LLemJpWA+SC2MCmNY/CSdom/ho6Qgye9hsBEHg+10VQbHhQHFoSRLomXpiTFLtAz0caiIWkewjVmhTlz2G0dxPSxCh38Uw8DLGDSzg25nn8s7Nw3l24iDeuXk43848t1WBTdlwiIL7lIuCyIDsAZySc4q2HTRVueMmDUfcD5z64LQRtWMEdsFlQW/Y9EHLVw/RFn7S6Hv47YSZ7MqD3fmC929Xgchv0wTMV7kLi+XMuNLCyKSg5I4KanI+iSkOBmXvYX16H0yZThKz7CRmu0gceQGJF0+LrOj666cUz9u4gQW8cM1p9DI7wmbGyZmypc1WFh8oo7TZ6n5DMLivnzh0EwcgNRcu/BNKrh0bAhMLc7nSto0rl1zJrG9mRbx7wWzGuG5hS0PR5jr4+G7v9easO8KqnRUs3nCAVTsrcEbq11ciJQfhomeY1iQoqlKAO/HA5kk6CnoPWJ9ytjuWqAGDIDFC3Bz1cKOJRVnq15KYaSUxy44pyd7Sz04jgfe0TOC9rbzqca/WZPejIEicnXOt3/jlPnGhUIojyh4OgRYRixxqmG96hWxqQu8PIu5SEgmdfqV28oAebDUYMTvVH1aCKGFITfSTMmqNvJXiMVRUGTRrIX7957AdjAVB4LZBt3Pr8qneY9w26Ha/LrgsubNlJt5jlDcGFE4KSfG9695xz7hbQ5iOCnLXgQftN7DCcjdpNIIlBcHnt9LUwFGUMArqcadxAws4Y/Lp7F0SzZfQrqeoudmkUjLCkMmQkBoUXzMhkZ/ajcrGQxHFRfP/+Ee2W7KpbLTRy/E/TJse8nnXBS73RMNlrefrP1/L9U13eN8NTM2Ouvh94GWMGHApA5Zepeg6d3e76K0eDrh4ADTfDS/drOk7i5bwLm27UaA+SfQ7YuwKitWTepRqulxlh7gz+WIe37QxYD9O7ko+i/qvvsKYk0PB4RpKqv17N9aakyn3xNbkJI4RhSP9tgnZlmfnCvjvQowX3Bf027V4ONYHJXj5Zo/HMoyjlU5r1Hxvsqr7/sDrn7kvCvkEN5gSqE5IY5TwM/dmfYL5qmfinjkmG46yXRsZZC7mtKoMHEfDt54XTEaMh1aCXHir0sF42cZDPPpRM87Mlov43jebeXTCIcYNyPfT2gs0jOGkkKKVSQqLIFB27mwq93+LZGvw76gguZudPtB0BZU+os2VQx6j6rDIkR0HPDd/gfKNuXOFtzDXaHFhSgrd+Tn6e0y7FFare3sp6JkKfcczbcQU7++jJRbqMpm5Zk0zm5xVZFPDCst8dzanglEUJSfnsJrx4lCvMIFvavboLKlV6vahXOe+3S7UwgFNm9Q7cwdiSXZSctFRDqcM49CwB/wURWQ2WHdS/vMDQWOJzTUvYa9sxPHyLX7KHqt2HuUvX+/maL3VGzccYGjkjx8+RrrdppKFvNDbRz4VeC7gXbtg4A/DJlHbfBqm7HqcrrMZ0jMrSNPWry2PHOI490F3rV9iDax+BIZcFHR9jxtYwAdnHWbQGv8ErwsMa/nPiMOUdb8gpmEcrQhSe3Tx1EhtbS3p6enU1NSQlpam+XNaik9topH7L32YaVeNiusJDmT1j0tIuvY+TI4Qp93Tht6Yk+OT0l1D0JwnIQ1uXw8pOX6ZT4ak7e5MpLIJuBrd6bUfnFXGoDUKgdwrXvM+4CVJ4qqlV3kTPt4Z/473Jg71XiBNmzax5/JgKaZAer73bwx9e3P+v88PmeEVqCGZkWiiuqllEqBY0FlfDs8NVlap9zlvUY379/1IrFvp30A0VgkiWhI1vN+tBhIy4PZ1SMlduMpntZNd40648NXUlKfJq3YeZdYX+zwqNRIv25+i1LYJg6B8TRotLgxJTupI4lzrn7zCBHI28BcT8tl7hbbfW63wWL6+Ar0Bfzv1Tzirq3FJ7qSvykabn7yVMTMTR1WVpt9NGl8F2Q6OGkQESSD78lchq1fQdpmWTO5aeVfQWHyvec3XyvnlJGa1XKv2BoN6pqYHWWwh3dbAopXPhD2GVhxGEzMvfojNriTva373ju91JRo9XUBDXOOe7ZXaewmee8yZ1CVmiiJa7UGnXKlpKT41uxz886r+JLehQQM4xdyLPaEMGnjb0Cf27w//uBZMde4LzI+WNG7nb//ml/kUmInUhRpK1jzovtgCH/A+rhBfKaRpp05n9S7/i/HOrtfwxq+LuL7HJTRvDo5NRNNAMVyGl5KGpK9BA4WCzhh1flbF0/cq5t3EQ7iH/VDo9Sbgv5r2Tbi4b8xMEru6jYnTJfHAhyu8smvDmjbT/fMy9rm6qA5LlpEL1EeVU7MjyzBWOYaCp2B64e/YdcGF3nvZRxfDK28VSQPVWbld2J3v80D9Tjn2mJ2QzaMjHmXaimnescTKM+GwimEzNc0uB2m2hpgXixsdduz1vyBm5XlfO2KF2/69k3nWYUzcvqDFk+MbW1byDPncY0LASAWfe8xw5ZvxaQsVgk5p1LTSWpdu3Lvkauxg/POPq0OoYri74CZKzX71KvJ7gQ/40sJSpp7wIvf8bTOHfHQYBxgaWbB4Dnc4nMAc9igcSXYxRUK4DC9fdRI1ggo6y2PT+VmN3bZqOPc++O9Css6+n3wFw+N3bXhiE4yaDsXnAO5rQ8wvaJnFplgYvu5ODjuaqDSbQLLCR1P8XFTgI3em0OtNS4uYQAWVo9a0sA9ZOTkmMdnOBYa13Oj6mL86L/S+H1mGsTqBosmDzCXs0ZBFC4SNU9oMbres+0OSaixYznA8s+uZcem80d4kdv0HyfnB3/2pn17isr3+HSb8CYgFxqi7ejw4ro1aa2iTLrkaOxj/aigClOMKYbvgBlx8auK+CRV7ERyhRXXkNP1IkyHUSgp8NSTD4VfQWRy7zs9KzPpmlnvGn2Uhe9vrfHby7/zkx5SvjRZBbXDHtO67+EE2Od2uoIvEVQw2L2Fi964tjRdt22DJlX7HDiV3FjZRCKUsOe0zO9lZcIfxff7jHOl1Q2rOMA5DoGgyGis19pnr4Z2FpP3yHdlf/QmAnyxmHu/Skl1Xm+hevXoOpLovOcNRFMWQAs7GzExcJjOiXf0al4yGIHkzzaqTgtPPOxFXJOhlrw9jDAImwDHsrh5r2sSoPf/88yxYsICysjJOOeUUFi1axNChQ9vi0DEjMDPplI3vxb/Xl8YOxrmH1SsztHZlJrdfCI08idsiqO+JNBlCbbXmu0oLjKOpcaSuWfN5UxpTJDN+NfkxLe5v0W6juaISMpK8xecGqXWNF0MmCnnc7FHXBnlOoW+G2632u8hPT6BfQRr7Q39aM76iyU1Vm8Js7UaeZGQ7XXyW5cCMxDDsJGWmBLdFAfpm9UcQhLBCBaEEnA0Vq8kZV8Pz9RfxrXRS0PsCYMnKZMnJi2HrJ97YlLHnmYCGAnmpDautBJhWVR2+vitw9RWj7uqxJu5G7R//+AczZszgxRdfZNiwYTzzzDOMHTuWrVu3kpur3GCuvVBrkxDYayubGj5rfBJi4nQJg4YOxkOTJD9VDH8EHrTfwMiETaTQFBxT87n41MR9LxJXUypu1iZZ5cEvo0oDSq4zXw1JlyRx9Strwu7H+9AOcd7Kzn+USms5WANq1iy4Z/xNAtmJ7jjAT0d+4vHvH/du4jvjj00jxBbNS4MQXeNFp0viuRU7ePqLbQAY7C2SRYcbrX7xxkAFFc0ILQscOcNtvHM1XU+5ipv+9r2mFkHxRADyHQ5Mnm8loNIWBbgjazCs+ytTMvxXmJpjZ/XluD6cTk5SLTOS3mOJdYRiVw9csG7gw5y+55uW+OuZMzSWH8Qn3V2SAvYrCQywNXNGs1vGRVFD0zskEWP/szHJq68YdlePJXE3an/+85+5+eabuf766wF48cUXWbp0Ka+++iqzZkVeJBovlJpEFqQncPEpBbz09W6/3J55plexSFbaxKiBYho3fcd7Yyq+qhhKdSEVpLNz2GMK2Y/+F59SAae8ioh3jqxSosDs4Xcxsqtbf8/pCmW4lXU5l0mlWIRhnOFa627aKYmsEE/nkS2vUf+z+izS18VX5cpkR/qbQRp6smu0trIXtELHONA9rNp4EZF+2cF1Uss2HuLRDzdRVmv1vhaYKOQXbwy4VjQTcNJdCCxIfI0zvu5Her1V+TNtiIR7teH7nQLPpYhAv8wTGfHNc9Bcw4DEfLaYTS3C1GJS+NiZJ0FCdDQo1mUFctCR4p/Ug0L9oQrxMGvua9hnz4JEaUUeTsqRGkJoaMqbf7mVkgkHWyasYZ5N7UFc17g2m43169czZsyYlgOKImPGjGHVqlXxPHREyHGkQzXNCMZqxIQDiAkHOGzdycvff4vg+beYcIDzzF8yzrBWNf05LsjuNEuK+98KS3tZFSM/3d+9lJ+ewAvXnMagcTe4feCCx08vK2D4XHy5qQnkNFZRUr3f87ePBfUvYqh0YKuL0fxHQdFERl6tAUHBeflhDME3u1JB57KNh5j69o/c0zSZBhK8NW+zmyZRU5ccsjtCuiWd7VXb2Vi+iUc+/Qx7zWlBSTaya/SB/2zE5giImzjDu0ndO3F63cMOj7tJXmG4AlYLLoJXEfJ162vQlPCNN4L6tRJ6rP7/FJEwOxuYa3qVWnMSrjBPEsEoxE3dXkCgGAsZLthsNnn/DhsMfufShcS0ehuCtd5znqtb3hMEph36FUHhupQpayhj89rn2LxrGb+YRDabTWyzGOiRuIEzE5chGIOVNHJTE9z32L3bI5Yas2Rn4TLFJl4p47TmeldrkiTgbOrGGzVTcBiSNGVmyiEVLxqeTW1NXFdqR48exel0kpeX5/d6Xl4ev/zyS9D2VqsVq7XlBq2trY3quJEkKvjFkQQHSb2eQzTWq35us8PFhjITZpMxqplU1IoSKTnYhz2KY9l8GDwdfj0CHPHbZHRWJufNPFe9LsTrA1dORT/V0swry58MUl/Zh3q6d0SESVkP111ZfhiHK+j0/U0rfIq2H7VPYrj4CxdWb2VWYrLqMHfV7GLiUk+DyRwIfPT7JrBUYmf4/OU8fulA7/GN1fs0nY7uHGUnPYI6CiuuMLL7+xn5aHqE+a7Exw0s4Lz++az/PBFWRrATHwy43ZDvp5zBieMPq7ut8BS/G2uAVmQDqyAhsRsrEwv9XY3ZDief7jvIAJuDTWYjA5IKGbHpK+/73gaXXmFqq6rah81pY+JH/0eFtQq6KpUBrSTFsZa6HbNBMoZo2nsUzCYEm/rEx2UyMW/SKE4f1h/XbSP5Zt12b2G2TJcUC1NPSmdwj0yMOTk4ysvZP+2OkCIONtFIReM5CIK7pZM8MWskg3uartesoRmEQolJe9Khsh/nz5/PnDlzWr2fSBIVVu30EQKVDEj2DCRDg0L6u5tao8i13QroZZR4UnOLvejG5ov94EF2Tn8WyeafReeLnG1ZWqLy4Ahz8Uk11SHlxFqFX+0YqrVigcH5wH5SRQXw8k35bDxYS1WDlR4ZeYzt29evoDMwNrjUNZyl1uEe5Yy7SW1q5PVmM1sTLH4drAUELAYLVqc1pNxUYJlBZYPNv04uq1jTKdknuSd7sjDvc+ZFnnH4x4NcSNzW91q/ukGXJEXQ3NRNYJKIQRQ49aSe7NQiMabQpFSWMPvcNZj3Uk5hQMYmDCrJSFm9RpMfYSZcpIk7foeUJPKd7qSR6QNu4Imyr5i+Z5PfRFSAAGFq9RpGk2Ak39ZMpSQpJ/FIEl0dVrZIhrBNe7Nvksi3ZWCvHIM9vWVlaK65nFuHn8sZQ3p77//PKwWmflePZMyBjJZ97AK+3wIvDO7DuAFuI3vCp8v8niu+KiXgls0S0/JIZS117MbZ1M2bWbzENZzLXF9ToNqKOAwKJSbtRVyNWpcuXTAYDBw+fNjv9cOHD5Ofnx+0/ezZs5kxoyUWUFtbS/fu3aM6dqhEBbmGyFFVRc22cj/NNMPW07D12teS/hsHIk2iAG0ZdWrZln41U0IfuPA/7v/f5M4ua3U9nYeQDRQ3ve9f16Ii9eWLln5S2QnZjOnzGQafCpvA2KBgrEYw1jPV+Hf2Ck4Mgonf1NXzZIJ/FqGExM0n38yiHxeF/J6+DwNf5LiV1iW872ZLXMO5yLnam6Xqv4qwYX/7Wa71acmSkaicAal2HLU+gIGTrFU7j/L4x24vigRkUM9LKX/CkOQ/gZMQaCCRB+03gOBkXrcmMOYF7t5LNof4zGlTLEVQQ20C6Ju845eq7zs+QWBaVR1Cv4spLb2Hxf/4CeqC3YOyMHXLB5Xrq4TyX5h26Ff1JB5B4MHqgzwqHKAurSRk097KdJEjTRk0Hh1KQfpK6hOrSWnKoKzqdG78rp4XigXGFYZejQfVZopC0HPl3AFw1kVn+nluBvfIZOSz23GmvhfQ+0zgecdveIxXFL+fFpQamvrirbGMM3E1amazmcGDB7N8+XIuueQSAFwuF8uXL+f2228P2t5isWCxWOI5pKAaoh4Ea6bZDDD990YqMtT3o0Vfr6275CoRST2dVgqGV2FJc8CYR6DkXO/rqsaxvty9SlNKYwnRsVlLPyk5/uXrqmwSahATDiA5UpCcyV6Xslt3QvnBK6dz3zTwJlbsXaFcM2fLBkTFRogXiqt5pPkNdqycR3Hf0WFXGC6TGUt2Fi2LfYGFiVMZLU0He13AKqKKUqmM8eJqr/ailvIGX0IJyPo+DM8dALbiE/1cvI+IN/Cc4G/oBSREQWK4uIWlrmE47ZkYDA2KBl0A8usrMG1ZEvFsXmkCOKx/f5IaPmRTxSYSDAmILpt/ar6nG/kIyex2sYcrFPYbrEp9VW4/RhSNYUDdOm9yif/x7PTMGMUfrrhCU9Nea/n5ZFPH3OpfWWRIZFr1r8yklkrSvYZKLRu5ZT/hm20GCrOv2llBeXkPKA+WzKsmJcSJCY3WCahajWUsibv7ccaMGUyaNIkhQ4YwdOhQnnnmGRoaGrzZkG2NJgktJ6Q1S1SEmHJXpcHz1zt5dq9nZmJJgSvfgsQWIxarFVBriGSFpxVLuovEERfAxdPCb9wKySot/aT84l8+JPeSNSNnYrCngqFOtb0JtKRzi6KoXjN3+GKcDcGdk+XWG2k0krHqfkxDf3CvMCormf3xJHa7mpEEwd2DTkxg/oV/w5iVyYe+iiJy/POHOrehR/JbRbgkeNz0Cqut/ZTTx1VQ1MUMgxxva1E7GYa0bjeCXG+FCKJIiquRx02vsMbajyqFhpQyEjCt4ihCiAlMJPjGXicUT+DZH/1lslyCwLQmAWHCM+5jJXcJXSjcsmfVRAenBD+c9DBTlo1lWk5AKYAgMK3eTtffv0jXFLcBURMUEBBxNBXibDiBeaZnObupjjEHanBIojeLUjZUWptoRtJsM16NOcNNQMPVWMaSuBu1K6+8kvLych5++GHKysoYNGgQy5YtC0oeiTWqS2GNDRTdWUJHfVJg/X8olyAwyVnTIlZ6xZ9h4KjWDvvYwJykPcOplXI66g+H0PEvAbdmpCAZuLGqiVcKQ//qvtmWgccUEJGsXckq70KaLbDMWOIB498xNDhwJBgwiQ2wdAamK9/EVFjIbxPmMuW/M72jum/kXBJPaBH19ZthSxLs+AIEMejhK2pIHw/krjG9uf3c3hEJyPq6qgcBmAArNJ8wFdb/FyO1mFIFkCQEIFW0siDxDa5vmOZucZJwAHzi0SLQz2pjRFMzCPZWaW76jy2Nd3s/DhJsbPqQ3bW7qUmQqMowBLdFClmM74tyfZVvuc948WoGpP2rJYnHsypM6vtAUNKT0uRIwoW1/HwuEtf4lXL41v4tdQ33TnS0EElBfbwac4abgMamplMbbZIocvvttyu6G+NFqKVwrzJJpY2DP/aqUoQeH3r+JdEjtQd76/Yh4UKUcLs3mppBMCD1uZDViWdxZMOBVitRHxOceY/22XYr5XTUHw6h418SErecdCvfV5Rzh/V/rLLmBdd+SRLd7XYMwPTiS703XOAxJVw8f9rvSX/mIdUmovvo4hX+NfnECkeUXMCAH59lU+NBd/ZdyQXq5yrMBEB+8PV27Ge71M37uqauBRoI76pORDAkUHLhEUyeNkhyW5rPzruaD01TeGP3g36fcOFTP6YhjhrN2G7x/NdmgOm3wLTRCg9P1UJhDyr1VYGycUtdpdxV8TWbCqvd308QOKE2myu+dzK7y9eMKGnJFC5OL1YUFDjYkMs8yx9xSf76s76rcfk5EmltZjhC7bPWnIxNNIZslBsqpOKdDFZswjddSAT6taF+ZofKfowVWmIx4ZjXfwBvN/3Mrppd5BeeyHVDZzBV1tQTYFq9HQGwG5P5za5L2byhRfw32odKu7LrS6/Ybli0bgfuWfIJY+AXpe6b2uR01IR61eJf8vt3jLgI13CJyteXcdvRb7g13780wSUIzK6sZWTPMdD/SsVjyoK2pyf0Zo/GrtimZJc3Viik5DB95KPuMoWhs0LPVDU2TJUNmjsBpoGZFw9EEAWqGqxkJlsYWJiGKFZR1iBEFJjX5Kp2yt/Rd3wCJ659kLtvW8e6Wp/fSY5tNTX7bRsqjtqasZmdMMhcrP7wDCwU9rhRcTkUr0PlRA2BN2qmcGLWXLZ5Eo0W59STlLOIZ7fAsz4KWCnGTCb1vpdNFfcDbhf3zKHTcWycS7KrOUhQXV6NP5X4BkN7XRVWVAEib7YZap9HkzK5ecxMnhjTndIS5TKeUCEVQRCYlnkqUyr85c1cwLTM09pklQZxLr5uL+SZdrQGDSDlT3O55ZntPPmakzsX7GCo0Mu/MPi8BVgtXbizYTKba/2X9HIrlGUbD7Xqe7QpXz+F0SJF1do9JPXllK14hM1mo19hrPvPyOZz76VMCF0aIf+esuEKjH/5GjTf9wVBwGAQyb7yeUZJJgZYrYgeaRRRkhhgtTLUaeSTnveyamcFTpfkd8zpp02nOL3YLa4bqfyGHCukpUyhtLA09McEgRUnzKLOZcEVcOm6PMXjD9o9Kw1PTWVyr0U8/r9bmLfh9/y/7dOYt+H3XPXxRK5cciUTl0zE5gxtCGKD+/sKH9/t/zsJAtOqagJOnbtJZtPLt9C0aZPin/3gQfemIQr11fhd39+pPzwDC4UT0uDCP0FyLsjxNx/UEjUqycBcfiZml6TqyZQkgZq6ZJ54H0SbO4N7QPYARpmyOEda46fDam8w0FRpoqnShL3KwPCK9dj+u5SmTZs4S6jkpbFdVUUVopk4hxJq+MPvR3PuxWeROGCA4l/IHIH6ckZ887zifTbim+fcCWNtQKdcqUGIWEwUswXBZqfxhx+YkXoJr/1axfU9LqFR6MsNFQ+xy2aEJP/tldJtvWhpAqlA1EXbWrE1Ylr/JCXvv43jLxe11JP5YknBeMu/tCe/SBK2j6YzsUsyFQaVpn5b/kL27n+HzYoKXDmpxb+U2q2QkoNw0dNMW3prS+2X54F7Z/3vWfrBPmBf0Ao7GnHdlu8eeesNp0vigc8PM9inZk1GFOB+240tDTo9NZWCsaHdA/OA9/uOOHs2A9JK2FS701PQ7G8U3E0yuyC5tsBflJtsCmYzJe+/jcm3UH/M3zUN46ScYHFhPwJrNQdcCkMmK24amFQxXlztLeL/uP43GPb3U02OaallFGk4dD7m/I8YkXUtQl5/v9W4atPQz+71/m93s5kvP/6YvVuXU/T9HH4d9ignnH1Nq0IcQclArQ2beBLCBGs906qsQfeZYG1dPDUSOq1RU43FRClieOje+0gF7gBgDnuBR2npUlue5G9MFNNtlRQ19nyjychFW7StGckFWz7EVLMfU0otJCvFv2ph/ZNwgsYLc9P7mLYuJb8wj0oxOuV573YqaiNKmpGKAekBlzHi5/cZULeOTRYzA5pt1NQP9KbIg0Kz0dYQResNeWWwBP+aNdnt6DvW/PREJp50K6/suF9xX20ZmAe831fI68/0oTN5Yvk0plcdDVrgapZi+vBhTL6F+t/EUHpJpVA4UNC8S0pLeZFvhut8T8ZnRUNvnE3dVHVB5VpGR2NvnLtm8E5FArcNB8NFTyPu+RqpuVbz+ZDKdnPi2gfBWkOf7x+AoeNanUUamO7fKnziwSOanAFKLZ7JQRv1V+u0Rg2UZ/H5hSUI5p1h/fNakbvUBho1Ge9sT0lRY/FtsG91+E7HHqIp2ta0wvNVjDj4g/rOPLPxH9Z+R1PmiRytt6rP8Dy1aQJCVMrzSqi1AlFbxfl/SXeK9/S/DOUJAW6qamam/caAsYRYYUeEtlhhIC0rA8ErnZUmNfq7HYHbzynhrvP6IAqwqurtsC1U4o//9y3tWsriyz6B5wajlDmsiT1fQ5ZnYiU5YffXEEGXiEhREjTPT7OQkWSiptHm7aQQKGJsVShlUGps6z/JdSetCGpJK0p8/eewajztik9CmCA5uba6lkVZGVxSW88Ws8k96ek5CgwSVGyOayF2pzZqSrP4SaPvpmR0L++Kx7prF4fuvS9uY/Cm0Copamz/1J2+DXG7UINWeBLw2UPw67fu1RkeXb6AwL/Sg0heMUx9rwpoaQMTlBgTUJumqjwfo4dvOM1ILyk5ZA+aw8tfP8ij9kmK9V5aClpDYa313FJj7sFYa8cUQT2rb7q1rFk5NeFv/FG6mKqEekTcD7Vu+VlsrXJnJFzd72ru/9Z/taa5hUrMUEiFD8g2lFuaeM9PnHBJ7gLjSFxqao1xD9dakXC3XlJNv28Y5rdaC9fY1jtxkZNWVn2m7YsFGvkos0jjhk/ZhK25lgXZWVQYDczL8bmHfJrexrMQu1MbNVCexQuCEPeiaL90W1VFDbyGRb5Q7V++iiN3mOp+o3Ex+q3wDm+G2uVhOmAE1+YFJSr4EOS2C0hND9QybNln7B6+4TQjZb5KLGKB8CCSmAKuoLe9RFukemi158R+9v8QzK9E1Pk8MN16qTSElV2/QDSuJNlHdXjeBmCD+/+zLFn0z+7PL5W/qMcUY03PM6FupX+rEXAndfi60T0PbvsPyzxxtPgb2RteX8saY4txDZeJHE6Kqgs1PG7+K55qRe97vun3YuN4mhP/Aiiv0nzpkmzxGt3CgQ8xcN23UX7T6LJIIyUi6SvPRMb07xta1ey2tXR6o6Z5Ft+aY6j8+5EJ/TEIhFDU8MfeYGDn7X9EcqqPUZa0itooa6kbKxwEB9b7vRyYqOBLkNtO4RjByvPxq10JJ9nTojYyCyTlWyCwSFWLGzeQSDufB6VbhxHYFhAoSCng9kG3t5SbtGKioDkZ6eI/wL8vbOn2cPYD8Nr5wW50z+zdse6bVhs0o8WFIEoh92MTje7ELZ+fNFycNLQUlcRjpldJkpoRPeffaUjEnpANgoAJA0tO/JrUS/7MfV9vZkf1DpzWPJrFvpAaPM7UBCN//PhnP7X9a5Kv48yC8IbNmpaAkBIojWaAz+Z6+rTFHpvTxh2f3kG1tVp1mwxLBq+MfcW74vrGdTrmlIu4rXkrc1PV6+fuOOkOv44sACaTCYPB0Opxd3qjBqHbsseC7BQLO3z+7dcK5fBmzbpzDqsY0qBB5A/KIEKqK3hiIxPfhaUzkDz+caVEhaBxEeC2CzhG4GrNBXFzkYWtU5TcaiNIwTeQWkFroBs3Xm7rwPY6aXtGkJv5D5WtJaaf9DuGdx1JqdibsoPbKE4v5rSqDJqq/bM1qywOqjPVZ8ZZCVnkR5KMJGcQXvAkfPmYerwnJQdOuw6W/DuCsxCMKdlJyUVHcRScCefP9XvPJblXaLtsRsWErVBx0lArct8GrhICZb1/R3WPCyDAZVa9ewe/7/57qnNqcNgT4ERT4F2lOp01uS7CeeZZIb65m4MJTgRRZS87toEhPque23vejj1Ef0CTwcSBvQcAaLI5ERpsOEfcRRehigcNAnaF+9tkMJHZmMnu3buD3svIyCA/P79Vz4XjwqiFIpoZeCCvTj6d/yXmK/vxw62M2oNwbdhTc+Gip7HvWInJXqfqdsxprCLN1uD32s9frubkpp6IAhiHPYLpqxbhVD/l+TgqDITVjAxwEclFzPJtdOPovt6YFbS4WKJJ1IkGOd167ZrNpP5+NqJd/boR3n6Ipje6c+eCHQg2J7CdPc8Ep8rbjXDH7w2q3Se8MQ6t31HOINz4XvjuCydPBFpn1EDAlJWM6ea/BLnbVu2scLscVZ5moeKkoWSj5AauY8T1lJ94FdW9ryA3K4MkU4sCF+ZUyGjpJFLXbONIrQ2Hq8W3bRRFXDj82hzJmBwOCurDS1eZU5yIRgWjFnD8WJNry+Vgw0HV9wuTC0k2JyNJErvKG8hJd3/HBHLoK9Zw2BR8vcmf8UWSJBobGzlyxN0jsqAg+uzj496oKabK71wBX8zBWmtsiZGEQBRQTyrQrDvXxoRrw56Sw57Sx8lQSarIaazilS+eDJbUWQl7Pf8rmM2U3DoW0+EvQHIiCAamp/TniSQpbq5gOS27alciI2qKKGveS3qdiyTvhFzAZc+kstpBVcJ+EJw4TnyDyqxG7z4ClSHaSl3cF4MocEoa7AnR9BHcK3fb/v0hm04CmByQ3iRQoaCFHHWMQ2v3hQh/ZsFkVOjfpqzLCNrjn0rbhZaiEnjQfgPDU3ZR3eMCcrMyyE7y+TKCAXJ6+q2SEhIS6JIu0WB14nC5MIoiEi5+rduJqNBrTnSCuVEMe4osJieiIWArhePHGovFQrWrmmZH8LlLFixkmpJAkmiyOTFKEkbPPe0giaOkIBgqEMSWa9NsSCArNUvx3k9MdDfGO3LkCLm5uVG7Io97owZQkS5SafGc5MYq2PYnyBcgxQWihBDCj6+p4Dmc7lwc8OuhpoAxMxNTmE7YJedcy6jvu1JmDb6g02wNITXiwOMqHXIHpi9We49RevHLLI4ysB3uO317xM7DqytwHDrEK188yZ2q4zsKtKRh274WuPMWA0dj+cD3sLtmN1QIbdZLKhSS1xkX/HrErmCN3Recv/0bP++vIVXDLrtMvwNTt24YUlJx/LgQhydD15gApsEXqGb6tUb4N5wUVQXp7B76BxIMZpICL4GM7ooGRRAEUhJaHq1VjTa3q1vBqDkMsC9HQHQayU0sQBCEoBhfstBMN8PR4C+kcvxYIggCeUl5/Fr7q9/rRifkHbVilXYCbmmqooDPSgj8KmbiSmi5Z1ON2SGvs6Qkt5KF3W7XjVq0KCYV5KSC5zbMniLRvd7J/ysrxyiI7loLH5++1mzEZVIpFmEYZ7jWYhRcOCUBg0p37dYSSQ81U4hO2KFueK24EjJj0updy3fKFY04xszUZHB9MTslUpskjio1m2xlEfOsb2axe7vQLqu9QIrTi/lV+DU2NW0auy9cO/91Du+zBfUsVOLoswsDXnF7PwSDRMnvZ6L2+G6t8G9gHFNGjo33K8lg96Z1+F0CCel+baZCYRJFJEc6glnBMOE2bC5nBobERPZVNWEPMFRWTKRKjaTRiCB44oQRHF8rkuS/wky2GBAEgWRTMgnGBL/VWqJgBskaYm+4e+45jThdJgTRjuQykWJKDv2ZGHhvjnujFi6poDIN8hOcpNjcAsbULIeceRFVxS/beIipb/9IFpNZYfmZNKmRehJZ7zyRM8X/uXXgBAP0OhPYEnZ/4YioS3aAukLZD69R+dV8GDkdSs6hqAAeuCyVl77exdF6m7vxpkNhSaPCpgM1DB3b+lbvmgRtPYXw0ZBrKeJX4UBcipjbXLJKhYl9JrJ873y/16LOlgwTK3YJBj51nMZ3zbmUENiuJzLcIsqCqlGLhfBvKNmo5uZmjwFxAp57NV17HCvZYsAoJHof7kHfz2XCKLhdb3ancp3JAakLycJ+DJILxMiOr4WaJhsHq5v9jm8yiBRmJJCeaA5arWUlZAFatG0F9/PCVI3oyiDZEn+Tc9wbtbB9gHxFWaOQPvKtg5ELamX9uDWufqyw3E0ajW6R1TNmwF9ujsn3igZbzQEmbniKiiwLbHnR/SeTA8k5buXx+UPeZes34FM6pUplY1sI6rae0V0vZU2j/0oh1ANfS4KRzeDukN7mklUqnJJzCgMawuhkaiVErFhCoF5K8CYXaWlp0loG9RL8Jl8yXVLM/P7MYgb1Cn/uQ8pGiQZIy4HmI5DeTdHtZ3facUjK37FLmkBZbQqCGOw+lxzpFGYm4AhUsfbBgYEDUhcKhQpsiQUkt8LtePbZZzNo0CCeeeYZwG3Qfq1oDNrO7nTxa0UjPbIhLaFltZZgTCDJlETodVoLksuCZM2je3ZS5+mn1tFREz/2b50RnfRRYB3MUtdwllpbUuNlI1c1dB7FhcVhH5SS2cRujkLFZoBWxWr81BdSLAxbey/5DgeVokm1aLJHeiFnnVhA0p49mo6RldR+7rZImNC3lMW/Ltf8wFdSapn97Wx21+726ovWJkJVhoEBAfuJqKBVC8212rYTCNbJzDwN4akTIxbYBlRjxQISs31qGsuTMrnJ4xb2Zf6lJ3GiraLVpRF+IQTP5EumCXfSz1u7I3P/+ulAJomkS7hdjhnKzY1dkotdNbtwhDDcRrMBu8PEpgO1VDY4yUo2MKBrGj0yMklPNFPfHNro15BMjZRMcYKyTE0oowpgFIyYAoyhJEkcrFZPtFm76ltO+b8JVFZWkpecR1lDGXlJee5FaxiefOklFv93Fb9s3oTZYqamujr8h2KAbtRQX635t85Qz75SQk5qqNlWTkl1sPul1pxMeVKm18g9mzWIPj4PSpcEP+07yrObZtHkrGv5XKKLinUtDVdbE6vxVV+4SFxFqXkp0xITNOk0Duia7s1yDMWArtpdle2JQdQojOyDb4q//eBBJvaZyOPfP+59P60J0pqc3Nn9YhyHDmEqLAxbGA4tv6lmfnxL02Y/769hWN/SFoWdzD7uliAatUcVUciiPZh/Lkt3+9c0lidlBtWQHcrrwUmm1l8f4UIIkbp/A3Ugu6YaeGx0HjnNNhISlJNSBASMojGkUVuzo5kXlpdzuLZl0pqXVsWci1MZN7CAZIsBk0FUdUGC2yWYbAlOoNBkVEUjvTP95bsarM6Qx/PdrltmJieYT3Afr6kp7GdsdjsTL7+cw2edwauvKncziAe6UfMQJH6Mbxt65a64avgmNfQAxSB5oLq/nJllKixkeaXguamaSOqZgZigrijRmljN0XorZLgVyOeZ/opLClb+kAlcuWjV+j2WGoBrEkZWQP6902025a7qr81lp/lJd2JOQYHmB7CgReHDZMRcsxZBDC1DZRON3LZ0F8Yfmrh+4EVk1ldx/dE6mg81g2QCoRlevgXOn6ua/KS6whw5FfZ/S1ZTLfmmVA6MnAe7dwRvF0BuagJEp0bmR9gQQgTuXzUdSKfLvaIxW9wxpqAxNFeTZ23i18C0ew//3dbA/A/Lg/Z7pNbmp3hSmJGg6AqUKcxIUPweaka1saGRuffN5YslX5CSmsJ99/ivit96600WLVzInl07SExKYuiIM7j30flkd8nhwL693PR/EwDoXuCe7Fx3zTW89tJLfLJ0KfMef5zNO3ZgEEWGnnIKT82aRXH3lljfQ7fdhqWkhL/9Q008ID7oRs1DkPgxLd2tI3U7RpLUcDQp0y8zy/+mEhRVwGViE6uRvArksgHSotMY9/5uURJtliZEL6kWUWJOYWHYB/BvSn7DlsotYAHeWUhak0B2okKsp6kK43+uxmR0UDL+CA5rS89fhzGZyY13UI3bVSV7BnIPHWLYm09yhufhtwff/bp7nClJsYVdYeakku1M4bPTH+G0/idSkL5fUzaibUtZiLOmHdUQQgRxw3A6kAAHq5tJSzD5XxtOO1TvI1lykiCaaA64bpwuiZe/rFLdr6/iSXqimR7ZKCZtdE02koJTdZWUZ8rmV8cBv9f+NOdPrPtuHYveXMTAngN57JHH+OGHHxg0aBAALqeD2+69n57FvamsKOepPzzAwzNu5fm//Ytu+fn8/emn+d1dd/HTRx+RmpJCosWCdedOavftY9p113HSiSdS39jI3OefZ+L06az+978RxfbtPa0bNR+CZuqn/RaWzWpVKnooAjOzlG4qp0rPJlEQOSH9BDIsGWz2xNe81OzWXO/qKwUkE6TTKEn0yzjB78FgCnCVbjpQQ2WjjawkMwO6prsVRVrT3y1KslMs7LIZI0pM8DW+8ZZUA/UHsIyvCxNUXMySBP+4Fkx1IEmYkp1+nRac1HJT8idMtd/lt69UjfWF2/f8AJZqwB3jy0vKC7/CzB2AaeAVCELrsxEjRTWEEEF2Z2gdSDd2p4sGq7OlDk2SoGafW1wAyHM4+dXk/1jdtL+Z8jr1cx6oeJKeaCYtweSXXp8kurBu3441RD9IgyCQnG+hwZNq31jfyPtvv88T/+8Jzj73bIrTi3njjTfo1q2b9zNTf38Tv5TVYXe66NajJzP/8Di/G38eTU1VZFosZKW73cM5WVlkpLU0+r3kvPP8jv3iH/5A0ZlnsmXnTgb09rg4BQFioOUYKbpR8yFopl5YCiddHrfjZadYuMdHaFX5plJerbkkF4caDzFx6cTg/dZIPGsAc4hgrk00umfvUoZXCkhuMR+k0ygITDv93qAHg29MaejACL54FGhdGb5x53ns3bqcwtRG9veeQvchF+I6Wo6zrs5vW0NqKsacHO++29L4hpXx8t1WzcUcpk7MgLs9Sm/HfrZL3Xze0baOlevroMWoRuLiC1f7JV/zsVzxa+qCHgKtyiS+Elg0V7tjkh6SJRcJkotmoWW1Ut+s7cHue/zAAm5XU5PbgIZCkuhiyqTB5l797t2zF7vNzsmDTyYvKQ9BEMjKyqJPnz7ej/zwww888NDD/PTTT9TW1CB5yjMOH/mZrOIS1UPt+PVX5j7/PGv/9z8qamtxec5JGXBaiedzBgOiue0TxeJm1ObNm8fSpUvZsGEDZrOZ6jbKfGktbTFTl3l18ukk+yiHq91Ugas1AZF+WX0RBIHNFZuDZs4V6QJ33mLkFHMv5o+a750euyT4aMMBXv52t9cdBXgbUqZKjV4XpJ9OY2afsA8GTQomKoZD62c1ie2mmdwdgk019C1bBD0nw8ABIcfeHoRbrcmoupjD1InJItT+Bg16CEciGqevUT2dnoxu6uWX4QnuB3CvtF6cTk+/z6rVfpU3HW7xLnhcrNS0TDrSzGl+7latkw7NXdBV0KpMYpTdax63o98YgDyHi19NLUatJDsHUNdPjPT4oUhyOUhApNlHZ9KCu4A6kIaGBsaOHcvYsWN59Y2/4TKncaDsf9xy5Y3Yw8iuXXH77RQVFvL8o4/SY/BgMJsZOHAgDkFA9MhdtRdxM2o2m43f/va3lJaW8te//jVehzmmCfS+qF/U/qs1CRd3nHYHgOrM+Wg6/HbMTBK7uh/oLRlddsjwf9BVkM4D9ht5zrzI54gwvbKaJ3oNYPqQu0M+GCJSMAl4OEX62ZAPN9kl15E7BHtQWq0JCH4TlJArjTB1Ymoi1L9KypmtashG1XHoELsuuJBbVH+n7ez6fxcG/caBtV+RZH9Gk9EbbbIPhFcmAZ/sQx+3YyDu1ZpEsyCQYEzgzBMKKUjfGrXiSUTUlZFnlPjVZKKoZxFGk5E93//AGX1Og8RMqqqq2LZtG2eddRa//PILFRUVPPHEE3Tv3h1Jknjh1R/8dmc2uT0ETp/VaUV1Ndv27OH5Rx9l5ODBWEpK+G69f6uq9iRuEb05c+Zw1113cdJJJ8XrEJ0O+aZSMh/yag3w3qzyDSwK/j+jKIh+N7ScfBIqXrDENZxlztNxSJ59CQZKe41l8ZVfUlpYGnLckSRKxPKzQcjdxeUHja9ifAdE/v0AeqT2CFpxh11pyHViAZ8TkFhgmkKlQu+7SNSFfa+jWP1Ocvq9oDKO1mb0yiGE4vTiiEWzZWUS9zgCx+XGm33oaPZzOwZum+dwYJEk8iyZGA1i2P3GLMYoSSRLEgmSi6SUJP7vd5fy0NynWbHk32z86UcmT56MKIo4XA5yCnMwm808/ezTbN62mX//59888+RTfrvrXuDWo/zkq68or6ykvrGRzLQ0sjMyePXf/2bn3r2sWLmSGTNmBA1l7969bNiwgb179+J0OtmwYQMbNmygvr6+9d8zBO2bpqLjR+ibSsB2ZCy5CUXem1We7Qe6r3wfhqEyugKPsDBxKpLcEiKKQvN2xU8x3hePYnx9eTsMKjS+D+D7h93vN0EJnJioMuAytxtS8MRtBAP0u5hRl7iVaVrzmIxlZ3IZQRAozbxauc8d7pVhaebVrTqmHEIINxlTQo4F5qf7e00MouCVjALAmOAuxlYhRZI4wZBESmJWy37/rw/5Kf6P3PwUkRf+r49qZ+5okBNWLJLEnx68kzOGnsqESXcw5vzzGTlyJP1O6UeNtYY6Ux2PLXqMf/7rn5x68qnMmz+P6Y9M99tX17w8Hrz1Vh565hl6nn02M+bNQxRF3vjjH/lx82aGXHopd8+cyYIFC4LG8fDDD3PqqafyyCOPUF9fz6mnnsqpp57KunXrYvZdlehQiSJWq9WvG2ptrUalhA6Ab1zIUV4OJhOEaBuiFvwOHWC/knED7/TbPlxwXEtGF8BD4/sxeWQvDJuFVosPtzkaFePj5YZsTbKDbwxXQoo8HuTnhmzptjAuJUfxOspA2yxZEISoet75qdQE9hbEnd7+zteJODODM3olScDV3JV3vk5k6jAX63+tUt1PPPGNBW6r2EeKuYksowGT0UWTwyedPiUXo60ek0ulg3x6d69IsNNhY2xBI2Mm57H2oI0jDU5ykw0MLTTjMjbSZKt3S3EpYBSMRJpDmCJJnGC3Q1Iiby56DPnKl3L68n83XobDZkWywyUTLuSSCRe2DBvYXb4dp1FAanZfN7OnTGH2FP8wx7mlpfyw2H3dWkpKEBMT/eKsAK+//jqvv/56hCNvPREZtVmzZvHkk4rlpV62bNlC3759oxrM/PnzmTNnTlSfbU+0xIUwGun23CJNGXehxFUDCRcc15rR1SXV4t5/gMDxMYFGxXiObIlIt1MrmpNYwiQ7RB0PSslR7IQgX0dPf76N577cAUhMSf4IQZRCF2oboCZB4r4oVmm+KjUABQHZjt/vrqSsxorBEZzRK3iat5Y1WBk+fzmVDTbV/cQbgygwuGcqs9fdidllZuYJMxHrBMRm/5WW0WSit9UZ7PLK6E6NTeJgtTtdvodwGHBiFAVKu1m8m7mAXUYRR0BrF79jiEZOSIiBgHFCOpJkIK/MGjqTUrDi7NmVA9YDKs2KfLdtn7T9UERk1O6++24mT54ccpvi4uKoBzN79mw/32xtbS3du8dWjToeaIk34HCwz1wPnjT5rASRHF99uQDDFVJcNYBQD8PW9Jo6ZgjXXTwKIepIiUVX7GiLvwHVyYhBFBh5Qhee+3IHF4mrOS/1R+zjDX6F2vVSAs85LuHC31zFO3ueZINtF/nFA6MSOpZVamTKapr9FDPkSVZgRq+8SnM2uGucfA2a0n7aAq/8Vp26TqfRYEawWMDqE19LSKeGZK8ySAI20gVllRABMEoSjhC/tVE0IhiNbgMSLq1frZ2V3FnA5tBUGpAkWjBaEtiX00yiYKZbqjueX291UF5n9YovOwURoaKZwgwUlVbag4iMWk5ODjk58XNJWSwWLBZL+A2PUXxrf1KNmbj2PkBZTUtRZn6ahauGFtGzS3JELpdQD8PW9po6JgjZXTw6IWqZ1pQqRENMSko2vt+yahtwKUN7ZdE/rZl5VrcUmm+htksCGybWWs7h4fNH4Cqbze5ojKoKgYoZLZMn/4xeeZWmti4I3E9buCJlL8icr9W9R3lJeQgGCxyp92pfSundOXikxU3ZjJkaKcnbD83vGASXACgdQzSbsfTuDU6fSVvNAbD5uJMFSc2D6dNQVHunhLykPMqkMrKS8xHNiW41/3orCEb8/KE+av4dwbDFLaa2d+9eKisr/TJfAE444QRSUpRVpo8XBASq65JprLHjexOX1Vp5+ovt3n9H4nJRexjGotfUMYFqd/HIhKh9aU2pQrtRX+5OjPERKTYkd+HVLu+QfKA5qIxEFCBZaubVnHcwiJfHpU7TVzHDd5Ilr9YMiftxNnXzrtK07EerF6O1jCgcwQkZJyi+l2BMcNd/CYLbaNTsh/RuNNiFIJFg335ogYYtGSGoCWfQMSC4kNncw+1SV/JO+O0kuoaiKeYUr4BxODV/UJEQawfilv3YXpkvxwISoWelMrLLZdlGLc341FHL6MpPT4iJO0dOlAiFWqJEaz4bhEomYLQxwpiWG7QFfgkztCTIHNlC/sHPvYoxgRgFF/kHPnc/IFXQ8jvJKjVqyK7HiacXtWibHhmL05qL9chYtOZqao0TxwJBELim/zWK78kqHYDbaOSfBImZ/oojHhwYOCh1CTJoAEJGd3c7l3DHCMRgchtTxYG3lObEoqGoFjV/WUKsvYnbSq29Ml86OgIijqbCsLNSiK3LJZLkk0hpTaJE1J8NcLEBqpmAxw1ynZ6MnCDT/5JWxxxD/U4/769h9gc/+6nUKLHnaCOjnlzhl43pbOxN4y53HD0r2URlQ2glC2j7+O+puaeytsJfH9V3BRWIUUXQt5pk0n3ckBIgeFZRyZIUtFoLdYyWjTLcKzHfmjl5ZeZZOSo1NI0UJUPdmu3iSYdK6T9WcAYkeJwcgSy8hEvTKg1gvLja3SW7bhLf7x7UapdLJMknkRIqUUKOS6kZLmNmJokDIpCyUnCxed2LKpmAnR6/Or0AJ/PSu+D6z1odc1T7jQf3k2j8oYmjKqUjApCeZOKZL7ap1kveNaY3U88+gbMWfNmh4r/2gwexVlSQJiRhsreEkvLMGUjNzUgK+oah+qJ53ZC4/FZRgiCQl5THrz5ZkCFXaTKC4N6HtSWmR7onfhaFy1ENNUMd7XbxRDdqERLYQBBgmKOcRzV8VhAEeqT0YaOGVVo2NTxueoU0GplveoXvjv4WYmSQYt55OQQxj0upudh8a9COxbKE1qClTm/lvJjHHGXCxW3lf6sZNAF4d+0+bj+3d4eK/8rXrjM7G/HBB8g35GARPaOqOIQVQBCw9O7tZ9gEQVDtiya7IbuJlYgZ/quoZFOyd7WmaZUmI7shY7gyC6Q1DUzbGt2oRYBaA8HdGlqdyLU/c4fdyT07yjjaVKl6k0uOZOYJr5FMM4InkD9002Mw7J+t/g7x1t4LJNJeY2FRc7FtfP/4MmS+aK3TO3u2vxsywua3oQglGjDx9O5+CVBBw6MlAUSrun9b4Fj3XvhSHUnyz0j0EKovWnpGDmJi16DPyKu1soYybas0XxIzta3MDIbwpQEKtWehDLWMWgPTtkY3ahoJJTd1JCmTm8fMpJfZwauTT/fPMJNg9rezvbU/Q/NPR+x2HkkO9RiSyWHh3H3bvT+OUXCRvffTmDy4vbU3GjovdzhCudiW3Ak9zzh+3I2+aK3Ty+sf15ijWtx2yf/CK9RDSwJIPOO/mqkvh2/+BESvOK/UFy3ZYkDY9EFwPNiDb8YhTVUtq68YuRJFs5kLbr2VU046iacVpK0A1ZYxoQy1n4RYO6MbNY2Ek5s6kpTJEeB/iflBcasrs1pqf8wGMz3SC9lcUa2sfydBiaMeQ1Apf2we3OF6ecWmm3YciKMUllotmnXXrujG2tZEUqcX55ijUtw2GgGAeMZ/wyJfa7ZGWmPUILgvWsh4sC9yWxvJ6f6vOSV2bkVBQDAaNbWIWblyJeeccw5VVVVkZGSoG+qA58WePXuYO3cuK1asoKysjMLCQq655hoeeOABzHHusaYbNY1oTSNW2i6w9idkg0gBplVVYwiyKcEPbq2FwYExtAxLBiXpJeyu2Y3Lp+9SpE0V25Q4SWFpkjgLgeZyg3gTSZ1eG8ccjzkBAG+3hxh7K7TEg+XtfNvaSE73v7OiV2uKJUGGWoFffvkFl8vFX/7yF0444QQ2btzIzTffTENDA0899VTIz7YW3ahpJJZyU2oNIkVE+lmbOKO5SfmDPg9uuyNdUwJG96UfMvG7SSFjaDLxUGVvFb5p+zFIS1dCk8QZULDgj1gUJODaumt2SAZcBhs/iEvMTAmtCUfHlACAareHGKA1HhzQTdv9Wo3bHRmhG7KhoYGpU6fy/vvvk5qayj333OP3/ptvvsmzzz7L1q1bSU5O5txzz+WZZ54hNzeXPXv2cM455wCQ6Zm4TZo0iddff51ly5bx2GOPsXHjRgwGA6WlpTz77LOUeLpejxs3jnHjxnmPU1xczNatW3nhhRd0o9ZRiOVsU80F6MLFtJS+CMLRsA9ux6ZNmhIwxJr6kDE0mQ63SlNy08RJCksLluLiyMoO2oNW1uk5XRLLfvmFvdWHyUy2MLAwDTHA0MiGKtKEo46UAKJKSBd3K9EaD1bopu0lCjfkvffey1dffcXixYvJzc3l/vvv54cffmDQoEEA2O125s6dS58+fThy5AgzZsxg8uTJfPzxx3Tv3p333nuPyy+/nK1bt5KWlkaix2XZ0NDAjBkzOPnkk6mvr+fhhx/m0ksvZcOGDYgqaf01NTVkZcV/Na4bNY3Eerap2jLmrIXw/JDYPbiFMO5ODx1qlRbKTROntPR2Q6mIvDVEGTNbtvEQj370P+pyH0U0es77huDtZEMVTcJRh0gACUU4F3e0aI0H/9/fVLtpuzeNzA1ZX1/PX//6V9566y1Gjx4NwBtvvEG3bt2829xwQ8u9VFxczMKFCzn99NOpr68nJSXFa4Ryc3PJyMjwbnv55Zf7HevVV18lJyeHzZs3M3DgwKCx7Nixg0WLFsV9lQZ6k9Ag7AcP0rRpk+LfWUIlL43tGhO5qcAGn16jkpqr2M24NQ9utQ7ZAgIJBvd3iaZ3lhaiksEK1cE6xlJY7Yq8Gm044l6NxqqR6cDL4N7tmo2kXKpSVmNHsmcgScpGxtdQyddvqGafSpMkOQHkN4O6UlqS3XEMGrRkkXquLaPFhSCGWbFpab0iG8tQxmrLh3Bog2o3bS/NNWBXCU8EsHPnTmw2G8OGDfO+lpWVRZ8+fbz/Xr9+PRMmTKCoqIjU1FTOOusswK3dG4rt27dz1VVXUVxcTFpaGj179lT93IEDBxg3bhy//e1vufnmmzWNvTXoKzUftCQNdDeb+fLjj/nRmtDq2aZqy5gYx0bU3J0SErecfAsf7fooZqrsgUQsg6XFTdMZpLAUVqPSkrtYffqzbbqK8S9V8VfODxpygKFSjQ13NFe2VgKySE3JTkrGH6HBksjBBCfmVAlLbg8QfR6bKunvfmgtuSgYBFW7Qxu2hHQwtS4jU6ahoYGxY8cyduxY3n77bXJycti7dy9jx47FFia0MWHCBHr06MHLL79MYWEhLpeLgQMHBn3u4MGDnHPOOYwYMYKXXnopJuMOh27UfNBaKCzVVFMag/iKasuYOGgYqrk7bzzpRm46+aZWf5dQaO41Fkna/rEuhaWQNCD88hFv/a8XS13DgbZpjBlYqhLY50xGQKR/tr+hUo0NdyRXdqQEZJGakp0kpNgRRAkxMx8xOTXyfWotuQiUvAraT2TixCUlJZhMJtasWUNRUREAVVVVbNu2jbPOOotffvmFiooKnnjiCW/fykDBeTn93ulTYF5RUcHWrVt5+eWXOeOMMwD49ttvg45/4MABzjnnHAYPHsxrr72mGmuLNbr7sZ2R0/1LC0v935BjI8m5MOGZVj+4Vd2dHenBo9VNc2RLxC62DoVKhp1LgsdNr5CNe6Yeqy4NoQguQXGv1oSAZpMSytdLoGtbFERFV3ZZQxmbKzar/pU1lMX8u0VNoIsbA5iS3KukaJGNZbiwQijlfW9PNI2HTEnhxhtv5N5772XFihVs3LiRyZMne41LUVERZrOZRYsWsWvXLj788EPmzp3rt48ePXogCAJLliyhvLyc+vp6MjMzyc7O5qWXXmLHjh2sWLHCr7kzuA3a2WefTVFREU899RTl5eWUlZVRVhb/31lfqXVkYlxPFKpDdoegHTpYyzG/cKURMatFC7EalXubPWZ6lan2u9qkMaZSCYpSV+qeqScqXi+BqzWlyVJbS7O1mkBPiTk5NooeWsMKoZT3I2TBggXU19czYcIEUlNTufvuu6mpce83JyeH119/nfvvv5+FCxdy2mmn8dRTT3HxxRd7P9+1a1fmzJnDrFmzuP7667nuuut4/fXXeffdd7njjjsYOHAgffr0YeHChZx99tnez33++efs2LGDHTt2+CWmgLs3WzwRpHgfoRXU1taSnp5OTU0NaWlpcT9e06ZN7Ln8irDb9Xzv3+2e3q2paNhopNtzizDm5HjjVqsOruKJ759g1tBZwavDjkB9OTw3WNlNk5AOt6+LubuxTbtbH94ML4Q/7+dZ/8h2qeVh8M7Nw+OisOF0SYx6ckVQqYoheZtfbO3/jX6BM7qNUtyHJElctfQq72TpnfHv+Bk1+f3NFZtVMyX7Z/cP+ly748lMbR73Z3YbT6BXr14kJLSy7Y33+q5xGy+169lpb2kAKhjcE7k4CBV3NJqbm9m9e7fiudZqD3T34zGKnIDR871/0+3FF8CkcME7HOyfMpU9l1/BznEXYD94UN3d2VHQ6qaJIabCQhIHDFD9i2lxdUCGXSAOSeQT5+l+Bg3i1xhTLlUBf2eovFoD6JZ0IqO6jlTdhxwbLk4vVkw4ijZTst2RXdy9z4vdPrWGFWQ3pGiM2O14vKMbtWMY+WFszMkBe+jmiu3Vodnpkli1s4LFGw6wamcFTpcGx0BnStsPRHZtWVJQiqk1kMiD9sA6vPg2xlTujC6Q3DCB3IQiHh55T1iDE26ypFZWohaD69RojQf7dNOOG01VUPaz+7+dBD2mphM3lHrPacro6+wdrFV0GkUB7rfdSAUtCQltpYuoXBh9IQbx1pjsv1NmSh7rxFM0uR3RjZoPrUkaCKmDV1ZOWpNAdqJyTKRD6QfGCLXec3JGX9hi9QBlDGdSF77fWdExlSiiISBpwCGJfO4a7E3nh7bXRYy3Mr6qis7xtErrKHRw0eTWoBs1HyIuFPYQKrsru0bi2b84qXNCnco+I+r8fAwQqvdcRBl9nuzPZRsPMefJFZGv+DoyAatRyZzCImEq+HiRO5QuYgzQkimp00bEUDS5o6EbtQA0Fwr7fiaEDl5aE5hVyq5kIur8fAwQrvecb6fjcCuDVq/4whFr7cVI8FmNmi78Ix/1u6Tj6iLGiA5fVnI8EGPR5I5G3BJF9uzZw4033kivXr1ITEykpKSERx55JKz8yrFIuOyu443W9J7zJdyKD9wrPk3JJ0rES3sxEnySBjq0LmKMCJcpqRNnAt2OQe973JDHMHEzar5N4jZt2sTTTz/Niy++yP333x+vQ7YrqqLBx+FNG6vec5Gs+CJGrROATtzp8GUlnRlHc0xFkzsicTNq48aN47XXXuP888+nuLiYiy++mHvuuYf3338/XodsVwJlqGTaorY9KiX8OCL3nlMz5wLumFi4jL5YrfgUCdUJQEens2JMCC/3FUPR5PagTWNqbdUkrr1Qyu4qTu8BbI/rcaNNcIkXseo9F8tu435obdioo9PZEATOvvR6Bp3YnWfm3K3wfmSiyR2RNiu+lpvE3XLLLarbWK1Wamtr/f6OJZREgyf2mdgmx25TVQwNKBf0RtZ7LlYrPj+0dgLQ0YkhHUrQWRA8xf8KBKiXrFy5EkEQqK6ujvgwF198MUVFRSQkJFBQUMC1117LwYMHoxy0diJeqc2aNYsnn3wy5DZbtmyhb9++3n9rbRI3f/585syZE+mQOhSB2V2n5JzCnngcqD2z9jTS2k7Hse42DoTvbuzbCSCGwsk6xy8dUtDZYImZaLIa55xzDvfffz8FBQUcOHCAe+65hyuuuILvvvsuZsdQIuKV2t13382WLVtC/hUXtxTwRdIkbvbs2dTU1Hj/9u079rJwArO7jFlxiHd1hKw9jbQ2oy8WKz4/wmgveiW5dIOmEyPkkh9Bxefg21E81jQ0NHDdddeRkpJCQUEBf/rTnzwHdfdue/O9jxlywdWknjiK/P4j+N3vfseRI0cAdwb7OeecA0BmZiaCIDB58mQAli1bxqhRo8jIyCA7O5uLLrqInTt3+h37rrvuYvjw4fTo0YMRI0Ywa9YsVq9ejT2MpF9riatKv2+TuLfeegtDuLbnAbS1Sn+8iKkKvCTBP64Nbl9x5ZsxGm3HxOmSYlfD1Q6dAHSOERQ8IKGU47Xy3wP/DZII8+XFMS8yMoRodLTceuutLF26lFdffZXc3Fzuv/9+vvrqK2644QaeeeYZXn1xEQWpBvqcWsqRWiszZswgIyODjz/+GKfTyeLFi7n88svZunUraWlpJCYmkp6eznvvvYcgCJx88snU19fz8MMPs2f3bn5YvVqxGWhlZSW33nknBw8dUmwoKhMLlf64JYrITeJ69OjhbRInk5+fH6/DdkiiKehWRaFjsjdrrzMI/qoQUwknFe3FeHYC0DkGkD0gzTVuD0iPUTG7FgKTyGTiKRVWX1/PX//6V9566y1Gjx4NwBtvvOHX3+yGKdO8/18MLFy4kNNPP536+npSUlK8iX25ublkZGR4t7388sv9jvXKiy+S17UrGz77jAG9e3tff/DPf+bFd9+lsamJoaecwpJPPon59wwkbokicpO45cuX061bNwoKCrx/OlGi0jHZm7XXgd2QHY7O3AlAJ3LiXLeoVvITT6mwnTt3YrPZGDZsmPe1rKws+vTp4/33+vXrmTBhAkVFRaSmpnLWWWcBsHfv3pD73r59O1dddRXFxcWkpaVRfOKJAOw75N+l/c7rr2fVP//JR3/5CwZRZNL118e9zCluRm3y5MlIkqT415mJqtWKFvSsvdji1wKGztcJQCcsvvfqthV/i3vdYqBAQ3u33WloaGDs2LGkpaXx9ttvs3btWj744AOAsMpPEyZMoLKykpdffpk1a9aw6quv3J8LiJd1ycykd8+ejB4xgjf++Ec++fRTVq9eHZ8v5EHXfowhUbda0YKetRd7AjoB6G7H4wffezWbGlZYZuESBESlusWbh6vtJiLaWtC5pKQEk8nEmjVrKCoqAqCqqopt27Zx1lln8csvv1BRUcETTzxB9+7u2rR169b57cPsSXJzOltktSoqKti6dSsvv/wyZ5xxBgBfL18edjzygsZqtbb+y4VAbxIaI2Th3UBZJ1l4d9nGQyqf1IietRcftDZs1Ok0+N+rEvNMr5JMc4BBA68H5KsnYnZsebUGxH2VlpKSwo033si9997LihUr2LhxI5MnT/YmchQVFWE2m1m0aBG7du3iww8/ZO7cuX776NGjB4IgsGTJEsrLy6mvryczM5Ps7GxeeuklduzYwYoVK7hn5ky/z33/v//xwt//zk+//MLegwdZuWYNk+67j5LiYkpL4yuPphu1GBB34V0I2TEZBN19pqOjgcB79URhP+MMazEKLuUPSE7YtcKtbB8D2lrQecGCBZxxxhlMmDCBMWPGMGrUKAYPHgxATk4Or7/+Ov/617/o378/TzzxBE899ZTf57t27cqcOXOYNWsWeXl53H777YiiyLvvvsv69esZOHAgd911F08+/rjf55ISEvhw+XLG33QTp0yYwNRHHmHgiSfy5aefYrFY4vqd45rS31qOlZT+VTsruOrl8H7id24e3voMvo3vKWTtAVe8pic56OiEIfhelXjR9AxjxPXKhk0w0HzSNezuN7VVKf2dHVdTE9aAOjUlLCUliInqupKxSOnXV2oxIK7Cu4HoWXs6OlETfA8KPGC/gQYSCHakeDwgZ81qo9HpxALdqMWAuAnvKqFn7enoRI3SPVhBOg/YbyS4lt9Tt5jceUXYY4bB4H42hUIQ3NvFGd2oxYC4CO+GQs7aS86FCc/oWXttxcb3YUFv2PRBe49EJ0rU7tUlruEsc56OQ3I/EiXdAxIRotmMpXdvLCUl6n+9eyOGkQyMyVjifoTjAFl4FxRTOIAohHfDoWfttS3HkN6mjjrq96rAgx43pAQIugckYkSzGTExUf2vDQwa6EYtZsRceFen46B3ye5UqN2rpvQ8dg+fh6B7QI5p9OLrGNLaVis6HZTjVG+zMxPyXr1AIbtY55hBN2oxJqbCuzrtj94lu9Oi36udE939qKOjhq63qaNzzKGv1HQ0U9ZQRmVzper7WQlZ5Cd3orZCut6mjs4xh27UdDQ1MZXyunS8lvTxRtbblBuyBiI3aNUNms4xxNlnn82gQYN45pln2nsocUE3asc59oMH2TnuAqQQrSYEs5niTz4mPzmfyuZKJAWVy3i2pG835EL3PV8rd8nW0751NKJl4hizRsIxZOXKlZxzzjlUVVX5NQmNBKvVyrBhw/jpp5/48ccfGTRoUEzHGIhu1I5zHFVVIQ0agGSz4ayu9mubEbQNUlzbaLQbepdsnVaideJYsuyTDmnYWst9991HYWEhP/30U5scT08U0dFMYJNDmfZudhh3dL1NnVagdeIYaiUXLQ0NDVx33XWkpKRQUFDAn/70J7/333zzTYYMGUJqair5+fn87ne/48iRIwDs2bOHc845B4DMzEwEQWDy5MkALFu2jFGjRpGRkUF2djYXXXQROxUEjT/55BM+++yzIPX/eKIbNR3NtEdL+g6Brrepc4xy77338tVXX7F48WI+++wzVq5cyQ8//OB93263M3fuXH766Sf+85//sGfPHq/h6t69O++99x4AW7du5dChQzz77LOA21jOmDGDdevWsXz5ckRR5NJLL8Xlank2HD58mJtvvpk333yTpKSkNvvOuvtRJyLk1dqWyi24JBeiINIvq1/nXaXJ6F2ydY4x6uvr+etf/8pbb73F6NGjAXjjjTfo1q2bd5sbbmhxqxcXF7Nw4UJOP/106uvrSUlJISvLrVebm5vrF1O7/PLL/Y716quvkpOTw+bNmxk4cCCSJDF58mSmTJnCkCFD2LNnT/y+aAD6Sk0nIgJXa51+leaLrrepcwyxc+dObDYbw4YN876WlZVFnz59vP9ev349EyZMoKioiNTUVM466ywA9u7dG3Lf27dv56qrrqK4uJi0tDR69uzp97lFixZRV1fH7NmzY/ytwqMbNZ2IacuW9Do6OvGhoaGBsWPHkpaWxttvv83atWv54AN3BwpbmBjghAkTqKys5OWXX2bNmjWsWbPG73MrVqxg1apVWCwWjEYjJ5xwAgBDhgxh0qRJcfxWcTZqF198MUVFRSQkJFBQUMC1117LwYMH43lInTagrVvS6+joRE5JSQkmk8lrcACqqqrYtm0bAL/88gsVFRU88cQTnHHGGfTt29ebJCJj9ijrO50tdZoVFRVs3bqVBx98kNGjR9OvXz+qApJcFi5cyE8//cSGDRvYsGEDH3/8MQD/+Mc/mDdvXly+r0xcY2rnnHMO999/PwUFBRw4cIB77rmHK664gu+++y6eh9WJAGNmJoLZHDbd2JiZ6fdaaWEpiy9ZHO/h6ejoRElKSgo33ngj9957L9nZ2eTm5vLAAw8giu61TFFREWazmUWLFjFlyhQ2btzI3Llz/fbRo0cPBEFgyZIlXHjhhSQmJpKZmUl2djYvvfQSBQUF7N27l1mz/LuDFxUVBY0F3IbWN6YXD+Jq1O666y7v//fo0YNZs2ZxySWXYLfbMZk6UZHuMYypsJCSZZ8ck4WhOjrHAtFOHGPBggULqK+vZ8KECaSmpnL33XdTU1MDQE5ODq+//jr3338/Cxcu5LTTTuOpp57i4osv9n6+a9euzJkzh1mzZnH99ddz3XXX8frrr/Puu+9yxx13MHDgQPr06cPChQs5++yzYz7+aBAkSQqWh4gDlZWVTJ06lQMHDvDtt98qbmO1WrFard5/19bW0r17d2pqakhLS2uLYero6Oj40dzczO7du+nVqxcJCQnhP6DAsaoo0taEOte1tbWkp6eHtQdxT+mfOXMmzz33HI2NjQwfPpwlS5aobjt//nzmzJkT7yHp6Oh0IpwuqcP3MDQVFupGq42IOFFk1qxZCIIQ8u+XX37xbn/vvffy448/8tlnn2EwGLjuuutQWxzOnj2bmpoa79++ffui/2Y6OjqdnmUbDzHqyRVc9fJqpr+7gateXs2oJ1ewbOOh9h6aTjsRsfuxvLycigp1pXZwF/HJWTO+7N+/n+7du/Pdd99RWloa9lhal5s6OjrHH8s2HmLqWz8EyWvLa7QXrjmNcQMLWn2cWLgfdbTRLu7HnJwccnKiU1OQJVR842Y6Ojo6keJ0Scz5aLNCvwh3LwUBmPPRZs7rn9/hXJE68SVuMbU1a9awdu1aRo0aRWZmJjt37uShhx6ipKRE0ypNR0dHR43vd1dyqKZZ9X0JOFTTzPe7KyktyW67gem0O3Ervk5KSuL9999n9OjR9OnThxtvvJGTTz6Zr776CovFEq/D6ujoHAccqVM3aNFspwVfsV6d+BCLcxy3ldpJJ53EihUr4rV7HR2d45jcVG2xLa3bhcJsNiOKIgcPHiQnJwez2ayr6MQYSZKw2WyUl5cjiqJiToZWdJV+HR2dY46hvbIoSE+grKZZMa4mAPnp7vT+1iKKIr169eLQoUO6zF+cSUpKoqioyKt6Eg26UdPR0TnmMIgCj0zoz9S3fkAAP8Mmr6EemdA/ZkkiZrOZoqIiHA6Hnw6iTuwwGAwYjcZWr4J1o6ajo3NMMm5gAS9ccxpzPtrslzSSn57AIxP6xySd3xdBEDCZTLrEXwdHN2o6OjrHLOMGFnBe//wOryii03boRk1HR+eYxiAKetq+jhe9SaiOjo6OTqehQ6/UZAWv2tradh6Jjo6Ojk57ItuBcMqOHdqo1dXVAdC9e/d2HomOjo6OTkegrq6O9PR01ffbrJ9aNLhcLg4ePEhqamqr0jzlvmz79u3ThZED0M+NOvq5UUc/N6HRz4860Z4bSZKoq6ujsLAwZB1bh16piaIY09bfaWlp+gWmgn5u1NHPjTr6uQmNfn7UiebchFqhyeiJIjo6Ojo6nQbdqOno6OjodBqOC6NmsVh45JFH9O4ACujnRh393Kijn5vQ6OdHnXifmw6dKKKjo6OjoxMJx8VKTUdHR0fn+EA3ajo6Ojo6nQbdqOno6OjodBp0o6ajo6Oj02no9Ebt+eefp2fPniQkJDBs2DC+//779h5SmzN//nxOP/10UlNTyc3N5ZJLLmHr1q1+2zQ3N3PbbbeRnZ1NSkoKl19+OYcPH26nEbcfTzzxBIIgcOedd3pfO97PzYEDB7jmmmvIzs4mMTGRk046iXXr1nnflySJhx9+mIKCAhITExkzZgzbt29vxxG3DU6nk4ceeohevXqRmJhISUkJc+fO9dMmPF7Ozddff82ECRMoLCxEEAT+85//+L2v5TxUVlZy9dVXk5aWRkZGBjfeeCP19fWRD0bqxLz77ruS2WyWXn31VWnTpk3SzTffLGVkZEiHDx9u76G1KWPHjpVee+01aePGjdKGDRukCy+8UCoqKpLq6+u920yZMkXq3r27tHz5cmndunXS8OHDpREjRrTjqNue77//XurZs6d08sknS9OnT/e+fjyfm8rKSqlHjx7S5MmTpTVr1ki7du2SPv30U2nHjh3ebZ544gkpPT1d+s9//iP99NNP0sUXXyz16tVLampqaseRx5958+ZJ2dnZ0pIlS6Tdu3dL//rXv6SUlBTp2Wef9W5zvJybjz/+WHrggQek999/XwKkDz74wO99Ledh3Lhx0imnnCKtXr1a+uabb6QTTjhBuuqqqyIeS6c2akOHDpVuu+0277+dTqdUWFgozZ8/vx1H1f4cOXJEAqSvvvpKkiRJqq6ulkwmk/Svf/3Lu82WLVskQFq1alV7DbNNqaurk3r37i19/vnn0llnneU1asf7uZk5c6Y0atQo1fddLpeUn58vLViwwPtadXW1ZLFYpHfeeacththujB8/Xrrhhhv8Xrvsssukq6++WpKk4/fcBBo1Ledh8+bNEiCtXbvWu80nn3wiCYIgHThwIKLjd1r3o81mY/369YwZM8b7miiKjBkzhlWrVrXjyNqfmpoaALKysgBYv349drvd71z17duXoqKi4+Zc3XbbbYwfP97vHIB+bj788EOGDBnCb3/7W3Jzczn11FN5+eWXve/v3r2bsrIyv/OTnp7OsGHDOv35GTFiBMuXL2fbtm0A/PTTT3z77bdccMEFwPF9bnzRch5WrVpFRkYGQ4YM8W4zZswYRFFkzZo1ER2vQwsat4ajR4/idDrJy8vzez0vL49ffvmlnUbV/rhcLu68805GjhzJwIEDASgrK8NsNpORkeG3bV5eHmVlZe0wyrbl3Xff5YcffmDt2rVB7x3v52bXrl288MILzJgxg/vvv5+1a9dyxx13YDabmTRpkvccKN1nnf38zJo1i9raWvr27YvBYMDpdDJv3jyuvvpqgOP63Pii5TyUlZWRm5vr977RaCQrKyvic9VpjZqOMrfddhsbN27k22+/be+hdAj27dvH9OnT+fzzz0lISGjv4XQ4XC4XQ4YM4fHHHwfg1FNPZePGjbz44otMmjSpnUfXvvzzn//k7bff5u9//zsDBgxgw4YN3HnnnRQWFh7356Y96bTuxy5dumAwGIKy1A4fPkx+fn47jap9uf3221myZAlffvmlX0uf/Px8bDYb1dXVftsfD+dq/fr1HDlyhNNOOw2j0YjRaOSrr75i4cKFGI1G8vLyjttzA1BQUED//v39XuvXrx979+4F8J6D4/E+u/fee5k1axYTJ07kpJNO4tprr+Wuu+5i/vz5wPF9bnzRch7y8/M5cuSI3/sOh4PKysqIz1WnNWpms5nBgwezfPly72sul4vly5dTWlrajiNreyRJ4vbbb+eDDz5gxYoV9OrVy+/9wYMHYzKZ/M7V1q1b2bt3b6c/V6NHj+bnn39mw4YN3r8hQ4Zw9dVXe///eD03ACNHjgwq/9i2bRs9evQAoFevXuTn5/udn9raWtasWdPpz09jY2NQs0qDwYDL5QKO73Pji5bzUFpaSnV1NevXr/dus2LFClwuF8OGDYvsgK1Kc+ngvPvuu5LFYpFef/11afPmzdLvf/97KSMjQyorK2vvobUpU6dOldLT06WVK1dKhw4d8v41NjZ6t5kyZYpUVFQkrVixQlq3bp1UWloqlZaWtuOo2w/f7EdJOr7Pzffffy8ZjUZp3rx50vbt26W3335bSkpKkt566y3vNk888YSUkZEhLV68WPrf//4n/eY3v+mUaeuBTJo0Seratas3pf/999+XunTpIt13333ebY6Xc1NXVyf9+OOP0o8//igB0p///Gfpxx9/lH799VdJkrSdh3HjxkmnnnqqtGbNGunbb7+Vevfuraf0K7Fo0SKpqKhIMpvN0tChQ6XVq1e395DaHEDx77XXXvNu09TUJN16661SZmamlJSUJF166aXSoUOH2m/Q7UigUTvez81HH30kDRw4ULJYLFLfvn2ll156ye99l8slPfTQQ1JeXp5ksVik0aNHS1u3bm2n0bYdtbW10vTp06WioiIpISFBKi4ulh544AHJarV6tzlezs2XX36p+IyZNGmSJEnazkNFRYV01VVXSSkpKVJaWpp0/fXXS3V1dRGPRW89o6Ojo6PTaei0MTUdHR0dneMP3ajp6Ojo6HQadKOmo6Ojo9Np0I2ajo6Ojk6nQTdqOjo6OjqdBt2o6ejo6Oh0GnSjpqOjo6PTadCNmo6Ojo5Op0E3ajo6Ojo6nQbdqOno6OjodBp0o6ajo6Oj02nQjZqOjo6OTqfh/wMKMdxbp473twAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Labelling plots**" + ], + "metadata": { + "id": "ayOl1GaPqaxe" + } + }, + { + "cell_type": "markdown", + "source": [ + "Axes labels and text" + ], + "metadata": { + "id": "EePbAfqMqgkA" + } + }, + { + "cell_type": "code", + "source": [ + "mu, sigma = 115, 15\n", + "x = mu + sigma * np.random.randn(10000)\n", + "fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')\n", + "# the histogram of the data\n", + "n, bins, patches = ax.hist(x, 50, density=True, facecolor='C0', alpha=0.75)\n", + "\n", + "ax.set_xlabel('Length [cm]')\n", + "ax.set_ylabel('Probability')\n", + "ax.set_title('Aardvark lengths\\n (not really)')\n", + "ax.text(75, .025, r'$\\mu=115,\\ \\sigma=15$')\n", + "ax.axis([55, 175, 0, 0.03])\n", + "ax.grid(True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 298 + }, + "id": "tuNvsEIyqVAR", + "outputId": "b390c103-3dda-42c6-beaf-5c645227603f" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATNBJREFUeJzt3XlcVFX/B/DPsA7gwiqIgqCiqKAoKqIWLijuoYaIJks+aim5kBvlgqmhluaaZLlVEGopqZmGuFXgBpKaS25IjwpKKCokjMz9/eGP+zjOIDACAzOf9+s1r5xzzz33nG/DfOfee+69EkEQBBAREZHO0NN0B4iIiKh6MfkTERHpGCZ/IiIiHcPkT0REpGOY/ImIiHQMkz8REZGOYfInIiLSMUz+REREOobJn4iISMcw+RPpoC1btkAikSAjI0Mj25dIJAgPD1drXScnJ4SGhlZuh6pAaGgo6tSpo+luEKnE5E+kIZ9//jkkEgm8vLw03RVSU0FBAaKionDkyBFNd4WoQpj8iTQkNjYWTk5OOHnyJK5evarp7pAaCgoKsGDBAiZ/qnWY/Ik04MaNG0hOTsaKFStgY2OD2NjYSm1fLpfjyZMnldrmqxIEAf/++6+mu0FEYPIn0ojY2FhYWFhg4MCBePPNN0tN/p9++im6du0KKysrmJiYwNPTE99//71SvZJz6LGxsWjTpg2MjY2xf/9+AMCff/6JXr16wcTEBI0bN8aiRYsgl8sV1h80aBCaNm2qsg/e3t7o2LGj+H7z5s3o1asXGjRoAGNjY7Ru3Rrr169XWs/JyQmDBg3CgQMH0LFjR5iYmOCLL74oNSaLFi2Cnp4e1qxZU2qd0jx48ABTp06Fg4MDjI2N0bx5cyxdulRhnBkZGZBIJPj000+xYcMGNGvWDMbGxujUqRNOnTql1OaOHTvQunVrSKVSuLm5YdeuXQgNDYWTk5PYno2NDQBgwYIFkEgkkEgkiIqKUmjn1q1b8Pf3R506dWBjY4Pp06ejuLhYoU58fDw8PT1Rt25d1KtXD+7u7li1alWF40BUXgaa7gCRLoqNjcWwYcNgZGSEoKAgrF+/HqdOnUKnTp0U6q1atQpDhgzB6NGjUVRUhPj4eAQEBGDv3r0YOHCgQt1Dhw5h+/btCA8Ph7W1NZycnJCVlYWePXvi6dOnmD17NszMzLBhwwaYmJgorBsYGIjg4GClPty8eRPHjx/HJ598IpatX78ebdq0wZAhQ2BgYIA9e/Zg4sSJkMvlmDRpkkK7ly9fRlBQECZMmIBx48ahZcuWKuMxZ84cfPzxx/jiiy8wbty4CsWyoKAAPj4+uHXrFiZMmABHR0ckJycjMjISd+7cwcqVKxXqx8XF4dGjR5gwYQIkEgmWLVuGYcOG4fr16zA0NAQA/PTTTwgMDIS7uzuio6Nx//59jB07Fo0aNRLbsbGxwfr16/Huu+9i6NChGDZsGACgbdu2Yp3i4mL4+fnBy8sLn376KQ4ePIjly5ejWbNmePfddwEAiYmJCAoKQu/evbF06VIAwMWLF/H7779jypQpFYoFUbkJRFStTp8+LQAQEhMTBUEQBLlcLjRu3FiYMmWKUt2CggKF90VFRYKbm5vQq1cvhXIAgp6envDnn38qlE+dOlUAIJw4cUIsu3v3rlC/fn0BgHDjxg1BEAQhLy9PMDY2Ft5//32F9ZctWyZIJBLh5s2bpfZJEATBz89PaNq0qUJZkyZNBADC/v37leoDECZNmiQIgiC8//77gp6enrBlyxaleqo0adJECAkJEd8vXLhQMDMzE/766y+FerNnzxb09fWFzMxMQRAE4caNGwIAwcrKSsjNzRXr/fjjjwIAYc+ePWKZu7u70LhxY+HRo0di2ZEjRwQAQpMmTcSye/fuCQCE+fPnK/UzJCREACB89NFHCuXt27cXPD09xfdTpkwR6tWrJzx9+rRc4yeqDDzsT1TNYmNjYWtri549ewJ4dsg+MDAQ8fHxSoeDn99Dv3//PvLy8vDaa68hLS1NqV0fHx+0bt1aoWzfvn3o0qULOnfuLJbZ2Nhg9OjRCvXq1auH/v37Y/v27RAEQSzftm0bunTpAkdHR5V9ysvLQ05ODnx8fHD9+nXk5eUptOvs7Aw/Pz+VcRAEAeHh4Vi1ahW+/fZbhISEqKxXlh07duC1116DhYUFcnJyxJevry+Ki4tx7NgxhfqBgYGwsLAQ37/22msAgOvXrwMAbt++jXPnziE4OFjhUj0fHx+4u7tXuH/vvPOOwvvXXntN3BYAmJubIz8/H4mJiRVum0hdTP5E1ai4uBjx8fHo2bMnbty4gatXr+Lq1avw8vJCdnY2kpKSFOrv3bsXXbp0gVQqhaWlpXio+cUkCzxLtC+6efMmXFxclMpVHX4PDAzE33//jZSUFADAtWvXkJqaisDAQIV6v//+O3x9fWFmZgZzc3PY2Njggw8+AACVyb80X3/9NdatW4c1a9YgKCio1HpluXLlCvbv3w8bGxuFl6+vLwDg7t27CvWf/yEDQPwhcP/+fQDPYgYAzZs3V9qWqrKXkUql4ryA57dXsi0AmDhxIlq0aIH+/fujcePGePvtt8X5GkRVhef8iarRoUOHcOfOHcTHxyM+Pl5peWxsLPr27QsA+PXXXzFkyBC8/vrr+Pzzz9GwYUMYGhpi8+bNiIuLU1r3xfP4FTV48GCYmppi+/bt6Nq1K7Zv3w49PT0EBASIda5du4bevXvD1dUVK1asgIODA4yMjLBv3z589tlnShMJX9anbt26IT09HWvXrsWIESNgaWmpVr/lcjn69OmDmTNnqlzeokULhff6+voq6z1/xKOylLat5zVo0ADp6ek4cOAAfv75Z/z888/YvHkzgoODsXXr1krvExHA5E9UrWJjY9GgQQOsW7dOadnOnTuxa9cuxMTEwMTEBD/88AOkUikOHDgAY2Njsd7mzZvLvb0mTZrgypUrSuWXL19WKjMzM8OgQYOwY8cOrFixAtu2bcNrr70Ge3t7sc6ePXtQWFiI3bt3K+xBHz58uNx9KtG8eXMsW7YMPXr0QL9+/ZCUlIS6detWuJ1mzZrh8ePH4p7+q2rSpAkAqLz3wotlEomkUrZpZGSEwYMHY/DgwZDL5Zg4cSK++OILzJ07t8JHG4jKg4f9iarJv//+i507d2LQoEF48803lV7h4eF49OgRdu/eDeDZXqNEIlGYB5CRkYGEhIRyb3PAgAE4fvw4Tp48KZbdu3ev1EsLAwMDcfv2bXz11Vf4448/lA75l+zJPr+XnJeXV6EfJM9r27Yt9u3bh4sXL2Lw4MFq3QdgxIgRSElJwYEDB5SWPXjwAE+fPq1Qe/b29nBzc8PXX3+Nx48fi+VHjx7FuXPnFOqampqK21HXP//8o/BeT09PvGKgsLBQ7XaJXoZ7/kTVZPfu3Xj06BGGDBmicnmXLl3EG/4EBgZi4MCBWLFiBfr164dRo0bh7t27WLduHZo3b46zZ8+Wa5szZ87EN998g379+mHKlCnipX5NmjRR2caAAQNQt25dTJ8+Hfr6+hg+fLjC8r59+4p7qRMmTMDjx4/x5ZdfokGDBrhz507Fg/L/4/7xxx8xYMAAvPnmm0hISBAvuSuPGTNmYPfu3Rg0aBBCQ0Ph6emJ/Px8nDt3Dt9//z0yMjJgbW1doT59/PHHeOONN9CtWzeEhYXh/v37WLt2Ldzc3BR+EJiYmKB169bYtm0bWrRoAUtLS7i5ucHNza3c2/rPf/6D3Nxc9OrVC40bN8bNmzexZs0aeHh4oFWrVhXqN1G5afZiAyLdMXjwYEEqlQr5+fml1gkNDRUMDQ2FnJwcQRAEYePGjYKLi4tgbGwsuLq6Cps3bxbmz58vvPini+cunXvR2bNnBR8fH0EqlQqNGjUSFi5cKGzcuFHhUr/njR49WgAg+Pr6qmxv9+7dQtu2bQWpVCo4OTkJS5cuFTZt2qTUXpMmTYSBAweqbENVf3/88UfBwMBACAwMFIqLi0sLkdKlfoIgCI8ePRIiIyOF5s2bC0ZGRoK1tbXQtWtX4dNPPxWKiooEQfjfpX6ffPKJyv68eLlefHy84OrqKhgbGwtubm7C7t27heHDhwuurq4K9ZKTkwVPT0/ByMhIoZ2QkBDBzMxMaVsv/v/7/vvvhb59+woNGjQQjIyMBEdHR2HChAnCnTt3So0B0auSCEIVzHIhItJCHh4esLGx4WV5VOvxnD8R0QtkMpnSXIEjR47gjz/+QI8ePTTTKaJKxD1/IqIXZGRkwNfXF2+99Rbs7e1x6dIlxMTEoH79+jh//jysrKw03UWiV8IJf0REL7CwsICnpye++uor3Lt3D2ZmZhg4cCCWLFnCxE9agXv+REREOobn/ImIiHQMkz8REZGOYfIn0gEnT56EkZGR+NAaXRMVFaV0K14nJyeEhoZWuK2YmBg4Ojry7ntUqzH5E+mADz/8EEFBQeJ966vC7du3ERUVhfT09CrbRk0QGhqKoqIifPHFF5ruCpHamPyJtFx6ejoOHjyo9Fz5ynb79m0sWLBA65O/VCpFSEgIVqxYUSVPAiSqDkz+RFpu8+bNcHR0RJcuXTTdlTLl5+drugvlMmLECNy8eVOtpxkS1QRM/kRaLiEhAb169VJ5znvQoEH47bff0LlzZ0ilUjRt2hRff/21UhvXr19HQEAALC0tYWpqii5duuCnn34Slx85cgSdOnUCAISFhUEikUAikWDLli2l9qvkPPyFCxcwatQoWFhYoHv37uLyb7/9Fp6enjAxMYGlpSVGjhyJv//+W6GNX3/9FQEBAXB0dISxsTEcHBwwbdq0Cj8d8Pr165BIJPjss8+UliUnJ0MikeC7774Tyzw9PWFpaYkff/yxQtshqimY/Im02K1bt5CZmYkOHTqoXH716lW8+eab6NOnD5YvXw4LCwuEhobizz//FOtkZ2eja9euOHDgACZOnIjFixfjyZMnGDJkCHbt2gUAaNWqFT766CMAwPjx4/HNN9/gm2++weuvv15mHwMCAlBQUICPP/4Y48aNAwAsXrwYwcHBcHFxwYoVKzB16lQkJSXh9ddfV3h87o4dO1BQUIB3330Xa9asgZ+fH9asWYPg4OAKxalp06bo1q2bykcdx8bGom7dunjjjTcUyjt06IDff/+9QtshqjE0+FAhIqpiBw8eFAAIe/bsUVrWpEkTAYBw7Ngxsezu3buCsbGx8P7774tlU6dOFQAIv/76q1j26NEjwdnZWXBychKfwHfq1CkBgLB58+Zy9a3k6XZBQUEK5RkZGYK+vr6wePFihfJz584JBgYGCuUFBQVK7UZHRwsSiUS4efOm0rZeHP/zTwf84osvBADCxYsXxbKioiLB2tpa6SmCgiAI48ePF0xMTMo1VqKahnv+RFrsn3/+AfDsdrWqtG7dGq+99pr43sbGBi1btsT169fFsn379qFz584Kh+Tr1KmD8ePHIyMjAxcuXHilPr44EXHnzp2Qy+UYMWIEcnJyxJednR1cXFwUzrObmJiI/87Pz0dOTg66du0KQRBw5syZCvVjxIgRkEqlCnv/Bw4cQE5ODt566y2l+hYWFvj3339RUFBQoe0Q1QRM/kQ6QChlVrqjo6NSmYWFBe7fvy++v3nzJlq2bKlUr1WrVuLyV+Hs7Kzw/sqVKxAEAS4uLrCxsVF4Xbx4EXfv3hXrZmZmIjQ0FJaWlqhTpw5sbGzg4+MDAMjLy6tQP8zNzTF48GDExcWJZbGxsWjUqBF69eqlVL8kpi/OpSCqDfhgHyItVvIQmueT+fP09fVVlpf2Y6EqPL/3DgByuRwSiQQ///yzyv7VqVMHAFBcXIw+ffogNzcXs2bNgqurK8zMzHDr1i2EhoZCLpdXuC/BwcHYsWMHkpOT4e7ujt27d2PixInQ01PeT7p//z5MTU2V+k9UGzD5E2kxV1dXAMCNGzfUbqNJkya4fPmyUvmlS5fE5UDl7QE3a9YMgiDA2dkZLVq0KLXeuXPn8Ndff2Hr1q0KE/wSExPV3na/fv1gY2OD2NhYeHl5oaCgAGPGjFFZ98aNG+LRD6Lahof9ibRYo0aN4ODggNOnT6vdxoABA3Dy5EmkpKSIZfn5+diwYQOcnJzQunVrAICZmRkAKMzGV8ewYcOgr6+PBQsWKB2BEARBnMdQclTg+TqCIGDVqlVqb9vAwABBQUHYvn07tmzZAnd3d7Rt21Zl3bS0NHTt2lXtbRFpEvf8ibTcG2+8gV27dkEQBLX2zmfPno3vvvsO/fv3x+TJk2FpaYmtW7fixo0b+OGHH8RD4s2aNYO5uTliYmJQt25dmJmZwcvLS+mcflmaNWuGRYsWITIyEhkZGfD390fdunVx48YN7Nq1C+PHj8f06dPh6uqKZs2aYfr06bh16xbq1auHH374odRTHOUVHByM1atX4/Dhw1i6dKnKOqmpqcjNzVW6/I+otuCeP5GWe/vtt3Hr1i21r0m3tbVFcnIy+vTpgzVr1iAyMhJGRkbYs2cPhg4dKtYzNDTE1q1boa+vj3feeQdBQUE4evSoWtucPXu2+MNiwYIFmD59Onbv3o2+fftiyJAh4vb27NkDDw8PREdHY8GCBXBxcVF5k6KK8PT0RJs2baCnp4fRo0errLNjxw44OjqqnAhIVBtIhOqc2UNEGtG7d2/Y29vjm2++0XRXaoX27dvD0tISSUlJSssKCwvh5OSE2bNnY8qUKRroHdGr454/kQ74+OOPsW3bNp19pG9FnD59Gunp6aXeJXDz5s0wNDSs8gclEVUl7vkTEQE4f/48UlNTsXz5cuTk5OD69euQSqWa7hZRleCePxERgO+//x5hYWGQyWT47rvvmPhJq9WI5L9u3To4OTlBKpXCy8sLJ0+efGn9HTt2wNXVFVKpFO7u7ti3b5/C8qioKPGGHxYWFvD19cWJEycU6uTm5mL06NGoV68ezM3NMXbsWDx+/LjSx0ZEtUNUVBTkcjkuXrwo3iWQSFtpPPlv27YNERERmD9/PtLS0tCuXTv4+fkp3MLzecnJyQgKCsLYsWNx5swZ+Pv7w9/fH+fPnxfrtGjRAmvXrsW5c+fw22+/wcnJCX379sW9e/fEOqNHj8aff/6JxMRE7N27F8eOHcP48eOrfLxERESapvFz/l5eXujUqRPWrl0L4NmtPR0cHPDee+9h9uzZSvUDAwORn5+PvXv3imVdunSBh4cHYmJiVG7j4cOHqF+/Pg4ePIjevXvj4sWLaN26NU6dOoWOHTsCAPbv348BAwbgv//9L+zt7ZXaKCwsRGFhofheLpcjNzcXVlZWvLc3ERHVCIIg4NGjR7C3t1d5W+rnK2pMYWGhoK+vL+zatUuhPDg4WBgyZIjKdRwcHITPPvtMoWzevHlC27ZtS93GJ598ItSvX1+4d++eIAiCsHHjRsHc3FyhnkwmE/T19YWdO3eqbKfkkaB88cUXX3zxVdNff//990vzr0bv8JeTk4Pi4mLY2toqlNva2or3DX9RVlaWyvpZWVkKZXv37sXIkSNRUFCAhg0bIjExEdbW1mIbDRo0UKhvYGAAS0tLpXZKREZGIiIiQnyfl5cHR0dH3LhxA3Xr1i3fgF8gk8lw+PBh9OzZE4aGhmq1oa0YG9UYl9IxNqoxLqXTxtg8evQIzs7OZeYlrb29b8+ePZGeno6cnBx8+eWXGDFiBE6cOKGU9MvL2NgYxsbGSuWWlpaoV6+eWm3KZDKYmprCyspKaz54lYWxUY1xKR1joxrjUjptjE3JOMo6Ha3RCX/W1tbQ19dHdna2Qnl2djbs7OxUrmNnZ1eu+mZmZmjevDm6dOmCjRs3wsDAABs3bhTbeHFC4dOnT5Gbm1vqdomIiLSFRpO/kZERPD09FW6hKZfLkZSUBG9vb5XreHt7K91yMzExsdT6z7dbMmHP29sbDx48QGpqqrj80KFDkMvl8PLyUnc4REREtYLGD/tHREQgJCQEHTt2ROfOnbFy5Urk5+cjLCwMwLMnbDVq1AjR0dEAgClTpsDHxwfLly/HwIEDER8fj9OnT2PDhg0Anj1qdPHixRgyZAgaNmyInJwcrFu3Drdu3UJAQAAAoFWrVujXrx/GjRuHmJgYyGQyhIeHY+TIkSpn+hMREWkTjSf/wMBA3Lt3D/PmzUNWVhY8PDywf/9+cVJfZmamwuUKXbt2RVxcHObMmYMPPvgALi4uSEhIgJubG4Bnz/i+dOkStm7dipycHFhZWaFTp0749ddf0aZNG7Gd2NhYhIeHo3fv3tDT08Pw4cOxevXq6h08ERGRBmg8+QNAeHg4wsPDVS47cuSIUllAQIC4F/8iqVSKnTt3lrlNS0tLxMXFVaifRERE2kDjd/gjIiKi6sXkT0REpGOY/ImIiHQMkz8REZGOYfInIiLSMUz+REREOobJn4iISMcw+RMREemYGnGTHyLSXiM3pLx0efz4lz+Xg4gqH/f8iYiIdAyTPxERkY5h8iciItIxTP5U6x07dgyDBw+Gvb09JBIJEhISKrQcAKKioiCRSBRerq6u1TOAV6DNYyOiqsPkT7Vefn4+2rVrh3Xr1qm1vESbNm1w584d8fXbb79VRXcrlTaPjYiqDmf7U5X57bff0LNnTzx69AhSqRQAkJGRAWdnZ2RkZKBJkyaVsp3+/fujf//+ai8vYWBgADs7u0rpU4njx4/jww8/RHp6OnJzcxWW5eXloV69eq/UvibHRkS1F/f8qcqkp6ejVatWYuIHgDNnzsDCwkIp8X/88ceoU6eO+LKwsMDIkSNhYWEhlmVmZlZpf69cuQJ7e3s0bdoUo0ePfuXt/fHHH+jRowfat2+PX3/9Ffv374elpSV69+6Nbdu2KST+F8ev6vUq/anssRFR7cY9f6oyf/zxB9q3b69Qlp6ejnbt2inVfeeddzBixAjxvUwmw9GjR+Hj4wNDQ0MAgL29fZX11cvLC1u2bEHLli1x584dLFiwAK+99hrOnz+PunXrqtXm5MmTMWzYMHz66acAgNatWyMoKAipqakKYwWUx6+Kvb09BEGocD+qYmxEVLsx+VOVSU9Px6hRoxTKzpw5Aw8PD6W6lpaWsLS0FN/LZDL89ddfaN68uZj8q9Lzh87btm0LLy8vNGnSBNu3b8fYsWMr3F52djZ+++03HD16VKHczMwMEolEqf6L4y+NTCarcF8qe2zPK+sGPkRUM9WIw/7r1q2Dk5MTpFIpvLy8cPLkyZfW37FjB1xdXSGVSuHu7o59+/aJy2QyGWbNmgV3d3eYmZnB3t4ewcHBuH37tkIbTk5OSjOglyxZUiXj00XFxcU4f/680p5/WlqayuRfEw77P8/c3BwtWrTA1atX1Vo/NTUVcrlc6ShHamoqOnbsqFS/qg/7P+9Vx0ZEtZ/G9/y3bduGiIgIxMTEwMvLCytXroSfnx8uX76MBg0aKNVPTk5GUFAQoqOjMWjQIMTFxcHf3x9paWlwc3NDQUEB0tLSMHfuXLRr1w7379/HlClTMGTIEJw+fVqhrY8++gjjxo0T3/MQaOW5fPkynjx5onCoPiUlBbdu3VKZ/DV92P9Fjx8/xrVr1zBmzBi11pfL5QCezcYv+VydPXsWx44dw6JFi5TqV+Vh/xe96tiIqPbTePJfsWIFxo0bh7CwMABATEwMfvrpJ2zatAmzZ89Wqr9q1Sr069cPM2bMAAAsXLgQiYmJWLt2LWJiYlC/fn0kJiYqrLN27Vp07twZmZmZcHR0FMvr1q3LGdBVJD09HQCwZs0aTJ48GVevXsXkyZMBAEVFRUr1X+Ww/+PHjxX2Ym/cuIH09HRYWlrC0dGxzOUAMH36dAwePBhNmjTB7du3MX/+fOjr6yMoKEit8Xt5ecHExAQzZszAhx9+iGvXrmHSpEmYNGkSunTpUub4S/PiYX9NjI2Iaj+NJv+ioiKkpqYiMjJSLNPT04Ovry9SUlSfS0xJSUFERIRCmZ+fn8qbm5TIy8uDRCKBubm5QvmSJUuwcOFCODo6YtSoUZg2bRoMDFSHpLCwEIWFheL7hw8fAnj2ZazOediSdZ//rzZJTU1F3759ce3aNbi7u6NVq1aYO3cu3nvvPaxcuRJbtmx56foVic3x48fRp08f8X3J52PMmDHYuHFjmcsBIDMzE0FBQfjnn39gY2ODrl274tdff4W5ubnYh6+//hr/+c9/VP54eZG5uTni4uIwc+ZMtG3bFo6Ojnj33XcxderUV/r//WJcKmts6jKQyF9pfaDyPv/a/Pf0KhiX0mljbMo7FolQGccR1XT79m00atQIycnJ8Pb+35O9Zs6ciaNHj+LEiRNK6xgZGWHr1q0Key2ff/45FixYgOzsbKX6T548Qbdu3eDq6orY2FixfMWKFejQoQMsLS2RnJyMyMhIhIWFYcWKFSr7GhUVhQULFiiVx8XFwdTUtELj1gVRUVFwcXHB6NGjNd2VSvPdd9/h/PnzWLx4saa7QkSkUkFBAUaNGlXmfUQ0fti/KslkMowYMQKCIGD9+vUKy54/etC2bVsYGRlhwoQJiI6OhrGxsVJbkZGRCus8fPgQDg4O6Nu3r9o3apHJZEhMTESfPn2qZUZ7dZowYQKmT5+OAQMGqLV+TYzNokWLsGHDBnTq1EljfahpcQnb8vLJudVhc2hnADUvNjUF41I6bYxNyVHpsmg0+VtbW0NfX19pjz07O7vUc/F2dnblql+S+G/evIlDhw6VmaC9vLzw9OlTZGRkoGXLlkrLjY2NVf4oMDQ0fOUPTWW0UZNkZWUhOzsb7du316rYnDp1StNdENWUuDwVNH/B0ItxqCmxqWkYl9JpU2zKOw6N/uUaGRnB09MTSUlJYplcLkdSUpLCaYDneXt7K9QHgMTERIX6JYn/ypUrOHjwIKysrMrsS3p6OvT09FReYUAVY2dnB0EQ0Lp1a013hYiIVND4Yf+IiAiEhISgY8eO6Ny5M1auXIn8/Hxx9n9wcDAaNWqE6OhoAMCUKVPg4+OD5cuXY+DAgYiPj8fp06exYcMGAM8S/5tvvom0tDTs3bsXxcXFyMrKAvBsRrWRkRFSUlJw4sQJ9OzZE3Xr1kVKSgqmTZuGt956CxYWFpoJBBERUTXRePIPDAzEvXv3MG/ePGRlZcHDwwP79++Hra0tgGczlfX0/neAomvXroiLi8OcOXPwwQcfwMXFBQkJCXBzcwMA3Lp1C7t37wYApevJDx8+jB49esDY2Bjx8fGIiopCYWEhnJ2dMW3aNKWrCIiIiLSRxpM/AISHhyM8PFzlsiNHjiiVBQQEICAgQGV9JyenMm+E0qFDBxw/frzC/STSNbx9L5F2qhHJn4hIXSU/UAwkcgQ0eHYFwosTEePHq55DRKSrND9Vl4iIiKoV9/yJdBgP6xPpJu75ExER6Rju+ROR1ivrCAfnBJCu4Z4/ERGRjmHyJyIi0jE87E9EOo+nBUjXcM+fiIhIxzD5ExER6RgmfyIiIh3D5E9ERKRjmPyJiIh0DJM/ERGRjuGlfkRajPfuJyJVuOdPRESkY5j8iYiIdAyTPxERkY5RK/kfPny4Ujuxbt06ODk5QSqVwsvLCydPnnxp/R07dsDV1RVSqRTu7u7Yt2+fuEwmk2HWrFlwd3eHmZkZ7O3tERwcjNu3byu0kZubi9GjR6NevXowNzfH2LFj8fjx40odFxERUU2kVvLv168fmjVrhkWLFuHvv/9+pQ5s27YNERERmD9/PtLS0tCuXTv4+fnh7t27KusnJycjKCgIY8eOxZkzZ+Dv7w9/f3+cP38eAFBQUIC0tDTMnTsXaWlp2LlzJy5fvowhQ4YotDN69Gj8+eefSExMxN69e3Hs2DGMHz/+lcZCRERUG6iV/G/duoXw8HB8//33aNq0Kfz8/LB9+3YUFRVVuK0VK1Zg3LhxCAsLQ+vWrRETEwNTU1Ns2rRJZf1Vq1ahX79+mDFjBlq1aoWFCxeiQ4cOWLt2LQCgfv36SExMxIgRI9CyZUt06dIFa9euRWpqKjIzMwEAFy9exP79+/HVV1/By8sL3bt3x5o1axAfH690hICIiEjbqHWpn7W1NaZNm4Zp06YhLS0NmzdvxsSJEzFx4kSMGjUKY8eORbt27cpsp6ioCKmpqYiMjBTL9PT04Ovri5QU1ZcopaSkICIiQqHMz88PCQkJpW4nLy8PEokE5ubmYhvm5ubo2LGjWMfX1xd6eno4ceIEhg4dqtRGYWEhCgsLxfcPHz4E8Ow0g0wmK3OsqpSsp+762oyxUa2icTGQyKuyOzVKyVirYsy1+XPIv6XSaWNsyv3d8Kob6tChA+zs7GBlZYUlS5Zg06ZN+Pzzz+Ht7Y2YmBi0adOm1HVzcnJQXFwMW1tbhXJbW1tcunRJ5TpZWVkq62dlZams/+TJE8yaNQtBQUGoV6+e2EaDBg0U6hkYGMDS0rLUdqKjo7FgwQKl8l9++QWmpqaqB1hOiYmJr7S+NmNsVCtvXAIalF1H2wy1ya30Np+fV1Rb8W+pdNoUm4KCgnLVUzv5y2Qy/Pjjj9i0aRMSExPRsWNHrF27FkFBQbh37x7mzJmDgIAAXLhwQd1NvDKZTIYRI0ZAEASsX7/+ldqKjIxUOOLw8OFDODg4oG/fvuKPCnX6l5iYiD59+sDQ0PCV+qdtGBvVKhqXsC0vnzyrTQwkcgy1ycWue5Z4KlTuhUybQztXanvViX9LpdPG2JQclS6LWsn/vffew3fffQdBEDBmzBgsW7YMbm5u4nIzMzN8+umnsLe3f2k71tbW0NfXR3Z2tkJ5dnY27OzsVK5jZ2dXrvolif/mzZs4dOiQQoK2s7NTmlD49OlT5ObmlrpdY2NjGBsbK5UbGhq+8oemMtrQVoyNauWNS2UnwdrgqaBX6ePWhs8g/5ZKp02xKe841PoLuXDhAtasWYPbt29j5cqVCom/hLW1dZmXBBoZGcHT0xNJSUlimVwuR1JSEry9vVWu4+3trVAfeHbI5vn6JYn/ypUrOHjwIKysrJTaePDgAVJTU8WyQ4cOQS6Xw8vL66V9JiIiqu3U2vOfP38+unbtCgMDxdWfPn2K5ORkvP766zAwMICPj0+ZbUVERCAkJAQdO3ZE586dsXLlSuTn5yMsLAwAEBwcjEaNGiE6OhoAMGXKFPj4+GD58uUYOHAg4uPjcfr0aWzYsAHAs8T/5ptvIi0tDXv37kVxcbF4Ht/S0hJGRkZo1aoV+vXrh3HjxiEmJgYymQzh4eEYOXJkmUcriIiIaju1kn/Pnj1x584dpUlzeXl56NmzJ4qLi8vdVmBgIO7du4d58+YhKysLHh4e2L9/vzipLzMzE3p6/ztA0bVrV8TFxWHOnDn44IMP4OLigoSEBPHow61bt7B7924AgIeHh8K2Dh8+jB49egAAYmNjER4ejt69e0NPTw/Dhw/H6tWrKxoKIo3hQ3uISF1qJX9BECCRSJTK//nnH5iZmVW4vfDwcISHh6tcduTIEaWygIAABAQEqKzv5OQEQRDK3KalpSXi4uIq1E8i0k1l/dCKH6/6NCVRTVWh5D9s2DAAgEQiQWhoqMIEuOLiYpw9exZdu3at3B4SERFRpapQ8q9fvz6AZ3v+devWhYmJibjMyMgIXbp0wbhx4yq3h0RERFSpKpT8N2/eDODZofXp06erdYifiIiINEvt2f5ERERUO5U7+Xfo0AFJSUmwsLBA+/btVU74K5GWllYpnSMiIqLKV+7k/8Ybb4gT/Pz9/auqP0RERFTFyp38nz/Uz8P+REREtZfu3fibiIhIx5V7z9/CwuKl5/mfl5tb+Y/UJCIiospR7uS/cuXKKuwGERERVZdyJ/+QkJCq7AcRvUDVLWUNJHIENADCtpwEz9oRkbrKnfwfPnyIevXqif9+mZJ6REREVPNU6Jx/yZP8zM3NVZ7/L3ngT0We6kdERETVq9zJ/9ChQ7C0tATw7NG4REREVDuVO/n7+Pio/DcRERHVLmrd2x8A7t+/j40bN+LixYsAgNatWyMsLEw8OkBEREQ1k1rThY8dOwYnJyesXr0a9+/fx/3797F69Wo4Ozvj2LFjld1HIiIiqkRq7flPmjQJgYGBWL9+PfT19QEAxcXFmDhxIiZNmoRz585VaieJiIio8qi153/16lW8//77YuIHAH19fURERODq1asVamvdunVwcnKCVCqFl5cXTp48+dL6O3bsgKurK6RSKdzd3bFv3z6F5Tt37kTfvn1hZWUFiUSC9PR0pTZ69OgBiUSi8HrnnXcq1G8iohIjN6SU+SKqSdRK/h06dBDP9T/v4sWLaNeuXbnb2bZtGyIiIjB//nykpaWhXbt28PPzw927d1XWT05ORlBQEMaOHYszZ87A398f/v7+OH/+vFgnPz8f3bt3x9KlS1+67XHjxuHOnTvia9myZeXuNxERUW1W7sP+Z8+eFf89efJkTJkyBVevXkWXLl0AAMePH8e6deuwZMmScm98xYoVGDduHMLCwgAAMTEx+Omnn7Bp0ybMnj1bqf6qVavQr18/zJgxAwCwcOFCJCYmYu3atYiJiQEAjBkzBgCQkZHx0m2bmprCzs6u3H0lIiLSFuVO/h4eHpBIJBAEQSybOXOmUr1Ro0YhMDCwzPaKioqQmpqKyMhIsUxPTw++vr5ISVF9iCwlJQUREREKZX5+fkhISCjnKP4nNjYW3377Lezs7DB48GDMnTsXpqampdYvLCxEYWGh+L7kLocymQwymazC2y9Z9/n/0v8wNs9u5Vtamapluq6mx0ZTn2X+LZVOG2NT3rGUO/nfuHFD7c6okpOTg+LiYtja2iqU29ra4tKlSyrXycrKUlk/KyurQtseNWoUmjRpAnt7e5w9exazZs3C5cuXsXPnzlLXiY6OxoIFC5TKf/nll5f+aCiPxMTEV1pfm+lybAIalL5sqA2fnFmamhqbF+cnVTdd/lsqizbFpqCgoFz1yp38mzRponZnaprx48eL/3Z3d0fDhg3Ru3dvXLt2Dc2aNVO5TmRkpMJRh4cPH8LBwQF9+/ZV+1kGMpkMiYmJ6NOnDwwNDdVqQ1sxNiUP71FkIJFjqE0udt2zxFOBD/Z5Xk2PzebQzhrZLv+WSqeNsSnr2Tsl1L7JDwBcuHABmZmZKCoqUigfMmRImetaW1tDX18f2dnZCuXZ2dmlnou3s7OrUP3y8vLyAvDsKobSkr+xsTGMjY2Vyg0NDV/5Q1MZbWgrXY7NyxLYU0GvRia4mqCmxkbTn2Nd/lsqizbFprzjUCv5X79+HUOHDsW5c+cU5gGUPOynPA/2MTIygqenJ5KSkuDv7w8AkMvlSEpKQnh4uMp1vL29kZSUhKlTp4pliYmJ8Pb2VmcYopLLARs2bPhK7RAREdUGav08njJlCpydnXH37l2Ymprizz//xLFjx9CxY0ccOXKk3O1ERETgyy+/xNatW3Hx4kW8++67yM/PF2f/BwcHK0wInDJlCvbv34/ly5fj0qVLiIqKwunTpxV+LOTm5iI9PR0XLlwAAFy+fBnp6enivIBr165h4cKFSE1NRUZGBnbv3o3g4GC8/vrraNu2rTrhICIiqlXU2vNPSUnBoUOHYG1tDT09Pejp6aF79+6Ijo7G5MmTcebMmXK1ExgYiHv37mHevHnIysqCh4cH9u/fL07qy8zMhJ7e/36fdO3aFXFxcZgzZw4++OADuLi4ICEhAW5ubmKd3bt3iz8eAGDkyJEAgPnz5yMqKgpGRkY4ePAgVq5cifz8fDg4OGD48OGYM2eOOqEgIiKqddRK/sXFxahbty6AZ+fub9++jZYtW6JJkya4fPlyhdoKDw8v9TC/qqMIAQEBCAgIKLW90NBQhIaGlrrcwcEBR48erVAfiaoC7/pGRJqiVvJ3c3PDH3/8AWdnZ3h5eWHZsmUwMjLChg0b0LRp08ruIxEREVUitZL/nDlzkJ+fDwD46KOPMGjQILz22muwsrLCtm3bKrWDREREVLnUSv5+fn7iv5s3b45Lly4hNzcXFhYW4ox/IiL6n7JO88SPf7Wrlogq4pWu8weAv//+G8Czc+lERERU86l1qd/Tp08xd+5c1K9fH05OTnByckL9+vUxZ84crbpHMhERkTZSa8//vffew86dO7Fs2TLxBjspKSmIiorCP//8g/Xr11dqJ4mIiKjyqJX84+LiEB8fj/79+4tlbdu2hYODA4KCgpj8iYiIajC1DvsbGxvDyclJqdzZ2RlGRkav2iciIiKqQmol//DwcCxcuFDh+faFhYVYvHhxqTfsISIiopqh3If9hw0bpvD+4MGDaNy4Mdq1awcA+OOPP1BUVITevXtXbg+JiIioUpU7+devX1/h/fDhwxXe81I/IiKi2qHcyX/z5s1V2Q8iIiKqJq90k5979+6JD/Jp2bIlbGxsKqVTRNqAD+4hoppKrQl/+fn5ePvtt9GwYUO8/vrreP3112Fvb4+xY8eioKCgsvtIRERElUit5B8REYGjR49iz549ePDgAR48eIAff/wRR48exfvvv1/ZfSQiIqJKpNZh/x9++AHff/89evToIZYNGDAAJiYmGDFiBG/yQ0RUQXzwD1Untfb8CwoKYGtrq1TeoEEDHvYnIiKq4dRK/t7e3pg/fz6ePHkilv37779YsGCBeK9/IiIiqpnUSv4rV67E77//jsaNG6N3797o3bs3HBwckJycjFWrVlWorXXr1sHJyQlSqRReXl44efLkS+vv2LEDrq6ukEqlcHd3x759+xSW79y5E3379oWVlRUkEgnS09OV2njy5AkmTZoEKysr1KlTB8OHD0d2dnaF+k1ERFRbqZX83d3dceXKFURHR8PDwwMeHh5YsmQJrly5gjZt2pS7nW3btiEiIgLz589HWloa2rVrBz8/P9y9e1dl/eTkZAQFBWHs2LE4c+YM/P394e/vj/Pnz4t18vPz0b17dyxdurTU7U6bNg179uzBjh07cPToUdy+fVvpDoZERETaqsIT/mQyGVxdXbF3716MGzfulTa+YsUKjBs3DmFhYQCAmJgY/PTTT9i0aRNmz56tVH/VqlXo168fZsyYAQBYuHAhEhMTsXbtWsTExAAAxowZAwDIyMhQuc28vDxs3LgRcXFx6NWrF4BnNzBq1aoVjh8/ji5durzSmIiIiGq6Cid/Q0NDhXP96ioqKkJqaioiIyPFMj09Pfj6+iIlRfWs15SUFERERCiU+fn5ISEhodzbTU1NhUwmg6+vr1jm6uoKR0dHpKSklJr8CwsLFR5k9PDhQwDPfgzJZLJyb/95Jeupu74204bYGEjkVdZmVbRd22l7bPg9U/m0MTblHYtal/pNmjQJS5cuxVdffQUDA/VuEpiTk4Pi4mKlqwZsbW1x6dIlletkZWWprJ+VlVXu7WZlZcHIyAjm5uYVaic6OhoLFixQKv/ll19gampa7u2rkpiY+Erra7PaHJuABlXX9lCb3KprvJbT1ti8OL+pomrz31JV06bYlPeKO7Uy96lTp5CUlIRffvkF7u7uMDMzU1i+c+dOdZqt0SIjIxWOOjx8+BAODg7o27cv6tWrp1abMpkMiYmJ6NOnDwwNDSurq1pBG2ITtuXlk1fVYSCRY6hNLnbds8RTQa0pO1pL22OzObSzWutpw99SVdHG2JQclS6LWsnf3Nxc6al+FWVtbQ19fX2lWfbZ2dmws7NTuY6dnV2F6pfWRlFRER48eKCw919WO8bGxjA2NlYqNzQ0fOUPTWW0oa1qc2yqMgE9FfS0MsFVBm2NDb9nqo42xaa846hQ8pfL5fjkk0/w119/oaioCL169UJUVBRMTEwq3EEjIyN4enoiKSkJ/v7+YvtJSUkIDw9XuY63tzeSkpIwdepUsSwxMbFC9xbw9PSEoaEhkpKSxB8wly9fRmZmJu9RQEQ1Fu8ASJWpQsl/8eLFiIqKgq+vL0xMTLB69Wrcu3cPmzZtUmvjERERCAkJQceOHdG5c2esXLkS+fn54uz/4OBgNGrUCNHR0QCAKVOmwMfHB8uXL8fAgQMRHx+P06dPY8OGDWKbubm5yMzMxO3btwFAfOqgnZ0d7OzsUL9+fYwdOxYRERGwtLREvXr18N5778Hb25sz/YmISCdUKPl//fXX+PzzzzFhwgQAwMGDBzFw4EB89dVX0NOr+GG2wMBA3Lt3D/PmzUNWVhY8PDywf/9+cVJfZmamQrtdu3ZFXFwc5syZgw8++AAuLi5ISEiAm5ubWGf37t3ijwcAGDlyJABg/vz5iIqKAgB89tln0NPTw/Dhw1FYWAg/Pz98/vnnFe4/ERFRbVSh5J+ZmYkBAwaI7319fSGRSHD79m00btxYrQ6Eh4eXepj/yJEjSmUBAQEICAgotb3Q0FCEhoa+dJtSqRTr1q3DunXrKtJVIiIirVCh3fWnT59CKpUqlBkaGmrVNZJERETarkJ7/oIgIDQ0VGHW+5MnT/DOO+8oXO6njZf6ERERaYsKJf+QkBClsrfeeqvSOkNERERVr0LJf/PmzVXVDyIiIqom2ncnDCIiInopJn8iIiIdo95TeYh0XFl3WyMiqsm4509ERKRjmPyJiIh0DJM/ERGRjmHyJyIi0jFM/kRERDqGyZ+IiEjHMPkTERHpGF7nT0SkBUq794SBRI6ABkDYlpP4dly3au4V1VTc8yciItIx3PMnUoF38CMibcY9fyIiIh3D5E9ERKRjakTyX7duHZycnCCVSuHl5YWTJ0++tP6OHTvg6uoKqVQKd3d37Nu3T2G5IAiYN28eGjZsCBMTE/j6+uLKlSsKdZycnCCRSBReS5YsqfSxERER1TQaT/7btm1DREQE5s+fj7S0NLRr1w5+fn64e/euyvrJyckICgrC2LFjcebMGfj7+8Pf3x/nz58X6yxbtgyrV69GTEwMTpw4ATMzM/j5+eHJkycKbX300Ue4c+eO+HrvvfeqdKxEREQ1gcaT/4oVKzBu3DiEhYWhdevWiImJgampKTZt2qSy/qpVq9CvXz/MmDEDrVq1wsKFC9GhQwesXbsWwLO9/pUrV2LOnDl444030LZtW3z99de4ffs2EhISFNqqW7cu7OzsxJeZmVlVD5eIiEjjNDrbv6ioCKmpqYiMjBTL9PT04Ovri5QU1bOtU1JSEBERoVDm5+cnJvYbN24gKysLvr6+4vL69evDy8sLKSkpGDlypFi+ZMkSLFy4EI6Ojhg1ahSmTZsGAwPVISksLERhYaH4/uHDhwAAmUwGmUxWsYH/v5L11F1fm2k6NgYSuUa2W5aSftXU/mkSY6Pa83F568vfX1p3c2jn6uhSjaHp75mqUN6xaDT55+TkoLi4GLa2tgrltra2uHTpksp1srKyVNbPysoSl5eUlVYHACZPnowOHTrA0tISycnJiIyMxJ07d7BixQqV242OjsaCBQuUyn/55ReYmpqWMdKXS0xMfKX1tZmmYhPQQCObLbehNrma7kKNxdioVp64vDh/Sldo03dwQUFBuerp7HX+zx89aNu2LYyMjDBhwgRER0fD2NhYqX5kZKTCOg8fPoSDgwP69u2LevXqqdUHmUyGxMRE9OnTB4aGhmq1oa2qOjZhW14+qbSmMpDIMdQmF7vuWeKpoPGzdjUKY6NaReKii3v+2vYdXHJUuiwaTf7W1tbQ19dHdna2Qnl2djbs7OxUrmNnZ/fS+iX/zc7ORsOGDRXqeHh4lNoXLy8vPH36FBkZGWjZsqXScmNjY5U/CgwNDV/5Q1MZbWirqopNbU8OTwW9Wj+GqsLYqFaeuOjq95A2fQeXdxwa/QsxMjKCp6cnkpKSxDK5XI6kpCR4e3urXMfb21uhPvDskE1JfWdnZ9jZ2SnUefjwIU6cOFFqmwCQnp4OPT09NGhQw4/3EhERvSKNH/aPiIhASEgIOnbsiM6dO2PlypXIz89HWFgYACA4OBiNGjVCdHQ0AGDKlCnw8fHB8uXLMXDgQMTHx+P06dPYsGEDAEAikWDq1KlYtGgRXFxc4OzsjLlz58Le3h7+/v4Ank0aPHHiBHr27Im6desiJSUF06ZNw1tvvQULCwuNxIEqF2/PS0RUOo0n/8DAQNy7dw/z5s1DVlYWPDw8sH//fnHCXmZmJvT0/neAomvXroiLi8OcOXPwwQcfwMXFBQkJCXBzcxPrzJw5E/n5+Rg/fjwePHiA7t27Y//+/ZBKpQCeHcKPj49HVFQUCgsL4ezsjGnTpildRUBEpEvK+tEcP770o6dUu2g8+QNAeHg4wsPDVS47cuSIUllAQAACAgJKbU8ikeCjjz7CRx99pHJ5hw4dcPz4cbX6SkREVNtxVgwREZGOYfInIiLSMUz+REREOobJn4iISMfUiAl/RERU8/FqAO3BPX8iIiIdw+RPRESkY3jYn2ol3sGPiEh93PMnIiLSMUz+REREOobJn4iISMfwnD8REVWK8szF4eWANQOTP9U4IzekwEAiR0ADIGzLSTwVeICKiKgyMfkTEVG14Y2CagYmfyIiqjH446B6MPlTteM1+kREmsWTqURERDqGe/5U6bhnT0RUs9WIPf9169bByckJUqkUXl5eOHny5Evr79ixA66urpBKpXB3d8e+ffsUlguCgHnz5qFhw4YwMTGBr68vrly5olAnNzcXo0ePRr169WBubo6xY8fi8ePHlT42bTRyQ8pLX0REVLNpfM9/27ZtiIiIQExMDLy8vLBy5Ur4+fnh8uXLaNCggVL95ORkBAUFITo6GoMGDUJcXBz8/f2RlpYGNzc3AMCyZcuwevVqbN26Fc7Ozpg7dy78/Pxw4cIFSKVSAMDo0aNx584dJCYmQiaTISwsDOPHj0dcXFy1jp+IiMqPEwIrh0QQBEGTHfDy8kKnTp2wdu1aAIBcLoeDgwPee+89zJ49W6l+YGAg8vPzsXfvXrGsS5cu8PDwQExMDARBgL29Pd5//31Mnz4dAJCXlwdbW1ts2bIFI0eOxMWLF9G6dWucOnUKHTt2BADs378fAwYMwH//+1/Y29uX2e+HDx+ifv36yMvLQ7169dQau0wmw759+zBgwAAYGhqq1caLXvUPo6bsuT+7zj8HO+5a8zr/5zAupWNsVGNclJV8D5b2HVybf2CUNzdpdM+/qKgIqampiIyMFMv09PTg6+uLlBTVwU9JSUFERIRCmZ+fHxISEgAAN27cQFZWFnx9fcXl9evXh5eXF1JSUjBy5EikpKTA3NxcTPwA4OvrCz09PZw4cQJDhw5V2m5hYSEKCwvF93l5eQCenT6QyWTlGu/E2FSF9/oSOQZbFyAkJgnF1fRHGbj6l2rZzquSS+QoKCiA/MkjCPzCEjEupWNsVGNclJV8D6r7HVzW9+jnoz1fqX+Acr4oL9mTfADPTn+/jEaTf05ODoqLi2Fra6tQbmtri0uXLqlcJysrS2X9rKwscXlJ2cvqvHhKwcDAAJaWlmKdF0VHR2PBggVK5c7OzqUNr1y+e6W1tRtjoxrjUjrGRjXGpXRVEZvtU6qg0Qp69OgR6tevX+pyjZ/zry0iIyMVjjjI5XLk5ubCysoKEolErTYfPnwIBwcH/P3332qfOtBWjI1qjEvpGBvVGJfSaWNsBEHAo0ePyjx9rdHkb21tDX19fWRnZyuUZ2dnw87OTuU6dnZ2L61f8t/s7Gw0bNhQoY6Hh4dY5+7duwptPH36FLm5uaVu19jYGMbGxgpl5ubmLx9gOdWrV09rPniVjbFRjXEpHWOjGuNSOm2Lzcv2+Eto9ASQkZERPD09kZSUJJbJ5XIkJSXB21v1hApvb2+F+gCQmJgo1nd2doadnZ1CnYcPH+LEiRNiHW9vbzx48ACpqf87p3Lo0CHI5XJ4eXlV2viIiIhqIo0f9o+IiEBISAg6duyIzp07Y+XKlcjPz0dYWBgAIDg4GI0aNUJ0dDQAYMqUKfDx8cHy5csxcOBAxMfH4/Tp09iwYQMAQCKRYOrUqVi0aBFcXFzES/3s7e3h7+8PAGjVqhX69euHcePGISYmBjKZDOHh4Rg5cmS5ZvoTERHVakINsGbNGsHR0VEwMjISOnfuLBw/flxc5uPjI4SEhCjU3759u9CiRQvByMhIaNOmjfDTTz8pLJfL5cLcuXMFW1tbwdjYWOjdu7dw+fJlhTr//POPEBQUJNSpU0eoV6+eEBYWJjx69KjKxqjKkydPhPnz5wtPnjyp1u3WBoyNaoxL6Rgb1RiX0ulybDR+nT8RERFVL170SUREpGOY/ImIiHQMkz8REZGOYfInIiLSMUz+1eTWrVt46623YGVlBRMTE7i7u+P06dPicqEcjyHWNsXFxZg7dy6cnZ1hYmKCZs2aYeHChQr3pNaVuBw7dgyDBw+Gvb09JBKJ+KyKEuWJgzY+pvplcZHJZJg1axbc3d1hZmYGe3t7BAcH4/bt2wptaGNcgLI/M8975513IJFIsHLlSoVybYxNeeJy8eJFDBkyBPXr14eZmRk6deqEzMxMcfmTJ08wadIkWFlZoU6dOhg+fLjSzeVqOyb/anD//n1069YNhoaG+Pnnn3HhwgUsX74cFhYWYp2SxxDHxMTgxIkTMDMzg5+fH548eaLBnletpUuXYv369Vi7di0uXryIpUuXYtmyZVizZo1YR1fikp+fj3bt2mHdunUql5cnDqNHj8aff/6JxMRE7N27F8eOHcP48eOrawhV4mVxKSgoQFpaGubOnYu0tDTs3LkTly9fxpAhQxTqaWNcgLI/MyV27dqF48ePq7yHiTbGpqy4XLt2Dd27d4erqyuOHDmCs2fPYu7cueLj3gFg2rRp2LNnD3bs2IGjR4/i9u3bGDZsWHUNoXpo8jpDXTFr1iyhe/fupS6Xy+WCnZ2d8Mknn4hlDx48EIyNjYXvvvuuOrqoEQMHDhTefvtthbJhw4YJo0ePFgRBd+MCQNi1a5f4vjxxuHDhggBAOHXqlFjn559/FiQSiXDr1q1q63tVejEuqpw8eVIAINy8eVMQBN2IiyCUHpv//ve/QqNGjYTz588LTZo0ET777DNxmS7ERlVcAgMDhbfeeqvUdR48eCAYGhoKO3bsEMsuXrwoABBSUlKqqqvVjnv+1WD37t3o2LEjAgIC0KBBA7Rv3x5ffvmluLysxxBrq65duyIpKQl//fUXAOCPP/7Ab7/9hv79+wPQ3bi8qDxxKOsx1boiLy8PEolEfO6GLsdFLpdjzJgxmDFjBtq0aaO0XBdjI5fL8dNPP6FFixbw8/NDgwYN4OXlpXBqIDU1FTKZTOHvzdXVFY6Ojlr1vcPkXw2uX7+O9evXw8XFBQcOHMC7776LyZMnY+vWrQDK9xhibTR79myMHDkSrq6uMDQ0RPv27TF16lSMHj0agO7G5UVV9ZhqbfPkyRPMmjULQUFB4kNadDkuS5cuhYGBASZPnqxyuS7G5u7du3j8+DGWLFmCfv364ZdffsHQoUMxbNgwHD16FMCzuBgZGSk9uE3bvnc0fm9/XSCXy9GxY0d8/PHHAID27dvj/PnziImJQUhIiIZ7pznbt29HbGws4uLi0KZNG6Snp2Pq1Kmwt7fX6bhQxclkMowYMQKCIGD9+vWa7o7GpaamYtWqVUhLS1P7kePaSC6XAwDeeOMNTJs2DQDg4eGB5ORkxMTEwMfHR5Pdq1bc868GDRs2ROvWrRXKWrVqJc4uff4xxM972aONtcGMGTPEvX93d3eMGTMG06ZNEx/ipKtxeVF54qDOY6q1RUniv3nzJhITExUezaqrcfn1119x9+5dODo6wsDAAAYGBrh58ybef/99ODk5AdDN2FhbW8PAwKDM7+OioiI8ePBAoY62fe8w+VeDbt264fLlywplf/31F5o0aQKgfI8h1kYFBQXQ01P8COrr64u/znU1Li/iY6pLV5L4r1y5goMHD8LKykphua7GZcyYMTh79izS09PFl729PWbMmIEDBw4A0M3YGBkZoVOnTi/9Pvb09IShoaHC39vly5eRmZmpXd87mp5xqAtOnjwpGBgYCIsXLxauXLkixMbGCqampsK3334r1lmyZIlgbm4u/Pjjj8LZs2eFN954Q3B2dhb+/fdfDfa8aoWEhAiNGjUS9u7dK9y4cUPYuXOnYG1tLcycOVOsoytxefTokXDmzBnhzJkzAgBhxYoVwpkzZ8RZ6+WJQ79+/YT27dsLJ06cEH777TfBxcVFCAoK0tSQKsXL4lJUVCQMGTJEaNy4sZCeni7cuXNHfBUWFoptaGNcBKHsz8yLXpztLwjaGZuy4rJz507B0NBQ2LBhg3DlyhVhzZo1gr6+vvDrr7+KbbzzzjuCo6OjcOjQIeH06dOCt7e34O3trakhVQkm/2qyZ88ewc3NTTA2NhZcXV2FDRs2KCwvz2OItc3Dhw+FKVOmCI6OjoJUKhWaNm0qfPjhhwpf3LoSl8OHDwsAlF4lj7OuLY+prmwvi8uNGzdULgMgHD58WGxDG+MiCGV/Zl6kKvlrY2zKE5eNGzcKzZs3F6RSqdCuXTshISFBoY1///1XmDhxomBhYSGYmpoKQ4cOFe7cuVPNI6lafKQvERGRjuE5fyIiIh3D5E9ERKRjmPyJiIh0DJM/ERGRjmHyJyIi0jFM/kRERDqGyZ+IiEjHMPkTERHpGCZ/ItKY0NBQ+Pv7V2idqKgoSCQSSCQSrFy5skr6VaJHjx7ittLT06t0W0TVicmfSMupk2ArW0ZGRqUm0DZt2uDOnTsYP358pbRXmp07d+LkyZNVug0iTTDQdAeIiCrKwMCgWh6vamlpiYcPH1b5doiqG/f8iXTc+fPn0b9/f9SpUwe2trYYM2YMcnJyxOU9evTA5MmTMXPmTFhaWsLOzg5RUVEKbVy6dAndu3eHVCpF69atcfDgQUgkEiQkJAB49lhiAGjfvj0kEgl69OihsP6nn36Khg0bwsrKCpMmTYJMJqvwOB48eIAJEybA1tYWUqkUbm5u2Lt3LwBgy5YtMDc3x969e9GyZUuYmprizTffREFBAbZu3QonJydYWFhg8uTJKC4urvC2iWob7vkT6bAHDx6gV69e+M9//oPPPvsM//77L2bNmoURI0bg0KFDYr2tW7ciIiICJ06cQEpKCkJDQ9GtWzf06dMHxcXF8Pf3h6OjI06cOIFHjx7h/fffV9jOyZMn0blzZxw8eBBt2rSBkZGRuOzw4cNo2LAhDh8+jKtXryIwMBAeHh4YN25cucchl8vRv39/PHr0CN9++y2aNWuGCxcuQF9fX6xTUFCA1atXIz4+Ho8ePcKwYcMwdOhQmJubY9++fbh+/TqGDx+Obt26ITAw8BWiSlTzMfkT6bC1a9eiffv2+Pjjj8WyTZs2wcHBAX/99RdatGgBAGjbti3mz58PAHBxccHatWuRlJSEPn36IDExEdeuXcORI0fEQ/GLFy9Gnz59xDZtbGwAAFZWVkqH6y0sLLB27Vro6+vD1dUVAwcORFJSUoWS/8GDB3Hy5ElcvHhR7HPTpk0V6shkMqxfvx7NmjUDALz55pv45ptvkJ2djTp16qB169bo2bMnDh8+zORPWo/Jn0iH/fHHHzh8+DDq1KmjtOzatWsKyf95DRs2xN27dwEAly9fhoODg0JS79y5c7n70KZNG4U99IYNG+LcuXMVGkd6ejoaN24s9lcVU1NTMfEDgK2tLZycnBTGbmtrK46LSJsx+RPpsMePH2Pw4MFYunSp0rKGDRuK/zY0NFRYJpFIIJfLK6UPldG2iYmJWtupynER1WRM/kQ6rEOHDvjhhx/g5OQEAwP1vg5atmyJv//+G9nZ2bC1tQUAnDp1SqFOyTn+qppM17ZtW/z3v/9VOFVBRKXjbH8iHZCXl4f09HSF199//41JkyYhNzcXQUFBOHXqFK5du4YDBw4gLCys3Im6T58+aNasGUJCQnD27Fn8/vvvmDNnDoBne9IA0KBBA5iYmGD//v3Izs5GXl5epY7Px8cHr7/+OoYPH47ExETcuHEDP//8M/bv31+p2yHSFkz+RDrgyJEjaN++vcJrwYIFsLe3x++//47i4mL07dsX7u7umDp1KszNzaGnV76vB319fSQkJODx48fo1KkT/vOf/+DDDz8EAEilUgDPrstfvXo1vvjiC9jb2+ONN96o9DH+8MMP6NSpE4KCgtC6dWvMnDmTl+0RlUIiCIKg6U4QkXb5/fff0b17d1y9elVhkl1liIqKQkJCQrXdbjcjIwPOzs44c+YMPDw8qmWbRFWNe/5E9Mp27dqFxMREZGRk4ODBgxg/fjy6detW6Ym/xLlz51CnTh18/vnnVdJ+if79+6NNmzZVug0iTeCePxG9sq+//hqLFi1CZmYmrK2t4evri+XLl8PKyqrSt5Wbm4vc3FwAz+4fUL9+/UrfRolbt27h33//BQA4Ojoq3JyIqDZj8iciItIxPOxPRESkY5j8iYiIdAyTPxERkY5h8iciItIxTP5EREQ6hsmfiIhIxzD5ExER6RgmfyIiIh3zf9+ptVbiV6qeAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "t = ax.set_xlabel('my data', fontsize=14, color='red')" + ], + "metadata": { + "id": "fKDVkljJqoE3" + }, + "execution_count": 17, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Using mathematical expressions in text" + ], + "metadata": { + "id": "i-BDvopzqsNq" + } + }, + { + "cell_type": "code", + "source": [ + "ax.set_title(r'$\\sigma_i=15$')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZAyQ7PqqqxG", + "outputId": "e8e614c9-8836-4ecf-cb55-96a46b0c822b" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, '$\\\\sigma_i=15$')" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Annotations" + ], + "metadata": { + "id": "C3WLL9F2q0Eo" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7))\n", + "\n", + "t = np.arange(0.0, 5.0, 0.01)\n", + "s = np.cos(2 * np.pi * t)\n", + "line, = ax.plot(t, s, lw=2)\n", + "\n", + "ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),\n", + " arrowprops=dict(facecolor='black', shrink=0.05))\n", + "\n", + "ax.set_ylim(-2, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 291 + }, + "id": "aYYIJ_PRqytd", + "outputId": "6743cf93-6b2a-4cb0-c1de-b536f173589f" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(-2.0, 2.0)" + ] + }, + "metadata": {}, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEBCAYAAAD/8Tu+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARUFJREFUeJztvXl8VPW9//+aNevMhOwrCQESthAgQEBWixVRERQUFxCX0v4stCr29tbbVvR2sb16e7VXf1alYvUWFZDFFaSIbEJYQoBAQgIEEkL2ZSbrrOf7x5k5OROyZ86cJe/n48GDLCdzPnPm8/m8Pp/3572oGIZhQBAEQRAKQC12AwiCIAjCV5CoEQRBEIqBRI0gCIJQDCRqBEEQhGIgUSMIgiAUA4kaQRAEoRhI1AiCIAjFQKJGEARBKAYSNYIgCEIxkKgRBEEQikFQUXv55Zcxbdo0GAwGREdHY+nSpbh48aKQtyQIgiCGMIKK2oEDB7B27VocO3YMe/fuhd1ux+23346WlhYhb0sQBEEMUVT+TGhcU1OD6OhoHDhwAHPnzvXXbQmCIIghgtafNzObzQCA8PDwLn9vtVphtVq5710uF+rr6xEREQGVSuWXNhIEQRDSg2EYNDU1IT4+Hmp190ZGv+3UXC4X7rnnHjQ2NuLw4cNdXvPiiy/ipZde8kdzCIIgCBlSVlaGxMTEbn/vN1F76qmn8PXXX+Pw4cPdNqjzTs1sNmP48OEoKyuD0Wj0RzMJgiAICWKxWJCUlITGxkaYTKZur/OL+XHdunX44osvcPDgwR4VNiAgAAEBATf93Gg0kqgRBEEQvR5FCSpqDMPgZz/7GXbs2IHvvvsOI0aMEPJ2BEEQxBBHUFFbu3YtNm/ejF27dsFgMKCyshIAYDKZEBQUJOStCYIgiCGIoGdq3W0TN23ahMcee6zXv7dYLDCZTDCbzWR+JAiCGML0VQ8ENz8SBEEQhL+g3I8EQRCEYiBRIwiCIBQDiRpBEAShGEjUCIIgCMVAokYQBEEoBhI1giAIQjGQqBEEQRCKgUSNIAiCUAwkagRBDIj58+fjmWee8dv9rl69CpVKhby8PL/dk5AfJGoEQRCEYiBRIwiCIBQDiRpBED6hoaEBjz76KIYNG4bg4GAsWrQIxcXFXtccOXIE8+fPR3BwMIYNG4aFCxeioaEBALB7927Mnj0bYWFhiIiIwN13343Lly/3qw0pKSn4/e9/j0cffRShoaFITk7GZ599hpqaGixZsgShoaGYOHEiTp48yf1NXV0dHnroISQkJCA4OBgZGRn46KOPuN/X1NQgNjYWf/zjH7mfff/999Dr9di3b99AHhUhICRqBEH4hMceewwnT57EZ599hqNHj4JhGNx5552w2+0AgLy8PCxYsADjxo3D0aNHcfjwYSxevBhOpxMA0NLSgvXr1+PkyZPYt28f1Go17r33Xrhcrn6143/+538wa9YsnD59GnfddRdWrVqFRx99FCtXrkRubi5GjhyJRx99lEu43t7ejqysLHz55ZfIz8/Hj3/8Y6xatQrHjx8HAERFReG9997Diy++iJMnT6KpqQmrVq3CunXrsGDBAh8+QcInMBLGbDYzABiz2Sx2UwiC6MS8efOYp59+mmEYhikqKmIAMEeOHOF+X1tbywQFBTFbtmxhGIZhHnroIWbWrFl9fv2amhoGAHPu3DmGYRimpKSEAcCcPn26279JTk5mVq5cyX1fUVHBAGB++9vfcj87evQoA4CpqKjo9nXuuusu5rnnnvP62U9/+lMmLS2Nefjhh5mMjAymvb29z++FGDx91QPaqREEMWgKCgqg1WqRnZ3N/SwiIgLp6ekoKCgA0LFT647i4mI89NBDSE1NhdFoREpKCgCgtLS0X22ZOHEi93VMTAwAICMj46afVVdXAwCcTid+97vfISMjA+Hh4QgNDcWePXtuuu+rr74Kh8OBrVu34p///CcCAgL61S7CPwhaT40gCMJDb9XuFy9ejOTkZLz77ruIj4+Hy+XChAkTYLPZ+nUfnU7Hfe0pVNzVzzxmzVdeeQWvv/46XnvtNWRkZCAkJATPPPPMTfe9fPkybty4AZfLhatXr3oJJSEdaKdGEMSgGTt2LBwOB3Jycrif1dXV4eLFixg3bhwAdgfVnWOF59rf/OY3WLBgAcaOHcs5kAjNkSNHsGTJEqxcuRKZmZlITU1FUVGR1zU2mw0rV67EihUr8Lvf/Q4/+tGPuJ0eIS1I1AiCGDSjR4/GkiVLsGbNGhw+fBhnzpzBypUrkZCQgCVLlgAAnn/+eZw4cQI//elPcfbsWRQWFuKtt95CbW0thg0bhoiICLzzzju4dOkSvv32W6xfv95vbd+7dy++//57FBQU4Cc/+Qmqqqq8rvn1r38Ns9mMv/71r/j3f/93pKWl4YknnvBL+4j+QaJGEIRP2LRpE7KysnD33Xdj5syZYBgGX331FWf6S0tLwzfffIMzZ85g+vTpmDlzJnbt2gWtVgu1Wo2PP/4Yp06dwoQJE/Dss8/ilVde8Uu7f/Ob32DKlClYuHAh5s+fj9jYWCxdupT7/XfffYfXXnsNH374IYxGI9RqNT788EMcOnQIb731ll/aSPQdFcO4/VoliMVigclkgtlshtFoFLs5BEEQhEj0VQ9op0YQBEEoBhI1giAAAK2trdi+fTsefvhhjBs37qZzJYKQA+TSTxBDmKamJnz55ZfYtm0bvvzyS7S3t0Or1cLpdGLbtm1Yu3at2E0kiH5BokYQQ4yGhgZ8/vnn2Lp1K/bs2QO73Q6NRsOlq3I4HFCpVNiyZQuJGiE7SNQIYghQW1uLnTt3YsuWLfj222/hdDq9hMzzvweGYXDo0CHU1NQgKipKjCYTxIAgUSMIhVJRUYEdO3Zgy5YtOHToEBiGgUql4jJpdBayzjAMg507d2LNmjX+aC5B+AQSNYJQEGVlZfj000+xZcsWHDt2DAC8hKw/ETwqlQpbt24lUSNkBYkaQcicy5cv49NPP8Unn3yC3NxcqNVqMAzDCVh/Q1E9ZkmdTofMzEwhmkwQgkGiRhAypLCwEJ9++ik+/vhj5OfnQ61Wc7ux/tYfAwCtVguHw4HAwEAsXrwYy5cvx5133onQ0FBfN50gBIVEjSBkAMMwOHfuHCdkRUVFXo4egxGykJAQLF26FMuXL8fChQt7zaZPEFKGRI0gBIBhGGzatAm33HILxowZM+DXOHXqFCdkV69e7dFjsS94hMxoNGLZsmVYvnw5FixYQLXBCMVAokYQPoZhGDz77LN4/fXXce+992L79u19/luXy4Vjx45xZ2Tl5eU+E7Lw8HAsX74c999/P+bNm+dVY4wglAKJGkH4EIZh8POf/xxvvPEGAOCrr75CS0sLQkJCuv0bp9OJQ4cOYdu2bdi6dSuqq6s5IfL8vr94/j4mJgYPPPAAli9fjlmzZkGj0QzsjRGETCBRIwgf4XK5sG7dOq9yJFarFbt378ayZcu8rrXb7di/fz+2bduGbdu2oaGhwUvIPP/3B8/fJyYmYsWKFVi+fDmmT58OtZpSvBJDBxI1gvABLpcLTz31FN555x2vn2u1Wmzbtg3Lli2D1WrF3r17sW3bNmzfvh1NTU2DFjKPaTIlJQUPPfQQli1bhilTpkClUvnkfRGE3CBRI4hB4nK58OMf/xh///vfb/qdw+HArl278PDDD+Ozzz5DS0vLoIXM476fnp6OBx98EMuWLcOECRNIyAgCJGoEMSicTieefPJJfPDBB91e097ejq1bt/pEyDIyMjghS09PH3C7CUKpkKgRxABxOp1YvXo1Nm/e3GPWDoZh+i1knl0XwzDIysrCgw8+iPvuuw+pqamDajNBKB0SNYIYAA6HA6tWrcInn3zS7zRU3eFJbwUAM2bMwIMPPoh7770XSUlJPnl9ghgKkKgRRD9xOBx45JFHsHXr1kELmsesqFarMXfuXKxYsQJLly5FbGysj1pLEEMLEjWC6Ad2ux0PPfQQtm/fPmBB83gsarVaLFiwAA888ADuueceREZG+ri1BDH0EDSA5eDBg1i8eDHi4+OhUqmwc+dOIW9HEIJis9nwwAMPDErQdDod7rzzTnzwwQeoqanB7t278cQTT5CgEYSPEHSn1tLSgszMTDzxxBO47777hLwVQQiKzWbD8uXL8eWXXw7K5Lhz507ceeedPmwZQRB8BBW1RYsWYdGiRULeolcaWmywOV2INgRQHE8XOJwuaDWUcaIzLhcrXGq1CgzDYNmyZfjiiy8G9ZparRZffPGF7EWN+kzXMAwDFwNo1DTP8GEYBudvWDAhweSX+0nqTM1qtcJqtXLfWyyWQb/mtlPX8YevChCi1+CH42Lwb3eMQULY0C6t0W534s39l7DlZBmqLFYkRwRj9cwUrL4lZcgPyMJKC17ZfRGHLtUCDJCdGo6fz0tGcXGx13VarRYMw/QrL6PD4cC2bdvwxhtvyC51lcvF4KMTpfj74RJcqWlBZKgey6Yk4ucLRiMkQFLTiN+ptrTjlT0XsTu/Ei02ByYkmLDu1lG4fTw5++wvrMZf9hbhXLkZu9bOQmZSmOD3VDG+8kfu7UYqFXbs2IGlS5d2e82LL76Il1566aafm81mGI3GAd33P3acw+acUu57U5AOHzwx3S8PV4o0ttqw6u/Hca7cfNPvfjAmGv//I1MQqBuaSW/3XqjC2s25sDm8a5Np1Sr89wOZ+MFII4qLi3Hx4kUUFRXh4sWLOH/+PIqLi9HW1sZdr9Pp4HA4ujVTHj58GLNmzRL0vfgSu9OFZz7Jw5dnK276XVpMKP7vR9mINgSK0DLxKay0YOXGHNQ222763dpbR+IXt6cPWQvRX/cV4y97i7jvl06Kx2sPTh7w61ksFphMpl71QFKi1tVOLSkpaVCi9uGxa/i2oAqnyxrR2GoHAAwL1uHzn81G4rDgAb2mXLE7XXjk3Rwcv1oPANBpVBgVbUBhpQWeXnDf5AT89wOZQ24gnilrxP1/OwqbkxW0GGMANCoVbpjbAbAmpf97MhszR0bc9LcMw6CyspITu6KiIhQUFKCgoAClpaXcbs7jvv+LX/wCr7zyiv/e3CD57c58fHjsGvf9mFgDrtS2cOKfkWDC1v9v5pBbDFU3tePuvx5GdRM7ZxkCtYgyBOBKTQt3zUv3jMfqW1JEaqF4fHy8FL/afo77fkKCEWvmpGLJpIQBv2ZfRU1SdoOAgACfFytcNSMZq2Ykw9xmx48/OImckno0tNrxb1vPYvOa7CE1eb994DInaFGGAHz45HSMiTXi+0u1+NEHJ9Fqc2L76XLcOiYaizPjRW6t/7A6nHj649OcoC2ZFI//Wj4RapUKL+zKx0fHy+B0MXj2kzzse27eTeY2lUqFuLg4xMXFYf78+V6/s9vtKCkp4XZ2RUVFWLBggb/e2qDZX1jNCZpeq8Zbj0zBgrExKKltwcqNOShvbMO5cjNe+1cxfrVoYMVQ5cp/bM/nBC0zKQzvrZ6K8BA93v/+Kl76/AIA4PdfXsDs0ZEYGRUqZlP9SmldKzZ8dp77/vlFY/Djual+m2vlZdgfBKYgHd55dCoSh7HnaUev1OGrc5Uit8p/3Ghsw5v7LwNgdx1vr8rCmFh2tXPLqEj8edlE7to/flWAVlv/8xPKlY2HSnC1rhUAMHl4GF69PxMBWg10GjV+vzQDs0axu7NKSzve3H+pX6+t0+mQlpaGu+++G8899xzefvtt3HHHHT5/D0JgdTjxn19c4L7/z3vGY8HYGADAiMgQbFw9FXq3w8jfD19BSW1Ll6+jRL67WI1/FVQBYBeIf189FRGhrDPa47NG4EezRwAA7E4G//n5BZ9lnZEDv//yAqzuXfyqGcn4ybyRft08CCpqzc3NyMvLQ15eHgCgpKQEeXl5KC0t7fkPBcIUpMOGxeO57//w5QW02/tfgFGO/Hl3Idrc73XVjGRMGT7M6/d3T4zD/PQoAECFuR1/++6y39soBtU8oVKrgD/emwEdz7NPo1bhD0szuMl746ESlLoFUOn84/urnFBNTwnHimne6brGxhmxZm7H5P17ngAqGYfT5SX2v75zLCJDvS1Mz92ejngTe854oKgG+y9W+7WNYnHkUi2+udAh9r+8w/9JtwUVtZMnT2Ly5MmYPJk9HFy/fj0mT56MF154Qcjb9shtY6MxL42dvG+Y27HzdLlobfEX1+pa8NmZGwCA8BA9nr0t7aZrVCoVXrh7HHQadkW16furaLYqf7f23pGraLWxYr9yRjLGxt1sq0+JDMGP5rCTt83pwruHrvi1jWLQbnfinYMlAFix33DPuC5X22tvHYVYIzt57yusRkHF4D2Wpc7X+ZXcudnU5GFYMulmU32QXoNf3zWO+/6Nb/u3w5cr/Pf5qzvGwBCo83sbBBW1+fPng2GYm/69//77Qt62R1QqFZ79YcekvvFwCReTpFTeO1zCOYI8OXsETMFdd7TUqFDcO5k9yG1qd2DLiTJ/NVEUWqwObM5xnxdp1Fj3g1HdXvuTuSMRrGcdIbaeKkNDy83ebkris7wbqG1mz4sWTYjD+PiuY4yC9Vo8NX8k9/3GQyV+aZ9YMAyDjbxFzfofpnVrWrszIxbpMQYAQG5pI05da/BLG8Uiv9yMo1fqAACpkSHcXOJvhsyZGp9JSWGYlsKa3y5VN+NAUY3ILRIOc6sdW05eBwAE6TR4JHt4j9f/aE5HaZP3jpTA4XT1cLW82XKyDJZ2djd6z6T4Ht3STcE6PDCVNb+12134Z861bq+VOwzDYOPhjonbs0vtjvunJsIUxC6UPjtTjipLu6DtE5MTVxtw5jobDjM2ztilN6wHlUqFJ3nPbqPCd/j89/fE7BFQixTzOiRFDfCevDcfF+eMzx/sOH2dO0t7YGoiwoL1PV6fFmPgzLPXG9rYIGQFwjCMV/xibxM3ADwxawQ84/Sj42WK3eGfvNaAoqpmAKx5bXKn89fOBOu13GLJ7mSw7dR1wdsoFh/x5oo1c0b06gCxZFI8ogzseds3F6pQ02Tt8Xq50thq4xzvhgXrsGxKomhtGbKidtvYGMQY2c62v7Aa9Qo1J23nnRk+MiO5T3/D381tz1XmmWN+uQXF1R0Tt8cTtCeGRwRjzmhW8Msb25BTUi9oG8Vie26HKD0yo+edvYeHpndc92nudUV6+zVbHdidz07cpiAd7poY1+vfBGg1uD+LneCdLga78pQ5nj4/W8GFxCybkoggvXgxi0NW1DRqFZa6bb4OF4PP3Y4USqK4qgln3aaSjAQT0tz2/d6Ynx6N8BB2R/fN+UpY2u2CtVEsPuVN3Muy+r6q5F/Ln/yVQrvdiS/cmUNC9Bos7GOqp6TwYMxIDQcAXKlp4Ux0SmJ3fiVn9VicGYcAbd8m7vum8PuMMkVt+wDHkxAMWVEDgPsmdzz8TxU4QfF3afdN6fuhrV6rxj3u4Gurw4WvukiPJGfsThfnDarXqnFnRu8rbg+3j4uBwR18/dW5CrTZlBUS8q+CKjS5zxkXZcQhWN/3/Az8yftTBZog+RP3ff0wr42KDuXS8l2osCjOQ/RKTTNOlzYCYM8Zu/Ig9idDWtTSYw0YH89+AGevm1FWr5z4I4ZhuFx9GrWq3xlC+J5LX55Tlqgdu1LHmZt/ODaGc3LoC4E6DRZlsLuXFpsTB4qUFX/Ez+94Xz+91xZNiEWAlp1Svs6vhFNBZ461zVbOsy8lIhiT+5k7lv8sv1LYeOK/n/72GSEY0qIGwGuVvue8cjKMFFY2odQt0tkjwm8KDu2NiYkmrprB0ct1MLcpxwTJ/5w9AtUfFnn1mSqftEkKtNud+O4i6wkcHqJHdmr3nn1dYQjUYa7byai22YrTpcpxYf/XhSouLGZRRly/M2TcMaGjnylpngG8xwD/fYrFkBe1heNjuK+/UdAExR84fT0X4aNSqXC7+9k4XAz2FypjR+JyMdznrNeqMT89ut+vccvICIS6TZD7CqpgV0jYw6HiWu7M6Lax0QMqQ8Tva0qavAc7nmKMgZg8PAwAUFTVrJiUYp7cnwAwPt6IpHDxk8QPeVEbFW1AalQIAODEtXrFuNzyV0+384S7Pyhxgsq73sgloZ09KpITp/4QoNXg1jGsGFraHTjmNkvJncFO3IC3GO45X6UIL8imdjuOXGI/41hjICYOsNilEsfTNz7oM75myIsa0PFhMAzwbaH8d2vXG1q5w+jMRBPiTAMrijotJZzzgjxQVAOrQ/5OEf+60PH5Lhyg2Hf+270X5N9nnC4G37p34yF6DWaNihzQ64QF65E9gvWCLK1v5eLd5MzBolrOXf328TEDDirmT/pK6DMAuKTOAImapLhtbIcJ6mCx/IOND/Hegyer+kDQqFVckuNWm1MRaX4OFndkj/nBmIE/m3lpUdC6J7dDCugz52+YOeeZ2aMjB1Ubjd/nDhXLP1vPQV7GocGMpxGRIZxVKK+sUfbn1K02B06UsHNC4rAgpMVIo7wOiRqAzMQwGAJZM9SRS7Wy99riTySeg/uBMo/393KfvOuarcgvZ3ew4+KMXKaHgWAI1HGVDkpqW2TvOcv/bAffZzp2eXJfJDIMw40nvVbN7UIHylx38L7TxeDoZXmbrXNK6rkd7Ny0KMnUpiRRA6DVqDFrJDsQG1vtyC+Xb+Co08XgsHsiMQXpkDFA+78HvhlK7qvuw7yUX3PSBmZe4zNnNP/ZyHvy5u9GPBPvQBkZFYo4d9mVnCt1si7vdLmmhat+nj0ifNDVveemKWc8HSriLYRGD348+QoSNTdzFNLZzl5v5JL0zh4VOSAPNj6RoQFcLF9+uQV1zfJ1pPHajQxy4gaAOV67WPn2mWarA7lu9/uUiOBBe7CpVCpO8K0OF05ela/Zmv+5zvHBxJ09IoIr7yT3hZDn2ahVwMyRJGqSgz/Jydlkwh8ovhiE7Ot0PJvDMk1wzDcjBerUyEruOUlvX8hIMHGB20cu1cq2okHOlTrYnazJfY4PxL7z68hZ8L3H0+CfTUiAlut7pfWtuFYnT9f+CnMblzt1UlJYvxIYCA2Jmpuk8GCkRLAr1NxrDbItkOm1shzk2YiHuQowsxVXN6PKwu4ys0dEDNqMBLCONLPd5llLuwNnZWq2FmIhNHtUJDxHLHJdJFodTu7cK8oQgDGxfcud2htzFLCA9rXY+xISNR6eA3KHi8ExGR7iNrXbkevOwTYyKoTLCDJYslKGIcgtAoeKa2QZe+R1ZuQjsWdfiyf4RfKcoDweoVq1qsf6YP1hWIiei+cqqLCgukl+NdZyrzVywehzRkf6zBHCy/lKprUcfelY5GtI1HjM5jlFyNHMlnOlnvPc9OXqKUCrQbY7A3uVxYrLNfKLPTpyyfe7EQCYzXvOR2TYZyrMbbhSw5rAJg8PgyHQd2ak2bznLEdPP6H6zLg4Ixf/efRyney8rRmGwffuZ2MI1CIzcXDOaL6GRI1HdmoEZzI5LsNaWcevdrR5Rj/z9vXGTN7rya2OmNPFcM4KkaF6jI72XTxNQlgQhrsdK/LKGmXn6cfv5zN93mc6hEBufQbo/Gx8J2pqtYoLDWiyOmSXtf9yTTPq3DGN01PCodVIS0ak1RqRMQXpMNZdLLKg0iK74Ej+xDF9kPE0neEnt5Wb4BdUWNDkPiOdPiLc5/E0ngnK5nThTFmjT19baPh9pr8JjHtjSnIYF6Autz7Tbnciz/1ZJkcEI9YdouAr+PFucns23n3Gt/OMLyBR64RHDBgGOHVNPp2t2erg4uvSYkI584avGB9vRLC7mm3OlXpZnavxJ43pKb4fhNPlPEG581Zq1Sou4a6vCNZrkeE2TV2qbkatjMJBzpQ1coHFwvQZ+S4Sc67wF8++XQj5AhK1TvBXUHIymeRea+Bs877epQGATtPhBl9paUdZfZvP7yEUXqImwCDM5k9QV+XTZ2qbrbjsPk/LSDT1qyBoX+H3xRMyGk/HBbR6AGwtR6M7i9Hxq/JZJDIMwz2bYL2Gi2GVEiRqnZjGF7Urch2Ewqye+CvWnBJ5HPwzDMMJjTFQi3QfuWXzSQoP4jJonLrWIJtSNCcEnrgB+S4S+YuTbAHGk0at4p55fYsNl6rl4XxVVt+GSgvryZqVPAw6iZ2nASRqNxEZGoCR7qSj+eVmtMgkXo0vaoPNT9cdcjSzXa5p5hL1TksJH3SGla5QqTomqFabUzZp1nL80GeyksNl53xld7q45N2xxkAkhfsmNKYz02Uo+PzFrBBmWV9AotYFnp2Ow8XgtDvuS8rwD7VTIoIRY/TtobaHzKQw6LVsl5HLIDx2xT+H2nIUfM9nqFIBUwWaoG5yvmqVvvNVfrkZrTbWizU71feORR7keK4mpGORryBR64IZqfIys+XxD7UFWnEDQKBOg0lJYQDYFD8VZumfq/nDLAvIz8xmbrOjsLKjYoHRh/FpnfEsJhgGOCGDM0ehz9M8eDlfldTJ4lzN82z0WjUmSiw+zQOJWhdM461a5VBDjN/GaQKbBKbL9NkE6YQ91B4ZFYoIt8dpbmkDXBIPqD1d2gDPHOrXPlMq/T5zktevhTSx8Z2vqixWlDdKe5FY3dSOUneJpUmJYT5JNScEJGpdEB/WcfCfV9Yo+US1p3kTxRQfJOrtCX4iYKmLWpWlnZsoJiaaBD3UVqlUmOyur9bYaseVWmknqs3lmdWF7jNTZNRnGKbjyMEYqMXIKGELX3pq8gHSfzb8o5jJyWGitaM3SNS6wdPZWm1OXKxqErk13cMfhKYgHVIjQwS9Hz+WKVfi542n/Thxs/cI477OlfiOxGsh5OP4tM7EGAO5PKRnrzdK2jv0ekMbF083afgwqAVwLOLD75dSP7/3Gk/DhR9PA4VErRv4nU3Kk3dpfSuXsmby8DDBq8+GBeu5kvQXbpglnRaKP3FPdp8FCgl/oJ+WsKi5XAznWBRlCPBZ4uue8IyndrsLhRXSXSTm+rnPTOLdQ+oLIX8/m4FCotYN/NVrroTNAl4mgST/rJ6y3JO33clI2n3d69n4YWWZmRjGhQxI2ZR0uaYZTe5CspOThF8IAUCW1w5fus/Gu8+ECX4/U5AOaTGsifPCDQvabNJcJDqcLpy93giAzXcaLZCHtS8gUeuG8fEmzn1d2oOQf54W5pd7yuGMxO504Wx5IwA2ODrKECD4PYP0GoyLY51RiqubYWmXpvu6v82yne8j1T4DdN7d++nZuBdcDhfDCYfUKKxsQrudNRv7q88MFBK1btBr1Vw9qGt1rZLNW+cxjapUbByZP+Cb2aQq+IUVHYPQX5MT0LHDZxggT6JmazHMSGPjjAjUSXuR2G534vwNNsxhZFQITMH+qebsPZ4a/XLP/uJvU/5gIFHrAa9zNQmuLttsTq5sxaioUEFjjfiMjg6FIYDNW5db2ijJ+JrTZbxB6Aczkgc57Eg8OzWNWsUlHBYanUaNiYlhAFhnDCkWDT1/wwyHOxTDH+ZqD3LqM4B/x9NAIFHrAamvoPJ5g9Cf3khqtQqT3B27psmK6w3Si6/hL0L8+WykvottarejqJp11BgbZxAkiXF3eD2ba41+u29f4bfJn30mNTIEpiB2QcrGD0pxkdgIgLVgjY+XZtC1BxK1HpC6izZ/4vb36knqk7dnEAZo1Rgb579M4onDOs7v8kobJReEfabMzAVd+9MsC3RyvpJknxFnPKl5ZX/qWmxcgLNUqG+xocQddzkh3sj5GkgVabdOZKINgUgcJt34GjEO/Lu6n9RMs7XNVlyrYyeGjASTXwehSqXiJu8mqwPFEsu+LoZjUcf9pNtngI6dWoheg7QY31dz6AkpB2HnlYlj9RgoJGq9kMWLr5FS2XWGYbjVriFAi1ECZz7ozKSkMC77utRMs3ki2/+zkqW7iz3Nq8zt751aZGgAkiOCAQBny82wOaSzSKwwd5RUyUwKE6SaQ09Ius/4OTRmsJCo9YL3OYB0OtsNczuqm1iPzMykMMEzH3TGFKTD6Gh3fE2FtOJrvM1I/h+EUu0zbPYZtj3hIXpOYPyJ59nYHC5ckNAiUWxHiMykMHiGsNTOG728ZSXuJAKQqPWKV5YI3ipXbPyZ5qg7PM/G6WJwTkJB2GId+HuYkGCCTsPOUFLqM1frWtHgLv3ir6DrzvD7qpSyrojlWOQhNEDLmTwLKy1otUmjjqPTxeBMGTu2Y42BiPdD9pnBQqLWC2PiDJKMr+FP3GKZBKToLOJ0MTjjDmCNMwUi1uT/zAeBuo4g7EvVzZKpISamY1HHfaXpUcxffEwSKQ7L82xcDDghEZvi6iY0uwsly2GXBvhJ1N58802kpKQgMDAQ2dnZOH78uD9u6xN0GjUmJoQBYEuZ1zRJIwibb2ITbxB23Fcqq+6LlU1cgUcxByF/8s6TSJYIsc2yADAmtmORKJU+Y3O4OEtDckQwIkKFzz7TFV672DJpPBuxzbIDQXBR++STT7B+/Xps2LABubm5yMzMxMKFC1FdXS30rX0G/8PMk4A5yepw4nw5ex6RGhmCYe46Xv5mZFQoDIHSCsI+LRFPLSkK/mkRss90RivBIOwLFRbOaUXcPiO9jP3exxzSdxIB/CBqf/nLX7BmzRo8/vjjGDduHP72t78hODgY7733ntC39hmTJWZmO3/DwlW6niTi6kmtVnG7xJomaRQ5lMrKUmqB+602Bwor2aDr9BgDQgP8F3TdmSkSm7xPS8QRQopB2J6+q1WrMCFB2kHXHgQVNZvNhlOnTuG2227ruKFajdtuuw1Hjx696Xqr1QqLxeL1TwpIbdUtJRdbqa0uPYsOnUYlauaDxGFBiAz1BGGLXwn77HUznFwKqDBR2+I9nhpFa4eHXBEqXXQFf5FY22wTPVOPuc2OS+44y3HxRslWuu6MoKJWW1sLp9OJmJgYr5/HxMSgsrLyputffvllmEwm7l9SUpKQzesz/CKHZ8rMolfCloLno4fJEsoS0dhqw5UaNvPBuHiTqIOQrYQdBgCwtDtwpVbcIGxpLYTCuK/F7jNAx3gK1KkxJs6/QdedkdKzOcM7apGL6RGQmPfj888/D7PZzP0rKysTu0kcns7WZhe/ErZnggrWa5Du58wHneFn7BZ71Z3nFVgcJlo7PEjJBJkroYVQ50w9Yi4Sq5vauR3RxIQw6DTiTolSMs3KLT7Ng6CfYGRkJDQaDaqqqrx+XlVVhdjY2JuuDwgIgNFo9PonFaRiZquytHNnVxMTTdCKPAi9K2FbYHWIF4SdK2LasK6QipmNDbpm728M1CI10r/ZZ7rCM57a7S7urE8MvHawfk4b1hWZXotEcXdqXmn4aKfGotfrkZWVhX379nE/c7lc2LdvH2bOnCnkrX2OVMwCUjIjeeCyRDhdyC8X7xxUajWfJiaauHRLYk5Q1xvauHqAk4YP83v2ma6QShC2GJXje8IUpMMod6ae8zcsaLeLs0h0uRjO8hEZqud21nJA8GX++vXr8e677+If//gHCgoK8NRTT6GlpQWPP/640Lf2KePjjdC7d0ViFn+U2sQNSMORxnsQBkhiEAbrtRgTy5qHL1Z1BLH6GzGKgvaGVCwfUjLLevC0w+FikC9Spp4rtS0wt7FJAyYlDRMl+8xAEVzUVqxYgVdffRUvvPACJk2ahLy8POzevfsm5xGpE6DVYHwCaw69UtuChhabKO2Q4k6Nv8IVKy3U5ZpmNLWzojFluDgpoLrCI/gMA5wV6dmIWc2hO8bFdZQwEavPOJwunHUHxieEBSHa6P/sM10hBcEXs5rDYPHLgcy6detw7do1WK1W5OTkIDs72x+39Tn8yVuMIGy704Wz5ex9k8I76naJTXqsAcF61tPwtEgJfL0PtaUxcQPefUYsszV/gprkDnwWG71WjQx33FNJbQvqRVgkFlY2od3OOqlIyRFCCkcdUglzGAiS8n6UOvwVixhmtoIKS8cglFBH06hVyHRPljfM7ag0+z9LhHcuzDC/3787+DsjMVbd7XYnzt9gzzlHRoXAFKzzexu6g28KzRMhLZRUF0KjozuC48XeqWnUKkxMlEfQtQcStX7gZRYQYafGT0ibJREzkge+4Is5QWl5AisFUiKCEeYWktNl/k8ldq7cDIc76Fp6fUZcwZfqeNKoVchMYoWk0tKOCrN/g7Cb2u1c2NKYWANCRMw+MxBI1PpBvCkQ0QZPlohGv2eJyJWwi623ma3Rr/c2t9m5CtNj44wI0ksn84FKpeJ2JPUtNq4it78Qu6RKT4htZvP00wCtmquqIBW8xpOf66udKTPDs/aSWp/pCyRq/UClUnEfcpPVgUs1/s0S4SnzLoXMB52ZJKIHpJQyrHSFd00+/z6bU3xRk9BuBADiTEGIdTtnnCnrSOPlD2qarCitZxcYGQkmzmlFKoh51OHdZ8K6v1CiSOuTlAFeq0s/OkVU84KuMxPFz3zQmcjQAK6S8tnrZi7ruT+QWtB1Z7wSYvtx1c0wDPdsDIFajIoSP+i6M55Js9nqQHG1/4Kw+TtDKZkePUwS0cHI69kMD/frvX2BtGZGGSCWu61XPI0EByHQcfBvdbhQWOm/IGypl8fITDLBE2Hgz50aP+h6skSCrjvjFQ4i0niSkpOIh/AQPVLci8R8P2bqcbkYbjxFhuqRFC5+vGd/IVHrJxkJJmg9WSL8OEGdkvDZiAcxDv6dro4UUFEGaQRdd8YQqENaNGsuLqhoQpvNPxOUd58J88s9+4tYZrZcGZjYuEw9DhcKKvyzi71c0wxLu6fStbyCrj2QqPWTIL0GY92HysXVzbC02/1yX28nkTC/3LO/iBGTxS83nyXhQegxWztdDBfwKzRSN7EBwPh4E3Qa9jPzl4ORzeHC2etspo6k8CBEG6QRdN0ZMY465NBneoNEbQBM4WWJOOMH135+ufkUEcvN98aYOAMCde4sEX6aoPhnVFJdcQOdnUUa/XJPzwSlUoGr0yU1AnUazvPwUnUzl5pJSAoqLLBKoNJ1b4gRQuQ1niT8bHqCRG0A+Ptc7fwNsyTKzfeGTqPGxIQwAEBpfSt3niMkuRI/T/Pg7/yYrTYHZ7JKizbAECidoOvO8MeTPxaJcukzY2L5i0T/7tS0Mgy69kCiNgD8HV8jZbfszvi73IrHLKPTSLvc/MioUBgC2SDW3FLhg7D5LvJy6jP+Hk9SNrFpNWpMdCcSuN7QhuomYTP1mFs74j3Hy6jSdWdI1AbA8PBgRIToAbATt9ATlJzqGvlzR9LQYsOVWrbS9XiRK133hlqt4kyANU1WLjxDKKSYfb47/F0Y03OPIJ2Gq6IgVfz5bPiOb1L0CO0rJGoDQKVScZO3uc2OywIGYTMMg5PX6gEAIXoN0mU0CE8KfLgtB49QPvyJ4pQ/n42EdyMAkDgsCJHuc+Lc0gZBg7ArzG2SKrLbG/xFIvWZviHtT1TCTEvpCErMKakX7D6l9a2osrBnU1OSh3FFJ6VKtDGQC8LOK2sUtMjh8asdz336COkPwul+6jNOF4MT7mcTGapHamSIYPfyBSqVivv8mtodgsY4Hi/h9xnpBxZP5YmLkH2m8+vz+6rcIFEbIPwBcVzAzsbvaDNSIwS7jy/xDAi+67QQ8J/NNBkMwinJYVyMo5B9prDSwtWWmz4iXLJhDnz4k6i/xlP2COmPp4jQAIx2V8LOLzejRaBCs+12J1dOKzkiGLEmaYY59AUStQEyIcGEIPcZTs6VesHO1eS2sgQ6C36dIPdosTq4qsCjo0MlG+bAJ1iv5ZxZLlU3C+YdelyGK+7pPIERUtQ8r61VqyQdAsLHM56cLkYwRxp+aju59JnuIFEbIDqNmvOcqrS043qDMAf/nkGo16pl42LLXwELZTLhn73IRewBIJvX1pNXhXk23gsh6e9GALbQrNHtHXq8RJhFYm2zFZfc3n0TEkwI1sujpIo/rEL8xaecxlNXkKgNAv6Hf+yK73ckFeY2LpP45KQwBGil693HJym8I/v6qWsNsDt9n9w454r8drBA5z7j+wmKYRhu4jMGaiXvWORBo1ZxJuS6FpsgzlcnvEyP8uwzOQL0GUB+ZtmeIFEbBEKvoI7LdBCyB/9se1ttHZWXfclxmQ7CqSnhXHJjIfrM5Zpm1LXYALDnjFJ3LOLjNXkL8GxyZGjKB9gSPcPDhXO+sjtdnOdjrDFQlkmM+ZCoDYJJSWHQu12CjwtgSvJaPcnEScRDdqpw52pyPtQ2BekwNpZNC1VQafF5WijvPiOfiRvw7uNCLhJVKnZxISc8i1qb0+XzrCvnb1jQ6k6ynZ0qD8einiBRGwSBOg0XUHutrhWVZt9G/PMPtSdLPIC2M9kCmkzOlDXC5pTvobZnl8Awvj9Xk+N5mofx8UYE64VxvjK32VHgDhUYG2uEKUi6acO6QshdrJLO0wAStUHDXw0fuVTrs9etNLdzh9oZifI51PYwMioUkaFs1pWcknqfnqvxn7McB+EMrz7ju12sy8Vwrxei12B8vNFnr+0POjtfebLF+IKjl+vg0Uh59pmOBYov5xkAOMzrg3I65ugOErVBMntUJPf1oeIan70u/7XmjI7y2ev6C5VKhVnuZ9NsdXDmQl9wsLhjUMvx2cxMjYTnqMuXfaawsokLE5g5MkJy1dH7wpzRvPFUJMx4mpsW2cOV0iQpPJhLapBb2sCVWxos7XYnctxObnGmQIyUYHX0/iK/Xi8xJg8fhhC3yeTwpVq4fJTi5xBv4p47Wn6DEPAWHF9NUI2tNq4eWVpMqKzO0zyYgnXIdJuti6ubUWH2TTiI3BdCQKc+U+y7HYnntXQalawci/h4BN/uZDghGiwnrzZwZXjmjI6U/XkaQKI2aPRaNWaOZAdJbbONs9sPBpeLwWG3icEQoOUmQLnBX3Uf9NEE9f3lOnjWDXKduAFhJu9DXjtYeS6ExsQauDyQR6/UcQHBg+FaXQsXGpOVPAwhAfIy5XsQps/IfyHUGRI1HzA3zbed7UKFBfVut2y5mpEAIMYYiPQYNk7q7PVGNLbaBv2a3mYk+Q7CeWl8s/Xg+0ybzcl54CaEBWGExPM9dodKpeIsE602p08yaPAXVHLuM7eMjOBCNA76yGzteTYqFbjjArkjz9lSYnivoAbf2fgddo6MByHQsWNwMewuazAwDIODRewg1GvVsvR89JCZGAaDe8dwuLhm0Gbr41fruV3N3DR5m5HmpPn2nJpv+p4r492IIVDHlRG6UtOC6w2tg3q96qZ2FFSwlqWMBBPC3eW05A6Jmg9IiQhG4jA2YPFESQPabIMLjjxUJP/zNA9z0nwn+CW1LVzZkOkp4QjSyyPDSldoNWrcMoo1Wze02gcdoM6fuOVuRpo1yne7WLvThaPuxVR4iB7j4uTlEdoZ/md7eJDPhu9FKVdzdVeQqPkAlUrFdTab0zWolFnNVgdXP214eDCSI+RpRvIwPSUcei3bzQ5crBlU7NEBr4lb/oOQP0EdKKoe1Gt5no1axZqp5Ey0IRBj3eJzrtw8qMTPp0sb0eT2FJw9KhJqGWVY6Qp+vz8wSOerAxeVsxDiQ6LmI+and3SKby5UDvh1vrtYDbuTnfjnydz0CABBeg0XY3PD3D6oHck356u4r+ely//Z8D/fby5U9XBlz5TUtqDYHdM4KSkMYcHyNyN5xhPDAPsKBv5svjnfMRaVMJ4mJoZxZsIDRTUDTplld7rwbSG7kDIEaGVRZLevkKj5iLmjoxCoYx/n3gtVA67eu4c3cS8cH+uTtonN7eNiuK/3nB+Y4De02DhHiOSIYM4BRc4khQdz5rCz18240Tgw137+M1VmnxmYqDEMgz3uBaZGrcKCsdE+aZuYaNQqLBjDvo9Wm3PAJshjV+pgcdfcu3VMNGdNUQLKeSciE6TXcIfQtc22AXltWR1O7HevnkxBOtnl7uuO28fFcEl8Bypq/yroWCgsHB8ra0cIPnwR+maAz0aJopaZGIYYI+vaf7i4dkDBxgUVTSirZxcKM1LDFbGDBbw/44GOJyX2GQ8kaj7Eq7Pl97+zfX+5jhu8C8ZEy9aVvzPRxkBMdsfaFVU1o2QA6Y+8d7AxPVwpLxZOGNyOpNrSjtOljQCA9BgDUmTqyt8ZtVqF28ex48nmdOG7i/0/c1TqxD17dCSXI/NfBVVw9DMFncvFYK/b3K3Xqr2OTpSAMmZNibBgbDS07oPoL89V9NsE+fmZG9zXtytoEALekwr/ffYFc6sdB92H4lGGAExOUo79Pz3GwKU/yimpQ5Wlf0mxPz9bwX2tJLEHBtdnGIbB52c7/uaH45TzbAJ1Gk6IGlrtONLPUJnjV+tRZWGdb+aMipRtMHp3kKj5kLBgPXcYXWFu75cXZIvVgd3u3Z0hUKu41dPdmfGcCXJ77vV+eUF+ce4Gl5V/8cR42Xuw8VGpVFiSGQ+AjeXblVfer7/fnnud+/qeSfE+bZvYzEgNR5SBNUF+W1iNhpa+B++fuW7GlRrWIpA9IhxxJnnXCOvMPZkJ3Nf8PtAXlNxnABI1n3PflETu60/70dl251dyNY3unhiPQJ18Y7C6IiEsCDPdXpBX61r7dea4Pbdjor9vSkIPV8qTe/l95lR5nwW/sNLCeZNmJpowKlr+zjN8tBo1lronXbvTe+fVG/yJexnv+SqFW8dEISyYLZ+z53wlmtr7VpevzebEV+fYxXNogJYz8SoJEjUfs2BsNAyB7HZ+d35lnw+4+QK4PEt5EzfgPblsO9U3wS+pbeGq8qbHGGRXTqUvjIgM4TJFXKxq6nPYw6e8Z7gsS3kTN+D9vvraZ6wOJz5zmysDtGosylDexB2g1WDxRFbw2+0ufHWuope/YNlzvmNOuisjTtYJDLqDRM3HBOo0WOw2J7XanNh6sqzXv7lY2cSlkEqJCFZUzAifOybEcgfcO0/f6FMuyH98f5X7+r4pCYrxeuwMf/J+n/eeu6PF6sAnJ9i+pdOocPdE5ZmRAGBMrJFbyJy9bu7TDn9X3g00trI7l4XjY2EIlFdB0L7i3Weu9brDZxgGmzqNJyVCoiYAq2emcF///XBJr95JGw9d6fjbW1IUO3GHBGjxwNQkAECb3Yl/5pT2eH1jq42buIN0GqyYliR4G8Vi6aQEGN07/F155b06jGw9WcbFGS2ZlKCYvH1dsfqWFO5r/ljpCoZhvK55bFZK9xfLnMxEE1fBo6DC0mvB2ZPXGnDGXddwbJxRlsVS+wKJmgCkxxq4bODXG9rwdQ/u/dWWduzKY00lhkAt7p+q3IkbAB6flcI5jLz//dUeMyL8M6cUbe7f3z81UTFxRl0REqDFIzOSAbDnR5uOXO32WrvThfd4v39y9giBWycuSybFc+VodudX4lpd9yEh3xXVoKiKza6SlTxMsVYPgHUyWjOn47N/++DlHq9/52CH2P9o9gjFLp5J1ASC39le2XOx28n7v/Zc5Dz7Hs4ejlCFudd2JjkiBAvdh9M1TdZuV941TVb87Tt2kKpUwBOzlD1xA8Bjt6RAp2Enmk1HSrrNwv5/x65x9cHmjI7k8iQqlQCtBqtnsoLvYoA/fV3Y5XUOpwt/+qrjd/wxqFTuGB/LJVM/VFzLhb50JudKHRebFmMM4I5IlIhgovaHP/wBt9xyC4KDgxEWFibUbSTL7FGRmOHOCFJa34q/Hy656ZrTpQ3c4bcxUIsfz0n1axvF4tkfpnF1od7cf7nL9FCv7CnkEtE+kJWkmKDinogxBuJRt+na6nDhj18V3HRNXbMVf9lbxH3/3O3p/mqeqDw2K4XbrX2dX+mVYd7DP3NKcbGqCQAwMdGkSM++zmg1aqz/YRr3/Uufn7+psKrD6cKGz85z3z+9IE1RabE6I9g7s9lsuP/++/HUU08JdQtJo1Kp8OI94+EJqXp9XzHOXTdzv7e02/Hc1jPc9+t/mIYI96BVOumxBqxym9ra7E48t+UM7Lxzxz3nK7HlJCv2hkAt/u2OoTFxA8DTt41GZChrZv3qXCV2nO7w+HO6GPxy21k0uc/S7s9KxCSZVkXvL4ZAHf6d1w9+ue0s6njZ+4urmvBfuzt2aS/eM15R8Yw9sXRSAuc9e7mmxes5AMD//KsIhZWs2E9IMCr6bBoQUNReeuklPPvss8jIyBDqFpJnTKwRj7vNZjaHC4++l4Pd+ZXIK2vEI+/mcMGh4+ONWOme5IcKz/4wjcvtd/RKHdZ8cBIFFRZ8fLwUP/voNHfdLxemcyv0oYAxUIf/uHMs9/2/bT2Lf3x/FUVVTVi3ORf73LlBhwXr8Ms7xojVTFFYNiUR01LYM7LyxjY8/G4OTl2rx/7Cajy8MQct7jjPB6clKfosrTNqtQr/uWQCZ7reeLgEv/viAi5VN+NPXxfizf2sGV/jvk6jcLFXMYMpcNUH3n//fTzzzDNobGzs9Vqr1QqrtWP1ZbFYkJSUBLPZDKNRnucGVocTKzfm4MTVrl2Rw0P02PHTW2RfN20gnLpWj4ffzYHV0bV36D2Z8Xj9wUmKPdDuiee3n8NHx7v2DtWqVdj0+DRF1cDqKxXmNix98wiX5qkzExKM2PqTWxQZf9Ub/3fsGn6zM7/b3//27nGydiqyWCwwmUy96oGkDKsvv/wyTCYT9y8pSf7b5ACtBu89No3zhuQzPDwYm9dkD0lBA4Cs5HBsemxal+7oD0xNxH8/kDkkBQ0Afr90Ah7jubJ7MARq8faqrCEpaAAQZwrCR2tmYGTUzWNm+ohwfPhE9pAUNABYOSMZv1syntuxedCqVfjNXWNlLWj9oV87tV/96lf485//3OM1BQUFGDOmwywy1HdqHlwuBv8qqMK+gmq0O5zISh6GZVMSFZdMdCDUt7DxaOdvmBEWrMPdE+O5wqJDnVPXGvBZXjlqW2wYE2PAiulJiDYEit0s0Wm3O7HjdDlyrtRBq1Hj1vRo3DEhVvGmtb5QUtuCLSfLUFrXisTwINyflYRR0aFiN2vQ9HWn1i9Rq6mpQV1dzwF+qamp0Os7Vt79EbXO9PVNEARBEMqmr3rQr21CVFQUoqKGptmDIAiCkD6C2b5KS0tRX1+P0tJSOJ1O5OXlAQBGjRqF0FD5b4UJgiAI6SGYqL3wwgv4xz/+wX0/efJkAMD+/fsxf/58oW5LEARBDGEEd+kfDHSmRhAEQQAydeknCIIgiMFAokYQBEEoBhI1giAIQjGQqBEEQRCKgUSNIAiCUAwkagRBEIRiIFEjCIIgFAOJGkEQBKEYSNQIgiAIxUCiRhAEQSgGEjWCIAhCMZCoEQRBEIqBRI0gCIJQDCRqBEEQhGIgUSMIgiAUA4kaQRAEoRhI1AiCIAjFQKJGEARBKAYSNYIgCEIxkKgRBEEQioFEjSAIglAMJGoEQRCEYiBRIwiCIBQDiRpBEAShGEjUCIIgCMVAokYQBEEoBhI1giAIQjGQqBEEQRCKgUSNIAiCUAwkagRBEIRiIFEjCIIgFAOJGkEQBKEYSNQIgiAIxUCiRhAEQSgGEjWCIAhCMZCoEQRBEIqBRI0gCIJQDCRqBEEQhGIgUSMIgiAUA4kaQRAEoRhI1AiCIAjFIJioXb16FU8++SRGjBiBoKAgjBw5Ehs2bIDNZhPqlgRBEMQQRyvUCxcWFsLlcuHtt9/GqFGjkJ+fjzVr1qClpQWvvvqqULclCIIghjAqhmEYf93slVdewVtvvYUrV6706XqLxQKTyQSz2Qyj0Shw6wiCIAip0lc9EGyn1hVmsxnh4eHd/t5qtcJqtXpdD7BvhiAIghi6eHSg130Y4yeKi4sZo9HIvPPOO91es2HDBgYA/aN/9I/+0T/61+W/srKyHrWm3+bHX/3qV/jzn//c4zUFBQUYM2YM9315eTnmzZuH+fPnY+PGjd3+XeedmsvlQn19PSIiIqBSqfrTTC8sFguSkpJQVlZGZkwe9Fy6h55N99Cz6Rp6Lt3ji2fDMAyampoQHx8Ptbp7H8d+i1pNTQ3q6up6vCY1NRV6vR4AcOPGDcyfPx8zZszA+++/32NjhILO5rqGnkv30LPpHno2XUPPpXv8+Wz6faYWFRWFqKioPl1bXl6OW2+9FVlZWdi0aZMogkYQBEEMHQRzFCkvL8f8+fORnJyMV199FTU1NdzvYmNjhbotQRAEMYQRTNT27t2LS5cu4dKlS0hMTPT6XT8tnoMmICAAGzZsQEBAgF/vK3XouXQPPZvuoWfTNfRcusefz8avcWoEQRAEISR0yEUQBEEoBhI1giAIQjGQqBEEQRCKgUSNIAiCUAyKF7U333wTKSkpCAwMRHZ2No4fPy52kyTBwYMHsXjxYsTHx0OlUmHnzp1iN0kSvPzyy5g2bRoMBgOio6OxdOlSXLx4Uexmic5bb72FiRMnwmg0wmg0YubMmfj666/FbpYk+dOf/gSVSoVnnnlG7KaIzosvvgiVSuX1j59tSggULWqffPIJ1q9fjw0bNiA3NxeZmZlYuHAhqqurxW6a6LS0tCAzMxNvvvmm2E2RFAcOHMDatWtx7Ngx7N27F3a7HbfffjtaWlrEbpqoJCYm4k9/+hNOnTqFkydP4gc/+AGWLFmC8+fPi900SXHixAm8/fbbmDhxothNkQzjx49HRUUF9+/w4cPC3tBXCYulyPTp05m1a9dy3zudTiY+Pp55+eWXRWyV9ADA7NixQ+xmSJLq6moGAHPgwAGxmyI5hg0bxmzcuFHsZkiGpqYmZvTo0czevXuZefPmMU8//bTYTRKdDRs2MJmZmX69p2J3ajabDadOncJtt93G/UytVuO2227D0aNHRWwZISc85Y96Kpk01HA6nfj444/R0tKCmTNnit0cybB27VrcddddXnMOARQXFyM+Ph6pqal45JFHUFpaKuj9/FpPzZ/U1tbC6XQiJibG6+cxMTEoLCwUqVWEnHC5XHjmmWcwa9YsTJgwQezmiM65c+cwc+ZMtLe3IzQ0FDt27MC4cePEbpYk+Pjjj5Gbm4sTJ06I3RRJkZ2djffffx/p6emoqKjASy+9hDlz5iA/Px8Gg0GQeypW1AhisKxduxb5+fnCnwHIhPT0dOTl5cFsNmPbtm1YvXo1Dhw4MOSFraysDE8//TT27t2LwMBAsZsjKRYtWsR9PXHiRGRnZyM5ORlbtmzBk08+Kcg9FStqkZGR0Gg0qKqq8vp5VVUVJVQmemXdunX44osvcPDgwZtylw5V9Ho9Ro0aBQDIysrCiRMn8Prrr+Ptt98WuWXicurUKVRXV2PKlCncz5xOJw4ePIg33ngDVqsVGo1GxBZKh7CwMKSlpeHSpUuC3UOxZ2p6vR5ZWVnYt28f9zOXy4V9+/bROQDRLQzDYN26ddixYwe+/fZbjBgxQuwmSRaXy+VV1HeosmDBApw7dw55eXncv6lTp+KRRx5BXl4eCRqP5uZmXL58GXFxcYLdQ7E7NQBYv349Vq9ejalTp2L69Ol47bXX0NLSgscff1zspolOc3Oz12qppKQEeXl5CA8Px/Dhw0VsmbisXbsWmzdvxq5du2AwGFBZWQkAMJlMCAoKErl14vH8889j0aJFGD58OJqamrB582Z899132LNnj9hNEx2DwXDTmWtISAgiIiKG/FnsL37xCyxevBjJycm4ceMGNmzYAI1Gg4ceeki4m/rV11IE/vd//5cZPnw4o9frmenTpzPHjh0Tu0mSYP/+/QyAm/6tXr1a7KaJSlfPBACzadMmsZsmKk888QSTnJzM6PV6JioqilmwYAHzzTffiN0syUIu/SwrVqxg4uLiGL1ezyQkJDArVqxgLl26JOg9qfQMQRAEoRgUe6ZGEARBDD1I1AiCIAjFQKJGEARBKAYSNYIgCEIxkKgRBEEQioFEjSAIglAMJGoEQRCEYiBRIwiCIBQDiRpBEAShGEjUCIIgCMVAokYQBEEoBhI1giAIQjH8P2QSHwx0I4ApAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Legends" + ], + "metadata": { + "id": "UoGqoL-Lq-D1" + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7))\n", + "ax.plot(np.arange(len(data1)), data1, label='data1')\n", + "ax.plot(np.arange(len(data2)), data2, label='data2')\n", + "ax.plot(np.arange(len(data3)), data3, 'd', label='data3')\n", + "ax.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 288 + }, + "id": "c7wLcucZq51R", + "outputId": "960de1e0-2e1e-45f6-8d34-f1f7852fbf54" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 21 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD+CAYAAAC9QpvGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsxRJREFUeJzsfXmcXFWZ9nNu7Wsv1WuS7qwQICEQWRIgQGIiCSoKouMyLoijjiPOCIofKAkmwUHFfRkXRoUBHdRBQFETIRAW2SQQQva1s3c6Xb3Uvt77/XHOuffcW7eqbvWSdDr3yS+/6q6uve4973me93nflyiKosCGDRs2bNgYB5BO9guwYcOGDRs2Rgp2ULNhw4YNG+MGdlCzYcOGDRvjBnZQs2HDhg0b4wZ2ULNhw4YNG+MGdlCzYcOGDRvjBnZQs2HDhg0b4wZ2ULNhw4YNG+MGdlCzYcOGDRvjBnZQs2HDhg0b4wbO0Xzwn/zkJ/jJT36Crq4uAMCsWbOwYsUKXH311ZbuL8syjhw5glAoBELIKL5SGzZs2LAxlqEoCuLxOCZMmABJKs/HyGj2fvzTn/4Eh8OBM844A4qi4P7778c999yD119/HbNmzap6/0OHDqGjo2O0Xp4NGzZs2DjFcPDgQUyaNKns30c1qJmhsbER99xzDz7xiU9Uve3g4CDq6+tx8OBBhMPhE/DqbNiwYcPGWEQsFkNHRwcGBgZQV1dX9najKj+KKBaL+P3vf49kMolLLrnE9DbZbBbZbFb9PR6PAwDC4bAd1GzYsGHDRtVU1KgbRd58800Eg0F4PB7867/+Kx555BGcc845pre9++67UVdXp/63pUcbNmzYsFELRj2ozZw5Exs3bsTLL7+Mz3zmM/jYxz6GrVu3mt729ttvx+DgoPr/4MGDo/3ybNiwYcMGw5quNVj424VY27X2ZL+UIeOE59SWLFmC6dOn42c/+1nV28ZiMdTV1WFwcNCWH23YsGFjFBFNR3HNI9cgno8j5A7hT9f+CRFf5GS/LBVW48EJr1OTZVmXN7Nhw4YNGycXiqJg9UurkSqkAACpfAp3vXTXSX5VQ8OoGkVuv/12XH311ejs7EQ8HsdvfvMbrF+/HmvXnrrU1oYNGzbGG9Z2rcW6A+vU34tKEU8eeBJrutZg2ZRlJ/GV1Y5RDWo9PT346Ec/iqNHj6Kurg5z5szB2rVr8ba3vW00n9aGDRs2bFhENB3FqhdXgYBAgZaNIiBY9eIqXNR60ZiSIathVIPaL37xi9F8eBs2bNiwMQyIsqMY0ABAgaLKkN9d9N2T9Aprh9370YYNGzZOU+we2I11B9ahqBRN/85lyN39u0/wKxs67KBmw4YNG6cpZtTPwOLOxXAQh+nfHcSBJZ1LMKNhxgl+ZUOHHdRs2LBh4zQFIQTL5y+H3+kHgb5TBwFBwBXAHfPvOEmvbmiwg5oNG6cgxkORrI2xgYgvghWXrDDNqS2/ZPkpZRIB7KBmw8Yph2g6ilUvrEI0E8XKF1cimo6e7Jdk4xTH0ilLdTIklx1PNTs/YAc1GzZOKYynIlkbYweiDAnglJQdOeygZsPGKQReJMvdamKRrA0bw0HEF8GKS1cg4qVy5KkmO3LYQe00gJ1/GR8Qi2RF8CJZW4a0MVwsm7IM69+/HkunLD3ZL2XIsIPaOIedfxkfsFoka8PG6Q47qI1j2PmX8YPxWCRrw8ZowA5q4xh2/mX8YDwWydqwMRqwg9o4hZ1/GV8Yj0WyNmyMBuygNg5h51/GJ8ZbkawNG6MBO6iNQ9j5l/GL8VQka8PGaMAOauMQdv5l/GI8FcnasDEasIPaOISdfxnfGC9FsjZsjAbsoDZOYedfxjfGQ5GsDRujATuojWPY+RcbNmycbrCD2jiGnX+xYcPG6QY7qIlQFGDwEL0cJ7DzLzZs2DidYAc1Ea/9D/DdWcCrvzzZr2REYedfbNiwcbpgVIPa3XffjYsuugihUAgtLS249tprsWPHjtF8yup4/dfAt2YCh18r/Vv3JnrZs+3EviYbNmzYsDEiGNWg9swzz+Czn/0sXnrpJTzxxBPI5/O46qqrkEwmR/NpK2Pbn4BEN7B3fenf0gP0Mp8u/Vs+TRnc4KHRfHU2bNgoA3uE0tjBWP4unKP54GvW6Bvn3nfffWhpacGGDRtwxRVXjOZTl0eyh16m+0v/xq/LmwTdLY8Cj98MnPch4LqfjNrLs2HDRin4CKV4Po6VL67Eha0X2vnhk4Sx/l2c0Jza4OAgAKCxsdH079lsFrFYTPd/xJE8Ti/NglpmgF6aMbXEMXbZPfKvyYYNG2Vhj1AaOzgVvosTFtRkWcbnP/95XHbZZZg9e7bpbe6++27U1dWp/zs6Okb+hSR76WUlppYzYWo80GUTI/+abNiwURb2CKWxg1PhuzhhQe2zn/0sNm/ejIceeqjsbW6//XYMDg6q/w8ePDiyLyKbAPJ0h6Hmz0So8qNZTo0Fumx8ZF/TaGEclSXYOH1hj1AaOzhVvosTEtRuuukmPP7443j66acxadKksrfzeDwIh8O6/yMKLj0CpUxNloEMlUdNg1qOBcNTIag9/z3gm1NtF6eNUxr2CKWxg1PpuxjVoKYoCm666SY88sgjeOqppzB16tTRfLrqqBTUsjFAkenPZkaR/CkU1LY/Tt/fnqdP9iuxYWPIsEcojR2cSt/FqAa1z372s3jwwQfxm9/8BqFQCN3d3eju7kY6bcKETgQqBTVuEgHKyI8sqOXiY1/aix2hl4O1ybeZfBFrNh9FLJMfhRdlg2PNvrFrhx5LsEcojR2cSt/FqAa1n/zkJxgcHMTChQvR3t6u/v/tb387mk9bHoke7edCWh+8xCDHpUYR/DpF1gLcWESxAMSZQ7PGoPb7DYfwrw++hh8/ffJ3W+MV0S3/h1Xrv4BoJoqVL64cM3mIsQh7hNLYwan0XYy6/Gj2/4YbbhjNpy0P7nzkEM0i4s/5VCkbEwPZWJYgkz0AlwgGagtqRwdokD/Uf5KY9DiHoihY/ebPkCJ0URhLeYixCnuE0tjBqfJdnF69H5M9+t9Fdib+rBSBokGCO1WC2uBh4efagloqR4NhLG3Lj6OBtV1rsS7bjSILamPRDj0WYY9QGjs4Fb6L0yyoHdf/LgYyMacGlJpFREkyOwpF4SOFmBDUUlHzmrsySNtBbdSg2aH1GGt26LEIe4TS2MGp8F2cXkEtUSGoGY0jRrOIjqkZCrALOeCpu4D9Lw7/NQ4X3CTCITK3KkjnWVDLFEbyFZ0WqNQLT2+HNvxtjNmhxyrsEUpjB2P9uzi9ghpnai66y6gY1IxmEZHxGOXHveuBZ+8B/nLriLzMYSFmCGKDByzf9bSXH49uAr57LrDxf2u6G++FV878cSrZoccylgVnYP27H7NHKA0H0T3ATy8HNj88rIcZy+OsTrOgxnJqEWY71QW1Af1tjQ5HkbkZgxoPlj1bzcsBTiSMQa0Gs0g6TxnaYDoPZayXLYwG9j1LNwGbyne9McJKL7xTyQ49ZtG3F/jRBcBvP1zzXQ/1p9DVexIng4wCntvZg0//15+w53iNbfu2/5mO2Nr0+9F5YWMAp09QK+a1INZ0Jr20Kj/KMi0B4DAGNZ6PU4rAsa0j8nKHDC4/BprpZQ1mEc7UCrKiSpGnFQoZetm7y/JdrPTC09mhDZuFsWaHHrOI7qGXhzbUVCcqywqu/fELuOaHz6s54/GAwbV342c9H8aWp2pTFdT1gB/r4xCnT1Djdn4iAZHp9Od0v5YLyRhyUaJRxMjacoagJrK8oxtH4tVWRdkcDg9qHfPoZQ3z38STfvB0lCALWXoZO2zJ4VpLL7yIL4IV8++AQvS3HWt26DEL/n3kk1odpgUkcwX0JrKIZws4PDB+SlVaUzsBAK7o9truOMDSEfxYH4c4jYIakwj9TYCfLiDRVI+WC0EvopLwcYhMzSgplmNqAHD0jZF7zWVQNocjF4H4Ufpz53x6WYP8mBKCWix9GppFxN1rtHJ+ayi98Ja2X4rFyRQcjGmMRTv0mIV4zvXttXy3RFY7jnvi44eduApUdsymaiwvGrCZ2vgBz6cFWwBfAxQAqzN7tFwIFNzV1Ah46ujtRKOI0d5fEtQGtZ+7N43s6zagYg4n0QPIBYA4gIkX0uuGID8COD1bZRVz2s9VJMihmD/iA31Y3tsHv6wAimLLjrVAF9T2WL5bUghqx+Pjh514inRNymVqzBWq8uP4+SyMOI2CGpMfA02ArwFrA36sQ0rLhRCCJwN+rGlsobcTJUejE9IY1ET58diW0sLtEUTFHA6XHkNtQMNk+nPsCG2dZQEZIY82mKrhPcgy8Nx3gD1PWb/PWIS4ez2+o+JNq5k/FIXg3PoFOvPH4WPdiMgyVkT70FBUxqQdesxiiEwtLpSnHIuNH3bilemapGSTKBRla3dKD2g1tjZTGwfgfR8DLYg6HFgVaQQx5JuJomCVN09lSJ38aAxqBseRKD8Wc8DxGnVui6iaw4myhTg8EQi2AZKLmle4JFkBiqIgldMWgJqY2v6/A+tWAg++F9jyqPX7jTWIu9fenRVvWqkXHhQAsgcTCv+su7r7GJ2eviyZwp8O9I9JO/SYhRjUorUwNW2j1hMbH+xEURT4FLomeZHFMasMVFRtbKY2DsByaoq/Cat3/S9SEoFiXIsIQQoylSErGUWMHUU4U3N46OUo5NUs5XB2s0bR4QmAJAF1E+nvFiTIbEGGLDxsTbVqfOesFIGHPwHs+Kv1+44liLtXCw7Icr3wQIDM0fdgV7f+AOuLasX/buSRt7rDtqE/5/r2Wb5bIqsdxz3jRH5M5ooIgm66/cjiUJ/FBusDQs2qzdTGAZj8eH+xG+u6X1L77xlRBPBkwI/dKcFhVU1+5Dm1TuY4HIWgZimHk9iL3S4XZWoAUNdBLy2YRYx258FajCL8ZHH6aE7vdx8Fdq+zfv+xAnH32rfHkmxr1gsvH5uNQnwOth2N6QLXYL/WUNtHchhI5koez0YZGOVHi7Z+UX4cL0aRWCqLIKHvxYeM9Qbk4jpgB7VxgGQPopKEn/UxI0eZk8IBgiXJFGYoLu1KztokJ70s536ceiW9HIWgZqmA11GPGfk8ZWoAUN9JLy10FUkZ6tJqkh85E7ziC8DZ11AJ9qEP1VTvNSYgBrViDhjYX/Uuxl54Xocf2e5rAQC5gqwrjk3F+nT3HUzWWDg7CqjU3mtMQTzn8kkgcczS3ZI69+P4YGrx2ID6s59krQe1QTuojSsoyR6sbmpEWhF238ZCWAUISC7c0dunlxx5fi3ATCQ5YTHKZ7QDhAe17jepvX4EYWmeUc5Lr+CyY90kemmJqelZSU3yI2dqDVOB638JTHgL/UxOtcnbxjyDxaAs9sJ7T+d/QCkG1b9tOUxls0JRRjGlL/CPx09uUKvW3mtMwbiRtJhX01n6LeTUToUgn4xpx5EPWRzqH4L8KBcsG8hONZw2QW1tLop1AT+KYHIQIfS/AIUAy5sXICLLeqMIlx+DLKiJJ5hqEiHAhLm0r2Q+VbXOqRwqnVRV5xnFmGRqlB8tFGCnSuTHWoIaC5r1nYDTDbTNpr+LpQ7l8I9fAC/+2PpzWcCQFya+OXEF6GUVs4gI3guvXrlQd/3mI/QzONifRkDR26/jiZPXuslKe68xBX7O8by1RQdkXAhqiWxBZ4Yy4lQJ8unEgPqzD7ka5EeDYlMcH8zViNMiqEVTvVgVICUtikSm5lAULHHUY1kjW5B1RhH2c6iN/Z7Sdjl84fbWAQ4n0HYu/X0IEqSVk6rsPKPOq4AYczmq8iMNarm+/YgmKh/AxpyaZfmxmAfirJSAy51eVutnHOdjRD4D/OWLwNovl05QqBWxo0A+M7yFiTO11ln0soagxtEVpUFiYr0PgMbU9vQkEIZ+R504QfKjWZC30t5rTIGrI3zDZLFWTZQfgfJs7VQK8hkhqPlJFocGLDI1o2GsigPymZ3H8bn/fb228p4xgHEf1BRFweoX7mRuR4M5RPg9IMu4I3we4Ga7dFOm1ipcx3aO3Pnoq6eX7efRyxqDmtlJ9bl1nytZjMrOM0oeB+Q8bQPGXydjasW+A/jne1+q+PwlOTWrRpHYYUCRAYdbk2e99fSyWlBLRel9AaC/y9rzmWHwMPC92VB+8/7hLUycqfGNyRBygvujdAP0jjntAIAtRwYhywr29iYQJvrFJ3kCgppZkK+lvdeYAXc/tp9PLy0ytYRhjFK5vNqpFORzSU0B8SGLowMZFOUqxplckp5vIqrk1e59di/+9MYRPPK69VZ7pnjmHuCZbwJxa3nQ4WLcB7XdA7ux7vCzZd2OHJ8aiCESaAVcdIet7yjCfvbWafIHl0P4ws3ZyRCDmtlJ9Wb0TVPGYTrPiHfnD7YCDmZyYTKkj+QwEK3cL48zNbeDHhKW5UcuPdZ10DICAGtyPVjYMRFrE13093JyYKpXeJzqpoyyiO4G5ALWxnYOb2HicgxnA0Nhar30WFl8Vgs8TgnJXBFd0ST29CQRhl5uTKct7rCHCLON0uoXV9fc3qvcYyeyJygnoyja+cbPr6jFoJbVb9aOxTIlx+OpFuQLKS2o+ZFBQZarF5bzFIQnDLhZzrdKUONrwKZDFtIIlfDCD4Gnv2YtHTECGPdBbUb9DCyOnK/22zPCAYIljgZ8LBanbIvnU/ImQc3lBzwh+jMvwOZMjbMTNahtsmw7LndScSTzyZKFpmSeEe8mwvNpAODyIuNpAgA0FXsqdh7gObXWOhq0LcuPXKdnUmc0HcWq7qcRdUhYmT+E3f27y8uB4s7RqPfXgnwKUUnCqqA0vIVJlR9ZUEv3AUnrC1omX8SRQcrwp7cEcVZ7GACw5UjMlKmlU6PL1Mw2SusOrhuR2W7fXLsD5638G14/0F/xdiOCfEpj9BPOp5cWbf28Ts0h0eOiq/+Y7njsTfWOSJA/kZAzWk7fQRR4kK+eVxM3n05mKKsiP8bZGrDx0MBQXypN02RZMPM3Dv1xasC4D2qEECyftBR+WTHtIBIgDtwB1qrI16AxNTP50S0GNc7U2BfG5cfms6gUlx20JKlVKqrmkBW5OuNQg9oE3dWDHpoHnEh6dd0VjODux7YwPeAT2QLkapIGoOn09Z3aeynmAEKQhIxPPfGp8nJgSrC4DyOoKdkEVjc1IkXI8BYmvnP1NQB1LD9YA1s71J+CogAhjxORgBuzJ9CgtvnIIPYeTyJkyKllhsHU/ufFLiz61nocLFN4W2mj5CAOSMT81Lc62+2F3b0oygpeOzBQ82uvGfxcIxI9v4hk2dbP2WRnox+Agr8c/ZHueLz9udtPuQGusqH5gw9ZrNlXxRzFlZD6TiGoVWZq/LPbezw59F6w4kgvvvEfZYxqUHv22WdxzTXXYMKECSCE4NFHHx3NpyuLSC6NFdE+0w4iy92TEeE7H2+9NhVbx9SYbOQyC2oD2n0BKv1xo8Gb/1f1tVUrquaoyjhiTF4QmRqA4w6aX5tEepGo4PxSmRoLaoqiL1wtCx6M6jo1ZsAcpjIBjqePl5UDlaRmDlGGIT/uThygztZyBfVWFya+c3V6gKYz6M81BDUuPU5u8oMQgtkTqST99929iCZzKlMrSPQzzmWGHtQeff0w9vUm8dyu3pK/VdsoKYoCCeas1mqT5cMDdEE8IQXN/FzzhOh3w129Fmz9fCM3rSkAZ2gTDuVe0R2PL3W/hNmR2afWAFdDeYPX0YfHDn2/sjlK3Xx20M8QqMrUYsL5/+ZQJcg027hyI90JwKgGtWQyifPOOw8//vHIWrZrfyHHsTSZwmJXs+YaZEXWy/KSYPZooGwMMK9TE4LamqMv0J1RPxsKypkaAFz0SXr5zNeBQ69WfGnViqo5qjKOMkztiELlR8rUqge1Op8LXhc9LCztzlhQiwYaK0qoHGJwPnBIS0Dno10lt7VqzZ9B/LqRLkZYWpgURQhqXm2QbC1BjZlEJkeohD2LM7XDMQCKGtTyPvqd5DJDn+8VZd1IzIJKtY2SDBkFpVC+NKRKk+VMvohe5qY9fiL6KXJm4qGfpzoP0YJZhG/MJkQK8LY/gtKOZgT7Yvvgc/qGFeR1yKWA7X8p7UQ0QpCEeY4KgHzbWuQVehyUXSNM5cfyG5JsoYhcQUtXvDFUCZKrMb4TIz0CoxzUrr76atx111247rrrRvNpqiPRAwJgecvlmmvQ4aVF1ul+jSL76s2NIgb5MSpJWLX/j3RnNPgGbYDMjSIAcP6HgFnvoQWO/3djxQSp0c1YCRUZBw9qdXqm1lWgB9MEEq0Y1HiHfr/bgbCXGk0smUUGD9IxPseeqSihcojBeXeXxs4csUO02z9DLdZ8UkipI12GvDAV81BXPIdbYGrWHZA8qE2J0O/yzNYQnCyXE0AGDsZgi37qEi0MY9GLJmhQMxunYqX7zOKOxealIRZmux0Rhm2ekC4dIlMDgMZpAIC9OzdV7VBPc2oKtuZ/BUg5lPaeVpApZDAlPGXIQb4EL/8UeOiDI15/yeHMa7nYtQE/cuG9UPixVc4cZcbU8uWDmtE1+sbBgaG9WM7U/CduGsWYyqlls1nEYjHd/xEBk7kidR2aa/Csj9Ii63SfJiH6GjSjSCGtLbKq/BiA4g7S/I1MF5UUCrQBsqgXEwK887tUvx7YDzx+c8WkNi+qroaKjIO7Hw3y464MfV0TyfGKOTXO1HxuJ+p8NKhV7SoiF4HBQ9jtcmFd7+tVJVQOfuLtT2tMzSHn1ByJlZohHYvLpdSRLkNemMRd6xCZ2n5Wo8aZmtflwBmtdCFWa9QkF4i/gT5lbmhMLZMvqvkOs6BipfvM8kuWm5eGWMCRAe2zOuHyIwA0Uqa2bctGrN1SPq9WKMrI5GVInmPYGX8RhJgHwKJSxOboZsxrmzekIF8CLskf3Vj7fS3AVaDrUVSSsCrSaMo+S1IVKlOzllMzOlvfODhE+ZGbwU6QSQQYY0Ht7rvvRl1dnfq/o6NjZB6Y524CzZprcPLb6HWxI5RRASyn5tPux790Lj+6/VhLUqwzCT2SeAPkNWlDLYevHrj+F3Rg5+aHgY2/rvgSl05ZisWKD1KZ4FeRcciyqfxYlBVsTVMGOYn0VrRg86DmdzsQ5kGtmvwY7wbkAmYUFSzueGtVCZXDQRxodVyIs3OGBZktBtVqhkpYXIbuBpcmU9TpOpSFScwvOD1aUBvYX3FHK4IztalNAfU6bhYJE7Yx8tbB6aGBRMlnrc/CEtArFNKXY0pVu8/4IualIRZwWCj2PZlMbSo5huMVgirfxMnZViyYsAiKUtkc840rvjGkIF/6etlmvIYRObXAU0xSdaSpESmJmLJP3UawkNPGT9V3Wsqpcdk27HVCIkB3LDO0eXTjTX6sFbfffjsGBwfV/wcPWp/aXA6DqTyS/axGK9Cs/cFHd8vqtGOHhwY0MajxvBqTiaJKHquS20s6kxBFwaoDfy6VyDouBt76FfrzM9+s+DoJIVieIgjISsnOC6jCOFJR9j4InaPGEE1ksa9Ipa4GkkAuXl7CS+fpQUzlR5rQrSo/siBEwhOw/JIV5rPFDCAg8Dn9OLDz7WggdLEq8MVm4EDVmiHRgg0wFje4kd0GWD713UNbmPgGxuGhTDvYQqegK7Kl3E2uIOMws1VPjmhSMjeLqEzNWweXhx5jHuRqa0fGwKVHADheYaEp231GCPIlpSEWcFiwjw+k8sgWRrbPKYfKxo+/Tq9gQS0eoM7UyaQbuQrPzY1RbqcDqy9bAcjuEsFE3CwONciXgAfhvr3D6gFrllPO5IvwI0XVEavmqNghAAqdohFossTUeFBrCXtxRgv93IckQary42ka1DweD8LhsO7/cPHGoQHIcW1AqAqjvdTXQBczyaF96Tyo5dnOaMeDSCnFks4kCiFIFDO46v+uKjU1zPkAvU3sSNW6mkh6ECuifWhUoHNkVWUcauF1C+29yNAdyyAFL3oU+l4dg11ln5szNa/LIciPVdyPqk4/ufxsMQMUKLgw+Enkcn60OGluYIfC2nlF91WtGfrcU58rZXH5XqwJ0EASkTG0hYlvbvh3TwgQYPc1zs8zwcH+FGSFbgqagx71+lkmTE1y0efwIo+BoQS1pLbDPp7IQinH7st1nxkmDg/oF8NeIciaYSi9OHVsvPspmrdmQW1rugFFhSBAsnCmyrdX43mhoMeJJn8T/PH3G9u9lmwWhxLkS5Bhx0sxa2mWoYpUH3DfO4HXHyybU45l8ggijRn5PBYn09bMUar0OIke1xaYGld1gh4nzuugG7MhFWGf7kxtNHB+uwchQneWUQhB0unWKusBvXvRaBbJsZ3RsVdU2dEIBQpycg53vnCnjrElnPSAIHK++uKY7seyZArPxCT8aPGPrC9GbFac2nCZoXuQLj5dCrX1uywEtZrkR27DZxZrIzOQFAXNzpAuOC/qWIy/vzEJgIJ6he5ot0s0R7jpyKaqNUObo5tLWZwCrIo00IUvlxjawsR3rcKmQNvcVM997Recj0RYOWdNqMPEeh/OqmcyozdMd8wAPCSHgSH01euNa0EkX1QqPsaIsQ9owWlr7Fnd9T0V2GIthh9ZVvDk1mPoiWX0bFzO07w1cz9uPpbBYebqDSTLl4LwwuughyoPE13zkY/NgsSWvWHlzSpBPM9raWy+5ymg6zko//jvsjnlWDqPEElTVSLrht9E2SlJVYgmEcAiU6OfXcjrxJxJ9QCA/r0baEu6WsBNeCyPfCIwqkEtkUhg48aN2LhxIwBg37592LhxIw4cGEb3iBoRLg4AALKKExu6DYulr8H8Z7FWTS4CxSzdGU24HI4q8lqmkNGZGvb2F5BQ2EHEg48ZcintIMsla1qMchnKeGJFt+76brbY7JdpUPMlyi8AovuRM7Xq8qP+ZDEyg6As4+dT3qMLzud5b0RfMoez6hVISgFrAn58c/IBrPX7MKm/x3J5g+53AqQkCXc1NULOJsrcqwrUoObVrrNYzwNoNWpTInoXq8/twBO3XIHPL2D9OL116uN6kMdguvZBob1J/eupltcaCfYhBqdDjgdAHAnV2Vnu+WttEvzMzuP4l/95FZ/746/0bBwKzVsX6K5/65EYuhQqs9clyueteIusAAtqrSEfst3XwSXRTcVIMdcSiHVkteTV4jRNslaOlc0pD6bz6tTrSKAVK6J9pjk1XapCnKIB1MTUQl4nzu+oRzui+Oqxm6D8fKFWAmUF442pvfrqq5g7dy7mzp0LALjlllswd+5crFhR3ek3YmAmkSjCeM3o4BHZmShHqkEtrUqQBMDyeV+G3+Ep7fYvwGhqyORl9CtUNikkKgQ1sfI+R3f9VhejdW/SYLWrTy8Xcqa2jy0AoWT5zYTqfnQ5VUt/VffjoOFkgcAMiAsrevswAy5dcN57jJ6B7znLS91bTY1ISVmsbGpEMnm4rGuvGoqE4MmAH9tqkXtEiIXXHIxRWRmoyJnaFMEkwuF3O+HiNmxvnRo4vRgaU4sa5L7RdiAag5NCsvC0PYqz2kPs+UemSfCh/hSII4HthV+ZsHEFq/peQTQdxZYjg3hFPgsAMK3/+bKvm8uPIRbUWsIeKMUg5oU+NSLMtSwyQ2RqiW56TnhyZXPKhwd71KCGUBuWJlOYq7SoJhhT9qk2SGBMzVX9uI6rn50LM9tCON+1Hy4UQZI9wDPfsP6expulf+HChVAUpeT/fffdN5pPq4e3Hrsmvx9/LF5a2qeuLFPjrbJSQr0aQSQ0EStmvL+0278BoqU2ky8iCnrypwYqtPXhXz5/XtmaK+5YLIMXtlPnZX/OoTIuQGNqPS7qiKxPl1/w0zr5kS4CsWodRYwnC8OyKcuwvvltWJpKA+kBXXDmz9MsxVhrK3oIpiQJPwhlEfHUl83NVez8oChYkkyhI1dbMFQxXKYWNWdqKsTG1wJTG1pQ078es1o1FYoC/OYDwG8/YrkXqRHG4ESIDFd4MyIt2+jzm8iPQ2kSPJjOw9P2CGRkTdg4QUrOY9WLq7G7J4E18kUAgGmxf+iDiABelxlkxifeLcefv2D4ebNyUJQhy49KrJudEyZqBMsp/2b3t+HkpQnBFhAAn5NmArIbUMqwT+PmUz2uqwe1oNcJl0PCpWFhQ/7yz4Cebdbe1Olu6R8VRKYDb/82vl74EDYdGtRbqHVBrV77WR0/k9I3MyYESydeicXJFCR+zJksFKKlNpMvqkwtPVBhZljaEHDFjiYV8K21O+Ao0oMzDTf2HNfkN27BleupBboxV14P58MTLcuPiqJ1/haYmooyM9U4I9ybe5W5t+j1RULwVMCHNdt/V9a1x/OMZrv4gCzjjt4+5NNDrG0scKOIyNSs9cgDDN1EDm0A/vBpbb4doJ+75+I5tTwGUrXLj7ybiMtRWf4DQBeVnX8Ftv1RP7Hd6nOV6yGpAJuzvwRxJEqev1KbrkqdcQ4l98EV3gKUqyeDgqcOroPs7MZuZSL2yO1wKnlg9xOmt+cDQrn82Byi3+2oliHkEtAluWoIalbavW2Jv4TdLhdkENXN3ekiyBx9D4gcMmefxs2nhYbGYk4NAM71ULNdgbgApQj89f/p1j5TM5CiCI0t7KA2opjeHETY60Q6X8T2bkHvrsbUcmJQo9cRTwjLe/vg5V9oFUvt/vhe9DGDSr7SPKEhBLUtRwbxf68dghd0kcsobuw8pr2/o0x+9LVSI0a42F92V6sVXzusyY+JHrbYk5KCbwDCTDW95JvOF0EcCfwu+TfT0oiVr30XfZk+U9de2dorQrA82o+ILKMgdDCvCaKln8MiU8sXZbVL+pRIAHjhB8Cmh4CND2o3UoNavZ6pDcH9yJnZ9GZqdCo3+BKAnjWU+e7LoWIPSQLklTQ8bY+WBIlqbbrKdcaR8m3Ix2YB5erJIOGs0KWQc60ACNYytoZtfzK9veh+BIAWFtSGVG9lFcbPeOCg5TrHGYm+qu3eznDNwYx8Ho8HG7DwyB+x1u9DSMqhEJ+D1O47cOXEJfo7KYpWo8a7DanHdXkDlOh+BIBOmbK9X/s/Qs+Rfc+on3tZM1A2ptUA20xtZCFJBOd30qD1miBBFjz12o1Mc2opfYssAPCEEJFlfDXaDxccZYulObuoc3agjzG1YqLCGBOxYz1QsqsuFGX8+uX9WLftGHIFGYqi4Gt/3gZFAc5rowdpBm7s6BaYGgtqk9rb0Ksw52f/vpKnLsoKsqzPm89l0f3IJY3wBMDpLt2pceZrSCqncgV42h5BBnnT0ohUkRptyhllShyWkLAwkcGyJP2e5MxQjSJmObXyTE18v4f70yjKCrwuiS6c/LMRW2yJTG24OTXG1M5ho20q5tRE04KF0gQR1YKTAipDHkrq6/istOky64yTyBaR7b4Oiuw2Z+NOL6ZLHwNAj9O1xQvpH3c9YRo4kjnN7AAALSH6uVeUa4cL/nn7GphaoVgeaEriPVXbvS2SrkJUknB3JIBoMY2VTY1IIYGJ9T4UZAXP7jSoQfm0Vq7CN+6WmBovvnYBioK6VBcA4LHkbOCyf6c3WvsVKLlUeTMQX9OchvrfUcZpEdQA4C2d9QCA14VRGdsHtJMuIYW0G+uMIlqLLABqrczViQSemPZhBGSlxNIgWmqz+SL6WEBRKrkfjUwtpx8o+ZfN3fjKI5vxiftfxYV3PYF/uf9VvLAnCrdTwoIpdMeegcbU4pk8kox9TWsOYD+z9ZudYGkhD+cX2mRVlB8FScO4U3t5/348tp0FFwNTixUPwhXeArncmB0o6i7ezChjdFi6JR9W9GqbBZIbJlOzkFMzvt83u6kMO7kxAEkimu1ZbLFlEtSGwtRkWUEfD2oTeFCrxNSEz6NGplYtOEmQkI/NxuCgXu6y0qbLzHUYy+ShFIPIHL3OnI3P+hT2sD4K506qwyZlGvoczXQDuHd9yePxhTng1owiAN0U5IfQycUSxObLERa0rUiQuRSQHaza7s2ZLqhjlgCai/5apgtLZ1Ez2F83G4YBc/mfOLQSJgs5tYSQU0O8G45cHAVFwrZcE5QFNwPhScDgAax9ZkV5M9BJKLwGTqOgNteEqT1zUDNCHM0JO3TRKCK0yKKXWm1bJNnHDkA9REttJi+jjxlFpLSBjYkoCWp6+fFQv/Z7LFPAuu1U4/7EgqkIOejCmBaCGnc+hrxONAU9aq2aaVDLcQMA4HVJqvyYycvlu0WwoKbUTSrZqX1p/Z349Rvs5Dbk1PKZFlYrZA5JQdWO+iKLu9j/cTQLTIIYNgOWUZGpaTKNmU39V9u/DYB1EiloPSzRu0vLO5gFNZLHYI05tcF0HkU25+6sNhrUeq0GtRqZWqXgBBD4XQFku69FbyKnviYOK226jEikc5hBDsERPwuXtS/UcqrMBHTV5Ldh21H6fuZ21kOBhFd9l9I7by+VIBMGo0ij362WIfQmRomtDTWoJbRgtDSZwuLWi02bL+zKv4F1AT9kIRf9JBJoaqXTQp7cdkx/zqoTSOq1VIkFphYTc2psc3ZAaUFadiKleICL/4U6NY88Ud4MxDe+dlAbHZzfUQ+ANp3tTWSx9UgMm6La29+fFBYz0SjCF0nO3iRJC2yDB+gB6Gkr2/0jWyiq8qMzUymoVZYfuUz18cum4KFPzcdH5k/Ge94yEZ9dNEMNvBnFjUP9aSSyBdX52F7nRdDjxH6Ztc+qENR8LgcIIQh5nerxX3amGpPY1nqkkp1aHzagO8R0fIP8mMnJyHZfB78imebUvAqxVDvEWZw7pg9+jsIQg1rRLKiVMjUzm/qu5ItwhjZRO3/8KFSjQC6h1h6VlR9rZGp8Ma7zuTChnj6OdaZWe0eI8p1iFCyfvxyQgygK7FGElTZdAGj95vPfxQ+P34gnPV/CcueD+MRZX9RyqswEdCjlRCJbgNsp4WwW0F9y86D2FzplWXxYNS/EpGqJaGaR0RqZw9mwVwxqFmrVhHw7AbD8zA+X5JSj6SiecT1vct4AD+75DprrcohnCnhht5DmyAxiTcCPhc0BLTVQQ0PjoEcLavtAXdSxTB5K52WUMSrF8magXb+hV5xAkwhwGgW1Op8LZ7TQYPT6gQE8+PJ+DCga69qdEAbYMaaWSMTQ08cYlEuwavPGqgMH2UibBWW7f2TyshrUPLn+8i2DjAWNBqMId8lFAm7MnxbB6mtn4zv/dD496NjB6WKNch988zHc+vL1cIY2oTXsRcDj0JhatDSopYS+jwA9+XmCuKwEOXCA7tQGXjd1xvW3PUM7fGQGdS6pdL4IpRjE7bmAaU7t349n0eCxfhIci+o3A87CEMe5qPIjXfQURUGs4NT9rZIT0Nv+BzTV5bSWZRy9O+n71wW1IVj682ngkc8Ab/4eABAJutUFOpEtqO7VEoiBrEamxmEMTooiYX7rQrx92tWIBGjBv1lez1KbrvXfAL5zNvDkV9Gu0IV9rrQbkhJmbLwRK3r7EJFlbI5SyfCsthB87Fh9w3EOXTTTfcCBF3UPrRlFXOp1o24WUZsvh7W5b1aYGjdzMEQg6XLKjd5GrH5pNfKkYHLeUMWgsZOy1b+8qT1WNH4IqyKNiBJoJo4aGhqHvC6NqUkd6t92+4PVe08Obsdul8tmaqOJtzAJ8tmdx/Ho64cxAK1QVsyv8aD29Jv7ce+6zfQ6t0lQY5b2SKCtbPePTL6ouh8z8mD5lkElRhE94+hni1+9X981BIDK1OrCYRBHAv+97R4ki/3wtv8BDaEsgh6n2oFBMWFqovORB11fPX3fogNSDMhKdBcbwZM3dcYpUo62NpLzugDNn2tZMkmdXmrLIglLkin8U/I4DveVyYsV9GygKCsY6NfLtu7i8OTH149m8JFfvIy3rH4CP/07DVDJZLKqExBSFs/3/ay0jVDvTvpdcolUtPQjh1gmXyLdmWLnGuCN32DG87dgibQBTQEPgh4nfC563JZlHsNkaoAWnHxOH92fyG7ceelyAEBzqDJbrNgZR1GAv3+fGhnaz8dPlfcAANpIH+KZPGXjV91P6x1dAWw5StWLc9rDcDvpcZMpEmDm2+njGVyQRvnRyusdNlT5MVSj/GhwRueSupwyN+0oxPxYKSpFHCn8A5L7GJ7Ydgz5IjWTrd79kNrJXzVxVGFqiqLoOorwoNbtpqU78UweMyJnYzH8lXtP+iZhRj5vM7XRxFsm1wMAfvPKAaRyRYQbKXspKgSbo8KOg5lC5FwKTlYDphpFAC2opZjxw1tftvtHhsmPCoB7Gr3lWwbxnBqf7msIapypNVQIag31YXjaHkFOZjkgKYe98v8g4HGqTI0kuksem8uPbndKDbqZut+COBIqU9OZI174Kl5NHmYjeMwT7oTQ1ka7XS6VhYouS2emjzq92AkWcAVwW28MLlJE1z4TuaZnO/CNycCTK9Wrjgyk4WLvVSZ0N+5RMkMrMmYn+CsHk3huVy/6U3lkQR+zdyBW1QlIiILX+57D7t439X+I7tYWOuKgjJ8zNZKHoljo3AIAx+nCQqDg+64f4Xz3ARBCVPPD8XI5omEYRUREfBH8y9lfglIMwtn3T5gUpn1GOfOpNAG7bGecdL9qxCre8Ff8V5bKkhESRyqV1L9+Twhbj9DXP2tCGG4HXbryRRk4+530Ntv/rPvuEwb5EQBaw6NcqybKj2zuG1K9pTlzI+Ld+t8N5+iM+hmYHZltOsEDYINfOxejwdWBgVQeL+2NUql8cKfKplQTRz/bqJdhaul8Ud1oBT1O9dg77p0MgOb0CSFYPulq5tTUQzUD+dj7t5na6IEzNf6Fvf3SuUjMuxn/Wfhn7OvPauPL2U7ajyx8JKO7DoC+ETKgL9w2IJOXEYMff/EHaBAo1zKIH/R1k+hlGabW4HehBGxBPhDsgSu8RZ2CS4iM/dmXse7g35BxhtHP5dY+va2fsicFidBvS1ohxTIFU3PEr+vCWJxHWWecohAsTOXpTo0xBN7txIkCpGyMOr0uvJXt4u+E5KBNao8fNBnMeXgDZXxdz6lX7e1Nwk/oiZn30fs6IFtqQFwCdoJn4cJV57TiTzctwNxplN0mkomqTkBFkbC4czFmpBkr5RMhenfqpUdChJwa/U4t5dWitDwgL3kQIFl89uhXgNhRNahYYmpDlB85JnsuRXLXHejwXKJepz7/UFp1canWH0FCdiGGAP7oD2Nhx0RsPMJYlxrUgtjCgto5EzSmlivIwLSFtHYqdkhXRqEFNVF+5Lb+6q93KNMFdLPfPEEgxOYbVsurlQQ1fU69L9OHfYPsvDXJRQdcASyfvxxXMRfkI2/sYFK5HgQEq3Y9RFMDZZgal20lAviVFBCnsxpj/in0pbK/R6a9tbJRLkPXsBeOyPjF8/tGt5RCwGkV1KY3B9WaFZ/Lgfe8ZRICy+7EQ45rUJQVHOhjgYQZRbzIwg/2RZjJjxzGMTYCMvki4EhhdVNDaYKXu4RSvZpRpExQG6giP0YlCf+bXm9CUuhzBHzpsrb+VK4AZ2gTUs6NGhNhrZBePvZUqTkCMtYF/FgQmGLqjKMSlQef5ZIuc0By6bGBsBOWSFh2xnXqLj4XpO99984tpZZrvlgIEtq+4wn42Pcj+5u02w6hcwYPajnFhcvPbMa5k+owqZluglKpZEUnoKIAkuKhxgm+UE9bSC97d+mDGqAyNS9hQc2KA5It1o9O+CJ2yRNRlz8O/O8HMIEJCGWDyggxNQA4PEA3C9ygAmg2+SExHy7VhicinsmDOJL4z6Y6RB0SHul9gMrz7PXnnUH0xLMghLo+OVPLFWS64eycTx9LsPYn1I4i2kakzmILuFqmC+gguh8B63k17n7kmybh/OebynQxQ6Vuk1z08nlfQcQXwdvPbQOg4Mnj/8Wkcj0UKLQWtKmxLFOLCUXrhG2mEGiBxDrtq8rCxAuxNJ3H4mSKJvZgMAOxNe1Pu7NY/fjWIXXPGQpOq6AmSUS19r/rvAmo87lACMF0ZiDZc5w7HRlTI1n4WLcORWcUMcx544uVCdL5IjxtjyAtkdIEL3cJvbhSK5DkQS2vP6j5AVFvwtSUfAqrmxqRkXMmDU7oc6DpD2Vt/dF0FN72R0qkDUUB/nr0h1j54krTYtjvFI7i5gtuLskxEQJkjr4HboWtuAam1u5i783XQOfXMTR10GnTrvgh/PJ5Q5G4GtS0hXlfb1LddEieoDoNQcmWyclVgsDUJjXQ77+DBbV8No1soVjWCUgIMI18jOaLeOuw6Yvo5eBBzQSgBjUtpwYo1ZmaoqiL4puYgRvzX0TGVQ8c3YjL5A0A9EFFxzBGkKkdYUFtYr12LgyroDnGPqu6SRhM5dXzBIQghyyV59nrTxH6mXU2+hHwODWmxjc/fBPBglq2UFSVl5DA1LjBJJMrP7yz1ukCOmQF+RGwnlfj7kfeck4IanxTKZtI37zcYdnEywEA86dFEA5HofjfrNDRRaapAZgHGS2f5tKYb/NM+jsER7TbDzLxLVje2wen7ICiAD6nXzMDMZ/A0Rw9XtrrT0wB9mkV1ADg80vOwLXnT8DNbztTvW4a66zO+yYqbNHxIQcfk7fissCQjEytgvw4WGDFxpVcQofW09yT5NJkK+GgTmQLKDDJ1CyntltOV8xvFZUiCt43sNHFFlUhqCmKgj8d/iEg5UpGWBAC5JFCIp8o22D274f/rpPlCCvILcTnIMaNOCynxplau5O9N0Pnbk9kCgBgIunF957cpS6iALTFQliY9/Ym1e/H6Q0iCbrAZhK1GyIUJsVk4UIHC2qNdcy1ihy2s/oo1QnIPg4JBPnYbMyNLKRXcKbWdq6WID9MA4+RqQGAGwUMVnNAxo9S9kkc2JGL4KDSir62ywDQzwrQgkoJw8gKuZxhMrVDPKg1aIvTsPopCkztqUN/Y+cJvYoX4a/p+QcAIC3RY6mJDWDlQY3naNWg1vUcUCwgmdUWdJGp+VghtthwwIhapwvokDEyNYtBjTM1zuyY2lDWccvgkxXc0dun1rW6HBKumnEe8rFZIGWWd27KUqVyA3R9H4/voFc2naGqXHGx01DnJYjIMt7V0wClGMQNZ35RMwOxoNavUIWMO6pHG6ddUHtLZwO+94G5aKvTJBTeQ29PD11se7L0JPCRLJo9dFdyUNz8eww5tQryI/KttNi4QoJ3SctFNPfkb9Rq5ITiay49epySutMUMSObpU5CUu4gdiBYmIvBzBR6hRDUdg/sxu7kSyBlmshWQhEy1h1chw+frdXUuIgP2e5rAQAxsM9JlR/ZiHg28RqiZAiogwQnB/JI54tY9aet2t+4pJhPAUX6eXRFRaYWQIoFtcQQglohSxfsLNyY1EDfC1FdinlsOkTfgypDAoCiwCNLyHZfS3s+5tNaV/LwRKCJbZwOvUov1aCmHXte5NBfTZbhu+WGKTiWpN+TFKKsOwL6XnviWXOGIQuuumEytcP9nKkJ8uMI5NSigUY8sOvbJdI5AcGqI08iKklIE/qd8JyyTn4EgPbz6HmYjQFHXldr1LwuCU6Hdl5wt2iqDFMbynQBHUrkRwtBLZ/RcurcXJKr4rhlmFooIiLLOmXnAxd3Itt9HeSiG0azJAFBwOmngbBgbqpSR/YIzkc0zURYDWqCdDuZbq5uSB1CctcdmOTW8q1cfuxHCBNPEEsDTsOgZgYuP+7tpQvnnn4mW0g5tHrpwb9fF9QEpub0Ai6htZIB2bxCBxPKJsXG3CU0lVqZ4WsQgpqWF+qv5HwEQApp6iR0lL4O/hxTyEdNc2oz6meg03OxOo+pFnD9/MK2C1Xb9hzfJ6AU6ec5oLADmcmPfHfcLPGgZnBFeeqwJuDHl9qPwB1+E2u2dONp1jnFmBvKFoo41J9WgxpxB5FhC18qPlDze8lk6ILt9vjgZQuf2M5qozCLL+KLYEXGhUhRxg19fijFIO0mwpmHK0C/y6Yz6O9HNtJLHtQcLoBtQCzVqvG8RtMZ6GWz1Fxh+l3WK/S99sQy5gzDkceaAJMLh8nUKsmPPTEaVGvC4GEoAFYPvI5MMV0inStQ1KnXcdBjqc5HzwGPID8qikJl7KlX0DvuXa+NTvHo5Xoe1DImTG2o0wV04Mdpify4p/w4KW7nd3i0psO5ZFXHLQC86XFRlUcwR10wuQFzJkyi7cbMBoheeCsNhFDUDaKIuNgIWg1qZwjyo8jU5kEBwVTpGFrQj6OD7HXkM2opz4ASRHtd+TVypGEHNdDeiACwpycBRVGwvY/NFiM51LvoF7yrXzggxaBWIZ8G0JNHKQZxWU+naU5t+SXLEeEHlq9R382EQTOJmDgfASCfpk7C8z9X8if+HA2eBrVWDbHD6klACMF5vn+h85iM91UASfEh6Aqa7Fz1xbTctu3JvEV73bJefuSlA00SO/EN8mNUIlgVaUQfZAQnPQriSODOP26hu3FdUBvAgWgKigLUOxnLcfuRc9DFdijyY54xtVBQKN1Qg1pOZWocy9I5rD94GNex8TJTIgEhRzSRarc8qPE2W/xYERyQHpKvPmGcMbVC4ww13+FraAcABPN0N9yT7DVnGIqCVZEG6nbLDq1ODaA5Ki4xmhlFsgW5+vw9I2KHsNvlwrrB7apj1wg+9XoHW9hVpsaCmqJAlebFvBpvZlznIVjz63dg4f3nY+3ev8LnpvfjGywx/zjU6QI6qPIjWyMaJtMNTD5VWovGwa8PtWrO6lx1x62DOLAkB6ryCMoOIQT/smAqCvE5WJAsqLVkqolj6tu1BzFxQPKRPXUeom2Am840n7PorcNAmA5svVjarpqJOEuT4UAM/hOWTwPsoAaALkiE0C+rN5HDlh66UHqUDEISXXB29hW1nahoFKkkPYLWqQFAQ2Kybg6b3iXEZw6JTE2TEzhTq/eZaNJyUTWZLJ28DBc1XyGwLkl9joDbiT6EkHWwk6a/S30IpRhA5uh1JQ9NCNCU+WfcecmdJjtXmPbwiya13Eq0yBa/EvcjC1ABTX5UFAWr9/9RLRSVkUFw4mM40Jei/SwNhoe9vfTzafXxMgw/8kwCzaYMjCTVV7XwuJCjJ2M4KEjLQj3Z7uMJNaAAUDcd7aQPDVKS5pmEHBEATX7kEI8VtatIrrorjAW1eHAqACq98aDmzUUBKEiFf2fOMAhBSpKo2y0br1zDl0/TOsAXfgh0b9bdlvcS9bokNAa0DZDX5VBzLVZs8ipkGYgdwYx8HovbLimf/wGwJJlCoEiPlXpDUAMECZIHtUOvIJWgx8Ay8hesynYhqhSw8sU7kVPocZTOFUvyjw2ehiFNF9BB7CgCUFbOZfZkmXmK3EgUbBOCWmXHrary5Hnzdb1b+urZbZhY78dXjtOu/4C2CV1zaD0WdkzEWr/P1AHJmdhkcoyOjnEFgPBEc6YG4Ejd+QBoUFPz4CyflnKEABBbfjzR8Loc6GB5lD3HE3jjGP3SHEoB3iKVyo5nHOrMLF2dWgWTCEDr1AAg745geW8ffOzg1LUM4t1EygS1gVQeZ5ED+O9j7wde+qn+CYSdFnH7cNflXwVkNxSF5rf4c9BBiQT9XuauFCTIVK6IQnwOpvvn60a65GOzUYzPKe3hpyhY0jqvtIcfoMpjABAtcNlLLz82oJSpre1ai3W9r+sKRRF4E87QJiqHGOaC7WNBrZnJw3AHUHTSzy6fEgJgLgn8+GLgv99GNwBlILPRJfVhg7QMwEcKUBTgV68/qrkKhVEnC8I9cDkkzSRSVy6oCaxeqFUr535UWUSMBrWolzrjIkE3SJAaihyp43B5aX1iWYZBCHW7OR0l5Q6HB9JqUTM2/wF4/jvA3+4AfnoZ8K0zgT9/EcinVRl4UoMfxKA4VK2VM0OqFyjmQECwfMFqOInXNKcWgAN39Pahv0ifg5e0uIQ8mVr+0TgNqOsEijm4j7yCEBLY7/8z2ygRpAoZ/GrHtwAA6VyhJP/4tZe/NqTpAiqKeY2Vi2oO37zxZg0C1nStwcLX/pMGmFBbyflftTE0bwphaIDudEi4cf5ETFIyWBHto+3GLlkBADQ36JCwsqkR0aShPg5aTq1DZspD0wxAkgSjiJ6R7/WfB4AGNT7DkTO1QUI/B1t+PAngEuRLe6M4KJz3hH05KXjwBpegdPJjfcXH5do9CUQQkWV8Me4obRnEmZq/QetcYmBq86WtCMqx0im/4hwppw8TQs0IJz8IpRjE25o/qz4Hd4D1utmCKySuqSxI8PYJN6mGD5+TdmBXuwfMXw6/wwMoCgKKgjsuv9v0/Yrdz/tkFtQM8mOdzBZRFtSq9VTsThwvaffUxYJao4sFBJcfCttsFMTcUX8X3SH37tBciGZgm4MGXVDT6smII4H7dn5LcxUWtc/9Qh9bGLidP8w2DvWTqaOVwySoecrMVNOxCJ+MqCThqJP23osE3QALaiTZi4hrEpt8UIbtKAqWJNOsEF7PYj9070t494+fpw2JeVf1QAstO0j2AP+4F32P34m7/7odAPDBi0unnLcMpfUU/6yCrYgEWnGu9xOmObXlaEJElhEt8KBGP891B/6GwBl3wRnapDE1QoBpNK9Wf/TvWFZ/P54JuLSNEhS82L2e3sf7uqnD8R/H/lHzdAEV4mcrqjk8qCX1JhP1Oy6msLKpEcf99Xh06wD9o3D+800lZ7MORcGSjrfSTaU4+9GAfzqXHsvLkimsOu+3uGryVVj90mokCyka5CUJd238Qcn9uCIxMc+Oh6aZAFBq6WfY5poNADhLOohEP8uBM8NUVOZBzWZqJxzcAfnHN44gCzYuHVAZQhoevHmISVg15NSyjKm5QnT0+rLYYGnLIHU8RHmmVs8Llo2jVfjB7PDQCQIA3trxNiR33YHrz3qHejM+0v6wk7a6wbEt2tNzA4df69N389wvQykGEUvnoSgK3TG2vxWRoowVUisibJS8iEy+qDvgVUu/gamFFR7Umiz1VHxo3/eArLDTyGpMrY6N3YHbrzJoRZx+nejRft5Z3pJNWF/JpnphMWKBx6nkaPsxhe7CU/kU7mpqUG92tsSGghqZmsNJ2QOHt/SxzXJqJS5GieCullYczdPPMxLwAPzzV4qYHswj230dPA6f+XBNRcEdzDUpMt5soYj90RTyRYXKRqxzBC7+JHDbfuDdP6Zv5417cXZxJxbObMbHL51S8tmprbpqCWqGzyqYv0BnQ3coCpY0zcWyHD0menOUodX73NomyJGAt/0POCbOKZxG6wMD3WvwfMt+E3MW4G1/GK7Wh8s6HC9svdDadAEj+GfrCtDvnsNEfiz9jiV8qW8H7n+VvReBUfNNpVNxA4oCv6zgDsa6zNYLjpBCr4spfqz+yw5c86sf6erdioTgye6X9KUKB1/BhUcfwirnrzD72KP0OqY4cKZmHB58uBDEXjYFpDO9lW7kmfrUw9QaMQ872jghQe3HP/4xpkyZAq/Xi3nz5uGVV145EU9bE3hQ23s8CYAgJ+m/hLTiwSazoFZBfizKiloc6qunO2tffqA0r8G7ifgatc4lOqNIDnVgB62xWwaXHwUH5sp3zcZLty/GxVM1dyGvEdnjZIvs0U3q39SGxi6navi4ZgY9gQuyojUhTiSw/uBhLJ14hen75eNHXA4Cl4NgUC2+HtA9T7DIPkd/o6WeilsH/47dsrATzQyq7MYPrTen5KXfiyJ+RmIeY+ffSh6fS3zP+Vhg1wU1ulj/LeCDK7wFYGaGolLEkwG/6irsLHTR2xtzaoBmFgEMTE3Lqeks/cVCqYuREDzpc+HlnqcBMKbmcKl1cNN9SSjFIK5qvcl8uGaiiIibHbMCmxCl4lg6r7VqCrXR1zf3w3i9/io4IOM7np/jW9edRYegGtAcHIKt3/BZ8anXLskHKHTczJdb36oy9J4sZQl1PqcaDAgBIOXwgze+oT3u1CugAPhOqFCm4QEAKQtI2bIOR1GGBMpMFzBg06EBHDjCPj9jHSvfgAjyo9l3/CqOojfENkiGIBXxRTAntwyRoowvD+Y1xliBqfHNcgx+7I52owv/YyLxQitVOPoG8Iu34b29P8ZHnU8glGbfUcfFAKDOWUxkC5CFJtwDqTxeU2jgu0DaRfOvbE2LynRdbRtP8uNvf/tb3HLLLbjzzjvx2muv4bzzzsPSpUvR09NT/c4nENObA7rfFYeeLqfgwebDg/TLtCg/qrIIgBBrnuxAsdS0oDOKaIlifgT2p/KoI0ntehHcyuvUXq9DIiUHEZ/+ux3UbIDenep9xS79HD6XQx2oqO7MDr9GLydeYPp+ufQYCXjgdzsxaCi+TucKABQECvR3+CMWeioSTPddjBkZMajFVImENzSG2w+Hl352ukGhIlM79qYme0Ev8X27yYeoJKG1US8RRiUJqyKNJd1WRFdhJLWHflcq+5ik3bDpDDrPqmMi1g5s0z02QC39g+k8Pa4Ov4bo3ROw6vkvm7pNn47+BMSRUAuQuQTZ6aFBvAkX6xkGaJHtMgQ0OUxgaiKzimXymmEhRE0of950FB/vvh69ShjTcAhNr/0QZhhSqyyhmwhAzQdKMYj3dPwHgkUJK3r7EEz0q0GtO0OZ2qaBZ3TBgBAZLx1br7GNYAt2t51dcSwKISWdplRwGbI/019+uoABRwbSeO9PXsTKh1+iV4iMHBDkR7rBqiS3D7CRTYoJ82pPTsT6g4exiMv6gLYJNhuOy9YZf10EM85ZC8lR2nFIgdAxheXZ+6QG/LjwLmy+8GvAp58Fpl0JQGNqigIkhFFHA+k8XpVZUCM7KetP0TWtH0E0BT3wOM3P79HAqAe173znO/jkJz+Jj3/84zjnnHPw05/+FH6/H7/85S9H+6lrwrRmfUE1cfu1xcjvQ9HpQzxbQFc0aZmpibUwTfV1ahsntUCXQzSKqO24FDXoDKRyqAeXHw07MhOmZgYuPx4q1NNcllIEjtHi5nROP08NoJIHXzyPDKTpSdPDiqEnXmj6HFG2848E3fC7HYgpgjOrSAuq/cjCqTCG4I9Uma4MQPZggf+D+uuyMdWB5SyyoObyw+Wji4lDdIIlDZunnbQ5rVH+SUsEdzU1wuPVFoy/Hnwab+uYiCRzZIpQCEFSkrAqEoErHweOb9cChsDUonUT6Twrh4SVW/5bK951aUFNUWieQul6HqsbQ0gVc6Zu07yShqftUTQFmfuQMYAJTrrwH09k9QzD4aFFtp6QxhKFDZUuqKULQEwf1H76zB4MIITnz7yNXv/8d4BuwxQC6GvVVBgGdpbAwNS4bL1o0ttw4/5zsTSVRmHgkBrU+mUPiCOBH236hukU7uXPL8eVv70Sa7vWYsaZ12BxMlVSeKxCKW8CFR2OZacLQF8K8MTWY8gVZRCxmbEIbohKRi3I7XRkEymkS4xNCmfZbuHxVaZm0sSbKSTRxnp0F/5RvmyClyqwhsk7pBm4p/ABxM7+AC1qZ/C6HGrRuy7NkM5jAwtq50t7cKQvpjK1ASV4QqVHYJSDWi6Xw4YNG7BkyRLtCSUJS5YswYsvvljhniceTUG3WjEPAHF/QFuMmiKYOsEFZ2gT/vlvb8faQ88CErttpWbGzM7vchBEgm70K3xkjSGoqUaRRv0wUrb76reSUxPvZwJuFEnmZKBtDr2y+w36coTJ1yJmTaBB4s1Dg7SAWJFp1/Fwu+lz8PEnTUEP/G4H4hBeU2YQqVwRjdzO7/Sq+YDy05VpD0lP1rDAZwZUpubgbjN3AB4/XbidRROmxheWXVSCNJX4An6s6aa77Wg6iq+++FXkJVK2xZlMCJ4K+mjx6y5m4PHWqR1nFEXB6p7nBfddWiveZUwt7KTPP5DOYXf8QEWGAdAm00UHk7kYU2uV6GLXE88iGnNjUvEjQDGET9UtpkW2FoJaPJnS5DEW1LicOGPhh4Gzr6H27r98qeRVlXQVee0B4K7mkvlmOhhyauJQygEnfV/KwCEgR4+XuOKFr/0RpE27ayjIFDPoy/Rh5Ysr0XfxjWhx3wJZ9sK4GyGKArcsAbKn9G9WHI4obUX2l620QDkEdi4aesOuyXbTzXHqYPWCanFkk+FcJ+yzIF6zoGYmP9J1ZYa32VqpAqHfY0xmx6a3tC7WrFXWQCqH3coEJEgQfpJF/shmrUUWQifU+QiMclDr7e1FsVhEa2ur7vrW1lZ0d5daSbPZLGKxmO7/iYLY2Lij0Yev+YraYiQRpOoegrf9D0gU+rHypZWIMlZQySjC7fxepwP1fjeiMAlqiqKXHyVJcEDSQFaSUxO3mdz96LTG1JK5grb7Ynk17kr0G1pwnTuJvrdNhweBPU/RKzsuKvscqvwYdMPvdqIIBwpOzSySzhX1dn5h8Tb2VHRAwlTvfBTicyCn6XHAmfOaxAFwSV8qaEzNG6TfibsonOA8qM35AL3c+wyi8cPlC5Vf+w56U71Y/dJqZDgLLrOtlxQFc5I+6ipkwVJ1PoKXKbxWOs+qa42aU6tz0c8+li5gRkGh7c7K0QiFllmczfN0QXpeNWIAAPDcruNY+r1n8cqWTsR3fgUtUXa8ecJV5cciz6c53GqnF563rPO5gKu/STvIH3hBna/FYZQf12x+AAsntWPt3//T/H0AAlPT5EeALppxN2WgLqHIOeWJwxEqX7bAkcwncdc/vokd0kWs9rI0x/jvURmZo+8p/ZsFh6OR4SfzKWzK/AoAECS8yF4LatF0FKu6HqObY2mgai0cIOGtiRQrqNY3NXew9UAS5c0KRhHO1IivvrwaogB+F2tCzJjmAKsvNevVaLT1y7KCwXQeCiQcDlIXZODYqwamduKcj8AYcz/efffdqKurU/93dHSc0Oef1sSSmu3bsc6R0xYjQnCs8DpNMINp0PVMrqwwAI/Ljx6XA/U+l8bURLdWLkGnQwNaA1zBLFIo0k4NKlMTZEkAWl2Mq/KBww/QZLYAtHOmxoJangc1/UE8hwW1Nw8OAFsfpVeedU3Z5+DyYzNjagCQc7ETMD2AdL6ICOHOR/3npsqQRKJlAw43lrb9GwBAzsTU3FbUIWF14SCII0FzI3yH6g7AF6wHAHhk4fNh8uMb7rlAeBL+6iF42yPvQDKfNC9ULqTwuac+R11iXK4xYU5EUeCTgcVZll88wJQHxjyq9hBk0wl4UBtM50Gyg7TdmayYtlSD4kG2+1otp8bkx3CRbooyeRmKQjvZA0A6wTZLnpC20ApGkeMJocZRzae1AYQgky+qzYLr/C4gPAE44yp6m40P6l4bnyYdzxRwJH4cq4pH2CI+iKgw/06FXNTyd3UTUZQVJNnGKuR1IuGhTjpPrIveXHIhk50IT/a8CsGAPbQi48kDT+Jo4SUU4nMwu/4yvYsxmcbHkgdwRTKPS5wTtE2URYejkeHLShHO0GbUN29VmVrBJTD1l1YjJWfp5pgoFWvhAMBNfLillx2/hqbmftDrXX5hI12Jqakjj+rLqyEEuGbiv9NAzqVeFtRC3tKgFvZR9sbHz8SzBXWDmW6jaYnmwTewJn8cCzsmoisYxYQTaOcHRjmoNTU1weFw4NgxfXuYY8eOoa2treT2t99+OwYHB9X/Bw8eHM2XV4J3nz8B4UAG+8n/mPbEJkykLypFPOkG1py9BJhUnrmoQc0pod7vRh/owlIUgxpnaQ6PFpiE3ddgOg8CWcupsetV1MrUskWgjTG1Y1uQy+XUNkPGZsmzJ9KTR4pup3VtDjdwZml+gaPXID8CQJYHtUw/Ujqm1lRy/4gvghWuybRsoHUhmlmCXcnGsbqpUWPOUOBpexRBjwOE5c/WHPsH3rf5Tqz1++BHWv3si3Ea1L761HH0TLsSX400Iq8UtYBlQFGRsTm6uWxXdA6FENx4XIKjgW0QZJZjCE+01kMw1wUACDnp/WIZOkw1IstYEcuYtlTLdV8HpRik7kdAlR8b5AFcfkYT3n5uG/787wtwxzvOBgDkkkLLpipMzZnkrZqo9MjLDCQCBPlmZ+6H6eXG/9X1DAx7nawXo4KVz30FKQKtDurFr5Z+ePFumtOVnECwVS32Baj8mPZRBiop9HrK9iV0yB8un3sVQEDQ7XoQxJHER2bconcxBuln80v3d3D3nlfgl2W2ifJYkx1NNiqKAjiaH0bQR4/F4zm66dACIHPNElKxFg4Aruv8D7hltmkRXLyD6bzKBCVRflSNIuXdjzzvb9ZEoS3egpfe7KDdklgQjLGerUGToGZkajy4eV0SnJPnAQAas5uxyltE1CHhaNuLCAWG0Ox6GBjVoOZ2u3HBBRdg3bp16nWyLGPdunW45JJLSm7v8XgQDod1/08kLj+jCW9d8Bxycqbc1HQVBASr5KOI5spLpKr86JJQ53OhjzG17KBgXhDzaXwhEwqw+1N5BJGBQ8x6i5Z1NadWhamxhSlXlJGrm0JdloUMst071NsY5ceWkBftdV5cLb1Mr5i+uNTZJUBnFGFBVG3LxeRHNafmN5d4lgU6admAu0Vll13Yoss1FQngCm9GoG4joNDC5FUbv4++fAwrmxqRl7J0UZZlEJYnOlwI4iuF48iYWNLNUK4rOgAQhWBJMoXzkj4422bp/1g30VoPwXwvdrtcCDno4jCYzquL0NLz/kUnQzoAXDHxrcgO0gAaCXCmRoOalOrBA5+Yh//65wswa0IdOhhTk9NCCYoZUxOCmjvNg1qb9npApUfVxn/mUsoOkz3A7ie1z4MQtIQ9cIY24YXjL+oUjidzPViz+4/6D4Dn00LtgORQ3bUepwS3U4Lib0Je0Y7FrIONnfE3lQ0GIhQo6uT29lCz3sX4lhvox6C4kG+5AisSBbqJmvF+y7Kj2Ty9gpLGi620WLkr4ajK1HktnMT+LinAks4leOf0q5FSeFATGjAk8wgxpkbEc5CvFfny8iPP+4umLICWTczrnYE3Dg7QqeKMqSXgg9shmToW+Ww6LherfWl9bgSnzUdekfCTCNSNjSLlsKb7x2Yf6ahh1OXHW265Bffeey/uv/9+bNu2DZ/5zGeQTCbx8Y9/fLSfWoXVsexWumJzWOnazY0iXpcDDokg6awHABQSAlMTnY8cOqaWQx0Rghi7XoXqfqwc1PzCTKlkTgZaqf5dZB3knRLRtR7iOHdiHa6WWF3hOe+u+Bw6psZHfEhsV8nkx0ZVfiyzgPAcZTaGgMcJ4kjg7/5XSuQ4RQHS9Q+jV5Ioi2MybEqS8N0mHwaSOSDdD4l9l4OhA3gpub2s6UN9UAvwSS7c0duHjOLGpKkz9W3TwpOsNaL1tGNGPo+Ag+fU8upOmUy5DMu902jPPkVBgLjw8Zm30If3agMyEWT1Twl9T0Ee1FwFdpyUY2pC9xd/hm20QhMA6IOa9sJdwJz3059f10uQjaEcHTRrAFEUrHpptX5ki9p5hUq1MTWfRp8r4PXgGLTzIctmqdX7XCrbKNc9RXtiaqrpzx/QuxhnX4/bJt6P87M/x7MX/AjL/B10ExU+s+LDVVsbZMjY6B7EbpcLOwZQlalzGdIlU7ndBwfumH8HpkT86lzArNDubdvRGIIwacFlhakJZraIjzVYIC6s6O3D7DD9bDcfHtSCmuIzlR4BsQCbbsYG0trw4rbmCH7l79CbnYiCDb3PWptFN0IY9aD2/ve/H9/61rewYsUKnH/++di4cSPWrFlTYh4ZLdQylr3aYmREta7d2bwW1AAg66YnqpwwkR/LBLX+ZF4vPbLrVah1apXlR5dDUhfDhJhXY2YRszltAHBlYx9mSodQgBOYeXXF5+gVmJoqd/KglhlAOlvAIok6LtE41fxBhMU34JbgaXsEeVIokeMIAWSSxedam+lJJLgY1wX9eHLfn9V82l4Sgqv9sYqvnT/o7Mjsst8/AYFbcmPVxCWIyDLO6mjBFWe2AC1nazeqm2itEW3TfABAQGRqws46ctGnac++oowVk5YimaaLl5pPA1SjCJLHdWNNgh4nGvwuzbhgwtQURdExtWCeOx8pU9OZRERwCXLnGtWEoygKBvwP0UGzBiis56Ju81fG+ci7wIe8ThxVtJxris9SC7hL2EZZT41qqikNVnF/JzLw0Fyy0BW/EqqtDQQELoVgj8uJfyST1rr9R7vx9mMRRIoyvtJ4CSK+COr9bmQlukGN9vWp99l0eED/fXLwzayppZ8xdUPZ0bIpy7C+8UosTaXRHqTH5w6haXgCPlPpEShtlSUeJ8nCAH7eTEzzwZZm0Y0QTohR5KabbsL+/fuRzWbx8ssvY968eSfiaWsey65fjKqjWtduUX4EgIKHBi4iuh/TFZhaPon+VA71xCAtiCegRaYGaGaRVK6o2vqdPZsBlEqPHJdm/w4AeNVxXtXuKX2sQ39z0KMGyQTRmhqfn38N50j7ITv92o7fCH7CZmLoy9Op4caZUCqIgs1eT+lJpCi4f8/3Ee3bAwXAfzbVmy64IhyKgiU54EeLf1QmGAEhdwh/e+/fsNRP+x+2Rhpoc9+Wc7QbMvZRtRGthzJSH9Hn1ABQtnr2u7CMhLD+4GFcMfVarH6c1gjyPCcAXausNTv/oFMjOhr9ws6+1P2YyBbU4xMA6gvsmDTk1OqMM/xazqZ1inIB2PRbAJTF9GFD2UGzRQL95q9MjRpfMENeJ7qFoJZQZ6nRv0d8Edx52Z1wIgQoLphZ8yG7ke2+1tTBxzeZ6XxRG/gr9hY1gbY2+EqON4B+r3koWNnUiHQ+hLmNl1e10B/oDmNhsoD1Bw/jmonztRswSbFvQAtqbx6O6b9Pw22tyI86sE1wi4++FzoJgx4bcfjLMjVt/Aw9PvhxEvbSTi85STHNB1uaRTdCGFPux5HGUMaya4tRZVipaeFmBS/TpmUmuTky2sFajakNpEyYmuh04js0C0GN16qJTM0b3QxAKXE+cnR00/qrhzMXlPR8EzGQyqkuqIaAGwEW1OJ8+nV6AB8uPoI1AT8WdU7A2p5/mD8QZxTZOM5qPIP2A6xQRAvF5CQiBBk5jZXb7sNulwsvB0nVyd5eRcEdWXeFYCSM2jHmMVuFvJpQeF2SmBcddnwCAAu2yWRS26D46gGnG/jwH6Bc/wt86SU3dvck0Br2YPk7hQDqcAE+2tVk1YZ7dGpER4MfIR1T43VqdOEy9mlslBlTYzWIfBxOCVMDNLb2+oOAomBG/QxM9c2DUmb34VAUKrfyzZ9JNxEAap1o0OPEUUWTp+OsaYE4JHfZlGW40vNjZI68F2bW/MzR90ApBtVOOiL4Bi6VK2qFzFWYGsDWhmnvLTneADrVAoTK3ztbN2Om84aymyO+bjy3qxctZID+IaTVfhLWGSc2SP+WK8jYdjSm/z45KsqP5kwNgHr8NTGBZ0e3xtTiis90MwCUMjUe1Jy+Y1h3YB2UMierpVl0I4RxG9SGM5Z96ZSlWByYrCbqzU5VKzUtGYP8SFhQc2f7tRtx3Vu0uLu0A5UyNSvyo4Wg5hZs/c1nA5ILzlwMk0hvSeE1AKB3N5zHt6AAB/5WvJDq7mXApccGvwsuhwQfey7eKkvpeh5nOrZhZaQRfUquvBQsMIqQ14Vs93Vwy6WSBhTQL6ZMjkyBjKdj1AQzO+kDyk72JiCyhJXHo4iw1mimo3ZCMzS7t/Ez50Et0KLr7FKSmBc3QXwCAOiiUEwNqK9HXWjbZuP+2AX40xtH4JQIfvyht6A5JMiPAJRAM8sp0oDId8STGn36HIz6udLvkAc13vW+GeyYZIsrd7XVmwW12e+h7/34duDwBhBCcF3nf0CSXaYNhAOyjDsO7tbYUFmmxuVHl46p8WJg45Bct1NCIT4HU33zdBuHS9oWohCfg4DbYdqrkqsIGR1TqxzUCkUZdzz6JpLPbtF1K+Hvl7tpi4RgMHQQzx56qeLmqMHTiOd392IC0W8mAMDto99/kg273XksjlxBRlhimx6d/MiZmiGoyUVtKKxZLS0LavXuIgih56/MNjwJ+NTgZYSx+JpvfiYFpukmCRhhaRbdCGFcBrXhjmUnhGB5+xI1UR+EA5dPvFxdGIkwfLMSMqzOx8PkRwdL7LuLCW04X0WjSAID6bxWeM1hKj9Wr9rX1ao53UALnVg7i3SZy4/baB5qp38uBhHUphSYQCu8posuZ2qDvFVW3x6sbmpEkk0SKPsdCLmfgMcJpRjE9cfDpbtjArSjpWyhMgHBxWjGGfk8rs+cAQke03ldLuLH3L3vwNJUWg00Zi6xO5ov0+6YN0i+nZcAF38KuGp1yetQE/PGHoIsIHpYUJNZrzx469RpCxv29+OuP9N+kV9++9m4cEppTeTaYJDmFMVmyweeRMKxwTynxgaF8k3ItKYA/MggzG/Lc2pmRhEObx3tMAIAb/4eADC1oRXnHJtt2kB4ecaJSDIKPPU1emVJTo0ZRZizLmjIqfG6KWOApTlignnhT+s2Dh878wvq45hBlR9zRd25Vgkv7o3iwZcO4MzEBizv7YNDdtJ2WzDZ9CrAYceDmN34ltLNkbMJy6Ysw5YjMeSTA2jkG9aGKdrr89PvKs0GnfLNZL1ZUBN7P4oHuDh/0FR+pMe6S86hs9EPAhmEfQYJxY9QGaYWNlj6Vfej302NL6whtQirnVpGCuMyqI3EWPaIL6Im6u9svBCrL9MGGboln+4LOhbL4IpvPo0fPbVL9xhGpuYJNaLAGQMPZqbyI9s95lO07+NIMTV2oKoTnFm92jlSl7lRZCsNaj2TaPDeVJGpcecjlYj44/GZamsDfqwL+NX8WFkpmJ+w2TjcTgluh4RLE6zTBls+HIqC+vgk3OhcxgqV9Q9BFAVuuPGRGA0gTeEOXBL+tOm8rk75IwgU2Xt3aizI6BKLiKeKsTWZ5ADefg9w3gdMPxvTHoLsudxguT6TXfXqx7eiICt4x5x2fPyyKSWPG01HsYr0mybmn+j5MXLqIijk1BQZyCXUKdVtdV5M9VAGJbuC6ufPZSUjO1Jx7vvo5ZZHALmIlpAXVyYL7HuiUOXWpd+jV7zyM+DAy1qXF7WbiJGp6XNq2iw1fX7P7aDP5ERIt3FwsNKZQJmFmW/gdEaRKkztzcODaEAMs6T9iMgyvnDuzXARyktKtlUEgJTBl5/9aunmCPSYfHbXcXQSVkYRaNYFKn+IHgP5NP1e+HkXMHM/8mNQKQJFIW/MFSCXn25gjeDGskIGZ7aG4EcWhL2TOCq5H/WWfvE4ifgiuL7zP0r7pEKBoih49dirpo850hiXQc2SpboaFXb7sSyZUu2+EV8EFwQ+CaUYxMWhT+tkxxf3RHGgL4U/v6lv/SW2yQKAer8H/TzHxPvsiWNnhOcGUJv7sQajSJIHNZZXm0W6SuXHVB8dRQHAfy7dlVdmatz5yJkafa5o0Ve+072ZFOzRLP0AzQOGSYZ22nB41LEk5xybhTaHAyuifSVGEoUQLM7NRzhONwzhpgm4etoylp/jgZHWBaX7z1XZkhjUAO4SW0hZnDj2Xv3Mh9HTji0qLtbc2WHiVNsfpd/z5946A4QQXWmKqkZANk3MZ+UUvssmTyieED0++MDSTEy18zcHPZjqpp91zq85klUDgBlTA4BpCykDSBwD9v8dLWEPziEH6PcksWOA786nvxU4959oQH34EwAU2myAFdfHjEYRj56pRfNslpohwLqc9H3nCrJu48CLucuxDZ/I1HiAyFU2imw5HMOl0lZIUICWWZg34xLkoZQtESFEwet9z2nd/l1Bujliwea5XccxhQc1ceYegHC4HgAgZxPIF2W8eWgQEmR4+Pgl0SjCmSagXxcqmUQA7VgvZHFWW0jthlIkTmThKstyeT/IWJpb+vWMfumUpcjHZoGflAQETuJEPB+v6j4fKYzLoGbJUl2NCosNgtnP5zVcieSuOxAq6EevdMforjeR1RspsmqdGv2Y6/2u0qbGFY0iCb37ke/idXVq1oMa36HylkTcATlL2l8qP/K2T00zMXP6dHpVX0rV0I2ICouk+Fy9Ba/QDUR/H1MpWJTJZBkBjxNBpGmnjTM/hAhx0sVBlhGQcliaTGGxVKduYCQFWJJMYXqyCd4c3Ths8w/iW9s+hEJiJiC72fRuGV+66Ms40JeCh/CgZhKk1B2tWWuyyk2kK4IFRKfMghov4mffcVFW1AUjEvCUlKa8euxVqkaUsTTJiqw2xu3Lu2nuUZV2B9WcWnPIg0muAXq1Vxv8WtbSz+F0A+e8i/68+WE0+t04WzqAiCzj5mkfKZVbl/4nPcYHWZeg8AQ1H8oNSNxZF/Q6cRz1KLLlaVAuNYoAgIfVVYojngDW3xTl5Uefa2hMbYHEJhRMX0Q3zg2zysrfikLQRC7Quv0v+C7dHCWPI5ktYMP+fkzmQa1BX94SZEzNhwz2R5PY3h1DgM8NBPRMzeHSNitiXk2tUSvTm9bA1LhUnZECAIhpTm1N1xr823PvgjO0SWNqQvE1AExq8CPbfR0Umcr9EiQ133iiHJDjMqgBFizVlcayA/ogwZhTI5PWokn9wt49yIKaYcy5ZunnTM2ltspS+z+KHUXU5+ZBLYXBdF4rvq5jvTB1HUWstckCxFZZXH6cDRkS2kkf2tCrv3EXtfJj8qWo87swJUI/g01l2Fo5+XG7goqd50ukYPWEVYBcAkGPUz3hlk1aiPXh+ViaSiOMJJNMgOX+marE44eEO3r7MDDYjwZlEFFJwo+OP46BXB+8rX+F49giWvt1vA/Pbk0inS+iycuOEQNT011nxtQsfOZlwadqy/RxAwr7TtnOeiCVU1Mk4mBMgC4Ov976a6pGlCk+cRA6S60jBxyMs0VfMOGIQW2ig36nCbcW1CoaRThmX08vtz4GKdGNFjIAWSE4q/29pXJrsBl4m5BzFGbOlVr6XSjCgeMK/Sziih9up6RuDjl43aUxqPHHM3M+AoDXLTK16nVqg6k8DvQlcbmDBbVpC+nG+bybTPt0AgSQPfDF/km7Sp1+HcVLe6PIFxWc42UbW0PNpsReUwAZrN1yDPmiggk+tvFyuEuPU7PxM2Vq1FSUMDXWvICV4Bjdj3xTNZDrg7f9D0gVB9nGSyu+Buim1okQdZ/KHhRRhKzo872jXYg9boMaUMVSXQ2uQMnPkQBdsHk9Foca1LIF2kONQSu+5kzNrbbKwt+WA7/7WNWOIv3iLDW+EOjkR2ttsgAT+dETUjtrn5t6WX/j/SyoTVlA/z6pHgDw2MYj+N2rB/Hfz+3F7/5xUJ2AGzXKj7wmLtNWsQNEiRTs9Go7T9ZVRFefw9hGiKTgJ8yc4q1XcypfdM5ARJbhyCXQiEGsbmpEuki/HyJlkQseoJJyKoUHnqG1X5dPDWnPbQT/XAvCTrkGybcs2HORYgYOiSDMx5awnTWfIl7nc+Gpg0+UlKasO7gOCyYugN9hUqcHgoDDhzt6+xCHDwf7+GPTz27NoWfxGm6GM7QJzSEP2gjdWMWcWj9OVVYql1MDgCmXU8dnuh948UcAgP1KC7oz5sEEcz8MTGaGm/pO9WqxQz+gHadb5MnsMVvR4HfRmkABalAr6oMazxmXY2pqtxtd8XUS+aKMb67Zjo0HB3S333J0EJ2kB5NILz02J18KAIi0nsvkb+PGgpYUHOoV1I8A20Tn4nhxBzXKnONlG0mD/MjPfz/J4s+baOPnua3ssYyz2gDzQaFV5UeNqU1pCqDeQY/vgSI9f8WcmrHeF1IOnrZHkcgUShi9JBG0hr0opqaBsH8iTkQh9rgOahUt1dUgLljs50bWc6/PwNSOMvkxX1TUzuaAvk0WQHe96+XzICsEiB+hne+VIkAk06Am55LI5GVNfjQLajUUX2tGEc1AsyNEiz7Pir+k3TATUzv4o5P26JzDin4ffu0QvvR/m3DXn7fhSw9vwn8/T6flii2yAE3iSWWLWD5/OTwOn6n7sOQ70clkMQTdkr4+h7GNENLwKvy9+9WcypIAXSAmkCieDnpYtxHebV+GFN6KvwTowhCN9qLO58L5E9hn53CXtlSrxNSGIz9yp2Uhi7DXqU02ZztrrgY0BLNlS1O+s+E7uPnMD5rm1JbP/DAisoyE4sPBfi0XE5UkrNr7e8gkBm/7H+B2p9EMNvvKQRdeRVE0A4DPxGTAITmAWdfSn1+5FwCwTZmszVUzghDgPfcCF/0LcOm/q1cbjSI8qN2c/zesX/h/2KZMNn0d7nLyIw9q5XJq3NIv5tSycazbdgz/tX4PvvR/b+huv/nwIKaRI/SX5rO0Tae3DkuLboOJCVg0aTEK8TmIZQqaXO+tV2cwPr//jwiccRe2uMzlRx5oA8hg61EqS89tNEzyEGHWqd/QzLgEwnHtckiYEaafYZ9Jh35jvS9hLcge3fVn/SQHhvZ6Lzxtj4BIZsNuR78Qe1wHNaCCpboa3P6SnxsD5vLjsUHtJBYnwnL50ePUmNrviotwQfYnKPzzH4AlK4HZ7wWW3m2QO1lQyyYAKFWYGpcfrTA1llPLaq/xTR/t7tI5+A/tsQ6+TJP6DVNU2/W7507A/GmNOL+jHlee2Ywrz6RS1bf+thO7jsV1LbIALYBmCzLqPY24tuPfTd2HplKwsNBE3AX99YzJhEkSHh7UhGS5J0CDXqPzKFZFGk17Rq6O1CEqSQiTJD52yWR4FLpgRCVS2lJN2NGqGBGjiMYA63wuhKHPm9KNk4Js/e8rlqb8vX+HvvkxVyPqaLlGAj4c7KOvV/GEaX6zmFWnLP9693fQINOgdpzQBTORLaDIGHjZnBoHlyCLNOhvlzv1E7CNqJsIvOPbajkJIBZf0+dySAQBtwMxBLBFoQu+mQvTzQxY2XLyY5mg5jXLqeUS6jG881hCY7cANh+OoZ30aa9fAKnvpOYYsJFJILjz0uVoZTPmuqLscQgB/E2IShKOhP4E4kjg7rCEqCSVtozjTE3Io50dYGtAeELpGzIrwFaZWvWcGgBMY0Etzjr0cym40mSCH7/5DRBHAg6J6Ew59eEoXOEtQLkOM6NciD3ugxpQxlJdBupO/ZjQ8cIgP8YzBXV3WCjKusawiawY1PRMjdd49COMgfYFwILPA+/9BTD/X/Uvgh3USi4JH7Jws1ZKWk7NzChSQ04tp73G3Y6p6FYa4JIzwP7n6ZVcepy8QL1dS8iLhz51CR797GW4/8aLcd/HL8Kimc3IFWTc8rs3VKZmNIoAQCpXwAz/AuaKYjV7laRgIffT6KQnXZE46Ino1ZiaR9aYGofbXwcFwCPNMaQkYtozMiUR3NXUiIgzg49dOgUo0KkMqxPbSluqmTG1KkYRSw20hccN+1waU2NyUTSZg+Q5hoTz9YqlKeu6X8CHB+O0phKCGsHbYcGHQ4yprXXkWE0baypAZDx/9GlscFAZ7JhC1QLO0tyO0jxWCSZdrBuMuk3pVIeFWoWRqQGadMiDi3lQM5cf+dDbQJnWbz7TNlkJ3Yb06R3aJI3NhwfRxoOaMajUd1ITU85Nc7XOiYj4IpjcSM9h7mAFACXQhNVNjVCkPDsOJdzV0lLa3Jud/wGiBbXJLpYjC+uDKgDzVlnCLDVTqEGNflcdAfqZ8ZZkQY+z6mSCTDEFT9ujqPPppeEzG1gnoJNUiH1aBDWr0DnMXv8e3UUB6k6ozueCg3Uo6GeyQm8ip+5qAb1ZRJunxuppHJIa2LgWbQq2WJJ8CvV8By+5tF5/Q7T081ZYYuBN52U8XTyf/rKLtsTC/hfoJcsdmIEQgq9fPwd1PhfePDyo7pY5U/M4JfBmDulcEZmCjGz3dXAQejJVlIKFTv0NDnrS5aQAQAiKLOCFSZIGYkDHqiVPALtdLvw96CxrTpEJwZMBPy6ekaY5wEKW1tFlj5a2VItTedVqTs1yA21hp1zndQo5tXoAQF8iBznbijbHhVVLUy6U/LSm0l2vqRFCy6ODfSn6ujJ7TPNv36ojlEHI9LkHhXyaMY9VAkkCZl+n/rpNmazWwFlBoSjTdlWAznHHf+bSqan8qBpF9EE/xc47XxmjiF80inCmVswikdKMFuu20aAWz+SxtzeJdvCgZggq9TTvt6x7H83V+miAn8yMVfujGnta6/diXcAPXlhZJARP+txYs9+w+VGZGssZB9wI53htXztKYMbUqsmPLj1T40aUhMrUnFXrfRVQGTIY1JvMPnBxJ5Y0fwa+4bjPhwE7qDGUND8upHFXE9OvWZCRJKLaijkz4XZ+jrjQH9HY0BjQCkgH0xUa7LITzZFPooHPH/PV65LaKmoovlYbGgs5tVSugPXy+fSXXX+jJ8bh1wAAa1xyRcbRGvZi1bu1vod+t0MNnIQQ9edkrohUrgilGMQs143VpWChqTFPYGccbJqzRD+DENJwFvnU66DuvjPyeZ0kZwS3/X/kDMp8o/k4lSoNtyMgWHXor3Rzo8upsec1fOY1NdAWHGyNHpTk1KgZieDyxn+tXpoSaKE1lfPu0tQIoeP64YEUVr24GimlaN5sljHXQ3m6YRisZuc3ghViZz0RHFKaamJq4gZLx9Q8nKnR47s+YMLUWE4tX9R/z2mmRJRr0u0Tiq8VQbrOpTRn74t7o0jlCth2lH6Ok1nZQ2lQY4YXXvjMjl1jUIumo1iFqGkbsRLjhJBTAxTMnlinTSY3kx/VnNpQjCJMYXHR158AfayQx2VhagmdhNDo7tRd29Hox48+cCVWXnrn0N3nw4Ad1BhMmx8H/FgTCOiSs5oDkh4E3YP6kQ9xUX40GEUATUbpT1ZgamznRaCghQh1bMaWPsU8NZoAFuVHoaExQzpXxPPybMiSC+jbC7zxv4CcR7RuIlZt+klVxvGu8yZg2SzaWkmdyMygNY4tqJLQVP+l1aVgQX6sY10x0sxqzC/DJAXJzLDhDlKbf28ftVubPbxMcEdvHyLODA1EiW1UqjTcToGCVDFLNzeiXdrYJouhpgbawn0bvXJJTo3nbSeGW6qXprAJ2EgKc9VYUEvBh6KzG08dLF/TVmTM9WiOLpyDVuz8ItrPAz70O+xf+isApHJOzQBexOtzOXTz/HiAOzLAgpopU9OKr0UcLbyEwBl3YW/q76bPyc/HoqwgDxe1yQPIpbTWUrmCjL/vjuJN1s2jw8nOQxP5Uf/gbGMgvYrAGXdh88CzVQrlTTY/7DyXiAIvcpgzqU4YrGqWU9NKgFRUrVPj8jf9fINMKRCnXleq91UUQFI8yHZfW7brzLDc58OAHdRQqfkxsKp9IqLCp9RYEtT0TE2UH7OGOjVAY2rcMm0KYZGewLV8XwPWHN+AhR0TsZbN4NIttDUwNTGnls4XkYQPsZaL6BXPfIPml5qbLDEOQgi+dt1svO2cVvzrldN1fxO7oaeZJFRuGoAOQgE2dz7y+pkEoSdwmKS0nalo6mE5kogsU7u1ycN/Rp6CiCwDmUEqsRT7y9fRQaFFzJwVykXVFCF+TzU30JacAJGwJuDHn9O3YkOQHQ9sZ83l7caAq/riwGXpxDHt8XnzYG8YcrYVcyOXl69pUxRcnAAyKfo4Ffs+lsOZSxGafjEAqmLIsnkANSJmsPNz8N8L7HEazHJqrE2WGNSi6SgOOR4AcSTw2KEfmG7GxO45ogRZTNOgxt/3U9uPYQsLahGZPU45psbhCSOajuKPh38A4kjgiOuBqoXyJcYJ4bgKIINLpkWAikytdKbammI/XSvie0yfU2VqxRydEC8we7/boaZZytX7EgLIx6+HUgyW3fwMy30+DJz2Qa1y82MgJed1C7pagM2cUt2GXam5UUSQH9kBYKx100FyqAd2O6EnU9Qbwqo3foSoQ8LKxhCiyWPCQUzMC4cNKCm+BtR8RqLzrewNHKP5pWK/5ZE9kaAH9370QvzzvMm663kAS+WKKlMznQZghCA/8ho1nsCOsQbJQaS1hVusKRTkpKXJFBaHZ5QEg493nEtvkI1RiYWEykqVDtAi5hl5FnTE3Bpjx0NqoE0Iom4fVkUakVZiuKcpSGVOztQSPKh5qi8OfFgo76nI3hsAuHx1AAgWN/9bmZo22nbs2uN1KmsatFKjZoKmoAeE0EDUx4Kyoij46h+34Kt/3KKr4eQwM4kApXZ8K0YR/j3IyIIQIFs034y5nRKcbNEWzSJyhiogbz+X5q2e2t6DTYcHEUIKniLbQBlzWvUdul8VdxCrX1qNTDENQgCFZPE/mx9gtZrlCuUNxglJUo/p+z48C5dOrRP6ZVY3ikTTUazyFuhasfPX5iqLuF4Us7qp18bP3ripIkx2jEdpjauxJ6eIIbvPh4HTPqjV2vy4qvyoy6np56kBwPRmegJtPRJDRbCgNoH0UuaEXqQKaYAQ6pp6cbW+RVa1hD60oEbr6ehr48EmP3UJAKh9GkeiaFJlatmCGjzLTdjWQZx+zYIatxoPKgIjjTNmoiu/0IpTCYDlZ3yoNBjwx88M0oChNJpKlQQEAacXd/T2aTk1E3Y8lAbaiqJgdWOYtg+D5sg0Fl/z463i4sCmP5jJj94ge7yYGytmvN+8i360H8lCRGVNVVtkwdzh6XJIaGQLHJcg9/Ymcd8LXbjvhS4c6i+dzqwVXuufy/i72cJp7CjC5V9uJZchl92M6Vtl0WNGYZ/ZVee0wu924Fgsi909Cc356K3X91oE6Pcl5K3WZg5j3YF1kIWarvWHn8aCiQvghtlonjLGCfY85zY5gHg3AIWaxYxOSUBnFFE3WGwsU6qYNldZxEYDhYwuB2vcYBg3VS7iQ7b7WvXv1Rh9Le7zkcBpH9RqbX5srFXjRhFedKzPqZXKj3M76wEArx0YqPzC2EE9AX2UORX6NOZECJ48/AzWHHiK3tZiuybR4pxkZhEebBzNZ0JpmKz2aRyJokm/MGk7na+cvNdBkB/9CtP6Wf+/RMGBjMJOIjWoCwuNRzCNAIjUTysNBkJxNwBEikVTqVKBguWzPkWlSs7QVJOIVx0RM5QG2mu71mKd16XKnjyv9Y3Xv4+Fv12IQYl2NOfHG1BhcQiwnJqOqdFFyh+iNv2D/SksnbgQi5MpSOqcQAlLXNRkcgwNyBVkZPJFjamVWawqOTz5vDde5vLCHu1vW46UtlgbFlNjObhsQa5Z/jVrlaUwA1Yk6MaCGVp3lbP8bANqxpIAVYKMShJWHfxLyWsAK5Q/v3ileaG8mXFC6CqEGCv8Drerx5wOQvG1mtflx5VSJrAz+RsA3bAJU6/5xluEuKm6qvWzUIrabWqSqU8ATvugVmvzY2OrLJ5TO6OFfsk8p5YvyqrVX5Qfz++sByG0OXBvooIEyW29zt7yzrzNP6OSlctnqTbK6ZDUQvBktgBZVtRcl8/jxO6pl9bWp7EK1HZEglHEmvyoMSkv60zOm9omMgXEYagP0zE1wwkZbC4NBuoUaLbIFjJUqmyYXZq36ljIbsOZWmmvzVqPIXUBLomiCh7c9iCimShcrQ+DOBK6oFYWqlGkNKiF66nJ6VBfGsRXpxpoFAXwOfzqKJTjrEbtj7v+grXxz8AZ2mSaK6nm8GwJ08+lh232Xtyj2b23mKgTxsJrDmOQq2TpzxYKNcu/2viZgnrMSMyAFfa6sPjsFvW2b6lnmyezfBYANEymakpTI1LF0i4aYK9ha36/vlCeTYowNU4IReGIs6BmZhIB1LUimh2wHtgJ0Rdgs+Plnn9egO9/YC6AUjbOz6MLmhbpHr/seKKThNM+qAG1NT8WW2UpiqIytTNaWVBjTI1Lj4CeqYW9LsxgO6GNldiaOwAFwC+alPLOvEIGdzU1Iur2WquNgt4swlvwEEKvn7Hwq1jsaoaDmB8WtRZN+j2aUWSo8iPPZfQXNSbM82oqdO5HgzwUaEEJhMcHABRYY+QzPlgqVRo7ihhnqTFYPYZ0+beSnYpwhZRDYMJjumOnLHhQix3RBkWy99bQSJ/3YH8K8IQRkWUsj/ZBKQbxmXNvQ4Sxu5i7GcSRwHde/0/klUF42/8AhztZ8lTVHJ4tjKn1xKlZ5EUdUzMLavR84R36OUqCmsnCyTdoecfRmuVfbfyMrDI1JzvWQl4nFs3UjpuZKlMrE1TqJ2O3y6Ub1mr2GmLenVqhvKIgQKTyxglTplbm+V1+GlQz+2rL64qNBVhQm9TWCp/bUZGNW/luTibsoMZg1X4aEYwisXRBrUWbYWBqYusefvJxaBJkf/kX5KZFxE8HfRWceXS8yP/zy9Zqo6A3i6z6E23o+845E+BzO0DCbVh+3e/hdwZGpGhSHHWjuR9rkx/dPKgVPFAUpQxTEwKZYLKBJ2xe6mDC1AAg4m8ulSp5UJPz1PlYofDayjFULf/GQYgMEnzTWkfzppk035I8DvTvo9exRao5QvNt3bEMtrHD7e3JFMiuW/Du6cvUBTPpaYKn7RGkCym1hdbao/+lexorEh8PasfjWWzvjqNfaDJgJj9uGXwWgTPuQj/RD5AMerSF0uuSTIO7mlNLNdcs/3pNcmpB1pYq5HWhJezFW9h5OtXNXrcwWUCH+k6tNrLMhlCChHxsFs7LFtXhwyvC55c3TtQS1Nx0xNA6JGobjMyP7XxKM115QlXZuJFV11XqD3oSMGpB7Wtf+xouvfRS+P1+1NfXj9bTjBis2k8jQk7taIwucA1+FyKMwfGdp9ZNRCrpyvCWTir1vF6BqaUUT9UiYgcIZmeyeNlRtOxU5EHtt/84iFe6+uB1Sbj9aq0P37BH9ojPxdyPaUF+tMQ8PFrOy1WgklBM8SGTl5HMGZia5KIzpURw6YZb3Y0w5NRUadHpKZUqRZdYIVNxfp2VY6h6QasAxaQw1wxuPzDpQvpzF2t1xhap+oYIrjqnFYoC/Mf/bYPCJiA0ODKo691AywCcPhwK98MV3qLOviJExhv9z6nHkVWHp8bUMniBSY8XT2kEIcCxWFYnuUfTUbwc/zmII4F/xH9elg0Y56ipb5vl1GSF4CsX31HT/ESzVlkBkobXJanB8gcfnIuffviC8i2yOOo7tdpIk9cABXBLdM5Y3FGvDR+eUL5jj64m1QJTm5HPY3HRXdtgZH5sp/qgTvD1hKqycSNTO21yarlcDu973/vwmc98ZrSeYsRhxX7KcxyD6TwOsW4HrWGv2qsursqPpSYRjrksqL1xaEDXYkvEkbSjYhExAeCT3OhyuUpyM5Wciryp8e9ePQQA+MyVMzChXr9Aj1TRpE9galx+tFSnpjY0jsHBbMoJxYdEtoB4poCYyNTcfpP7s6AWNJEeAV0bLgBa3VmlIaEADX5V2pJVO4b0+bcqIDUMVpxyOb3seh6QZd3O++73nIumoAc7e5Iqy+305yG9+t8AgOisd6Hb/7DpFAV+HFl1eMouOv29J5ZVpccl57RgaoQu0lyC5EGygAwIAfKK3qUnjo0pt2i6BAUk6GqoaTOmtcoqaL0WkdG5Lic1+LFsdhtItaDCjCIRWcaKeV8pzakRYLbnRijFIHJuYRqHsTu/CLF7EH/+kEmLLABw0WNpecZhelyVVVmcPqwJ+LHw5a9grZ9ORo/mk1XZuJGpnTby48qVK3HzzTfj3HPPHa2nGBVUs5/W+91q6mN7Nz1B2+u8aq6KT78WmZoRM1qCCHqcSOWK2Hksbvo8XWy9LVdErACY4mlAWiIluZlKTkUxqEys9+HTV04ruc1IFU1qTK2ofh41yY/FHAibEJ6AD8lsgQY2kam5AqX357vcckyNM8F8inZlEZhaCRxOgO9+CxlLA0KrHUMaG64Oy+YcNvcO+55jHWe0nXck6ME976VTzvsK9HXP9h4Htv6R5mK8ecgkazpFgR9HVh2ec1pmAgCODmbw8j7KcC6d3oRzJtDPnEuQqv2eMUPFYL8P18DUAGrrXzplKea1XgnFQtNsr0n/xyDJ6J5XBe/mUc79GJkBNE4HOi/F0mnv0H1OikJrunbsYedZQHNVlsxR0705QX7kRpFyz89uG8mmTY+rcoE96nRhVaQR0UISK5sa0esLY/XLd1Vl46ctUxuvcAj9H7nRoq3Oq54MWk6tvNzmkAjO76gHYJ5XG0zl0SXEuqXJFBZPvEJjToqC+b5J2JzurtmpKFqlv/KOs8vKgSNRNOkT2mSlanE/CrVmfEHhTC2RyVdnavz+vCjZCB7UACpBchNIuQJ2cVDoSMxSA2PDUr1qry+hSQyWzTkdF9N2T/Ej2iw8yakG30VnteCjl0xGnBWxvy/3KCDnsXvSXKzreRWoYHB48sCT2DOwx5LDsyVEn+/wQBqJbAF1PhfObg9j1gTKjrcciVnKzYk5tXJMwOXQ7p8tFkEIwQ1nfhGQ3YBSeTOmyY+yqgwEkC6pj0M2oeZe1wxsM3cYOz3ATf8AbvhzyYaQt5I6wlzS3vo29mal0m4kEByHRbYuZONArEI3EUA7FnMJLB3ow+KsUjqKyBDYFUXBandGqJOUcHtDwBIbP5bpUq8Lepy69mZjAWPq1WSzWcRiMd3/sQguQXIpRSc/Zuj0a7NmxiK4WcQsr7Z+Zw+SimAZB8HyS76qMSdZxt1N87E4MKV8vq3MYsi7RMyb2oirZ7dVfJ/DLZoMqPPbNKOIJfejJGmBidms4/AjmS0gmS0amNoQ5EeHU5N30v1aM9py7Et0iY3E1GswNuybgQBzwgFAKXWrwZzj8gGTWKuzHX+ll56QzlF5+9Vno+Cin+uMLDUJzbjoM1jcudjSmBAr+daWsH5jMH9aIxwSwSyBqVnJzYlsoFxQI4SUFGC7EELm6HtA5FDFzZjmftQs/QFkEDayDib9RX11WPWPb5Z3GEsOtYZM3BCeIX1cremSCBBsZBut8CTAqWegOsfh4EZarjNwgJqUQIBQmfOVb+zSfSCPfQbLuw/Dzz7acsfP2q61WCdldHWSL7mA2ZHZVdn4WZEzVcVlrLE0oMagdtttt4EQUvH/9u3bh/xi7r77btTV1an/Ozo6qt/pJIAHNd6BW5QfCzKdfi3OUjOrIdOCWilTe3JbD1KKsDj46hEJMGee5MGK3j40yQqWN15YvhNGmYP5Y5dMwQcu6sC33nde9bEiw4TPRT8TcVK4JfkR0CRIhqTiRTJXoJZ+HVMrLRRF5Ax62XJO+cfnbC0ljM0ox9REW38Fo0itiLhDqhPuw4NxlCbZajTncAly+5/ppSek+7PP7cAZnYKE5W8CmXUtls9fDhfxWppMXi3f6nU5dAHp0ulUbuNB7UB8ryU2cCS1T43HldoweQzTr1P5IgrxOehIfKPiZswvdOrnm6AgSZdIa4gdZjVoDZYdxoC2IXxL05XqddOag3CG2EbLMBi0xHEo52mHmd6d9AbBllJDlPohCOeKpw6Rt96JFZf/Z1mVRWPKehAF2BfbB5/TV9Vwwz+nUz6ofeELX8C2bdsq/p82rYJOXAW33347BgcH1f8HDx4c8mONJiKGgtjWsBcBt1M9CeMZzervdCZN6z3mdtCE8Z7jSW3kO2jR9vodPUhCYA0+ettlU5Zh/cRrsTSVBnJJRGSlfCeMMovhzLYQvn79HHQ0Dk8+swK+cESFPpdiy7CK8OiDWgI+JLJFJLJ5PVMzkx+XfBX49HPAWe8o//jcLCJ24TiBTI0/H3fCfal/AI3xCSpjUhQJcxoW1GbO4WYRbus3fIYAEAxrEydwwccApwcRXwRXtd5kaTK5lXwrd0ACwKXT6X0jQQ/awl7I2Va8JXJ5VTZwRsMZ6kax0rQAY//HdM5a7tZs+rUf2dKcWuwI7ejjlC07jEVMjmg537PaQsDUK+mxd/Y1utuVOA5ZI+01WSY9ljOJAIC/EVj0FWDBLcC/vw4s+DyWzXiXqcqid7HqoRAgU8hgSnhKVcMNl2nHmkkEACxY0TQ0NzejublM8n0E4PF44PFUb8x7smEcsdJe54MkEQTdTsSZmYEyNQU9nl+X7PC+u+i7aAi4MbUpgH29SWw8OICFrNjzH/v6EM8U4PAHtDSHT3BMiWMmiANLkyms8U7A+uwxFJUiHMSBRR2LRn28gxVw+ZE35/W6JEiSRXZoYBmqUcRYp2YmPzrdQPucyo/PmaDa2Z7QHJQZRKZWpvh6SHCJEjPQcuxSJMJ/RU5OArIbnzrn1toeb9JFgMOjuTkNnyEA7X0TCbjg4+rVFzcvwiM7/wxnaBsIkQFFwpLJbzU9jri89vWXv47b591esnlqCXmx53gSTUGPWr8JULbWHctgXvhT2BXbiHhOz06NbCDsdSGeKZQ1igCl/R+1Iv/KS5s6Uy2n5dSCJF3i7Iv271E7+igAvJIXdc46SJDws1d/hvPqz0ODtwHlMKXehYkh+lxzJwaQaZoM/McONjqa5tn6M/342Yafod1tDFwKftbegvO6j6Mhcq56e1PM+3ft5wq36xrswtburWhxlZHmAUTjUSyduBSbezdDVmRIRMK89nlY2LYQGfbYU+pdSKcdmFzvUq8bLlwuFxwOi5veCqgpqNWCAwcOoK+vDwcOHECxWMTGjRsBADNmzEAwaCIZnULgXUU42lhroKCXBrV4Jo9MoQhnaBMGpdfVXIm4w1s2ZRnmdtRjX28Srx/QgtoT2+giO31iC8CJqi6oCe1zHE5q5W2+FK90r0U8Hz9h4x2sgMuPfHyIJZMIhyA/ZokXMiQ1p6arUzN2ELEKzmJ4E2Cnt3xTaM7U8hnTNllDhuExUoUmzAt/Cs9G70Wm+12Y2lA551kCl5cGtv2sVs0sqPG8zJlX6zrM1/ldyHZfB2dgDxQpAyfxVjyOlk1ZVnbjxPNql06P6CTuWRPCWLe9B109BB+b+QX8aPNXdfczsgHO1CpNCzAGNbXIv8qxZtYmi1r6tSVRURSs7l7PzBQE1zS/E1dEroBTcoKwf3v37UWjt9HsKehrL8r46iJ6bjcF89i3b1/Jbfoyffjc5M+ZtNeiMX/vGQoanX7A5L5DwZ1n3YlsIVvm+Qg8Tg/qPHU4Xn9cDWrN/mbda//YuX5kzvIi4HGYvqehor6+Hm1tbcNKjYxaUFuxYgXuv/9+9fe5c2k/saeffhoLFy4crac9IRDlR69LUlv8qLb+TAF96T542x8puS93eF3UehHmTm7AH14/jNcPDgCgJ9GTLKidM2WCeVBTnU5JdVGMeBoq7pxPFjhT47BUo8YhSGdZBw1cfckcckUZcVKFqVmBKj8yplZpdI8pUxsJ+VH/nIMIwJs7H4ldNJg0BsszlLKYennloHbBDfTy/A/rrg57XVCKQWSOvgeetj9iTuDGIR9H7zi3HS/v7cNHLtGPIjpHcECmclORj82CK7wNgGyqMLz/og489sYRzJtaPmhwW78mP1prnK3Kj0JD4wDSOqPI7oHdWJc/DhAa0Ja2LkVDpAHETXQMc0JoAjxljh9FUaD0JKAoCqY1BXW1dQCQLWRRiBdM7ytigisMTzk3b43okDuwf3C/WmgvwgEHOus64ZScaM21ojfViyZ/E0Ju/bHk6U8hni2gIeBWHa/DgaIoSKVS6Omh6YD29gpyaxWMWlC77777cN99943Ww59UiE1m2+t86q6COyBjmTye6PkxIOVK7is6vD5x5lcBAH/f3Yv3/fQFzGwL4WBfGm6nhNlT2oHn2J1M5cektrC6fBV3zicLRqejJecjh7Ag55100eHNo+PVLP1WoMqPAlMrBzGnxu3/IyE/Gga7xhQ/9vXSYnO3Q9JNVbAMbhYBzIOarwFYcHPJ1XwxL8TnoBCfg7OuGHpu/KpZbbhqVinL5GaRHd1xbO+OQybXoa5xP1KFhKnCcOOCqbhxQYUCZUC1kxvlR2+Vz85nklNzkyLqXNpCP6N+BhYXnHjJ5cAVkSvQEGmAI6h/3LA7jLpgmenSDFNbnZBlBSETGdWjeFAn11EptgzCsow6fxDwjoA6wDDJMQmH4odKrp8YmoggC/JerxfNYfN0kz8AJIoZBP1+eL0j0ybL56PnQ09PD1paWoYsRY4pS/+pApGptQoWZp483Tu4B/vSL9PchAm4DOnyHsN5k+pQlBX8o6sfD750AABw2fQIvH4hyV9OflQX2KGzBivd/YeKgIGZDVV+zDtpID8Wp++X29IBmBdfW3p8thDxzvbOCiem06xObSTkR+3YUUAQhw9dLKg1BtxDk2AmXqgFaLOgVgZGF9touNomNfgQ9jpRkBUUZQXzJ0/GysvuHFYtZIn8mLMmP/pEpiY4aOsdmqmJEILlfYNolergkpyUoQlwEAfag9UZRcjrQl2ZvCAhBBOCEyCVayIOBe2FAq1BHEGE3WGEJP13HHZQ2dEKWkI0X2o2kXw48PvpZjHPh/IOAXZQGwJEWYjn0wAgxORHnzIBk9wXq50NjOAOr5mRM/GZdyTQcd43ccPbBvH+Czswb2ojbnrrDH2uqBxTs9DdohIqdeIeCRiDWG1MTTu5ii49U9PZ+IfK1Li8yd2PVpnaSBpFhOcsuEJQIKkNgC2NnDEDz6sBpu7HcihtUjvyQY0QonYWAYBPXjF12LWQRvdjyqL7UWfpdziRBf286xyCupJPI5KM4qbBGABSUnLRHmyHs5y5qAY4JScmBM0Lq9sLRSqnSSP7fRBCMMEZhMTyag4oaHdbC2gAIBECv9s54mVBI/F4dlAbAsQFp61OY0naWJci5nhvpJ0NKtR78HqRgVwf/tbzI3zpHRPx209fggsmN1oLasNgatU6cY8EJInoApvlGjVAxzIUFsSOsWnKfp9HW7CHnFMzGkWs5tSGz461x9Wes2jYIRsdtjVh/meAllnAmdYDhdcl6Tp0jJZVm3cWmd4cwMIzyzvwrMJTxihSzf3oFYMaoJbQhCXByccKrxfkCbyGTU/YHbbMaqwg7A6X5K3Csow6mak95WrUhgGn5MCEQhFORaHBc4QD58mCHdSGANFi3CbIj7qmxsUQMkevg7FNBHd4NXobKwcVcbGuxtSGsMBW68Q9UhAD2VDlR4Wd7HxWXcjj1ILaUN2P3np6KU6yLgczpuYcgaAmfm9e/QI5ZKYG0Pq8f3sBaD/P8l0IITq2NlpFtR+ePxmXzYjga9eda728owLcjjLyo9WcWo7eL8E6+ARJWrsRa9FGgs2o81AbP2BddqwFRhnSQSQqOwK096g0fKs7x8KFC/H5z38eIBLqZBkz83kaPEfwOU4m7KA2BLgckrqTFZlaSOj/mCnQzgbT/fNNuy9UDSriYs0XYECfU1PlR+sL7JquNbjioSuw/O/LrU3IHSb8ggOyNvlRC2rE0F0k6HVqQW+oTM0ozVUMapyppUe4+FrbEBFfve5PwwpqQ4To/ButoDa1KYBf/8t8zJ82Mg7dUvmRBoJqGyixTVYmX0RCod9ngJQyNQRa4CAOtARa4JScIyY7GsFlSPocE+Dk5+cosDQKw6bCpCB+/fr1IIRgYGCg5kc/WePH7KA2RMxoDoIQ2qGDQ+vUz4uvCZa131TSfcFKQ1fdsEu/YGlWg51C+xYClk0L0XQUK/++Ev3ZfmSKGesTcocBv0s7+WtiaoL8KHn1skzA7QQmX0aDebUi63IwMKOKiXid+3FkGhrTx9W+N4dfX8Br7FpzIiAGtfoaBz+OpuGoEsoXX1vPqcUzBSSY/OiTxaDGuvMzK33IHcLMxpkjKjsaUeep056Dm0dGK6gZzSnSyIaDkzV+zA5qQ8TPPnIB/nTTAkxt0hhVSGhqzNtkRbyNum73ouxYNahc+SVg7kfoaAsOcTFVg1r1BdaYQysHy6NOLEJkajXl1AR25vCZMLW33wP8v32Vx3dYfHwAFpnaSLsfxaBWD4cgxxkL/E8EwoYZZlYD1WgbjiqhpE7N4ogjnlOTFdrGjTcQl/IJ7UbqHLORqQ+rGVwOHEZQSyaT+OhHP4pgMIj29nZ8+9vf1v5IJDzwf4/jwqv/GaEzF6Bt0hR86EMfUmvFurq6sGjRIgBAQ0MDnYJwww0AgDVr1mDBggWor69HJBLBO9/5TuzZs0f33Cdr/Jgd1IaISNCD2RP1OzY+LiORKegaGosOL6vDFnf376b1RO/+kb7ThSQJQYwFRQvuRy53mhVcirA86sQidDm1IRZfO/36zznkcdLPZDgSYIn8WMkowpnaSBtFhDZZvnpdUGkMnPikPWdqhAA5ZdBSoDoRhqNKKGfpr8bURNXgWCyLJBvJg6xJUDOZ9qAoChupNIr/C0AqLyNVcOiuV8pM5jDDrbfeimeeeQaPPfYY/va3v2H9+vV47bXX6B8JQb5QwOpb/w1vPPEQHv3DH9DV1aUGro6ODjz88MMAgB07duDo0aP4/ve/D4AGy1tuuQWvvvoq1q1bB0mScN1110GWK68vJwKjVnx9OiIkGEX4yWacV8aHLa4/uN40sPHOChWDijugGRaAqgusKHeatcbhqNTdf6gQu4jUZhTRApnbENSCZoMca4VRfqy0MeCfbz4zskYR8Tm9dajzuQRL/8lgajSohbxOfO2Vu0x7lhqhDfukMLaCG22UK76u1r3G5aBuz3xRwbFYBjIf9SQWQQ+wlj6BUqaWzhdxzooTJbV2A3hD/W3rqqWWuvMkEgn84he/wIMPPojFixcDAO6//35MmjSJ3oBIuPED17JbE0xrPw8/+MEPcNFFFyGRSCAYDKKxkaY+WlpadHmx66+/Xvdcv/zlL9Hc3IytW7di9uzZQ32jIwKbqY0g+GKbyOaRVZma/iMWu5xXG+9QFkbHX4UFWd+Vu/IOr1J3/6FCZGpDtfR7AuaMeFhwB/SJcStMLZcA+EZkpNtkeet15oyTYRThz+9v2GzJGWspNzzKKGfpt3Ks8Q1nTyxTytQURZt2UD9pBF/xicOePXuQy+Uwb9489brGxkbMnDmT/UawYdNWXPOx/0DnRVcjFA7jyivpqJwDBw5UfOxdu3bhgx/8IKZNm4ZwOIwpU6ZYut+JgM3URhC8+DqeKcDBJEOzydJ82OKtz+q7sFsOKsYZYhUWWC53VoNEJLy1w7wr+3AwZKbm9Kgd513+MJxSQm2MHPTU8DjlQAjNq/G8pJU6tfSAdt2IdOkXLf31OqPGyTGKOEEcCaTDvy1h9WLP0ogvUnGzJOaGzdjdSGKo7kd+m3imgJ54Fk0QNi4ArV/MJaiZIjQBGDhcct+tq4ZWMF4TFLnE0FHTeVQByVQaSz90E5YuvAS//q9voHnmxThw4ACWLl2KXK60xZ+Ia665BpMnT8a9996LCRMmQJZlzJ49u+r9TgRspjaCCIqWfj75usz8sGrDFitCZGqSs2Iimcud5eZXqa/dFRyV7v76nFqNJyOrzyO+BgQ8WnAcEfkR0OfVLAU1FgCJNDKONPE5fVpQc0jkpAxfDHud8LQ9AhmlHdyNJqaacsMGjKRTUqxTk2Vt4ryVY43f5lgsg6RiYGp9e+mlyYRqgCoufrdz9P973CXXWe26MX36dLhcLrz88svqdf39/di5kw4e3b5zJ6L9A/j67Z/D5ZdcjLPOOks1iaifr5u+92JR+56j0Sh27NiBO+64A4sXL8bZZ5+N/v7SYccnC3ZQG0Hw3o8FWcFAWpshZgYrwxbLQgxqVXI71eROn8OHRm/jkHvvVUNgqPIjALxtJTD/34DW2Wq5BDBC8iOgd0BaKb4W3aYj0R7IkFPjOa0Gv2tECpNrxbQJCbjCW4AqPUt39++uulkqZzgaaaekaBTh0iNg7VjjjIcaRXhOzRDUDBOqTyUEg0F84hOfwK233oqnnnoKmzdvxg033ACJWfc7OyfD7Xbhh796CHsPHMYf//hHrF69WvcYkydPBiEEjz/+OI4fP45EIoGGhgZEIhH8/Oc/x+7du/HUU0/hlltuKXn+AwcOYOPGjbrxYxs3bkQikSi57UjCDmojCL/Loa51KlOrIBXwYYs1N3QVg5oFazmXO81236sWrMIz739myL33qsE3VPkRAM77ALDsboAQ3RgbMcANC2JRey1MbSTyaQBl2VxaEnJqJyOfBgCXdMyyHKiGkhseDackD2rZoj6oWZmwzpna8XhWLb5GlhlF1KA29GkFYwH33HMPLr/8clxzzTVYsmQJFixYgAsuuAAA0NzSgvu+uxK/f/xJnLPg7fj617+Ob33rW7r7T5w4EStXrsRtt92G1tZW3HTTTZAkCQ899BA2bNiA2bNn4+abb8Y999xT8twrVqzA3LlzceeddyKRSGDu3LmYO3cuXn311VF9z3ZObQQhTr/m8JRhahxDGhkj5tQsLrBLpyzFmq41quvyRE3IDgy1o0jJ44hMbTTkRwtMTWadw0fC+QhQttcxDxg4ANR3IOyjeZuTFdR4oHrl6CtI5BMlOTVjoKo1NzwaTkkdU+N2fpfDEtPlm6yeeMaEqTGTyCke1ILBIB544AE88MAD6nW33sq+r2IBH7x2GT547TIq9TdMAYCSkoHly5dj+fLluuuWLFmCrVu36q4z3u9kjR+zmdoIw5jvqcTUhgzRpGBxgR2W3DkM6BsaDz0YBUcjpyba+it2FDEEvJFiagBww5+Bf38dcPkwuZEycLGg/0SjEqs3C1RWc8Oj5ZTkObV8UbbcTYSDH5v5ooIEdz/m6Oif8cLUKkKU0Kvk3E8l2EFthBEyBjULMkjNqFF+5Biy3DkMDNn9aIA4m23k5EerTG0Ug5rkUJng0lmt+NXHL8Jty84euccfAmoxMVnZLFl1Sg4FIlOrxfkI6IMf7yhSYhQ5hXNqVSG6Kke4RdbJxPh5J2MEQY8TztAmBM64C67wJt04jxGDKD/WKIUNd35VrRhyQ2MDRPnRuHEYMizLj6MY1MSncUhYNLMFdaM09sUqamX11TZLw3FKVoPofrTaoZ9DDH6a/BgHUn1AZoD+ziS5cQlCoDY1tpmajXLweNPwtv8BxJGAp+0R9GX6Rv5JdExtdBbYkYI4gXg4QY3XpjkkohbcDhui/Gil+JpjjH/mI4FaWX2lzdJQnZJWINap1VJ4DeiPx4Ro6ef5tFD70EcbnSogdlCzUQGKouCo40FAyoEQgEjZ0emDdwoFNZFhDUt+ZI8T9IzgtN0hy48jUHh9CmCkWP2IdNEpA738WGNOzW3C1JQi0MMMEOM5n8bBJUhbfrRhhrVdaxHFBhBe50PkURm8qZcfR6Bb/CiC75o9TknXhb5WiEFtxKBjahZGz6i/j+3PfCyiVgOKVZjLj9aOEXGTlYLwnXZvopfjOZ+mwmZqltHV1YVPfOITmDp1Knw+H6ZPn44777xzTLRRGQ1wd5cRo9IH7xRiapMjAVx5ZjM+NK9zWI/Dg9mI5dOAMZdTG+8YVhedMlDr1IZiFBFuJ0OCwhn4UR7UTgOmxhnaOJl6DYxindr27dshyzJ+9rOfYcaMGdi8eTM++clPIplMlhT4neqoNKtsVPrgnUJBzSER3H/jxcN+HM7UAiPK1Ky2yTLm1E4P+XGkIdbBxfPxESkrEXNqqfzQ5UeXg1AFJJ8Cjm2mVzacBkwt2EYLzsdR7nDUmNqyZcvwq1/9CldddRWmTZuGd73rXfjiF7+IP/zhD6P1lCcNo+nuMsUpJD+OFOZNbcTEeh+WzWobuQfVdRSp8DkSQpsrc4zEgNDTFCNdViJ26c8Mw/0Y8rpAPOy84gXYpwNT8zcCDZNLp2CfwjihHUUGBwfV+TzjCSMyI60WuAWmMMaZ2kiho9GPv9/21pF9UFF+rFR8DdBAVsyyn22mNhwMqYtOGbgdvIB6eEaRsNdZOv1inObUFi5ciPPPPx/f+973TvZLGRWcsPC8e/du/PCHP8SnP/3psrfJZrOIxWK6/6cC9HU9I+vuMoWuobHNGoYMq+5H49/tz3zMQOd+5JZ+V+1GkZDXpZvhB39T6SDZ0xDr168HIQQDAwM13e9keipqDmq33XYbCCEV/2/fvl13n8OHD2PZsmV43/veh09+8pNlH/vuu+9GXV2d+r+jo6P2d3SSwN1dGGF3lyl0vR9t1jBkOD3A9LcCbecCwdLpxiW35bA/8zED3tygICtIsp6rPre1ZU0MamGfgamdDtLjKEL0VGzZsgXf/e538dOf/hRf/vKXR/25aw5qX/jCF7Bt27aK/6dN0w6II0eOYNGiRbj00kvx85//vOJj33777RgcHFT/Hzx4sPZ3dBKxdMpSXNB0BRSFf6zSsN1dphhimywbJvjwH4BPPwc4quzuRXZ2mki+pwLcQiH+YJo2nPZZtfQL8mPI4wI8YlAbH9JjMpnERz/6UQSDQbS3t+Pb3/627u8PPPAALrzwQoRCIbS1teFDH/qQOlOtq6sLixYtAgA0NDSAEIIbbrgBALBmzRosWLAA9fX1iEQieOc734k9e/aoj3syPRU159Sam5vR3Nxs6baHDx/GokWLcMEFF+BXv/qVOsenHDweDzyeCi60MQ5CCG6a8yXc8MQrUKQMXMQ7Ok2DHW46tkQujFzH+NMVVgu5dUzN/szHCsSgNpCiQc0/hN6PIWNOrRpTUxTqlDwZqGGe36233opnnnkGjz32GFpaWvDlL38Zr732Gs4//3wAQD6fx+rVqzFz5kz09PTglltuwQ033IC//OUv6OjowMMPP4zrr78eO3bsQDgchs9Hj/1kMolbbrkFc+bMQSKRwIoVK3Dddddh48aNZdf5E+WpGDWjyOHDh7Fw4UJMnjwZ3/rWt3D8+HH1b21tI+hgG2OYFG5F5uh74Gn7Iy6o+5fRaRpMCGVrmUF7gT1RsJnamAQvvgaAGGNqQ3E/hn0uwCXk1KoFtXwK+M8J1l/oSOLLRyxZ8BOJBH7xi1/gwQcfxOLFiwEA999/PyZNmqTe5sYbb1R/njZtGn7wgx/goosuQiKRQDAYVINQS0sL6uvr1dtef/31uuf65S9/iebmZmzduhWzZ88ueS3cU3EiyrlGzSjyxBNPYPfu3Vi3bh0mTZqE9vZ29f94RtDrRCE+B8ldd2B64NLReyK+q7QX2BMDO6iNSRBC1MA2oMqPQ7H0O/WBYhzk1Pbs2YNcLod58+ap1zU2NmLmzJnq7xs2bMA111yDzs5OhEIhXHnllQDo1OpK2LVrFz74wQ9i2rRpCIfDmDJlStn7WfVUjBRGjandcMMNqv56OiHgptOvFWWUxs5weMIADpfakG2MDkT50ZZ8xxTcTgm5oqzm1Cy3yXIb3I+kBvnR5aeM6WRghIxKyWQSS5cuxdKlS/HrX/8azc3NOHDgAJYuXVrVpXjNNddg8uTJuPfeezFhwgTIsozZs2eX3K8WT8VIwZ58PcIghCDocSKeKYzOgFCORbcDe54GOobfrcOGBdhMbczC7ZSALFCUqfPYapss8fwMe50AWFDz1NFJ0JXAUwBjGNOnT4fL5cLLL7+Mzk7apq6/vx87d+7ElVdeie3btyMajeLrX/+66jR/9dVXdY/hdtP6zWJRq7+NRqPYsWMH7r33Xlx++eUAgOeff77k+Wv1VIwU7KA2CgixoDZiI1LMcM676X8bJwa6oGZb+scSxLwaYF1+dDkkuBwE+aJCmZrC6hYbp1o3EI1hBINBfOITn8Ctt96KSCSClpYWfOUrX1GDS2dnJ9xuN374wx/iX//1X7F582asXr1a9xiTJ08GIQSPP/443v72t8Pn86GhoQGRSAQ///nP0d7ejgMHDuC2227T3e9keirGT2+UMYQga7o7qkzNxomFLqjZZRRjCW7D5tGqUQTQWF3Y56Q1i2e9E7j8CyP6+k4m7rnnHlx++eW45pprsGTJEixYsAAXXHABAOpkv++++/D73/8e55xzDr7+9a+XGDkmTpyIlStX4rbbbkNraytuuukmSJKEhx56CBs2bMDs2bNx880345577tHd72R6KoiiKEr1m50cxGIx1NXVYXBwEOFwuPodxgiu/8kL2LC/H9/5p/PwnrdMqn4HG2Mfj98CvPoL+vOte4BA08l9PTZULP72euw5nlR/37jibaj3V2l7xrDwnqfRFU3hyVuuwIyWkOltMpkM9u3bh6lTp8LrtTc0o4lKn7XVeGDLj6OAt57Vgn29ScztrKLL2zh1YOfUxizcBkNWLRPWv/W+87C7J1E2oNk49WAHtVHAZxfNwL8tnD5yE5ptnHzY7scxC1F+lEhpjq0SLpzSiAunjL8m66cz7JzaKMEOaOMMnKk5PNpgRRtjAh4hiPndTvvcO81hn502bFgBZ2q29DjmIDK1WqRHG+MTdlCzYcMKeDCzg9qYgxjUanE+2hifsIOaDRtWYDO1MQsxh2a18NrG+IUd1GzYsAKeU7NNImMONlOzIcIOajaGhDVda7DwtwuxtmvtyX4pJwY2UxuzsHNqNkTYQc1GzYimo1j1wipEM1GsfHElounoyX5Jo4/OS4GWWcCcfzrZr8SGAS6d/GhXKZ3usIOajZqgKApWv7QaqQIdkJjKp3DXS3ed5Fd1AhBqBf7tBWDep0/2K7FhgOcUkx9PtsqxcOFCfP7znz8pz30iYAc1GzVhbddarDuwDkWFdu0uKkU8eeBJrOlac5JfmY3TFadSTu1UUznWr18PQggGBgZqvu+73vUudHZ2wuv1or29HR/5yEdw5Mjoj+uxg5oNy4imo1j14ioQ6ItbCQhWvbhqzJ+gNsYndO7HMRzUTjeVY9GiRfjd736HHTt24OGHH8aePXvw3ve+d9Sf1w5qNixBPCEV6HtgK1DG/QlqY+xCZxQZw5b+k6FyJJNJfPSjH0UwGER7ezu+/e1v6/7+wAMP4MILL0QoFEJbWxs+9KEPoaenBwDQ1dWFRYsWAQAaGhpACFEHP69ZswYLFixAfX09IpEI3vnOd2LPnj26x7755psxf/58TJ48GZdeeiluu+02vPTSS8jn86P2fgE7qNmwiN0Du3UnpBH8BN3dv/sEvzIbpztOBfnxZKkct956K5555hk89thj+Nvf/ob169fjtddeU/+ez+exevVqvPHGG3j00UfR1dWlBq6Ojg48/PDDAIAdO3bg6NGj+P73vw+ABstbbrkFr776KtatWwdJknDddddBlmXT19HX14df//rXuPTSS+FyuUblvXLYViEbljCjfgYWdy7G+oPrTQObgziwqGMRZjTMOPEvzsZpDb38OPaWNKsqx3cXfXdEnzeRSOAXv/gFHnzwQSxevBgAcP/992PSJG0c1o033qj+PG3aNPzgBz/ARRddhEQigWAwiMZG2uy5paUF9fX16m2vv/563XP98pe/RHNzM7Zu3YrZs2er1/+///f/8KMf/QipVArz58/H448/PqLv0Qw2U7NhCYQQLJ+/HH6n33S3GXAFcMf8O07Sq7NxOmOsM7WTpXLs2bMHuVwO8+bNU69rbGzEzJkz1d83bNiAa665Bp2dnQiFQrjyyisBAAcOHKj42Lt27cIH/3979x7TVv3+AfzdCy0ga8sKlDEpFERhshkEh91Y/AMM6ILXmK8EHVOi2YQIm8GhkxmzICQYE51GsyVuf4gSSWCbZEYXujFJoFyEKU4uEzIIcpkwKLgNHH1+fyjnRx0w2NYedvq8kpPAOZ9Dn75Deejp55yTloawsDBoNBqEhobOu19eXh5aWlrwww8/QKFQYNu2bXD2LTy5qbEl03vpsc+8b97/NgvMBdB76UWqjLmzld7UZo9yKGTz16aQKZBkTHL5UY6//voLycnJ0Gg0KC0tRWNjIyorKwEA09PTi+6bmpqK0dFRHDp0CFarFVardd79/Pz8cO+99+LRRx9FWVkZTpw4gfr6euc8oX85tamJNaWTOU9yaLLDC3T2BZkSmiJyZcxdrfRrP4p1lCM8PBweHh5CwwGAS5cuobOzEwDQ3t6OkZERFBcXY8uWLYiMjBQmicxSqf65g/jMzP+/yxwZGUFHRwfeeecdJCYmIioqCpcuXbphPbOft01NTd3yc1uMU5uaWFM6mfPMfYEC4MOOTHR3wmWyxDjK4ePjg8zMTOTl5cFisaCtrQ3bt2+H/N/7ARqNRqhUKhw4cADd3d04fvw49u/f7/AzQkJCIJPJUFVVhYsXL2JychK+vr7Q6/U4ePAgzp8/D4vFgt27dzvsZ7Va8cknn6C1tRUXLlyAxWJBWloawsPDYTabb/tzncupTU2sKZ3MufReeuzbtA96z39eqHzYkYlJpVjZhx9niXGUo6SkBFu2bEFqaiqSkpKQkJCA2NhYAIC/vz+OHDmC8vJyrFu3DsXFxfjggw8c9l+7di3ee+895Ofnw2AwIDs7G3K5HGVlZWhubkZ0dDR27dqFkpISh/28vb1RUVGBxMRE3HfffcjMzMSGDRtQU1MDtVoNZ5KRsz+1+9fo6Ch27tyJ/v5+1NbWzjtmamrK4a2pzWZDcHAwxsfHodFoXFEmY+wOc6bzIrZ90QAAOPH6FqwLur1/K65evYqenh6YTCZ4enre0s8auTKC1MpUTPw9AY1Kg+NPHed/CudYLGubzQatVnvDfuD0iSJ79uzBXXfdBb1ej97eXhw7dmzBsUVFRdBqtcISHBzs7PIYY3e4lT5RZC4+yuF8y25q+fn5kMlkiy7t7e3C+OVM6XzrrbcwPj4uLH19fTf/zBhjbuFOamoAkBKagtP/O43k0GSxS5GkZZ+p+MYbbwhnnC8kLCxM+NrPz0+Y1hkVFYXg4GDU19fP+2GhWq12+vFWxpi0zP1MzfMOaGrMuZbd1Pz9/eHv739TD+aqKZ2MMffhcOuZFTiln7mW064pY7Va0djYiISEBPj6+uL3339HQUGBS6Z0Msbch1r5TyNTKeVQKvh6Eu7Oab8BYk7pZIy5j7t9vbB1/RpkJpic+jgLXayX3T63I2OXTem/GUudwskYY85it9vR1dUFhUIBf39/qFQqyGSyG+/IloyIMD09jYsXL2JmZgYRERHCSeKzltoPVt4lrRljbAWRy+UwmUwYGBjgy/w5mbe3N4xG43UNbTm4qTHG2A2oVCoYjUZcu3bN4TqI7PZRKBRQKpW3/C6YmxpjjC2BTCaDh4eH029yyW4NTxVijDEmGdzUGGOMSQY3NcYYY5Kxoj9Tmz3bwGaziVwJY4wxMc32gRudhbaim9rExAQA8NX6GWOMAfinL2i12gW3r+iTr+12O/744w+sWrXqlqZ5zt6Xra+vj0/i/g/OZmGczcI4m8VxPgu72WyICBMTEwgKClr0PLYV/U5NLpfj7rvvvm0/T6PR8C/YAjibhXE2C+NsFsf5LOxmslnsHdosnijCGGNMMripMcYYkwy3aGpqtRrvvvsu3x1gHpzNwjibhXE2i+N8FubsbFb0RBHGGGNsOdzinRpjjDH3wE2NMcaYZHBTY4wxJhnc1BhjjEmG5Jvap59+itDQUHh6eiI+Ph4NDQ1il+RyRUVFeOihh7Bq1SoEBATgqaeeQkdHh8OYq1evIisrC3q9Hj4+Pnj22WcxNDQkUsXiKS4uhkwmQ25urrDO3bPp7+/HCy+8AL1eDy8vL6xfvx5NTU3CdiLCvn37sGbNGnh5eSEpKQldXV0iVuwaMzMzKCgogMlkgpeXF8LDw7F//36HaxO6SzZnzpxBamoqgoKCIJPJcPToUYftS8lhdHQU6enp0Gg00Ol0yMzMxOTk5PKLIQkrKysjlUpFX3zxBf3666/0yiuvkE6no6GhIbFLc6nk5GQ6fPgwtbW1UWtrKz3++ONkNBppcnJSGLNjxw4KDg6m6upqampqoocffpg2bdokYtWu19DQQKGhobRhwwbKyckR1rtzNqOjoxQSEkLbt28nq9VK3d3d9P3339P58+eFMcXFxaTVauno0aN09uxZeuKJJ8hkMtGVK1dErNz5CgsLSa/XU1VVFfX09FB5eTn5+PjQRx99JIxxl2xOnDhBe/fupYqKCgJAlZWVDtuXkkNKSgo98MADVF9fTz/++CPdc889lJaWtuxaJN3UNm7cSFlZWcL3MzMzFBQUREVFRSJWJb7h4WECQDU1NURENDY2Rh4eHlReXi6M+e233wgA1dXViVWmS01MTFBERASdPHmSHnnkEaGpuXs2e/bsoYSEhAW32+12CgwMpJKSEmHd2NgYqdVq+vrrr11Romi2bt1KL7/8ssO6Z555htLT04nIfbP5b1NbSg7nzp0jANTY2CiM+e6770gmk1F/f/+yHl+yhx+np6fR3NyMpKQkYZ1cLkdSUhLq6upErEx84+PjAIDVq1cDAJqbm/H33387ZBUZGQmj0eg2WWVlZWHr1q0OGQCczfHjxxEXF4fnnnsOAQEBiImJwaFDh4TtPT09GBwcdMhHq9UiPj5e8vls2rQJ1dXV6OzsBACcPXsWtbW1eOyxxwC4dzZzLSWHuro66HQ6xMXFCWOSkpIgl8thtVqX9Xgr+oLGt+LPP//EzMwMDAaDw3qDwYD29naRqhKf3W5Hbm4uNm/ejOjoaADA4OAgVCoVdDqdw1iDwYDBwUERqnStsrIy/PTTT2hsbLxum7tn093djc8++wy7d+/G22+/jcbGRrz++utQqVTIyMgQMpjvdSb1fPLz82Gz2RAZGQmFQoGZmRkUFhYiPT0dANw6m7mWksPg4CACAgIctiuVSqxevXrZWUm2qbH5ZWVloa2tDbW1tWKXsiL09fUhJycHJ0+ehKenp9jlrDh2ux1xcXF4//33AQAxMTFoa2vD559/joyMDJGrE9c333yD0tJSfPXVV7j//vvR2tqK3NxcBAUFuX02YpLs4Uc/Pz8oFIrrZqkNDQ0hMDBQpKrElZ2djaqqKpw6dcrhlj6BgYGYnp7G2NiYw3h3yKq5uRnDw8N48MEHoVQqoVQqUVNTg48//hhKpRIGg8FtswGANWvWYN26dQ7roqKi0NvbCwBCBu74OsvLy0N+fj6ef/55rF+/Hi+++CJ27dqFoqIiAO6dzVxLySEwMBDDw8MO269du4bR0dFlZyXZpqZSqRAbG4vq6mphnd1uR3V1Ncxms4iVuR4RITs7G5WVlbBYLDCZTA7bY2Nj4eHh4ZBVR0cHent7JZ9VYmIifvnlF7S2tgpLXFwc0tPTha/dNRsA2Lx583Wnf3R2diIkJAQAYDKZEBgY6JCPzWaD1WqVfD6XL1++7maVCoUCdrsdgHtnM9dScjCbzRgbG0Nzc7MwxmKxwG63Iz4+fnkPeEvTXFa4srIyUqvVdOTIETp37hy9+uqrpNPpaHBwUOzSXGrnzp2k1Wrp9OnTNDAwICyXL18WxuzYsYOMRiNZLBZqamois9lMZrNZxKrFM3f2I5F7Z9PQ0EBKpZIKCwupq6uLSktLydvbm7788kthTHFxMel0Ojp27Bj9/PPP9OSTT0py2vp/ZWRk0Nq1a4Up/RUVFeTn50dvvvmmMMZdspmYmKCWlhZqaWkhAPThhx9SS0sLXbhwgYiWlkNKSgrFxMSQ1Wql2tpaioiI4Cn98zlw4AAZjUZSqVS0ceNGqq+vF7sklwMw73L48GFhzJUrV+i1114jX19f8vb2pqeffpoGBgbEK1pE/21q7p7Nt99+S9HR0aRWqykyMpIOHjzosN1ut1NBQQEZDAZSq9WUmJhIHR0dIlXrOjabjXJycshoNJKnpyeFhYXR3r17aWpqShjjLtmcOnVq3r8xGRkZRLS0HEZGRigtLY18fHxIo9HQSy+9RBMTE8uuhW89wxhjTDIk+5kaY4wx98NNjTHGmGRwU2OMMSYZ3NQYY4xJBjc1xhhjksFNjTHGmGRwU2OMMSYZ3NQYY4xJBjc1xhhjksFNjTHGmGRwU2OMMSYZ3NQYY4xJxv8BWzXO5Tzg4fYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Axis scales and ticks**" + ], + "metadata": { + "id": "a9QNbddJrHOp" + } + }, + { + "cell_type": "markdown", + "source": [ + "Scales" + ], + "metadata": { + "id": "mUzroVUBsKqT" + } + }, + { + "cell_type": "code", + "source": [ + "fig, axs = plt.subplots(1, 2, figsize=(5, 2.7), layout='constrained')\n", + "xdata = np.arange(len(data1)) # make an ordinal for this\n", + "data = 10**data1\n", + "axs[0].plot(xdata, data)\n", + "\n", + "axs[1].set_yscale('log')\n", + "axs[1].plot(xdata, data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "hwISVhVEq8-o", + "outputId": "b75df583-ce96-4919-aca2-75e5554b04ad" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAij9JREFUeJztvXmcFPWd//+q6nPuC5hhgBEvQERAh0Oi7oKOy5LEqJCsMW4kxOjGDG50cvzCblaSrBtMTNTVjJI1KprEqOw3Eo0rJqJClHtwFEUQdIThmIGZYa6e6au6fn9Ufz71qeqq6mP6KubzfDzmAdNH9aerp+v1ed+CLMsyOBwOh8PhjBrEXC+Aw+FwOBxOduHiz+FwOBzOKIOLP4fD4XA4owwu/hwOh8PhjDK4+HM4HA6HM8rg4s/hcDgcziiDiz+Hw+FwOKMMLv4cDofD4YwyuPhzOBwOhzPK4OLP4XA4HM4og4s/h8PhcDijDC7+HA4n7bS3t2PhwoWYPn06Zs6cifXr1+d6SRwOh0HIt8E+kUgEx48fR0lJCQRByPVyOJy8Q5ZlDAwMoLa2FqKYn/v3EydOoLOzE7Nnz0ZHRwfq6+vx0UcfoaioKKHn8+sAh2PNSK8DzgysaUQcP34ckyZNyvUyOJy8p729HRMnTsz1MgwZP348xo8fDwCoqanBmDFj0NPTk7D48+sAh5MYqV4HkhL/yZMn4/DhwzG3f+tb30JzczP8fj++853v4Nlnn0UgEMDixYvxyCOPoLq6OuHXKCkpAaC8odLS0mSWx+GMCvr7+zFp0iT6XckEW7ZswX333YeWlhacOHECL7zwAq677jrNY5qbm3Hfffeho6MDs2bNwsMPP4x58+bFHKulpQWSJCUl5vw6wOFYM9LrQFLiv2vXLkiSRH9///33cfXVV+NLX/oSAOCuu+7Cyy+/jPXr16OsrAwrV67E0qVL8fbbbyf8GsTFV1payr/0HI4FmXSH+3w+zJo1C1//+texdOnSmPufe+45NDU1Ye3atZg/fz4efPBBLF68GAcOHMC4cePo43p6enDzzTfjscces3y9QCCAQCBAfx8YGADArwMcTjxSvg7II+Db3/62fO6558qRSETu7e2VXS6XvH79enr/hx9+KAOQt23bZnoMv98v9/X10Z/29nYZgNzX1zeSpXE4Zyx9fX1Z/Y4AkF944QXNbfPmzZMbGxvp75IkybW1tfKaNWvobX6/X77iiivkp59+Ou5rrF69WgYQ88OvAxyOMSO9DqScLRQMBvG73/0OX//61yEIAlpaWhAKhdDQ0EAfM23aNNTV1WHbtm2mx1mzZg3KysroD4/zcTj5TTAYREtLi+a7LooiGhoa6HddlmV87Wtfw5VXXomvfvWrcY+5atUq9PX10Z/29vaMrZ/D4Yyg1G/Dhg3o7e3F1772NQBAR0cH3G43ysvLNY+rrq5GR0eH6XH4l57DsRddXV2QJCkml4f9rr/99tt47rnnsGHDBsyePRuzZ8/G3r17TY/p8XhQWlqK3/72t7j00ktx1VVXZfQ9cDijnZSz/R9//HEsWbIEtbW1I1qAx+OBx+MZ0TE4HE5+cfnllyMSiST9vMbGRjQ2NqK/vx9lZWUZWBmHwwFStPwPHz6M1157Dd/4xjfobTU1NQgGg+jt7dU8trOzEzU1NSNaJIfDyR/GjBkDh8OBzs5Oze3p+K43Nzdj+vTpmDt37oiOw+FwrElJ/J988kmMGzcOn/vc5+ht9fX1cLlc2LRpE73twIEDOHLkCBYsWDDylXI4nLzA7Xajvr5e812PRCLYtGnTiL/rjY2N2LdvH3bt2jXSZXI4HAuSdvtHIhE8+eSTWL58OZxO9ellZWW45ZZb0NTUhMrKSpSWluKOO+7AggULcOmll6Z10fnMb7cfxt6jvbh36UyIIu9MxrEng4ODOHToEP29ra0Nra2tqKysRF1dHZqamrB8+XLMmTMH8+bNw4MPPgifz4cVK1bkcNX5w72v7IfHKeKuq6fkeikcjiFJi/9rr72GI0eO4Otf/3rMfQ888ABEUcSyZcs0TX5GE796/SA6+wO45fJzMLUmc01YOJxMsnv3bixatIj+3tTUBABYvnw51q1bhxtuuAGnTp3C3XffjY6ODsyePRsbN25MqqGXEc3NzWhubtb0E7EbA/4Q1m7+GADwrUXnwuN05HhFHE4sedfbnyT69PX12bK5R/1//hXdviD+fMflmDGBJyxx0o/dvyOJYOf32D0YQP09rwEA9v7oH1DideV4RZwzkZF+R/JzKoiNkaJ7qUh+7ak4HE6WkCLqdz8k8esAJz/h4p9mIhEi/jleCIdjQ86EbP+wRvyTL3fkcLIBF/80Qwx+bvlzOMlzJmT7s5Z/MMzFn5OfcPFPM0T08yyVgsPhZAnW2g9yy5+Tp3DxTzMk5s+/8xxO8pwJbn+Ju/05NoCLf5qJcLc/h5MyZ4LbXxPzD9vrOiBFZL5hGSVw8U8zMs/253BGNZqYv436FciyjC/86i0sfnCL5j3Yic5+P/qGQ1l5rZ1tPbj8Z6/j9f2d8R+ch3DxTzPkO8O1n8MZnYQ1CX/2uRAMBsL44Hg/PjnlQ+9QMNfLSZoBfwiLfvEm/mmt+Qj5dLL5o5M4enoYf93HxZ8D1eK3686Zw8klZ0LMP8y4ze3kQu/3h+n/7ZioeHIggKGghE+6BrPyeqSHgy9gH+8OCxf/NCLLMi/143BGwJkW87dTqd+AX3WX22ndhHBUjEOSrNmAZQpyjoaC4TiPzE+4+KcR1tjn2s/hjE7smu0/wFr+NhR/9lz7s7B+4h3hlj9HY+1ztz+HMzrRWP62En/V8g/YUPzZ8z4czLwgh6LnyMctfw4r/tztz+GMTqQI0+Qnz0V0xyfd+O76d3HaF0T/sL1j/hrLP5R58Vctf3uKf9IjfTnmMN953tufw0mBM2Gkb1hi3f75fSH49ZZP8Pr+k5g7uUKzUcn3TYsRrPgPZ0H8yesNZcHLkAm45Z9GWGuft/flcJLnTEv4y/eYP6mJ7xoMarP9bSj+7KYrK5Z/9BwNcsufo4n5c/HncEYldsr2H4wKfu9QEA5RtQXzfd1GhBnXazZi/sHoZmMoKEGWZQiCkPHXTCfc8k8jrKufu/05nNGJJuaf55Y/sVpPD4XQz5b65fm6jWAbKmXD7R8MK68hRWRbJkhy8U8jMnf7czijHm3MP79FgWT4n/YFbV/qx1r+/lDm18/mc9gx7s/FP42w5X0825/DGZ3Ypc5flmXG8g+eMU1+gOzG/AF7ZvzzmH8aYV39efyd53A4GSRkk5j/cEii16zeoZAmZh2w4QUsV9n+gD1r/ZO2/I8dO4Z//ud/RlVVFQoKCnDRRRdh9+7d9H5ZlnH33Xdj/PjxKCgoQENDAw4ePJjWRecrMq/z53BGPZKmt3/+XgcGGTf/6aEg+oftbfmz5zorCX8ay/8Md/ufPn0al112GVwuF1555RXs27cPv/zlL1FRUUEf8/Of/xwPPfQQ1q5dix07dqCoqAiLFy+G3+9P++LzDW173/z90nM4+coZMdjHJh3+2BK1vuGQZhSuHcVfE/MPZ6/JDzAK3P4/+9nPMGnSJDz55JP0trPPPpv+X5ZlPPjgg/jhD3+Ia6+9FgDw9NNPo7q6Ghs2bMCXv/zlNC07P5E0ln8OF8Lh2JTGxkY0Njaiv78fZWVluV5OQvhDErwuB/1dsonbnxX/iAycGgzQ3/N53Wawlr8/G+19GfFPdLjP+8f68MTbbfjuP0xFbXlBppaWEElZ/i+++CLmzJmDL33pSxg3bhwuvvhiPPbYY/T+trY2dHR0oKGhgd5WVlaG+fPnY9s24xnLgUAA/f39mh+7EmG+9Ly3P4dz5vP8rnbMWP2qZqa7XZr8sG5/QDuMLGjDDovhLMf8U3H7/37HYfxxzzG88M6xTC0rYZIS/08++QSPPvoozj//fLz66qu4/fbb8a//+q946qmnAAAdHR0AgOrqas3zqqur6X161qxZg7KyMvozadKkVN5HXiBztz+HM6rYfbgH4YiM94720tvsku0/YOGqtqfln7tSv0QT/kguwqmBQJxHZp6kxD8SieCSSy7BT3/6U1x88cW47bbbcOutt2Lt2rUpL2DVqlXo6+ujP+3t7SkfK9dEuNufwxlVkPpuVghYCzSfRVRv+bNket0nB/wIpDkur0n4y1PLn6yxxxfMyJqSISnxHz9+PKZPn6657YILLsCRI0cAADU1NQCAzs5OzWM6OzvpfXo8Hg9KS0s1P3aFT/XjcEYXpJ6cFXxtwl/+XgesetJnMlHxeO8wPrPmdfzLb1vSelxNe98Mi78sy5pzlGjMnzzn9JDNxP+yyy7DgQMHNLd99NFHOOusswAoyX81NTXYtGkTvb+/vx87duzAggUL0rDc/EbT25+b/hzOGQ+x/MMm+T6hfLb8LcTfql3t9k+6cf9fP9JseJLhk1M+hCMyDnYOpvR8M8JZTPjTl3AmavmTc9Y9aDPxv+uuu7B9+3b89Kc/xaFDh/DMM8/gf/7nf9DY2AgAEAQBd955J+655x68+OKL2Lt3L26++WbU1tbiuuuuy8T68wptqV/u1sHh5APXX389Kioq8MUvfjHXS8kYxMIMmVj+qcT8Tw74s2I8DKTo9l/zyn48tOkgdn16OqXXJfHxdHfhYy3xTJf66T/XREv9bOv2nzt3Ll544QX84Q9/wIwZM/Cf//mfePDBB3HTTTfRx3z/+9/HHXfcgdtuuw1z587F4OAgNm7cCK/Xm/bF5xvc7c/hqHz729/G008/netlZBSSwMVandII6vz3Hu3DvP/ahH/74970LNCCwYBS1+8UY6fRWYn/QLQfANsXIBmIizzdrvlwFpv86M9Pogl/ZNPQMxTMeVJ40u19P//5z+Pzn/+86f2CIOAnP/kJfvKTn4xoYXaECTnxhD/OqGfhwoV48803c72MjEItf+bLHxpBwt/Wj7sAAB+c6EvD6qwhCX/jy71o7xnW3Ge1aSEWe6oJeyRU4g+ldxSuNuaf2XCL3vJPdLAPeV4wHIEvKKHYk7sO+3ywTxrhlj/nTGHLli245pprUFtbC0EQsGHDhpjHNDc3Y/LkyfB6vZg/fz527tyZ/YXmmKE4ln+ybv8DnQMAlF77mYbE/OsqC+lthW6lWZHVpsUfvS9V63ooGh+PyOlNLAxlcbCPPifCKn+ChQ0J9eQ47s/FP41oxJ+b/hwb4/P5MGvWLDQ3Nxve/9xzz6GpqQmrV6/Gnj17MGvWLCxevBgnT57M8kpzC0ksYwV/JO19P4qKf6ou9WQgMf9JFar4VxW7AViLfyCkWu6pwLrIU63Hf21fJ5Y+8jbaunz0Nm2df3Zj/gln+zPntSfHGf9c/NMIq/dc+zl2ZsmSJbjnnntw/fXXG95///3349Zbb8WKFSswffp0rF27FoWFhXjiiSdSej07dvqUZRlDBgl/2mz/xC8EEpMBP+APZzzpj1irkxjLf0yxB0Actz+x/FMUbtZFnqpIP7+7HXuO9GLzAXWzGc5inb/+/AwlXOfPiL8vt41+uPinEe7254wGgsEgWlpaNG28RVFEQ0ODaRvveNix02dIkqlAh00s/2Tc/kd6hjTu5P4MW/9E/CdWqD3mq4qi4m9i+YelCH3PKVv+jIs81dABCYuwFXeakb6ZLvXTbepScfvnutyPi38a4SN9OaOBrq4uSJIUt413Q0MDvvSlL+H//u//MHHiRMuNgR07fbICo7X8U0v4O9AxoPk9065/kvBXp7H8rd3+/vDIXesayz/FpEHSJCdisukKhCMZDb3GWP6JJvwx5y/XjX5yl2p4BsL+PXDx54x2XnvttYQf6/F44PF40NzcjObmZkgJDJZZ/af3sedIL/79cxfg0nOqRrLUlGBdy6zLmU08SybmT+L9BDPxl2UZq1/8AOPLCnD7wnMTPr4e0tt/bIkHbqeIYDhC3f5mTX4CoZG77Nn4eKoW+mlq+Zt7WQLhCArcDmQCsjkq9TrR7w/DFwwnVLkQYi3/HNf6c8s/jfDe/pzRwJgxY+BwOJJq450ojY2N2LdvH3bt2hX3sZ90+bD3WB+OnR6O+1gzRmIdsiLGlpmlmu1/QCf+vSbif/T0MJ7edhj/vemjhI+tJxCWqICVeF2oKHQBACqLopa/ybpZyz/VuLo25p983oAsy+gbjlr+FuKfybg/ea2K6PmS5cTeC7vG01z8zxx4zJ8zGnC73aivr9e08Y5EIti0adOI23g3Nzdj+vTpmDt3btzHEiu1O8XEKX9IwpW/fBN3/OGdlJ7PiotmsE9EawQk2gb3o6jb3xFtumNm+ZPb/aFIyo1i2Ha0xR4nbphbh1kTyzB3ciUAc7c/a/mnmvDHxvwT8R74AtrkR19Qoudb4/bXtdzNpPiT81Ne4KK3JRL3Z9eY6y5/XPzTCPs95KV+HDszODiI1tZWtLa2AgDa2trQ2tpKh3g1NTXhsccew1NPPYUPP/wQt99+O3w+H1asWDGi103G8q+KWl2pJk4d7h7Cp91DePNAcuWJ/f4QIhFZ47LWWv5aUdT3gTciEJZo2dqMCWUAzMWfbcubap08ifcXuh1wiAKarp6CP628HOVRD4BpzD+U5ph/nGP0DYVw6ZpNWLFO/XtgLWb27Yd019xMlvsRC97jdNDeCImU+7GfV67d/jzmn0akCHf7c84Mdu/ejUWLFtHfm5qaAADLly/HunXrcMMNN+DUqVO4++670dHRgdmzZ2Pjxo0xSYDJkkzMvypq+XelKP7k+5pMUt6nXT78w4Nb8NkZNVhWP5HeHpbMLdCgFEEBrGPPR08PIxyRUeR2YFp1Cd5t70WfSULYgF/dFATDEXicyce1iZWq7zDndop0zUawCXrpqPOPZ50f6RnCgD+MD46pHQ/ZTZHG7a/7HDOZ8U/Oj8spoMjjxFBQSmi4Tz65/bn4pxHu9uecKSxcuDCuS3nlypVYuXJlWl+3sbERjY2N6O/vR1lZmeVjSUOaVN3+5DsalCIJt5l948BJBMMRtLb3YslF4+ntZoN99PeZQYS0yONEWdT6NrP8Wfdysu2D9cco9urE36GIvxRRyhgdur7/gTRY/qwoxxN/IrLsZoTNkmevs2GdxyWTlj85726HiCK3A6cQv7+/FJE13uFcW/7c7Z9G2A+Waz+Hk1lIWVqqbn8i0rIcK9hmtLb3AlCEmRUXszp/IDGBJl4IpyigrMBa/NPi9o8O9SkxsfwB43Wzln+qMXXWQo6XJEc2Tqw35TTT+liyiPmn2j0wEajl7xBR6FbOYbzJfvpN4IA/nPLmLR1w8U8j7C40GyM5OZwzjWQS/khDmu7B1Cx/zfS9BC/CRPz7/WGNiGl7++tj/vGPTTYMDocq/mb9/dNh+ZMNRIzlH0f8tZZ/8q8tRWTNpiGedU7OHXsO+zSWP/PY6HknDpyMZvsTy98p0tBJvFp/o7+D3hzW+nPxTyPa9r5c/DmcZEkq4S9q+Xf5UhuPmqz49/iCONw9RJ/bxWw6NG5/KXm3v2r5i3Et/35dzD8VzGL+TlGg4hkwyLtgJ/mlElPXC3Ki4h+OyPQzZi1/bcxf+T95TxnN9pdUt3+hR8m5iJftzyZ+kpLKXLr+ufinEZ7wx+FkD7YVbaLtVVk04p+AQLe2n9b83tHvp/9nXf16r59ZwxwWsmFwiALNuE/E7Z/IsY0g2f7FHpfmdkEQaNw/vuWfvLgO6T6neBuIkEHzJDbmrx2oRBrvKO/Jn8GEP7IWl0NESfT14rVjJiWfoqCGrHJZ7scT/tIIa32kWn/L4XASo8CtlFkNBSV0DQbxk5f2wekQsGbpzISen6jl3+8PYTgoofVIr+b2jj5V/K0T/uJfC4xi/mZiMpiWmL9yjBJvrAS4nSIC4UjcmH9K4q8T5HjWufa8RuCGiD4zy1/SWv6ptg5OhCDj9i8vUj6vo3GaTbF5AmSDwlZuZBsu/mmE/c7zmD+HkzzJlPoBiut/qGcY7x3txfqWowCAf//c9Bh3thFsa1grC/qLj25FW5cPY6OlhQRW/DWlfknE/EmVAXmOk435m1r+6u368rZEId6DIk9smaDHKWIAxhsL1vIfDkkJV0kQ9BnxiSb8AVG3vluX7a9J+CMdC6Nu/2yU+jlETIyORI4n/mRz4naIcEW9K4lsDDMFd/unEd7el8MZGcnE/AHV9b+zrYfelqg1legAnrYuH0KSjONRsScbi06N259p8qOv8zc59o9e/ACX/+wN9A2FqLHgYGL+Q0HJcOOgSfgboeWvd/sDsHT7s9Z+RE5evPSWf9yYfzg2NKPJ9jew/Euj5y9bCX9kKuLR00OWzyGbE6dDgMtJxJ9n+58RRLjbn8PJKiR2yop//3Bi8X/2umsmopGIrBG4Uq8TF9eVA9Ama4UkNSGNZu5Ha+TNjv3ah5041juMA50D9DlOUUCJ10WT7ozi/ppSv5HG/E3c/mbH1rvSkxVYfTlcPPEP6tz+gL7Jj/pYku1PLf+sJPwJmBQV/2Onhy2v+6y3wO1QPmAu/mcImlI/Lv4cTsYhlv/Bk4P0tsQt//gxf1Z8mr9yCX73jfm0rbAecjhy3AKX4lI3c80Tl3c4EmEsfwEOUaD190blfmkRfxLzNwiPWIl/QOemDyQpsCOJ+RMvgJHbn22gQzwz+rWmE7Iut1PEhHLF7T8QCFuOYQ4zSYK2c/v/6Ec/giAImp9p06bR+/1+PxobG1FVVYXi4mIsW7YsZvLXmQwb6uNufw4neZKp8wfUcj8WVhytSET82VyAq6dXY+bEcuqW18OWpQGg42TNLH8inGFJ1lj+ACy7/Gna+47Y7W8u/gGDY4/U8k/W7a8ZlRzdJLHnhHyG7CaBZN9nMuZP/i5cDhEFbgcdMmUV9w9Ry1+A02FDt/+FF16IEydO0J+33nqL3nfXXXfhpZdewvr167F582YcP34cS5cuTeuC8xne3pfDGRlJx/x1SXiAkp3vC4Sx5v8+xHtHe02fy3rngiYJhuymwBV11ZqJPxFwEtslA1/MLvBEQKSITJ9DQgXlBcqmRp/xL8uyJuYfr9QvLEXw8nsn8PahLs3t5BhFBuLvSrDUD0i+0Q8ZflNCa/Gtn89ubkJSBAP+kHaAWvT/bIVFaUHm3f5sqR+AhOL+IY3ln3u3f9LZ/k6n03Bmd19fHx5//HE888wzuPLKKwEATz75JC644AJs374dl1566chXm+do2/ty8edwMs0YA8u/3x/Gqx904NdbPsFHnQN4csU8w+cmkvAXZNy7JKu91Ez89ZY/dfvHXgukiEyPHZIisZY/zfjX1oEPBSWNV9HK7f/GgZP48Ysf4NPuIXhdIvb+aDEVKxLzNyz1s0r40w/PSTrmrzy+qtiNgUA44SY/gOIFOK0LgxAjiw2tEMs/s739lWMTL8nEigK0tvcmZPk7HSI9x7Zx+wPAwYMHUVtbi3POOQc33XQTHfHZ0tKCUCiEhoYG+thp06ahrq4O27ZtMz1eIBBAf3+/5seuSLy9L4eTVUjMn2XAH8KpAaX73imL1r+s0WVmQRPXvMehXirN3f5q/BkAvC5ztz/bKY8M0QGUbH/2Nfp0YqcPaViJ/7/9cS8+jXYk9Icimlh5Im5/Y8tf5/ZP0rVOLH/S4S4Z8Q9K2vcAMG5/prVvUdTjkg3L300t//jlfiEmSdDKu5ItkhL/+fPnY926ddi4cSMeffRRtLW14YorrsDAwAA6OjrgdrtRXl6ueU51dTU6OjpMj7lmzRqUlZXRn0mTJqX0RvIBXurH4WSXSoPku/7hMHqiItFjMfQnGcvf41IvlaaWf0SZDkiseOL2j+c+D0WsYv5asScDefTrM0IvlKSbXCQim071A5Q6f7Nj6y3/ZBvpEMu/Mrppi5/wpx3co98MkWsuTaYTRepxycpUv+i5mlSpuP3be+K7/Z2ahD+buP2XLFlC/z9z5kzMnz8fZ511Fp5//nkUFBSktIBVq1bRWeEA0N/fb9sNQIS7/TmcEZFskx8jt/+AP0TFoMdicEoipX7s6FaCacxfkjXXAOr2j5M4J0UikEjM32Ht9u9P0PKXIjKNx1cVudHtC1LxZxvtjNTyT7aF7nAoTNcEJFDqx6whZGD5x4i/Q6AbtWxN9QOSs/xdDgEupzbm3zsUhNOhDAl69YMONL9xCJ85dwx+sGSa6fFGyohK/crLyzFlyhQcOnQINTU1CAaD6O3t1Tyms7PTMEeA4PF4UFpaqvmxKzK3/DmcEZFswl8FY/mfM7YIgOIaJyLhD0VMXdOs5W9WFqa38AArt39EI/QFFgl/rDAZZfvXlivG1CGmhBHQtvZl16eHFfiJlYowEfEnVr/LIVArnyWZmH+qlj+p0vCHIpaGEts8SRF/reVP3P5BJp7ujIZOMhl6ZUv9AG3Cn9n7Ie/FpYv5+0MSFv3iTVzzsJI839Hnx3tH+3Ckx5ex9QMjFP/BwUF8/PHHGD9+POrr6+FyubBp0yZ6/4EDB3DkyBEsWLBgxAu1A+wfG4/5cziZx+UQ6SCc2ZPKASjZ/mx9vJn1n8hgn0AC4k8a8oSZ2D1g7fZnLV72eUS45pxVAQDYc/g0TSQEDGL+JuseioqsUxQwvtQLADhNLH8m09+oNa/bwu1PLH/i1RgOppbtz1ZpWFUssMmSIUmm1Q9kk6Rm+zNldNH7MnkNDobV1wOACdHNmi8omY5iJu/FxWxQQlIEPb4gTg+F0NblQzAcoeWQBa7Mdt9PSvy/+93vYvPmzfj000+xdetWXH/99XA4HLjxxhtRVlaGW265BU1NTXjjjTfQ0tKCFStWYMGCBaMi0x/gI305nFzwrYXnYsmMGiyaOg6A1vIHVNHTwyZam8b8ExB/4jpns/YBVSCDBhndrOCFDWL+U6pLUOJ1wheUsL9jgD42JuYfx/IvdDtQWawdHzvgN0/2Y9+rkSiT28iGK9m4OrX8GY+NVdKgpsmPFKGvT84tafJD3P5OUaTlkvoZC+lEb/l7XQ6MLVE2NO0m5X4hZoPCuv3Zz3AoGMZw0HzuQjpJamtx9OhR3Hjjjeju7sbYsWNx+eWXY/v27Rg7diwA4IEHHoAoili2bBkCgQAWL16MRx55JCMLz0e0U/1yuBAOZxRx29+dCwC0lr1/OKRxD5uNTU0k4Y+IjcepXogL3Q44RYEKdrHHiQF/GGFJa/l7Ld3+jOUvMR3+opakQxRQf1YF3jxwCjvbejBjQhmAWMvfzGr2Mdn8lYWK0J7Wuf1Nxd8R32NRXujGiT5/Ck1+1BJDt0NEUIpgOCShwuTx+jp/siav24GBQFgt9SPxdKcApyN7lj+bC3J2VRFODQTwySkfZk4sj3kOKUfUl/qxfx9DQQk+Yvm780j8n332Wcv7vV4vTdgZjfAmPxxO7iA16wP+MHpZy9/U7a/+3zThT4q9yAuCMnmv2xdEgctBk77CkQi1NkVB3TDEc/tLBpY/AMydXIk3D5zC7sM9+PrlZ9P3plmfqfgrxy/0OGlFBLH8rWr8gTgJf8TyL0jN8h9ihM3jUsTf6hhay1+mzZiI5U+cKiEm25+US+pHK6cTfZMfAJhSU4ydn/bgQOeA5XPYqX5BxpsBKJsjco4K88ntz7GGj/TlcHIHmZF+ajCgufCPyPIPaZu5EIjrv9DtoJZmiLH8nXGGtwTCWlHTd/gDFPEHgF2fnqZeRSL+VuV4gGphF7kdVPzJeRiIZ/nTY8eKsmr5j0z8i9xONW/AUvy1I3uDpm5/YlVnJ+ZvlAsytboEAPBRh4n4k7HNolrnHwpHNJ/hUFCibv/CDFv+XPzTCPvHxg1/Die7EEtWf9E3F3/1/2bu86AUe5EHgJKo+HtdDriIpSnJTOxZ0Fh3erSWf4RJ+FPFf+bEMrgdIk4NBHAkWj9OYv6kl3zQJNuebd+rF39i+Ru19gWYjUUCMf+kO/wx8Wwvrce3SPgzifmTkAp1+0eMYv6Zz/ZnLf/zo+JvavmThD+ntr2vNuYvqZZ/hmP+XPzTiMzd/hzOiEh2sA8LaeuqZySWf5DG/BOw/CMRzThfq8ltbGkhm/BHXNaAsrG4aKIS69/96WkAquVPBN1s3VRA3LHiT/IBTN3+JqV+ISY3oaxALdVLBlKFUMhY/km5/anlry3nC9OYv5jVbH/272JKVPyPnh7WzF8g0IoEUaCbyXBEjkn4Uz87Lv62gWf7czgjI9k6fxa3UzSsWzeN+WsG+ySe7Q+o4l/gdtAJbUrCn+raVWPnseLGtvdlEwVZyx8A6qI1+t0+pU0xEX9SJ2+2brWcT3X7nx4KagYDxXf7a4/NekdSsfxDkuriLnI7qfVune3PlvoxCX8uneUvqcJKLf8Mds8zsvwri9w04/+ggfXPNgYipX7BsJHlr3w+eVXqx7GGFfwczmvgcEYtRq13E3H7m7nPzS1/5cJc4HLAxYgNa8FbDW/xx1j+sTF/QN0MkGOQeH08y58k/LFu/5AkYyAQZmL+xp4Ss4Q/1kInmx99xz8r2AmFBW4HvNHXsWoUpBnswwxDojF/XcKfEvPPbJOfCOOp0W8KadzfQPxpF0K925+N+QdUt3+mS/24+KeRiCbmz9Wfw8k2rCubWKenfcZNV5Ip9WOz/QG95U/c/rqYv9M84c+s1E9v+bNeBUBpXQywMf/4CX9el4O6kE/7gjTmb9TXn32v+jwIP5P8WBhneM7WQ124/pG38eEJdVDbzrYeAEonRrdTpKVsVpY/+/6C4dg6f+r2Z7rnkXLJTMX8WbEmIk4grv8DHdrOjIDWO+FympX6hek55W5/G8Hd/hxObmHj/ueOLQZg1eFP/X+8Uj+PS3shLo/GvIvcTrXUjx3N6xBovbxVsxwgavlL2jp/gsuhbVgzqIv5myUqsgl/AFBRqJb7qW5/Y3Exs/xpsp1TpGWMZsK9ofUY3jnSi7980Elv2/zRKQDAwinjoseJxvytOvxpLH/VRe6Jcfurm6d0x/xlWcadz76Dxmf2QJa1Yh1j+dcof3MfdQ7gWO+wZhARGypQvULaUj9fUKJeG+72txGaOv/MhZs4HI4JpYw1e84Ypdf/aV/Q0BOXTMKf3vJffGENPnNuFf5p7iQqNkqbXracK0HLn8n2d4na19EnDRLhJo17zEv91JI6QM0R0Fj+8dz+krHl73U5qNVulvA3HL2dvHdZlqn4//1UpSkcPYaF5c9a79qEP5OYv0Ob7Z8OD+ypgQA2tB7Hy++dQO9QSPO3ov+8iOW//ZNuXP6z17H00bc16we0U/2Cumz/YV7qZ0+45c/h5JZSxvI/J2r5hyMyjXOzaBL+4rn9dRZeXVUhnrn1Uvz9lLEa1zy14DWuXQPx10z1kzVVAiwkpECS18g6SXjDbN1kk0DKxVjLf8BinC/7Xs0sf49LVOP1Jm5/cjt57wdPDuJEnx8ep4j5Zyv9C7wu62MAalc8ciyyIfHSbH/lvjDTdMfBzCtIh/H/SZc6YGcwENZ4GUTd50XK/ZSNB/DxKR+6BwN0/coaBdNSP18wjCHi9ucxf/vAS/04HJU///nPmDp1Ks4//3z85je/ycprsjH/mjIPtZ56BmNd/6xb2Mx9TrLy9eLPwrrm2QE9HqvpeLqpfhITLtAcm+lWJ8vqJoG48+PF/ElGfxVT7ueLk+1vtm5q+TtZy99a/Ml53XxAsfoXnFtFM/W9CTT5Ceqy/cnnoW/yQ4TV6RA0oZN4/f37/SF8/uG/4YG/fmT6mE914m9WAQIo53TlovPw+ZnjMS6a+X8g2vSHbFDcTpEJFckaD4vipVL+X+jmbn/bwF5MeIM/zmgmHA6jqakJr7/+Ot555x3cd9996O7uzvjrahP+3NTiNYr7JzLVz8ztz6JOaNNa8K4EmuUAcbL9GQuRdYGTTHAjrwLAtPeNCggZfXyaifnHbe9rUurncYlxhTugc/u/+dFJAMDfTxlLH5OI+Gvq/MOM21/X5CfMbLrYpMl4cf9dbT14/1g/nt/dbvqYtm5V/H2BsKZkz4jvLp6KX33lEsyKTpkkg5no2GFRZMI5Wsu/i9mkFri45W8buNufw1HYuXMnLrzwQkyYMAHFxcVYsmQJ/vKXv2T8dVm3f0WhW61xNyj3Y8U0bpMfl4X4M655Grt3CDTePhgwb5NL1sFWCbCwFiIrhETUzUv91Gx/AJr+/oMJTvWLcfuzln+c7nwkrEHW/OEJRQBJy2IAcY/BPh9Qmijp6/xJ6CZErXFBs4GKl/F/rHcYgBLXj5g8tu2UKv4DcSx/lmk1JPOfWP6xbv9gOKJ5j13REIHXJcZsBNMNF/80ok344+LPsS9btmzBNddcg9raWgiCgA0bNsQ8prm5GZMnT4bX68X8+fOxc+dOet/x48cxYcIE+vuECRNw7NixjK+btWYrCl3U4jWq9Y8kIv4Gg330sK55ciF3iEJMcx0WfamfUYc/gKnzj0Q0/QKIcMdN+Is+jqyls9+vNtpJVvxNLP9f/uVAjOVMqgDImsnGgf18EunwF9a4/Q0S/ojbX2P5q+dQitNw5dhpRfzDEdm0GdSnOss/lMDfBABMjYr//mjNPzsMiE3kNLL8M+3yB7j4pxVtzD+HC+FwRojP58OsWbNMJ3Q+99xzaGpqwurVq7Fnzx7MmjULixcvxsmTJ7O8Ui1sqV95oZvGuo0u7KwumIkocV9bWXmsa56N+ZM+A1JERr/FKF6lSsC6zp8d/gOobu+QJBsaGj7dTHgi/oe71Vnz5iN9jRMV2Zi/l/GEPPz6IfzoxQ+0j41a/kTYjGYkkGOYlQvKsjYeHmYS/lS3v3ofoHwW7ClM1PIHgJMDgZj7IxEZnzLnbNAfNp33oIdY/gc7BxBhGhS5HCJ9rr7UryfayTHTLn+Ai39akWyc8PfJqUG8tq8z/gM5o4IlS5bgnnvuwfXXX294//33349bb70VK1aswPTp07F27VoUFhbiiSeeAADU1tZqLP1jx46htrbW9PUCgQD6+/s1P6lAOvw5RAGlXqca8zdo9JNQqR+p87cSf9rhTxvz97oc1O2uDzsEQvpsf+OYv4sJKbBZ5ux6jDYuPl2dP2k7S8Su0O0wdSubDSQi7nnW8icMBSXNZoE8NihFEInImnG2BDrYx6TDn164FRe5HH2urrd/RLWqBSHxWv944n+8b1jztzEYCNMQg77Bj57JVUozo6GghKOnhzUbFHUMtKwRf7LcTJf5AVz80wr7d2Yz7cedz7XiG0/vxqGTsZ2pOFqkiIwX3z2O48yFYzQRDAbR0tKChoYGepsoimhoaMC2bdsAAPPmzcP777+PY8eOYXBwEK+88goWL15sesw1a9agrKyM/kyaNCmltRG3ckWhC4IgUMuXZL+zSIm4/Wl7X/OLMbXO2Wz/qDDQsIPO88DGubUeA31739hOcE6HoLE6B/xh/G/LUZwc8NM1E5Ek7uOZE8owrsRDX8fM6lfeq3FbYpJp73U6DJPdhpjcBrbUL8RsslzOWPE3s/z1ngcf8xnqe/sHdYJMNjZSnAsxcfsDwMl+f8z9n3YNaX4fDIQRiJPwR3A6RJwXLTfd39Gv2QCxGwejv81Ci88nXXDxTyOs2z+TE6UyQXc01mTWB52j8reDp/Cvf3gH97y8L9dLyQldXV2QJAnV1dWa26urq9HR0QEAcDqd+OUvf4lFixZh9uzZ+M53voOqqirTY65atQp9fX30p73dPPvaium1pTirqhBLZowHoIpEwCCpjP2Osq53lkSSu9SEP5nJOlduM0s4DCRb589MDHQxcwMAYH1LO767/l088NeDAFSrH1AT/pwOEV+sn0hvN6vxB1RRk3TnhLX8AeD/+8dpuHHeJLqWQUbEWPFnN1bsumnM32TjRUbgEnzM5kLf5CdMmyuJ0X+j4m8R8w+EJY21b2T5t3VpjaFBf5hJLowvn2zSH9uIiN04+Ax6UBRmwe2f+e3FKIItKbWb2598eeLVxXLUDRLfKFnzhS98AV/4whcSeqzH44HH40FzczOam5shScnNiSeUel1487sLIUQbvRArNmDgWtaLfTAcobFkQkJ1/iThT4pQ1y5J3FPDDuaWP1vnr7cmXczGgrX8BUGA2yEiKEVoHTpxYRML2eMUqVcCAG6YOwmPvPkxAGvLn7XOQ1IEDpG0KZaix1V+v33huQCAje93IDgUwVBUxCTGza+fWqcR/zgd/vRhB1YkyRpim/xoLX+r69mJXq2lf8pQ/BXLXxAUb64vGNYk7sWDTfoLGbj9ARiO/+Vuf5sRsXHCH7n4cO2PD7HA7ObdSRdjxoyBw+FAZ6c2R6SzsxM1NTUjOvZIRvoSBKbDmyr+sX/YRjFlPQnV+bODfcwsf73bnx3pG4loOgNqjk3d/hGN5QioGxJisRLvgj7Tn3BWVREuO0/xvliJP/tegwZxfH28n7wOETE2ez8osYlu2o54tMOfaczf2O3vZlr4xvT2j67dyXgvzDimC9uRsAkLyfQn7vsBf5iuI5GkvPPGKc873O3T5CU4RDUxcchg88Pd/jaDjS/Zbaof+fJwyz8+alcxe33G6cLtdqO+vh6bNm2it0UiEWzatAkLFiwY0bGbm5sxffp0zJ07d6TLBKBaiEbir/fOBQy8DYlkdrODfYjYkC5zZgmHAd1IX7OYv9o9UNa0sGXvO9kfFf/oBoO29jWwHr9xxTkQBeCiCWUW70ddA7shUi1/7bkgGwnilmfFPxSOUPe93lKOG/M3cft7nCLIoYx6+wPQ9Pc3g4g/2SsaWf7EqzIjer4GA2H0Rs8z2dhZUR79/HuHQjGJgmSthpZ/vmf733vvvRAEAXfeeSe9ze/3o7GxEVVVVSguLsayZctiLIQzFfZaEi/RJN+QbG7Nvtvei7cOdmXltUaD5T84OIjW1la0trYCANra2tDa2oojR44AAJqamvDYY4/hqaeewocffojbb78dPp8PK1asGNHrpsPyZyHxaSO3f1iKb/nT2vYks/1Vy5+MFVYtf1mWtZa/ZNHhjw0pRFS3MWBh+UdF0si6XzR1HLavugrfWzzV9P0IgvFQIjPLn2wyiIixHfuUfvzGoZOCOB3+Ytz+xPJ3ihAFbTa/OtJXuT2RbH+S7Eesen3MX5ZlHO9THkPc975AmG7kyMbOCjL6uW84RFsVU89N9F+jmL8+/JQJUhb/Xbt24de//jVmzpypuf2uu+7CSy+9hPXr12Pz5s04fvw4li5dOuKF2gE7N/khX3K7CtotT+3C157cqRmhmSn05UVnIrt378bFF1+Miy++GIAi9hdffDHuvvtuAMANN9yAX/ziF7j77rsxe/ZstLa2YuPGjTFJgMmSfss/Kv4GCX96y9/S7W+Z8Eey/dWpfkTEK5jOevSYUkRrKLDhAl35mNpDQEZQZ0GTNXVHa8N9QQmBsGRp+QPAuFKvJhfACCJM7Dkh4ljkMXb7k6x1Np8hyNSx60MnVsmYQGy2PzlnrPjrvXBks5SM5T872ob3ZH9A47HtHw7T93Iu4/YnmyyysbOC9HoY8IfpBpR6bpxE/A3c/vkq/oODg7jpppvw2GOPoaKigt7e19eHxx9/HPfffz+uvPJK1NfX48knn8TWrVuxffv2tC06X7FzqZ/dLf8eXzA6vS174i+dwSGShQsXQpblmJ9169bRx6xcuRKHDx9GIBDAjh07MH/+/BG/bvotf/Na8piEvxixkU2n+rEY1eKTJEAyepeN+evb2YY0MX99wh+pB2cs/6iwETFlrzW9QyEqwmYd/BJBP5FwKBjG9k+U2Qzzz9ZWbahu/9iYf4gpO9S7/YnlH2QSJVnM5ha4nWzMX7mNraEHWMvf/DtKLP/ZdeUAFA8E64I/0a/cX1HooiORfcEwLdusSMDtTyx/QNkAAKzbX6DH1DOSzy5RUhL/xsZGfO5zn9PU+QJAS0sLQqGQ5vZp06ahrq6O1v/qSVdzj3yAtfbtlO3PTguzW7gCUM47OfXZ2LyMBsv/TMHK8jfK9mdhczo8Dos6f6YWPybmb1Dqpw9BsCV1sXX+TEhB7zY26D1weigIH0n4G0GLWNXyV15z66FuBMMRTCgvwJTqYs1jC3UzDNj3F2Ta1+pDJ6xr26jcz1T8HSJNHJR0CX9ufczfIi+HWP7njyuhGxjW9d/RpyQAVpd6UUKSGlnLPwG3v8shxljx5PMjfzdGl9y87PD37LPPYs+ePVizZk3MfR0dHXC73SgvL9fcztb/6klXc498gBV8O4koexG0o+XPnutsCPJoiPnnimwm/Om/o3rxZz0BCQ32YWrx9dn+bJMf/UZE3xlQe2y1gRCbNQ8YeyPYkb0jmQev7/K3ab+St9VwwThNNQUAFOsaKQ0HtQ2MzEIn7GbAqL+/WUKt4vZX/m800hdQhdXoO9rvD+Gld4/jRDSeP6GigI7fJcmTgDIHAQBqyrzUEvcFpKQsf0Br/bNrtPIm5Z3bv729Hd/+9rfx+9//Hl6vNy0LSFdzj3zArqV+rGBa7ZTzlWxvXmhjERueq3wn7W5/izr/eAl/ZvXpeogYS0Yx/6h12Dccoq5pvdCFIxH6PNNsf8byJxsCj8GaeodCtN7eqpwvHmzveVmWselDZWbDlRfE5nRYlvqFzRP+BEGw7O8fMqm0cDtFOEjM32CkL2Ad8//KY9txxx/eQUiSUeR2oLrEQ9sfs+V+HX3KRqCm1EubIgWlCN0gJJLtD8SKv1tXrcG+L0Lelfq1tLTg5MmTuOSSS+B0OuF0OrF582Y89NBDcDqdqK6uRjAYRG9vr+Z5VvW/Ho8HpaWlmh+7oo3520cYNOJpo3UTpCxvXshrcMs///HSbP9ESv20jyEbBqeorU/Xw9bi6y3/imjClywrGwCjtVha/kxIQZ/Rbmr5R4V0JJPh6HCfcATvH+vHyYEACt0OXHpOZcxji/Qx/7Au29+k1A+wnuxHxL9IZwWzbv+IHA1b6rwiTmZDxiLLMvZHxwvfOK8OT98yD06HiHGlijHLlvt19KtufzaEQjY5iWT7A+q8CYKTir/2fJC/FSAPS/2uuuoq7N27l5YAtba2Ys6cObjpppvo/10ul6b+98CBAzhy5MiI63/tgF3b+7KCaad1E8JZtvwlnbXBSR8Zc/tHXe2PvvkxvvjoVgwFw3Gb/CQ6t521ziWdde50iNTyI0l/sZY/G/M36fDHzLLXZ/uz9A6pbn+9aCaDy6m8bkCKYOvHSgntZeeNMZxxQF5HrfPX9jCgXRINxJ8O9zHIySCbBv0mhs32B5QNgL6MzszyHwion/vqa6aj/ixlM0Pd/gPGbn+HKMS44ssL42f7A7GWv77Onx6vQN1MZMPtn9TWsKSkBDNmzNDcVlRUhKqqKnr7LbfcgqamJlRWVqK0tBR33HEHFixYgEsvvTR9q85TWOGxky6wjX3sKGjaHu2Zz8AnLtozOds/VzQ2NqKxsRH9/f0oKzNvRJMorNtflmX8YecRHOkZwntH+2i8mLTJTVX8qXVu0OEPUNzDfcMhWh+u1suL8IcicUr9SJ2/HOPaNhLTHl9ITfgbSbY/Y/kTj8XEigLDx1LLPxhb5w+omwKj82hV608sf33Nu4dx+wOKByfRbP/e6GdQ4HJo+hWoMX/W7a+KP3mfpBtfideZUHtfwED8TT4/djORjTr/tAcWHnjgAYiiiGXLliEQCGDx4sV45JFH0v0yeYleN2VZjkmOyUc0mxabi382LH9yEbbjRmm04aEDYBTXObl4s2LqdRmLfyINfgB2sI9ajse67ysKXWiD2t+fWMLFHhf8oUCcqX5qsx29azuu5T+ChD83k/Cnngfj4+lL/QIx4k9K3Kws/8Td/h6nA6yDhN08xbP8abKezmon8fveYbVUmLj9a6IhgRKPk4YFEo33A0A5I/4OJoREvCv0ccyaslHqN+JXePPNNzW/e71eOpxjtKGPIUZkIM7I57wgpJtuZjf009kyDdkg2TFEMtpghTsQljTT5sjnWOh2ot8fjqnzT6TGH2Db+xqX7On7+xPLv9jjQNeg1u2vj/mzc9/19fKGMf+hIK0nL/Yk5pY2gk34M2vrSyj0aEv99EJOYuRGz6cJfwbiT8KReitY7/aXZSbbX7TO9j9tkqlfzJTyAcrfCtmsEfFnBTnReD+gtfzZJD99iIc9Zl6W+nHM0efK2UUcJE3M336ubNbVn1XLn2f75z3acrIILUcLSRGau0HExdTtH29uO7HOTZr16Cf7EXEkYsL+zeoFgU1cC+pc26z4s6ODD3YqCW1njymyXLcVasKfTPMlzMod9aV++vg9sfwN3f5uc8s/SC1/XcyfGewDKDk4pr39dd/RXmr568Tfq61YIBn9bqdILXK2eiIZy7+MsehdzOer94Swm4S8K/XjWKMXHrs0+glpxDOHC0mRbFv++n7inPSR7oQ/QRCo6AwGwjQ0xzbkoZ3mTOr8jZrpsDgNLH/WwqvUNfohHgUj167DYWz5A6pAGsWMJ1cVAgA+6hxEvz8Mpyjg3HGpiz953UACbv+YbH+925+ZxqfH64zv9vfGsfwlg6FHDlHdNLHHJ3kX+mS9Yl25IuvyJ6FbskEARmD5Mxsgt87tz24SRlKpkShc/NOIXuxtov26mLn9BC3b66fjj2V75kjkM+mu8wdU659tsavU1ussf8nY8o8X89e09zVw3xMX84bW4/j8w3/D29HseaM6fLM6f0CthSeWP7uuyVErn7jPzx1bbCrWiUDb+4bju/2L3Frh1LvwSThAH+MGVGG3qvP3OETNeWCb/ABKbpW+yQ8b839mxxHMWP0q3th/0nQiX4z492nj/exjlOcnHlJhS/3Yz5fd2IkCUOJVHicIajgkk2R+ezGK0Iu9XSx/balfDheSItmu89f3RRBhg8SOUYzH6cAAwpqhT8GwWpNPXKz6+ntaopZEtr9Rs54J5UqWfNdgAF2DAbx/TGlhbmj5m9T5A+rcd6OY/zk6F/8F40ss1xwP44Q/E/GPvg9/SElKNHX7G7RIVrP9jdr7qhUQTlFEiGkWpHH7swl/Immdq2b7v3u0D+GIjK0fd9GNSbmJ298XCEOWZVrmV11mLP6JdvcD9DF/Y7e/2ynSxMZClyMrieLc8k8jerG3S8Mcbczcfuqf7Tr/bL8eZ2QYW/4y9dp4zdz+KVj+RjH/f5xRg9XXTMe3Fp6reV6xQTa+Q7Cw/Inbn8T8GfGYVFkI9qnTxo+sWRpxSYfCESbmb+b2V28fCkkxQ5QGLWL+xMI1jPkzfQ00lr9DhCAI9P1KMtv9MNbyJ16B431+nI66/St1bn+ygQlJyjAnYvmPZ8Sf3awl0tefwIo/ew404s/MACjIgssf4OKfVmLc/jbR0XCWY+bpJlfZ/tl6Pc7IIAJzmrH82W58hSNN+IuT7e9yiFhx2dm46+opmrI1fSKbKCCmk6AgCFTIVLd/rOVfVeTRiMy0mvRY/olk+3ucDnVCXSBsWurnNih9surwp3Y0FGOsZAA07i/L6mNj6/wZ8e8dNs3213fwO8F09yOUeEdu+Wv/LthQhoPG+UdSopkMXPzTiN7jbBe3/5nU3jfrlj/P+E8r6U74A9REtV7G8g9JMv1+qqNltQJEcgCshvoAumx/k5I9QBGx+eeo43C9LodGDPSZ/vrjq5Z/rPiXF7o01ugFI7T8jRP+rAbRqG7z2CY/Ftn+lnX+Mn0eK/5kHcRLEpIiNJFT7e2vlkiSToEnev10A6h3+ztEgelUGEb3oJLtT3r+A9p+A0ll+yfg9vc4RVwwvhQVhS585twxCR97JHDxTyP6fv52EX92dKYdxSzbnotsdxQcTWQk4S8q3r06yz8m4S9ly59p72vSqY/wmXNV8ffoYtdmzyEiQSx/lxhb6ldW4KIZ7JVFbtqxLlXUhD85brY/wDb6kWJi/oMWHf48Fh3+VLe/oDk31PIXtY8D1E2XkeV/csCvNukxcNsTt/6AP0z/VtgGPcVe9f/JZPu7HGo8n7X29d6MsSUe7Pr3BqxZelHCxx4JXPzTiF1j/tl2m6ebXGX76//PyU+MYv6hsGotmif8Jdfel40vm1nxrFXndTk0AmDkLQDUTQERSOr2Z55bVuii1ui0mpIRJ4wZuv0tPCDEVe0LhGNL/QLmpX7WCX+q299tYPmL1PJXv4NEXB3MhowcJyIrSZeAcV9+tta/fzi2JJDN0UjG8gdU618b548NATjjbDTTCRf/NKLXHZtov0bw7eKtYMn25sXuORKjDdXtr1r+bFKaWZ1/4h3+1Iu4Pxzb3pdlWk0JFQ6vS2f5m4m/qLP8dU1+HKKAEo+TWqNTRxjvZ48dZBP+EnD7DxqIPw1XJNnkhxV/o5g/cftbWv5MGSCLUcy+hOlXQNr8ssN2SMdEQYjt1x+PUgPxN3pP2YSLfxqJbe9rD2Fgy+PsKGbZtsTZz5Vb/vkPEa3eYdXyZ13TJLva3O2fWJMfQO1rbybkoihg8YXVAICzqoo0j3OYeAtcDuOYP3lfZQUuCIKAL82ZhAXnVOGGuZMs15sI5DVDCTT5ARi3fzBMz63RKF49Vtn+ajtjnds/+nkQ5wabq6HG/NVSv6AulOlm3PAsxO3f7QvSskq28Q7xDJQVuEw3d2aQzQL7PjQNf7Jo8RN4nX8aMertbwdYV7k9Y/7MVMIsrJ/dIBlZFZz8gpTykTIvQCs2asKfSalfggl/7HH1nfpYVl9zIW65/BycN65YIwamln+M219r+ZO49LyzK/GH29IzPdWtSfhTXteq8Yzq9lfnJ5QWuOiEQXa9LNTtb9Hkx9Tyj54vNlxDTqGTLfXTberKC12GYRGygTneOwxA2VyUMOV9F4wvwaXnVGLu5MqY58aDiL87jyx/Lv5pRC/2dun+xsbM7JKnwJJty1/K8iwBzsiglv+QseUft8lPHKtM24I3KlgmVjygbEbOG1cMQJsbYGZNumLc/srvU2tKUeBypCRG8XCxbv8ELH+2xS8Vf68LJ/rUEbnGln/U7R+W8MHxPvzf3hP41sLzUORx6sQ/NuGPnC+ySXOKAhV14kWRpFi3v1m8noj/sdOK+JcVuDSllx6nA8/etsD0HFhhaPnrSv2yDRf/NGJXt7/dE9hy1ds/W683miATQSUp1hJMFWK5s1YoG/Mnrt1+ZpwrwLj941hlDlFpOCPL6nETdQtrLH8Tb4He8ieiMaG8AHv+4+qMtIJ1MxUG5DJmmfDHlPqRvAe2Lh4wa/KjWv6//MtHeH3/SZw7thhLL5molvrpLf/o/wVdzN8of4JNwiQYJfsBqlv/aFT8y5OM61thlPBn9J6yCY/5p5HY9r65WUey2L1jHc/2P3PITG//WKuKbURDyuK6fUHNY2idfwIuWWKd+3Wu+Xg4NDF/64Q/tYGQup4Cd2ZawRKhHvCrGyKr80As/97hEF1nqU48rev8I9TiPhktx6OWv1PQ5FXoE/70o44B7WCfkC4UaFamRy3/qNu/LIlyvniQDYeZ2z+Rv7F0w8U/jdh1ql9YsrcbO9vZ9zzb314YXViJK1sUgDHFivj3+IKaUF2i7X0BVeyJ2z9Ry58ND5jF/F26jYR+FGwmIK8xEC3TA6ytU1IG1z2obqBK9Za/Uakfk+1/ckAJEZCSTLa9L1sW59G7/aVYb4uV5W/Wna9IF/NPp+W/5KLxmH92JZZeMpHe5jIJAWQL7vZPIzFuf5sIg1bM7JfAlvVsf5tPQRxtGFn+1EIXRWoJShEZfcMhKg6Jlvopx9EP5EnF8jfp8KcTzWwIBRHqQb8i/h6naOlhIKV+3T7FahcEoFA3uMio1I+M9B3wh6mnpTeamMn2TGC9HeTzoNn+TMyfQBIupUgkVvxN3P4kTEGuh8mW81lx7thiPPcv2nwBd44T/rjln0bs6vbXimcOF5IiOa3zt2F1xGjDKFZNLHRRVC68xEplXf+JxvyBWGs8pZi/qdtft7HIhuVP3f6q+FtBXOZdUcvf63TEWPqGCX/uaGIhc+EhJZnke+Z2CoZlcfqEP3PLPzm3P8EsNyBd5Drbn4t/GrFrwp+mva8NLdnsZ/vzmL+d8BpcWFnLH1Bd/6SnO5B4nT8QG+Nn58BbPi+J9r7q79mz/EmSodlEPwKtkY+evwK3I0bQjDYQXoPjkv77mql+bNa9SxvzDxhZ/kyeBNlYkPwCM/HXj1hOp9vfCO2GJvvZ/lz804hdY/52z17PtiVu9/M12jASLpKVT/SiqlgRBNbyD0jJuP3Vx0yuKkRVcWK99Z0JxPz1m4JsxPzJSF9CPMufWMlEuL1OMWaTYpXwx0JKMk3r/Gm2v/I7EXeHgReFbe97xflj4HIImDmxzPA9lOjEP50Jf0awG5q8t/wfffRRzJw5E6WlpSgtLcWCBQvwyiuv0Pv9fj8aGxtRVVWF4uJiLFu2DJ2dnWlfdL4SW+efm3Uki/3b+2bXc8Etf3thJFzE7U9c6FVFsZZ/t0UfeD2s0F1SV5Hw2lhhj5ftr/6eectfv8GIJ/6zJpVr1uV1OWKsWaNNi8shxrwfsoFgs/hdzlihJOcrFJ3a5zLomRAIR2g49mfLZmLPf1yN86uN2x/n1PLPd/GfOHEi7r33XrS0tGD37t248sorce211+KDDz4AANx111146aWXsH79emzevBnHjx/H0qVLM7LwfMSuU/007X1tGMPOep2/zC3/RLj++utRUVGBL37xizldh1XCHxkOU6mz/KWIjI5og5oJ5QVxX4ONw198VuLir41TW7f3VX/PhuWvF39rt3Sxx6nZ9HhcDo1gGx2ToHf99w4FITM9+d0O44Q/8tlZZfuznRzdThElXnNBL9ZVJ6Qz4c8IW5X6XXPNNfjsZz+L888/H1OmTMF//dd/obi4GNu3b0dfXx8ef/xx3H///bjyyitRX1+PJ598Elu3bsX27dsztf68wk4x/49PDeI7z7+LT04N2r5jXbb7FLAbJDvmSGSLb3/723j66adzvQzjUj9akqf8Piaa4U9K1boGAwhHZDhEIaHxuA4mE74+Gcs/kTr/mJh/9kr9CPFaHAOKW51Q4BJjE/4SFP+QJMMXlDR1/m6DhD/RoskP+T87KjjeedO7/TOf8JfbUr+U/4okScKzzz4Ln8+HBQsWoKWlBaFQCA0NDfQx06ZNQ11dHbZt22Z6nEAggP7+fs2PXYlx++exjj6/ux3/b89RPL/7KEKseObxhsWMXHb402cSc1QWLlyIkpKRT5gbKUbCFdSN3iUxelKqRhq91JR6E8qub+vy0f8nM1WPPbZpnX9Mtn/2Ev4IiVimlzPirx9XbHRMQoE79vbTviD9bimlfgI9htrCV9fe16BbIjszIJ7Axrj9Myz+boM8hmyS9Cvu3bsXxcXF8Hg8+OY3v4kXXngB06dPR0dHB9xuN8rLyzWPr66uRkdHh+nx1qxZg7KyMvozadLIJ1LlCn1dfz5b/v7ol2I4GLZ9DFvK8pS9bL9eJtiyZQuuueYa1NbWQhAEbNiwIeYxzc3NmDx5MrxeL+bPn4+dO3dmf6FpwCijnEC8yaTfOylVI41eassTy9pnS9WSmfiWmOWvc/tbzA1IF8m6/QFg5sRyWjLpdcVm+5sJnNfg2H3DIY3bn2wk2GOSvvs04U8T89d2XHQ5hLidEAvdDrAPKSvIcMKfptTPBtn+U6dORWtrK3bs2IHbb78dy5cvx759+1JewKpVq9DX10d/2tvbUz5WriFiT3aY+dzkh4y5DEoRnRs7f9dshpTlkcRnQra/z+fDrFmz0NzcbHj/c889h6amJqxevRp79uzBrFmzsHjxYpw8eZI+Zvbs2ZgxY0bMz/Hjx5NeTyY9gFZWq2r5Kxf6Hp9e/OPH+1nOHVuU1OM1lr9pb3+d29+Zecs/2YQ/QNm8XHaeYv17XdoMfacoaIbksBQw43XJZuj0UFDj9ifXVI34Rw9nWOon6OchxF+/IAiaWv9Mx/w1Y4rtMNXP7XbjvPPOAwDU19dj165d+O///m/ccMMNCAaD6O3t1Vj/nZ2dqKmpMT2ex+OBx5NYWUy+Q3TAKYoISVJeu/3JFysQjsDlOJNi/pmPwYdt3hcBAJYsWYIlS5aY3n///ffj1ltvxYoVKwAAa9euxcsvv4wnnngCP/jBDwAAra2taVvPmjVr8OMf/zhtx2OxslqJXujr/I/3Ksl+iYr/jfPq8IedR/Cf185Iam1Gtel69BazWWJgOomx/OPU+RM+N3M8Xnm/A+eMKTacxGcE65k5d2wxDnQOoIdx+7Olfuy50Pf2N/KiJCP+gJK4OOAPo9CgT0G6sX2Hv0gkgkAggPr6erhcLmzatIned+DAARw5cgQLFqQ2BtFuEMuf/BHqs//zCSL+IUm2fa96jSWehRg8e4rseL7iEQwG0dLSosnfEUURDQ0Nlvk7IyGTHsBELH/i9j89FEJYitCYf6Lif891M7Dj367CZ84bE//BmtdPvsNfNpLD9K+RaDb65y4ajze+uxBNV08xHWKjh4i/yyFg8phCAMDJfrXk0uUQqffD0O0fjh2mRM6ZfgxyPIjln+kyPyD3U/2SsvxXrVqFJUuWoK6uDgMDA3jmmWfw5ptv4tVXX0VZWRluueUWNDU1obKyEqWlpbjjjjuwYMECXHrppZlaf15BxJ/2lbaB+AfDEiRJ3Xnnc6jCjGzH4MM2r46IR1dXFyRJQnV1teb26upq7N+/P+HjNDQ04N1334XP58PEiROxfv16U0OAeAAzOdLXCCIgFYVuOpa3Zyiouv3LEov5O0QB1Ql29WNJqM4/F9n+YvJuf0BxnZ89Rgl9uBOsYy+Ifj7jSrx0E9Z6tBeAIsalXicd7OMxcPur2f6MV8Ch7f7nTnDDRJL+Mt3gB9DX+ef5YJ+TJ0/i5ptvxokTJ1BWVoaZM2fi1VdfxdVXXw0AeOCBByCKIpYtW4ZAIIDFixfjkUceycjC8xHV7S9ofs9HgtHGGMFwBCFGzOxoyeYy29+OfRGyxWuvvZb0cxobG9HY2Ij+/n6UlRl3YksWK7c/0VGHKKCy0I1uXxA9vmDKMf9kYQXfzKLX356NbH9RVOLsxKWeSMKfnkQtW9Llb1ypB+VR0d3xSQ8AYEp1MQRBMLT8HbqEPysvitFQISPIcJ/sWP5MWCQH7X2TEv/HH3/c8n6v10t37qMR1e0van7PR4j1GpQits/2z3bCot3PVzzGjBkDh8MR050zXv5OOsiI5a+zFtmPjLUWq4oV8W/vGaZd5jIt/k6DrnRWjwGyk+0PKOIdkkhv/+RfM9HBNcTtP67EQyfudUVzL6bWlGqOpU34i1/nb7QWK4jbP9PJfoD2c7RlzJ+jIMsybSNJduZ2iPkHw5GsN8lJN5LGc5HZBLxIRD7jY/5utxv19fWa/J1IJIJNmzZlPH+nsbER+/btw65du9J2TFb89R3eWCOauJz3HusDoLqcM4nWWjW+HOtDA2ZZ8+mGFaRUOtCxrmwry5+If3WpF+W68rqp1cWatXgsxN/qXCYq/sTtn+kaf0DxrtD+BXbI9ucYw+o8+UDzeTwu6YcdlGRN9rodxSybMX99Hodds/0HBwdx6NAh+ntbWxtaW1tRWVmJuro6NDU1Yfny5ZgzZw7mzZuHBx98ED6fj2b/2wlntH98OCKjtMCJvuGQep/G8lcy/t+Pin9tuTdubXg61kYws/xdBols2UDbfjZ5tzTryrYSt6suGIfX95/E4gtr4AuENfdNiTZMuvy8MVg4dSz+aY7aB0Z1+0c9rhbnMtEkSeJ5IKWfmcbpUP4u8z7hj2MOKwoOGvPPXyENMpa/lOVSuXSTzZi/fnNhx80SAOzevRuLFi2ivzc1NQEAli9fjnXr1uGGG27AqVOncPfdd6OjowOzZ8/Gxo0bY5IA000m3P6AYjGGgxJKvS4Aw/R21kAkLX7fO0rEP7MufyDRbP/EsubTjdsxMsvfaBiPEVecPxZbvq/8Le76tEdz39ToEJ7KIjfWrZinuU+1/Ml4ZouYf4Ln7auXTkY4IuMr889K6PEjpdDthD8URKE7z2P+HHNYoSd/aPZw+0uaFrV2dPtnM+YfI/42TfhbuHBh3L/PlStXYuXKlVlakUImEv4ApU7dR8VfhRXWcdFsfRJvzor4J5Dtn6se8Bq3/whj/sla3oDSe8FqNDLN9pcSifkn9vp1VYVYfc2FCT02Hfz7Zy/AJ12DOKuqMGuvSeDinyY0bn+HDdz+0pmT8JfN7Hu929+ulv9og1iupQXaSx4bP/9i/US8vv8kWg6fBpDYNL+RkpDlr+kCmD3LnxXM1Nz+ybevLWdK7KbWFFs+Nqa3P3suczAJMRWW1U/M2Wtz8U8TEY3bP/+z/Ym1HwrL2rr1PF6zGVmN+es2F3YMk+QzmXT7A9YJf9WlXqz/lwX44zvHsPmjU7ju4glpXYMRRv3o9bCiph/yk0lGOnLWaBJfPNgSuynV1gOSRJ34G430Tfb1RxP8jKQJVnRcdoj5h1XL3+69/bUdCjMrxnpLn1v+6SUT2f6AmlFe5Hbo3MPaS6AoCvhi/UQ8fOPFWbH8Ncl8pnX+ubH8WfG2Go5khrbUL7FNi9Mh0lr7aXGmI4qW7X2z3xjJbvAzkia0tcOk1C9Hi0kAs1I/O4qZlMXNi35DZ8fN0miEWK4FbqdGcHOtCVZxaoIzRzH/kVr+2iY2iT9/UoUS/75oQrnl48jh1ZG+2kFCmrXkoJQu3+Fu/zTBJk+pMf/8FYaQSba/LCu17NmqJU4H2dy8cMs/s2TO7a9YrgUuB1yiCD9InDi3omAlWOrtucn294ywzj/RJj96Hv7KxTjc7cP02lLLx+lH+lqNR87mpsku8O1QmmA1wA4d/kLMSN+QLjPRbnH/SC5j/jbN9s9XMuX2J9nqhW6HxgrM9SY3kYS/REIDmUBj+afg9k91at25Y4tx5bT4JaWirgcDj/knBz8jaYIVHacN3P5BRvD9Ia2Vlc8eCyOyafnzbH97QmLWhR5HQoKbLTTWqolAOR25sfy12f7Jvy7bwS4T63boxN/a8udSp4efkTRB3P6iANoVLF8tf1mWNdb+UNDe4i9lccqePrufZ/vbg5sXnIV/mF6Nqy+o1giB3nrMNkZjaPWwGf7Z6usPaMvzUhF/wLgnf7rQnwo2yS/V9r6jCR7zTxNEc0RBoM0n8tV9LkVkjVdiWCf+drNm2WqFcIabK/CYf2bJVMz/ivPH4orzxwLIXbtcIxyJDPbRZPtn0+3PWP4puP3JMYZDgCcD4qvfuGkaJunr/HMwMjff4duhNEGsfFEU6B9lvupCSBen9gW1/bTtZvlnNeavO77dzlW+k6mYP4vG8s+x+LsSCEFos/3t094XUL0HmbD89Zslq3AOj/nHws9Imogwbn+11C8/hSGos471+mU3QctqzJ9b/rZHOwAmhwtBYqV+Lk22f47a+6Yq/o7MxfytEv54zD8+/IykCRL6FQUB5G8ykqfCoM/u12M38c9me+IYt38+93DmGOLWuP1zewnUNPBJYKRvNtc70ql+gFpfn5GYv1XCn8DFPx78jKQJ1fJX3f75WgUWV/zz1GNhhn6qXyY9LvoNHbf87YczjxL+ErL8Wbd/FpvVEMEWhNQ9DplM+NPruUMXzmFPJ6/zj4WLf5pg3f7kjy5f3f6hsPW67Fa7rrf2M6nHerG3m5eEk7u6eSMSyfbXNPnJQW9/j1OkFUzJQmLt2XD7689frpoj2QV+RtIEzfYXBZpElK+lfvqYv55M98dPN7EZ+JlbP7f8M0tzczOmT5+OuXPnZuw18qrUj832N9mIOHO0WSHhkVRd/oDqqUg1Z8AKfbKm3nPCRki4+MfCz0iaMHL756suxHP75+umxYxsZuBzyz+zZDvbP/elfvFr+N05avLjToNwl0Wn9JUWuOI8Mnli4/pWlj93++tJ6lNds2YN5s6di5KSEowbNw7XXXcdDhw4oHmM3+9HY2MjqqqqUFxcjGXLlqGzszOti85HjNz++SoMZuJPvkt2s2azmYHPs/3tDyv4OS/10wwZil/nn90Of1Hxd6X+mv/22Wn44ecuwOXnjUnXsij606Wf5Meez0zkHNidpM7I5s2b0djYiO3bt+Ovf/0rQqEQ/uEf/gE+n48+5q677sJLL72E9evXY/PmzTh+/DiWLl2a9oXnG8TTLDCWf97G/E3En+zwwzaP+WcyZyHWy2CvEAlHmzSntx6zjaYffSJu/yxuVlTLP3W3/7SaUnzjinMyE/O3qPPX/87d/rEk1eFv48aNmt/XrVuHcePGoaWlBX/3d3+Hvr4+PP7443jmmWdw5ZVXAgCefPJJXHDBBdi+fTsuvfTS9K08zyCWv0NgY/65XJE5QZOEP4/TAX8oYju3vz7Gn0lrPLbUz17niqNrrJNjd7BL03Mgfp2/MxeWf55azfqNm/78Obj4WzKiM9LX1wcAqKysBAC0tLQgFAqhoaGBPmbatGmoq6vDtm3bDI8RCATQ39+v+bEjRC9Zt3++imhcyz9fdy0mZDPmzzv82Z98SvizmkRHb2c2KO6sJvzlt/gnZ/nzmL+elD/VSCSCO++8E5dddhlmzJgBAOjo6IDb7UZ5ebnmsdXV1ejo6DA8zpo1a1BWVkZ/Jk2alOqScgqpjWfd/nZr8kNie/m6bjNi4/CZc8WTz5lcGLn42w9nHiX8WU2iM3pMNi3/SZWFAIC66L/5hlWHP0BbPcHb+8aS8hlpbGzE+++/j2effXZEC1i1ahX6+vroT3t7+4iOlyvU3v6wbbY/+YLYzfLPZgY+ifG7beolyXeyUerHWs+5TvjTbkSML8eCoI7GzWaY4pK6crzy7SuwZunMrL1mMuj1XO/a12T756n3IpekdEZWrlyJP//5z3jjjTcwceJEentNTQ2CwSB6e3s1j+/s7ERNTY3hsTweD0pLSzU/dkRmY/55PtJXP9gHUKwL8mWxmzWbzQx8EuNXkyN5wl86yUapn90sf0AV/WxasIIg4ILxpShwp57wl0niWv485m9JUmdElmWsXLkSL7zwAl5//XWcffbZmvvr6+vhcrmwadMmetuBAwdw5MgRLFiwID0rzlOMRvrmq4YaWf4OUaBfFruJfzYtf7Khs2t+BCe/pvpZTaJjIUl/ud6s5BPxO/zxmL8VSWX7NzY24plnnsGf/vQnlJSU0Dh+WVkZCgoKUFZWhltuuQVNTU2orKxEaWkp7rjjDixYsOCMzvQHVMERBOR9hz8j8Xc5RNuKf0zXvQxm4BOxJ/PN7XauOLr2vjkX//jZ/oBq+Wcz5p/vWFn6+t95zD+WpMT/0UcfBQAsXLhQc/uTTz6Jr33tawCABx54AKIoYtmyZQgEAli8eDEeeeSRtCw2nzHs8JenwhA0EEfW8reTNSvLMl2v2ykiGI5k1vKPcMvf7mjK63Ld3jfB1r1E9LmIqej3SvqcCV7nb01S4p9I0xqv14vm5mY0NzenvCg7ItvJ7R+OtfyVmL/9LH92qZ6o+Gcy25/daACJn6tAWMIb+09hwTlVKCtMf6tTTuI48yjhT1vqZy5Qrhwk/OU78Xr7a2L+POEvBn5G0oSa7W+HhD8D8XeozYnsJP6s0JNOZNmo81ct/8Q2Gn965zi++bsWPPT6wYytjZMY7jxK+GPDbVYtaInlz93+Kry3/8jgf0kp0jccwi9ePYBDJwcAsAl/9mzy4xRFeiG001Q/dqnZcMWr4p/cRqOj3w8AONE3nJmF5Rnt7e1YuHAhpk+fjpkzZ2L9+vW5XhIln3r7O0QBP/zcBfje4ql0CI4RarY/FzFCMtn+PFwSS1Juf47Kn987jl+9cQjHe4dx/w2zaSxYFOww0tc65p+v6zZCa/lnvlRR7/ZPdKMRCEsAAF9AyszC8gyn04kHH3wQs2fPRkdHB+rr6/HZz34WRUVFuV6axgWca8sfAFZcdnbcx6jZ/lzECLEd/nQxf00+BT9verj4p0jfcAgA0O9X/tVO9bNHkx+nKFDxcjqYhD8b9atnhT4bjXf0bn9ZVpIA41mQ/pByzoeC4YytLZ8YP348xo8fD0Dp/zFmzBj09PTkh/gzIpHr9r6JUlHk0vzLiW3y43BYxPy5xyQGvh1KEX9QseDIRZ26/UU14S9vp/pFE/6KPOrej034s5Plz4q/avlnsL2vTvyBxDYb/lB+Wf5btmzBNddcg9raWgiCgA0bNsQ8prm5GZMnT4bX68X8+fOxc+fOlF6rpaUFkiTlTetulzN/Sv0S5Z7rZuC+L87EJXUVuV5K3pBUnT/3mMTALf8UGQ4R8Vf+ZUv9BCG/E+eI5V/kdlAPhlMUbVnqJ0VUj0s2PBeSzu3P3mZFIJxflr/P58OsWbPw9a9/3XDk9nPPPYempiasXbsW8+fPx4MPPojFixfjwIEDGDduHABg9uzZCIdj389f/vIX1NbWAgB6enpw880347HHHsvsG0qCRGvr84nzxpXgvHEluV5GXpFozN8pCjnP7chHuPinCBX/aCw3YiBC+aqhJOavsfwd9uzwR8MWopiV9sRhXcKfclsEgHULVGr5B/PD8l+yZAmWLFliev/999+PW2+9FStWrAAArF27Fi+//DKeeOIJ/OAHPwAAtLa2Wr5GIBDAddddhx/84Af4zGc+E/exgUCA/p7J6Z751OGPkzp6sddb9+R6wGv8jeFnJUWIu1/v9hc0df75KaLU8mfEX0n4s19vf7LWbDUp0rf3BRLzNJC/E18gPyx/K4LBIFpaWjSjuUVRRENDg+lobj2yLONrX/sarrzySnz1q1+N+/hsTvfMpw5/nNTRf3RmMX8e7zeGi3+KEMufZHEbJfzlqfZT8S9mxN8liiDfETuKv1MUaHZvRi3/qNC7nCKI1zGRzQb5OxkKSnnb+ZHQ1dUFSZJQXV2tud1qNLeet99+G8899xw2bNiA2bNnY/bs2di7d6/p47M53VNj+dsk4Y8TS6Ixf6v+CaMZ7vZPkdiEP9UCtU3M36O6qlnLP1OWsyzL+ObvWlDideEXX5qVlmOStYpZsvxJMiFJkAxJcmIx/5CahDgckjRelzORyy+/HJEkEi89Hg88Hg/tDipJmQuPJNpSl5PfJNrbn7v9jeFnJUVIrJ/Ectn2vo48d/sHw9GYv1sb8890e99TgwG8+kEn/rflKLWER4rG8qfrz2C2P5PYqW424r+en3m/vjxJ+jNjzJgxcDgc6Ozs1NxuNZo7XWRjpK+bW/5nBDEJf3pPgIOLvxX8rKTIcNTyJxadOtVPzSzNU+03jPmzGbGZEv8hpsxtOE2Jb0R4sxXz1242Es+RYC3/oTwp9zPD7Xajvr5eM5o7Eolg06ZNGR/N3dzcjOnTp2Pu3LkZew1nHrX35aQOm6wpCrHJm2RzwGP+xpzZvscMMhy9mAclZYocG/O3j9ufTfhj2/sar1uWZZwcCKC61JvS67IW71BQQnlhSofRQIzuZMU4VWiCoSO5zUa+Wf6Dg4M4dOgQ/b2trQ2tra2orKxEXV0dmpqasHz5csyZMwfz5s3Dgw8+CJ/PR7P/M0VjYyMaGxvR39+PsrKyjLwGKwZ2KfXjxMJa+kYd/Jzc7W8JF/8UIe5+QEnmIla+QxDoH2W+uv3VhD815u9ixMwsIe2B1w7ioU0H8eTX5mLRtHFJv+4QY+0Ppdny18T8M1jnT4TeISQXJmH/XtL13kfC7t27sWjRIvp7U1MTAGD58uVYt24dbrjhBpw6dQp33303Ojo6MHv2bGzcuDEmCdCO8IS/MwN232bkwSE5TDzhzxgu/inCXsz9oQgVem2pXy5WFh+jOv9E3Ob7Tyi11/s7BlISf7bMLV1uf+OYfxYs/yQ3GwFmjHI+lPstXLgwbgfKlStXYuXKlVlakUI2Ev5Y8ecJf/aFdfMbeXB4zN8aflZSZFgj/hKTCMaW+iUnQiEpkpWWwLS9rzu59r7EYk21S92wxvJPjwCGjcQ4azH/1Cz/fGnxm49kI+FPM9WPW/62hf3sjC1/HvO3got/irBC5g9JzEhfgdZ/S0kI+YA/hMvufR23Pr07ncs0xDDhj5krbmbJklh1quLly4DbP0LFWGTq/DPf298hCrSpSLxsf1mWaUkokB8x/3wlGwl/7jyb6sdJDdagdxj07ucxf2v4WUmBSETWuHH9IdVi147GTfyY+zsGcHIggG0fd6d1rUYY1fk7Rba9r7GYkSz1VK32IV3CXzrIdp2/6mkQaTvReJZ/UNKez6E8cPvnK9m2/HnCn31J1PJ3c/E3hJ+VFGCFH1AyuSO01C81t/+JPj8AxToOS5mzXAEgFLXsi01i/mYeC2KxDqYoXkMZcPunWnqXKhEq/urFJRQn5s9a/UD+9PcfrbgYy5+Lv33RiL+Ba59sCHhehzFc/FOAjfcD5m7/ZLL9O/qG6f8H/Jm1DIklWuBms/3FuDHsYRrzT028WItXfw5TJdsxf9byT3QQUkD3XvNlst9oxWXDqX6cWNjPzirbn7v9jeFnJQX0whUIRwx7+ydjgXb0MRPN/KE0rNIc4vb3OEXqEnMwTX7ix/xTE69MxPxzle3PzhKIF/PXe4p4wp852Yj5swlgPOHPvrCfndEmrqbMAwAYX5ZaX5IznaTFf8uWLbjmmmtQW1sLQRCwYcMGzf2yLOPuu+/G+PHjUVBQgIaGBhw8eDBd680L/HrxD0mM+KcW8+/oVy3//uHMWoZ0OI1DpMlPmva+Bh4LKaImraVs+WdQ/LNV5699vcTCDPq/F275m5ONmL9DFLBo6lhcXFeOqiJ3xl6Hk1nYHD+nQcLfNTNr8ftvzMedDVOyuCr7kLT4+3w+zJo1C83NzYb3//znP8dDDz2EtWvXYseOHSgqKsLixYvh9/tHvNh8QV+jrtT5K/8XRbXOP5WYP6Bk/mcS4vbXiL8oWHosWMFKNVtdk/CXovfgcLcP//qHd7DvuNJzIKwbtANkJ9uffb14YQYe888vBEHAkyvm4Y+3fyamJSzHPjjiWP5Oh4jLzhtzxg/RSpWkz8qSJUuwZMkSw/tkWcaDDz6IH/7wh7j22msBAE8//TSqq6uxYcMGfPnLX455TiAQQCDAuLz7+5NdUtbRW3J+jeWvtvdNyvJnxD+Tbn9Zlqnb3+kQGLe/dXtfjdWeaqkf87yhFGP+/9tyFC++exylBU7cc91FuqY7mZ1KqBw7dpZA3Ji/bohRPjT54ajfU449YTduPKkvedIa829ra0NHRwcaGhrobWVlZZg/fz62bdtm+Jw1a9agrKyM/kyaNCmdS8oIekvOH1Kz/UXB2oI2QoooPfMJmXT7SxGZtiJ2M5a/SxTgiG4EjNr7soKVDss/1Q5/XYNBAEBf9Byx4q/W+WfQ7c+0cU7V8s/3wT65JBsxf86ZQbxSP441aRX/jo4OAIjp/11dXU3v07Nq1Sr09fXRn/b29nQuKSPEZPuHVbe/IAi0+USibv+uwYBGsDJp+bNlaS6HSJOfHA51JkFcyz8opdSJMB2lfr1DiviT0Ajrhs9Oh7+o5e+I3xeBoPcU8SY/5mQj5s85M9AM9jGI+XOsyXkwxOPxwOPx5HoZSWFU6kdwiMm7/dl4PwD0D2dO/NmGM0rMXyn307T3jWP5S9EmR16XI+ZxVqSjyU+PTxH/wWg5JFvql51sf+VfTcw/ToIhyfZ3iAKkiJwXg304HLvD6j0v2UyetG6XampqAACdnZ2a2zs7O+l9ZwJ+q4Q/xu2faJ0/W+MPAP0ZrPMPacRfYBL+REvLWS9YqcSt2Zh/qm7/09TyV16fnON4608X1PIXBDpGNNFs/4pCJbOcx/w5nJETr8kPx5q0iv/ZZ5+NmpoabNq0id7W39+PHTt2YMGCBWl7nQMdA3jp3eM40DGQtmMmgz8ca/nLMhvzV25P1AKNsfwt3P7tPUPY35F6UmSIZvoLEAQBHoda6meVwKYX/1Ss1+E0jLU9PaScG+L2J1a3mKVsfyNPQ9yYf/TvhZSVccufwxk5rLXPLf/kSVr8BwcH0draitbWVgBKkl9rayuOHDkCQRBw55134p577sGLL76IvXv34uabb0ZtbS2uu+66tC36ibfacMcf3sGrHxjnEWQavdUaCEtUMAVBjUUlGhYnmf5F0Y57Vgl/X/6f7fjCr96mse9kCYXVGn8Ahpa/kfjr49SpxK1ZizeVmL8syzgddfsPBLQJf0422z+Ddf4RRvwT7/CnbEYqo+LvC4azMr3RjvCEP06i8IS/kZF0zH/37t1YtGgR/b2pqQkAsHz5cqxbtw7f//734fP5cNttt6G3txeXX345Nm7cCK83fV2WqqMdmzr6R9Y7QJbllMp9YmP+EV173yTd/tH3cX51CVrbe00t/+GghGO9SojgeK8f5YXJNyhha/wBoMSr/AkUeRyWMXN9XX6yXerCUkTT6S4V63cwEKZW9mAgjEhEznrM3+j1QnFmMRDLn4i/LCt/M2x7ZY5CY2MjGhsb0d/fj7Kyslwvh5PHsHrPE/6SJ2nxX7hwoaXVIggCfvKTn+AnP/nJiBZmRXWpkiB4MkXxl2UZK9btQu9QCP/v9s8k7TIipVtup4hgOKJx+zuYJj+Jij9x+0+pLlbE3yThr9unlgOmbPnrxP9frzof51eXoOGCarx1qAuAcbtafWOaZC13fV1/KjH/0z71vMiyckw15p+tbH82xyDRmL9yPiuKXPS2wUCYiz+HMwI0bn8e80+anGf7p0JN6cgs/6GghDcPnAIAnOgbxsSKwqSeryZwudDZH9D09hcEtflEohrUQcW/BID5YJ/uQVXwSew7WYj4u6NflgvGl+KC8aUAwLT3jX2eXuyTtfz1Yj8U3TBZeV6+8/y7CIQlPHzjxRAEAT26Dc+AP6SN+Wejzp+290XCMX/S5KfA5UCh24GhoBQ9n/aqcuFw8glNkx/u9k8aW/pKqqPi39kfiPNIY04zIkJKx+IhyzKa3ziE53e1UyErL1DcuP6QREvAks32l2WZbmKI+Ju5/TWW//AILX9n7EcvWiTM6cU+WcufxPvZZEj9nHuWfn8I/2/PUfz5vRM4Nai879M68R/0h+latZZ/Ntr7itTaSDTm73E6aKtRPtyHwxkZ8Qb7cKyxtfh3DQbixluNYN3HiYr/hycGcN+rB/DvG/ZiMCp85YWKG1ff3jcZt3+/P4xgNBZ+7rhiAGo8W08XY/n3pmj5B3UJfyxWdesxln+SbnsS469g8hSsXP+sl4N8Rqd1n1W/P5wXMf/4Hf6U9+l1iTSpkw/34XBGhoMn/I0IW4p/VZEbDlGALCsbgGTpScHy3324B4DSIa+9ZwgAK/4RNebPWv4J7Eu6o+sv8TgxplhNCBswqAXv1oh/emL+LOo0QqNsf53ln2StOhH/sgIXnSdgtYHoYbwcPdH3rQ91DPhDdAKhJts/g+JvnO2f2Ehfj9OBQnfU8uflfhzOiNA2+bGllOUUW54xURQwrkSJl6bi+mctyETFf9enp+n/2075AKhWrD8s6dr7Ju72746+fmWxGx6nA56oO94o6a+b2eikK+bPYtXel1jpXldUuJMUf1IaWOhx0ES3YQvrl93odJtY/oOBMCTDOv/MW/7JTfVjLH9P1PLnjX44nBHBuv1dPOEvaWwp/oDq+u/oSz7prydJ8ZdlGbvaeujvxCovi1r+gVCEcfsLEJJw+xNBJw1gSguUYxrF/bt9mbX8ScKcVXvfsdFNV9Ju/2iMu9DlRCF1fVtZ/rGfUWzCX1gjxg6LsEW6kJiqDtrhL87rEfH3uLjlHw9e589JlHgjfTnW2Fj8o+V+A8mLP5s4pk8iM+JY77BhZQG1/GNi/oln+xNBrypW3k9ptO7eKOOfDXGkHPOXzGP+Vm5zItRjo+tMOuHPwPK3En92o0P+r9/wKAl/RIzFLPX2T77OX3X7M5Y/j/kbwgf7cBKFZ/uPDNuKfw1j+W//pBvP7jyS8HNZq5J1L+uRZRmBsITdjMufpYJN+CPZ/qIa80+kixt5fRLvp5a/ods/uU2LEaGwebY/2Ulbdfijln+KpX5FbtXyTzThj3hHyOdGci1iY/6ZzfaXZVkj/iT0dDiaA2KG6vZ3oMhtvrnjcDjJQTSfx/yTx5Z1/gAwLir+J/r8+ObvWtA7FMJFE8twYW38rmCJWv4/3PA+/rflKCZVKn0AitwOjbu2nMb8tW5/YlSbWaCyLKN/OIyyQhcVNtL9rdRL3P4GCX++kVv+g1H3fYHLPOHPuMNf1PIvGZnlX+B2oNDljB4jwYQ/avkr77mushC9Q33o96sxf0cW6vzZwzoEARdNLAcA7D3aZ9mzgDT58bocIwpXcTgcLQ5RQESSueWfArbdLhHLf8tHp6goHOwcTOi5PQYuZSPePHAKgXAEh04qx716erXm/vKolc7WrItC/JG+P9t4ALP/8y/Y2daDLuL2L4q6/U0sf1mWtdn+w6GU+sMf7las1LrK2MZGVuJJLf9i5bwna/mTzUOR24HCBFzfRm5/8rmRzRjb7teRhWx/1qPgcAiYVlMCpyig2xeMGc7EQpr8eJwiassLAADHe4dNH8/hcBKDeFl5zD95bCv+xIJiReKTLl9Cz2Xr/PUZ5ISQFMGJ6KjdIrcDRW4Hrr14guYxFUVqzTqxYhNp8rP14y7IMrCzrVtN+Iu6/UmvfX3CX/9wWCNqUkQ2LAeMx6fdyjmaPKYo5j7RJNtfltUZ9Kla/uT5hZ7UEv5kWaZeGrJxGfCHNE1+Mh3zZ4/rFAV4XQ7amOm9o32mz2Mt//Hlyt/tMS7+HM6IIdcsnu2fPLZ1+9eUxbZG/eSUYqF39PlR5HGgxOuKeQygzRrvHQ5BisgxO8fjvcOIyIq1tnXVVQgyrn0CsfwBVQwFpsmPkfbLsoy26CblcPcQFbkxNOGPxLO14toVdYOXeJ0ISRH4QxH0+kL08UaQDH3SVQ4APo2+9uSqWPEn4qnP9g+EI1T4Us72Jwl/LgcKEnD765v8+IISQlEXfx1j+budykbCIWa+tz8r/uSiM3NiGfad6MfeY734xxk1hs8jlr/XJWICt/w5nLRBvvM85p88tj1jJObP0tblQ3vPEBb+4g1846ndhs9jx8IqvxuXzbX3KBfniRUFKCtwYWyJB2OKPZrYktftoCNxSfKag0n4M7JAe4dCVNiP9AxRkauiCX9Ry1/n9lcTAz20ysCsxe/Oth585bHtmP2Tv+Az975OqwTCUgTtpxW3v5HlbyaerEiTxMRk69R9Bpa/WZ2/LMsay//0UBBdA8p78LpEmmg3wLT3zUaHP73lDwAzJig5JlaWP9ved3x0ImW/P0zzL85Eent7MWfOHMyePRszZszAY489luslcc5AyOWYx/yTx7biX8KICHH5tHX58OZHp+APRbCjrcfQpT/AxIkLXMrzjWr9iUhOYmLjDlGg4QbyfG9U/DVuf4smP8TtTv5PvBCxCX968Vf7AZRFPQ5mjX7+6+V92PpxN0KSjL7hEN6OTus73utHSJLhdooYb7B5Mkv4I1a71yVSb0qywkWEvsjtiOv2HwyENX3/ZRnUW1JR6FbX4A/Tmn6N5Z9Cy+dEYDdF5LVmTlTE//1jfaY5GH7G8i/xumg55wmd9R+WInj1gw5NMye7UlJSgi1btqC1tRU7duzAT3/6U3R3d+d6WZwzDFHkMf9Usa34C4IqxFdPr4ZDFDAUlPDK3hP0MbsPx5bokQ1BoVu1wgzFP1q+NUk38a8m+hynKMDlEOGNbiCGQ0T8rd3+rPh39gfoYyqj1jwR9rYun8b9ThMDi92q5W/gsQiEJew70Q8AWDR1LABgR7RBUVv0tc+qLNTUyBLUqX7Gln+h28nUqUtJJRySBMFCj1Ot8w8Zi38P8xmRsj6SdFlR6Eaxh+RFhDUjfdn+AWReQjohnweb1Dm1pgQuh4DTQyEcPR3rypciMg1XeKMhCpL0d6x3GD968QP88292wB9SPrd/+W0LFv3iTcNGS3bC4XCgsFD57gQCAciynFKCKodjBSlPdvKYf9LYVvwB4Kwq5eKyaOo4TKpQLqhbP1ati12f9sQ8hwhLRaGbJuwZW/7KhXxSZYHmdrJhIF4DIv5EIIU4CX+fdsXWhFcUumi3uEvPqUKR24GPOgexvqWdPkZNDPTQufBG5X77TwwgJMmoKHThy/PqAChhAAA4bJHsB7BT/bQXapI7UOhWp9KF40zl08PG/OPV+ZMBRpVFbuoRee+Y4lYfU+KhSZED/hCT7S+iptSLsgIXwhEZH3UOJLy2RFG7CapfG4/Tgak1StLfniOxm00S7wcAT7S8koj/R50DeGrbp3jrUBe2f9JN+0nUn1VhuDlLJ1u2bME111yD2tpaCIKADRs2xDymubkZkydPhtfrxfz587Fz586kXqO3txezZs3CxIkT8b3vfQ9jxoxJ0+o5HAWBZ/unjK3F/4efm44ff+FCLL1kIs42EDQj8T89FCss+raxgLnlT8TfQ8U/6vaPCqQm5m8g/oe7YysSSHc/QEmou+vqKQCUkkBi3dOYf5Gb9hcw6lHw3tFeAMDMieWYN7kSgGI1dw8GqOvc6FwB2rgZa3gOsQ16ou9bec+JJ/2pMX+1xa1ZxUAPLX9007bHb+4/CQCYNbGMin8gHGFyLZQLwYwJpQCAvcfMY/Cpwjb4YbnsPEXUfr35kxiLnWT6A6zlr/wNvfJ+B/X87GzrocOj5kQ/t0zi8/kwa9YsNDc3G97/3HPPoampCatXr8aePXswa9YsLF68GCdPnqSPIfF8/c/x48cBAOXl5Xj33XfR1taGZ555Bp2dnRl/X5zRBemp4uIJf0lj6zN23rhiLP/MZDhEAeeMLaa3k8z5vUf7YqzLnmiZX0WRm7raewy6/B01iPkDwPgyxWorcCunjlr+Jm5/vavz02idvZvpsFfJlAwCwPLPTMaU6mL0+IJYu/kTAGqDn6piD60yMLL8340mns2cWIaKIjemVCvnZdenp2mmP/GY6GFFja1pp5a/xwGnQ6TDh3wG4i3LMt4/1qdxu8uyrFYeuOOX+pEGP+wGjZQ11p9VQd3+ANAXTYwk2b4kAS9d4s+6q83E/1/+7lyUeJzYd6IfL7xzTHMf6e7ndojUmid/Q+8c6aWP29nWQy3/OWdVpGXtVixZsgT33HMPrr/+esP777//ftx6661YsWIFpk+fjrVr16KwsBBPPPEEfUxrayvef//9mJ/a2lrNsaqrqzFr1iz87W9/M11PIBBAf3+/5ofDiYeDW/4pY2vxZ2Gt2SUzalBT6kU4IqO1vVfzOBLzryx0obLY2PIfCoap69nM8idWHPmXaDzr9mdvJxDLfx5j3ZEMeoLLIeLOBsX6f3nvcciyjK6BxGL+e6n4lwMA5kZfZ2dbD23wc7ZBmR+g/QKxSX+s5Q+opYNG4r1+91F8/uG3cM/L+wAAwXAE3//f93Cizw9RUPozxBN/OumwyIPKItUrIgjAxXUVcDpEGnYh4k+8FhdNUBPw4vFpl8+y5C4kRfCNp3bjM/e+js5+v6ahEEtlkRvfWnQeAOA/X96Hf3xwC1Y8uRN9wyFNX38CKfdjaTlyGicHAnA5BMyaVB537ZkkGAyipaUFDQ0N9DZRFNHQ0IBt27YldIzOzk4MDCihl76+PmzZsgVTp041ffyaNWtQVlZGfyZNmjSyN8EZFQg85p8yZ4z4n8OI/5zJFZgzWbGe9K5/IvQay18X8yeJW6VeJ53cR7j0nCqcP64YX5ilWDceXZtcNtuffT0A6BsK0Qz9y89X459VRbE9CxZOHQuPU0R7zzC2ftyN1qg7/5wxxTQJ7vRQCL1DQepqHgqGcfCkcsGdFc1Cn3e2Iv5vHTpFKxjOMnH7s6IWYibV0aE8UdEm/675vw9x7yv76UZBlmU8/lYbAOB/W47CFwjjB398D+tbjkIUgB9fOwM1ZV4UuK3r/HuY8scqxisyZVwJTYgkrn8S+nDoxH//iQHLpL+th7rQcP9mNNy/GR+fMu4M+V8vf4hN+0/iRJ8fj235hOZwGFkZKy6bjAnlBegdCmF/xwDeOHAKX1+3i/5teZhwSa1O/B2iQDeJMyaUUW9Srujq6oIkSaiu1na0rK6uRkdHR0LHOHz4MK644grMmjULV1xxBe644w5cdNFFpo9ftWoV+vr66E97e7vpYzkcglrnz8U/WTIm/iNNFkqWs8eqglZ/VgUVvT+1HtOIgGr5MzF/nfjTeL9BC9yKIjf+2vT3uOOq8wEoCV8soqBsGqZFk8BWv/gBve9wj2L1jyvx0PsBtcafpdDtxN9NUbL1v7v+XQTDEcyYUIoLxpfQmP87R05j3n9twtJHt2IwEMb7x/oRkZXWx6QPwvyzqwAAH3UOIiTJ8JiU+QGKa5o08Xn5PaVqQorIOBL1GBCLn5TavXHgFNZu/hi/234YgJLwdiCaaDcUlPDLv3yEP+45BkEAfrN8Dr566VkA1MqGtq5Bw0533UzMnw2JXMK4w4uj4k9i6sT9V1dZiFKvE0EpQjdCBKVFcgB7j/bhW8/sQTiidC6845l3NIl5APDU1k+xbuun9Pdndh6hYROjC43X5cDvvzEfa5ZehP/+8myUep1oOXway5/YGb1f/aoR7xGgeASumjaO/j43C/H+bDBv3jy0trbi3XffxXvvvYd/+Zd/sXy8x+NBaWkpfvvb3+LSSy/FVVddlaWVcuwM+S7yOv/kyYj4J5IslG7GlxWgcdG5+Ncrz8OE8gJ8YVYtqorc+PiUD4+++TH++7WD+MKv3sLOqCegoigB8a8wjo2zeHWWv0MUIAgC7vviLDhEAS+/dwI/eWkf1m7+GH/co8SDJ1cVaXrrVxXFij8ALL5Q6RhH+sb/8/yzIAgCnSbY71fq4Vvbe3H771rwh+hkw4smqsONasq8uHfpRTgnujmad3alaSa5IAj41sJzAQD/vekjvLavE5f/7HX8eouSd0A8DndceR6umjYOn7toPADg5xv341jvMH6/Q3n9kugm4Ym3FS/AZy8ajyunqVbkhbWlmDu5Av5QBD9mNkcE1e3v1myM2Fi4vnujI+r2U5L+lPe/5aMuPL+7Hbs/7cEnpwbxT7/ehvp7XsM1v3pLGQQ1oQyVRW7sO9GPVf9vL4aCSuOdVX98j27a/vWq8zGtpgRDQQm3/34PAGg2biyTxxThxnl1uHb2BDz19XkocjtoPwR2hHJNmRckMnTRhDKNFygb8f54jBkzBg6HIyZBr7OzEzU1xl0M0wUf6ctJBvI94h3+kicj7X3ZZCEAWLt2LV5++WU88cQT+MEPfpCJlwQAfG/xNPr/8kI3fvj5C3DXc+/igdc+inksm0x2sHMQt/+uBWNLPJAiMrZ/opQL6sv8jNC7aEkM6qKJZWhcdB4e2nSQiiDhrKpCTKgogCAoOQFstj9LwwXj4BAFSBEZJR4nvjC7lr43wpyzKrDvRD/+drCL3jZ3slZAvjyvDjfMnYRPuny0O54ZX5lfh9/8rQ3HeofxjaeVLomlXieunl6D2/7uHACKmH/2ovGIRGR09PvRcvg0/mntNpyKduG770sz8a3f70FEVr6cd0a9JARRFHDPdRfhcw/9DX/Z14mrfvkmjp4exrSaEsyYUIZ9x5V4fVWxG26Hen7rWfH3aP90PYy4zphQhq0fd+NnG/cbvke3Q8T02lL8z1fr8f7xPtzy1G788Z1j2PpxN/qGQxgOSRAEoKlhChoXnYdzxxbh28+2QorIOG9cMe7/p9mW5xBQchMeu3kOvvKbHQDUBFJA2QhUl3jR0e/HJYyXSv8ec4Xb7UZ9fT02bdqE6667DgAQiUSwadMmrFy5MqOv3dzcjObmZkhScu2jOaMTXuefOmkXf5IstGrVKnqbVbJQIBBAIKB2NEtnlu91syfgf1uO4u1D3ShyO3DpOVXYFC0ZG1PswXnjilFTqlyEX3k/NpZJRrZawSZvCYLSQIdwx5XnIRKRcbxvGLKszB44NRDAtbMnwON0YGJFAdp7hlFdaizI5YVuXHpOJd4+1I2ll0ygJXJ1lYWYVqPEvx//2ly8c+Q0Vv1xL84ZW4yrp1fjn+ZMjDmWIAg4l6mIMMPjdKDp6in4zvp3AQBfrJ+Ie66bYRiHFkUB9y69CNc/spW67y+sLcXiC2uwcOo4vL7/JK6ZWYvzq2Mt5ak1JfjGFedg7eaP8fEpxZ3+7tE+Wq2gvM8i6s4bX+bVVCmUM7kY/3hhjSYkMJPxfEyuKkTXYBCDgTAuO68KP1s2ExMZj86VpV48+bW5+Lc/7sXxqIfl3LFFWH3NhTTs8rmLxuO5Xe0YCkr4n5vraWgkHp85bwx+/dV63PlsK75Yr/1Mzh5ThI5+P+ZOrsTU6hKsXHQeSgucphvBdDM4OIhDhw7R39va2tDa2orKykrU1dWhqakJy5cvx5w5czBv3jw8+OCD8Pl8dEOfKRobG9HY2Ij+/n6UlcUfz80Z3ZDrkteZ2zwZWyKnmWPHjskA5K1bt2pu/973vifPmzcv5vGrV6+WAcT89PX1pWU93YMB+dE3D8mfdg3KkUhEfn7XEfk/X/pADoUlWZZleTgYlnd80i0/+uYh+Zev7pd/+ep++Zkdh+Xdn/bIkUgk7vF9gZD8f+8dlzd92CEf7vIltbbXP+yU79u4X5Yk89c50NEv//jFD+TTvoDm9kgkktD6UkGSIvJv/vaJvOGdowm9Rmf/sPzavg75hT1H5RO9w7Isy/KRbp/8s1c+lLsHA6bPC4Yl+Q87Dssb3z8hf9TRL/9xT7t838b98qNvHpLf2N9JH7fx/RPyB8e0fw/vHDktf+f5VnnHJ90xxx0OhuW7N+yVf7/9sByWIvJwMCwf6fZZnuf+4aD89LZP5d2fdqf9vA4FwjHH/PjkgPzcziOWazKjr69vxN+RN954w/B7t3z5cvqYhx9+WK6rq5Pdbrc8b948efv27Sm/XqL86le/ki+44AJ5ypQpab0OcM5MNn3YIa/+0/tyMHo9H02M9DogyHJ6e24eP34cEyZMwNatW7FgwQJ6+/e//31s3rwZO3bs0DzeyPKfNGkS+vr6UFpams6lcThnBMQqPpO/I6PhPXI4I2Gk35G0u/2TTRbyeDzweLLj6uRwOBwOh5OBbH82WYhAkoVYTwCHw+HoaW5uxvTp0zF37txcL4XDOaPJSH1EU1MTHnvsMTz11FP48MMPcfvtt2clWYjD4dgbXurH4WSHjJT63XDDDTh16hTuvvtudHR0YPbs2di4cWNMxzAOh8PhcDjZJyPiDwArV67MeE0wh8PhcDic5OFtkTgcTt7AY/4cTnbg4s/hcPIGHvPncLJDxtz+qULaDvB53hyOMeS7keYWHXkFvw5wONaM9DqQd+JPZoDzed4cjjUDAwNnbAtcfh3gcBIj1etA2jv8jZRIJILjx4+jpKSEDsnRQ7oAtre38+5fWYKf8+xidb5lWcbAwABqa2shnqHTzPh1IP/g5zu7xDvfI70O5J3lL4oiJk6MHUxjRGlpKf8jzDL8nGcXs/N9plr8BH4dyF/4+c4uVud7JNeBM9Ns4HA4HA6HYwoXfw6Hw+FwRhm2FH+Px4PVq1fzgUBZhJ/z7MLPd3z4Ocou/Hxnl0yf77xL+ONwOBwOh5NZbGn5czgcDofDSR0u/hwOh8PhjDK4+HM4HA6HM8rg4s/hcDgcziiDiz+Hw+FwOKMMW4p/c3MzJk+eDK/Xi/nz52Pnzp25XtIZwY9+9CMIgqD5mTZtGr3f7/ejsbERVVVVKC4uxrJly9DZ2ZnDFduLLVu24JprrkFtbS0EQcCGDRs098uyjLvvvhvjx49HQUEBGhoacPDgQc1jenp6cNNNN6G0tBTl5eW45ZZbMDg4mMV3kT/w60Bm4NeBzJIv1wHbif9zzz2HpqYmrF69Gnv27MGsWbOwePFinDx5MtdLOyO48MILceLECfrz1ltv0fvuuusuvPTSS1i/fj02b96M48ePY+nSpTlcrb3w+XyYNWsWmpubDe//+c9/joceeghr167Fjh07UFRUhMWLF8Pv99PH3HTTTfjggw/w17/+FX/+85+xZcsW3Hbbbdl6C3kDvw5kFn4dyBx5cx2Qbca8efPkxsZG+rskSXJtba28Zs2aHK7qzGD16tXyrFmzDO/r7e2VXS6XvH79enrbhx9+KAOQt23blqUVnjkAkF944QX6eyQSkWtqauT77ruP3tbb2yt7PB75D3/4gyzLsrxv3z4ZgLxr1y76mFdeeUUWBEE+duxY1taeD/DrQObg14HskcvrgK0s/2AwiJaWFjQ0NNDbRFFEQ0MDtm3blsOVnTkcPHgQtbW1OOecc3DTTTfhyJEjAICWlhaEQiHNuZ82bRrq6ur4uU8DbW1t6Ojo0JzfsrIyzJ8/n57fbdu2oby8HHPmzKGPaWhogCiK2LFjR9bXnCv4dSDz8OtAbsjmdcBW4t/V1QVJklBdXa25vbq6Gh0dHTla1ZnD/PnzsW7dOmzcuBGPPvoo2tracMUVV2BgYAAdHR1wu90oLy/XPIef+/RAzqHV33ZHRwfGjRunud/pdKKysnJUfQb8OpBZ+HUgd2TzOpB3I305uWPJkiX0/zNnzsT8+fNx1lln4fnnn0dBQUEOV8bhcLIFvw6MDmxl+Y8ZMwYOhyMms7SzsxM1NTU5WtWZS3l5OaZMmYJDhw6hpqYGwWAQvb29msfwc58eyDm0+tuuqamJSWgLh8Po6ekZVZ8Bvw5kF34dyB7ZvA7YSvzdbjfq6+uxadMmelskEsGmTZuwYMGCHK7szGRwcBAff/wxxo8fj/r6erhcLs25P3DgAI4cOcLPfRo4++yzUVNTozm//f392LFjBz2/CxYsQG9vL1paWuhjXn/9dUQiEcyfPz/ra84V/DqQXfh1IHtk9Tow8nzF7PLss8/KHo9HXrdunbxv3z75tttuk8vLy+WOjo5cL832fOc735HffPNNua2tTX777bflhoYGecyYMfLJkydlWZblb37zm3JdXZ38+uuvy7t375YXLFggL1iwIMertg8DAwPyO++8I7/zzjsyAPn++++X33nnHfnw4cOyLMvyvffeK5eXl8t/+tOf5Pfee0++9tpr5bPPPlseHh6mx/jHf/xH+eKLL5Z37Nghv/XWW/L5558v33jjjbl6SzmDXwcyB78OZJZ8uQ7YTvxlWZYffvhhua6uTna73fK8efPk7du353pJZwQ33HCDPH78eNntdssTJkyQb7jhBvnQoUP0/uHhYflb3/qWXFFRIRcWFsrXX3+9fOLEiRyu2F688cYbMoCYn+XLl8uyrJT5/Md//IdcXV0tezwe+aqrrpIPHDigOUZ3d7d84403ysXFxXJpaam8YsUKeWBgIAfvJvfw60Bm4NeBzJIv1wFBlmV5RH4KDofD4XA4tsJWMX8Oh8PhcDgjh4s/h8PhcDijDC7+HA6Hw+GMMrj4czgcDoczyuDiz+FwOBzOKIOLP4fD4XA4owwu/hwOh8PhjDK4+HM4HA6HM8rg4s/hcDgcziiDiz+Hw+FwOKMMLv4cDofD4Ywy/n9t+ia7gS8a6wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Tick locators and formatters" + ], + "metadata": { + "id": "DlD1KOGxuQBW" + } + }, + { + "cell_type": "code", + "source": [ + "fig, axs = plt.subplots(2, 1, layout='constrained')\n", + "axs[0].plot(xdata, data1)\n", + "axs[0].set_title('Automatic ticks')\n", + "\n", + "axs[1].plot(xdata, data1)\n", + "axs[1].set_xticks(np.arange(0, 100, 30), ['zero', '30', 'sixty', '90'])\n", + "axs[1].set_yticks([-1.5, 0, 1.5]) # note that we don't need to specify labels\n", + "axs[1].set_title('Manual ticks')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 525 + }, + "id": "KVMWW9yztoZ1", + "outputId": "db77f95d-873b-4bd0-881a-8ce29e2955e1" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Manual ticks')" + ] + }, + "metadata": {}, + "execution_count": 23 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA97RJREFUeJzsnXd4HNX5tp/ZrrKrVZdlS7bl3hvG2BjbxKaFkgAhtCSQQosJhPBLKEmAVAdCyJcQWgolhEBiQq822NiY4m7j3ousXld1+3x/zJyzs71oZ4v03telC6wdaY92dmee85bnFURRFEEQBEEQBEEQIdCkewEEQRAEQRBE5kJikSAIgiAIgggLiUWCIAiCIAgiLCQWCYIgCIIgiLCQWCQIgiAIgiDCQmKRIAiCIAiCCAuJRYIgCIIgCCIsJBYJgiAIgiCIsJBYJAiCIAiCIMJCYpEgCCJDEAQBDzzwgKrP8cADD0AQhLh/btSoUbjoootUWBFBEJkOiUWCINLC448/DkEQMG/evAH/rnfeeUd1kZUsUrHWvr4+PPDAA/joo49UfR6CIIYGJBYJgkgLL7zwAkaNGoVNmzbh8OHDA/pd77zzDn7xi18kaWXqEmmt/f39+NnPfjbg5+jr68MvfvGLkGLxZz/7Gfr7+wf8HARBDB1ILBIEkXKOHTuGTz/9FI888ghKS0vxwgsvpHtJGYHJZIJOp1P1OXQ6HUwmk6rPQRDE4ILEIkEQKeeFF15AYWEhLrzwQnzta18LKRY/+ugjCIIQFB07fvw4BEHAs88+CwC4/vrr8dhjjwGQav7YF6O3txd33nknqqqqYDQaMWHCBDz88MMQRdHv9wqCgFtvvRUrV67E5MmTkZOTg/nz52PXrl0AgKeeegpjx46FyWTCkiVLcPz4cb+f//jjj3HFFVeguroaRqMRVVVVuOOOO/yieNHWGqpmsa6uDt/97ndRWVkJo9GI0aNH45ZbboHT6Qz52h4/fhylpaUAgF/84hf8OdjvDVez+K9//Qunn346cnNzUVhYiEWLFmHVqlUhn4Px3HPPQafT4cc//jH/3ksvvYQ5c+bAbDbDYrFg2rRp+NOf/hTx9xAEkdmou4UlCIIIwQsvvIDLLrsMBoMBV199NZ544gls3rwZc+fOjft33XTTTaivr8fq1avx/PPP+z0miiIuueQSrF27Ft/97ncxc+ZMvP/++/jxj3+Muro6/PGPf/Q7/uOPP8Ybb7yB5cuXAwBWrFiBiy66CD/5yU/w+OOP4/vf/z46Ojrw0EMP4Tvf+Q7WrFnDf3blypXo6+vDLbfcguLiYmzatAmPPvooTp06hZUrV0Zdayjq6+tx+umno7OzEzfeeCMmTpyIuro6vPzyy+jr64PBYAj6mdLSUjzxxBO45ZZbcOmll+Kyyy4DAEyfPj3s8/ziF7/AAw88gAULFuCXv/wlDAYDNm7ciDVr1uDcc88N+TN//etfcfPNN+Pee+/Fr3/9awDA6tWrcfXVV2Pp0qV48MEHAQD79u3DJ598gttvvz3q30sQRIYiEgRBpJAtW7aIAMTVq1eLoiiKXq9XHDFihHj77bf7Hbd27VoRgLh27Vq/7x87dkwEID7zzDP8e8uXLxdDXc5ee+01EYD461//2u/7X/va10RBEMTDhw/z7wEQjUajeOzYMf69p556SgQgVlRUiF1dXfz799xzjwjA79i+vr6g51+xYoUoCIJ44sSJqGtla7j//vv5v7/1rW+JGo1G3Lx5c9CxXq835O8QRVFsaWkJ+l2M+++/3+/5Dx06JGo0GvHSSy8VPR5P2OcYOXKkeOGFF4qiKIp/+tOfREEQxF/96ld+x99+++2ixWIR3W532LURBJF9UBqaIIiU8sILL6C8vBxnn302ACn1euWVV+Kll16Cx+NJ6nO988470Gq1uO222/y+f+edd0IURbz77rt+31+6dClGjRrF/806tS+//HKYzeag7x89epR/Lycnh/9/b28vWltbsWDBAoiiiO3bt8e9dq/Xi9deew0XX3wxTjvttKDHE7G/CcVrr70Gr9eL++67DxqN/y0h1HM89NBDuP322/Hggw8GNeNYrVb09vZi9erVSVkbQRCZAYlFgiBShsfjwUsvvYSzzz4bx44dw+HDh3H48GHMmzcPTU1N+PDDD5P6fCdOnEBlZaWf0AOASZMm8ceVVFdX+/27oKAAAFBVVRXy+x0dHfx7J0+exPXXX4+ioiLk5+ejtLQUixcvBgDYbLa4197S0oKuri5MnTo17p+NhyNHjkCj0WDy5MlRj123bh3uuusu3HXXXX51iozvf//7GD9+PC644AKMGDEC3/nOd/Dee++psWyCIFIIiUWCIFLGmjVr0NDQgJdeegnjxo3jX1//+tcBwK/RJVzkLNnRRyVarTau74tyk4zH48E555yDt99+G3fddRdee+01rF69mjfheL1eVdabaqZMmYIJEybg+eefx7Fjx4IeLysrw44dO/DGG2/wWtELLrgA1113XRpWSxBEsqAGF4IgUsYLL7yAsrIy3hGs5JVXXsGrr76KJ598Ejk5OSgsLAQAdHZ2+h0XGA0EwgvLkSNH4oMPPkB3d7dfdHH//v388WSwa9cuHDx4EM899xy+9a1v8e+HSsfGmj4uLS2FxWLB7t27415PPCnqMWPGwOv1Yu/evZg5c2bEY0tKSvDyyy9j4cKFWLp0KTZs2IDKykq/YwwGAy6++GJcfPHF8Hq9+P73v4+nnnoKP//5zzF27Ni4/xaCINIPRRYJgkgJ/f39eOWVV3DRRRfha1/7WtDXrbfeiu7ubrzxxhsAJCGn1Wqxfv16v9/z+OOPB/3uvLw8AMHC8stf/jI8Hg/+8pe/+H3/j3/8IwRBwAUXXJCUv41FHkWFHY8oiiEtY8KtNRCNRoOvfvWrePPNN7Fly5agx8UA6x8lubm5MT0HAHz1q1+FRqPBL3/5y6AIaKjnGDFiBD744AP09/fjnHPOQVtbG39M+f/sb2Bd2A6HI+paCILITCiySBBESnjjjTfQ3d2NSy65JOTjZ5xxBjfovvLKK1FQUIArrrgCjz76KARBwJgxY/DWW2+hubk56GfnzJkDALjttttw3nnnQavV4qqrrsLFF1+Ms88+Gz/96U9x/PhxzJgxA6tWrcLrr7+OH/7whxgzZkxS/raJEydizJgx+L//+z/U1dXBYrHgf//7n19NY7S1huK3v/0tVq1ahcWLF+PGG2/EpEmT0NDQgJUrV2LDhg2wWq0hfy4nJweTJ0/Gf/7zH4wfPx5FRUWYOnVqyPrHsWPH4qc//Sl+9atf4ayzzsJll10Go9GIzZs3o7KyEitWrAj5M6tWrcKSJUtw3nnnYc2aNbBYLPje976H9vZ2fOlLX8KIESNw4sQJPProo5g5cyavEyUIIgtJYyc2QRBDiIsvvlg0mUxib29v2GOuv/56Ua/Xi62traIoShYwl19+uZibmysWFhaKN910k7h79+4g6xy32y3+4Ac/EEtLS0VBEPysYbq7u8U77rhDrKysFPV6vThu3Djx97//fZD1DABx+fLlft9jNj2///3v/b7PbH1WrlzJv7d3715x2bJlYn5+vlhSUiLecMMN4s6dO+NaK0LY3Zw4cUL81re+JZaWlopGo1GsqakRly9fLjocjrCvoyiK4qeffirOmTNHNBgMfr830DqH8fTTT4uzZs0SjUajWFhYKC5evJjbG4miv3UOY+PGjaLZbBYXLVok9vX1iS+//LJ47rnnimVlZaLBYBCrq6vFm266SWxoaIi4VoIgMhtBFCPkMgiCIAiCIIghDdUsEgRBEARBEGEhsUgQBEEQBEGEhcQiQRAEQRAEERYSiwRBEARBEERYSCwSBEEQBEEQYSGxSBAEQRAEQYQl40y5V6xYgVdeeQX79+9HTk4OFixYgAcffBATJkyI6ee9Xi/q6+thNpvjGnlFEARBEAQxlBBFEd3d3aisrIRGEz5+mHE+i+effz6uuuoqzJ07F263G/feey92796NvXv38jFZkTh16hSqqqpSsFKCIAiCIIjsp7a2FiNGjAj7eMaJxUBaWlpQVlaGdevWYdGiRUGPOxwOv5mjNpsN1dXVqK2thcViSeVSCYIgCIIgsoauri5UVVWhs7MTBQUFYY/LuDR0IDabDQBQVFQU8vEVK1bgF7/4RdD3LRYLiUWCIAiCIIgoRCvby+jIotfrxSWXXILOzk5s2LAh5DGBkUWmkm02G4lFgiAIgiCIMHR1daGgoCCqZsroyOLy5cuxe/fusEIRAIxGI4xGYwpXRRAEQRAEMXTIWLF466234q233sL69esjFl0SBEEQBEEQ6pFxYlEURfzgBz/Aq6++io8++gijR49O95IIgiAIgiCGLBlnyr18+XL861//wr///W+YzWY0NjaisbER/f396V4aMQjZeqIDS//wET460JzupRAEQRBERpJxYvGJJ56AzWbDkiVLMGzYMP71n//8J91LIwYhq/c24UhLL97c2ZDupRAEQRBERpKRaWiCSBXddhcAoLXHEeVIgiAIghiaZFxkkSBSSZfdDYDEIkEQBEGEg8QiMaShyCJBEARBRIbEIjGk6eqXxGJbjxNeL5VAEARBEEQgJBaJIU23nIZ2e0V0ysKRIBi0gSAIgiCxSAxxuuw+gUipaELJpmPtmPbA+3hh44l0L4XIEo629GBPvS3dy8hqfvrqLlz118/gdHvTvRRCAYlFYkjDIosA0NpNYpHw8ebOevQ6PVi7vyXdSyGyAFEUceVfP8dlj38KWx9lKRLB6xXx0uZafH60HbvqSHRnEiQWiSGL2+NFn9PD/91CkUVCwfbaDgBAc7c9zSshsoFepwct3Q443F4cbulJ93Kyko4+Jzxy6ceBxu40r4ZQQmKRGLIoo4oA0EKRRUKm3+nBvgbpZtXURWKRiE5Hr5P//4m23jSuJHtRbtj3N3alcSVEICQWiSFLoFhs7XGGOZIYauyqs/EIR0u3g/8/QYSjo893/Tje1pfGlWQvyg37foosZhQkFokhi7K5BaAGl6FAZ58TF/75Yzz8/oGIx2072cH/3ysCbfTeIKLQoahTpMhiYiivwfsbumiiWwZBYpEYsgSKRUpDD37WHmjGnvou/H3DUdhdnrDHbVeIRQBo6qL3BhEZZRqaIouJobwGd9ndaKQSkIyBxCIxZOnqD0xDkyAY7Ow6JdVB2V1ebD7eHvIYURSx7WQnAECvFQBQkwsRHWUamiKLiRG4YadUdOZAYpEYsrBRfyX5BgAkFocCu+o6+f+vPxjaEqfeZkdLtwM6jYB5o4sBUGSRiI4ystjZ5yL7nAQIEosNJBYzBRKLxJClS25wGV2SB0BqcKGJHYMXj1fEnnpfh+X6g60hj9t2QkpBT660oLo4FwB1RBPR6QgQhyfaKboYL6wbemxZPgDgAHVEZwwkFokhC4ssjiqWxKKHRv4Nao629KDP6YFRp4EgAAeautFoCxaB2+UU9KwqK8rNJgCUhiaio0xDA1S3mAit3dJruHBsCQBKQ2cSJBaJIQurWSzON8KaqwdAqejBzBenpIkQ00cUYPrwAgDAx4eCU9HMjHtWdSHKLUYAlIYmosPEokkv3VZPtFJkMV5YZHHReEksHmnpgctDY/8yARKLxJCFRRbNJh1K8iVRQCP/Bi9sfNi04VYsGl8KAFh/yD8V7XB7sKdOSn3NqraijItFiiwSkenola4n0+SNCEUW48Pl8aJdrvucPsIKs1EHl0fE0RYS3ZkAiUUiqzna0oN/bDgW0QYlHMyU25Kj500uNPJv8MLF4ggLF4sbDrX4GW7vqe+C0+NFUZ4B1UW5KJPT0BRZJKLBIoszq6wAqCM6XtrkoQhajYCiXAMmVJgBZMYkF6fbi0v+sgE3P7813UtJGyQWiazm12/vw6/e2ovVe5vi/lnms2gx6VAqiwLyWhycuD1e7JWbW6YNt2JmlRS56OhzYbcsIgFfveLsaisEQUC5RXpftPU64KZ0GBEBJhZnVRcCoMhivLBrb0m+ARqNoBCL6a9bPNragy9O2fDenkYcHaJzv0ksElkNGzafSJqQRxZNeoV9Do38G4wcaelFv8uDPIMWNSV50Gs1WDBWssVRWugwM252wy/OM0CrESCK9N6Iht3lQW370BRI/U4P7C5pM8Eii609DvQ43BF+ilDS0iNdw0vNUunHRCYWG9IfWWxX2CKt2d+cxpWkDxKLRNbS7/SgrrMfQHAnYix0hahZpMji4ISloKcML4BGIxlts1T0x4q6RWUnNABoNALKzFS3GAvLX9iGsx5ai0NN6Y8EpRp2/dFpBAwrMKE4T9p8Uio6dlgndKl8LZ44zALAFxBIJyQWSSwSWcxxxYW4MwEDXBZZNJv0/AJF3dCDk12nOgH4mg8AYNE4SSxuO9mBbrsLzV121HX2QxCA6bJYBIAyC6tbVE8s7jplwxm//RArt9Sq9hxqIooiNh6TJuJsr+1M72LSABOL1lwDBEHASNmf8wSlomOG1Yuzjfv4cimyWG+zp93gXGm4vulYe9Co2KEAiUUia1F2ycXrjyiKIrrkn7Hk6HjqI5PFYnO3Hd95djNe3HQy3UvJOlhkcfoIn1isKsrF6JI8uL0iPj3Sxkf8TSg3I9+o48eVs8iiilHnD/c3obHLjjd21qv2HGpSb7PzlOvJISiQ2Ga1ULbgGil7t5JYjB2W1WHX4oIcPYZbcwBInqjppE0hFt1eMez0p8FMxonF9evX4+KLL0ZlZSUEQcBrr72W7iURGYqy0Djenafd5YVb7oI1m/Q+65wMFov3v74Ha/Y34w+rDkIUadJMrLg9XuyV656mKiKLALBonOTntv5gi5+/ohJmn9OsYmSxrkMqpziZpTV/BxWpwhNZ+jcMBJamLJTTz77IIqWhYyVQLALgTS7pnuTCzi+bFb9m39BLRWecWOzt7cWMGTPw2GOPpXspRIZzVGF6G2/NIksjaAQgz6BFidnX4JKJI/9W7WnEu7sbAUiC9gh5j8XM4ZYe2F1e5Bt1GC1HfBg+v8UWbD/RCUDyV1RSblY/DX1KFot1Hf1Z2XWtjPxks0Bq7XEkZMPVKV9/WGSRTYU6nsWvRaqJJBb3pblukYnFpRPLAQBrDzT7WW4NBXTRD0ktF1xwAS644IKYj3c4HHA4fNGgrq70d04RqUEpFuOtWfQZcushCAKK86QLFBv5VyRHCDKBbrsL972+B4DkQebxivj8aBufn0pEhk1umTrcwptbGGfUFEOvFVDb3o/6TkkMzg4UixY28k+9qPOpTika5/aKqO+085nU2cJBP7GYnZHF+s5+fOkPH2H6CCv+e9P8uH62vZeloQMji9n5WqQDltVh9eOAryM63U0uTCwum1yOT4+0oqPPhe0nO3DaqKK0riuVZFxkMV5WrFiBgoIC/lVVVZXuJREpQBRF/zR0nDWLtn5myC3tlww6TcaO/Pv9+wfQ2GXHyOJc3LioBgDw+dG2NK8qe9h1ik1uKQh6LM+ow2kjpQu+xyvCbNKhpsRfhJepPPLP4xXR0OmLWmZjNEopFm39Lh5pyyY+3N8Mu8uLw83x++ixzAZLQ7PIYoPNnlCkcijCfRbNSrHo64hOZ+kNE4tlZiOWTCgDIL1fhhJZLxbvuece2Gw2/lVbm9puwrYMExZDhdYeJ+9mBoAehxtOd+zpOx5ZNOr59zLRPmfriQ48//kJAMBvL52GJXLa9POj7VS3GCO+yS3WkI+fJc+hBSSPvMDoI48sqpSGbuqy8/pZIPtq/jxekQssnfzaZWNEbYM8J7zfOfA0tDVXD4tJ2ohmax1qKul3etAtN0gp09A1pXnQawX0ONy8VCMdMLFYlGfA0kmSWBxqdYtZLxaNRiMsFovfVypo7XHg/P+3HgsfXJvQxYUYGCyqONyaA0G+t8cTXfSN+vNVYviMuTNDLDrdXtzzyhcQReBrc0bgzLElmFFlhVGnUb1usbXHgWWPrMOfPjik2nOkApeiuSVUZBHwWegAwc0tABRTXJxxbUhihXmFMk5mWWSxtr0PdpcXRp0GM2TLoWyLjnrkjngA6Hd54t6Itff5p6EFQcCoErlusTW7Xot0wK65Rp0GZoUTgV6rwZhSKdKfrlS0KIo8clyUZ8Di8aXQagQcaOoeUib0WS8W00VxngHddjf6XR6sP5SdbfROtxdPrTuCfRngkB8vrF5xTFk+LCZpN2/rjz311aWoWWRk2si/p9YdwcGmHhTnGfDTL08CAJj0WsyWBY2aqegP9zXhcHMPXt1+SrXnSAWHmnrgdHthNukwsih0HeDkYRYezThtZLBYLMzV8y5INWaHn+rwv+Fk25g4loIeW5aP0bJAyjb7nC9OdfplKhxxbgp8kUVfrXN1EdUtxkqzorlFEPwj+5Nkc+50zYjudrjh8kibh6I8A6y5BsyRrxNDyaCbxGKCCIKAc6dInVGr9sQ/lzgTWH+wBSve3Y9fv7033UsJIlqn2TFZLNaU5PHUTzxNLspRf4xMGvl3pKUHj645DAC47+LJvBYKkJoyAHATZDXYKdf5NXU5sjrdvauuEwAwtbIgKL3M0GgE/PmqWbjngok4a1xJ0OOCIKBMxY7oU+1SZLFcro3MNqHFxOL4cjNGscaONERcTnX04YonP8V7smtAPGxQTPEB4k9F+2oWfdcTVrd4op0ii9HgzS2KFDQj3TOi2+X7Qa5BC5NeCwBYOnHo1S1mnFjs6enBjh07sGPHDgDAsWPHsGPHDpw8mXlGxOdNqQAgGepmo91FW6/0AU1nLUgo/vX5CUy+772IUS2Whh5TmocCeTffEYdYZIbcZpMyDZ05NYtPfHQETo8Xi8eX4pIZlX6PnVEjNWR8frRNNSG3U57C0e/yZPV821Bm3KGYP6YYNy0eExTVYKjptcjS0GeOkYTqyfa+rBLoB5qkz+L4cjOquRl16gXSB3ubsPl4R0Km9R8fDhCLcTaldAR0QwPUER0PvLklP/PEYpuiXpHB6hY/P9KG3iy+PsZDxonFLVu2YNasWZg1axYA4Ec/+hFmzZqF++67L80rC2buqCIU5RnQ2efCJhWjPGrR65AuiE1d9oy5OX12pA33v7EHDrcXr2yrC3scm94yuiQf1hwWWYw9IuiLLPrEYiZNcamXBcRls4cHCZgZVVYYdBq0dDv87IOShd3l8bswq9UFnAp2cducyGIxGsxrUQ37HLZZO310EbQaAf0uT0ZsWGLlEI8s5vsii2kQSOymrpzjGwu9Dje2n5QM2dlHLZ4OZqfbyzdUSrHIaxazrH4zHYTyWGRMkjuij7X2wuFOfX8AG/VXrBCLY0rzMbI4F06PFxsCNhqDlYwTi0uWLIEoikFfzz77bLqXFoRWI2CZvMN4f0/8qY90w3ZEdpcXXfb0747qOvtx67+38RT01hMdcIWI2Lo8Xt5hWFPqS0PH0+DCahYtOYqaxQya4uKbWx1shSrVLVoBqFO3uKfe5lcGoObkEjVxur3czDdaZDEa5dw+R4U0tFyzOKokD5VWSZRmS92iy+PFkRZfZHFkkSSQmrsd6HOm9prCykfiFYsbj7XB5RFRVZTDrwHxRBbZJlUj+F9PWGSxrqNflcaowURLCI9FRrnFiIIcvV/XfSoJnM4DSKUpX2Kp6H3ZWYYWLxknFrONcydLqehVe5syJjoXKz2Ki3m6BYHd5cHNz29FW68Tk4dZUJCjR5/Tg91yGlHJyfY+uL0icvRaVFhMsPI0dPyRxUxNQ3eHaMBRwuoWPz+a/Ij2jlr/11xNM2o1OdjUDafbC4tJx5sNEqXMwmoWk/taeGUTbgAYUZjDxVa2TEE50dYLl0dEnkGL4dYcFOTqUSALplRbxrTLZTXxisWP5XrFhWNLkWOQatLiiSyy8peCHD20irrY0nwjcg1aeMXgJibCn0iRRUEQuDn3/obUp6Lb+4LT0IBvmsua/S0ZOfUr2ZBYHCALx5Ug16BFg83OJ0WEIhNHA/U5fBfEdKYaRVHEva/uwq46Gwpz9Xjqm3MwV3bGD5XeP8ZT0HnQaAR+c4qnwYXVLPo1uMgj/9p60z/yL1QDjhKfWEx+3eIXpzr9/q3mmDs18fkrFoStRYyVcos6DS4tPQ44PV5oNQIqLCYejcoWb74DjVKkZ2y5mTcQpSsV3SZHFvtdnrgaVFhzy1njSpAjNzD0O2OPBHaE6IQGJJEzktdwZsf5TBeRGlwAX0f0J0dSn/JtD5GGBqSykXyjDq09Dn6tGcyQWBwgJr0WSyZIPm3hUtHNXXYsemgtrn9mUyqXFhVlYa7agsDjFfHkuiN4esMx7K7zT3P+87MTeGVbHTQC8Ng1s1FVlMubOEKJxaOt0g2qplS6ELPJK50J+CwqI3eBI//ShSiKEdPQgGQerVbdImtumSxfoLO1ZpFdwAdarwhIkxsAoDnJrwWrV6ywmKDTarhYzJY0NOuEnlDum3qTriYXZUSxPcYsQ6PNjkPNPRAEYMGYYhiZWIwnshgiTclgdk1UtxiZSA0uAHDJTKnJ782d9WiwpbYhk21CAs+vQafhFjrZaD8XLyQWkwDril61N3Ttwu/e24+6zn58dKAloya+KLtcm7rVFYtr9jfjd+/uxy/f2ouLHt2AGb9YhW89vQkr3tmHX70lWffc++VJWDBW6gg9fbQsFo+3B0VlWXNLjVxAznb0tngii7xm0SfG1B7519rjwO/f3x/VyNXh9sIp12qGE4tq1S129jm5UFk2WUqzNKv83lALVsIQzow7HnhkMcmvBUtPDi/MAQBUFzGfwuwQF0rbHEa6IovKz2xHjKlo1pwwfXgBrLkG5OilW2IiaWhWO61kZAl1REdDFEUuFsvCRBZnVxfi9NFFcHlEPL3hWCqXxyPHgZFFwBcJbYuz9CEbIbGYBM6eWAa9VsDh5h5e7M3YeqLDr6t3hxy1yQR6/WoW1RWxLK1WmKuH2ahDj8ON9Qdb8NT6o3B7RXxlZiW+u3A0P37yMAvyjTp0291BZqxcLMrO/gXyRTqxmkX/C7yadYsvfH4Sj609gr9/fDTicUzICgKQZwgtFgF16haZv+Ko4lyMl6NFar831MDp9vL6punDrQP+fazBpbPPldRZvyyyOEIWiyPT6FOYCAdCiMV0mFE73f5NerHevNmIv4Wyv2ZOIpHFMGloQOG1mCXiPx10O9zcBD1cZBEAblk8BgDw740n4woMDBT2Xgp1fotlb95462SzERKLScBi0mO+7JGmTEV7vSIeeGMPAPDC522yRUMm0OtXs6hu9Ig10Fw6awR23H8u3r5tIR64eDIunDYMl80ejt9dNt2vrkyn9YX4NwaIIZZ25WnoOGsWPV6RR1UtAZE7NTuiWSqqNcqFhQnZfKMurJE0oE7dIktBz6iyqhZNSwUHm7rh9HhRkKNHVVHOgH9fQY4eBp10uUzmRoJ5LI4olAQWE4udfa6U3hATwe7ycEHIvPAA+Or0UmhGHbhRjCWyKIoiNhyWovILx0qlRAk1uERKQ5PXYlTY58ls1PHXPxRLJpRiYoUZvU4P/rXxRKqW57POyQ8+vyVy6VImZQzVgsRikjhPnubyvmKay8qttdhVZ4PZqMMPl44DAGw/2Rn1d9ldnpQ0WKSyZrFR/v0VBUZoNQKmVBbg+jNH47FrZ+ORr88MeZHgqWhF3WKX3cWF3OjANHSMdYY9ighEUGTRrF5kkaUcu6KsM1pzC0ONukXW3DJjhNXnLZiFU1x89YqWATe3AFKzAosuJjMtzyOLVknQ5hp0PLWV6ZM/jrb0wuMVYTHp/NKHo9JgGdMWMHUplsji/sZutPY4kKPXYvZIKwDwCR3xNMiwNLQ1RBqaRRZrO/qycnBDKojUCa1EEATcLEcXn95wLKkR/ki0c1Pu4PWxDmlKQxMxc87kcgiCFJlptNlh63fhofcOAABuXzYO58hicmdtZ8TO6N11Nkx/YBV+884+1dfsLxbV3Rk12qQbLItWxQJvcjnezsUKS0GXmo1c6LGLdI/DHdPNiaV5TXoNjxYx2Mg/dWYAS8IgulgMni4TimTXLYqiyG1zZlRZ+dSSfpcH3SpPKTjY1I2VW2rx8PsH8IMXt+Mrf5HqWs96aE1Cu/ZkNrcwys3Jt8+pkzcQLA0N+JoiMj0adahZbm6pMPsJ8lKzETl6yTKGRU7Vhk2jYsQSWWRd0PNqimDUSSLRNIA0dFGINGWFxQSDTgOXR0SDLfsi9KmAbf4jpaAZF00fhuHWHLT1OrFyq/pz6x1u3wSrUOeXRRsDNyuDERKLSaLMbMLsailtumpvI/70wSG09Toxtiwf1y0YhXFlZuQbdeh1enAgwtii17bXwenx4r9bakMaUieTXsXuublb3SkuLHJZEYdYnDbcCpNeg/ZeJzdjZWP+WHMLIEUH2b0qluhiVwQPQ3bBau1O7off6fby6Go0A/RondBK+JzoJNQt1tvsaO1xQKcRMKXSApNey9P0avpwHmjsxrl/XI8fv/wF/rL2MN7cWY+dp2yw9btQ296PdxKY9ZvM5hZGsu1zRFHkG4jhCrFYnSX2Oew6Nk5RrwgwyxgmeFMTHQ2sGYsl0sNG/C0c65sHzmoW7a74rXOsIcSERiNQR3QUYo0sAlJ50g1nSbXtf1t/VPVoLRvjqNUIfs2QDHa/CNysDEZILCYRlor+52cn8M/PjgMA7rtoMvRaDbQaATOqpBvX9trwdYvMILbb7sbWE+rVN4qi6BdZdHnEuGYrx/tcLBoTT2TRoNNwAb5RTkUHNrcA8gfZxKa4RL9JRBJjao38q+/sB9Pi0QRtNENuJcmsW2T1ihMqzDzCws6Xmk0um49L57bCYsK186px75cn4qlvzsF3zpRuCmv3N8f1+5TNLckUi+y9kazIYmuPEw63F4IADCvwiUWWujyuwijHZHJQngk9IUAsAqlvcmntia9m0eH2YNMxKRp/1rhS/n2fWIxngov0eQ00bWZkmx1SqolHLALA1+dWoTBXj5PtfXg3gY1kPDARWJhrCFnOws55e68zqcGW4629GVe2QGIxiTALncPNPXB7RZwzuRyLxvsuREz4bDvRGfLnG2123l0IAGsPxHeTjAeH2wu3nA43yXYRatUtdtndPK1TURC7WAR8dYtMLB6Tb6BjSvP8jmO2FbE0uYQy5Gao1eDCIkjs+SNdWELNrQ4Hq1ts7nbgowMtA1qjsrmFwVLRaja5sG73r84ajt9cOg03LhqD86ZU4Mq5VQCATw63xlVDxppbkjG5RYlPOCfntWApWpaqZGRLR3Qo2xxGqhs72gJSmdG6U7ee6IDd5UWZ2ci7/gFfg0s87zc+Di5EzSIADJfrURtT7A+YLcQrFnMNOly3YBQA4Ml1R1TNiIUz5GYwsejyiFEzRh/sbYrqhAFIma8lD3+Eyfe97xfQSTckFpPIyOI8PpbIoNPg5xdO9nt8llxfFi6yuF62cdDJHbAf7R/YzT8SyjchGzGmllhkv7cgR88jVrHia3KRImfMmqgmQCwW8JF/0cVipMiiWtY5ynFfbq8YsSaKidlYIosmvRZXzBkBAPjBi9sHZA67U25umTnCyr+nRp1eICwKOLHCX3SML8/HcGsOHG4vPo1jcsNuRb1iMppbGL4Gl+S8Ftxj0erfrc0E7skMjkT1Od08Ta4UWwzWEX0yRU067KY+rkxaSzRT7k95F3SJ33sk3ppFt8fLy1pCpaEB37zo7ihiYqgSaS50OK6bPwo5ei321Hdxr0w18DW3hD63Jr0W+UbpPhKttvon//sCv357X5AVXCCs5KowT488Y/SAQaogsZhkvibfuJcvGctrjxizqqTI4tGWXj58Xsn6g5I4vGZeNTSC5GGmVoF4n7xzztFrMcyqbqqRNbfEU6/ImF1dCL1WQFOXA8fb+njdz+gS/xuUzz4nehraZ8gdIrKoMFlNZke6MrIIRE5Fd8VRswgA9188BfNritHjcOM7z27mr3c8eLwidp3yNbcwylROQ4uiyGvfJg4Lrn1bOqkMAPBhHKnoXSrUKwLJr1kM9FhksDR0Y5c9ZR2f8cJuaCX5BhSHuMmnOvXK0tDjZOEaLbJ4TL6OBDZAsSxLrGLR1u/i5SWhuqEB3+e4h8RiSHiDizm0IAtFYZ6BZx4eX6tedDGaWARi81rsd3r445F6FgDgsFzeMa4sOGKfTkgsJpnvnDkaa/9vCW5bOjboscI8A7d72R5gzu3xinyHdMmMSp6yjrdeK1ZYh1eeUaeIHqkbWWQpzXgw6bWYIUe6XtteB7vLC71WQFXADZZdqGNpcImU5mUf/GSP/FNGFgGgqz/8jSOcYXg4DDoNnvzGHIwty0eDzY5vP7vZbzpPLBxp6UGv04NcgxZjy3xCnFmiqJWGruvsR7fDDb1WQE1JcITq7ImSWFy7vznmG8JuFTqhAV9kMVmfkzouFv03ldZcPRcYmdrkwptbwtzQRvHIYl9KbMDa5doy1mzT2eeM6DrRzK28/Dew8dYsskyG2aSDXhv6dppvlD7H0dKUQxWehs6PL5hww6IaGLQafHa0DW/valBjabz2NaJYlB8LrJtVorTbOtTUE/Y4wOcyoLwOZwIkFpOMRiNgdEle2PQXT0UHNK/sqrOhs88Fs1GHmVVWfpP8SKW6RZaGzjdq+U2wUWWxmEhkEZCsLQDgv1tqAUhpOl3AhbmQp6FjiCxGqFnUa30j/5KZig6MLLLoZihitc5RUpCrxzPXz0VJvgH7Grqw/IVtcRVIs8lCU4cXcAN5IPl1eoGwFPSY0vwgGyMAmF9TjBy9Fg02O/Y1RN6RA4DL48W+xuQ3twC+KGuX3R1XTVs4Akf9Mfy7iTNTLB6SI4sTKkKLxWEFJug0gp8LgJqw7mdWy+wVI28c2ZrKAzaw8YpFlsmIJCbY57g7wmd+qOL1ilxkxVqzyBhuzcH3z5Z8Fx94Y68qJvZtEQzXGcx/MVJHtLJ05WBTlMii/NkisTjEmSVHDAMjiywFvWBsMXRaDc6eIInFTw63qZKKYrY5uQYdvwmqVZfWGGYXHyunj5Y6fplPmbITmlEQxxSXaNY0JSo0uTCxqNdKQizShS0e6xwlVUW5+Md1c2HSa7DuYAt+/vqemKNxrLllpiIFDSS/Ti8Q1tAVWK/IMOm1OFO2NlmzP/TsdSUHm7rhdHthNum44EoWZqOOi4lkGHP7prcET5hhdcSZOibOZ5sT+oam02r435UKwdsuC44Ki4lnDMKlBZXuDGVm/2uSyRBfzSJ7jnD1ioAiDZ1BzQqZQociAhxqQko0blkyBmNK89Da48CKd5PvTRytwQXwefO2R4gsKrMRTAyGg23ExpFYHNowE+UdJzv90jMfy80trHt60jAzyi1G9Ls8vBM4mfgiizpf9EilVCO/MCcYWZwzstAv2hXY3AL40tCxpI67HeFrFoHkd0Q73B6exmVpu4iRRUf4yGc0ZlRZ8eerZkEQgBc3ncTLMRrXfsHqFRXNLYDvZtrUpY4PJ2vImTjMEvaYeOoWeQq6MrnNLYAU8ePd4QPcWPl5LFpDiMVMjyzKIj+UbQ4jVU0uDrfPNL44z+hnZxIKW7+Lm/cHlsbkxDnBhW1Ow3VCA8rIIonFQFhzS1GeIWwaPxJGnRa/u3w6AOClzbVJGU6gJJ6axUjensqa7+NtvXC4Q7+/+pxufl0I9C9NNyQWU8yEcjNyDVp0O9w4LHf2dtld2CaPAVwke34JgsCji2rULfpqFrU8Pax2zWKiaeh8ow5TK31iQmnIzeAj/2KyzokSWUzyyL+GTjtEUboRjSrJldeQ/Mgi49wpFbjxrBoAku1MNOwuDxdt00f4p27ZzdTu8qpSc7W/0TcFJBzsc7CjtjOqgOfNLSOSm4JmJKu+t6PPxZvMKiOJxQysWeyyu1AvR/kj3dBS1eTCbug62Tg5mlhkQr8wV88ntzDiNeVujzC9hcFqjykNHQwbflCSQFSRMXdUEa6ZVw0AuPfVXUnNxMUiFlkaOtK1SZmZ8Yo+C7hAmI9wUZ4h4nOmAxKLKUan1fAb8ja5bvHTw23weEXUlOShSuELp2bdYq+ywcXiE0eRisITZSDd0AxmoQOESUPLO/tYahbZRTtc5C7ZI/+UXa8sXW6LocElXOQzFsbIKYxYIq17G7rg9ooozjMEpURNei1fc0uSI892l4dfNCdVhI8sVhSYMKXSAlFEVC/JXXWS6E12cwujLElpedbcUmY2hrSTqpbT0CdVSEO7PV6s3tsUk3NAqJ994PU9AKSIaEGE9yiPLKosFtmotaI8yTg5mlj01SsGX49McTe4xJeGzrYZ62rT0iOdi3jrFQO56/yJKDUbcbSlF49/dCQZSwOgGOUYSxo6UmQx4Np5MEyTS6Y2twAkFtMCr1uUo4nrA1LQjDPHlkCvFXC8rY+PuUsWLKqRZ9ChON8IjSDteBKZwxsJt8fLd1zlBYlfEObJdYtA6MiiNY6axa4o3cZ8ikuSRv7VKub/MgEYLg0tiqLCZzFxj63COHwnlWbcoVK3ZUmeXMI43NwDj1eENVcf1GgQyFJ54xSpbtHl8foipCqJxWQ1/IRrbmGwqNypjv6kT3J484t63PDPLXhQnl0fK063F7e9tB2vbK+DViPgZxdOinh8qsbcsfQfs/BhN/ZwG8emCGIxJ06fxc5eNr0lvGhmPnwujwhHDLPrsxmvV8TfPz6K1Xuj1xcDyk7ogYnFghw9fnHJFADAEx8dDmoiEUURXfbIwxAC8Xp9U80iRxajz4dmaehcuSb2cJgml0NNmVmvCJBYTAt8ksvJDoiiyJtbFo0v8Tsu36jjEbW1A5zOEYjSOkerEZI+yozR2uOEV5RG8hXnJX5BOL2mCBUWE6YNLwj5wWU7+9iscyKLsWQ3uJziYjGXRzPDpaHtLt9knVitc0LBaqhsMUSPmL9iYAqakWx/QQZLQU+sMEetL/zSJGmU5scHW3m9WSCHmnpUa25hJMs+x9fcEnqdbKqL2yuivjO5r/veeklQH2uNfQNqd3lw87+24p1djTBoNXj82tm4YNqwiD/DzsHJtj5VI2psg8uaEAqj3Lybw3RCA4DJ4PNZjGXN7TFEFvMMOj67PlKt8mDgzS/q8eu39+GHL22PKUsV7/SWSFwwtQLLJpXB5RFx53934vfv78fyF7bhwj9/jGkPrML0B1bhzpU7Y/59tn4X/xsKI5zfYt4NHT2yyO7nh8I0uWRqJzRAYjEtMPucQ8092HnKhlMd/dBrBb/oGYPVayU7Fa20zgHUEwQs5VNmNvo1qcSLxaTHh3cuxsqb54cUFkwc9TjcYcUEg9UsRmtwSVbNojINHS2yyISsRgDyDPFNu1Fi5Wn56Dcn1nwTTmAlK/UayH7W3BIhBc2YPrwAJfkGdDvc2HI8dMPXrrpOAOo0tzDKk+QcEM6Qm6HRCL75ykluEGHejZF84ZT0Od343nNbsGZ/M4w6Df523Wl8tGkkqopyIQhAt8Ot2tx5QNGxKqcDi6NGFsPPqWeRRVFETFFAlsqPJCY0GgH5hvQac5/q6Is6L3ugON1ePLxKilb3Oj0xbUaSKRYFQcAvvzIVeQYtdtXZ8NjaI3h7VwP21Hfx4Mgr2+qwak9s86TZRsBs0oW09WL40tCOsJ6i7Nq5UHZ2iCYWM82QG8hgsfjYY49h1KhRMJlMmDdvHjZt2pTuJSWNknwjvxH8Zc0hAMBpI4tCjvZhdYsbj7YndU5kr0O2zpGfk3e9JrkujdUrhrowx0ueURd2XKDZpOe790jRRbvLA6ec1ktdZNEXRfLVLIZeI0uR5xt1AxI8LNLRZXdF3eG397KOztA3vDKVTNuj2eYo0WgELJkQuSta7eYWIHmfk3Cj/pT40rjJrfk72S69H2N5f3fbXbju6U3YcLgVuQYtnv326VgcUC4TDpPe1zynZiq6tce/roy9j8NFenxDAsLXLAKx1S0yEVwYIQ0NpLcj+mhLD5Y9sg5ff+ozVQ3S/73xBGrbfX6y7PMYCXbuSgaYhmZUWnPwyJUzsXRiGb5xRjV+duEk/P1bp+GDHy3CTYukpr+fv747pgxULM0tgC+S7RVD14jbXR5eHsVswI639gYFNRxuD/+chLOkSicZKRb/85//4Ec/+hHuv/9+bNu2DTNmzMB5552H5mZ1DKrTAYsufrBP+psC6xUZNSV5qC7KhdPjjamzNVaUDS6AMr2W3OjRQDuhY0WrEXiK19YffgfNInqCAL7bD4TVVrb2OJLSwXhKWbMo3zTCTXDxpcgTT0EDPt9JUYzceQ1ENxbmXotJfm8wk+1ItjlKfHWL4cSius0tgCLKqnJkEQAfF5rMJhdRFFErRxY7+1xwRamHfPyjI9h8vANmkw7/+t48zB8TnP2IhDIVrRZsegsTHCzCGC6SFumapNdqoJMzILF0RLPniBRZBHyf53R4Lf5jwzHYXV4cau7B5jBR+YHSbXfhz2sOA/BdL3bXRZ9Tn8zIIuO8KRX4x/Vz8euvTsP3zqrBssnlGFtmxh3njMfokjw0dTnwuxg8GWMVi3qthl9v20MYc7O/0aDTYEK5GflGHdxeMWgDdby1D15R8nMtS+LrkSwyUiw+8sgjuOGGG/Dtb38bkydPxpNPPonc3Fw8/fTT6V5a0mB1i4zAekWGIAj4Eht5lsS6xV5n6DR0sid1NEWoD0o23GsxBsPrfKMOmjBp8TKzCTUlefCKsVnPRMLh9nABXlWUG0MaemC2OQy9VgOzvBGI1CEuiiK/KIa74anhw9nS7UBrjwOCAIyPcRe9cJzU8HWstTeo4UvZ3JLsyS1K2GvR43AnHOkXRVEx6i+8WGQj85Rei01ddvz946O4+39fJNSM1tHn8hMskYryAeCgXFf64/MmBF2zYoGZi6sZWWwLiCwyK5No1jnhrkmxNrl4FSNBowmK/DRNcenodeJ/23xeq6/tqFPlef728TG09zpRU5KHO5aNB+DzPI0Ec5xIplgMh0mvxe8umwYAeHFTLT49EvnaHoshN4NtUEKVdjQrmng0GoHXIwaO/eOd0OX5qpXRDISME4tOpxNbt27FsmXL+Pc0Gg2WLVuGzz77LOh4h8OBrq4uv69sgEUWAWlHHMk6ZMkEKer40YHY5+NGgze4GAIji+rULJYnOL0lHqwxdAD75kJHjtwt4R6XAxPorDkh16BFYa4+aho61vXFgjUvulF5v8vDa7PCjbRSoxuaTQAZWZSL3DAR3kDMJj2v61259ZTfZ4E3txh1PH2rBnkGLRcTiZYpdPW7uYn0cGv4tbLI4uGWHqzcUotr//45zljxIX799j68tLkW//zsRNzPHThrOlpdLrvRVRaEF7WRqE6BuXhrwE2deR6GEoser8gFSrjSGD7FJYoxd7fdzUs8rBFMuQHf5i/V86H/vekk7C4vX99bXzQkfSJYc7e0gQGkTcVM+d62t74rYtrb5fHyczTQbuhYmVdTjG+cIXky3vPKrojnONomWklxBLsmZjnG7rGs05mJQ8bhDJ3cwsg4sdja2gqPx4Py8nK/75eXl6OxMbgwdcWKFSgoKOBfVVVVqVrqgJg0zAKjXDS7aFxJ2CgXAJxRUwyjToMGmz1pF90+uWaRpaHVGvmXqjQ0oLTPiZCGjtGWxhfNHZhAV6agBcGXKu9xuENeSLkHZM7AIosAYM2RLmCRXg8mrPVaIWxDjbL5KdxrYY+xe5SxvzH25hYlF06XOnCf+OgIbv7XVh5dY1GMKcMtET9LA0UQfM4BiTZAneqU3hMl+QbkRGhiYqL3aEsvfvzyF/jkcBtE0XfT2dsQ/8Y4UCxGE7zsbwycdBIrvuioepFFlvpj0Z0i+b/9Lk+QGGjrlbxkNUL4iFGskUUWsc81aIPMvQPhaegUikWH24NnPz0OALjvoskYVmBCt92d9GbJRz88jD6nBzOqrDh/agXGlubDqNOg2+EOer8pYRFhrUaISZAli7vOn4hhBSacaOvDHz84GPY4noaOwTCcd0SH+DwFjpZk9YjBkcXM7YQGMlAsxss999wDm83Gv2pra9O9pJjQazW8jf5L8jizcJj0Wt4Qw2qdBkpPYM2iWZ2Rf+yDkhKxmBs5agfEbng9d3Qhcg1aNHc7sKc+8Wi1srlFel7p9RZF8OiSkq4k1SwCio7o3vCvh7LmKlzqg4kjhzv0FJe1+5sx8efv8RtTLMQyuSUUV55WhR+fNwF6rYD39zTh3D+ux6o9jb7mFhVT0IwSnnJKUCxGGPOnZERhLo/qjinNw53njMf6H5+N/3flLAC+UYnxUBsYWYzwN3i9Iv8bA2coxwqvWVRxEg0THeyGnWfQwiCPjmsP2Cg12XxpT12Y8XI5MRpzd8TQCc1gXoupbHB5a2cDWrodqLCYcNH0SlwysxIA8Or25KWij7X24sVNJwEA91wwEYIgQKfV8Drk3fXhU9FsI1KcZ1B1gxeI2aTHby6dCgD4+8dHuc9sIFwsxnB+iyKmoVlDlRxZlKceBUUWmzK3ExrIQLFYUlICrVaLpiZ/U8+mpiZUVATbNRiNRlgsFr+vbOF3l0/HY9fMxoVR/MoA30iw+s7kiMXgmkXW1OGMWvQeD0228J2HycZnRB29wcUSJbJo1Gl559pAduLKyCL7vSa99LEL1XiSrJpFwJeWj5SGjmVCgXKKS6iaVlYT9Z/NsW/UWGRx0rD4LowajYDlZ4/Fa8vPxIRyM9p6nbjx+a1YuVV6bjWbWxgDjSzWBWwgwmHQafDGrQux6o5F+OBHi/GDpeNQXZyLyfKN+FRHf9y+fYERvkiCt73PCbdXhCD4onbxwsRia49TleaOfqeHDxhga/Sb4hJw845kyM1gn8+YxWKUTmjAd71JVc2iKIr4+4ZjAIBvLRgJg06DS2cNByCV1iQyvScUD79/AG6viC9NLMMZNb7mJzaeNVKTS2sK6xUD+dLEclwyoxJeEbjrf1+ENL6PtcEFAEoipKGbeWTRPw19rLWX32vdHi+fZkWRxRgxGAyYM2cOPvzwQ/49r9eLDz/8EPPnz0/jypLPcGsOLpw+LKZiViYW65IkFlkamtWLFeYaoNdK60iWv2Cvw1ebVZGCmsWCGKa4RBv1p4TP5h5AYxGzklA2Mvi6ttUVi4W50dPy7OIWreYqXLe8KIr4/GgbAClayKySIuH2eHkKJt40NGNKZQHe+MGZuHnxGAiCr3M1NZFFWSzG6FMYCI8sRmhuYVQUmDC+3N+0vCBXj0r587S/IfQkiHCwCB/fHEaYUsRuckW5BujDROGiYTbpebpXjVR0m5yCNmg1PHoH+OpvgyKLLMoTIVJqijUNHcVySglbW6q6oT870oZ9DV3I0WtxzelSjd7ECgsmVpjh9Hjxzq7YvAYjsbO2E2/vaoAgAD85f4LfY2zTFqnJhZVRRGryUpP7L54Ms0mH/Y3d2B4iuhjo3xkJNj2oLUQ3dBMv5ZDec5UFOcg1aOHyiLys7GR7H5weL3L02qgZh3SRcWIRAH70ox/hb3/7G5577jns27cPt9xyC3p7e/Htb3873UtLG8Ot0hstGZFFp9vLvQZZGlqjEZLup8eaW/KNOr8LuVrwbugIkTRmWROLGGONRdtPdiRsaKuc3sKI1BGd3DQ0q1kM/3p0xjDOCgjfEX2ouccv9cKmEUXieFsfHG7pwlg9gGYUo06Luy+YiP/eNB9jy/Jx2shCXiOnJgOuWQyINifCJDm6GG8qmm1eWGdzpMgiO9cDjfyo2eSivKErBbWv4cD/74vWCQ2A15FGa3CJJw2dap9FFlW84rQRftNlWHTxtSSkov+6/ij/nYGbvqmVslist4WtZV4rW2CdNS42385kU5xv5CbZG+UNr5J4GlzY9TNkGloxmAJAQEe0tNlj9YpjyvJSmpKPh4wUi1deeSUefvhh3HfffZg5cyZ27NiB9957L6jpZSjB09C2gYtFpeWHsqmhLMlei6m0zQEUNYsxRBZjEWOV1hxMrDDDK/rmd8dLKD89FgFVPQ2dw6a4xBJZjHxBDDcO8tMAa6F1MYhFloIeX2FOyoVx7qgirL5jEVbePD8lF9qBmLYfa+3FtpMdAKLXLEYiEbHodHv59SMWsdgSEBFJFCbg1bDPCbTNYfDIYkC9blMMQwLir1mMfi1h15tUjPs70tKDNfubIQjAt88c7ffYJTMrIQjApuPtQfWr8dDW48CqvVJ08oazaoIeH1+RD51GQGefK2Q2zNbn4p8DtilPByx1vvFYsP+kzzon+v2rOD98Gpp/jhTRbFaXyERiJk9uYWSkWASAW2+9FSdOnIDD4cDGjRsxb968dC8prfhqFgce9WOpEJNe41fknewml1jqg5KJNaaaRdbgEpsYW8LHLcYvFu0uD7ce8YssRjDmTpYpN+CrpYoUWeQ1i1HEYrhxkJ8ekXbky9js5kMtIet/lLDU6aQ4m1siIQhCyrzJEo0s7jplw9ee+BStPU6MLsmL2+BaSSJisa6zH6IoiSHWWBQ5suhfa5UoLHqshjF3G48s+q8xbGSxO7o7Q+zd0Gx6SwxpaFPq0tBPy1HFZZPKMbrEP9I+rCAH82WB9MbO+oSf45VtdXB5RMwYUcDfi0qMOi3Gy40coeoW1x9qgVeU6vei1e6qybwaqcl0y/EOv1r9fqeHn/9YalLZBjKwG9rl8fL3qDJowjuiA8RiptYrAhksFgl/hitqFgfqtcgKwvMC/O2S7bXYaEtdJzSgtM5JTmQRAM6Wd73rDrZEHZsXCCsZYB6LjEhp6ORGFlmDS3TrnGg3vPIQAsnjFfmO/JYlNSjI0aPL7sbOU50RfxfrhI5lzF8mkkhkccOhVlz118/Q1uvE1OEWrLx5fsz+kqFgjUEHmrpjfl+yesXqolyeRYg0H7olSWJxVAkbW6hGZNHXUaukMDdMZJE1G0TIdhh5ZDHypifW6S1AatLQHq+IUx19vOHsewtHhzyOpaJf2XYqoXuJKIp4abPUAX3l3Oqwx7H64T0hOqLXyk2DbJxtuhhfZoY1V49+lwdfnPKtM1wtbDhYZLuz3+W3WWafIV2APdC4oDS0bMhNYpEYKOUWEwRBSiWFm3kaK4G2OYxkey02pdCQG/BFFiNZ57BoXqym17NHFsJs0qG914kvooigQJQpaL8GhQjG3Ek15Y7LOify85WFiCzua+iCrd+FfKMOM0ZYcdY4qf5nXZQoLEtDT0iwuSXdlCmEcyw32zd31uPbz25Cr9ODM8cW48UbzhjwLNyRxXnI0Wthd/m6KKPBxGJVUS5//o6+8O4HyapZHCmnodWILIabslGUHzqy2BxDtiNen8VYIosWFXwW/98HB3H+/1uPBSs+xNT738eYe9/BwgfXwu7yYupwC7dmC+T8qRUw6jQ40tKbkC3Y1hMdONLSixy9FhfPCO/kMXU464j2F4ter8hrm5fEOGdcLTQaAfPk12njMV/dIrtmFuWFtxRTIlmPSZZoyqEQzYpxhsoSGZZuPip3RB9plmdCk1gkBopBp+E3qYE2uQTOhWaESzUmCheLKbJGYJHFHoc7aEg7w9dAEltUR6/VYJFcgB1vVzQTi1UBaRZ24whdsxibtU8sFPIGl0iRxdhueDzqrChRYOOyTh9dBJ1Ww+ebrzsUfoxWt93FX5dsjyw63N6oacVnPzmG217aDpdHxIXTh+Hp6+cmpcRAqxF4KjnWVHStIrJYmGuARr65hRuLF6rWKhGYuXi9zZ706SEsMhponMzKKpQbJeVGO6JYNEi3xWgNLiyDEUvNos9nMTk1iy3dDvy/Dw5hf2M36m12v/ehxaTD/507IazIMZv0OGeyVDaSiOfiS7JF1kXTh0V8L09hHdEBgnR3vQ2tPU7kGbQ4bVRoQZtK2FSojUd9dYssshjLRgDwNxZXdkQHNrcwRhTmwKTXwOn24rMjbeh3eWDQagbU8Kc2JBaziFi8Fp1uL77+1Ge455VdYY/pc7JRf/5TB5ggaE5SZJF1Q6fCNgeQ0rvs+hh1nF4UU24lynGL8RCu65XVSwYaXIuiyL+XTFPuXqcnrHiONZXGBENzly+a9plcr7hArr1bLIvFL051hhUgB+W0S4XFFPOFONPIMWj5zT9S3eLh5m488OZeiCJw3fyRePSqWVEnfcRDvHWLzLqmuigHWo3AZyiH+xuaBzi9hVGUZ+BzygfSVBEKFjksCWhCYGlBvxu3vNExaDURBV6sDS7xdMuyzWmv0xN3OUsoNhyWNq7jy/Px+vIzsfb/lmDLz5bhwK/PxxcPnMdrrcPBUtFv7KyPWmOspMvuwttfNAAArjo98rS0SRUWaATp/aX0Z2X13wvHlcCgS78E8dUttvPXgm2iY5kLzSgO4e0ZaJvDUHZEv7tbej1Hl+SFNYrPBDJ3ZUQQPq/F8JG/PfU2bDrWjpVbasOmyHoCRv0xeGQxWQ0uMXQeJhOtRlB4GIYWK/FGFgFg8QQmgmxxNTUETm9hhEtD97t8N5Jk1CxaTD7xHK5usT3GBhe/KS79brg8XmyS6xVZo0a5xYSJFWaIotToEop9DYlNbsk0YmlyYX/rjCorHrhkStI7tSfLdYusBjQaJ2XbHJYWjjSJRhTFIDPhRBEEQTX7nLYwxsns38qUoLJeMVJqMRafRVEUfZHFOBpcgOQ0ubBSj2WTyjGjyorRJXkoyTfGvBlZNL4Uhbl6tHQ7+Oc4Ft7cWY9+lwdjy/J5R304cgxaLoh2KVLRrF4xmqBNFZMqLCjI0aPX6eFRUNZlH8+GlnVEtyo2yi1hIouALxW9ao80gGRseeamoAESi1nF8Bgii0dbpOiB2yuGHVrP0tCBhbtM1HX2uQacLvJ6RR6ZSFVkEVB4LYZocvF6RX6hjqcmsMxs4sXasVjDMMJGFsOkoVnUU6sRkBthZnCsaDSCT5iGeD36nR5exG+N0vFn0mv5a9vUbccXp2zodXpgzdVjkqL2cLGiISgUbLTWxDgnt2QaJRHGezEaZJuaUcW5qnRqT4wjsiiKIo/qVcmpLiZ4Q/0NPQ43F0vJmLChln0OH/UXmIbmYtHJN2Cx1CsCPp/FSNfAXqeHe9XGkoY26rQ8ijbQVLTXK2K9XOqxOMGaP71Ww/0NQxlSh+OlTVIK+qq5VTG9p7nfotwR3d7rxA75+dJpmaNEoxEwV06HM7/FcLWwkWAWO+09ymh2+FIOJqTZhmdsKYlFIkmwqQ0RxWKrbzh5OCNpJpgCBYnFpOOjrgY6xaWt1zcqbKDF/PHgs88JviD3ON1gwdZ4I3esK5oZycZCbZjIYrhuaHYTyTfqkiYuCiO8HizVotMIPE0YiXJFKppNbTljdLFfxIzdvNYfbIU3IN2265QNr8g1UmeOKYn3T8kofJHF8FF4ZnM1rECdiQys5rPBZo86vq2jz8U/92zzEqmrm93k8o26AXVtM9SYES2KIk8zB3rhsY2NKPpqdmP1fTXpWGQxfHqWXVuNOg1PW0fDkqSO6D31XWjvdSLfqMPskZGje5GYFsOUFSW762zYVWeDXivgstkjYvoZX92i9BwfH2qBKErvXbU+F4lwRg1rcpGirLGMQQ2EbViUDajscxTqPRfYzDKOIotEsoilZpFFFoHgUVcMXrMYIBAEQUhakwv7+ZJ8Y8KjwhLBZ58T/Lezi7RBp+GpplhZIls8rD/UApfHC69XRK/DjeZuO0519AWl/O0uDxfcgZHFcGnoriTa5jB4R3SI10PZ3BKLOC1TWCux5pYFY/29Ak8bWYRcgxatPQ4+zgsAHG4P/m/lTni8Ii6cNow3w2QrPqEVXqQxM2I2fSnZmE16VBVJ7629UaKLTKRVWEz8vc+joyE2hsmyzWEwsXg8iWnoPkVkPDCyqNdq+OeMvc8bu8JHeZTwyGKEBhdfc0tsnx0gtpF/nX3OqOJt3UFpw7pgTPGArq1TWLdyCGubUPx3ixRVPHdKRcwiis2I3iP/TaxeMVNS0Axmzr35WDs8XjGhNHSoKS7sPhiq7pf5UDIy2ZAbANSfwUYkjVhqFv3EYpgbWa9csxjKP6rcbMKJtr4B2+ewGcGp8lhk8CkuIRpcWNo3kU7jGSOsKMzVo6PPhWkPvB/kwTZvdBGevn4uF+BMKOQZtEFzl31paP+bRncSm1sY1ghpaN9s29iej91kazv6sOW4NH1hQYCxtEGnwYIxxfhgXzPWHWzhM2L/suYwDjR1ozjPgF9+ZUpif0wGUZofvWaRbeoqVZz1OqnCgtr2fuxr6MaCCNFapcciw5eGDh9ZTEYKGvDVSSZzPnS7IroXqmyjKM8AW78LbT1OjC2LIw0dQ80i24hHm6muhH2uI6Wh7311F97Z1Yhnrp8b1oOQlXgsHmAad4qcIq5t70dnnzPiFCe7y8M7p6+aG7mxxe855M9/vc2Olm4HX3umpKAZk4ZZYDbp0G13Y299V2INLvI1ob03tjR0VVEuDDqpI1oj+PxIMxWKLGYRrGaxtccRsp7G4xVxrC16ZDGczyLgHz0aCKxJJlXNLYxII+4GIsa0GgGXzKgE4G/WqxGkr43H2vHd5zZzuw1lc0tg5IF1Q/e7/LuUk2mbwyiMMNWmPY7ZtoAvlfLe7kY43F6Umo0YE6LOxpeKlm4Mu07Z8PhHRwAAv/rq1KBpG9lISQShxWiwqZuGBmLviA6sVwQiR0e55UeSPr8ssljX0R/W1zFe2Gtfkh+6YUVZtwgoprcURElDxyAWOxNIU8ZizM2mG/1DnsISSJfdhW0nOwGAW3olSkGOnp+XaH6L7+5uQLfdjeHWnLhKSPKNOtTIU2Re3HQS7b1OmI06zBlA+lwNtMq6xWNtYRunIlHCOvDlz5Pb4+Wm8aEi9FqNwK+fo4rzkuqUoAYkFrMIa66e73pZ5E5JfWe/n/gIV7PoS0MHvzmT1RHt64ROrTCwcm/B5EYWAeC+i6fgwzsX4+OfnI2tP1uG/b86H0d++2W8+v0zkW/U4fOj7bjx+S1wuD1hm1sAf7GqrFtUI7JYwBp+QkRaO+MUi+yCx7pv59cUh7xJLx4vRUS2nuhAe6/TL/385WnhTXyzCR5ZDCMW+50eHvkayAzoaMQqFpkhdnVIsRg+DV2aJGFfbjbBqNPA7RUH7BPLaI9yQ/f53rGaRQdfSyRiaXBhmYuCOCy4fF6L4cUiOxcbDrficHNwl/unh1vh8YqoKc3zE/6J4mtAiZyKZo0tV86tirurn0UXn/5EEsBnjS9JaWlSrLC6xc+PtkV9b4XCZ9fk5P/1ilIwIdwGmdUtZvLkFkbmnTEiLIIgoNIavsnlSEuP37/DRxZDj/sDkue1yD0W05SGDiWOuh0Dm7vMdoJVRbkozjfCpNdCEATMqLLimW/PRY5ei48PtWL5C9txXJ6qEUosahUNJcqO6IGK2VBEMubmPnExXhADo8SBKWhGdXEuRpfkwe0V8d3nNg+q9DODRxbDpKHrbb4yhFjnkCfCZFksHmrqiRixO9EueywW+96PJRFS6cnyWGRoNAIXqsmyzwnXCc1gKcQOLhZji5ayJr9IYtH3WU0kDR1aLDrdXj8Hi+c/OxF0DE9BJ6nml9Ut7oogFjt6ndh0XGr8uHxObI0tSljdItvALxmfWfWKDG7Ofaydbwbia3Dxnw/N7qEl+UZowwhsdg0dyJz4VEFiMcsYLnfW1oUQi8p6RSBSzWL4NHSyGlxYMXmqRv0xeM1iyMgiM+RO/s177qgi/OO602DUafDBviY888lxAAi7+/d1RPtuDsmcC80ojDDyj128i6LY5jACb7KRLnDsZrZdTpkNlvQzQ2k7E8rPtEGuK6605qhim8MYUZiDfKMOTo836POvpFb2WPSLLJplE+E+Z5Axc7IbXIDk1y22cXuT0GssVER6+pxu/vmKlu3gNYsRGlwS+ayyY3scoWsWA43s/7etzq8ZRhRFrD84MMucQFhkMVIaeuOxNoiiFAVLJErO6pYZA621VIsplRbkG6W6RfaRtsYROWYNY112aYIYM4GPtOG6cm4VPr37S7h+waiE150qSCxmGcN5ZDFYzDHbnMBanUB8YjE4Dc0KcQcqFpvTFlkM/7ezmkCzMXlpXiULxpbgqW/OgV4rwC3bxoSKLAI+sahsxOHrS2oamg24jxBZjDMNDUip1UijqRaN99U1Dab0M4NFrZweb1CjEuCL/A9TMQUNSBG7iVHG/jndXh7pVG5eihTzbAOzEPxGN8BRf0pGJbkjmkVwYoksshR0nkEb9fOlbHAJN9igK4FJUNFqFpU1mDWleehxuPHqtlP88SMtPajr7IdBp+FRsIHChNyx1t6wjTefypOaEo1+Tan0+bBOHmZJeR17rOi0Gpw2yldLac3VxzVRxWLS8whiR58zprIHKVuo7oYyWZBYzDIqC8Lb57DIAiseDjdyrTeMdQ6Q/DR0uhpcQtUs+kb9qZcWXDKhDH+5Zja/aNSEMVplqeau/lA1i8mPLIZ6PTrirVlU7JDnjwldr8g4o6YY5RYjhhWYBlX6mWHSa/k5bOkJ3lipbZujJFrdYl1nP0RREkHKGkSdVsMn97R2B4rF5KahAV+TS7LS0NGMk5WRxaY4rkcmuWbRK4IbbweSyCSoaGKRRUpL8g341hkjAQDPfXaCC1ZmOzNvdBGvqxwoRXkGHi0MF10MHOsZL9ZcA980nz0xM6OKDKUIjycFDUgbN599jiOmyGI2QWIxy+Bei7bwYvG0aGIxgnUOSzV2O9w8AhkvdpeHi5N0RRZDWueoELkLxXlTKvDSjWfgD1fMCPLSYoQy5k7mXGiGNSd8w4/PZzG25zPqtFx8Rrtx5Bp0+PDOJVh1x6JBlX5W4jPmDv6csektlSkwHmZiMZzXotI2J1Dgh2pycbh9n99kNbgAyU9Dt0ZpQihWZFgi+d0FojTZDrTIYiTSjJZvjFyz2KaILF4+ZwTyDFocbu7BZ7IB/kCntoSDRf5CNbk0d9txqLkHgoABRTOvmFOFUrMRl8do5p0u2JxoIPoI1FAUKzqiffZTmRlJjRcSi1kG91rs8BeLvQ43j+axUHo4sRjJOiffqOPNF4mO5mIXZpNeo2oULxQsstjjcPt1hgOK1FESI3fhmDuqKGIxeChj7u4EohXRiGjKzX0WY78oXj57BCYNs2DpxPKox+YbdaoL83RSEqEjmk9vUTkNDQCTosyIPhnCNofB6haVYpFZ6Ri0mrh8BKOhnOISON0HAF7fUYfZv1rNR65Fg/nZhZsQxSKL7T3xRRb1Wg3PDIRrckmkGc0XWYxcs1icb4DZpMels4cDAP756QnYXR7+uiRbLEaa5MKiipMqLHEZVAdy+7Jx2PzTZWEzLZnCtOEF3LMz3sgi4CuJaO91Jm22eqZAYjHLGM6Nufv96mmOyd23xXkGjC6RPpBddndQh6TL4+UiKi9MKmPuaGl3tWZf7KPtlPBaDYsp5bUYlhw92FMGTUjpT01kMRZCGXOrkoaWL3gOtzeoYD+RkVY/u2gy3r39LG7JM5TxRRZDiUVmyK1+VGFChRmCIK0jlA1ObQhDbkZpiMgiqzcuNYf2L0yU4dYc6DQCHG5vkDWXKIr40weH0N7rxAsbT8b0+1g3dLTIYruyfizGTEe0JpdE6ouj1yz6N+x8a/4oAMCqvY14dXsdHG4vKgtMSbdZmcpH8gVHptlYz0RT0NmGXqvhZVwJicU83+epOU1ew2pBYjHLKC8wQhCkm78ycshsc2pK81CgEEyB6cc+h+/iFyqyCADnTZGiRqv2NiW0xnTVKwKSLQ0TYraApo7uBIrS1YJFXP18FuUuyWSuL8+ghU6OkiibXOwuD/rkG2GkyQ1EeML5FIqiyMtE1PRYZOQadBgtp3hD1S36PBaD1xLKmDvZ01sYOq2G164db/WvW9xR24mj8ob3k8PBc8UDkeZCR7bOYRslu8vLraxivSZFM+ZOpP7Z1w0dOQ3N/p7x5WbMrymGVwR+/dZeAFIncbI34Mw+50hLD/fgZbDmlsCxnoMZ1ow3o8oa988qvRYpskikFaPOV6Su7Ihm9Yo1JfnQagSejg1MRfc4ffORwxmjLp1UDkGQvLcSMdBtStOoP4Y1TFNHIkXpahEqDc2tfZK4PkEQfB3iCvsc9tpI4jr9r0c2Ei6y2NHn4rVuFSmyjorU5MJrFotDpaGD/SLVEovSGvLkNfmXuLyyrY7/f1uvM+qsa2WZSTjrnDyDFgaddI1jKfpYhwTkGKSfCycWu/i0peSN+1M2uDCuWyA1uvTKG7uBTm0JRZnZhHKLEaII7FVEF+s6+3Girc9vuslQ4Kq5Vdj802W4+vTquH9WOW+dladQgwuRNioVqWgG25XXlEoXY16vEyAW+1i9YoRuupJ8I2+SWZ1AdJHVB6XqRhmIb+Sf76K8v7GLj+CLp0ZPLXxpaGmNoijyiEOy0+Q+o3Lfe8Fnm6PPCtuGTCRUChfwpaBL8o0pG+HF6hb3NfjXLYqiGHIuNCNU3WULawZRQSyGss9xuD1484t6v/V8LDdzhIO9f3MN2rCdwYIg8CYFdq2MNw0dqmbR6fbyzUA8G0/lBJdQljw8sqgQv8smlWOYfB3VagQsGBv7qL14CDXJhdUrThtekBGlO6lCEISEN0qsme9Qcw88XhGCEL6mNtsgsZiFsNSWMup3lKehpXqW4jBei5GaW5ScO7kCgFQvEy+NKt5sYsEaMLWkrceB7z23BU63F2eOLcb48vQXWQeacvc5PfDIqbdkRz5D2efEa5tDBBMusphK2xzGxAopsvjxoVZeowhIGyb2mR9RGEosSudf+TfwiIgKXZxMsJ5UiMW1+1vQ2edCucWIW5aMAQBsONwS8fe0RqlXZAQ+Hm3UHyOSWFRGBkM5SoSDfa7dXhEOd3CXdWuIiTQ6rQbXzpMiXHOqC+MaLxgPU0LULX56RBLsQ6VeMRmw99sBOZJdnGfIyNGGiTA4/oohRuDIP1EUeYMLjywGzEVlRLLNUXLOZKlu8fOj7SFHxYXD7vLwHemYNHW+8Sku/S443V7c8sI2nOrox8jiXDx2zeyMiKSxiz6LLLIaKK1G8LPuSAahjMp9tjkkFhMlXM1iA29uUb9ekXHm2BLUlOahtceBq/76OReMLKpYbjHyOjwlIWsWu9RLn42S09BKp4VXZOPpr84azjt9Nx/riDhBxVffF3mNgWIx1r/JyBtcgkUd+6zmGbRxmTbnGXS8lrwrIBUt1WCG7u6+YVEN7jp/In5z6dSYnyteAjuiRVFU+CuqE80cjLDNFytfGCy2OUAGisXf/OY3WLBgAXJzc2G1WtO9nIwk0GuxscuOPqcHOsX81SLF9AIlLMqQG8XUdVRJHiaUm+HxilizP/au6Dd31qOt14nKAhPOGpeei4wvDe3E/W/sxqZj7TAbdfjHdadlTDMHb3DhYtFXT5lsMRvKqLxDkYYmEkM58k/ZkFEv1+wOS4HHIiPHoMWLN5yBmpI81HX2c8EYKQUN+P6G9l4Hj2w3qzDqj6E05hZFEe29Tqw9IF1fLps1AmNK81BZYILT48XGY+EtdKIZcjOUYtGaqw8pmEORE6HBJdFGOY1GQL5BbnIJ6Ijuc3p4ajuwYceo0+KWJWMwLoxnazKYKje5HGrugd3lwfG2PjTY7NBrBd4dTESnKKB+drA0twAZKBadTieuuOIK3HLLLeleSsbiq1mUbkqsuaW6KJeHvMPWLEaY3hII74reE1vdoiiKfCbyN+ePimvXnUyYIFy55RRe3FQLjQD8+ZpZGFum3sU2XnjNot0FURQVhtzJbzZh74VOv8gimwudGeI5G2E3dY9XRKeiUakuhbY5SsotJrx0o79g/PSwlEoMN6OcnX+v6Is2M8sPNRpcqopyIQjSprW914m3vqiHyyNi6nCLbAEk4Cy5iWNDhLrFtgTEYqwpaCCyWBxIo1w4+xxmA5Sj1yLXkPqGswqLCcV5Bni8IvY3dvOo4qzqwqRNixkKBAr9WBuqsoGME4u/+MUvcMcdd2DatGnpXkrGElizeFRhm8MIV7PIprLEUmtz7hSpbnHdwZaw5rRKNh/vwN6GLpj0Glx9elXU49WCpaFZhOSeCybh7AllaVtPKFga2uUR0e/yqDq3uiBEww/bRGRKpDUb0Ws1PDKrrPlr4DWLqYssMsqYYCyVBONLm2sBACOL8kIer/wbWnuk6CJLSatRs2jSazFMbjI53taH/8ld0JfN8hnYL5QzEpGaXLjHYhjbHIZSLMaTVmcCyRGhZjGRpg9fR7S/WGztjTznWm0EQeB+i7vqbFSvmCBmow4GRZBEjc9Qusg4sRgvDocDXV1dfl+DHRZZbOl2wOH24AizzVHUCLKaxSDrHLlmMZbI4pRKCyoLTOh3eSLu8hnPfHIMAHDprOFpFSHKqRNfmzMC3ztrdNrWEo5cg5ZPiejqd6s6t7qQN/wEN7gkMtKK8OFLRfvEIrO0SmXNopIyiwkv3XAGxig2j9XF4dfC/4ZuJzr6nIouTnXeG8zCZ+3+Zuys7YRWI+CSmZX88TPHlkAQgANN3dxZIRBe3xfGNoehrMmNx/fVFMGUeyAWV/nca9G/ZrGNN7ekLxLFUtG7T9m4Gff8GhKL8SAIQsIblEwn68XiihUrUFBQwL+qqtIX0UoVhbl6mPTSqWu02X22OSW+m0NRtDR0DKkFQRB4dDFaV3RdZz/e3yMdc92CUTH8FeoxtbIAggCcProIv7l0akY0tAQiCD5/wy67S9W51b5u6OA0NDW4DAxuPSNHFl0e33SSYSlOQysps5jw4o1nYGxZPjQCMGOENeyxykYd1txSnGdQrYyENbmwzeWS8aV+TR1FeQbecBFuk9oeZS40Q5mmjsf3lV1fI6ehE4ksss98YBqaid/0fR6Zfc57exrR2uOESa/BzGpr2taTrSijwxRZjJO7774bgiBE/Nq/f39Cv/uee+6BzWbjX7W1tUlefeYhCIKf12KgbQ4QvcEllsgiAJwrd0V/sK8Zbk9wZyDj+c9OwCtKaQtm45EuxpWbsfmny/DiDWekzOcuEZTG3GqM+uPPw30WqcEl2QRGFpu67BBFaa5ytKiX2pSZTXjntrPw6d1LI87k9ROLstBV0xuORRaZ0fRls4NnqJ/FU9HBFjqNNju2n+wEEF2QK62h4qkfi6XBJZHPqtJrUUlbjOJXTVgamg0KmDuqKKOvn5mKMjo8mCKLKamkvfPOO3H99ddHPKampiah3200GmE0Dp4TEivDrTk42tKLoy29vKBeWbOoHDskiiKPrvXGKRbnji5CQY4e7b1ObD3RgXkh0hL9Tg9e3CTNc70+zVFFRjYYoVoU9jndCUyEiJXC3FANLmSdkwwCI4ssBT3MaoJGk/6ItkGniWqOrzTmZu/JMhWnL7HIIiAJrqWTguuJF44txWNrj2CDPPpP+Vre9/pu9DjcmFFlxbzRkdOkflGeOP6mSD6LfHpLAp6HLBoZ2A2dCWnoEYU5KMjRc7F4BqWgE0IZzR5M3dApEYulpaUoLU3+mKKhTKVsy/HZkTaIolQ/o3yTMhHgcHvR7/LwDjvmsxhLGhqQCuCXTirDK9vqsGpvU0ix+NqOOtj6XagqysHSSeUD+ruGEsqOaDUji8rxh2zj4IssklgcCIHG3KzpbFiaphclQonZZ8zN3pNq3uRGKsYOXjS9MqSdzeyRVuQatGjtcWJ/YzcmV0rZivd2N2DV3iboNAIevHwar/sNh39kMQ6xaAhfsziQz6qFd0MH1Cxyj8X0fR6lJhcLPjnM/BVJLCaC8j6shqNAusi4msWTJ09ix44dOHnyJDweD3bs2IEdO3agp6cn3UvLKFga+hO5a62mNN+vNi/PoOVdWcq6xd44rHMYymkugWOqJLscqfbouvmjol68CR8+Y263qmKR3TDdXmmkoMPt4SlAanAZGIHj8pj3abqaWxJBaczdoqLHImOkIrJ4+ezhIY8x6rQ8ssVS0bZ+F37++h4AwM2Lx8RU7lKYq4deK12TKuMQ8CYeWQwuvWHeqIlkAcKmoUNMb0kHLBWdb9TxulEiPliHfmGuflCl8TNOLN53332YNWsW7r//fvT09GDWrFmYNWsWtmzZku6lZRTMw411uCpT0IB/V1ZHr28XG491DmPR+BIYdRrUtvdjd51/t/lnR9pwsKkHuQYtrjht8DcXJRPW+WxTpKHVaHAx6bW8YL+zz8XfM1qNoIo4HUqEiyymwzYnUfiM625fzaKaYjHfqMO9X56I5WePiWj4vHCsv4XO797dj5ZuB2pK8nDrl8bG9Fw6rQa/+eo0/OzCSXGloU0q1SyaeTd0gHVOiLnQ6eCssVIGcNmksrT55GY7rFZ5MDW3AClKQ8fDs88+i2effTbdy8h4hhf634xCjdYrzDOgscvOUxxAfNY5jFyDDmeNK8UH+5pw8V82oLLAhLHlZowry8e2kx0AgMtnj1Btbulghaeh+12qmnIDgDXHgEaXHZ19LujkSIs1R58RdXXZDEsbMm/CdNvmJIKywYVNdlJ7TNmNi8ZEPWbReEksbjrejo8ONPO66BWXTYt5EgsAfH1u/JvYiA0ujsQji2ZF6YkSbjKe5sjiwnEleOsHCzGqJLQvJxGd6VUF0GoEnDZqcE2+yTixSMRGYOSiJsSHuyjPN/aO4ZvgEl94/HtnjcaeehsabHbUy1/rD/o6FdNtl5ON8AYXRc2iGg0ugFS32NhlR0efk4tFam4ZOIHj8rK5ZrGt1wmjHIHOhC7OMaX5GFZgQoPNjuUvbAMAXDOvOmTddLLJMUivQ8gGl/7EPVHzQ0QWvV6RlwplQmPeVEo/D4iJFRZs+/k5CflwZjKD668ZQgR2OIayxmBzKttDpKHjiSwCUmfcZ/csRWefE4ebe3CouQeHm3twpKUHp48uwtiy8NYcRGgsftY5iY8QiwXW5NLR54ROI4+EJNucAVOUa4AgSOPy2nudWZmGZqlPj1fEqQ5p/ZnQxSkIAhaOLcHKrafQ6/SgzGzE3RdMTMlzRzLlHtgEl+CaRVu/i8/lpoazwcFgzLKRWMxSjDotSs1GtHQ7IAj+HYaMIiYQFA0u3Gcxwfmj1lwDThtVhNNGFSX084QPbsrd7+ZF82rULAK+m5Ct3wWN3AhFN6aBo9NqUJxnQGuPE8fbenk5wbAsEosGnQbWXL3cLS99L1O6OM8aX4qVW08BAH75lamqRd4D4dY5bn+xqJzjnlAa2sjG/fk28KxMqCBHD4OO6gSJzITEYhZTac1BS7cDIwpzQtbwFCq8FgHA7fHy7r54I4tE8lGacjMRr1bqgo1f7Oh1gZUpptMAeDBRkm9Ea48TO2s7AUjnMJ4GskygJN/IG5/yjTputZVulk4sw/yaYkyutOD8qRUpe15fZNG/G7rf5eFRwAE1uCgii60Z0glNEJHIjCsCkRDDrSbsrAVqSkKngAOnuPQp6m/irVkkkg9LQzd22SHff1SLLHKvxX6n4nt0c0oGpWYj9jd244tTNgDZ1dzCKMk34HCz9P+ZkIJm5Bl1ePHGM1L+vOFMuVn6WKsReDNQPDCx2OuURKdWI3DbnHRP/CGISFDMO4thfmUTKswhH+fzoeUGF1avqNcKg8r/KVthaSxW3K7TCNziJtkUKoy5WQSJNUARA4NZz3xxqhNAdtUrMpSNFZmSgk4n3JTb5fHzlvWVi+gSmjmfr4hGsugiS0NTZJHIZCiymMV8+8xRyNVrcWUYawhmuMzESKLNLYQ6BBZBJ3oDigVrjhxl7nPyujSKLCaHEllcHW/rA5CtkUXlPNvs6eRWC5aG9nhFuDwiDDrpczlQiyujTguDTgOn24tuhwsFuXpKQxNZAamGLKbMbMIPlo4L+3hhQBraN+qPTnsmEHjDUSsFDQSP/ANoekuyKA2wOxlmzT6xpYwmZlIaOl3kKGrA7W4PbzzpSsIMd4tJh9YeJ09pt2WIITdBRILS0IMYNqOyo88Jr1dURBYpBZ0JmPRaGBXdj4n4tsUK2zh09jl5WQL5LCYH5lPIyM409OCcZ5soeq3AR5faFfY5yRjLyZqfWFObz2ORPo9E5kJicRDD0oxeUdoR91AaOuNQpqKZrYYaWHOYz6KLj38kn8XkUJrvH0nM+jQ0iUUIggCTvJFTTnFJxlhO9rPsd7EGlyKKLBIZDInFQYxBp4FZFoZtvU70OgfmsUgkH4tSLKro+G9V+CyyTQNZ5ySHwMhiNk1vYfinobNv/WqgbHJh8OktAxCLLLLIopSt1OBCZAEkFgc5yrpFXrNIaeiMQemrqGbNYmAzjUZQb7TgUENZs6gRgPIsbBDxb3ChCBcQeopLMiYtBU5x4dY5JBaJDIbE4iCH2+f0OqkbOgMpSFFk0aDT+BlFW3MN0GjU6bweahTmGnh9W7nFBL02+y6rxfkGGHQaaDVCVopdNfB5LfqMuX0NLgMRiywN7YbT7YVNtuOhBhcikyHVMMgJKRYpDZ0xKNPQag+et+bqeQqa6hWTh0YjoDjPgOZuR1bWKwKSpcsT186Gy+MdlHNtE4Gloe2u4AYXywBeI19k0YUOudlMqxHodScyGlINgxw2/7e9z4leJ0tD02nPFJSpYDXT0IAkFk919AOgudDJpiTfiOZuR1bWKzKWTipP9xIyCpMuuGYxGd3QfOSfw41W2TanKI8i/URmk335EiIuWNF0hyKymE81ixmD0i5HzTQ04C8QyTYnubAGkWy0zSFCYzIE1yyyCS4DqfdV1iyyesVi+jwSGQ6JxUEOjyz2knVOJqJMPQ0ktRXvc1EaOrlMlEduTq60pHklRLLI0YeyzmGRxYF0Q/usc9iov5J8qlckMhtSDYMcNv+3Xb4oAVSzmEn4p6Epspit3HHOeFwwbRimDy9I91KIJOFrcFFEFpPcDd1Go/6ILIFUwyDHV7Po4tNCKLKYOfj7LKob7VNGE2nUX3Ix6bWYWWVN9zKIJKJWg0u+QizyudDUCU1kOJSGHuSEqlkkn8XMIVXWOQBQoIwsklgkiIgYAxpcPF6Rl/IM5LNqUTS48LnQFFkkMhwKMQ1ymCjo6HWCNdtRZDFzSG0aWlGzSGlogogIn+DilHwWe+SoIjDQNLSyZpEMuYnsgFTDIIf5LHY73NyagWoWMwdlN7TaE1WsudTgQhCxwmoWWWSR1SsadRoedUwE5bg/HlmkNDSR4ZBqGORYTHpoNQI8XpFPCsinyGLGUG4xoTjPgIIcPa8pVQsrNbgQRMwwsegIEIsDrS1mUUm3V0Rdpx0ApaGJzCejahaPHz+O7373uxg9ejRycnIwZswY3H///XA6neleWtai0QhBUSSqWcwcTHot1vzfErx120IIgrqmvMo6RWpwIYjIcJ9FWSz6mlsGttnOM+jAPurMlJusc4hMJ6NCTPv374fX68VTTz2FsWPHYvfu3bjhhhvQ29uLhx9+ON3Ly1oKcw286w6gmsVMI1VjvkrNRhh1Gpj0WtU9HQki2zHp/H0Wk+GxCEgb+HyDDt0OXw1kEUX6iQwno1TD+eefj/PPP5//u6amBgcOHMATTzxBYnEAKFOOWo2gerqTyEzyjTq8eOMZMOo00NJoMYKISE7ABBff9JaB3zbNJp9YNOk1yDVQtofIbDJKLIbCZrOhqKgo7OMOhwMOh89wuqurKxXLyiqUo6TyDFrV051E5jK7ujDdSyCIrCDQlLvbPvBRf4x8kw6wSf9fnGekazKR8WR0iOnw4cN49NFHcdNNN4U9ZsWKFSgoKOBfVVVVKVxhdqCMLFIKmiAIIjo+sShZ53TZB+6xyFCmssk2h8gGUiIW7777bgiCEPFr//79fj9TV1eH888/H1dccQVuuOGGsL/7nnvugc1m41+1tbVq/zlZh7KZgcQiQRBEdIIbXOTIYhLqfZWCs5iaW4gsICXK4c4778T1118f8Ziamhr+//X19Tj77LOxYMEC/PWvf434c0ajEUYjfdgiQZFFgiCI+Aj0WeQNLkm4hirty4qpuYXIAlKiHEpLS1FaWhrTsXV1dTj77LMxZ84cPPPMM9BoMjpTnhUoL0b5ZJtDEAQRFRNLQzsDfRaTm4amyCKRDWRUmKmurg5LlizByJEj8fDDD6OlpYU/VlFRkcaVZTfKyGIuTW8hCIKISrjIYjLS0MqOaqpZJLKBjFIOq1evxuHDh3H48GGMGDHC7zFRFNO0quxHWbNI01sIgiCiw8Si2yvC5fFy65yB+iwCAWloEotEFpBROd7rr78eoiiG/CISpyhfWbNIaWiCIIhomAy+26Pd5fFFFpPks8igudBENpBRYpFQB79uaEpDEwRBRMWg1YB51/e7PArrnGT4LCprFimySGQ+JBaHADkGLUx66VRTNzRBEER0BEFQNLl4k9zgoqxZpMgikfmQWBwisOgiiUWCIIjYYHWLtn4XnG7JnDvZPouFuRRZJDIfEotDBFa3mEczSAmCIGKCRRabu+38e8loEmQjAwty9DDo6DZMZD4UZhoijC3Nx+66LlQX56Z7KQRBEFlBjoGJRQcAyZBbqxn4HOdJwyz4ysxKTBteMODfRRCpgMTiEOFXX52K6xaMwswqa7qXQhAEkRWwNHRzlywWk1CvCABajYA/XTUrKb+LIFIBicUhgtmkx6zqwnQvgyAIImtgjYFNcho6GZ3QBJGNULEEQRAEQYTAFBBZtORQfIUYmpBYJAiCIIgQsDR0C0UWiSEOiUWCIAiCCEFQg0uSahYJItsgsUgQBEEQIfBFFuU0NEUWiSEKiUWCIAiCCAGrWXR7RQAUWSSGLiQWCYIgCCIETCwykjG9hSCyERKLBEEQBBGCnACxSJFFYqhCYpEgCIIgQpBj8L9FUjc0MVQhsUgQBEEQIQiMLFooskgMUUgsEgRBEEQIAmsWKbJIDFVILBIEQRBECALFYgFNcCGGKCQWCYIgCCIEwQ0uFFkkhiYkFgmCIAgiBGyCC4O6oYmhColFgiAIggiBMg2t0whBkUaCGCqQWCQIgiCIECjFodmkgyAIaVwNQaQPEosEQRAEEQKT3neLpOktxFAm48TiJZdcgurqaphMJgwbNgzf/OY3UV9fn+5lEQRBEEMMZc0i1SsSQ5mME4tnn302/vvf/+LAgQP43//+hyNHjuBrX/taupdFEARBDDH80tBGiiwSQ5eM2yrdcccd/P9HjhyJu+++G1/96lfhcrmg19OHlSAIgkgNygYXC3ksEkOYjH73t7e344UXXsCCBQvCCkWHwwGHw8H/3dXVlarlEQRBEIMYo04DQQBEkTwWiaFNxqWhAeCuu+5CXl4eiouLcfLkSbz++uthj12xYgUKCgr4V1VVVQpXShAEQQxWBEGASSdFF6lmkRjKpEQs3n333RAEIeLX/v37+fE//vGPsX37dqxatQparRbf+ta3IIpiyN99zz33wGaz8a/a2tpU/EkEQRDEEIA1uVgoskgMYVKyVbrzzjtx/fXXRzympqaG/39JSQlKSkowfvx4TJo0CVVVVfj8888xf/78oJ8zGo0wGo3JXjJBEARB8CYXiiwSQ5mUvPtLS0tRWlqa0M96vV4A8KtLJAiCIIhUwLwWyWeRGMpk1FZp48aN2Lx5MxYuXIjCwkIcOXIEP//5zzFmzJiQUUWCIAiCUBNfGjqjbpcEkVIyqsElNzcXr7zyCpYuXYoJEybgu9/9LqZPn45169ZRqpkgCIJIOVefXo3TRxVhfk1JupdCEGlDEMN1jmQpXV1dKCgogM1mg8ViSfdyCIIgCIIgMpJYNVNGRRYJgiAIgiCIzILEIkEQBEEQBBEWEosEQRAEQRBEWEgsEgRBEARBEGEhsUgQBEEQBEGEZdAZR7Hm7q6urjSvhCAIgiAIInNhWimaMc6gE4vd3d0AgKqqqjSvhCAIgiAIIvPp7u5GQUFB2McHnc+i1+tFfX09zGYzBEFQ9bm6urpQVVWF2tpa8nTMAuh8ZRd0vrILOl/ZBZ2v7EKt8yWKIrq7u1FZWQmNJnxl4qCLLGo0GowYMSKlz2mxWOjDlkXQ+cou6HxlF3S+sgs6X9mFGucrUkSRQQ0uBEEQBEEQRFhILBIEQRAEQRBhIbE4AIxGI+6//34YjcZ0L4WIATpf2QWdr+yCzld2Qecru0j3+Rp0DS4EQRAEQRBE8qDIIkEQBEEQBBEWEosEQRAEQRBEWEgsEgRBEARBEGEhsUgQBEEQBEGEhcQiQRAEQRAEERYSiwPgsccew6hRo2AymTBv3jxs2rQp3Usa8qxYsQJz586F2WxGWVkZvvrVr+LAgQN+x9jtdixfvhzFxcXIz8/H5ZdfjqampjStmFDyu9/9DoIg4Ic//CH/Hp2vzKKurg7f+MY3UFxcjJycHEybNg1btmzhj4uiiPvuuw/Dhg1DTk4Oli1bhkOHDqVxxUMXj8eDn//85xg9ejRycnIwZswY/OpXv4LSBIXOV3pZv349Lr74YlRWVkIQBLz22mt+j8dyftrb23HttdfCYrHAarXiu9/9Lnp6epK6ThKLCfKf//wHP/rRj3D//fdj27ZtmDFjBs477zw0Nzene2lDmnXr1mH58uX4/PPPsXr1arhcLpx77rno7e3lx9xxxx148803sXLlSqxbtw719fW47LLL0rhqAgA2b96Mp556CtOnT/f7Pp2vzKGjowNnnnkm9Ho93n33Xezduxd/+MMfUFhYyI956KGH8Oc//xlPPvkkNm7ciLy8PJx33nmw2+1pXPnQ5MEHH8QTTzyBv/zlL9i3bx8efPBBPPTQQ3j00Uf5MXS+0ktvby9mzJiBxx57LOTjsZyfa6+9Fnv27MHq1avx1ltvYf369bjxxhuTu1CRSIjTTz9dXL58Of+3x+MRKysrxRUrVqRxVUQgzc3NIgBx3bp1oiiKYmdnp6jX68WVK1fyY/bt2ycCED/77LN0LXPI093dLY4bN05cvXq1uHjxYvH2228XRZHOV6Zx1113iQsXLgz7uNfrFSsqKsTf//73/HudnZ2i0WgUX3zxxVQskVBw4YUXit/5znf8vnfZZZeJ1157rSiKdL4yDQDiq6++yv8dy/nZu3evCEDcvHkzP+bdd98VBUEQ6+rqkrY2iiwmgNPpxNatW7Fs2TL+PY1Gg2XLluGzzz5L48qIQGw2GwCgqKgIALB161a4XC6/czdx4kRUV1fTuUsjy5cvx4UXXuh3XgA6X5nGG2+8gdNOOw1XXHEFysrKMGvWLPztb3/jjx87dgyNjY1+56ugoADz5s2j85UGFixYgA8//BAHDx4EAOzcuRMbNmzABRdcAIDOV6YTy/n57LPPYLVacdppp/Fjli1bBo1Gg40bNyZtLbqk/aYhRGtrKzweD8rLy/2+X15ejv3796dpVUQgXq8XP/zhD3HmmWdi6tSpAIDGxkYYDAZYrVa/Y8vLy9HY2JiGVRIvvfQStm3bhs2bNwc9Rucrszh69CieeOIJ/OhHP8K9996LzZs347bbboPBYMB1113Hz0moayOdr9Rz9913o6urCxMnToRWq4XH48FvfvMbXHvttQBA5yvDieX8NDY2oqyszO9xnU6HoqKipJ5DEovEoGX58uXYvXs3NmzYkO6lEGGora3F7bffjtWrV8NkMqV7OUQUvF4vTjvtNPz2t78FAMyaNQu7d+/Gk08+ieuuuy7NqyMC+e9//4sXXngB//73vzFlyhTs2LEDP/zhD1FZWUnni4gLSkMnQElJCbRabVBHZlNTEyoqKtK0KkLJrbfeirfeegtr167FiBEj+PcrKirgdDrR2dnpdzydu/SwdetWNDc3Y/bs2dDpdNDpdFi3bh3+/Oc/Q6fToby8nM5XBjFs2DBMnjzZ73uTJk3CyZMnAYCfE7o2ZgY//vGPcffdd+Oqq67CtGnT8M1vfhN33HEHVqxYAYDOV6YTy/mpqKgIaqx1u91ob29P6jkksZgABoMBc+bMwYcffsi/5/V68eGHH2L+/PlpXBkhiiJuvfVWvPrqq1izZg1Gjx7t9/icOXOg1+v9zt2BAwdw8uRJOndpYOnSpdi1axd27NjBv0477TRce+21/P/pfGUOZ555ZpAV1cGDBzFy5EgAwOjRo1FRUeF3vrq6urBx40Y6X2mgr68PGo3/bV6r1cLr9QKg85XpxHJ+5s+fj87OTmzdupUfs2bNGni9XsybNy95i0laq8wQ46WXXhKNRqP47LPPinv37hVvvPFG0Wq1io2Njele2pDmlltuEQsKCsSPPvpIbGho4F99fX38mJtvvlmsrq4W16xZI27ZskWcP3++OH/+/DSumlCi7IYWRTpfmcSmTZtEnU4n/uY3vxEPHTokvvDCC2Jubq74r3/9ix/zu9/9TrRareLrr78ufvHFF+JXvvIVcfTo0WJ/f38aVz40ue6668Thw4eLb731lnjs2DHxlVdeEUtKSsSf/OQn/Bg6X+mlu7tb3L59u7h9+3YRgPjII4+I27dvF0+cOCGKYmzn5/zzzxdnzZolbty4UdywYYM4btw48eqrr07qOkksDoBHH31UrK6uFg0Gg3j66aeLn3/+ebqXNOQBEPLrmWee4cf09/eL3//+98XCwkIxNzdXvPTSS8WGhob0LZrwI1As0vnKLN58801x6tSpotFoFCdOnCj+9a9/9Xvc6/WKP//5z8Xy8nLRaDSKS5cuFQ8cOJCm1Q5turq6xNtvv12srq4WTSaTWFNTI/70pz8VHQ4HP4bOV3pZu3ZtyHvWddddJ4pibOenra1NvPrqq8X8/HzRYrGI3/72t8Xu7u6krlMQRYWVO0EQBEEQBEEooJpFgiAIgiAIIiwkFgmCIAiCIIiwkFgkCIIgCIIgwkJikSAIgiAIgggLiUWCIAiCIAgiLCQWCYIgCIIgiLCQWCQIgiAIgiDCQmKRIAiCIAiCCAuJRYIgCIIgCCIsJBYJgiAIgiCIsJBYJAiCSBNLlizBkiVLEv75Z599FoIg4Pjx43E/79SpUxN+XoIghhYkFgmCyFiYGBIEARs2bAh6XBRFVFVVQRAEXHTRRWlYYWr47W9/i9deey3dyyAIYohCYpEgiIzHZDLh3//+d9D3161bh1OnTsFoNKZhVakjnFj85je/if7+fowcOTL1iyIIYshAYpEgiIzny1/+MlauXAm32+33/X//+9+YM2cOKioq0rSy9KLVamEymSAIQrqXQhDEIIbEIkEQGc/VV1+NtrY2rF69mn/P6XTi5ZdfxjXXXBPyZx5++GEsWLAAxcXFyMnJwZw5c/Dyyy8HHScIAm699Va89tprmDp1KoxGI6ZMmYL33nvP77jrr78eo0aNCvr5Bx54IEisPfPMM/jSl76EsrIyGI1GTJ48GU888UQCf7m0vt7eXjz33HM8JX/99dcDCF+z+O6772Lx4sUwm82wWCyYO3duyMisklWrViE3NxdXX301F+WrV6/GwoULYbVakZ+fjwkTJuDee+9N6O8gCCJ7IbFIEETGM2rUKMyfPx8vvvgi/967774Lm82Gq666KuTP/OlPf8KsWbPwy1/+Er/97W+h0+lwxRVX4O233w46dsOGDfj+97+Pq666Cg899BDsdjsuv/xytLW1JbTeJ554AiNHjsS9996LP/zhD6iqqsL3v/99PPbYY3H/rueffx5GoxFnnXUWnn/+eTz//PO46aabwh7/7LPP4sILL0R7ezvuuece/O53v8PMmTODxK+St956C5dccgmuuOIK/Otf/4JOp8OePXtw0UUXweFw4Je//CX+8Ic/4JJLLsEnn3wS999AEER2o0v3AgiCIGLhmmuuwT333IP+/n7k5OTghRdewOLFi1FZWRny+IMHDyInJ4f/+9Zbb8Xs2bPxyCOP4MILL/Q7dt++fdi7dy/GjBkDADj77LMxY8YMvPjii7j11lvjXuu6deuCnvv888/HI488guXLl8f1u77xjW/g5ptvRk1NDb7xjW9EPNZms+G2227D6aefjo8++ggmk4k/JopiyJ955ZVXcNVVV+H666/Hk08+CY1GiiGsXr0aTqcT7777LkpKSuJaM0EQgwuKLBIEkRV8/etfR39/P9566y10d3fjrbfeCpuCBuAn1jo6OmCz2XDWWWdh27ZtQccuW7aMC0UAmD59OiwWC44ePZrQWpXPbbPZ0NraisWLF+Po0aOw2WwJ/c5YWL16Nbq7u3H33Xf7CUUAIesaX3zxRVx55ZW46aab8NRTT3GhCABWqxUA8Prrr8Pr9aq2ZoIgMh8SiwRBZAWlpaVYtmwZ/v3vf+OVV16Bx+PB1772tbDHv/XWWzjjjDNgMplQVFSE0tJSPPHEEyHFWnV1ddD3CgsL0dHRkdBaP/nkEyxbtgx5eXmwWq0oLS3ltX5qisUjR44AQEweiseOHcM3vvENXH755Xj00UeDxOSVV16JM888E9/73vdQXl6Oq666Cv/9739JOBLEEITEIkEQWcM111yDd999F08++SQuuOACHv0K5OOPP8Yll1wCk8mExx9/HO+88w5Wr16Na665JmQ6VqvVhvw9ymPDdRx7PB6/fx85cgRLly5Fa2srHnnkEbz99ttYvXo17rjjDgDIGLE1bNgwLFiwAO+88w62bNkS9HhOTg7Wr1+PDz74AN/85jfxxRdf4Morr8Q555wT9DcTBDG4IbFIEETWcOmll0Kj0eDzzz+PmIL+3//+B5PJhPfffx/f+c53cMEFF2DZsmUDeu7CwkJ0dnYGff/EiRN+/37zzTfhcDjwxhtv4KabbsKXv/xlLFu2zC81HS+xWuOwVPru3bujHmsymfDWW29h3LhxOP/887Fnz56gYzQaDZYuXYpHHnkEe/fuxW9+8xusWbMGa9euje8PIAgiqyGxSBBE1pCfn48nnngCDzzwAC6++OKwx2m1WgiC4BcBO378+ICmoIwZMwY2mw1ffPEF/15DQwNeffXVoOcG/KOSNpsNzzzzTMLPnZeXF1KoBnLuuefCbDZjxYoVsNvtfo+FiqgWFBTg/fffR1lZGc455xyexgaA9vb2oONnzpwJAHA4HPH9AQRBZDXUDU0QRFZx3XXXRT3mwgsvxCOPPILzzz8f11xzDZqbm/HYY49h7NixfmIvHq666ircdddduPTSS3Hbbbehr68PTzzxBMaPH+/XNHPuuefCYDDg4osvxk033YSenh787W9/Q1lZGRoaGhJ67jlz5uCDDz7AI488gsrKSowePRrz5s0LOs5iseCPf/wjvve972Hu3Lm45pprUFhYiJ07d6Kvrw/PPfdc0M+UlJRwP8Vly5Zhw4YNGD58OH75y19i/fr1uPDCCzFy5Eg0Nzfj8ccfx4gRI7Bw4cKE/g6CILITiiwSBDHo+NKXvoR//OMfaGxsxA9/+EO8+OKLePDBB3HppZcm/DuLi4vx6quvIjc3Fz/5yU/w3HPPYcWKFUERzgkTJuDll1+GIAj4v//7Pzz55JO48cYbcfvttyf83I888gjmzJmDn/3sZ7j66qsjGnx/97vfxRtvvAGLxYJf/epXuOuuu7Bt2zZccMEFYX9m+PDh+OCDD+BwOHDOOeegtbUVl1xyCaqrq/H0009j+fLleOyxx7Bo0SKsWbMGBQUFCf8tBEFkH4IYznyLIAiCIAiCGPJQZJEgCIIgCIIIC4lFgiAIgiAIIiwkFgmCIAiCIIiwkFgkCIIgCIIgwkJikSAIgiAIgggLiUWCIAiCIAgiLIPOlNvr9aK+vh5msznmEVkEQRAEQRBDDVEU0d3djcrKSmg04eOHg04s1tfXo6qqKt3LIAiCIAiCyApqa2sxYsSIsI8POrFoNpsBSH+4xWJJ82oIgiAIgiAyk66uLlRVVXHtFI5BJxZZ6tlisZBYJAiCIAiCiEK0sj1qcCEIgiAIgiDCQmKRIAiCIAiCCAuJRYIgCIIgCCIsJBYJgiAIgiCIsJBYJIY0W090YOkfPsJHB5rTvRSCIAiCyEhILBJDmtV7m3CkpRdv7mxI91IIgiAIIiMhsUgMabrtLgBAa48jzSshCIIgiMyExCIxpOmyuwGQWCQIgiCIcJBYJIY0FFkkCIIgiMiQWCSGNF39klhs63HC6xXTvBqCIAiCyDxILBJDmm45De32iuiUhSNBMGgDQRAEQWKRGOJ02X0CkVLRhJJNx9ox7YH38cLGE+leCpElHG3pwZ56W7qXkdX89NVduOqvn8Hp9qZ7KYQCEovEkIZFFgGgtZvEIuHjzZ316HV6sHZ/S7qXQmQBoijiyr9+jsse/xS2PspSJILXK+KlzbX4/Gg7dtWR6M4kVBWL69evx8UXX4zKykoIgoDXXnst4vEfffQRBEEI+mpsbFRzmcQQxe3xos/p4f9uocgioWB7bQcAoLnbnuaVENlAr9ODlm4HHG4vDrf0pHs5WUlHnxMeufTjQGN3mldDKFFVLPb29mLGjBl47LHH4vq5AwcOoKGhgX+VlZWptEJiKKOMKgJAC0UWCZl+pwf7GqSbVVMXiUUiOh29Tv7/J9p607iS7EW5Yd/f2JXGlRCB6NT85RdccAEuuOCCuH+urKwMVqs1pmMdDgccDt8brKuL3mBEbASKxdYeZ5gjiaHGrjobj3C0dDvg8YrQaoQ0r4rIZDr6fNeP4219aVxJ9qLcsO+nyGJGkZE1izNnzsSwYcNwzjnn4JNPPol47IoVK1BQUMC/qqqqUrRKIttRNrcA1OAyFOjsc+LCP3+Mh98/EPG4bSc7+P97RaCN3htEFDoUdYoUWUwM5TV4f0MXRJHcCDKFjBKLw4YNw5NPPon//e9/+N///oeqqiosWbIE27ZtC/sz99xzD2w2G/+qra1N4YqJbCZQLFIaevCz9kAz9tR34e8bjsLu8oQ9brtCLAJAUxe9N4jIKNPQFFlMDOU1uMvuRiOVgGQMqqah42XChAmYMGEC//eCBQtw5MgR/PGPf8Tzzz8f8meMRiOMRmOqlkgMIrr6A9PQJAgGO7tOSWUqdpcXm4+346xxpUHHiKKIbSc7AQB6rQCXR5SbXApSuFIi21CmoSmymBiBG/b9jd0YVpCTptUQSjIqshiK008/HYcPH073MohBCBv1V5JvAEBicSiwq66T///6g6EtceptdrR0O6DTCJg3uhgARRaJ6Cgji519LrLPSYAgsdhAdYuZQsaLxR07dmDYsGHpXgYxCOmSG1xGl+QBkBpcaGLH4MXjFbGn3tcAt/5ga8jjtp2QUtCTKy2oLs4FQB3RRHQ6AsThiXaKLsYL64YeW5YPADhAHdEZg6pp6J6eHr+o4LFjx7Bjxw4UFRWhuroa99xzD+rq6vDPf/4TAPD//t//w+jRozFlyhTY7Xb8/e9/x5o1a7Bq1So1l0kMUVhkcVRxHjYf74BHHvlXlGdI88oINTja0oM+pwdGnQZOjxcHmrrRaLOjosDkd9x2OQU9q8qKojypxIW8FoloKNPQgFS3OH2ENT2LyVJau6XXcOHYEhxu7qGO6AxC1cjili1bMGvWLMyaNQsA8KMf/QizZs3CfffdBwBoaGjAyZMn+fFOpxN33nknpk2bhsWLF2Pnzp344IMPsHTpUjWXSQxRWM1icb4R1lw9AEpFD2a+OCVNhJg+ogDTh0v1hx8fCk5FMzPuWdWFKLdIYpHS0EQ0mFg06aXb6olWiizGC4ssLhpfAgA40tIDl4fG/mUCqkYWlyxZErH1/dlnn/X7909+8hP85Cc/UXNJBMFhkUWzSYeSfCM6+1xo7XZgfLk5zSsj1ICND5s23Io8oxY7T9mw/lArrjjNZ7flcHuwp05Kfc2qtuKIPImD0tBENDp6pevJtOEF2Hy8gzqi48Tl8aJdrvucPsIKs1GHbocbR1t6MaGCrsnpJuNrFgkiEkdbevCPDcci2qCEg5lyW3L0vMmFRv4NXrhYHGHBovFSF/SGQy3cfBsA9tR3wenxoijPgOqiXJSZpRQ1RRaJaLDI4swqKwDqiI6XNnkoglYjoCjXwAViJkxycbq9uOQvG3Dz81vTvZS0QWKRyGp+/fY+/OqtvVi9tynun2U+ixaTDqWyKCCvxcGJ2+PFXrm5ZdpwK2ZWSZGLjj4XdssiEvDVK86utkIQBJRbpPdFW68DbkqHERFgYnFWdSEA8lqMF3btLck3QKMRFGIx/XWLR1t78MUpG97b04ijQ3TuN4lFIqthw+YTSRPyyKJJr7DPoZF/g5EjLb3od3mQZ9CipiQPeq0GC8ZKtjhKCx1mxs1u+MV5Bmg1AkSR3hvRsLs8qG0fmgKp3+mB3SVtJlhksbXHgR6HO8JPEUpaeqRreKlZqhOeyMRiQ/oji+0KW6Q1+5vTuJL0QWKRyFr6nR7UdfYDCO5EjIWugJpFgCKLgxWWgp4yvAAaecYzS0V/fMhnoaPshAYAjUZAmZk1uVDdYiSWv7ANZz20Foea0h8JSjXs+qPTCBhWYEKx7KhAqejYYZ3QpfK1eOIwCwBfQCCdkFgksUhkMccVF+LOBAxwWWTRbNLzCxR1Qw9Odp3qBCA1HzAWydNbtp3sQLfdheYuO+o6+yEIwHRZLAJAmYXVLaonFnedsuGM336IlVuyc1ypKIrYeKwdALC9tjO9i0kDTCxacw0QBAEjZX/OE5SKjhlWL8427qzRsN5mT7vBudJwfdOx9qBRsUMBEotE1nK0RSEW++P78IqiiC75Zyw5Op76yGSx2Nxtx3ee3YwXN52MfjDhB4ssTh/hE4tVRbkYXZIHt1fEp0fa+Ii/CeVm5Bt9RhHlLLKoYtT5w/1NaOyy442d9ao9h5rU2+w85XpyCAoktlktlC24RhZLRv8kFmOHZXXYtbggR4/hVmnU34E0R6vbFGLR7RXDTn8azJBYJLIWZaFxvDtPu8sLt9wFazbp+W42k8Xi/a/vwZr9zfjDqoMRLakIf9weL/bKdU9Th/vPd140TvJzW3+wxc9fUUmZ7LXYrGJksa5DKqc4maU1fwcVqcITWfo3DASWpiyU08++yCKloWMlUCwC4E0u6Z7kws6vXiuVsKzZN/RS0SQWiazlqML0Nt6aRZZG0AhAnkGLErOvwSUTR/6t2tOId3c3ApAE7ZEWugnFyuGWHthdXuQbdRgtR3wYrG5x/aEWbD/RCUDyV1RSblY/DX1KFot1Hf1Z2XWtjPxks0Bq7XEkZMPVKV9/WGRxlPw+O57Fr0WqiSQW96W5bpGJxaUTywEAaw80+1luDQVILBJZi1Isxluz6DPk1kMQBBTLY93YyL9Motvuwn2v7wEgeZABwOdH29K5pKyCTW6ZOtzCm1sYZ9QUQ68VUNvej61yJ/TsQLEo1yw2q5iGPtUpRePcXhH1ndnXSHPQTyxmZ2SxvrMfCx9cg289vSnun23vZWnowMhidr4W6YBldVj9OODriE53kwsTi8sml8Nikiy3mHPCUIHEIpGViKLon4aOU+DZ+pkht1SbZtBpMnbk3+/fP4DGLjtGFufixkU1AEgsxsOuU2xyS0HQY3lGHU4bWQRA2iiYTTrUlOT7HVOm8sg/j1dEg0IgZmM0SikWbf0uHmnLJj7c3wy7y4vDzfH76LHMBktDs8hig82eUKRyKMJ9Fs1KsejriE5n6Q0Ti2VmI5ZMKAMgvV+GEiQWB0hbhgmLoUJrj5N3MwNAj8MNpzv29B2PLBr1/HuZaJ+z9UQHnv/8BADgt5dOwxI5bfr50XaqW4wR3+QWa8jHz5Ln0AKSR15g9JFHFlVKQzd12Xn9LJB9NX8er8gFlk5+7bIxorZBnhPe7xx4Gtqaq4fFJG1Es7UONZX0Oz3olhuklGnomtI86LUCehxuXqqRDphYLMozYOkkSSwOtbpFEosJ0trjwPn/bz0WPrg2oYsLMTBYVHG4NQeCfG+PJ7roG/Xn63r1GXNnhlh0ur2455UvIIrA1+aMwJljSzCjygqjTqN63WJrjwPLHlmHP31wSLXnSAUuRXNLqMgi4LPQAYKbWwAoprg449qQxArzCmWczLLIYm17H+wuL4w6DWbIlkPZFh31yB3xANDv8sS9EWvv809DC4KAUSVy3WJrdr0W6YBdc406DcwKJwK9VoMxpVKkP12paFEUeeS4KM+AxeNLodUIONDUPaRM6EksJkhxngHddjf6XR6sP5SdbfROtxdPrTuCfRngkB8vrF5xTFk+LCZpN2/rjz311aWoWWRk2si/p9YdwcGmHhTnGfDTL08CAJj0WsyWBY2aqegP9zXhcHMPXt1+SrXnSAWHmnrgdHthNukwsig35DGTh1l4NOO0kcFisTBXz7sg1ZgdfqrD/4aTbWPiWAp6bFk+RssCKdvsc7441emXqXDEuSnwRRYN/HvVRVS3GCvNiuYWQfCP7E+SzbnTNSO62+GGyyNtHoryDLDmGjBHvk4MJYNuEosJIggCzp0idUat2hP/XOJMYP3BFqx4dz9+/fbedC8liGidZsdksVhTksdTP/E0uShH/TEyaeTfkZYePLrmMADgvosn81ooQGrKAMBNkNVgp1zn19TlyOp09666TgDA1MqCoPQyQ6MR8OerZuGeCybirHElQY8LgoAyFTuiT7VLkcVyuTYy24QWE4vjy80YxRo70hBxOdXRhyue/BTvya4B8bBBMcUHiD8V7atZ9F1PWN3iiXaKLEaDN7coUtCMdM+IbpfvB7kGLUx6LQBg6cShV7dIYnEAnDelAoBkqJuNdhdtvdIHNJ21IKH41+cnMPm+9yJGtVgaekxpHgrk3XxHHGKRGXKbTco0dObULD7x0RE4PV4sHl+KS2ZU+j12Ro3UkPH50TbVhNxOeQpHv8uT1fNtQ5lxh2L+mGLctHhMUFSDoabXIktDnzlGEqon2/uySqAfaJI+i+PLzajmZtSpF0gf7G3C5uMdCZnWf3w4QCzG2ZTSEdANDVBHdDzw5pb8zBOLbYp6RQarW/z8SBt6s/j6GA8kFgfA3FFFKMozoLPPhU0qRnnUotchXRCbuuwZc3P67Egb7n9jDxxuL17ZVhf2ODa9ZXRJPqw5LLIYe0TQF1n0icVMmuJSLwuIy2YPDxIwM6qsMOg0aOl2+NkHJQu7y+N3YVarCzgV7OK2OZHFYjSY16Ia9jlss3b66CJoNQL6XZ6M2LDEyiEeWcz3RRbTIJDYTV05xzcWeh1uboPCPmrxdDA73V6+oVKKRV6zmGX1m+kglMciY5LcEX2stRcOd+r7A9iov2KFWBxTmo+RxblwerzYELDRGKyQWBwAWo2AZfIO4/098ac+0g3bEdldXnTZ0787quvsx63/3sZT0FtPdMAVImLr8nh5h2FNqS8NHU+DC6tZtOQoahYzaIqLb261LugxqW7RCkCdusU99Ta/MgA1J5eoidPt5Wa+0SKL0Sjn9jkqpKHlmsVRJXmotEqiNFvqFl0eL460+CKLI4skgdTc7UCfM7XXFFY+Eq9Y3HisDS6PiKqiHH4NiCeyyDapGsH/esIii3Ud/ao0Rg0mWkJ4LDLKLUYU5Oj9uu5TSeB0HkAqTfkSS0Xvy84ytHghsThAzp0spaJX7W3KmOhcrPQoLubpFgR2lwc3P78Vbb1OTB5mQUGOHn1OD3bLaUQlJ9v74PaKyNFrUWExwcrT0PFHFjM1Dd0dogFHCatb/Pxo8iPaO2r9X3M1zajV5GBTN5xuLywmHW82SJQyC6tZTO5r4VWYcI8ozOFiK1umoJxo64XLIyLPoMVwaw4KcvUokAVTqi1j2uWymnjF4sdyveLCsaXIMUg1afFEFln5S0GOnpvmA5LwyTVo4RWDm5gIfyJFFgVB4Obc+xtSn4pu7wtOQwO+aS5r9rdk5NSvZENicYAsHFeCXIMWDTY7nxQRikwcDdTn8F0Q05lqFEUR9766C7vqbCjM1eOpb87B3FFSXV6o9P4xnoLOg0Yj8JtTPA0urGbRr8FFHvnX1pv+kX+hGnCU+MRi8usWvzjV6fdvNcfcqYnPX7EgbC1irJRb1GlwaelxwOnxQqsRUGEx8WhUtnjzHWiUIj1jy828gShdqeg2ObLY7/LE1aDCmlvOGleCHLmBod8ZeySwI0QnNCCJnJG8hjM7zme6iNTgAvg6oj85kvqUb3uINDQglY3kG3Vo7XHwa81ghsTiADHptVgyQfJpC5eKbu6yY9FDa3H9M/GPkVITZWGu2oLA4xXx5LojeHrDMeyu809z/vOzE3hlWx00AvDYNbNRVZTLmzhCicWjrdINqqZUuhCzySvxjOnzRRZ9YixTRv6JohgxDQ1I5tFq1S2y5pbJ8gU6W2sW2QV8oPWKgDS5AQCak/xasHrFCosJOq2Gi8VsSUOzTugJ5b6pN+lqclFGFNtjzDI02uw41NwDQQAWjCmGkYnFeCKLIdKUDGbXRHWLkYnU4AIAl8yUmvze3FmPBltqGzLZJiTw/Bp0Gm6hk432c/FCYjEJsK7oVXtD1y787r39qOvsx0cHWjJq4ouyy7WpW12xuGZ/M3737n788q29uOjRDZjxi1X41tObsOKdffjVW5J1z71fnoQFY6WO0NNHy2LxeHtQVJY1t9TIBeRsR2+LJ7LIaxZ9YkztkX+tPQ78/v39UY1cHW4vnHKtZjixqFbdYmefkwuVZZOlNEuzyu8NtWAlDOHMuOOBRxaT/Fqw9OTwwhwAQHUR8ynMDnGhtM1hpCuyqPzMdsSYimbNCdOHF8Caa0COXrolJpKGZrXTSkaWUEd0NERR5GKxLExkcXZ1IU4fXQSXR8TTG46lcnk8chwYWQR8kdC2OEsfshESi0ng7Ill0GsFHG7u4cXejK0nOvy6enfIUZtMoNevZlFdEcvSaoW5epiNOvQ43Fh/sAVPrT8Kt1fEV2ZW4rsLR/PjJw+zIN+oQ7fdHWTGysWi7OxfIF+kE6tZ9L/Aq1m3+MLnJ/HY2iP4+8dHIx7HhKwgAHmG0GIRUKdukfkrjirOxXg5WqT2e0MNnG4vr2+aPtw64N/HGlw6+1xJnfXLIosjZLE4Mo0+hYlwIIRYTIcZtdPt36QX682bjfhbKPtr5iQSWQyThgYUXotZIv7TQbfDzU3Qw0UWAeCWxWMAAP/eeDKuwMBAYe+lUOe3WPbmjbdONhshsZgELCY95sseacpUtNcr4oE39gAAL3zeJls0ZAK9fjWL6kaPWAPNpbNGYMf95+Lt2xbigYsn48Jpw3DZ7OH43WXT/erKdFpfiH9jgBhiaVeeho6zZtHjFXlU1RIQuVOzI5qlolqjXFiYkM036sIaSQPq1C2yFPSMKqtq0bRUcLCpG06PFwU5elQV5Qz49xXk6GHQSZfLZG4kmMfiiEJJYDGx2NnnSukNMRHsLg8XhMwLD4CvTi+FZtSBG8VYIouiKGLDYSkqv3CsVEqUUINLpDQ0eS1GhX2ezEYdf/1DsWRCKSZWmNHr9OBfG0+kank+65z84PNbIpcuZVLGUC1ILCaJ8+RpLu8rprms3FqLXXU2mI06/HDpOADA9pOdUX+X3eVJSYNFKmsWG+XfX1FghFYjYEplAa4/czQeu3Y2Hvn6zJAXCZ6KVtQtdtldXMiNDkxDx1hn2KOIQARFFs3qRRZZyrEryjqjNbcw1KhbZM0tM0ZYfd6CWTjFxVevaBlwcwsgNSuw6GIy0/I8smiVBG2uQcdTW5k++eNoSy88XhEWk84vfTgqDZYxbQFTl2KJLO5v7EZrjwM5ei1mj7QCAJ/QEU+DDEtDW0OkoVlksbajLysHN6SCSJ3QSgRBwM1ydPHpDceSGuGPRDs35Q5eH+uQpjQ0ETPnTC6HIEiRmUabHbZ+Fx567wAA4PZl43COLCZ31nZG7IzeXWfD9AdW4Tfv7FN9zf5iUd2dUaNNusGyaFUs8CaX4+1crLAUdKnZyIUeu0j3ONwx3ZxYmtek1/BoEYON/FNnBrAkDKKLxeDpMqFIdt2iKIrcNmdGlZVPLel3edCt8pSCg03dWLmlFg+/fwA/eHE7vvIXqa71rIfWJLRrT2ZzC6PcnHz7nDp5A8HS0ICvKSLTo1GHmuXmlgqznyAvNRuRo5csY1jkVG3YNCpGLJFF1gU9r6YIRp0kEk0DSEMXhUhTVlhMMOg0cHlENNiyL0KfCtjmP1IKmnHR9GEYbs1BW68TK7eqP7fe4fZNsAp1flm0MXCzMhghsZgkyswmzK6W0qar9jbiTx8cQluvE2PL8nHdglEYV2ZGvlGHXqcHByKMLXptex2cHi/+u6U2pCF1MulV7J6bu9Wd4sIilxVxiMVpw60w6TVo73VyM1Y25o81twBSdJDdq2KJLnZF8DBkF6zW7uR++J1uL4+uRjNAj9YJrYTPiU5C3WK9zY7WHgd0GgFTKi0w6bU8Ta+mD+eBxm6c+8f1+PHLX+Avaw/jzZ312HnKBlu/C7Xt/XgngVm/yWxuYSTbPkcURb6BGK4Qi9VZYp/DrmPjFPWKALOMYYI3NdHRwJqxWCI9bMTfwrG+eeCsZtHuit86xxpCTGg0AnVERyHWyCIglSfdcJZU2/639UdVj9ayMY5ajeDXDMlg94vAzcpghMRiEmGp6H9+dgL//Ow4AOC+iyZDr9VAqxEwo0q6cW2vDV+3yAxiu+1ubD2hXn2jKIp+kUWXR4xrtnK8z8WiMfFEFg06DRfgG+VUdGBzCyB/kE1sikv0m0QkMabWyL/6zn4wLR5N0EYz5FaSzLpFVq84ocLMIyzsfKnZ5LL5uHRuKywmXDuvGvd+eSKe+uYcfOdM6aawdn9zXL9P2dySTLHI3hvJiiy29jjhcHshCMCwAp9YZKnL4yqMckwmB+WZ0BMCxCKQ+iaX1p74ahYdbg82HZOi8WeNK+Xf94nFeCa4SJ/XQNNmRrbZIaWaeMQiAHx9bhUKc/U42d6HdxPYSMYDE4GFuYaQ5SzsnLf3OpMabDne2ptxZQskFpMIs9A53NwDt1fEOZPLsWi870LEhM+2E50hf77RZufdhQCw9kB8N8l4cLi9cMvpcJNsF6FW3WKX3c3TOhUFsYtFwFe3yMTiMfkGOqY0z+84ZlsRS5NLKENuhloNLiyCxJ4/0oUl1NzqcLC6xeZuBz460DKgNSqbWxgsFa1mkwvrdv/qrOH4zaXTcOOiMThvSgWunFsFAPjkcGtcNWSsuSUZk1uU+IRzcl4LlqJlqUpGtnREh7LNYaS6saMtIJUZrTt164kO2F1elJmNvOsf8DW4xPN+4+PgQtQsAsBwuR61McX+gNlCvGIx16DDdQtGAQCeXHdE1YxYOENuBhOLLo8YNWP0wd6mqE4YgJT5WvLwR5h83/t+AZ10Q2IxiYwszuNjiQw6DX5+4WS/x2fJ9WXhIovrZRsHndwB+9H+gd38I6F8E7IRY2qJRfZ7C3L0PGIVK74mFylyxqyJagLEYgEf+RddLEaKLKplnaMc9+X2ihFropiYjSWyaNJrccWcEQCAH7y4fUDmsDvl5paZI6z8e2rU6QXCooATK/xFx/jyfAy35sDh9uLTOCY37FbUKyajuYXha3BJzmvBPRat/t3aTOCezOBIVJ/TzdPkSrHFYB3RJ1PUpMNu6uPKpLVEM+X+lHdBl/i9R+KtWXR7vLysJVQaGvDNi+6OIiaGKpHmQofjuvmjkKPXYk99F/fKVANfc0voc2vSa5FvlO4j0Wqrf/K/L/Drt/cFWcEFwkquCvP0yDNGDxikChKLSeZr8o17+ZKxvPaIMatKiiwebenlw+eVrD8oicNr5lVDI0geZmoViPfJO+ccvRbDrOqmGllzSzz1iozZ1YXQawU0dTlwvK2P1/2MLvG/Qfnsc6KnoX2G3CEiiwqT1WR2pCsji0DkVHRXHDWLAHD/xVMwv6YYPQ43vvPsZv56x4PHK2LXKV9zC6NM5TS0KIq89m3isODat6WTygAAH8aRit6lQr0ikPyaxUCPRQZLQzd22VPW8Rkv7IZWkm9AcYibfKpTrywNPU4WrtEii8fk60hgAxTLssQqFm39Ll5eEqobGvB9jntILIaEN7iYQwuyUBTmGXjm4fG16kUXo4lFIDavxX6nhz8eqWcBAA7L5R3jyoIj9umExGKS+c6Zo7H2/5bgtqVjgx4rzDNwu5ftAebcHq/Id0iXzKjkKet467VihXV45Rl1iuiRupFFltKMB5NeixlypOu17XWwu7zQawVUBdxg2YU6lgaXSGle9sFP9sg/ZWQRALr6w984whmGh8Og0+DJb8zB2LJ8NNjs+Pazm/2m88TCkZYe9Do9yDVoMbbMJ8SZJYpaaei6zn50O9zQawXUlARHqM6eKInFtfubY74h7FahExrwRRaT9Tmp42LRf1NpzdVzgZGpTS68uSXMDW0Ujyz2pcQGrF2uLWPNNp19zoiuE83cyst/AxtvzSLLZJhNOui1oW+n+UbpcxwtTTlU4Wno/PiCCTcsqoFBq8FnR9vw9q4GNZbGa18jikX5scC6WSVKu61DTT1hjwN8LgPK63AmQGIxyWg0AkaX5IVNf/FUdEDzyq46Gzr7XDAbdZhZZeU3yY9Uqltkaeh8o5bfBBtVFouJRBYBydoCAP67pRaAlKbTBVyYC3kaOobIYoSaRb3WN/IvmanowMgii26GIlbrHCUFuXo8c/1clOQbsK+hC8tf2BZXgTSbLDR1eAE3kAeSX6cXCEtBjynND7IxAoD5NcXI0WvRYLNjX0PkHTkAuDxe7GtMfnML4IuydtndcdW0hSNw1B/Dv5s4M8XiITmyOKEitFgcVmCCTiP4uQCoCet+ZrXMXjHyxpGtqTxgAxuvWGSZjEhign2OuyN85ocqXq/IRVasNYuM4dYcfP9syXfxgTf2qmJi3xbBcJ3B/BcjdUQrS1cONkWJLMqfLRKLQ5xZcsQwMLLIUtALxhZDp9Xg7AmSWPzkcJsqqShmm5Nr0PGboFp1aY1hdvGxcvpoqeOX+ZQpO6EZBXFMcYlmTVOiQpMLE4t6rSTEIl3Y4rHOUVJVlIt/XDcXJr0G6w624Oev74k5GseaW2YqUtBA8uv0AmENXYH1igyTXoszZWuTNftDz15XcrCpG063F2aTjguuZGE26riYSIYxt296S/CEGVZHnKlj4ny2OaFvaDqthv9dqRC87bLgqLCYeMYgXFpQ6c5QZva/JpkM8dUssucIV68IKNLQGdSskCl0KCLAoSakROOWJWMwpjQPrT0OrHg3+d7E0RpcAJ83b3uEyKIyG8HEYDjYRmwcicWhDTNR3nGy0y8987Hc3MK6pycNM6PcYkS/y8M7gZOJL7Ko80WPVEo18gtzgpHFOSML/aJdgc0tgC8NHUvquNsRvmYRSH5HtMPt4WlclraLGFl0hI98RmNGlRV/vmoWBAF4cdNJvByjce0XrF5R0dwC+G6mTV3q+HCyhpyJwyxhj4mnbpGnoCuT29wCSBE/3h0+wI2Vn8eiNYRYzPTIoizyQ9nmMFLV5OJw+0zji/OMfnYmobD1u7h5f2BpTE6cE1zY5jRcJzSgjCySWAyENbcU5RnCpvEjYdRp8bvLpwMAXtpcm5ThBEriqVmM5O2prPk+3tYLhzv0+6vP6ebXhUD/0nRDYjHFTCg3I9egRbfDjcNyZ2+X3YVt8hjARbLnlyAIPLqoRt2ir2ZRy9PDatcsJpqGzjfqMLXSJyaUhtwMPvIvJuucKJHFJI/8a+i0QxSlG9Goklx5DcmPLDLOnVKBG8+qASDZzkTD7vJw0TZ9hH/qlt1M7S6vKjVX+xt9U0DCwT4HO2o7owp43twyIrkpaEay6ns7+ly8yawykljMwJrFLrsL9XKUP9INLVVNLuyGrpONk6OJRSb0C3P1fHILI15T7vYI01sYrPaY0tDBsOEHJQlEFRlzRxXhmnnVAIB7X92V1ExcLGKRpaEjXZuUmRmv6LOAC4T5CBflGSI+ZzogsZhidFoNvyFvk+sWPz3cBo9XRE1JHqoUvnBq1i32KhtcLD5xFKkoPFEG0g3NYBY6QJg0tLyzj6VmkV20w0Xukj3yT9n1ytLlthgaXMJFPmNhjJzCiCXSurehC26viOI8Q1BK1KTX8jW3JDnybHd5+EVzUkX4yGJFgQlTKi0QRUT1ktxVJ4neZDe3MMqSlJZnzS1lZmNIO6lqOQ19UoU0tNvjxeq9TTE5B4T62Qde3wNAiogWRHiP8siiymKRjVorypOMk6OJRV+9YvD1yBR3g0t8aehsm7GuNi090rmIt14xkLvOn4hSsxFHW3rx+EdHkrE0AIpRjrGkoSNFFgOunQfDNLlkanMLQGIxLfC6RTmauD4gBc04c2wJ9FoBx9v6+Ji7ZMGiGnkGHYrzjdAI0o4nkTm8kXB7vHzHVV6Q+AVhnly3CISOLFrjqFnsitJtzKe4JGnkX61i/i8TgOHS0KIoKnwWE/fYKozDd1Jpxh0qdVuW5MkljMPNPfB4RVhz9UGNBoEslTdOkeoWXR6vL0KqklhMVsNPuOYWBovKneroT/okhze/qMcN/9yCB+XZ9bHidHtx20vb8cr2Omg1An524aSIx6dqzB1L/zELH3ZjD7dxbIogFnPi9Fns7GXTW8KLZubD5/KIcMQwuz6b8XpF/P3jo1i9N3p9MaDshB6YWCzI0eMXl0wBADzx0eGgJhJRFNFljzwMIRCv1zfVLHJkMfp8aJaGzpVrYg+HaXI51JSZ9YoAicW0wCe5nOyAKIq8uWXR+BK/4/KNOh5RWzvA6RyBKK1ztBoh6aPMGK09TnhFaSRfcV7iF4TTa4pQYTFh2vCCkB9ctrOPzTonshhLdoPLKS4Wc3k0M1wa2u7yTdaJ1TonFKyGyhZD9Ij5KwamoBnJ9hdksBT0xApz1PrCL02SRml+fLCV15sFcqipR7XmFkay7HN8zS2h18mmuri9Iuo7k/u6762XBPWx1tg3oHaXBzf/ayve2dUIg1aDx6+djQumDYv4M+wcnGzrUzWixja4rAmhMMrNuzlMJzQAmAw+n8VY1tweQ2Qxz6Djs+sj1SoPBt78oh6/fnsffvjS9piyVPFOb4nEBVMrsGxSGVweEXf+dyd+//5+LH9hGy7888eY9sAqTH9gFe5cuTPm32frd/G/oTDC+S3m3dDRI4vsfn4oTJNLpnZCAyQW0wKzzznU3IOdp2w41dEPvVbwi54xWL1WslPRSuscQD1BwFI+ZWajX5NKvFhMenx452KsvHl+SGHBxFGPwx1WTDBYzWK0Bpdk1Swq09DRIotMyGoEIM8Q37QbJVaelo9+c2LNN+EEVrJSr4HsZ80tEVLQjOnDC1CSb0C3w40tx0M3fO2q6wSgTnMLozxJzgHhDLkZGo3gm6+c5AYR5t0YyRdOSZ/Tje89twVr9jfDqNPgb9edxkebRqKqKBeCAHQ73KrNnQcUHatyOrA4amQx/Jx6FlkURcQUBWSp/EhiQqMRkG9IrzH3qY6+qPOyB4rT7cXDq6Roda/TE9NmJJliURAE/PIrU5Fn0GJXnQ2PrT2Ct3c1YE99Fw+OvLKtDqv2xDZPmm0EzCZdSFsvhi8N7QjrKcqunQtlZ4doYjHTDLmBFInFxx57DKNGjYLJZMK8efOwadOmiMevXLkSEydOhMlkwrRp0/DOO++kYpkpoyTfyG8Ef1lzCABw2siikKN9WN3ixqPtSZ0T2euQrXPk5+Rdr0muS2P1iqEuzPGSZ9SFHRdoNun57j1SdNHu8sApp/VSF1n0RZF8NYuh18hS5PlG3YAED4t0dNldUXf47b2sozP0Da9MJdP2aLY5SjQaAUsmRO6KVru5BUje5yTcqD8lvjRucmv+TrZL78dY3t/d9v/f3pnHyVGX6/6p3me6Z18zyWSZ7BuBQCCTsEkCCYIQycUARwmBiCJwVTioHGU5Ahf1oB6Qqx5FEkQEblRcUAgQCWtMQiAkIQtJSMg2yez7TK+/+0f371fVPVXd1d1Vvcy8389nPkqmZ6Z6prvqred9n+f1Y+WTW/D2gVYUOqxYu+psXBAzLqOFyy6b58xsRbf2Rs+V8dexltIjLwnQnlkE9M0t8iK4LE4bGsiuI/qTll4s/skb+ML/bDI1IP33mz/F0XY5T5a/H+PB/3aVabahOXWlBfjJitOxaFo1vjh/LL532XQ8cf1ZeO2O8/GV88Omv3v+sktXB0qPuQWQlewQU58RH/QHxXgUjwE73No3RNTwBoLifaIVSZVNTC8Wn3/+edxxxx2477778P7772POnDlYsmQJmpvVT/jvvvsurr32Wtx000344IMPsGzZMixbtgy7du0y+1AzClcXX9sT/j3EzityGirdGFteCF8wpMvZqhelwQVQtteMVY/SdULrxWqRRIu3a0D7DporepIEcbcfC5+tbO31GuJgPKacWYxcNLQ2uMgt8tRb0ICcO8lYfOc1kDhYWGQtGvza4CHb8WJzlMhzi1rFornmFkChspqsLAIQ60KNNLkwxnA0oix29vvhTzAP+fONB7H1cAeKXDb8bvU5aJw4tPsRD2Ur2iz49hZecHCFUUtJi3dOslstsEU6IHoc0fxnxFMWAfn9nI2sxd+8fQiD/hD2N/diq4Yqny49g3489s8DAOTzxa7jiffUG6kscpbMrMVvbpiHB5fNxurzGrB4Rg0mVRfhmxdPwYRKN051e/EDHZmMeotFu9UizrftKsHc/Dk6bBZMrSmCx2lDIMSG3EAdbu1HiIXzXKsN/H0YhenF4k9+8hN8+ctfxqpVqzBjxgz88pe/RGFhIZ588knVxz/66KNYunQp7rrrLkyfPh0PPPAA5s6di8cff9zsQ80ofG6REzuvyJEkCRfxlWcGzi32+dTb0EZv6jgVZz7IaETWoo7Aa4/TBotGW7y6yIWGSjdCTF/0TDy8gaAowOvLC3W0odOLzeHYrRYURW4E4jnEGWPipKh1wTMjh7Olx4vWXi8kCZii8y763Mlhw9eh1r4hhi+lucXozS1K+O+i1xtIWelnjClW/WkXi3xlnjJr8VT3IJ546xN85487UjKjdfT7owqWeEP5APBxZK70riVTh5yz9MDDxc1UFttilEUeZZIoOkfrnKTX5BJSrARNVFB4srTFpaPPhz++L2et/nn7cVN+zq/fOoT2Ph8aKt345uIpAOTM03jwxAkji0UtXHYrfnDVbADAs1uO4t2D8c/tegK5OfwGRW20o1lh4rFYJDGPGLv2TzihazymjdGkg6nFos/nw7Zt27B48WL5B1osWLx4MTZt2qT6NZs2bYp6PAAsWbJE8/Ferxfd3d1RH/kAVxaB8B1xvOiQC6eGVceN+/Tvx02EMLg4YpVFc2YWa1Lc3pIMpTocwPJe6PjK3YUi4zK9Ap2bEwodVpQV2hO2ofUenx5K3YmDygf8QTGbpbXSygw3NN8AMq68EIUaCm8sRS67mOtdt+1Y1HtBmFucNtG+NQO3wyqKiVTHFLoHAiJEenSp9rFyZfFASy/WvXcU//bEvzD/4Q148O978NzWo/jtpk+T/tmxu6YTzeXyC11diXZRG4+xGQgXb425qPPMQ7ViMRhiokDRGo0RW1wSBHP3DAbEiEdpnFBuQL75y/R+6N9vOYJBf0gc34s7mgzfCNbcE76BAcI3FadHrm27T3THbXv7gyHxN0rXDa2Xcxoq8MX54UzGu/+0M+7fONFNtJKKOHFNPHKMX2O505kXh5wDObq5hWNqsdja2opgMIiampqof6+pqcHJk+pDpidPnkzq8Q8//DBKSkrER319vTEHbzLTRxXDGRmaPX9ypabKBQDzGyrgtFnQ1DVo2Em3PzKzyNvQZq38y1QbGlDG58RpQ+uMpZHV3PQKdGULWpLkVnmvN6B6IhUZkAXpKYsAUFoQPoHF+33wwtpulTQNNUrzk9bvYlCne5Sz96R+c4uSy04LO3B/sfEgvvq7bUJd4yrGzNHFcd9L6SJJcnJAqgaoY53h10Slx4GCOCYmXvR+0tKHu/6wA+8caANj8kVnd1PyN8axxWKigpc/x9hNJ3qR1VHzlEXe+uPqTnnkfwf8wSHFQFtfOEvWImkrRnqVRa7YFzqsQ8K9YxFt6AwWi95AEGvfPQwAuPfyGRhV4kLPYMBws+TPNhxAvy+IOfWlWDqrFpOqPHDaLOjxBoa83pRwRdhqkXQVZEbx7aXTMKrEhU/b+vHT1z7WfJxoQ+sIDBeOaJX3U+xqST6POFRZzF0nNDAM3NB33303urq6xMfRo0ezfUi6sFstwkZ/UWSdmRYuu1UYYvisU7r0xs4sFpmz8o+/UTJSLBbGV+0A/YHX8yaUodBhRXOPFx+dSF2tVppbwj83/PtmDEJdUtJt0MwioHBE92n/PpQzV1qtD14ceQPqW1xe39uMafe8LC5MetCzuUWNFWfV464lU2G3Slj/0Slc8tM38cpHJ2Vzi4ktaE6laDmlWCzGWfOnZExZoVB1J1a5cefFU/DmXZ/Bf684A4C8KjEZjsYqi3GeQyjExHOM3aGsFzGzaOImGl508Au222GFI7I6rj3mRulUl9z2tGmslyvQGczdocMJzeFZi5k0uLz4YRNaeryoLXbh8tPqcMXpdQCAFz4wrhV9qLUPz245AgC4+9JpkCQJNqtFzCHvOqHdiuY3IhVuh6k3eLEUuex46POzAABPvPWJyJmNRRSLOv6+5XHb0NxQFVEWI1uPhiiLp3LXCQ2YXCxWVlbCarXi1KnogM5Tp06htlY9eqG2tjapxzudThQXF0d95As/WH4a/u91c3FZgrwyQF4JdqLTmGJx6MwiN3X4Eg69J8OpLm3nodHIQdSJDS7FCZRFp80qnGvp3IkrlUX+fV328NtOzXhi1MwiILfl47Wh9WwoUG5xUZtp5TNRz2/Vf6PGlcXpo5I7MVosEm79zCT8+daFmFpThLY+H25+ehvWbQv/bDPNLZx0lcXjMTcQWjhsFvz1tnPxyjfPx2t3XIDbF03G2IpCzIhciI91DCSd2xer8MUreNv7fQiEGCRJVu2ShReLrb0+U8wdA76gWDDAjzFqi0vMxTteIDeHvz91F4sJnNCAfL7J1MwiYwxPvH0IAHD9gnFw2Cz4/BmjAYRHa1LZ3qPGI+v3IRBiuGhaNeY3yOYnvp41nsmlNYPzirFcNK0GV8ypQ4gB3/7jDtXge70GFwCojNOGbhbKYnQb+lBrn7jWBoIhsc1qRCqLDocDZ555JjZs2CD+LRQKYcOGDWhsbFT9msbGxqjHA8Crr76q+fh8ZnRpAS47bZSuYVZeLB43qFjkbWg+L1ZW6IDdGj4Oo/IF+7zybFZtBmYWS3RscUm06k+J2M2dhrGIR0kojQyya9vcYrGsMHFbnp/cEs1cabnlGWP41ydtAMJqIY9KikcgGBItmGTb0JyZdSX46+0L8dULJkKSZOdqZpTFSLGoM6cwFqEsxjG3cGpLXJhSEx1aXlJoR13k/bS3SX0ThBZc4RM3h3G2FPGLXHmhA3YNFS4RRS67aPea0Ypui7SgHVaLUO8Aef52iLLIVZ44SqlLbxs6QeSUEn5smXJDbzrYhj1N3SiwW3Hd2eEZvWm1xZhWWwRfMIR/7NSXNRiPD4924u87myBJwLeWTo36HL9pi2dy4WMU8UxeZnLf52agyGXD3pM9+EBFXYzN74wH3x7UpuKGPiVGOcKvubqSAhQ6rPAHmRgrO9LeD18whAK7NWHHIVuY3oa+44478Otf/xpPPfUU9uzZg1tuuQV9fX1YtWoVAOD666/H3XffLR7/9a9/HS+//DJ+/OMfY+/evbj//vvx3nvv4bbbbjP7UHOa0aXhF5oRyqIvEBJZg7wNbbFIhufpcXOLx2mLOpGbhXBDx1HSeGSNnmKMG4s+ONKRcqCtcnsLJ54j2tg2NJ9Z1P59dOpYZwVoO6L3N/dGtV74NqJ4HG7rhzcQPjGOTcOM4rRZ8Z1Lp+H/faURk6o9OGtcmZiRM5O0ZxZj1OZUmB5RF5NtRfObF+5sjqcs8r91usqPmSYX5QVdWVDLhoPo55fICQ1AzJEmMrgk04bOdM4iVxWvPmtM1HYZri7+2YBW9K/e/ER8z9ibvll1kWLxRJfmLPPrkQis8ybry+00mgqPU4Rkb47c8CpJxuDCz5+qbWjFYgoAMY7o8M0en1ecWO3OaEs+GUwvFlesWIFHHnkE9957L04//XRs374dL7/8sjCxHDlyBE1NTeLxCxYswO9//3v86le/wpw5c/CHP/wBf/7znzFr1iyzDzWnEW3orvSLRWXkh9LUUG1w1mImY3MAxcyiDmVRTzFWV1qAabVFCDF5f3eyqOXpcQXU9DZ0Ad/iokdZjH9C1FoH+W5MtNAbOopF3oKeUltkyIlx3vhyvPrN87Huq40ZOdGmE9p+qLUP7x/pAJB4ZjEeqRSLvkBInD/0FIstMYpIqvAC3oz4nNjYHI5QFmPmdU/pWBKQ/Mxi4nMJP99kYt3fwZZe/HNvMyQJWLVwQtTnrji9DpIEbDncPmR+NRnaer14ZXdYnfzyeQ1DPj+l1gObRUJnv1+1G9bV7xfvA35Tng1463zzoaH5k3J0TuLrV4VHuw0t3kcKNZvPJfIiMZc3t3AyYnC57bbb8Omnn8Lr9WLz5s0455xzxOc2btyItWvXRj3+6quvxr59++D1erFr1y589rOfzcRh5jTyzGL6qh9vhbjslqghb6NNLnrmg4ykVNfMIje46CvGLhTrFpMvFgf9QRE9EqUsxgnmNiqUG5BnqeIpi2JmMUGxqLUO8t2D4TvyxXx38/4W1fkfJbx1Oj1Jc0s8JEnKWDZZqsrizmNd+F+/eBetvT5MqHQnHXCtJJVi8XjnABgLF0PcWBRfWYyetUoVrh6bEczdJpTF6GPUVBZ7Eqcz6HdD8+0tOtrQrsy1oZ+MqIqLp9dgQmW00j6qpACNkQLprx+eSPln/On94/AHGeaMKRGvRSVOmxVTIkYOtbnFN/e3IMTC83uJZnfN5JyGsMn0vcMdUbP6A76g+PvrmUnlN5Cxbmh/MCReo0rRRDiiY4rFXJ1XBIaBG3qkMFoxs5hu1iIfCHfH5NsZnbV4sitzTmhAGZ1jjLIIAJ+J3PW+8XFLwrV5sfCRAZ6xyInXhjZWWeQGl8TROYkueDUqBVIwxMQd+S0XNqCkwI7uwQA+PNYZ93txJ7SeNX+5SCrK4tv7W3HNrzahrc+HWaOLse6rjbrzJdXgxqB9p3p0vy75vOLY8kLRRYi3H7rFoGJxfCVfW2iGsig7apWUFWooi9xsEKfb4RTKYvybHr3bW4DMtKGDIYZjHf3CcLb63Amqj+Ot6D+9fyylawljDM9tDTugV8wbq/k4Pj/8kYoj+vWIaZCvs80WU6qLUFpox4A/iB3H5OPUmoXVgivbnQP+qJtl/h6yxcQDTR7Sho4EclOxSKRLTbELkhRuJWntPNVLbGwOx+isxVMZDOQGZGUxXnQOV/P0hl7PHVeGIpcN7X0+7EhQBMWibEFHGRTiBHMbGsqdVHRO/J9XraIs7mnqRteAHx6nDXPGlOK8yeH5nzcSqLC8DT01RXNLtqlWFM56LrZ/+/AEVq3dgj5fEAsnVeDZL89PexfuuAo3CuxWDPplF2UieLFYX14ofn5Hv3b6gVEzi+MibWgzlEWtLRvlHnVlsVlHtyPZnEU9ymKxCTmL//3ax1j6329iwcMbMOu+9Zj4H//AuT98HYP+EGaNLhbRbLEsnVULp82Cgy19KcWCbfu0Awdb+lBgt+Jzc7STPGaN5o7o6GIxFGJitvlCnXvGzcJikXBO5Pe0+ZA8t8jPmeVu7UgxJeHosXAkmnIpRLNinaFyRIa3mz+JOKIPNkd2QlOxSKSLw2YRF6l0TS6xe6E5Wq3GVBHFYoaiEbiy2OsNDFnSzpENJPpUHbvVgvMjA9jJuqJ5sVgf02bhFw71mUV90T56KBMGl3jKor4LnlCdFSMKfF3W2RPKYbNaxH7zN/Zrr9HqGfSL30u+K4veQChhW3HtO4fwv5/7AP4gw2WnjcKTN8wzZMTAapFEK1lvK/qoQlksK3TAErm4aa3FU5u1SgUeLn6ia9Dw7SFcGY0NTuZjFcobJeWNdtxi0RG+LCYyuPAOhp6ZRTln0ZiZxZYeL/77tf3Ye7IHJ7oGo16HxS4b/v2SqZpFTpHLjotnhMdGUslcfC4SkXX5aaPivpZnckd0TEG660QXWnt9cDusOGu8ekGbSfhWqM2fyHOLXFnUcyMARAeLKx3RseYWzpiyArjsFvgCIWw62IYBfxAOqyUtw5/ZULGYR+jJWvQFQvjC/2zC3X/aqfmYfh9f9Re9dYAXBM0GKYvcDZ2J2Bwg3N7l58eE6/QShHIrUa5bTAYt1yufl4wNuGaMiX8zMpS7zxfULJ71ttJ4wdDcLatpmyLzigsis3cXRIrFHcc6NQuQjyNtl9pil+4Tca5R4LCKi3+8ucUDzT24/2+7wRiwsnEcfnbNGQk3fSRDsnOLPLpmbHkBrBZJ7FDWeg7NaW5v4ZS7HWJPeTqmCjW4clgZY0LgbcGoC3fkRsdhtcQt8PQaXJJxy/Kb0z5fMOlxFjXePhC+cZ1S48Ffbl2I1//9Qrz3vcXY9+BS7Lh/iZi11oK3ov/64YmEM8ZKugf9+PuOsCH1mrPjb0ubXlsMixR+fSnzWfn897mTK+GwZb8EkecW28Xvgt9E69kLzalQyfaMjc3hKB3RL+0K/z4nVLo1g+Jzgdw9MmIIctaitvL30YkubDnUjnXvHdVskfXGrPrjCGXRKIOLDuehkVgtkiLDUL1YSVZZBIALpvIiqCspU0Ps9haOVht6wC9fSIyYWSx2ycWz1txiu06DS9QWl4EA/MEQtkTmFblRo6bYhWm1RWAsbHRRY09Taptbcg09Jhf+XOfUl+L+K2Ya7tSeEZlb5DOgiTgSic3hbeF4m2gYY0PChFNFkiTT4nPaNIKT+X8rW4LKecV4rUU9OYuMMVlZTMLgAhhjcuGjHoun12BOfSkmVLpR6XHqvhk5f0oVygrtaOnxivexHv724QkM+IOYVO0RjnotChxWURDtVLSi+bxiooI2U0yvLUZJgR19vqBQQbnLPpkbWu6IblXcKLdoKIuA3Ip+5aPwEpJJNbnbggaoWMwrRutQFj9pCasHgRDTXFrP29Cxg7u8qOvs96fdLgqFmFAmMqUsAoqsRRWTSyjExIk6mZnA6iKXGNbWEw3D0VQWNdrQXPW0WiQUxtkZrBeLRZILU5Xfx4AvKIb4SxM4/lx2q/jdnuoZxI5jXejzBVFaaMd0xezhBQpDkBp8tda0JDe35BqVcdZ7cZoiMTXjKwpNcWpPS0JZZIwJVa8+0uriBa/ac+j1BkSxZMSGDbPic8Sqv9g2tCgWfeIGTM+8IiDnLMY7B/b5giKrVk8b2mmzChUt3VZ0KMTwZmTU44IUZ/7sVovIN1QLpNbiuS3hFvQ18+p1vaZF3mLEEd3e58P2yM/LZmSOEotFwrxIO5znLWrNwsaDR+y09yrVbO1RDl5I8xueSVVULBIGwbc2xC0WW+Xl5FpB0rxgii1Iil02seoq3S0ubX3yqrB0h/mTQY7PGXpC7vUFwMXWZJU77ormQbJ6OKqhLGq5oflFxOO0GVZclMX5ffBWi80iiTZhPGoUrWi+tWX+hIooxYxfvN78uBWhmHbbzmNd+FNkRmrhxMpkn0pOISuL2io8j7kaVWLORgY+89nUNZhwfVtHv1+87/nNSzxXN7/IeZy2tFzbHDN2RDPGRJs5NguP39gwJs/s6s19ddm4sqjdnuXnVqfNItrWiSg2yBH90YlutPf54HHaMHdcfHUvHrN1bFlRsut4F3Ye74LdKuGquWN0fY08txj+GW/tbwFj4deuWe+LVJjfwE0uYZVVzxrUWPgNi9KAyt9Haq+5WDPLZFIWCaPQM7PIlUVg6KorjphZjCkQJEkyzOTCv77S40x5VVgqyPE5Q587P0k7bBbRatLLhZGIhzf3t8AfDCEUYujzBtDcM4hjHf1DWv6D/qAouGOVRa02dLeBsTkc4YhW+X0ozS16itNqRbQSN7csmBSdFXjWuHIUOqxo7fWKdV4A4A0E8e/rPkQwxHDZ7FHCDJOvyIWWdpHGw4j59iWjKXLZUV8efm3tTqAu8iKtttglXvtCHVW5MTQqNofDi8XDBrah+xXKeKyyaLdaxPuMv85PdmurPEqEshjH4CKbW/S9dwB9K/86+30Ji7c3Pg7fsC6YWJHWuXUmdyurRNuo8f/eC6uKl8ys1V1E8R3RH0WeE59XzJUWNIeHc2891I5giKXUhlbb4sKvg2pzvzyHkpPLgdwAYP4ONsIw9MwsRhWLGheyvsjMolp+VE2RC5+29acdn8N3BGcqY5EjtrioGFx42zcVp/GcMaUoK7Sjo9+P2fevH5LBds6Ecjx5wzxRgPNCwe2wDtm7LLehoy8aPQaaWzilcdrQ8m5bfT+PX2SPdvTjvcPh7QsLYoKlHTYLFkyswGt7mvHGxy1iR+zj/zyAfad6UOF24PtXzkztyeQQVZ7EM4v8pq7OxF2v02uLcbR9AHuaerAgjlqrzFjkyG1obWXRiBY0IM9JGrkful2h7qmNbZS7Hega8KOt14dJ1Um0oXXMLPIb8UQ71ZXw93W8NvR/vLAT/9h5EmtumKeZQchHPC5Is407M9IiPto+gM5+X9wtToP+oHBOXzMvvrEl6mdE3v8nugbR0uMVx54rLWjO9FHFKHLZ0DMYwO4T3akZXCLnhPY+fW3o+vJCOGxhR7RFkvNIcxVSFvMIPrPY2utVnacJhhgOtSVWFrVyFoFo9SgduEkmU+YWTrwVd+kUY1aLhCvm1AGIDuu1SOGPzYfacdNTW0XchtLcEqs8cDf0gD/apWxkbA6nLM5Wm/YkdtsCcivl5V0n4Q2EUFXkxESVORu5FR2+MOw81oWfbzwIAHhg2awh2zbykco4hRanqcvcNjSg3xEdO68IxFdHReSHQe9friwe7xjQzHVMFv67r/SoG1aUc4uAYntLSYI2tI5isTOFNqWeYG6+3eg3kS0ssXQP+vH+kU4AEJFeqVJSYBd/l0R5iy/takLPYACjSwuSGiHxOG1oiGyReXbLEbT3+VDktOHMNNrnZmBVzi0eatM0TsWjkjvwI++nQDAkQuPVFHqrRRLnz/EVbkOTEsyAisU8orTQLu56uXKn5ETnQFTxoTWzKLehh744jXJEy07ozBYGpSJb0FhlEQDu/dxMbLjzArz1rc9g2/cWY+8DS3Hw/3wWL3xtITxOG/71STtufvo9eANBTXMLEF2sKucWzVAWS7jhR0Vp7UyyWOQnPO6+bWyoUL1IXzAlrIhs+7QD7X2+qPbzZ2drh/jmE0JZ1CgWB3xBoXylswM6EXqLRR6IPVa1WNRuQ1cZVNjXFLngtFkQCLG0c2I57Qku6HLuHZ9Z9IpjiYcegwvvXJQkEcElZy1qF4v8b/H2gVYcaB7qcn/3QCuCIYaGKndU4Z8qsgElfiuaG1tWzKtP2tXP1cUn3wkXwOdNqczoaJJe+Nzivz5pS/jaUkOOa/KJ/w2xsJigdYPM5xZzeXMLJ/f+YoQmkiShrlTb5HKwpTfqv7WVRfV1f4BxWYsiYzFLbWi14qjHm97eZX4nWF9eiAqPEy67FZIkYU59KdasmocCuxVv7W/Frc98gMORrRpqxaJVYShROqLTLWbViBfMLXLidJ4QY1Xi2BY0Z2xFISZUuhEIMdz01NZh1X7mCGVRow19okseQ9C7hzwVZkSKxf2neuMqdp+2RzIWK+TXY2WcVrpRGYsci0UShapR8TlaTmgObyF2iGJRn1rKTX7xikX5vZpKG1q9WPQFQlEJFk9v+nTIY0QL2qCZXz63uDNOsdjR58OWw2Hjx/Iz9RlblPC5RX4Df+GU3JpX5Ihw7kPt4mYgOYNL9H5ofg2t9Dhh1Siw+Tk0nT3xmYKKxTxjdMRZe1ylWFTOKwLxZha129BGGVz4MHmmVv1xxMyiqrLIA7mNv3jPG1+O36w8C06bBa/tOYU17xwGAM27f9kRLV8cjNwLzSmLs/KPn7zLE8TmcGIvsvFOcPxi9kGkZTZc2s8cZeyMWp5pU2SuuK60wJTYHM6YsgJ4nDb4gqEh738lRyMZi1HKYlEkRLjfNySY2WiDC2D83GKbiDdRP8YyhdLT7wuI91eiboeYWYxjcEnlvcof2+tVn1mMDbL/4/vHo8wwjDG8+XF6kTmxcGUxXht686E2MBZWwVJRyfncMifdWUuzmFlXDI8zPLfI39KlSSjH3DDWPRjeIMZD4OPdcK2YV493v3MRblgwPuXjzhRULOYZo4WyOLSY47E5sbM6scjF4tA2NB/ETbdYbM6asqj93PlMYJHTuDavkgWTKvE/XzoTdquEQCQ2Rk1ZBORiUWnEEcdnaBuaL7iPoywm2YYGwq3VeKupzp8izzUNp/Yzh6tWvmBoiFEJkJX/USa2oIGwYjctwdo/XyAklE7lzUu5Yp9tbBdCXOjSXPWnZLzBjmiu4OhRFnkL2u2wJnx/KQ0uWosNulPYBJVoZlE5g9lQ5UavN4AX3j8mPn+wpRfHOwfgsFmECpYuvJA71Nqnabx5N7KpKVX1a2adnMM6Y1RxxufY9WKzWnDWeHmWsrTQntRGlWKXXSiIHf0+XWMP4W6huTeURkHFYp5RV6Idn8OVBT48rLVyrU8jOgcwvg2dLYOL2syivOrPvLbghVOr8fh1c8VJo0EjaJW3mrsH1GYWjVcW1X4fHcnOLCrukBsnqs8rcuY3VKCm2IlRJa5h1X7muOxW8Tds6R16Y2V2bI6SRHOLxzsHwFi4CFLOINqsFrG5p7Untlg0tg0NyCYXo9rQiYKTlcriqSTOR67IzGKIQQRvx5LKJqhExSJXSis9Dlw/fxwA4KlNn4qClcfOnDOhXMxVpku52yHUQi11MXatZ7KUFjrETfNnpuWmqshRFuHJtKCB8I2bHJ/j1aUs5hNULOYZImuxS7tYPCtRsRgnOoe3Gnu8AaFAJsugPyiKk2wpi6rROSYod2osmVmL526ejx9fPWdIlhZHLZjbyL3QnNICbcOPnLOo7+c5bVZRfCa6cBQ6bNhw54V45ZvnD6v2sxI5mHvo+4xvb6nLQPAwLxa1shaVsTmxBb6aycUbkN+/RhlcAOPb0K0JTAgVig5LvLy7WJQh27ERWZxUzGgeZ/yZxTaFsrj8zDFwO6w40NyLTZEA/HS3tmjBlT81k0tzzyD2N/dCkpCWmnn1mfWoKnJiuc4w72zB90QDiVegqlGhcETL8VO5qaQmCxWLeYbIWuyILhb7vAGh5nEpXatYjBed43HahPki1dVc/MTssltMVfHU4MpirzcQ5QwHFK0jA5U7LeaNL487DK4WzN2TglqRiLih3CJnUf9JcfncMZg+qhiLptUkfKzHaTO9MM8mlXEc0WJ7i8ltaACYnmBH9BGV2BwOn1tUFos8SsdhtSSVI5gI5RaX2O0+APCX7ccx94FXxcq1RPA8O60NUVxZbO9NTlm0Wy2iM6BlcknFjCYri/FnFis8DhS57Pj83NEAgN+++ykG/UHxezG6WIy3yYWritNri5MKqI7l64snY+t3F2t2WnKF2aNLRGZnssoiII9EtPf5DNutnitQsZhnjBbB3ANR8zSHIu7bCrcDEyrDb8juwcAQh6Q/GBJFlFujlTFvQvju6p979K+2UyJmNYpdGZ/FKC6wg//IIRtSBjKjLOpBLZjblDZ05ITnDYSGDOynstLqe5fPwEtfP09E8oxkZGVRrVjkgdzmqwpTa4sgSeHjUIvBOaoSyM2pUlEW+bxxVZF6fmGqjC4tgM0iwRsIDYnmYozh0df2o73Ph2c2H9H1/bgbOpGy2K6cH9PZ6UhkckllvjjxzGK0Yef6xvEAgFd2n8QLHxyHNxBCXYnL8JiVWWIl31Blmq/1TLUFnW/YrRYxxpVSseiW30/NWcoaNgsqFvOMmhInJCl88Vcqhzw2p6HKjRJFwRTbfuz3yic/NWURAJbMDKtGr+w+ldIxZmteEQjH0vBCrCvG1NGTwlC6WXDFNSpnMeKSNPL43A4rbBGVRGlyGfQH0R+5EMbb3EBoo5VTyBgTYyJmZixyCh02TIi0eNXmFuWMxaHHohbMbfT2Fo7NahGza4dbo+cWtx/txCeRG953DgzdKx5LeC90/OgcfqM06A+JKCu956REwdypzD/Lbuj4bWj+fKbUFKGxoQIhBjz44m4AYSex0TfgPD7nYEuvyODlcHNL7FrP4Qw3482pL036a5VZi6QsElnFaZOH1JWOaD6v2FDpgdUiiXZsbCu61yfvR9YKRl00vQaSFM7eSiVA91SWVv1xSjVMHakMpZuFWhtaRPsYeHySJMkOcUV8Dv/dhIvr7P8+8hEtZbGj3y9m3WozFB0Vz+QiZhYr1NrQQ/MizSoWw8fgjhxT9IjLn94/Lv5/W58v4a5r5ZiJVnSO22GFwxY+x/EWvd4lAQWO8NdpFYvdYtuScev+lAYXzsoFYaNLX+TGLt2tLWpUF7lQU+wEY8Buhbp4vHMAn7b1R203GQlcM68eW7+7GNeePTbpr1XuW+fjKWRwIbJGnaIVzeF35Q1V4ZOxmNeJKRb7+bxiHDddpccpTDKvpqAu8vmgTF0oY5FX/skn5b0nu8UKvmRm9MxCbkOHj5ExJhQHo9vkclC5/FqQY3PseRHbkIuotXABuQVd6XFmbIUXn1vc0xQ9t8gYU90LzVGbu2zhZhATikW1+BxvIIi/7TgRdTxvRcwcWvDXb6HDqukMliRJmBT4uTLZNrTazKIvEBI3A8nceCo3uKhF8ghlUVH8Lp5eg1GR86jVImHBJP2r9pJBbZMLn1ecPbokJ0Z3MoUkSSnfKHEz3/7mXgRDDJKkPVObb1CxmIfw1pZS9ftEtKHD8ywVGlmL8cwtSi6ZUQsgPC+TLCdNvNjooTRma0lbrxern3oPvkAICydVYEpN9oesY0O5+31BBCOtN6OVT7X4nGRjc4ihaCmLmYzN4UyrDSuLb+1vFTOKQPiGib/nx5SpFYvhv7/yOQhFxAQXJy9YjyiKxdf3tqCz34+aYiduuXAiAODtAy1xv09rgnlFTuznE63648QrFpXKoFqihBb8fR0IMXgDQ13WrSobaWxWC/7tnLDCdebYsqTWCybDTJW5xXcPhgv2kTKvaAT89bYvomRXuB05udowFYbHsxhhxK78Y4wJg4tQFmP2onLixeYouXhGeG7xX5+0q66K02LQHxR3pBOz5HwTW1wG/PAFQrjlmfdxrGMA4yoK8X+vm5sTSho/6XNlkc9AWS1SVHSHEagFlcuxOVQsporWzGKTMLeYP6/IWTipEg1VbrT2enHNr/4lCkauKtYUO8UcnhLVmcVu89pn4yNtaGXSwp8iwdPLzhgtnL5bD3XE3aAiz/fFP8bYYlHvc3IKg8vQoo6/V90Oa1KhzW6HTcySd8e0osMzmOru7i+f34BvL52Ghz4/S/fPSpZYRzRjTJGvaI6aORzhN198fGG4xOYAVCzmJbFZiye7B9HvC8Km2L9artheoISrDIUJQl3HV7oxtaYIwRDDP/fqd0X/7cMTaOvzoa7EhfMmZ+ckI7ehfbjvr7uw5VA7ipw2/GblWTlj5hAGF1EsyvOURhezakHlHYo2NJEaypV/SkPGicjM7qgMZCxyChxWPPvl+WiodON454AoGOO1oAH5ObT3eYWy3WzCqj+OMpibMYb2Ph9e3xc+v1x1xhhMrHKjrsQFXzCEzYe0I3QSBXJzlMViaaFdtWBWoyCOwSVVo5zFIsHjiJhcYhzR/b6gaG3HGnacNituuXAiJmtkthrBrIjJZX9zLwb9QRxu60dT1yDsVkm4g4nElMfMzw4XcwtAxWJeIs8shi9K3NwytrxQSN6aM4txtrfEIlzRH+mbW2SMiZ3IX2ocn9Rdt5HwgnDde8fw7JajsEjAY9edgUnV5p1sk0XMLA76wRhTBHIbbzbhr4XOKGWR74XOjeI5H+EX9WCIoVNhVDqewdgcJTXFLjx3c3TB+O6BcCtRa0c5//uHmKw288gPMwwu9eWFkKTwTWt7nw8v7jgBf5Bh1ujiSASQhPMiJo6348wttqVQLOptQQPxi8V0jHJa8Tk8BqjAbkWhI/OGs9piFyrcDgRDDHtP9ghV8YyxZYZtixkJxBb6eg1V+QAVi3lI7MziJ4rYHI7WzCLfyqJn1uaSmeG5xTc+btEMp1Wy9XAHdjd1w2W34Nqz6xM+3ix4G5orJHdfOh2fmVqdteNRg7eh/UGGAX/Q1L3VJSqGH34TkStKaz5it1qEMquc+WsSM4uZUxY51bxgrAoXjM9tPQoAGFfuVn288jm09obVRd6SNmNm0WW3YlTEZHK4rR9/jLigrzpDDrA/N9KRiGdyERmLGrE5HGWxmExbnRdI3jgzi6mYPmRHdHSx2NoXf8+12UiSJPIWdx7vonnFFCly2uBQiCRmvIeyBRWLeQhXFlt6vPAGgjjIY3MUM4J8ZnFIdE5kZlGPsjizrhh1JS4M+INx7/I5a945BAD4/Bmjs1qEKLdO/K8zx2D1eROydixaFDqsYktE90DA1L3VZcLwM9TgkspKK0JGbkXLxSKPtMrkzKKS6mIXnvvyfExU3DyOrdA+FvEcenzo6PcpXJzmvDZ4hM/re5vx4dFOWC0Srji9Tnx+4aRKSBKw71SPSFaIRcz3acTmcJQzucnkvrrihHKnE3HlEVmL0TOLbcLckj0lireidx3rEmHcjQ1ULCaDJEkp36DkOlQs5iFlhXa47OE/3cmuQTk2p1K+OJQnakPraC1IkiTUxUSu6OOdA1j/UfgxKxeM1/EszGNWXQkkCTh7Qjke+vysnDC0xCJJcr5h96Df1L3Vsht6aBuaDC7pIaJnIsqiPyhvJxmV4Ta0kupiF569eT4mVXtgkYA5Y0o1H6s06nBzS4XbYdoYCTe58JvLC6dURZk6yt0OYbjQukltT7AXmqNsUyeT+8rPr/Hb0Kkoi/w9H9uG5sVv9t6PPD7n5Y9OorXXB5fdgtPHlmbtePIVpTpMyiKRVSRJispajI3NARIbXPQoiwBwScQV/dqeZgSCQ52BnKc3fYoQC7cteIxHtphcU4St312MZ788P2M5d6mgDOY2Y9Wf+DkiZ5EMLkYTqyye6h4EY+G9yolUL7OpLnLhH//7PLz7nUVxd/JGFYuRQtfMbDiuLPKg6avmDt2hfp5oRQ+N0DnZNYgPjnQCSFyQK6Ohkpkf02NwSeW9qsxaVNKms/g1E96G5osC5o0vz+nzZ66iVIdJWSSyDp+H+qSlTwzUK2cWlWuHlAGwfUkWi/MmlKOkwI72Ph+2fdqh+pgBXxDPbgnvc70hy6oip9LjFG3eXKVYEZ/Tk8JGCL2UFaoZXCg6xwhilUXegh5V6oIlB15/DpslYTi+MphbOKFN3L7ElUUgXHAtmj50nvjcSRGTi8rqv3v/sgu93gDm1JfinAnx26RRKk8SzylezqLY3pJC5iFXI2Pd0LnQhh5TVhCV4zifWtApoVSzyQ1NZJ26SCzHpoNtYCw8P6N8kfIiwBsIRd0d85xFPW1oIDwAz0/mWrui/7z9OLoG/KgvL8Ci6TXJP5kRitIRbaayqFx/yG8cZGWRisV0iA3m5qazUVnaXpQKlUVyMHeLibE5nHGKtYOXn1anGmczd1wpCh1WtPb6xKo+AHh5VxNe2X0KNouEHy6fnfCGMFpZTKJYdGjPLKbzXi0WbuiYmUWRsZi992PY5CJ3hcjckhrK67AZiQLZgorFPIW3od+JuNYaqjxRs3luh1W4spRzi31JROdwlNtcYtdUheNywrNHKxvH57yal0vIwdwBU4tFfsEMhMIrBb2BoGgBksElPWLX5fHs02yZW1JBGcydmWJRVhaXzx2t+hinzSqULd6K7hrw456/fAQA+OoFE3WNu5QV2mG3hs9JdUkU8C6hLA4dveHZqKl0ATTb0CrbW7IBb0V7nDYxN0okB3folxXah1Ubn4rFPIVnuHGHq7IFDUS7sjr65LvYZKJzOOdPqYTTZsHR9gHsOt4d9blNB9vw8aleFDqsuPqs7MXl5CPc+dylaEObYXBx2a1iYL+z3y9eM1aLZEpxOpLQUhazEZuTKmLHdY88s2hmsehx2vAfn52GWz8zMW7g87mToiN0fvDSXrT0eNFQ6cZtF03S9bNsVgseWjYb37tselJtaJdJM4tFwg0dE52jshc6G5wXaf8vnl6dtZzcfIfPKg8ncwsA0JUiTxldFn0xUlutV+Z24GT3oGhxAMlF53AKHTacN7kKr+05hc89/jbqSlyYVFOEydUevH8kPMe4fO4Y0/aWDldEG3rAb2ooNwCUFjhw0j+Izn4/bBGlpbTAnhNzdfkMbxvybMJsx+akgtLgwjc7mb2m7ObzJyZ8zPlTwsXilsPt2LivWcxFP3zVbN2bWADgC/OSv4mNa3Dxpq4sFilGT5SIkPEsK4vnTq7Ei7efi/GV6rmcRGJOqy+B1SLhrPHDa/MNFYt5Sqxy0aDy5i53y2vvOPIGl+Tk8dXnTcBHJ7rQ1DWIE5GPNz+WnYrZjsvJR4TBRTGzaIbBBQjPLZ7sHkRHv08Ui2RuSZ/YdXn5PLPY1ueDM6JA54KLc2KVB6NKXGjqGsStz7wPALjunLE4JwPGiwJH+PeganAZSD0T1aOiLIZCTIwKmelC18ssaj+nxbTaYrx/z8Up5XDmMsPr2YwgYh2OatEYfE9lu0obOhllEQg74zbdvQid/T4caO7F/uZeHGjuxcGWXpw9oRyTqrWjOQh1iqOic1JfIaYHbnLp6PfBZomshKTYnLQpL3RAksLr8tr7fHnZhuatz2CI4VhH+PhzwcUpSRLOnVSJdduOoc8XRHWRE9+5dFpGfna8UO70NrgMnVnsGvCLvdxkOBseDMcuGxWLeYrTZkVVkRMtPV5IUrTDkFPOCwSFwUXkLKa4f7S00IGzxpfjrPHlKX09ISNCuQcCYmjejJlFQL4IdQ34YYkYoejClD42qwUVbgdae3043NYnxglG5VGx6LBZUFpoj7jlw/+WKy7O86ZUYd22YwCA7185yzTlPRYRnROILhaVe9xTakM7+bo/+QaejwmVFNjhsNGcIJGbULGYx9SVFqClx4sxZQWqMzxliqxFAAgEQ8Ldl6yySBiPMpSbF/FmtS74+sWOPj/4mGI2A4CHE5UeJ1p7ffjwaCeA8N8wGQNZLlDpcQrjk8dpQ2GKN5NGs2haNRobKjCjrhhLZ9Vm7OfKymK0G3rAHxQqYFoGF4Wy2JojTmiCiEdunBGIlBhd6sKHR4GGSvUWcOwWl37F/E2yM4uE8fA29MnuQfDcYbOURZG1OOBT/BtdnIygqsiJvSd7sONYF4D8MrdwKj0OHGgO//9caEFz3E4bnr15fsZ/rlYoN28fWy2SMAMlAy8W+3zhotNqkURsTrY3/hBEPEjzzmN4XtnU2iLVz4v90BGDC59XtFulYZX/lK/wNhYfbrdZJBFxYzRlimBuriBxAxSRHjx6ZsexTgD5Na/IURorcqUFnU1EKLc/GJUtK4+L2FLaOe9RqJFcXeRtaFIWiVzGtGLxoYcewoIFC1BYWIjS0lJdX3PDDTdAkqSoj6VLl5p1iHnPqoXjcefFU7D63Amqn+eBy7wYSdXcQphD7BB0qhcgPZQWRFTmfp94PZCyaAyVkeLqcFs/gHxVFpX7bPPHyW0WvA0dDDH4g4piMc2IK6fNKuYSeQQPtaGJfMC0qsHn8+Hqq69GY2MjfvOb3+j+uqVLl2LNmjXiv51OusvVorrIhdsXTdb8fFlMG1pe9UfFYi4Qe8ExqwUNqK/8o+0txlAVE3cyqjT/ii2lmphLbehsUaCYAR8MBEWB123ADvdilw2tvT7R0m7LkUBugoiHaVXDf/7nfwIA1q5dm9TXOZ1O1NZmbpB5OMN3VHb0+xAKMYWySC3oXMBlt8Jps8AbCA/Rp5Lbphd+49DZ70MwUixSzqIx8JxCTn62oYfnPttUsVslWC0SgiGGQV9QFIdGrOX0OMPFIje1yRmL9H4kcpecm1ncuHEjqqurMXXqVNxyyy1oa2uL+3iv14vu7u6oDyIMbzOGWPiOuJfa0DmHshXNYzXMoLSA5yz6xfpHylk0hipPtJKY921oKhYhSRJcETVRucXFiLWcRa7o+BxucCknZZHIYXKqWFy6dCl++9vfYsOGDfjhD3+IN954A5deeimCwaHBqJyHH34YJSUl4qO+nvYTcxw2C4oihWFbnw99vvQyFgnjKVYWiyYm/pcqchb5TQNF5xhDrLKYT9tbONFt6Pw7fjNQmlw4YntLGsUij1XiKmUrGVyIPCCpYvE73/nOEANK7MfevXtTPphrrrkGV1xxBWbPno1ly5bhxRdfxNatW7Fx40bNr7n77rvR1dUlPo4ePZryzx+OKOcWxcwitaFzBmWuopkzi7FmGotk3mrBkYZyZtEiATV5aBCJNriQwgWob3ExYtNS7BYXEZ1DxSKRwyT1ir/zzjtxww03xH1MQ0NDOscz5HtVVlbiwIEDWLRokepjnE4nmWDiUO524Eh7P9r7fOSGzkFKMqQsOmwWeJw2oSqWFjpgsZjjvB5plBU6xHxbTbELdmtONWx0UeFxwGGziOdAKLMW5WBu2eCSTrEozz/6AiF0ReJ4yOBC5DJJveKrqqpQVVVl1rEM4dixY2hra8OoUaMy9jOHGyJrUVksUhs6Z1C2oc1ePF9aaBfFIs0rGofFIqHC7UBzjzcv5xWBcKTLL/5tLvzB0LDca5sKvA09GDWzGGlDp/E7kpVFPzoiGbhWi0S/dyKnMe0W+MiRI9i+fTuOHDmCYDCI7du3Y/v27ejt7RWPmTZtGl544QUAQG9vL+666y7861//wuHDh7FhwwZceeWVmDRpEpYsWWLWYQ57+P7f9n4f+ny8DU3FYq6gbAWb2YYG5PgcgPZCGw1v4+bjvCJn0fQaLJ1FN+Ycl23ozKIRbmix8s8bQGskNqfcTUo/kduYVjXce++9eOqpp8R/n3HGGQCA119/HRdeeCEAYN++fejqCq/Islqt2LFjB5566il0dnairq4Ol1xyCR544AFqM6cBH5ruUCiLHppZzBmUcTlmtqGB6AKRYnOMparICTTlZ2wOoY7LMXRmkW9wSWfeVzmzyOcVK+j9SOQ4pl2d1q5dmzBjUblGqaCgAOvXrzfrcEYsQlns88MbIGUx11C2ntJpbSX7s6gNbSzTaovwxsctmFFXnO1DIQyiwK4WncOVxXTc0HJ0Dl/1V+khQYTIbahqGObw/b/tkZMSQDOLuUR0G5qUxXzlmxdPwaWzR+G00SXZPhTCIGSDi0JZNNgN3Uar/og8gaqGYY48s+iHMxIyS8pi7hCds2iu2qdUE2nVn7G47FacXl+a7cMgDMQsg4tHUSyKvdDkhCZynPzLeCCSQm1mkXIWc4dMRecAQIlSWaRikSDi4owxuARDTKQJpPNeLVYYXMReaFIWiRyHJKZhDi8KOvp84GY7UhZzh8y2oRUzi9SGJoi4iA0uvnDOYm9EVQTSbUMrZxYpkJvID6hqGObwnMUeb0BEM9DMYu6gdEObvVElOjqHDC4EEQ8+s8iVRT6v6LRZhOqYCsp1f0JZpDY0keNQ1TDMKXbZxXYJvinAQ8pizlBT7EKF24GSAruYKTWLUjK4EIRueLHojSkW050t5qpkIMRwvHMQALWhidyHqoZhjsUioazQLgapAZpZzCVcdiv++e8Xwm4N71Y3E+WcIhlcCCI+ImcxUizK5pb0Lptuhw2SBDAGEcpN0TlErkMGlxFArJmBZhZzi5ICOwozMBpQVeSE02ZBSYHd9ExHgsh3XLbonEUjMhaB8A28J+b9Xk5KP5HjUNUwAlC2HK0WyfR2J5GbeJw2PHvzfDhtFlhptRhBxKUgZoOLvL0l/ctmkcuGnoiz2mW3oNBB3R4it6FicQSgXCXldlhNb3cSucvcsWXZPgSCyAtiQ7l7BtNf9cfxuGxAeNMtKtxOOicTOQ9JTCMApbJILWiCIIjEyMViODqnezD9jEWOspVNsTlEPkDF4ghAaWagYpEgCCIxQw0uEWXRgHlfZcFZQeYWIg+gYnEEQMoiQRBEcsTmLAqDiwHnUGV8WQWZW4g8gIrFEYDyZOSh2ByCIIiEuHgb2hebs2hsG5qURSIfoGJxBKBUFjMR0UIQBJHvaCmLRrShlY5qmlkk8gEqFkcAyplF2t5CEASRGF4sBkIM/mBIROekm7MIxLShqVgk8gAqFkcA5R7lzCK1oQmCIBLhcsiXx0F/UFYWDcpZ5NBeaCIfoGJxBBDlhqY2NEEQREIcVgt4dv2AP6iIzjEiZ1E5s0jKIpH7ULE4AihwWOGyh//U5IYmCIJIjCRJCpNLyGCDi3JmkZRFIvehYnGEwNVFKhYJgiD0wecWuwb88AXC4dxG5yyWFZKySOQ+VCyOEPjcopt2kBIEQeiCK4vNPYPi34wwCfKVgSUFdjhsdBkmch+SmUYIk6o82HW8G2MrCrN9KARBEHlBgYMXi14A4UBuqyX9Pc7TRxXjytPrMHt0SdrfiyAyARWLI4QHls3CygXjcXp9abYPhSAIIi/gbejm7kixaMC8IgBYLRIeveYMQ74XQWQCKhZHCEUuO84YW5btwyAIgsgbuDHwVKQNbYQTmiDyERqWIAiCIAgVXDHKYnEB6SvEyISKRYIgCIJQgbehW0hZJEY4VCwSBEEQhApDDC4GzSwSRL5BxSJBEARBqCAri5E2NCmLxAiFikWCIAiCUIHPLAZCDAApi8TIhYpFgiAIglCBF4scI7a3EEQ+QsUiQRAEQahQEFMskrJIjFSoWCQIgiAIFQoc0ZdIckMTIxUqFgmCIAhChVhlsZiURWKEQsUiQRAEQagQO7NIyiIxUqFikSAIgiBUiC0WS2iDCzFCoWKRIAiCIFQYanAhZZEYmVCxSBAEQRAq8A0uHHJDEyMVKhYJgiAIQgVlG9pmkYYojQQxUqBikSAIgiBUUBaHRS4bJEnK4tEQRPagYpEgCIIgVHDZ5UskbW8hRjJULBIEQRCECsqZRZpXJEYyVCwSBEEQhApRbWgnKYvEyIWKRYIgCIJQQWlwKaaMRWIEQ8UiQRAEQajgtFnAPS2UsUiMZKhYJAiCIAgVJEmCyxZWF2lmkRjJULFIEARBEBpwk0sxKYvECIaKRYIgCILQgJtcSFkkRjJULBIEQRCEBjxrkXIWiZEMFYsEQRAEoYHchiZlkRi5ULFIEARBEBpce/ZYnD2+HI0Nldk+FILIGhJjjGX7IIyku7sbJSUl6OrqQnFxcbYPhyAIgiAIIifRWzORskgQBEEQBEFoQsUiQRAEQRAEoQkViwRBEARBEIQmVCwSBEEQBEEQmlCxSBAEQRAEQWgy7IKjuLm7u7s7y0dCEARBEASRu/BaKVEwzrArFnt6egAA9fX1WT4SgiAIgiCI3KenpwclJSWanx92OYuhUAgnTpxAUVERJEky9Wd1d3ejvr4eR48epUxHImvQ65DIBeh1SOQC9DpMDsYYenp6UFdXB4tFezJx2CmLFosFY8aMyejPLC4uphclkXXodUjkAvQ6JHIBeh3qJ56iyCGDC0EQBEEQBKEJFYsEQRAEQRCEJlQspoHT6cR9990Hp9OZ7UMhRjD0OiRyAXodErkAvQ7NYdgZXAiCIAiCIAjjIGWRIAiCIAiC0ISKRYIgCIIgCEITKhYJgiAIgiAITahYJAiCIAiCIDShYpEgCIJIyA033IBly5Zl+zAIgsgCVCwSRB7wi1/8AqeddprYStDY2IiXXnpJfH5wcBC33norKioq4PF4sHz5cpw6dSqLR0wMNx599FGsXbtW9+Pvv/9+nH766aYdDzGy6enpwTe+8Q2MGzcOBQUFWLBgAbZu3So+zxjDvffei1GjRqGgoACLFy/G/v37s3jE+Q0Viybh8/myfQjEMGLMmDH4wQ9+gG3btuG9997DRRddhCuvvBIfffQRAOCb3/wm/va3v2HdunV44403cOLECVx11VVZPmpiOFFSUoLS0tJsHwZBAABWr16NV199FU8//TR27tyJSy65BIsXL8bx48cBAD/60Y/w2GOP4Ze//CU2b94Mt9uNJUuWYHBwMMtHnqcwgjHG2KFDhxiAIR8XXHABY4yxt956i5177rnM5XKxMWPGsNtvv5319vaKrx83bhz7/ve/z770pS+xoqIitnLlSsYYY3/4wx/YjBkzmMPhYOPGjWOPPPJIFp4dMRwpKytjTzzxBOvs7GR2u52tW7dOfG7Pnj0MANu0aVMWj5DIR9atW8dmzZrFXC4XKy8vZ4sWLWK9vb1s5cqV7Morr2SMMdbc3MxqamrYQw89JL7unXfeYXa7nb322mtszZo1Q86la9asYatWrWKXXXZZ1M/z+XysqqqKPfHEE5l8mkQe09/fz6xWK3vxxRej/n3u3Lnsu9/9LguFQqy2tpb913/9l/hcZ2cnczqd7Nlnn8304Q4LSFmMUF9fj6amJvHxwQcfoKKiAueffz4OHjyIpUuXYvny5dixYweef/55vP3227jtttuivscjjzyCOXPm4IMPPsA999yDbdu24Qtf+AKuueYa7Ny5E/fffz/uueeepFo5BBFLMBjEc889h76+PjQ2NmLbtm3w+/1YvHixeMy0adMwduxYbNq0KYtHSuQbTU1NuPbaa3HjjTdiz5492LhxI6666iqwmN0NVVVVePLJJ3H//ffjvffeQ09PD770pS/htttuw6JFi7BixQrceeedmDlzpjinrlixAqtXr8bLL7+MpqYm8b1efPFF9Pf3Y8WKFZl+ukSeEggEEAwG4XK5ov69oKAAb7/9Ng4dOoSTJ09GnRNLSkpwzjnn0DkxVbJdreYiAwMD7JxzzmGXX345CwaD7KabbmI333xz1GPeeustZrFY2MDAAGMsrCwuW7Ys6jHXXXcdu/jii6P+7a677mIzZsww9wkQw5IdO3Ywt9vNrFYrKykpYX//+98ZY4w988wzzOFwDHn8vHnz2Le+9a1MHyaRx2zbto0BYIcPHx7yOaWyyPna177GpkyZwq677jo2e/ZsNjg4KD533333sTlz5gz5PjNmzGA//OEPxX9/7nOfYzfccINhz4EYGTQ2NrILLriAHT9+nAUCAfb0008zi8XCpkyZwt555x0GgJ04cSLqa66++mr2hS98IUtHnN+QsqjCjTfeiJ6eHvz+97+HxWLBhx9+iLVr18Lj8YiPJUuWIBQK4dChQ+LrzjrrrKjvs2fPHixcuDDq3xYuXIj9+/cjGAxm5LkQw4epU6di+/bt2Lx5M2655RasXLkSu3fvzvZhEcOIOXPmYNGiRZg9ezauvvpq/PrXv0ZHR4fm4x955BEEAgGsW7cOzzzzjK59vKtXr8aaNWsAAKdOncJLL72EG2+80bDnQIwMnn76aTDGMHr0aDidTjz22GO49tprYbFQWWMG9FuN4cEHH8T69evx17/+FUVFRQCA3t5efOUrX8H27dvFx4cffoj9+/dj4sSJ4mvdbne2DpsYATgcDkyaNAlnnnkmHn74YcyZMwePPvooamtr4fP50NnZGfX4U6dOoba2NjsHS+QlVqsVr776Kl566SXMmDEDP/vZzzB16tSom2IlBw8exIkTJxAKhXD48GFdP+P666/HJ598gk2bNuF3v/sdJkyYgPPOO8/AZ0GMBCZOnIg33ngDvb29OHr0KLZs2QK/34+GhgZx3otNhKBzYurYsn0AucQf//hHfP/738dLL70UVQTOnTsXu3fvxqRJk5L6ftOnT8c777wT9W/vvPMOpkyZAqvVasgxEyOXUCgEr9eLM888E3a7HRs2bMDy5csBAPv27cORI0fQ2NiY5aMk8g1JkrBw4UIsXLgQ9957L8aNG4cXXnhhyON8Ph+++MUvYsWKFZg6dSpWr16NnTt3orq6GkD45katg1JRUYFly5ZhzZo12LRpE1atWmX6cyKGL263G263Gx0dHVi/fj1+9KMfYcKECaitrcWGDRtEfFN3d7foyhDJQ8VihF27duH666/Ht7/9bcycORMnT54EED7hffvb38b8+fNx2223YfXq1XC73di9ezdeffVVPP7445rf884778S8efPwwAMPYMWKFdi0aRMef/xx/PznP8/U0yKGCXfffTcuvfRSjB07VoxIbNy4EevXr0dJSQluuukm3HHHHSgvL0dxcTFuv/12NDY2Yv78+dk+dCKP2Lx5MzZs2IBLLrkE1dXV2Lx5M1paWjB9+nTs2LEj6rHf/e530dXVhcceewwejwf/+Mc/cOONN+LFF18EAIwfPx6HDh3C9u3bMWbMGBQVFYk29erVq3H55ZcjGAxi5cqVGX+eRP6zfv16MMYwdepUHDhwAHfddRemTZuGVatWQZIkfOMb38CDDz6IyZMnY8KECbjnnntQV1dHwfKpku2hyVxBLeoBiuicLVu2sIsvvph5PB7mdrvZaaedFhUbMW7cOPbTn/50yPfl0Tl2u52NHTs2yspPEHq58cYb2bhx45jD4WBVVVVs0aJF7JVXXhGfHxgYYF/72tdYWVkZKywsZJ///OdZU1NTFo+YyEd2797NlixZwqqqqpjT6WRTpkxhP/vZzxhj0QaX119/ndlsNvbWW2+Jrz106BArLi5mP//5zxljjA0ODrLly5ez0tJSEZ3DCYVCbNy4ceyzn/1sxp4bMbx4/vnnWUNDA3M4HKy2tpbdeuutrLOzU3w+FAqxe+65h9XU1DCn08kWLVrE9u3bl8Ujzm8kxmIyEQiCIAjCRHp7ezF69GisWbOGwuMJIg+gNjRBEASREUKhEFpbW/HjH/8YpaWluOKKK7J9SARB6ICKRYIgCCIjHDlyBBMmTMCYMWOwdu1a2Gx0CSKIfIDa0ARBEARBEIQmlLNIEARBEARBaELFIkEQBEEQBKEJFYsEQRAEQRCEJlQsEgRBEARBEJpQsUgQBEEQBEFoQsUiQRAEQRAEoQkViwRBEARBEIQmVCwSBEEQBEEQmvx/7MZzR1fnE1AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Plotting dates and strings" + ], + "metadata": { + "id": "AJblSnewuZOn" + } + }, + { + "cell_type": "code", + "source": [ + "from matplotlib.dates import ConciseDateFormatter\n", + "\n", + "fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')\n", + "dates = np.arange(np.datetime64('2021-11-15'), np.datetime64('2021-12-25'),\n", + " np.timedelta64(1, 'h'))\n", + "data = np.cumsum(np.random.randn(len(dates)))\n", + "ax.plot(dates, data)\n", + "ax.xaxis.set_major_formatter(ConciseDateFormatter(ax.xaxis.get_major_locator()))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 298 + }, + "id": "cAgcvArXuV8V", + "outputId": "8465ee80-404f-42c8-a5a4-eb0e2457832b" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXERJREFUeJzt3Xd8VGX2P/DP9JlkSnqDFIqUIEUIJbalCagoCHZX0GV1vwqsylqWXZXV1cVFf7YVy7rWdbELYgHFUJUmofdOAul1kkmm398fM/fOvTN3WpLJJJnzfr3yMpm5c3MTw5z7PM95zpEwDMOAEEIIITFDGu0LIIQQQkjnouBPCCGExBgK/oQQQkiMoeBPCCGExBgK/oQQQkiMoeBPCCGExBgK/oQQQkiMkUf7AtrL6XSirKwMOp0OEokk2pdDCCGERA3DMGhqakJWVhakUv/j+24f/MvKypCdnR3tyyCEEEK6jNLSUvTu3dvv890++Ot0OgCuH1Sv10f5agghhJDoMRqNyM7O5mKjP90++LNT/Xq9noI/IYQQAgRdBqeEP0IIISTGUPAnhBBCYgwFf0IIISTGUPAnhBBCYgwFf0IIISTGUPAnhBBCYgwFf0IICdG7P5/Bv4pORPsyCGm3br/PnxBCOoPd4cTT3x4GABytbML/u2k41ApZlK+KkLaJ6Mj/jTfewLBhw7gCPIWFhVizZg33vNlsxvz585GcnAytVovZs2ejsrIykpdECCFt0mpzcJ9/t78cL/9EMwCk+4po8O/duzeee+45FBcXY9euXZg4cSJmzJiBQ4cOAQAeeughfPPNN/j888+xadMmlJWVYdasWZG8JEIIaRN+8AeAbadr/R77/YFybHc///2Bctz81jaUNbRG9PoICUdEp/2vu+46wdfPPvss3njjDWzfvh29e/fGO++8gxUrVmDixIkAgPfeew+DBw/G9u3bMW7cuEheGiGEhMVsdQq+ttqdoscdON+I+/+3GwAwe2RvfLn7PADguTVH8eptlwAALjS04u3Np3Hf+H5I16vbdD3F5+qQnRiHtDa+nsS2Tkv4czgc+OSTT2AymVBYWIji4mLYbDZMnjyZO2bQoEHIycnBtm3b/J7HYrHAaDQKPgghJNK8R/5Hyo14+afjPsftOOOZEWADPwA0tNq4zxd/dQDvbz2LWa9vDesa3t58Gje8/gu2narF7De2Ycw/ivDr2bqwzkEI0AnB/8CBA9BqtVCpVPi///s/rFy5Evn5+aioqIBSqURCQoLg+PT0dFRUVPg939KlS2EwGLgPaudLCOkMbPCX8vqlvPzTCXy994LguJNVzaKvV8k9b7ebj1cDcM0AMAwT8jU8+/0R7ClpwPwVu7nHbnrT/2CJEH8iHvwHDhyIvXv3YseOHbjvvvswd+5cHD58uM3nW7x4MRobG7mP0tLSDrxaQggR12K1AwB6JWoEjz/wyV4cvNCIXWfrYHM4UdZoFn39usOVqG22YMPRKsHjJXUtYV9LI28WgZC2iPhWP6VSif79+wMARo0ahV9//RWvvPIKbrnlFlitVjQ0NAhG/5WVlcjIyPB7PpVKBZVKFenLJoQQAbN75J8Yp0RpnTB5b/q/fgYAPDDpIpQHSOz7dn851h0W7mg6cKERucnxIX9/AHA4hbMFXxSfx42jegc9ByGsTi/y43Q6YbFYMGrUKCgUChQVFXHPHTt2DCUlJSgsLOzsyyKEkIBa3Ql//L39txQIlx1fKTrBZfU/f+Mwn3NoFDLkJscJHjtbYwr6vXeeqcOnv/qf5Xz4832CmwNCgonoyH/x4sW4+uqrkZOTg6amJqxYsQIbN27EDz/8AIPBgHnz5mHRokVISkqCXq/HwoULUVhYSJn+hJAuh13zj1PKsP5Pv8GZGhMK8pKwel+ZIBnQZHVArZDiuuFZeOSL/YJzWB1On10Cwab9GYbBzW8FX9c/W2vCoAx9qD8OiXERDf5VVVWYM2cOysvLYTAYMGzYMPzwww+46qqrAAAvvfQSpFIpZs+eDYvFgqlTp+L111+P5CURQkjYzDYHHv58HwDX6L1vqhZ9U7UAgBtG9sKKHSWC4wtyk0Sr/zW22lDf4lqvH5OXhJ1n64IG/4YW8fV9hUwCm8Mz/X+yqpmCPwlZRIP/O++8E/B5tVqN5cuXY/ny5ZG8DEIIaZfVe8u4z1O0wpyjBRP6+wT/vBTh1D5rX2kD6lusAID8LD12nq1DpdES8HtXGMUTCFO0KpTzkgtX7y1DYpwSl/VP8X+uRjPe/eUM7hyXi+wk32vcXVKP3efqcfdlfSDjb2sgPQ419iGEkCBM7kx/AJg0OE3wXFaCBt//8QrBY943CKwfD1fiXK1rjb9PiivJL1jm/n0fFYs+nqJVcUWD2HPf8Z8d3PnFLPx4N/69+TTuem8nAMDpZFDqnnmoMpox6/WteOa7I9h2yn/1QtIzUPAnhJAg2Kn6OKUMvxmQ6vO8IU4h+DrZT/AHgJpm18g/zx38G1qscDr97/U/Wyu+LJCsVeL64VlYfvtIweOHy/wXPvv1bD0A4FS16wbhb98cwhXLNuCDrWdxpKKJO666WXy2gfQcFPwJIUTED4cq8MbGU7A5nKhpdk3N//6KvpBIfKfD47zW91O1SgDAK7eOgFIuxcu3jPB5TR/39j4nAzTzZhZCxc4uDO1lEDweTg2AD7edAwAsWX0IxbxKgY0tNny2qxS//c8OqinQQ1FLX0II8VLe2Io//Nc13Z6VoEZNkyv4p+rER/QapTD4s4F5xoheuGZoJhQyKV5cd1yQ3JduUEGtkMJsc6KxxQa9Wjh7AAA2h3j/AP738C46tGT1IdwyOlv0JiWQV9ef5D43mu342zeuYmz/KjqBx6fnh3Uu0vXRyJ8QQrxU8ZLwTlY1cyN/dkTvjV+6F4CgWY9C5nouzusGQSWXIUHjOp+/0XWgUXdf97KBd2Kexe7E//nJEwiVkfd9T4dQh4B0PxT8CSHES7PFMw1/trYF1e7g7y+Rz3uULdapL17lO9Ga4M4V8Ledr8G9M8CgUWDV/Muw7qErMShDB5lUgsn56dxxBo1w1uCHQ8IqggDCKgJkNHuuh92dQHoWmvYnhBAvTWZP8C+ta0FNkysA+pv296aU+46rNLy8ADZYs/9taPUNsAzDcEE8IU6BEdkJAIAv77sUFrsTSfGeWYhUnSro2vz208IMfnuAJYU6k+dcjX5uTEj3RiN/Qgjxwh/5VxnNXAU/fyP/UDh53ft+WvQbAIFH/h9sPYvnfzgGALjyIs8Og3iVXBD4AVcpYXmQffneZYRbbA6f5QrWsUrPjgEa+fdMFPwJIcRLM2/am+3Sp1HIRKfuvcUrfSv7AcIbCnYGgR35s6N2hmG4Fr8HLrgCcJZBjcXXDAr4PS/JScSBv03FFN5SgHer4FqTMIg3tthgsYuP/vmNi+pbbDBZwt+NQLo2Cv6EEOKlWSTY6TWhrZJ6r7+zTlf7Js4lxLlG8Oza/rwPdmHay1tgtTtR3ugKwA9PHYg4ZfDvrVHK8PyNw7mvvQM7W1+AVdUU+l5+9lpIz0HBnxBCvDSJBP9QRv0AoPcT/NnR+9+u82yb49b8W2yw2B1Yf7QKxyqbcLjciAr3jEOmQeN7Mj+0as81tliFCX61zcIywhWNvmWFVXKpT9dBQJgDQXoGSvgjhBAvRpHkufggo+9UnQrVTRZcOzRT9Pk7xubiqvx0pPLyBtLc0/9HKoyo403LW+1OlLlH25kG350D/sikEijlUljtTkGnQcB32l+sZ8DsUb1xorIJ57yqCorNhJDujYI/IYR4qW7yTXKLV4mv5bO+uu9S/HKyBrNH9fZ7TJpOGMgnDU6HVAIcvGDE0XJPed2zNSaYba5p+4wwgj/gyk2w2p1o9aoa6D3yr3QHf/amBQCGZOm5gkZ8zTTy73Fo2p8QQnguNLTipyO+++S1Qab9s5PicOuYHK6oTyiS4pXcMsGp6mbu8UNljQCA5HilaGvgQNhiQq1W4Zp/rXvNX+9eGvj35tMAgHS9ZybiojQdknmFjNglALFlENK9UfAnhBCehz/bJ/p4KEl3bcHeVJzhbcU75G7OE+6oH/CUGm7hjfzNNgcXwI1eo3itSo7lt4/EY9MGYXReomAb4YB0HQAa+fdENO1PCCE823jFcLQqObferQlzBB4qNvjz19kPl7uCfzjJft7nY5P07A4n7v/fbgCAXCrBI1MHYumao4Ljrx3myVO4fWwuyhvMGJWXiIPu7Ya05t/z0MifEELcbA4nVys/06AWZL7vLqmPyPfUqX1H/mymfjjJfiw2r4BN6Fu55wLWH63inr9hZC/B8d7LGb0SNHjxlhG4Y2wutO48Bwr+PQ8Ff0IIcSupa4HDySBOKcPWP0+ElbdX/pbR2RH5nmzwvdDgu5c+MyH84M/eMDy+6iD6/eV7PPLFfu45uUzi0z2Qvz3Q99pcx9JWv56Hgj8hhLiVuKfec5PjIZFIYLZ7tsvdWZgbke+pFWnly2rLyJ+fJ+BwCqv8vXVnAdQKmaATYKClBfbGgEb+PQ8Ff0JIt9PYauOq4nUktsFOijvj/feX9wUATMlPh0oeqTV//+cV6w4YTO9E8WD+wk3D8ZsBrh4B/JuCvOR4v+fSuWclqLxvz0MJf4SQbsXucOKaV7agyWzD9r9M6tAsfGOrK8ixU+O/HZeLQRk6DO1t6LDv4U0XYOSfGKf0+5w/gzP1oo/3SxUP8tlJIYz8adq/x6GRPyGk22ix2lF8rh4XGlphNNux5URNh56frezH1vGXSSUY2zc5Ytv8AAgq/l0/PEvwHNv1Lxx9U3yDvE4lR99UrecY941ArwQNhvbyf2PD7RygkX+PQyN/Qki38fiqg/hq9wXu6yVfH0L/NC368QJbW60/WonPiksBwCcpLpLYDn8AMDBDB/DKDPhrEhSIXCbFO3MLMO+DXRiSpcdbd46CUi4VnGvF78fhaIUR4wemBTyXZ83ft9wx6d4o+BNCug1+4Adc29lufGMr9jw5pV3ntdgd+N37u7iv/TXniQR+8O+f5rmJUcqkba4tMGlwOo49Mw0yiQRykYqDGQZ1SAWE2DV/mvbveWjanxDSLXj3p2fVtwhHpXaHE8s3nMTyDSdxsspTL9/mcOLVohPYV9rgc45ar3a3ugDb3zoaW44XEK7LG+IUkEgkYi8JiUouEw384WA7GTZb7H5//6R7opE/IaRbaBTptMdiGIYLlMs3nMJLPx0HALy58RReumUEVzf/xXXH8eK64zj73LWC19d4Nb3pzGn/ob0MuKx/MrIT4wQJfroQWwhHEhv8bQ4GVofTZ8fDmgPl2HyiBk9Oz+fKCndlDMPgH98fQV5KPO4YG5mtm91F9P+6CCExh2EYPPLFfqgVUjwzc2hIrxFrQcuqM1mR7E6c+2Z/Gfd4k8WO33/oms5Xyv2Pgn2Cv6bz3hrlMin+9/txACAoKiSVtn3U31H4sxKtVocg+Jc1tOI+d9ngCQNTMWVIRqdfX7h2lzTg7S1nAADpOjUm56eHfQ6j2YYGkw05vOqP3RFN+xNCOt3Z2hZ8UXweH20vCbqH3GJ34Lk1R7HhaLXfYyqNFsHxYviB1VuNVwvfzhz58/FvUGTtmPLvKAqZFAqZ6zqe/PoQjrh7DgDA2VpPOeKGALMyXUljq+f/8+8/3IVfz9aFfY6Zy3/Blc9vwNkaU7deCqGRPyGk05htDtz93q/gx7XGVhs3vQy41uwlEglXhW7Vngt4c9MpwXl0armg5KzJ3cGOYRhUGX370XurNJoFBXSqfUb+0Qn+fF0g9gMA1AoZbA47Vu8rw9EKI3586DcAPDURgO5TBMhqFwbrQxcaMTovKeTXL/n6IE5Xu256vtp9Hp/8Worpw7Lw5HX5HXqdnYFG/oSQTvPl7vPYdroWW095OucdvNDIfe5wMrjm1S24/rWf4XRXodt5RthQp7BvMtY8cIXgMTb4VDdZYAkwwmeN/UcRzDbPDEE01/z9aU+yX0fiT/0fr2zmRrtGs03weHfgXRVSGWbVxl/Pev4WP9x+DlVNFrz7y5kOubbORsGfENJpvKfXAeDe/xZzwfeNjSdxvLIZh8qM3Gj8WKVRcHy8So7eiXHY8PB4DEh3bY0zWVyBfOMx19JA70SN30p3rJNVnoBVE8Vsf3+6wJI/AN9WxlVNrv8vRt5U/8c7S1AVICejq/DeGaIKkAciRqXwHN/AO5d3D4XugII/IaRTmG0OlIl0rgOAX8+41l5f+PE491ilO5iU8PrcA57A3CclHr0SXKVpTVY7bA4nHv3S1cEuMU6JJnPgdWj+mnVNk3DkH9cFMtcz2lDXPxI0XtUNq92/q/JGYbCPVMvjjnKhoRX/XHtU8JjdGXyWiM/f8ob3zFGoNhyrwsELjQHzUSKFgj8hpFNc/9rP+HRXqehzLVaHzxtreaMZjS02GL0KzPD7z8e5P2+x2FFv8ozeq5ss3M2DP2dreMGf9+YtlUR3yv2tO0dhTF4SnpoxJGrXwKdWCMOEyeK60XrnZ+F0d1cf/P515QGfx1qt4smh/rAzTN783dT6vt7OLWcxDIM/fbYP0//1M45WGIO8suNFf26LEBITAq0Lt9gcPlv5KhrNON/Q4nMsPzkw3j1CN1kdgozzW8dk4+WfTvi8dlCGDkcrXIV/+FPA7Pr1w1MGBC15G2lTh2RgahfaNued0P7ahpPc75Cvto2j385SWuf7t9RqC2/E7a+1caAaFKyyhlZc+tx6XJWfjrfnFKDCaEadyQqZVIIB6bqwrqMj0MifEBJx/OQ61tg+nizrVqsdlV7TyM0Wu89aPCBcj2cb7pgsdsEa7P3j+4uu5/5x0kWYOsS1t/uzXaV4YtVBPL7qALdV8Oqhmbg4QKObWOT0iv5bTtRwU/981SL/r7ydqzWh4Jmf8NK640GP7WgKkWqHrVY7tp6qwesbTwbdtscwjN/g729GgO8z96zXusOVAIDDZa7Rfv9ULdRtLOPcHhT8CSER1yRSGz47KQ63j80B4Jr29x75W+xO1Jl8g0x2kqe4CrsE0GJ1oN6dyX1JTgKUcin+O28sLuufjEemDuSOj1fJcflFqdw1/Xf7OXy0vYR7vq219HuyQDGxb0o8dzNV3RQ84e+FH4+jptmCV4p8Z2UiTS7zLOUMd7dobrU5cPvbO7Bs7TH8cKgi4OstdieX2Cf3ysZkt5ryLVt7FH/8eI/fm4rz9a6lgj4iXRg7AwV/QkjEGUWS724bk4M4d7BtFQn+VrsTdSbX64ZkeTL32Qx/wFOJr6bZgkb3yD/BvUd/TJ8k/O/34zAqN5E7XquSBeyUR8Hf161jsv0+Z4hT4Kp81xJFici0ujf+zVydKfhMQUeSSz3hjq3xwFb7A4BT1Saf1/DxR/03FQh/J975KnaHE69vPIXV+8pwyD3C974HYGeqEuOViAYK/oSQiOOP/D+aNxZbHp2AUbmJXFZ9i9XhM+1v5Y38h/VO4B7nj5TYLngnq5rR4K7elhAnfDPlB/t4lTxw8O8CWf5dze1jcrD89pEYkZ3g81yCRoE8d5nbszXBgz//7yCUm4WOpOCN/PmdFEPFBvg4pQw3juoteK7FK3GwlndjI1Z3wuFkuJmqhLjo1JSIaPBfunQpRo8eDZ1Oh7S0NMycORPHjh0THGM2mzF//nwkJydDq9Vi9uzZqKysjORlEUI62ZKvDwJwtam9/KIUbuqe3UbWYnVwW8eS3SMhq8OBfaWuAkCZBjV++fNEbFs8UVBfnk2UOlXdzOUHeAd3frW+eKWcy7YWE+6+71ggkUhw7bBMwS4LllQiQZ77ZqyssVU0t4OPXxsglCS5jsQG4UEZOgwSqQHRIjJ1z8eO/ONVcozMScDfZwxBmvsmwjsX4M/uLacAsPtcPRiGAf+vrrSuBe9vPQsASOyJwX/Tpk2YP38+tm/fjnXr1sFms2HKlCkwmTzTKw899BC++eYbfP7559i0aRPKysowa9asSF4WIaST7TvvCuJWh3AUxI78W212bmse2zDlm33l+PlkDQBg/MBU9ErQINOgEbw+y6CBXCqBzcFwRXsSvUb+/ARBlUKKkTmJotP7aoW0y1TV64rY5ZMsg5qbfRnbNwnJ8UpoVXIwjHhGPR9/22ZnB3921uHpGRdzS0N8YkmMfGxSn1Ylh0QiwZ2FebhltGv6v8Vih9Fsw9I1R3C4zIgNxzx9KJ79/gh+9/6v2H3OUwdh/Asbuc+1qugE/4hu9Vu7dq3g6/fffx9paWkoLi7GlVdeicbGRrzzzjtYsWIFJk6cCAB47733MHjwYGzfvh3jxo2L5OURQiLM7nDiHndXPQA+06Ua3rQ/u+afkxSHPSUNXHCQSyUY6icDXyqVIEWrQoXRjOOVru1n3tOoerUC8y7vA6vdiTSda613++JJuOfDXdjJa+xC6/2B3XNlXyRrlZgxvBeMZhsqjWaMyk2ERCJBXkocDl4w4vsDFVj/xX48MmUgLr8oRfB6hmEEI39jpwd/1/fTqeWw2H0D7rnawDcuJm7k7/k7YXebNFtczadW7CjBW5tO+7yWfzPgzeqnEVWkdeocV2Oj6+4/Kcm1xae4uBg2mw2TJ0/mjhk0aBBycnKwbds20XNYLBYYjUbBByGka9p1rl7wxjenUNhDnR35N5vt3MgrJynO55hAI/I0vWvqlc2eFltDfWJ6Pv4+82Lua0OcQpD9DVDwD0arkmNOYR4McQpkJ8WhIC+J+/+Sm+yaCXjpp+PYV9qAO9/d4fP6VpsDdt6SS6gj/09/LcFjX+xvdwlddtZBpxbP+9hxpi5gpT5u2p9X8VDrvhEwWezYW9LQpuu6fkSvNr2uvTot+DudTjz44IO47LLLcPHFrn+EFRUVUCqVSEhIEBybnp6OigrxbRdLly6FwWDgPrKz/WeiEkI6T/G5ekGTHgDYcVrYMtU7wLLBv6SuBU4GkEklPlP78SJrzXypWmHyVqCEPr6/XDNY8LWakv3azPv/gdjuNn4XQNfXoQX/x748gE93lQbdiheIxe7gSujq1AokaMQz7P+zxX+THnbkz899YDP160xWtOXWZM8TVyGpp2f7z58/HwcPHsQnn3zSrvMsXrwYjY2N3EdpqXi5UEJI53hr0ykUPPMTZr+xFdP/9bMgoe54lbASnHcxE43C9UbKNotJ16l8yskGq7OflSC8WfBe8/fn4l4GfD3/Mu5rm6Pz66v3FKFkrHtv9wx3zb+hpe3LBM28XAOtSg6D1/WyiZ6l9f6n/tmRv5aXQ8Le9FQ3W4IWCRITrW1+QCcF/wULFuDbb7/Fhg0b0Lu3Z80vIyMDVqsVDQ0NguMrKyuRkSFe3lKlUkGv1ws+CCHRs3TNUcF0qZm3hnmqSljS13srnXdgvyhdB6XcO/gHHvlfkpMg+DqcrVMZBk/znNG5ofd1J0LeCXQykZaE3hnxoQT/tgRUMWyyX7xSBplUAh1v9P7Toivxyq2XAPAsHYlhE/74M1HslsEzNSbRksfe/nTVgPAvPkIimvDHMAwWLlyIlStXYuPGjejTp4/g+VGjRkGhUKCoqAizZ88GABw7dgwlJSUoLCyM5KURQiKkxepA0ZEq/HPtUZ83U++Rv3fwH5Sp8ynD6r027807GdDflK6YdL0an/9fISQALslJDHo8Eec9gmUYBk4nAynvJqDFqwRuKMGfv3+eadPEuksTt97vukmRSiX48r5CmG1O9E/Tweyu8X8hwMj/vPs5rUjwD+aGS3phwcT+6Jeqxf+LQmljMREN/vPnz8eKFSvw9ddfQ6fTcev4BoMBGo0GBoMB8+bNw6JFi5CUlAS9Xo+FCxeisLCQMv0J6aZarQ4s/HiP6HNqr1G990xAlkHjsw8/WJ6X95opf2tfKEbn0Yi/vbzzLJyMq4UuvxSz9z76UII/v2xuoPoMwfAz/VmjeDM97N8Qm5dwuMwInVrOXf/WkzX4vPg8AOGyklYlh1Yl91vzn/XQ5AHcFtauIqLT/m+88QYaGxsxfvx4ZGZmch+ffvopd8xLL72E6dOnY/bs2bjyyiuRkZGBr776KpKXRQjpIGJFXbyrnfHJZYGn9ONVcp9aAE0ipYH5vAOPVGTKmUSWWNIafy874Pm7YJM+Qwr+vNkCU5jtd8W+t7/8EfaarA4nzte34JpXt+CKZRu4ZYdnvjvCHZus9fysEokEAzOCd+Tj3+T+4cq+AIDfjssJ86foWBGf9g9GrVZj+fLlWL58eSQvhRASAWIZ2+Ekcnm/GccrZT6jqHyRamx83jcUpPMNyvD9f+RwMrA5nNwyDhuAMxPUOF1tCjH420U/D9X7v5zB1lO1uHZYJgD45JOw+MF5O2+HSq3JihStMAk1RSu80RmcqUMxr4APKztJg9K6Vp/zPzx1ICbnp2M4r2R1NNC/GkIIdpfU44pl6zH++Q2whFF0ROwNvLzRf9KUN5VcCv4W/niVXNBSd9bIXrh/fP+Qz0eiQymX4pGpA9E3JR7vzC3gHj9X66nmyk77Z7m3cjaZ7UH37vNvBINNrYv52zeH8ePhSqzeW8Zdpxj+3yG/3fCZGtf184N3Urxwnf+SbPFckcG8GyL+FleFTIrReUl+r6WzUPAnhOAvXx1AaV0rzta2BMx49sZ2ZpNLJVznvXqvbm23jXFNbxb2TfZ5vUQiEbwxxqtkGJypxyf3jsPmRybgxZtHID8r9B09V3hVlSOdZ/6E/lj/8HhMGpyOYe6WuaerTdwMMDvyZ4syAeKtcPnaM/Ln31iwO1C8k0lZ/L/DCw2ev3+26h//dd7LTOysgjd+hUOx3Q/RFtFpf0JI11fVZBZsU+LviQ6G7cw2rm8y7E7XWn2d135svUaOA3+b4nfLXpxSzgUGdhvVOJEbhUD+M6cAX+8rw9PXDwnrdSQy2KS4D7adxaNf7se/7yzgAn1inBISiasQkNnmgF7tf2vmCd5W0cZWGy40tKKXV10Hf9iueYCroRT/v2LilDKffBV2WYvdLTAkSy/oKgm4drA8MnUgnv9B2LQuOykOPz82wWeHS1dBI39CYhzbOY8VzvQq28glJzmOC+4NLcKRf5xCDp1a4Xf0o+XVSo8Psqffn8n56fjXbZdEtWgK8WC3w/1yshYNLTb8ZeUBtLI3eEoZV1THYgtcWGlfaQP3+Q+HKnHZc+uxy92P4bv95fjH90f87gLgN+phg7oiwFS7WJBm/y2wf9OPX5sv+trrh2f5PGbQKNA7MQ4p2vDbB3cGCv6ExLgTXlX4wgn+7BJBdmIcN21azxv5F/ZNxl2X5gU8B79Fb7BSvqR74De/AVxr6mww1msU3N9KsBbAbKdHvg+2nQPDMJi/Yjf+vfk0Nh6vEn1tFS/4syP3YCN/bxVGM1btucC1i/a3WyA7KQ67n7gK797lyXcItcx0tNC/NEJi3MlKYRW+badqcaG+FXddmhd02xyb8JcUr+CSotg1/0EZOnx8b/B6HfziLd5Bg3RP3m1qk7Uq7He3dc7P1LtH2TauuI4/JovvzUFSnEKQkV9lFG/GU8JrL8ze0AYK/mKNnVbsKMGKHSWeYwKUmk6KVwqWMCj4E0K6NO8Ev/e3ngXg2s88I0jHMa7TmUrOjYrYJEBViNnMbMMV12so+PcEWpGbuAsNrZBIgIt7G7gp9tYAI/+HPt2LY5W+JXPVChne2nyK+7qs0Xd2AADO1nh2GrC1IhTyADezATpHct87jL/Prh78adqfkBhXbnQF/76pwkSmk151+etNVsEaLMBrdqKSc6Midn1UFWKiEz/4k55B61Vlcf/5BgDAgDQd9GoFd2N429vbfXJEPt9ViqkvbcbKPRdEz20021DGy8j/svi86Lo/f5uhZ+Tv/2+Sfx1LZw0VPUatDBwyh2QZoFPL0T9N63dnQVfRta+OEBJRTieDykbXtOlFaVrBc94JUDOW/4IZy39B8TnPlCu/zWmcu0MfOxILNcvZQsG/x/HO3WA78o3Kc+2JZ/82HE4GrxSdEBz7yBf7RUf8/HPx1/MvNLTik199u7tW8PIFbA7XzUGgkf/iq10tnicMTBXU7+cL9jetUcqw8y+TseaBKwIe1xVQ8CckhtWarLA6nJBIXKMWPv76qNPJcGuo649WobHVhsVfHcBZ9z5o/rQ/K1hZXhYF/57HX/AsyHUFf/76Oj+Qh6K6yeLT3vd0dbPPcRWNvudVBRiNT7s4Az8+dCVevvUS6P1M2YvlBfgco5R1+VE/QMGfkJhW4R6lp+lUPtP+/PXYR7/cz31usTnxzLeH8fFOTyIUf9qftaekIaRr8BcoSPfl7/8pW7CJXy7XW6CkPAA45q5JoZRJ8ei0gQCEO0wAwOZwotbkG/yDBeUB6ToYNAqM7ZOEm0b1xtMzhHUjukNQDxX9qyMkhpW5S/FmGDTISRJ2HeNXVNtd4qld/p+fz/icRysy8g/V678diT99tg9/vWZwm15Puh5/WzbZ4j/86XMJXH1g/rPlDC40tEKjlMHa6n82qMn9dzk4S48k9/m88wZqmi0Qay0TakldtUKG528aDgD41/qTgpoBPQUFf0JiGDvyzzKo0d9rzb8pjP3+YtP+2UmhVWIbmZOIDQ+PD/l7ka7P38hfLANeIpFg0Wf7/Cb4ZRnUeGrGxbjnw12Cx+cW5nKFpepbrKgzWWF3OpGmU6PeJL7k1JaRe7pe1SODf8+ZwyCEhI0topKuVyNOKccnvH35/DK//vZSs5RyKTRe1fnenlPg52jS0/kL/myWP3/k73A6sfl4td9zrXngSlyVn469T14lePzaYZlIjHPdTNSZrLj+tZ9x5bINqDdZYfSTb9KWZjppOnXYr+kOKPgTEsPYymdsgtO4vsn452zXNid2e1Szxc59/t5do6FXi7+xx/NG/rePzRFt80pig/dWP5bEvZd+XN8k7jFjq91vgl2KVgmDO8DreAV0EuMUUMllXDlntiGV2ebE9wfLuZr8WQZh4A6WTyAmXd81y/O2FwV/QqJs6ZojmPLSpja1LG0vz1Y9T+Bmq7OxI/86d2lTjUKGCYPSkJscDzGDMz3BPtzGPKRnCZbEOWtkb6RoXYHbaLaJ7gy5fWwO/jtvLPc1vzdEsrtefprONzCX1rXC6P7b7Z+uw+PXenJJUnTh935YOPEi6NRy3DE2J+zXdmW05k9IlL216TQAYOWeC7hzXG6nfm9+hT4WO2rjmpq0uoI/O8Xq3YOd3b4Vr5Ljy/suxfbTtbh2qHibUxIbglV3VMikePO3o3Djm9tgbLVxwZqVoVfjHzf4FtopyE3ErnP1eGSqK8tfLIfgzU2e6n96tVxwU1qQl+RzfDBZCRrsfuKqHpXpD1DwJ6TLiEbHb7bNKn+kxn7OBn92G5XBnVk9MjcBh8uNSIhTYM64XNwyxjMiGpWbiFHumwESuyS8UrnzLu+Dj7afw//9pp/gGHaqv7rJwlV53PnXSfhq9wUMTNeJnvedu0aj3mRFnrutriRISV6dWoFxfZNxc0Fv5CbHB2wfHEhPC/wABX9CoqqV1z881Fr4HanZ3TglTukb/Csazfj5RA3u/6jYfYxraeDJ6UMwIjsR+Zl6bt82Id7uviwPu92j9L9eM9inSRQbiE3ufwMSCZASr/K5SeAzaBRh1czXa+SQSSVYduPwNvwEPVvPu50hpJuwOZyCMqb++t2HosVqx+/e/1VQeCcYhmG4Wv38bnrstL/V4cRv39nBvTnvce/1V8qluHFUbwr8JKAl1w3B1wsuh1ohE+0O6R3EtUp50C6SYr7/o/9SugW54U/zxwoK/oREAcMwmLn8F8xc/gv32KLP9sHuaFup2/9uO4f1R6uw+KsDIb9m4zHP9iqxaX9v1HGPdCS1QgqFjJ/EF34yHuCqGnj/eN/ZAokEuCo/vc3X19NR8CckCiqMZhwqM/o8HqihSSDe5U1D8dH2c9zn/AI98X4q9b10y4iwvwch/kgkEsFaeqYhtKJQYh6dNggr7hkreGzzIxPafL5YQMGfkCg4XunbiARwFStpixBakQsUHalE0dEq7uveiZ7SvnKR5KaROQmYdnFGm66NEH9+MyCV+7yyyRzgyOD4M1Z3jM1Btle5aiJEwZ+QKDgj0oUMAC7Ut4o+Hgw/9pt5DXn8mfeBp1Tqa7df4tOq9K5L8wRfp2h7ZqETEl1LrvM0zpk9sne7zpWh9xT06ZeqDXAkASj4ExIV3vuaWWWNvqMfRqxDCU+9yYoPt3mm8P2VNvUnXe9bvnSK11opdd4jkZBhUOPgU1Px8i0jcM8Vfdt1rjS9Gk9dPwSjchNx7TCqMxEM/YsmJApMfqr5tVqFj1vsDsx47Rf0S9Vi+R0jRV/z928PC6oDGlttAeuRO72K9OhESrF6l2f116WNkPbSquSYeUmvDjnX3EvzMNdr1oqIo5E/IZ3sw21n8e3+ctHnWr2m7HecrsPRiiZ8d6Dc7wzA2kMVgq8bWwOP/Ku8OpSJjeqHZBkEX1PwJ6RnoeBPSIQ5nQzMNgcYhsHBC4148utDuNAgvrZvtgm3+tl4W/+OlDeJvm5oL2GgvtAQOHGq+Fy94GudyrdoikwqwQe/G8N9za/9Twjp/ij4ExJBDMNg2iubMeiJtZjz7k5UiKzpz7qkF56cng8A+KL4PE5Webb78WcCrnl1C655ZYugCconO0uw40yd4Hznakx+r6f4XD3mr9gteCzeT2Bna/m7jqGRPyE9CQV/QiKo2WLntvVtOVED74n7V24dgRdvGSHItr/vI09w9t6/39hqw3FeLYA/84r69E9zZTifqfUf/B/5Yp/PY2Jb+wAgm7/9rx3VBwkhXQ8Ff0IiqMkrq7/OJFxvj3fX1FcrPP8UT1R5tgEePN/oc85TVeLBnW2GUuZnSQEAaptDryOQwBv5N7ShiBAhpOui4E9IBHkH/3O1LYKv2el0jcJ36p1hGHy5+7zP4+zI3rsUcL9UV6czsaUFFvua313WJ9ilCzqmXZRO+6YJ6UloIY+QCPLec3/Gaz2+X5orYHsX2VmxowQzRmTB7vTN8K92Z+t7Z/X3dRc2KW80g2EYn3andoeTa9Jzz5V9cKGhBRMHpQW8/rUPXoE9JQ2Ykk/V/QjpSSj4ExJBTV7Bn5+tr1PJuf34KoVwEu4vKw/47ZpX0+wK/g1ewb+Pu8e5xe5EfYsNSfHCRin8WgApWhXeurMg6PUPytBjUAZ17yOkp6Fpf0IiyHvav4a3xz7D4CnEoxRJujvup8kPO/JvaBGu36sVMq4Mb3mj5ybDaLbhmW8PY9upWgCuJj4KP0l+hJDYQCN/QiLI6DU65xfY4VfRs9p9W/me8BP82ZG/d4ngVJ0KmQY1apotqGg0c4V6FqzYg83Hq/Gfn88AEK/oRwiJLXT738M4nQy2nqrxW0SGdC7vAM1fw79tdA73ebrBtxyvv85/tc1WOJ0MWiyu9fsUrQrfLLgcSfFKbjaB7RFwuroZm49XC16vV/sW9SGExBYK/j2Iw8kgf8la3P72Dlz23Hp8vqs02pcU8/w12Rmdl4gbR3m6mPVL1WL57cLa/SerxIO/3cmgsdUGk7sPwNBeegzt7RrlZ7qDf6U7+HsXAAKAZK3S5zFCSGyJaPDfvHkzrrvuOmRlZUEikWDVqlWC5xmGwZNPPonMzExoNBpMnjwZJ06ciOQl9WjrDlcKysM+8sX+KF4NATxr/nFKYTb/9cOzIPUqnOPdiUxs9obde1/dbEGLhT23nPe8K7CzOwG8lx0Aas9LCIlw8DeZTBg+fDiWL18u+vyyZcvw6quv4s0338SOHTsQHx+PqVOnwmwOXJuciGu1iXeKI9HDBt9Mr2n9ZD8B+M5xuT6PPTPzYlzcS4/FVw/iAndNkwUt7tK//BsLnbtuAJvZX+6eAVDJPf/UKfgTQiKa+XP11Vfj6quvFn2OYRi8/PLLePzxxzFjxgwAwIcffoj09HSsWrUKt956ayQvrUdy+OaMkShjR/6ZBg1OVXv2+CfHi0+9/33mxRiQocMTqw5yj43OS8Jv3TcFG49V42RVs3vk7wr+/Lr7bDIfu8WQLfgzpzAXb29xJfxJqFIvITEvamv+Z86cQUVFBSZPnsw9ZjAYMHbsWGzbts3v6ywWC4xGo+CDuJi92sGS6GPX/EMd+QOA3isb36DxJOixwb3ZYufW/DW8kb+WC/7ukb/RFfwL8pJwSU4CAODy/ilh/xyEkJ4lasG/osLVgzw9PV3weHp6OvecmKVLl8JgMHAf2dnZEb3O7kQs+PvrAU8i75OdJdhT0gAAuCQnUfBcmt5/8I9XCoO/XuP5mg30rVYHWt3V+uL5wd9r2r/Cvd8/06DGx/eMw5f3XRq0qh8hpOfrdtn+ixcvRmNjI/dRWkoZ7Sw2GPB5d4UjnaPV6hB03BuZm8B9Pntk74Db7fj7/+VSiaDuv1ru+txi95Tq5Sf86dznbTLbYXM4uboCmQYN1AoZRuUm+pT9JYTEnqgF/4wMV63wyspKweOVlZXcc2JUKhX0er3gg7iY7a5gcHNBb8jcmeRVTZQ8GQ3HvAr05CXHY9nsYbh1dDb+OXtowNdqeWv4eo1CEKz5I/9ad7Ef/s0Cf1mguskChgEUMonfHANCSGyKWvDv06cPMjIyUFRUxD1mNBqxY8cOFBYWRuuyurVWqyvjL0WrwkXu3u7eBV5I5DmdDL7bXyZ4TK2Q4ebR2Xhu9jDIg5TWFVvjZ7E9AIxmG3aX1AMAhvdO4J5PcL+2sdWG0jpXB8F0vdpnWyEhJLZFNPg3Nzdj79692Lt3LwBXkt/evXtRUlICiUSCBx98EM888wxWr16NAwcOYM6cOcjKysLMmTMjeVk9Vqt7zV+tkHFB4+OdtCzS2b4oPs9l1gPAo9MGhvV6fnKgd9lfdgngWEUTzDYndCo5BvDa7aZoVVArpHA4Gew6V+9zPkIIASK81W/Xrl2YMGEC9/WiRYsAAHPnzsX777+PRx99FCaTCffeey8aGhpw+eWXY+3atVCr6c2qLT7eWQLAFSBuG5ODX8/Wi+YBkMh6c9Mp7vP7x/fD/eP7h/V6/swAfwkA8LT+PV/vSuRL1asEywJSqQS5SfE4VtmE7addjXwyDJrwfgBCSI8X0eA/fvz4gNnmEokETz/9NJ5++ulIXkZM4DeBsTmdGNs3GQBQa7KI9nYnkZOqU+F0jWtP/2Vt3FZ316V5eH/rWTx5Xb7gcXbkz1b/EyvYk5sch2OVTfj5ZA0AIItG/oQQL9TeqxuzOZxgGEApl3KNXABAKvEkeNkcDIytdhjiqJlLZ3G6b3iT4pUodN+EhWvxNYMw7/I+yE6KEzyuVghX6lJFgn+flHgAAHvffVG6rk3XQAjpubrdVj/iwjAMrvvXz5j04kZY7A5uPzfgKhGrVsi4Uq81Jou/05AIqHAX1vn3naPanGinkst8Aj/gmfZnperERv7xgq8HZ1LwJ4QIUfDvpmqarTha0YTSulYcON+IikZXgL9tTDZX7jVF56kDTzpPs7u6nl7T8bMt/Br9gCuT3xs78mcNyqDtsIQQIQr+3RS/49uRciMq3fv503SeYMBO/dearJ17cTHOJFJzv6N4r/FnJ/km8w3p5Qn2j0wdyNV8IIQQFgX/bupCvSf4H7jQiLpmV4Dn92rnOsA108i/s1jtTljdHZa0yo4P/qNyEzGn0NP5LyvBN/jr1QooZK6AP7ZPUodfAyGk+6OEv26KX0Fu//lGboo5iVfJjb0RqGmmkX9nabF62irHqWQBjmwbiUSCv103BB9uOwcA6JeqFT1uw8PjUVLbgoI8Cv6EEF8U/NvJ5nBCEaRiW0cz2xz4fJeneM/RCs+NQFKc78j/1aITeGjyRbTdL8KcTtfOCsC1AyNSfxdSqQTbFk+E2eYUVAPk650Yh96JvgmDhBAC0LR/u+wpqcclT6/D8z8c7dTvu+l4NcobzVCKBJdE3sh/YIYny5u/FZB0PKeTwYzlv+DK5zcAcDXkiaRMg8YnsY8QQkJFwb8dbnh9K5otdizfcCr4wR2owh3IJwxK9XmO38Bl2pAM3mtafY4lHafcaMaBC43c1y1UWZEQ0oVR8G8jp9N/5cJIYzv1pevV+N1lfQTPJfCm/aVSCQpyXX3k2a2AAFBvsmLJ1wdxkBesSPucrm6O9iUQQkjIKPi3wXNrjuLyf67nvs5LjtzaqtnmQLXXPv0qo+vrNJ0KT0wfLHhO6b0P3F3alS08AwB/XXUAH2w7hxvf3BqJS45JBy8Yo30JhBASMgr+Yfqy+Dze3HRKsIZuj+AswK3/3o7Rz/6EMt6+/tJ6V6vWNJ06aBJfms53u9+Go642v2abU/Q1oaoymmGx0/T2t/vL8M+1wryPz/5AbakJIV0XBf8w1Jms+NPn+3wet9jbF0T9cToZ7C1tAACsO1wJAGi22FHsbtU60j2lH4he7coGbzLbuMfY1r/tUVrXgjH/KMLNb21v97m6uwUr9vg8Rsl4hJCujIJ/GE75Wdc1d0Aw5Suta0HxuXpU80brbLOYktoW2BwMkuKV6J/m2uOtC1BJTqd2PcduQesoRUdcNyP7Shvw6Bf7AnZvjEXs750QQroiCv5hMLbaRB+3tHP6nO9kVTOuWLYBs9/Yiq2narjHK93r/OwIPoG3v/vV2y8BADw8ZYDP+cRG/h0hjVdT/rNd5/3eGMUq7wY8hBDSlVDwD4PRTwC1OpxwdNC6/4odJdznH+/wFPJ5c9MpvFp0Ak3upjH8keWEgWnYt2QKFky8yOd87HHs6zqK91r/7De2dej5uwuGYbgky/fvHg2dSo4xVFWPENLF0dxkGBpb/I+eLXYH4tpRy/1sjQmPfbkfO87UcY/tPFsnOObFdcfx4GRXgNephZXd/FV6Y4/bda4eG45WYcKgtDZfI1+rVTjb0dhqQ4vV3q7fQXdktjlhded8FOQlYctjE6BR0qifENK1xdY7dTsZvUbPd4zNwf/cI3WzzQneFvuw1DZbMP6FjSEdyyb+hbqmzD/u7vd/xfDsBMHzVrvTZ3tgKMSSBssaWtE/LbZ6xze0uvomyKQSxCtlkEjonxQhpOujaf8wsGv+917ZFz8+dCWeun4I1z2tPVvePi8+H/KxJypda+uhBn9+ox/AlaDH528pIxixJMcLDbFXQphNpDRoFNQ7gRDSbVDwDwMbKA0aBQak6yCXSaGWu6Z427Nn/o2NoZcHZtvFek/7+5OdFIc/TvLNBWD9crLG73OBtLrL1+YkeQoc8WsRxAqTu4tffAQ6+BFCSKRQ8A9Do3vkr+etr6vcWd38Vq7hOFNj4s7rz4SBvjX8/a3xi3lo8kXQ+Mk+P3C+bSV+2Wn/a4ZmYtbIXgAQ9OfoiVosrt9DfIzlOhBCujcK/iGyO5zYcMxVGU/Pm3LXa1yfN5vtYBgGT359EH9deSDkfe8X6oOPlhdfMxhPXT9E8FiGQe3naF8SiQQJceI3C22d9meDv0Yh47YTsssiJbUt+PFQRUzs/WdH/pTkRwjpTij4h+itzae5rG7+yJ+dfjea7ahutuDDbefwvx0lOFbZFNJ52bK7l/ZLxpzCXPc5haNIjUKGob0Ngsd6JWjCun6pn/Xoz3adx/Wv/YxmS3gzF2b3tL9GKeV+H0azDV8Un8eVz2/Avf8txtZTtWGdsztiZ3xo5E8I6U4o+Idg66kaPP/DMe5rPW+9Xc9V0LOhjJfwtuO0cJueP2zwT9Gq8Pi1+fjq/kt9Rvlqhcxnmj8zjJE/AATKRdt/vtEnETAY9mbBNfJ3/Q7+t6MED/PKH+87H945uyO2dW8cjfwJId0IBf8gGIbB7W/vEDzGD8T8US8/4a22WdiJz5+aZtdWsWStEkq5FCNzEn3qwmuUMsENBwCkuBv2hMrfyJ+1N8zgf7TCNbORmxzPXZv3LD+bDNmTcWv+AUosE0JIV0PBPwix6Xt2nR/gl8+1C4J/syX41r8zNSa8ucmV6c8fyWcnCVsEq+VSwfcEgLgwy8eO6yusOjc4Uy/4+vkfjqHeZA3pXDXNFpTUtUAiAUbkJPhcG6u+JbTzdWfsmj+N/Akh3QkNVwKw2p2Y9vIWn8cF0/4az7Q/v7WvKYQ19Ps+KuY+H8Xr0JfstTdfLpP6/I+Sy8K7b/vrNfnQqxXIz9LjmqGZOFfbgqkvbxYcU1LXgsT44JWKdru7CvZP1UKvVvjMSuQkxaGkrgW1Id5MdGfstD+N/Akh3QmN/AM4WSVsVjN/Qj+8+duRgqYtCRpXsKwzWQWFb5pD2PpXUtfCfT60VwL3uUQiwYs3D2/rZYsyxCnw+PR8zBrZG2qFDAPStfjDlX0Fx7CBLJj97u2Bl+QkAPDdedAv1bVsUdfc84M/P/eBEEK6Cwr+AZyu8QT/7CQNHpk6CNMuzhQc0yvRlXV/vr6VK3wDuLb+BcIwDHezsPXPE31K7F6Vn44UrUp0j39HkEgkWHzNYMGMQ52fkfoz3x7GZc+tR3mja1njbK0JAHCRu5RvltfOA7bwTyzs+69ucidshpmDQQgh0UTBP4CzNSbuc51KfJ88G+hK6loE9e43Ha/GsQr/2/1abQ6wqwSJIk0BdGoFtv55It6ZO7otlx4ym8NTmbDOJJ6k+J+fz+BCQyvu+M8OtFodKHXXJshOcgV97/a16e6ZgLbWEOhOKhpdOzwy9eHtviCEkGii4B9AA6+L39JZQ0WPyXaP/CuMZsHxAPDnr/b7HH/gfCNW7yvjZgakEkCtEP/foJRLIZV6svTl0o6vHc/WLgAQdI3+dLUJM5f/gvPu5YreiZ7ExOHuOgRj+yRhbJ9kAD0/+DMMgyPlRgBAZgIFf0JI90FZSgE0uQP0w1MG+HTDYyXFKxGvlMFkdeBUtTBH4MD5RtgdTkFy3nWv/QwAWHbjMACAViUPuSGMQiaF3dn2BkJirhuehaMVrhoG/qb9+fi7H/J4WxI/vnccqpssyE2O53Il2KY3PdW3+8u5JM8sQ3hFlwghJJpo5B9Ak8U1cg3UREcikXBb887wlgkAwO5kuP3w3naeqQt6bm9yWceP/O+9si/G5Lm2AYqN/O0O8YZF2UkaaHkZ7nFKOXKTXTcD7A6IJrMNTmfPLfF7wn0j1C81PqRdEoQQ0lVQ8A+AHfkHa5/bO1E46pt3eR+kaF3BgJ/Rz7fNXfpWG8YWMWWY2/tCoZBJcce4HADi2fkmPzsABqbr/J6T3frnZDz74HuievcyzzVDM4McSQghXQsF/wCMXPAPPDq/vH+K4OvxA1NxaT/XY6W84M8fRV9wFwTSBrmx4LtueBYAYEC6NuTXhCIp3rNdkWW2OfD25tPcmrbCa9bh6RkX+z2fWiHjit5s68H1/dkiRgkiCZuEENKV0Zp/AE1mdto/8K/pzsI8PPPdEW79V6OQcZnwX+2+gHuv7AuJRAKz3XcKPS2MLWKPTRuEwZk6TBiUFvJrQsEG/1qTFSermvH6hpP4as8FAIDMnWQYr5LjnbkF+PTXUiy+enDQae6pQzKwcs8FbDlRgylDMjr0ersKNsEz0U/HREII6apo5B9AqNP+MqlEUOhGo5Rh5ghXj/tjlU04V+sa/beKTKGHM+2vUcpwy+gcpOk6NrM8Od51A1LfYsWCFbu5wA8ADvcNTbxSjlG5SVh24/CQ1rcv7uXK/m/owXv9G1pdI3+xrZqEENKVUfAPgB35e5evFXNxlivYXZSmxaAMPS5K13EV8NimOfwKgCyLyGxAZ0uMd/18jgAJiuHcpABAgrvhUUMPru/PjvwNNPInhHQzXSL4L1++HHl5eVCr1Rg7dix27twZ7UuC1e6E2eYKzMFG/oCrDsD7d4/G6gWXc1PlbFIcN/IXCf7htuaNBJVcBl2Q4B7uPvYEd0DsyVX+2JmhUG4OCSGkK4l68P/000+xaNEiLFmyBLt378bw4cMxdepUVFVVRfW6mngFakIZ9SbGKzF+YBo0vO5ubLvfZveWQXbav1eCBm/dOQrThmTgvvH9OvKy2yxJG3jqWmzJIhA2+HsXPuoJfjxUgSuXbeBubEK5OSSEkK4k6sH/xRdfxD333IO7774b+fn5ePPNNxEXF4d3331X9HiLxQKj0Sj46GgMw+CcO0s/XikLu4MeK17pCgpse1925K9WSDF1SAbevHNUl8kUT/Jax39nboHg61vHZId1PoO74VFPbOt773+LBVs4qaMfIaS7iWrwt1qtKC4uxuTJk7nHpFIpJk+ejG3btom+ZunSpTAYDNxHdnZ4QSmY9385gz6Lv8es17cCCK8Ijzd2Gx/b+a3Fvedd0wV7v3tXqPNOKmQTGEOVrldBLpWgyWzntgv2RBIJEEcd/Qgh3UxUg39NTQ0cDgfS09MFj6enp6OiokL0NYsXL0ZjYyP3UVpa2qHXZPWqaNeeKV12Hb3ZbIPV7sRPR1xLGV0xO3z+hP6Cr+NUMtw+1lX854np+SGXIGbp1ApMGeL6//q/Hec65BpNFjsYJvoVA/nte+OVckH/BUII6Q6iPu0fLpVKBb1eL/joSJd5FexpT/Bnp4ObzHZc++oWrNhRAgC44ZLwRtGdIT9L+HvMTYrD32dcjM/+UIg7x+W26Zy3jHbdPKw/0v78jQPnGzFkyQ946pvD7T5Xe/HbLzu7wM0IIYSEK6rBPyUlBTKZDJWVlYLHKysrkZERncIw+ZnCIOi9Fh4Odtq/rKEVJ6o8TX+G9U5o8zkj6a07R2He5X1w6h/XQC6TQiaVYEyfJEGwC8cI989Z1mgWJFC2xUs/HQcAvL/1bLvO014Mw8Bk8ZQsbgkzEZIQQrqCqAZ/pVKJUaNGoaioiHvM6XSiqKgIhYWFUbkmiUSCBbwpcLZZTVuwuwSqmiyCx717AXQVU4dk4Inp+dxWxfYyxCm4Cob8m5+20HSRdXVjq52r5EgIId1V1NOUFy1ahLlz56KgoABjxozByy+/DJPJhLvvvjtq16RWeO6JcpPjAhwZGDtr4B0s1F0kkHWGnKQ4VDVZUNFobtd5ukqSZI3JcyMnl0rw/24eHsWrIYSQtol68L/llltQXV2NJ598EhUVFRgxYgTWrl3rkwTYmfjBuT192rMTNVDKpIIkwgkDU9t1bd1Nsrt+wFe7z7er+10cL/jbHE4oAmy/tDmcOFdrQr9UbdiJisHUujsf5iXH4ZuFl7drNwghhERLl0j4W7BgAc6dOweLxYIdO3Zg7NixUb0eFW+Nuz2lW+UyKfqmCpcNlt8xss3n647Y2Y+fjlThZDum/vntjOtNgWsHvPDDMUx+cTOe/+FYm7+fP7XNrpF/ilZFgZ8Q0m11ieDf1ah4I//2Vm/LTvIsG1ySk4A4ZdQnWzoV2xYZAHaX1LfpHCermgU5A3UBCgcxDIO3Np8GALy+8VSbvl8gNe4bj+QgFREJIaQri61IFCL+yL+9ozt+y974GAv8gLDu/dFy8aZBgTS0WDH5xU2Cx+qa/Qf/Gq/nGIbp0Kl/duSfrA29FTMhhHQ1NPIXwQ8W7R35p+s9lfLiukjSWmf64yTPzomaZkuAI8XtO9/o81igkX+1186Kjt6Kx675p7RjCyghhEQbBX8Rdl6Cnrado3XByD8Ga8BnGjR4+ZYRAIBaU3jB3+lk8M2+Mp/HA635V3vdYDTwugpeaGjFW5tOwdiOmgPsz0Ajf0JIdxZ70SgENl7wb2/p1swEz26BVF1sBgx2fbymKbwmP5tPVOOL4vM+j9f6Cf7lja2Y+66wHXRDixW93P8PbnpjK8oazThTY8Jzs4eFdS0sdlmB1vwJId0ZjfxFZCe2fW+/tzxenYCuWtwn0pLjXTc94Y78z9W2iD7O1gzwrvO/ao/vLAG/pXCZ+3W/nKoJ6zoA12zQ/BW7sfNMHQDPz0QIId0RBX8Rhf2S8fSMIfjsD+2vMtiLN/JXtbFMbneXpmeDvxVmW+hr8MZW8en5HWfqsPl4NS766xp8yZsZ0PLyM9iSxEcrfJMMdSoFis/VCWZ4gtl+ug7f7S/nvmZ/JkII6Y5iMxoFIZFIMKcwD2P6JLX7XHKZFKNyE6GUSzFxUPQKF0VTcrwSCXEKMAzC2uvf6Cf4n6kxYfFXB2B3MvjT5/u4xy3uG4upQ9Lx6NSBAIBfTrpG+fxZgsPlRsx+Yxse5r02GJPVLviaf1NHCCHdDQX/TrDinrHYvnhSzK75SyQSDEzXAQCOiYzE/fEX/AEIZhCa3Y122McSNEquvgJ7DrGs/6/3loXUIvh8fQtOVAqvO5ZKNBNCeh4K/p1AJZe1qztgT9AnxVXpsLRefB1fjFhWPtssiZ/0d7bGBAAw21zT+BqljGsE1OoO+vxOfHwVxsA9B/afb8AVyzbghR+Pc49l8LZvEkJId0TBn3SKTHePhPKG0Bv8eI/80/Uq0boLZ2tNaGy14bUNJwEAKoWUawTEzga0+sk1OFJuDHgNRUeqwJ8cSIxT4J27CkL+GQghpCui4E86RWaCa7Rc1tga8msaW12j9dvG5GBgug4f/G6MaPAvqWsRJP5pFDKo5e6Rvzvo+yv2EywHwbsk8Zu/HYUhWYaQfwZCCOmKaJ8/6RRsd8SyhtCDP5vtf3NBbyydNRSAeLnlKqOFWw4AXJn+GqXrvpYN/v52DhhbxZcDANesAbu1jzUqNzHk6yeEkK6KRv6kU+S66x2U1rXC4QyeZAd4ArZB4wn4WpEqie9vPYujFZ7pe5ud4RLy2DX/W/69XfR7NPvJBQCAPSUNsNid3DUsu3EY5AFaCRNCSHdB72SkU2QlaKCSS2F1OHE+hKQ/h5NBkzsw84O/nvf50F6e6fefjlRxn7faHFzCn8Xu9Kn6BwCPuLcCNpn9B//95xsAANOGZGDfkim4uSA76HUTQkh3QMGfdAqZVMJl/J+uNgU9vomX6c8P+Om87ZJXDkgRfW2r1c4l/AHApuPVgudX/H4sd85mi//thGsPVQAARuYmBL1eQgjpTij4k07TN9UV/O9+/1eM/cdP+Mf3R/we+8bGUwBcnRAVvKl2fq+EWSN74/L+vjcAvRI1XMKfmEv7p0DnXj7wN+3fZLZhT0kDAGDmiF5+z0UIId0RBX/SaWwOz1p/pdGCf28+LbrVrs5kxVubTwPwzdKX8fos5STF4c9XD/I8J5Vg3uV9MKcwL2hDJi0X/MV3AbANfLQqOdJoXz8hpIeh4E86zR1jc3weu/qVLThW0YRXi05wSXu1vLa83q+5/CLXSD9Fq4RCJkX/NC333GPTBuKJ6fkhVd9j+wA0+2nvW9PMtu6N7eJMhJCeibb6kU4zfmAarh+ehdX7hN33pr68GQCwt7QB7941Gg28bXlLrhsiOLZ/mg7f//EKrrGOWiHD9cOzcKTciFtGC28U/nTVABwsa4TZ5uTW/V+97RIA/JG/+LQ/ewOSHOOVGQkhPRMFf9KpfjMg1Sf4s9YfdWXss214h2cncN35+PKz9IKv2YDubeGkiwAAJ6ua8OtrdfjdZX1w/fAsAOASAv0V/2Gn/VO0sdmPgRDSs1HwJ50qMd63SA/fiz8ewyn3boAETeBjQ9U/TYd9S6YIEgfjlMI6AN7Y0sIJcR1zDYQQ0pVQ8CedKiEu8DT6q+tP8o7tuMCr8CrOE6dw/enbnQysdic3w2C1O+FkGK4nAHXvI4T0RBT8SacKZzSfGORGoT34dQBabQ4o5VLYHE5M/H8boZRJMWFQGgAK/oSQnomCP+lUWYJ9+r3w1e4Lfo8dnKmL2HUoZBLIpBI4nAx+PVOH7w+UY2RuIs7Xu3oPDHUn/KlEcg4IIaS7o+BPOpVaIcPqBZfhu/3luH98f1zaLwUPf75P9NiLe0Wue55EIkGcQoYmix2//3AXAOCrPZ4bEXbNn0b+hJCeiII/6XTDeidgWO8EAMANl/TCobJGvPfLWZ/jBmXofR7rSBqljOsf4I3dcUAjf0JIT0TvbCSqZFIJllw3BIMyhFP8d12aB1mQKn3tFaf0P6pnR/4qGvkTQnogGvmTLoHfXW/HXyYhTRf5/fUapf8//4YW1z5/GvkTQnoiemcjXYLF7uQ+T9erIZFEdtQPAFqVZ1R/xUUpOPz0VK5cMDfyp+BPCOmB6J2NdAlWu3ixnUgaPzCN+3zSoDTEKeVQK1z/JJzuHkSU8EcI6Yko+JMuwepwBj+ogxXkJnKfx7mXADRewZ5G/oSQnoje2UiXYLV3fvA38CoIqt3Jf94jfRr5E0J6Igr+pEuIV3V+7mmCxlNBkB3xewd7GvkTQnoiemcjXcJ/5hQgJykO7901utO+J793gJNxLfJ7B39NgO2AhBDSXdFWP9IljO2bjM2PTujU78kP9OyyQ7xXsNerqasfIaTnoZE/IQAGuosM5SbHCx7Xd1BbYUII6UoiFvyfffZZXHrppYiLi0NCQoLoMSUlJbj22msRFxeHtLQ0PPLII7DbxcutEhIJ6//0G6z4/VgMSHcF/wHpWsHz3jMBhBDSE0Rs2t9qteKmm25CYWEh3nnnHZ/nHQ4Hrr32WmRkZGDr1q0oLy/HnDlzoFAo8I9//CNSl0WIQN9ULfqmegJ+QW6S4PnOKDZECCGdLWIj/6eeegoPPfQQhg4dKvr8jz/+iMOHD+Ojjz7CiBEjcPXVV+Pvf/87li9fDqvVGqnLIiQgQ5wCfVPjgx9ICCHdWNTW/Ldt24ahQ4ciPT2de2zq1KkwGo04dOiQ39dZLBYYjUbBByEdqVeCJtqXQAghERW14F9RUSEI/AC4rysqKvy+bunSpTAYDNxHdnZ2RK+TxJ7Hpg0CANw+NifKV0IIIZERVvD/85//DIlEEvDj6NGjkbpWAMDixYvR2NjIfZSWlkb0+5HYc3EvA/Y9OQXPzrw42pdCCCEREVbC35/+9CfcddddAY/p27dvSOfKyMjAzp07BY9VVlZyz/mjUqmgUkW+3SuJbfzSv4QQ0tOEFfxTU1ORmpraId+4sLAQzz77LKqqqpCW5uqutm7dOuj1euTn53fI9yCEEEKIr4ht9SspKUFdXR1KSkrgcDiwd+9eAED//v2h1WoxZcoU5Ofn484778SyZctQUVGBxx9/HPPnz6eRPSGEEBJBEoZxFzXvYHfddRc++OADn8c3bNiA8ePHAwDOnTuH++67Dxs3bkR8fDzmzp2L5557DnJ56PckRqMRBoMBjY2N0Ov1HXX5hBBCSLcTakyMWPDvLBT8CSGEEJdQYyLV9ieEEEJiDAV/QgghJMZ0+5a+7KoFVfojhBAS69hYGGxFv9sH/6amJgCgSn+EEEKIW1NTEwwGg9/nu33Cn9PpRFlZGXQ6XYd1YDMajcjOzkZpaSklEYqg30/not93YPT7CY5+R4H1pN8PwzBoampCVlYWpFL/K/vdfuQvlUrRu3fviJxbr9d3+z+ESKLfT+ei33dg9PsJjn5HgfWU30+gET+LEv4IIYSQGEPBnxBCCIkxFPxFqFQqLFmyhMoM+0G/n85Fv+/A6PcTHP2OAovF30+3T/gjhBBCSHho5E8IIYTEGAr+hBBCSIyh4E8IIYTEGAr+hBBCSIyJ2eC/efNmXHfddcjKyoJEIsGqVasEz991112QSCSCj2nTpkXnYqNg6dKlGD16NHQ6HdLS0jBz5kwcO3aMe76urg4LFy7EwIEDodFokJOTgz/+8Y9obGyM4lV3H/y/L4VCgfT0dFx11VV499134XQ6o315Xdby5cuRl5cHtVqNsWPHYufOndxzFRUVuPPOO5GRkYH4+HiMHDkSX375ZRSvtnPRe1pg9J4mFLPB32QyYfjw4Vi+fLnfY6ZNm4by8nLu4+OPP+7EK4yuTZs2Yf78+di+fTvWrVsHm82GKVOmwGQyAQDKyspQVlaGF154AQcPHsT777+PtWvXYt68eVG+8u6D/fs6e/Ys1qxZgwkTJuCBBx7A9OnTYbfbo315Xc6nn36KRYsWYcmSJdi9ezeGDx+OqVOnoqqqCgAwZ84cHDt2DKtXr8aBAwcwa9Ys3HzzzdizZ0+Ur7xz0HtaYPSe5oUhDABm5cqVgsfmzp3LzJgxIyrX0xVVVVUxAJhNmzb5Peazzz5jlEolY7PZOvHKuid/f19FRUUMAObtt99mGIZh6uvrmXnz5jEpKSmMTqdjJkyYwOzdu1fwmtWrVzMFBQWMSqVikpOTmZkzZ3bGj9DpxowZw8yfP5/72uFwMFlZWczSpUsZhmGY+Ph45sMPPxS8JikpiftdxhJ6Twsu1t/TYnbkH4qNGzciLS0NAwcOxH333Yfa2tpoX1LUsFNfSUlJAY/R6/WQy7t9y4iomThxIoYPH46vvvoKAHDTTTehqqoKa9asQXFxMUaOHIlJkyahrq4OAPDdd9/hhhtuwDXXXIM9e/agqKgIY8aMieaPEBFWqxXFxcWYPHky95hUKsXkyZOxbds2AMCll16KTz/9FHV1dXA6nfjkk09gNpsxfvz4KF1110PvaR4x/54W7buPrgAid8kff/wx8/XXXzP79+9nVq5cyQwePJgZPXo0Y7fbo3ORUeRwOJhrr72Wueyyy/weU11dzeTk5DB/+ctfOvHKuq9Ao7BbbrmFGTx4MLNlyxZGr9czZrNZ8Hy/fv2Yt956i2EYhiksLGTuuOOOSF9u1F24cIEBwGzdulXw+COPPMKMGTOGYRjXLMmUKVMYAIxcLmf0ej3zww8/RONyo47e0wKj9zSG6YG3Mx3j1ltv5T4fOnQohg0bhn79+mHjxo2YNGlSFK+s882fPx8HDx7Ezz//LPq80WjEtddei/z8fPztb3/r3IvrgRiGgUQiwb59+9Dc3Izk5GTB862trTh16hQAYO/evbjnnnuicZldzhNPPIGGhgb89NNPSElJwapVq3DzzTdjy5YtGDp0aLQvL+roPc2D3tN6QEvfztK3b1+kpKTg5MmTMfUPZcGCBfj222+xefNm0dbJTU1NmDZtGnQ6HVauXAmFQhGFq+xZjhw5gj59+qC5uRmZmZnYuHGjzzEJCQkAAI1G07kXFyUpKSmQyWSorKwUPF5ZWYmMjAycOnUKr732Gg4ePIghQ4YAAIYPH44tW7Zg+fLlePPNN6Nx2V0avafF9nsarfmH6Pz586itrUVmZma0L6VTMAyDBQsWYOXKlVi/fj369Onjc4zRaMSUKVOgVCqxevVqqNXqKFxpz7J+/XocOHAAs2fPxsiRI1FRUQG5XI7+/fsLPlJSUgAAw4YNQ1FRUZSvOvKUSiVGjRol+FmdTieKiopQWFiIlpYWAK48AD6ZTEZbJ/2g97TYfk+L2ZF/c3MzTp48yX195swZ7N27F0lJSUhKSsJTTz2F2bNnc6OKRx99FP3798fUqVOjeNWdZ/78+VixYgW+/vpr6HQ6VFRUAAAMBgM0Gg33j6SlpQUfffQRjEYjjEYjACA1NRUymSyal98tWCwWVFRUwOFwoLKyEmvXrsXSpUsxffp0zJkzB1KpFIWFhZg5cyaWLVuGAQMGoKysjEvyKygowJIlSzBp0iT069cPt956K+x2O77//ns89thj0f7xOtyiRYswd+5cFBQUYMyYMXj55ZdhMplw9913IykpCf3798cf/vAHvPDCC0hOTsaqVauwbt06fPvtt9G+9E5B72mB0XualyjnHETNhg0bGAA+H3PnzmVaWlqYKVOmMKmpqYxCoWByc3OZe+65h6moqIj2ZXcasd8NAOa9995jGMb/7w8Ac+bMmahee3cwd+5c7vcll8uZ1NRUZvLkycy7777LOBwO7jij0cgsXLiQycrKYhQKBZOdnc3ccccdTElJCXfMl19+yYwYMYJRKpVMSkoKM2vWrGj8SJ3iX//6F5OTk8MolUpmzJgxzPbt27nnjh8/zsyaNYtJS0tj4uLimGHDhvls/evJ6D0tMHpPE6KWvoQQQkiMoTV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghPcLSpUsxevRo6HQ6pKWlYebMmTh27JjgGLPZjPnz5yM5ORlarRazZ88WNIzat28fbrvtNmRnZ0Oj0WDw4MF45ZVXBOcoLy/H7bffjgEDBkAqleLBBx8M6fruuusuSCQSSCQSKBQKpKen46qrrsK7777b6T0oKPgTQgjpETZt2oT58+dj+/btWLduHWw2G6ZMmQKTycQd89BDD+Gbb77B559/jk2bNqGsrAyzZs3ini8uLkZaWho++ugjHDp0CH/961+xePFivPbaa9wxFosFqampePzxxzF8+PCwrnHatGkoLy/H2bNnsWbNGkyYMAEPPPAApk+fDrvd3v5fQqiiXV+YEEIIiYSqqioGALNp0yaGYRimoaGBUSgUzOeff84dc+TIEQYAs23bNr/nuf/++5kJEyaIPveb3/yGeeCBB0K6nrlz5zIzZszwebyoqIgBwLz99tvcY/X19cy8efOYlJQURqfTMRMmTGD27t0reN3q1auZgoICRqVSMcnJyczMmTNDug6GYRga+RNCCOmRGhsbAQBJSUkAXKN6m82GyZMnc8cMGjQIOTk52LZtW8DzsOeIhIkTJ2L48OH46quvuMduuukmVFVVYc2aNSguLsbIkSMxadIk1NXVAQDX3fOaa67Bnj17UFRUhDFjxoT8PWO2pS8hhJCey+l04sEHH8Rll12Giy++GABQUVEBpVKJhIQEwbHp6elci19vW7duxaefforvvvsuotc7aNAg7N+/HwDw888/Y+fOnaiqqoJKpQIAvPDCC1i1ahW++OIL3HvvvXj22Wdx66234qmnnuLOEc4SBI38CSGE9Djz58/HwYMH8cknn7T5HAcPHsSMGTOwZMkSTJkyJeTXbdmyBVqtlvv43//+F/Q1DMNAIpEAcCUdNjc3c0mJ7MeZM2dw6tQpAMDevXsxadKktv1goJE/IYSQHmbBggX49ttvsXnzZvTu3Zt7PCMjA1arFQ0NDYLRf2VlJTIyMgTnOHz4MCZNmoR7770Xjz/+eFjfv6CgAHv37uW+Tk9PD/qaI0eOoE+fPgCA5uZmZGZmYuPGjT7Hsdet0WjCuiZvFPwJIYT0CAzDYOHChVi5ciU2btzIBVPWqFGjoFAoUFRUhNmzZwMAjh07hpKSEhQWFnLHHTp0CBMnTsTcuXPx7LPPhn0dGo0G/fv3D/n49evX48CBA3jooYcAACNHjkRFRQXkcjny8vJEXzNs2DAUFRXh7rvvDvv6AAr+hBBCeoj58+djxYoV+Prrr6HT6bh1fIPBAI1GA4PBgHnz5mHRokVISkqCXq/HwoULUVhYiHHjxgFwTfVPnDgRU6dOxaJFi7hzyGQypKamct+LHdk3Nzejuroae/fuhVKpRH5+fsBrtFgsqKiogMPhQGVlJdauXYulS5di+vTpmDNnDgBg8uTJKCwsxMyZM7Fs2TIMGDAAZWVlXJJfQUEBlixZgkmTJqFfv3649dZbYbfb8f333+Oxxx4L7ZcV8r4AQgghpAsDIPrx3nvvcce0trYy999/P5OYmMjExcUxN9xwA1NeXs49v2TJEtFz5ObmBv1e3sd4mzt3LnesXC5nUlNTmcmTJzPvvvsu43A4BMcajUZm4cKFTFZWFqNQKJjs7GzmjjvuYEpKSrhjvvzyS2bEiBGMUqlkUlJSmFmzZoX8u5K4fwhCCCGExAjK9ieEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJiDAV/QgghJMZQ8CeEEEJizP8H11KfHdd6n0MAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')\n", + "categories = ['turnips', 'rutabaga', 'cucumber', 'pumpkins']\n", + "\n", + "ax.bar(categories, np.random.rand(len(categories)))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "n_zVXM_ruceV", + "outputId": "ba82fa37-96c5-4681-945d-ec271a22f69e" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 25 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAEZCAYAAACZ7CwhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJHhJREFUeJzt3X9UVHX+x/HXADKACGjYoERi/oSTgl8QQrewjV12M3etdmXV84X4Gt92jbSmH0hfA81cKMtw083SRdryB22l7m4u/SDZ880lf4C0bqllm2ElPywFw76QzP3+4XFqAowBFOk+H+fcc7yf+Xzufd+5zry4d+6dsRiGYQgAAJiGR28XAAAALizCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACT6VL4r1q1SuHh4fLx8VF8fLx27dp1zv4nTpzQ7bffriFDhshqtWr06NHatm1blwoGAADd4+XugOLiYtntdq1evVrx8fEqKChQcnKyDh48qEsvvbRN/5aWFv3oRz/SpZdeqhdeeEGhoaH66KOPFBQU1BP1AwAAN1nc/WGf+Ph4TZw4UStXrpQkORwOhYWF6Y477tCCBQva9F+9erWWLVumAwcOqF+/fl0q0uFw6NNPP9WAAQNksVi6tAwAAL7vDMPQyZMnNXToUHl4dHxy363wb2lpkZ+fn1544QVNnz7d2Z6WlqYTJ05o69atbcZcf/31GjRokPz8/LR161YNHjxYs2bNUlZWljw9PdtdT3Nzs5qbm53zn3zyiSIjIztbJgAApnbkyBFddtllHT7u1mn/Y8eOqbW1VTabzaXdZrPpwIED7Y7597//rTfeeEOzZ8/Wtm3bdOjQIc2dO1dfffWVcnNz2x2Tl5enxYsXt2k/cuSIAgIC3CkZAADTaGxsVFhYmAYMGHDOfm5/5u8uh8OhSy+9VE8//bQ8PT0VExOjTz75RMuWLesw/LOzs2W3253zZzcmICCA8AcA4Dt810fkboV/cHCwPD09VVtb69JeW1urkJCQdscMGTJE/fr1cznFHxERoZqaGrW0tMjb27vNGKvVKqvV6k5pAACgk9y61c/b21sxMTEqLS11tjkcDpWWliohIaHdMZMnT9ahQ4fkcDicbe+9956GDBnSbvADAIDzy+37/O12u9asWaNnnnlG+/fv129+8xs1NTUpPT1dkpSamqrs7Gxn/9/85jf6/PPPNX/+fL333nt6+eWX9dvf/la33357z20FAADoNLc/809JSVF9fb1ycnJUU1Oj6OholZSUOC8CrK6udrm9ICwsTK+88oruuusujR8/XqGhoZo/f76ysrJ6bisAAECnuX2ff29obGxUYGCgGhoauOAPAIAOdDYv+W5/AABMhvAHAMBkCH8AAEzmvH/JDwBIUviCl3u7hO+1w/lTe7sE9CEc+QMAYDKEPwAAJkP4AwBgMoQ/AAAmQ/gDAGAyhD8AACZD+AMAYDKEPwAAJkP4AwBgMoQ/AAAmQ/gDAGAyhD8AACZD+AMAYDKEPwAAJkP4AwBgMoQ/AAAmQ/gDAGAyhD8AACZD+AMAYDKEPwAAJkP4AwBgMoQ/AAAmQ/gDAGAyhD8AACbTpfBftWqVwsPD5ePjo/j4eO3atavDvkVFRbJYLC6Tj49PlwsGAADd43b4FxcXy263Kzc3V5WVlYqKilJycrLq6uo6HBMQEKCjR486p48++qhbRQMAgK5zO/yXL1+ujIwMpaenKzIyUqtXr5afn58KCws7HGOxWBQSEuKcbDZbt4oGAABd51b4t7S0qKKiQklJSV8vwMNDSUlJKi8v73DcF198oWHDhiksLEw///nP9c4775xzPc3NzWpsbHSZAABAz3Ar/I8dO6bW1tY2R+42m001NTXtjhkzZowKCwu1detWPffcc3I4HJo0aZI+/vjjDteTl5enwMBA5xQWFuZOmQAA4BzO+9X+CQkJSk1NVXR0tBITE/XSSy9p8ODBeuqppzock52drYaGBud05MiR810mAACm4eVO5+DgYHl6eqq2ttalvba2ViEhIZ1aRr9+/TRhwgQdOnSowz5Wq1VWq9Wd0gAAQCe5deTv7e2tmJgYlZaWOtscDodKS0uVkJDQqWW0trZq3759GjJkiHuVAgCAHuHWkb8k2e12paWlKTY2VnFxcSooKFBTU5PS09MlSampqQoNDVVeXp4k6cEHH9RVV12lkSNH6sSJE1q2bJk++ugj3XrrrT27JQAAoFPcDv+UlBTV19crJydHNTU1io6OVklJifMiwOrqanl4fH1C4fjx48rIyFBNTY0GDhyomJgY/eMf/1BkZGTPbQUAAOg0i2EYRm8X8V0aGxsVGBiohoYGBQQE9HY5ALogfMHLvV3C99rh/Km9XQIuAp3NS77bHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACT8ertAgAAF6/wBS/3dgnfa4fzp/bKejnyBwDAZAh/AABMhvAHAMBkCH8AAEyG8AcAwGQIfwAATIbwBwDAZLjPH30O9x2fX7113zGAC4cjfwAATIbwBwDAZAh/AABMpkvhv2rVKoWHh8vHx0fx8fHatWtXp8Zt2rRJFotF06dP78pqAQBAD3A7/IuLi2W325Wbm6vKykpFRUUpOTlZdXV15xx3+PBh3XPPPbr66qu7XCwAAOg+t8N/+fLlysjIUHp6uiIjI7V69Wr5+fmpsLCwwzGtra2aPXu2Fi9erCuuuKJbBQMAgO5xK/xbWlpUUVGhpKSkrxfg4aGkpCSVl5d3OO7BBx/UpZdeqjlz5nRqPc3NzWpsbHSZAABAz3DrPv9jx46ptbVVNpvNpd1ms+nAgQPtjnnzzTf1hz/8QVVVVZ1eT15enhYvXuxOaV3C/eLnF/eLA8DF6bxe7X/y5En953/+p9asWaPg4OBOj8vOzlZDQ4NzOnLkyHmsEgAAc3HryD84OFienp6qra11aa+trVVISEib/h988IEOHz6sadOmOdscDseZFXt56eDBgxoxYkSbcVarVVar1Z3SAABAJ7l15O/t7a2YmBiVlpY62xwOh0pLS5WQkNCm/9ixY7Vv3z5VVVU5p5/97Ge69tprVVVVpbCwsO5vAQAAcIvb3+1vt9uVlpam2NhYxcXFqaCgQE1NTUpPT5ckpaamKjQ0VHl5efLx8dGVV17pMj4oKEiS2rQDAIALw+3wT0lJUX19vXJyclRTU6Po6GiVlJQ4LwKsrq6WhwdfHAgAwMWqS7/ql5mZqczMzHYfKysrO+fYoqKirqwSAAD0EA7RAQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJPpUvivWrVK4eHh8vHxUXx8vHbt2tVh35deekmxsbEKCgpS//79FR0drWeffbbLBQMAgO5xO/yLi4tlt9uVm5uryspKRUVFKTk5WXV1de32HzRokP7nf/5H5eXl+uc//6n09HSlp6frlVde6XbxAADAfW6H//Lly5WRkaH09HRFRkZq9erV8vPzU2FhYbv9p0yZohtvvFEREREaMWKE5s+fr/Hjx+vNN9/sdvEAAMB9boV/S0uLKioqlJSU9PUCPDyUlJSk8vLy7xxvGIZKS0t18OBBXXPNNR32a25uVmNjo8sEAAB6hlvhf+zYMbW2tspms7m022w21dTUdDiuoaFB/v7+8vb21tSpU/XEE0/oRz/6UYf98/LyFBgY6JzCwsLcKRMAAJzDBbnaf8CAAaqqqtLu3bu1dOlS2e12lZWVddg/OztbDQ0NzunIkSMXokwAAEzBy53OwcHB8vT0VG1trUt7bW2tQkJCOhzn4eGhkSNHSpKio6O1f/9+5eXlacqUKe32t1qtslqt7pQGAAA6ya0jf29vb8XExKi0tNTZ5nA4VFpaqoSEhE4vx+FwqLm52Z1VAwCAHuLWkb8k2e12paWlKTY2VnFxcSooKFBTU5PS09MlSampqQoNDVVeXp6kM5/fx8bGasSIEWpubta2bdv07LPP6sknn+zZLQEAAJ3idvinpKSovr5eOTk5qqmpUXR0tEpKSpwXAVZXV8vD4+sTCk1NTZo7d64+/vhj+fr6auzYsXruueeUkpLSc1sBAAA6ze3wl6TMzExlZma2+9i3L+R76KGH9NBDD3VlNQAA4Dzgu/0BADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAk+lS+K9atUrh4eHy8fFRfHy8du3a1WHfNWvW6Oqrr9bAgQM1cOBAJSUlnbM/AAA4v9wO/+LiYtntduXm5qqyslJRUVFKTk5WXV1du/3Lyso0c+ZMbd++XeXl5QoLC9OPf/xjffLJJ90uHgAAuM/t8F++fLkyMjKUnp6uyMhIrV69Wn5+fiosLGy3//r16zV37lxFR0dr7NixWrt2rRwOh0pLS7tdPAAAcJ9b4d/S0qKKigolJSV9vQAPDyUlJam8vLxTyzh16pS++uorDRo0qMM+zc3NamxsdJkAAEDPcCv8jx07ptbWVtlsNpd2m82mmpqaTi0jKytLQ4cOdfkD4tvy8vIUGBjonMLCwtwpEwAAnMMFvdo/Pz9fmzZt0ubNm+Xj49Nhv+zsbDU0NDinI0eOXMAqAQD4fvNyp3NwcLA8PT1VW1vr0l5bW6uQkJBzjn300UeVn5+v119/XePHjz9nX6vVKqvV6k5pAACgk9w68vf29lZMTIzLxXpnL95LSEjocNwjjzyiJUuWqKSkRLGxsV2vFgAAdJtbR/6SZLfblZaWptjYWMXFxamgoEBNTU1KT0+XJKWmpio0NFR5eXmSpIcfflg5OTnasGGDwsPDndcG+Pv7y9/fvwc3BQAAdIbb4Z+SkqL6+nrl5OSopqZG0dHRKikpcV4EWF1dLQ+Pr08oPPnkk2ppadEvfvELl+Xk5uZq0aJF3aseAAC4ze3wl6TMzExlZma2+1hZWZnL/OHDh7uyCgAAcJ7w3f4AAJgM4Q8AgMkQ/gAAmAzhDwCAyRD+AACYDOEPAIDJEP4AAJgM4Q8AgMkQ/gAAmAzhDwCAyRD+AACYDOEPAIDJEP4AAJgM4Q8AgMkQ/gAAmAzhDwCAyRD+AACYDOEPAIDJEP4AAJgM4Q8AgMkQ/gAAmAzhDwCAyRD+AACYDOEPAIDJEP4AAJgM4Q8AgMkQ/gAAmAzhDwCAyXQp/FetWqXw8HD5+PgoPj5eu3bt6rDvO++8o5tvvlnh4eGyWCwqKCjoaq0AAKAHuB3+xcXFstvtys3NVWVlpaKiopScnKy6urp2+586dUpXXHGF8vPzFRIS0u2CAQBA97gd/suXL1dGRobS09MVGRmp1atXy8/PT4WFhe32nzhxopYtW6Zf/epXslqt3S4YAAB0j1vh39LSooqKCiUlJX29AA8PJSUlqby8vMeKam5uVmNjo8sEAAB6hlvhf+zYMbW2tspms7m022w21dTU9FhReXl5CgwMdE5hYWE9tmwAAMzuorzaPzs7Ww0NDc7pyJEjvV0SAADfG17udA4ODpanp6dqa2td2mtra3v0Yj6r1cr1AQAAnCduHfl7e3srJiZGpaWlzjaHw6HS0lIlJCT0eHEAAKDnuXXkL0l2u11paWmKjY1VXFycCgoK1NTUpPT0dElSamqqQkNDlZeXJ+nMRYLvvvuu89+ffPKJqqqq5O/vr5EjR/bgpgAAgM5wO/xTUlJUX1+vnJwc1dTUKDo6WiUlJc6LAKurq+Xh8fUJhU8//VQTJkxwzj/66KN69NFHlZiYqLKysu5vAQAAcIvb4S9JmZmZyszMbPexbwd6eHi4DMPoymoAAMB5cFFe7Q8AAM4fwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMBnCHwAAkyH8AQAwGcIfAACTIfwBADAZwh8AAJMh/AEAMJkuhf+qVasUHh4uHx8fxcfHa9euXefs/6c//Uljx46Vj4+Pxo0bp23btnWpWAAA0H1uh39xcbHsdrtyc3NVWVmpqKgoJScnq66urt3+//jHPzRz5kzNmTNHe/fu1fTp0zV9+nT961//6nbxAADAfW6H//Lly5WRkaH09HRFRkZq9erV8vPzU2FhYbv9V6xYoZ/85Ce69957FRERoSVLlug//uM/tHLlym4XDwAA3OflTueWlhZVVFQoOzvb2ebh4aGkpCSVl5e3O6a8vFx2u92lLTk5WVu2bOlwPc3NzWpubnbONzQ0SJIaGxvdKfc7OZpP9ejy4Kqn99dZ7Lfzi/3WN7Hf+qae3m9nl2cYxjn7uRX+x44dU2trq2w2m0u7zWbTgQMH2h1TU1PTbv+ampoO15OXl6fFixe3aQ8LC3OnXPSywILergBdwX7rm9hvfdP52m8nT55UYGBgh4+7Ff4XSnZ2tsvZAofDoc8//1yXXHKJLBZLL1bWexobGxUWFqYjR44oICCgt8tBJ7Hf+ib2W9/EfjtzxH/y5EkNHTr0nP3cCv/g4GB5enqqtrbWpb22tlYhISHtjgkJCXGrvyRZrVZZrVaXtqCgIHdK/d4KCAgw7X/qvoz91jex3/oms++3cx3xn+XWBX/e3t6KiYlRaWmps83hcKi0tFQJCQntjklISHDpL0mvvfZah/0BAMD55fZpf7vdrrS0NMXGxiouLk4FBQVqampSenq6JCk1NVWhoaHKy8uTJM2fP1+JiYl67LHHNHXqVG3atEl79uzR008/3bNbAgAAOsXt8E9JSVF9fb1ycnJUU1Oj6OholZSUOC/qq66ulofH1ycUJk2apA0bNmjhwoW6//77NWrUKG3ZskVXXnllz22FCVitVuXm5rb5OAQXN/Zb38R+65vYb51nMb7rfgAAAPC9wnf7AwBgMoQ/AAAmQ/gDAGAyhD8AACZD+PdhZWVlslgsOnHiRG+Xgm84fPiwLBaLqqqqersUXECLFi1SdHR0b5eBDkyZMkV33nlnh4/fcsstmj59+gWrp7cR/j3su/6D9aRJkybp6NGjnfo2J7iPP64A81ixYoWKiop6u4wLhvC/CLW0tHSqn7e3t0JCQkz7ewfd0dnnGOhtX331VW+XYAqBgYGm+hp5wr8H3XLLLfr73/+uFStWyGKxyGKxqKioqM1/qC1btrgE9tnThWvXrtXw4cPl4+MjSbJYLFq7dq1uvPFG+fn5adSoUfrzn//sHPftI9Oz69qyZYtGjRolHx8fJScn68iRI84xb7/9tq699loNGDBAAQEBiomJ0Z49e87fk3KRmDJlijIzM3XnnXcqODhYycnJbU7NnzhxQhaLRWVlZTp8+LCuvfZaSdLAgQNlsVh0yy23SJJKSkr0gx/8QEFBQbrkkkt0ww036IMPPmizzgMHDmjSpEny8fHRlVdeqb///e/Ox1pbWzVnzhwNHz5cvr6+GjNmjFasWOEy/vTp05o3b55zPVlZWUpLS3M5NdnZWvoah8OhRx55RCNHjpTVatXll1+upUuXtns2pqqqShaLRYcPH3a27dixQ1OmTJGfn58GDhyo5ORkHT9+XJIUHh6ugoICl/VFR0dr0aJFznmLxaKnnnpKN9xwg/z8/BQREaHy8nIdOnRIU6ZMUf/+/TVp0qR2n+unnnpKYWFh8vPz04wZM5w/SX7W2rVrFRERIR8fH40dO1a///3vnY+d/ciouLhYiYmJ8vHx0fr167v+RF5gZ19nmZmZCgwMVHBwsB544AHnz8taLJY2P+ceFBTkPOI+u/3PP/+8rr76avn6+mrixIl67733tHv3bsXGxsrf318//elPVV9f71zG2VP2ixcv1uDBgxUQEKBf//rX5/wj/+WXX1ZgYKDz+f32af8pU6Zo3rx5uu+++zRo0CCFhIS4/B8xDEOLFi3S5ZdfLqvVqqFDh2revHndewIvIMK/B61YsUIJCQnKyMjQ0aNHdfToUbW2tnZq7KFDh/Tiiy/qpZdecgmkxYsXa8aMGfrnP/+p66+/XrNnz9bnn3/e4XJOnTqlpUuX6o9//KN27NihEydO6Fe/+pXz8dmzZ+uyyy7T7t27VVFRoQULFqhfv35d3ua+5JlnnpG3t7d27Nih1atXn7NvWFiYXnzxRUnSwYMHdfToUWc4NzU1yW63a8+ePSotLZWHh4duvPFGORwOl2Xce++9uvvuu7V3714lJCRo2rRp+uyzzySdCbfLLrtMf/rTn/Tuu+8qJydH999/v55//nnn+Icffljr16/XunXrtGPHDjU2NrZ54+xsLX1Ndna28vPz9cADD+jdd9/Vhg0b2vw0eEeqqqp03XXXKTIyUuXl5XrzzTc1bdq0Tr8Wz1qyZIlSU1NVVVWlsWPHatasWbrtttuUnZ2tPXv2yDAMZWZmuow5dOiQnn/+ef3lL39RSUmJ9u7dq7lz5zofX79+vXJycrR06VLt379fv/3tb/XAAw/omWeecVnOggULNH/+fO3fv1/Jyclu1d3bnnnmGXl5eWnXrl1asWKFli9frrVr17q1jNzcXC1cuFCVlZXy8vLSrFmzdN9992nFihX63//9Xx06dEg5OTkuY0pLS7V//36VlZVp48aNeumll9r9aXhJ2rBhg2bOnKn169dr9uzZ59yW/v37a+fOnXrkkUf04IMP6rXXXpMkvfjii3r88cf11FNP6f3339eWLVs0btw4t7azVxnoUYmJicb8+fOd8+vWrTMCAwNd+mzevNn45lOfm5tr9OvXz6irq3PpJ8lYuHChc/6LL74wJBl/+9vfDMMwjO3btxuSjOPHjzvXJcl46623nGP2799vSDJ27txpGIZhDBgwwCgqKuqJTe1TEhMTjQkTJjjnP/zwQ0OSsXfvXmfb8ePHDUnG9u3bDcNo+/x2pL6+3pBk7Nu3z2XZ+fn5zj5fffWVcdlllxkPP/xwh8u5/fbbjZtvvtk5b7PZjGXLljnnT58+bVx++eXGz3/+807X0hc1NjYaVqvVWLNmTZvH2tsne/fuNSQZH374oWEYhjFz5kxj8uTJHS5/2LBhxuOPP+7SFhUVZeTm5jrnv/3aKy8vNyQZf/jDH5xtGzduNHx8fJzzubm5hqenp/Hxxx872/72t78ZHh4extGjRw3DMIwRI0YYGzZscFn3kiVLjISEBMMwvv6/U1BQ0GH9F7PExEQjIiLCcDgczrasrCwjIiLCMIwzz+vmzZtdxgQGBhrr1q0zDOPr7V+7dq3z8Y0bNxqSjNLSUmdbXl6eMWbMGOd8WlqaMWjQIKOpqcnZ9uSTTxr+/v5Ga2urs7b58+cbK1euNAIDA42ysjKXOtLS0lxeW4mJicYPfvADlz4TJ040srKyDMMwjMcee8wYPXq00dLS0tmn56LCkf9FYtiwYRo8eHCb9vHjxzv/3b9/fwUEBKiurq7D5Xh5eWnixInO+bFjxyooKEj79++XdOaHmW699VYlJSUpPz//e3GKuLNiYmJ6ZDnvv/++Zs6cqSuuuEIBAQEKDw+XdOZ3Lb7pm79c6eXlpdjYWOd+kKRVq1YpJiZGgwcPlr+/v55++mnnMhoaGlRbW6u4uDhnf09Pzzbb0Nla+pL9+/erublZ1113XZfGnz3y765vvvbOnnX45pGdzWbT//3f/6mxsdHZdvnllys0NNQ5n5CQIIfDoYMHD6qpqUkffPCB5syZI39/f+f00EMPtXkdxsbGdrv+3nLVVVe5fKyZkJCg999/360zL5157r/9PhgVFSU/Pz+X9X7xxRcuH3u+8MILuuuuu/Taa68pMTHRrTokaciQIc71/vKXv9SXX36pK664QhkZGdq8ebNOnz7d6W3sbYT/eebh4eH8vOus9i7g6d+/f7vjv31K3mKxdOuU7qJFi/TOO+9o6tSpeuONNxQZGanNmzd3eXl9yTef47M/PvXNfdPZC6umTZumzz//XGvWrNHOnTu1c+dOSe5dRLhp0ybdc889mjNnjl599VVVVVUpPT3d7QsRe6KWi42vr2+Hj3Vmv51r/NlldOY1+c3X3tkwa6+ts6/HL774QpK0Zs0aVVVVOad//etfeuutt1z6dvR+0NdZLJYee+678j44YcIEDR48WIWFhW3qaM+53n/DwsJ08OBB/f73v5evr6/mzp2ra665ps9coEn49zBvb2+Xv3AHDx6skydPqqmpydl2Pu//Pn36tMsFfAcPHtSJEycUERHhbBs9erTuuusuvfrqq7rpppu0bt2681bPxersWZajR4862769X7y9vSXJZX9+9tlnOnjwoBYuXKjrrrtOERERzgvJvu2bb+inT59WRUWFcz/s2LFDkyZN0ty5czVhwgSNHDnS5egvMDBQNptNu3fvdra1traqsrKyS7X0JaNGjZKvr69KS0vbPNaZ/TZ+/Ph2x35zGd8c39jYqA8//LCbVZ9RXV2tTz/91Dn/1ltvycPDQ2PGjJHNZtPQoUP173//WyNHjnSZhg8f3iPrvxic/QP0rLfeekujRo2Sp6dnm+f+/fff16lTp3pkvW+//ba+/PJLl/X6+/srLCzM2TZixAht375dW7du1R133NHtdfr6+mratGn63e9+p7KyMpWXl2vfvn3dXu6F4PZP+uLcwsPDtXPnTh0+fFj+/v6Kj4+Xn5+f7r//fs2bN087d+48r/eS9uvXT3fccYd+97vfycvLS5mZmbrqqqsUFxenL7/8Uvfee69+8YtfaPjw4fr444+1e/du3XzzzeetnouVr6+vrrrqKuXn52v48OGqq6vTwoULXfoMGzZMFotFf/3rX3X99dfL19dXAwcO1CWXXKKnn35aQ4YMUXV1tRYsWNDuOlatWqVRo0YpIiJCjz/+uI4fP67/+q//knQm4P74xz/qlVde0fDhw/Xss89q9+7dLiFwxx13KC8vTyNHjtTYsWP1xBNP6Pjx484jIXdq6Ut8fHyUlZWl++67T97e3po8ebLq6+v1zjvvKDU1VWFhYVq0aJGWLl2q9957T4899pjL+OzsbI0bN05z587Vr3/9a3l7e2v79u365S9/qeDgYP3whz9UUVGRpk2bpqCgIOXk5MjT07PHak9LS9Ojjz6qxsZGzZs3TzNmzFBISIikMxfwzps3T4GBgfrJT36i5uZm7dmzR8ePH5fdbu+RGnpbdXW17Ha7brvtNlVWVuqJJ55w7qMf/vCHWrlypRISEtTa2qqsrKweu+C4paVFc+bM0cKFC3X48GHl5uYqMzPT5SfmpTMHP9u3b9eUKVPk5eXV5s6PzioqKlJra6vzPf65556Tr6+vhg0b1gNbc/5x5N/D7rnnHnl6eioyMlKDBw9WY2OjnnvuOW3btk3jxo3Txo0bXW4X6Wl+fn7KysrSrFmzNHnyZPn7+6u4uFjSmc+MP/vsM6Wmpmr06NGaMWOGfvrTn3Z4Rez3XWFhoU6fPq2YmBjdeeedeuihh1weDw0N1eLFi7VgwQLZbDbnG8mmTZtUUVGhK6+8UnfddZeWLVvW7vLz8/OVn5+vqKgovfnmm/rzn/+s4OBgSdJtt92mm266SSkpKYqPj9dnn33mclW4JGVlZWnmzJlKTU1VQkKC/P39lZyc7LwV1J1a+poHHnhAd999t3JychQREaGUlBTV1dWpX79+2rhxow4cOKDx48fr4YcfbrPfRo8erVdffVVvv/224uLilJCQoK1bt8rL68yxTnZ2thITE3XDDTdo6tSpmj59ukaMGNEjdY8cOVI33XSTrr/+ev34xz/W+PHjXW7lu/XWW7V27VqtW7dO48aNU2JiooqKir5XR/6pqan68ssvFRcXp9tvv13z58/Xf//3f0uSHnvsMYWFhenqq6/WrFmzdM8997h8Tt8d1113nUaNGqVrrrlGKSkp+tnPftbhe+2YMWP0xhtvaOPGjbr77ru7tL6goCCtWbNGkydP1vjx4/X666/rL3/5iy655JJubMWFYzE688EH+oSioiLdeeedfCPd95TD4VBERIRmzJihJUuW9HY5QBtTpkxRdHR0l4+mu+qWW27RiRMn2twKi45x2h+4SH300Ud69dVXlZiYqObmZq1cuVIffvihZs2a1dulAejjOO0PXKQ8PDxUVFSkiRMnavLkydq3b59ef/11l4s3AaArOO0PAIDJcOQPAIDJEP4AAJgM4Q8AgMkQ/gAAmAzhDwCAyRD+AACYDOEPAIDJEP4AAJjM/wPOJdGD5M3eagAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Additional Axis objects" + ], + "metadata": { + "id": "AwbgsuGjuhZh" + } + }, + { + "cell_type": "code", + "source": [ + "fig, (ax1, ax3) = plt.subplots(1, 2, figsize=(7, 2.7), layout='constrained')\n", + "l1, = ax1.plot(t, s)\n", + "ax2 = ax1.twinx()\n", + "l2, = ax2.plot(t, range(len(t)), 'C1')\n", + "ax2.legend([l1, l2], ['Sine (left)', 'Straight (right)'])\n", + "\n", + "ax3.plot(t, s)\n", + "ax3.set_xlabel('Angle [rad]')\n", + "ax4 = ax3.secondary_xaxis('top', (np.rad2deg, np.deg2rad))\n", + "ax4.set_xlabel('Angle [ยฐ]')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "id": "lkFaunZ-uevm", + "outputId": "2f036ced-35f3-4e24-db47-26add1526499" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 0, 'Angle [ยฐ]')" + ] + }, + "metadata": {}, + "execution_count": 26 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAEZCAYAAAB7KojsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqa9JREFUeJzsnXecVNX1wL/Tt++yfZeOIEWq1FVjRVGRoJJYYiWWaMBEiYmaGMSSH8YkmqhYoiiYaGyxx4aoWCgqiiJNQGAp21jYvtPf74+Z93aWbVNeG7zfz2c/n52ZNzP3zLv33HPPPfcciyRJEgKBQCAQCAQCgQCr0Q0QCAQCgUAgEAjMgjCOBQKBQCAQCASCMMI4FggEAoFAIBAIwgjjWCAQCAQCgUAgCCOMY4FAIBAIBAKBIIwwjgUCgUAgEAgEgjDCOBYIBAKBQCAQCMII41ggEAgEAoFAIAgjjGOBQCAQCAQCgSCMMI4FAoFAIBCYgssvv5yzzz47oc8YMGAAFosFi8VCXV1dj9d/+OGHyvWJfrfg8EAYxwKBQCAQCHpk1apV2Gw2pk+fbnRTeuSOO+6goqKC7Oxs5bnHHnuM/v37M27cONasWaM8f8wxx1BRUcF5551nRFMFJkQYxwKBQCAQCHpk8eLFXHfddXz00Ufs27fP6OZ0S2ZmJsXFxVgsFgDKy8u55557ePbZZ/nDH/7A7NmzlWudTifFxcWkpqYa1VyByRDGsUAgEAgEgm5pamriueee49prr2X69OksWbKk3etyaMLy5cuZMGECaWlpHHPMMWzZsqXddXfddReFhYVkZmZy5ZVXcvPNNzN27NguvzcYDLJw4UIGDhxIamoqY8aM4cUXX4y5/Q0NDeTk5DB69GjGjx9Pa2trzJ8h+OEgjGOBQCAQCATd8vzzzzNs2DCGDh3KxRdfzBNPPIEkSR2u+8Mf/sDf/vY3vvjiC+x2Oz//+c+V155++mn+9Kc/8ec//5m1a9fSr18/Hn744W6/d+HChTz11FM88sgjbNiwgRtuuIGLL76YFStWxNT+kSNHMnr0aLKzsznqqKO46667Ynq/4IeF3egGCAQCgUAgMDeLFy/m4osvBuD000+nvr6eFStWcOKJJ7a77k9/+hMnnHACADfffDPTp0/H7XaTkpLCAw88wBVXXKGENMyfP593332XpqamTr/T4/Hwf//3f7z33nuUlZUBMGjQID755BMeffRR5XtikeGee+4hLS1NhFAIukV4jgUCgUAgEHTJli1b+Oyzz7jwwgsBsNvtnH/++SxevLjDtaNHj1b+LykpAaC6ulr5nEmTJrW7/tDHkWzbto2WlhZOPfVUMjIylL+nnnqK7du3xyVLXl6eMIwFPSI8xwKBQCAQCLpk8eLF+P1+SktLleckScLlcvHggw+2ywjhcDiU/+XDcMFgMK7vlT3K//vf/+jdu3e711wuV1yfKRBEg/AcCwQCgUAg6BS/389TTz3F3/72N9atW6f8ff3115SWlvKf//wn6s8aOnQon3/+ebvnDn0cyYgRI3C5XJSXlzN48OB2f3379o1bJoGgJ4TnWCAQCAQCQae88cYbHDx4kCuuuKKdhxhg1qxZLF68mGuuuSaqz7ruuuu46qqrmDBhAscccwzPPfcc33zzDYMGDer0+szMTG688UZuuOEGgsEgxx13HPX19Xz66adkZWVx2WWXJSyfQNAZwjgWCAQCgUDQKYsXL2bq1KkdDGMIGcf33HMP33zzTVSfddFFF/H9999z44034na7Oe+887j88sv57LPPunzPnXfeSUFBAQsXLuT7778nJyeHo48+mt///vdxyyQQ9IRF6iwXi0AgEAgEAoHGnHrqqRQXF/Ovf/1Ltc8cMGAA119/Pddff31M77v88supq6vjlVdeUa0tguRExBwLBAKBQCDQnJaWFu699142bNjA5s2bue2223jvvfc0CY+46aabyMjIoL6+vsdrP/74YzIyMnj66adVb4cgORGeY4FAIBAIBJrT2trKjBkz+Oqrr3C73QwdOpRbb72Vc889V9Xv2bVrFz6fDwjlRbZau/cDtra2snfvXgAyMjIoLi5WtT2C5EMYxwKBQCAQCAQCQRgRViEQCAQCgUAgEIQRxrFAIBAIBAKBQBBGGMcCgUAgEAgEAkEYYRwLBAKBwNQsWrSIAQMGkJKSwuTJk7vNiysI8dFHHzFjxgxKS0uxWCwd0pNJksT8+fMpKSkhNTWVqVOnsnXr1nbXHDhwgIsuuoisrCxycnK44oorlJLOP1QWLlzIxIkTyczMpLCwkLPPPpstW7a0u8btdjNnzhzy8vLIyMhg1qxZVFVVtbumvLyc6dOnk5aWRmFhIb/97W/x+/16imI6Hn74YUaPHk1WVhZZWVmUlZXx1ltvKa/r+bsK41ggEAgEpuW5555j3rx53HbbbXz55ZeMGTOGadOmUV1dbXTTTE1zczNjxoxh0aJFnb5+zz33cP/99/PII4+wZs0a0tPTmTZtGm63W7nmoosuYsOGDSxbtow33niDjz76iKuvvlovEUzJihUrmDNnDqtXr2bZsmX4fD5OO+00mpublWtuuOEGXn/9dV544QVWrFjBvn372mXkCAQCTJ8+Ha/Xy8qVK1m6dClLlixh/vz5RohkGvr06cPdd9/N2rVr+eKLLzj55JOZOXMmGzZsAHT+XSWBQCAQCEzKpEmTpDlz5iiPA4GAVFpaKi1cuNDAViUXgPTyyy8rj4PBoFRcXCz95S9/UZ6rq6uTXC6X9J///EeSJEnauHGjBEiff/65cs1bb70lWSwWae/evbq13exUV1dLgLRixQpJkkK/o8PhkF544QXlmk2bNkmAtGrVKkmSJOnNN9+UrFarVFlZqVzz8MMPS1lZWZLH49FXAJPTq1cv6fHHH9f9dxWeY4FAIBCYEq/Xy9q1a5k6darynNVqZerUqaxatcrAliU3O3bsoLKyst3vmp2dzeTJk5XfddWqVeTk5DBhwgTlmqlTp2K1WlmzZo3ubTYrcpGR3NxcANauXYvP52v32w4bNox+/fq1+21HjRpFUVGRcs20adNoaGhQvKQ/dAKBAM8++yzNzc2UlZXp/rva1RFDIBAIBAJ12b9/P4FAoN1kB1BUVMTmzZsNalXyU1lZCdDp7yq/VllZSWFhYbvX7XY7ubm5yjU/dILBINdffz3HHnssI0eOBEK/m9PpJCcnp921h/62nf328ms/ZNavX09ZWRlut5uMjAxefvllRowYwbp163T9XYVxLBAIBAKBQBAjc+bM4dtvv+WTTz4xuimHDUOHDmXdunXU19fz4osvctlll7FixQrd2yHCKgQCgUBgSvLz87HZbB1OpFdVVYkSvwkg/3bd/a7FxcUdDj36/X4OHDggfntg7ty5vPHGG3zwwQf06dNHeb64uBiv10tdXV276w/9bTv77eXXfsg4nU4GDx7M+PHjWbhwIWPGjOEf//iH7r+rMI4FAoFAYEqcTifjx49n+fLlynPBYJDly5dTVlZmYMuSm4EDB1JcXNzud21oaGDNmjXK71pWVkZdXR1r165Vrnn//fcJBoNMnjxZ9zabBUmSmDt3Li+//DLvv/8+AwcObPf6+PHjcTgc7X7bLVu2UF5e3u63Xb9+fbvFx7Jly8jKymLEiBH6CJIkBINBPB6P/r+rKscJBQKBQCDQgGeffVZyuVzSkiVLpI0bN0pXX321lJOT0+5EuqAjjY2N0ldffSV99dVXEiDde++90ldffSXt2rVLkiRJuvvuu6WcnBzp1Vdflb755htp5syZ0sCBA6XW1lblM04//XRp3Lhx0po1a6RPPvlEGjJkiHThhRcaJZIpuPbaa6Xs7Gzpww8/lCoqKpS/lpYW5ZprrrlG6tevn/T+++9LX3zxhVRWViaVlZUpr/v9fmnkyJHSaaedJq1bt056++23pYKCAumWW24xQiTTcPPNN0srVqyQduzYIX3zzTfSzTffLFksFundd9+VJEnf31UYxwKBQCAwNQ888IDUr18/yel0SpMmTZJWr15tdJNMzwcffCABHf4uu+wySZJC6dz++Mc/SkVFRZLL5ZJOOeUUacuWLe0+o7a2VrrwwguljIwMKSsrS5o9e7bU2NhogDTmobPfFJCefPJJ5ZrW1lbpl7/8pdSrVy8pLS1NOuecc6SKiop2n7Nz507pjDPOkFJTU6X8/HzpN7/5jeTz+XSWxlz8/Oc/l/r37y85nU6poKBAOuWUUxTDWJL0/V0tkiRJcfu7BQKBQCAQCASCwwgRcywQCAQCgUAgEIQRxrFAIBAIBAKBQBBGGMcCgUAgEAgEAkEYYRwLBAKBQCAQCARhhHEsEAgEAoFAIBCEEcaxQCAQCAQCgUAQRhjHAoFAIDA1Ho+HBQsW4PF4jG7KYYf4bbVD/LbaouXvK/IcCwQCgcDUNDQ0kJ2dTX19PVlZWUY357BC/LbaIX5bbdHy9xWeY4FAIBAIBAKBIIwwjgUCgUAgEAgEgjB2oxugNn6/n6+++oqioiKsVmH7CwSC2AkGg1RVVTFu3Djs9sNOTRpOIBDgu+++IyMjA4vF0uP1jY2NAOzdu5eGhgatm/eDQvy22iF+W22Rf9NAIKD6Zx92Mceff/45kyZNMroZAoHgMOCzzz5j4sSJRjfjsGPTpk2MGDHC6GYIBILDgHXr1jFmzBhVP/Owc4kUFRUBoUmtpKTE4NYIBIJkpKKigkmTJin6RKAusm7euHEjmZmZBrdGIBAkI42NjYwYMYL+/fur/tmHnXEsh1KUlJTQp08fg1sjEAiSGRGapQ3y79q7d29xil8gEMSFHFahhZ4Wml8gEAgEAoFAIAijqXH80UcfMWPGDEpLS7FYLLzyyis9vufDDz/k6KOPxuVyMXjwYJYsWaJlEwUCgSBhFixYgMViafc3bNgw5XW3282cOXPIy8sjIyODWbNmUVVV1e4zysvLmT59OmlpaRQWFvLb3/4Wv9+veduFnhYIBIL2aGocNzc3M2bMGBYtWhTV9Tt27GD69OmcdNJJrFu3juuvv54rr7ySd955R8tmCgQCQcIcddRRVFRUKH+ffPKJ8toNN9zA66+/zgsvvMCKFSvYt28f5557rvJ6IBBg+vTpeL1eVq5cydKlS1myZAnz58/XvN1CTwsEAkF7NI05PuOMMzjjjDOivv6RRx5h4MCB/O1vfwNg+PDhfPLJJ9x3331MmzZNtXZJkoTf7ycQCBAISrz4xW7KBufRLzddte/QG48vwLd7G+ibm0phVorRzYmbJo+PjfsaGVKYQa90p9HNiRmbzYbdbqe22cuGfQ0c3S+HzBSH0c2Km711reyoaWbCgF6kOGxGNyc+gkE2vP53Bh59Cml9YzvR3NjY2C4Fk8vlwuVydXqt3W6nuLi4w/P19fUsXryYZ555hpNPPhmAJ598kuHDh7N69WqmTJnCu+++y8aNG3nvvfcoKipi7Nix3Hnnndx0000sWLAAp1O7sWBWPR3JFzsPsLeulVNHFJHmTN6jMrtqm9l7sJUJA3Jx2pM3qnFLZSP1rT4m9O+F1dpzKj4zIkkS3+ypRwLG9MmOKqWgGQkGJdaWHyQzxc6w4uSN3290+/h0Wy2nj+yoQ43AVFpm1apVTJ06td1z06ZN4/rrr+/yPR6Pp11dbTmvYFd4vV4qKipoaWkJvd8fpNTuoXxnEw3VDtJdpvpJoiIQlNjf5MEXkPjuINSmO5PSkPEHgtQ0eQkEJTbWQX6GKyknkJagjetf28Xuei9FWS6e/0UZ/fOSb+H17oZK5jzzJb6AxJDCDJ77RRm5ybZgqd1O1b+v4qiDa9n27TP0/e2nuJydG7edcWi6sdtuu40FCxZ0eu3WrVspLS0lJSWFsrIyFi5cSL9+/Vi7di0+n6+dbhs2bBj9+vVj1apVTJkyhVWrVjFq1Kh22TGmTZvGtddey4YNGxg3blxscmuIGno61pyvT366k/+tr6B/XhrP/6KMoiR0ALz05R5ufOFrghKM7pPNM1dNISMJ55tFH2zjL+9sAeCkoQU8dukE7Lbk0tOSJPHHV7/l36vLAbhwUl/+75xRSWcg+wNBrvn3Wt7bVA3AvFOP5FenDDG4VbHT7PFz8eLP+Hp3HfedP4ZzxhmfTMFUI7OysrJD6qSioiIaGhpobW0lNTW1w3sWLlzI7bffHtXnB4NBduzYgc1mo7S0FKfTSasvQHqThxZvAIvFQu+8NJz25DIs99W10ivdpzy2WS30zUtPKoUlSRK7D7SQl9GWzNtps9E/Pw1rkigsSZLweL18t3Mv103M4vfL91PV4OGm/37Df66aklSKt67Fy+/++w2+QCgN+tbqJu7630buPW+ssQ2LloAfVj1I8IOFFAXcNEsuvi+ZwRExFvTYuHEjvXv3Vh535TWePHkyS5YsYejQoVRUVHD77bfzox/9iG+//ZbKykqcTic5OTnt3lNUVERlZSXQte6TXzMTWuvpzhhWnMmaHQfYVdvC/Fe/5dFLJsT9WUZQUd/KH17+lmC4qsA3e+q5993vmD8juXI9f7u3nr++u0V5/MGWGpas3MmVPxpkYKti571N1YphDPCfz3ZzwpEFnD4yudK/Pr2mXDGMAe577zuOP7KAsX1zjGtUHPxj+Va+3l1HrzQHQwrNkdrRVMZxPNxyyy3MmzdPebx3794uk8t7vV6CwSB9+/YlLS0NgNRU6JWZzo79zTR5/DT6LPTOSB6vhM8fpNnvxmJ3ckRBBnsPtuL2B2gJWClMTx45Wrx+3JINq8POkMIMvq9pxhcM4pVs5KQmj7fSK9lwZeWR1+Lm9TlTmPnIZ6z+/gBf7DrIxAG5Rjcval5cu4e6Fh9HFmWw8NxRzHp4Fa98tZcbph5J39w0o5vXPZXfwqtzoGIdVuCjwChe7vNb7p3945gXKJmZmVGlGosMSxg9ejSTJ0+mf//+PP/8850aiz80DtXTDQ0N9O3bN+r3X3fKEKaNLOb0v3/EOxuq2FLZyNBic0yi0fD06nJafQHG9+/Fr04ZwmVPfMbTa3Yx56QjyMuIfifDaJ74ZAeSBGeNLuHYwfnc8tJ6Hv3oey4p648riZxKj338PQC/OGEQTpuVB97fxgPvb2PaUcVJ48QIBiUe/yQkxx0zj2JdeR0vfbWXRR9s47FLk2fx2Ozx8/TqXQD89adjGNk72+AWhTCVa7G4uLjDCe6qqiqysrK6nGBcLhdZWVnKXzQJ5Q/NiWexWCjMDCmoulYfwSQqGniwxYsEpDvtpLvs5IflONji6/6NJuNAsxeA7FQHKQ4beRnOds8nCwdafGCxkO6yMzA/nXPGhryOL325x+CWRY8kSfzns5BX5bJjBjC+fy7HDc4nKMErX+01uHXd4PfA+3+Cf54AFeuQUrL5I7/kUt/NzDyxTNdJLycnhyOPPJJt27ZRXFyM1+ulrq6u3TVVVVVKjHJXuk9+zUyooafjyW18ZFEmp44Ieaxf+ip5xpM/EOSFtbsB+PmxAzl+SD4je2fh8Qd5c32Fwa2LnvoWH/8Lt/eK4wbyk/F9KMx0UdPo4ZOt+w1uXfR8X9PEZzsOYLXA5ccM4OfHDsRpt7JhXwNbqroPyzQTK7fXsvtAK5kpdn46vi+/POkIAN7fXM3BJJo3//dNBc3eAAPz0zl5WKHRzVEwlXFcVlbG8uXL2z23bNkyysrKNP/udJcdu81KICjR7NE+fZJayEawHAuanWrHYrHg8Qdw+9SvN64FQUmi/hA5clJDh9iaPQH8waBhbYsFXyBIozskR7oz5EU5a0xom27ZxioCweRYdK3fW8/2mmZSHTZ+PKYUCHmKAN7ZaK4tfoXdn8Ojx8NH90DQD8PO4oOTX+df7uPonZPGj4YU6NqcpqYmtm/fTklJCePHj8fhcLTTbVu2bKG8vFzRbWVlZaxfv57q6rYt0mXLlpGVlWW6MstG6umzRof647sbqpCSxImxcnstVQ0e8tKdnDqiCIvFwoywHO9sqOrh3ebhrW8r8PiDDCvOZGzfHBw2q3J46p0NJtULnfByeIF/0tBCSrJT6ZXu5Pgh+QC8823y3A/Z4XL22N6kOm0MLsxkWHEmgaDEe5uSR47/huU4f2JfU3ntNTWOm5qaWLduHevWrQNCKYDWrVtHeXnIK3XLLbdw6aWXKtdfc801fP/99/zud79j8+bNPPTQQzz//PPccMMNWjYTCHmPs1JCUSb1rcnhdfX6A3j8ASxYyEoNtd1mtSqHPBqSRI4Wb4CAJGG3WhWj0uWwkWK3ISHR6E6OxUpTeFHlctiUeO8pg/LISrGzv8nL2l0HjWxe1Hz0XQ0AJxxZoGTamDqiCKsFvt3bwJ6DLUY2rz3eZnj797D4VKjZDOmFcN5TcMHTLNsTugenjyzGpvGJ+htvvJEVK1awc+dOVq5cyTnnnIPNZuPCCy8kOzubK664gnnz5vHBBx+wdu1aZs+eTVlZGVOmTAHgtNNOY8SIEVxyySV8/fXXvPPOO9x6663MmTOnyzhntUgmPX3i0AKcNis79jeztbpJ8+9Tg4+3hsbTqSOKlAPG044KGZWrvq+lriU5vHwfheU4c1SJYsTIcry3qRp/IDmcGB+FvdxnjmqLLz4tLMfbSWLkS5LUqRzy/UiWRVeTx6/Mi9NHmSveW1Pj+IsvvmDcuHHKSet58+Yxbtw4JXdnRUWFooABBg4cyP/+9z+WLVvGmDFj+Nvf/sbjjz+uWXqgQ8kOeyubkswYS3XasFmtSgJ/2cjX0qg8/vjjeeaZZ5TH0RYPiGTBggUUFRWRmeLg/bf/R4bL3m7lmJVq59MP3uO4yRMIJoH3WO43ac622DuHzapsFX24pbrT95mNT7aFlO6xYW8KhDKHjO/fC4AVYePZcL5fAQ8fA6sXARKMuRDmrIERMwH4NCzHcYPzu/kQddizZw8XXnghQ4cO5bzzziMvL4/Vq1dTUBDyWN93332cddZZzJo1i+OPP57i4mJeeukl5f02m4033ngDm81GWVkZF198MZdeeil33HGH5m1PJj2dmeLgmMF5QDKNp1oAjo3ohwPy0zmyKINAUFLGm5kJBCVWbu8ox6SBuWSl2DnQ7GX93nqjmhc19S0+1u+pA9rLMXV4ERYLbKpooLrBbVDroue7qib2N3lIddg4un+O8vxpR4XCjj7dth9fEixWPttRiz8o0S83zXRnWTQ9kHfiiSd2u/XVWVWlE088ka+++krDVnVNmtOOBQveQBCvP2iqNGI1NTXMnz+f//3vf1RVVdGrVy+GjhjJz6+7kdNPOREITWK9evVCsoZua4svQFCSVM/28Nprr1FVVcUFF1wQ92ds2rSJ22+/nZdffpmiwaNwpGZw3NEjmHfD9UpKqHSXnWNPmspDf/s/nn76aS655BKVJFAfSZKUxUq600ZzxGtTBuXxyrp9SeE5bvH6+XJXHdDRqJwyKI/Pdx5k7a6DXDS5vwGtC9NaB8v+CF8+FXqc3RfO+jsMaUsvVl7bQvmBFuxWC5MGan8Q8tlnn+329ZSUFBYtWtRtoY3+/fvz5ptvqt20Hkk2PT1lUB4fbqnhi50Hufp4Q5oQNTWNHjZVhNLWHXNEXrvXpgzK47uqJtbuOqiEi5iVjfsaqGvxkeGyM6ZP24Eph83KxAG5LN9czdpdBxnXr5eBreyZVd/vJyjB4MIMirPbDqznpjsZWpTJ5spG1u46yBkm82IeirwbMWlgbruDkMOLs8hKsdPg9rOpooHRfXIMamF0fLK144LLLJjH+jMBNquFFEfoJ2nxmst7PGvWLL766iuWLl3Kd999x2uvvcbRU46l/uABJTdzcXFxqEiB3YrdakWSJFq96scd33///cyePbvDwcZY2L59OwAzZvyYjJx8nC4Xh+58hxYrMOMnF/KP++9PoMXa4w0E8QWCWCwWUh3t15wTBoQmjK/31Jl+Nb+uvA5vIEhpdgoD8tqv5GXPsaFG/uY34aEpbYbxxKvgl6vaGcYAa3aElO7YvjlJmbtc0DUTIvqh2eOOv9h5AAilojs0K4UpxlOUyONp8sDcDilCxw9IJjlC9+PQhQq06ekvkkCOz7qQw2q1KP3qi53ml0PuV53dD6P5wRvHkiTR4vUrf1aLBbcvQG2Tt93zWvxFq9jr6ur4+OOP+fOf/8xJJ51E//79GXf0BGb/8gZOOm06aeGCH3Jog8Vi4UDlHsb07cXzL/6Xk046ibS0NMaMGcOqVavaffYnn3zCj370I1JTU+nbty+/+tWvaG5u7qwZQMiD/f777zNjxoxu27x7927OO+88cnJyyM3NZebMmezcuRMIhVPI77fbbYzum8OV581g165d3HDDDVgsFiwWS3ixYuOEU09n7RdfKAa1GZEXIakOW4eKUYPyM8hJc+D2BdmwL7biB3rz9Z7Q1ui4fr06HI44un8vLBbYVdtCTaOns7drR/N+ePHn8OyF0FgBuUfA7Ldg+l/B1TFDzTdhOY7ub25PliB2RvbOxmmzUtvsZWetieLfO+HrbvrhhHBqxw37GkznjDmUbuXoH5LjiyRYrCh6oRMPd6QcZqc7/Sb3K7MvVty+AFsqQ9lBzKinf/AulVZfgBHz3zHkuzfeMS2qUqgZGRlkZGTwyiuvMGXKFFwuFy3hTBQuh7XT8p0p4bjXP90+n3/cdy9DhgzhD3/4AxdeeCHbtm3Dbrezfft2Tj/9dO666y6eeOIJampqmDt3LnPnzuXJJ5/stC2ffPIJaWlpDB8+vMv2+nw+pk2bRllZGR9//DF2u5277rqL008/nW+++YYbb7yRAQMGMHv2bL7dtpOqeje5mWnMOPkYrr76aq666irls9Jcdkp696WgsJCPP/6YI444osffywgU49jZMden1WphfL9eytajmRO0r99bB8CoPh1zTWalONptPepS5lOSYP2L8NbvoPUAWGxwzHVw4s3g6Dp/8Dfh+MdRJsmZKVCPFIeNUX2yWbsrFOIzMN+81Sfl8TS6k37YOyeVkuwUKurdfL27njITes9k5DjdzsbT6D7ZOGwWaho97DnYarrYURl/IMiGfWG90Il+kz2uG/bW4/YFTFtltrrBTWWDG6sFRpR0TImYLDsSmysb8Qcl8tKdlGabrybDD95znAzY7XaWLFnC0qVLycnJ4dhjj+WPt/6B7zZ9q3iNDyU1HB5y+TXXMX36dI488khuv/12du3axbZt24BQ1aqLLrqI66+/niFDhnDMMcdw//3389RTT+F2d34oYdeuXRQVFXUbUvHcc88RDAZ5/PHHGTVqFMOHD+fJJ5+kvLycDz/8kIyMDKVaWFavAvILiygpKsBms5GZmUlxcbGS2zU1LF9BUQm7du2K6/fTA3mxktrF/ZBjvzaa3HMseyQ6m8whNBECbKzQQY76vfCfC+ClK0OGcdEouGo5nHp7t4ax1x9U4jxHdzIJCpIfpR+aeDxJkqSMp86MMdB5PMVJfYtP8dB3ZhynOGxKQRYz74xtq2nC7QuS4bIzMK/jgqpPr1R6pTnwByW2Vpk3E4p88HFwYUanIWOjemdjsUBlg5vaJp13+GJAWXD1yTZVCjeZH7znONVhY+MdbaesJUliU0UjQUlicGGGpqvHrgypzpg1axbTp0/n448/ZvXq1bzy+v946B/38vcHH2buNVd1uF4O0h905AgCwSA2q5WSktAhg+rqaoYNG8bXX3/NN998w9NPP628T5Ikpcx2Z97h1tZWUlK6X+V9/fXXbNu2rUNBFrfb3SE0osXbvVEpG/lOV0q34R5GEhnbnea0QSdxxcNKQr/FJhNPggeavew52ArAUV0Yx8PDngpNjZJgEL5cCsvmg6cBbE44/ndw3PVgc/T49u+qGvH6g2Sl2OlnUi+WIDHkfmjm8bSrtoVGtx+n3cqRRZ0XpxpWnMU7G6pMLce3YW9r39xQTuDOGF6cxbd7G9hY0aDPjlIcyAuVkb2zOt1ttVgsDC/JYuX2WjZVNHS5oDEaZcHVO6fT19NddvrnprGztoVNFY0cN8ScFRh7csQYzQ/eOLZYLB1CG3LSnEr8cTRhD3qRkpLCqaeeyqmnnsqsK37Nrb+Zyz0L7+rUOJYPTdgdoVjXdJdVWZ3JadGampr4xS9+wa9+9asO7+/Xr1+nbcjPz+fgwe63a5qamhg/fnw7o1tGTm0l4/F3HY4AoZzBFizU1x0kN1/fQg7R4vUHlawgLrsVTydnIOXtr23VTfgCQRw2823ayAbvgLw0Ja3hoWhulNRuh9d/DTs/Dj3uMxF+/CAUDov6I2Q5zOqRECSOPJ42VTYgSZIp77PsRR1ektXleE8GI18JRejGiEkGORS90IMcK7fXmtqTL/erkb27rjI5vCQrbBw3cNwQ82WCgEg5hHGcNKQ6rLR4Q/HIOUY3phP8gSD+YJBBQ4by0bKeUz+5fYFOt1+OPvpoNm7cyODBg6P+7nHjxlFZWcnBgwfp1avzIPqjjz6a5557jsLCwqjKxNqtFuxWC06nk0CgvWVptVgg4GX3rh2MGDk66nbqidsfWmy47NYuJ+k+vVLJdNlp9PjZXtPEsOLYy+dqzXfh0qldebkg5CEC2FvXSn2rr0sjOmaCAVj9UKj8s78VHGlwynyYdDVYY9u9iUYOQXIzuDADm9VCXYuPygY3Jdldh9kYhdwPhxZldHmNbORvrTLvovm7cIhBd+MpGXbGotELw4rNL8fWarlfdSdHFm99W2laOQJBie01oX4lh+SYDfONRBMgh1K4feZIu1VbW8vJJ5/Mv//9b7755hs2b93Ou2+8wtJH7mfmzJk9vr+1izLSN910EytXrmTu3LmsW7eOrVu38uqrrzJ37twuP2vcuHHk5+fz6aefdnnNRRddRH5+PjNnzuTjjz9mx44dfPjhh/zqV79iz549Ha53OWxYLBYGDBjARx99xN69e9m/vy0x/sav1+J0uhh99MQeZTUCT/j37S4Ex2KxmH4CkZVud5NHdppDOTyxWS05qjaGKty9e2vIMB54Aly7EqZcG7NhDPBddc+TuSC5SXHYGBQ+iJfM46lPr1QyXHa8gSDf15gzbGxrFEalbOTvOdhKg9uclVmjMfIjPeBmzLzR6g1QfiAU/z2kWzlCr5nVA15+oAWPP0iKw0qfXuYMfRPGcSe0Gcfq5wiOh4yMDCZPnsx9993H8ccfz+TxY1n01//jgksu58EHH+zx/Z4ujPzRo0ezYsUKvvvuO370ox8pVbFKS7tOSG+z2Zg9e3anIRMyaWlpfPTRR/Tr149zzz2X4cOHc8UVV+B2uzv1JKeEi63ccccd7Ny5kyOOOKJd+MX/XnmRM8/5CVaH+U60QoTn2NH9cJJXyN+Z9LCHfAhlSDeeLoBh4Qnku0TL9/q98OHd8OjxsHctuLLhxw/Apa9C7sC4P3ZbeDIfUti9HILkRumHJh9Pg7vph1arhSPD4032bJoJSZKUMt3djaecNCfFWSH9bMbDbAebvewPH07r7n4MKcrAaoEGt59qvdNVRsH2miYkCXLSHORndB7/DW1G/vc1zQSC5jPy5QXXEQWhHSAzIsIqOsEVNtZ8gSCBoGT4zXO5XCxcuJCFCxcCoS3t2iYPBZkuUlPbthMjV7oDBgygxeNja3UTnrDxlpOT02E1PHHiRN59992Y2nPDDTdw1FFHsWvXLvr379/huyFUkGTp0qVdfsbZZ5/NjpomGtw+XOHFyJQpU/j666/bXbd//37eePVl/v36+0p8stmQF1Ep9u69nEcUhJTy9zXmmzwkSVIm5yGF3XtcjyhI5/3NCcqxdy28OheqN4YeD50O0/8GWYlVpmp0+9hXH8q00p1nRZD8HFEQ8hybcTx5/UF27A95gnvawTiiIIMvy+tM6TneW9dKizeAw2ZhQA8p844oTKeywc33NU1KOjGzIBv4vXNSuy0K5LLb6Bc+zLa9pomiLHM5ZJTdiMLMbuPsS3NSQ+df/EH2HGyhfyfZOYxkaxLs7gnPcSfYbaEKcwBeExpk8ja+qwdjzBl+3R8M4lexMltxcTGLFy+mvLw8oc9x+2WjsutuuHPnTv5x/4P06dcfjz9ouq0uSZKUxUdPnuNBYeN4uwknwepGDw1uP1YLDCroXpEOUoz8OOTwtsA7f4DHp4YM47R8+MkTcMHTCRvG0KZ0i7Jc6sVDC0xJQv1QY3bWNuMPSmS47JT0kMO1TS+Yz8iXvcAD89N7jIcelB++H/vNdz/a4o173k0yc7/6LsrdPZvVouT/NqccYUdMFPfDKITnuAtcdit+bxCPP0hq17sXhiAbYyk9GGM2qwWHzYovEJLj0LKfiXD22Wcn9P6gJOFVjMqujfwJEyZw9PjxbNjbQFCS8AUknHbzbMN4AyGD3Wqx4Ozh95U9Xbtqm/EH1L0fibI9bFT2y03rMX2hHOsZ82S+42N47To4uCP0ePT5MG0hpKtX/ECWo7utU8HhQdz9UAfkfnhEYUaPmTQUD/h+E8pRE/14khfV2xMNt9KAmOTIT+d9zN2vor0fmysb2V7TxEnDCrVuWkwo96PAvHraPLOzyZBDK2RD1CwEghK+sBe4J2MMzCuHbBhbLaFMFd1htVhw2s3pyZflcHaTqUKmNDuVFIcVX0BidzifsFnYFT7k0dPWKYQmfAhtuUYVl++uh9evh6VnhQzjrN7ws+fh3H+qahgDymGVASbbRhSoj2yMHWzxcbDZa3Br2iOPp4F5PR82ivRUmm1nbFdt9ONJCRszoee4vDZ2/WZGj2t5LHrapDuVkiQp/crM1S2FcdwF8hZ5V4fZjMIbNoxtVktUnkfZK2u2eN1YjEowv5EfzULFarUwMN+cccc7a0MKtH8URTPy0p1kpdiRpLb3dcl378CiKbA2XI58ws/hl6vhyGndvy9O5Epe/aMwSgTJTZrTrmROMZvXdVd4XPSLwqjsn5eG3WqhxRugsqHzyqRGIY/vaIzjQYfsjJmJNv0WhRz55vTkS5IU1/0w21xzsMVHo9sPYNpS4yCM4y6R43nNalS6uonTjUQxKs1m5Mcqh8OcxrEnwsiPhjaFZa7V/K79slHZs9K1WCw9x+U118J/r4JnzoPGfdBrIFz2Bpx1H6Rol+NZNkrMdgBFoA1mjePfuV/2uPY8+TtsVqWSo+n0Qnix2S8KOSJ3xvaYaGcsEJTYfSDUnmgWzXKf2nMwyp0xnahu9OD2BbFaQgcLe8KsMeCygV+SnaJpBeJEEcZxF7Rt45vrEJgcVuC0RdepZOPTa7KVvNyeaI1K2TPrNZlxHKuRL0+W8vaYWZC3gaP1uHYphyTB+hdh0URY/zxYrHDMdaG8xQN/pGqbO2OX8Bz/oJDv826TjafyGMdTfxPqBV8gyN66kFEZjafSarUoRr6Z5KhscOMNBHHYLJRGYVTmZzhJd9qQJBT5zYCs23r3So1q3pTvWU2jh1aveYx8OcSln4m9xiCM4y6RjbGAJJkqT2CsnkqHzZxGfqxyRC5WzIQ3Rjn69jLf5BGKAYvN49q3s0mwoQKe/Rn89wpoqYXCEXDle3DaXeDUXhHWtXipbw0VIDC74hWoQ6f90GA8/gD76mVPZQLjyWD2HmwlEJRw2a0UZrqieo8Z9duusOe0b6+0qNKyWiwWU96PWEJDIFSwKTMllHNh90HzyWH2cyHCOO4Ca0RMr5m8rrEaY7KRHzSZka94XKPM2OCMuBdmMfIlSYrZAy4bbWZSVvubvLR4A1gs0Dc3ujK88uSx+0BLyFu8diksmgxb3gSrA078PVy9AnqP17Lp7ZA9K4WZLtKcIhHPD4F+uebzHO8+0IokQbrTRl56dKmOzChH5G6SNcpc/31NqN9kOaIJDZGR5dhjovtRHseumBn7VXkMoTpGImaQbnDarPgDQbz+IGkmSecW6za+NSKdm9ck6cPaG5XRhYc47FYshIx8f1DCYTM+nZsvIBGUJCz0nMZNRlG6B1sJBqWoJx0tkb3GpdmpPebOlpE9RP7938NTd8GOj0Iv9B4PP34QikZo0tbuSBaPhEA92jyVZtr+btuFieawMaCU0DVTFpt44vf7mtAYi0cvmDE8JB45+vZKY8O+hqSXwwiMt5RMjNNk8bqhPL+xeSohvnjdnTt3YrFYWLduXdTvWbJkCTk5OT1e5wt7fy0WS7dGbm1tLYWFhezcuROrxdIuRCSSBQsWMHbs2KjbCXDiiSdy/fXXx/QegEceeYQZM2aE2hG+Fw67JepJsCQ7BZvVgtcfNE150l1xxID16+Xi57a3WNzy65BhbE+F0/4EVywzxDCG5PFICNRD7rP7m8wTVxlP3LsZPXyKHLHoBUUO8xj58cS49u0V2kEzlRxxeMD75ZnwfsQYj28UwjjuBjMdAqupqeGaa67ltMkjmXBEEX17lzJt2jQ+/fRT5RqLxcIrr7zS4b3xxOv27duXiooKRo4cmXDbI7n88ss595xzQu2ydZ/G7U9/+hMzZ85kwIABQMh7DB0XKzfeeCPLly9XtZ3Q+e/585//nC+//JKPP/5YORwZrbcVQtUXS3NC6afMsvUoe4gG5EeprKo3U/rfs5nv+BdpFg+ePsfCL1fCMXPBatzp451KTlZzK12BepgxrjI+j2vIGDvQ7KXJ49ekXbGiyBFDLlpZDnN5KuXcwLEblaaSY388nmNz3Y8mj5/9TaGc5GZ3YgjjuBvMdAhs1qxZfPXVV9x538O88+mXvPbaa5x44onU1tb2+N5ID7jXG12yfJvNRnFxMXa7+pE3cuhzd6EhLS0tLF68mCuuuEJ57tDFiiRJ+P1+MjIyyMtTt5hEVzidTn72s59x//33xxz/LaNs2dWaQ2G1xRb2oHQDPlhxDzz6Iyx7P6eJNG72XclXJz0FuYN0aGn3lB8wTxq3u+++G4vF0m53wu12M2fOHPLy8sjIyGDWrFlUVVW1e195eTnTp08nLS2NwsJCfvvb3+L3m8NYMitm87oqBXVimPwzUxz0SguVOzeNHHEsNuUwl/pWn3I41kgkSaI8nsVKr7Y+ZYYzLnUtXhrCuYFj8oArYXxm6VOhexHKle8wuDXdI4xjSQJvc6d/zmArFl8LfndTl9ck9BfloKurq+Pjjz/mj3fcxaRjfsTAAQOYNGkSt9xyCz/+8Y8BFO/qOeecg8ViUR4vWLCAqcdN5qX/PEXZ2BGkpIS8lm+//TbHHXccOTk55OXlcdZZZ7F9+3blOzsLq3jttdcYMmQIKSkpnHTSSSxduhSLxUJdXV279r7zzjsMHz6cjIwMTj/9dCoqKpS2LF26lLf+9zpj+vZiYEEGH374Yacyv/nmm7hcLqZMmaI89/mqTxjTtxfvvP0W48ePx+Vy8cknn3QIq/D7/fzqV79SZLvpppu47LLLOpS8DgaD/O53vyM3N5fi4mIWLFigvNbV7wkwY8YMXnvtNRoaQwon2nhjGUXxmkRhyZOx3K5O2fcV/PNE+OBPEPDCkafz+5LHeDZwMuUmiZOUtw6NTiz/+eef8+ijjzJ69Oh2z99www28/vrrvPDCC6xYsYJ9+/Zx7rnnKq8HAgGmT5+O1+tl5cqVLF26lCVLljB//ny9RUgqzJYhQRlPMfZDM8XrSpKk6Kdu9cIhpLvsyiFEM8hxsMVHczjcJprcwDJyDHijx28KI1/WbQWZLlKd0e/ORWbdMIORL8vRJwmyCYkDeb4W+L/STl/KAEZp+d2/3wfOnlezGRkZZGRk8MZrr3H1kNE4Mzqm1fn8888pLCzkySef5PTTT8cWkQd5x/fbee/N1/jH4/9icFE2AM3NzcybN4/Ro0fT1NTE/PnzOeecc1i3bh1Wa0djb8eOHfzkJz/h17/+NVdeeSVfffUVN954Y4frWlpa+Otf/8q//vUvrFYrF198MTfeeCNPP/00N954I5s2baKq9iDz73mAwiwXR/br/Lf/+OOPGT++faYDOT554e3zuf/v9zJo0CB69erVwcD+85//zNNPP82TTz7J8OHD+cc//sErr7zCSSed1O66pUuXMm/ePNasWcOqVau4/PLLOfbYYzn11FO7/T0nTJiA3+/n888/Y9TEspgPB5otTVBFfagqlxzu0Q5fK3y4EFY+AFIQ0vLgjHtg5CwyXvkWdpSb4kS3LxCkurEbOXSiqamJiy66iMcee4y77rpLeb6+vp7FixfzzDPPcPLJJwMo/XP16tVMmTKFd999l40bN/Lee+9RVFTE2LFjufPOO7nppptYsGABTqdJTgWbDDPFVUqSFDGeojfGIKQXvtlTbwq9UNfiwx0uHFWcHdt46pubRm2zlz0HWxjZO1uL5kXNvnCe4vwMV0wFJ1KdNgoyXdQ0eth9oJUcg0/ky6kBY+1TvXNSsVigxRvgQLOXvE5sBz2pCMvR20AdHS3Cc5wE2O12lixZwvP/eZrjjhrA2aefzO9//3u++eYb5ZqCggIAcnJyKC4uVh4DeL1e7vr7IwwZPppRo0Lm/qxZszj33HMZPHgwY8eO5YknnmD9+vVs3Lix0zY8+uijDB06lL/85S8MHTqUCy64gMsvv7zDdT6fj0ceeYQJEyZw9NFHM3fuXCUeOCMjg9TUVBwOJ/mFRfQpLe1ywt+1axelpe0NZ3vYaJ974+859dRTOeKII8jNze3w3gceeIBbbrmFc845h2HDhvHggw92elBw9OjR3HbbbQwZMoRLL72UCRMmKG3t7vdMS0sjOzub8vJdQByeYyVNkPGTuS8QpCpcsraDZ2Xnp/DwsfDpP0KG8cifwJzPYNRPwGIxlceuqsFNUArdi/x09SaAxsZGGhoalD+Pp/tDlHPmzGH69OlMnTq13fNr167F5/O1e37YsGH069ePVatWAbBq1SpGjRpFUVGRcs20adNoaGhgw4YNqsl0uGGmuMr6Vh8tYU9lSaxGZa+2TDZGszdOoxLMtfiXjeN4jDEzZayIV44Uh42izNB7zCRHaXZsRr4RCM+xIy3kwe2C76qa8PgDDMxLJyNF5Z/LEf3WwqxZsxg+8QQ+/uRjyjd/zQfvvcs999zD448/3qmRGkn//v3Jyy9ACme7cNptbN26lfnz57NmzRr2799PMBjyEpSXl3d6CG/Lli1MnDix3XOTJk3qcF1aWhpHHHGE8rikpITq6up218i7O45ujMrW1lYlBERG9tAeOXIMQUnC2slhvvr6eqqqqtq1zWazMX78eEVGmUO3vTtra1ekpqbS3ByKn3LEG3NsAmUlG5UOm4V82avgboDlt8Pnj4ceZ5aEyj4PPaPde80kx766kIFfkpOianq8ESPaZ9647bbb2oXfRPLss8/y5Zdf8vnnn3d4rbKyEqfT2WGRVlRURGVlpXJNpGEsvy6/JugcM4UjtBmVzpiNSnONp0SMSvMsVhRjLEaPK4Tux9pdB80lRxxGZb/cNCob3JQfaGFcv15qNy0mZD0dz/3QG2EcWyzdhjbYUyTcHj9eWyoYvK1pdTgpO/4kLp41gz/dsYArr7yS2267rUfjOD09HafNiscfwOuXcNpDcbP9+/fnscceo7S0lGAwyMiRI6M+sNcVDkf7IHuLxdIh1ikYftzdQbb8/HwOHjzY7jm5ulFqWjq+QDCmLBHRtvVQA7orDhw4QK+8fCwWC/YYjbE+YU9XVaMbrz8Y84E+NVGMyuzUkFG5dRm8fj007AldcPRlcNqdkNJxe1SWwwwlVrXySGzcuJHevXsrj12uzr3Su3fv5te//jXLli3rsKgTaIscH2qOfhj/5K+MJxN4jhMxKpX7YQY54gxxgUj9ZgbjODE5PttpjvGxN4F+pTcirKIH5C1zn8G5jkNe37BRGW7TiBEjFO8lhIy9QKDzXJ+y19UXCFJbW8uWLVu49dZbOeWUUxg+fHgHQ/RQhg4dyhdffNHuuc48ZD1hszsIBAM9GpXjxo3rEOIRmfZN/i0OJTs7m6KionZtCwQCfPnllzG3tavfc/v27bjdboYdNRqHLfocxzJ56U6cdiuShBLSYBTyJHhklhde+gU8/ZOQYdxrAFz6Gvz4/k4NYwh5aQGqGz2Gjw9Z6ZaoHMuWmZlJVlaW8teVcbx27Vqqq6s5+uijsdvt2O12VqxYwf3334/dbqeoqAiv19vh8GpVVRXFxcUAFBcXd8heIT+WrxF0RI4xb/L4aXAbe3hKHk+xhlRAmxxyfKmRyEZlSRyLTVl2OfbaSPYmcD9k2SvqzCNHPOcpZJ1oBjn2JSCH3gjjuAfkLXMjJ//a2lpOPvkUXn/pWbZu2sDu8p288MIL3HPPPcycOVO5bsCAASxfvpzKysoOxq4jwsjv1asXeXl5/POf/2Tbtm28//77zJs3r9s2/OIXv2Dz5s3cdNNNfPfddzz//PMsWbIEICbjsG+//mzdtIE9O7ZRW1uLz9f5ZDZt2jQ2bNjQpdHe3f247rrrWLhwIa+++ipbtmzh17/+NQcPHozZiO3q9/z4448ZMHAgfQcM7DY0pCssFotpJpB9dS2caV3NfTW/gG+eBYsVyubCtSth0Andvjc/3YXDZjGFkd920MMYj8Qpp5zC+vXrWbdunfI3YcIELrroIuV/h8PRLh/3li1bKC8vp6ysDICysjLWr1/fLrRn2bJlZGVldQjvELSR5rSTnRraBTLaAIj34BS0GWONbj+NJjHy4zFiZNn3mcBTWVEXv14oURYrxhuVFSr0qwqDF10ef0ApfCU8x2EWLVrEgAEDSElJYfLkyXz22WddXrtkyRIsFku7PyO3Kds8rsalQcnIyGD8hIn8+/GHmf2T6YwaNYo//vGPXHXVVTz44IPKdX/7299YtmwZffv2Zdy4ce0+Q6kuFwhitVp59tlnWbt2LSNHjuSGG27gL3/5S7dtGDhwIC+++CIvvfQSo0eP5uGHH+YPf/gD0PVWc2dcfNls+g8awk9PP5GCgoJ2RUwiGTVqFEcffTTPP/98p6/7usk9fdNNN3HhhRdy6aWXUlZWRkZGBtOmTYu5H3X1e/7nP//hostmA7EfxpORjWNDJ5DGSk5YN4+HnPeTGTgIBcNCFe6m/SmqLCpWq0U5yW68kW9sLFtmZiYjR45s95eenk5eXh4jR44kOzubK664gnnz5vHBBx+wdu1aZs+eTVlZmZKu8LTTTmPEiBFccsklfP3117zzzjvceuutzJkzJ6YxFg/JrKMhYjwZbADI/TAeYyzdZScrfK7F+PGUgFEZvhcNbr/hBU0S0QtyiJbRRn5kNdW45JCNfIMXjlX1IRmcdquS7s/MaB5z/NxzzzFv3jweeeQRJk+ezN///nemTZvGli1bKCws7PQ9WVlZbNmyRXkcq8dPTRwmCKtwuVzcevudXPrrW0h32TmiIKPT62bMmKGUNpZZsGABCxYs4EBzqGPKRv7UqVM7hC1ExgYPGDCgQ6zwj3/8YyWvMoQq2PXp00eZGC+//PIO8c9nn312u8/Jys3j0Wdeoleas8c8oPPnz+e3v/0tV111FVarlRNPPJGKulaqG93t7ocso4zdbueBBx7ggQceAEL5jIcPH855552nXNNZfuVDq+F19ntu2LCBdevW8fd/LsVH94cKu0PxrhgxmUsSrHsa3vk9R7nr8Uk2Ng+5ilEX3AH22Iyw0uxUdh9oNXwCSSRGUi/uu+8+rFYrs2bNwuPxMG3aNB566CHldZvNxhtvvMG1115LWVkZ6enpXHbZZdxxxx2ativZdTSEjLjNlY1J3w9Lc1JpCMtxZFGmmk2LiUSMysyUUNXCRrefirpWhhgkhy8QpKoxAeM4bFSGMpD4SXMac0SrqsGNJMVvVBo610SwL2J3z2h9EQ2a3+17772Xq666itmzQ562Rx55hP/973888cQT3HzzzZ2+x2KxmCbGTjGODa6SJ5dMjtdTqYaR/9BDDzFx4kTy8vL49NNP+ctf/sLcuXNj+gzZOI8mN/D06dPZunUre/fupW/fvu3e150nf9euXbz77ruccMIJeDweHnzwQXbs2MHPfvazmNraGRUVFTz11FOkpmfic/tiznEsU2pUPNvBXfD6r+H7DwD4zjaYX7Vcyc0TZ8VsGEPkFqqxXom9CZyu14pDF2ApKSksWrSIRYsWdfme/v378+abb2rcsvYku44G88RVqmEcb65sNNRznKhRCSH9tsXdyL56t2HGcWV9YkZlZoqDTJedRo+ffXVuBhd27pTSmr11iRmVclhFXYuPVm8gpiIiapJM8cagcViF1+tl7dq17XJ7Wq1Wpk6dquT27Iympib69+9P3759mTlzZrc5Pj0eT7s8pI2NjarKIBuVAUkiEGUmAy2IxajsDDWM461btzJz5kxGjBjBnXfeyW9+85su01p1hbzIiNbjev311yuGMbQvhd0VVquVJUuWMHHiRI499ljWr1/Pe++9x/Dhw2Nqa2dMnTqVadOmKd8faxo3GWUy12s1HwzC6kfgobKQYWxPgVPv4LzAnWyW+sUdq9sWO22cV6LR7aMxXFo1ngNEP2T00NHQUU83NDSoJgO03XcjvWP+iJzhpXEcAIOI8WSgB1wxKm3xb3+3LVaMkyPycGS86R1119OdkMghT4CsFDvpYYPYyPHRJkdy6GhNjeP9+/cTCAQ6zd3ZVd7OoUOH8sQTT/Dqq6/y73//m2AwyDHHHMOePXs6vX7hwoVkZ2crf2ofXLFZLUoKMSPjjmM1Kg9FMfKDEoFgfHLcd9997Nu3D7fbzXfffccf//hH7PbYNh8SNSqjMfL79u3Lp59+Sn19PQ0NDaxcuZLjjz8+ru/rCl+CnnzZc7xXD09XzRZ48nR4+ybwNUP/Y+HalTSO/yV17lBfKInXODaB51j2smWnOkh3ieyUsaCHjoaOejpywasGpSbwHFc1ejrmDI8R2VOri17oAnk8JZIzvG2xYrwciaR3LDFB3HG8FRdlLBaLoqeNHB97kyjHMZgwW0VZWRmXXnopY8eO5YQTTuCll16ioKCARx99tNPrb7nlFurr65W/riq8JYIZ4o7l747XOG5v5BsvR/zhISEZEjHyEyXyu+MOq5CVlZYr+YAPPvorPHIc7F4DzkyYfi9c9gbkHdHOqMyI06jsbQLPSjLlzjwciFVHQ0c9vXv3blXbVGqCE/mRnrF4jcpSE4wnNXKG9zaB51gNvWCGsDFV5TBBvzJT6Ft3aOpmyc/Px2azdZq7M9p4NYfDwbhx49i2bVunr7tcrnYnuaPZrjv0oFlPOG1W3L5At1v5WqPEHCdQMMJhsxIIBvAFgjFXb1IDNYxKm9WKzWIhEK72Z7PqL4ds4IcWHB3vRzT9S96u0ywOrOJreHUOVK4PPR58Ksz4O2T3US5RQ+m2pQkybvJINqVrJvTQ0dBRT6tN2+TvRpIkQw78qBFTaYbxJPRCG6UmCBtTVQ4DjfxkODQdiaaeY6fTyfjx49vl9gwGgyxfvlzJ7dkTgUCA9evXU1JSknB75IpoLS2xVbxRDoH5k9dTGXqvsR7wnozKaDE693RPXny5fx1agS+SrJQ2b62qq3mfG967Hf55UsgwTu0F5/wTLnqhnWEMaindkKI70Oyl1dt5ARqtSTalaybMpqPjpSgrBYsllPaqtjmxKp/xooqHL2IbP1YnjlqooReUHMEmiDlOyMjPMY+Rr8Zixaj7IUlS0ulpzQP05s2bx2WXXcaECROYNGkSf//732lublZORl966aX07t2bhQsXAnDHHXcwZcoUBg8eTF1dHX/5y1/YtWsXV155ZcJtsdls5OTkKEn209LSovMwBHxIfi+trRJubdONdorHF0Dye7FaLfi8XuJND28JeJH8PppbLKTZ9Fe8zZ7Q72i123C741c21qAPye+nucWKA/0NsqYWL5Lfi81mbyeHJEm0tLRQXV1NTk4ONlv33uCS7BS2Vjexr661y/R8MVG+Gl6dC7VbQ4+POgfO+AtkFHR6eUVE6eh4yUq1k+a00eINUFHfyiA15IiRiiSLZTMbZtLR8eK0W8nPcFHT6KGizh13zG8iVCSQ41imKDvUbo8/yIFmL3lGyJFgjCtEGPn1rYZ58tWRI2TkG1l6WQ39VmJw9cUGt5/msPMkkXAdPdHcOD7//POpqalh/vz5VFZWMnbsWN5++23lAEh5eTnWCC/iwYMHueqqq6isrKRXr16MHz+elStXqnbQTt4qjKxC1RMtXj8Hmn002K24D+qvrNy+APubvDhsFuzN8a/mG90+6lv9NDttNBmQhLvZ4+dgi49UhxUa4/8dD7Z4afYEcB+wczC1a++sVjS0+mhw+2lx2fDWdfwdc3JyotqSLslJZWt1U+JbXZ4mWH47fPYYIEFGUSi2ePhZ3b5NjZW8XO1ve00zFfVuQ4zjRErECsyno+OlNDuFmkYP++pbGdWn85LnWqLGaXyX3UZ+hov9TR4q6t2GGMeKHAnoBbk4kNsXpK7FRy8D5ptESi7LRB5kM8LIb3D7aAwXUknEqCw1OMxF7lO90hyGpZKLFV2Ods+dO7fLfLiH5gK97777uO+++zRri8VioaSkhMLCwi5LFx/KV+UHWfDG1/TplcbSn0/SrG1d8db6Cv76wR4mDsjl7lnxpyN7d0Mlf/5gM0f368VffjpUxRZGx5Of7uDfq/dy1uhSbjh1YNyf88mqnSxZuZMzRpZw47T4Pyde/vz2Zt7dUM3PjxvIRUf1b/eaw+Ho0WMsU6pGdblty+H166G+PPR43CVw2p2hcIoeUE6lJ2hUluakKsaxEVQ2JO4B/6FjJh0dLyXZqXy9p55Kg/qheuMpRTGOR/bW38hXQ44Uh428dCe1zV4q6t26G8fNHr+S3rE4oWwVod+g1RegodVPdpq+zpjKiEPTiRiVsufYqLEhf28i90JvfrB5j2w2W9RGTHFuFnsbA9R5Wgwpk7qnwc/exgDHuVIS+v687Az2NgZIq3EbIseuOh97GwOkp6Um9P3ZGensbQyw7YDHEDm21XrY2xggOyM9oe8vygq9V064HxOtB+GdP4Qq3QHk9IMZ98MRJ0X9EfL3yu2IF0WOBv0VryRJyvcWJyiHILmRvZVG9EOAalXHU70hcrh9AepbfRHtiJ+irBRqm71UNboZQZYazYsa+bfLcNnjzsQDISM/J81BXYuPqka37saxWrpNvpdNnlBJ70R+k3hok8OAuNQ4MV0qNzNSmBm6oc3egCG14tuMmMQ6lvx+oyYP+XsTlaNQkcOTcJvioTr8vYnfj5Tw58V4Pza+Bosmhw1jC0y+Fq5dFZNhHPpeteRwhT9P/37V4Pbj9oUOSBYmkeIVqI+ResEXCLK/KXQQMJnHk6wTUhxWslISM6CMlEPuA2rohKJM4xZdaskRuUgw8n4kuuDSE2EcR0G6y05muGMZO0AS61jy+xvcfkMyC6glR9xGpUqo53GNcTJvrILnLoHnL4GmKsg/En7+DpxxN7hii/VtDnsQQL37YYRRIveB7FSHIekJBeZBNmKq49mJSZCaxlDfd9gs9EpLLISgzRjTfzxF6rZE42sN1QuyHJmJG2NGLrraHEpJLkf4fiQ61+iJMI6jpEjesjMgZqc6rHhlD3a8ZLrspIYNCCOMfLXkkBVFbbMXj19fI9/jD1DXEtp2VEuOyp7uhSTBumdg0STY9BpY7fCjG+EXH0O/yXF9t3wv0p22hLfYCjOjlEMD1OpTguRHGU8G6uiCDFfcBUBkEgq3ShDZc6zGeCqMVr9pQLWanmMDw8ZqVNRvRnrA1exXeiGM4yhRvHyGKCx1Vo8Wi8WwuDxfIEhtszpbK73SHEqFPVl56IU8yJ12K9kJZsqQf4f9TR78XeVsriuHf8+CV64Fdx2UjIGrPoBT/giO+H9HNT0Scp8yZrtOPTkEyU1xtnFhY/J3quEZkx0xRhj5aspRbOAOn6r6zUDjWAs9bYxjLPn0tDCOo8Sora5gUFK8EqpsrWTKRr6+cuxv8iBJYLdayE1w29FisRi2RVQdEf+d6LZjXroTm9WCJKHEKyoEg6HUbA+VwfblYHPB1AVw5ftQMjqh74XISVANz0o4trDRQ1Dnkt5qxhYKkhsjw8aqVTpPEfkZ1TrraIgIq1AhHCHmsDEVqVLT42rgWR21zumAWcJDkkdPC+M4SgoNWj3WNnsJBCUsFsjPSDwdjlHxulUR2yqJbjuC8XKoMXlYrZa2xUqkHPu3wpIz4c0bwdsE/crg2k/huBvAps4p42oVD0jkZ7iwWMAflDjQom91MuE5FshEho3pHXes5oEjWbccMCBsTK1DuqHPODw8roUGxk6rdU4HIhx8Oo+NQFBSdniTSU8L4zhKig1aPcrfl5fuwt5FueJYkJWe3lt2shFboNLgUOQw6H6o5alsF5cX8MMn98HDx0L5KnBmwJl/hcvfhPwhqnyfjGw8qOFZcdis5KUb1K9UlEOQ3FgsFsP0m6IXVOiHOWkOnHaDwsYa1dNv8md0GzamEdUq3g+jHDGSJKkbcywb+TqPjdpmD0EJLJbQbmmyIIzjKDHq5G3bikudyb/tsIe+csjfV6SSEWPU/Wg7AKaOkS8vunx7vobHT4b3FkDAA0ecAr9cBZOuAqv6w1Tt1DpyvKfeHjs1PeCC5Mco/aboBRX6YaSRr7d+U3NnLD/dhc1qIdhZ2JiGSJK6oYhK7LTOYWN1LT684UVFgQrzphKTb5COzs9Qx8GnF8nTUoMxKqxC7W1jo7a61DpUKGNcWIW6cpRmWPmN/XnOWH0hVHwNKTlw9sNw8X9DhT00Qs2DN2BcTL5aOcAFhweHi14wKrOAmnqhy7AxjWny+GkJx5yr4QHPz3AqYWO1zfoZ+bJuy0134rInnqayMEJHS5J+Rn4yxhvDD7hCXqy0JTT36FpjvUrFGLDQ5xg9eaglh7GrYFXk2P0Z1229mlz7DpCA4T8OhVFkFiX+2T1QrbIn34jFY6g6nrqefEFyY9ThqWqtdvh0lKPVG1BKLqslR2FWChX1bl3lkHVCZoqdNGfiJo7dZiU/w0VNo4eqBrcqXtxoqFI5/Zm8UPD6g9S3+shJ8GB8tKi5G6EnwnMcJfLk6w0EORjOc6sHsvFXoFLHiozV1XP1qHY4gjzQjIstTEAObzO8dTMsPo3clh3USNn8I++PcP6/dDGMISImT+UYcD0nwfpWH16/etuOguSnLXe4fjsYXn+QA2GPolr6zYjMAnJIVKoj8dznMkUGeI7VjDeWacsgYoAcKulol91Gr3D5az3P6qgZx64nwjiOEqfdqgST6zvQtfFIuH1BGtz6lcJWO+VWoeIBNya2MO77sf0DeGgKrHkYkKgcNIupnr/wpn+Seo3sgSaPn2Z52zGJY8Dle5GTJqrjCUIYsYNR0xRZHS+x3OcyRuzwRe5SqrUzaqReUPMcghFhY2rv7oEx9yNZd/eEcRwDRiheNctgAqQ4bErxCj0Vr9oxx3JC80aPn2aPPka+2xegvjVcHS9WOVrr4NU58K+zQ4U9svvCxf+lYdo/qCdD1/AQuf9muuykq+QhMiJRvhKqYwKl+/DDDzN69GiysrLIysqirKyMt956S3nd7XYzZ84c8vLyyMjIYNasWVRVVbX7jPLycqZPn05aWhqFhYX89re/xe/XbwF7OGBE4YnI3SS1jMpixQNugBwqGpVGFJ7QIr2jEYVZNJHDCBsmSdNtCuM4Booj4o71QpsBou+WndcfVA4yqCVHhstOulPOaaqPHPJ9T3FYyUqJwajc/D9YNBm++nfo8aSrQ5koBk9VDLu6Fh9unz45TdVORxf5WYZ4JEywXdenTx/uvvtu1q5dyxdffMHJJ5/MzJkz2bBhAwA33HADr7/+Oi+88AIrVqxg3759nHvuucr7A4EA06dPx+v1snLlSpYuXcqSJUuYP3++USIlJZG6Ta+wMTULgMgUGhCmpMVcY0TRKS30gqyn9Qyr0OIgW9vZKR3lSNJD08I4joEinVfzkcmzVR3oOsuxX4NtR4iQQ6fVfJWSUzdKD1FTDbxwOTz7M2iqhLwhMPttOPMv4MoEICvVjiuc01SvRVeNyvHf0HYvaps9+HTKaapK/LdKzJgxgzPPPJMhQ4Zw5JFH8qc//YmMjAxWr15NfX09ixcv5t577+Xkk09m/PjxPPnkk6xcuZLVq1cD8O6777Jx40b+/e9/M3bsWM444wzuvPNOFi1ahNerb2GVZEbuC62+gG5hY1psGxcZEDamZk5dGSNy60bqabUwIrWe7PRR67wR6D/3Q1sfNoOejgVhHMeA3mEVcvJsq8rJswt1ThOkxbYjtC0Y9FrNRx3/LUnw9XOwaCJseBkstlB1u2s+gf5l7S4N5TQN3w+d5NDCI5Gb5sRhC5XC1qtwgdo5wDujsbGRhoYG5c/j6Vm2QCDAs88+S3NzM2VlZaxduxafz8fUqVOVa4YNG0a/fv1YtWoVAKtWrWLUqFEUFbUdyJw2bRoNDQ2K91nQM6lOm7Kro5d3rFoDz5isE/QMG9PGU6mvbgOoUfmcTuizjAhHUF8Ovav9+QNBxTkmPMeHMXqvHrVKnq0UbNDNONZm+1vvONeoYvLq98Az58HLV0PrQSgeBVe9D1MXgKPz9+kvh/oHVkI5TY25H1rGso0YMYLs7Gzlb+HChV1eu379ejIyMnC5XFxzzTW8/PLLjBgxgsrKSpxOJzk5Oe2uLyoqorKyEoDKysp2hrH8uvyaIHra4lz10dNqlviVyXDZlYwRyawXZN2ma9hYo/p6QW/jOBiUIhZd6t8Pveb+2mZvm4MvI7mMY5HnOAaMMsbUnvz13lpR+1ChTFtYhU6TYHdyBIOw9klYdht4G8HmhBNugmN/DbbuQ0nkRYNu4SEaHLwJfZ6LvXWtBowP7ZTuxo0b6d27t/LY5er6u4YOHcq6deuor6/nxRdf5LLLLmPFihWatU3QOUVZKXxX1aSbftNKTxdmuWiq8VPV4GFQQYaqn90ZWoQjyGFjHn+Q6gYP/fLSVPvszgjlPld/vpF1zP4mL75AEIfGld4OtnjxBUIx82qmqYxM5aoH8r0oyAxVS0wmhHEcA3qvHtVOAi5TqHNammqNPMeFOm/ZdSlH7XZ47Vew65PQ4z6TYOaDUDA0qs9V4gv1OlioQWwh6J/uSP4eNWPyDiUzM5OsrKyornU6nQwePBiA8ePH8/nnn/OPf/yD888/H6/XS11dXTvvcVVVFcXFxQAUFxfz2Weftfs8OZuFfI0gOvTewajWSE8XZabwfU2zbmFjNRroaTlsrPxAC1WNbs2N4wa3H7cvdOZBTTl6hcPGfIHQOaDSnFTVPrszZB2dl+5U1RCX55qaRg+BoKS5wZqs8cYgwipiolBZPXrw63DoSCsPn94nVrXzgBslR1jpBvzw6T/g4WNChrEjHc64B37+dtSGceTn6TeZa3s/9JBDkiRdYo4TIRgM4vF4GD9+PA6Hg+XLlyuvbdmyhfLycsrKQjHoZWVlrF+/nurqauWaZcuWkZWVxYgRI3RvezKju17QYPs79Hn6jadmj59Gj1wdL3nlkO95Vopd1dzneoeNaTX356U7sVogKEFtk/ZOjGTNVAHCcxwT+emhrYFAuMa61nn71C5JKiPH5FU3eggGJawarx6rNPJUFut8uKAtKXsKVH4Lr82FfV+FXhx0Isy4H3r1j/lz9dyRiCy5rHa/KtIx1rOuxYc3YJ7qeLfccgtnnHEG/fr1o7GxkWeeeYYPP/yQd955h+zsbK644grmzZtHbm4uWVlZXHfddZSVlTFlyhQATjvtNEaMGMEll1zCPffcQ2VlJbfeeitz5szpNpRD0BE9Y449/gB14YqpyTyeZN2W7lSvOp6MnoUntCgAIlOkhI3pIIdGOtpus1KQ6aKqwUNVg0d14/tQtIjH1wthHMdAaPXooqLeTWW9W3vjWCMPX36GC4sF/GEjX2vjQjtPZVvstCRJqmbC6IyqBjdOfAzb/CB8+QAE/ZCSDdP+D8ZeBHF+v56TR6PHT6tPro6n8v3Q07MS9kjkpjtx2Y2vjlddXc2ll15KRUUF2dnZjB49mnfeeYdTTz0VgPvuuw+r1cqsWbPweDxMmzaNhx56SHm/zWbjjTfe4Nprr6WsrIz09HQuu+wy7rjjDqNESlrkfq1HXKVsxDjtVqW4kloU6SiHlodb9Vz8H3ZyaBCOUJSVQlWDh8oGN6PIVv3zI6nWUA6tEcZxjBRmpYSM4wY3YzT+rrYDEuoarw6blbx0F/ubPFQ1uLU3jjXI1QxtHkOvP0hdi49eKqa7O5QWr58jPJv5s/Of5H6xJ/TksLNg+t8gM7GY0Mh8zVob+fJknpliJ9WprlGp50FPreLx42Xx4sXdvp6SksKiRYtYtGhRl9f079+fN998U+2m/eDQdRs/QkerPW71zBHcllNX/fFUpOOBYy31gp76Tas5E+TFY33Sy6E1wjiOEbnOuR6Hp7RIrSNTlBUyjkPKXbvVo8cf4IBcHU/l1WOKw0ZOmoO6Fh/VjR7tjGNvC77/3cZLzsewWiSk9AIsZ/4FRpwdt7c4ElmRt/oCNHn8ZKao64GKRMtSnnrGemoVkydIfiIPHWkdNqa1jgZ95hpt9YIcxpfcekHJq6/DDp+Wcsj9qkZXT37yGcfiQF6MKIpX447lDwSVgHktVl16VWCSD005bVZyVKyOJ6N5Wc8dH8HDZWR//U+sFol37CdimfMZHHWOKoYxQLrLTmY4zk/riVDLAxKyIg+dGNc2p6lyGM8knmOBeZC9n/6gxMEWbasLalE6WibSqNS6FLaWRkyhoqO1Nyq1PKSrZwnpKg31m57ZkbSoHqkXwjiOEaVWvMZGpZw822a1kJeuhcLSR47IAiBahAsUZmkkh7s+lJ5t6Qw4uJPW1BIu9/6OxQU3Q1quut8FFOi0Fax4ujRQVlkp+pXC1qMAiCA5CYWNhXaRNNdvGpRil5GNfLcvqHkpbC094EZ4XJNdDi09+W1zvw4Ovmbt+pXWCOM4RvQqh6kkz87QJnm2XjmCazRKcySjSXqdLW/Bosnw5dLQ4wlX8Pyk5/kwOFYzORSvhMaKt1rD08N6lsJO5u06gfbopd+0NMZSHDblkJ/WoUpK7LSGYRVNHj9NGpfC1nJnTC/dFgxGpqnU8mChtnPN/iYvkuLg0+48kFYI4zhGNPNUHoJWJZdl9IoP1frglKpyNO+HF6+A/1wAjRWQewRc/iacdS97W0OTlNZyaO451uiQp4xucuhQAESQvOil37QqACJTpNN8o6UcGS476eHDv1rej8g0lVp48mUHhtalsA+0ePEHJSwWyM9Q36hUPOA6Ovi0TherBcI4jpG2wx46reQ1mvyLdIoD03r7W5X4KUmC9S/Coknw7YtgsYbKPl/7KQw4NvT5Gnsq9YoD03K7Dto8T3rFsgvPsaAzdNuJ0XhnTK/DbEmhp3ugodWP169d7nO5FDa06R8tkO9FXroLuwZlquV7UdscKoWtFcm+u6eLcbxo0SIGDBhASkoKkydP7lAm9VBeeOEFhg0bRkpKCqNGjTJVeiN5ZS3XWNcKrQo1yBTq7OHT2gMetxwN+0Ke4v9eAS21UHgUXLkcTr0DHG0lQrWMyYM2Za5bzLFW90MOc9FwMg8GJc2Nkh8ah5OOhgi9oLlRqe14KtDhbEiTx0+zV859nrzzjXyvc9IcqlbHk7FYLLp4XbUqACKTm+bEbrUgSaFqv1qhxOMnqY7W3Dh+7rnnmDdvHrfddhtffvklY8aMYdq0ae3KpEaycuVKLrzwQq644gq++uorzj77bM4++2y+/fZbrZsaFXKNddB29ai1h+/QGutaoRgxGnnAC5SY4xjvhSTB2iWh2OLv3garA076A1z9IfQ+usPlVVp78nXwuEqS9kalHodWDrZ48QVCfdYM1fGSncNNRwMU6BBX6fYFqG8NVcfTygDQo/CEPNdkuuykq1wdT6ZQB0++loUzZIrinW9iQGsdbbVadFl01QjPcffce++9XHXVVcyePZsRI0bwyCOPkJaWxhNPPNHp9f/4xz84/fTT+e1vf8vw4cO58847Ofroo3nwwQe1bmpU6FVjXclzqNHkr1eN9WqdPMc1jZ7o0x0d+D6UheL1X4OnAXpPgGs+hhN+B/bOY7y0l0N7j2soxZq2JZf1iDmWFXpeuhOHBtuOPzQONx0NEfnoNTUqQ/3QZbeSlaKNUdmWV1/78VSgoRGjp17QsuCEHosVPQocFeoqh/Acd8Dr9bJ27VqmTp3a9oVWK1OnTmXVqlWdvmfVqlXtrgeYNm1al9d7PB4aGhqUv8bGRvUE6IK2rRUtV8HabuPbbVbyM3SQQ+NVsFIlLxCqktctwQCsfBAeOgZ2fgz21FDp5yvehcLhXb6tOeKUtXae/DaPq1Y5TWVDITtVm21H0CeWvUrDk/U/NPTQ0dBRTzc0NKgjQBfoEeMaqdu0qmqpR2YBrXf3QKf7oTiUtJNDn7lfe/2mRzEzLTOH6IGmxvH+/fsJBAIUFRW1e76oqIjKyspO31NZWRnT9QsXLiQ7O1v5GzFihDqN74ZCPbwSOpRd1DoOzO0LKAarVorXZbeRK+c07c67UrURFp8K7/4B/K0w8Hj45SoomwPW7g1F+V6kO21kaLzt2OoL0KhRuiOt4yNBH49EjQ5y/FDQQ0dDRz3dt2/fxBvfDZHGWFCjsDGtY0NBn8wCehyc0kUv6HBIV59dY+3laAvj08OTn5xOjKTfk7zllluor69X/jZu3Kj5d2q9mvfplDxb6/gpWVm57FayUrWrVN5tQRO/Fz68Gx49HvauBVcWzLgfLn0NcgdG9fl6FJxIddrIDG/NaqWw9DjEJk/mjW4/LV6tjHztPV0CdTlUT+/evVvT78vPcGKxQCAoUdusTZU8PTx8hRE6WrsdJe3nmkI9PJU66OkiHc5U1OjgydejEIgecmiJdhYLkJ+fj81mo6qqqt3zVVVVFBcXd/qe4uLimK53uVy4XG0rLK2360D7uKP9TR4kCexWC7lp2iXP1no135ZYXpvqeDKFWSlsrmzsKMfetfDqdVC9IfT4yDPgrHshqzSmz1fyNWp8+KsoK4VGdxNVDR4GF2aq/vltuYG1kyPTZSfVYaPVF6C6wcOAfPVVTFVEvxIkhh46Gjrqaa2x26zkpbvY3+ShqsGtSZ/XOmc4tPVxrz9IfauPHA3mAzmrgJZ6QZ9YXe3vh64xx7rETmvn4NvfFFqUJque1tRz7HQ6GT9+PMuXL1eeCwaDLF++nLKysk7fU1ZW1u56gGXLlnV5vRFovQqONGK0TJ5dpHH8lJaliiOR46eU7CHeFnj3Vnh8asgwTsuDWYvhwv/EbBiDPp6V0Odru4Wqh2clVCVPn36VrNt1ZuJw1dHQ/rCuFuihF1x2G73SQgWItDJk9NAL8pzZ4g1oViVPD72gtW4LBCVqmnTw5GsshzzmtHbwaYnmYRXz5s3jscceY+nSpWzatIlrr72W5uZmZs+eDcCll17KLbfcolz/61//mrfffpu//e1vbN68mQULFvDFF18wd+5crZsaNZp7XHXYroPI9DrJa4xFfn5Vgxt2fgKPHAsrHwApCKN+CnM+h1E/gTi919U6HSwo1DjMpe3gjcZyaL4jIS+6ktMjYTYORx0N2nv59NYLWi2atU4bCpDuspMZPq+hxf2QJEmXmGM5dWh9qzZV8mqbQ6lVrRY0LbmsdcxxpBc/GavjgcZhFQDnn38+NTU1zJ8/n8rKSsaOHcvbb7+tHOgoLy/Ham2z0Y855hieeeYZbr31Vn7/+98zZMgQXnnlFUaOHKl1U6NGc8+YTpO/1ony9ThUKH9+Bi2csv1u+Or10JOZpXDWfTD09IQ/X+vMITJaH5DUywOudTybHpP5D4nDUUdDD2cRVECvnbHCLBdbqho1kSOU+1yfA64FWS4aa/xUNbg5oiBD1c+ua/HhDWibphIgK8VOisOK2xekusFDv7w0VT9f1tH5GdpUx5ORx0ZtsxevP4jTru53VSd5ARDQwTgGmDt3bpdehQ8//LDDcz/96U/56U9/qnGr4kdWhge06liK51j7GFfQfrtO6zyHI5rW8K7rZkobDoSeGD8bTr0dUrJV+XzdYo41TpSvV6yulmmbQtXx9Fl0/ZA43HQ0ROxgaBympJ+eVl+OJo+fFqU6ntbhbyl8X9OsiX6T73GvNAcuuzZpKkEOG0thV20LVY1u9Y1jnXS0XMzMFwiFcfTOSe35TTFQrUP8t9YkfbYKI8hJc+AMr+pqNCigoddpfHkA1jZ58GtQClvzVEfNtfDfq5jw6dWUWg6wx1IMl70OM/6ummEMEdv4OoWHaLF9KkmSbknZ2050qy9HbbOXQFDCYkHJ0y0QdIaWmQVavH4a3aHYWa29Y1qOJ1knZKbYSXVqZ1SCtmcq9NrdA22dGHrtRkQWM9OyXyXz7p4wjuPAYoksv5i8HSsv3dVWJU+DdEeaxRxLEnz7EiyaBOufR7JY+ad/Omd47ybY/0fqfhf6xU63hVWor3TrW314/cF236MVWu5IyPciL90lquMJuqVIw1hd2TBKddiUWFqt0PIsgp4hSnroBT228Qs0DH/TUw4t5xs9cmdrjZhd4kTL1bzsqdSynCeAzaqtka9sf6u5tdJQAc9eBC/Ohpb9UDiCwOx3+T//RTQGnBxsUdfIb7/tqE9YRVWDW/WcpvK9yNF42xEiJnMNjJIaLfqU4LBEy3CEyNAeLdNUgrYeV010dBdoeVBXT71QpKF+0/N+aLp4bNRnl1JLhHEcJ1qugmWDuziJV/NuX4D61nB1vGwV5JAk+PIpWDQZtvwPrA444Wa4egX2fhOVk71qyyEr8kyXnXStPUThSdDjD9LQqm66oyod+1ShhtvZihxq9CnBYY3cD2saQxkA1ESv3SSINCo1HE96yJGpg17QZc7UTo5qHfWblgfAlfGRxHpaGMdxolV8qMcfUEIcdFG8Gq0e5cGhyrbjwZ3w1Ex47Trw1EPp0fCLFXDSLWAPGcWFGt2Pqnp9DkgApDhsZKeGcpqqLUelIod+C64mj59mlXOaVh4G23UCfchLd0aEjWmzaNYzHKG6Uf0dpUodt/G1PFMh6zc99IKmcuio39rSuYmwis4QxnGcFGiUJkjeHnLYLErydy3RKu4osj583NuOwQCsfhgeKoMdK8CeAqfdBVe+B0VHtbtUq9V8lQ4llyPRKv2UnrmBM1x20sOHe9TOWKHXocJYWbhwIRMnTiQzM5PCwkLOPvtstmzZ0u4at9vNnDlzyMvLIyMjg1mzZnWoNFdeXs706dNJS0ujsLCQ3/72t/j92hRNONyx26zKoU3V9YJyaFr78VQQlsEXkDjY4lP1szU/NB1BUcRco7aRX6Vj6jAtUwTqqd8UOVTW0R5/QOmnyVo6GoRxHDdaxbNFDg6tY9kg8uStNp7juJVVzRZ44nR4+2bwtUD/4+DalXDMdWDtGDMbGa+rJnqfutWuX+lr5Gslh1lzHK9YsYI5c+awevVqli1bhs/n47TTTqO5uVm55oYbbuD111/nhRdeYMWKFezbt49zzz1XeT0QCDB9+nS8Xi8rV65k6dKlLFmyhPnz5xsh0mGB1npaj37otFvJDYeNabXDp+cuZasvQKPKO0p66gWtYqf9gSD7daiOJ6NVIRB5weW0W8nRwcGnFbrkOT4c0cpTqWfMEUSu5rVRujHHgAV88OnfYcU9EPCCMxNOuwOOvhysXa/lFA94Ek8eoJ0cyrajTv2qINPF9/ub1e9XjfL4MNd23dtvv93u8ZIlSygsLGTt2rUcf/zx1NfXs3jxYp555hlOPvlkAJ588kmGDx/O6tWrmTJlCu+++y4bN27kvffeo6ioiLFjx3LnnXdy0003sWDBApzO5CzDaiRaefn0jqkszHRxoNlLVYOHYcXqfW6ljvot1WkjM8VOo9tPdYObrBR1DKfI3Od6xhw3uv20egOqpcCrafIgSaGSy1pWx5PRKuY4snKkHg4+rRCe4zjRKu5I75hKrQo2xBVztG8d/PMkeP+ukGE8ZBrMWQMTft6tYQwRMcdaTYJ63w/Vw0P0Lbksy1Gjcr+qrNc3rKKxsZGGhgblz+OJTp76+noAcnNzAVi7di0+n4+pU6cq1wwbNox+/fqxatUqAFatWsWoUaOUynQA06ZNo6GhgQ0bNqgl0g8Kzc4i6BhWAdp4wCVJ0jWsIvQ96uu3/eGSy6Hc59oblRkuO2lK2Jh696Nt11ifksvybuvBFh8ev3qlsGUdncwhFSCM47iRPRJqdyy9Yyq1ip2OadvR1wrLboPHToaq9ZCaC+c+Dj97DrJ7R/V9RRrFT+kdVqGc6FZ5Mtc7HEGLHQlfIKgcrNJLjhEjRpCdna38LVy4sMf3BINBrr/+eo499lilpHJlZSVOp5OcnJx21xYVFVFZWalcE2kYy6/Lrwlip0iDMxWRBXV01wsqjie9Si5HUqTBzpheJZdlLBaLJjsSeuY4hkOKmak4b+q926oVIqwiTrJTHTjtVrz+UI31vrnqlJHU34gJfU9tswdfIKhaYYWoB/qulaEsFLXbQo9HzoLT/wwZBTF9n1bxU0Z5jtVUupHbjvrHHKvoIdJ52xFg48aN9O7dtkBzuXruB3PmzOHbb7/lk08+0bJpgijQQi80evy0+gLtPl9rtBhPsoGam+7UPPe5TJEGBU2MyIxQmJXCztoWVRf/1TrLYbFYKMxysedgK1UNHvr0UseGqdKpBLbWCM9xnIRqrKvv5dM7pjIv3YnNakGSUA4DqEGP246eRvjfb+DJM0KGcUYxXPAf+MkTMRvG0H4bP6hSTtP2247J63GVtx2tOm07gjaHVvTedgTIzMwkKytL+evJOJ47dy5vvPEGH3zwAX369FGeLy4uxuv1UldX1+76qqoqiouLlWsOzV4hP5avEcSGNp7K0Gdl6VByWUaLuUZJ76hjQR0t9YIe8cYyWoS5VMZ7TicBtFg8VhtwP7RAGMcJoEWNdeXglE5hFaEa6+oeLozcduz0YOHW90Lp2T5/PPT46EtDscXDzoz7O/MznFgs4A9KHFCpSt5BA7Yd2/JOq5fuSO9tR2ibcNXcrtMzV3OsSJLE3Llzefnll3n//fcZOHBgu9fHjx+Pw+Fg+fLlynNbtmyhvLycsrIyAMrKyli/fj3V1dXKNcuWLSMrK4sRI0boI8hhRqEmOlrfBTNoUwikujsdrRFtYWMq3g+dwxGgzemjbjiCfunoZDS5H0rOafPp6VgQYRUJoMVpz2qDBkhFvVs1OSK3HdvFTrccgHd+D1//J/Q4pz/8+H4YdGLC32m3WclLd7G/yUNVg1vJb5oI8u+h57ajbIR7/UHqW33kpCXu6TUiBkwLz0rkKWizMWfOHJ555hleffVVMjMzlRjh7OxsUlNTyc7O5oorrmDevHnk5uaSlZXFddddR1lZGVOmTAHgtNNOY8SIEVxyySXcc889VFZWcuuttzJnzpyowjkEHZF19P4mD/5AUJXFoRHjSYuY47bdvWT3VOovhxZz/+Gip0VYhUAx/NQ6BNbs8Sv5H3VdzWepK0en244bXoFFk8KGsQWm/BJ+uUoVw1hG7fR6RiirFIdNyQ2plpeoSucT6dA2mTd7AzSplNNUzxKxsfLwww9TX1/PiSeeSElJifL33HPPKdfcd999nHXWWcyaNYvjjz+e4uJiXnrpJeV1m83GG2+8gc1mo6ysjIsvvphLL72UO+64wwiRDgvy0l3YrJZwlTx1dpT0LgwU+V3VKoaNVRmw2NTigGRbSXk95dDQk6/rjoT69+NwCasQnuMEUHvVJW9tpDttZCRacjkG2oxKdeRot+3YWAlv3gibXg+9mD8UZi6CvhNV+a5IirJS2LCvQb37YYBRCSEPSF2Lj6oGN0OLMxP+PCO2HdNddjJddho9fqoa3GQUZCT8mUZsO0ZLNCEwKSkpLFq0iEWLFnV5Tf/+/XnzzTfVbNoPGpvVQkGGi8qG0M6YGgatEXpB3lHyByUOtnjJU2FnTEmLaJCnUpIkVfLgGhOOIDuU1I851nWxooTxqSNHk8evOEPMqKdjQXiOE0DuxGrFHRmVAkXt2OmQHBI/tX8U8hZveh2sdjj+d3DNx5oYxqB+/JQR247QtppXS45qgzyuBYeBJ1+Q/BQeBv3QYbMqh2nV8vLJBpGeekE28j3+IA1udXaUlHArXcNDwnO/SvfC7QtQ3xoquayrka/y2JDnmgyXXVcHnxYI4zgBClUuWdyW/kxfT6XaVdlaqr/nKcfdXH3gr+Cuh5KxcPWHcPIfwK6dbGqfhDZiJQ/a9SsjPOCgnlfCKDkEyY3aXj6j9EKBynIYFTaWnRoKG1Njp9LrD7K/KRQuo3cqNwidr2lWIWxMNk5THFayUvTcNdZmbCR7vDEI4zgh1I6fMiqmUrWT0MEgrHmU8z4/j+Nt6/FZXDD1drhyORSPUqGl3aP+/Qhvn+oY/w0ahLkYFI6gdlo6I1I2CZIftfWC3ukdZdTUC/5AUNnx1H3RrOL9qAmnH3XYLOTqlPscQp7RdKVKXuJyRKZx07PksuzAqGvx4fYlXszscIk3BmEcJ4RsbNS3qtOx9K66JNMWVpGA0t2/NZSz+K3f4Qq2siY4jDeOeR6Oux5s+qyE1fZUGrFdB+of9jDiNDeoK4dR246C5EfNDAmhgjrGhr+pMZ5qm70EJbBaUCV+ORbUPKuj7LZm6mtUgkZy6NynslLtuOzqVck7nELfhHGcAFkpdlIcoZ9QjZgdowaIvJKvbfbi9Qdje3PABx//DR4+FnavBmcGj2TM4QLvraSWDNWgtV2jdnodw2LAVQxz8fqDyil9/beB1bsfRm07CpKfQhX74cEWL75A6PClXrnPZdQsBCL/FgWZoWweeqLoBRXk0LuqXCRqzjdGzTVylbzINiRC2+FIEVbxgyZUY109b6VRMZW90pzYwwoypip5FV/DYyfD8jsg4IHBU+GXq/mXfyoSVgOMytD37W/yEkgw3ZGR244FKh6QNGrbEdqnn0qUyojJQ28PkSC50aIf5mc4cehUUEemQMWdGCNDlNo8+SrcDwMLTshzvxoeV7lvdllRVkOKMtUbH0YdYtcCYRwniJrxU0YprMgqeVGtHn3ukEH8z5Og8htI7QXnPAoXvUgwq49hq+C8dCdWCwSCErXNid0PedvRZrUYsO3Y5iFKtEpeW4lY47Yd1djOPpy26wT6omYuV6PijaHNcFJjPBmR3lFGkUMNh1KjgfdDRY+rrKf1rG8go0V4iBFyqI0wjhNErQwJoZLLBq6Co/VKlK+BR38UCqWQAjDibJjzGYy5ACwWDrR48QeN2Xa026xKZbxEvRLKtmOGcduOvoDEwRZfQp9l5LZj5MIxUSNfGMeCeJH7TG2zB18gxrCxQzCyH6oZw2+sXlDTA3543A+jQipD36mig8/EVUxjRRjHCVKkUnqdhlY/nnC8r95GJUQRz+Zpgjd/B09Mg/3fQUYRnP9vOG8pZBQql1UZuO0I6q2CjagqJ+Oy25QQiMTlMH7bsdUXUCo/xouR246C5CY3HDYmSTGGjXWCkXpBHsM1TYlXyTNy+1vNlJtGFWoCleUwMqxCpR2+kIMvHHMswioE8qor0WTg8jZXTpqDFIct4XbFSmF3ca7blsNDZfDZo4AEYy+GOWtg+IwOlxrt4VOrEIiR246gphzGbTumOm1khg/PJerJNzK2UJDcWK0WxeGQcD+MyI6gN/kZTixK2FhipbAVvWDA9nekbks4bMzQxb86RcAkSTI4dlqduaauxacc6BcH8gSqZRYwKsexTKfxU60H4ZVfwr/PhfpyyO4Hl7wMZy8KxRl3glHp6GTUWs0bVVVORm05jLofankllEXXYRDLJtAf1fWCAf3QbrOSl65OnKuRekE2nLz+oJKeMV7MEVaR2L1o9PhpDaeCTWY5ZBsoN92Jy66/g09thHGcIHLHqqhPrGMpB6cMNmLklTibXodFk2Hd04AFJl8Dv1wFR5zc7edUKCtgY1aOsjFbmeD9MF6O0PcmvxwqjQ9lGzj5PRIC/VHGU4IGgOHjKTv59UJk2FgieqHZ46cxXILayDMVzd5AQka+fC+zUuykOvU3KotUnjMLDxMdLYzjBOmdkwpARV1imQX21beGP88Y41iWo/VABTx/KTx3MTRVQd4Q+PnbcMafwZXR4+dU1IXkKM1O1bS9XVEa/v32JTzQw3LkGCVHart2xIvxcsjGcfxySJKkKF6j5BAkN3K/2VeX5HohO3G90OL1K8ZcMusF+b2ZKXYyUxyqtCsW0px2eqU52rUlHvbVmUNHN3r8NLjjN/IrwmOr92GiozU1jg8cOMBFF11EVlYWOTk5XHHFFTQ1NXX7nhNPPBGLxdLu75prrtGymQkhb6+1+gLUJZBZQO5YJUYZldkpnGv9iMebfgkbXwWLDX70G7jmE+g3JerPkY2YEoONSlnhxIvh9yMsx94EJvN2RqVBcsi/XyJyyMVpLJbDI0WQmfgh6Gho6/+J6IVWb0DJHpPMekFeIGS47GQZYFSCOnpBlsMo3QYRTowE5DB64Z/mtJMjG/kJyREaWyUGOfjURtNSUxdddBEVFRUsW7YMn8/H7Nmzufrqq3nmmWe6fd9VV13FHXfcoTxOS0vTspkJ4bLbyM9wsb/Jw966VnrFWWhB9hyXGDH51+2m71u/5l7ncgD8hSOxn/MQlIyJ+aNkOUoNMmIijWNJkuLK7StJUpscBg10NSbzA81eJQNKUbYxW129VVisyAq7IMNlSAaUw5kfgo4GdRbN8uSf7rQZVqVR2RlTQQ5D5powqugFExhjJdmpbNjXwN6E9Jvx96M0O5W6Fh/76loZWpwZ12fsM9ihpDaajfBNmzbx9ttv8/nnnzNhwgQAHnjgAc4880z++te/Ulpa2uV709LSKC4u1qppqtM7J4X9TR721bUysnd2XJ9hyNZKMAhfLIb3FmDzNuHBwT9853LmjP9jZEl+zB8nSVKbx9WgVbCsYFrCcWA5abEvVg62+HD7QkalUZ7KyEkwXiNf9kjkZ7gMOyChhlEiTzxG9anDlR+SjlbDqNwXoduMqtKoipFvsI4Gde7HXhMYY73V6FcmCBkrzUllY0ViRn6bDXN4eI41c8OsWrWKnJwcRekCTJ06FavVypo1a7p979NPP01+fj4jR47klltuoaWlpctrPR4PDQ0Nyl9jY6NqMkRLogorcvtbt9Xj/m2wZDq8eSN4m6DvFK7PeYCHAjPZ1xBfTtr6Vp9y6taoVXCKw0Z+Rsggjnegy/cxP8O4U7dyn2pJ4LCHLIdRcezQ0ciPhwqDdyMOV/TS0dBRTzc0NKgiQ7TInsrKBjf+OAuBGLq7F0YN49jo8y2glpFvvF5Qc0fCWE++ejsSRoa5qIlmnuPKykoKCwvbPWe328nNzaWysrLL9/3sZz+jf//+lJaW8s0333DTTTexZcsWXnrppU6vX7hwIbfffruqbY+VtsNT8cXrNLT6afHKRqXGHSvgh1UPwocLwe8GRzpMXQATr0R6+iuorIxbDtkYzUt3GpKrWaY0J5X9TV4q6twcVRq7J79toWLcIE9x2MhLd1Lb7GVfnTsuD/g+ZbvO+Ji8Zm+ABref7NTYYxzNcD8OR/TS0WC8ns7PcOGwWfAFJKobPXF56SpMEOMqG/lVjR78gSD2OMKMzKQXEjkgafT5FlBHDjOEIyRqwxyOh6ZjHlk333xzh8MYh/5t3rw57gZdffXVTJs2jVGjRnHRRRfx1FNP8fLLL7N9+/ZOr7/llluor69X/jZu3Bj3d8eLvOKL21MZXnHlpju1TeVSuR4ePwXeuy1kGA86KZSebfLVYLUmvApu264z1sMn3499cZ4grjA43lgm4ftRb/z9SHG0pW2KV47DbbtOa8ymo6Gjnt69e3fc3x8PVqtFCZGKfzwZm1UA5Lh7C4GgFHfRBt13KTtBXmBUNrgJxFntz+hzIaHvlg8Wxr9r3LbDZ1y/KklQDvl8i8Vy+BRqitlz/Jvf/IbLL7+822sGDRpEcXEx1dXV7Z73+/0cOHAgpli1yZMnA7Bt2zaOOOKIDq+7XC5crrbDRnpv10HihwvaVvIadSq/Bz76C3xyHwT9kJIN0xbC2J9BROycrGTiHSBt20PGrhwTVVh7TeBZgdD9WL+3Pm4jf5/BmSpkSnNSONDsZV9dK8NLsmJ+v9GpjpINs+lo6KinjaA0O5XdB1rZW9fKhJ4v70Bb7Ltxk79s5O8+0Mq+uta4xoQZxlNBpgu71YI/KFHd6I5Z10YalWbw5MtGvs0aWyz6wRaf4YemIfGwCtn7nZ/hwmk/PA5Nx2wcFxQUUFBQ0ON1ZWVl1NXVsXbtWsaPHw/A+++/TzAYVJRpNKxbtw6AkpKSWJuqG4lurezTctt49+fw6hzYvyX0ePgMOPNvkFnU4dJEPZWyHEbnOeyd4P1Qtk8N94AnZuRXmGAShNDk9e3ehsQ94CLmOCqEju6chPWCSRabJQkY+WbZ/raFjfw9B0NGfqxzX50JDk1DeyO/ptETc1vazrcYd2ga2vpCZX18Rv4+E+yqqI1mJv7w4cM5/fTTueqqq/jss8/49NNPmTt3LhdccIFyCnrv3r0MGzaMzz77DIDt27dz5513snbtWnbu3Mlrr73GpZdeyvHHH8/o0aO1amrClCpxYG58cRz2qNBi29jbDG/fAotPDRnG6YVw3lNw/r87NYxD35+oUWn8wQJQIxzBHJ5jtSZzo8NcEsnN6g8ElbKmZla8H330ETNmzKC0tBSLxcIrr7zS7nVJkpg/fz4lJSWkpqYydepUtm7d2u6aeHIOJ8IPSUdDYnohlInHeM8xJKYX2p9vSV69IBtjRp9vsVktShhBPE6MtoWKsfeiMDMFW4SRHytmOBypNpr6v59++mmGDRvGKaecwplnnslxxx3HP//5T+V1n8/Hli1blJPOTqeT9957j9NOO41hw4bxm9/8hlmzZvH6669r2cyEyUt34rRZkaT4SjCqfuDo+w/hoTJY/RAgwZgLYc4aGDGz27fJAzReI3+fCQ5IQETMcYJbREYrrEQm80BQUkrlGu3pSiRtU3Wjh6AEdquF/AzzliVtbm5mzJgxLFq0qNPX77nnHu6//34eeeQR1qxZQ3p6OtOmTcPtbtMXF110ERs2bGDZsmW88cYbfPTRR1x99dWatvuHoqOhzaiNpx82uP00h43KZB5PkedbjDQqoc2QikcOs5xvgcTCKs2QqQLCnnwVjHyjHUpqomkm89zc3G6TyQ8YMKBdeqe+ffuyYsUKLZukCVarhZKcFHbVtlBR76ZvbmwJ8VU7cNRaB8v+CF8+FXqc3RfO+jsMmRrV2/PTXThtVrxhb12fXnHKYfBAV050h9M2xXKiOxCUFE+l0QNdKbEal1EZ2h6zWy0UGFzrPpFS2PJ7irJSYt7q05MzzjiDM844o9PXJEni73//O7feeiszZ4YWqE899RRFRUW88sorXHDBBQnlHE6EH4qOhojFZlwOjFA/zElzaHtoOgoSGU+an2+JgbbqcokYlcYbY4ksVsxyvgVCcuytaw3/tr1ieu8+k3jA1eTwiJw2AYlUNNurRmzo5jfhoSlthvHEq0KZKKI0jKHNyIfYt+wCQUnxmhu9/S2nbQpKoZRHsVDd6MYfjrkqNNioTCQ3q9wPzWBUJhKus+egsSe5Gxsb2+Xm9Xhi33LcsWMHlZWVTJ3aNhazs7OZPHkyq1atAhLLOSyIjkQ8fHsPGn/4SyahcASTnEOIbEM8cuwxQYYHmUR2+GSdmOxy7D3Y0u4zDgeEcawS8WZI8AWCSmfsF6PHGYCmGnhhNjx7ITRWQO4RMPstmP5XcMVeBjJeI7+ivhV/UMJpsxqeysVqtSgr8VjlKK8NDfLeOalx5RBVk0SM/PIDITni6lMqk4iRvzssR6y7MWoxYsQIsrOzlb+FCxfG/BlyzuCiovax/kVFRcpr8eYcFkSP7C2tb/XR5Imt0JEZx1M8RszhIofReiGSRIz8chPKEY8To/xAAjaMSTGmQPxhSLypUCrq3AQlcNqtFMQSUylJsP4FeOsmaD0AFhsc+ys44SZwxL96i9fI3x0eHL17pRruqYTQ9k75gZaY78fusIeob67xK2DZyJfliMW7IN8PM8hRkEABBqPl2LhxI71791YeG52OTBA/mSkOslLsNLj9VNS1MqQoeueB0f0wkkON/AxX9NO4Ikcv4+VoC3OJxzg2jxyJGPl7FOPYeDninftbvQH2N4WcN31jDMU0M8JzrBIlcQ4QZeXYKxVrtEZl/R545nx46aqQYVw0Cq5aHqp0l4BhDPHHT5lpJQ9tHvBYB7qZPCsQ/+FCM8lhjTjRnWxyZGZmkpWVpfzFYxzLOYOrqqraPV9VVaW8plbOYUH3xGsAGN0PI8lMcZCZEjKIY43XVeTIM14OOYSvrsVHizdOT76J5Ig1BrzZ46e22QuYY96M94Dk7nBIRVaKney02CugmhVhHKuEvHqUYySjRe5YUQ2OYBC+eAIWTYGt74DNCSffCld/AKXjYm5zZyQshwlW8hDyYEPscsgr+VgPI2pFvHKYbbGiy/gwKQMHDqS4uJjly5crzzU0NLBmzRrKysqA9jmHZeLJOSzonnj74Z5wP+xjkn4YjxySJLXpBRPot6wIIz8WOepbfdS3+gBzyCHfi4MtsYXryLotJ81BVorxRuXhMteohTCOVaJ/eAVbfqCFYAzlMKP2SNRuh6Uz4I0bwNsIfSbCLz6G438LNvUGVr8IOWLBTJ4VaGuHHEMcLWaTo39uOgC7aptjep/ZFJY8PnbFcD8SjsfXkaamJtatW6cUxNixYwfr1q2jvLwci8XC9ddfz1133cVrr73G+vXrufTSSyktLeXss88Goss5LEicePSbJEnm0wvKeIpeL9S3+mgMG29mWfzHoxdk3ZaX7iQ9hpASrchMcZCb7gRiux/y3GSWPiW3o77VR12LN+r3lZtowaUmxvesw4TeOanYrRY8/iBVMZTD7HElH/CH8hV/8Cfwu8GRBqfMh0lXg1X9lEID8tKVdsWSBs1MBwsABuSH5NgZq1FpMk/lgPxQO3bGMHl4/AEqwunozKKw+ufFbuTHHY9vAF988QUnnXSS8njevHkAXHbZZSxZsoTf/e53NDc3c/XVV1NXV8dxxx3H22+/TUpK2+HVp59+mrlz53LKKadgtVqZNWsW999/v+6yHM7I+m3n/uj74YFmr1I4wwxZBSBCjhj0gqyjCzJdhqejk+mfl863exti0gtm8+JDyMg/0OxlV20LR5VmR/UesxmVaU47hZkuqhs97KptISfNGdX75PhvM4S4qIkwjlXCbrPSu1cqu2pb2FXbErtx3NlAr9oAr86FfV+GHg88AX58P/QaoFKrO1KclYLTbsXrD8aUs3m3yU6r9g+3Y19dK15/MKp6725fgKqG0MECs8gRjwd8X50bSYJUh438jOgUnNYoHqIYPHZxxeMbxIknntguH/ChWCwW7rjjDu64444ur+kp57AgceLxHMvXFmelGF44QyYeOcymo6FNT8fiOTabFx9CcnxVXheTHHuUw98mkiMvLWQcH2hhTN+cqN4TqacPJ0RYhYrE4x2TsyO0G+h+L3ywEB49IWQYu7Lhxw/Cpa9qahhD6PCU3JZova4tXn/baVWTDPSCTBepDhtBqc3T0BOysspw2ellkoMFsoeossGN2xeI6j2Rk4fFYg6jckBcY8N8k6AguWnrhy3dLmYi6VRHG0yb5ziGbXwTGpXxyNFm5JvHGItn7jfj/VDkiGFnZY/JdlvVQhjHKtI/N7Yt8CaPnwPKadXwQN+zFh49HlbcDUEfDJ0eKv189CWgk6ET62peNiqzUuxkp5rDqLRYLDHHs+1WDuOlmsaozElrO7QSrZeobTfCPJOH7Ona3+SN+tCK2UJ1BMlP75xUrBZo9QWoiTJ3uKIXzDSewmNiz4FWAlGecTHboWlIzJNvlnAESCx22kx6Wpn7o7wfkfH4h5ueFsaxiiiH8mI0xnqlOci0+uCdP8DiqVCzCdLy4SdPwgVPQ1aJZm3ujFhXwcrBApPFHMV6aMWMnkqLxRJznKTZDuNB6GR6rIdWdpvQsyJIbpx2q3IqP1onhhn7YWlOKg6bBW8gGHUKMTPqBVm37TnYii/KAkFm1NOxzplmPOQJ0D8/NjnkeHyLxTzx+GohjGMViXWLSB4cZ2Rsg4ePgVUPghSE0efDnM9g5Lm6eYsjkQ+BRbsKNuNKHmI/tCIb+WaaPKB9JpRoMOv9iHfxaJaT9YLDg1hDfMw4nmxWi6Knoh1PZvTwFWa6SHFYCQSlqPLrBoKSKWN1B4R1W0WU4W81jR48/iBWi7lKLg+I0QMu96miTPPE46uFMI5VJHJrJZp4tj0Vlfyf/XH+r+EWOLgDsnrDz56Hc/8J6XlaN7dL+sUYVvH9/iagLUOEWegXo+f4+7BndqDJ5JD7VbSLru9rTCpHDGFHkiQpcgwqMJccguQmZv0mjyeT9cNYxpPHH1AWm2bSC+3PuPQsh3LA2mY1lVGZm+4kw2VHivKMy/Zwn+rTKw1HlBmh9EBOHVrd6ImqMItZ5xo1MM9dOQzom5uGxdI+lrhLtrzNrNU/4Wf290OPJ/wcfrkajpymfUN7QPGsHGiOysiXB8gRBRmatitW2uSIdhIMGflmM8b6Rxwi6olAUGJHrTnvhyxH+YGejfyaJg+NHj9WS9viQCBQg1j0QpPHT2U4LeIR+eYcT7uiGE/ltS0EpdBh48JMc6VFVPRCFIv/7TWyIyYNm4ky2MR6xkV2KB1hsrkmO81BTvgwejQ7lbIcZpsz1UAYxyqS4rBRHC6T2+UquHk//PdK+M/55Phr2BEsYuWPlsJZ90FKlo6t7ZrevVKxWS24fUGqozi0YlYPn+yR2H2gpcdDKx5/QFEGg81mVMbg6YpMXdfbRAdvIMIDvj8Kz0p1qE/1zU3DZT+8tusExhLLjtKOsG7Lz3CarjSuYoxFM54idLRZDhvLxOIB325SRwxE7vBFYVQq98OEcuTGrqfNeD8SRRjHKiNvL8grXAVJgvUvwqJJsP4FsFhZygzO8N5NzvCTDWhp1zhsVuVE8/bqpm6vNbNnpTQnFZfdii/QVja1KyI9KwUm86zI27l7Drb0GM+2LdzvBualm8qzAt2MjU5QPBKH4XadwFjkPvV9Tc87Y2390Fy6DWIbT/I1ZjRiZP0WlV4w6e4eHEb3Ix49bcL7kSjCOFaZI4syAdha1dj2ZMM+ePZn8N8roKUWCo+i/qK3uc19IW5cpozXGRKW47tIOTrBzJ4Vm9WiKJ+e5GhTVubzrBRkuMhOdRCUelZYZvXiQ1ufqm70UN/i6/baw9kjITCWAfnp2K0Wmjx+9tW7u71Wdg4cUWje8bRjfzNef/eZHhS9YMK5pm3OTG6jckhhJ3N/FySDnu5JjkBQUrzLZrwfiSKMY5UZXBjqJFurm0Le4rVLYNFk2PImWB1w4u/h6g/Zah8ChNKfmKWUZyRDIuXoBjN7VgCGFEUnx3YTb3NZLBaODMuxraf7YWLPSobLTml2KOxoa3X3irfNI2G++yFIbhw2q+KQ6MkA2L5fNirN1w9Ls1PIcNnxB6UeQ0TMPJ7kuWZvXWuPOdDNHI4gzzXfVTV1uyPh8QeUQ3tm1NPRzv17DrbgDQRx2a2HXRo3EMax6sir4OaKbfDUj+H1X4OnAXqPh198BCfeBHYnW8JK+YhC8w1yiH41v6UyWeTofhKUPcuDTSpHtJ785JGj+371XaW55RAkN9HqNzP3Q4vForSru/EUDEqKnGaUIyfNqYSydbf4r2vxKmdgzHaQDULeU6sF6lt91DR1fVZnW3UTQSlUNKsgw1whfNA2NrZVN3V7Vkee+wcVZGA1WQifGgjjWGWOLEjlCtubPOX5Nez4COypMO3/4IplUDRCuW5TRQMAw0syjWpqtyir4OrGblfBshwjzCpHFJMHwOaK0EA37f2IQg5JkiLkMMfhzkM5sqjnMJf6Fp+y3T3MpPdDkNwMiaIfun0BJb2jWcdTm17oWo49B0MeWafNakpPJUSnFzaFdVvf3FQyU8wVwgehA/nyIfDuFl2bInS02UL4QD4EbcXjD3Z7VmdzpbnnzEQRxrGaVG8i5z9n8UfHv0m1eGksKYNfroSyOWBtHzohD5ARJlW68iq4rqX7VbAsxzCTyiGvgrfXdL0K9vgDSizbsGJzy9GdB3zPwVYaPX4cNospt4EhIp6tm7CKTZWhBVfvnFSyTDgJCpIfeTx9142nUvac5aQ5KMoyn4cPIvRCN+NpY9iBMbgww1Q5dSOJJl5XdsSYVUdDdDt8bY4xc8phs0buSEQhh4nvRyKYc6QkG34vrLgHHvkR7P2CFksaN/uu5LUxj0DuoA6XB4MSm00+QFIcNqWox8Z9DZ1ec7DZq2SqGFZsztVj39w00pw2PP6gEo97KFurmvAHJbJTHZSEY2LNxtDw77vrQAuN7s4Ps7VNgpk47eYc2nI/2bivocsdCbNPHoLkRx5PWyob8HdRtnhjxORvRg8ftMnRlY6G5BhPil6oOEzkiOp+mHPOhIh+leT3IxHMOYMmE3u/hH+eCB/8CYI+OPJ0lox9lmcDJ7N+b+cda/fBFpq9AZx2qylPD8uM7p0NwDd76jt9XR4cZt3mgtAq+KjS0ODtSY7hJZmmnQTzM1yUZqcgSfBtF/0qWZSuw2bhYItPKQN7KGYP1REkPwPz0sl02XH7gl0ePEqGyX9UWEfvrG3pMgNMMuiFUX3a5ppgFzt88o6SmfXCqB7mTEmSkqJf9TT3N3v8ShEdM/erRBDGcbz4WuHdP8Ljp0D1BkjLg1mL4cJnGXTEUKDrjrUhvKo8sigDu0m3uQBG9ckBepbD7Nsqo8NyrN/bgxwmVlYQKUddp6/Lcpg1VAfAZbcpv3OP/crEcgiSG6vVwsiwAbC+x35o3sm/V7pTiXPtSb+ZWS8cWZSJy26l0e3vtHKh1x9UzluYWS+M6ZsDhMJcOiu/XFHv5mCLD6ulLSTGjIwOy/HNnvpOd/g2VTQgSVCY6SLPhIcK1cC8lpmZ2fkpPHwMrLwfpCCM/AnM+QxG/QQsFkaHV8HfVTV2WrRh7a6DAIwNd0CzIsvRlTGmyNEvR6cWxcdoxStR1+nrX5Ynx/2I9K4ciiRJfJkk/UrxrnTSr5o9fuWgh9n7lSC5UfRCJ/3QFwgq+mKcyfvhqG7kqGpws7euFaul7Toz4rBZGaHs8NV1eP3bffV4/UFyIxYDZqQoK4XCTBdBqfPQCnnOHF6SRYrDfClcZUaUZGGzWtjf5FFCJyNJFhsmEYRxHAvuBnhjHiw5Ew58D5mlcOGz8JPFkJ6vXFaSnUJ+hhN/UFJW7ZF8Ee5YE/rn6tb0eBhRkoXVAlUNHioPSZYvSRJry5NDDtkY27CvAd8h8YUtXr9yjyYMMLcc8mT+dSeTx67aFmqbvThtVsUjZlYUOXbXdXht3e46AkGJ3jmplGQffrkzBeZhlNIPOy42N+xrwO0LkpPmMO3hVhl5C7yz8SQbMUOLs0wb+ibTJkfH+7F2Z0iOo/v1Mm3om4ys39Z1cz8m9O+lZ5NiJsVhUzzbnfUrxYYZYG45EkEYx9GydRk8VAZfLA49PvoymLMahp7R4VKLxcLR/UKdZvX3te1ea/UG2BDe/hpv8gGS7rIrW1hrdrSXY/eBVmoaPThsbZ5yszIgL53cdCcef7CDwpKNsZLsFNMnMh/TNwerJfTb761rH68rK6tRfbJN7ZGAtn7/VXldh52VL8KToNnHhiD5kXX0hn311Le2j9f9YucBAMb362X6HK7yWPlsx4EO8bryeDK7MQZwdP/O50yAL3aF7kcyGGOyHGt2HOjwmmIcm9wRAzC+fw4Aq79vL0fkLuV4kzvGEkEYxz3RcgBe+gU8/RNo2AO9BsClr8GP74eUro3C44aEPMmfbtvf7vl1u+vwByWKslz06WVuYwzguMEhOT7Z2l6Oz8OTx8je5jfGrFYLxxyRB3SUI5mMsawUhxLTdmi/kifzZJgEjyjIoCjLhccfVCYLmWSaBAXJTWlOKoMK0glKHQ0yRS8kQT8c0zeHdKeNgy2+DtkFkmk8HXNEaK7ZWNFAbUT60GBQShqPK7TNmau317bLhNLk8Sv3JxnuhzL3HzLXfL+/ObRLabcysrd5478TRRjHXSFJ8O1L8OBE+OZZsFihbC5cuwoGndDj248Nd6wvdh6k1dvmHVu+qQqAskF5pt8egjY5Ptm2v11g/vLNbXIkA10NdOV+HJFkckQY+cGgxPubqwGYkgRyWCwWpV99HCFHo9vHmrCXIln6lSC56Ww8uX0BPt5aAyRHP3TYrEwJtzNSv1U1uJXzCVOSQI6CTJeSCu3T7W2Lla/31LG/yUu602bquGmZo0qzyU510Ojx83XE+ZAVW2oIBCUG5KUlRchY2aB8LJZQvu+K+radSnnOnNC/Fy67uR1jiSCM485orITnLoYXZ0PLfigYFqpwN+1P4IzuMMCg/HRKslPwBoKKwpIkiXc2VgIw7ahizZqvJpMG5uK0W6modysFP9y+AB9uCU0ep49MDjlkY2zd7jrFK1FR38rXe+qxWODUEUVGNi9qjlOMyhq8/pBX4qvddVQ3esh02RUPudmR5Xh/c5Wy6PpgSw3eQJBBBemmLHMrOPyQ9cIHW6qVkISV2/fT7A1QnJXCmHCGGLMj71S+v6laee7djSEjZly/HIqyzJm//VAUvRA2wADe2RD6/6RhhUlhjNmsFo4dHNLD72+OlCO55v7sNIcSBy47X6DtfiTL3B8vmhnHf/rTnzjmmGNIS0sjJycnqvdIksT8+fMpKSkhNTWVqVOnsnXrVq2a2FkD4Mt/wYOTYPMbYLXDCTfBLz6CPhNi+iiLxcKZo0oAeO7z3UBou2j3gVZcdisnDC1QvflakOKwccqwQgCe/yIkx0ff1dDiDVCanaIcdjM7fXPTGN0nm0BQ4qUv9wLwzrchZTW+Xy8KM5Nj8hjfvxeFmS4OtvhYFp783v62AkieyQPglGFFuOxWvqtqUrwr8v2YdlRxUuyqdMaiRYsYMGAAKSkpTJ48mc8++8zoJnVLUuppFTl+SAGZLjt7DrayKhxa8Xa4H552VJHp441lph1VjNUCn+08oBQ7kvVCshhjAGeODs2Zb2+opL7VF3IoJZlRCXDGyJAcL67dgz8QxO0LKAbmaUkkh2zDPP/FHgCqG9xKdqfTRiSPHPGgmXHs9Xr56U9/yrXXXhv1e+655x7uv/9+HnnkEdasWUN6ejrTpk3D7e6YSkR1Du6Ef50Nr80FTz2UjoOrV8BJvwd7fHn8LpzUFwh5JfbVtbJ05U4ATh5WSJrTrk67deCCSf0AeOnLPbR4/SxdtRMIDZxkMmIumBiS4z+fl+P1B/nX6l1AmwJIBuw2Kz+d0AeAp9fsosnj54W1IcU1fXTyyJGd5lB+96dX72JfXasyCU5PovsRyXPPPce8efO47bbb+PLLLxkzZgzTpk2jurq65zcbRNLpaZVJddqYOa4UCI2n2iYPr329D0iufliak8oJR4YcLs+sKee7qkY+3VaLxQJnjkweOcb1zWFoUSZuX5CXvtzDR1v3s2N/M2lOGyeFnTTJwGlHFdErzUFVg4flm6t56cu9NHn89M5JZVwSpT+bNb4PDpuFr3fX8e3eep5atQtJCoVUFJu0mqxaaGYc33777dxwww2MGjUqquslSeLvf/87t956KzNnzmT06NE89dRT7Nu3j1deeUWrZkIwAKsfCWWi+P5DsKfAqXfCFe9B8ciEPnpwYSaTB+YSCEr87LHVihFz5Y8GqtBw/fjR4Hz65abR4PZz1gOf8Om2WuxWC5cdM8DopsXEj8eWkpli5/uaZk7/x0dsr2kmK8WuGJvJwgUT+2GzWli5vZYfP/gJdS0+BuSlMXV4coSGyFw0ObRY+e+Xe7jwsdX4gxKTB+aaPhVdV9x7771cddVVzJ49mxEjRvDII4+QlpbGE088YXTTuiRp9LSG/GxSfwDeXF/JTx5ZhdsXZFTvbCYNTK6T+BdPCcnx1KpdzH7ycwBOG1FEvzzz5gU+FIvFwkVTQnrh3ne/4zfPfw3A+RP7kuFKHoeSy27jvIkh59gfXl7Pwrc2ATD72AFJsxsBocqsssf+F/9ayz8//h6AK45LLhsmHkwTc7xjxw4qKyuZOnWq8lx2djaTJ09m1apVXb7P4/HQ0NCg/DU2Nsb2xZ8vhrdvAl8L9D8Wrl0Jx/4KbOoMxPkzRpDisLKztgVJgvMm9Em69CdWq4U7Zh6F1QLf1zQDcN3JQ+hr4mTsnZHhsnPr9OFAmxy3njXC9Pk/D6VvbhpzTjwCCMlhs1q48+yR2JJI6UIondG5R/cmKIXyNKc6bCz48VFGN6sdjY2N7fSLx+Pp9Dqv18vatWvb6S+r1crUqVO71V/Jhlp6uqGh8xLoRjCiNItLy0KG5Y79zThtVu6YeVRS7YpBaEdy6vAivIEge+tayUyx84czRxjdrJi5cFI/RvXOptHjZ3+Th9LsFK4/5UijmxUzvzxxMH16pbK/yUuj289RpVlcWjbA6GbFzE2nDyM71cHeula8/iAnDS047OONAUyzFKusDG2pFhW1934VFRUpr3XGwoULuf322+P/4qMvgXVPw9GXwvjZYFV3vXBUaTbP/6KM5z7fzcD8dC5PMm+rzIlDC/nXFZN5/et9jOuXw3kT+hrdpLg4f2I/MlMcrNhSw0nDCjg9ibYcI7nh1CMpyUnlmz11zBhTqqRBSjb+PGs0w4oz2VXbwoWT+pmuNOyIEe2Ni9tuu40FCxZ0uG7//v0EAoFO9dfmzZu1bKKuGKanNea2GUcxMD+d76qa+Mn4PozrZ/5UW4disVh48GfjWPzJDqoa3FwypX9SeY1lHDYr/75iMv/8eDtuX5ArjhtIdlpyOTAAslMdvHjNMTz+8fc47VauPn4QTrtp/JFR0zc3jf9eewxPrdpJQYaLK380KOkWjvEQk3F888038+c//7nbazZt2sSwYcMSalQs3HLLLcybN095vHfv3g4TWrc4UuGqD1Q3iiMZ3SeH0Uly6rk7jh2cr5zuTmbOHFWSVHHGnWGxWLhwUj8uDMeDJysOm5Wrjz/C6GZ0ycaNG+ndu7fy2OWK7/yBniSDnm5oaKBvX/MssG1WC7OPTf6t4hSHjTknDTa6GQmTnebgt9P0659aUZydwq1nJZ/3/lAGF2Zwx8zEwkyTjZiM49/85jdcfvnl3V4zaNCguBpSXBxy01dVVVFS0ma4VFVVMXbs2C7f53K52k1YcW3XaWgYCwSC5CUzM5OsrJ692fn5+dhsNqqqqto9X1VVpeg2vUgGPS0QCARmJibjuKCggIICbVKQDRw4kOLiYpYvX64o2YaGBtasWRPTSWqBQCDQG6fTyfjx41m+fDlnn302AMFgkOXLlzN37lxd2yL0tEAgECSGZi7T8vJy1q1bR3l5OYFAgHXr1rFu3TqampqUa4YNG8bLL78MhLaJr7/+eu666y5ee+011q9fz6WXXkppaaky2QgEAoFZmTdvHo899hhLly5l06ZNXHvttTQ3NzN79myjm9YlQk8LBAJBRzQ7kDd//nyWLl2qPB43bhwAH3zwASeeeCIAW7Zsob6+rbzi7373O5qbm7n66qupq6vjuOOO4+233yYl5fDOpycQCJKf888/n5qaGubPn09lZSVjx47l7bff7nB4zUwIPS0QCAQdsUhy7dbDhD179tC3b192795Nnz7Jlb9WIBCYA6FHtKWhoYHs7Gzq6+ujiukWCASCQ9FSj5gmlZtaBINBACoqKgxuiUAgSFZk/SHrE4G6yD4ZM+U7FggEyYWsP7Tw8R52xrF8WnzSpEkGt0QgECQ7VVVV9OuX3OnyzIhcrMlM6dwEAkFy0tjYSHa2upVVD7uwCr/fz1dffUVRURHWKFO0NTY2MmLECDZu3EhmZqbGLdQOIYd5OBxkgB+uHMFgkKqqKsaNG4fdftj5EAwnGAyyb98+MjMzoyooIOdF3r17d1KHYQg5zIWQw1zEKockSTQ2NlJaWhq1vRcth53Wt9vtTJw4Mab3yK753r17J33HAiGHGTgcZIAfthzCY6wdVqs1rljurKyspO6HMkIOcyHkMBexyKG2x1hGVL8QCAQCgUAgEAjCCONYIBAIBAKBQCAII4xjQqVNb7vttqQvbyrkMA+Hgwwg5BCYg8Pl/gk5zIWQw1yYSY7D7kCeQCAQCAQCgUAQL8JzLBAIBAKBQCAQhBHGsUAgEAgEAoFAEEYYxwKBQCAQCAQCQRhhHAsEAoFAIBAIBGF+8MbxokWLGDBgACkpKUyePJnPPvvM6CbFzEcffcSMGTMoLS3FYrHwyiuvGN2kmFm4cCETJ04kMzOTwsJCzj77bLZs2WJ0s2Lm4YcfZvTo0UoS87KyMt566y2jm5Uwd999NxaLheuvv97opsTEggULsFgs7f6GDRtmdLMEMZLsevpw0NEg9LSZETpaXX7QxvFzzz3HvHnzuO222/jyyy8ZM2YM06ZNo7q62uimxURzczNjxoxh0aJFRjclblasWMGcOXNYvXo1y5Ytw+fzcdppp9Hc3Gx002KiT58+3H333axdu5YvvviCk08+mZkzZ7JhwwajmxY3n3/+OY8++iijR482uilxcdRRR1FRUaH8ffLJJ0Y3SRADh4OePhx0NAg9/f/t3X9MVfUfx/Hn9eIFiitkhoDJr4kkNWnIcNgPWsISqa3lH8xBuyq61fAHNlo6Vy4LmWtuOl1h8xbD5a/ZqKZtipSX6aQQd/PH0olzwyXBbIYggcI93z+iO69aX34f8L4e29nu+XHP53X+4L03n51z7milGj0MDD+WlpZmFBYWetd7enqMqKgoo7S01MRUgwMYlZWVZscYtJaWFgMwXC6X2VEG7bHHHjN27txpdowBaWtrMxISEoyqqiojIyPDWLVqldmR+mX9+vVGcnKy2TFkEB62Ov2w1GjDUJ0eDVSjh4ffzhzfvn2b+vp6MjMzvdvGjRtHZmYmJ0+eNDGZALS2tgIwceJEk5MMXE9PD3v37uXWrVukp6ebHWdACgsLycnJ8fk7GWsuXbpEVFQU8fHx5OXl0djYaHYk6SPV6dFNddp8qtHDI8DsAGa5fv06PT09TJ482Wf75MmTuXDhgkmpBMDj8VBUVMRzzz3HM888Y3acfjt79izp6el0dnYSEhJCZWUlSUlJZsfqt71793L69Gnq6urMjjJgs2fPpry8nMTERJqamvjwww954YUXOHfuHHa73ex48n+oTo9eqtPmU40ePn7bHMvoVVhYyLlz50bHfUcDkJiYiNvtprW1lQMHDuBwOHC5XGOq8F69epVVq1ZRVVVFUFCQ2XEGLDs72/t55syZzJ49m5iYGPbv309BQYGJyUTGNtVpc6lGDy+/bY4nTZqE1WqlubnZZ3tzczMREREmpZLly5dz8OBBampqePLJJ82OMyA2m41p06YBMGvWLOrq6ti6dSs7duwwOVnf1dfX09LSQkpKindbT08PNTU1bN++na6uLqxWq4kJByYsLIzp06fT0NBgdhTpA9Xp0Ul12nyq0cPLb+85ttlszJo1i+rqau82j8dDdXX1mLzvaKwzDIPly5dTWVnJDz/8QFxcnNmRhozH46Grq8vsGP0yd+5czp49i9vt9i6pqank5eXhdrvHZNEFaG9v5/Lly0RGRpodRfpAdXp0UZ0ePVSjh5ffzhwDvPPOOzgcDlJTU0lLS2PLli3cunWLxYsXmx2tX9rb233+y7py5Qput5uJEycSHR1tYrK+KywsZPfu3Xz77bfY7XZ+//13AEJDQwkODjY5Xd+tXbuW7OxsoqOjaWtrY/fu3Rw7dozDhw+bHa1f7Hb7ffcRPvroozz++ONj6v7C4uJiXnvtNWJiYrh27Rrr16/HarWycOFCs6NJHz0MdfphqNGgOj2aqEYPM7Nfl2G2bdu2GdHR0YbNZjPS0tKM2tpasyP1248//mgA9y0Oh8PsaH32oPyA8eWXX5odrV+WLFlixMTEGDabzXjiiSeMuXPnGkeOHDE71pAYi68Jys3NNSIjIw2bzWZMmTLFyM3NNRoaGsyOJf001uv0w1CjDUN1erRTjR46FsMwjJFsxkVERERERiu/vedYREREROReao5FRERERHqpORYRERER6aXmWERERESkl5pjEREREZFeao5FRERERHqpORYRERER6aXmWERERESkl5pjERERGRGLFi3i9ddfH9Q5YmNjsVgsWCwW/vzzzyHJdS+LxcI333zjs26xWAgLCxuW8WR0UXMsIiIinDx5EqvVSk5OjtlR/q8NGzbQ1NREaGjoiIzX1NTEli1bRmQsMZ+aYxEREcHpdLJixQpqamq4du2a2XH+k91uJyIiAovF8sD9PT09eDyeIRsvIiJixBpxMZ+aYxERET/X3t7Ovn37ePvtt8nJyaG8vNxn/7Fjx7BYLFRXV5OamsojjzzCnDlzuHjxos9xH3/8MeHh4djtdpYuXcqaNWt49tln/3Vcj8dDaWkpcXFxBAcHk5yczIEDB/qdv7y8nLCwML777juSkpIIDAyksbGRuro6srKymDRpEqGhoWRkZHD69Gmf7166dIkXX3yRoKAgkpKSqKqq6vf48nBRcywiIuLn9u/fz1NPPUViYiL5+fl88cUXGIZx33Hr1q1j8+bNnDp1ioCAAJYsWeLd99VXX1FSUsKmTZuor68nOjqazz777D/HLS0tpaKigrKyMs6fP8/q1avJz8/H5XL1+xo6OjrYtGkTO3fu5Pz584SHh9PW1obD4eD48ePU1taSkJDA/PnzaWtrA/5uzt944w1sNhs//fQTZWVlvPfee/0eWx4uAWYHEBEREXM5nU7y8/MBmDdvHq2trbhcLl566SWf40pKSsjIyABgzZo15OTk0NnZSVBQENu2baOgoIDFixcD8MEHH3DkyBHa29sfOGZXVxcbN27k6NGjpKenAxAfH8/x48fZsWOHd5y+unPnDp9++inJycnebS+//LLPMZ9//jlhYWG4XC5effVVjh49yoULFzh8+DBRUVEAbNy4kezs7H6NLQ8XzRyLiIj4sYsXL/Lzzz+zcOFCAAICAsjNzcXpdN537MyZM72fIyMjAWhpafGeJy0tzef4e9fv1tDQQEdHB1lZWYSEhHiXiooKLl++3O/rsNlsPvkAmpubWbZsGQkJCYSGhjJhwgTa29tpbGwE4Ndff2Xq1KnexhjwNurivzRzLCIi4secTifd3d0+DaJhGAQGBrJ9+3afB9HGjx/v/fzPw3ADffDtnxnlQ4cOMWXKFJ99gYGB/T5fcHDwfQ/oORwO/vjjD7Zu3UpMTAyBgYGkp6dz+/btAWUW/6CZYxERET/V3d1NRUUFmzdvxu12e5dffvmFqKgo9uzZ0+dzJSYmUldX57Pt3vW73f3g3LRp03yWqVOnDvia7nbixAlWrlzJ/PnzefrppwkMDOT69eve/TNmzODq1as0NTV5t9XW1g7J2DJ2aeZYRETETx08eJAbN25QUFBw36vKFixYgNPp5K233urTuVasWMGyZctITU1lzpw57Nu3jzNnzhAfH//A4+12O8XFxaxevRqPx8Pzzz9Pa2srJ06cYMKECTgcjkFfX0JCArt27SI1NZWbN2/y7rvvEhwc7N2fmZnJ9OnTcTgcfPLJJ9y8eZN169YNelwZ2zRzLCIi4qecTieZmZkPfIfvggULOHXqFGfOnOnTufLy8li7di3FxcWkpKRw5coVFi1aRFBQ0L9+56OPPuL999+ntLSUGTNmMG/ePA4dOkRcXNyAr+luTqeTGzdukJKSwptvvsnKlSsJDw/37h83bhyVlZX89ddfpKWlsXTpUkpKSoZkbBm7LMaD3tUiIiIiMkhZWVlERESwa9euITtnbGwsRUVFFBUVDdk5+6K8vJyioqJh+8lqGT3UHIuIiMigdXR0UFZWxiuvvILVamXPnj1s2LCBqqoqMjMzh2yc2NhYmpqaGD9+PL/99tuI/HJdSEgI3d3dBAUFqTn2A7rnWERERAbNYrHw/fffU1JSQmdnJ4mJiXz99ddD2hgDuFwu7ty5A/x93/JIcLvdAFit1hEZT8ylmWMRERERkV56IE9EREREpJeaYxERERGRXmqORURERER6qTkWEREREeml5lhEREREpJeaYxERERGRXmqORURERER6qTkWEREREen1P+PhOx4snyUbAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Color mapped data**" + ], + "metadata": { + "id": "zB6YOiR5uuJQ" + } + }, + { + "cell_type": "code", + "source": [ + "from matplotlib.colors import LogNorm\n", + "\n", + "X, Y = np.meshgrid(np.linspace(-3, 3, 128), np.linspace(-3, 3, 128))\n", + "Z = (1 - X/2 + X**5 + Y**3) * np.exp(-X**2 - Y**2)\n", + "\n", + "fig, axs = plt.subplots(2, 2, layout='constrained')\n", + "pc = axs[0, 0].pcolormesh(X, Y, Z, vmin=-1, vmax=1, cmap='RdBu_r')\n", + "fig.colorbar(pc, ax=axs[0, 0])\n", + "axs[0, 0].set_title('pcolormesh()')\n", + "\n", + "co = axs[0, 1].contourf(X, Y, Z, levels=np.linspace(-1.25, 1.25, 11))\n", + "fig.colorbar(co, ax=axs[0, 1])\n", + "axs[0, 1].set_title('contourf()')\n", + "\n", + "pc = axs[1, 0].imshow(Z**2 * 100, cmap='plasma', norm=LogNorm(vmin=0.01, vmax=100))\n", + "fig.colorbar(pc, ax=axs[1, 0], extend='both')\n", + "axs[1, 0].set_title('imshow() with LogNorm()')\n", + "\n", + "pc = axs[1, 1].scatter(data1, data2, c=data3, cmap='RdBu_r')\n", + "fig.colorbar(pc, ax=axs[1, 1], extend='both')\n", + "axs[1, 1].set_title('scatter()')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 525 + }, + "id": "n8g2XqiCulcn", + "outputId": "b70153bd-21c0-49e5-db10-a3c46a227dd4" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'scatter()')" + ] + }, + "metadata": {}, + "execution_count": 27 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXmcFNXV93+3qpeZAYadGZAdExFRUBQERUERFB8V4xKTGIEQlwRUxCSC8WHRGKIYxR15E0UTNVEjGPct4i4qiokLPKIoRGSTZdhmurvqvn9U3Vu3qqtqumemp5c538+n6O5bt27dqhlqfn3OPecwzjkHQRAEQRAEQfig5XsCBEEQBEEQROFCYpEgCIIgCIIIhMQiQRAEQRAEEQiJRYIgCIIgCCIQEosEQRAEQRBEICQWCYIgCIIgiEBILBIEQRAEQRCBkFgkCIIgCIIgAiGxSBAEQRAEQQRCYrGFMWnSJPTu3Tvf08gZX331FRhjuOmmmzI+5pe//CVOOukk+fnTTz9FJBLBxx9/nIspEgRBNJi//OUv6N+/P6LRKNq1ayfbTdPEwIEDcf3118u2RYsWoWfPnqirq8vDTIlSgsQi0aJZt24d/vSnP+Hqq6+WbQMGDMCpp56K2bNn53FmBEEUCg899BAWLlyY72lg9erVmDRpEvr164f/9//+HxYvXiz3Pfzww9iwYQOmTZsm2yZNmoREIoF77rknH9MlSggSi0SL5tZbb0WfPn0wevRoV/sll1yCpUuX4osvvsjTzAiCKBQKRSwuX74cpmni1ltvxaRJk3DuuefKfQsWLMB5552Htm3byraysjJMnDgRN998Mzjn+ZgyUSKQWCQajGmaqK2tzfc0GkwymcSDDz7oeuAKxowZg/bt2+P+++/Pw8wIgiAc9u7dCwDYsmULALjczwDw4Ycf4qOPPvJ9lp177rn4+uuv8corr+R8nkTpQmIxj8ydOxeMMaxevRrnnnsuKisr0bFjR1x++eVpIuyvf/0rhg4dioqKCrRv3x7HHXccXnjhBVefu+66C4cccgji8Ti6deuGqVOnYufOnfXOY+/evbjyyivRo0cPxONxHHTQQbjpppvSvokyxjBt2jQ8+OCD8jzPPfcclixZAsYY3njjDVx22WXo3Lkz2rVrh4svvhiJRAI7d+7EBRdcgPbt26N9+/b4zW9+kza2aZpYuHAhDjnkEJSVlaGqqgoXX3wxduzY4er3/vvvY9y4cejUqRPKy8vRp08f/OxnP/O9rsWLF6Nfv36Ix+M46qij8N5777n2v/HGG9i2bRvGjBmTdmw0GsWoUaPwxBNP1Hv/CIJoXr755htMmTIF3bp1QzweR58+ffCLX/wCiUQCAPDll1/inHPOQYcOHVBRUYGjjz4aTz/9tGuM5cuXgzGGRx55BNdffz26d++OsrIynHjiiVi7dq3sN2rUKDz99NP4+uuvwRgDY8y17nvLli2YMmUKqqqqUFZWhkGDBqV9yRTnWr58uatdrLFesmSJbJs0aRJat26NL774AuPHj0ebNm3wk5/8BL1798acOXMAAJ07dwZjDHPnzgUALFu2DLFYDMcdd1zavRoyZAg6dOhAzzKiUUTyPQHC+ubXu3dvzJ8/H++88w5uu+027NixAw888AAAYN68eZg7dy5GjBiBa6+9FrFYDCtWrMC//vUvjB07FoAlPOfNm4cxY8bgF7/4BdasWYO7774b7733Ht58801Eo1Hfc3POcfrpp+OVV17BlClTMHjwYDz//PP49a9/jW+++Qa33HKLq/+//vUvPPLII5g2bRo6deqE3r17Y9WqVQCASy+9FNXV1Zg3bx7eeecdLF68GO3atcNbb72Fnj174ve//z2eeeYZLFiwAAMHDsQFF1wgx7344ouxZMkSTJ48GZdddhnWrVuHO+64Ax9++KGc/5YtWzB27Fh07twZM2fORLt27fDVV1/h8ccfT7uuhx56CLt378bFF18MxhhuvPFG/OAHP8CXX34p78Vbb70FxhgOP/xw33szZMgQPPHEE6ipqUFlZWV2P1SCIHLCxo0bMXToUOzcuRMXXXQR+vfvj2+++QaPPfYY9u3bhx07dmDEiBHYt28fLrvsMnTs2BH3338/Tj/9dDz22GM488wzXeP94Q9/gKZp+NWvfoVdu3bhxhtvxE9+8hOsWLECAPDb3/4Wu3btwn//+1/5PGzdujUAYP/+/Rg1ahTWrl2LadOmoU+fPnj00UcxadIk7Ny5E5dffnmDrjGVSmHcuHE49thjcdNNN6GiogKTJk3CAw88gKVLl+Luu+9G69atcdhhhwGwnmUDBw4MfM4fccQRePPNNxs0F4IAAHAib8yZM4cD4Keffrqr/Ze//CUHwD/66CP++eefc03T+JlnnskNw3D1M02Tc875li1beCwW42PHjnX1ueOOOzgAfu+998q2iRMn8l69esnPy5Yt4wD47373O9fYZ599NmeM8bVr18o2AFzTNP7JJ5+4+t53330cAB83bpycE+ecDx8+nDPG+CWXXCLbUqkU7969Oz/++ONl2+uvv84B8AcffNA17nPPPedqX7p0KQfA33vvvfSbabNu3ToOgHfs2JFv375dtj/xxBMcAH/yySdl2/nnn887duwYONZDDz3EAfAVK1YE9iEIonm54IILuKZpvs8B0zT59OnTOQD++uuvy/bdu3fzPn368N69e8tn5CuvvMIB8IMPPpjX1dXJvrfeeisHwP/zn//ItlNPPdX13BQsXLiQA+B//etfZVsikeDDhw/nrVu35jU1Na5zvfLKK67jxfPqvvvuk20TJ07kAPjMmTPTzif+ZmzdutXV3r17d37WWWf53C2Liy66iJeXlwfuJ4j6IDd0ATB16lTX50svvRQA8Mwzz2DZsmUwTROzZ8+Gprl/XIwxAMBLL72ERCKB6dOnu/pceOGFqKysTHO/qDzzzDPQdR2XXXaZq/3KK68E5xzPPvusq/3444/HgAEDfMeaMmWKnBMADBs2DJxzTJkyRbbpuo4jjzwSX375pWx79NFH0bZtW5x00knYtm2b3IYMGYLWrVvLtTZinc5TTz2FZDIZeE0A8MMf/hDt27eXn0eOHAkArvN+9913rj5exL5t27aFnosgiObBNE0sW7YMp512Go488si0/YwxPPPMMxg6dCiOPfZY2d66dWtcdNFF+Oqrr/Dpp5+6jpk8eTJisZj87PesCOKZZ55BdXU1fvSjH8m2aDSKyy67DHv27MGrr76a9TUKfvGLX2TcN5Nn2f79+7Fv374Gz4do2ZBYLAC+973vuT7369cPmqbhq6++whdffAFN0wIFGgB8/fXXAICDDjrI1R6LxdC3b1+5P+jYbt26oU2bNq72gw8+2DW2oE+fPoFj9ezZ0/VZROX16NEjrV1di/j5559j165d6NKlCzp37uza9uzZIxd1H3/88TjrrLMwb948dOrUCWeccQbuu+8+3xxi3rmIB6l3DSQPiRAU+1QBTBBE/ti6dStqamowcODAwD5ff/112rMQCH6mZfqsCDrX9773vbQv8kHnypRIJILu3btndQw9y4hcQmsWC5BC/g9dXl4euE/X9Yzb1QebaZro0qULHnzwQd/jO3fuDMC6L4899hjeeecdPPnkk3j++efxs5/9DH/84x/xzjvvyHVEYXNRz9uxY8fQPwhiX6dOnQL7EARR3GTyrGgsQc90wzB82+PxeJoADSOTZ1lFRUXo85sgwiDLYgHw+eefuz6vXbsWpmmid+/e6NevH0zTTHOdqPTq1QsAsGbNGld7IpHAunXr5P6gYzdu3Ijdu3e72levXu0aO5f069cP3333HY455hiMGTMmbRs0aJCr/9FHH43rr78e77//Ph588EF88skn+Nvf/pb1efv3748dO3Zg165dvvvXrVsHTdPw/e9/v0HXRRBE09K5c2dUVlaGVlfq1atX2rMQaNwzLUjs9erVC59//jlM0ww9l7BWerNTNNTy6KV///5Yt25d4P5169ZJaydBNAQSiwXAnXfe6fp8++23AwBOOeUUTJgwAZqm4dprr017IIlvvmPGjEEsFsNtt93m+jb85z//Gbt27cKpp54aeO7x48fDMAzccccdrvZbbrkFjDGccsopjbq2TDj33HNhGAauu+66tH2pVEo+YHfs2JH2bX/w4MEA0KByVsOHDwfnHCtXrvTdv3LlShxyyCGuJLcEQeQPTdMwYcIEPPnkk3j//ffT9nPOMX78eLz77rt4++23ZfvevXuxePFi9O7dO3RJTxCtWrXy/VI5fvx4bNq0CX//+99lWyqVwu23347WrVvj+OOPB2CJRl3X8dprr7mOv+uuu7Keix/Dhw/Hxx9/HPgc/OCDDzBixIgmORfRMiE3dAGwbt06nH766Tj55JPx9ttv469//St+/OMfS4vab3/7W1x33XUYOXIkfvCDHyAej+O9995Dt27dMH/+fHTu3BmzZs3CvHnzcPLJJ+P000/HmjVrcNddd+Goo47C+eefH3ju0047DaNHj8Zvf/tbfPXVVxg0aBBeeOEFPPHEE5g+fTr69euX8+s//vjjcfHFF2P+/PlYtWoVxo4di2g0is8//xyPPvoobr31Vpx99tm4//77cdddd+HMM89Ev379sHv3bvy///f/UFlZifHjx2d93mOPPRYdO3bESy+9hBNOOMG1L5lM4tVXX8Uvf/nLprpMgiCagN///vd44YUXcPzxx+Oiiy7CwQcfjG+//RaPPvoo3njjDcycORMPP/wwTjnlFFx22WXo0KED7r//fqxbtw7/+Mc/snLvCoYMGYK///3vmDFjBo466ii0bt0ap512Gi666CLcc889mDRpElauXInevXvjsccew5tvvomFCxfKteBt27bFOeecg9tvvx2MMfTr1w9PPfWUXI/dWM444wxcd911ePXVV2U6NcHKlSuxfft2nHHGGU1yLqKFko8QbMJCpEH49NNP+dlnn83btGnD27dvz6dNm8b379/v6nvvvffyww8/nMfjcd6+fXt+/PHH8xdffNHV54477uD9+/fn0WiUV1VV8V/84hd8x44drj7e1DmcW2klrrjiCt6tWzcejUb59773Pb5gwQJXGhzOrdQ5U6dOTbsOkTrHm8oiKM3DxIkTeatWrdLGWbx4MR8yZAgvLy/nbdq04Yceeij/zW9+wzdu3Mg55/yDDz7gP/rRj3jPnj15PB7nXbp04f/zP//D33//fTmGSEWxYMGCtPEB8Dlz5rjaLrvsMn7ggQem9X322Wc5AP7555+n7SMIIr98/fXX/IILLuCdO3fm8Xic9+3bl0+dOlWmwPniiy/42Wefzdu1a8fLysr40KFD+VNPPeUaQ6SzefTRR13tfuls9uzZw3/84x/zdu3acQCuZ+jmzZv55MmTeadOnXgsFuOHHnqo61jB1q1b+VlnncUrKip4+/bt+cUXX8w//vhj39Q5fs9HzoOfqZxzfthhh/EpU6aktV911VW8Z8+eac9zgsgGxjkVjMwXIpH21q1bKYgiT3z55Zfo378/nn32WZx44omyfcKECWCMYenSpXmcHUEQRGb85S9/wdSpU7F+/XqZZqyurg69e/fGzJkzG5wgnCAAWrNItHD69u2LKVOm4A9/+INs++yzz/DUU0/5rqEkCIIoRH7yk5+gZ8+erjXw9913H6LRKC655JI8zowoBciymEfIskgQBEEQRKFDlkWCIAiCIAgiEBKLeWTu3LngnJNVkWixvPbaazjttNPQrVs3MMawbNmyeo9Zvnw5jjjiCMTjcRx44IFYsmRJzueZLXfffTcOO+wwVFZWorKyEsOHD08rnUkQBFEskFgkCCJv7N27F4MGDUrLNRrEunXrcOqpp2L06NFYtWoVpk+fjp///Od4/vnnczzT7OjevTv+8Ic/YOXKlXj//fdxwgkn4IwzzsAnn3yS76kRBEFkDa1ZJAiiIBDR5xMmTAjsc9VVV+Hpp592VfA477zzsHPnTjz33HPNMMuG06FDByxYsABTpkzJ91QIgiCyoqCTcpumiY0bN6JNmzYFXS+ZIIoVzjl2796Nbt26ZZSsuLa2FolEot4xvf9f4/E44vF4o+YKAG+//TbGjBnjahs3bhymT5/e6LFzhWEYePTRR7F3714MHz48sF9dXZ2rAodpmti+fTs6duxIzz+CyAG5eP4BQCwWQ1lZWVNMsWAoaLG4ceNG9OjRI9/TIIiSZ8OGDejevXton9raWnQsb419MEL7tW7dGnv27HG1zZkzB3Pnzm3sNLFp0yZUVVW52qqqqlBTU4P9+/ejvLy80edoKv7zn/9g+PDhqK2tRevWrbF06dLQUnPz58/HvHnzmnGGBEEAmT//evZqha1bzNB+AFBdXY1169aVlGAsaLEoSiV9vnatfF9IMPLgE0XO7t27ceD3vpfR/69EIoF9MDCZdUcsYLlzAibu2/NfbNiwAZWVlbK9KayKxcZBBx2EVatWYdeuXXjssccwceJEvPrqq4GCcdasWZgxY4b8vGvXLvTs2RO9fz0bWrxw/ugkqpL5ngJBNAnm/lps/M38jJ9/W7eYeOvdzmjdOtjSv2cPx4ihm5BIJEgsNhfC9dKmTRvXH55CgcQiUSpk4+YsYxrizF8sahwAh4wCbmqqq6uxefNmV9vmzZtRWVlZUFZFwHJFHXjggQCs2sLvvfcebr31Vtxzzz2+/YNc9Vq8DHoB/dEp31WGumoSjETpkM3zr3VrhjZtwlzW9Vsei5GCFosEQRQeMY0hFvBw5Zzl9Fk5fPhwPPPMM662F198MXQtYKFgmqZrTSJBEESxQGKxEXD7DyZZGImWhM4Y9ACxqCO7QIw9e/Zg7dq18vO6deuwatUqdOjQAT179sSsWbPwzTff4IEHHgAAXHLJJbjjjjvwm9/8Bj/72c/wr3/9C4888giefvrphl9QDpg1axZOOeUU9OzZE7t378ZDDz2E5cuXF1yKn4YS3xQl6yJBtCBILBL1w3NkKgpwZRKFTb2WxSx4//33MXr0aPlZrNmbOHEilixZgm+//Rbr16+X+/v06YOnn34aV1xxBW699VZ0794df/rTnzBu3LgGXEnu2LJlCy644AJ8++23aNu2LQ477DA8//zzOOmkk/I9NYIgiKwhsUgQRFYwBGfzzzbBy6hRoxCW6tWvOsuoUaPw4YcfZnmm5uXPf/5zvqeQc8i6SBAtBxKLLZ1cWQ2b8txkgSwomtINTRAEQRQ+JBabAM5YcaxbzKcwbAx+8yYBmTdiGgLd0GYR/DcgCIIgsoP+4hIEkRU6C9+IlkN8UzTfUyAIohkgy2KpkmMrIstyfN7UlkCyNuYNckMTBEG0LEgslhJNIBCzFYG5GrdB4pIEZLMQDYmGNrKMhiaKHwp0IYjSh8QiQRBZEeZu1pt3KgRBEEQzQGKxichLgu4GWgGb1HqYo4jmoDlmbXH0jkOWxkYTlmeRLIstE7IuEkRpQ385iw1uOlsGMG6mbRmPn8nWkHk3YrysrqW+eRANQkdIgEu+J0cQBFFEvPbaazjttNPQrVs3MMawbNmyeo9Zvnw5jjjiCMTjcRx44IG++WibGhKLBEFkhWYHuPhtWoDFkSh9KDKaILJn7969GDRoEO68886M+q9btw6nnnoqRo8ejVWrVmH69On4+c9/nvNSouSGbmJy5o7OwpLY1GMiV651P2ERNicfF7Lf9WbsqlaPJfd0xsQ0hpjmLwpTFA1NEASRMaeccgpOOeWUjPsvWrQIffr0wR//+EcAwMEHH4w33ngDt9xyS07LnpJYLAbqEXUZuZbrPUeGgrAp3LdCmNV3Tq+YzDDaWb0fDRKOAeMSFqEBLqQVCYIgUFNT4/ocj8cRj8cbPe7bb7+NMWPGuNrGjRuH6dOnN3rsMEgsEgSRFaF5FskN3aKhQBei1Fm+vy/K9WDptH9/CsAW9OjRw9U+Z84czJ07t9Hn37RpE6qqqlxtVVVVqKmpwf79+1FeXt7oc/hBYrGQaYxFMXRfiEWvsVbMEKSVL5MxmOY/zzBrYwZuanJRNx49okHX/O+JTvX+CIIgsGHDBlRWVsrPTWFVzCckFnNEo9YuZhgVnNFxfucPGT9QDDZlwu8Q8RUqKOsTkBkIvCZxUYeM3xLQdAYtYM0iBbgQZF0kCKCystIlFpuK6upqbN682dW2efNmVFZW5syqCJBYLCwaIuK8x2UhDjMXnE2cZiZENIYJSl/Z7ScgGQueszJug4SjPKDlrnFkUR2a7p8khxnNPBmCIIgWxPDhw/HMM8+42l588UUMHz48p+dtOX/hCIJoEjSdhW4EQWl0CCIz9uzZg1WrVmHVqlUArNQ4q1atwvr16wEAs2bNwgUXXCD7X3LJJfjyyy/xm9/8BqtXr8Zdd92FRx55BFdccUVO50mWxRzDGWt0Gp0GuZyV/Rm5lrO1KJpZWhv91rhxMyuLnCpDfN3VflHWGa5xbFQKnpBxSxGmaWABaxabtYIRQRBEkfP+++9j9OjR8vOMGTMAABMnTsSSJUvw7bffSuEIAH369MHTTz+NK664Arfeeiu6d++OP/3pTzlNmwOQWCwcMs55GOJyDhKI3rHrE4k+QrDRJQKNIDFmt3vFRz1CskHCEXCLRwqOaRB6TIOuBwS4GCQWCQtau0gQ9TNq1CjwkC/ZftVZRo0ahQ8//DCHs0qHxCJBEFnBdAYWIBYZGvmlgiAIgig4SCwWMOHWwQxdzn51kNXPHiti4Dmb0r0oI8UV66HhZ8ULsDp6h/NpS5ttfS7qDAJWKNm3hR7RoEcCLIslcH1E00HWRYIoDXL6ZJ8/fz6OOuootGnTBl26dMGECROwZs2aXJ6yIOGMyVQ6mcC4GS7ahODxCEEmPnMTMFPWprYZKWszTcA0wYwUmOneYBq+m7dfQzZnbv7ngGnIPsxMOffBni+MVPj1KffD9x56hbO4l0ER5H5C2/MzSjtPfdQzbjGg6VroRtCzjyCI0iKnT/ZXX30VU6dOxTvvvIMXX3wRyWQSY8eOxd69e3N5WoIgcojlhg7eCHr2EQRRWuTUDf3cc8+5Pi9ZsgRdunTBypUrcdxxx+Xy1KWHTzBLqMvZx9XMvPt8XNnBFs0sk3X7uXH99nn6Sfcu0wBuJe1jTMm9aLurZT9NmUPYOdXx/VzDmQbCBJ2nBbmo9ZgOPeKfZ1HXKMAFoGefCrmiCaL4adY1i7t27QIAdOjQwXd/XV0d6urq5GdvIe5ix7eqS7Yl+8JEnSoWVYHoFYd+axz9RKbfuQRNkDqHMy1NIDFFLDpRznKyznpHcYBhuoWjmHdQBRfv+UV/2aHh6XdkU0OTfWeZSihvhFkQOVkW/ajv2QeU/vOPIIjipdn+MpmmienTp+OYY47BwIEDffvMnz8fbdu2lZu3EDdBEPlHY1a5P9+Nyv2lkcmzDyjt5x8l6SaI4qbZLItTp07Fxx9/jDfeeCOwz6xZs2RCSsD6Zp3vB2a2QcCN+VsZnDybhyfNVl/9XM4eiyLzs0Sq+0yPJVI9R6ZzFocJS5mp1IGz26R7GZCWR9UNzbxWNtXayOy5MSatha6pZPA1qCBzNRaBa1qP6dCjAW5oRm5oL5k8+4DCfP4RBEEAzSQWp02bhqeeegqvvfYaunfvHtgvHo8jHo83x5R8aYrsMGG6IvNBggVYmNCDaUURuyairm2U/VLOWF5hGOSiDpqTGV4MmGm6+sG7UxFp1vkzFpBM2cc8xzJNmW7D0u8Erm1U5ureF1CP2utmz9ZFXYCu6bBAFmaSZVEl02cfkP/nX66htYsEUbzkVCxyznHppZdi6dKlWL58Ofr06ZPL0zWIXFcn4zxdMLpKAPpZtLyT8xN8fusTzVS6FVGkl1HbDEVQhlkbbSHITTNdFNYjEiWqWNTc1iirbJwuPrheuRJ0IkWgpoFr7l9ZBig5FYWoUu6XGM/0dKmHjHI3qvOuL39jY6yOIWPkAz2mhVgWizclUFNSDM8+giCITMmpWJw6dSoeeughPPHEE2jTpg02bdoEAGjbti3Ky8tzeWqCIHIE0xiYFmBZDGhvadCzz59Ssi62r94dun/HpjbNNBOCyD05FYt33303AKuOocp9992HSZMm5fLU9dJQi6JZz4F+C/y5s7yu8fitT1Rcz857x+UsLViG4drHRHJrwN+KKNoMIz36OVPLokDT013Buu5YG+1XZvdhetRtZRTXZx9av2vasTIC9URP14dYY+nnQs40krqetY1i/FDXdIFYGDUtOPm2ZhSG9TPfFPKzj8ic+gRhQ48lIUkUGzl3QxcS2U6nPmGYyTGqeGyoaHSlv5EnUl3TtrtWdTmLdYlGyr1f2QfTAE8l5XvAIwylgHTaeLbuaCkCVXe05uyTYtFui8ac61OFozUIuBC6ynHcIxaZIhbDAmJcORuz1DiNyt8YEsQifqYZiUbPsc2FFtOhxfzd0BrVhgZQeM++QqKQrYuNEYcNPQ8Jx+LirZ0HIpaKBe5P7EkAeKf5JtRMUG1ogiCywlprGmAdrSeQiCAKkeYSifWdm4QjUai0CLGY6Zf8TC2JYb28Fid1TGFl5BxOcumwc9aXlNs3dY5iUQRkXWe1n7QmphKWJREA7DbuY22EaTr95IUZ/u+BtEAWAOCaDqa7rYhc010WQnEu+VmxMgIAi0Sly1neNc5lAAzX03+dpdvamRxEZRhXgm9vZRiYzpwycP/WGxCTiYvax8LonpPfSZrfNR1WA5pqQxPFQj4FYhBiTiQaiUKjpMViJtqvPoGYrTPJr78QEuJcDUpc7Il8toShXQ5PcS+rIlHuM2whKARhMmH1SSWlW9kRkElHGHr3KW1+7mcuRJ1qXVKEI/esS0QkZq1bBPzFohgvGrXHN8Ai1nspprSIFFPyrga5pu3PjvgSAs5AWmUY+Gj1xqxx9Nmfti4hwL2clWu6GUQji0agxfwfHaFffgjCJt+u6EIUiiokGolCo6TFIkEQTQ+5oYlipdBFohcSjUShULJisT4DR5hFMexQM0vDicac8VQLoyY+SYuWT4CEnJBPgAvnabkXmZ+10Ug6FsW6Wus1lbBfk477WbqjE+lBL0ER0gGot8hxPfsEs6SSgG0plPuEZTESTQu0kX0BQBOuaWTvmvbmYGQaXFZGwAqE8VrrXK5qT7LvoOTZHiujKxAmyMIoxlP7eMcIohmSeGuxCLSYf/k2rYGWxTvvvBMLFizApk2bMGjQINx+++0YOnSob98lS5Zg8uTJrrZ4PI7a2toGnZvID81pXSw2keiFRCORb0pOLDZUJPq1BgnDbCIdTcWxKVLQNSaDjiuRs3fNomEoaXIc13OaSEzYn5NJQBWO4lUIQuGuVsQiVwWkmIbhFrJMWbcmI5oVschFWzQmzyvcy1IYGgYQ9QgSJSpbuqbVczgnlcm7pVterQbjV1UlLU0PFDHnWeOo9lcvXQwblohbeZ/+W6T0V13TPvPNqPpLjtA0DVqABTGoPYy///3vmDFjBhYtWoRhw4Zh4cKFGDduHNasWYMuXbr4HlNZWYk1a9bIz4xqUhMBFLtQVGlfvZsEI5EXyGdEEERWMF0L3bLl5ptvxoUXXojJkydjwIABWLRoESoqKnDvvfcGz4ExVFdXy62qqqoxl0Tkifgmfwt1U1FKQlHQvnp3SV4XUdiUjGWxocEs3LXfb9z0xmxc0ZpyBmFl1JgS7AInsIL7BEakTyi9LJ9Tvs+JhlZdz74WRfHZa1lMJqRr2pQualNaD4VFUbUmhloWdWFZdISEFrV/7VQ3tDdwxuX6VlzTHhiUwBnRqOnpybvV0oE+NaflvfRpc1kb5T7DGU+0eSOqNWRkZXQl+PZzTWfrks5xsIsWiTg/Q+8++x7U1NS42oPqHicSCaxcuRKzZs1yxtA0jBkzBm+//XbgHPbs2YNevXrBNE0cccQR+P3vf49DDjmkIZdDlCilLqjIykg0JyUhFhvieva2qAJQFYi+AjKLuanHC+FogkmXtJgb05jMG+0/kEeQuVLnOEm3vRHPPJVwRKJ0Rztikdftt8ZQBKKZsASnmbSFp2HCNNzuZykejXRhGyQWdXudmxhXi0ageQWhr1i0hRkC7r3mXj/JlN9q3+oufjWnvRVZVGHmGQOqG1gKSKcIeLbVYnxd06pozCDFTnOKxjALomjv0aOHq33OnDmYO3duWv9t27bBMIw0y2BVVRVWr17te46DDjoI9957Lw477DDs2rULN910E0aMGIFPPvkE3bt3b8AVEfkkF2sXS10oCkgwEs1FSYhFgiCaj0zE4oYNG1BZWSnb/ayKDWX48OEYPny4/DxixAgcfPDBuOeee3Ddddc12XmI4qQ5hOKgzhtD93+0tVvO5yCg4BeiOShqsZitRbG+IBavy9m1L6A9Exwrov0Z3OWSts7tY8GCT8SxmCM306KhYTgBK1ACVqTbWbEoAgCv2y/fC2ufUZuAkRAJuq1xzUTKeW80zLKo6ZrLoggAWiIl8/XpZdY4mhrg4ldK0Eh3V4vgGNePRURLi4ALu2Qgsy7M6q/WnGae61ACNbw5G4F6rI0+pQWdlQUm0mpky0E1x1KotPnmY/QL0kGIhbEJrYt6VIce4IbW7Z9PZWWlSywG0alTJ+i6js2bN7vaN2/ejOrq6ozmE41Gcfjhh2Pt2rUZ9ScKj3znXQyjPmGYyTHNIR7JykjkkqIWi2GoQjFMJIa5nLlfm98axpB5WElW3JGaHICuuKQBgIGDaR43Zn0pUkRksBAKppkuDOtqHXGoiETx2ai1xKV8TTpuaMMWd6pY9IpE00y/ejUiVl2nyOxxdVsgatEINE8KHh71iEYP6RVZ/PeJlD08ErP32X+IlCTh/om6xSBc6edJkwMfAakIPZfLm3lc3kxzhGMGrmmunqOedYxASKR0E7qkM7EsZkosFsOQIUPw8ssvY8KECQCs36mXX34Z06ZNy2gMwzDwn//8B+PHj8/q3ETp0ZRWxYaIxEzGyqVwJMFI5IqiFIthFsX6KrL4iUTR7reOMa1fhvMQGLCEIOBoA1U8CtHIGXOMhrIiiZ9lUU2dYx9gKlVbZNUVYWFMOEEsikgEgNS+WikMU7V19msibc2ikUwpItF/7aIK052kzUK0sWRKWqPEMZphQvccr37W4Mmbpwo9eYAu0/kg5eyT1WTsblzmeHTGl1ZHJSAGPlZEKb7EeZiWkYBkSpoede1imrWxHtGY7TrGXBMa4JIKzr8ZxIwZMzBx4kQceeSRGDp0KBYuXIi9e/fKXIoXXHABDjjgAMyfPx8AcO211+Loo4/GgQceiJ07d2LBggX4+uuv8fOf/7zhF0UQNk0pEsPGz5VoJLc0kQuKUiwSBJE/mK5D0/XAfdnywx/+EFu3bsXs2bOxadMmDB48GM8995wMelm/fr3LWr1jxw5ceOGF2LRpE9q3b48hQ4bgrbfewoABAxp2QURB0FhXdGOtirkWiX7nIysjUSwUlVjM1qKYkaWQO339XM6mfO9zTIbJuUXCYC6TcnMAbpcz44oFUlqoxAEBbkVZL9pJou1EQytrFj1uaOFyTu2vc97br2Yy5by31y6aimXR9KTQARxLoV8ybk24oWMR2U9XxvCzTHrRNfsPiK6nu5/VNDlKVLSIiObib4+9TxUzodZGe2zAZ1mAanU0FTe0x9rImQaI5OCyP9Jd01ztH5JiR51HUF1pdd1jjtzRTemGFkybNi3Q7bx8+XLX51tuuQW33HJLg85DEF6aWyT6nZusjC2bYqhgVVRiMYhM8yf6rU/kymexvz6B6JU39WlGIQKdv+8M0DxFAE0OTRei0haSGf5Bl8LNNBWXrJM/UQhHNYhFvKY8axZTtQmYor+ydtFMWOM6YjH4opnGpEg07WtSXc7Cla2ZpvwFNHxEhky7IwSn6i4WgizlWCJYNGa3JZxBhEgU1WPUNZaquBRrHOU+HfBZ52iNpTlC0m/do5Kax+tCdrmmNXH1jss8zDVd7zpGb/9MygM2AC3atG5oghA0d6BLPoWiSnNYGQUkHAuLYqlgVRJikSCI5iMXlkWCaAwNcUEXilAU5FowCoLuFYnIpiXTwgRqBSsAWLRoEZ5++mnce++9mDlzpu/YooJVc1I0YjHTcsz1pbjxsyha46e7nIOsjZmk5FERmVSkxRAcMO1vAppwPTNlLqK/4uL0c09606yYhitlDgAglZCWNsd6aAWzGMlUmhvaqK2DISyKtUm7nwHTsK2j0jpo3xfDuXphGQUALaa72nSDS6ueGsSSSrsq+9p0DaYIjpH1pROOm1bUlEb6/bdqTifEpOxX4SJWrImKxVDeL9mWTHMJu6yPclxnjnI822LImQYmfpjiWNU1Lart1Bf84hfx7FyE++IzTZPTiHQ6WkQPtiwmg36iBFE4FJpQLATCBDcJSYePv+sKfX9w3lhjn/X3NZPCBMVUwapoxKIfYelx/PInqhHPXte0CbdIFPsM2cblebyizjreXzJqSuQzs1WjzqCERttuWnDZU+Re1HzWyPn+gRdrFk1DuniddYxJx+2cSHdHqyIRsERjar8QiSLPoiMWjaQn1Y0iFpkiFnW7XYhF0+Bpkc+uS5CCULivNemaVt3R6vpF65p1MJlz0XbvJhOOiNNtcStEoioQbTczc7mZFReYV6Cr/aQwFHkcdUCk6ZHrI6OOy9k+zNc1LcSlCfl74V7j6Llv6u+A12/tk1YnNJ1OWGnJAJime+6Zex9BNIZcu6ILWSg2l3UxW/yEJAnIcDIpTFBMFayKWiwSBJEHND1tHadrH0EQDaZQBaMXWgcZTqaFCbIlXxWsikIsZuqCTj/OsSgCXqugn3vZem8IK6LicjYUa6LpCVgJq+higEtLobQWcQYu7EvCA8md2tC6OJdI0s1YuMvQp56yjIpOJaQlUbym9juuZ9WiaO1LIlVrWx4T1t0xkgYMO8BFtSR6PwvLItOZbNejtqXQ4HB+3ZSgFNtqaNiWQlHRxTRMaD7VYmQATzLYDQ3NdKKhTa9FMZmW3oUjwIrhsSxyNc+j17IYiTnVZcT4Eae6jFwyoEXSg3TkmJF0QyEA7mP9k79LfsnEcxzswqJRsGg0YB8FuAhee+01LFiwACtXrsS3336LpUuXysTjRDjZWBezWa9YyFbFYoaEY8MopgpWRSEWvYStGawvrU1QxLPJ3SIRsD77C0jPseChglb87RYuaV1T1iwqCbtFP+GtNVR3tDedjt+1KUm5Hde0meZ+lq+JpFyfKFzPqdoUUvtFFLQtFhOKWPQoY781i65oaMN61WO6a02j1d+AoblLAIoIbKZp4KJNiZ6WybbF9RmadPsKNzQAcJGgW4g5pSIMz3RZXZj1THeLRZ5KSmEoj1NKFkrRCOX3VURNi49QXNLcSeEuKvXUGyEN+LuomzphN1kWM2Lv3r0YNGgQfvazn+EHP/hBvqdDFBHFYl30g9L1ZE4xVbAqSrFIEEQeUVIH+e4jAACnnHIKTjnllHxPg7Ahq2LzQqIxM4qlglVRicWwUn6ZRj77WRQBy3LIPVZEw3RczsLaxxULpKn2C5mbxhSLIqxyf9KwaNuGkuAyV5KwKIoROdMyy7loGkoZPjsvolLX2fDUfDZqE0rEs9UntT/lem/tC46GVuHSDa355mHUNMdNbU3XhGbPTVo7Y5YFTrUiqqUF5flFEImpK6536zwsAqctU0tXQC1qazJ6+melVKB89ZyTmYZjFRTjR0ywiLAU2lZEe1jmeW+NFXGipsV/V58IaYkrSiY37mimRx0rato+ioZuKHV1dairq5Ofvak3WhrNnXMxU0a2+7+0ttd3fr/Jz1PM1kUVEo3hFEsFq6ISi1785Fl9kc9+ItHa5xaJYp+3n2FyuT8phA532vwQqec0WyFGNQ3RNA3DoIloabu/GDMS0Z160X5VRAxF6KjrF2EJLW+tZ1GZxUimZHSz6npWRSIg3NBu4eabMkcEKkd1KRxVDF1UenFe9Vj6ukTxKhKAq2sX5X4xhmmAG6KWtn0/UnBEnBnyg/ETiBmKRq6kzAFgrVkU6XrsqGj4iEWXILT/9znrD5kT+czVVyeqWTZ5IqQD1zCKA5rSFU1u6Jwwf/58zJs3L9/TKEkaa1X0E4hB+3MhHEsBKj8YTDFUsCpqsSgICzAB3OsUvWsaVWuiKhIBS6yJ90lbHCVNU1oRRZtLVPpMRteESLStiIyjTKxJi9jVSZgTRGPYotJQi3SIFCxe0ei6EWqAiyjZl5KWxHTR6KxFVEVjuoBULYtuCyPgWGtd5f4M9/yYxpzqLy7xZ/9sPNVdvP2sPoa0RKoWRma6q68wq7P1QYpGdVyPIFQFZZhYFKiWRbF2MZUEhLVNFYh+YtVzfiEawbS0NYgMcCq9cKdEpF/QixjDN52Ot1tQOp0MYJEQy2KELIsNZdasWZgxY4b8XFNTk5arrVCp2BS8b1/z5g5uUuoTiUHHkGD0h6yMxUtJiEWCIJoRWrOYE4IqPBQqYQLRr19DRGNTuKIbalVsiFBUjyXBGAxZGYuPohGLYQm4gfA0Oeo6RW80tKkc512faHDusigCljVRfS/G8CbvVhHu56Rt4In61UFmmjQA6Sx9Hro3VUsA3nV+pmFIK5xcq5hwLIYyPY5iYUx3Q5uBqXNc16A7+3TbE8vtBZjc5DDtc5kxx0opLIpCevitT3Rdn2hTDVsea6BrhobbLa/250rEuPdcfucWqOXuZHWZSMxKBg6ARe0/brGy9LmZhhPU7KlHzZimpNGxLcncdNzPwhrNlOvx/C6FJuC2Bg68rkxhup6WfkjdR5Q2mYrEoOOKwdLYGKGojkGCMRgSjMVF0YhFP8Lcz2qpPrVNSADhLpauXx83tCoM61K2QDQ5kobzXowl3vuKReZ2Qxs83V2tMSZT6xiamBuT43PN435mWkZuRG6aSsocTwWXhCFzKkqBmDBcIlG22ddv+Fyfbl+fyGAjhKU1TU22Mfv61VKBIhCGe9y1pmmmC0ilj3ftIgCkO1vhK9a4x5VtJlNpLm/rUH+XtKbrrqoyAKBFU04JPNUNHStzH2wY8ndQ/PTUvIvSDa2sw5Q/Z7mOkSk5O31Erbc/tNCUS1kTiToud799BACrJJea+2zdunVYtWoVOnTogJ49e+ZxZg2joSIxaJxCFY1NIRTVsRojGEslyCUIEozFA/mMCILIClHuL2gjLN5//30cfvjhOPzwwwFYKTIOP/xwzJ49O88zy56mEooNGTO+qfm+gDSlUCQyI5uk6kT+KArLolqX2Q+uBJi4EnTL/U4/7uknA1wCgllUiyIA1KbMNMtiyjDT3NBiLF2x6KREgIvJURZx63RdA6K62G+1RezxY5w5KWBEuhWmhVrSuF8EseFYCq1XU3E/m0qbO3VO0jRdFlgvusd9HoWmuL7thNo6k1ZE02W986bkCYle9oEbpuOy9SQkd/VTrInCsurcj2SatVGdh0wELqykQJplUY9GZfUZLWqNr5vp688Y4Lif1bQ79iuTaXfsOTIGsJRzLISlUVgv093RoelxFHc0U1zcWcG04OUQTZ0AvIgZNWpUYHGAYiIXQlEdO5cWxmzWK+ZKKJI7un7Iwlj4FIVYbAjqQ1pdu2h61ja6UueY7vWJdSnTJRKtNkO2qaJSXb/oRbih5ZpFk6f105MMUc06R8QWDIbi5hbvNTUa2vOHmSsVQ/zEorNW0RFyQiyayppF0SbuQ8LkGYpF0WICdhYZJiu58NCIaj+8rmnXdcn0O5pvv7T+Pi5nQ7jllVyUps9988MrFs1oClrS+u8UKYvLMXSRMkdUoQm5XjVwhEWdyjPq+kXrjQkwu59cz6jM1Vck2j+3JnBHW9HQsYB9hZcXj2g4uRSKhQRZFN1kIrKb2j1OgrGwKVmxSBBEjtBCLIsUDV0yNJdQzLV1sRAoButitlHjav9SXldJWBSlWPTmSvRLwG3C7X6G/Vn0M3wsjNJSKC2G3GVRtF7TrY1J03RZAdVXwMmzKF7LFOOcsDpqjCFuW8vitotaBrgo8/arEe0XgSqrtiSdPIteV6sVzOJ2F5sJAwn7fcK+hjDLos6YbIspATw6d1sP1YhjGeBi8sCKMO5AE+u9ZpjuKGjUb530czmn1cg20hOXc8OEGWKxFBn1HctiRFoWxbmEhRFQor3Vn5Unwp2lomk1pxlTLKd2Im5mphwXs/g1UN3RtpXRlbOxCd3DLBoDiwZYFqNkWSwFmtuiWJ9gzGU1l5ZuVWyKMohNJRzJuli4FI1YzHTlT5D72fqsrG30iB9XShyZGid9faIqIGttAZlImUiIaOEQsRgTItDkMLlb4OkMqLP3i3WSMd2JhpbjCZHI/CNcRcJptxva42oWKWwSZlpbss5wiUTx6ohF9/l0xqX7OWGq7farEvksMEMEXqZrFkU/pjnrI4Vw44bpI4ydSHDTk0LITKakWDSUyPGM3NC2qNNiUUTMmOucfse7AkA8axZNrRaap41puhR6Lne0Ehlt77Q/m5kJw8ZUdaEKLiVNS3E9t3RyVSu7sRHcJBgLE/IZEQSRFUzTQjeieMmnUGzqc2cihprTqlhIFsxcCUV1/Fyfg2heisayWB/enItqAm41AtrrfnZqRfu7oesMd57F2pQpLYr7E+mWRfHqh7AsxpRIaDUHo7BYVkSFldIOdOHKfPXMfmQuy6IneEPmUUwarvrPgGVFTLcsKiUQ0yyLTsR3THP6CCujbl+TbnAfV7PTFmZtVBG5D3VhRTSVaGgfl7dqURSvMtCnNmHfhxSM2jprf8JxTXutkypOFHQk7ZyRMn8XrThOJli3g0GYqCmt67JMI4uK0oEGmObJM8nSE3XLz1DL/YmTKgKuKQJdtAigB6Qz0UrmkUIQJUlziriGWhkL2bq4c3NraOVlgfvN/aWZa7aonux+axUB/3Q57uOUtY0+7mdApIdxRKK1z4lyVl3PQiSqr3VeN7TiDhdiSvSpiDmuOlk3WmeI2yK0NmX9cW8dc8aSOkutEe214ii1iIWo4qapuFi9qXOUCi5C7LrEImRbuFgUn5xVcuKaDWXtohCmETNiz9F0uadFm9XfSBNpXFmzqLqevdHQrnRB4n4ormchElP2q5lMIrU/4elnKKl+fCLc7Ys2o3aUczIFPSrWO6an7lGjp2UibyFyxc9R02VSa25HakPTwYQws+8l46Y7Mhpw3NGm6V/VRX5oAsufTyS+ax9RlBSC+7k5g10KydIXRlMm5s6Hta/UE4u3FOjJThBEVnC7elDQRhQfTSUUW2800jbCIZ8CNZ9u4Yacm5J1FxZFZVkMI6y0n9PH3/0MWEm5HTe0mmfRHfSyP5FuWdyXMJAwPJZFn1qEsUj6H1LpmtY1JKMea6fhzE261MUf40xrRBumtNaZnvrOalJu1fUsLIr7xTVxZ78Xt2VRwGSCbhkhnTChxdyWOtUtzQPGF9cAAIgqrliR2DqgfrSaQ9E6p2NhNDzlD1P7EzBqrfeqW54b3vk61kxhWRT3T0/q4GWZ5WUUZQE12w3NU7YVMZUES4k2xR1tCCuj+O+qp7uaXTdAuKtzJNwowIXwECYKxb493Rr3u9GUEdHFYlVsKgph/SBZGIubohCL9UVCqzojrFqLCZ4uEqXr2XRFPIvXOs9axETKdIlEANifNJBQIqMBIKVMKiIEk+lEQwvUdYwVUd1zflvgQJPuX6mJg4SAT1JuJ0WMEInKmkV7vkIYJkzuei9eg6SJwdPFos4cd7UYI6Yp6xOFaC2LOMmyhSBT6kB7o4pVd7MZkuTaVFzYUhgmnFcz4YhEADBqk0jWiv2Kiz7pXuuposk1i2K9JPd1V4u0RuoaR+EGlxVfkrYwjJVJFzaTYt9ZWiDXJZqmk0bHZ+0iF3elPtGoRlVnA+VZLCkaY1XMxnKYqWhsCXkXm5NCEIoNpZDXLrY0ikIsNhbVmihWb4m//07lFXVtoyMkhcXQb33i/qRoS6WJSr/UOSnF6ija4gnrj2t5TFcsmnYFFSMi52p6RK7/hRqy5J0qlqQlUQa2OJZGbzDLfiM9wCWprpn0oDPFgms6bWLNorAwJkyOqEcYmoYJ03Rb7Vwi1xZJ6p8WNWWONUb6Hys1PY5auUXcD6PWsz4xaUiRKESjkTBgJtxiUVg/mcakWDQS9nUmTUTs69IU9ewNhEnVJqRI1G0Bq1oYRbALT1nrFFkqCoichnJ9ovrtyEfseUsANiZNjg9ci4AHBLIEtROlR0NdzK03Go22MhYzxZCgO1eQdbF4ITMAQRDZIQJcgjaiaGioVbHQ1yKGWdOK0QXdUOtgMVsVBbR2sTAoGjOA6moOi4L2qwPtuJ7T1yqaMipaScCtrBkUFsKErORiSotiQqnqIiyP3jWL3ORgGnO1AUBMGU+ML9zPwoon3NBqGiCJEkygeoFVNy5guTG96XGEFc00/COfRVutEtntreDiWA4VN7StE3QTyppF5zgReR0pdyx13LN+0ZteR70W0zCdNDK628LovmbTtUYRcCfbNpSIZwBI7U9Ji2Jqv7NPWGC9VWaYzpyIZvvi1XmLNqYxaHaEdMpOzaPFIunVYkT96FQC3LRSMkg3tGmA2fuhREA7qXLg2cd8BVtaf/gndc8IioYmGkl91kVyRTeeQhWKZF0sTopGLAI+gqm+/iH7DM+aRYM7Is1U1jF68yf65VR0VXBJCYHnnJ2Zduocn3WMYs1iImVKl3dKCB0pfJ01g37XxJU0OQJTWefnDSiR4jFl+lZrSfL0tvQyf86rd82iBtX9zOQY5eJei3Q9CcMRsGVOOh1rrj5rFg1TisSgwBZxzX7HAmLNotsdr85DCsjalJynNzUPkkrlFpfL2XqfFGJRd9zVuu16NhMpRaxa7mfd/sxihuOGNhzR6KxjtF81JwcktOYPdOGaHuKGbrnuxZZCU1kVW7I7uphc0UGW2GKZP9E0kBmAIIjsYCx8I4qChrigC939XB/F6IIWZGMpbAqr4sh2/xd6v+rbH0ahWj2JYIrKshiEn8VRbRJBLdwniEUNHFFd0oDlNvYGrCQM0+V+BqygF2FRlO5Pn1QwurQiMt8oa/E+6XVlc/f1hOEbKOKxmgmLmV+1liT3q+CSfnLV0hjzfOXQGRDzWCcNzuT7qOLW5Z60NE4ibMei5ldrOcyyaPpYJUWaHNMnlZCRNKX7OSUDXJwk4t45Akrgivfi4VgYjagOIybuueMO171uaDFuKikthsKKaLmh3RZOPzmmRkW7qrnkAApwIVoSYyrWBu57ad+BzTiT5iMbEdgcVlKKis4/JfNkV1PmhBFUVc4wuRR4cn2e6axZVCu0eNcxcpM7pfRSQuD5zcP+Y8+YIkKdtYve6i9eYWu9d0ZLW4dmGmkiyUiklLQ0btHjX9ovva0+RD/hkU2YQFSuWUx3ZTvR0DxNXKspdNLcv3DEuJ8MUtcsiveGT1S0XyUbcW+ki1yJkBZtKkxPvzdCJOp2CiQjZsA0nHKA1jyMtDKC6tpFuT7RDLHgcFP5hW9A6pvG4lc9SN1HlCS5sCoWsis6TCSqfRoqGHMlshprtWuItbAh10JrF4sLerITBJEdFA1NlDiZCMWG9G0suXbfNsZNX8wufqJ+Ssay6EdatRYlPERYGNUIZW8grmpFVF9T3jYlX6DhcacCkNHQzF7PxXm6dVI9V7qFs778iop71lsnWQn2MJQoaGt8J8pZDWrJ1KLoxbEwsrQgGTWAiLush95o6PQAF5FvUVOuReQQ9A3qcbmhva5srozrnFvcGxl5rdTN9iZwBwCdu53BTGdpAUQRI+JEnovXZCotybivS111R2dibQyjifMsQoso1WR89hFEAZJLMdMYC2NTQmsBiVxR1E/2hmgar+jyd/U6YtDrGjZM0zc9Tpqr12dyXHP2iWNTyvjeEoGhAtH34hwx4RJRHkEm1leqwlCNDg9KwF0fanodwxZTaps4l6m4o9UE3eocVVHneo3C1V/TNZdIFNfuFWDS3W2YaWl61DaXi9wjeN1YbZpSlcaw3dBazHZDJ4zQKG9vZRhumumC0McV7+t6bkZ3NGcssAY0pwCXoiDb4JZiD2zJhoZaCgtFMDaUphDTxRTlTWRHzn1Gd955J3r37o2ysjIMGzYM7777bq5PSRBELsmBGzrb58Sjjz6K/v37o6ysDIceeiieeeaZBp0319Dzr/kpdetaqV9fS6QYnn85FYt///vfMWPGDMyZMwcffPABBg0ahHHjxmHLli25PC2A+q1yavSzt83g6XkFBcLaaJjcSiqtBMb4jWVydz+xiTa/cVWXbbYIy5V7c6KO065HXi8adV73mOq4PM1aKdqE9dDPDRuEt79f3WbAcl2bdpCMe+PSoikio9U2rmzp18DT7pf8OSsX6M0Rye1zyEhv0yllaF2DIetZc8Ow60E77mcuyjiqLumG1nVuCjQ9fMuSbJ8Tb731Fn70ox9hypQp+PDDDzFhwgRMmDABH3/8cWOvrEnJ5/OPKA6a0jVOIrI4KZbnX07F4s0334wLL7wQkydPxoABA7Bo0SJUVFTg3nvv9e1fV1eHmpoa15ZPVAFXH0EiUMVvXybjZ+2ODhrHFkR+Ak7OpwnO5TeGn9BSEQJNFXLOPsPe3KlzshGZYQQJPe88/eatfrFQ3erimtLP1bTXwJRqLs0Ft6sHBW0A0v4f19XVBY6X7XPi1ltvxcknn4xf//rXOPjgg3HdddfhiCOOwB133JGT620oxf78ay4KycXd2GCV5gx2IQqbTJ+BxfL8y5lYTCQSWLlyJcaMGeOcTNMwZswYvP32277HzJ8/H23btpVbjx49cjU9oggRuQ2J/GJVcAneAKBHjx6u/8vz58/3Hashz4m3337b1R8Axo0bF9g/H9DzjyBKk9jmKOKbgrfYZmthfSbPwGJ6/uUswGXbtm0wDANVVVWu9qqqKqxevdr3mFmzZmHGjBnyc01NDT0wCaLACEsSL9o3bNiAyspK2R6Px337N+Q5sWnTJt/+mzY1oCRJjqDnH0G0bDJ5BhbT86+goqHj8XjgH5V8oGsMupZZdKdm9+Oiv48LkvmMlcn4WhYRpmHWN1HHWGfiNb2PzlijXdG6z3x1xkLPKxJaa/JVU/alr4NrSiuju76zGNeU8xQ/yqD75TeONVb6Ae7ravw1BEUl5xK/9b7qPgCorKx0PSiJ+im0519zUUhJuV/ad2CjXMn5jIb+aGs3WrdYQJTaMzBnYrFTp07QdR2bN292tW/evBnV1dW5Oq1Eq0f0+AkwjbnFlB+qgBTiT9OYa62ad3y1n3j1Ckd1XD9RkhFKcIEQIkzXpGiRgky5zpjnnA0+t4LOIMdVx3fO4cxHzFOT8/UTbs5nb5sqvsTKPWZo0OwKI6b9yuQrSxOkapt6r0QuRX+RaJ+fuUWud95MOYecs+a9Bl25Pl00OmNo6W35TH4dFgiVbYBUQ54T1dXVeXuuZEq+n38tmWISTZRmpmVTTM+/nP3FicViGDJkCF5++WXZZpomXn75ZQwfPjxXpyUIIsdwzkO3bGjIc2L48OGu/gDw4osvFtRzhZ5/LY/msipSibzSoZiefzl1Q8+YMQMTJ07EkUceiaFDh2LhwoXYu3cvJk+e3CTjh3h8Q45hvp/9LI1ua5/9qmlOm/2a0piszuLnavZWcGHKuBHP+GFz9QzquCAVSxVLs6RpslYx81jvLGuf9T7KHEuguJ/ZVnJRrYlRj5U2pilWzIg1Dz2qQ4+65yQtjTFdvtejEXktaZZI5drFO65YIIWlTlOOS7O0Km2a8soNMXdrXFcFF+YZI6bL+yzd/TE93Yqpp1+DgGlaeuoZvxrMflbFZrQ0mjw4IX5DEuXX95y44IILcMABB8gF4pdffjmOP/54/PGPf8Spp56Kv/3tb3j//fexePHihl5STsj1868x7KvOLjH3nm56QUUtN4TXd34/o1Q1DXFFF0oy7sZYVTO9P/WNQWRHsTz/cioWf/jDH2Lr1q2YPXs2Nm3ahMGDB+O5555LW5yZK4RuE5pLA4OovCH+TqtrBr2uRZdYVF4j3jZdA4+Iv5J2GTrNKd0n3M/i7zlj/uOK95qP4BT4WW5U16UjtqwfrR6LOOLFFma6XWGkPGGgXBdVSmy3rfKvIEw0+rmcy3VNee8jFu3z6zHNeR8Vr45A1KJR+/ocoSVFXzT4V5e5xKL7fmjJFPSkfS67nJ8RM2Sbt5ILADDDXa3FGtd9LZrOnDYpzpms5iJfoxHFNe2eo+sahEhUcxc2IIehPVjDjgvADHFDN0Qs1vecWL9+vct1P2LECDz00EO45pprcPXVV+N73/seli1bhoEDBzbkcnJGvp9/RMMR4i8T0dhQodgQYUVWxdKjWJ5/OQ9wmTZtGqZNm5br0xAE0UyEuZuzdUMLwp4Ty5cvT2s755xzcM455zToXM0JPf+KmyDRmA9LYqZCMV/WxWzFLwlfh2J4/hVUNHRjYNKKaL8J+KMljTiGt51Ji54MxFCsfXHbdbo/6bTF7LZEylRcirZtznTmIww70v0a0eSxsYiedi5v1HBg0CxTrE8AWCQqLW7CdatFI4iUW+/lq12vuGx/CuW6qBMtajkzCOuozpzayN5gIXWO4n2ZYmFsbV+f+hqzLW7i/JEyn7mVW9ZELRZxXQNgW0k9bSpcdye8BgDdUzdaj6ZgRg17PPs1qcNMiHrNtuXZx7IoxlAtgbrto46UReR1aTEfN7u0IuppFkVxLSwSy8yKyDTlF775A12aMsCFKB5y4Ypu7kjohoqhphaHuRZWzS0Yyf1c+pSEWGSMpYlD5nicbfczwBhPW6MoPL4aY7ItKtbKGaYUdVIg6poUeHUpSzzEIhoS3jnZbmhucrlmUdc12d/rho4rAjJsHaWAq3V4FYHBIjHrrXC7xqJSxETt11hrS5ClalNobTrVSgRCKEVtsVimcQTVCNHg74YW7mchFstjujyv8xqTc4pKAWnNXy+LQ7ffR8pFWwy6xzXtuidKNRTd9IhE+9WMRaAlU1ab4o7m5ekqR7jvhYDkSok+IfiEWNRjuuJe93GzxxwRL382QiSKa9E0sEhUnNw+jy7XLTK/9Yvi2p01DjlPp9PUaxYJoiXRXMKqsYIRyKwcYXNcz45NbXJ+DiKckhCLBEE0H7lwQxPNT7ZBLkDxBLqECaWmCORoKMW2TlGdr3rPGisQyQVdfBSVWKzPxZzWP2SfztJdvt4Al6gS+ey4jTXEDOt9RSzdhSIsjLIGtNIloowRV94D4XkWfS2MimVRWKNYNApmW96EBS5SFpPWuki5VZsy2sraF0+o9ZZT8twxzXE/A8Lt6H/PYxpTIp6tNtWyWCYsh61i0qIozh9rFZXvo62sZMR6WdyZt2JRtNri6dY4BdO2GIYluzZNpx6zePXmyBQYXsuiYrl0IrUdy6JwpUcVN7t0odvXpbrX9ZjtcpfX5ASzOEFL6bkXOdOcKOkwK2KOLIwGQtzQOTkjUYo0lQt6x6Y2aF+9O6tj8iEY87GmrylzTpKruWVTNGJRY46LS7iOVZeXTJui6Eku0pvY7lSNKZHRHldvVNcQtQcUr3rKLRIBy12cSFnvDdsdbSgTEYJPtBkm93U5l9uuyJiPa1rz9FeRp1LdjVI0xsBiZQCASCvrNdqqDMlW5dZ5Ky0pa4j1eQlTRv8K8RPdn0K5IdYxCrHI08SBmmBbvJfu6Gi6cIq2iiLW2hJ9MSFWK+NSJEbsOcbaVFify2OIVNjXUm4LragjvpjPmj5xDWYiFfiLzX3Eoh9MZ9ASYrz0ft70O3pMd0Sisv5SCl4pGmPpbmhxLZGY42oWXwDUaGjl553mambh4tH7u4KQJQ71kUkFF6J0yad1Mb4pirrqZEZ96xNKzSkY8xn8UWhJysmqWJzkrwwEQRBFCa9nI4qHfQ0s+tBYq2ChlPjLtbXs9Z3fL4go4WIWaLResTAoGstiY1DzLYpgF912tUZty1DS9Lc2xmzrmmph9HM/CzeuwM/aKPIzlsciLkulGDeqeQNcQi6KOQmcuWZbqGJl0rKo2zVmIxVliNpWRqPWckPHE45VQE0qDQCpshSiSWu/afczDS4tkF70mJPTUI0MFoEd0s1cFkHUY1mMtiqTFsVohWMJtV7LpftZvLJITLrZ/dBsa5wWScKoq/PtYxpmqEVRBLWk9jOZL9GIBVtRZH5IJZglogTrCPezvJZoRC4REBZGaUWMRAE7QMmxNkZ9LIvKL4afJdEbCNPUeRZNIOgWmsG3ligximH9YiZWtWyCOTKhMQI0l6KuECyMxSxaWzpFIRbrc5hpzFlDpabQYbadgylR0Y5L2rtmkSGqibWKtmDQnLbymONyFkIwpbhpxa3UNUP2EzhuaGXdo665xo1FNClc02ooKzdAjMqZJkWiFBvxMrC4Jb5YeSvrWlrth1FruZ+9IknTNSmOhOs0tT8FwxaJRtJx13rFolpxxZvsW4/pjmBS3NHOusSYPbdyl7tctIk+mi18pUCMxJxoYT9StntK16HLtX/BQsm3hrNu3SumMbnu1EgEjyGumWlMpv1RI7ojfhHddpsm15oKMeysOYWaasfu56rYY7/nHgHpck/XJxLViPosMMFhBtgQg9qJwqUhgS6ChgjGXFgVw9YtZiqSgoI5sjmuoTSXiMqnYGzINZJVsXAoCrGYCd7gF03JpmPIPj5VXaQVkSFpulPnJE2OuBjDfo1FNCnwVGSQh20pDFuzGNMd66RqsdSZ+/x+OGsWnSAHIRo1xbLIyiyxGGldi5gd+ME9Zh+ma9KiGN1vCa1UbUquaZQBIGa6ZVFaJDXmCCYhPBXLYkSxDqpCELAtiyKgpZXbIsrizrVIa5tqZXPdFMPZD4CnooBWa8/PtnYq1yzQfMWiU0HGsO9bpEzcD5/0OlIsalIQisoz0VZladbRSLmTEojF7Z+Vep0yZ2bMafOsN+T1ibwcp84xQiyLIUZbokQR4q8+0ZiNSGyoe7ypaM70Ns2NOGdzikayKBY/tGaRIIis4Dx8I4qPphBne7rpvoIwqL2pCbNCFZpY+Whrt7zPqTmtmQ2BrIqFRVFZFmUUtO2Y1myXl19UtOE6znbRgUuLomPFsz4nTcflbCjuaNO2lkVtq2N51P+hJ9YjphSLonj1j4Z2WxajmibPn1lSbgYIN7T9yvUYWJkVTawlLMsaT9QimnKnDBcRt1o0ItfUifWMZiIlLWpO1HCwAtBiTkUSXYny1WJel6ySwkexJqqWRMCxsrFYmWNRFIm4hbUNcNblKdZSLq4zmUyrhCJ+L9TE1n7vRdRyqjYBLZn03If01DlqneeIkh4n6Jr1spjbaghP6iPlvZyXd62ialn0vqrrFTO1RGYJuaGJMAoleMVLPixqQXMoFHLtli606yUaTlGJxTCEkFTXLgrXtLp2UQS4cHvtovj7G9U0mLpYg2jnCOSaTAVSFuIa1jWGhF3NRbwaPqUs1JyNMaWyCWC5wSPCBeop86cpqzZF0mPD5NCkSHQCJDR7rSK3xaKWdIRizLOOT1dyGRoJSyCayRRM8d4MFkkCTdOkOJIiNBaRIkmkh1Hdr3ItouJqlq9i/V6sLL2aSUBwCzdsN3TKdkNHkuBR8d5+FS57XUdUc1zH1vC6nGfKXt+pRSMyb6Pjjk/3sWrKNatlCQEhFt3rNLVYmb/7GXYAjxCSQuzqUfdaRWviDV+r2IiUOQJ13a7fPqI4aczaxeYkLH1OJjkXm1s0FrpgytX9aMx1F7JVsWILoMeC9xvecm4lQsmIRYIgmgdas1i6FItgbAoKUSQFUZ94yjYpuR9NdT8KXRwTDaNoxKJS6jm8nxLoojlvrVfGZMocYSRS3dEmt4NThIdThwxwCcNVfcWTlNvbD3BbFkW6nKimpVWQUd3QYjRT/awL65n1NYenYkDUCiLRWlXCdaFwrGtR29oWqaiFYQediIhp0zDSLGp+qG5Yb71mTa1/rEQ0p1nSVCubcL+qFkYZ7GFbFP0sZtwEswNcuIiGTiakldH0uKOhJLlWg17UuYv7IQKChNVVntIw0yysumJZ1JQKLTLAxSdwhylR7OKz43JXrlmt3CLagpJwZ+puboRbOmWaSAbkyElR7pyip9gFY7YVXcLEjZ9wag4xlK1lTe3fWOGoXl+mwrEp70khWxVbMkUjFv0QwlADh1ebaVCjoB13tJpGB3C7o0XqGuGGNjmT6xdNWxwYHCjzzENjLK0soN+aRYGaU7FMiEadyShoJ4VOustQRnibHFwX7l/bHR2JA6YlbDTeWt4HGTWtuHgBy1WtlVvu6oi9Pg+mAS7EV8gffuHCZZrupO4RZemUFDdS9ERi6cLQp00KYC2irLkTKtpH4JimvCksYpf7i6UcN7zMRWm/6nqagNQj+6FF7f62aNZjURgJ657oZenueHkflDWL3vJ9Wizicrlbc1PEovfalTyLrvvgKe1nrUH01oQMWKuofG4qTB5cqYW80ERjaYpgm4aUAPSjOa1kTSWSxDjFdv0ACcVCpqjFIkEQzQ+5oUufQrcuZlL2rylFUy7ItTAq9Ov3QkKxsClKsehXGzptH5yk3MKuotaL9nNHi7rSwupn6lxaGdUsQ0mPUUdnHLptxpQu7JAcIlFNsSIqkdfivR4SDS2u2eROVDgTq20jKZlzkHPrwhgU65pwVwvLYioBLiyKdiQxN005RihqkIhwK0vLYlRWIFGtZsxj2YQWkTkiue5xtbosi+mWMWZfH7hpbYC1bgAAjAiYHEdYEZ0gERGUwpVXcX4mXfoJ6N6ocCXgx+uGZkqgjxZyzW7Xe8z9GnUssjLhuloDXLY5506v+RxgRWyCwBZBMsQNHdROFB+FLhgzpamsjE1BPgRRIV1/ECQUC5+iEIuadCNbeGUYYyyjNDp+VV2kq1fj4EIY2vrC5Jpyh8QfwfQ/xprJpdBLuqq6uFFFoFifGJduaE0KSK9IZMy5LhkNzZk8hyaioc0YeMQWNLaA4kyTwkmTSavtlDB1+x21LF3PRnjNNtX9bJ3caYs6kbxOJHNEzkMIN1NXUv4IQaiII9dn5ZwqQrgxrohb2wUPLSXHEdfOlGho4ZKW7uhIzHH/2u5rloqCRRzXvLw3HsLug6t8n1plJ+IRkKo72iMIuR5x30Nxj/xS5djHhbqfPULTT4jXh4lgdzNJxdKiuQVjNi7oTKyLgnxY2QpJABWylbGQ7hMRTFGIRYIgCgdKndOyKBULI5AuTBornopN6BSalbHY7l9LpqjFYn3uaOmmVdzRamQ0YCXqBgDOnUhpyLJ/DNKS6LIwui2AmmHCtI+NSDexcHM7k9O0dMui6o7WZJtwlQdfO+dcrg+LRETwRlS6Z4WFh6mRs6Zwj1oWMi1W7rhwudvCmIawoPlE33qtgtA0mF4LmRZJG4PrjmUx45J2XLEowragCouiIUzCkXTLm7QwOtHQavCLdIMr1lemuuYBGXXtukeKZVEm+VZd8N7E4jHFsugT3CPvpa7cK597lLH7GWhSFzRgJZ5PBojCFInFkkRY/HIpGhsS2JKNddGPlihWCsXK2BLvfTFTNGJRY0wKsCB3tNXPevVzR5s+ibp1OG5oIRIh1jNC/SPriEbd9mHr9kl05iQDN5Wk2QCkiBTXIIh6EnBHdSdCOnTNovIqrlH8gY4qmUKZFGkaYNgCyLAeqky4qs2UIxLFccpn30TPHlGiRi2rFUZEpLZL4HjX3CnuVD/XKfe641XXvhCI3LTEIWC5n8U+tdqJ59V3PaMQesJdnEqCJ4V7P8PocE+UNYtG4U3/w2Jlbjc14I58FqJVqc7jm4Dbx/0s9/lP0PWxIe5ngcl5SDQ0iUUAuP766/H0009j1apViMVi2LlzZ76n1CSUkpWxpZNPKyMJxeKjaMRiGKoVkXPuageU8oCcyyAWITkNZQ2j1Bd2D50xnyWKGjRbLGq2QtSUNYVekehXKU9njhBU0+SI93KNpsy76BwrLaPcGVuzz8k0hog3tTzTHBElgjcMO8WMKhSFpc57rNgdYKlTLV9cFWE+IlBacxVhLfNHijeuCaTfPHEvdM0WX0y1+NnCzNCcI/0scD7rGaVlUZT4SyWkcBSWRFZf8IZYsyirsGiu94A7iMUlEgFA09NEs7rW02UtzWRdYhNbFAVJw0QyIOw5qL2lkUgkcM4552D48OH485//nO/pNCm5sDI2Jl1OY62LhUh8U3q1qlxcY3NbGUkkFi8lIRYJgmg+DO7/JUjsI4B58+YBAJYsWZLxMXV1dairq5Ofa2pqmnpaTUpTicamyKtYbILRTwxme0xTXm+uRSOJxOKnqMWinzvaL1G3WjdaWuvEseJg1TyouKY1LsYTVj+OpPyLaFlRdE2T6wcdi2J6dLZAY+muZl1z2vxqQnsxuXMOMUemnEuP2BVDTAPgbgsZ9HQrIlOip51G9b3brZutxZCbjusyzZoIt0XYi/yZMudnboilABqDzuw1iLrP3Jm17jBs6QKY5kQ12xHQLBV10gr5RUMLK6PiDmYeNzQ0zRUhDrgjntMiwNXIZ9Vl7+eq97NAqtftub6mhNzQuWH+/PlSZBYTDRWNTSESVYSYKhTR2BBB2JDxC1k0kkgsHYpKLAph5fcHKSzYRcAYgyZEHHPaAOGi9koKJt3UUoeYDEzEIJhWo2ECSWa6zh8Vbu4Ar5wUhEIgKm5oUfFF6jNFM0rBxSFT/agRqMLN7lyBJgM5mEix43P/1Bav+HOdV362+waIQCH+ZHlCnv6zCROIKqo7XrzXld8F+8cg139G9BgYS6VdFwB32UjhhjYSUmyJajhWNRW3WJRrFw2fFDoiIAXwD3rRnfJ93iAWNY9i2rpO1TXtV8HGjxD3c2PWKgpShvqFKX0f0TBmzZqFGTNmyM81NTXo0aNHHmeUHX7izysgm1og+tGcojHXgjCbOeRCNALZC0cSiKVJUYlFgiDyT0u1LM6cORM33HBDaJ/PPvsM/fv3b9D48XgccbuGeKnQHOIwCFXINVRIFYIYzJRciWQSfwRQImLRZS0SbT6JutVAGGFhFP5ow2TQFXucBZfv5fgaBxPmO2kdtFzR1jiwz2lHKNdjyFHd0DIVj3R5Bx9nwnE7S0OSyeVBphJ8k1ZG2GWpTB9bJPSW1kP1fYjF0LtP7LfGUqyfwZflQkxTUyyscvmA/YYzZzyuHKDbljzZ32dct8tdpN9x3O3Syigir4WFEemR0Uy1+mnpaW9cwT+ycoxPeqGwyOewoKIMEnA3FQbnvknnxb5S5corr8SkSZNC+/Tt27d5JkNkRTGJvsZSbOs3iczZvn07Lr30Ujz55JPQNA1nnXUWbr31VrRu3TrwmFGjRuHVV191tV188cVYtGhRVucuSrGYqTtaXb8o2vwipAFLaIg2IRqZUjpFChGTgYloaM7kuMIlLHI1ch48R79rsYSQv/tZA/MVjrKai0z5Azlfce0Gh4ze9sPPNawKQef60kWiuD7/NYh2myLTMtERqrB17ocjfGXFHdc3APfiVKaoWyH4fNcs2lHh1jnc4ouZKUcQClGn5HgMizN2ry0UPxtlfE/5Pr/+ToR0hnkWnQsJmZmHoFyW9ZA0OSIB7uag/IulQOfOndG5c+d8T4Mg6oUEY2nyk5/8BN9++y1efPFFJJNJTJ48GRdddBEeeuih0OMuvPBCXHvttfJzRUVF1ucuSrFIEET+aKlu6GxYv349tm/fjvXr18MwDKxatQoAcOCBB4ZaAQiiqSDBWFp89tlneO655/Dee+/hyCOPBADcfvvtGD9+PG666SZ069Yt8NiKigpUVzduTUhRiMUgY4lqYfRajlzBzT5tXgujrticXFZHzRPsobihpdOacbnfu09nzGVdk3Px2KZcFjXP9fpdP+dqDnHHwigsoEw5Z1DMgTuARbT5WRZ9opsVy6FqgfQbW/QLw+9+cNuiKH+2nMmE6bLVZS5WzqFUywEATVgYuQmOmHtccULAbcXTROUWYYG0A1JUF7T8wfv8kLSASitBLmS/YJawyGcV9fxNmIDbj6RhQqc8i6HMnj0b999/v/x8+OGHAwBeeeUVjBo1Kk+zIloaJBjzhzf1VWPXJL/99tto166dFIoAMGbMGGiahhUrVuDMM88MPPbBBx/EX//6V1RXV+O0007D//7v/2ZtXSwKsQjY4iETN6b9ypEuCNXoW+96OBNMcT9bbYaZHj2tg0khJoUZZy7hqMK5UyXGR8ukXSMQnjInDEvoecKhA/oJMhWGQux5haHfPjGOSn1R4SLqXLrl4bjypQ7yqbID+LuhRYS4vM+KaJR3lzu//mmrVZkmRaIUWyKJuaa89yOk8o3LDe2XjiiT9Ymu/d5vFplGTDdcQFJt6PpZsmRJVjkWCSJXkGBsWlp9ayASDSiLCyCVtPZ5MxnMmTMHc+fObfB5N23ahC5durjaIpEIOnTogE2bgvNW/fjHP0avXr3QrVs3/Pvf/8ZVV12FNWvW4PHHH8/q/EUjFgmCKAxILBJEcUGCsfnZsGEDKisr5ecgq2KmWRYaykUXXSTfH3rooejatStOPPFEfPHFF+jXr1/G45SEWFTrRofhFyGtWhj9IqW5J+E1B5fBI9IDCe6yMqqos9KlFdNp9bMi+pX5C7M1qjYuzXMf/OxfDbEiegNW1DG8VkP1ZxEWHaszJvOEC4uiK6+l8MjKfJKQFkVxn5ny8xA/I4NzZzwZ6AL7VcmH6Kk1DsCqpQ2AGSkn76assegEuGRCoCUwyE1cXzCLd6x62pra/SxIpDi0lP89SKRILBJEIUKCsXmprKx0icUgMs2yUF1djS1btrjaU6kUtm/fntV6xGHDhgEA1q5dW7pi0fu3W8UbIc3gXr9o7fOPkBb9/SKl1UBjsS/NNc2YSziqqNpRnEv3kX6+bun0JnmdQXj/hIcl1lbnxBWhFb4uUayPdD57BWGmQQ6mIurSdzoR4KYSfS51m92NK8sTuBSyLO3LgKyjzZ3IZ5Hihiv9XDWyTY84FOtReRYizLsWEvBflyj7h6xP9Kuo40OoSGwCAUmWRYIgiKYh0ywLw4cPx86dO7Fy5UoMGTIEAPCvf/0LpmlKAZgJItiua9euWc0zN6YHgiBKFtMWi36bSWKRIAqWlpRvstQ4+OCDcfLJJ+PCCy/Eu+++izfffBPTpk3DeeedJyOhv/nmG/Tv3x/vvvsuAOCLL77Addddh5UrV+Krr77CP//5T1xwwQU47rjjcNhhh2V1/qIUi4xllk6OwW2dc7l1GbPc0kxJ+gzHwmgls2YQ3lBxTl2z6xFrDDqzNg2Wi1lnzj6NWZvu2hC4MaRvYgx1C4Pz9E2kOREuZw7LmmhyyzooEiyLzVSPBZdWxaRd4k1upomkadrHWJvYZ5jIeBPH+iV6DkvR4vTx78c5tzb7msVnww4CMsHARXk9TXfei4ASLQLo1sbFpvTPdBPHcNudbNV/1hyXc8DGmSeSOsiq6NkXaFVsYE5FPxKGiUQqYMthNPT27dvxk5/8BJWVlWjXrh2mTJmCPXv2hB4zatQo+X9dbJdccknO5kgQhQ4JxuLlwQcfRP/+/XHiiSdi/PjxOPbYY7F48WK5P5lMYs2aNdi3bx8AIBaL4aWXXsLYsWPRv39/XHnllTjrrLPw5JNPZn3uonJDZ4Jfwm7fCGmZ8cRxS4etYxQr3biPaxqMKS5mca70iGPdR+z5aaFs8ipngt+6RGte6Wlv/NcsBgu2+tYs+lGf6PUih1Nd+mJto9IopsG44v31/EwZd5YKMPktQQOza3tzJQG3TJkjRZvdR12zaPqII78azkHuZM/n0PWJIelxmpN8uaHzmZCWILIlH3WxM4XWLxYnHTp0CH3e9e7d25XtpEePHmnVWxpKUYvF+tYwekVL0DpGaywn+EWgpvCTbcqaRZnqD07wiiNsnHQ5qtBMvwi/K6sfP/uNml6oMcmR/dYnyvdivWYzJl9uavEscFIkalIkOjkVlTZvQAvTnNQ5eoaiLUQsBq5LtCYXPpbfGBn0bwx1KRMICHCpC2hvLPlOSEsQmeIViWp7IQlGgsiGonRDEwSRPzJZs1hTU+Pa6urqGnXO+hLShvHggw+iU6dOGDhwIGbNmiVdNATRnBSaUCR3NJENRW1ZFAQl7K7PJW31gd3HcUkLC2BQFRjVagi409WYHkOQztKtjeqxmeK1Sqoq38+WE1Y/uykIr8+dbtX1cz3rmtMuXPTys5Z+jF/daL8ocj9k9DTnTkoc0cYYGJT1gQCsu6q5jhX7GDedfvWl0cnGClhftHOeLYoCv/Wl6j6g9BLSEkSmFJooDIPc0USmlIRYBLJLqwMEi0bAWacIwNc17YzrnDxtzWKIgAR83NYhqEJWRYpaOe/w+5ApaZVk1MopNoYU1EyppmLvM9OFnp+3VgQAZTwP+GuobNdAOmtTxf1jrsot1j7AkeEet7FrkoqA9CErMdcUAjHgmKYkEeKGTtjtpZaQliBKFRKMRCaUjFgkCKJ5yCTApdQS0hIEQbRkSk4sNiToBXBbizJ1TQel5QHc1slMAlzCnJl+diLfuSnjqFY5U5m7ei6NMyfhNZR9aa53xXroZyZNm7C/a9qLrqQDEpZHWRuaORZFtaKNt831M6h/ZoEI1zRTXM/pcdbBZwo05IZaFkPuZUMrsjRDlLTBTRh+UeD2vmwoloS0BFHKkHWRqI+SE4v1EbTWTv2zrbqmvSl2AH/XtPfPvt9aOjMk9Nlbps91nJ/rNWBcWV3GZxw1JZDoI0vp+ZQgFEJSbctENIa5lq3zK0LaRySK83nLHqr5NTXmHOc9XbbrGE3O0+fMnJ9y+nDK3ZUh1fW5hjOYVMAYhSISBckQN3QyR9HQakLaRYsWIZlM+iakPfHEE/HAAw9g6NCh+OKLL/DQQw9h/Pjx6NixI/7973/jiiuuaFBCWoIodUgwEmG0OLFIEETjSJkAC3BD50grArCimqdNm4YTTzwRmqbhrLPOwm233Sb3ByWkXbhwIfbu3YsePXrgrLPOwjXXXJO7SRIEQZQgJSsWgyKkBWHRvKprOs297BNs4rU0in7p5wyeT6ZWR6+b2Tp/+tzU+tXSUhhyQ8R4avQ2k7WQlfrMIgpZF+fkabWu/Yp4BAW4pFkFFTezalG05ubUi/ZzPzOXC9tzfemnd+GNWGfKveLeIBY1z2JjkkCGWAMzsibWM0auSKRM8Ga2LAL5TUhLEC0Bsi4SQZSsWATS/46HRUoDmbumnf7iPE4j96wPVAlLlxPW3+UCDxGOfq5pzVVxxi0adQZwIb58haFzHiEIpetWVFBxXbt9Hh2+BAlD1zUoAtFvzaLjSnf2SYHsGyntP5eM8KTH4X6pc5qYQhaJAsPk0PJQwYUgCILID5SUmyCIrMgkKTdBEMUJJesm/Chpy6KXpnJNO/2d935WQEEm1kY/A1h9QTLeoBhTuT4niIW5XNKAYw3kHL6R0iLoRVgY3YnF7ReeblGsz9frnyPRvS/U2gi/QBi/Mfx/DtnAGXNc0QEWRiA4v2Jm58jyu1oerYkqKSM4wCXltwaBIIiigtzRwbT6715EdCNwf8qobcbZNB8tSiwCmSWtztY1bR3jP1a9CbUzFJAZVZxBepCylU7HvY5RnsdnPaNVocY+v+KadlL8OALSuy9T/CqxePcFuZzV6wIAXWNpbnjms7Yx4whpKfqVdDoBohFogOBrCAUiEgVmiAWRLIsEQRClR07+Cn311VeYMmUK+vTpg/LycvTr1w9z5sxBIpHIxekahJqGJQxNyQWYNoayBR/vbO7zs7TN7xhV9Kibul8dQwNcG1P66RqzxZXTV9wHsU9nTJ5DZ/amKf3sqitNtmlwb/Y5hRVRBMGIoBXnOOYSipkihGSTrGXMJUxztgLDNMzQjSCI4ofc0YRKTv4SrV69GqZp4p577sEnn3yCW265BYsWLcLVV1+di9MRBNGMCMti0NbSKYYvywRBENmQEzf0ySefjJNPPll+7tu3L9asWYO7774bN910Uy5O2WBUy1RDXdNAsHWxPle1+rfV6672c1XXVz1GuJzrc02Lvt7qMiZzr2mUc/OkB+LOjgbjvoZ0d3Ra+hvVvexxPYv91liZuZ8btarRa/FrxNrFwDELFG4GX25T3IZiR/2yfOCBB+Ljjz/GhRdeiL179xbc848gwqC1i4Sg2dYs7tq1Cx06dAjtU1dXh7q6Ovm5pqYm19Nykcl6RiBd2ITmL1Te+/XyE4LOfNQgkvqFo5oXsr5AGMA/1Y6unEstRegnIL2E3Qc/V75vwIvc53bLe48J68eQLhLD0uvUR9raRT/8hJ6fcioSQRiGYZhgAe5mg9zQDf6ynO/nH0EQRBDN8pdr7dq1uP3223HxxReH9ps/fz7atm0rtx49ejTH9AiCyAJu8tCNSCeTL8v0/CMKEVq7SABZisWZM2f6Bmao2+rVq13HfPPNNzj55JNxzjnn4MILLwwdf9asWdi1a5fcNmzYkP0VNQEioCLT4AkRiKFuvuP6bO5x/DdrTunBMN5+mQTAqEEwunKdIsDELxBG9xyjbsw1BgvcGEs/1hWwYm9yjq75Qx7vBO749EO6VdEbPNSsqEEqBRqs0iDChCKJxTQy/bJcKM8/gvBCgpHIyg195ZVXYtKkSaF9+vbtK99v3LgRo0ePxogRI7B48eJ6x4/H44jH49lMKed4dUZ9LmpBfWsc5fjq2IFjOe/rqxpT35pGIDMXNeD5JmGfz6sFAoq1ZISfS9gvPY6zL8A17dfm+cH59Xf2ZSYmM3JHtwAM0/Sv6Sj2lSgzZ87EDTfcENrns88+Q//+/eXnbL4sF+LzjyAIAshSLHbu3BmdO3fOqO8333yD0aNHY8iQIbjvvvugaSViVSGIFk6Yu7mU3dC5/rJMEIUMBbu0bHIS4PLNN99g1KhR6NWrF2666SZs3bpV7quurs7FKZuNTKOnVfwsV00RUe1bO9pjnzS5v7tb7vfsDQpwkfsbaGm15hm8z++rRKbWwaBgFt994VMkMsAweLBl0ShdsUhflgmCaKnkRCy++OKLWLt2LdauXYvu3bu79vEScuE1RDgKmiKiWq3m4szJI7CUIzJxUQP1CMiwyTWAoPWEvi7qgP1+Y2QiEjON0PbiKgXYAqHUOeGU8pdlomVD1sWWS07E4qRJk+p11xAEUZyYJgejcn+BtJQvywRBtBzIN9JEqFHBDQm+rS+SWp5H2Zxj/UsKWvPyjzD2i6D2i6QOKhXYFJuu+c8pk3mp1xd2H7z3Sr3XRMMwU2bo1tKZNGkSOOe+G0EUOxQZ3TJptqTcLY3mcFF75Y6alNt9vJiTeyfnvN6qMulzC96XLWFDBZ0nE5dz2NiBaY2yvK6WHBltch543WHLKQiCIIjihCyLBEFkBSXlJoiWDVkX88P111+PESNGoKKiAu3atcvoGM45Zs+eja5du6K8vBxjxozB559/nvW5SSw2A14XdbZWrMa4qK3jg124mST7rs893NAt7Dxh8/POsb7rV+8h0XhMw4SR8t9MKvdHEASRExKJBM455xz84he/yPiYG2+8EbfddhsWLVqEFStWoFWrVhg3bhxqa2uzOje5ofNEPpN9Z+OqduaXXpu6KcikukrYOes7OhOB2BgN2RLd0WHr72hdHkG0DCgyuvmZN28eAGDJkiUZ9eecY+HChbjmmmtwxhlnAAAeeOABVFVVYdmyZTjvvPMyPjeJxQKhKfI3ZrO2MX2s9LawlDxNTaYiNJNumVoQydDYMIyUCa75WxApwIUgCAKoqalxfc5HhaZ169Zh06ZNGDNmjGxr27Ythg0bhrfffpvEIkEQuYObBrhpBO4jCKJl0BKti+yrb8G0WPB+MwEA6NGjh6t9zpw5mDt3bi6nlsamTZsAAFVVVa72qqoquS9TSCwWIE3hohZkUykGCK4Wkw8yPX22axHJotg4SCwSBEGEs2HDBlRWVsrPQVbFhtSczwckFouApkrDk0lakyAdlYuVaI3RbIUmEFtSVRczmQRYIngfQRAthpZoXcyEyspKl1gMItua89kgKkZt3rwZXbt2le2bN2/G4MGDsxqLxCJBEFnBeYhlkZNlkSAIIlOyqTmfLX369EF1dTVefvllKQ5ramqwYsWKrCKqAUqdU3Q0VZUY71bveXOwNWbemdLQe0UEI9zQQRtBEC0LyrvYPKxfvx6rVq3C+vXrYRgGVq1ahVWrVmHPnj2yT//+/bF06VIAVmDq9OnT8bvf/Q7//Oc/8Z///AcXXHABunXrhgkTJmR1brIsFjF+IqihntAwAdYcVTmaMgdivsRhS0mjY6YSANOD9xEEQRBNzuzZs3H//ffLz4cffjgA4JVXXsGoUaMAAGvWrMGuXbtkn9/85jfYu3cvLrroIuzcuRPHHnssnnvuOZSVlWV1bhKLBEFkBTfNkAAXSp1DEC0RWruYe5YsWVJvjkVvrlvGGK699lpce+21jTo3icUSo6GR1GEUeuWTAp9eyWGkEuDMfwULWRYJgiBKDxKLJU5TuqoLgWIQhqXujqbUOQRB+EHWxdKFxCJBENlhGOBagCg0SCwSBEGUGiQWWyBh1rlCMYYVgwWxpWIaSbAANzQ3yKpAEC0Zsi6WJiQWCReNEWl+QpNEX+nBTQMgNzRBEESLgcQi0WSQMHRTqlVdzFQSLCBFK0+RRYEgWjpkXSw9SCwSBJEVZFkkCIJoWVAFF4IgssI0jdAtV1x//fUYMWIEKioq0K5du4yO4Zxj9uzZ6Nq1K8rLyzFmzBh8/vnnOZuj4PTTT0fPnj1RVlaGrl274qc//Sk2btyY8/MSRKFAVV1KCxKLBJFDOGMylU6pYKaSMJMJ/y2HbuhEIoFzzjknq5qmN954I2677TYsWrQIK1asQKtWrTBu3DjU1tbmbJ4AMHr0aDzyyCNYs2YN/vGPf+CLL77A2WefndNzEgRB5ApyQxMEkRXcNADW/G7oefPmAUC9FQzkXDjHwoULcc011+CMM84AADzwwAOoqqrCsmXLcN555+Vqqrjiiivk+169emHmzJmYMGECkskkolGyuBAtA1q7WDoUtFgUZWt2796d55kQROMo1EAX8X/LWyIqDJ6sDRaFduqcmpoaV3M8Hkc8Hm/YJBvIunXrsGnTJowZM0a2tW3bFsOGDcPbb7+dU7Gosn37djz44IMYMWJEqFCsq6tDXV2d/Czqu5p1ubWCEkQuMfcXrlg091v/t7J5/qV4AgipapripVnFqqDFovhD9r0DD8zzTAiitNm9ezfatm0b2icWi6G6uhqbPn44tF/r1q3Ro0cPV9ucOXMwd+7cxk4zKzZt2gQAqKqqcrVXVVXJfbnkqquuwh133IF9+/bh6KOPxlNPPRXaf/78+dJ6qvLVgsbVdCUIIpxsnn+vbgp//gFAdXU1YrFYU02vIChosditWzds2LABbdq0ASuQdV81NTXo0aMHNmzYgMrKynxPp+Cg+xNMId4bzjl2796Nbt261du3rKwM69atQyIR/s2Zc572/zXIqjhz5kzccMMNoeN99tln6N+/f73zyzXZzvXXv/41pkyZgq+//hrz5s3DBRdcgKeeeirwWTZr1izMmDFDfjZNE9u3b0fHjh0L4vlXiL+/hQTdn3AK8f7k4vkHWMKyrKysKaZYMBS0WNQ0Dd27d8/3NHyprKwsmF/4QoTuTzCFdm/q+0atUlZW1qQPwSuvvBKTJk0K7dO3b98GjV1dXQ0A2Lx5M7p27SrbN2/ejMGDB2c9XrZz7dSpEzp16oTvf//7OPjgg9GjRw+88847GD58uO+xfq76TKO+m5NC+/0tNOj+hFNo9yefz79ioqDFIkEQpU3nzp3RuXPnnIzdp08fVFdX4+WXX5bisKamBitWrMgqolrQmLmaprXISV2TSBAEUSxQ6hyCIIqC9evXY9WqVVi/fj0Mw8CqVauwatUq7NmzR/bp378/li5dCgBgjGH69On43e9+h3/+85/4z3/+gwsuuADdunXDhAkTcjbPFStW4I477sCqVavw9ddf41//+hd+9KMfoV+/foFWRYIgiEKGLItZEo/HMWfOnGaP7CwW6P4EQ/emccyePRv333+//Hz44YcDAF555RWMGjUKALBmzRoZRQwAv/nNb7B3715cdNFF2LlzJ4499lg899xzOXUlVVRU4PHHH8ecOXOwd+9edO3aFSeffDKuueaaov7Z0+9vOHR/wqH7U9wwnk3MOEEQBEEQBNGiIDc0QRAEQRAEEQiJRYIgCIIgCCIQEosEQRAEQRBEICQWCYIgCIIgiEBILBIEQRAEQRCBkFhsIF999RWmTJmCPn36oLy8HP369cOcOXMyKgVUqtx5553o3bs3ysrKMGzYMLz77rv5nlJBMH/+fBx11FFo06YNunTpggkTJmDNmjX5nhZBNAh69vlDzz9/6PlXGpBYbCCrV6+GaZq455578Mknn+CWW27BokWLcPXVV+d7annh73//O2bMmIE5c+bggw8+wKBBgzBu3Dhs2bIl31PLO6+++iqmTp2Kd955By+++CKSySTGjh2LvXv35ntqBJE19OxLh55/wdDzrzSgPItNyIIFC3D33Xfjyy+/zPdUmp1hw4bhqKOOwh133AHAKm/Wo0cPXHrppZg5c2aeZ1dYbN26FV26dMGrr76K4447Lt/TIYhG05KffQA9/7KBnn/FCVkWm5Bdu3ahQ4cO+Z5Gs5NIJLBy5UqMGTNGtmmahjFjxuDtt9/O48wKE1FhpCX+rhClSUt99gH0/MsWev4VJyQWm4i1a9fi9ttvx8UXX5zvqTQ727Ztg2EYqKqqcrVXVVVh06ZNeZpVYWKaJqZPn45jjjkGAwcOzPd0CKLRtORnH0DPv2yg51/xQmLRw8yZM8EYC91Wr17tOuabb77BySefjHPOOQcXXnhhnmZOFANTp07Fxx9/jL/97W/5ngpBuKBnH5Fr6PlXvETyPYFC48orr8SkSZNC+/Tt21e+37hxI0aPHo0RI0Zg8eLFOZ5dYdKpUyfouo7Nmze72jdv3ozq6uo8zarwmDZtGp566im89tpr6N69e76nQxAu6NnXMOj5lxn0/CtuSCx66Ny5Mzp37pxR32+++QajR4/GkCFDcN9990HTWqahNhaLYciQIXj55ZcxYcIEAJa74eWXX8a0adPyO7kCgHOOSy+9FEuXLsXy5cvRp0+ffE+JINKgZ1/DoOdfOPT8Kw1ILDaQb775BqNGjUKvXr1w0003YevWrXJfS/w2OWPGDEycOBFHHnkkhg4dioULF2Lv3r2YPHlyvqeWd6ZOnYqHHnoITzzxBNq0aSPXMbVt2xbl5eV5nh1BZAc9+9Kh518w9PwrDSh1TgNZsmRJ4IOgpd7SO+64AwsWLMCmTZswePBg3HbbbRg2bFi+p5V3GGO+7ffdd1+9bj+CKDTo2ecPPf/8oedfaUBikSAIgiAIggik5S40IQiCIAiCIOqFxCJBEARBEAQRCIlFgiAIgiAIIhASiwRBEARBEEQgJBYJgiAIgiCIQEgsEgRBEARBEIGQWCQIgiAIgiACIbFIEARBEARBBEJikSAIgiAIggiExCJBEARBEAQRSIsTi0uWLAFjDF999VWznrd37974n//5n2Y9Zxi//OUvcdJJJ8nPn376KSKRCD7++OOcnnfUqFEYNWpUxn0HDhyY0/kQDqZpYuDAgbj++utl26JFi9CzZ0/U1dXlcWYEQag88sgj6NChA/bs2QMASCaT6NGjB+666648z4woVVqcWCSAdevW4U9/+hOuvvpq2TZgwACceuqpmD17drPOZePGjZg7dy5WrVrV5GPnQ6AvX74cjDEwxrBy5cq0/ZMmTULr1q2bdU6Z8vDDD2PDhg2YNm2abJs0aRISiQTuueeePM6MIAqLt956C3PnzsXOnTvT9v3+97/HsmXLcnZuwzAwZ84cXHrppfJZEo1GMWPGDFx//fWora3N2bmJlkuLE4s//elPsX//fvTq1SvfU8kbt956K/r06YPRo0e72i+55BIsXboUX3zxRc7O/cILL+CFF16Qnzdu3Ih58+blRCzmm7lz5+Z7ClmxYMECnHfeeWjbtq1sKysrw8SJE3HzzTeDc57H2RFE4fDWW29h3rx5eRGLTz75JNasWYOLLrrI1T558mRs27YNDz30UM7OTbRcWpxY1HUdZWVlYIzleyp5IZlM4sEHH8S5556btm/MmDFo37497r///pydPxaLIRaL5Wz8QmHw4MF46qmn8MEHH+T0PPv27WuScT788EN89NFHvr8X5557Lr7++mu88sorTXIugiCyo7a2FqZpAgDuu+8+HHPMMTjggANcfdq1a4exY8diyZIleZghUeq0OLHot2ZRuCuXL1+OI488EuXl5Tj00EOxfPlyAMDjjz+OQw89FGVlZRgyZAg+/PBD15ibNm3C5MmT0b17d8TjcXTt2hVnnHGG77rIN954A0OHDkVZWRn69u2LBx54IK3Pl19+iXPOOQcdOnRARUUFjj76aDz99NNyP+ccnTp1wowZM2SbaZpo164ddF13fdu94YYbEIlE5NqWN954A9u2bcOYMWPSzhuNRjFq1Cg88cQToffw3//+Nxhj+Oc//ynbVq5cCcYYjjjiCFffU045BcOGDZOf1TWLy5cvx1FHHQXA+lYs3Lfeh92nn36K0aNHo6KiAgcccABuvPHG0PllQyqVwnXXXYd+/fohHo+jd+/euPrqq9PW6Jmmiblz56Jbt26oqKjA6NGj8emnn6J3796YNGlS2riXXnop2rdvn7F18a677sIhhxyCeDyObt26YerUqWlWC7GGc+XKlTjuuONQUVGBq6++Gl999RUYY7jppptw5513om/fvqioqMDYsWOxYcMGcM5x3XXXoXv37igvL8cZZ5yB7du3u8ZetmwZYrEYjjvuuLS5DRkyBB06dKj394Ig8snu3bsxffp09O7dG/F4HF26dMFJJ53k+sK2YsUKjB8/Hu3bt0erVq1w2GGH4dZbb5X7//3vf2PSpEno27cvysrKUF1djZ/97Gf47rvvZJ+5c+fi17/+NQCgT58+8rkl/h/u3bsX999/v2xXnw/ffPMNfvazn6GqqgrxeByHHHII7r33Xtd1iKUsf/vb33DNNdfggAMOQEVFBWpqalBbW4vnnnvO9/kNACeddBLeeOONtP/fBNFYIvmeQKGwdu1a/PjHP8bFF1+M888/HzfddBNOO+00LFq0CFdffTV++ctfAgDmz5+Pc889F2vWrIGmWVr7rLPOwieffIJLL70UvXv3xpYtW/Diiy9i/fr16N27t+scZ599NqZMmYKJEyfi3nvvxaRJkzBkyBAccsghAIDNmzdjxIgR2LdvHy677DJ07NgR999/P04//XQ89thjOPPMM8EYwzHHHIPXXntNjv3vf/8bu3btgqZpePPNN3HqqacCAF5//XUcfvjhcm3LW2+9BcYYDj/8cN/7MGTIEDzxxBOoqalBZWWlb5+BAweiXbt2eO2113D66afL82iaho8++kgea5om3nrrrTR3ieDggw/Gtddei9mzZ+Oiiy7CyJEjAQAjRoyQfXbs2IGTTz4ZP/jBD3Duuefisccew1VXXYVDDz0Up5xySvgPNQN+/vOf4/7778fZZ5+NK6+8EitWrMD8+fPx2WefYenSpbLfrFmzcOONN+K0007DuHHj8NFHH2HcuHGB64MqKytxxRVXYPbs2fjggw/SRLTK3LlzMW/ePIwZMwa/+MUvsGbNGtx9991477338OabbyIajcq+3333HU455RScd955OP/881FVVSX3Pfjgg0gkErj00kuxfft23HjjjTj33HNxwgknYPny5bjqqquwdu1a3H777fjVr37l+iP11ltvYeDAga5zqRxxxBF48803M76vBNHcXHLJJXjssccwbdo0DBgwAN999x3eeOMNfPbZZzjiiCPw4osv4n/+53/QtWtXXH755aiursZnn32Gp556CpdffjkA4MUXX8SXX36JyZMno7q6Gp988gkWL16MTz75BO+88w4YY/jBD36A//u//8PDDz+MW265BZ06dQIAdO7cGX/5y1/w85//HEOHDpXPvX79+gGwnu1HH300GGOYNm0aOnfujGeffRZTpkxBTU0Npk+f7rqe6667DrFYDL/61a9QV1eHWCyGlStXIpFIBD5PhgwZAs453nrrrYIKqCRKAN7CuO+++zgAvm7dOtnWq1cvDoC/9dZbsu3555/nAHh5eTn/+uuvZfs999zDAfBXXnmFc875jh07OAC+YMGC0POKc7z22muybcuWLTwej/Mrr7xStk2fPp0D4K+//rps2717N+/Tpw/v3bs3NwyDc875ggULuK7rvKamhnPO+W233cZ79erFhw4dyq+66irOOeeGYfB27drxK664Qo51/vnn844dOwbO86GHHuIA+IoVK0Kv59RTT+VDhw6Vn3/wgx/wH/zgB1zXdf7ss89yzjn/4IMPOAD+xBNPyH7HH388P/744+Xn9957jwPg9913X9o5jj/+eA6AP/DAA7Ktrq6OV1dX87POOit0fpxb9/zUU08N3L9q1SoOgP/85z93tf/qV7/iAPi//vUvzjnnmzZt4pFIhE+YMMHVb+7cuRwAnzhxomx75ZVXOAD+6KOP8p07d/L27dvz008/Xe6fOHEib9Wqlfy8ZcsWHovF+NixY+XPlnPO77jjDg6A33vvvWn3Y9GiRa55rFu3jgPgnTt35jt37pTts2bN4gD4oEGDeDKZlO0/+tGPeCwW47W1tbKte/fuoff0oosu4uXl5YH7CSLftG3blk+dOtV3XyqV4n369OG9evXiO3bscO0zTVO+37dvX9qxDz/8cNqze8GCBWl/RwStWrVyPRMEU6ZM4V27duXbtm1ztZ933nm8bdu28tziGdK3b9+0+fzpT3/iAPh//vMf3+vcuHEjB8BvuOEG3/0E0VBanBs6iAEDBmD48OHys3CdnnDCCejZs2da+5dffgkAKC8vRywWw/Lly7Fjx456zyGsZ4D1TfSggw6SYwHAM888g6FDh+LYY4+Vba1bt8ZFF12Er776Cp9++ikAYOTIkTAMA2+99RYAy7I3cuRIjBw5Eq+//joA4OOPP8bOnTtd5/zuu+/Qvn37wDmKfdu2bQu9lpEjR+KDDz7A3r17AVju7fHjx2Pw4MHy/K+//joYY65ryZbWrVvj/PPPl59jsRiGDh3qumcN5ZlnngEAlzsfAK688koAkK7/l19+GalUSlqXBZdeemno+G3btsX06dPxz3/+M23pguCll15CIpHA9OnTpaUaAC688EJUVla6lh8AQDwex+TJk33HOuecc1zBKeJ39fzzz0ckEnG1JxIJfPPNN7Itk9+L/fv3N9kaSYJoatq1a4cVK1Zg48aNafs+/PBDrFu3DtOnT0e7du1c+9T16+Xl5fJ9bW0ttm3bhqOPPhoAGrX+mHOOf/zjHzjttNPAOce2bdvkNm7cOOzatStt/IkTJ7rmA0C6w4P+r2b6/CaIbCGxaKMKQgDyj26PHj1824UwjMfjuOGGG/Dss8+iqqoKxx13HG688UZs2rSp3nMA1n9uVWR+/fXXOOigg9L6HXzwwXI/YLkFKyoqXMJs5MiROO644/D++++jtrZW7vOKNR4S1Sr21RcANHLkSKRSKbz99ttYs2YNtmzZIs+vzmnAgAHo0KFD6FhhdO/ePW0u3nvWUL7++mtomoYDDzzQ1V5dXY127drJey1evf06dOgQKrAA4PLLL0e7du0C1y6Ksb0/81gshr59+8r9ggMOOCAwQKihv8OCpvi9IIh8ceONN+Ljjz9Gjx49MHToUMydO1d+qRQZHurL27p9+3ZcfvnlqKqqQnl5OTp37ow+ffoAAHbt2tXguW3duhU7d+7E4sWL0blzZ9cmvvxt2bLFdYw4rx9B/1fp/ymRK2jNoo2u61m1q/9Zp0+fjtNOOw3Lli3D888/j//93//F/Pnz8a9//cu1NjCTsTIlGo1i2LBheO2117B27Vps2rQJI0eORFVVFZLJJFasWIHXX38d/fv3R+fOneVxHTt2DBVaYp9YhxPEkUceibKyMrz22mvo2bMnunTpgu9///sYOXIk7rrrLtTV1eH111/HmWeemfW1qTTlPQsilw9WYV2cO3duoHUxG7yWBpXG/A5n8ntRUVERen6CyCfnnnsuRo4ciaVLl+KFF17AggULcMMNN+Dxxx/Paoy33noLv/71rzF48GC0bt0apmni5JNPltHIDUEce/7552PixIm+fQ477DDXZ7//ax07dgRg/X/s3r172v5Mn98EkS1kWWwi+vXrhyuvvBIvvPACPv74YyQSCfzxj3/MepxevXphzZo1ae2rV6+W+wUjR47Eu+++i5deegmdOnVC//790aFDBxxyyCF4/fXX8frrr6dFt/bv3x87duwI/Ja8bt06aJqG73//+6HzFO5gcR7h6h45ciTq6urw4IMPYvPmzb7RtSr5/Abcq1cvmKaJzz//3NW+efNm7Ny5U95r8bp27VpXv++++y4jC6dwfc2bN893DgDSfuaJRALr1q1rtnyg/fv3x7p16wL3r1u3Tlq3CaJQ6dq1K375y19i2bJlWLduHTp27Ijrr79eBpmEVajasWMHXn75ZcycORPz5s3DmWeeiZNOOgl9+/ZN6xv23PLb17lzZ7Rp0waGYWDMmDG+W5cuXeq9vv79+wNA4P9V0U7/V4mmhsRiI9m3b19aRGy/fv3Qpk2bBpVIGz9+PN599128/fbbsm3v3r1YvHgxevfujQEDBsh2IcwWLlyIY489Vj6kRo4cib/85S/YuHGja70iAAwfPhycc9/qIoCVAueQQw5xrX0LYuTIkVixYgVeeeUVeZ5OnTrh4IMPxg033CD7hNGqVSsA8E1um2vGjx8PAFi4cKGr/eabbwYAGVF+4oknIhKJ4O6773b1u+OOOzI6j7AuPvHEE2nJx8eMGYNYLIbbbrvNZen785//jF27dsk55Jrhw4fj448/Dvyd/eCDD1xR6gRRSBiGkfYFuEuXLujWrRvq6upwxBFHoE+fPli4cGHas0b8vxMWeK/Xwvt8AMKfW61atUpr13UdZ511Fv7xj3/4CtatW7eGXZ5kyJAhiMVieP/99333ixRm6vp7gmgKyA3dSP7v//4PJ554Is4991wMGDAAkUgES5cuxebNm3HeeedlPd7MmTPx8MMP45RTTsFll12GDh064P7778e6devwj3/8wxUEMXz4cEQikbRs/scdd5wUNl6xduyxx6Jjx4546aWXcMIJJ7j2JZNJvPrqq2mBHEGMHDkS119/PTZs2OA6z3HHHYd77rkHvXv39nWVqPTr1w/t2rXDokWL0KZNG7Rq1QrDhg0LXa+TDWvXrsXvfve7tPbDDz8cp556KiZOnIjFixdj586dOP744/Huu+/i/vvvx4QJE2SFm6qqKlx++eX44x//iNNPPx0nn3wyPvroIzz77LPo1KlTRtbRyy+/HLfccgs++ugj+YcGsCwOs2bNwrx583DyySfj9NNPx5o1a3DXXXfhqKOOcgX35JIzzjgD1113HV599VWMHTvWtW/lypXYvn07zjjjjGaZC0Fky+7du9G9e3ecffbZGDRoEFq3bo2XXnoJ7733Hv74xz9C0zTcfffdOO200zB48GBMnjwZXbt2xerVq/HJJ5/g+eefR2VlpVxznkwmccABB+CFF17wteINGTIEAPDb3/4W5513HqLRKE477TS0atUKQ4YMwUsvvYSbb74Z3bp1Q58+fTBs2DD84Q9/wCuvvIJhw4bhwgsvxIABA7B9+3Z88MEHeOmllzLKjVhWVoaxY8fipZdewrXXXpu2/8UXX8Qxxxwj3dUE0WQ0fwB2fglKneOXYgVAWioGkaZEpMrZtm0bnzp1Ku/fvz9v1aoVb9u2LR82bBh/5JFHXMcFncObSoZzzr/44gt+9tln83bt2vGysjI+dOhQ/tRTT/lez1FHHZWW6ua///0vB8B79Ojhe8xll13GDzzwwLT2Z599lgPgn3/+ue9xXmpqariu67xNmzY8lUrJ9r/+9a8cAP/pT3+adozf9T7xxBN8wIABPBKJuNLoHH/88fyQQw5JG2PixIm8V69e9c5PpCvy26ZMmcI55zyZTPJ58+bxPn368Gg0ynv06MFnzZrlSivDuZV643//9395dXU1Ly8v5yeccAL/7LPPeMeOHfkll1wi+6mpc7zMmTOHA3ClzhHccccdvH///jwajfKqqir+i1/8Ii3FR9D98P5O1jcX8X/gvffec7Ufdthh8r6oXHXVVbxnz56uFCMEUUjU1dXxX//613zQoEG8TZs2vFWrVnzQoEH8rrvucvV74403+EknnST7HHbYYfz222+X+//73//yM888k7dr1463bduWn3POOTIdzZw5c1xjXXfddfyAAw7gmqa5/qasXr2aH3fccby8vDwttdbmzZv51KlTeY8ePXg0GuXV1dX8xBNP5IsXL5Z9wp4hnHP++OOPc8YYX79+vat9586dPBaL8T/96U8NuIMEEQ7jnAq+tjS+/PJL9O/fH88++yxOPPFE2T5hwgQwxlzJqIlgdu7cifbt2+N3v/sdfvvb3+Z7Oo3mL3/5C6ZOnYr169fL9CJ1dXXo3bs3Zs6cKRMXEwSRPwzDwIABA3Duuefiuuuuk+0LFy7EjTfeiC+++IIC0Ygmh9YstkD69u2LKVOm4A9/+INsE5UM1IcP4bB///60NrGWSZQvLHZ+8pOfoGfPnrjzzjtl23333YdoNIpLLrkkjzMjCEKg6zquvfZa3HnnnbKMazKZxM0334xrrrmGhCKRE8iySBAZsGTJEixZsgTjx49H69at8cYbb+Dhhx/G2LFj8fzzz+d7egRBEASRMyjAhSAy4LDDDkMkEsGNN96ImpoaGfTiFzxDEARBEKUEWRYJgiAIgiCIQEp+zeKdd96J3r17o6ysDMOGDcO7776b7ykRBEEQBEEUDSUtFv/+979jxowZmDNnDj744AMMGjQI48aNS6vBSRAEQRAEQfhT0m7oYcOG4aijjpKVNkzTRI8ePXDppZdi5syZrr51dXWu6hWmaWL79u3o2LEjFWUnShbOOXbv3o1u3bq5Er5nwq5duzD9yh64ZtaHspwa0XSYpomNGzeiTZs29AwiiBzQmOcfAIxlnVGDFN7h9Zd9LXZKNsAlkUhg5cqVmDVrlmzTNA1jxoxxldITzJ8/37d2L0G0BDZs2FBvtR0v867vhb8s2Y2dOwdh6WN7cjSzlsvGjRvRo0ePfE+DIEqehjz/du7cidewHUmYeO+993DUUUflaHaFQcmKxW3btsEwDFRVVbnaq6qqsHr16rT+s2bNwowZM+TnXbt2oWfPnqiIXgXG4jmfL0HkA87rsC95A9q0aZPVcRs2bMCiO2rw10eq8PMLtuCdd97B0UcfnaNZtkzEz2TDhg2orKzM82wIovSoqalBjx49sn7+AcCo9r3QETFUIYYzho7EN+b+kvYAlKxYzJZ4PI54PF0UMhYHY2V5mBFBNB/ZPuSu+u0A/M8ZFTjlfyrwy8vbYsavRuHN10v7YdnciHtZWVlJYpEgcki2z63169fjE+zG6ahCW0TxML7Bk08+idNPPz1HM8w/JRvg0qlTJ+i6js2bN7vaN2/ejOrq6jzNiiCKn48++gjLHtuLa+a1BwBcNqMt1n6exBNPPJGX+WzYsAGjRo3CgAEDcNhhh+HRRx/NyzwIIlfsTaTwf1v34IP/7sRHG3diY81+GGbJhhsUPGN6DUAfVKAz4ohBwxC0w8QzzkIqlcr31HJGyYrFWCyGIUOG4OWXX5Ztpmni5ZdfxvDhw/M4M4Iobq648mhMubgNevWOAgDatNEw85r2+PVvzkUymWz2+UQiESxcuBCffvopXnjhBUyfPh179+5t9nkQRC74asc+rFi/A9/s2o+dtUl8ty+J1Vv24J3127EvYWQ1FjdNpDZ+gcT/rURy/WrwVPP/fy12PvzwQ6zDPhyFdrLtYLQGB3BCtCrwuGKnpN3QM2bMwMSJE3HkkUdi6NChWLhwIfbu3YvJkyfne2oEUZQ8//zz+PCDBO57sIur/YKftcGiO2pw291dceVl25p1Tl27dkXXrl0BANXV1ejUqRO2b9+OVq1aNes8CKKp2bKnDl9+Z33x8doR61ImPtq4E8N6dYCWgRs1uX4N9r/1T/C9u5zGWBnKjhyL+MFDm3DWpQvnHKcdMQKHoA3aKPJJB8MwtMfr+A67d+9u0BrIQqdkLYsA8MMf/hA33XQTZs+ejcGDB2PVqlV47rnn0oJeCIKoH8MwcOWvT8evZrZDu/a6a180yjD3+vb4w+92YPfu3VmN+9prr+G0005Dt27dwBjDsmXL0vpkmlx/5cqVMAyDooiJkuDrHfvk+6jGUNUqit7t4ujVNo72ZRHUpkx8tzdR7zjJ/36OfS/91S0UASBRi9q3/om6T99p6qmXJM8//zy2IYHD0TZtX2+Uoy2iGFVZms+ekhaLADBt2jR8/fXXqKurw4oVKzBs2LB8T6lFwcCggUEHQwQaItAQtbcYNMSgIx6wxVybc1zEHk8DA4VTNB/33FeNPbtNXPgL/2CL8adV4HsHRTHnuh6oqalxbWoOUy979+7FoEGDcOedd/ruzzS5/vbt23HBBRdg8eLFDb9IgigQUqaJ3XXWGrj2ZREc3KkcVa2iqIzpaBvX0bNtHP07lWPX/nCxyDlH7Ypn002TCrXvvwCeql90tmQMw8BPTjkdR6At4j7SidnWxX+jBhs3bszDDHNLyYtFIr9EwBDlGuJcRzmPoBWPoLUZRaUZQ6UZR1szhnZm3Hdra8bk1saMoY0ZRSseRRmPIM51RLkGnQRjs/HGa7X44U9aIx73v+OMMUz8WRs88vAetG3b1rXNnz8/cNxTTjkFv/vd73DmmWf67r/55ptx4YUXYvLkyRgwYAAWLVqEiooK3HvvvbJPXV0dJkyYgJkzZ2LEiBGNu1CCKABEuYxWUQ09KmMArP9jYgMsa2NlTENYbQ1zx2aYO7cgVC0mE0iuX9NUUy9Jtm/fju1I4mC0DuxTjTgqEcF7773XjDNrHkp6zSLRfETAEOGWpVADg8YZohBizrEuatwSd8wWeY510E+AcHDA3jhMcHAOGMx+Dw6DcxgwYYDDYBwJGEgx+3PYw5HImph2FmL6U2Cp4MdGVIugZ4+h+PST51ztfmmpMiGT5Pqcc0yaNAknnHACfvrTnzboPE3N/Pnz8fjjj2P16tUoLy/HiBEjcMMNN+Cggw7K99SIIiGiMZRFNHSusALJ/NK7MMagMyCRMhCP+v+/5PszSZjPMuxHlDENesgaUd0sTfMFWRaJrBACL2K7kct4BBU8ggpuWf3E1hruz61sq2IFImgF8TmKCvtV7Fe3CntrJV+jaAW1TxStxfiuMa1xy4UFEmSBbDI4AM5CNis91dFHH42jjz4af/nLX1BZWdlgsRiWXH/Tpk0AgDfffBN///vfsWzZMgwePBiDBw/Gf/7zn8ZeaaN49dVXMXXqVLzzzjt48cUXkUwmMXbsWIrSJjKGMYYe7cpRGdfrzQOYSAVHRbNWmeTo5NAy6kdoDNBDtlKFLItERjD5alkJhQiLcQ1R6NaaRG6tKdQ8lkT5HgyaPRZTLIxB31hM+c6yMJrMsiKZttWQAzDBkWImTA4Y4EjBRIqbMBhHEgYSMJGCiToYSDITwhVDNseGwUwGLRX8RNRMhq5du+KNN95otjkde+yxME2z/o7NyHPPuS2rS5YsQZcuXbBy5Uocd9xxeZoVUWx0qyzDzr219XfkHGbtHvD9uwFuApEYtIp2YJEo9HZdoHXsBnP7t45v20usDJEeZPXOhJjGEAkR7yy7bEZFA4lFol4scWi5mIWr2XrvBK3oYNBt17MQhRHuvNcD3c/h5m2XG5or75klFE3pirbc09IlDS6FosFNJJiJBLcEYx1SqGMmTJKM2WMp9GBM4Ntvv8WAAQMAAFOnTsXUqVMbfLpSSa6/a5cVhdqhQ4fAPnV1da5AoJqampzPiyhsdE2DrjGkDI4gfcJMA/F9m2Ea7gAVY892aJWdobXugPKjx2PvM2KNb/pzr/zo8WA6yYFM0BkLdUOXahEr+u0g0hCiTgSQ6LYlMQbdcj9zKzrZEogaonYfnVuRyqpY1O2xxCvjljjUFKdwxmLRbjMhhCKkldFksEWjJsVi1BaLKcYR5Qai0JCEaUdUp5ACh8FMJEk2ZgwzAS3kmzPjaFLLoppcf8KECQCc5PrTpk1rknPkGtM0MX36dBxzzDEYOHBgYL/58+dj3rx5zTgzohgoi0ax1wyIVOYcFfu3QQvYb9ZsBfQoItW90eqUydj/9lMwdzhfvFirSpQddTJi/Q7LxdRLknoti804l+aExCIBQP0Ft4SdBg3liCBqu5aFQIxAk23C9RyRYpF5xKLz3nI/q++d84b953LEIlPeW8JQGLkMRTimbKFouaQ1JJkJg3MkoSHKLBd1EpYLPQHLymgFzFhnI9FYD5wDYWXGGlCCbM+ePVi7dq38vG7dOqxatQodOnRAz549iz65/tSpU/Hxxx/XK6BnzZqFGTNmyM81NTWUL5JAPKojaei+6xJ1M4FIkJC0MXd/B1bWGpGufdD6zGkwv/sW5p6dYGUV0Lv0BNOKK3QhsXkj6jb+F1o8jvLvDYAWjTbr+cXfsCBILBIljWYLvzLotjDUXcEhMfu9SIUTUcSheG/lUoQjFuG4mxlgWxftjSnv65mbEIViuY0lDJn9alsXOWCI97DEZJJxpLglHJPMRNJe05iAiTh0JGEigQjKeAp1zEAtS5GVsT54+Joc1gA39Pvvv4/Ro0fLz0IwTZw4EUuWLMEPf/hDbN26FbNnz8amTZswePDgokmuP23aNDz11FN47bXX0L1799C+8Xi8wYFAROnCGEPrshjqUgZqE0lZEzoW0VFmZFCuL1UHmAagR6zo6U7doHfqluNZNz11336Db5fciX2fOcFrWqvW6Hz6uehw8oR6g4Caivoti6UpF0kstmBEIEqMOxZDlzURuhSGUa5Ld3PUXquoA/a6RXtdoi0WdXtsnTnfwjTG7bWKilBUBCPs/SqcMyncOOCsWbSFodif4kyxLDLb2sgQ4balkXFEObPFIpNrLFO2S1pEd0egYR+SljWSJKMvjAMszHrYADf0qFGjQvPEAZboKha3M2AFYl166aVYunQpli9fjj59+uR7SkQRwxhDWTSCsmgEnHMpjIxEhsF6vLACwLIlsXUzvrr21zD2u7MJmHv3YPPD98LYsxtdzrmgWeZiRT2HCMLS1IokFlsa3iCTKNdQwSOI2q7ZMh6R1kNRNUVEOUe45aKO2usULeuhsCYqYtEWiTrj0GxBqDOACcHIhFB0Fm0L8SiwRKHzGLS8n8x6hXjPbbFofTbBkFIsjBEwpMBg2KJRt8Wizjh0DiSZhgg3wRikZdRgJjgHOAXA+GM2vWWxFJk6dSoeeughPPHEE2jTpo1M89O2bVuUl5fneXZEMaNa0Fg0Xv9TimmA3ryu2qZm67KHLaEYkPVg21OPof0JpyDasXPO51KfZbG4nPqZQ2KxhcHsYJUy22oYRwRx27IYgy6tjBHOELeFouWGtt3NsKuyQORbtL9p2a8RWyAKoahp9ivj0DRLHKpC0RGLPO0bGedMee8IRtNk0sJomgwmZzBMDpPbYpEzewNSsFzWSXAkOZACR5Jz1DGGFOdIMBMRMMShIwETEWjYjxT2I4XdLEFy0Ut90dBNHOBSrNx9990ALKupyn333YdJkyY1/4SIkoSVtwF2bQm1HLJW7ZrNRZsLzEQdat5+NVAoAgAYw843/4XOp/8w5/MReRZbGiQWWwBMsRRGoMnI5ih3BKKs12y7nSOcWf1tkRhVXMwRMESlQOSI2GJQ14CIIg51nVvuZwboGrcsi/Y+xixxyBi35+hnWXQ+cM6kZdH7PmUwuw1IGZZQNDmQMh3xGJFuabHGEkgyDt0OwonARMRaGSnd0hzAfpZCKlQdtSwY52BGsIQOdVG3IOpzqxME5yb47u+AZB0QLQNr0zFrUceYBq19N5jb/+vfIVoGrXXHJpht/jD27AFPpcI7MYbU9u+aZT4xjSFKqXOIUsHJZWiJoTLoKOM6olIcOkm1Y9LVbK1f1G1BFePMWacIOJZFBkQZlxnrI7Yo1DVrE9ZEXTc9VsVwsQjm/gMrLYvcioY2Ta9YtD7rmgbTtjLqGoNhWn11ZpVeMrjldtZskaiBg0GDxkWMtfVtUeOAiQjAGDQOJBFBCiY4o9KBEm65mgMhXU0Q9WJ+9w2MDR9bQlEQK4fe81Bo7bPLH6qVtQI69YSxfy+4kQSMFJiRhN6qLVjr9mAs2DFalzKwdU8CdSkDUV1Dp1YxVMQKSxborVoBmhZuWeQcemXb5plPPZbFEtWKJBZLF4ZyHpHCsMwOXImAuQJXYsp6RMvqKNzNDDE4AjHKLJGogyNiWxCFOIzqlhiUQlHj0DRTWhOFWFQFo+V2Fq7osIAJ4XJ2hKLljtbAbRe0aTqbYWryfcq0rI6G/Zo0AYMDCc4QsV3UMTuSO2lbEwEmxbK1NI9jPzTsZuHpKVoKjNYsEkSjML/7L4wvP0jfkdgPY+27wPeGQmuXmWDknCNVVwvTSAGRuLXB8sxosTg0j1Dc++UX2PzEMuz6aBVS0JA6ZDAw+mRonavAAWysqUXHihj6dWoFrUBMZFq8DJVHHYOa994MFoymibYjRvvva2LqtSw2yyyaHxKLJYLIYSjS3USUyGaxHlFGNtuRzyKQJWq7naNglniCsy4xYq8/jDJHIEZ1RxjqGkc0Yipi0XQJRmFFdIlFuC2L1v+7AMHImZVj0RaK0iVtCuuiIw5NzmAY4rNmCUVDg2EyJA0NEcMSkLoB6NyKoo7YSyUTXENEWBkBaIxZ1kTOwcCQsMsFtvigF1qzSBANhpsmjPUfh/Yx1n8M1rYqI5d0KmELRd99dQBj0CNWcMvmJ/+JL2/5I6DrgGF/4/vveuDFp2BOuwps0JEAgO/2JaBvZ+jbsVUWV5ZbOk/4EXaveg96RRnaHnYYYu3awdi/HzX/+Ri1336Ldiecgnh186QDqreCS7PMovkhsVjECFezJvMcaii3Xc1Re21i1F6nKAJXREm+GBfuZZE3EdZ72NZEBsRsV3PEForCghjRTcf1rHNEdMOxKurComi/ala0sSocpUAU7+UFpQsxSyDaYhFMCkbT1GyxaFruaZPB5BoMjdtuaA5NY0hpHLqp2e5vBt20ZbXJoJmWEDS5kwsyBWscDiAOHSk7jU4cOq1dBADOwIyQB6VZqo9Kgmg8fPc2IFWPl6JuH/jeHWCtg0tDApbwNOtZy2ckEtD0CPas/swSioAjFAHLUmdy4I4bwW+4C6xDJwDAlj116N6uHDG9MGJ7Y926o9+s2dDNfU60I4AOw49G3Y4axAcf33xzqXfNYmk+A0ksFjGaiGzmESVAJV0gehNpR5XPLoEIIGYHrkQYR1RxN0cjlkh0rImGfK/rhrQcOu9tCyMzpWVRCkVNEYkhaxYBeNzQzL1+0VQsi5yBm5ptSbTaDENDxP6saxpShrVf1wA9yZBiDBHTEjhWoIvl3gazpmJAl5bEOlhJu1v82sUMLIsEQQSQrM2sX6L+fkaARVGFcxOcc3z7j8fcFkV3L6v91ReAM38sW3fuT6JL6wJJEr97KyJ8P1wpNGzi7SuB79YDVf2aZSr1rVksVUgsFhkaGMqUaGZhQYwoYjFir7+TAhEikbbjbhb5EeWrLRJjQgAyIGpbEIWrWYjFSMS0g1dMaVmU4lA3pRVR00wpDEUbFMuidEX7pM2R2OJQuJ/lmkVTk0LSMHS5ftEwdOmGNmxxaJoajIiGZEqXAlLTdKQMBj3FwAwNumkFw3AAmh3kwwFwxsE5UAED+3kEYCkkWrKF0cp4Hrqf1iwSRADRssz6xTLol2nEPefY9cHKAKEo+pjAJx+5xKJZIBH9nHPw7d+Ed9rzHXiH7mDR3IvbqKYhGhI0VKo6ksRigSOSaFtWQUvElPEI4tBlZZU4NOhK8IpMd2P3F2IxKoJVZBoc5kQ2A4hoQFQNXImYViocndvC0YRmv6oWxIgQiOJVWhZNaU0Ubc46RduiqLz3w5Vr0WSKYDTle41x27Jovzc1mKYJjenQNA7TsN4DTiS2ya20Ewya/VBk4OCImU4ZQbG2M8a4TDGUgoZEaDhwaWNVcAl5HNKaRYIIhFV2AiKxcFd0vAKsVfv6x8qwpjPTWGbC0tOlPKpnNH7OSewDMilruG8n0Db3JUCZzkJdzSXqhSaxWMiINYm6Hdks3M2qq1nkT9RtF3PMXpcoajZHuBPdG4WTJ1Ek044wIKrZ+RJF8IpuvY9ETOi2+ItGDOi6ZVEUotGKeLbamN1PV62MLrHoWBmlYIQ7fY4vask/WyxCCXjhJoOpa7ZAZJY4lO9N6KYGU9eQSllWTU3XoKV0cFi5HzXbcsgMKxLa5I5ATXKGJDRrzSLTEUcEyZZsVQQAkwEhaxZBaxaJFgo3kuB7dwHcAIvEgYq2aaKCMQ16z0NhfLkycBy956EZrXvT9Pr/fGt6BIxpqBx8OLa/8XqwdVHTgP4D5cd4RENlvEDkQVjKHJVmKmmoxXToIZbFUlWLBfLbQKiIoJVWPGLXZNZkjkQr3Y3VpkMk22bQZPJsDTqHDF4RpfhcAhH2WkQR6awIRCey2ZTuZuu9IS2Ium5CjziiULUy6roh1yXquglmr1lkPmsWgcwti641i8K6qKxZtCKkNZiGIcWiaehyDaOwfJqGhqQtYlO2OxoAtBSHxjRwbgW/MDudTgoaTHDEuY44dNRBL10/QybUt2axhWtpouXBObeSYtdsddoAQItA69wLrMKd/0/reADAAGP9J+41jLFy6L0OhdYuM+sYYwyReBlSdUHrGxkiMcst2/Wss7H91eVhgwGjx1nzY8D3OrUunECNTFzyABBrnjKaTGOWtTawQ7NMo9khsVhAMMBec2itPyznEas+s12Wz5v6RodTaUUHZPCKDiEWrVcNdkSzXYJPRDfrdtWVaMS0A1VsF7N4b1sWhVjUfcWiKduZsDJKsWi43NBMrFn0BLhk5IZWAl0gSv5xBm6a0GzBqJkmTE1YGTUYjINpOjRDWDgBw7ZsgjN5XjXZd8rgVm1p03bdc0swRpglxrVSfRJkCgdZFglCwfzuv8DurT47UjA3fwGt6/fBylq7dmkdDgBr382p4BIrA2vdIWuBpkeiYIwhlUiAm47VUNMjiMTi0lVdOfBQ9P7lNHx11x3uQBdNs4TiJVdC69QFHSpiOKBtOSpiBeKCBsD0KHjrDsCe7cGd9BhQ3kxJuaM69JAlANn8DOfPn4/HH38cq1evRnl5OUaMGIEbbrgBBx10UFNMtUkhsVgAiHWJDEAZdMTtNYlWWT6nRJ+VD1GT0czqekQhEEXQiuVutiyJlli0hKFwN0c0Dk2DkifRDmbR3dZEkTvREou2BVE3EImYUixqagS0bqfIsd/7uaFl2hygXrGouqFlCh2uQVPd0KYGTb5ymKYJ07Qc+KbJYWqanQjcXqfIuCU6beFompq9pIfJcoEGA2KcIQE7YTfXoDONxKIt1sOgABeipcBTCX+hqGDu2Ai96/fT2hlj1hrGRqLpEcTKI+CmCQ5uP+PS/492PfsctBk4EN8ufRw1//4ITNPQbujRqJowAbHuPaFrrGAScXthHXuC1+7xX+vJGFhVv2azhGo6gxZmWcyCV199FVOnTsVRRx2FVCqFq6++GmPHjsWnn36KVq0KJ88lQGKxICi3xWEZjziRzrKGs5VgOyYEiydYRQhEKRSZqNnsWBJ1WYoPMnhFd6XBEesPHbGoaaadHsf0EYu2u1lYGeWaRVUsWqJStSzKSGiPG1pGRPvgCnDhTHFH28LRdjl7X03b9SysjMLyqRk6tJSdfFuz3nPOwJgOjcHK0QiApzQkTDtROWfSsqi3dLFoAiwVsrjbYBTgQrQY+N4d9Xeq3QOeSoLZybFzBdPq/yrbuv/B+N6s39Y7lrlrK8w9O8CiZdA6HQCm5dfSyCIxoPsh4Ds2Wu5+sT6xdQewdt3A4hXNNhctpkMLtSwCyWQSNTU1rvZ4PI543B2t/dxzz7k+L1myBF26dMHKlStx3HHHNd2kmwASi3lCBK6Ucd12N1u1m+OIyBJ8caUUX8x+TavTbEc0WwKRI8LgCETmBHFEPFVX5HtdiWa2XcfCsqiLABdbHHrFohCHuuYWi0IMWoLSk1vRWxfaE+Ai3gtLn/XBJ32OcENrHMxk4CYH4wymwcFMDcy03c4GBzPd4zPYItQe3jA06YaOpkwYJoNhcksgcmcNKeMs67XLTnS6v1XSWgLIYdkEOBJ2lZiCrRTDKcCFICRGCva6lvB+ZgpAbsViU2Du2IS6D14E37nZaYyVI3rIMYj2HZy3eQGWO5p16gXesSdgGoCmhda9zhV6VAt1Q4MxPPbYYzjnnHNczXPmzMHcuXNDx961axcAoEOH8ITs+aAoxWImfv5Ro0bh1VdfdR138cUXY9GiRc09XRdqKpwY19GKR1Fmr01UXc9RrtmiUeRMdNYgilcrebbtYhaC0Q5ckeX3bMGo22sRvWX5ItKSKAJUvAJRWaeopMhRxaJmH++sWbQTcSvCkYWkzoFLLALWg5e5sj2o1kTAFosisIVpUjQycJiMKw8R+1wczvlEUm/7VIau2wEyVt5I3eAyAEjj1n3VeOZBbpq9pEDmxBTpjZD+gDHBYYDDgGkn/E4hxazPHLAlZAFhJZ8M308QLYVIHBn90utFIBR3bUXtq39Lj5hO7Efyw5eAVBLR7x+Vn8kpMMaADCLBc4Wma/VaFs8++2wsXrzY1e61KnoxTRPTp0/HMcccg4EDB4b2zQdFKRYz9fNfeOGFuPbaa+XniormM1UHodlpcP4/e38eb8tV1onD32etqtp7n/GeO88ZbuYEkhDMTVRCGASjBkVBG9sWwVe7ldg2oX+t6ddm8H1t2hdb+bW/2LQT0AKtgoA2CGIQSINAIBBjIPOcO49n2kNVrfW8f6yhVtWezjn33DH7+Xzq7L2ralet2lWn9nd/n+f7fSY4tmxiZFv0GQucOkvfr9mlm8NOKy7FHJPxDHS9m6WAZxCFKFrxCQoBopvvTLUdS1jUH8oeLGMvgFiyyLGMIw1jFkORC2DT0u6xf/cW/5yLeezqDJ3YRQtTvyhkUbMohBG8KOEBqhamQwtzwTJqnXvxTB6ZntK5IkTu87WM7lI5M8cWTyD2giXXajHchgYbJxoLFBUYE9DIWCGHRpsUmpSfWW0GR8ziKEbhgyZmwEefHexjOLYGdBrBzVIj/ee7DWPXB/xm3/kyovNfAFqCOplZA3OHoI/tM3WGcQ1iZiswuf7MUVmvMEQyGCyCCHEcY2pqalnbfctb3oIHHnjgjC3hOfOv4B6x1Dz/2NgYNm/efKqH1zdcbWKDI4zb1HONJRq2G0vCAjXLIhqD7SLlHIepZlEWrEhplM0G4JUBIgUA0c13/ojUo0VfT+BYAoc6qFnkglkkDZJlgBgKXEiUWUZfpximoauAsVKvWEpHa7bpaCNaYcFgbVLLpMmmoctpbwA+Jc0W1DAIUglEvs7RAO5IshcHuVE4QNcvBAhruIZx64k5zhFiSO+BaW4vwTGBoZmhiP22c2hkkMjBqCFHjSVS0ugg9ynq0xpcfHY9Fw8Rv4xiFOdSkJCgtdvBR57tvYKQEGu3ndpBrSC4vQh94MnBK2mF/LmHutLRmhlaMwQZ4QerHPqpbwOtoGavPQ89fxgYXwtx3gtPew3kicQwZnElZe233XYbPvWpT+Huu+/G9u3bVz64kxhnJVisRr88/4c//GF86EMfwubNm3HrrbfiP/2n/9SXXex0Ouh0Ov51tTh1peHSzhKEumUSxzhC3dYm1mytYmzrEmssEAGWSbRgkWyXFZtSjpxQxQlXZHd6WVBvsOheCw8ey51XSr2dpbKm3OUOLVIWDKIIljv2UAhdeoSzzhE6AIsVdrErGCVg5VhFC0Y0AaQBJrLPCZpMal5bxXN5a4WKlwUZwGs7wQipIbSGUC4dX7CwTqVuHGP61xK6XtxTOsE4ohJjLADLKpYPVIPBBOTMPh2dQSOGRg62pQYCMRRME4bcj+G0paeHmnKfuqGMYhRnQoipDdBCgo/tA/LiOwSNKYh1p6YF3XIjUxrN1KSbxxIJ2V4c/iYS4NaCf5krjYV2inZepK0TKTA29xziVp/vz8Wj0Psfhdx62QmN/3SGjASkHJyGXmowM37lV34Fn/jEJ/DFL34RF1xwwSqM8OTEWQ8W++X5f/qnfxrnnXcetm7divvvvx+/9mu/hocffhgf//jHe27n3e9+N971rnet+vjI1hzO6JpnFg1YNGxijQXqXsRCqIO8eKUW1CPG1jTbgcOw/jCyDJ4TrDhQKANhiQODYZ/mUlu+Hsyi6PmcvceiSzuXgGPQzSUEhz1T0T0ELuZDC0QoNkJDbueRyNa+gLRhFUlbwYtiz355JXawbcD2lrbbjaQwKurAS1KQgLBiIbABdh0oZH1a/U1xgnW6jjVcQ4NliSUW9ny6o3G+1ib1zbZG0ewjs+xiDjY/HkgiY21MwUmiDYUWcqQ0qEHzSY6BNYsjZnEUz78QE2vB4zNA2jJK3SgxCt4zLJRm7J1tYa6dl+ZPxXWskQmkGtCGkDWobsq8cqVxZLHVlX1PlUY6thnTi8eRdPoAxmN7wZt2gc6COs5eQVKABoDF5VCLb3nLW/CRj3wEf/3Xf43JyUns378fADA9PY1G49SYjC81znqw2C/P/4u/+Iv++Qte8AJs2bIFr3jFK/D4449j165dXdu54447cPvtt/vXc3Nz2LFjx4rHRTBsU4MjNDjCJCdowIgd6j71TBYsFu34akSIba1cLJwnIhBJ7esRpSieO8ubUk9mLyhx5teO2ePCA7ELRLr6QweWNIRkCKGCx16gsACS3k9Rhs+DNLSrTywBRpRYxupn6KIkcAnU0LC1h4ZhFGBXm+gELApgYkiX6YZJX8vIgC2tCUIa427DxhZCIKBQK+fEOC46mKPyzZRA2KLHMMM1TOsEUxyjZn0waxYkCjuFqkkHGDUIOTuhi2EZMxIeLKaskZE2oidI1KFQg0QTGVJodE41aNQEqAE3SqaRz+IonpdBRMAptHBZbmhmPHV0Ee2s+wfvXAa0r34tttz3VxA67/FuACQQbTci0rl2Z0CZJmF+7S6s3fft3rCJGWjOApMn7jF5OkImq8cs/vf//t8BGEFuGO9///vxcz/3cysY3cmLsxosLifPv3v3bgDAY4891hMs9vJAWmk4qxUndGhYJtEpY+vOFocJNZjJ1SXWgprExNXOSW1YRWnVukLb2kQD6KQFag40FmyiAYpUAY+CQoPsIG1MAdMYgkoPRF3toZuCtLNnDguWs/o69Fl0htgln8UB/2TEhoUjJrBRp9jnBGP+JyBIQ0MA0BAwdYxgM08IBgsNZvLHqIUo0s0hmHbgFQWoy6CRQZfEJqYNY+SB4iRHmGCJBKaMIAEgyCSfpdU2m22Sf6UZyMFQIAMWAUgGciIINu+PnGUPwwttjPmuAtvU9SlLSTMNFrHokc/iKEZxJsZcK+sJFF2k9SksbtiFyQOPoJfIJb7sBlBtDEprpPmAehMi6KiGrD6NpD3be51BgqAzPIYyi8tAi3wWfQ5nJVhcSZ7/vvvuAwBs2bLlJI/OfKEnLDHFNQ8Ux7zhtkCDnYeiA4tG3RwToyYLT8RaHBplMyJbTyiFLqebncAkrLULgJkHhUH6N2y/V9QyBill6qVyrjCJomyPY1LSgZglTEd7sAiQs9AJBS40ACw6uxZrm0OB3yJpgoYAsQaTq2cUABnYCAJIsU1hW6DGZOsTg+Mg8xlW2U0NI2xpkypBMgIwxjE26TFs1A1MsMQ4C4xBlOpMBbFhFoNjM8KWACyyMQJXDKQgxGAotsImaGS25lUSIWaNmAQEE2IoRCxwXHROWQUja4BHauhRAPj2U0fx0XuexaP75zBWi/DKqzbjR1+0HVONMze9qBdnwQvHgKQOsWbTWa/MXU4ca2ZD1iAs7vo+TC0eNJ+RiyhBfNkNiKxtTq6XcK9hRh41kKAPWGwsTyl8JoWMadWYxbMpzkqwOCzP//jjj+MjH/kIfuiHfgjr1q3D/fffj7e+9a246aab8MIXvvCkjYtgejuPIcIYx5jixANEo5A1Ioi6rU2MQUgIqNl0cyIZSWSBoWAkcWCQLcseiMIDOpc2DljCgLVz8z2rF/ocEgzIDECcT11XurFQAKxKU4md1H2BYgEYURG5sFMBDWQXmQ1IdKloxyoyEQS5LixO8sxg57PIhmckLSCkNmBRU19xjtuEA3IZM1qkcZxS5BaQEYB1uoH1XMcWPYaNOsYYCHUiNETRTjESsOxuuS6TmaAZ0EzQ2jzmGlBMSDQht6npGEDKRhltWj0SMmJ0WEMQIYFCAgnSQJNytKhP+mhVoxAKjeL5GcyM3/vsQ/jwPz4NKYyBPQB8Z88sPvh/nsT/eNP3YNemydM8ynLoucPo3Pt30PsLxS9NzCC5+mWIdl5xGkd26iLTw9VnuYxRf9WboY/sNd1pohrkpvNL3WeWZINNBKF7lcgQML3hjBT9LDWEFBADmcVTN5ZTGWclWByW50+SBHfddRfe+973YnFxETt27MBP/MRP4Dd+4zdO2ph86tkrYSPbkUWaukTLJibWEichQgJGIoBEMmLJiKVGEmtfkxjHqgwUHbMYAEQvNKmwiGVQWKRWQyDZcxLVRz18PcGAKO+z5J/ox4MAtJZFLib6KaOLcC2dmY0a2t+5NMACvnNLqbUgm8+JNfU/bvf5uFQxmx7RGRgtKBynDhRpkD3XM1zDWp1gmiUmiNAgoC40apG13rEMsLF1LINQdt6QFjAqTYi0AYxCmTR0xIBggmBGDgKx8YeUbLalIb1ReI7Yi2U6NMjcZxViWM2iPvUdFUZxauN/f3sPPvyPTwOAB4qA+Z+cbab4lT+7F3/91psQDxQBnLrQc0fQ+tz7u/oK88IxdL7ycXDWQbzr2lM6pk6usGe2jWamEAvClqk6puonl5GNhUBWNdyuRCRMX2m5fhuwvrflTyQFBBH0oBQqayTtY93za+MQZ7ESGrDt/uQA659zlFo8K8HisDz/jh07urq3nMxwAKLGhkEc4wgNmPRzjQOwCIEEQA2EOrGpUZSmN3NsHz2bKE1vZsckRva5SztLEfgZhnWClsHyQM+NsUeN4EDgKIq6QxECrxCQdgHJ4rUTssCCxCIN7cClFbyAYUhALj7MXp8xc8EuujDlie4EWMDo6g0NSCRdYUJ197FUwzF/uQba0FgkhcOiBcCUGNRYYpOuYz0nmGGJKWnOY01q1BLXPtGp1O1YqLJ9TdDWJzLXAkoRlBaIiJBrMwlt7HMytn6PLCDB3oJHWmMfw5eadVIyOuuTBhgZQ2oWT9aOR3EmBDPjf375yUCqVQ7NwIHZNu5+6CBeceWZ4XGb3vd5AxT7fG+k934O0c4rThnb9eTRRTx00FjQuP+kJ442sWmihqu3TkOKkwM2ZsZiNGcHg8WZseGAlYgwWY8x2+qvnB5LIsiN54OP7gVUCkQ10NptoJmtZ7XHIgCQMA0f+i4/hWM5lXFWgsUzLZzqeYJjo3rmCA1ITOjIAEQmjMOoYxMrYqlbBqoWacSxskbQyoPFKFIeIFY7pkhfM+gYRV1h9QIQRGVmq1AeA2UQU2EMbVq6Xwq712uXTq4CUI/wfG1iyP65MQ0WuPhvJ2Zbv2gfycIkuwvBhciFGCBJEGCvki4B3h670Ra45UqgpQnHRI7jorgpTnMNl+VrsEPXMS0IUxFjoqaQxNqC/TxorViAxfBAmM1+tFV150qYftRKIM+FB49pTkiVQKaBhI2xdwJGzAwJI7CJLXSMYPqIQxPmKT15Kmk75r6LRynqczpmWxmePDTYk08KwjeeOHpGgEVuL0LteWTwSipD/uyDp6T38Z7ZlgeKQPnOcGChgwf2z+HqrdMnZd9TjRhHmmlfkUs9EpheYr1pI4mhGZhvdwPGRhJhsp6Axs4D1p/Xtfz4w4/jwD3fBgnC5u+7HlPnr9x15HSESCLIEbM4ipWESzs3rBGzUz7XIFCzZtuJBYqJMCKWJCpSzUmsrDVOADakBYtdRthF3WLIKnalfwEP0tw8AJ5180HBA4UiGPi0dZEqXgFfRcU+e/8LVRjFHkxfZajWrrvo7RwCYPbsKdljMECxOM4+qW6XEmZCrgVSRWiCcUi0cciyiuu4jk26gY2cYEYCE5HGRKIxVssRxwpxZCbfa5t08NkBvlWhb1FI0CwglIBWBCUFhJCQipELApEAESA1QSgjLpFsj50FiDRgaxrdB5TZ1oGC6eTUMA5jFk8TWHzta1+LL37xi3jFK16Bj33sY6dlDNW4++678Z73vAf33nsv9u3bh0984hP4sR/7sdM9rBOKpYo3z5SO5ro5P3wlEuDFPkKMVQxmxmOHBwPtvXNtXLx+AmPJ6rNvggjnrx3v7bNYi7Blur4sVoxBmOswYglM1yMkkUAjjiD7sG6L+w7gS7/0a9h399eKmUTY+YMvx03/z2+hNrNm+Qd1GoLEMDX0qRvLqYwRWDyBMCSa6fVcpJ4jX59Ys157CYzBdk0w4kDIEkUaiU09R5ZNjOM8SD3nZbDYS41cSfuGadV+z/sejwNa4BLAdKnkoZ+GeWs52H9QBZM45DPtK3Lp8cqM0/ov+jF7GtKD1TLo7bVtC96U6Q2dKsIiNA5TG0epDQnCRt3AFt3AepaYjjTGEoWxukKjllp22JzDkmgmYDDZinMYprUga5N6FkJASwGtDROpBEMK8nWeUhEMP0oQmqxox6SlCQxF0n84KSJoGAV2x1rrrObXNjOBB9QsDmIdT2b86q/+Kt785jfjgx/84GnZf69YXFzE1VdfjTe/+c348R//8dM9nFWJNWMxtq9tYM/RVt/rSmnGNTtnTum4+gXVlmBszAw6Bf6Ii6lCMxvO+B9YaOOCteMnZQxSEHbMjPkOLszmO0QrhYVWGwBQiyPU4hiiTzq8nSn87UMH8J398/4aEARcvXUaP3jpRvSCuencAj79I/8KC8/sKS9gxrOf+yI+89o349a/+3PI2plnZF4NEccQUX8wf64q7Edg8QQihrT+ejEaMIBxnE2dYp3JKGQto9iwNW1xZCxxanFuwGJsWCnDJGrEUeZZxChSRcu9oIOKkKqoKwzS0F4wYqOqwA1jULowtLTpuu65sK2BNkpjkAEnEOznGwBXqDrIKZmXIGJZdjgQaDu7dNvwBKnw8tyiflAJKCWQ5RKtVGI+I+yVLbRJIYbAWt3AhWocWyjCpprGzGSKWpKjluSo11LIyIBFGeW2zaIOwLfdX/DZObComZDnkRmDFogihTyXUEpAZhqxlMiVMIKZXCBThEgZ0Oj6hkMDkoxXJ8PUMsYQUMxYpAzZahYSWnP0/stXb1fLiZtvvhlf/OIXT8/O+8Qtt9yCW2655XQPY1WDiPAvv/cC/PanvttzuSBgzVhyRqSgAUCMT0Os2wZ9ZC/6XpwEyB2Xn/SxqCVYztAS16sGM2PPXBt7Zg3g27GmgS2Ttb7AJZYCEwmw0Gp33R06WY40V5hs1Lp6IGdK43/e+ywWOjnGa5Hp2JJraAbu2zOLo80U/+pFO7qA5sN/9lHMP/VsT2qalcKR+7+LJ//m73DR629d9rGf6ljNDi5nU5wZcrWzMOosK2xiKGYhk4IGISFGTRigmMQatVihFudIEuWBYhzndsoQJzki+zqKM/vYY7LryTiHjBVklNu0tYKMKpNNazsQKmSFqazWOoZpUwfybMeUpU7QwXs0gS04CicPPLgAr74sscfUF4gwUPoH7fpfDQAOB6BNF8BNKYFcSXRSiUVFOMoaT4g5LFKOGktcrCaxWQisSzSmxjOMNzoYa3TQaHRQr6eo11PU6h3UaimSWookyZAkKeIkK01JkgXnOrPr2cme7yQxU80+JnGOWqIMCx2ZMoaaYNTIeHQ6Y/ea6w7EEnVEGOfYWzetWrDxWew3rcRn8e6778att96KrVu3gojwyU9+smudO++8E+effz7q9Tp2796Ne+65ZxUO5syKTqeDubm50nQmxuu+ZwduvdYoZUUARgQZYcN7f+Y6JNGZ89WSXP2ygd/f8aW7IRoTJ30cY4kcCiMYwERteRzO8VaGP/vWc/jL+/fiH58+in98+ij+/J/24MPffg5z7d7eisyMxU6n/y2VGc1OuR5RacbfPXIQ9Vhiw2QdGyZq2DbdwNbpOmJpfqg+fayFhw4tdG3v0Y/0brPrgoTAo//rE0s53NMeMo4GTiNmcRQAitRzzdUlWoDoegEn3h4HtkbR1CnGkUk9x1bQElsBSxzliG26Wdp5jk2UYa9iqYo6RVsThz4gr0ssYlOfHvzB+hbaR5ex7WIfAeNn6HLJmgrVsStqBMAkoF3XFMukcZi7Fm4/VJQ+sqnBgyhqGgud74Bwdzdv0m3PCpfXCSskPQB1e/KtAw1Q1FpAaYk8l+hkEgsaOI4ch0QLNZaY5hjbuY51MWOqlmOikaJRt2AvzhEnmQfjUqqSSKg07ACkai38/okArQja/oo3lkjFly3ZNL52nVxgxDHQhsnNADALMGnUIKAgoRmoQ6KDyHSgseUFJ0z8DWUWCVrrLqAzqEPSsHTtX/zFX+D222/H+973PuzevRvvfe978epXvxoPP/wwNm7ceEKHcybFyepPv9ohBOEdr70KL79iE/7y68/g0f3zaCQSr3rBFrzu+h3YOFU/3UMshdx0Pmov+Ul0vv4poLNo/qGYARKIL7sB8dUvOyXjiKXAlqk69s21+/4fJlJg48TSVdntTOEv7t+DZmrS2+F2Dy2m+Mv79+JnX7SjC7wrraGHMJhprnBovo3j7QxKM+Y7OdJcd4GhRApsnWpg/1wLu9aOoSE12p0OiAiRlBBCoHX46MCCV9YarQOHlnzcpzOGd3A5dWM5lTECi8sMsgzOOMcYY5d6jizTKDEG4dmeujCq50Rq1BOFmgWJtZplDqXyzKFjBOMo9+yfA45ddYq2l3NoY+NtcSrBAahiFp5Vc8DRzGPPCIWAka0gg5ismliYDC+ZtnkkGIK1yfIKAgsGM2xrPYJgAkkNwWxr7KzPIWtja0OG5mN/DBYwVuolzWDcY8B2omAlQwBYAGAqTR6k6SD1nEvkeYROJ0KrnWC2GeE57uApadI5l6o1OJ/HsDMCNkx2MN7IMDHeQr3R8ecujnN/jqQrEQjAIgfj7kpDa2HGoSW0MsbhKpdQStpa1Qh5riBFBEHG40wKU6MolOk9zdo8ShY+pSQI0IjBbNLSOUyP6ROFi0upWXzuuecwPT1dmv+Od7wD73znO3u+Z1i69nd/93fxC7/wC3jTm94EAHjf+96HT3/60/jTP/1T/Pqv//ryD+IMjdXuT38yg4hw02UbcdNlZwdYj7ZdDPlj/xZq7+O2g0sN0bZLTkmtYhiXbZzA0WaKTt7dopMAXL11qsTWDot/PjCHxbR3HSQDmOvk+O7BeVxTUVgPS3XnmrF/IUPOBTMZCcKFa8dwrJXhublOMW4i1CTwM9duwdpGDM0MtlOqNYQQmNyxFe0BgJGkxMTO3r6OZ1qIOBpYszhSQ48CgPFTnODYtvEzaeiaVT4nsGlBIm+PU4uUTz8nSW4VswVYjGxKsmAWrajFgkffrSVovVc237a+hUChCkbwC9OziQS2TJRLv5o+v87N2q7OKAEbONWx3z6DiLwFDZMAW5W2AX8wXofCttVjAyKFdu/RIEHFcWi3nUJUwwiAr6ciA9CLAgwyo5TWDlPfWgeqY8sg+kkZQJbnEmknRruTYLEd4YAGnhVtHBBNnKencD5q2BkR1k12MDXZRqOeotFoo15PTerflhG4DjdS6oDxDc5FCBZtWl6zq5WUEFpDK1FsRyuQiCzLKP22iMxNSjNAuQCRgMoNEAcDGQsPCHMwFGkwm/7Rc5SeeBfpHgx0eTFh+/bteOCBB0rzV9p3PU1T3Hvvvbjjjjv8PCEEXvnKV+KrX/3qirZ5psZq9qcfRXeQkIi2X7Li97PWQKcJyAiUrIw9rUUS33v+Ojx+ZAHPHW9B2X/HjRMJLlo/gellGnM/eKA75du1Tg+wOAjOMDMOLObIK7cKxyiuqUdo5xqHg/aBN2yfwpq6gRNVsKu1xve8+z/ib3/wDf33qRQu+ZnXDT2WMyFGzOIohoYEIWZhurJYw22Xdo6Zgu4spjNLbAUtcVT4JvrJgkHvpyjLNYYhWCTbDYRCu5yw1zK5XsswjBxTN1hk0xqPbS9lT0ERfOrY1f6FDFjBTJJn+ww7aICeJmPTIsgAHQCW/SyYPiEYkLDvMWwjMRWG2WyOq7C9CRhGcPFLrcJ6hmldBCDMAEYRsIl2ma2rc2IWZQFjmkVopxHmU4ln0cYR6qADhW26gU1SYG2iMTGWYqxhahJrtQyJFbU4gO97ansrIxTsqEuB64LN1VpDaAFt19da+DQ0EUOr4pcrUQHyYTNoytd8MjJN0Jqh2ZQ/KMswJhDIIKGIUYdEkwma6MQAI9OQDi6EAwcO4IYbbgBgWnO+5S1vWfHuDh8+DKUUNm3aVJq/adMmPPTQQ/71K1/5SvzTP/0TFhcXsX37dnz0ox/FjTfeuOL9jmIULjhPkT30deSPfxtITcZBrNuG+Irvhdx8wbK3V4sErtg0hcs2TiJTGlIIRCs04m7nw9XV7bxb4BYN8AnsKEY2hHlcPxZ7sDhdk9g4MVjFvOYFl2PDddfg8LfvB6vKeITAtpfeiJ0/eGrKAU40ZCwho/7QaVSzOArUnUWOTTsXk0Adtuez9VGsSUY9NrY4xkvRCBWiSHmRg4yUF6yYmjfz2otQrA0LCS6locudU1CooANa0QtGwpSzFmBBgEIJOBIHANOBRC1sSzpRAo8ASvt26XCn1Fa5KpTb0gBcw4wK3xHG9Z0mn04Xhe1P1bDbHRChAK0oM6DFmA0QdIBRK2En6Rk8pSRULpGlMdJOjE47wWKzjuOLCfY3Bb6cHIQCYw3HeKEew7bJDmYmUkxPNTE+3kRigWKSZBbMq/J5ErooCfBjNuHqFAuRj/mMpdReZEPEkEpAq4KtzQNltci18Y5kgrDzlAYIpkQgt+l5YlO7qMiUBigwOlAgnFgPaS826rsCsGXLFnz5y19e8T5WEnfdddcp3d9SYmFhAY899ph//eSTT+K+++7D2rVrsXPnztM4slEsNTjP0PnSX0Af3Y/wn1kf2YvO//kokutejejCq1e0bUGE2qB05hJiphFhjUhx6YTGmGQs5oTvLkjs77jqemCmh9G2EIQkkkh7gM12lVKsBBEhloREElLF2Dgeg5mHgqRX/9Uf4+t3/BYe+8v/Dc7NPUjWElz6xp/E97zz/yq10GtmCntnW5jv5JBEWD+eYNNk/aR1t1lODFdDn5sxAotLCILpkFFniTEUBtwGIJrJpJ/hgWISa694TmJXp5iZNLQDi7IAiw4cRmH9WwksKggZ1CqWmMXyP7cTUyBgBjULsGKw7d2rrUKWmP17vI2Mq6OzIKsEcsIUpAMwIlBWy6K+0jGkQrIX6ITr+I4qUpeOyzGkYWvCKrUfMp6sAybUgkWtCTo3wFArgTyL/JSlCdJOgna7hsVmA0dm63giVXhYdKDBuEpN4zIex441Haxb08TEWBsTE03UxzqI4wxJLUOUZCUG2INgd166zkc1RS78eJXS0MoUgjtWUakine0U64ARvxgMSrZ2VRqW0QpflHJCIoICQ7EEyIDFcdtDOoXCiqsXWQytWdy3bx+uuOIKACfOLK5fvx5SShw4cKA0/8CBA9i8+cywZ+kX3/zmN/GylxVsiatHfOMb34gPfOADp2lUo1hO5I/c0wUUTZjX6bf+HnLrRaD6yfFFHBTMGq9al2KcM2i2dcoMXDWl8PCCwN8fiqFBeOHmqZ7vb9QSaO4grzB9S70zuHscEblCoYERj4/hpv/n3bj+Xf8Bh+97ACQENlz3QiRTk6X1nptt4ZGKovpwM8UTR5u4dts0xpPTC1tEFEHEA8YwYhafv0EgJGxSz4m1Ikms8jlm43cXEyEmRiTY+CVKbQQsQdo58mnmbosbJ46QDlRZsOgACJWYRS76Pvcwmw5TtGTZN6ENYAR04V0d1Cq6Iy1YReGFFi5t6wFOhWV0rCKJskVP8Tysv3RgUXmmUQQKYiG1B4gUAq+qd6I7Rvu8AGKWEdUFk6hzeyy5hMoiZFmETidGq51goZngYErYxzkOiDa26DGcJ2rYKQWmxw1QbDQ6qNVTJElqLIuSzLPBItJ+/E54ZCXzwVhhz4fw4yRl2EHt2VQjIAIARQyQLD5je06lzu35BWJtGF+tCXGkTf2jZsQayEHQzEhZIAZDge01K1GDRgKJNil0fwEuIZxwqG/QqjKLSZLguuuuw+c//3nf/URrjc9//vO47bbbVmUfJytuvvlmDOtjP4ozN5gZ2WPfxsD/E2bkTz2A+LLdp2xcLvSxfRhn013KEW7u8ZJxjfk8xyGxBhes7S3iISKM12tQWiPNnUE3YUZEmO00B+4714zUFlweaWZLEuU45rG+bgbbX/GSnuscbaZdQNFFpjTu2zuLG89buywR0GqHkLLEglZjlIZ+HgcBPv3sBC2Jt8uxHne2TjFxFjm2jV8oaImtF6JPPdt6tyhIZ8pYeTDlGCvh6hWdsCUwfYYDVWH0Ss/CuN6wvZBZW4VzoRqB61mslIDKDajKs8gIQbIIuZLQmgwAC/z0hAN6xEagE4XtCov0euHzWKRunecjuV7XMhTuhGbjKGoABxyrYUItWAyZxTRG1omRZSb13Gw2MD9fx9G5Bh5XCk+SEbX8cLodu8YVtkykmFmziPHxJmr1FI2xFpJaBhkX/pZlUF9Jo5e+YIIyAHs+SBjgKISpVdS2iwsJBuXSfKZwgiL2zK9jGLXOfXmA8iAeyLWEUqbmswYggyklyEigDgnNjBwaKSmspHu0qf1c3Q4uw9K1t99+O974xjfixS9+Ma6//nq8973vxeLioldHj2IUS418bg77P/lxHPzbTyE7ehTR5BQ2/OAPYvOPvx7JunWVlVMjaBkUBOi5wydvwH2CVQ5uHu+7nAi4dloj2rphIHhx9jZhDWOdGbU5gU61ttDtmxlHmmlhUAED5CJBffclpVwSiHr6WP/PmwF0co2DCx1snjx99kwiGcYsnrqxnMoYgcUhEUOgxhHGEKNugaLp/WxqFA1QBGoCqEfOdFuZFHRSgMQw9Rzb+VIqDz4c6HB1cEJqy1o5IMVB6jasi6v4+TngBFhBhQUnxNCaTZrWiU6YjWMOuRS0tZLJImRZjHarhrQTI01jNNsJ2p0YWSbQSiOkOSFngrLsniBAEltPSeMnWU8UalYBboyn7fFbuxnHsoap95JFkCxqM30toE1JV7vT+HS7ZUVZBWyisornVg2dToLmYgOHjk5gfyvCEy3G16JD2KgbeFm+GS+YzrFhuoXpiRamphZQH2sjqaWoNTrGTzFS3gjdnRsRAPkuYFsBs45h1HlgnZMX6X7HHGtVCGWEcul4ILefg7Y2RMKKX8xZiKA0gSFAytQv5pY9zlkihTb6FDCanCMlhbLt7lKiUopQDV5+GnpYuvanfuqncOjQIbz97W/H/v37cc011+Czn/1sl+hlFKMYFOnRo/juv7sNnQMHjAsEgHxuFvs+9lEc+tzncOV7fx/1bYF9i1hKPSGBouUpmFcjuDNcBS2JQVkTkJND1w2DiHDBunE8dngBeQ+hy1Q9xngssGk8wUQiUY8EFlKN6ZoE0F27SESIBwhCXDAzjrV6m4iHcbSZnlawaGrsn38dXEZgcUhIFqhRwSTGTDb17CYgtj2fI8m2P7BJQbupK/UsLSCspKDdPA+aXM2idArocr0iUABGJ6YgL3CwLKImgARgWSpw8H4HugJVsVYCeR4hSyMj/mjV0GrHONZMcCwHZrXGPrWIXBM0AwpFqpTAiAQQaYbMGXGuEXU0EslYLxJMyRoaAhiXpq9yHClbz5l5JtIzkKJcsymFBhzbFvTAJg+W3DEIY3CtzXGozIDFTruGZrOGVruGufkG9rQknslzPEIdrNU17BAJLogJ6ydbmJpoYXy8hXqjjVrdgMS4lnk22IFFKp2bIp1cSpmHqm33XFvFtzbpaHMgRl3uwh2XdMemCRyZHwGsBVSU21pUQpQrKEnQkUacCyjN0AzEylyjik37v4RMC8AY5prWzMsGi6xhOrX0Xb78NPRS0rW33XbbGZ92HsWZHU/9t99D58BBDxR9aI18bhaP/fZv4ar/9gd+NskIYvOF0Aee7K/qYg257dKTOOo+sdTyhhWWQdRjiUs3TuLIYopjrRRKM2qRwPrxGqZrErqziE6zBdaMTEVoiTqOt4F6RKhFwva2N6zlUlnFpY50Bd0QVzWGMYujNPTzNGIrbKlB+rqvECgmZMGi1J5RiyKjgI7cFBX1ir5u0QNIXQDGqHjuwKJnFSMjAoHoBkvV+jhvVq2E8UHUpncnaQKEhhAETSJ4b2EUrZRElkVIO0YlPLtQx1wrxp5FiWcpwz6R4UF5HBR0Xun5v6EBpOZeVUeEXaqOzaqOaY4wQwJTtRy1WKNeyzFWTw1ojHPUa5kB3JaBdDWPUZDq9bWbVV/JkFnUAllm0+d5hHa7hoXFOhaaNRyarePRVONJ6uCxaA6vyLZgVwKcN5ZjrU09N8bahlWsmzpFBxZFZEG+B4uBqCUQHflbX8gseqZXg0gacC4saBcMrcpg0XepCdLQbpsu9RxpgUhq6EiDWSGOBJStT000IWMjZkrASFhAkalfrLNERnoFv4EHM4ujEr1RnInROXQIx/7xK/0vUK2x+OCDOP7ooxi7YBdiacBOfPmN6Bx4svd7iCBmNkNsPDnK9kEKY0oaS9oGxUtbr1fEUmDzVB2bg448nKfIj+4BWCOBuT0lnGFctbAYTSJKJjFWi1dUUyiIMBZLNLPBBTJTy2yHuNoxlFlc5qHffffdeM973oN7770X+/btwyc+8Qlfn30mxQgsDok6S1+n6GxyGixQB1AnQk2wqVO0Njmul2/Y7zmyCmhTz2efhwroJCvUz1WwKIuULHzNYsWeJQwOBC6CjRG3Is9EaiVANt3pfqI5Y2udS6SdBK1mHQsLDew/PIknO8BTKsc/JnshmDDDNdySbsMmEhiPGGOxQi1RkJJ9j2lmgmaCUoQsF8iVQEdFaILQAvA0MjyRz2FWp5jNOqBFxhQnWM91XKpmMAOBKUGYrik0ajlqsTLt9Sx4dIIhEgzhVNSAZ920NmAqzyJ00hhpGmF+sYaDCwn25Ar/JObxlFzAZl3Hj6TbcM2aHOumWpiZbGJ6Zg71Rsf0eR7rIK6liBJzjnydYqQg4kIB7fwvIbqV6aXz4ftjGwDPWkAoghba2/woe361qwskhlCF4blLy2stvI5Ga3t+iZErAW1/MOSarR8jQ7FACgkNY9bdgTK1i4gwPKEVHM6QmkVosapq6FGMYjWi+cRjS/ol8/ef+yqOvjjBmnqMq7dM4tINW5Hc8Bqk93waxv3eXvusIdZuQe37fnwok3T3Nx/GH/zFXfj6/U8giSPcevM1+Dc/+XJctLO7jEJrxuFmB0cXU2SaIQiYrsfYMFEr2exQXAeSBpC2+u+4PrGqKXJmjfzYfpNecOMIlk/k85By/ITEJzvWNPBwH4ELYMqdtpzmdpIUJaBBafVlHv+wdqdnSozA4pCIISoTIbLMYmTVz7F06mft09A+7SwVpO/9bKdAGGEmqw6OijpFV7NIrmYxrIvz9XHoFn04BbRGoMo1ViqkrZl2pXdxwSoKpGmMVivBXLOGJzvAQ9zCIcpwST6F9QljXSRwcZxiJslRjxXqtjZTOkU0FQBUs7FyyZVAmgt0lECqgQUGztM5FpmxqGJkeQSZxYjzBGNZhJSBA4rxMHWQ6hQ6zRF3NGYowiQlmKEIEwTEru+21BaoWsGHMmCxkwss5hILCtiXazyr5zFHGi1mXMkT2BZFuHgsx8Y1i5iaaGFiooXGWBu1Roo4SS2rmEHGCjIpRC0UmXPVdV6I/XeJ+wxMiaWtG3UddKyFEWvTAccXJBIAVvaHAMC6+IUttYaOlD9fMsrtZ0zmB4c2Rt9xpKGUsUCKBCFiIGZCBCABQUEgtddyYs3llxU21d93Ma+uGnoUg0NrDW0ZKDmwjurMDGaGtiBOUH+BxImGWCJoYmm+Eo+3M3zpyaM4uJDiJRdcgsat5yN/5rvg2UOAjCC3XgyxfvvQ8b7jzo/j3X/8KURSeIuaO//88/gff/kF/NV7/y1e9b1X+XWVZjxxZKFkoq0ZONbKcLyd4cK14xgLbGPk2u1QB58EdA/fVBlDzmxd0jH3C91uof3I/dCtRUQzGxBv31kCij3f05yDmF45mNs6VcexVoaDC53SfPcpX7lpCvFp9jikOAatonXOsHanZ0qMwOKQSFgiJoG4VK8IRATEBAMWI40oYl+rKKVC5KxjbOpZyPJUMnSWhQK6qFO0oMTW6pk0tAWKQnugWL0uWQO2FUrws88ASBLm0bFQLlVaSkGnEZrtBMeaMR5XOZ4TbaQix41qE86Lc6xtZJiZXsTYWBtxnCNxLGmlDaHZsGEYC5WysDWRElkWm1Z7qbGw6aQRWh2JY1A4roEjrPCUaOGI7qDJCpwRtuQxZnSCzaqBaQgkghEJjVqkIQV72wilCUoD7VxgTgNz0HhWZtgjFgECNqGOa3gCWxONTdNtrJ1eRGOs7VPPsfVRjGoZosSknmWSQ0a5STtHjvVlwNWSOuAenA/zMThW0YAsYtP+kJVhfDUxiI1/Iix7CAAaDBmRB5ysCTIyiFJrhSgSthOMsmlohYjJsK7KfO5RJhBrgiIgtqAxh6lfjElYG6jlgkX4PuK9l5+b9TpnWuRKo91JkQf1d1IINGrxwO4cZ0owM1ppjlaaB2ARaCQxGkm06qBx4oorIep16Ha7/5iEwPxFV5bmPXhoAeevHcPONQ3Eu65d1j4/9aX78O4//hQAlLwMldLQmvH6238fj3/md7B+xghQDsy3e3ZbAcwPz6ePNXHZxkn/2VCUQG66EHrhKHjxGKAVICLQ+AzE5FqQWNnXOzNj/v/8Leb/z2eAPIMriJ/+4Z9EsuPCgeeGOwOYziUEEeHKTZNYP57g2eMtLKQ5BAgbxhPsmBnD5GlOQQMwwqeB4idClmWYm5srzT3b23meAZ/8mR1G+SxRY2Em1wNaMBJpUtCmVlGV0s+Re3S1iqFdTmi94u1yTMrZs1eu+4ks2CtXr4jANqeahiab9iRN4BxgskbctmbO9GrWpubQMYtW2JJlERYWG9g7V8Oj8xL/mOzD9+fr8EI5hku3LmDNmgWMNdoYm2ihVu+YY7PH5Du2CB1i1FINpfNp9J1VnPl3oFrO0hhZZuomW+0a2p0a0izCwmId84sxFjOJo0pgj0jxnFjEo/K4ATC9ylwis2iMI1yiZvCKbBM2SMLmcYWNMwsYt2bb45NN1OodJPUU9bE2IssixvXUnI9IQya5Ae9Sg3owvl0+kC4CgQuCzi2sLHjMTUkAKwHh09AMyotfz8pbI5FlT8P6RUAp6Ws2VWzS8GBCEjEUs7W2INRgUtQZGHU23V1SLO9XurbG7f2CNUZp6JMcuVJYaHW65iutsdDqYLxeQ3yCnUFOZjAz5tspOpXaNM3AYidDrjQmG8mqAkbZaGDza38Ce//8Iz3T0UyEo9d8H/LJNaX5BOA7B+axc83ya//+24c/BykEVFVQA/MZdNIcH/ybL+Ntb7wFWjOOtgbLzXLNmO/kmAr6R5OMIac3AdOr5www/6VPYf5LnwpHax6WpCw58aJlIsLmyfppVTwPCoqigel9IsLHPvYxvP71ry/Nf8c73oF3vvOdJ3l0Jy9GYHFIRGxYGJd+jmBYxShkFW0dnVf0yj5CFqkDr0FdiFtsbaJjGD1QdDWLkoO6uFBMAXT9c2phbobuRmvry0gShBJGUCGcvyJ7EOeA2vxiDY+qDu6Ti7g+X4crJwjnjy9g/bpZTE4tolbveOGHP77YmYcHwAlh/V7Rb7ro1xy25CusY/JMevCYpQmyNEKeS7TbCdrtGJ1MYjGNcGEuMKcZR1UdnSyCsrWRmavZs56EkWTUBLAhAjZELUwkCtONFJNTLdTrHdQbHYyNtxDXUsS1DHE98/WJsmZBva1RLM6HBYwOuLtz0ccH0htZazspNj6Lik1fbjKgXsP02fZvZVUovSMNoRWYARm5toYEHQlEkfJqaZkX11kcaeTK2BvF2qSkXQlFDMOWL5tZdMfUN0Zp6JMdrc5gUNHspJiS9TNWlZkp3QUUw+jkCrVcoTYo1beC2P7GN6Fz8ACOfP4uQEpAKbAQIK0xf9FVeO7Wf9X1HgZweHH5BlMA8JVvP9oTKLrQzPjytx7B2954CzpKL0kc1spUCSyudqjmAua//Jmey7JD+5DsvHBwmjXq7hE9v2c/Dn/3EUT1OrZcfw2i2uA+0md80DBmEXjd616HP/zDPyzNO5tZRWAEFodGDIGIRQEU7SQFmykAgVEJCKoucFikoS2wksozVKUaRcco+ro4rjBYZfucIggMXaSa4Wkoz0zC9ht273WWOSo3bN5cK8ZB1cFB0cJL9QzOH1/AxplFTE0vYGyiafoiN1LEtbQwEXeMW5AiD/dhdlRYx8CxUwHL6Bg3Z6KtlYTKJPI8gs4F8iy2wDFC1onRbifI8ghZGqPVlkgzM3VSYxiuGRACXqVer+UYa3SQJBnq9RQN659ojsfY47juLK4+0U0UaQ8WEYB5Emxehyno8Ji1PV7LrEIZOpcIYMW+WF7AmqYzTM2iy+Jro5wGA0IThLQemdpeL1pDavNjREvDYEhRvh6lFIg0mR837K5fCn4ELY9ZdAB/0PJRnLxQSkMNYXiYGbnSZyy72EqHe+m10nzVwSJJiV2/9h+x6TWvxeHPfQadQ4ewFzXsu+pGLFxwWV8QFK2wH/EwsG5atZJ/vrRtrmgoPcPZVYXjbD/4bUD1BvLtB+/D+HXfO1ClLceK1oLze/bj79/6Tjz+mS94Nrc+M43r3/oLuP7f/b+GeBWeuUFRPFg4RIQ4jjE11bvN4tkaI7A4JOKgtV8CQkKERDASqU2nFmm6tcSBNU7YucR7K7p0rQVYDmR5BbStgxOJS0mzBZMW4EUFWCxqFrvHS8KAP8P+FCuQJmvDQ8ENp0gPm7RvgqcXIzA3sDMmXLWxic0bZ7FmzTymZuaMOjjJENdTRLWsSKHHhcWPZ0AdaHLAEQWz6JXBDjgq4Q3EdS7BLk3tgaMwfol5VPR5TiPLQBpPSKWkB7xhS0JjtcPWDD3zj8YKx6icE5tujpLcHJdLPdtjpKgQtUAUzKIvC/ApaMfa2tS7qx+1nz9LbR6VAIQwLf8EQ2emZpGFBfgEQLAHXkTStgosBC5aCftZElSUG0ELE+I4h7JlB7mSiHMNrY3nohG4AJktp8ghEC0TLFoatP/iUc3iSQ09RGBQrHfi6cCTFcPA7lLXWUkQESavuAKTtkyivXcWjz57vP/6AHat690ub1jc/D2X4fNf/67p895n6zd/z2UAgJoUiCUhU4OPeyKbA3PthFhjnWdQnSY4t6BdCMikAZHUoZsL5ld2D0ZULy5g7h8+jamX/4hx9Kqab9cnQDXTI3vxwGF86OU/icX9h0pp//axWdz99t/B4oHDePlv/8cVH8NpjSXULJ6LMQKLQyJkFWNYZsYZcDtfRRmkngOAKCqpaGHV0CXzbcda+Y4tqqiJCxks6zNYYhXDa9IyWEy2XlFbMYtd5uxyTCo7qHkEoK234mI7xt3RIWzVDdxAY9iw9gimpxcwPtlEfaKFWqODqJYjst6DFKZnAwa01K+6wi76pw7QMtn6PQvwlLA1fWYynU4MWPTg0XaZ0TZdnWeRB5V5HllGzjKZZPhW4VleA3DjxABBBxhlnBtGsVZ4KYo4N0BYalBsAKM7JwhrSMNjtf6IFB6zBcek7DF7lpcBxbYNIwdiF9MJAXEB+IUmCAsePahmBRGooZkFcutRqTXZa1JAaTLXrCYjdLGpaOcbupxgDegBptxaL7+DyyiWHksFCWdoBhqAcQcYVtt2qsZ/6YYJ3LdvDmmuu0ZEMKziFRuX1wHFxb/7V6/G5/7xgZ7LhDB9mX/2Nd9v9kWEjRN17JntIxBhxrhuoXZ8H5hT0NrtKxqTSttQrYo1jdZQ7UXoPIWcXtsTKLroPPodHJs9hrWv/3kjqAEDUQ1ybBJUG/fX5z3v/SMs7j8E7sNS3nvnB3DNz/8LrL3kwhUdx+kMihNQPJhZXE4Ma3d6psQILA6JyNcqEiQBETGkKNLQQuri0aaXXZo5bGFX1PQ5I+dwPqMsmAieO39FGTCKJWbRpZth0s1kldAQYGFSmJAEKLddUTB/ZBgwrQl5LtFKY+wT89gpYuysJZiYaJr6xEYHSS1DZOv5onoGab0hydfyBQxoBTwVFj0oAKN9zpoAxzI6H0IVPFqwKHMJnReMY2QBospNutrVPKo8MuCTReHyYNlNf14ijSjODHi3YLFgfAshi4iVAYmyYBdJ2tRzCPiC4yUyB8rBMYLJGKrDsZ2Vm4ktHzWn1iiZBcOYd2tTVuDGzoKKsgZN9jqzx6YKj06puCiVEPaaJYYEIWLzKO11vbwYwiwCo5rFkxhSCC9yGhTxGayIrsUSeWcwQ7raKeh+0Yglbr1sE/724YNoZsr/NzCAJBK45ZKNmFihAveVN1yJ//LWn8Sv/95flqxzhCA0agn++vf/HdZMFqzlTCNGmmscWuyUTzARGtzB9uyAGdvsQfDkeuO1uIxgrbuBYrg8z5BcdCUoqYPTPqpxEpAT04jX9werrDXu/8BH+wJFAKBI4p8/9Fd46W/+X0se/xkTwmSG+sYyb6nD2p2eKXFWgsV3vvOdeNe73lWad+mll+Khhx4CALTbbbztbW/Dn//5n6PT6eDVr341/uAP/mBFvWSNR11Qr0hALFxLP1sjZkUtssQuFi38DNOoA6bR1ic6cYvrAR0FrGKku9LQXf6Kvs1fcHUqyy56GxYCoEGSzHZ14AsIeDVtuxNjfqEGZmBqIsXWNRoTU4sYc4BxrIN4rANpwaKoWRuZWIFsGhoO0DrWra9C2D440YcHjWQVw0YtDF2ARc4LllFb4MjKAsgALOpMevGM9wO07KJrlUhCe5WzsCUCTsQi3fFIUxLgACLFqgCJ0h4rBYARKLGoBscXNZqsyKSeNYwIyeD50ucjyKiNixpGZRlYgCOCUNY8kxWUVJCawGyuKW3FLsa2SQTPJZQkxEIjJmnELnAWUMtPQzubpb7LRzWLJzWICI0kQXOAyKWexGesuAUA6kmEVpr1FdcSAY2TCBaZ2YpscmjNiAl4/VWb8excB3vnDEjaPFnDrnVjiE6wru72n/1BvOx7Lsf7/vIf8LX7H0ctjvAjN1+DX/iJm7Flw5rSukSETZM1TB17HMfEBDKKIaAwrRYwrlvlRNL8EdDabVhO6H4AMFxHpZi+5adw/K8/2L2QCBRFmH7V6wZuI2u2kM4PsfrXjPln9w0dTzXY1uD78ZyG69yYcg8SGS3vmllKu9MzIc5KsAgAV155Je666y7/Ogoc1d/61rfi05/+ND760Y9ienoat912G378x38cX/nKV5a9n6K1H9m2fmw8Fa35tgGHOpiC1LPvA61Lk2cXreLZMHMKopLqpFj3BGEhm+UTOo7F6pWGBmyLonKrQMB8+atcYLET4Vgzxs1qC65cO481a+bRmGihNt5GbbyNeKyDqNExCuF6BpHkBdsWq2KMkS7GJhkeGZbudLYWjy1gVGRtHwuwCE3gXACOZcwFRC4LxjELahv9c5OqdkBRBwITb5pNXHglWhDuwKIRshTHJWIFBOAdvk5RG7VICNh7dtOx+9fG4xKa7fHZTjdUPhewGWoNQMDULIpI+/MklbA1pib17HpHmx8k1nMxUlBKmDaAkblGlSZEESNWjJwByVRizJcVITvcM85ckHKuRBJHYDBanW6hSD2JTxkrt9IQRJgeq2O22emqrTTLahArFJUMC2bGfKuDrFJHmKkUG8ckLlq3dtUByLWXn4f/8Y43LXGAGjXdwWbdbY1Uinz5Cm3uZd5dDa0xdvWNEHENs5//ONSxw35RsmMXpm/5F4g3DU6BR406ZK0G1el/DCQIjfVrlz52ZqgshUrbHiwSCchaDSJaXZulobHKzOLZEmf2XWVARFGEzZs3d82fnZ3Fn/zJn+AjH/kIXv7ylwMA3v/+9+Pyyy/H1772Ndxwww3L2o+ESUVL+1xQkdoTQvtH4dPMXKSbLThzr0WQWi7Szlx+FGUGrGCzCpBIMhCQILg22UMzAyIdsOSABfPgxr6FCVpLtBThmAK2ywjrE0a9YdTCcc2qg+0kktwAqhJYNMIPSDagyra+s/LeHiCqGDlZMOWUw6wEiLUBWNIARVICHAlwro04RAloaZ5TLkD2uVDKC2S8n6FnV22K2J2PQHUuYlV0ZXHHZMGhY3odaETALPrPsp+NkRP0CAaULQ8gApEwikLYOilN/nSaTi8ESAraCRKEYmj/vLiedFDeUFyH7tp0k7Cm5QxJ7lo2aWi5TEGKF9f0W66H16ON4sSjFsdIoghZrnwHlziSJ9Rq7VRGJAXWTtSR5hqZTVfGUiKJxNAv/lRpPHm0iSOLKYgIW6dq2LGmsaRjX+ykXUDRRa40FtopJhun0eLEdXQa9j8kV2Kfs/Rro3Hldahf8SJk+56xHVzWI1q7cUnvFVLiin/xGjzwoY/3TUXrXOHKN/zokrbHzMjbTeg8q8zXyNstyFgjqq+8B/Zyw6ihB9j/nCX/g8uNsxYsPvroo9i6dSvq9TpuvPFGvPvd78bOnTtx7733IssyvPKVr/TrXnbZZdi5cye++tWv9gWLnU4HneCXkHNflzYFLQlF7ZewClsRtvXTBYsYAsiQUZSVeaWWcRYYelBiX9s0tGHuLECpgEUfbNr6sQMlTkSiNbgCQkNGSynjWbiHMnxfXWDtWIrGeNurnqNaBlnLjPjDTlQzYBGx8ilyyIJ9MynWMjDtHi8KpkrDgCYt/HMoYUCWA4y5MKnpTJjXdhKWWWRbz1j0Xyavsgbg0+KlNn3OzzJgEz04DIAwRRYgOqAYgsVex2lrSD27SEWaHcqyqtZkG5r8Kub4NcAEYf0TnZG6kNqIgOz1w1p7Gx0pNbSu1MqKwkLHlExISCt0idiQo/GKmMXBy0cCl1MTRITkDGcRBwURoRZL1OKl11funWvjS08cQa7ZX7mPHVnEeCLxyovWD/Qg1MwD/R0BIM0VcqWRa0YSiVMOvokImJgBFo4OXO+AbuDQ3uO477k5aGZcvGECu8+fGZg2F3ECnXUA1qC06Tu+cDLmAY5Lrz4328KTR5uYa9chRB1b2zVc2MmX3EFl99v+NR7+xGeQLba6ACMJgYtf8wPY/KIXLGlbOs+6gGIYKutAxDGEPEX/C8OYxXOUWjwr7zS7d+/GBz7wAVx66aXYt28f3vWud+ElL3kJHnjgAezfvx9JkmDNmjWl92zatAn79+/vu813v/vdXXWQAAolNDEiYZTQhYddaLStvL9i0cavmO/Vzk4N7TwWQzZLFo8OOKJSs1gwWdVvbFv1TgZYmZcGdBADpJTvFhLWPDIT8izCHu7gm8kB/PDMBKanmmiMtYyfYj1FVE9N6rmeGUbRgcXYgEXEZrwIGVALFr2DT192EVYlDAOslC7AoiazzAJHyi3TaMEhFIFzCY60T0+LTHrvSLb2Ml5Y4wQoxCWwWKoRdeDXlQG44wrS0CHLWwLF1eNjKgCjKR01qWivahfgHKCI/PspsgpDAkgbwKhhQCRpbYBjpCHyACwKq/LWwtTPKgMyy+URpoe20sL0NGesKA09rGZRsxgJXEZxUmK2leELjx/2tY7hHbCZKnzu0UP40Ss29+0dnA8QXITx+196DF975jhqkcBLL1qPH71qC9ZPnDq2UazZDL14HL36MDOApzoNvOeeZ7B3tg1JAIigNGNNI8b/+1WX4rJNvdXbFCWgzjzE/CEQayeNBJOAntgArk9CJA3cu2fW124CxnbxmeMtPDPbwu4dM9i4hM9i5sKdeMPnPoJPveltOPLgo8UYpMQL3/g6vPw9/2nJn4fKhqfcVdqBaJwaOGPU0P2ZxTO5XvhE4qwEi2HT7Re+8IXYvXs3zjvvPPzlX/4lGo2V0dF33HGHVyEBhlncsWNHka4jhrSefQVzyF2pP+pa5tLLYRqafe1bmeUqahJLJtrB/AKcVABKyGLZqje3HccqFopdDgQYBKUEMgY6pFBvpKjZnsjSWse4iSoTYguggjQ0Rw7QogC3RemgHWs5a8uCC2AlyYpAHEi0j7n9XBSZWj+bji4saAxI1sS2ZlPY7QLeELwHWPQK7hJodKyuDphEXYBEqYvzEILiIHzrbbanA+zT0OYObRYQ29QzAywNQIQmf95JM4jZXz8sqJSCJnLXGJdT0bJcHiF9yYRhyYUtrVj2bc2JkfrF0mwARzGKZceDhxb6qsAZQCvTeOpYCxevH++9zhKrI5RdsZNr3PXwQfzjk0fw//mhK7B1+tSkOimuQ2y5BOrgk6C8UwLFBzGB/3zvPI40UztW+AOba2f4T5/+Lv7b667GlqkeSun5Q5BzB0qlSgAA1pDzB8BJHc8u5CWg6Fexf77x7HG86pINfQF5GBuvugxvuudT2HvPfTj0wMOI6gkueOVNSNavxVPHW2gebaMRC5y3ZgxJNKi0ZTjIX8o6qxZDfRbPzTgrwWI11qxZg0suuQSPPfYYfuAHfgBpmuL48eMldvHAgQM9axxd9GvyLWFxD8GmntmnoQtQ2AcgBnWIQlbSwNIt54LhsuDRAyBZBYpBLWAVLGqUCxahLegImayAkfQ1i7a3sCYIKDRsj2TXv1omeRdQRGKnKGDcJIOlzW0KmDZ2FTTiAJUXasOOWZqBkAWM7FLSCgVYFMIARknmM8kZrDRISAsiTfs8YYGj82os9Wa2O3efuX8edmaJHEB0xxWAxSg4DxK+VV+XwMXtj9k30vHL3HO2H4Jkc8e3YiBSbMy7OTBRF2SBorVQUuZRKHddddcrlq/NYjI/euBrcOUKmEUepIZmgd6NukcxihOLp481h1bDPnu8P1iMlgBwAOCpY4XXoWbDWv7Bl5/A//eHryz2c9938A//9wfw3b/7ErRSuOim6/Hyf/smXPyS65e0j2FBtTEcnroQc3PHUecUDMK8GMO39i3i0OKRnu/RbOo5/+af9+Fff98FpWXMGnz4GbPt6r7c4/F9eFwNBkGKGc/NtnDB2t6fcddxEGHb7muxbfe1AICHDs7jm/fvhdKueQHwtWeO4Zqt07hq0+TKWblTyOaRHN7B5VyMs7PfTiUWFhbw+OOPY8uWLbjuuusQxzE+//nP++UPP/wwnnnmGdx4443L3raEscuRVG3vp2wqOlQ8q6A2ke1rtvOK1n6+nV8JnLAHXUXNnC7AWBSCl4DlclNUvN+lSn07Op86LVKv3jgbQJ5LjOV17NATGG+kqNU7RthSC0QtiRW1JAqUWFYxUUBNgWu6mBKGThhcA7Sb6mbimpnca7+8AXAd0HUG19ykzWNdg+saqCugocxjPQfqOaieg+qZn0TNpsrrOYR7XctsnWXw3B5L9ZjIHhNZf0XPmsYaSNw5MOwp2+fFBDufrccSF+vG2syPgxS2U1QH55lkYM/Tk/FUKLWMDI3dQ6W9E7iU6ml1yXcxoqL137LCAuH+07L/xUYxioHRyhQeOjg/tLsJAOQDDKWlEAMZMaUZ390/j0ML5bSnZuDRQ4t45lgTAPD1D30C//m6W/H1D30cs/sOYv7gEfzTJz+H/3rTT+Lv/n/v6x6T0lhM877Cmn7RURpN0cBROY1jcgo5RXhg79zA/1jNwN2PH+5e0JwDhqmhVYpa1hy4CgE41hrerrFXPHp4AV9/9rjvzuPOpmbgW3tm8eDB3nY7ckDK168zSHCy2kFi8DSqWTxz4t//+3+PW2+9Feeddx727t2Ld7zjHZBS4g1veAOmp6fx8z//87j99tuxdu1aTE1N4Vd+5Vdw4403LlsJDVgiD1bgQkYNXbCHhRWNsKIRr4qWYQrapn4DlXQpDR2qp30KtBejiIApDAbp/ut8jZyd5+vqymN1JtXuPbmSGFMJtmuJJD6MyKWfI+sz6KcAwMYFcEJkWUVpUqkQAAv7vMqqdY25MtmSPd8sWQOkLItnWTY4Ww2b0iWr43HPQWy9DLlQJLvUqUvBh+l+1x3H2f94JjEQs9jzwe4c2GMrsYv+kIpzQL40gH3pYnH82nxQUluyUZgxWIGLYU4Dy6PKeXTXlL8ew+vPzXelE2EJBQWX01L/EdywXV/vActHMYrVCGbGP++fw3f2zw/VVQHmf2tmbDBomKjXMNtslyx72JroH2tm+LN79/R979NHm6gfOYgP/ty/B2tdKinUuWHTP/Fr/wUX3vgiXPyS67GY5nj40AL2zRWp5E0TCS7dMDFQiONC9rAPavfoNFONVi8Rj1oawKstISuwEvZPM+Nbe2YHrnPf3llcsmG8S6Qj4xpUOsBKiAhiCYBytYJFBBYDoNM5egs8K8Hic889hze84Q04cuQINmzYgO///u/H1772NWzYsAEA8Hu/93sQQuAnfuInSqbcKwmTgmYPDosv3OAL239x93gUDCLd84u+xAB2TbrHPC6DRXdRali0ZEFlABZdzaKvcxQMCrwPGUYNXVcRNusEiW2B5wQ6JY9BB6A8wxYARgsUy2CRSuMMcYTX53igaAEWheMPgWIBCl2XFLNtc8d2IJHBIBJWSCKK2scKKvL2Q8LVilqAXlU8h0BRwgN3dgC+AhRLwQBrtjWa5sDcIZby8JpNytqedxa2ZlEIW28a/Jig8rUl/DwdXKMGJJauNwcYw4lXkFpgFMC75/Jz9E45ilMeDx5cwAP75/1rd2voFwzgkj4paBdCEKbH6+hkOdppDs0MxcBdjxzC3z9yGK2sP/uXSIG7f/9Dg7cfSfzDf3s/Nl//InzlqaNQmss1hwspDi0exY3nzWCmMRjgrGkkOLxYZjk3TtTw9NFmf0NzAFfMRNCHngFYg8amgPEZYInMW1yvA306DgLmM944vnxgdnChg3Y+mFnNNGPvXAc715RrQ0kIxGMTyFqL3YWnJBCPja8IwK44PIPYd4VTNpRTGWclWPzzP//zgcvr9TruvPNO3HnnnSe8L8cqCgIiUaTyvPK54q9Y9lwMvRQr9Yl+XiGmIOnS0AWQ9I+RLmrjXL2cDQoBVhiuFk7roqYuMKd2b1BKoMYCGwVZcUvWLW6JtFU/m4kjDcQMjhkcoQCLMcCCDAPnxC3UDdbY/XG4VZvJiDwMowgyoJMkDOMo2IBHZYFVTkAuPOgD2VZogq0ND1sT7MLH0H9mAVgsMYpRhVl04FDCAOOA5WVCcVwhaHTHpYtzw8YoxwBaDu812tRlSgZYG4ArjajFi2w0BddOWN9aiF1M+7/+12Jh98SmT7RlyuUwmqISzGLUwWUUJz1yzfjO/rnSvH5g0c1/0bZpTC+BsSOY32cOyAkivPKSDdg0WcNf3LcPc+3udG0sCFdtmcI/3P116AGqap0rPHb3Pfjn/XNdQBEofhfft2cWN+9aPxDkjCcSE0mEhbQYz4t3rsHXnz7Wc/2EGP9m5yJuXp9CP3OgWFCfgDj/GgMYB5l5x3VsnlmLZ57rzQASgHokvHgmVwqdLIey6XUpBWpx3LM2tDMEKBbr9f5shYyQjE8ZGx2Vm9ttZOxyTrn6WEoz9Ytz9BZ4TtQsnsxwmMewNvaRdMHOiIK16ckuVpgg09+Zff1gl/JZcBkohkxildVyqV8/r/fUK40Z9mzOlYBgwpjtSCMC8FoogiuCj4g9k8hRMEmy8wkcEXREdn6Pyb8HZt3YvNe8hwzwjBxQc+9zLKZLgVfAnbciKsbtwXkwQZaXozIvBOps2cUSUAzzuI5JDSZzfoLXEqX3l6fq+erHKuveLHXALpK9Lj0L7l6TE7wYPFqkopcpcAEG1yyCvM/iFVdcsSo/2Ebx/IsD821kFfrM/easXrHrxxPcfOE6XBlYxnCeQR/bD310HzgrpzAX2imanawE5AQRrto8hbe99EKMJ2UgQABeddlGjNci0FJ6bpPA0WY2kAVdzDSOLgRCGq2R5jnSPIfWLltCuGDdOKbqBaezeaqOm3at67FFxn/YtYCXrku7/6Pbi9CPfg1Ys3XwsDecj81TDVxhP8fqdpJI4Ibz1kIQoZPlWGynyJX2v41zpbHY7qCTdYPtpfozDlqPiCDjBHF9DFF9DDI6PW0tmcTg6RxFi2cls3gqwyuhqQCEgtAbDPZLTQtXK2jTqcHr0qO3Y+FS2jhUP3MIHAEUqWcjLvCEYVU1LSrbDa5npQQEAfWIC09IEVjIWDa0pyo7TDsLCxQDZtH7LAo/Wh8+HRtOLjcu2LYBLH6dk3SMJJvaRbfEf6loO8v4TPr3urR16cTaz31Qqt8DvTLI82DQMp/+YAJmkdlmyEtlATbTLkzto1dKC7Zpc8MgcpUB9teQZVqDZV7hbpd3XYv+xwzK1yVsyecymUUMU0NrGvksBnHnnXfiPe95D/bv34+rr74av//7v4/rr18dxezpDteCTWep6UgkBGScQKzCl3g/MUvJeQrADefNYNe6IvXMWkE9/i2oZx8qBB0kILZejOji70FOEu0+xtxSENY0Yrz84nX49HcPgmCSM99/4Tr89It3AACufPVNePqb94P7iFVEJLHrB16ypGOcO34UaycaaHYM6AojkgKNWgIpCBeum0ArU5hrZ9DM+PkbzsPV26bxV/ft9TY3180wrpvuV5fIgFLgucMQWy4DH34KyAJ7nKQBWn8+aGwaAHDRunFsmqjh6WNNzLYzSCJsnqpj+3QdkRBQSqOd9q+BbKcZIiEgA4ZxphFjphHjeKs/iJ5IJDadQj/LFYeIzNQ3RmDxeRkeKIrgy9aKWQqBQVAz5oCkCL/QewhZRPmL3gO5sDNIUC9nmC0U4CK8Hh3q4qLsD0Bhy+LW9+KWAnAAgNIEQUCjlttaRafcDlm4kGmDVf4GDGHIKFYFLja4gjFCcOueM6HwWWQ2UnQndrFjN6Nm46dIbNLNHqzZdL1Nhzrfwq5SlxBAi+AYS2IW9kDRsYK+JtMC4H5g0R1LKdXuzpM0x+bPlSsX8Glo478Iab0ihbasszZfwlQWvbi6RW8FRIW4SpCZ3HXqr1FiCNAKBC7o5RUcrACco/fKZcdf/MVf4Pbbb8f73vc+7N69G+9973vx6le/Gg8//DA2blxa67QzNVhrpM350o8wVhq5ykEyQtw4sTqykE3rFW7TM40i7czMyP7pH8BHnqsOFnrPI8gWjqFz1SsxKKQgvGzXehxp5phpxLhp13qcH4DR7//Fn8bn3vM/kJaNpkUAAIAmSURBVLcNQK4Ga8b3/fLP4ukhxwcAkc6w0Gz3tCbNlcZiq4OJRg1EhEYs0Qg63bzqsk34gUs34tBiCqUZG44+AhyZRe9EPQCw+Vx2XAnaeTV48Tj0gSeg544CmIeMxiDqkyArLpmsRbhq81TPLfViDrvWyXOMyaK2kYhw43kz+OzDB/33lF9mH7/3vNXvy31SYmjN4rkZz78jXmY4UozA3msxTPUZhkYX4NC10gtS1G5DJZAWgsQwHV0Cj/BTocItWC52KdJQaBGwUqUezQHALfWVJhh1KzHi2Jg3h+0JXc1led/s06wQfYBiONlxstBgGU5uPgp2spSmpuK5ZSu5MAgsAJzoNT4HAAN2NATpIVPaxZqy3UcFKIZsqUQA3lE+ByFYdvNlCDC5/B7HKIc/BOx5JHLgDgXDKILrDMWPkkLs4t6LkijLnX/TI7pIRS8nXAeXvtNI4OLjd3/3d/ELv/ALeNOb3oQrrrgC73vf+zA2NoY//dM/Pd1DO6FgZmSthW623i1XOVTabey8nJhpxFhT72/sRADWNGKsDdTP+vCz3UCxGBV49iBUs7c9SxhJJPBvb9qFn73+vBJQBICZbZvxS5/8I0T1BBQwZ0JKCCnxxg/8Dq684WrEQ/6xBBgzY8lAD3vNjLRPDR9gANjGiRq2TNVBKkN/oOg2aKwm9IGn0PnCh5D9891Qz3wH6pnvIL3nU+h8/gOmc8yQGGRP5EL1YF43jNdwy6WbujrArB9P8OpLN/Y2Ej8Dg4X0iuhe07nqszhiFoeEb7rh0nh2XvFFHqT/qPii9xYupWUFcPRgQLh1i/UL0MCVecV6IUvnxROwy4gq2ywDz9IYwXDEXORAVRXIdgFcC4YoAExUvC6naR2gQQmk+pG7fyxrMeNW8WsyGfU2w6d03faJYdNfloVk+7kxKhvpdWJRBuUVwO0scbyIpWt58LyHxQVs5QobIhBsxS7udfl8M3xOOJyA4vOHOS9MPQBhcL2VUtSovK5cx+6wlhWuG86A5aMA0jTFvffeizvuuMPPE0Lgla98Jb761a/2fE+//vRnWrBW4CGAQaUpZFJfMVNERNh93lrc9cghaOYuJkoQYffOmfI+9zxs/8n6/+PTwlFgZtvgfdv994srXnUTfvPRL+HLf/gRfOezd0MrhUtuvgE3/Zt/iY0XnQ8AuHimhu8e6Wf3wji/loKTKQyj4rM8R20p/b+Tht3OgJtelIDnjiL9+t8U6YGQGW7OIf3KX6H2ijeCBvRZHrKXgbF+PMEPXroRC2mOVqpQj+WS6xnPmPA33OdXnGVn6dSHqVksMzPuSzisGavWipkvdxTrBCDMp6Or4KAK7qoCiJBlDK9VsqBJU09QWGUbwzECMICMGFIqL8AxrJRj3IoULQvLZoYMmq1XDF97Bs3uk6nHl4vDtyRsxxMq27I4gAj7BSDNbYrsfJ/GFqbHNQHWhsa+P/w8ROX2FoJFGZyDLpaQ/Wce2gL1BI0I8DARWJsfA36cLovE5rMxaXQUdZNEnj2s2h11nU8UgLF0Xktp6RAcsk1JB9dl8RNjyTG8g8vz7ybaKw4fPgylFDZt2lSav2nTJjz00EM939OvP/2ZFjofnoYEGKzVQNAxLNaNJXjVpRtw/9457Ala0G2dquPqrdNY06gonwewnS6iw08gHQIW68nwMc9s24xb33U7bn3X7X6e0hqLbZMWXjdew4XNRTzRMv/0IcDamaS4uN5BawkGznrI8bgQ67dDHXxy4Dq0fieyx76JvlCPGdycg9rzCKKdV/RcZaGToZkp1CQNBNTRECHQRBJhYgmf85kYQ30Wz9E6nLPzbJ3CCH9ElFnG4IvYfQHDfCmHDE9JqOAZIRQgsBeb6NKSNsosVgU4uNCwrBNZBq6yf+HYsso+AS8CkTJIWQoNx4p2sZ4hEyeoSBGXRCABSOxiFMvBpC1sEZYxJX9zJXsoEMYKp8TMCXPcrl2gsaSxqM2xjPbYoCr/wL0YU+nGXGEbezCLpm6RPDXnz1GIiYUFjEABbgOWsR8wDYGrZwzDHyJVBrHCbodT8aOlx/VKK7utDQKEI7C48ujXn/75HDONBC/dtR6dXKGda9QjgVrUB4gkdWBx8PaitIkkEkj7WLkQgMYKQEyzk2GhXbalWT+zBmvH25hbWEBHExLB2BJnGLN+VUQ0lKETS2SwqDEF2nAe+NDTvZYCSQNi0wXQ3/r7oYBa7Xu8J1hc6OTYN9uGJKDWkIag6DO+WrwE1fjZGs5Sol+co7fAUc3ikKDSY/AlHSgXvHDBfukTikfq2kgPhquaokYFNHgWK1inekFWWCfuMc8xTUB5HMbfugJwUbynZxobZRBbZtoqoHQJ4d9nP1cubS98bj/50vxwfFW2tt/UPfYuJtYev/+kgvGwRVocjhHF62J8VN5GeF7C1+Ea5B56nQsUPzjC7fQA5ITgR0ywvNfblxqsCVr1n06Xz+KnPvUpXHrppbj44ovxx3/8x6dlDGGsX78eUkocOHCgNH9Qj/parYapqanSdCaGiJYCpggkVg8w1CKJ6XrcHygCkFsuGrodufViTDVqPcGMFIQ143XIQUCgR3SyvAsouhBxDeunJ3H5WAe76qkHimpsBmIJ+4ml7Cmk6bmvHVdCbLsMkGXGlWY2Q172vaAosXWLQ6JHtxdmxqF5w+4qBmY72s8P1wGAsVqypGM7a8OpoftN5yhaHDGLS4yCPUSZJQTgv8hLy6rAy20IlXkBiOsBYjicX9oGvNq2SH0GU4Wd7HlMrg4ufI1iLN1jKoBWSexROT435p6p575h6/GE8akqvdXWKnaxmnZfnqXT6Pr8Kmg/GGcIGnuDyDDd7LdRAbBd2w6ec/jSja+yHQPiqPd4q897lBL4kghUrjUPLLn03OPX4PVygjGEWVzm9lYj8jzH7bffji984QuYnp7Gddddh9e+9rVYt66XH92piSRJcN111+Hzn/88fuzHfgyA8dL7/Oc/j9tuu+20jWs1goQ0/6eD+jAnyYrrFVcaYtMFoKcfADdnu9kzIqA2DrntEhARpho16JoRkDCASBLipXgo9ojFZhOUZWAZA1WATIRc1qAaayBVCpISXJ80xgf2R7qlHMpvAyMiBucpOnkKIoKMYsiovwk1EYE27wJtvABoHgdrDWpMguJCUEJT68Czh/ofDBHEtOmEpttNLP7zN6EW5qAn1iDfejlg2+qlinGkpdCIBJwtZaoYU40Y8QBAf07E81QNPQKLQ8KpoPul7HxtmHuO4ou4vE6YSkRvIFmKSioU6E0FWdaKCOgpresCQQznyRduy4NE+56wppGq6fLKWErClhMMJm1q1EmYNI0FWeSOVcD7F7qOf+VjDcfmljKcF2XXZ9K1/yIFHB5rf1CMLoELObGNWw/GL9IDxHC8guAFLkFqnKhSt9jvWqkA2qr4qjLkIdfc8HBq6L7LByw7WXHPPffgyiuvxLZtphbtlltuwec+9zm84Q1vOOVjCeP222/HG9/4Rrz4xS/G9ddfj/e+971YXFzEm970ptM6rhMNIkLcGEfa7F0jSDKCTE69spVkhPi6W5B9527wkXKPZ5ragPgFLzXsmg0haEn1if1CLxyF2vMwJuYOgWDuWZ2pLWivuwAclRW/WX0atboFWu02AAUiIGZGDoIOfloSNOLK9w0zI89SKJUjqQ0WDpEQwMTant9X0YXXIPv23/c/KGaInVfh+Bc+jWOf+Sg4S03KVWuIpA5+5U+Cr/4+c/xszMUXAyJyosdpn2tneOjQAp493kKuGZO1CJesn8CF68aWnGY/k2J4b+jlH9PZ4Mf6/IPHy40qaxSwM0N5lF7grufyApiF6cbe6BQeIHaNkYKUbHXsbts9n9vVq+nwyhhKqe1e+wc8sOludHVi0ZfMGjS/6xjCz9mtFxzvcra/1Bj0WS1nft9xmGMqDnMAW+gJzB6fwxJjmHXOSmoW7777btx6663YunUriAif/OQnu9a58847cf7556Ner2P37t245557/LK9e/d6oAgA27Ztw549e7q2carjp37qp/A7v/M7ePvb345rrrkG9913Hz772c92iV7OxiAhkYxPQdbqBpwQgWSEqD52wh6LJzSupI7k2lchvvHHEV12I6JLb0C8+0eRfM8Pg+oTq7YfPXsQ6sGvABYoAgCxRm12L6ae+QaQd8Awv981gFaaexscHaSCiYCYGAkYETQiaMTo/+/OWiPP+htiDwu58wqILbt6LDF7jF9wMxa+9TUc/ZsPG6BoBmwe0zbE3/5P0Hfu6fF+u/3KD+cDCx189pGDePJoE5ltfzjXyfHNPcfxpSeOQPVrcn0mh5CDp2V+aTg/1ne84x341re+hauvvhqvfvWrcfDgwZMz/hXGCCwuK8qMXM/7YcjIOcHLgKCejN3g93B1/dIGg21U2cNB4NWxp1Vw3GP8XBprZRncvlf/JsC9PvCBYLx3arbr9YBt8JDlA+MkfF+aHyp9Ptul7q96npcRA1v92S5CWmvMzc2VptASphqLi4u4+uqr+7YGPFtupr3itttuw9NPP41Op4Ovf/3r2L179+ke0qoFESFK6kjGp1CbmEYyNgEZn/r0c68Q49OQ2y+D3HE5xOTaVd02aw31xLfQ8wc3GErWoEVUWqqYcXSxjblWp6e+hMj2al/C/6bKM+RKY89sC9949hi+8uQRfHvPcRxa6AytbyQSSL7nRxC/4GbfsQUAxLqtSG74UYgdV+DoZz7W+732iOkLHy8AZBBSEMaCVom5Znz5qSMlg4owDix08NCh4b6XZ1oMa/e33Dhb/FhHaehRjGIUSw8msBpwQ9QCzz33HKanp0uz3/GOd+Cd73xnz7fccsstuOWWW/puMryZAsD73vc+fPrTn8af/umf4td//dexdevWEpO4Z8+eMy6FM4pzJ/j4fiDvLWhhEpjfdnVfxNdMc4zHhPgEMy/feu4YjrULhnIhVTi4kGLjRIKrt04PTO+SEIh2XQt54TXmOIT0FkeL938D3Gn1fy8AzB8D9j4BbC8LijZM1Eo/FJ493urbttHFo4cXcPnGibMqHW1MufvXZTIRsizr8kmt1Wqo1crlCSvxYz1dMWIWlxW2bZy9/nv+iAuoKCs/GLhFtmbUJSPpIak8qq5f2mCwjUq2kbnH+sH7uo7H55177D/cV9e2aOgxnJKojqM63iVkY2kJ6/Tf/wrfN2STfVO9S9wf9zrXS90/D2EXAWzfvh2zs7OlKbwZLifczfSVryzatFVvptdffz0eeOAB7NmzBwsLC/jMZz6DV7/61Ss7wFGcltCzh5H+8xfR+frfIP3230MdembJKuBTGcyMxbnjfe/rncmN4CjBIAFEZwmC5GGxmPbeyMGFFI8fHuIfZIOIQHGt5IW5lA43AIBWsY9ImN7Rk/WyCvtoKx3KkrZzjXa2HCHk6Q93/+w3gYGPfexjmJ6eLk3vfve7u7Y1yI91//79p+iIlhYjZnFYdIELW/HVB0h1vXfQ/c4vr+SVnUCiJxAzE4V1i2G5I1PpdTm6csylmx5XtlUdA2EI4CxtvdD5rVbQcr48GD2OgYKF7ilh4AGd6CH0BODL2E/fc+miWoXYv/Ch0N2sPLduahb7v5c14cCBA7jhhhsAAG95y1vwlre8ZUX7ApZmbh1FEf7rf/2veNnLXgatNf7Df/gPp1UJPYqlBzMje+BLUI9/297UzM1NPf0AxPodSG54TUmUsur77zQBlQO1BqhiOVONrz99DJ956AAuxxH82Az3BEJ5YwbGSLU/WMw1I6onyLPe7OTA8cKwiOkAfPX08RYuXDfeVT+4lIhm1i9pvU3bt4Km6ogEoR7LnqUHovQl1T9WMMzTGooZauB3EeN1r3sd/vAP/7A0t8oqnm0xAotDgkGm5qJP3YVjBkPGx7Ev5XWMB52r66Kh7Ju9cTo7GDOYXgMM7Ql7LKcyy2i7pPgxOqbIj9WswyFDqqkAoUNYRbLHt9KaRepqT+PmB8caHnd40wxNDgexb0yWU+eiEIcr4w8Lbey+uLIdX8MzqEibA5DLlY+FyYzffba6GDu7bjbDjkeXxx+ev54M5IkyvpVru3sxYcuWLfjyl798YvtZZrzmNa/Ba17zmlO6z1GceOSPf8sARcD9AveP+vBzSL/1OdSu/5EVb3+hk+Oz39mPf3zsMDKlcdnmKfzoNVuxFXNQzz0INGfNiiRA67ZD7rwCFHdLev/2wQP4398xTE8eNfDamWMrHhNgvCprUiLPc2R5jqdn25hPNcZqCS6ajsqfhcpAOjdgOqrhmbnBAhelGXOdHDPVDjdLiMbFV0JOr4WaPYbeN3hCsnUnps67cOi2tkzW8PCQmsQ19Qj1s8zAW7OZ+gUDiON4ST6pK/FjPV0xAotLjDDN5sFfyFhxsZ7/su/1Je/Ain/tABvKgCwAR2Zb3AUau/BY+F4HQnrsB87DhR1ThOCX4TAwETCfdgzOyqY4DjvmleISLsBpl1amFzDuC5Td1J2SLx9LuJx7byN4Tv5zRIAYu/ddGrcDdZXt+HNUPa5ez4Nrqrgei8deKfewzKG4ft00vINENYZb56wuTXA23UxHsbxgrZA/8o1Ba0DvfRR68TjE+Jplb//RA/N460f/CXOtzF/n9++ZxbFnH8evXdqCu23ZwYAPP4t87hCiq15aAowH5zseKALAkTzGNxbH8eLxxS5WLGodR2dqy8BxRUIY1o0IT82l+Nwjh9DMlL+VTMQSP3XleoxRDtGaBXGRcmYAkzrBYSQYrMxb4Y91IbDhJ38e+//4v3ZvhwiQEutf96YlbWvTRA3T9Qhz7bzvfeaKjZMrGufpDKV51VTcZ5Mf66hmcUhw9dF9WYdmJR6AmRUd5ujCH269rp0EX/SlbZVZQaoCi3CQJbBBZUeeECSiALmMgFnsxqK9P4DqvH4AaEUy4ioLWj2u7v2X9tC1rh1DFaBX1+0CZeX9UPCeguHkMpitjK9ge7lrnL3WL61ROj9heQKKc9k1VqoO2wJJ91guN+j1sS4l2DHk/SYm7Nu3D1dccQWuuOKKvgrnpUZ4M3XhbqY33njjCW17FKc3ePYQkPYXU7jQB55a9rZbqcLtH/snzLez0jXeEIx/d1ELzL2+/BhI29DPlXt3f+XJI12g8M+PrMN9zTEApqOJ03HU5g8YcDcArI3XDOP31NEm/vo7+9HMlNs7AGAhU/jUgwdAi0cBLtcmEoDzayl21fu7CwgCJmsr54HGrrgWW37pDiRbzyvNr51/Cbbe9nbUz79kSdshIrz0gvWYqIzFfZQv2DyFnTNjKx7n6Yp+X08rvafefvvt+KM/+iN88IMfxIMPPohf+qVfOiP9WEfM4pAosTCMHlORWvaCliqzGLz2X/QaQZrRzbOvNZv/+ACQuPeRJmPWDPQAatS9bU2AFsV+LOMYpqBzTSCJwiycEYw1GKMmfxN0gIdh07BEBtcEGQUz1nCggz5oMiloyyqWvKj9sRfPw6mbkaXuXXYNwf6ODxEyF5+52y67X5C6eIv7HEmwB2FuUfjZQHPwPEibl66B8HXlR4IOrjFfwlC9norrr9d89+Og5/XKKwOLA5lFXn4aemFhAY899ph//eSTT+K+++7D2rVrsXPnznPW3Pr5HryU1nOgJa5Xjr9/8ACON7vTta/YmCJ2Pdd7jwr60DMQO6/ywo8DC52utGMOwgcOb8Dfzaa4dqyJhtC4aXsN1JjCVPsw5hob0UsEM5YUade7nzzS9//vxvVmLNSrJIeAnUmGZzsJ0h6dELZPNxDJE+OBGhdfie3//j8jPbAHamEO0fRaxOuX7w86lkj84CUb8dxsC8/NtpBpxnQtwq5145iqLz9NfibEUGZxmTfVn/qpn8KhQ4fw9re/Hfv378c111xzRvqxjsDikNAAtP9y7aH+1MGXs+7xJW0ZF9hlpAmshel0wQwq1aUheM5lgKcBB24IAWB0s/sycsV2OQCn7MZhwaIUDv0FjGDXuFAGN12gLQC1DDAESGvf/q9fOJAYpp9L7CGHTF4ZrFZr9rrG654jeHQbRvUzc/tw4IvLx6ftuxwW1WY8LKiEO83m2YNDP1ZVjJd0kWaHvT6q56sA+z3AMAqAWEpNawGtwx8D8GlqzaJ8LQcf23JiYM1iwCwCSxO4fPOb38TLXvYy//r2228HALzxjW/EBz7wgbPmZjqK5YWYXGuEIDxIDcsQ0xuXve1vPHW09APOxfaGhuIhogrWQNYBLFisRxKCetep7csS7JtNEAvg5suMECfWKdY096Ezth4dWQcYiKTAWC1GIk1nqmOtFAcWerODdQmcN46hfpWb4hzPpmXxz5pGhIs3rJ75eLJpG7Bp2/AVB4QUhPNmxnDeWcgi9gr/ddwnVnJPve222864tHM1RmBxSHSxMkCJPWQuA0n3DRyKXEJGyMyA/9JnCxbI1Ri6QhrH4lVBmX0/aQK79oIVRrF4XXkMGSf7qLVAxkDEKPWJdvsp11JWx2/BUgWo+ppFC8jIv7XXv1F36pmqx9wDlFY/j1LqPRh/F4gM94sen2/ILtpaTrbAj2GPzYod3ea6VNoVoBsCxjK72PuHAodj9ddNmZ0umER0vfbnGeVzXb2Oh930esXJYBZvvvlmDLNJORtupqNYXlDSgNh+qUn79jz/BBqfhli/fdnbVrq3F8OioqUZ0gd2Mi/aPo2vP3Os76oCwIvWlTcqWWEsX8DUmt6G4K0BdjENORwoMoCENBqRQM6MsVhi+3QDW6fqEGebvPgsC6XN9HyLUc3ikCi+240qWlvmRrsaLQDMomAYXcszxzTqAmAVCuQKa2RTxawr8yqsVrHMDIoUgVTx2oNOhWI9Zd+jRGnbbmxaE9qakAMQgj3gKgHcgPGiqjKaC+avK23s3y8Mk9aVUiHPrJJjFatCEAx5XjpJ3WDcf84DwFn38/DzttsqsYLFcXexm8H7KXgPVAAcg3NYGjsH5ytkrB0YLNUHutZ6IfCvpqThz3GxjKCZoNiq+npc84NieAeX0RfVKJYeyQteChpfg657AxEQxaZN3woMmy/fMtUTFH7pUIxoyOZoch0oLmxOrtoyhR1rGj3ZSILpuvLKrd28yyArnkE1hc0c0EMFKoy/f/Qo/ugfn4JWjBvOW4vtaxorBopaM3KloHp0ZhlFOZh54HSuxggsDgkjkzeK4SqLWE77uUcUINGto4RPPbMFheE6nk1SFXCjKAB7ATD081ECip5F1G65KAMMJcBKQOcS2j6qXGIeGm3SEKLPhV4Bhx4MhUApeCQdAioHLoUFmqKYtAAqNTchA+cnzXZ/XAJmXUKRKmPX6xgCIFYGlShAWwWs+5SxB+IWCCrz6IAhBa9DYEkKXYDTAPvy+XXnC/Y8sQeOwvyYCFnhCuAv2zPZa1ELm3oW5R859hpeMbOoRN+J9eoKXEZxbgclDdRe+gZEl+4GajZNKWPI81+A2sv+JcSa5aegAeCHX7AFkeiu+HuqKfGFQxF6NRZxs8T2y0rzBRF+5SUX4oK1Y/a1AYgAMB4Bv3R5hM1j3SBNBO30qjFZi3DeTKOnBLCjgcfme6e9XWgG/s+eNo63MvzfX3ocn/nuygycldZYaLUx12xhodXBfLON+WYbWb4KzuHnaDhBU7/pXMWLozT0kDA1ixYw9kg7+zrFgLmp1jSWWDoNP4/YPdodCQsORABoQp9FsjWOxAZjhYDIMXkldhKV11RiQA14EFiExgRpEOnS9vxjD+atnHIOx4BK3WIYVQAX7ofQBQKrYJDRpfLuYiF7pMqL1+XPy9csusOW9mSTWZe0q0dkn/YnERyf20wfxFUFjSVWMfxcdfnaqKake/6wCJa5bfQSwxQq5cqPHMBn25cVdjv9F58en8VRnL1BcQ3x5TcivvxGMGvQCvrrVmPteIJ3/siVePvffAcASibKv/3wGKRo46Z1qflyh9XlyQhy17UQUxu6tjdZi/C2my/CU0ebeGD/PLI8xzaax9UzjKgHm0f1SSBpDBzjy3atx4e/9RzyHinzrx4Gdk35O0xX/K+HFjGfFsv+9GtP42UXb1iWZ6HSGvPNds/5i+0OxusJ4mgEEaqhmZfA/J57MboShoQngjSBNQoW0YJHbb+QNdNg8BikD82XuwBr9oIXIgCajQG2JpOGcSlsDxZhqTYLMKky0GoauwoUHajwjJSAUhKzIsek0JCCQU6I4tm5KvjqBRjZgtyiftGBRne7o16dRRzA9c97MIsVc2xX/1esR12AsgxAg6m0bzsyf0yWtSQqEClR+ee9fQuh2JwHr3YY1VaIZcBYAHgaCOhF7/PXaypda8KnmX362b92Pw5gJnak9PJuepoJSlP/5aMs1ihOIFYDKLq46ZIN+OOffTE+eu+zuPvRw2imOZJYYnqihv95bBqfW8xx3UQTNWJcdcFWXHjRRaXWd91jI1ywbhwXrBsHAHCeQR3fC3Sa4Vqg8RmI6Y1D0+cbxmv46Wu34/OPHcJzswVoW1OP8ZIL16G2JkY+dxjIimXH2gp/8fAiPvd0GeS1c42vPX0UN1/UDXT7Ras9uINMs5NiSvbuzvJ8jtAqqVecqzDyrASL559/Pp5++umu+b/8y7+MO++8EzfffDO+9KUvlZb963/9r/G+971v2fvSgK/vyrVApBlKm1ScUtKm94QHX1pLaKWhpUnLCSHAQpe/4JUAK6OS4FwATolMAqTYYQ87vxIOv4WWNGHdnQqm3KQzfVozF9BKmvRzJqGyCFka4QFxFBQJU9MdYMPuej7HxDm2DYACWNr3BUIOtkCJLe5lYSUo1UOyr3ta5JRYOUYJCCJYRxe1j37+IPbRv999mAF9K1AwhYJBikpMIgTAsLWdFQxavaV6oOgYReXGCiB350kE58yloQmsirKBahlBtaxB6zDNXJ1nJmVrGpU26vfc3vCWn2waXJfIWL4aehSjOFlx0cYJ3HHL5bjjFmC+neNvHtiHu584gk6ucSCL8XRtO15z1Rbs2rh8BTFFMaL154HzFJy2zY/42hhILJ3d2zhRwxuu2Y7jrQyz7Qz1SGLjROIBWrxuGx7edxT/654n0coYDx/LegIVQcDRxcGdXcLQWiMf8suOGciVGrGL1bDfb8+3OCuvgm984xtQqviae+CBB/ADP/ADeP3rX+/n/cIv/AJ+8zd/078eG1uZbF/B1SxSwMwU7I1jdXRYi1hZZgQwbmK/jFw62tWlOYaO7HIVIhcYsCPspEJqMQBx4aSCmkVl6t7gQIgWUEogzyOkYGjSEL08EW3avUj/hgCyAHBkrX5YF6MyALFg3Hr9f3W17wvAI5W2383adYWfV0FxISta2jnsMQRsqWcSHbNrvM6Y2J8K3/faAuFe3Vv8Y0nQQhWhEpXqJKsCp6JkgIpa1wpTravXW695AftdmsCrr4bWhC3bRmnoUZx5MVmP8C9fvAM/ee02zLVz1GOB8eTEvwIpSk64f/WaRow1fdrzTTQauPfAYBZQM7B2bOm+hUvtQKI04+x0Qzx5Maw3dG8d/tkfZyVY3LChTLX/l//yX7Br1y689KUv9fPGxsZWpR2Y0zR49ShTweIEz92XqOaC3XECGFYVZjEAjqQFmHUJJBAFoIF6AMaCewwGGoJEAxTZAUYHGpVNR6qCYcyyyGZc2aihQ/DjGMIejF1XbaJnBRneSpaKkTq7ma6oMos99tOTjewLGKnPMur5a9CwnQFrqYODD54TuTQ62/GSxaTcLRPzY3dgEGWgqAhVYM+OUQwAoVfIs+i+fjxo7GYRXSq6uB6p+wcPimk5EVpC9Vy+7K49oxjFqY1YCqwbPzFwdypj25oGLlo/jscPL/aFIbVIYPf5vW16esVSU8tnYwqasw4466yI6V1KDOsNfY5ixbNfDZ2mKT70oQ/hzW9+c+nC/vCHP4z169fjqquuwh133IFmszlgK0Cn08Hc3FxpAoo0tLK1WkoJO0ko5b6gpVWCFqpQ5VXHQWqwmlbUJjXMLl2ciyJ1bOe7eS6tvNyJMzPpTJamPI2QdmK0WzXDbgpGFClbs2hhUZh+1sVzL8gJ08VeCeRqGFFKSxMXauECmKFQTgfr9wSIQDlF7cBYZV4pdDBuAOV0ugNpKI7PpYHDY/bgG0aNXlGikyZvYUSKQHnx3PzKICA384eeLy2AXNrX0qeidV6kn7WSXepj1oFCOfwxoItrUSlhrl9NUGzS0DmA/l1be8dS1NCjGMUoVjd+/sbzi3LqHvGz1+9EYxniFinI9KceEnG0ukDrZAbnKfLDz0AdfgZ69gD08f1QB56Emj20qpY2jlnsN52jWPHsB4uf/OQncfz4cfzcz/2cn/fTP/3T+NCHPoQvfOELuOOOO/Bnf/Zn+Jmf+ZmB23n3u9+N6elpP+3YsQOA/b6HxUHuy9YzNCJga0TwGFrk2HpG98WvRaX2rKhb851dVFhraJc7wKhCACnKy3y9W2UfSlpAKi2ANZY5WRaj3U6wSY1jLRJIacBiz3tIAPBKtjKVNHFhQh2kkCs+hL1a+aH6OtxnL3Py5f5HlrbpACEqQDh43XNy4BDl2lB3kZQmsnZHrl4xBJrh68Iihx2zqIJrp/rjorROAQ7ZX3fl61KVnhug6GoVzbTMDzIUbfWZRtY5oxjF6gUzY9t0Db/8/Rd0MaITtQi//P0X4DVXbVnWNokI9WRwgrkWR0sClGdCsMqgDj9rOu+Ul4Cbx6GPH1i9ffHg6VyNszINHcaf/Mmf4JZbbsHWrVv9vF/8xV/0z1/wghdgy5YteMUrXoHHH38cu3bt6rmdO+64w7cZA4C5uTns2LEDCgwN9uxiP3BYiAsCJapdJjx41D4VXNQvmvmmnpBBgkwa16uhyaZyhcsJd2ehPQBCASBLYER4hkrbR5VL5JlEp5Ngo5JYAw0hHRVYiV4AyzJ7vrtJD6Dn51OxWUb3OsU+itc96xWX8o/Yh5Es/RO752RqEo0Yh8xPJ1fDqAEvOa9UApiWi1yUQFZvqGxPjy5/XmWmMgShwteUenAYgESUPDrtuXS1iWGdYuVaDJ8XoNGWVIChVlBdY9TQq9vBZRSjGEXvYGYcmGuhmSlcvGEcv/Gqi/HEkSaONjOMJxIv2j6NLdOmHl8vziJ9+JvIDz4LkhGi7Zcg2XU1KKn13HYSR2AArU53PWQtjoaCyTMp9MIxYEDbSG7Pg7OZktn6SiNTDBoghz5X8eJZDRaffvpp3HXXXfj4xz8+cL3du3cDAB577LG+YLFWq6FW676QMjBSABkTcs3IbSo6VwJSSeS5SUcLIaFyDaUkhGBooYuUNEmQ1CBhUITONWDrKIgYLOyXL5saOANhbEgCsTa9oO1EzgvQBcPb4oRsJOcm5cyZNM/zIAXdTtBq1jA7X8fOPMYmtCEjZYy5Q8BowQ57wOZSsITAf6UYjmDDkgkUrGKQCSYq/qcNoCp2VWUlSyIXtx73xrMejPnHSurZP0fwnM2ASt6J9oUA/IIQCGtYUGnNgPqxsAg+JzemEMTnBavsyg08m5xLq16XZZBfnaypulKWLfYlEGZebpeZNDRBKaeEJuRgPy03hvWGHsUoRrE6sZjmaGaFmJOIsGv9ONy3WDvXaGUK0TMPoHX3xxH+Ms6feQidb92F8R98E+S63sxjLY6QRBJZrqDZfPfEUXRWtQxkZnBzbuh6ujUHGS/dWqjvdob5LJ6jaPGsBovvf//7sXHjRvzwD//wwPXuu+8+AMCWLcuj6gGTplNgU+elCbmGrV209YvWq1AIXdSICQEhiy91EuxT0SRMzRcpDSYBLUx9mjB0FVhZHxr7pUtsjKFJaA8WjeNLCOgKQFKyyrEgkfOiZlFlEVQWIc8iNNsxjjRjTApgQjKkND3pyE4lVqzELKKoV3TPCSVQZYCfNbVGSTPTja+4AI4ho1iNEkj0+w5qDAdFL3W0G7QOioF6/TgNwaKoHHPflH2FTQyFLa7MIBAgOWujErNoAWFhexSmm8P6xMAix9Y0Ftem+WGTK2F+6ARp6JyAbJl5E3cd91++rM2NYhSjGBBz7eF2OMcPHYB87mnIdTsQHX66zCN0Wlj87Psx+fq39WUYiQhJfBZDAe7zhVENla/K7jKtQQNsh87VqsWz9grRWuP9738/3vjGNyIKfKAef/xxfOQjH8EP/dAPYd26dbj//vvx1re+FTfddBNe+MIXLn8/COq7GCaN51N72qT2lPC+ir187oTWQQqRwTJ4LgRYsFHVknkOWAxCDAYbZpENy0XaMoxUAT9WRVsCHrkTRRTqZ8dGZWmMZiZxOAM2J4x6pK0aus+F7gETWVbN+Q+yd6ApgCJbSyDzRg5+pZZY02BetU6xlJ7uGkOPZUuJEqvoRmJBnf3ci3FXBxhsg2BAYy+wGO7DM4th2jnoAW5ZYO+pqAO20deekgeJHNQ1FinoIt3samJV6K/Yo17RXNP2R1A/T6MBH+GIWRzFKE5NZHl/UOJuP1ltCtlVLwNIQCwcw9g3/wbR8X1mJWZwu4n08X9C7fLrT8mYT3kQ2ZTVkBvZAMP15YTSZuoX5yZUPIvB4l133YVnnnkGb37zm0vzkyTBXXfdhfe+971YXFzEjh078BM/8RP4jd/4jRXtJwP7KWcYdjEn5DFBKoE8l8iVhMg1cqkRKWPELXIJHdn6QJIQUhsgRgDlbFLSFngQsc9uauJKX2Rtm5EySOiCVexiFgP7FQ8YywpolUXI0whZalTQR1KJh0Ub548Rxmo5RB+BC8P1d64wi9oohFlyUZfosiCazbgdeAzcvrssdCr/eL4+0Rpxe7V0MaClGbRUgUuVIQ29fVz3FuYihc42Z+46uUh3UuzrXvLEcJxKFPvUQepZEziTngl26WajXjeAnnOngpaFyt6lnAPQr+wPAWWvwzD1nOeWWdQmDZ1pO8Fc1ytJQzvRTN/lI7A4ilGsWgjq3S3EAcXCAcQ86rFpLHz/GzD5xQ9CLhzx6+fPPox814uwZ7aNVGk0Yolt03XUzyK1c78gIlBjCtycHbieaEytyv6GMovnKFo8a8Hiq171qp5y+B07dnR1bzmRyMh8oWZsrEYyBjJtvoilYORKQuUCuZCQuYbKTc2iEKZ+kax3oZYKSgiAGFoIUG6/cC1YdC3vBSEANHYSltIUFpEJlBUjDiwyrOWKZRQzCZ1F0KmESg1QzDsx0naCZrOBQynhu/IofqQxjno9M4C2UrPombbqmEKWjwMxi7Jvt10NvRLaAmUQuuxVKDyPHM6vnIxwaK4WcFi4cVXS0CEDRqZYtLgDs/mcmRlgYUC+KOYbZnHAznukoZ1QxameQ+GRKxXw9Yl5UK9oQaJRsReA0U9B3WJRsyj8PAMgBXJlSigcUMyIkZFGDr3Mn8JDOrjwqIPLKEaxWjFRj3Gs2S1A6atSFgJAhPYlN2L8W58CYH7sPzR9CfY8drhUDvTdA/O4bOMELlo3flb6KYYhJtZCtRcA3bsnFTWmVkXcAhQucc+3OGvB4qkKx74oMHImKBCUbfmnrCpVaQEZ1I2V0tJCQAs26WgloIlNzaIUBliRaQ0oFMDEPg1twqEudvk/j8ocuGSgVLdXABARMFSFuMWooCO02wmaKWGeWoiSBHGkIITuk4buBofOb5FDAYpLz4bpaBQ1ixxszj917/evq/sZcoK61ikYzOJ1mUlkLgPNEutJxVvcPBYEcioeDygHjYn8Z9TdlcV10SEvdimlor2lUuHLWRK1BJ6KXL3mbJ2ie/S1tYG3omL2ljluWk4MU0PrkRp6FM+jYK2hnnsY2ePfAi8cB9XGEF3wQkQXvAAUJZ7QWCkYm6rHmG2l3S3qmftvUwhk2y8Hf/tvQazxxHk3Ys/ETjPecOwAHjy4gFgInL+2f4czbi1AHdsHMCDWboZoTK7oWE5mkIwg1+2Amj0ApK1gge3VPbF0w/JhkSsNGpCHHjGLz9PISRvAyIaViWwqOlMCghhxLkwaWmiblo5sNxQNJS2zKBhCSQ/EtNSeWSSSoJzNzcCml0UIgNgJW8gvh6yU0OoiDV0Ci2kEFZhw52mMLDXM4vxCHc0WQFhEkmSI4xxCGEBUugUF4LA3s2i8BBk2fe36QbPN4Ao3Vipa/1V/llXvYFyAyNDHsSeu8SnrHmPtuW4B5Hrtny0YpIBhhDZ1prAlAMU9mnvXLDqWl6kPs2gV0CGz6AUu0vphOpAvgucBw6gK43eVixLTmOWRL48w4hYrzoJRQWelaZmKFMfUjmJg/NZv/RY+/elP47777kOSJDh+/PjpHtIoVjlY5Wjf/ZfQ+58oSlgWjiE9sgfHn30cRy7/Acym5v43nkhsnqxj/XiyLOAohcDW6THsn2shXw6dJSQ4ipEzsGfz1eiqLQri4UML2DnT6GIrOesgvf8L0PueQHiTFJsvRPLCl4GS+tLHcwqCohjRuu2mV3eWGqCYNECi/4/blYTi4YmlczFGYHFIpNBIodEhjYgFJIBUE2JFECSQ5hJxriAoggi6oAjBkC6tCxjWzsEmL6bQHrQIrQt2UGsIWxdBwm7D1TwKNqbQQbBNdzKbWjjHRqk08pNLP3eaNTQXG9g/WwMtxngp1zAdHzFg0ddVuvEFFJsDfx6ckQVoHIA0M5HLbFrwSATbFo+K7Hnw/0vVesSQbXRA0O27YvA9MHQZ1IIpYBF7gMUwBU1FypnC4ml3LBS+MRx/CKbLzKJTQLO2nXWcr2JmOwC5GtO8ECSpLCrSzUHaOc8iqDyygNDUKoZTlptSiSwXSJVARxMyZqRgpGSu5w4ppOidtukXroNL3498AOv4fIo0TfH6178eN954I/7kT/7kdA9nFCch0vu/CL3/SfMi+AV1bMOleO7ClwMd5Qu0F1OFx48sYq6d4cJlpn2TSGLHzDhamUI7U+hkCukghQUAZB1QnuPoul3gIe3uOkrjWCvDurHC8JuVQuerfw2eP4zqfU4feBKdr86i9v2vA62SaGQ1YzV6dQ+KbIjCZaSGfp5GDm3YRZu+y92kCTK00BHs2R4pLNOjBcgyis5/kQjQSptfO65e0f3yCZhFbTEbSQOeiAkQOjCLNsGAZ7BYk7daCWvdQrucLI3RaddwQDGaDGxFgkTqol6xGp4pI9tHmQLvQAsMGd6gO6xhhC5AYVWsVgWIfn51G1w63GBMZlxFkrsPm9jrfT4tbY/N79s9sY/CDJx9fhoWTFsg2UtmYz+rUr0iV8Bir3RzyUsxaOmnK6loXTyqrvWlv+5UyChqBO39ijZ/OfSymUXNxg2g7/KRdQ4A4F3vehcA4AMf+MCS39PpdNDpFB0oXMvRUZzayDUjVxqRFIj6+A1yliJ/9F5UgVSaTOC5i15mXnQp+YBDiymm6zHWTyyvfo6IMJZEGEsiZEpj7/EB7Wu1Ru3ZBxCffznkrpcAi8O3ryqspdr7CHjuUO+VmcHzR6D2PIJo5xXLOIpzI7IhzaHP1czLCCwOiZzMF6pL30kYg+5MA1KR97ATgiG17YwiGJQzolxa8YphGZVVe5AoUtIlsOiCjfpYhAIXoU3tHAWdQyzwcf2NjQeerVNUtkYxjQoVdCdG2knQbNXxNDJoAl5IDdQi5Vv99e/gghIAgut4oqnELnpW0RFxDpdplMFov3+oatq5yiBaYBp+VoNqHEMLLq6yfp7+rAzJm3g7KyH7OmQc++mxg31woIZmDxYDayNdiFl8DWIeMIsBSPRCFjtpZ8Tt2ETHLloVtEtBZxYwZoxABW1+AGWkl80sejDcN87uQvnTGe9+97s9yBzFqY9mqrBntoXjrcLbcKYRY9uaRlffZX18P6C6PRCPbrLgaQBzuG++vWywGEYsBaYaMeZavT0YZSSx4bqXQAqB6cUOsHhs6DbHk/LxqWcfxLDi7PyZ7z4vweJQU+6TGKezvGUEFodEGwoJKdRJIwJBsEAHjNiqhKOcEGfmH00IRhTU/WXSfhGzA0pW8GHvI8KzUASWChxpk0rWpoCWI/No6h4L650qoGNXC8dk7VYM6Mg6MfJOjNzWKbabdSwsNHDk2Dge5WOYSCTWJRGSJIeMlFduFwbVFuRY8ApFBrD6tK4FicrcVAhUdKARtm5RFaIR1/pvIJ7QZaBY6iutezy65/7DIPSsXyy9RxQ1he7Rvd2qol2TRQ4/736pZ7cwYCtN2j6wyqmmofOAWcwCpXNWscZJI2+XozJpUs+OJbaTf55LpFmENJNIM2EmRSYFDaADl37W6EChDYV01ZnFEVhcafRrOTqKkx+LaY6HDsx3EUbHWhlm2xku3zSJsST4uuxzG2hNbOjJKIbRTJf5A61HrGkkkESYbWUl4DKWSMyM1yAtAbFuLMFYLEtdYMIgAOvGE4wnZSjA7UUMq/Mx6zz/IjO9f/suP5k48nSWt4zA4pDokEIGjZQ0EhAiGFVpxsZ2L9OETBGEsIxOJCFyRi40Ip96ZkiloIQECLYdoGUWASji4AJjCy5t2tN2byHLKnqRBQoGj7UImMUg/ezscqy3YqeToNmq4dhigo5mTEQajVoGKfspoYt6xVItnqtXtECIXOklsfcZ9OV/DiiKAgRyL8Do8FgvlrDKNALdKefS+6h7QvGcK8dTqKMLwMeeGShS0AgsjqrRtQ3HJgYqaP/cdWZxz90562GT43t5KxHY41hRixW25KX2fkXXlkyba9WIsxg5GXY8dayiBY3LiyHWOcA5a53z67/+6/jt3/7tges8+OCDuOyyy1a0/X4tR0dxcoOZ8eSRxb6ZRc3AU0ebuGJz4dMnZjYZk+dKVxDSClbZ13d/q+FSQ0SYaiSYrMdIcw0GEEvyIDFc79pt0/jq00e7jo8ARILwwuC4/LLGBLg5j0GAkRoTJ34gZ2GcTmZxJeUtqxUjsDgkMitwyaCQQSCy6WjjuUjIFEyfaAIyIREr5U25VS4hSIPIPHfMnco1iJwa2rGOFDBwZHo0M0CSQSRMb+kgTexuOOwYLAcWA5bKMFCxTz932jU02wkOtyQQSSQJo17LIaNe9YrdoMrsMABgmn0a2gBGCxw98rNTpUWez+KGN80KOAzrHktMo08RBwRrFzCEBYHF+8odoYJawuAYe///k68tdXxjV3D352VERxVm0XVhscyir0fsmXp2bfuK3s+hEXfJazE04M4FsqBeMWMqq59Je9FWatnF5YTWgBrQ7k/rc9c6521vext+7ud+buA6F1544akZzChWLZqpQisbzLAvpgrNNPfsIsU1RLtehPyRbyAEVFPHnsb82gsGbmumEZ/wmF0QEWrxYAHLurEELzl/HR46tIADC6YmlgBsm67j0g0TXawiAMgdV0Af2Ttwu8/HFDSwNIFLlmVdNcdn+4/BEVgcEi3KESNDHRKR6eBsGEY2qcwIhE5mqDMihpSRAXBMEEKDGdC2JQjDpXXNcq2VadPGgJAaWhGkIgipwVLbjiy2V7NLRbuBBcSX2aaAVlQAilwiaydI7dRabGBubgwHFmv4Z9HG5fk6nMcZxhqLiCyzKITN1TJKdZCuVSGU6XPt+xxDWNGNTa2zYRbJ55zNKgx4o24AvkNKV1QZxAAwum4xLu1NATDrqlnUFfDoRTmO6YMXnfh5wADAOCQh04ulZPu52fH4ns9sW/iFQiQH8LVRsDvmME9jqDwyz22qWeUSWRYhTWPkeZGKTrMYaVqkoDu5TUEzowOgAy5S0KTQpAxNytHBcvulDjflPldjw4YN2LBhw+kexihWOdr50n4wtXONQDCM5OqXQR8/AH3waa/gW3P4URzYuRt5XO/LLm6ZapzQeJkZnKfmR3oUg4aonQFguhFj984ZZEojVRq1SCAaYCkjt16E/Kl/Bh8/iO67H4Gm10NuvfiEjuNsjaHWOQx87GMfw+tf//rS/He84x145zvfeXIHdxJjBBaHRAaNFil0WCGBgCRCyowYDAFCyvD1izIXiHIBQSb9nOWRb1uppElPA1bUUhFJSK28VQ2zBmsNZuXXJcGAMGC12uqv6BUcCCGs8jlLDavYbtcwv1jD4ZbA42IWu3kGa0kgilW5HtJHyLqhAGG9BC7a0IVEtsbPpW4dC2o3Y8sA+5cs9mEW0bNukYplXeAQpbE7xs/Xh3JR4+kBY+lYqTykQQAoYDe79hOooT1YrKib2bKErrWfVrY20QtYyuKWPI8sgLSClkwiy2yXllwgzY2oJdPm2syAwi7HsokdKLRtecVykynDahbPVSXgcuOZZ57B0aNH8cwzz0Aphfvuuw8AcNFFF2Fi4vmZvjtTo283lErIynoUxai/7KehnnkQ2ePfBi8cQ1QbwyU4gkflTqOaDdcHsGv9OCZqK/vaZWbo9gJUc97+mrfbTeqIxmdAcjhojKVALIfbW5GQqO1+DdIHvgS999HgH5sgtl6E5AUvPSNtc05FZFoPtH1gAK973evwh3/4h6X5/VjFk13eslrx/DzbywhlFaOpTd9FrG2bNELOjAzmi1kAiIgQ2zaAMpfIpWHrSAhIVVFA++cyqGEhENiAC2HAB4mAWfS+f+a9Ts3LqmAWDagoW+VkaYx2O8F8K8HxDmO/aKKu12BCwLKKlX7QPVgyhADICV40F4At8CU0hZkM0kbw4rwWXTOaUjgQGUYPoEg6HAuK5yUvRVTGGzwP3x8yi5V0dLm7SwA2u6JId7vPzINFz1g6NjEwTNeWWVTSP5ZqE/MCPJbMtgPTbd//2Rtvu5Z+Ra1iFrb2AyO17f1S0kjJAEblpetLD2Ya2P951BvaxNvf/nZ88IMf9K+vvfZaAMAXvvAF3HzzzadpVKPoFVP1GIIGt3CTRJisd39dkpCIzr8K0flX+XkNANdoxpFmiuO2+8pEEmHjRA1JtHIfUtWcg27Nd83ntI0sP4h4zcYlsYxLDYoT1K79AfAV3wd9dD8AhpjZDKqPr9o+zsbQmrushqoRxzGmppbWi/psKW8ZgcUhocBISaHJmVFDEyGBQGRVs4IJ0gIPkQuEP9oK821Tj2gYQOHBh2vVFmmCkAJamrS0EBokGVIKDxJNd5UK+2fBibbARCsyINGCxbRVQ7tZR7NZx9zcOPa3IhxIcyABJhONiURDujZ/gcCF7ZgLJkyb9nSSQFqYeg1h0Z8hQ2Fz66YtHrNlSa0ghGDaGFrCMQQo3ocxrCnsSkNbFtGln1XAbrrlikyHlBLQrbB9Qc0gVOB/qAOLmypwDD/r8KOv1HKyA5bWsNqwiY7FROGnyIXAxdcnBs/zLEhDZ7E13xbIMgP681watjh16ecIaRqh49PPhI4itDWhDTYTabSh0CKFFnI0kaNN+bJb/cGe5kGK53M5Db2c+MAHPnBaitBHsfyQgrBlqo49s+2+62yZri+ZgXTb3DhRw8YTsMgJg1XeEyj60AqqOY9oYs2q7C8Mqo1Bbjn9YOVMiTTX0KI/s7hc8cvZUt4yAotLCA1gkTJEEBBMiCEQkQEYEua1aa5CiHIytSoESG+XAwhiD2LItoxzrBNgOri410Jo/9qxiq4VXxm1GIDizZs1IUvjoP9zDa1WDc1mHbMLNTzFKQ6KHOfpKUzVgHqSW39Fs7UCAJWZxFJ/Y0WmTZ1kEOkgDQ2rhiY3MpvCtWwoG7aRAV+7CKBszu3CAcWQNVQFiCunoYtUsntd7scsCgYxmO8AYqhS7gaLxWdcBY7F6zIL67dbqvcsmEWtC39FJ3DJMytgCcsIlEkx55l7bm1ybM1ilpvJWOVYm5xcoKMIHSaTeq7UKXaQo0U5mpSvACYWp2bQj+pRGnoUZ2NsmapDacb++UIAwsGyzZOnV5iglmBTo1tzyJ79DiiuQ2w6H2Jy3SkY2fMvlEZ3y9owTuI98HSWt4zA4pKCvYFxB8KrSSWs0pRN/WLExkpHKAFBQCaFTzPnrm0fAZQbFs93kCMugBoILEz9ogeWgsGuk0CFWXTt1xxr6Tz48ixC2jF2Oe1OjPl2hEPcwhzl2KTrGIuAKNJGde178FmQE9T5FepeAdLGGNzY5ZChCUtgkbx1juXaUPhKMuAYVreznkHd9jkWNJIDhAEwLE1cfu3FLMGyAhiiDB45eOzDTvojq6SqTflQkW5273EpZwcYHaBna7Lt2MZQBR2CxZ6PoQF3kHrOlbFwytm09fMpaDL9n52qP4VJQ6+0JZVmGuyzeIaCxde+9rX44he/iFe84hX42Mc+drqHM4ozLIgIO2bGsGmyjiPNFJnSiKXAurEEcd5C9t2vQD3zIDhPISbXItp1LeT2S5fVtu+EQi9BhEMCfHQvmDX0vkdB63cguvSGVU1Nj2I4s3gyb4Gns7xlBBaXEAyTju5AgUCoQSK2KVgBk4ZmGDATaTL91NgIXVxKV5BRQ/tUJBMiKaF1bpZLDSU0ImVS0sK24BNe4KItA+igVgFKijZwloFKjVq23aphcbGO2YUGDrQl9sZtNEnh2nwtxmULsU1Bl47V19oFjJgzkRZlNTRDFO3vGDanrA1zKAiQbNr3ERsQJWCEMK7Gsd+H7SJgFilkFrtAIipgMGQTXYu9YlnI+EEVx+mYxfB5iWW0gNGzimzPQwAymQvGuPoZhqA+TD0r91w7NjHybKJ7nnnj7SD9nEmkmUQnk0X6meHVzy793CYztcikn5fb4q96fgaxh2cqs/irv/qrePOb31y60Y5iFNVIIoEtU3X/Ws8eQuuL/wtIO3A3J91uIj30LMS2S1C74TXdHbhORgwx+gYAsBNe2O+Iw89CxXVEF113csf2PAuleSCzyCfxJng6y1tGYHEZ0SYFDTaqaAiwYxS9ekMbSx1tQARltn7NppM1E5QkCyABLTVkkHqWUkNr4U2yhTQgUVh/xS7TbAtoVNAzOO0kBkx0Eiw2G5hbqONIM8LTooMmGTZ0BoRapBFFQfuTMJUaCjKUMPWGDnjlbHwDyABBhhPH2DS5EoZesjWKDjiSMCjDtMuz4/ePXDB3Qd1iKQ3tQSKCGkWXGhcosYYWHJYZRlEGiqpg+cJONaX6xUD84pTqXZ9TtTaysi333KufuWAW3TlzzKG2FjlKBXWKgV1Ox9YspmmETmrSz51Mom2BYoddnaJGm9jUKFqQuEgZ5ihFSifWPWJoB5cztGbx5ptvxhe/+MXTPYxRnEXBrNH58l8BWQEU7RIAgN7zCPJH7kF82Q0nfSyiPgbdXui/Amtg9hDK4wT0/sfA510Fis9ef78zLVKlofPTwyyezjgFP4nOndA2Hd0mhQ4pryx1RseZrRNLmZBqQqoEUiWQ5QJZbixOMvvFn+emPVueR8FU2KPkeWTq1bJgfhas67YRpJ1Dq5xOGqPVjrGQSsxmhL2iCQVGnQUaAoiEqTn09YoujRqohQtWzAIuJyJRBUMXsnimnpHKrzUBCh7kkTY2Q6QBUrZmUZl9utekbJq7K9VceR0qmqvpZwf8SmxiLwAZMqkFmAytbbzdTV7Mc72ZObfzXeeVvDDQ7ve82ufZWeEoZYBi7q+Batq56ANtrqnQJsdY5aRW+ZyirHxuw1ynKxG1VKNaJVCdlht33303br31VmzduhVEhE9+8pNd69x55504//zzUa/XsXv3btxzzz0rP4BRjGIJofY9AW7OAcygmU2QL7gJ0U2v+/+39/bRcVX3vff3t/eZkWRbfpFfJcBgB1IgFBtMUAzpjV3c2GY9SQgvAR5CDMkyaWK3Tcy6DbQlJrRrQYBFXSgXJ7kXaO+TtoTeB7ISbmmozcslMQYMJOHNwakJ+EUyxpatt5lzzt6/+8fe+5wzkmZky5JmLO3PWmOdOedoZutYM/rO9/eG4L9cAXnORaCZJyF6ZxvYtlHhKITuOgju7Rx2d0kEeVC+TH9Glzf04a4Bj+mDbcO6lvGOstXQ5W61Gl05VryzeJRoMLooRI5Nz0Npq6MZpvFNwDYbjAlCExAZUUK2bYx2DhWAQDphY5tyawFmAaFMdbK0U1sE9Z+w4twtzdadsg5VMcwjLOZQKObR1V2HjkKAfbHGW/mDmMx1aETOikWdjCJMUgoTNy11xLLhXNZsO5IK0xoHZoYf2zAMmQ7UqRPIdluQ+eHdz+DyL8H9+y5mikpKXMVyYWglUhfRCrlkn6ISBzFxETPb2u3rEzYuaaqddRmRXqck7FxSDJSZppM8rs1XVBJa28bp2vVYtBXQVqCanolB8uEgigLESiK0LmMUiyT0HMWEMBYoaEKRbePtxFm0FdBQ6LHO4tF3VRzo95+gKriHQ3EWu7u7sWDBAnz5y1/GpZde2u/4I488gnXr1mHjxo1obW3Fhg0bsHz5cmzfvh2zZs0CACxcuBBx3L/B+M9+9jO0tLQc9Zo8Hr1/N0ACouUjkKeeA9bp5C00TkNw5mKo3e9AdewDf/ge+MNdaR5GQyOCk86EmH7isK0naGxC3HUQXOwpPRAVgN3bgbB34G/kY59F7Ukpxtq0HSvDSIahq4kXi0eJy1/soRgabKqgQWa+M4xVq5igYMUImz+uDIJSQC7JWyNIKZHXMZQWkMK0sTFjAY2Qk1KZnEU7vaV0ITa8qSkpfohiiUKhDsVigN5iDge6c9irFfaKEAAwRzfgBDSgPmeEqEha+2RCq7YFj7BOGglphGEsTM9EwIahAdcY1kShCSy0ndRihaEVlS5XMfk+2PuZmcvZnyu50JmcwX5iUVEi/BKhqAmIU8eT41JnsK9wTApQVCqO+/VGzFZNJ/mLmVBz31zFvmLRVT87t9IKxzRPUSCOAzv/OXWd3f+nq4AuhjmEkUzEYiG0lc+a0MucCMUeUuixOYo9FKOLQjOp5RiKWkp+7Xjwamit9VGNulq5ciVWrlxZ9jHvuecerF69Gtdffz0AYOPGjXjiiSfw4IMP4qabbgKApCrQ4xk2CMCERshTzzF3M7mJTjSK2adA//YlII5Q4qv3diL+zVbIeSHknOFpO0NEyDU2gSdMgY4K4LAA/c6LQM+hyt83cdqwPL/HMFifxbEpFb1YHBIMICIFAlCEQh7KaCIiM82FBIgZOaQVvELBVKvBuHkMmGIYGKGmpbb9ErUdvcem52KmIXfajDvNmdNaIM6IRScUuwsBDitCO4VoI/OJcwIHmEQSUnA6LZBT0ZNU63I2LKtLtqHITJIRRuyxIpt8rUEQYGUdxsRltK4i2QtHmZsjW+ySyVksEYvZYpY+xSuJULSVx1DZtjWZnMQBClwGLOYpJxydm2v7OTqR3VdcJtczM7VFa+MiJv0wVVDiCLum2yXh58RZFIlIjOyUllATIoYNPWfCzzb0HFJa2BJCDYur6P5bVIWH0gB27dqFKVOmlOwf6qirMAyxbds23Hzzzck+IQSWLVuGLVu2HPXjeTxHipx1MnQcGkexXBHLgd1AHJZ9DPXuLyGmnwjK5cuec7SQlJByIlA/EVFdgwmVD/j6JqBhEqAVWCtfFT1MhEpDVqqGHqNq0YvFIRJCgwnoQYwcpG0zSMiRSESRZJFUQ5Odpaw1Z4Re6g5KqRHYxtzC9lXMNuXuKxazgsTksQlEUYDeYh7dhQCdBYkOzdgV9OI92QkG0MACEyERSJ00x3brc2JJawFRIpYEWLF1GW0TbsWm6AVW8wnjqTI0iE0PRrBOwtRmNCCnryLhXMUyr6qsSMx+zeQpJvmHSRg6IxizDqI9B/3C0KkYTEVdqXh0zmA/gejOs2vVfUVlUtQi7QcAssJQlohF5RpxZ8SiyUG1eYlRYPJclUxmPodOLKrS0HORTPi5SGkIugDTUzHE8IWhBstLZAAnnngiXn/99ZL95VzFwdi/fz+UUpg9e3bJ/tmzZ+Ptt98+4sdZtmwZfvnLX6K7uxsnnngiHn30USxevHhIa/KMD8SskyF6DpUViqw10HWg8oOwht7/HmTzqSOwQiA49eOIfvkfQFhA31cm26KX6MWfALk6yLlnQZ5yVhpK9wwJpQcJr4xRvFg8BmJoHKYQBCBGzky9AyGGgIL5FKdYIIbtT6cIgQaUlog1IZACuVgjFwhIyZBC23Y2nFRHm9nSnGlxk3G0bCV0ZF3FMJLo7MmhKyIcUoRdooAuGy4HgDoQGkA2/MwlYie52YkiihgiUKDY5iMKDR1LEJvRhgwjmkiTEcpuvJ9gQGuQIJPjmIwp5LRxd/YrcGRhaBsKTotc0mbaSShaEziWpaHmrHC0x3SfMLRWsqSwJSv8kgrmjCB04jER7VmBmC2ScbmKrurZ5SxqIxBdj8UoCqC0OR6G1llUAsUwsP+3NvQcGUexqAg9bNzEIlzVsym86qII3YjQQzEOiMKwFLRkYUZF6akZaG9vxyc+YSpE16xZgzVr1gzrGobCf/zHf1R7CZ7jDCICNTaBVTxwP0UVDW4jEYGPoKH2UKH6icid82moXW9Dt/2nWRMAVjEQx0gEZFSE+u02cM9hBGdeOHr9IccgYawgK3SVONoJLscLXiweA05y9SIG20KNwJS9AGymu5goLJkQLQM5EEgzODbNjbU2QlIqNgUvto2OEAJSaTMMhti0z3HPyyYX0uQrikRQFCOB7ojQqYEOKLwvu9BFEQQIU7kODZAICCA4oebcs9Kb1qY4h5WAFsK0UXQtdACw4DR/EbbNorTFLNLkcbLrsejOFalIJCcWHdniHZ0NSZPNE0Qmb9FVZouS7axwTFzDPmJR99t2YlH0F4uZ8HFyXZyraUVhOmoxFYdJMYsT4Zneikm7nIxYVEoiio3LmOYsWqc4NoUscZyO8YsYiaPoJrQUrFAs2Kpn10/RZCkOs1gEKnZpZADNzc14/vnnh+X5ZsyYASkl2tvbS/a3t7djzpw5w/IcHk85xITJ0F0Hyxw8grAuAwhyw7omADjYE6KtswjFjKn1OTSfshC5eQuh3nsD6p2Xyn6f3vsO+ITTQFNnlz3HUxnvLHqGTIGUKfYFIQeZCDEJs59dKTTIfOpggraV05oFNDMCwUY8MkEKkbiLwjqL1FcsWlEXK4EwlghjMmJRCRyGwkGKsVd0IwYjgMB03YAGlpBIUwSdQ1niLGoBkXHDSAgzoEWZYhWBPmKRrRnIgPnRTesAYrbhaLt27dxFMt+b6beYbXBaMlbPTWvJ5C0yZ3IT3T4XhlaVxeJgBS6puMuEoZUodQz75CbqjHhMp7Q44eiuKWWcxb55iiIRi3GmvVKsRBJ6jpQw/782T7FEKEKjCG3a45BCgeJEOA5XnmIWjUGcRQB79+7FmWeeCeDYncV8Po9FixZh06ZNuOSSS8xzaI1NmzZh7dq1Q35cj+dIEPWToLsPJcV8WUgG4IZGoNLMZjDkMFZEF2ONre8dxIc9YZp3DiAvCeefNA1T9rxT+QGIoHb/BsKLxSFTjDVkhWpo7yx6KuL6LUIDIQKT04icGbfGJiwds0AOhAhAnSazrQk5zZAEBMTISQEp2FRDC06EnXMWXY6hcRaBWImkKXOvJnwIhQ9EiH2igBgMDYZgwhTOIw+RNNbkPgIxO04uyZOU2jqAlFZjaxcSJpDUEIGGZgUSAiw1KDDtJdhVcCeV0WkomrKhaJTJgcsU8RyJWEzCxDbUjJI+idZNdGFoWyntZjNnZ2ub/omuyKd0lGKJQLSFQGmoOZOnmNmn7PfF2SbcylRAKyscXRGLUmkRS6yMUxzaPooFTSgwIwRQsKFnJxa7yISdeynGISqiQArxsUxpGYTB3guP1lns6urCjh07kvs7d+7Ea6+9hqamJsydOxfr1q3DqlWrcN555+H888/Hhg0b0N3dnVRHezwjBQmJYOpsxB3tAwhGgjzpY1C/2Ypymbw04yTQhMnDshZmxi9+dwCHem2oOXMsVObYhaFGY+UHsQUxnqHinUXPMeFkj+tnx2BIEBQzFJlwhQYjhjBCDyaXMWYy+YtgBGTa7AhiCAFIG7IlpKLRiUWlTYueWBN6tQlNdkPjoIixTxSwV/QkIUgCUMcCgd12/R77umlJzqINP5swtC3eSUIuxhEU1k3UbDrjMGtT+c0EOJEoybzBaqRiEUjb6LjFDXwxbUjahaIpI1QzYedMGDp1E/s7i268XhqGTu8nc5oTcZhWLWedwlJRKAYUi849ZJ2ZrGOva+yEpDLuoUoEYlYsGicxVoRiLFDUQMRGKBaso2ims6RuYi+ZQpYeilAgheFpkjMwI+Esvvzyy1i6dGlyf926dQCAVatW4eGHH8aVV16JDz74AN/+9rfR1taGhQsX4sknn+xX9OLxjASUq0Mw40RwoRva9jKkXB1E/SSQkKDTFyPe8bKpiiZKPk3RzLkI5p87bOto7yqiwwrFgWAG/nPSfCw4+FqlnwbI11c47hmMcBBncYwai7UpFp977jncdddd2LZtG/bu3YvHHnssCUEB5hPW+vXr8YMf/AAdHR248MIL8cADD+C0005Lzjlw4AD+5E/+BD/5yU8ghMBll12Gv/u7v8OkSZNGbN0MoEgqaSEYQFjZyImjZ37FzGhABTL1GgzEIAQwn1oECEIDAZFtmk3Je1AiFtlM3ovY9NkrgNFNGocoQgcVcYiKybpMLqWAANkONmkOngu3loRNrVg0YWiGJjZhaCv2iGwYms2jawJIIn2VsBWJzKYZuTA/pHMUmdheiFQE972O/YpbnBB1hS6KkqbhSWPtPmIx6ywmk1cyuYk6eyzzs2dFdLbARSXbpZXOSslkvxOIrAWUTl1LleQsGrcximzoWdlG3FYghrETi0BRIzOZxYafiVGEnSKUiEVT+VyAcRRH8r1qsJxFjaN3FpcsWTJoI9u1a9f6sLOnahAJUEMjREN/305Ma0Zu0cXQB/aakLSUEE0ngOonDusadh8qJB3IBoIB7K2bjbNBJi+9zFlyzkeGdV3jDT2IszhGtWJtisXBJjrceeeduPfee/EP//APmDdvHm655RYsX74cb775Jurrzaema665Bnv37sVTTz2FKIpw/fXX44YbbsA//dM/jfj6zR9yM1qtAQHqEUDBjGDLQyCERASBAAJ5NuHoAEDAQGCrjaW9EVHSltDVeihbkRoDiMDohkYPKRwWMfaIbnRS6adPApC3jwvYilYrcswtgIo1lNQmDO1EYaZpt9kgJKOt2ISmSWtjGioBktp8FToNSwuRFLWw0KXFLYQyHhilrzgudRaT6Sl93MU0DJ2KNY5LC1eyYWjjNFoRGMtMGDoj9lTGVezjEhqxXdpsO+ssOgdR2e+NrZPpQs9hJO02mdCzIiMWlUBo3URXyBIlVc9mhF+BFLopRgEm9NxBIYoUIxzB0LODMbiz6PGMN0hIyBnDl5s4ELEePGKgQeBcHSguDmBxEahxGsTMuSO1xHFBrDSEn+BSG1Sa6MDM2LBhA/7qr/4Kn/vc5wAA//iP/4jZs2fj8ccfx1VXXYW33noLTz75JF566SWcd955AID77rsPF198Me6+++4Bx38Vi0UUi6kb13cCxdFjprwYkWgCgzE0IlP2AgWJABoRBPIQkDBCMQcyziKsWOQ0UpuIRQAxGLHtr9dNMbqsaOigIsJMWX89B5jIOQj7KJpdFbYRKi4UGisJEWvIWKZ5knbcYLboRLD91MoEknaGMwMkTescEmz2Z1rpGCfSfDrnTL5iv6ro5NJRiUBNnEWdVkMnoWguzVnUSiYCUvcVgZnWOdq6fH3FYqlwzAq/0hzPkmksKhWhaeiZoLS098k0TrdhbTcr3Ah2E26OlUkpKGqT0xoxowArFm1uYq+dR94LhS5EKNjws6t8Hg2OpBp6OAtcPB6PYVJeVnQWAaAhJ1B33krEv3oa3N0BZL6DmpqRO+tT5RuMe46IwZzFsWot1qRYrMTOnTvR1taGZcuWJfumTJmC1tZWbNmyBVdddRW2bNmCqVOnJkIRME15hRDYunUrPv/5z/d73Ntvvx3f+c53hm2dDNOHEWSqowQiaGIoNsJJ2yplZYtQJBMkERQLCBu2ljZsnH1MIxbZFM7YithOitFJEQ5REUUqrYLNQaAOMg0/A1bIUBIeTfIUbcWuKXBx4WiTq0hCpI4jmYpvYkBIstXQ2iQySjO1hYXptUguV9FWUJtC8TQcPWC7LxfhzoSi0/nLANiGmvsIx8RNzPRIzIaa+26nwk8mgrAkf1HLVBRaVzA7jUX32y51Fp0QN1N2bBW0JisWzXasTeg5ZiDSLuTMiGAbbpNGhLQ9jglBx0l7nOIohJ6zaHBFYarBw9o6x+PxGE6eNgG/2V+5Z+P8pokQEych94lLwB3t0Ic/AEhANJ0AMWnq6Cx0jKOVBio4i2OV404strW1AcCAEx3csba2NsyaNavkeBAEaGpqSs7py80335wk1gPGWTzppJOOeb0xNGLS6KUYjZxDva2UboBEAIGcDUsHRJAskCcNwam76BxB1zFPw/xBDl1IEgoHqYjDIsQBKvR7/hwE6tgW2LAJYceKbI6ctD39JCi2FdixSsLeQpoXhGQk9qYTYtJWQ5txgDYkLRlCK+Ma2pGATiySDUE7ZzGZRgOU7bPIJWIRpaKxjFjsl6foBGGcKeSxotg15Ha5hLqvy6jS+c1G9GXOqygWTV5iHIuMs+gEo9mOrJMY2bzEiE1agWuLE4FRIDORJbQ5ij1WHJrQcxER6RGteh4I94Gl0nGPxzP8TKoLcObsRrzZPnCrnqkNOcyfbvIkiQg0bQ7ENN+LdLgZNGfRh6HHNnV1dUMeSXak9FCMIin0cIyJCJCHRA4C9QggQQhACCAgiYyryGm+ooYVjGRC0G7mbzdFOEAFhGU+6Qgb1naOpLJh6DgWiKUdFRgFSeNvKV0Im0EiVzJakDVBSAUZaLutwVJDSzPPmiSDJSVTW5xYJCsW+4WfXYPwPnCZnEUXik76HfYJQWermEuLWESpm5iEodNWNokojIN+wtFtq749EzmTj2gFohOH5hrbULO73spsR5oQump2mEr2KJObGJJGlGmPE8IUsXRThAJidFOEkPQI1jyXhwGogVIHLJrZh6E9nmEgUhqvt3fi122H0VmMURcInDGrEWfNbsTvOnrQWTTv1YEgnNI0AWfMnIRADBSq8QwnWvHA6VNjnONOLLqpDe3t7Whubk72t7e3Y+HChck5+/btK/m+OI5x4MCBqk59cCFnN+0lgkbO5jAGLBAQIQcBCWHcRUISiGZw4iqaHDYrPK0ALRsaZCS1ca7tiUoKXETieIlYQgmdCUMzRKwBO7awtDG4XZMVbAL2K2vTkHtAsUgZsZgKRS7z3pbkSdqKa1Ncbcb9JUUurhm2a4nDti1ONk9RlRaycCZE7I6rjIhUsRiwN6IrUNHs7qduohOFLtysMwIxEYu2X6JpdwQUXUU7GEUYsegabYc29FwkZT8UaNseJ0IRpp/n8M9mOTI0jANa6bgPQ3s8x0Yx1vhfr+/BB91hsi8OFbbt6kB9IHD577egPpBQzJiQk5BeJI4aKtb2r/HAjFFj8fgTi/PmzcOcOXOwadOmRBwePnwYW7duxde+9jUAwOLFi9HR0YFt27Zh0aJFAIDNmzdDa43W1tZqLR2A0T4RNCLSduKLQBESOesy5iAgmSCIQHAVzARthaYiUzDjhEOhwozK9DnZFtXYMHQiFLnUWRQaMgqShZJtyO2EGzNBaA2p7cQaIcCsbGW0AAsNoU1RDOwEmtRlFCXNuNP8xwGcxayCzDqLOrMW18aGCdrmKSIpSqEKbmIf11CVuolmDF+mctmeF6u0WCU5L+MmKmVDz65oyArE2IlFm5OoAEQ2LzGGE4smBzWELhGLvWTa4ZgPBRE6KURc5UAvDyJTx+j7pMczqvyfdz/E/oxQdDCAQqzxb9v34f9deIKf8VwFWDPYN+WuDQab6PCNb3wDf/M3f4PTTjstaZ3T0tKS9GI844wzsGLFCqxevRobN25EFEVYu3YtrrrqqgEroasFg83kF2gQRSAQctZhdOFjYiQFMRE0FHHqUB7JcxCbPo7EiJgRghBqQhiTmT8dSQSBdL22QcSmf6C1P5kJUqZzmE3o2YwEFEJDKAEhNYTU0EKDrEgkwdCCQWTmWzuBaASjK2xx4rHfhSmtiEZGKNo+i31H76UzrlNnsW9LnCQHsZ+bKJPClDhOj7lxfM5ZLK1sFok7q5woVGnRitJGHMZsws0RAxGMu+xyE2Ni6yCasHNkG2270HO3ncwSWsE4emUs5XHpDOXQSHuKejyeo6cYK7y9r7Psq4wB7LezoZsn+wbbo41SGlyF1jnvvvsu/vqv/xqbN29GW1sbWlpa8MUvfhF/+Zd/iXw+PyLPmaUmxeJgEx3+/M//HN3d3bjhhhvQ0dGBT37yk3jyySeTHosA8MMf/hBr167FRRddlDTlvvfee0f9Z6lEkpaX2QIxlM1XFFbBsT1HEScO49E8h6tgVbYaO7ZjBqUi5JQRSGZqjIRUQWZqjOupaIpWGIBkDWYFCYBFaT4jCSMcWVAmDC0SkZgUu2Ra5pATjH3X7XorIg13J30WMy5jtsBFVxSLcsDQczLmMBGFQbKtrMBM8g8zfRJj5VxFJxQpEYqxnbAT2ZzEOMlJdGLRtDyKoRERowBlq9t1UuFcJIUuihBCIabKFcijiW+d4/EcG8z2HZ/ZFKL0cQf390RQg7zcCUBblxeL1aBazuLbb78NrTW+973v4dRTT8Xrr7+O1atXo7u7G3ffffeIP39NisXBJjoQEW677TbcdtttZc9pamoalQbcw03s6k2HKbrgxGVMGjGz7eFnXC8ZC0SCEQUyEXRSOIEI6/7Z/EC4XEENYYWaEBpSa7BW0MI4jU40pmJRp9vZ0HO22KUMpRXQyIShs/OZjRAsGcPXtzdiRiC6ZttJwYqtCHdh5zguFYsuN9FUjbvwshGLSZWzdRKVJoSZ6ToKRiQqIKlwjsmJxVI3MbJVz70UJaHnw9Q/DFVtNHHlAhffOqfqDoCndolihTCKoDN/3/JBgHwuSETjkaQf8hGe5xl+lOKKzuJIfa5fsWIFVqxYkdyfP38+tm/fjgceeGD8ikXP8BFbtypkE+7MgVBkQs4KQBEJCCGTCSQAkNMCOpeKMiGNQyeVgpQKUkpopSCEhpIKQsok9CylKlPgopPQMyVCcZBXVRKKdo4iknC41gJgQLMoCUX3ncBiCmD6tsGRSfGK6icW05nNprVQRiCWFKwIxFYgRmxmfCvb/ia2oeYok5cYknERY5jcxIhUIhZ7YKqbQxg3MSJdM05iX47EWRzvVNsB8NQmYRSjGPWf7RzGMWKlMKG+DkSEmRPrUCcFiqpyW6y5UxtGaqmeCrA2t7LHAURR1G+wx0h0XDl06BCampqG9THL4cXiGMeFPSPSNmfROFyRqUFBoASC2PU+lBCZnodmeosJPQPG6TPCzBW4EAQTpDb5ikIwWIvETRQlzqIY2FmssPZUKCJxGEvC0M5NTMLQIiMW7cxmV/2cOImZ0LOrdI6DNLwcp/mIbmazq2yOrFB07W9MsRAQIa1szuYluhY4CmamcwgNZR1El6sakkY3ouR+RAoK2dSE2mLwnEVPtR0AT+2htR5QKCbHmRHGMepyOQSCcE7LFLzw/sEBzyUAJ09rwLQG71JXg8GqocGMf/3Xf8UVV1xRsnv9+vW49dZbh20dO3bswH333Tdq7yleLI5xdCIUjTDJgRCyQAiC0IQQjCA2rb8FATIjFoUd9cecVlxrrdOWOVKbdjlSmXxFoSGsWBTEtuBFJMKxXxW0VYp9HcaBqqGTvEV73ziLaTh6IIGYFY+qT55i4iY6gZgRi7F1GcMoM3XFzm5WbBppR32cRDerO7TiXBGjaHMSlf1atPmHEZTNU0wLWcIqNNgeCjxIzmwtFOHUIkfiAAz/yFFPrRDFg3etiKIY+cCEoz9+0lR0FCK8/UFXMrDPfZ01qQ7LPzqr8oN5RowjyVm8/PLL8f3vf79kXzlX8aabbsJ3v/vdio/31ltv4fTTT0/u7969GytWrMAVV1yB1atXH+HKjw0vFsc4oa2i7aEYdSwgQciRhmTbDlsTKDbhXG1FmnPStBbI5RSUVFA6hoolhNSIY4UgMGFoKZURjdZZFFIlIWjhXMUSsQiYUHSF2dCWrDgs3RZJ2DwJQXOas5jth6hsn0WlZaYNjigJPUeZ0HPk2uAoYcbwKSMKI+cmwhWs9A039xWInLTAia2DGGYEYrbK2VyR4wONwZtye0o5UgdguEeOemqHI3ldZM8QRPj0aTNx1pzJeKPtMA4VYzQEAqfPasT8pgkQvmVO1Ri8GhrI5XKYPHnyET3ejTfeiOuuu67iOfPnz0+29+zZg6VLl+KCCy7oJ0hHEi8Wxzi2XAZFxCiSGTGYh0AeBLCAABCY3jxADDMTWgM6MG9GmglKkplWYoVhEBjXzohFAekmuNj7Thw6sQhy28i00LGrc+5istrMTJdMGLrUWaQSseimrDBTUsSSjOFLZjPLpOG2cxZd6xsjFskKx7TCOXSVzmycxIgHzkd0lcyxDTXHttK5aEPLbtsVshSgEJM+4vZHtcXg7cDHajX0SDsAIzVy1FN9hiLtiAgnTK7HCb7iuaZgHt5q6JkzZ2LmzJlHdO7u3buxdOlSLFq0CA899BCEGL1GZV4sjgMYZjxgkTVypBGyRmiHAAYg5BhmJjMDgtJfPvfh1VRDG4EmtbbhXw1pq5+1ds6imRXtilqkVIkoLBGLghNxmH5AtsIxE4Jm+48TibpPGNoJSCcQ3Xa/mc2ZPomJg5i4jKYtjmt/E8UiEYihIhNuhq0gzwjFyDqJSfGKrTgPoRPhWIRKchFLto+gkXqtYsLt5d8o1Riuhh5pB2A0Ro56qkMQSESq8us+kKLqTbZZxeh961X0vrUNXOhFMLMZE8/5JHKzT6zqumoJrQab4DIyFsDu3buxZMkSnHzyybj77rvxwQcfJMdGYzKdF4vjAA1GF4WoIwliJLOnNdgqMoGYjYuIGMkkklgJ5HOEQDKUFpBSQgqNONAIrMtoqqPTMLR0YWjrJopsZTRx0lexdHxgmreYzVfMbrvqZ3ZOoxWH2uUpWpdRqcyUlkyfxJKeia7KWRFiLRDFaeFKUVFS2WwmrRgBFCENN5tQshGLrql2nDiLKgk3mwk7sZ3McvwKxL5Ueis8/pzSI+d4cQA8tYcUAkIQdAVHKp/LjeKK+qMOd2D/DzdAfdhunAJmhO/vQM/Lz2LShSvQuOSzVReztQBrrsps6Keeego7duzAjh07cOKJpeJ9pARqFi8WxwGugrWXYhCAHAQCEDSkCfwyoEHQMC5iDCDPBM0MpWHEoiIEgYaUGoHSCAIBKTSkkJCBMkJRaAghkypoIRiC3BSXNPxshGF2e+A1Jz0WAWjrbjqhqF0ImjNhaDt+r3RmczoLOnbTVrLbrnjFzmwO2UxdiUsEIkyREDJOouuTmKlsdq5hkYxgDG2oeSwVfWgyDmql4+OdajsAntqDuzuQ2/OfCKMIPK0ZmFpaoNJQl4es4gcKZsaBH/03qAMfuB3mqzav9a6fP4mgaRYmLFhcpRXWDiqOQVxBNI+QcLvuuusGjWyMJF4sjhMYQAgFQYQiK+RJAnakYGDzFwFAwLbHIVd9J6CZwTDCTGZa1ihhBGPABCEYSmgrGNMCF5FxGZERi6bfd6Vei9nCFpuziEy+omubwwJa2a9J/qKd02yLdFRfsejcRCYoZQWiBmIQwkxeoqtsdrmIkc1FDG242YWdi5nClZCUPff4qG4+WlwObKXj451qOwCe2oHDAgq/+DHi994q2U/TT4BcfAmCydMQSFl1xy587x1Ebe9XPKfzF/+OhrM/UfW1VhvWCqDywn6svsS9WBxHFEhBgZEjAcFkq1rNLF8FhoIAs0icRaUIeQZyRIgVI5YEKQSigJGLjcsoJSOIZSYMnYaes2FoIXQyezoJQ5fkLPbHNeJ2ItH1W0yKW2weo1LZkLTo7ya6RtpxOpIvO7c5zLTACdEn3GzzEp2D6PZnW98UEZucUHt9xzIaXFEE6zEokI+WajsAntqAtULPpv8Pev/u/scO7IXa/I+o+3/+GBRMrMLqSin+9k1AiMRJHAj1YTt0Zwfk5GmjuLLaQ0chqFKBS6WO3ccxXiyOM2IwDooiWAMRNBQCMIA6SMQ2bTdiQgR704QcATkm5DQjEIxAATkrHKVkBE4olohFQGaacwviUmcx4y6WI62ALhWMprgFJWLRCchYOWeR0rnNfRtpu8pmNiI5hAs7u8rmtMLZ9T804/nSRtq9iK2LaHon6iOoEh4LDDbBZWy+TXo8R0+86zfQH+wa+CBrcG8Xot+8jLqzPzW6CxtwOQpHUrPNgxTpjAcGcxbHKl4sjjPYuma9FNvqZ0IAYcWOBAHQENCwggyAssUvmowTZ+4LSGJIzVCCUrGoBUTSOkdkwtCpQEzEontvGmCSS9ZVTMLQTixmXEXWplm2u+9mNmvrICZzm61AVDYnMSxppK0RkxGMRRtedvObnRh0PREjNz7RtsSJaLzIRAPDNBkvhwaP2dY5Hs/REP32l0mhyIAwI3rn1ZoQi/mWU9CtKwtB0TBp3LuKAKDjEFQh1jxWU028WByndFOEGBpukEpMEpoZmjKtYSAQMSGHtOhFMpBjINYEQQypgIAYUpiJL4E0olEIzhS4ICMYYcPPqVgsF4pO+yuWikcnBrUTsdqFppE4idpuxxmBGMO0fkl/PrNdtLOYYzIthmKkfRJNZbMRiwWKUbQNtccrDK5YxMLEaBmjrXM8nqOBe7sGTWDjYs8oraYy9b+3AGJiI3RPmTUTYcJ5nwJJOfqLqzEGdxa9WPSMMUJSOEAFxKxRzwFCBIjAtmm3QAyZVE7XsUAOBAkbkmbTficgIIAVjkQIlMmBFAQrFpE4jWSLZkqF4iATXCyaYaufM4LRikWlrWh0oWU2ld0mzFza+kYBScGKE4hpQQon7qFzEAu2aKWXKnUXHD+Y3u2V+ix6PB4AEJOmQn+4p2IOm5g4ZRRXVB6SAZou/yo+/Kd7wXGcWbMpc8yf/FE0Xri8mkusGVQcVXQWx2qFixeL45ikpQ4UtB1Rx8xQJKFgPkHGYOQgrEggSKakGETaht4SRjhKBgI2QpEASOs+EhEkZcUikuKWSq6iWyMSgWha/JhQdCoQFRsRo9msUXEaYk7FItvJKmn7G5XJTYzsaL4CYlu4otFLMWJoKHuux81v8fXQHs9g5E47F/G7r1c+56OLRmk1g5M/6SOYufqv0P3iZvS88RI4LCKYPgsTF30KExZeAJJeLgDOWSyf3zlWk5L8/74HBYoRQyCymYsRNOpYQ5NxGXOJy2ja7EQQyDEhgJmRHACQDNOGh8k4iwAkmX1EgERGLAIlLqPDfIYthe0Ma84IQoYVikj3GVFoRKxC6oCppHk229Y3afsblTTYTgtXCrZwJYIe1+HmcgxWDe1FtcdjkHPmQc49A6pP2xwAABHElJnInXru6C+sAkHTTExZcSWmrLiy2kupWUw1dIVSPu8sesYyChq9pFEghTqWqCeJBg5QjwA5CORJIM8SARFyLJAjAclGPOas4yhtmFq4r2xEo7DHEqGIrGAs/wlNA4l6VEh7/JmKXE7EYtxnW5FzFrXdZoRWGCrrImYLVHoTN1GhQE7ujM0X/LHirn354/66eTyAme3c8F8uR/jqZoTbXwTiyB4QCOadhfqPrwTl8tVdpOeoYVZmPG7ZE0ZvLaOJF4seAOnvN1tRpZkTUZWHQD0HiEgjsPmMOQiTo8gmp9GFogNQRiAa4ShsL0eyxwhGRILLN2vgPl81SoWiQioYFdmvGSdRIW2orWCnrbg+ibZ4JYJKWuK47xtPlc1DwUxw8TmLHs+RQEKibtEfIX/2p6A+3A1oDdE0B6K++r0VPUNDxyFIVJgNPUYbiHmx6OlHbFvJFKEQQ6MO0rpzAjkWiEkigEDAhIAEAohELOZAEOxCz2TFIiCZTJ4ikOxzDCQYs2IxvVkHkZxQzIhE2+swzmybPEU7txls2+DoErFYIGWD754j4Xh0Ft9//31ce+212LdvH4IgwC233IIrrrii2svyjCMol0cwZ96wPJZrzTLeJ6lUC9YujlXuhFFbyqjixaKnIkVSKELhMIWo5wB5EqhjiTysYITp0yhJ2IIXAUFGDAYs0vAzGaeRQCCb3+io5C46p4+tQMyGoF0blygRjpz0SFRJbqKyBS5GGLpJLNnn8Bw5yjqzlY7XGkEQYMOGDVi4cCHa2tqwaNEiXHzxxZg40bs7nuMHrRTiKIK2/RCJBGQugJSBF46jyGDOos9Z9IxLsr/2ZtydmYUsYFzFPEvkISCt05gjYZ1DQg5m27mJRjga11FwqVjs15QbGbFIqauYuItWRipbtKKsWHShZpXMcFbJMR9mPnbYXstyVDpWLZqbm9Hc3AwAmDNnDmbMmIEDBw54seg5bojjCHEYluxj1ojDEFoq5PJ1XjCOElqrirn2Y/UvzPibWeMZMs5VKpBpTN1DEXooQjdF6EaELjK3boozN3O/x97voRg9yGwnN9XnltmPOLNPJY/ZTTG6EdvnjNBFIboRpc+JCL0Uo5diFK3QrUXn63jCCfJyN0VHn6/z3HPP4TOf+QxaWlpARHj88cf7nXP//ffjlFNOQX19PVpbW/Hiiy8Oaf3btm2DUgonnXTSkL7f4xltWOt+QjGLVgraj+EbNXQUQUdh2Zt3Fj2ePpgCEttexrbCybFMCl4CWzFtXMXUZSQbpiZOP59R5rOacxSTbcq6ipwWsthqZ1fVXCk86hke3PWvdPxo6e7uxoIFC/DlL38Zl156ab/jjzzyCNatW4eNGzeitbUVGzZswPLly7F9+3bMmjULALBw4ULEcf9WRz/72c/Q0tICADhw4AC+9KUv4Qc/+MFRr9HjqRYD/V73PyeCDPyf89GABxmLOFbxv12eYYMBxKThRtKTVZCJEOS0IlrCdOR2IeqBHsuJQ50JfZqQdB8xOWaN/9rih//z1xA0BWEF9zCmCFt+8T4OHz5csr+urg51dXUDfs/KlSuxcuXKso95zz33YPXq1bj++usBABs3bsQTTzyBBx98EDfddBMA4LXXXqu49mKxiEsuuQQ33XQTLrjggornejy1xJGIE67U988zrOioFyTLtzxiPTb78/owtGdYcc6Ta1ETweQNFqFMsYwNCRfIzFrupRi96H8rwBwrUGzPNbciVNJEO7K9EhUq59F5hof/+cP/ikhtA/PAITFmRhi/AEKAKVOmlNxuv/32IT1nGIbYtm0bli1bluwTQmDZsmXYsmXLET0GM+O6667DH/7hH+Laa68d0jo8nurhcxFrgenTp4MapkPvf7vsObpzLxB2j8kPpDUpFivlMEVRhG9961v4/d//fUycOBEtLS340pe+hD179pQ8ximnnAIiKrndcccdo/yTePriRgw6sefa2Ax0i2zLGy8Ea4MvfOELIGpEqH4+4PFY/xrMh/HBhy/j0KFDJbebb755SM+5f/9+KKUwe/bskv2zZ89GW1vbET3Gz3/+czzyyCN4/PHHsXDhQixcuBC//vWvh7Qej2e0EYEc/Bw5+DmeY0MIgU1PPArd/itwXOh3nJmh97wMMftszJw5sworHFlqMgxdKYepp6cHr7zyCm655RYsWLAABw8exJ/92Z/hs5/9LF5++eWSc2+77TasXr06ud/Y2Dgq6/d4xiJCCGx++odYsmQ5cvLjEDQpOcYcoxg/if/+P/4W06ZNq+Iq+/PJT34S2ofpPMcpUgaIEaFSo68gyI3egsYxS5cuBU2aDd32GuSJnyg5xh07wXEPunY8V6XVjSw1KRYr5TBNmTIFTz31VMm+v//7v8f555+P9957D3Pnzk32NzY2Ys6cOSO6Vo9nPPGpT30KUsxHGG9Gfe6zyf5IvQBCHVatWjWszzdjxgxIKdHe3l6yv7293b+2PeMCIkK+vh5hoYCBBGMuX+edxVHk9S3/jo+ddTbEzDNBdZMBmLxStXcbHvr+/ZgwYUKVVzgy1GQY+mg5dOgQiAhTp04t2X/HHXdg+vTpOOecc3DXXXdVrCorFos4fPhwyc3j8fTn16//L0TqJWj9AQCAuRfFeDOe+N8PQQ7zH618Po9FixZh06ZNyT6tNTZt2oTFixcP63N5PLWKEAJ1DQ3I5fMQUkJIiSCXQ13DBF8FPcqceeaZoKaPQO3ZluzT+98CRG5M50Qf979lhUIB3/rWt3D11Vdj8uTJyf4//dM/xbnnnoumpib84he/wM0334y9e/finnvuGfBxbr/9dnznO98ZrWV7PMctZ5xxBnLyXBTjf0dD/osoxs9AihYsX758SI/X1dWFHTt2JPd37tyJ1157DU1NTZg7dy7WrVuHVatW4bzzzsP555+PDRs2oLu7O6mO9njGA0QEGeQgfci56uz+9TNoOXEudPc+UN0U6PZf4t//90+G/cNyLUHMtd1Bkojw2GOP4ZJLLul3LIoiXHbZZdi1axeeeeaZErHYlwcffBBf/epX0dXVNWALj2KxiGKxmNw/fPgwTjrpJEzMfxtE9cPys3g8tQZzAd3hbTh06FDF109f2tra0Nx8Mupzn0ch+v/xyitbcc455wxpDc888wyWLl3ab/+qVavw8MMPAzCpJnfddRfa2tqwcOFC3HvvvWhtbR3S8x0vHD58GFOmTDnq/xuPx3NkHMtrTM45B9y1BzRhJrhwEPrw7hFaZW1w3DqLURThC1/4An73u99h8+bNg/5Ht7a2Io5jvPvuu/i93/u9fsf79oFzGpq52O9cj2es4H6/j/Yz45w5c5AP/gCF6EcIxMIhC0UAWLJkyaDPv3btWqxdu3bIz3E84q6JT4nxeEYG99oaimd2aMf/QeO0WeDuD/Daa68O99JqjuNSLDqh+M477+Dpp5/G9OnTB/2e1157DUKIZOLDYHR2dgIAeqLvHtNaPZ7jgc7OTkyZMuWovufDg4+jaerF+O3OH47QqsY37j3Ijyb0eEaWobz/TZo0CU/8+F/xma/+DRYsWDBCK6sdalIsVspham5uxuWXX45XXnkFP/3pT6GUSvqtNTU1IZ/PY8uWLdi6dSuWLl2KxsZGbNmyBd/85jfxxS9+8YjberS0tODNN9/EmWeeiffff9+HgcrgwvX+Gg1MrV8fZkZnZ2cyEu9omDRpEsJ4bLaJqAVaWlrw/vvvo7GxEURjqzFzrb8uahl/7YZO32t3LO9/AHDxxRdDvX/xMK+yNqnJnMVKOUy33nor5s2bN+D3Pf3001iyZAleeeUVfP3rX8fbb7+NYrGIefPm4dprr8W6devKjhwbCJ8zNDj+GlXGXx+Ppz/+dTF0/LUbOv7aDZ2adBYHy2EaTN+ee+65eOGFF4Z7WR6Px+PxeDzjjjHRZ9Hj8Xg8Ho/HMzJ4sViBuro6rF+//qhC1+MNf40q46+Px9Mf/7oYOv7aDR1/7YZOTeYsejwej8fj8XhqA+8sejwej8fj8XjK4sWix+PxeDwej6csXix6PB6Px+PxeMrixaLH4/F4PB6PpyxeLHo8Ho/H4/F4yuLFYgXuv/9+nHLKKaivr0draytefPHFai+pKtx6660gopLb6aefnhwvFApYs2YNpk+fjkmTJuGyyy5De3t7FVc88jz33HP4zGc+g5aWFhARHn/88ZLjzIxvf/vbaG5uRkNDA5YtW4Z33nmn5JwDBw7gmmuuweTJkzF16lR85StfQVdX1yj+FB5PdXn33Xfxla98BfPmzUNDQwM+8pGPYP369QjDsNpLq1n836Wj5/bbb8fHP/5xNDY2YtasWbjkkkuwffv2ai/ruMKLxTI88sgjWLduHdavX49XXnkFCxYswPLly7Fv375qL60qfOxjH8PevXuT2/PPP58c++Y3v4mf/OQnePTRR/Hss89iz549uPTSS6u42pGnu7sbCxYswP333z/g8TvvvBP33nsvNm7ciK1bt2LixIlYvnw5CoVCcs4111yDN954A0899RR++tOf4rnnnsMNN9wwWj+Cx1N13n77bWit8b3vfQ9vvPEG/vZv/xYbN27EX/zFX1R7aTWJ/7s0NJ599lmsWbMGL7zwAp566ilEUYRPf/rT6O7urvbSjh/YMyDnn38+r1mzJrmvlOKWlha+/fbbq7iq6rB+/XpesGDBgMc6Ojo4l8vxo48+mux76623GABv2bJllFZYXQDwY489ltzXWvOcOXP4rrvuSvZ1dHRwXV0d//M//zMzM7/55psMgF966aXknH/7t39jIuLdu3eP2to9nlrjzjvv5Hnz5lV7GTWJ/7s0POzbt48B8LPPPlvtpRw3eGdxAMIwxLZt27Bs2bJknxACy5Ytw5YtW6q4surxzjvvoKWlBfPnz8c111yD9957DwCwbds2RFFUcq1OP/10zJ07d9xeq507d6Ktra3kmkyZMgWtra3JNdmyZQumTp2K8847Lzln2bJlEEJg69ato75mj6dWOHToEJqamqq9jJrD/10aPg4dOgQA/vfsKPBicQD2798PpRRmz55dsn/27Nloa2ur0qqqR2trKx5++GE8+eSTeOCBB7Bz5078wR/8ATo7O9HW1oZ8Po+pU6eWfM94vVYAkp+70u9PW1sbZs2aVXI8CAI0NTWN2+vm8ezYsQP33XcfvvrVr1Z7KTWH/7s0PGit8Y1vfAMXXnghzjrrrGov57ghqPYCPLXPypUrk+2zzz4bra2tOPnkk/GjH/0IDQ0NVVyZx+OpRW666SZ897vfrXjOW2+9VVIot3v3bqxYsQJXXHEFVq9ePdJL9IxT1qxZg9dff70k794zOF4sDsCMGTMgpexX0dve3o45c+ZUaVW1w9SpU/HRj34UO3bswB/90R8hDEN0dHSUuIvj+Vq5n7u9vR3Nzc3J/vb2dixcuDA5p29SehzHOHDgwLi9bp6xw4033ojrrruu4jnz589Ptvfs2YOlS5figgsuwPe///0RXt3xif+7dOysXbs2KSY88cQTq72c4wofhh6AfD6PRYsWYdOmTck+rTU2bdqExYsXV3FltUFXVxd++9vform5GYsWLUIulyu5Vtu3b8d77703bq/VvHnzMGfOnJJrcvjwYWzdujW5JosXL0ZHRwe2bduWnLN582ZordHa2jrqa/Z4hpOZM2fi9NNPr3jL5/MAjKO4ZMkSLFq0CA899BCE8H+WBsL/XRo6zIy1a9fisccew+bNmzFv3rxqL+n4o9oVNrXKv/zLv3BdXR0//PDD/Oabb/INN9zAU6dO5ba2tmovbdS58cYb+ZlnnuGdO3fyz3/+c162bBnPmDGD9+3bx8zMf/zHf8xz587lzZs388svv8yLFy/mxYsXV3nVI0tnZye/+uqr/OqrrzIAvueee/jVV1/l3/3ud8zMfMcdd/DUqVP5xz/+Mf/qV7/iz33uczxv3jzu7e1NHmPFihV8zjnn8NatW/n555/n0047ja+++upq/Ugez6iza9cuPvXUU/miiy7iXbt28d69e5Obpz/+79LQ+NrXvsZTpkzhZ555puR3rKenp9pLO27wYrEC9913H8+dO5fz+Tyff/75/MILL1R7SVXhyiuv5ObmZs7n83zCCSfwlVdeyTt27EiO9/b28te//nWeNm0aT5gwgT//+c+P+Tf7p59+mgH0u61atYqZTfucW265hWfPns11dXV80UUX8fbt20se48MPP+Srr76aJ02axJMnT+brr7+eOzs7q/DTeDzV4aGHHhrwdeR9jPL4v0tHT7nfsYceeqjaSztuIGbm0XYzPR6Px+PxeDzHBz45xOPxeDwej8dTFi8WPR6Px+PxeDxl8WLR4/F4PB6Px1MWLxY9Ho/H4/F4PGXxYtHj8Xg8Ho/HUxYvFj0ej8fj8Xg8ZfFi0ePxeDwej8dTFi8WPR6Px+PxeDxl8WLR4/F4PB6Px1MWLxY9Ho/H4/F4PGXxYtHj8Xg8Ho/HU5b/C0cSU+DQiTyQAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Colormaps" + ], + "metadata": { + "id": "9S9CZncGwJkF" + } + }, + { + "cell_type": "markdown", + "source": [ + "Normalizations" + ], + "metadata": { + "id": "bBUp5-4ewPkC" + } + }, + { + "cell_type": "markdown", + "source": [ + "Colorbars" + ], + "metadata": { + "id": "IGNgYUT9wSFk" + } + }, + { + "cell_type": "markdown", + "source": [ + "# **Working with multiple Figures and Axes**" + ], + "metadata": { + "id": "yMhohTWjwXnE" + } + }, + { + "cell_type": "code", + "source": [ + "fig, axd = plt.subplot_mosaic([['upleft', 'right'],\n", + " ['lowleft', 'right']], layout='constrained')\n", + "axd['upleft'].set_title('upleft')\n", + "axd['lowleft'].set_title('lowleft')\n", + "axd['right'].set_title('right')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 525 + }, + "id": "HHRrWC7Ru08a", + "outputId": "1ee58735-b35c-47fb-d07e-3a27b2c2862e" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'right')" + ] + }, + "metadata": {}, + "execution_count": 28 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARmpJREFUeJzt3X9YVXW+9//XBmWjJWghP+RQpI1a+QODZNCc7ubaxTl5aJwzc2K0AeSYjkVNua+ZlFTQLLFOenNPYlyajt1zaqTpaHfXQDjG5CmTczGBXHcz+eOYP+B4t7eQ496GBspe3z/6uhuCpSxkbxCfj+vaf/Dh89nr/cl693KtvdeyGYZhCAAAAOhCSF8XAAAAgP6LsAgAAABThEUAAACYIiwCAADAFGERAAAApgiLAAAAMEVYBAAAgCnCIgAAAEwRFgEAAGCKsIir0tatW2Wz2XTs2LEera+srFRSUpLCw8Nls9l0+vTpXq0PAKxasWKFbDbbFa1tbm7u5aoAwiKuQV988YUeeughDRkyRCUlJfrNb36j6667TqtXr9bbb7/d1+UBQEDR62AVYRHXnD/96U86c+aMVq1apXnz5umnP/2pBg8eTAMF0KeWLVumc+fOBfw49DpYRVjENefkyZOSpOHDh/dtIQDw/2tpadGgQYMUHh7e16UAnRAWERRz585VYmJip/Fvf0bHZrPp8ccf1+uvv65x48YpPDxcycnJ+uCDD7p1nHfffVczZszQddddp2HDhmnmzJn6y1/+4v/9//gf/0M5OTmSpLvuuks2m01z586VzWZTS0uLXnvtNdlsNv84APS2i33v008/1Zw5czRixAjdfffdXX5m8dy5c/r5z3+uqKgoDRs2TA8++KBOnDghm82mFStWdHrv06dPa+7cuRo+fLgiIyOVm5urs2fP+n9Pr0NPDOrrAoBv+4//+A+VlZXp5z//uex2uzZs2KC///u/V01NjSZMmGC67je/+Y1ycnKUnp6uF154QWfPntUrr7yiu+++W/v27VNiYqKWLl2qcePGaePGjXr22Wd1yy23aMyYMXI4HHrkkUc0depULViwQJI0ZsyYYG0ZwDXon//5n/Wd73xHq1evlmEY/qsef2vu3Ll68803lZWVpe9+97v6j//4D82cOdP0PR966CHdcsstKioqUl1dnV599VVFR0frhRdekPR1n6TXwTIDCIKcnBzj5ptv7jReWFho/O2/hpIMScbHH3/sHzt+/LgRHh5u/PCHP/SP/frXvzYkGUePHjUMwzDOnDljDB8+3Jg/f36H93e5XEZkZGSH8Ytr//SnP3WYe9111xk5OTlXsEsAuLyLfW/27Nldjl9UW1trSDKeeuqpDvPmzp1rSDIKCws7rf2Xf/mXDnN/+MMfGjfeeGOHMXodrOIyNPqdtLQ0JScn+3++6aab9IMf/EA7d+5Ue3t7l2t27dql06dPa/bs2Wpubva/QkNDlZqaqvfffz9Y5QNAtyxcuPCSv6+srJQkPfbYYx3Gn3jiiW6/54wZM/TFF1/I6/X2sEqAy9Doh77zne90Ghs7dqzOnj2rpqYmxcbGdvr9f/3Xf0mSvv/973f5nhEREb1bJABcoVtuueWSvz9+/LhCQkI6zbv11ltN19x0000dfh4xYoQk6a9//St9ED1GWERQmN1o1uxMoVU+n0/S15/H6SpMDhrEv+oA+pchQ4b0+nuGhoZ2OW4YRq8fC9cO/g+KoBgxYkSXT0k5fvx4p7GLZwn/1qFDhzR06FCNHDmyy/e/+AHt6OhoORyOHtXY0ycnAEAg3HzzzfL5fDp69GiHKy6HDx++ovel18EqPrOIoBgzZow8Ho/+7//9v/6xzz//XDt27Og0t7q6WnV1df6fGxsb9X/+z//R/fffb/q35vT0dEVERGj16tU6f/58p983NTVdtsbrrruOx/4B6DfS09MlSRs2bOgw/vLLL1/R+9LrYBVnFhEUP/nJT7R48WL98Ic/1M9//nP/bW3Gjh3bIRhK0oQJE5Sent7h1jmStHLlStP3j4iI0CuvvKKsrCzdeeed+slPfqKRI0eqoaFB5eXlmj59utavX3/JGpOTk/Xee+9p3bp1GjVqlG655RalpqZe+eYBoAeSk5P1ox/9SMXFxfriiy/8t845dOiQpJ6fIaTXwSrCIoLixhtv1I4dO+R0OvX000/77wP2X//1X53C4j333KO0tDStXLlSDQ0Nuv3227V161ZNmjTpkseYM2eORo0apTVr1uhf//Vf1draqvj4eM2YMUO5ubmXrXHdunVasGCB/5FbOTk5NFAAfep//+//rdjYWP32t7/Vjh075HA4VFZW5n9oQU/Q62CVzeBTr+hHbDab8vLyLnsWEACuVfX19ZoyZYr+7d/+TQ8//HBfl4NrAJ9ZBACgnzp37lynseLiYoWEhOh73/teH1SEaxGXoQEA6KdefPFF1dbW6t5779WgQYP07rvv6t1339WCBQuUkJDQ1+XhGkFYBACgn5o2bZp27dqlVatW6csvv9RNN92kFStWaOnSpX1dGq4hli9Df/DBB8rIyNCoUaNks9n09ttvX3bN7t27deedd8put+vWW2/V1q1be1AqrgWGYfB5RfRb9D8E23333ac9e/bo1KlTamtr0+HDh1VYWMiDBhBUlsNiS0uLJk+erJKSkm7NP3r0qGbOnKl7771X9fX1euqpp/TII49o586dlosFgL5E/wNwLbqib0PbbDbt2LFDs2bNMp2zePFilZeX689//rN/7Cc/+YlOnz7tf0g6AFxt6H8ArhUBP49dXV3d6fFr6enpeuqpp0zXtLa2qrW11f+zz+fTqVOndOONN/KYIgCXZRiGzpw5o1GjRikkpO9u+kD/AxBsgeh/AQ+LLpdLMTExHcZiYmLk9Xp17ty5Lh+kXlRUdMmndQBAdzQ2Nurv/u7v+uz49D8AfaU3+1+//IRsfn6+nE6n/2ePx6ObbrpJjY2NioiI6MPKAFwNvF6vEhISNGzYsL4uxTL6H4ArEYj+F/CwGBsbK7fb3WHM7XYrIiKiy79VS5Ldbpfdbu80HhERQbME0G19fdmW/gegr/Rm/wv4h3nS0tJUVVXVYWzXrl1KS0sL9KEBoE/R/wAMBJbD4pdffqn6+nrV19dL+vrWEPX19WpoaJD09SWU7Oxs//yFCxfqyJEjevrpp3XgwAFt2LBBb775phYtWtQ7OwCAIKH/AbgWWQ6LH3/8saZMmaIpU6ZIkpxOp6ZMmaKCggJJ0ueff+5vnJJ0yy23qLy8XLt27dLkyZO1du1avfrqq0pPT++lLQBAcND/AFyLrug+i8Hi9XoVGRkpj8fDZ3YAXNZA6hkDaS8AAi8QPaPvbkAGAACAfo+wCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYKpHYbGkpESJiYkKDw9XamqqampqLjm/uLhY48aN05AhQ5SQkKBFixbpq6++6lHBAAAACB7LYbGsrExOp1OFhYWqq6vT5MmTlZ6erpMnT3Y5/4033tCSJUtUWFio/fv3a/PmzSorK9MzzzxzxcUDAAAgsCyHxXXr1mn+/PnKzc3V7bffrtLSUg0dOlRbtmzpcv7evXs1ffp0zZkzR4mJibr//vs1e/bsy56NBAAAQN+zFBbb2tpUW1srh8PxzRuEhMjhcKi6urrLNdOmTVNtba0/HB45ckQVFRV64IEHTI/T2toqr9fb4QUAAIDgG2RlcnNzs9rb2xUTE9NhPCYmRgcOHOhyzZw5c9Tc3Ky7775bhmHowoULWrhw4SUvQxcVFWnlypVWSgMAAEAABPzb0Lt379bq1au1YcMG1dXVafv27SovL9eqVatM1+Tn58vj8fhfjY2NgS4TAAAAXbB0ZjEqKkqhoaFyu90dxt1ut2JjY7tcs3z5cmVlZemRRx6RJE2cOFEtLS1asGCBli5dqpCQznnVbrfLbrdbKQ0AAAABYOnMYlhYmJKTk1VVVeUf8/l8qqqqUlpaWpdrzp492ykQhoaGSpIMw7BaLwAAAILI0plFSXI6ncrJyVFKSoqmTp2q4uJitbS0KDc3V5KUnZ2t+Ph4FRUVSZIyMjK0bt06TZkyRampqTp8+LCWL1+ujIwMf2gEAABA/2Q5LGZmZqqpqUkFBQVyuVxKSkpSZWWl/0svDQ0NHc4kLlu2TDabTcuWLdOJEyc0cuRIZWRk6Pnnn++9XQAAACAgbMZVcC3Y6/UqMjJSHo9HERERfV0OgH5uIPWMgbQXAIEXiJ7Bs6EBAABgirAIAAAAU4RFAAAAmCIsAgAAwBRhEQAAAKYIiwAAADBFWAQAAIApwiIAAABMERYBAABgirAIAAAAU4RFAAAAmCIsAgAAwBRhEQAAAKYIiwAAADBFWAQAAIApwiIAAABMERYBAABgirAIAAAAU4RFAAAAmCIsAgAAwBRhEQAAAKYIiwAAADBFWAQAAIApwiIAAABMERYBAABgqkdhsaSkRImJiQoPD1dqaqpqamouOf/06dPKy8tTXFyc7Ha7xo4dq4qKih4VDAAAgOAZZHVBWVmZnE6nSktLlZqaquLiYqWnp+vgwYOKjo7uNL+trU333XefoqOj9dZbbyk+Pl7Hjx/X8OHDe6N+AAAABJDlsLhu3TrNnz9fubm5kqTS0lKVl5dry5YtWrJkSaf5W7Zs0alTp7R3714NHjxYkpSYmHhlVQMAACAoLF2GbmtrU21trRwOxzdvEBIih8Oh6urqLte88847SktLU15enmJiYjRhwgStXr1a7e3tpsdpbW2V1+vt8AIAAEDwWQqLzc3Nam9vV0xMTIfxmJgYuVyuLtccOXJEb731ltrb21VRUaHly5dr7dq1eu6550yPU1RUpMjISP8rISHBSpkAAADoJQH/NrTP51N0dLQ2btyo5ORkZWZmaunSpSotLTVdk5+fL4/H4381NjYGukwAAAB0wdJnFqOiohQaGiq3291h3O12KzY2tss1cXFxGjx4sEJDQ/1jt912m1wul9ra2hQWFtZpjd1ul91ut1IaAAAAAsDSmcWwsDAlJyerqqrKP+bz+VRVVaW0tLQu10yfPl2HDx+Wz+fzjx06dEhxcXFdBkUAAAD0H5YvQzudTm3atEmvvfaa9u/fr0cffVQtLS3+b0dnZ2crPz/fP//RRx/VqVOn9OSTT+rQoUMqLy/X6tWrlZeX13u7AAAAQEBYvnVOZmammpqaVFBQIJfLpaSkJFVWVvq/9NLQ0KCQkG8yaEJCgnbu3KlFixZp0qRJio+P15NPPqnFixf33i4AAAAQEDbDMIy+LuJyvF6vIiMj5fF4FBER0dflAOjnBlLPGEh7ARB4gegZPBsaAAAApgiLAAAAMEVYBAALSkpKlJiYqPDwcKWmpqqmpuaS84uLizVu3DgNGTJECQkJWrRokb766qsgVQsAV46wCADdVFZWJqfTqcLCQtXV1Wny5MlKT0/XyZMnu5z/xhtvaMmSJSosLNT+/fu1efNmlZWV6Zlnngly5QDQc4RFAOimdevWaf78+crNzdXtt9+u0tJSDR06VFu2bOly/t69ezV9+nTNmTNHiYmJuv/++zV79uzLno0EgP6EsAgA3dDW1qba2lo5HA7/WEhIiBwOh6qrq7tcM23aNNXW1vrD4ZEjR1RRUaEHHnjA9Ditra3yer0dXgDQlyzfZxEArkXNzc1qb2/331P2opiYGB04cKDLNXPmzFFzc7PuvvtuGYahCxcuaOHChZe8DF1UVKSVK1f2au0AcCU4swgAAbJ7926tXr1aGzZsUF1dnbZv367y8nKtWrXKdE1+fr48Ho//1djYGMSKAaAzziwCQDdERUUpNDRUbre7w7jb7VZsbGyXa5YvX66srCw98sgjkqSJEyeqpaVFCxYs0NKlSzs87eoiu90uu93e+xsAgB7izCIAdENYWJiSk5NVVVXlH/P5fKqqqlJaWlqXa86ePdspEIaGhkqSroKHZwGAJM4sAkC3OZ1O5eTkKCUlRVOnTlVxcbFaWlqUm5srScrOzlZ8fLyKiookSRkZGVq3bp2mTJmi1NRUHT58WMuXL1dGRoY/NAJAf0dYBIBuyszMVFNTkwoKCuRyuZSUlKTKykr/l14aGho6nElctmyZbDabli1bphMnTmjkyJHKyMjQ888/31dbAADLbMZVcC0kEA/FBjBwDaSeMZD2AiDwAtEz+MwiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMBUj8JiSUmJEhMTFR4ertTUVNXU1HRr3bZt22Sz2TRr1qyeHBYAAABBZjkslpWVyel0qrCwUHV1dZo8ebLS09N18uTJS647duyYfvGLX2jGjBk9LhYAAADBZTksrlu3TvPnz1dubq5uv/12lZaWaujQodqyZYvpmvb2dj388MNauXKlRo8efUUFAwAAIHgshcW2tjbV1tbK4XB88wYhIXI4HKqurjZd9+yzzyo6Olrz5s3r1nFaW1vl9Xo7vAAAABB8lsJic3Oz2tvbFRMT02E8JiZGLperyzV79uzR5s2btWnTpm4fp6ioSJGRkf5XQkKClTIBAADQSwL6begzZ84oKytLmzZtUlRUVLfX5efny+Px+F+NjY0BrBIAAABmBlmZHBUVpdDQULnd7g7jbrdbsbGxneZ/9tlnOnbsmDIyMvxjPp/v6wMPGqSDBw9qzJgxndbZ7XbZ7XYrpQEAACAALJ1ZDAsLU3JysqqqqvxjPp9PVVVVSktL6zR//Pjx+uSTT1RfX+9/Pfjgg7r33ntVX1/P5WUAAIB+ztKZRUlyOp3KyclRSkqKpk6dquLiYrW0tCg3N1eSlJ2drfj4eBUVFSk8PFwTJkzosH748OGS1GkcAAAA/Y/lsJiZmammpiYVFBTI5XIpKSlJlZWV/i+9NDQ0KCSEB8MAAAAMBDbDMIy+LuJyvF6vIiMj5fF4FBER0dflAOjnBlLPGEh7ARB4gegZnAIEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAqR6FxZKSEiUmJio8PFypqamqqakxnbtp0ybNmDFDI0aM0IgRI+RwOC45HwAAAP2H5bBYVlYmp9OpwsJC1dXVafLkyUpPT9fJkye7nL97927Nnj1b77//vqqrq5WQkKD7779fJ06cuOLiAQAAEFg2wzAMKwtSU1N11113af369ZIkn8+nhIQEPfHEE1qyZMll17e3t2vEiBFav369srOzu3VMr9eryMhIeTweRUREWCkXwDVoIPWMgbQXAIEXiJ5h6cxiW1ubamtr5XA4vnmDkBA5HA5VV1d36z3Onj2r8+fP64YbbjCd09raKq/X2+EFAACA4LMUFpubm9Xe3q6YmJgO4zExMXK5XN16j8WLF2vUqFEdAue3FRUVKTIy0v9KSEiwUiYAAAB6SVC/Db1mzRpt27ZNO3bsUHh4uOm8/Px8eTwe/6uxsTGIVQIAAOCiQVYmR0VFKTQ0VG63u8O42+1WbGzsJde+9NJLWrNmjd577z1NmjTpknPtdrvsdruV0gAAABAAls4shoWFKTk5WVVVVf4xn8+nqqoqpaWlma578cUXtWrVKlVWViolJaXn1QIAACCoLJ1ZlCSn06mcnBylpKRo6tSpKi4uVktLi3JzcyVJ2dnZio+PV1FRkSTphRdeUEFBgd544w0lJib6P9t4/fXX6/rrr+/FrQAAAKC3WQ6LmZmZampqUkFBgVwul5KSklRZWen/0ktDQ4NCQr45YfnKK6+ora1NP/7xjzu8T2FhoVasWHFl1QMAACCgLN9nsS9wnzEAVgyknjGQ9gIg8Pr8PosAAAC4thAWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAYEFJSYkSExMVHh6u1NRU1dTUXHL+6dOnlZeXp7i4ONntdo0dO1YVFRVBqhYArtygvi4AAK4WZWVlcjqdKi0tVWpqqoqLi5Wenq6DBw8qOjq60/y2tjbdd999io6O1ltvvaX4+HgdP35cw4cPD37xANBDhEUA6KZ169Zp/vz5ys3NlSSVlpaqvLxcW7Zs0ZIlSzrN37Jli06dOqW9e/dq8ODBkqTExMRglgwAV4zL0ADQDW1tbaqtrZXD4fCPhYSEyOFwqLq6uss177zzjtLS0pSXl6eYmBhNmDBBq1evVnt7u+lxWltb5fV6O7wAoC8RFgGgG5qbm9Xe3q6YmJgO4zExMXK5XF2uOXLkiN566y21t7eroqJCy5cv19q1a/Xcc8+ZHqeoqEiRkZH+V0JCQq/uAwCsIiwCQID4fD5FR0dr48aNSk5OVmZmppYuXarS0lLTNfn5+fJ4PP5XY2NjECsGgM74zCIAdENUVJRCQ0Pldrs7jLvdbsXGxna5Ji4uToMHD1ZoaKh/7LbbbpPL5VJbW5vCwsI6rbHb7bLb7b1bPABcAc4sAkA3hIWFKTk5WVVVVf4xn8+nqqoqpaWldblm+vTpOnz4sHw+n3/s0KFDiouL6zIoAkB/RFgEgG5yOp3atGmTXnvtNe3fv1+PPvqoWlpa/N+Ozs7OVn5+vn/+o48+qlOnTunJJ5/UoUOHVF5ertWrVysvL6+vtgAAlnEZGgC6KTMzU01NTSooKJDL5VJSUpIqKyv9X3ppaGhQSMg3fwdPSEjQzp07tWjRIk2aNEnx8fF68skntXjx4r7aAgBYZjMMw+jrIi7H6/UqMjJSHo9HERERfV0OgH5uIPWMgbQXAIEXiJ7Ro8vQVh939bvf/U7jx49XeHi4Jk6cyKOuAAAArhKWw+LFx10VFhaqrq5OkydPVnp6uk6ePNnl/L1792r27NmaN2+e9u3bp1mzZmnWrFn685//fMXFAwAAILAsX4ZOTU3VXXfdpfXr10v6+tuACQkJeuKJJ7p83FVmZqZaWlr0+9//3j/23e9+V0lJSZe819jf4jIMACsGUs8YSHsBEHiB6BmWvuBy8XFXf/ttv8s97qq6ulpOp7PDWHp6ut5++23T47S2tqq1tdX/s8fjkSQeewWgWy72iqvgI9kA0O9ZCouXetzVgQMHulzjcrksPR5L+vpxVytXruw0zmOvAFjxxRdfKDIysq/LAICrWr+8dU5+fn6Hs5GnT5/WzTffrIaGhgHV+L1erxISEtTY2DhgLi8NxD1J7Otq4/F4dNNNN+mGG27o61IA4KpnKSz25HFXsbGxluZL5o+7ioyMHFD/Q7soIiJiwO1rIO5JYl9Xm7+95yEAoGcsddKePO4qLS2tw3xJ2rVrl+l8AAAA9B+WL0M7nU7l5OQoJSVFU6dOVXFxcafHXcXHx6uoqEiS9OSTT+qee+7R2rVrNXPmTG3btk0ff/yxNm7c2Ls7AQAAQK+zHBatPu5q2rRpeuONN7Rs2TI988wz+s53vqO3335bEyZM6PYx7Xa7CgsLu7w0fTUbiPsaiHuS2NfVZqDuCwD6wlXxuD8AuFZxn0UAVvSbx/0BAADg2kBYBAAAgCnCIgAAAEwRFgEAAGCq34TFkpISJSYmKjw8XKmpqaqpqbnk/N/97ncaP368wsPDNXHiRFVUVASp0u6zsqdNmzZpxowZGjFihEaMGCGHw3HZfwZ9xeqf1UXbtm2TzWbTrFmzAltgD1nd1+nTp5WXl6e4uDjZ7XaNHTv2qv/3UJKKi4s1btw4DRkyRAkJCVq0aJG++uqrIFV7eR988IEyMjI0atQo2Wy2Sz5n/qLdu3frzjvvlN1u16233qqtW7cGvE4AGDCMfmDbtm1GWFiYsWXLFuMvf/mLMX/+fGP48OGG2+3ucv5HH31khIaGGi+++KLx6aefGsuWLTMGDx5sfPLJJ0Gu3JzVPc2ZM8coKSkx9u3bZ+zfv9+YO3euERkZafz3f/93kCu/NKv7uujo0aNGfHy8MWPGDOMHP/hBcIq1wOq+WltbjZSUFOOBBx4w9uzZYxw9etTYvXu3UV9fH+TKL83qvl5//XXDbrcbr7/+unH06FFj586dRlxcnLFo0aIgV26uoqLCWLp0qbF9+3ZDkrFjx45Lzj9y5IgxdOhQw+l0Gp9++qnx8ssvG6GhoUZlZWVwCr5CHo/HkGR4PJ6+LgXAVSAQPaNfhMWpU6caeXl5/p/b29uNUaNGGUVFRV3Of+ihh4yZM2d2GEtNTTV+9rOfBbROK6zu6dsuXLhgDBs2zHjttdcCVWKP9GRfFy5cMKZNm2a8+uqrRk5OTr8Mi1b39corrxijR4822traglVij1jdV15envH973+/w5jT6TSmT58e0Dp7qjth8emnnzbuuOOODmOZmZlGenp6ACvrPYRFAFYEomf0+WXotrY21dbWyuFw+MdCQkLkcDhUXV3d5Zrq6uoO8yUpPT3ddH6w9WRP33b27FmdP39eN9xwQ6DKtKyn+3r22WcVHR2tefPmBaNMy3qyr3feeUdpaWnKy8tTTEyMJkyYoNWrV6u9vT1YZV9WT/Y1bdo01dbW+i9VHzlyRBUVFXrggQeCUnMg9Pd+AQD9neUnuPS25uZmtbe3+58Ac1FMTIwOHDjQ5RqXy9XlfJfLFbA6rejJnr5t8eLFGjVqVKf/yfWlnuxrz5492rx5s+rr64NQYc/0ZF9HjhzRH//4Rz388MOqqKjQ4cOH9dhjj+n8+fMqLCwMRtmX1ZN9zZkzR83Nzbr77rtlGIYuXLighQsX6plnnglGyQFh1i+8Xq/OnTunIUOG9FFlAHB16PMzi+hszZo12rZtm3bs2KHw8PC+LqfHzpw5o6ysLG3atElRUVF9XU6v8vl8io6O1saNG5WcnKzMzEwtXbpUpaWlfV3aFdm9e7dWr16tDRs2qK6uTtu3b1d5eblWrVrV16UBAPpIn59ZjIqKUmhoqNxud4dxt9ut2NjYLtfExsZamh9sPdnTRS+99JLWrFmj9957T5MmTQpkmZZZ3ddnn32mY8eOKSMjwz/m8/kkSYMGDdLBgwc1ZsyYwBbdDT3584qLi9PgwYMVGhrqH7vtttvkcrnU1tamsLCwgNbcHT3Z1/Lly5WVlaVHHnlEkjRx4kS1tLRowYIFWrp0aYfnvl8tzPpFREQEZxUBoBv6vPOHhYUpOTlZVVVV/jGfz6eqqiqlpaV1uSYtLa3DfEnatWuX6fxg68meJOnFF1/UqlWrVFlZqZSUlGCUaonVfY0fP16ffPKJ6uvr/a8HH3xQ9957r+rr65WQkBDM8k315M9r+vTpOnz4sD/8StKhQ4cUFxfXL4Ki1LN9nT17tlMgvBiIjav0MfL9vV8AQL/Xa1+VuQLbtm0z7Ha7sXXrVuPTTz81FixYYAwfPtxwuVyGYRhGVlaWsWTJEv/8jz76yBg0aJDx0ksvGfv37zcKCwv75a1zrOxpzZo1RlhYmPHWW28Zn3/+uf915syZvtpCl6zu69v667ehre6roaHBGDZsmPH4448bBw8eNH7/+98b0dHRxnPPPddXW+iS1X0VFhYaw4YNM377298aR44cMf7whz8YY8aMMR566KG+2kInZ86cMfbt22fs27fPkGSsW7fO2Ldvn3H8+HHDMAxjyZIlRlZWln/+xVvn/PKXvzT2799vlJSUcOscAAPWgL11jmEYxssvv2zcdNNNRlhYmDF16lTjP//zP/2/u+eee4ycnJwO8998801j7NixRlhYmHHHHXcY5eXlQa748qzs6eabbzYkdXoVFhYGv/DLsPpn9bf6a1g0DOv72rt3r5GammrY7XZj9OjRxvPPP29cuHAhyFVfnpV9nT9/3lixYoUxZswYIzw83EhISDAee+wx469//WvwCzfx/vvvd/nfysV95OTkGPfcc0+nNUlJSUZYWJgxevRo49e//nXQ6+4pwiIAKwLRM2yGcZVeWwKAa4DX61VkZKQ8Ho8iIiL6uhwA/Vwgekaff2YRAAAA/RdhEQAAAKYIiwAAADBFWAQAAIApwiIAAABMERYBAABgirAIAAAAU4RFAAAAmCIsAgAAwBRhEQAAAKYIiwAAADBFWAQAAIApwiIAAABMERYBAABgirAIAAAAU4RFAAAAmCIsAgAAwBRhEQAAAKYIiwAAADBFWERAbN26VTabTceOHQvK8Ww2m1asWNGjtW63Wz/+8Y914403ymazqbi4uFdrAwDgajaorwsA+tqiRYu0c+dOFRYWKjY2VikpKaqoqFBNTU2PAygAAAMFZxZxzfvjH/+oH/zgB/rFL36hn/70pxo/frwqKiq0cuXKvi4NAIA+R1jENe/kyZMaPnx4X5cBAEC/RFhE0GzYsEF33HGH7Ha7Ro0apby8PJ0+fdr/+1/96lcKDQ3tMLZ27VrZbDY5nU7/WHt7u4YNG6bFixdf8ngnTpzQv/zLvygmJkZ2u1133HGHtmzZ4v/9xc9VGoahkpIS2Ww22Ww2zZ07VyUlJZLkH7PZbL3zDwEAgKsMn1lEUKxYsUIrV66Uw+HQo48+qoMHD+qVV17Rn/70J3300UcaPHiwZsyYIZ/Ppz179ugf//EfJUkffvihQkJC9OGHH/rfa9++ffryyy/1ve99z/R4brdb3/3ud2Wz2fT4449r5MiRevfddzVv3jx5vV499dRT+t73vqff/OY3ysrK0n333afs7GxJ0pgxY/T//t//065du/Sb3/wmsP9gAADo5wiLCLimpiYVFRXp/vvv17vvvquQkK9PaI8fP16PP/64/u3f/k25ubmaPHmyIiIi9OGHH+of//EfZRiG9uzZox/96Efavn27vvzyS11//fX+ADl9+nTTYy5dulTt7e365JNPdOONN0qSFi5cqNmzZ2vFihX62c9+ptGjR2v06NHKysrS2LFj9dOf/tS/fuzYsdq1a1eHMQAArkVchkbAvffee2pra9NTTz3lD4qSNH/+fEVERKi8vFySFBISomnTpumDDz6QJO3fv19ffPGFlixZIsMwVF1dLenrs40TJkww/ZyhYRj693//d2VkZMgwDDU3N/tf6enp8ng8qqurC+ymAQAYIAiLCLjjx49LksaNG9dhPCwsTKNHj/b/XpJmzJih2tpanTt3Th9++KHi4uJ05513avLkyf5L0Xv27NGMGTNMj9fU1KTTp09r48aNGjlyZIdXbm6upK+/1AIAAC6Py9DoV+6++26dP39e1dXV+vDDD/2hcMaMGfrwww914MABNTU1XTIs+nw+SdJPf/pT5eTkdDln0qRJvV88AAADEGERAXfzzTdLkg4ePKjRo0f7x9va2nT06FE5HA7/2NSpUxUWFqYPP/xQH374oX75y19Kkr73ve9p06ZNqqqq8v9sZuTIkRo2bJja29s7vLcVfPsZAICvcRkaAedwOBQWFqZf/epXMgzDP75582Z5PB7NnDnTPxYeHq677rpLv/3tb9XQ0NDhzOK5c+f0q1/9SmPGjFFcXJzp8UJDQ/WjH/1I//7v/64///nPnX7f1NR02Zqvu+46SepwGx8AAK5FnFlEwI0cOVL5+flauXKl/v7v/14PPvigDh48qA0bNuiuu+7q9I3jGTNmaM2aNYqMjNTEiRMlSdHR0Ro3bpwOHjyouXPnXvaYa9as0fvvv6/U1FTNnz9ft99+u06dOqW6ujq99957OnXq1CXXJycnS5J+/vOfKz09XaGhofrJT37Ss38AAABcxTiziKBYsWKF1q9fr4aGBi1atEhvvvmmFixYoD/84Q8aPHhwh7kXzyZOmzatw7en//Ys4+XExMSopqZGubm52r59ux5//HH9r//1v3Tq1Cm98MILl13/T//0T3riiSdUWVmprKwszZ4928p2AQAYMGzG314XBAD0K16vV5GRkfJ4PIqIiOjrcgD0c4HoGZxZBAAAgCnCIgAAAEwRFgEAAGDKclj84IMPlJGRoVGjRslms+ntt9++7Jrdu3frzjvvlN1u16233qqtW7f2oFQAAAAEm+Ww2NLSosmTJ6ukpKRb848ePaqZM2fq3nvvVX19vZ566ik98sgj2rlzp+ViAQAAEFyW77P4D//wD/qHf/iHbs8vLS3VLbfcorVr10qSbrvtNu3Zs0f/83/+T6Wnp1s9PAAAAIIo4Dflrq6u7vTItfT0dD311FOma1pbW9Xa2ur/2efz6dSpU7rxxht5DBuAyzIMQ2fOnNGoUaM63KsTAGBdwMOiy+VSTExMh7GYmBh5vV6dO3dOQ4YM6bSmqKhIK1euDHRpAAa4xsZG/d3f/V1flwEAV7V++bi//Px8OZ1O/88ej0c33XSTGhsbuSktgMvyer1KSEjQsGHD+roUALjqBTwsxsbGyu12dxhzu92KiIjo8qyiJNntdtnt9k7jERERhEUA3cbHVgDgygX8wzxpaWmqqqrqMLZr1y6lpaUF+tAAAAC4QpbD4pdffqn6+nrV19dL+vrWOPX19WpoaJD09SXk7Oxs//yFCxfqyJEjevrpp3XgwAFt2LBBb775phYtWtQ7OwAAAEDAWA6LH3/8saZMmaIpU6ZIkpxOp6ZMmaKCggJJ0ueff+4PjpJ0yy23qLy8XLt27dLkyZO1du1avfrqq9w2BwAA4CpgMwzD6OsiLsfr9SoyMlIej4fPLAK4rIHUMwbSXgAEXiB6BjcgAwALSkpKlJiYqPDwcKWmpqqmpqZb67Zt2yabzaZZs2YFtkAA6GWERQDoprKyMjmdThUWFqqurk6TJ09Wenq6Tp48ecl1x44d0y9+8QvNmDEjSJUCQO8hLAJAN61bt07z589Xbm6ubr/9dpWWlmro0KHasmWL6Zr29nY9/PDDWrlypUaPHh3EagGgdxAWAaAb2traVFtb2+HxpSEhIXI4HKqurjZd9+yzzyo6Olrz5s3r1nFaW1vl9Xo7vACgLxEWAaAbmpub1d7e3uXjS10uV5dr9uzZo82bN2vTpk3dPk5RUZEiIyP9r4SEhCuqGwCuFGERAALgzJkzysrK0qZNmxQVFdXtdfn5+fJ4PP5XY2NjAKsEgMvrl8+GBoD+JioqSqGhoV0+vjQ2NrbT/M8++0zHjh1TRkaGf8zn80mSBg0apIMHD2rMmDGd1pk97hQA+gpnFgGgG8LCwpScnNzh8aU+n09VVVVdPr50/Pjx+uSTT/xPvKqvr9eDDz6oe++9V/X19VxeBnDV4MwiAHST0+lUTk6OUlJSNHXqVBUXF6ulpUW5ubmSpOzsbMXHx6uoqEjh4eGaMGFCh/XDhw+XpE7jANCfERYBoJsyMzPV1NSkgoICuVwuJSUlqbKy0v+ll4aGBoWEcMEGwMDC4/4ADDgDqWcMpL0ACDwe9wcAAICgIiwCAADAFGERAAAApgiLAAAAMEVYBAAAgCnCIgAAAEwRFgEAAGCKsAgAAABThEUAAACYIiwCAADAFGERAAAApgiLAAAAMEVYBAAAgCnCIgAAAEz1KCyWlJQoMTFR4eHhSk1NVU1NzSXnFxcXa9y4cRoyZIgSEhK0aNEiffXVVz0qGAAAAMFjOSyWlZXJ6XSqsLBQdXV1mjx5stLT03Xy5Mku57/xxhtasmSJCgsLtX//fm3evFllZWV65plnrrh4AAAABJblsLhu3TrNnz9fubm5uv3221VaWqqhQ4dqy5YtXc7fu3evpk+frjlz5igxMVH333+/Zs+efdmzkQAAAOh7lsJiW1ubamtr5XA4vnmDkBA5HA5VV1d3uWbatGmqra31h8MjR46ooqJCDzzwgOlxWltb5fV6O7wAAAAQfIOsTG5ublZ7e7tiYmI6jMfExOjAgQNdrpkzZ46am5t19913yzAMXbhwQQsXLrzkZeiioiKtXLnSSmkAAAAIgIB/G3r37t1avXq1NmzYoLq6Om3fvl3l5eVatWqV6Zr8/Hx5PB7/q7GxMdBlAgAAoAuWzixGRUUpNDRUbre7w7jb7VZsbGyXa5YvX66srCw98sgjkqSJEyeqpaVFCxYs0NKlSxUS0jmv2u122e12K6UBAAAgACydWQwLC1NycrKqqqr8Yz6fT1VVVUpLS+tyzdmzZzsFwtDQUEmSYRhW6wUAAEAQWTqzKElOp1M5OTlKSUnR1KlTVVxcrJaWFuXm5kqSsrOzFR8fr6KiIklSRkaG1q1bpylTpig1NVWHDx/W8uXLlZGR4Q+NAAAA6J8sh8XMzEw1NTWpoKBALpdLSUlJqqys9H/ppaGhocOZxGXLlslms2nZsmU6ceKERo4cqYyMDD3//PO9twsAAAAEhM24Cq4Fe71eRUZGyuPxKCIioq/LAdDPDaSeMZD2AiDwAtEzeDY0AAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYKpHYbGkpESJiYkKDw9XamqqampqLjn/9OnTysvLU1xcnOx2u8aOHauKiooeFQwAAIDgGWR1QVlZmZxOp0pLS5Wamqri4mKlp6fr4MGDio6O7jS/ra1N9913n6Kjo/XWW28pPj5ex48f1/Dhw3ujfgAAAASQ5bC4bt06zZ8/X7m5uZKk0tJSlZeXa8uWLVqyZEmn+Vu2bNGpU6e0d+9eDR48WJKUmJh4yWO0traqtbXV/7PX67VaJgAAAHqBpcvQbW1tqq2tlcPh+OYNQkLkcDhUXV3d5Zp33nlHaWlpysvLU0xMjCZMmKDVq1ervb3d9DhFRUWKjIz0vxISEqyUCQAAgF5iKSw2Nzervb1dMTExHcZjYmLkcrm6XHPkyBG99dZbam9vV0VFhZYvX661a9fqueeeMz1Ofn6+PB6P/9XY2GilTAAAAPQSy5ehrfL5fIqOjtbGjRsVGhqq5ORknThxQv/6r/+qwsLCLtfY7XbZ7fZAlwYAAIDLsBQWo6KiFBoaKrfb3WHc7XYrNja2yzVxcXEaPHiwQkND/WO33XabXC6X2traFBYW1oOyAQAAEAyWLkOHhYUpOTlZVVVV/jGfz6eqqiqlpaV1uWb69Ok6fPiwfD6ff+zQoUOKi4sjKAIAAPRzlu+z6HQ6tWnTJr322mvav3+/Hn30UbW0tPi/HZ2dna38/Hz//EcffVSnTp3Sk08+qUOHDqm8vFyrV69WXl5e7+0CAAAAAWH5M4uZmZlqampSQUGBXC6XkpKSVFlZ6f/SS0NDg0JCvsmgCQkJ2rlzpxYtWqRJkyYpPj5eTz75pBYvXtx7uwAAAEBA2AzDMPq6iMvxer2KjIyUx+NRREREX5cDoJ8bSD1jIO0FQOAFomfwbGgAAACYIiwCAADAFGERAAAApgiLAAAAMEVYBAAAgCnCIgAAAEwRFgEAAGCKsAgAAABThEUAAACYIiwCAADAFGERAAAApgiLAAAAMEVYBAALSkpKlJiYqPDwcKWmpqqmpsZ07qZNmzRjxgyNGDFCI0aMkMPhuOR8AOiPCIsA0E1lZWVyOp0qLCxUXV2dJk+erPT0dJ08ebLL+bt379bs2bP1/vvvq7q6WgkJCbr//vt14sSJIFcOAD1nMwzD6OsiLsfr9SoyMlIej0cRERF9XQ6Afi5QPSM1NVV33XWX1q9fL0ny+XxKSEjQE088oSVLllx2fXt7u0aMGKH169crOzu7W8ek/wGwIhA9gzOLANANbW1tqq2tlcPh8I+FhITI4XCourq6W+9x9uxZnT9/XjfccIPpnNbWVnm93g4vAOhLhEUA6Ibm5ma1t7crJiamw3hMTIxcLle33mPx4sUaNWpUh8D5bUVFRYqMjPS/EhISrqhuALhShEUACII1a9Zo27Zt2rFjh8LDw03n5efny+Px+F+NjY1BrBIAOhvU1wUAwNUgKipKoaGhcrvdHcbdbrdiY2Mvufall17SmjVr9N5772nSpEmXnGu322W326+4XgDoLZxZBIBuCAsLU3JysqqqqvxjPp9PVVVVSktLM1334osvatWqVaqsrFRKSkowSgWAXsWZRQDoJqfTqZycHKWkpGjq1KkqLi5WS0uLcnNzJUnZ2dmKj49XUVGRJOmFF15QQUGB3njjDSUmJvo/23j99dfr+uuv77N9AIAVhEUA6KbMzEw1NTWpoKBALpdLSUlJqqys9H/ppaGhQSEh31yweeWVV9TW1qYf//jHHd6nsLBQK1asCGbpANBj3GcRwIAzkHrGQNoLgMDjPosAAAAIKsIiAAAATPUoLJaUlCgxMVHh4eFKTU1VTU1Nt9Zt27ZNNptNs2bN6slhAQAAEGSWw2JZWZmcTqcKCwtVV1enyZMnKz09XSdPnrzkumPHjukXv/iFZsyY0eNiAQAAEFyWw+K6des0f/585ebm6vbbb1dpaamGDh2qLVu2mK5pb2/Xww8/rJUrV2r06NFXVDAAAACCx1JYbGtrU21tbYfnmoaEhMjhcKi6utp03bPPPqvo6GjNmzevW8dpbW2V1+vt8AIAAEDwWQqLzc3Nam9v999T7KKYmBj/zWa/bc+ePdq8ebM2bdrU7eMUFRUpMjLS/0pISLBSJgAAAHpJQL8NfebMGWVlZWnTpk2Kiorq9rr8/Hx5PB7/q7GxMYBVAgAAwIylJ7hERUUpNDRUbre7w7jb7VZsbGyn+Z999pmOHTumjIwM/5jP5/v6wIMG6eDBgxozZkyndXa7XXa73UppAAAACABLZxbDwsKUnJysqqoq/5jP51NVVZXS0tI6zR8/frw++eQT1dfX+18PPvig7r33XtXX13N5GQAAoJ+z/Gxop9OpnJwcpaSkaOrUqSouLlZLS4tyc3MlSdnZ2YqPj1dRUZHCw8M1YcKEDuuHDx8uSZ3GAQAA0P9YDouZmZlqampSQUGBXC6XkpKSVFlZ6f/SS0NDg0JCeDAMAADAQGAzDMPo6yIuJxAPxQYwcA2knjGQ9gIg8ALRMzgFCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFM9CoslJSVKTExUeHi4UlNTVVNTYzp306ZNmjFjhkaMGKERI0bI4XBccj4AAAD6D8thsaysTE6nU4WFhaqrq9PkyZOVnp6ukydPdjl/9+7dmj17tt5//31VV1crISFB999/v06cOHHFxQMAACCwbIZhGFYWpKam6q677tL69eslST6fTwkJCXriiSe0ZMmSy65vb2/XiBEjtH79emVnZ3frmF6vV5GRkfJ4PIqIiLBSLoBr0EDqGQNpLwACLxA9w9KZxba2NtXW1srhcHzzBiEhcjgcqq6u7tZ7nD17VufPn9cNN9xgOqe1tVVer7fDCwAAAMFnKSw2Nzervb1dMTExHcZjYmLkcrm69R6LFy/WqFGjOgTObysqKlJkZKT/lZCQYKVMAAAA9JKgfht6zZo12rZtm3bs2KHw8HDTefn5+fJ4PP5XY2NjEKsEAADARYOsTI6KilJoaKjcbneHcbfbrdjY2Euufemll7RmzRq99957mjRp0iXn2u122e12K6UBAAAgACydWQwLC1NycrKqqqr8Yz6fT1VVVUpLSzNd9+KLL2rVqlWqrKxUSkpKz6sFAABAUFk6syhJTqdTOTk5SklJ0dSpU1VcXKyWlhbl5uZKkrKzsxUfH6+ioiJJ0gsvvKCCggK98cYbSkxM9H+28frrr9f111/fi1sBAABAb7McFjMzM9XU1KSCggK5XC4lJSWpsrLS/6WXhoYGhYR8c8LylVdeUVtbm3784x93eJ/CwkKtWLHiyqoHAABAQFm+z2Jf4D5jAKwYSD1jIO0FQOD1+X0WAQAAcG0hLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMAUYREAAACmCIsAAAAwRVgEAACAKcIiAAAATBEWAQAAYIqwCAAAAFOERQAAAJjqUVgsKSlRYmKiwsPDlZqaqpqamkvO/93vfqfx48crPDxcEydOVEVFRY+KBYC+Rv8DcK2xHBbLysrkdDpVWFiouro6TZ48Wenp6Tp58mSX8/fu3avZs2dr3rx52rdvn2bNmqVZs2bpz3/+8xUXDwDBRP8DcC2yGYZhWFmQmpqqu+66S+vXr5ck+Xw+JSQk6IknntCSJUs6zc/MzFRLS4t+//vf+8e++93vKikpSaWlpd06ptfrVWRkpDwejyIiIqyUC+AaFKieQf8D0N8FomcMsjK5ra1NtbW1ys/P94+FhITI4XCourq6yzXV1dVyOp0dxtLT0/X222+bHqe1tVWtra3+nz0ej6Sv/wEAwOVc7BUW/y58SfQ/AFeDQPQ/S2GxublZ7e3tiomJ6TAeExOjAwcOdLnG5XJ1Od/lcpkep6ioSCtXruw0npCQYKVcANe4L774QpGRkb3yXvQ/AFeT3ux/lsJisOTn53f42/jp06d18803q6Ghodc23h94vV4lJCSosbFxwFxeGoh7ktjX1cbj8eimm27SDTfc0NelWEb/u3oNxD1J7OtqE4j+ZyksRkVFKTQ0VG63u8O42+1WbGxsl2tiY2MtzZcku90uu93eaTwyMnJA/YFeFBERMeD2NRD3JLGvq01ISO/dHYz+FxgD8d+9gbgniX1dbXqz/1l6p7CwMCUnJ6uqqso/5vP5VFVVpbS0tC7XpKWldZgvSbt27TKdDwD9Ef0PwLXK8mVop9OpnJwcpaSkaOrUqSouLlZLS4tyc3MlSdnZ2YqPj1dRUZEk6cknn9Q999yjtWvXaubMmdq2bZs+/vhjbdy4sXd3AgABRv8DcC2yHBYzMzPV1NSkgoICuVwuJSUlqbKy0v8h7oaGhg6nPqdNm6Y33nhDy5Yt0zPPPKPvfOc7evvttzVhwoRuH9Nut6uwsLDLSzNXs4G4r4G4J4l9XW0CtS/6X+8ZiPsaiHuS2NfVJhD7snyfRQAAAFw7eDY0AAAATBEWAQAAYIqwCAAAAFOERQAAAJgiLAIAAMBUvwmLJSUlSkxMVHh4uFJTU1VTU3PJ+b/73e80fvx4hYeHa+LEiaqoqAhSpd1nZU+bNm3SjBkzNGLECI0YMUIOh+Oy/wz6itU/q4u2bdsmm82mWbNmBbbAHrK6r9OnTysvL09xcXGy2+0aO3bsVf/voSQVFxdr3LhxGjJkiBISErRo0SJ99dVXQar28j744ANlZGRo1KhRstlsevvtty+7Zvfu3brzzjtlt9t16623auvWrQGv0wr6H/2vr9H/vkb/M2H0A9u2bTPCwsKMLVu2GH/5y1+M+fPnG8OHDzfcbneX8z/66CMjNDTUePHFF41PP/3UWLZsmTF48GDjk08+CXLl5qzuac6cOUZJSYmxb98+Y//+/cbcuXONyMhI47//+7+DXPmlWd3XRUePHjXi4+ONGTNmGD/4wQ+CU6wFVvfV2tpqpKSkGA888ICxZ88e4+jRo8bu3buN+vr6IFd+aVb39frrrxt2u914/fXXjaNHjxo7d+404uLijEWLFgW5cnMVFRXG0qVLje3btxuSjB07dlxy/pEjR4yhQ4caTqfT+PTTT42XX37ZCA0NNSorK4NT8GXQ/+h/fY3+9zX6n7l+ERanTp1q5OXl+X9ub283Ro0aZRQVFXU5/6GHHjJmzpzZYSw1NdX42c9+FtA6rbC6p2+7cOGCMWzYMOO1114LVIk90pN9XbhwwZg2bZrx6quvGjk5Of2yWVrd1yuvvGKMHj3aaGtrC1aJPWJ1X3l5ecb3v//9DmNOp9OYPn16QOvsqe40y6efftq44447OoxlZmYa6enpAays++h/ndH/gov+9zX6n7k+vwzd1tam2tpaORwO/1hISIgcDoeqq6u7XFNdXd1hviSlp6ebzg+2nuzp286ePavz58/rhhtuCFSZlvV0X88++6yio6M1b968YJRpWU/29c477ygtLU15eXmKiYnRhAkTtHr1arW3twer7Mvqyb6mTZum2tpa/6WaI0eOqKKiQg888EBQag6E/twv6H9do/8FD/3vG/Q/c5Yf99fbmpub1d7e7n9c1kUxMTE6cOBAl2tcLleX810uV8DqtKIne/q2xYsXa9SoUZ3+kPtST/a1Z88ebd68WfX19UGosGd6sq8jR47oj3/8ox5++GFVVFTo8OHDeuyxx3T+/HkVFhYGo+zL6sm+5syZo+bmZt19990yDEMXLlzQwoUL9cwzzwSj5IAw6xder1fnzp3TkCFD+qgy+p8Z+l/w0P++Qf8z1+dnFtHZmjVrtG3bNu3YsUPh4eF9XU6PnTlzRllZWdq0aZOioqL6upxe5fP5FB0drY0bNyo5OVmZmZlaunSpSktL+7q0K7J7926tXr1aGzZsUF1dnbZv367y8nKtWrWqr0vDNYL+1//R/649fX5mMSoqSqGhoXK73R3G3W63YmNju1wTGxtraX6w9WRPF7300ktas2aN3nvvPU2aNCmQZVpmdV+fffaZjh07poyMDP+Yz+eTJA0aNEgHDx7UmDFjAlt0N/TkzysuLk6DBw9WaGiof+y2226Ty+VSW1ubwsLCAlpzd/RkX8uXL1dWVpYeeeQRSdLEiRPV0tKiBQsWaOnSpQoJufr+fmnWLyIiIvr0rKJE//s2+l/w0f++Qf8z1+c7DwsLU3JysqqqqvxjPp9PVVVVSktL63JNWlpah/mStGvXLtP5wdaTPUnSiy++qFWrVqmyslIpKSnBKNUSq/saP368PvnkE9XX1/tfDz74oO69917V19crISEhmOWb6smf1/Tp03X48GF/85ekQ4cOKS4url80Sqln+zp79mynhnjxfwhff5766tOf+wX97xv0v75B//sG/e8SLH0dJkC2bdtm2O12Y+vWrcann35qLFiwwBg+fLjhcrkMwzCMrKwsY8mSJf75H330kTFo0CDjpZdeMvbv328UFhb2y1tHWNnTmjVrjLCwMOOtt94yPv/8c//rzJkzfbWFLlnd17f1128DWt1XQ0ODMWzYMOPxxx83Dh48aPz+9783oqOjjeeee66vttAlq/sqLCw0hg0bZvz2t781jhw5YvzhD38wxowZYzz00EN9tYVOzpw5Y+zbt8/Yt2+fIclYt26dsW/fPuP48eOGYRjGkiVLjKysLP/8i7eO+OUvf2ns37/fKCkp6Xe3zqH/0f/6Ev3va/Q/c/0iLBqGYbz88svGTTfdZISFhRlTp041/vM//9P/u3vuucfIycnpMP/NN980xo4da4SFhRl33HGHUV5eHuSKL8/Knm6++WZDUqdXYWFh8Au/DKt/Vn+rvzZLw7C+r7179xqpqamG3W43Ro8ebTz//PPGhQsXglz15VnZ1/nz540VK1YYY8aMMcLDw42EhATjscceM/76178Gv3AT77//fpf/rVzcR05OjnHPPfd0WpOUlGSEhYUZo0ePNn79618Hve5Lof/R//oa/Y/+dyk2w7hKz60CAAAg4Pr8M4sAAADovwiLAAAAMEVYBAAAgCnCIgAAAEwRFgEAAGCKsAgAAABThEUAAACYIiwCAADAFGERAAAApgiLAAAAMEVYBAAAgKn/D6wRy44WinymAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file diff --git a/Anusha/Module0/Module0.ipynb b/Anusha/Module0/Module0.ipynb new file mode 100644 index 0000000..c319cd5 --- /dev/null +++ b/Anusha/Module0/Module0.ipynb @@ -0,0 +1,766 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_inB7Mcb3Bot", + "outputId": "7226c281-a7e5-4299-bbdb-8e5e12941b49" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (1.26.4)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)\n", + "Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages (0.13.2)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (1.13.1)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.6.1)\n", + "Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.3)\n", + "Requirement already satisfied: lightgbm in /usr/local/lib/python3.11/dist-packages (4.5.0)\n", + "Collecting catboost\n", + " Downloading catboost-1.2.7-cp311-cp311-manylinux2014_x86_64.whl.metadata (1.2 kB)\n", + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (4.10.0.84)\n", + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.11/dist-packages (0.25.1)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (11.1.0)\n", + "Requirement already satisfied: tensorflow in /usr/local/lib/python3.11/dist-packages (2.18.0)\n", + "Requirement already satisfied: keras in /usr/local/lib/python3.11/dist-packages (3.8.0)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.11/dist-packages (2.5.1+cu124)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.11/dist-packages (0.20.1+cu124)\n", + "Collecting mxnet\n", + " Downloading mxnet-1.9.1-py3-none-manylinux2014_x86_64.whl.metadata (3.4 kB)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.55.7)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (24.2)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.1)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (3.5.0)\n", + "Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.21.5)\n", + "Requirement already satisfied: graphviz in /usr/local/lib/python3.11/dist-packages (from catboost) (0.20.3)\n", + "Requirement already satisfied: plotly in /usr/local/lib/python3.11/dist-packages (from catboost) (5.24.1)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.11/dist-packages (from catboost) (1.17.0)\n", + "Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (3.4.2)\n", + "Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2.36.1)\n", + "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2025.1.10)\n", + "Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (0.4)\n", + "Requirement already satisfied: absl-py>=1.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.4.0)\n", + "Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.6.3)\n", + "Requirement already satisfied: flatbuffers>=24.3.25 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (25.1.24)\n", + "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.6.0)\n", + "Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.2.0)\n", + "Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (18.1.1)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.4.0)\n", + "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (4.25.6)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.32.3)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.11/dist-packages (from tensorflow) (75.1.0)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.5.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (4.12.2)\n", + "Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.17.2)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.70.0)\n", + "Requirement already satisfied: tensorboard<2.19,>=2.18 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.18.0)\n", + "Requirement already satisfied: h5py>=3.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.12.1)\n", + "Requirement already satisfied: ml-dtypes<0.5.0,>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.4.1)\n", + "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.37.1)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from keras) (13.9.4)\n", + "Requirement already satisfied: namex in /usr/local/lib/python3.11/dist-packages (from keras) (0.0.8)\n", + "Requirement already satisfied: optree in /usr/local/lib/python3.11/dist-packages (from keras) (0.14.0)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch) (3.17.0)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch) (3.1.5)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch) (2024.10.0)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch)\n", + " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch)\n", + " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch)\n", + " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch)\n", + " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch)\n", + " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-curand-cu12==10.3.5.147 (from torch)\n", + " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch)\n", + " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch)\n", + " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch)\n", + " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch) (3.1.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch) (1.3.0)\n", + "Collecting graphviz (from catboost)\n", + " Downloading graphviz-0.8.4-py2.py3-none-any.whl.metadata (6.4 kB)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from astunparse>=1.6.0->tensorflow) (0.45.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2024.12.14)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.7)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.1.3)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch) (3.0.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.11/dist-packages (from plotly->catboost) (9.0.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras) (2.18.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->keras) (0.1.2)\n", + "Downloading catboost-1.2.7-cp311-cp311-manylinux2014_x86_64.whl (98.7 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m98.7/98.7 MB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m29.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m23.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m44.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading mxnet-1.9.1-py3-none-manylinux2014_x86_64.whl (49.1 MB)\n", + "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m49.1/49.1 MB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading graphviz-0.8.4-py2.py3-none-any.whl (16 kB)\n", + "Installing collected packages: nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, graphviz, nvidia-cusparse-cu12, nvidia-cudnn-cu12, mxnet, nvidia-cusolver-cu12, catboost\n", + " Attempting uninstall: nvidia-nvjitlink-cu12\n", + " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", + " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", + " Attempting uninstall: nvidia-curand-cu12\n", + " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", + " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", + " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", + " Attempting uninstall: nvidia-cufft-cu12\n", + " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", + " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", + " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", + " Attempting uninstall: nvidia-cuda-runtime-cu12\n", + " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", + " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-cupti-cu12\n", + " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cublas-cu12\n", + " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", + " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", + " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", + " Attempting uninstall: graphviz\n", + " Found existing installation: graphviz 0.20.3\n", + " Uninstalling graphviz-0.20.3:\n", + " Successfully uninstalled graphviz-0.20.3\n", + " Attempting uninstall: nvidia-cusparse-cu12\n", + " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", + " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", + " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", + " Attempting uninstall: nvidia-cudnn-cu12\n", + " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", + " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", + " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", + " Attempting uninstall: nvidia-cusolver-cu12\n", + " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", + " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", + " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", + "Successfully installed catboost-1.2.7 graphviz-0.8.4 mxnet-1.9.1 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127\n" + ] + } + ], + "source": [ + "pip install numpy pandas matplotlib seaborn scipy scikit-learn xgboost lightgbm catboost opencv-python scikit-image pillow tensorflow keras torch torchvision mxnet" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Data Science Libraries**" + ], + "metadata": { + "id": "5oaBlt-Z3ptm" + } + }, + { + "cell_type": "code", + "source": [ + "pip install numpy # NumPy => Fundamental package for scientific computing with Python" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yyoCWXL83Le4", + "outputId": "493787b8-b6d3-488e-cd57-a8ea22ab0c79" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (1.26.4)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install pandas # Pandas => Data manipulation and analysis library" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GubFrPIT4GlE", + "outputId": "80323061-7cfb-433c-8817-81bdc10f51c1" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)\n", + "Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install matplotlib # Matplotlib => Comprehensive library for creating static, animated, and interactive visualizations" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v6OXDvf-4W9h", + "outputId": "5193fdd9-b44c-4737-8493-b81837dc86c2" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.55.7)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)\n", + "Requirement already satisfied: numpy>=1.23 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.26.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (24.2)\n", + "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (11.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install seaborn # Seaborn => Statistical data visualization based on Matplotlib" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BcWhCDin4h8g", + "outputId": "65b7d5a6-b734-4b2a-a789-2b9d0dbb5be3" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in /usr/local/lib/python3.11/dist-packages (from seaborn) (1.26.4)\n", + "Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.11/dist-packages (from seaborn) (2.2.2)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in /usr/local/lib/python3.11/dist-packages (from seaborn) (3.10.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.55.7)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.8)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.2)\n", + "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (11.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.2->seaborn) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.2->seaborn) (2025.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install scipy # SciPy => Library for mathematics, science, and engineering" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JLSt9neX4vpS", + "outputId": "476e3ca7-fc4f-4161-e0b9-697529f3518b" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (1.13.1)\n", + "Requirement already satisfied: numpy<2.3,>=1.22.4 in /usr/local/lib/python3.11/dist-packages (from scipy) (1.26.4)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Machine Learning Libraries**" + ], + "metadata": { + "id": "hc78y9Js49ew" + } + }, + { + "cell_type": "code", + "source": [ + "pip install scikit-learn # Scikit-learn => Simple and efficient tools for predictive data analysis" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5jq43bPJ44bS", + "outputId": "9f9d6fb3-e9cd-43ca-d807-95f12c246fd5" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.6.1)\n", + "Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.26.4)\n", + "Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.13.1)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (3.5.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install xgboost # XGBoost => Scalable and flexible gradient boosting library" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TGhPNsOz6NRy", + "outputId": "15f48d05-f4c7-41cb-c2d3-5a33f79735ae" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.3)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4)\n", + "Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.21.5)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1)\n", + "Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.3)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4)\n", + "Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.21.5)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install lightgbm # LightGBM => High-performance gradient boosting framework" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gnompvEZ8xDk", + "outputId": "9180e9cf-e1f5-41dd-cef4-a57b6859af9b" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: lightgbm in /usr/local/lib/python3.11/dist-packages (4.5.0)\n", + "Requirement already satisfied: numpy>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from lightgbm) (1.26.4)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from lightgbm) (1.13.1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install catboost # CatBoost => Gradient boosting on decision trees library" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RUM_KJNP9hwR", + "outputId": "0499e8f6-598a-4ce8-da9d-2ee059727014" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: catboost in /usr/local/lib/python3.11/dist-packages (1.2.7)\n", + "Requirement already satisfied: graphviz in /usr/local/lib/python3.11/dist-packages (from catboost) (0.8.4)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (from catboost) (3.10.0)\n", + "Requirement already satisfied: numpy<2.0,>=1.16.0 in /usr/local/lib/python3.11/dist-packages (from catboost) (1.26.4)\n", + "Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.11/dist-packages (from catboost) (2.2.2)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from catboost) (1.13.1)\n", + "Requirement already satisfied: plotly in /usr/local/lib/python3.11/dist-packages (from catboost) (5.24.1)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.11/dist-packages (from catboost) (1.17.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas>=0.24->catboost) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas>=0.24->catboost) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas>=0.24->catboost) (2025.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (4.55.7)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (1.4.8)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (24.2)\n", + "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (11.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->catboost) (3.2.1)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.11/dist-packages (from plotly->catboost) (9.0.0)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Computer Vision Libraries**" + ], + "metadata": { + "id": "nH7tubRN-X_X" + } + }, + { + "cell_type": "code", + "source": [ + "pip install opencv-python # OpenCV => Library of programming functions mainly aimed at real-time computer vision" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sflqOpms968v", + "outputId": "e8ccc865-7bfe-46b4-96cd-76635821bb34" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (4.10.0.84)\n", + "Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-packages (from opencv-python) (1.26.4)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install scikit-image # scikit-image => Collection of algorithms for image processing" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UbpJTNR7_Skn", + "outputId": "766e9ea5-aefa-4dd9-ce25-37671dc55d44" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.11/dist-packages (0.25.1)\n", + "Requirement already satisfied: numpy>=1.24 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (1.26.4)\n", + "Requirement already satisfied: scipy>=1.11.2 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (1.13.1)\n", + "Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (3.4.2)\n", + "Requirement already satisfied: pillow>=10.1 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (11.1.0)\n", + "Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2.36.1)\n", + "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2025.1.10)\n", + "Requirement already satisfied: packaging>=21 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (24.2)\n", + "Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (0.4)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install pillow # Pillow => Python Imaging Library (PIL) adds image processing capabilities" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YUyMviKV_rCt", + "outputId": "55ce1a17-3692-4db1-ff09-5fdb5ed0d887" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (11.1.0)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Deep Learning Libraries**" + ], + "metadata": { + "id": "unVuT-r7_6gp" + } + }, + { + "cell_type": "code", + "source": [ + "pip install tensorflow # TensorFlow => End-to-end open-source platform for machine learning" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FHHX2MSe_0_5", + "outputId": "219e1fd1-c23c-4175-b483-a37f08e507fb" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: tensorflow in /usr/local/lib/python3.11/dist-packages (2.18.0)\n", + "Requirement already satisfied: absl-py>=1.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.4.0)\n", + "Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.6.3)\n", + "Requirement already satisfied: flatbuffers>=24.3.25 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (25.1.24)\n", + "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.6.0)\n", + "Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.2.0)\n", + "Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (18.1.1)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.4.0)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from tensorflow) (24.2)\n", + "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (4.25.6)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.32.3)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.11/dist-packages (from tensorflow) (75.1.0)\n", + "Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.17.0)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.5.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (4.12.2)\n", + "Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.17.2)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.70.0)\n", + "Requirement already satisfied: tensorboard<2.19,>=2.18 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.18.0)\n", + "Requirement already satisfied: keras>=3.5.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.8.0)\n", + "Requirement already satisfied: numpy<2.1.0,>=1.26.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.26.4)\n", + "Requirement already satisfied: h5py>=3.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.12.1)\n", + "Requirement already satisfied: ml-dtypes<0.5.0,>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.4.1)\n", + "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.37.1)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from astunparse>=1.6.0->tensorflow) (0.45.1)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (13.9.4)\n", + "Requirement already satisfied: namex in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (0.0.8)\n", + "Requirement already satisfied: optree in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (0.14.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2024.12.14)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.7)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.1.3)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.11/dist-packages (from werkzeug>=1.0.1->tensorboard<2.19,>=2.18->tensorflow) (3.0.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras>=3.5.0->tensorflow) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras>=3.5.0->tensorflow) (2.18.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow) (0.1.2)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install keras # Keras => Deep learning API written in Python, running on top of TensorFlow" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pTiPICTbAG88", + "outputId": "d6f87887-7d15-479e-9397-ca0daf34c09f" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: keras in /usr/local/lib/python3.11/dist-packages (3.8.0)\n", + "Requirement already satisfied: absl-py in /usr/local/lib/python3.11/dist-packages (from keras) (1.4.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from keras) (1.26.4)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from keras) (13.9.4)\n", + "Requirement already satisfied: namex in /usr/local/lib/python3.11/dist-packages (from keras) (0.0.8)\n", + "Requirement already satisfied: h5py in /usr/local/lib/python3.11/dist-packages (from keras) (3.12.1)\n", + "Requirement already satisfied: optree in /usr/local/lib/python3.11/dist-packages (from keras) (0.14.0)\n", + "Requirement already satisfied: ml-dtypes in /usr/local/lib/python3.11/dist-packages (from keras) (0.4.1)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from keras) (24.2)\n", + "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.11/dist-packages (from optree->keras) (4.12.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras) (2.18.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->keras) (0.1.2)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install torch torchvision # PyTorch => Deep learning platform that provides maximum flexibility and speed" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vUcZWfwxASHr", + "outputId": "d38fcdd2-5209-44c6-9c75-6e5d8cdf3493" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: torch in /usr/local/lib/python3.11/dist-packages (2.5.1+cu124)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.11/dist-packages (0.20.1+cu124)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch) (3.17.0)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.11/dist-packages (from torch) (4.12.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch) (3.1.5)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch) (2024.10.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch) (9.1.0.70)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.5.8)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch) (11.2.1.3)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch) (10.3.5.147)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch) (11.6.1.9)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch) (12.3.1.170)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch) (12.4.127)\n", + "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch) (3.1.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch) (1.3.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from torchvision) (1.26.4)\n", + "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.11/dist-packages (from torchvision) (11.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch) (3.0.2)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pip install mxnet # MXNet => Deep learning framework designed for both efficiency and flexibility" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "oXCuX-vPAdw0", + "outputId": "6c7b8b88-e852-43d5-83f8-3cf37ffe4f0c" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: mxnet in /usr/local/lib/python3.11/dist-packages (1.9.1)\n", + "Requirement already satisfied: numpy<2.0.0,>1.16.0 in /usr/local/lib/python3.11/dist-packages (from mxnet) (1.26.4)\n", + "Requirement already satisfied: requests<3,>=2.20.0 in /usr/local/lib/python3.11/dist-packages (from mxnet) (2.32.3)\n", + "Requirement already satisfied: graphviz<0.9.0,>=0.8.1 in /usr/local/lib/python3.11/dist-packages (from mxnet) (0.8.4)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.20.0->mxnet) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.20.0->mxnet) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.20.0->mxnet) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.20.0->mxnet) (2024.12.14)\n" + ] + } + ] + } + ] +} diff --git a/Anusha/Module0/Numpy.ipynb b/Anusha/Module0/Numpy.ipynb new file mode 100644 index 0000000..f5fb6dc --- /dev/null +++ b/Anusha/Module0/Numpy.ipynb @@ -0,0 +1,6014 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "lHGJ5MOqUxs0" + }, + "source": [ + "### **NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more. #Version: 2.2**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6oHBTaUI0_wL" + }, + "source": [ + "User guide: https://numpy.org/doc/2.2/user/absolute_beginners.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AZ4ZpJEzz4Ia" + }, + "outputs": [], + "source": [ + "pip install numpy # For reference: https://numpy.org/doc/2.2/reference/index.html#reference" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4k_4B4JR0Utr" + }, + "source": [ + "#Numpy--> Linear Algebra library for python (de facto standard for array APIs in Python)\n", + "\n", + "Vectors->1d Array\n", + "\n", + "Matrices->2d Array" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5PJvw13jWkPR" + }, + "source": [ + " 0-D (zero-dimensional)=> scalar\n", + "\n", + " 1-D (one-dimensional)=> vector\n", + "\n", + " 2-D (two-dimensional)=>matrix\n", + "\n", + " N-D (N-dimensional, where โ€œNโ€ is typically an integer greater than 2)=> tensor\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GlQo-cXGXD96" + }, + "source": [ + "Fundamental data structure of PyTorch is the tensor." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fVXGV72P0_CN" + }, + "source": [ + "# Numpy Arrays" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Xc9bFjWs1HSt" + }, + "outputs": [], + "source": [ + "lst=[1,4,5]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "BvrHWI9F1Utc" + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "2lbBQ3Oe1W2e", + "outputId": "9c1255aa-0997-4f1e-dc13-5fa74fb1dc99" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 4, 5])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.array(lst)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "LqPFe1Md1c2e" + }, + "outputs": [], + "source": [ + "my_mat=[[1,2],[4,5],[6,7]]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UiA3zh8z1wKj", + "outputId": "b60410d9-2152-4fc6-c706-1ed786083204" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [4, 5],\n", + " [6, 7]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.array(my_mat)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "K_4S7iHM10Pl", + "outputId": "aab0d2ef-5482-4cb1-f47e-24ca16be60a8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.arange(0,6)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "WuRhYPBr2CxV", + "outputId": "9bc5035b-29c4-497b-f4c8-b49fe1272ed9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0., 0.],\n", + " [0., 0., 0.]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros((2,3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "rlWZyZEw2L0B", + "outputId": "1c984ceb-cae4-4da9-f1ab-c4ff6bdbfdcb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0.])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros(4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "vKUz0bcX2YcT", + "outputId": "0c485ebf-0c9b-4ee8-edbd-f83325e70d2a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 1., 1., 1., 1.])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones(6)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "VsJOkNhG2g--", + "outputId": "d644beb6-04c3-4640-f4a4-069f206e1ecd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.55555556, 1.11111111, 1.66666667, 2.22222222,\n", + " 2.77777778, 3.33333333, 3.88888889, 4.44444444, 5. ])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linspace(0,5,10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "EnhoD0Hp2obV", + "outputId": "5341b0d3-9d94-40ef-bb00-7a9ebc913242" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0., 0., 0., 0.],\n", + " [0., 1., 0., 0., 0.],\n", + " [0., 0., 1., 0., 0.],\n", + " [0., 0., 0., 1., 0.],\n", + " [0., 0., 0., 0., 1.]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.eye(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "zG_RxrCn20QE", + "outputId": "8f4b7856-8397-4b43-c63c-2be038304554" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.60197949, 0.3361084 , 0.97551298, 0.24479352])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.rand(4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "DabIZiaN28fa", + "outputId": "bdde5a27-f814-4e65-bc47-7ac2301f4cd5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.17839501, 0.82686979, 0.2164042 , 0.70796818, 0.64025109,\n", + " 0.28374548],\n", + " [0.86343141, 0.99949714, 0.63123736, 0.70830647, 0.3328579 ,\n", + " 0.1907448 ],\n", + " [0.14673247, 0.06849359, 0.06446471, 0.63944989, 0.84336698,\n", + " 0.52915879]])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.rand(3,6)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "q_xE0k-i3Dh_", + "outputId": "f17f5c54-8857-4192-c457-82ebccd887f8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.4661789 , -1.90525823, 1.11048906, -0.13077897, 0.24653864])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.randn(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Mbw4gCbt3J3D" + }, + "outputs": [], + "source": [ + "arr=np.arange(25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "MzFhqLxA3g7a", + "outputId": "256af804-828f-4b68-82d2-019927169b8f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19, 20, 21, 22, 23, 24])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Wn4RCAWt3h8H" + }, + "outputs": [], + "source": [ + "ranarr=np.random.randint(0,50,100)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "sqewwxc63uPy", + "outputId": "8799a120-fde0-452a-9fd2-56300692c239" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([32, 2, 40, 23, 43, 24, 16, 37, 46, 3, 18, 5, 42, 11, 33, 13, 25,\n", + " 25, 14, 44, 11, 26, 3, 30, 26, 29, 43, 8, 29, 25, 3, 1, 16, 41,\n", + " 27, 26, 4, 39, 4, 48, 2, 20, 3, 12, 35, 4, 1, 0, 26, 11, 34,\n", + " 39, 49, 42, 24, 17, 13, 10, 36, 31, 18, 41, 48, 12, 44, 41, 11, 29,\n", + " 42, 42, 29, 35, 13, 42, 19, 30, 40, 18, 29, 45, 13, 17, 32, 41, 1,\n", + " 10, 35, 38, 28, 15, 13, 47, 5, 35, 23, 21, 24, 30, 39, 34])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ranarr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "i1-eWA1X3w28", + "outputId": "68d61091-0715-4d86-8bd9-f574eb3c8fb2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 2, 3, 4],\n", + " [ 5, 6, 7, 8, 9],\n", + " [10, 11, 12, 13, 14],\n", + " [15, 16, 17, 18, 19],\n", + " [20, 21, 22, 23, 24]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr.reshape(5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "276Ad19R33Mv", + "outputId": "1c097a7e-970f-48f1-b07b-b15f1694c429" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "49" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ranarr.max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "D7_g2YcK4Cg4", + "outputId": "6b155158-42bb-4f9b-db98-028e575536d2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ranarr.min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "jAvKS-Rb4Eeq", + "outputId": "61d1ec20-ff1e-48d6-ea58-bc39a09acda3" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "52" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ranarr.argmax()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "oeYB4nSI4Inn", + "outputId": "7c4c6913-459a-4027-9fff-454214872f7d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "47" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ranarr.argmin()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "AfZD16zM4N4h", + "outputId": "d3160184-ba76-4ae3-8dfd-031283a2557a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(25,)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "zjFX9Ycc4QKW", + "outputId": "7eec9793-095c-45ce-a675-51b05d225902" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int64')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "2uV_eRtw4VgO" + }, + "outputs": [], + "source": [ + "from numpy.random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Qao7Wdy-4gDM", + "outputId": "cad63099-01da-422b-9fad-500d1ded408a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "randint(2,10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "gK_DhGhu4lnD", + "outputId": "eb79a96e-984b-44ad-d3cb-c9611ab0d655" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr[6]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "205b7ibR4y1t", + "outputId": "d8700cc5-e345-4b4d-ba76-f2f47725da99" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4])" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr[1:5]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "WCLV8gy442GX" + }, + "outputs": [], + "source": [ + "slice_of_arr= arr[0:6]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "9349T3-lBKV_", + "outputId": "a15fbabc-63ba-47ee-d590-d7fa7afdc06b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "slice_of_arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "O0yAsfzUBUUC" + }, + "outputs": [], + "source": [ + "slice_of_arr[:]=99" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UUYuTlHGBe6m", + "outputId": "8445d582-29ba-4852-f35a-888ff9d93182" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([99, 99, 99, 99, 99, 99])" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "slice_of_arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "aK3720u7BogM", + "outputId": "2808efa1-de3a-4297-e05f-61a6deba9b91" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19, 20, 21, 22, 23, 24])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "1bxy6cLXBsjF" + }, + "outputs": [], + "source": [ + "arr_copy=arr.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "hvNKHGcYBzJD", + "outputId": "8d88156f-0a1e-416e-e732-920e12f233be" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19, 20, 21, 22, 23, 24])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_copy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "na2TNr-BB3CC" + }, + "outputs": [], + "source": [ + "arr_2d =np.array([[9,7],[6,5],[4,3]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "xgS4Pz9MDKGJ", + "outputId": "9179c6c5-8542-4c1e-cefc-d516185498cc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[9, 7],\n", + " [6, 5],\n", + " [4, 3]])" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_2d" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "2x4uhaTMDUD7", + "outputId": "f4be2387-bc7d-4005-e6b6-e2678964d34f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "7" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_2d[0,1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "mx2WGJQFDY7U", + "outputId": "689758fd-3f1a-4d2c-ff63-a7d564844e59" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[9, 7],\n", + " [6, 5]])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_2d[:2,0:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ax3rVnvBDxri", + "outputId": "42b7888d-3ff3-4a6b-e1f4-ea29cf524148" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True, True, True, True])" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr>4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "WfmJvR_gD-hH", + "outputId": "36582b24-645e-4b82-ac66-3df268030e01" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19, 20, 21, 22, 23, 24])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr[arr>3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "s3RqqmP9EKnV" + }, + "outputs": [], + "source": [ + "arr_2dd=np.arange(50).reshape(5,10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "WZAX_cCvEejG", + "outputId": "2b876ad7-2936-4cc5-c31b-b7aadabf4043" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],\n", + " [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],\n", + " [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],\n", + " [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],\n", + " [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_2dd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "p3kMvPshEg9S", + "outputId": "b7b58c21-ab6a-4c50-f151-8654adb15b7a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[13, 14],\n", + " [23, 24]])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_2dd[1:3,3:5]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "tnuFjgdJEuWU", + "outputId": "b69e770c-56e2-4e6d-cdec-14af10518d36" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([198, 198, 198, 198, 198, 198, 12, 14, 16, 18, 20, 22, 24,\n", + " 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr+arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "MUJ_vTjZFBF8", + "outputId": "6fc15658-4a84-4d87-9e97-056bbfab6a7f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9801, 9801, 9801, 9801, 9801, 9801, 36, 49, 64, 81, 100,\n", + " 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,\n", + " 484, 529, 576])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr*arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ociu4f1OFEKK", + "outputId": "5bc8b1e9-6817-4b0a-9162-e225321b9d56" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ -1, -1, -1, -1, -1, -1, -94, -93, -92, -91, -90, -89, -88,\n", + " -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76])" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr-100" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "R-1h6xQ1FIVM", + "outputId": "e4bd05cd-846a-4b63-aced-92bbf53dca0a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n", + " 1., 1., 1., 1., 1., 1., 1., 1.])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr/arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UJOtnt7yFMLm", + "outputId": "818abb57-b790-4421-e5d4-d7b1fa2b34ff" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.01010101, 0.01010101, 0.01010101, 0.01010101, 0.01010101,\n", + " 0.01010101, 0.16666667, 0.14285714, 0.125 , 0.11111111,\n", + " 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857,\n", + " 0.06666667, 0.0625 , 0.05882353, 0.05555556, 0.05263158,\n", + " 0.05 , 0.04761905, 0.04545455, 0.04347826, 0.04166667])" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1/arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "0AsfSTYVFXE-", + "outputId": "a55a75e9-1729-4a6f-8e50-192b98ee4c5f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9801, 9801, 9801, 9801, 9801, 9801, 36, 49, 64, 81, 100,\n", + " 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,\n", + " 484, 529, 576])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr**2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "6HBoLMrEFaIS", + "outputId": "724e1bcf-fb12-4ca2-fe93-d618b3624c89" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9.94987437, 9.94987437, 9.94987437, 9.94987437, 9.94987437,\n", + " 9.94987437, 2.44948974, 2.64575131, 2.82842712, 3. ,\n", + " 3.16227766, 3.31662479, 3.46410162, 3.60555128, 3.74165739,\n", + " 3.87298335, 4. , 4.12310563, 4.24264069, 4.35889894,\n", + " 4.47213595, 4.58257569, 4.69041576, 4.79583152, 4.89897949])" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sqrt(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "tza9i_WjFd57", + "outputId": "13ca9181-d0b0-4d66-ed26-7f2d246b636f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9.88903032e+42, 9.88903032e+42, 9.88903032e+42, 9.88903032e+42,\n", + " 9.88903032e+42, 9.88903032e+42, 4.03428793e+02, 1.09663316e+03,\n", + " 2.98095799e+03, 8.10308393e+03, 2.20264658e+04, 5.98741417e+04,\n", + " 1.62754791e+05, 4.42413392e+05, 1.20260428e+06, 3.26901737e+06,\n", + " 8.88611052e+06, 2.41549528e+07, 6.56599691e+07, 1.78482301e+08,\n", + " 4.85165195e+08, 1.31881573e+09, 3.58491285e+09, 9.74480345e+09,\n", + " 2.64891221e+10])" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.exp(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Ny2MooQrFhtJ", + "outputId": "0c9565c0-83fc-45c4-e116-93d8329c1157" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "99" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "cQ_hHQ4PFjtR", + "outputId": "c6c948a5-4f27-498a-c29c-8ce3f3e218a1" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.min(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HriifrkuFlyD", + "outputId": "05ff3c08-979c-4620-9363-db189228af51" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.99920683, -0.99920683, -0.99920683, -0.99920683, -0.99920683,\n", + " -0.99920683, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849,\n", + " -0.54402111, -0.99999021, -0.53657292, 0.42016704, 0.99060736,\n", + " 0.65028784, -0.28790332, -0.96139749, -0.75098725, 0.14987721,\n", + " 0.91294525, 0.83665564, -0.00885131, -0.8462204 , -0.90557836])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sin(arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f17fZlWvXR3S" + }, + "source": [ + "# **Numpy Attributes**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3Pghw6ulXfvp" + }, + "source": [ + "number of dimensions of an array is contained in the ndim attribute\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ha2ndrUdXpEC" + }, + "outputs": [], + "source": [ + "a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "fkudHI_nXWUl", + "outputId": "acb1524b-453a-4a7d-fe51-d3274a762277" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.ndim" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IAwmx231X1RV" + }, + "source": [ + "shape of an array is a tuple of non-negative integers that specify the number of elements along each dimension" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "coweKBdXXno6", + "outputId": "3aa31a0e-8155-4c39-d9f3-8503ad1d8ba8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 4)" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "hfArtu5ZX7nW", + "outputId": "8339d1f4-9446-4309-c87d-75a0b28d00b5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "len(a.shape) == a.ndim" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9FNcmWggYQn4" + }, + "source": [ + "fixed, total number of elements in array is contained in the size attribute" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "LRIwCCnGYLap", + "outputId": "329cd37a-2a18-45c8-bb8c-3b84a9dbdf31" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "12" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.size\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "E-rNuBJLYXyQ", + "outputId": "6cdd81d5-4fca-4aba-ca04-d38010d00c4b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import math\n", + "a.size == math.prod(a.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F6WHA88xYuFL" + }, + "source": [ + "Arrays are typically โ€œhomogeneousโ€, meaning that they contain elements of only one โ€œdata typeโ€. The data type is recorded in the dtype attribute" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "FkqfOxESYZas", + "outputId": "3120f760-c003-4c22-febd-2ddbd73b2557" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int64')" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dwy0qlBcY2zh" + }, + "source": [ + "# **How to create a basic array**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qT_KDS3TmVZ6" + }, + "source": [ + "Besides creating an array from a sequence of elements, you can easily create an array filled with 0โ€™s:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "sUZIXZqpYx2d", + "outputId": "cf95c7de-f10a-4c9c-e2b9-0be55dcc8d59" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0.])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mxL9bx-gmb4I" + }, + "source": [ + "Or an array filled with 1โ€™s:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "YOLpE2WymaYw", + "outputId": "ee7fe970-6375-4d20-dfff-5b059d843148" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1.])" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9vWwqhqbmoL0" + }, + "source": [ + "function empty creates an array whose initial content is random and depends on the state of the memory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UzCXlJmUmgom", + "outputId": "679902fe-104a-49d5-b59f-d96b66edd7f9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1.])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create an empty array with 2 elements\n", + "np.empty(2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Ph5QPB5mmtJa", + "outputId": "781627ba-ca76-43a7-b90f-c0816ef3d6c9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3])" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.arange(4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "LYik1XHImwmp", + "outputId": "93ab5cb2-d3b5-4360-9b0c-940d75b56533" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4, 6, 8])" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.arange(2, 9, 2) # (first number, last number, step size)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "V4QKHDo6nCEJ" + }, + "source": [ + "np.linspace() to create an array with values that are spaced linearly in a specified interval" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "F8XjuSk2mygP", + "outputId": "a9d6cc7a-15e3-43de-9d19-8ec282e3bbf8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , 2.5, 5. , 7.5, 10. ])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linspace(0, 10, num=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RavjabcSnPG2" + }, + "source": [ + "explicitly specify which data type you want using the dtype keyword" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "mnFX-YlRnG6X", + "outputId": "ec91da45-d6b5-4ca2-ef7b-c592581079ea" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.ones(2, dtype=np.int64)\n", + "x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4nuM_iDYnU5i" + }, + "source": [ + "# **Adding, removing, and sorting elements**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VcB0nevWnlGl" + }, + "source": [ + "Sorting an array is simple with np.sort()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "2OUHJ1kgnTDT" + }, + "outputs": [], + "source": [ + "arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "jMkI-T2KnqOv", + "outputId": "91fcfcb3-5759-4fca-c688-678b37ee16dd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5, 6, 7, 8])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sort(arr) # can specify axis, kind, and order" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vPYBkgpvu90W" + }, + "source": [ + "argsort=> indirect sort along a specified axis\n", + "\n", + "lexsort=> indirect stable sort on multiple keys\n", + "\n", + "searchsorted=> find elements in a sorted array\n", + "\n", + "partition=> partial sort" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "gty85E2jnsr_" + }, + "outputs": [], + "source": [ + "a = np.array([1, 2, 3, 4])\n", + "b = np.array([5, 6, 7, 8])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UabDE3Iiva9N", + "outputId": "88ffb69b-0867-4a20-b6a6-008627deec15" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5, 6, 7, 8])" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((a, b))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "TnGbK5i2vflY" + }, + "outputs": [], + "source": [ + "x = np.array([[1, 2], [3, 4]])\n", + "y = np.array([[5, 6]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "d4DD563JvlDC", + "outputId": "0d59226e-492b-498a-8440-10c50120bdbd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((x, y), axis=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1kj9jOCvwLN" + }, + "source": [ + "# **How do you know the shape and size of an array?**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RoOGrwaEv7E8" + }, + "source": [ + "ndarray.ndim=> number of axes, or dimensions, of the array\n", + "\n", + "ndarray.size=> total number of elements of the array. This is the product of the elements of the arrayโ€™s shape\n", + "\n", + "ndarray.shape=> display a tuple of integers that indicate the number of elements stored along each dimension of the array" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "mEb_w610voOP" + }, + "outputs": [], + "source": [ + "array_example = np.array([[[0, 1, 2, 3],\n", + " [4, 5, 6, 7]],\n", + " [[0, 1, 2, 3],\n", + " [4, 5, 6, 7]],\n", + " [[0 ,1 ,2, 3],\n", + " [4, 5, 6, 7]]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "-t6clHOewQ65", + "outputId": "b2d9b84f-3f9b-4d6a-b633-3617f14432ff" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array_example.ndim" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UxYREpsfwUhw", + "outputId": "df610ac0-0add-49c0-b913-72d2289e641a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "24" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array_example.size" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "F3jvhCBb1Rt7", + "outputId": "4cdd1341-8ada-45de-9c05-75450f37474e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 2, 4)" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array_example.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yCAgdPum1amR" + }, + "source": [ + "# **Can you reshape an array?**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l1-BMv_hLfVP" + }, + "source": [ + " arr.reshape() will give a new shape to an array without changing the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "uTiTUHFf1T09", + "outputId": "2f550847-fbab-4802-95c0-f0bfa479c151" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 2 3 4 5]\n" + ] + } + ], + "source": [ + "a = np.arange(6)\n", + "print(a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "QOVrm9f0Ljub", + "outputId": "95146b8a-e7e8-44ac-f0d9-1bb984dc2086" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0 1]\n", + " [2 3]\n", + " [4 5]]\n" + ] + } + ], + "source": [ + "b = a.reshape(3, 2)\n", + "print(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8UWAZqKbGQ6E" + }, + "source": [ + "shape: new shape you want- an array of that length\n", + "\n", + "order: C means to read/write the elements using C-like index order (Row-major language)\n", + "\n", + " F means to read/write the elements using Fortran-like index order (Column-major language)\n", + "\n", + " A means to read/write the elements in Fortran-like index order if a is Fortran contiguous in memory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "c7ezYCpNLqEc" + }, + "outputs": [], + "source": [ + "#np.reshape(a, shape=(1, 6), order='C')\n", + "# now does not accept a shape keyword argument" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "tZGnNey0LsuT", + "outputId": "54a3477b-6b6f-4ce9-dac0-eb29b557d3df" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 2, 3, 4, 5]])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.reshape(a, (1, 6), order='C') # new updated syntax - passed as a positional argument" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fNV4Ioy5HaA1" + }, + "source": [ + "# **How to convert a 1D array into a 2D array (how to add a new axis to an array)**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0DWQtBqzul3k" + }, + "source": [ + "np.newaxis will increase the dimensions of your array by one dimension when used once" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "8RrhvlZ84IFa", + "outputId": "9698b8f8-d303-480f-ba0b-892ebae22d94" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(6,)" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([1, 2, 3, 4, 5, 6])\n", + "a.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Emq2rgoVutCi", + "outputId": "b8d1e6a0-0c1a-4cce-a187-557619520a9b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 6)" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a2 = a[np.newaxis, :]\n", + "a2.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Sz47n22KvVtA" + }, + "source": [ + "convert a 1D array to either a row vector or a column vector using np.newaxis" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "vfp_fCwiuxup", + "outputId": "496418be-fa1b-4b4c-8ba7-a12e56710fe7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 6)" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row_vector = a[np.newaxis, :]\n", + "row_vector.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Opfkki64vbLN", + "outputId": "4ab6ebdf-97a0-496d-ddaf-06e7a502a800" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 1)" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col_vector = a[:, np.newaxis]\n", + "col_vector.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aBhmRTX1vjrr" + }, + "source": [ + "expand an array by inserting a new axis at a specified position with np.expand_dims" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "8VBYtC5fvfmQ", + "outputId": "8ad29c37-a42f-42c4-ec53-76ef2fb1d6d9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(6,)" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([1, 2, 3, 4, 5, 6])\n", + "a.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "MQEBw0u9vopT", + "outputId": "43e686ed-3de4-4b9b-cd15-7d54b331a628" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 1)" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = np.expand_dims(a, axis=1)\n", + "b.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "97bGCJgrvwJj", + "outputId": "5e74323f-023a-4d22-b7dc-bba336b56194" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 6)" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c = np.expand_dims(a, axis=0)\n", + "c.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E8huHSsvv4zA" + }, + "source": [ + "# **Indexing and slicing**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HRRDLdSyv1ID", + "outputId": "4eddf48e-5e27-4892-887e-ed9f744eec05" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([1, 2, 3])\n", + "\n", + "data[1]\n", + "data[0:2]\n", + "data[1:]\n", + "data[-2:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "FU-HS5aYwCi5", + "outputId": "892d9cf0-851f-4511-e23a-b90ea82e9649" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "tycImSqzwQzA", + "outputId": "6d33dcd8-055e-41bc-d2b7-14783cfd405d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2])" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[0:2]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "dmRpn7ARwUKy", + "outputId": "b3b17966-806c-40b2-fb5c-f5ddd60a40cb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[1:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "vUSP2dYFwa36", + "outputId": "621d26db-741a-4a5c-c729-bbcf52f321a4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[-2:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "faDlQuAYwb9j" + }, + "outputs": [], + "source": [ + "a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "CRRhV6So0Ac9", + "outputId": "5d3fe8ea-138d-4ba9-d388-a25830b97b78" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4]\n" + ] + } + ], + "source": [ + "print(a[a < 5])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "9dPgm5bN0EI8", + "outputId": "9e64fdf3-3aca-403e-b0f2-a0434b038136" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 5 6 7 8 9 10 11 12]\n" + ] + } + ], + "source": [ + "five_up = (a >= 5)\n", + "print(a[five_up])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "XRRnaNnZ0Ix-", + "outputId": "e8ef47a6-278c-42b1-ba3d-9aa60ca02cd9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 2 4 6 8 10 12]\n" + ] + } + ], + "source": [ + "divisible_by_2 = a[a%2==0]\n", + "print(divisible_by_2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Hm13aAgl0MlG", + "outputId": "523cd13d-fce0-4f50-c2d4-047f1ab20be8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 3 4 5 6 7 8 9 10]\n" + ] + } + ], + "source": [ + "c = a[(a > 2) & (a < 11)]\n", + "print(c)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "md8hI0LZ0Q8j", + "outputId": "438559fd-29e9-40ab-e0f4-e7e28a19937e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 3 4 5 6 7 8 9 10]\n" + ] + } + ], + "source": [ + "d = a[(a > 2) | (a < 11)]\n", + "print(c)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ffWAoMzS0cuj", + "outputId": "d673b3d2-f75a-4867-e836-f8b35b62a0ef" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[False False False False]\n", + " [ True True True True]\n", + " [ True True True True]]\n" + ] + } + ], + "source": [ + "five_up = (a > 5) | (a == 5)\n", + "print(five_up)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-H9z_xzV0fPA" + }, + "source": [ + "np.nonzero() to select elements or indices from an array" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "RmDBGT9R0gIF" + }, + "outputs": [], + "source": [ + "a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "oo_6warD0s7a", + "outputId": "a70b1ecc-9f4d-452e-9d48-8add79b60341" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(array([0, 0, 0, 0]), array([0, 1, 2, 3]))\n" + ] + } + ], + "source": [ + "b = np.nonzero(a < 5)\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "X2NmH1Nl0v4N", + "outputId": "55140688-3edd-4a05-8af2-9ac56a9ff462" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0, 0)\n", + "(0, 1)\n", + "(0, 2)\n", + "(0, 3)\n" + ] + } + ], + "source": [ + "list_of_coordinates= list(zip(b[0], b[1]))\n", + "\n", + "for coord in list_of_coordinates:\n", + " print(coord)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "wHsMhg59030H", + "outputId": "d1b34c45-d93e-4c19-c6ea-8f4369094e05" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4]\n" + ] + } + ], + "source": [ + "print(a[b])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "dEy-xDHc06_Y", + "outputId": "062bf405-bc87-4f88-99f4-497a2676e3b0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(array([], dtype=int64), array([], dtype=int64))\n" + ] + } + ], + "source": [ + "not_there = np.nonzero(a == 42)\n", + "print(not_there)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-d-vDQ691AaX" + }, + "source": [ + "# **How to create an array from existing data**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "jyyXi7uh0-Fj" + }, + "outputs": [], + "source": [ + "a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "5IAybdRQ1NA-", + "outputId": "3221bb43-86f7-44fa-ba61-73235da53337" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4, 5, 6, 7, 8])" + ] + }, + "execution_count": 113, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr1 = a[3:8]\n", + "arr1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "L2BrcmLi1Y_c" + }, + "outputs": [], + "source": [ + "a1 = np.array([[1, 1],\n", + " [2, 2]])\n", + "\n", + "a2 = np.array([[3, 3],\n", + " [4, 4]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "GjTfYKP_1h-u", + "outputId": "07788797-b415-4287-ef36-8652f3525b4b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 1],\n", + " [2, 2],\n", + " [3, 3],\n", + " [4, 4]])" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.vstack((a1, a2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "8MhvbSFQ1mNV", + "outputId": "82749147-dfd9-40bb-86c3-158d2fd41e60" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 1, 3, 3],\n", + " [2, 2, 4, 4]])" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.hstack((a1, a2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "y-GLkWnN1q68", + "outputId": "1fe25796-5be1-42ad-b8d5-895cc902b0d5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],\n", + " [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]])" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.arange(1, 25).reshape(2, 12)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "fUY8YTEc1vgm", + "outputId": "d604b4f3-851c-418c-e228-89a6b6e6dbf9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[array([[ 1, 2, 3, 4],\n", + " [13, 14, 15, 16]]),\n", + " array([[ 5, 6, 7, 8],\n", + " [17, 18, 19, 20]]),\n", + " array([[ 9, 10, 11, 12],\n", + " [21, 22, 23, 24]])]" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.hsplit(x, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "6WfauPmM12B2", + "outputId": "bf49848e-338b-47c7-c92b-c4bcea8f5d59" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[array([[ 1, 2, 3],\n", + " [13, 14, 15]]),\n", + " array([[ 4],\n", + " [16]]),\n", + " array([[ 5, 6, 7, 8, 9, 10, 11, 12],\n", + " [17, 18, 19, 20, 21, 22, 23, 24]])]" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.hsplit(x, (3, 4))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ru5kJLUb2HGV" + }, + "source": [ + "view method to create a new array object that looks at the same data as the original array (a shallow copy)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "QzTYS2Jp16M1" + }, + "outputs": [], + "source": [ + "a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HVvzNWyG2TFD", + "outputId": "7814268c-edca-4436-a14b-ad92d4a9bf26" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[99, 2, 3, 4],\n", + " [ 5, 6, 7, 8],\n", + " [ 9, 10, 11, 12]])" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b1 = a[0, :]\n", + "b1\n", + "b1[0] = 99\n", + "b1\n", + "a" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sQMlljq02ibE" + }, + "source": [ + "copy method will make a complete copy of the array and its data (a deep copy)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "iAeJXEaw2XNE" + }, + "outputs": [], + "source": [ + "b2 = a.copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wLF4yCqP2vXk" + }, + "source": [ + "# **Basic array operations**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ym_6YW59NBHx" + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "0BI_ynCn2rJ8", + "outputId": "ce46127a-bbe6-4ce9-8a27-ce037f18def0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([1, 2])\n", + "ones = np.ones(2, dtype=int)\n", + "data + ones" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "0dObHxrkMDwZ", + "outputId": "b166e8da-796c-4c18-bc7f-5a9afd3025fb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1])" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data - ones" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Drm3yBGDNetM", + "outputId": "c62f2474-bfcf-40f0-d957-425bd312e4cd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 4])" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data * data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "9QrtF6GeNsI4", + "outputId": "8832d314-18ce-4f10-b1db-9a0a9098b335" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1.])" + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data / data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "yDIbNm5aNwdh", + "outputId": "2285523a-e1e3-47c0-b722-366e00438f01" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([1, 2, 3, 4])\n", + "\n", + "a.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ujVDsmZ3hsNE" + }, + "outputs": [], + "source": [ + "b = np.array([[1, 1], [2, 2]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "4_NJuExMo4E6", + "outputId": "fa4e68d4-553b-48aa-8f5e-0d523ab95ebe" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([3, 3])" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b.sum(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HDqdJUNuo527", + "outputId": "249ec9df-f0fe-4e15-b62c-cb79bdec5519" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4])" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b.sum(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RW9y3IEFo9qY" + }, + "source": [ + "# **Broadcasting**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lW30gKQzp7Q4" + }, + "source": [ + "operation between a vector and a scalar" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "D52RW4t7o8VP", + "outputId": "e3a16074-d651-435f-8754-da1197bebfcf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.6, 3.2])" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([1.0, 2.0])\n", + "data * 1.6" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "na2vs7i3ruHH" + }, + "source": [ + "NumPy understands that the multiplication should happen with each cell. That concept is called broadcasting. Broadcasting is a mechanism that allows NumPy to perform operations on arrays of different shapes." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4S0pu-V1r17b" + }, + "source": [ + "dimensions of both arrays must be equal or when one of them is 1. If the dimensions are not compatible, you will get a ValueError" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bvUsoODqr90q" + }, + "source": [ + "# **More useful array operations**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y6ha9MuJsKr7" + }, + "source": [ + "aggregation functions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "gFOb7wtnrfOf", + "outputId": "0786a42b-91ed-4c09-f77d-d1ed25e9453b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "6HWmmEvNsO44", + "outputId": "adfa95b6-7f15-419c-eb66-ab470acba2e0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "C9bfMnm3sRRg", + "outputId": "b7268562-91cd-4855-ad4b-73c9a1d11a54" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3.0" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "90mHZLxPsSaQ" + }, + "outputs": [], + "source": [ + "a = np.array([[0.45053314, 0.17296777, 0.34376245, 0.5510652],\n", + " [0.54627315, 0.05093587, 0.40067661, 0.55645993],\n", + " [0.12697628, 0.82485143, 0.26590556, 0.56917101]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "sBqPZJL4sXgk", + "outputId": "89431295-dbe0-4d20-cf0c-3d9997067baf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "4.8595784" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ULRe6L9QsacP", + "outputId": "740201e7-863e-4947-c459-3ae33d29725d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.05093587" + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "_wrsUgDrsdC6", + "outputId": "fd37b48a-bd53-48a5-9c0c-08f0122969e6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.12697628, 0.05093587, 0.26590556, 0.5510652 ])" + ] + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.min(axis=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u6nC0QGKslWl" + }, + "source": [ + "# **Creating matrices**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "aR4FL69OsgnR", + "outputId": "17ebfe91-87b1-4b6b-a559-f1aaac62fdbf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([[1, 2], [3, 4], [5, 6]])\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zIDc_M6HvBtA" + }, + "source": [ + "Indexing and slicing operations are useful when youโ€™re manipulating matrices" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "wVY1ga4ZueyV", + "outputId": "504d1f18-5095-4ff5-d79e-940a3db357c9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[0, 1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "z7UtTZLHvNCN", + "outputId": "bc6fa316-8adf-4696-b8d2-f50fa4274aa2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[1:3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HSLvH1ybvRLk", + "outputId": "f55d6ad3-9ea6-4131-c4c5-775503618f11" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 3])" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[0:2, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ZVfFzpSovUCQ", + "outputId": "179218bb-6a60-4a23-dd16-62a5031bb08a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 144, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Htz17AprwJEb", + "outputId": "d43843e3-9bb4-4ece-b9d3-8dc43a8adf42" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "RqT5AWgkwMHL", + "outputId": "5f546cdf-39b4-4669-9209-92413ccf746b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "21" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "cpNZVtcnwVjK", + "outputId": "c21b7769-8794-4519-e02b-265456099c11" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5, 6])" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([[1, 2], [5, 3], [4, 6]])\n", + "data\n", + "data.max(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HFKcjMnBwt9I", + "outputId": "95ff383c-b1ab-4c1d-847f-a864772a3ec2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 5, 6])" + ] + }, + "execution_count": 148, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.max(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "tPmC9lP-w6KE", + "outputId": "379f013b-bb99-4741-c6b3-422a3b5ccb3a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2, 3],\n", + " [4, 5]])" + ] + }, + "execution_count": 149, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([[1, 2], [3, 4]])\n", + "ones = np.array([[1, 1], [1, 1]])\n", + "data + ones" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "qyBjtDbaw75i", + "outputId": "f01b1940-162c-4103-8d3e-ca209e3a67fc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2, 3],\n", + " [4, 5],\n", + " [6, 7]])" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = np.array([[1, 2], [3, 4], [5, 6]])\n", + "ones_row = np.array([[1, 1]])\n", + "data + ones_row" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "VRmVyR0pxAsJ", + "outputId": "3141f6e0-8602-4508-b6ab-6a186582e8d8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]],\n", + "\n", + " [[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]],\n", + "\n", + " [[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]],\n", + "\n", + " [[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]]])" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones((4, 3, 2))\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "nsytRkKnxaki", + "outputId": "55130501-f8f8-40d7-d797-2273d02361a3" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 1.])" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones(3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "EkX6_jVDxkeU", + "outputId": "35c46657-f221-4559-caa4-8ffd8bd1db1e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0.])" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros(3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HLd37QTBxnzV", + "outputId": "eb53b044-3bf5-40a8-d05a-7d0bd2d8aff8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.81060455, 0.60532286, 0.56631466])" + ] + }, + "execution_count": 154, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng = np.random.default_rng() # the simplest way to generate random numbers\n", + "rng.random(3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "bC7HqfRPxqfX", + "outputId": "8cf76c1c-15d7-4f1b-ed02-7a397048d537" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones((3, 2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "fjhjMjp2xwR6", + "outputId": "d16a92b8-8832-48f9-8215-5148d622cb6e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0.],\n", + " [0., 0.],\n", + " [0., 0.]])" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros((3, 2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "M_c_ahsyx54-", + "outputId": "ccf387d0-e05a-4d7a-a38c-19ea8057c9bf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.38179534, 0.50613779],\n", + " [0.16308611, 0.70511673],\n", + " [0.15889459, 0.15898089]])" + ] + }, + "execution_count": 157, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng.random((3, 2))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hr7WT1fZyB6w" + }, + "source": [ + "# **Generating random numbers**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wggYE3RmygpI" + }, + "source": [ + "With Generator.integers, you can generate random integers from low (remember that this is inclusive with NumPy) to high (exclusive)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "G9vq9C7Xx8z_", + "outputId": "71e2eeab-ec25-4d7f-9ff8-1e5c51bc1d92" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2, 1, 1, 0],\n", + " [2, 4, 2, 3]])" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng.integers(5, size=(2, 4))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fcIsQJlfyrTz" + }, + "source": [ + "# **How to get unique items and counts**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "SQln_yKhymko" + }, + "outputs": [], + "source": [ + "a = np.array([11, 11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 14, 18, 19, 20])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "B0PZNbaEzWlt", + "outputId": "d1d42fda-6d0f-42e0-d797-5bd976489d76" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[11 12 13 14 15 16 17 18 19 20]\n" + ] + } + ], + "source": [ + "unique_values = np.unique(a)\n", + "print(unique_values)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "67A8t8sAzaCm", + "outputId": "f524d2a0-2164-4377-ca3d-eb75e75957bc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0 2 3 4 5 6 7 12 13 14]\n" + ] + } + ], + "source": [ + "unique_values, indices_list = np.unique(a, return_index=True)\n", + "print(indices_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "HJ97QdjxzdvN", + "outputId": "1f9fb8a0-a60a-48d3-b393-431a81d1f988" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[3 2 2 2 1 1 1 1 1 1]\n" + ] + } + ], + "source": [ + "unique_values, occurrence_count = np.unique(a, return_counts=True)\n", + "print(occurrence_count)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "UWVZ6qI_zwpo" + }, + "outputs": [], + "source": [ + "a_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "TXtZEgOZz0SN", + "outputId": "ecfb2cb8-57ee-49cf-ff0c-eedb4f490ae9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1 2 3 4 5 6 7 8 9 10 11 12]\n" + ] + } + ], + "source": [ + "unique_values = np.unique(a_2d)\n", + "print(unique_values)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "W0lLJyl6z5GU", + "outputId": "a4e97f5b-b768-4741-e621-6967dc8ccf52" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n" + ] + } + ], + "source": [ + "unique_rows = np.unique(a_2d, axis=0)\n", + "print(unique_rows)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "mc3XKo-Kz98s", + "outputId": "dd3a92a1-620a-450b-d85e-b0abb63681b9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[0 1 2]\n", + "[2 1 1]\n" + ] + } + ], + "source": [ + "unique_rows, indices, occurrence_count = np.unique(\n", + " a_2d, axis=0, return_counts=True, return_index=True)\n", + "print(unique_rows)\n", + "print(indices)\n", + "print(occurrence_count)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eHzYVpd_0KKZ" + }, + "source": [ + "# **Transposing and reshaping a matrix**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "ppBg0hbo0CND", + "outputId": "648bb001-c1c4-4377-c928-af621dc1cb15" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.reshape(2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "kEwK8RZI0WuG", + "outputId": "898e0dc9-9ea0-4179-b88d-1f69ba3b7d53" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.reshape(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "5aDMlFWzoKey", + "outputId": "ffcea6b0-cf19-4671-8e4c-7d1888c1b4b8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 2],\n", + " [3, 4, 5]])" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr = np.arange(6).reshape((2, 3))\n", + "arr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "TVyTU0TpoQBw", + "outputId": "aeb550a9-19b7-473e-9ffd-96451b803832" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 3],\n", + " [1, 4],\n", + " [2, 5]])" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr.transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "1UBzD7IDoS45", + "outputId": "5cdd28e4-c3ee-4a22-ef76-ccc858eb8110" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 3],\n", + " [1, 4],\n", + " [2, 5]])" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr.T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VOSTFgbMoYxC" + }, + "source": [ + "# **How to reverse an array**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cpdz9Wa4L-Vk" + }, + "source": [ + "np.flip() function allows you to flip, or reverse, the contents of an array along an axis" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "Gu4P1lAuoVfz" + }, + "outputs": [], + "source": [ + "arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MZ2vaPmAMeOo" + }, + "outputs": [], + "source": [ + "reversed_arr = np.flip(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IenTGWpgMh49", + "outputId": "569effb3-105b-4b0c-f48b-4f520b7cce9e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Reversed Array: [8 7 6 5 4 3 2 1]\n" + ] + } + ], + "source": [ + "print('Reversed Array: ', reversed_arr)" + ] + }, + { + "cell_type": "code", + "source": [ + "arr_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ], + "metadata": { + "id": "nnMjNaSyN-N5" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "reversed_arr = np.flip(arr_2d)\n", + "print(reversed_arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BFdaJBeCOAtS", + "outputId": "1e5a3616-21dc-42e3-989b-a5be1fa9a3f8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[12 11 10 9]\n", + " [ 8 7 6 5]\n", + " [ 4 3 2 1]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "reversed_arr_rows = np.flip(arr_2d, axis=0)\n", + "print(reversed_arr_rows)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_tPEfzY9ODTZ", + "outputId": "2fa00b5d-d79f-42b8-a672-cd64e932d7f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 9 10 11 12]\n", + " [ 5 6 7 8]\n", + " [ 1 2 3 4]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "reversed_arr_columns = np.flip(arr_2d, axis=1)\n", + "print(reversed_arr_columns)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "053JKwHaOFzp", + "outputId": "1e5ed4e4-4e75-411c-9c61-17605f1d723c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 4 3 2 1]\n", + " [ 8 7 6 5]\n", + " [12 11 10 9]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr_2d[1] = np.flip(arr_2d[1])\n", + "print(arr_2d)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JE_sA2IPOHpY", + "outputId": "fcabf7d8-2077-4d9e-aa70-88d9612919f6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 1 2 3 4]\n", + " [ 8 7 6 5]\n", + " [ 9 10 11 12]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr_2d[:,1] = np.flip(arr_2d[:,1])\n", + "print(arr_2d)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v738R_e8OLaZ", + "outputId": "db4b4661-fd61-4fd4-c739-e61adeaa7a86" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 1 10 3 4]\n", + " [ 8 7 6 5]\n", + " [ 9 2 11 12]]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Reshaping and flattening multidimensional arrays**" + ], + "metadata": { + "id": "Tdz0k2WHORAG" + } + }, + { + "cell_type": "markdown", + "source": [ + "new array created using ravel() is actually a reference to the parent array (i.e., a โ€œviewโ€)" + ], + "metadata": { + "id": "VrfBpYOTOeKG" + } + }, + { + "cell_type": "code", + "source": [ + "x = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])" + ], + "metadata": { + "id": "Md5mdAgSON84" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "When you use flatten, changes to your new array wonโ€™t change the parent array" + ], + "metadata": { + "id": "7nRRWTa7Ot6B" + } + }, + { + "cell_type": "code", + "source": [ + "x.flatten()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Qtna0lMROizR", + "outputId": "cdc8f1dc-993e-4fa5-eddc-253f795f13f8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])" + ] + }, + "metadata": {}, + "execution_count": 190 + } + ] + }, + { + "cell_type": "code", + "source": [ + "a1 = x.flatten()\n", + "a1[0] = 99\n", + "print(x) # Original array\n", + "print(a1) # New array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hYaXdQKnOmBt", + "outputId": "7f140fa4-172f-42c5-b715-f254c21483d0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[99 2 3 4 5 6 7 8 9 10 11 12]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "a2 = x.ravel()\n", + "a2[0] = 98\n", + "print(x) # Original array\n", + "print(a2) # New array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "A8nXSkXkOx20", + "outputId": "3e0c851d-3b20-4983-ab46-698f0aca6fe0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[98 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[98 2 3 4 5 6 7 8 9 10 11 12]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **How to access the docstring for more information**" + ], + "metadata": { + "id": "uFVJIdJ0O7eW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Every object contains the reference to a string, which is known as the docstring" + ], + "metadata": { + "id": "S6CAUg0aPRns" + } + }, + { + "cell_type": "markdown", + "source": [ + "Python has a built-in help() function that can help you access this information" + ], + "metadata": { + "id": "UMuuJdl3PY-9" + } + }, + { + "cell_type": "code", + "source": [ + "help(max)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HbX8cut7O2gF", + "outputId": "eb60934a-a198-4bfe-c212-ab90756b9601" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Help on built-in function max in module builtins:\n", + "\n", + "max(...)\n", + " max(iterable, *[, default=obj, key=func]) -> value\n", + " max(arg1, arg2, *args, *[, key=func]) -> value\n", + " \n", + " With a single iterable argument, return its biggest item. The\n", + " default keyword-only argument specifies an object to return if\n", + " the provided iterable is empty.\n", + " With two or more arguments, return the largest argument.\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Python is a command shell for interactive computing in multiple languages" + ], + "metadata": { + "id": "oIpcyAv3Pkh_" + } + }, + { + "cell_type": "code", + "source": [ + "max?\n" + ], + "metadata": { + "id": "n11tEiq8Pdo6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "a = np.array([1, 2, 3, 4, 5, 6])" + ], + "metadata": { + "id": "y2-MInAqPpJp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "a?" + ], + "metadata": { + "id": "8WpCHTgrPxQQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def double(a):\n", + " '''Return a * 2'''\n", + " return a * 2" + ], + "metadata": { + "id": "Bh4VJCE0P1h4" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "double?" + ], + "metadata": { + "id": "I_UKvjOjP9kv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "double?? # access source code" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OK-3u61hQAUz", + "outputId": "cdd9f614-7d0c-4d7e-f866-ca069b508e90" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m double?? # access source code\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "len?" + ], + "metadata": { + "id": "yBWDA1vbQHyA" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "len??" + ], + "metadata": { + "id": "uCDqdgscQOyy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# **Working with mathematical formulas**" + ], + "metadata": { + "id": "Qev0qBhjQXNs" + } + }, + { + "cell_type": "markdown", + "source": [ + "error = (1/n) * np.sum ( np.square ( predictions - labels ))" + ], + "metadata": { + "id": "Oh5-YFnzVhzP" + } + }, + { + "cell_type": "markdown", + "source": [ + "# **How to save and load NumPy objects**" + ], + "metadata": { + "id": "ZSDK1GC5WAQ8" + } + }, + { + "cell_type": "markdown", + "source": [ + "ndarray objects can be saved to and loaded from the disk files with loadtxt and savetxt functions that handle normal text files" + ], + "metadata": { + "id": "_52bN1zmWsqE" + } + }, + { + "cell_type": "markdown", + "source": [ + "load and save functions that handle NumPy binary files with a .npy file extension" + ], + "metadata": { + "id": "rlpkHerhWu5V" + } + }, + { + "cell_type": "markdown", + "source": [ + "savez function that handles NumPy files with a .npz file extension" + ], + "metadata": { + "id": "QUposGvHW0WU" + } + }, + { + "cell_type": "markdown", + "source": [ + ".npy and .npz files store data, shape, dtype, and other information required to reconstruct the ndarray in a way that allows the array to be correctly retrieved" + ], + "metadata": { + "id": "CCMTz6aYXDjm" + } + }, + { + "cell_type": "markdown", + "source": [ + "If you want to store a single ndarray object, store it as a .npy file using np.save\n", + "\n", + "If you want to store more than one ndarray object in a single file, save it as a .npz file using np.savez\n", + "\n", + "save several arrays into a single file in compressed npz format with savez_compressed" + ], + "metadata": { + "id": "KtNBNPknXM2a" + } + }, + { + "cell_type": "code", + "source": [ + "a = np.array([1, 2, 3, 4, 5, 6])" + ], + "metadata": { + "id": "KNMUrtzBQSso" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "np.save('filename', a)" + ], + "metadata": { + "id": "bEzLX5VxXch3" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "b = np.load('filename.npy')" + ], + "metadata": { + "id": "_eRKYULwXeid" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(b)" + ], + "metadata": { + "id": "67D8R9j2XhPf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "375a4a6a-4ad8-4f93-d806-cc1b181109ee" + }, + "execution_count": 208, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1 2 3 4 5 6]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "save a NumPy array as a plain text file like a .csv or .txt file with np.savetxt" + ], + "metadata": { + "id": "j_LV9l3AYODx" + } + }, + { + "cell_type": "code", + "source": [ + "csv_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])" + ], + "metadata": { + "id": "JqUTqY5HYKRx" + }, + "execution_count": 209, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "np.savetxt('new_file.csv', csv_arr)" + ], + "metadata": { + "id": "erx0NFIOYRn8" + }, + "execution_count": 210, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "np.loadtxt('new_file.csv')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgyYpUKLYUGc", + "outputId": "66a82481-4fa0-4c09-d9ca-0f81bc525054" + }, + "execution_count": 211, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7., 8.])" + ] + }, + "metadata": {}, + "execution_count": 211 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "savetxt() and loadtxt() functions accept additional optional parameters such as header, footer, and delimiter" + ], + "metadata": { + "id": "01z0YARuYdBp" + } + }, + { + "cell_type": "markdown", + "source": [ + "need to work with lines that contain missing values), you will want to use the genfromtxt function" + ], + "metadata": { + "id": "q7sKWctDYmRH" + } + }, + { + "cell_type": "markdown", + "source": [ + "# **Importing and exporting a CSV**" + ], + "metadata": { + "id": "97waexl-YoJL" + } + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "\n", + "# If all of your columns are the same type:\n", + "#x = pd.read_csv('music.csv', header=0).values\n", + "#print(x)\n", + "\n", + "# You can also simply select the columns you need:\n", + "#x = pd.read_csv('music.csv', usecols=['Artist', 'Plays']).values\n", + "#print(x)" + ], + "metadata": { + "id": "hVst0vFvYXUX" + }, + "execution_count": 213, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "a = np.array([[-2.58289208, 0.43014843, -1.24082018, 1.59572603],\n", + " [ 0.99027828, 1.17150989, 0.94125714, -0.14692469],\n", + " [ 0.76989341, 0.81299683, -0.95068423, 0.11769564],\n", + " [ 0.20484034, 0.34784527, 1.96979195, 0.51992837]])" + ], + "metadata": { + "id": "0eQMAj7DYu0_" + }, + "execution_count": 214, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df = pd.DataFrame(a)\n", + "print(df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yVnF30SPZGk0", + "outputId": "b15661cb-6a13-48f1-ca2c-2590615426c5" + }, + "execution_count": 215, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 0 1 2 3\n", + "0 -2.582892 0.430148 -1.240820 1.595726\n", + "1 0.990278 1.171510 0.941257 -0.146925\n", + "2 0.769893 0.812997 -0.950684 0.117696\n", + "3 0.204840 0.347845 1.969792 0.519928\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.to_csv('pd.csv')" + ], + "metadata": { + "id": "m_vFd7gZZIo8" + }, + "execution_count": 216, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "data = pd.read_csv('pd.csv')" + ], + "metadata": { + "id": "MXwoJQWSZLrB" + }, + "execution_count": 217, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "data" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "KNnt83RAZOvV", + "outputId": "68aa2c5a-ac26-4a94-b16e-f6d6ed1f4c62" + }, + "execution_count": 218, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 0 1 2 3\n", + "0 0 -2.582892 0.430148 -1.240820 1.595726\n", + "1 1 0.990278 1.171510 0.941257 -0.146925\n", + "2 2 0.769893 0.812997 -0.950684 0.117696\n", + "3 3 0.204840 0.347845 1.969792 0.519928" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 00123
00-2.5828920.430148-1.2408201.595726
110.9902781.1715100.941257-0.146925
220.7698930.812997-0.9506840.117696
330.2048400.3478451.9697920.519928
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "data", + "summary": "{\n \"name\": \"data\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"Unnamed: 0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 1,\n 3,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.65239564041346,\n \"min\": -2.58289208,\n \"max\": 0.99027828,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.99027828,\n 0.20484034,\n -2.58289208\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.37928491007229853,\n \"min\": 0.34784527,\n \"max\": 1.17150989,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.17150989,\n 0.34784527,\n 0.43014843\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5362339684569137,\n \"min\": -1.24082018,\n \"max\": 1.96979195,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.94125714,\n 1.96979195,\n -1.24082018\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7667710470269397,\n \"min\": -0.14692469,\n \"max\": 1.59572603,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.14692469,\n 0.51992837,\n 1.59572603\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 218 + } + ] + }, + { + "cell_type": "code", + "source": [ + "np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header='1, 2, 3, 4')" + ], + "metadata": { + "id": "46v_6ZnSZSFK" + }, + "execution_count": 219, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "cat np.csv" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "THIk8KvSZS16", + "outputId": "6d89cb5f-62a5-421d-c37a-134059148ff8" + }, + "execution_count": 220, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "# 1, 2, 3, 4\n", + "-2.58,0.43,-1.24,1.60\n", + "0.99,1.17,0.94,-0.15\n", + "0.77,0.81,-0.95,0.12\n", + "0.20,0.35,1.97,0.52\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Plotting arrays with Matplotlib**" + ], + "metadata": { + "id": "Zgl3szZkZaXn" + } + }, + { + "cell_type": "code", + "source": [ + "a = np.array([2, 1, 5, 7, 4, 6, 8, 14, 10, 9, 18, 20, 22])" + ], + "metadata": { + "id": "fp-UPOWKZVtE" + }, + "execution_count": 221, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n" + ], + "metadata": { + "id": "LprhwtU7ZgO1" + }, + "execution_count": 222, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(a)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + }, + "id": "uc66ry3RZice", + "outputId": "d296824a-fbc9-460d-f7a6-22c2cb5d5667" + }, + "execution_count": 223, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 223 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARlpJREFUeJzt3Xd8VfXh//HXvdkJGSQhiyQkYYcNCRhwS0VUFAeiRQW1TqiD2qqtiH61Uq21/lwgrYq4cIKr4gDBQtgQmQk7A0gCgWyy7j2/P0LSUlASSO654/18PO7jUW5u7nn3BHPfnPMZFsMwDEREREQcxGp2ABEREfEsKh8iIiLiUCofIiIi4lAqHyIiIuJQKh8iIiLiUCofIiIi4lAqHyIiIuJQKh8iIiLiUN5mB/hfdrud/fv3ExwcjMViMTuOiIiItIBhGFRUVBAXF4fV+svXNpyufOzfv5+EhASzY4iIiMhpyM/PJz4+/hdf43TlIzg4GGgMHxISYnIaERERaYny8nISEhKaP8d/idOVj6ZbLSEhISofIiIiLqYlQyY04FREREQcSuVDREREHErlQ0RERBxK5UNEREQcSuVDREREHErlQ0RERBxK5UNEREQcSuVDREREHErlQ0RERBxK5UNEREQcSuVDREREHErlQ0RERBxK5UNERMRD1DbYmPpBFp//tN/UHE63q62IiIi0vcNVddz59lrW7D3CN1sKOadbJB2DfE3JovIhIiLi5nYWV3LbW2vILakm2N+bmROGmFY8QOVDRETErWXuPMRd76yjvKaBhPAA3piYTvfoYFMzqXyIiIi4qQ/X5PPH+ZtosBsMTgxj9s1pRHbwMzuWyoeIiIi7sdsNnv0mh1lLdwEwZkAcf722P/4+XiYna6TyISIi4kaO1tmY+mEWX28uBODei7rzwMjuWCwWk5P9h8qHiIiImygur+H2uWv5qaAMXy8rz1zbj6sGxZsd6wQqHyIiIm4gu7CcW99cw/6yGjoG+vDaTWkMTQ43O9ZJqXyIiIi4uB9yivntexuorG0gJTKINyalkxQZZHasn6XyISIi4sLeytzLE19swW5ARkoEM28cTFigeWt4tITKh4iIiAuy2Q2e/HIrczL3AnBdWjxPje2Hr7fz75yi8iEiIuJiKmsbuPf9DSzOLgbgoUt6cdd5KU41o+WXqHyIiIi4kP2lR7l1zhqyCyvw87by9/EDubRfrNmxWkXlQ0RExEVsLCjltrfWcrCilsgOfvxzYhoDE8LMjtVqKh8iIiIuYOHmA9z/QRY19XZ6xQTzz4lpxHcMNDvWaVH5EBERcWKGYfDaj7v5y9fZAJzXoxMv/3oQwf4+Jic7fSofIiIiTqreZmfags3MW5MPwM0ZXXjs8lS8vZx/RssvUfkQERFxQmXV9dz97joyd5VgtcBjl6cyaUSy2bHahMqHiIiIk8ktqeLWOWvYdbCKIF8vXvr1IC7sFW12rDaj8iEiIuJE1u49zB1vr+NwVR2xof68PjGd1LgQs2O1KZUPERERJ/FZ1j5+/9FG6mx2+nUO5fWJaUSF+Jsdq82pfIiIiJjMMAz+36IdvPD9DgAuTo3mhesHEujrnh/T7vn/SkRExEXU1Nt46JONfJa1H4A7z0vhoVG9sFpdY6n006HyISIiYpKSylrufHsda3OP4G218OTYvtwwNNHsWO1O5UNERMQEO4sruXXOGvIOVxPs782sG4cwoluk2bEcQuVDRETEwZbvPMTd76yjvKaBhPAA3pyUTreoYLNjOYzKh4iIiAPNW53Hows202A3GNKlI7NvGkJEBz+zYzmUyoeIiIgD2O0Gz3yTzWtLdwNw5cA4nrmmP/4+XiYnc7xWLQ4/Y8YM0tPTCQ4OJioqirFjx5KTk3Pca2pqapg8eTIRERF06NCBa665hqKiojYNLSIi4kqO1tm45931zcXjvou688L4gR5ZPKCV5WPp0qVMnjyZlStX8t1331FfX8/FF19MVVVV82seeOABvvjiCz766COWLl3K/v37ufrqq9s8uIiIiCsoLq9h/OwVLNxSiK+XlRfGD+SBX/XAYnHfqbSnYjEMwzjdbz548CBRUVEsXbqUc889l7KyMjp16sR7773HtddeC0B2dja9e/dmxYoVnHXWWad8z/LyckJDQykrKyMkxL2WkxUREc+ydX85v3lrDfvLaugY6MPsm9NITwo3O1a7aM3n9xmN+SgrKwMgPLzxRK5bt476+npGjhzZ/JpevXqRmJj4s+WjtraW2tra48KLiIi4uh+yi5ny3nqq6mykdArizUnpdIkIMjuWU2jVbZf/Zrfbuf/++xkxYgR9+/YFoLCwEF9fX8LCwo57bXR0NIWFhSd9nxkzZhAaGtr8SEhION1IIiIiTmHO8j3c9tYaqupsZKREMP/uESoe/+W0y8fkyZPZvHkz8+bNO6MAjzzyCGVlZc2P/Pz8M3o/ERERszTY7Ez/bDOPf7EVuwHXpcXz1q1DCQ30MTuaUzmt2y5Tpkzhyy+/5McffyQ+Pr75+ZiYGOrq6igtLT3u6kdRURExMTEnfS8/Pz/8/DxrfrOIiLifipp6fvv+BpbkHATg4dG9uPPcFI8eWPpzWnXlwzAMpkyZwvz581m8eDHJycnHfX3IkCH4+PiwaNGi5udycnLIy8sjIyOjbRKLiIg4mX2lRxk3awVLcg7i72Nl1o2Dueu8rioeP6NVVz4mT57Me++9x2effUZwcHDzOI7Q0FACAgIIDQ3ltttuY+rUqYSHhxMSEsJvf/tbMjIyWjTTRURExNX8lF/KbW+t5VBlLZ2C/fjnzWkMSAgzO5ZTa9VU259rcG+++SaTJk0CGhcZ+93vfsf7779PbW0to0aN4tVXX/3Z2y7/S1NtRUTEVXy96QAPfJhFTb2dXjHBvD4pnc5hAWbHMkVrPr/PaJ2P9qDyISIizs4wDGYt3c0zC7MBOL9nJ17+9WA6+HnuriUOW+dDRETE09Q12Jm2YDMfrG2cnTlpeBKPXtYbb6/TnkDqcVQ+REREWqisup673lnHit0lWC3w2OWpTBqRfOpvlOOofIiIiLTA3kNV3PrWGnYfrCLI14uXfz2YC3pFmR3LJal8iIiInMKavYe5Y+5ajlTXExfqz+uT0ukdq3GJp0vlQ0RE5BfM31DAQx9vos5mp398KP+8OY2oEH+zY7k0lQ8REZGTMAyDv3+/gxcX7QDgkj4x/H38QAJ8vUxO5vpUPkRERP5HTb2NP3y8kc9/2g/AXed15Q+jemK1asXStqDyISIi8l9KKmu54+11rMs9grfVwp+v6sv49ESzY7kVlQ8REZFjdhZXcMucNeQfPkqIvzezbhzC8G6RZsdyOyofIiIiwLIdh7j73XVU1DSQGB7IG5PS6RbVwexYbknlQ0REPN77q/N4dMFmbHaDtC4dmX1zGuFBvmbHclsqHyIi4rHsdoNnFmbz2o+7ARg7MI5nru2Pn7dmtLQnlQ8REfFI1XUN3D8vi2+3FgHwwMge3HtRt5/dwV3ajsqHiIh4nKLyGn7z1lo27SvD18vKX8f158qBnc2O5TFUPkRExKNs3V/ObW+t4UBZDeFBvsy+aQhpSeFmx/IoKh8iIuIxFmcXMeW9DVTX2ejaKYg3Jw0lMSLQ7FgeR+VDRETcnmEYzMncy5NfbsVuwIhuEbw6YQihAT5mR/NIKh8iIuLWGmx2/u/LrcxdkQvA9ekJPDm2Lz5eVpOTeS6VDxERcVsVNfVMeW8DS7cfxGKBR0b34vZzUjSjxWQqHyIi4pYKjlRz25y15BRV4O9j5YXxg7ikb4zZsQSVDxERcUNZ+aX85q21HKqsJSrYj39OTKN/fJjZseQYlQ8REXEr/9p0gAc+yKK2wU6vmGDemJROXFiA2bHkv6h8iIiIWzAMg5lLd/HswhwALuwVxYs3DKKDnz7qnI1+IiIi4vLqGuz8af4mPlpXAMAtI5J49LJUvKwaWOqMVD5ERMSlVdc1cOucNazcfRirBR6/og83ZySZHUt+gcqHiIi4tA/W5LNy92E6+Hnz0q8HcUHPKLMjySlohRUREXFpy3YcAmDKhd1UPFyEyoeIiLisBpudVXsOAzCia6TJaaSlVD5ERMRlbdxXRmVtA6EBPqTGhZgdR1pI5UNERFxW5s7GWy4ZKRGa2eJCVD5ERMRlLd9ZAjTuUiuuQ+VDRERcUk29jXV5RwAY3k3jPVyJyoeIiLiktXuPUNdgJzrEj5TIILPjSCuofIiIiEvK3NU43mNE10gsFo33cCUqHyIi4pKW72oc76FbLq5H5UNERFxO2dF6NhWUAhps6opUPkRExOWs2l2C3YCUyCBiQwPMjiOtpPIhIiIuJ/PYLZeMrrrq4YpUPkRExOU0DzbVeA+XpPIhIiIupbiihu1FlVgsjSubiutR+RAREZey4tgtl9TYEDoG+ZqcRk6HyoeIiLiU5Tt1y8XVqXyIiIjLMAyjeT8XDTZ1XSofIiLiMvIPH2Vf6VG8rRaGJoWbHUdOk8qHiIi4jOXHZrkMSgwjyM/b5DRyulQ+RETEZTSN9xjeVeM9XJnKh4iIuAS73Wie6aLBpq5N5UNERFxCTlEFJVV1BPh4MTAhzOw4cgZUPkRExCU0LamenhyOr7c+vlyZfnoiIuISMpvW99AUW5en8iEiIk6vwWZn1Z7DgMZ7uAOVDxERcXo/FZRRWdtAaIAPqbEhZseRM6TyISIiTq/plktGSgRWq8XkNHKmVD5ERMTpZTZPsdV4D3eg8iEiIk6tpt7GurwjAAzXeA+3oPIhIiJObe3eI9Q12IkJ8SclMsjsONIGVD5ERMSpNe3nMrxbBBaLxnu4A5UPERFxapnaz8XtqHyIiIjTKjtaz6Z9ZYAGm7oTlQ8REXFaq3aXYDcgJTKI2NAAs+NIG1H5EBERp9U0xXa4rnq4FZUPERFxWsub93PReA93ovIhIiJOqbi8hh3FlVgscFaKrny4E5UPERFxSit2N95ySY0NoWOQr8lppC2pfIiIiFNqvuWiVU3djsqHiIg4HcMwWL7z2GDTrrrl4m5UPkRExOnkHa5mX+lRvK0WhiaHmx1H2pjKh4iIOJ2mKbaDEsMI9PU2OY20NZUPERFxOsu1pLpba3X5+PHHHxkzZgxxcXFYLBYWLFhw3NcnTZqExWI57nHJJZe0VV4REXFzdrvBimNXPjTY1D21unxUVVUxYMAAXnnllZ99zSWXXMKBAweaH++///4ZhRQREc+RU1RBSVUdAT5eDEwIMzuOtINW30gbPXo0o0eP/sXX+Pn5ERMTc9qhRETEczXdchmaHI6vt0YHuKN2+akuWbKEqKgoevbsyd13301JScnPvra2tpby8vLjHiIi4rmabrloiq37avPycckllzB37lwWLVrEM888w9KlSxk9ejQ2m+2kr58xYwahoaHNj4SEhLaOJCIiLqLBZmfVnsOAxnu4szafv3T99dc3/+9+/frRv39/unbtypIlS7joootOeP0jjzzC1KlTm/9cXl6uAiIi4qF+KiijsraBsEAfUmNDzI4j7aTdb6alpKQQGRnJzp07T/p1Pz8/QkJCjnuIiIhnyjw23iMjJQKr1WJyGmkv7V4+CgoKKCkpITY2tr0PJSIiLm75rmPre+iWi1tr9W2XysrK465i7Nmzh6ysLMLDwwkPD+eJJ57gmmuuISYmhl27dvGHP/yBbt26MWrUqDYNLiIi7qWm3sb63FJAg03dXavLx9q1a7ngggua/9w0XmPixInMnDmTjRs38tZbb1FaWkpcXBwXX3wxTz75JH5+fm2XWkRE3M7avUeos9mJCfEnJTLI7DjSjlpdPs4//3wMw/jZr3/zzTdnFEhERDzTf265RGCxaLyHO9PqLSIi4hSaBpuO0H4ubk/lQ0RETFd2tJ5N+8qAxisf4t5UPkRExHSrdpdgNyAlMojY0ACz40g7U/kQERHTZTYtqa6rHh5B5UNEREy3XOM9PIrKh4iImKq4vIYdxZVYLJCh9T08gsqHiIiYqumWS5+4EMICfU1OI46g8iEiIqbKbFrfQ7dcPIbKh4h4vAUb9vFDdrHZMTySYRgs33lssKluuXgMlQ8R8Wg/5Zdy/wdZ3D53LTuKKsyO43HyDlezr/QoPl4WhiaHmx1HHETlQ0Q82rw1+QA02A2e+GLrL24fIW2v6arHoISOBPq2escPcVEqHyLisapqG/g8ax8AFgss23mIb7YUmZzKs/z3fi7iOVQ+RMRjfbXxAFV1NpIiArnn/K4APPXVVmrqbSYn8wx2u8HKpsXFNNjUo6h8iIjHmrcmD4Dx6YlMvqAbsaH+FBw5ymtLd5uczDPkFFVQUlVHgI8XAxPCzI4jDqTyISIeaXtRBevzSvG2WrhmSGcCfb3546W9AXh1yU4KjlSbnND9Na1qOjQ5HF9vfRx5Ev20RcQjfXBsoOlFvaOICvYH4PL+sQxNDqe2wc6Mf2WbGc8jNC0uNkLjPTyOyoeIeJzaBhufri8A4Pr0xObnLRYLj4/pg9UCX206QOaxf5lL26u32Vm1W+M9PJXKh4h4nG+3FHGkup6YEH/O7dHpuK+lxoVw41ldAHj8iy002OxmRHR7GwvKqKqzERboQ2psiNlxxMFUPkTE4zTdcrkuLR4vq+WEr0/9VQ/CAn3YXlTJOytzHR3PIzRdVcpIicB6kp+BuDeVDxHxKPmHq1m28xAWC4xLSzjpa8ICfXnw4p4APP/ddkoqax0Z0SP8Z30P3XLxRCofIuJRPlzbeNXj7G6RJIQH/uzrbhiaSGpsCOU1DTz3bY6j4nmEo3U21ueWAjBC+7l4JJUPEfEYDTY7H609caDpyXhZLTxxZR+gcQn2TQVl7Z7PU6zNPUydzU5sqD/JkUFmxxETqHyIiMdYuv0gheU1hAf5MjI16pSvT08K58qBcRgGTP98s/Z9aSNNU2wzukZgsWi8hydS+RARj9G0idzVgzrj5+3Vou95ZHRvAn29WJ9XyvwN+9oznsdoGmw6QlNsPZbKh4h4hOLyGhZnFwNw/dCTDzQ9mZhQf6Zc2A2AGV9nU1nb0C75PEXZ0Xo27Wu8hTVCg009lsqHiHiEj9cXYLMbpHXpSLeo4FZ9721nJ5MUEcjBilpeWryjnRJ6hpW7S7AbkNIpiJhQf7PjiElUPkTE7RmG0by2x/j0ll/1aOLn7cVjY1IBeGPZHnYdrGzTfJ5Et1wEVD5ExAOs2F1Cbkk1Hfy8uax/7Gm9x4W9ormgZyfqbQb/98VWDT49TU2DTYdriq1HU/kQEbfXdNXjioFxBPp6n/b7TLs8FR8vC0u3H2wePyItV1xew47iSiyWxpku4rlUPkTErZVW1/H15kIArj+NWy7/LaVTB247OwWA//tyKzX1tjPO50marnr0iQshLNDX5DRiJpUPEXFrCzbso67BTmpsCP06h57x+025sBtRwX7kllTz+rI9bZDQcyzXeA85RuVDRNyWYRjNa3tcPzShTRa06uDnzSOX9gLg5cU7OVB29Izf0xMYhvGf8R6aYuvxVD5ExG39VFBGdmEFft5WrhzQuc3ed+zAzgzp0pGj9Tb+8nV2m72vO8s7XM2+0qP4eFlIT+podhwxmcqHiLitD9bkAXBpv1hCA33a7H0tFgtPXNEHiwU+y9rP6j2H2+y93dXynY1XPQYldDyjQb/iHlQ+RMQtVdU28HnWfuD01vY4lb6dQ5s3p5v++RZsdk29/SXLdzWO9xjeTbNcROVDRNzUVxsPUFVnIzkyiGHJ4e1yjN+P6kmIvzfbDpTz/uq8djmGO7DbDVYcG++hJdUFVD5ExE3NO3bLZXx62ww0PZnwIF9+d3FPAJ77NocjVXXtchxXl11YweGqOgJ9vRgQH2Z2HHECKh8i4na2F1WwPq8Ub6uFqwe33UDTk5kwLJGe0cGUVtfz/Hfb2/VYrirz2C2X9KRwfL31sSMqHyLihuatbpxee1HvKKKC23fzMm8vK49f0QeAd1flsnV/ebsezxVlNt9y0XgPaaTyISJupbbBxqcbCgCaB4S2t4yuEVzWPxa7AY9/vkX7vvyXepudVbub9nPReA9ppPIhIm7l2y1FlFbXExvqz7k9OjnsuH+8tDf+PlZW7z3MFxsPOOy4zm5jQSlVdTY6BvqQGhtidhxxEiofIuJWmjaRG5eWgJe1fQaankznsADuOb8bAE9/tY3qugaHHduZNa3vkdE1AqsDfx7i3FQ+RMRt5JVUs2znISwWGDck3uHHv+PcFBLCAygsr+GVH3Y6/PjOqGmwaYZuuch/UfkQEbfx4drGqx5nd4skITzQ4cf39/Hi0ctSAfjHj3vILalyeAZncrTOxvrcUgBGdNVgU/kPlQ8RcQsNNjsfrTu2iZyDBpqezMWp0ZzTPZI6m50nv9xmWg5nsDb3MHU2O7Gh/iRHBpkdR5yIyoeIuIWl2w9SVF5LeJAvv0qNNi2HxWJh+phUvK0Wvt9WxJKcYtOymK1pvMfwrpHtttCbuCaVDxFxC/OODTS9ZnBn0xey6hYVzKThSQD83xdbqWuwm5rHLE3jPbS+h/wvlQ8RcXnF5TUszm68wtAem8idjntHdieygx+7D1UxJ3OP2XEcrqy6ns37ygCt7yEnUvkQEZf30boCbHaDtC4d6RYVbHYcAEL8fXjoksZ9X/7f9zsoLq8xOZFjrdxTgt2AlE5BxIS27yqz4npUPkTEpdntRvMsF2e56tHkmsHxDEgIo6rOxl8WZpsdx6Eydx675aKrHnISKh8i4tJW7ikht6SaYD9vLusfa3ac41itFp44tu/Lp+v3sS73iMmJHGe59nORX6DyISIurWlF0ysGxhHo621ymhMNTAjjurTGBc8e/3wLdrv77/tSVF7DzuJKLBY4K0XlQ06k8iEiLqu0uo6vNxcC5q7tcSq/H9WLYD9vNu0ra75F5M5WHLvq0ScuhLBAX5PTiDNS+RARlzV/wz7qGuykxobQt7PzblrWKdiP+0Z2B+DZb3IoO1pvcqL2tVzjPeQUVD5ExCUZhsG81cdWNB2a4PSLWE0cnkS3qA4crqrjhe+3mx2n3RiGQeaxKx/Du6l8yMmpfIiIS/qpoIycogr8vK1cOaCz2XFOycfLyvQxjfu+zF2RS05hhcmJ2kduSTX7So/i42UhPamj2XHESal8iIhL+mBNHgCX9YslNNDH5DQtc073TozqE43NbvDEF1swDPcbfLr82KqmgxI7OuUAYHEOKh8i4nKqahv4PGs/4Hxre5zKo5el4udtJXNXCQuPDZZ1J823XLSLrfwClQ8RcTlfbtxPVZ2N5MgghiaHmx2nVRLCA7nzvK4APPXVNo7W2UxO1HbsdqN5pssIjfeQX6DyISIup2kTufHpzj/Q9GTuPq8rcaH+7Cs9yqylu8yO02ayCys4XFVHoK8XA+LDzI4jTkzlQ0RcSk5hBRvySvG2WrhmcLzZcU5LgK8Xf7qscfDprKW7yD9cbXKittG0i+3Q5HDTdxYW56a/HSLiUppWNB3ZO5pOwX4mpzl9l/aLISMlgtoGO0//a5vZcdqE1veQllL5EBGXUVNv49MNBQCMH+paA03/l8ViYfoVqXhZLXy9ubD5g9tV1dvsrN5zGIAMDTaVU1D5EBGX8e3WIkqr64kN9efc7p3MjnPGesWEcNNZXYDGfV/qbXaTE52+jQWlVNXZ6BjoQ2qs8642K85B5UNEXEbT2h7j0hLwsrreQNOTeWBkD8KDfNlRXMnbK3LNjnPalu9snOWS0TUCq5v8bKT9qHyIiEvIK6lm+c4SLBaad4l1B6GBPvx+VE8A/v79dg5V1pqc6PQ03TYarvEe0gIqHyLiEpp2gz2neyfiOwaanKZtXZeWQN/OIVTUNPDXhTlmx2m1o3U2NuSVAlrfQ1pG5UNEnF6Dzc5H645tIudiK5q2hJfVwhNX9AHgw3X5/JRfam6gVlqbe5g6m53YUH+SItyrGEr7UPkQEae3JOcgReW1hAf5MrJ3tNlx2sWQLuFcPagzhgHTP9+C3e46+740jfcY3jXSJRd9E8drdfn48ccfGTNmDHFxcVgsFhYsWHDc1w3D4LHHHiM2NpaAgABGjhzJjh072iqviHigphVNrxnc2a0Xr3p4dC+CfL3Iyi/l0w37zI7TYk2Li43opim20jKt/q+4qqqKAQMG8Morr5z0688++ywvvvgis2bNYtWqVQQFBTFq1ChqamrOOKyIeJ6i8hp+yCkGXG8TudaKCvHn3ou6A/CXr7OpqKk3OdGplVXXs2lfGaDxHtJyrS4fo0eP5qmnnuKqq6464WuGYfDCCy/w6KOPcuWVV9K/f3/mzp3L/v37T7hCIiLSEh+vK8BmN0hP6ki3qGCz47S7W0YkkxIZxKHKWl5avNPsOKe0YncJhgFdOwURHeJvdhxxEW16/XLPnj0UFhYycuTI5udCQ0MZNmwYK1asOOn31NbWUl5eftxDRAQad0n9oHkTuUST0ziGr7eVaWMa9315Y9kelu88hGE47/iPFbs0xVZar03LR2FhIQDR0ccPCIuOjm7+2v+aMWMGoaGhzY+EBPe+rCoiLbdydwl5h6sJ9vPm0n4xZsdxmAt6RjGydxQNdoMJ/1zF5S8t48O1+dTU28yOdoLluxoHm2q8h7SG6SO3HnnkEcrKypof+fn5ZkcSESfRNND0ioFxBPp6m5zGsf567QCuS4vHz9vKlv3l/OHjjWTMWMRfvs5mX+lRs+MBjeNxdhZXYrHAWSkqH9JybVo+YmIa/2VSVFR03PNFRUXNX/tffn5+hISEHPcQETlSVcfCzY1XTK/3kFsu/61jkC/PXjuAlY9cxEOX9KJzWABHquuZtXQX5zyzmLveXseKXSWm3pJpmuXSNy6UsEBf03KI62nT8pGcnExMTAyLFi1qfq68vJxVq1aRkZHRlocSETe3IGsfdTY7feJC6BcfanYc03QM8uXu87uy9PfnM+vGIWSkRGA3YOGWQm74x0oueeHfvLcqj+q6Bodna17fQ7dcpJVafR2zsrKSnTv/MwJ7z549ZGVlER4eTmJiIvfffz9PPfUU3bt3Jzk5mWnTphEXF8fYsWPbMreIuDHDMJi32n1XND0d3l5WLukbwyV9Y8gprOCtFXuZv34fOUUV/HH+Jv7y9TbGpydw01lJJDpglVHDMFix6z+Li4m0hsVo5TW7JUuWcMEFF5zw/MSJE5kzZw6GYTB9+nRmz55NaWkpZ599Nq+++io9evRo0fuXl5cTGhpKWVmZbsGIeKgNeUe46tVM/LytrP7TSEIDfMyO5JTKquv5aF0+c1fkkne4GgCLBS7qFcXE4Umc3a39Vhzde6iK859bgo+XhZ+mX+xxY3LkRK35/G51+WhvKh8i8vAnG5m3Jp+rB3Xm+fEDzY7j9Gx2gyU5xczJ3Mu/dxxqfr5rpyAmDk/i6sHxdPBr23Lw7qpc/jR/M0OTw/nwTt1Wl9Z9fquqiohTqaxt4POf9gPuv6JpW/GyWriodzQX9Y5m18FK5mbu5eN1Bew6WMVjn23hrwtzuGZIPBOHJ5EcGdQmx8w8Nt5jhG65yGkwfaqtiMh/+2rjfqrrbKREBjE0OdzsOC6na6cOPHFlX1b+8SIeH5NKSmQQFbUNzMncywXPLWHiG6v5Ibv4jDaus9sN7eciZ0RXPkTEqby/umlF0wTtkHoGgv19mDQimZszkvj3zkO8lbmXH3KKWbr9IEu3HyQpIpCbMpIYlxZPiH/rxtRkF1ZwpLqeQF8v+seHtc//AXFrKh8i4jSyC8vJyi/F22rh6sHxZsdxC1arhfN6dOK8Hp3ILali7opcPlybz96Sap78cit/+zaHqwd3ZmJGEt2jW7Z3TtNVj6HJ4W69y7C0H/2tERGn0bSPy8je0XQK9jM5jfvpEhHEtMtTWfnIRTw1ti/dozpQXWfjnZV5/OrvPzLhnyv5dkshtlPcklm+89gtF433kNOkKx8i4hRq6m3M37APgPFDNdC0PQX5eXPjWV2YMCyRFbtKmJO5l++3FbF8ZwnLd5YQ3zGAm87qwvj0hBNWLq232Vm95zCgxcXk9Kl8iIhT+HZrEaXV9cSF+nNu905mx/EIFouF4d0iGd4tkvzD1byzKpcP1uRTcOQoM77O5u/fb2fswM5MHJ5E79jGqZM/5ZdSVWejY6APvWO0HIKcHpUPEXEK81bnATAuLQEvqwaaOlpCeCCPjO7NAyN78FnWPuZk5rLtQDnz1uQzb00+Q5PDmTQ8iezCCgAyukZg1c9JTpPKh4iYLrekisxdJVgsMC5NA03N5O/jxfj0RK5LS2DN3iO8lbmXhVsKWb3ncPPtFtCS6nJmVD5ExHQfrm0caHpO907Ed2z/fUnk1CwWC0OTwxmaHM6BsqO8uzKP91fnUVJVh8UC53RX+ZDTp/IhIqZqsNn5aG0BoE3knFVsaAAPjurJlAu78e3WIoJ8vegS0TYrpYpnUvkQEVMtyTlIcUUtEUG+jOwdbXYc+QX+Pl5cMSDO7BjiBrTOh4iYat6axoGm1wyJ14JVIh5C/6WLiGkKy2pYnF0MwHVpuuUi4ilUPkTENJ+sL8BuQHpSR7pFdTA7jog4iMqHiJjCbjeal1Mfn55ochoRcSSVDxExxcrdJeQdribYz5vL+sWaHUdEHEjlQ0RM8f6xqx5XDoojwNfL5DQi4kgqHyLicEeq6vhmcyEA1+uWi4jHUfkQEYebv2EfdTY7feJC6Ns51Ow4IuJgKh8i4lCG8Z+BplrRVMQzqXyIiENl5ZeSU1SBv4+VKwZ2NjuOiJhA5UNEHGre6sarHpf2iyU0wMfkNCJiBpUPEXGYytoGvti4H9BAUxFPpvIhIg7zedZ+qutspEQGkZ7U0ew4ImISlQ8RcYh/bTrAE19sAWB8egIWi8XkRCJiFm+zA4iIezMMg5lLd/HswhwALuwVxcThSeaGEhFTqXyISLupa7Dzp/mb+GhdAQC3jEji0ctS8bLqqoeIJ1P5EJF2UVpdx13vrGPl7sNYLfD4FX24OSPJ7Fgi4gRUPkSkze09VMWtc9aw+1AVHfy8eenXg7igZ5TZsUTESah8iEibWr3nMHe8vZbS6no6hwXw+qQ0esWEmB1LRJyIyoeItJlP1xfw0CcbqbcZDIgP5R8T04gK9jc7log4GZUPETljhmHw9++28+LinQBc2i+Gv40bSICvl8nJRMQZqXyIyBmpqbfx+4838sVPjSuX3n1+V35/cU+smtEiIj9D5UNETtuhylrumLuW9XmleFstPH11P65L0061IvLLVD5E5LTsKKrgljlrKDhylNAAH2beOJjhXSPNjiUiLkDlQ0Ra7d87DnLPO+upqG2gS0Qgb0xKp2unDmbHEhEXofIhIq3y3qo8pn22GZvdYGhSOLNuGkJ4kK/ZsUTEhah8iEiL2OwGf/l6G//49x4Arh7UmRnX9MPPWzNaRKR1VD5E5JSq6xq4b14W320tAuB3v+rBlAu7aWdaETktKh/iMg5X1fHh2nwu6RNDUmSQ2XE8RmFZDb+Zu4bN+8rx9bby3LgBXDEgzuxYIuLCVD7EJewsruTWOWvIO1zN3My9fPHbs4no4Gd2LLe3ZX8Zt81ZS2F5DRFBvsy+OY0hXTqaHUtEXJzV7AAip7J85yGufnU5eYerAdhfVsO98zZgsxsmJ3Nv328tYtysFRSW19AtqgMLJo9Q8RCRNqHyIU7tgzV5THxjNeU1DQzp0pH3bh9GgI8Xy3eW8Ny3OWbHc0uGYfD6sj3c/vZaqutsnNM9kk/uHk5CeKDZ0UTETah8iFOy2w1mfL2Nhz7ZRIPd4IoBcbz7m2EM7xrJM9f2B2Dmkl0s3FxoclL30mCzM+2zzTz55VYMA24Ymsgbk9IJDfAxO5qIuBGN+RCnc7TOxgMfZLFwS2OxuPei7jwwsnvzzIorBsSRlVfKG8v38OBHP9EjugMpWuDqjJXX1DPlvQ38uP0gFgv86dLe3HZ2sma0iEib05UPcSrF5TWMn72ChVsK8fWy8vfxA5j6qx4nfAA+cmkvhiaFU1nbwJ1vr6OqtsGkxO4h/3A1187M5MftBwnw8eK1G4fwm3NSVDxEpF2ofIjT2Lq/nLGvLGdjQRkdA3149/ZhXDUo/qSv9fGy8vKEQUQF+7GjuJKHPtmIYWgA6unYkHeEq15dzvaiSqJD/Pjorgwu7hNjdiwRcWMqH+IUFmcXMW5WJvvLakjpFMSCySNITwr/xe+JCvbn1QmD8bZa+HLjAV5ftsdBad3Hlxv3c/3slRyqrCM1NoQFk0fQt3Oo2bFExM2pfIjp5izfw2/eWktVnY2MlAjm3z2CLhEtW0QsLSmcRy/rDcCMr7NZtbukPaO6DcMweOWHnUx5bwO1DXZG9o7io7syiA0NMDuaiHgAlQ8xTYPNzvTPNvP4F1uxGzA+LYG3bh1KaGDrZlZMHJ7ElQPjsNkNJr+3gaLymnZK7B7qGuw8+NFG/vpN41TlW0ck89pNaQT5afy5iDiGyoeYoqKmnt/MXctbK3IBeHh0L/5yTT98vVv/V9JisTDj6n70ignmUGUt97y7nroGe1tHdgtHquq46fVVfLK+AC+rhSfH9uWxMal4WTWwVEQcR+VDHG5f6VHGzVrBkpyD+PtYmTlhMHed1/WMZlYE+noz68YhBPt7sy73CE//a1sbJnYPew5VcfXMTFbtOUwHP2/emJTOTWd1MTuWiHgglQ9xqJ/yS7ny5eVkF1bQKdiPD+7IYHS/2DZ576TIIP5+3UAA5mTuZf6GgjZ5X3ewcncJV726nD2HqugcFsAndw/nvB6dzI4lIh5K5UMc5utNBxg/ewWHKmvpFRPMgskjGJAQ1qbHGJkazW8v7AbAI59uYtuB8jZ9f1f0yboCbnp9FaXV9QxMCGPB5BH0jAk2O5aIeDCVD2l3hmEwc8ku7n53PTX1ds7v2YmP7sqgc1j7zKy4f2QPzukeSU29nbveWUfZ0fp2OY6zs9sNnvsmh9999BP1NoPL+sUy746z6BSs3YBFxFwqH9Ku6hrsPPTJRp5ZmA3ApOFJ/PPmNIL922+vEC+rhRevH0TnsAByS6qZ+kEWdg/bAbem3sa98zbw8g87AZhyQTdeumEQ/j5eJicTEVH5kHZUVl3PxDdW8+HaAqwWeHxMKo9f0Qdvr/b/a9cxyJdZNw7B19vKouxiXjn2IewJDlbUcv3slXy58QA+XhaeGzeAB0f1xKoZLSLiJFQ+pF3sPVTFVTOXs2J3CUG+Xrw+MZ1JI5IdmqFffChPXdkXgOe/386SnGKHHt8M24sqGPvKcrLySwkN8GHurcO4dsjJl6gXETGLyoe0uTV7D3PVq8vZfbCKuFB/Pr57OBf0ijIly3XpCdwwNBHDgPvmZZF/uNqUHI7w4/aDXPNqJvtKj5IcGcT8e4aT0TXC7FgiIidQ+ZA2NX9DARP+sYoj1fX0jw9lweQR9I4NMTXT41ekMiA+lLKj9dz97jpq6m2m5mkP76zM5ZY5a6iobWBocjif3j2clE4dzI4lInJSKh/SJgzD4PnvtvPABz9RZ7NzSZ8YPrgjg6gQf7Oj4eftxas3DiE8yJfN+8qZtmCz2+yAa7MbPPnlVh5dsBmb3eCawfG8fdtQOgb5mh1NRORnqXzIGaupt3HfvCxeXLQDgLvO68qrEwYT4Os8Mys6hwXw0g2DsFrgo3UFvL863+xIZ6yqtoE7317XvJvvgxf34Llx/fHzdp7zLiJyMiofckZKKmuZ8M9VfP7TfrytFp65ph8Pj+7llDMrRnSL5MFRPQF4/PMtZOWXmhvoDBwoa1yi/vttRfh6W3n514OYcmH3M1qiXkTEUVQ+5LTtKKpg7KvLWZd7hBB/b+beOpTx6Ylmx/pFd5/XlVF9oqmz2bn7nXWUVNaaHanVNu8rY+wry9l6oJzIDr7Mu+MsLu8fZ3YsEZEWU/mQ07JsxyGunplJ/uGjJIYH8uk9IxjeLdLsWKdksTSue5ESGcSBshp++/4GGmyuswPud1uLGDdrBUXltXSP6sD8e0YwOLGj2bFERFpF5UNa7f3VeUx8czUVNQ2kdenIgskj6BblOjMrgv19mHXTEAJ9vcjcVcJz3243O9IpGYbBP/+9mzveXsvRehvndI/kk3uGkxAeaHY0EZFWU/mQFrPbDZ7+1zYe+XQTNrvB2IFxvHv7MMJdcGZFj+hgnrmmPwCzlu5i4eYDJif6efU2O39asJmnvtqGYcCEYYm8OSmdkHZcol5EpD15mx1AXEN1XQP3z8vi261FADwwsgf3XtTNpQc4jhkQR1Z+Ka8v28ODH22kW1Sw013BKa+pZ/K76/n3jkNYLPCnS3tz29nJLn3eRUTa/MrH448/jsViOe7Rq1evtj6MOFBReQ3XvbaCb7cW4etl5f9dP5D7RrrHzIqHR/diaHI4lbUN3PXOOqpqG8yO1Cz/cDXXvJrJv3ccItDXi9k3pfGbc1Lc4ryLiGdrl9suffr04cCBA82PZcuWtcdhxAG27C/jypeXs3lfOeFBvrx3+zCuHNjZ7FhtxsercZpqdIgfO4sr+cPHG51iAbL1eUe46tXl7CiuJDrEjw/vzOBXqdFmxxIRaRPtUj68vb2JiYlpfkRGOv8sCDnRom2NMysKy2vo2imIBfeMIC0p3OxYbS4q2J9XJwzG22rhq00HmhftMssXP+3n+tkrOVRZR5+4ED6bfDZ9O4eamklEpC21S/nYsWMHcXFxpKSkMGHCBPLy8n72tbW1tZSXlx/3EPO9vWIvt89dS3WdjRHdIvj0nhEkRrjvzIohXcKZdnkqADO+zmbl7hKHZzAMg5cW7eC372+grsHOyN7RfHhnBjGh5i9RLyLSltq8fAwbNow5c+awcOFCZs6cyZ49ezjnnHOoqKg46etnzJhBaGho8yMhIaGtI0krbd5XxmOfb8FuwA1DE5hzy1BCA9x/ZsXNGV0YOzAOm91gynvrKSyrcdixaxts/O6jn/jbd43Tfn9zdjKv3TSEID+NCRcR92Mx2vkGd2lpKV26dOH555/ntttuO+HrtbW11Nb+Z5XJ8vJyEhISKCsrIyTE3N1QPZFhGIybtYK1uUe4vH8sL90wyKMGOB6ts3HVq8vJLqxgcGIY8+7IwNe7fWekH6mq486317F672G8rBb+78o+TBjWpV2PKSLS1srLywkNDW3R53e7r/MRFhZGjx492Llz50m/7ufnR0hIyHEPMc9nWftZm3uEAB8v/nRZb48qHgABvl7MunEIwf7erM8r5amvtrbr8XYfrOSqV5ezeu9hgv28eXNSuoqHiLi9di8flZWV7Nq1i9jY2PY+lJyhytoGnv7XNgCmXNiN2NAAkxOZIykyiBfGDwRg7opcPl1f0C7HWbGrhKtezWRvSTXxHQP45J7hnNujU7scS0TEmbR5+XjwwQdZunQpe/fuJTMzk6uuugovLy9uuOGGtj6UtLGXF++kuKKWLhGB3HZ2stlxTHVR72juvbAbAH+cv4mt+9t2IPRHa/O5+Y1VlB2tZ1BiGPPvGUGP6OA2PYaIiLNq8/JRUFDADTfcQM+ePbnuuuuIiIhg5cqVdOqkf9E5sz2Hqnh92W4Apl2Wir+Pl8mJzHffyB6c26MTNfV27npnHWXV9Wf8nna7wV+/yeb3H2+k3mZwef9Y3r/9LDoF+7VBYhER19DuA05bqzUDVqTt3DpnDYuzizmvRyfm3JLucWM9fk5pdR2Xv7SMgiNHubBXFP+8OQ2r9fTOTU29jakfZvGvTYUA/PbCbjwwssdpv5+IiDNxqgGn4vwWZxexOLsYHy8Lj41JVfH4L2GBvsy6cQh+3lYWZxfz0uKTD5w+lYMVtYyfvZJ/bSrEx8vC38YN4HcX91TxEBGPpPLh4WobbPzfF40zOm4dkUzXTs61sZoz6Ns5lKfG9gXghUXb+SGnuFXfn1NYwdhXlvNTfilhgT68c9swrhkS3x5RRURcgsqHh3tj2V72llTTKdiPKccGWMqJxqUl8OthiRgG3D8vi/zD1S36vqXbD3LNzEz2lR4lOTKI+feMYFhKRDunFRFxbiofHqyovIaXFu8A4JHRvQj2d/9VTM/E9DGpDEgIo+xoPXe+vY6aetsvvv7tlbncOmcNlbUNDEsOZ/49w0mODHJQWhER56Xy4cFm/Gsb1XU2BieGMdaNdqptL37eXsycMJjwIF+2HijnT/M3n3QHXJvd4IkvtjBtwWZsdoNrh8Tz9m3DCAv0NSG1iIjzUfnwUGv3HmZB1n4sFnjiir4a+NhCcWEBvHzDIKwW+GR9Ae+uOn7TxKraBu6Yu5Y3l+8F4PejevLXa/u3+xLtIiKuRL8RPZDNbjD98y0AXJ+eQL94bdfeGsO7RfKHS3oB8MQXW9iQdwSAA2VHGTdrBYuyi/HztvLKrwcz+YJumj0kIvI/VD480Adr8tmyv5xgf28evLin2XFc0p3npjCqTzT1NoO731nPkpxirnx5OVsPlBPZwZd5d5zFZf21pYCIyMlov24PU1pdx1+/yQZg6q96ENFBK2ueDovFwnPjBrCjeDm7D1Yx6c01APSI7sDrE9NJCA80OaGIiPPSlQ8P8/fvtnOkup4e0R248Sztnnomgv19eO3GIQT6Ni5Ff26PTnx893AVDxGRU9CVDw+SXVjO2ytzAXh8TB98vNQ9z1T36GA+vDODrQfKuXpQZ7x1TkVETknlw0MYhsH0z7ZgN+DSfjEM7xZpdiS30bdzKH07a9CuiEhL6Z9pHuKrTQdYtecw/j5W/nhpb7PjiIiIB1P58ADVdQ08/dU2AO4+rxvxHTUmQUREzKPy4QFmLtnF/rIaOocFcOd5KWbHERERD6fy4ebySqp57cfdAEy7vDf+Pl4mJxIREU+n8uHmnvpqK3UNds7uFsmoPjFmxxEREVH5cGc/bj/It1uL8LJamD4mVct8i4iIU1D5cFN1DXae+KJx/5aJGUl0jw42OZGIiEgjlQ83NXfFXnYdrCIiyJf7RnY3O46IiEgzlQ83VFxRwwvf7wDgoUt6ERrgY3IiERGR/1D5cEPPLsyhsraB/vGhXDsk3uw4IiIix1H5cDMb8o7w8boCAJ64og9WqwaZioiIc1H5cCN2u8HjnzcOMr12SDyDEjuanEhEROREKh9u5OP1BfxUUEYHP2/+cElPs+OIiIiclMqHmyivqefZhdkA3HdRd6KC/U1OJCIicnIqH27i/32/g0OVdaR0CmLi8CSz44iIiPwslQ83sKOogrcy9wLw+Jg++HrrxyoiIs5Ln1IuzjAMnvhiKw12g1+lRnNuj05mRxIREflFKh8u7pstRSzbeQhfbyvTLks1O46IiMgpqXy4sJp6G099tRWAO89NITEi0OREIiIip6by4cJm/7ibgiNHiQ315+7zu5odR0REpEVUPlxUwZFqXl2yE4A/XtqbQF9vkxOJiIi0jMqHi5rxr2xq6u0MSw7n8v6xZscRERFpMZUPF5S56xBfbTqA1QKPX9EHi0X7t4iIiOtQ+XAxDTY7T3zeOMj0xrO60Ds2xOREIiIiraPy4WLeWZlLTlEFHQN9mPqrHmbHERERaTWVDxdSUlnL899tB+DBUT0JC/Q1OZGIiEjrqXy4kOe+3U55TQOpsSFcn55odhwREZHTovLhIjYVlDFvTR4AT1zZBy+rBpmKiIhr8pjyYRgGk99dz7urcqmuazA7TqsYhsH0zzdjGDB2YBzpSeFmRxIRETltHrMy1YrdJXy16QBfbTrAM19nc11aAjdnJLnEkuQLsvaxPq+UQF8vHh7d2+w4IiIiZ8Rjrnz0iQvl0ct6kxgeSHlNA/9ctofznvuB2+as4cftBzEMw+yIJ1VZ28CMf2UDMOXCbsSE+pucSERE5MxYDCf71C0vLyc0NJSysjJCQtp+DQu73WDJ9mLmZOby4/aDzc+ndApi0vAkrh4cTwc/57kgNOPrbby2dDdJEYF888C5+Hl7mR1JRETkBK35/Pa48vHfdh2sZG7mXj5eV0BVnQ2ADn7eXDsknpszupDSqUO7Hv9Udh+sZNQLP1JvM3hjUhoX9oo2NY+IiMjPUflopYqaej5ZV8DcFbnsPlTV/Py5PToxaXgXzu8RhdXBs0sMw+CWOWtYknOQC3p24s1bhjr0+CIiIq2h8nGa7HaDf+88xNzMvSzOKabpzHSJCOSms7owLi2B0AAfh2RZtK2I295ai4+XhW/uP9f0qzAiIiK/ROWjDeSWVPH2ilw+WJtPRU3j1NxAXy+uHtyZiRlJdI8Obrdj1zbYuPjvP5JbUs1d53Xl4dG92u1YIiIibUHlow1V1zUwf8M+3srcy/aiyubnR3SLYGJGEhf1jm7zBb9eXbKTZxfmEBXsx+IHz3eqAbAiIiIno/LRDgzDYMWuEuZk7uX7bUXYj521+I4B3HRWF8anJ7TJXiuFZTVc+LclVNfZ+Pv4AVw1KP6M31NERKS9qXy0s4Ij1by9MpcP1uRTWl0PgL+PlbEDOzNxeNIZbXN/37wNfJa1nyFdOvLxXRlYLFpGXUREnJ/Kh4PU1Nv4LGsfczJz2XagvPn5ocnhTBqexMWp0Xh7tXwdtzV7DzNu1gosFvhiytn07RzaHrFFRETaXGs+vzWY4Az4+3gxPj2R69ISWLP3CG9l7mXhlkJW7znM6j2HiQ3158azunB9egIRHfx+8b1sdoPpn20B4Pr0RBUPERFxW7ry0cYOlB3l3ZV5vL86j5KqOgB8va2M6R/HpOFJ9Is/eal4Z2Uujy7YTIi/Nz88eP4py4qIiIgz0W0XJ1BTb+OrjQd4a8VeNhaUNT8/ODGMicOTGN03Fl/vxlsypdV1nP/cEkqr63niij5MHJ5kUmoREZHTo/LhRAzDYEN+KW9l7uVfmw5Qb2s83Z2C/ZgwLJFfD0vk5cU7mbsil57RwXx179mtGiciIiLiDFQ+nFRxeQ3vrc7j3VV5HKyoBcDHy4LNbmA34P3bzyKja4TJKUVERFqvNZ/f+ie2A0WF+HP/yB4sf+hC/t/1AxmcGEa9rbF4XNY/VsVDREQ8gma7mMDX28qVAztz5cDObCooY/Xew4xL02JiIiLiGVQ+TNYvPvRnZ8CIiIi4I912EREREYdS+RARERGHUvkQERERh1L5EBEREYdS+RARERGHUvkQERERh1L5EBEREYdS+RARERGHUvkQERERh2q38vHKK6+QlJSEv78/w4YNY/Xq1e11KBEREXEh7VI+PvjgA6ZOncr06dNZv349AwYMYNSoURQXF7fH4URERMSFtEv5eP7557n99tu55ZZbSE1NZdasWQQGBvLGG2+0x+FERETEhbR5+airq2PdunWMHDnyPwexWhk5ciQrVqw44fW1tbWUl5cf9xARERH31ea72h46dAibzUZ0dPRxz0dHR5OdnX3C62fMmMETTzxxwvMqISIiIq6j6XPbMIxTvrbNy0drPfLII0ydOrX5z/v27SM1NZWEhAQTU4mIiMjpqKioIDQ09Bdf0+blIzIyEi8vL4qKio57vqioiJiYmBNe7+fnh5+fX/OfO3ToQH5+PsHBwVgsljbNVl5eTkJCAvn5+YSEhLTpe7sbnauW07lqOZ2rltO5ah2dr5Zrr3NlGAYVFRXExcWd8rVtXj58fX0ZMmQIixYtYuzYsQDY7XYWLVrElClTTvn9VquV+Pj4to51nJCQEP3lbCGdq5bTuWo5nauW07lqHZ2vlmuPc3WqKx5N2uW2y9SpU5k4cSJpaWkMHTqUF154gaqqKm655Zb2OJyIiIi4kHYpH+PHj+fgwYM89thjFBYWMnDgQBYuXHjCIFQRERHxPO024HTKlCktus3iSH5+fkyfPv24MSZycjpXLadz1XI6Vy2nc9U6Ol8t5wznymK0ZE6MiIiISBvRxnIiIiLiUCofIiIi4lAqHyIiIuJQKh8iIiLiUB5TPl555RWSkpLw9/dn2LBhrF692uxITmnGjBmkp6cTHBxMVFQUY8eOJScnx+xYLuEvf/kLFouF+++/3+woTmnfvn3ceOONREREEBAQQL9+/Vi7dq3ZsZyOzWZj2rRpJCcnExAQQNeuXXnyySdbtF+Gu/vxxx8ZM2YMcXFxWCwWFixYcNzXDcPgscceIzY2loCAAEaOHMmOHTvMCesEful81dfX89BDD9GvXz+CgoKIi4vj5ptvZv/+/Q7J5hHl44MPPmDq1KlMnz6d9evXM2DAAEaNGkVxcbHZ0ZzO0qVLmTx5MitXruS7776jvr6eiy++mKqqKrOjObU1a9bw2muv0b9/f7OjOKUjR44wYsQIfHx8+Prrr9m6dSt/+9vf6Nixo9nRnM4zzzzDzJkzefnll9m2bRvPPPMMzz77LC+99JLZ0UxXVVXFgAEDeOWVV0769WeffZYXX3yRWbNmsWrVKoKCghg1ahQ1NTUOTuocful8VVdXs379eqZNm8b69ev59NNPycnJ4YorrnBMOMMDDB061Jg8eXLzn202mxEXF2fMmDHDxFSuobi42ACMpUuXmh3FaVVUVBjdu3c3vvvuO+O8884z7rvvPrMjOZ2HHnrIOPvss82O4RIuu+wy49Zbbz3uuauvvtqYMGGCSYmcE2DMnz+/+c92u92IiYkx/vrXvzY/V1paavj5+Rnvv/++CQmdy/+er5NZvXq1ARi5ubntnsftr3zU1dWxbt06Ro4c2fyc1Wpl5MiRrFixwsRkrqGsrAyA8PBwk5M4r8mTJ3PZZZcd93dMjvf555+TlpbGuHHjiIqKYtCgQfzjH/8wO5ZTGj58OIsWLWL79u0A/PTTTyxbtozRo0ebnMy57dmzh8LCwuP+OwwNDWXYsGH6Xd9CZWVlWCwWwsLC2v1Y7bbCqbM4dOgQNpvthKXdo6Ojyc7ONimVa7Db7dx///2MGDGCvn37mh3HKc2bN4/169ezZs0as6M4td27dzNz5kymTp3KH//4R9asWcO9996Lr68vEydONDueU3n44YcpLy+nV69eeHl5YbPZ+POf/8yECRPMjubUCgsLAU76u77pa/LzampqeOihh7jhhhscsjGf25cPOX2TJ09m8+bNLFu2zOwoTik/P5/77ruP7777Dn9/f7PjODW73U5aWhpPP/00AIMGDWLz5s3MmjVL5eN/fPjhh7z77ru899579OnTh6ysLO6//37i4uJ0rqRd1NfXc91112EYBjNnznTIMd3+tktkZCReXl4UFRUd93xRURExMTEmpXJ+U6ZM4csvv+SHH34gPj7e7DhOad26dRQXFzN48GC8vb3x9vZm6dKlvPjii3h7e2Oz2cyO6DRiY2NJTU097rnevXuTl5dnUiLn9fvf/56HH36Y66+/nn79+nHTTTfxwAMPMGPGDLOjObWm3+f6Xd86TcUjNzeX7777ziFXPcADyoevry9Dhgxh0aJFzc/Z7XYWLVpERkaGicmck2EYTJkyhfnz57N48WKSk5PNjuS0LrroIjZt2kRWVlbzIy0tjQkTJpCVlYWXl5fZEZ3GiBEjTpiyvX37drp06WJSIudVXV2N1Xr8r2YvLy/sdrtJiVxDcnIyMTExx/2uLy8vZ9WqVfpd/zOaiseOHTv4/vvviYiIcNixPeK2y9SpU5k4cSJpaWkMHTqUF154gaqqKm655RazozmdyZMn89577/HZZ58RHBzcfK80NDSUgIAAk9M5l+Dg4BPGwgQFBREREaExMv/jgQceYPjw4Tz99NNcd911rF69mtmzZzN79myzozmdMWPG8Oc//5nExET69OnDhg0beP7557n11lvNjma6yspKdu7c2fznPXv2kJWVRXh4OImJidx///089dRTdO/eneTkZKZNm0ZcXBxjx441L7SJful8xcbGcu2117J+/Xq+/PJLbDZb8+/78PBwfH192zdcu8+ncRIvvfSSkZiYaPj6+hpDhw41Vq5caXYkpwSc9PHmm2+aHc0laKrtz/viiy+Mvn37Gn5+fkavXr2M2bNnmx3JKZWXlxv33XefkZiYaPj7+xspKSnGn/70J6O2ttbsaKb74YcfTvr7aeLEiYZhNE63nTZtmhEdHW34+fkZF110kZGTk2NuaBP90vnas2fPz/6+/+GHH9o9m8UwtGyeiIiIOI7bj/kQERER56LyISIiIg6l8iEiIiIOpfIhIiIiDqXyISIiIg6l8iEiIiIOpfIhIiIiDqXyISIiIg6l8iEiIiIOpfIhIiIiDqXyISIiIg6l8iEiIiIO9f8Ba+0PNXt1J7AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = np.linspace(0, 5, 20)\n", + "y = np.linspace(0, 10, 20)\n", + "plt.plot(x, y, 'purple') # line\n", + "plt.plot(x, y, 'o') # dots" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + }, + "id": "QWaGwmoVZkll", + "outputId": "aae3083a-a455-41fb-9c52-4aa164c17567" + }, + "execution_count": 224, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 224 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPFhJREFUeJzt3Xl4VOXB/vH7zEA2CCMEQoKExQhiiICsRnBBdjCsAVSwLu2rpbgV+2u1fTXSatHat7VVi1srtKgsgYBBDKUgIhUNECNGFBCCgGQBApkkkG3m/P5A0CzEAJM5M5Pv57rmut6ZPHjud2rJ3fOc53kM0zRNAQAAeInN6gAAAKBpoXwAAACvonwAAACvonwAAACvonwAAACvonwAAACvonwAAACvonwAAACvamZ1gJrcbrcOHz6s8PBwGYZhdRwAANAApmmquLhYHTp0kM1W/70Nnysfhw8fVkxMjNUxAADABTh48KA6duxY7xifKx/h4eGSTodv1aqVxWkAAEBDOJ1OxcTEnP09Xh+fKx9nplpatWpF+QAAwM805JEJHjgFAABeRfkAAABeRfkAAABeRfkAAABeRfkAAABeRfkAAABeRfkAAABeRfkAAABe5XObjAEAgMbhcpvKyClUQXGZIsNDNLBrG9lt3j9H7bzvfGzatEmJiYnq0KGDDMPQypUrq/3cNE09/vjjio6OVmhoqIYPH649e/Z4Ki8AALgA6dm5GvLMBt366kd6cHGWbn31Iw15ZoPSs3O9nuW8y0dpaal69+6tF198sc6f/+EPf9Bf//pXvfTSS/r444/VokULjRo1SmVlZRcdFgAAnL/07FzNWpSp3KLqv4vziso0a1Gm1wuIYZqmecF/2DCUmpqqiRMnSjp916NDhw56+OGH9Ytf/EKSVFRUpPbt22vBggW65ZZbfvCf6XQ65XA4VFRUxNkuAABcJJfb1JBnNtQqHmcYkqIcIdr8q5suagrmfH5/e/SB05ycHOXl5Wn48OFnP3M4HBo0aJC2bNlS558pLy+X0+ms9gIAAJ6RkVN4zuIhSaak3KIyZeQUei2TR8tHXl6eJKl9+/bVPm/fvv3Zn9U0b948ORyOs6+YmBhPRgIAoEkrKG7YYw8NHecJli+1ffTRR1VUVHT2dfDgQasjAQAQMCLDQzw6zhM8Wj6ioqIkSfn5+dU+z8/PP/uzmoKDg9WqVatqLwAAcPEqSiuU9+RmhTkrpHM84mlIinacXnbrLR4tH127dlVUVJTWr19/9jOn06mPP/5YCQkJnrwUAACoR8HnBXpt4GvasSBL12w4KBmGaj5OeuZ9cmKcV/f7OO9NxkpKSvTVV1+dfZ+Tk6OsrCy1adNGnTp10kMPPaQnn3xS3bp1U9euXfXYY4+pQ4cOZ1fEAACAxmOaprJez9Ka+9ao6lSVWka31OMvjde0tsGam7az2sOnUY4QJSfGaXR8tFcznnf52LZtm4YOHXr2/Zw5cyRJd9xxhxYsWKBf/vKXKi0t1T333KMTJ05oyJAhSk9PV0iI9+aSAABoiipKKrT6p6v12RufSZJiR8Zq0r8mqUVkC3WRNCIuyid2OL2ofT4aA/t8AABw/vI+zVPKtBQd231Mht3QTU/epMG/HCzDS+XifH5/c7YLAAB+zDRNbX9lu9IfTJer3KVWHVtpyltT1GlIJ6ujnRPlAwAAP1XuLFfaPWn6fMnnkqRu47pp4sKJCosIszhZ/SgfAAD4odzMXC2btkzH9x6XrZlNw54epoSfJ3htmuViUD4AAPAjpmlq64tb9e+H/y1XhUuOzg4lLU5Sx2s6Wh2twSgfAAD4ibITZXr7x2/rixVfSJJ6TOyh8f8Yr9DWoRYnOz+UDwAA/MA3Gd8oZXqKTuw/IVtzm0b+caQG3j9QhuH70yw1UT4AAPARLrdZax8OmyF99NxH+s+v/iN3pVutL2utpCVJ6tC/g9VxLxjlAwAAH5CenVt7B9LwYA3/4oSav3F6NUtcUpwSX0tUiMO/N+6kfAAAYLH07FzNWpSpmrt+5jnLtOjSEA2La6Of3neN+v+0v19Os9Tk0YPlAADA+XG5Tc1N21mreEiSvi0a2dOvUN97A6N4SJQPAAAslZFTWG2qpRbDUP7JSmXkFHovVCOjfAAAYKGC4nqKxwWM8weUDwAALBTZMrhh48L9+yHT76N8AABgkZL8Eu3+2bsKc1ZI5zhk3pAU7Ti97DZQUD4AALBAzoYcvdznZe1ft0+DNx+WDEM1Hyc98z45MU52PzizpaEoHwAAeJHb5dbGJzbqn8P/qZK8ErXr2U6/XzxNL83sq6ga+3dEOUI0f2ZfjY6Ptiht42CfDwAAvKQ4t1grZqzQ/vf2S5Ku/snVGvOXMWoe1lyjJY2Ii6q1w2kg3fE4g/IBAIAX7P33Xq2YuUInj5xUUMsg3fzyzbrqtquqjbHbDCXERliU0HsoHwAANCJ3lVvvJb+nzfM2S6bUvnd7TV06VRHdA79knAvlAwCARuI85NTy25brwAcHJEn9ftpPo/88Ws1Cmvav36b9/z0AAI1kz5o9Sv1Rqk4dO6Wg8CCNf228ek7raXUsn0D5AADAg1yVLm34zQZ9+OyHkqTovtFKWpqkNrGBs0/HxaJ8AADgIUUHipRyS4oObTkkSRp4/0CNeHaEmgXz6/b7+DYAAPCAXW/v0so7V6rseJmCHcGa8I8JunLylVbH8kmUDwAAGsjlNmvtw6Eqt9b9ap0+fu5jSdKlAy/VlMVT1Lpra4vT+i7KBwAADZCenau5aTuVW/Td6bLtWwRpyEd5arVmnyTpmjnXaPi84bIH2a2K6RcoHwAA/ID07FzNWpSpmke/5ZeUa3l8a43KjdScuTfpisQrLMnnbzjbBQCAerjcpuam7axVPCRJxumtz7MmX67Lx3X3ai5/RvkAAKAeGTmF1aZaajEM5ZdUKCOn0Huh/BzlAwCAehQU11M8LmAcKB8AANQrooF7dESGhzRyksBB+QAA4ByOfnlUn05foTBnhWTW+dSHDEnRjm+X3aJBKB8AANTh0399qlf6v6KjnxXohm0FkmHIqDHmzPvkxDjZbTV/inOhfAAA8D0VpRVadfcqrfzRSlWWVqrrTV31h1W36aWZfRXlqD61EuUI0fyZfTU6PtqitP6JfT4AAPhWwecFSpmWoiM7j8iwGboh+QZd95vrZLPbNDo6XCPiomrtcModj/NH+QAANHmmaSprQZbWzF6jqlNVahndUlPenKIuN3apNs5uM5QQG2FNyABC+QAANGkVJRV6Z9Y72rFohyQpdmSsJv1rklpEtrA4WeCifAAAmqz8HflaNm2Zju06JsNuaOjvhmrIr4bIYCqlUVE+AABNjmmaynw1U+8+8K5c5S6FXxqupMVJ6jSkk9XRmgTKBwCgSSl3lmv1vauVvThbktRtbDdNXDhRYW3DLE7WdFA+AABNRu4nuUqZlqLCrwpla2bTsHnDlDAngWkWL6N8AAACnmma2vq3rfr3nH/LVeGSo5NDUxZPUUxCjNXRmiTKBwAgoLjcZrW9OHq1DtM796Tpi+VfSJKuGH+FJrw+QaFtQi1O2nRRPgAAASM9O1dz03Yqt+i7E2ZbnqzUgM9ydVlzm0Y8O0KDHhgkw2CaxUqUDwBAQEjPztWsRZmqefxbSWgzvTcxVsMTuuqaiT0tyYbqONsFAOD3XG5Tc9N21ioekk4fCGcYeuGLPLncdZ9MC++ifAAA/F5GTmG1qZaaTEm5RWXKyCn0XiicE+UDAOD3CpznLh7VxhU3bBwaF+UDAODXTh49qc/mbW7Q2MjwkEZOg4agfAAA/NbXH3ytl/q8pMqUL9WiuOKc4wxJ0Y4QDezaxnvhcE6UDwCA3zHdpjY9tUkLb1yo4m+K1a57hB4be6UMnS4a33fmfXJinOzsZOoTWGoLAPArJfklSr09VfvW7ZMk9bq9l8b9bZyCWgbpks6OWvt8RDlClJwYp9Hx0VZFRg2UDwCA38h5L0crbluhkrwSNQttprEvjlWfO/uc3TRsdHy0RsRFVdvhdGDXNtzx8DGUDwCAz3O73Nr05CZt+u0mmW5T7eLaaeqyqWoX167WWLvNUEJshAUp0VCUDwCATyvOLdaKGSu0/739kqQ+d/fR2OfHqnlYc2uD4YJRPgAAPmvvur1KnZmq0oJSNW/RXDe/dLN6zexldSxcJMoHAMDnuKvc2vjERn3w+w8kU2rfq72SliSpbY+2VkeDB3h8qa3L5dJjjz2mrl27KjQ0VLGxsfrd734n02Q/fQDAD3MecmrhTQv1wVOni0e/e/vpxx/9mOIRQDx+5+OZZ57R/PnztXDhQvXs2VPbtm3TXXfdJYfDoQceeMDTlwMABJA9a/Yo9UepOnXslILCg5T4SqLib4m3OhY8zOPl48MPP9SECRM0btw4SVKXLl301ltvKSMjw9OXAgD4IZfbrLUUVi63Nvxmgz589kNJUtTVUZq6dKraXM6OpIHI4+Xj2muv1SuvvKLdu3ere/fu+vTTT7V582b96U9/qnN8eXm5ysvLz753Op2ejgQA8BHp2bm1NgFr3yJI12XkK3z1XknSgPsGaOSzI9UshMcSA5XH/5N95JFH5HQ61aNHD9ntdrlcLj311FOaMWNGnePnzZunuXPnejoGAMDHpGfnataiTNV8AjC/pFwpcZdo5KF2euh/b1TclDhL8sF7PP7A6dKlS/XGG2/ozTffVGZmphYuXKg//vGPWrhwYZ3jH330URUVFZ19HTx40NORAAAWc7lNzU3bWat4SJK+3Z3008nddMWkK72aC9bw+J2P//f//p8eeeQR3XLLLZKkq666Sl9//bXmzZunO+64o9b44OBgBQcHezoGAMCHZOQUVptqqcUwlF9aoYycQnYnbQI8fufj5MmTstmq/2PtdrvcbrenLwUA8BMFxfUUjwsYB//m8TsfiYmJeuqpp9SpUyf17NlTn3zyif70pz/p7rvv9vSlAAB+IiK4YVuhR4aHNHIS+AKPl4/nn39ejz32mH72s5+poKBAHTp00L333qvHH3/c05cCAPiBwq8K9dmMVIVdE6mT4c3PPuPxfYakKMe3y24R8AzTx7YedTqdcjgcKioqUqtWrayOAwC4CNlLspX2P2mqKK7Q4X6RWju8kwyp2oOnZ6rI/Jl9NTo+2oKU8ITz+f3t8Wc+AACoPFWptHvTtPyW5aoorlCnIZ307MoZemlmX0U5qk+tRDlCKB5NDDu4AAA86uiuo0qZlqL8HfmSIV336+t04xM3ytbMptEdW2lEXFStHU7tttpTMQhclA8AgMfsWLRDq3+6WpWllQprF6bJb0xW7IjYamPsNoPltE0c5QMAcNEqT1ZqzX1rlPV6liSpy9AumvzGZIVHh1sbDD6J8gEAuCgFnxcoZVqKjuw8IhnSDY/foOsfu142O48Vom6UDwDABTFNU1kLsrRm9hpVnapSy6iWmvzGZHW9qavV0eDjKB8AgPNWUVKhd372jnb8a4ck6bIRl2nSvyapZfuWFieDP6B8AADOS/6OfC2btkzHdh2TYTN0429v1HWPXieDFStoIMoHAKBBTNNU5quZSn8wXVVlVQq/NFxT3pqiztd1tjoa/AzlAwBQjctt1tqHo6qkQqvvXa3sxdmSpMvHXK5J/5yksLZhFqeFP6J8AADOSs/O1dy0ncot+u502cjQ5rpmw0FFbDokw25o2Lxhuvbha5lmwQWjfAAAJJ0uHrMWZarmgV8FJyv09jXtNa7SrUf+b7RiEmIsyYfAwSJsAIBcblNz03bWKh6Szp5Cu31cV3UY1NGruRCYKB8AAGXkFFabaqnFMJRXXK6MnELvhULAonwAAFRQXE/xuIBxQH0oHwAAXaKGPTwaGR7SyEnQFFA+AKCJO7jloLZPXKowZ4Vk1vnUhwxJ0Y7Ty26Bi0X5AIAmynSb+u+z/9WC6xeo+OsiDcsulAyj1j2QM++TE+NkZ3ktPICltgDQBJ08elIr71ipPWv2SJJ6Tu+pxFcSNe5AYa19PqIcIUpOjNPo+Gir4iLAUD4AoIn5+oOvtfzW5Sr+plj2YLvG/HWM+v5PXxmGodHx0RoRF1Vrh1PueMCTKB8A0ESYblObn96s9x5/T6bLVET3CE1dNlXte7WvNs5uM5QQG2FRSjQFlA8AaAJKC0q1YuYK7Vu3T5LUa2YvjZs/TkEtgyxOhqaI8gEAAS7nvRytuG2FSvJK1Cy0mca+OFZ97uwjw2AqBdagfABAgHK73Nr05CZt+u0mmW5T7eLaKWlpkiJ7RlodDU0c5QMAAlBxbrFWzFih/e/tlyT1uauPxjw/RkEtmGaB9SgfABBg9q7bq9SZqSotKFXzFs01bv449b69t9WxgLMoHwAQINxVbm18YqM++P0HkilFXhWpqUunqm2PtlZHA6qhfACAn3G5zVr7cJQeLtby25brwAcHJEn97u2nUX8epeahzS1OC9RG+QAAP5KenVtrB9K2Qc3Ub80+ddheoKDwICW+kqj4W+ItTAnUj/IBAH4iPTtXsxZlqubRb0fLK7V2WIwmtw3Tb56/WRHd2CAMvo2D5QDAD7jcpuam7axVPCRJhiHJ0JbrO+qSWE6dhe+jfACAH8jIKaw21VKLIeU6y5SRU+i9UMAFonwAgB8oKK6neFzAOMBKlA8A8ANhpZUNGhcZHtLISYCLR/kAAB/3xYovtPXmxQpzVkhmnU99yJAU7Ti97BbwdZQPAPBRVeVVWnP/Gi2dslSVJ8o19mCpDMNQzePgzrxPToyT3cZhcfB9LLUFAB9U+FWhUqanKDczV5J07S+v1U1P3qThuwpq7fMR5QhRcmKcRsdHWxUXOC+UDwDwMZ8v/Vxv/+RtVRRXKDQiVJP+OUndxnaTJI2Oj9aIuKhaO5xyxwP+hPIBAD6i8lSl1v58rba/vF2S1GlIJ015a4padWxVbZzdZighlo3E4L8oHwDgA47uOqqUaSnK35EvGdKQR4do6NyhsjXj0TwEHsoHAFhsxxs7tPre1aosrVRYuzBNXjRZsSNjrY4FNBrKBwBYpPJkpd594F198vdPJEldbuyiyW9OVnh0uMXJgMZF+QAACxzZeUTLpi3Tkc+PSIZ0w+M36PrHrpfNzjQLAh/lAwC8LGtBltbMXqPKk5VqGdVSk9+YrK43dbU6FuA1lA8AaAQut1lrOazrZKXWzF6jT//5qSTpsuGXadKiSWrZvqXFaQHvonwAgIelZ+fW2ggsMqy5EjZ+ozbvHZBhM3Tjb2/UdY9eJ4P9OdAEUT4AwIPSs3M1a1Gmap7AUlBaoVUD2mnsyUr96g+j1Pn6zpbkA3wBTzYBgIe43Kbmpu2sVTwkScbpOxyZiZep45BOXs0F+BrKBwB4SEZOYbWplloMQ3nF5crIKfReKMAHUT4AwEMKiuspHhcwDghUlA8A8JBLbA37KzUyPKSRkwC+jfIBAB5weNthfTJpmcKcFZJZ51MfMiRFO04vuwWaMsoHAFwE0zT10V8+0t+v/buK9h3XTTuOSYahmgtoz7xPToyTneW1aOIoHwBwgU4dP6Wlk5dq7UNr5a5068rJV+qPq2fqpZl9FeWoPrUS5QjR/Jl9NTo+2qK0gO9gnw8AuACHPj6klOkpKvq6SPYgu0b+30gNmD1AhmFo9CXRGhEXVWuHU+54AKdRPgDgPJhuU1v+vEXrH1kvd5VbrWNba+rSqYruW/2Oht1mKCE2wqKUgG9rlGmXb775RjNnzlRERIRCQ0N11VVXadu2bY1xKQDwmpPHTuqt8W9p3S/WyV3lVs/pPXVv5r21igeA+nn8zsfx48c1ePBgDR06VO+++67atWunPXv2qHXr1p6+FAB4zYH/HtDyW5bLecgpe7Bdo/8yWv3u6SfDYCoFOF8eLx/PPPOMYmJi9Prrr5/9rGtXjooG4J9Mt6n//uG/2vC/G2S6TEV0j1DS0iRF9Y6yOhrgtzw+7fL222+rf//+mjp1qiIjI3X11Vfr1VdfPef48vJyOZ3Oai8A8AWlBaV6Y+wbWv/oepkuU71m9tI92++heAAXyePlY9++fZo/f766deumtWvXatasWXrggQe0cOHCOsfPmzdPDofj7CsmJsbTkQDgvO1/f79e6vOS9q7dq2ahzTT+7+M18Z8TFdQyyOpogN8zTPMcW/FdoKCgIPXv318ffvjh2c8eeOABbd26VVu2bKk1vry8XOXl5WffO51OxcTEqKioSK1atfJkNAD4QW6XWx889YHen/u+TLepdnHtlLQ0SZE9I62OBvg0p9Mph8PRoN/fHn/mIzo6WnFxcdU+u/LKK7V8+fI6xwcHBys4ONjTMQCgXi63WWsfjlMFpVoxc4Vy1udIkvrc1Udjnh+joBbc7QA8yePlY/Dgwdq1a1e1z3bv3q3OnTt7+lIAcEHSs3M1N22ncou+O122XXAz9X93v6K25ql5i+YaN3+cet/e28KUQODyePn4+c9/rmuvvVa///3vNW3aNGVkZOiVV17RK6+84ulLAcB5S8/O1axFmao533ykrFLvDr1UEx3B+t/nb1bbHm0tyQc0BR5/4HTAgAFKTU3VW2+9pfj4eP3ud7/Tc889pxkzZnj6UgBwXlxuU3PTdtYqHpKkb/fr+HhoR7Xuzs6kQGNqlO3Vb775Zt18882N8Y8GgAuWkVNYbaqlFsNQrrNcGTmFbI0ONCJOtQXQZBQU11M8LmAcgAtD+QDQZLQoq2rQuMjwkEZOAjRtlA8ATcLu1bu17eYlCnNWSOfY3siQFO04vewWQOOhfAAIaK4Kl9Y+vFZvJb6l8mOnNGZ/iQzDUM3j4M68T06Mk93GYXFAY2qUB04BwBec2H9CKbek6JuPv5EkDXpokEY8M0IjdhfU2ucjyhGi5MQ4jY6Ptiou0GRQPgAEpC9XfqlVd61S2YkyhVwSogkLJqjHhB6SpNHx0RoRF1Vrh1PueADeQfkAEFCqyqu07pfrlPHXDElSx2s6asriKbqk8yXVxtltBstpAYtQPgAEjMK9hUqZnqLc7bmSpGv/37W66ambZG9utzgZgO+jfAAICJ8v+1xpP0lTubNcoRGhmrhworqP6251LAB1oHwA8GtVZVVaO2etts3fJkmKGRyjpMVJatWx/iO9AViH8gHAbx3bfUzLpi1T/qf5kqQhjw7R0N8Ola0ZuwgAvozyAcAvffbmZ1p972pVlFQorF2YJv1rki4fdbnVsQA0AOUDgF+pPFmpdx94V5/8/RNJUpcbu2jyG5MV3iHc4mQAGoryAcAnudxmrX04CncdVcq0FBVkF0iGdP1j1+uGx2+Qzc40C+BPKB8AfE56dm6tHUgjmtnU9+196ph9VC3at9DkNybrsmGXWZgSwIWifADwKenZuZq1KFM1j347VunSujGddUv3CD38ws1qGdXSknwALh73KgH4DJfb1Ny0nbWKhyTJMCTD0Pv92ik0soW3owHwIMoHAJ+RkVNYbaqlLrlFZcrIKfRSIgCNgfIBwGcUFNdfPM53HADfRPkA4DOa5Z9s0LjI8JBGTgKgMVE+AFjONE1tnb9V2ycuUZizQjLrfOpDhqRox+lltwD8F+UDgKXKisqUMj1Fa362RmaZS5NOVMkwDBk1xp15n5wYJ7ut5k8B+BOW2gKwzOFth5UyPUXH9x2XrZlNw58Zrmt+fo2u+zyv1j4fUY4QJSfGaXR8tIWJAXgC5QOA15mmqYznM/TvX/xb7kq3HJ0dSlqSpI6DOkqSRsdHa0RcVK0dTrnjAQQGygcArzp1/JTevvttfbnyS0lSj4k9NP4f4xXaOrTaOLvNUEJshBURATQyygcArzn08SGlTE9R0ddFsjW3aeQfR2rg/QNlGNzRAJoSygeARmeaprb8aYvWP7Je7iq3Wl/WWklLktShfwerowGwAOUDQKM6eeykVt25SrtX75YkxU2NU+KriQpxsFcH0FRRPgA0mgP/PaDltyyX85BT9mC7Rj83Wv3u7cc0C9DEUT4AeJzpNvXfP/xXG/53g0yXqTbd2mjq0qmK6hNldTQAPoDyAeCCuNxmnUthS4+UauWPVuqr9K8kSVfddpXGvTROweHBFicG4CsoHwDOW3p2bq1NwKIdIZp1WTsdnfMfFR8uVrOQZhrzwhhdfffVTLMAqIbyAeC8pGfnataiTNU8fSW3qEyPZx7Q0JZ29e/RVlOXTVVkfKQlGQH4NsoHgAZzuU3NTdtZq3h83yfjY/W3x0colGkWAOfAwXIAGiwjp7DaVEsthqETdkNZBSXeCwXA71A+ADRYQXE9xeMCxgFomigfABosMrxhG4M1dByAponyAaDB2uwpVIuSSsms+6kPQ6dXvQzs2sa7wQD4FcoHgB/krnLrP4/+R4vHvKmB676uc8yZxbTJiXGy21haC+DcKB8A6lV0sEgLblyg/z79X0lS0rDL9eL0qxVd42yWKEeI5s/sq9Hx0VbEBOBHWGoL4Jx2r96tlXes1KnCUwpuFazEVxPVc1pPSdLoPh3q3OEUAH4I5QNALa4Kl9b/er22/N8WSVJ0v2glLUlSm9jvnuWw2wwlxEZYFRGAH6N8AKjmxP4TSrklRd98/I0kaeADAzXiDyPULJi/LgB4Bn+bADjry5VfatVdq1R2okwhl4RowusT1GNiD6tjAQgwlA8Aqiqv0rpfrlPGXzMkSZcOulRJi5N0SZdLrA0GICBRPoAmrnBvoVKmpyh3e64kKeHhBA37/TDZg+wWJwMQqCgfQBP2+bLPlfaTNJU7yxXaJlQTF05U95u7Wx0LQICjfABNUFVZldbOWatt87dJkmIGx2jKW1PkiHFYnAxAU0D5AAKYy23W2ovjxFeFWjZtmfI/zZckDXl0iG6ce6PszZlmAeAdlA8gQKVn52pu2k7lFn13wmxEc7v6vr1XHXccVVjbME1aNEmXj7rcwpQAmiLKBxCA0rNzNWtRpmoe/3asokrrRnfWtMtaa86LiQrvEG5JPgBNG+UDCDAut6m5aTtrFQ9JknF6+/MPBrZXWFRLr+YCgDM4WA4IMBk5hdWmWuqSW1SmjJxCLyUCgOooH0CAKSiuv3ic7zgA8DTKBxBggo6eatC4yPCQRk4CAHWjfAABwjRNZb6WqW3jlyjMWSGZdT71IUNStOP0slsAsEKjl4+nn35ahmHooYceauxLAU1WeXG5UmemKu1/0uQ+VaUJxypkGIaMGuPOvE9OjJPdVvOnAOAdjbraZevWrXr55ZfVq1evxrwM0KTlZeUpZXqKju0+JsNu6KYnb9LgXw7WDTvzau3zEeUIUXJinEbHR1uYGEBT12jlo6SkRDNmzNCrr76qJ598srEuAzRZpmlq20vbtPbna+Uqd6lVx1aasniKOg3uJEkaHR+tEXFRtXY45Y4HAKs1WvmYPXu2xo0bp+HDh9dbPsrLy1VeXn72vdPpbKxIQMAoKypT2v+kaeeynZKk7jd314QFExQWEVZtnN1mKCE2woqIAHBOjVI+Fi9erMzMTG3duvUHx86bN09z585tjBhAQDq87bBSpqfo+L7jsjWzadjTw5QwJ0GGwR0NAP7B4w+cHjx4UA8++KDeeOMNhYT88FK+Rx99VEVFRWdfBw8e9HQkICCYpqmP//qx/n7t33V833E5Ojt01wd36dqHr6V4APArhmmeYz3eBVq5cqUmTZoku/27EzJdLpcMw5DNZlN5eXm1n9XkdDrlcDhUVFSkVq1aeTIa4LdOHT+lt3/8tr5M/VKS1GNiD43/x3iFtg61OBkAnHY+v789Pu0ybNgwffbZZ9U+u+uuu9SjRw/96le/qrd4AKjt0MeHlDI9RUVfF8nW3KaRfxypgfcP5G4HAL/l8fIRHh6u+Pj4ap+1aNFCERERtT4HcG6maWrLn7Zo/SPr5a5yq/VlrZW0JEkd+newOhoAXBROtQV80MljJ7XqzlXavXq3JCkuKU6JryUqxMGW6AD8n1fKx8aNG71xGcDvuNxmrX04vtlyUMtvXS7nQafswXaN+vMo9f9pf6ZZAAQM7nwAFknPzq21A2kbw1CflV+p80Gn2nRro6lLpyqqT5SFKQHA8ygfgAXSs3M1a1Gmai41K3S7tWH8ZbpzcJXu+fMYBYcHW5IPABoTp9oCXuZym5qbtrNW8ZAkGYZkGFobG65mLYK8HQ0AvILyAXhZRk5htamWuuQWlSkjp9BLiQDAuygfgJcVFNdfPM53HAD4G8oH4GWuPQ27oxEZzrJaAIGJ8gF4idvl1nvJ7+nTW1YozFkhneNkA0NStOP0slsACESsdgG8oPhwsVbMWKH9G/fLJulWw65/fLtvx/cryJmdPJIT42S3sa8HgMBE+QAa2Vdrv1Lq7ak6eeSkgloG6eaXb9ZVt12lAXXs8xHlCFFyYpxGx0dbmBgAGhflA2gk7iq33nv8PW2et1mS1L53e01dOlUR3SMkSaPjozUiLqrWDqfc8QAQ6CgfQCNwHnJq+a3LdWDzAUlS/1n9NepPo9QspPp/5ew2QwmxEVZEBADLUD4AD9v9zm6tvGOlTh07paDwII1/bbx6TutpdSwA8BmUD8BDXJUurf/1em354xZJUnS/aCUtSVKbWFatAMD3UT4ADzjx9Qktv2W5Dn10SJI08IGBGvGHEWoWzH/FAKAm/mYELtKXq77UqjtXqexEmUIuCdH4f4zXlZOutDoWAPgsygdwgVwVLq375Tp9/JePJUmXDrxUSUuSdEmXS6wNBgA+jvIB1MPlNutcCnt833GlTE/R4W2HJUkJDydo2O+HyR5ktzgxAPg+ygdwDul1bAIW7QjR3W1b6dgv1qvcWa7QNqGasGCCrki8wsKkAOBfKB9AHdKzczVrUaZqnr6Se6JMT504paFRobruqkhNeWuKHDEOSzICgL/iYDmgBpfb1Ny0nbWKh6Szh69kTbpcM9f/iOIBABeA8gHUkJFTWG2qpRbD0HFJ2w8VeS0TAAQSygdQQ0FxPcXjAsYBAKqjfAA1RIaHeHQcAKA6ygdQQ/B/D6pFcYVk1vnUhwydXvUysCvbpgPAhaB8AN+qKK3QqrtXKe2OVRr4n9On0dY83P7M++TEONltNX8KAGgIygcgqeDzAr028DVlvZ4lw2bozpl99LcZfRXlqD61EuUI0fyZfTU6PtqipADg/9jnA02aaZrKej1La+5bo6pTVWoZ3VJT3pqiLjd0kSSNio+uc4dTAMCFo3ygyaooqdA7s97RjkU7JEmxo2I16Z+T1CKyxdkxdpuhhNgIqyICQECifKBJyvs0TynTUnRs9zEZdkM3PXmTBv9ysAzuagBAo6N8oEkxTVPbX9mu9AfT5Sp3qVXHVpry1hR1GtLJ6mgA0GRQPtBklDvLlXZPmj5f8rkkqdu4bpq4cKLCIsIsTgYATQvlA01Cbmaulk1bpuN7j8vWzKZhTw9Tws8TmGYBAAtQPhDQTNPU1he36t8P/1uuCpccnR1KWpykjtd0tDoaADRZlA8ErLITZXr7x2/rixVfSJJ6TOyh8f8Yr9DWoRYnA4CmjfIBv+dym7X24sjbdlgp01N0Yv8J2ZrbNPKPIzXw/oEyDKZZAMBqlA/4tfTsXM1N26ncou9OmG1jM3T1yr3qtP+EWl/WWklLktShfwcLUwIAvo/yAb+Vnp2rWYsyVfP4t0KXW+sTu+pHAy/VPX8ZqxAHp88CgC/hbBf4JZfb1Ny0nbWKhyTJMCTD0LorHGoeHuztaACAH0D5gF/KyCmsNtVSl9yiMmXkFHopEQCgoSgf8EsFxfUXj/MdBwDwHsoH/JKZc6JB4yLDed4DAHwN5QN+xXSb2vTUJmVNXa4wZ4Vk1vnUhwxJ0Y7Ty24BAL6F1S7wGyX5JUq9PVX71u2TIWm6y6YF3+7b8f0KcmYnj+TEONnZPh0AfA7lA34hZ0OOVsxYoZK8EjUPa66xL45Vnzv7aFAd+3xEOUKUnBin0fHRFiYGAJwL5QM+ze1ya9PvNun9374vmVK7nu00delUtYtrJ0kaHR+tEXFRtXY45Y4HAPguygd8VnFusVbctkL7N+6XJF3946s15q9j1DysebVxdpuhhNgICxICAC4E5QM+ae+/92rFzBU6eeSkmrdorptfvlm9ZvSyOhYAwAMoH/Ap7iq33kt+T5vnbZZMqX3v9pq6dKoiunNnAwACBeUDPsN5yKnlty3XgQ8OSJL6/bSfRv1plJqHNv+BPwkA8CeUD/iEPWv2KPVHqTp17JSCwoM0/rXx6jmtp9WxAACNgPIBS7kqXdrwmw368NkPJUnRfaOVtCRJbS5nczAACFSUD1jmxNcntPyW5Tr00SFJ0sD7B2rEsyPULJh/LQEgkPG3PBqdy23W2odjT9ourbprlcqOlynYEawJ/5igKydfaXVUAIAXUD7QqNLr2IH0ElO6euVX6nK8TB0GdFDSkiS17trawpQAAG+ifKDRpGfnataiTNU8+u2ETL03MVb3uuy6+/cjZQ+yW5IPAGANTrVFo3C5Tc1N21mreEiSDEMyDL0dESQ1419BAGhqPP43/7x58zRgwACFh4crMjJSEydO1K5duzx9Gfi4jJzCalMtdcktKlNGTqGXEgEAfIXHy8f777+v2bNn66OPPtK6detUWVmpkSNHqrS01NOXgg8rKK6/eJzvOABA4PD4Mx/p6enV3i9YsECRkZHavn27rr/+ek9fDj6qdGtug8ZFhoc0chIAgK9p9An3oqIiSVKbNnVvGlVeXi6n01ntBf9VeapSafemade97yjMWSGZdT71IUNStOP0slsAQNPSqOXD7XbroYce0uDBgxUfH1/nmHnz5snhcJx9xcTENGYkNKKjXx7Va4NeU+YrmbJJuqt1SxmGIaPGuDPvkxPjZLfV/CkAINAZpnmO/2nqAbNmzdK7776rzZs3q2PHjnWOKS8vV3l5+dn3TqdTMTExKioqUqtWrRorGjzs0399qndmvaPK0kq1iGyhSYsmKXZEbJ37fEQ7QpScGKfR8dEWJgYAeJLT6ZTD4WjQ7+9G2+fjvvvu0+rVq7Vp06ZzFg9JCg4OVnBwcGPFQCOrKK3Qu/e/q6zXsyRJXYZ20eQ3Jis8OlySNDo+WiPiomrtcModDwBoujxePkzT1P3336/U1FRt3LhRXbt29fQl4CMKPi9QyrQUHdl5RIbN0A3JN+i631wnm736bJ7dZighNsKilAAAX+Px8jF79my9+eabWrVqlcLDw5WXlydJcjgcCg0N9fTlYAHTNJW1IEtrZq9R1akqtYxqqSlvTVGXG7tYHQ0A4Ac8/syHYdR9O/3111/XnXfe+YN//nzmjOB9FSUVemfWO9qxaIckKXZkrCb9a5JaRLawOBkAwEqWPvPRiM+vwmL5O/K1bOoyHdt9TIbN0NDfDdWQR4bI4PkNAMB54GA5/CDTNLX9le1KfzBdrnKXwi8N15S3pqjzdZ2tjgYA8EOUD9Sr3FmutHvS9PmSzyVJ3cZ208SFExXWNsziZAAAf0X5gFxus86lsLmZuUqZnqLCrwpla2bTTb+/Sdc+fC3TLACAi0L5aOLq2gQsyhGiGc2CVPS/78tV4ZKjk0NTFk9RTAK7zwIALh7lowlLz87VrEWZqvmIcN6JU/o/ndLQLuEa1aO9Jrw+QaFtWCYNAPCMRj9YDr7J5TY1N21nreIhSfp2ufSOKd2VtGIaxQMA4FGUjyYqI6ew2lRLLYahY263tu4/7r1QAIAmgfLRRBUU11M8LmAcAAANRflooiLDQzw6DgCAhqJ8NEGm21RVyhcKK66QzrEjrSEp2nF62S0AAJ5E+WhiSo+U6s2b39SGR9Zr0H8OSDpdNL7vzPvkxDjZ2dMDAOBhlI8m5OsPvtbLfV7WV+9+pWYhzXTfw0M0f2Y/RTmqT61EOUI0f2ZfjY6PtigpACCQsc9HE2C6TX0w7wNtfHyjTLepiCsiNHXpVLXv1V6SNLJnVJ07nAIA0BgoHwGuJL9Eqbenat+6fZKkXrf30ri/jVNQy6CzY+w2QwmxEVZFBAA0MZSPAJazIUcrZqxQSV6JmoU209gXx6rPnX1kGNzVAABYh/IRgNwutzb9bpPe/+37kim1i2unpKVJiuwZaXU0AAAoH4GmOLdYK2as0P739kuS+tzdR2OfH6vmYc2tDQYAwLcoHwFk77q9Sp2ZqtKCUjVv0Vzj5o9T79t7Wx0LAIBqKB8BwF3l1sYnNuqD338gmVL7Xu2VtCRJbXu0tToaAAC1UD78nPOQU8tvW64DH5zeMKzfvf006s+j1DyUaRYAgG+ifPgBl9uscx+OPWv2KPVHqTp17JSCwoOU+Eqi4m+JtzouAAD1onz4uPTsXM1N26ncou9Ol41qFaxJJ1wqe/aj0++vjtLUpVPV5nLOYQEA+D7Khw9Lz87VrEWZqnn0W15RmeYb0tDul2jqyG4a+exINQvhP0oAgH/gbBcf5XKbmpu2s1bxkCR9u0nYZ9Ov0Ki/jKF4AAD8CuXDR2XkFFabaqnFMHS0wqWMnELvhQIAwAMoHz6qoLie4nEB4wAA8BWUDx8VGR7yw4POYxwAAL6C8uGDqsqqdOy5jxTmrJDMOp/6kCEp2nF62S0AAP6E8uFjCr8q1N+v/bu2v7BNg9YfkGSo5hm0Z94nJ8bJbuOEWgCAf6F8+JDsJdl6ue/LyvskT6ERofr1n8fqpdv7KspRfWolyhGi+TP7anR8tEVJAQC4cKzR9AGVpyq19udrtf3l7ZKkTkM6acpbU9SqYyt1kzQiLqrOHU4BAPBHlA+LHd11VCnTUpS/I18ypOt+fZ1ufOJG2Zp9d1PKbjOUEBthYUoAADyH8mGhHYt2aPVPV6uytFJh7cI0+Y3Jih0Ra3UsAAAaFeXDApUnK7Xm/jXK+keWJKnL0C6a/MZkhUeHWxsMAAAvoHx42ZGdR7Rs6jId2XlEMqQbkm/Q9f97vWx2nv0FADQNlA8vMU1TWQuytGb2GlWdqlLLqJaa/OZkdR3a1epoAAB4FeXDCypKKvTOz97Rjn/tkCRdNuIyTfrXJLVs39LiZAAAeB/lo5Hl78jXsmnLdGzXMRk2Q0N/N1RDHhkig6WyAIAmivLhIS63WW0vjgFdWuvTv3+i9AfTVVVWpfBLwzXlrSnqfF1nq6MCAGApyocHpGfnam7aTuUWfXfCrKPKVN+0vepSVqXLx1yuSf+cpLC2YRamBADAN1A+LlJ6dq5mLcpUzePfiuzSexNj9VB4C9326xuZZgEA4Fus77wILrepuWk7axUPSZJhSIahJXa33N4OBgCAD6N8XISMnMJqUy11yS0qU0ZOoZcSAQDg+ygfF6GguP7icb7jAABoCigfF8g0TR1du69BYyPDQxo5DQAA/oPycQFOFZ7SkklLdODRDQpzVkhmnU99yJAU7QjRwK5tvBsQAAAfRvk4T4c+OqSXr35Zu1btUvPmds3q2laGYajmWpYz75MT42RnpQsAAGex1LaBTLepD//vQ2349Qa5q9xqHdtaU5dOVXTfaHWrY5+PKEeIkhPjNDo+2sLUAAD4HspHA5w8elIr71ipPWv2SJJ6Tu+pxFcSFdwqWJI0Oj5aI+Kiqu1wOrBrG+54AABQB8rHD/j6g6+1/NblKv6mWPZgu8b8dYz6/k9fGUb1YmG3GUqIjbAoJQAA/oPycQ6m29Tmpzfrvcffk+kyFXFFhKYunar2vdpbHQ0AAL9G+ahDaUGpUm9P1d5/75Uk9bq9l8b9bZyCWgZZnAwAAP9H+ahh/8b9Wn7bcpXklqhZaDONfXGs+tzZp9Y0CwAAuDCUj2+5XW5tenKTNv12k0y3qXZx7ZS0NEmRPSOtjgYAQEChfEgqySvRihkrlLMhR5LU5+4+Gvv8WDUPa25xMgAAAk+TKR8ut1nnUth9/9mnFTNWqLSgVM1bNNe4+ePU+/beVscFACBgNVr5ePHFF/Xss88qLy9PvXv31vPPP6+BAwc21uXqlV7XJmCtQjSlxK2TT38omVLkVZGaunSq2vZoa0lGAACaikbZXn3JkiWaM2eOkpOTlZmZqd69e2vUqFEqKChojMvVKz07V7MWZVYrHpKUV3RKL7rKtb/bJep3bz/95OOfUDwAAPACwzTPcSraRRg0aJAGDBigF154QZLkdrsVExOj+++/X4888ki9f9bpdMrhcKioqEitWrW6qBwut6khz2yoVTzOMk21DWqmj+eOYjdSAAAuwvn8/vb4nY+Kigpt375dw4cP/+4iNpuGDx+uLVu21BpfXl4up9NZ7eUpGTmF5y4ekmQYOlrpUkZOoceuCQAA6ufx8nH06FG5XC61b199J9D27dsrLy+v1vh58+bJ4XCcfcXExHgsS0FxPcXjAsYBAICL1yjPfJyPRx99VEVFRWdfBw8e9Ng/OzI8xKPjAADAxfP4ape2bdvKbrcrPz+/2uf5+fmKioqqNT44OFjBwcGejiFJGti1jaIdIcorKlNdD7YYkqIcp5fdAgAA7/D4nY+goCD169dP69evP/uZ2+3W+vXrlZCQ4OnL1ctuM5ScGCfpdNH4vjPvkxPjeNgUAAAvapRplzlz5ujVV1/VwoUL9cUXX2jWrFkqLS3VXXfd1RiXq9fo+GjNn9lXUY7qUytRjhDNn9lXo+OjvZ4JAICmrFE2GZs+fbqOHDmixx9/XHl5eerTp4/S09NrPYTqLaPjozUiLqrOHU4BAIB3Nco+HxfDk/t8AAAA77B0nw8AAID6UD4AAIBXUT4AAIBXUT4AAIBXUT4AAIBXUT4AAIBXUT4AAIBXUT4AAIBXUT4AAIBXNcr26hfjzIarTqfT4iQAAKChzvzebsjG6T5XPoqLiyVJMTExFicBAADnq7i4WA6Ho94xPne2i9vt1uHDhxUeHi7D8OzBb06nUzExMTp48CDnxjQivmfv4Hv2Dr5n7+G79o7G+p5N01RxcbE6dOggm63+pzp87s6HzWZTx44dG/UarVq14l9sL+B79g6+Z+/ge/YevmvvaIzv+YfueJzBA6cAAMCrKB8AAMCrmlT5CA4OVnJysoKDg62OEtD4nr2D79k7+J69h+/aO3zhe/a5B04BAEBga1J3PgAAgPUoHwAAwKsoHwAAwKsoHwAAwKuaTPl48cUX1aVLF4WEhGjQoEHKyMiwOlLA2bRpkxITE9WhQwcZhqGVK1daHSkgzZs3TwMGDFB4eLgiIyM1ceJE7dq1y+pYAWf+/Pnq1avX2Y2YEhIS9O6771odK+A9/fTTMgxDDz30kNVRAsoTTzwhwzCqvXr06GFZniZRPpYsWaI5c+YoOTlZmZmZ6t27t0aNGqWCggKrowWU0tJS9e7dWy+++KLVUQLa+++/r9mzZ+ujjz7SunXrVFlZqZEjR6q0tNTqaAGlY8eOevrpp7V9+3Zt27ZNN910kyZMmKDPP//c6mgBa+vWrXr55ZfVq1cvq6MEpJ49eyo3N/fsa/PmzZZlaRJLbQcNGqQBAwbohRdekHT6/JiYmBjdf//9euSRRyxOF5gMw1BqaqomTpxodZSAd+TIEUVGRur999/X9ddfb3WcgNamTRs9++yz+vGPf2x1lIBTUlKivn376m9/+5uefPJJ9enTR88995zVsQLGE088oZUrVyorK8vqKJKawJ2PiooKbd++XcOHDz/7mc1m0/Dhw7VlyxYLkwGeUVRUJOn0L0Y0DpfLpcWLF6u0tFQJCQlWxwlIs2fP1rhx46r9XQ3P2rNnjzp06KDLLrtMM2bM0IEDByzL4nMHy3na0aNH5XK51L59+2qft2/fXl9++aVFqQDPcLvdeuihhzR48GDFx8dbHSfgfPbZZ0pISFBZWZlatmyp1NRUxcXFWR0r4CxevFiZmZnaunWr1VEC1qBBg7RgwQJdccUVys3N1dy5c3XdddcpOztb4eHhXs8T8OUDCGSzZ89Wdna2pXO3geyKK65QVlaWioqKlJKSojvuuEPvv/8+BcSDDh48qAcffFDr1q1TSEiI1XEC1pgxY87+37169dKgQYPUuXNnLV261JJpxIAvH23btpXdbld+fn61z/Pz8xUVFWVRKuDi3XfffVq9erU2bdqkjh07Wh0nIAUFBenyyy+XJPXr109bt27VX/7yF7388ssWJwsc27dvV0FBgfr27Xv2M5fLpU2bNumFF15QeXm57Ha7hQkD0yWXXKLu3bvrq6++suT6Af/MR1BQkPr166f169ef/cztdmv9+vXM3cIvmaap++67T6mpqdqwYYO6du1qdaQmw+12q7y83OoYAWXYsGH67LPPlJWVdfbVv39/zZgxQ1lZWRSPRlJSUqK9e/cqOjrakusH/J0PSZozZ47uuOMO9e/fXwMHDtRzzz2n0tJS3XXXXVZHCyglJSXVWnROTo6ysrLUpk0bderUycJkgWX27Nl68803tWrVKoWHhysvL0+S5HA4FBoaanG6wPHoo49qzJgx6tSpk4qLi/Xmm29q48aNWrt2rdXRAkp4eHit55VatGihiIgInmPyoF/84hdKTExU586ddfjwYSUnJ8tut+vWW2+1JE+TKB/Tp0/XkSNH9PjjjysvL099+vRRenp6rYdQcXG2bdumoUOHnn0/Z84cSdIdd9yhBQsWWJQq8MyfP1+SdOONN1b7/PXXX9edd97p/UABqqCgQD/60Y+Um5srh8OhXr16ae3atRoxYoTV0YDzdujQId166606duyY2rVrpyFDhuijjz5Su3btLMnTJPb5AAAAviPgn/kAAAC+hfIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC8ivIBAAC86v8DDQFYQ9a3HBIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "fig = plt.figure()\n", + "ax = fig.add_subplot(projection='3d')\n", + "X = np.arange(-5, 5, 0.15)\n", + "Y = np.arange(-5, 5, 0.15)\n", + "X, Y = np.meshgrid(X, Y)\n", + "R = np.sqrt(X**2 + Y**2)\n", + "Z = np.sin(R)\n", + "\n", + "ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 427 + }, + "id": "8Tr5zuyVZoJY", + "outputId": "5792547c-d780-4394-e6cf-895d9c2a03be" + }, + "execution_count": 225, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 225 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGJCAYAAABVbT4SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmUZdld34l+9j7TnWPMeR4qs7LmQTVkFmJhS0YSeLV5ou0WvewWzbJoudv9HsbrqQ12m0FuG4zd0DZe4AYBYhk3mG6DVzd+wkZQtkRVUVWqzMh5njMyxjsPZ9z7/XHuuXEjMjJjzMyo0vmuVasiI+499wz37O/5Td+v0FprUqRIkSJFikcI+bh3IEWKFClSfPshJZ8UKVKkSPHIkZJPihQpUqR45EjJJ0WKFClSPHKk5JMiRYoUKR45UvJJkSJFihSPHCn5pEiRIkWKR46UfFKkSJEixSNHSj4pUqRIkeKRIyWfFClSpEjxyJGST4oUKVKkeORIySdFihQpUjxypOSTIkWKFCkeOVLySZEiRYoUjxwp+aRIkSJFikeOlHxSpEiRIsUjR0o+KVKkSJHikSMlnxQpUqRI8ciRkk+KFClSpHjkSMknRYoUKVI8cqTkkyJFihQpHjlS8kmRIkWKFI8cKfmkSJEiRYpHjpR8UqRIkSLFI0dKPilSpEiR4pEjJZ8UKVKkSPHIkZJPihQpUqR45EjJJ0WKFClSPHKk5JMiRYoUKR45UvJJkSJFihSPHCn5pEiRIkWKR46UfFKkSJEixSNHSj4pUqRIkeKRIyWfFClSpEjxyJGST4oUKVKkeORIySdFihQpUjxymI97B1J8+0Fr3ftZCPEY9yRFihSPCyn5pHik0FoTBAGdTgcpJaZpYpomhmEgZRqIp0jx7YKUfFI8MkRRRBAEKKV6/wVBgBACIQSGYWBZFoZhpGSUIsVHHEL350BSpHgI0FoThiFhGPZ+5/t+j1y01mitUUr1UnILo6KUjFKk+GghJZ8UDxVJdKOUAmKiuXz5MuPj45RKJQYHBxkaGiKfz/fqPwvJKImMUjJKkeKjg5R8UjwUJOQRBEGPQFzXZWxsjCAI2LdvH+12m0qlQq1WwzAMhoaGGBoaYnBwkFwuN4+M+qMi4B4yMk0zbV5IkeJDhJR8Uqw7kqaCKIqAmCgmJyc5ffo0W7du5fDhw0RR1ItolFLU63UqlQqVSoV6vY5pmvPIKJvNLkpGi0VGCSGlZJQixcZFSj4p1hVJtBNFEVJKlFKcP3+eu3fv8swzz7B161aUUvi+3yONhYii6B4ysm37HjJKsBgZSSnvaWBIyShFio2DlHxSrAu01kRRRBiGKKWQUtJqtThx4gSGYfD888+Ty+UAliSfhYiiiFqt1iOjRqOB4zg9MhoaGsJxnHn7shgZLawZpWSUIsXjQ0o+KdaMhWk2gDt37nD+/Hn27NnDwYMH5zUHrJR8FiIMw3vIKJfL9ZoXhoaGsG27t2/JZ169ehWtNfv370/JKEWKx4yUfFKsCQmRJNFOGIacOXOGSqXCs88+y+jo6H3fs1ryWYggCOaRUbPZJJ/PzyMjy7K4dOkSWmueeOKJNDJKkeIxIyWfFKtCkmZLutmklNRqNcbGxsjn8zz77LPzUmEL3+t53rqRz0IEQUClUqFarVKpVGi1WhQKBYQQ2LbNU089hWVZvX3pb+1O9icloxQpHi5S8kmxYiilCMNwXprt+vXrXLlyhYMHD7J3794HLtRaa3zfBx6Ntpvv+1QqFW7cuIHruoRhSLFY7DUvDA4OYppmb9/6ySjZRyllr3nBNE2klCkZpUixBqTkk2LZSGo7rVaLTCaDEALf9zl58iTtdpvnn3+ewcHBZW3nUZJPgsuXLxNFEXv37u2l6KrVKq7r9shoaGiIgYEBDMPo7euDyKhfly4loxQplo+UfFIsC4lEzszMDGNjY3zXd30Xs7OznDx5kuHhYZ555ple9LCcbT1O8jl8+PC837uu2yOjSqWC7/uUSqUeGZVKpSXJKImIUjJKkWJ5SIVFUyyJ/tmdZCj04sWL3Lx5kyNHjrBjx44P9UKbyWTYtm0b27ZtQ2s9j4zGx8cJw3BRMjIMYx4Rua4LpGSUIsVykJJPivtisdmdIAh6EdDRo0cpFAqPezeXjeUs/kIIstks2WyW7du3o7Wm0+n0yOj27dtEUcTAwECPjIrF4qJk5HkerusipVzUPiIloxTfzkjJJ8WiWDi7I6VkYmKC06dPA/D666/3UlEfZQghyOVy5HI5duzYgda6p0lXqVS4efMmWute40JCRgsVu6MoIoqiXpcfgGEYOI6TklGKb0uk5JPiHiyc3VFKcfbsWSYnJzl06BAXLlz40BLPWkucQgjy+Tz5fJ6dO3eitabZbPbaum/cuAEwj4wKhcI93XQ3b96kVqvx9NNPL5qme1ht6ClSbBSk5JOih8Vmd5rNJidOnMC2bY4dO4bWmvPnzz/uXd0wEEJQLBYpFovs2rULrTWNRqNHRteuXUMIMU+XLp/P97TnklRdGIb3GOulZJTio4yUfFIAiytR37p1iwsXLrB3714OHDiAlJJOp7Pm6OFx4VEs3kIISqUSpVKJ3bt3o5Si0WhQqVSYnp7m8uXLGIaBbdtIKWm32+RyuXsio8XIKHV5TfFRQko+KebZWycSOadPn6ZarfLSSy8xMjLSe22/rUH6JL40pJQMDAwwMDDA3r17e/YR165do9ls8t577y1qH3E/Mkq2mRrrpfiwIyWfb2MstLeWUlKtVhkbG6NYLPLGG2/0BDoTrAf5uK7L1atXyeVyDA8Pz7NHeNh43FGblLJXC7JtmyeffLJnH3H37l0uXLgwzz5iaGiITCZzTwNDEAS9WamUjFJ8GJGSz7cpFtpbCyG4evUqV69e5YknnmDPnj2LkkvyuyRKWimmp6c5efIkpVKJer3OxYsXH2iP8FFHv4MrzLePSJTBFzs//WSUXMskMkotx1N8GJCSz7cZ+herhEA8z+PkyZO4rsurr77KwMDAfd/fv+itBEopLl261BtM3bx5c29fkuL8rVu3OHv2LLlcbt5im4iAfpRwv8jRMAyGh4cZHh4G5ttH9J+fxewjku0m17dfOTy1HE+x0ZCSz7cRFpvdmZ6e5tSpU2zatImXXnppSYmc/rTbctHpdBgbGyMMQ44ePUo+n+89pRuGwcjISK+uFATBvE6x06dP36O7tlwZn/vt+4cJpmnec34SMrpx4wZnzpwhn8/36kULyXoxMkpdXlNsBKTk822ChfbWScv07du3eeqpp9ixY8eytrNS8pmamuLUqVNs2bKFI0eO9FqL7wfLsti0aRObNm0C5hSpK5UKFy5cwPO8++quLQePu+bTj9Us+JZlMTo62vNJ6rePSMi6UCjMU+xeDhml9hEpHjVS8vmIYzGJnHa7zdjYGADHjh0jn88ve3vLJZ9E/+3WrVs8/fTTbN++fVX7b9s2W7ZsYcuWLQDzpG4S3bWFUjcfhvrGepGgZVls3ryZzZs3A3NkXa1WuXLlCu12+4H2ERBfqw8++IDh4WG2b9+eklGKR4KUfD7CWCzNdvfuXc6cOcPOnTs5fPjwihfq5ZBPp9PhxIkTKKVWTG5LYaHu2mJSN/31onw+/221cC4ka8/zeufn0qVL97WP0Fr3iCZRuEikgFIySvEwkJLPRxRRFHH79m0cx2FwcJAoijh79izT09M8//zzvSfl1SBRtl4Mk5OTnD59mq1bt/Lkk08+VBme+0ndVCoVyuUyV69eRUrZW2gT5YaNgEc1J+U4Dlu3bmXr1q3AfPuIc+fO9ewjXNel0+mglJpnHwH0RFIf1NqdklGKlSIln48Y+md3xsfHGRoawjAMTpw4QSaT4Y033iCTyazpM5KaUT+UUly4cIE7d+7w9NNPs23btjV9xmrQL3XTry5QLpeZnJykWq0ipeTs2bPzZmi+nXA/+4grV64wPj7O7du3l7SPSGzQ+8kodXlNsVKk5PMRwmKzO+VymcuXL7N//37279+/LouCEGIe+bTbbU6cOAHQ62bbCOhXF9i3bx9Xr16lWq3iOE5vhiabzc5TF1g4VPsw8bgX6H77iPHxcXbu3EmpVFqxfURCYsk2U5fXFMtBSj4fAfR3MCXpnKRlOYoiPvaxj/WGGNcD/eST2Cxs376dJ598ckU1pEct0SOlxHEcDhw4AMQzNElb9/Xr12k2m71OsYSMVtvWvRQ2SvovQSIku1r7iJSMUqwUKfl8yLGYIGilUmFsbAwhBDt37lxX4kk+I6khjY+P88wzz/RqCh8mmKY5r225v637QcX59cJGWoAXexBYrX3EUmSUurymgJR8PtRYbHbn8uXLXL9+ncOHD9NoNB7KTa215tSpU1iWxbFjx8jlcuv+GY8DCzvFFhbngyDo1UOGh4fX1Na9ESOfpb4ry7GP6NeuW2gfkbq8puhHSj4fQiw2u+O6LidPnsT3fV5//XWKxSLnzp1b90Xu7t27BEHA8PAwzz///IdipibBShe0hcX5hXbaSql5MjeFQuFDu2iuJgW6XPuI/jRmLpdb0uU1JaNvD6Tk8yHDYrM7U1NTnD59mi1btvDyyy/36hRSyt7r1oooijh37hyTk5PYts3u3bs/VMSTYLVkvJiddqvVolwuL2oaNzQ0RC6Xe+CiuZEW1PWov93PPqJSqTA5OcmlS5eWZR8RRREzMzPMzMxw6NChXpquX5duI527FKtDSj4fIixmb33+/HnGx8cXbW9e2JW2WiRupqZpcuzYMd5///0NlzZ61BBCUCgUKBQK933qTxba4eHhe9q6N5ofUtJwsJ5IUnCDg4Ps27ePKIqWbR8RRRHtdhshROry+hFFSj4fAixmb91qtRgbG0NKed+6S0JQa8GdO3c4e/Ysu3fv5oknnuilQB4G+bSjBjmjuO7bTfAwF6iFT/39C+34+Djnz58nk8n0FtkoijaUWvejIMOV2EckSGpCyT6mLq8fHaTks8GhlCIMw3ndbHfu3OHcuXPzCGExPEiJYCmEYci5c+eYmprihRde6Al9JttdC/ncb5H74/Lv8z2j/zVSPDxVhEeFhQttf1v3jRs3aDabWJaFUqqXgnqcZPQ4IrEH2UdMTk7ieR7vvPPOPfYRS5FR6mX04UBKPhsUi83uRFHEmTNnmJ2dvYcQFsNiSgTLQaPRYGxsDMuyFlVEWCv5aK2ZnJzsSd8kOf+L7TGeaD/L4fwLq972RsXCtu6zZ88ShiFa63kCoEmKbr3bupeCUuqxp6767SMcx6FcLrNjx44l7SNSl9cPJ1Ly2YBYaG8thKBerzM2NkY2m+WNN95YltvnStNuWuteVLVnzx4OHjy46I26FvLxfZ9Tp05Rr9d7XXqlUglnyKRBlW/V//NDJZ+NUquSUpLP53sDr/0CoInmWr+yQKlUeqiL5karQSml7iHs5dpH3I+M0shoYyElnw2G/tmd5Ga5fv06ly9f5sCBA+zbt2/Zi8RKSCIMQ86ePcvMzAwvvvhi74a/33ZXk86rVqucOHGCYrHIa6+91nNRrVQqnKm9Dw5cap/inbE/ZfvQrg99+/JK0C8AulhbdxRF89JPxWJxXc/LRiSfhfuzEvuIfuPBlViOpy6vjw4p+WwQLDa7k0QJrVaLV155hcHBwRVtc7mRT6PR4MSJEziOw7Fjx5YU21xpOk9rzc2bN7l48SIHDx5k7969vTpWoi12PhNBFRCamYEbZCuF3tBispgMDw+TzWaX/bkLsZEWlQct9vdr607IqF9ZIEnTLdXWvZb9eRxI7oEH4UH2ERcvXlxSoeJBLq8Lu+lSrD9S8tkAWGx2p1wuc/LkSYaGhjh27NiqitFLkY/Wmtu3b3P+/Hn27t3LwYMHl3WjrTSiOn36NJVKZZ7G3MLPGfeu936+Jk/zvc/9QG+CPlGlvnjxYq8bKll0H6UQ6ONCf1t3v7JApVJhZmZmXlt38t9KSXqjkc9qWr+Xax9xPxfc1HL80SIln8cMpRQTExO9CEBrzaVLl7hx4wZPPvkkO3fuXPWX/UEk0U8KL730EiMjI+uy3X7U63VOnDhBNpvl2LFjD6xTTfl3ej+Xwymud66xL7d/nip1FEVUq1XK5XKvAP2ohEAfBtZyXRNlgT179qCU6nWJJfMzCUkn/z3o3CfXciMtqsuJfJbC/ewj+l1w70dG/V5GCRl5nke73Wbr1q2pl9E64MNzp37E0D+7c+7cOZ544gkATp48SRiGHD16lEKhsKbPuF/ksxJSWAxLkU9/RLVv3z4OHDhwzw3a//4Zf5aCMUojqgKQkXm+UXmPfbn9895jGEavGwrmC4FevHgRz/Pmaa8tVqTfKA0H67kf/alJoEfSlUqFW7ducfbsWXK5XC9aXNjWnezLRiq895varQf67SMSF9zF6mqL2UdAfI4S9fPh4eHU5XUdkJLPY8DCNJthGFQqFU6dOsW2bdvWzQF0IUn0117W4u/zoIaD/saF5UZUN93bNMK5ha9kjPJ+/SSf2/ZZbHn/dOPCnH+ymJTLZe7cuXOP9tpGIZ6HjYUkndhrVCoVrl69SqvVmlcLKRbjwd6NtGiuR+TzICxWV1vKPiKKol49KHV5XTtS8nnESKKdfomcTqdDs9nk2WefXVdrgv7IJwgCTp8+TbVa5eWXX+4N9q0G94t8EhmeRO16uS6hN907XGlPsi9XoK2aGCKHq6ocr5/itcGXlr1fC59sF2qvQbwwJw6va2leWCseZY3Fsiw2bdrUmwvrL8xfuHABz/MAuHHjBiMjIwwMDDz2KOhhk89CLMc+IonGbt26xeDgIIVCYUUurykZzUdKPo8IC2d3pJQ0m03GxsZQSrF///5198RJIpRarcaJEyfI5/O88cYbay7SL9btNj4+zpkzZ5ZUXVgMNzu3UGgGzJ20/fO4XS3Ud2rvr4h8+rGY9tqVK1eYnZ2dVxdJUlHfLs0LcG9hvtFo8N577+G6LmfOnCEMw176aXh4uOfR8yjxMLTmVoLF7CMuX77M7Ows5XKZq1evLss+IjXWuz9S8nkEWMzeOqmJ7Nmzh3q9/lAK5Ymj6bvvvrviGaGltpuQT7/a9fPPP9+bwVgJbrlxs8F092lxxm8DcK55iWpQZ9AqrXmfpZS9yOj555+/R+6mv3lheHi4NyPysLCRusuSmt9TTz2FEOKe9BMwL32Zz+cf+r5vBMWFfgghsG2bYrHI008/vSL7iJSMFkdKPg8R/a2bSRohDEPOnDkzr8vs+PHjaxYAXQjf97l06RJhGPLaa689FBvtdrvN8ePHe+Kmq0ljVYIqjagJwC13hmcK2zjVqQKgUPxZ7Vt8avTPrdu+J7ifi2m5XO6lokqlUi8yetgKA48T/d1u90s/VSoVZmdne0/8C9u613vBfNRpt+UgMW2EldtH9Ct2py6vMVLyeUhYbHYnSX8VCoV5XWbroT7dj0RJIPFKeRg22o1Gg7feeosdO3Zw+PDhFS8UyQ11w7097/em2IbmSu/fJxtnHwr5LMRizQtJvWihcdzw8PC6PP1vlEWlPyJfiP70U5K+7F9kL168OM8WYXh4eMXdk/fbp41GPg/qwFutfQRwj8trQkb9Lq9Xrlxh27ZtD1Qe+bAhJZ+HgIX21gDXrl3jypUrvQn//ht9vchHa92T4jl48CCjo6O88847a95uP5RSVKtVWq0Wzz///JrrVJNuZd6/m+H8BTBQgmvtCfbl1l4PW8lin81m2bFjR68TKnn6TzrGEkXmtQx1bhSsJAW42CLbb4tw7tw5crncvEV2NQPSj7vmsxiSbrflYCX2EQtnsfrJKHF5/eEf/mG++MUv8vnPf/6hHd+jRko+64j7SeScPHmSTqfDq6++ysDAwD3vMwxjzeSTSPE0Go2eFE+73V7XiKrT6XDixAk8z2P79u3r0iBxonaHjMzgqvhprxMKttpbmPAnAYi0wX+aPbUu5LNa3O/pv1wu955qE6+e4eFhBgcHl9W8sFEin7XUnxazRUgGgReKf65kEHijRj6rtb14kH1E/yxWv2J3v31Eq9Va8dzff/7P/5mf+7mf41vf+hZ3797l937v9/i+7/u+B77nzTff5Ed/9Ec5c+YMu3bt4u/9vb/HD/7gD857zb/4F/+Cn/u5n2NiYoLnn3+ef/7P/zmvvvrqivYNUvJZNyyWZpuZmeHUqVOMjIzw4osv3vemW4vvDkClUmFsbIxSqcQbb7zRu0GS2sx6FLenpqY4deoUW7ZsYWBgYN1STpfa4xwsbOe6ezU+lsBn2B4AYvKp+j7XWqf4/M5PrstivR4RR//TP8z36rl27Vpvoegf6lz4xPxhjXyWwv1qaZVKhUuXLi2pt5ZgozUcwMoin6XQbx8B8ShEQkb99hEXLlxACEGtVuvNYy0XSXbih37oh/jsZz+75OuvXbvG937v9/LFL36R3/qt3+LrX/86f/2v/3W2bdvGpz71KQB+53d+hx/90R/ll3/5l3nttdf4hV/4BT71qU9x4cKFFTcbpeSzDlg4u6O15sKFC9y6dYsjR46wY8eOB95ISSPCSqG15urVq1y9epUnnniCPXv23JPOS1632htZKcXly5e5ceMGTz/9NNu3b+fChQs9kl0LGmGHGb/GliD+0goEtzt1yr6NYwk0mnG3TisKONO4wTOlvWv+zIeBxRbcpF6UNC/0ty6vdBF52HiYnXcLa2n9EjeJp9FCVYEkDb0RI5+HtU+WZS1qH/FHf/RH/M7v/A43b97kf/gf/gf+4l/8i/y5P/fn+M7v/M4lhYY/85nP8JnPfGbZ+/DLv/zL7Nu3j3/6T/8pAEeOHOGb3/wmP//zP98jn//1f/1f+cIXvsB/+9/+t733/MEf/AG/9mu/xt/5O39nRcecks8asNjsTqfT6c3uLFcixzCM3lDacuF5Xk/x+n7pvGRBWe1Ttuu6jI2NEQTBvGNZLxvta+27AFxozrArnyVrZLnTCnFVyMuF7TSjJhPtWPr+zfLJDUs+C2Hb9gPtEZJFTAjxyFqXH4RH2fa9UG+tX5Xi1q1bvcaOIAhwXXdDtaSvZ+SzFBL7iL/7d/8uP/7jP862bdv4whe+wLVr1/jSl77Eiy++yP/xf/wf6/qZb7/9Np/85Cfn/e5Tn/oUP/IjPwLED1Xf+ta3+LEf+7He36WUfPKTn+Ttt99e8eel5LNKLGZvfffuXc6ePcuOHTs4dOjQsr+oK204KJfLjI2NLal4nTylrUYna3Z2lrGxMUZHR3n55ZfnpQzXg3ymp6cZm74IQKgVW+ztKBQwG3+GzlEyDSBuSPjT8ln+u93fgyVX/5V9HIvYYjIuzWaTM2fO0Gq1eP/99+e15A4PDy9bGWK98LgW+Pudm/6W98uXL8/rMnwYbd3LxeOKxhKS/v7v//6e+eBKH1aXg4mJiV6EmmDLli3U6/XeQ0IURYu+5vz58yv+vJR8Voj72VufO3eOqakpnnvuuRXnPpdLPonl8rVr1zh8+DC7du1aMp0HrIjY+j/jfqraa6lRKaW4cOECd+7c4WL2FnQ3PVV3GcjMFekvNqs8VZxrEW9FLt+qXeb1oSdX9bkJHnetJWleyGazjI6Osm3btnsUqTOZzLxOutUWuZeLjRJd9Dd2XLt2jRdffLEn6JkMclqWtWi78qPAeoudLhedTget9bx07UdBjSMlnxVgYVOBEKKnZ2bbNm+88caqboblkI/neb2uuddee41Saemp/5Wm3XzfZ2xsbMnPWG3k47ouJ06cIIoiXn31VX738kmIm9y4HtbZ0ZxLUdZDl5o7//0nqrfWTD73RdgAUQcxDNpCqHeQ6gIQoTFA7CASH0MYHYSaAe2jjV0gtsEqFu5+Jen+ltzFusX6C/SLNS+sFRuxrTmx0c7lcr1BzmR2JhGOPX/+fK/L8FFIJPWPTjxKtFotAPL5/EP9nK1btzI5OTnvd5OTk5RKJbLZbE+bbrHXrKbzNSWfZWKx2Z1EIfp+tgHLxVLkk6TAluqaW4hkYn05UUqlUuHEiRMMDg5y9OjRBz5tr9TJFOaOYdOmTTz11FO4YYAt5hYKBeRzm6B7owE0agH0rSX/aeoKf23nd5K3Vj/EKHGR3lcww6+DsNA6g+QKUpeRQqAw473RIRqBFgUMXAQRWkMkJEIHgNV3vW00w4RyP1ocJDReQxjPgXzwfi72fVnYvNAvAnr+/Hl837+neWGtC+JGiXwSJB2aC49r4ezMYhJJ+Xx+Hhmtp0TS44p8ms0mhmE89Cjv6NGj/Pt//+/n/e4//sf/yNGjR4E42nr55Zf5+te/3mvZVkrx9a9/nb/5N//mij8vJZ8lkMzuXL16Fcdx2LJlS08hularrVkhGu5PPomY4fXr11dtLLcU+fQPph46dIjdu3cv+RkriXz6O/KOHDnCzp07AbhaGydSc8ySMzJU/bn9NIXBDRHiCINQR1gY3O7U+LW3/z2fGD3cS0s9cJpeVZHBf8AMfw+Da+wvwu68iRV0UCKLVG0UGlNItBD4OkQT4ggThCTUBkLXCUUWtI+ge8MIA6UVkVZxVEQDQQs7uoMQ30CHv44CtLBR7ESxFW2+jLL+C5DDvfOyHPSLgC5WoNdaz6sXrcZOeyOSDyztL7RYl2FCRleuXKHT6SyrrXu5eJyRTyJauhI0m00uX77c+/e1a9c4ceIEw8PD7N69mx/7sR/jzp07/OZv/iYAX/ziF/nFX/xFvvSlL/FDP/RD/PEf/zH/5t/8G/7gD/6gt40f/dEf5fOf/zwf+9jHePXVV/mFX/gFWq1Wr/ttJUjJ5wHoT7NVq1UKhQLVanXeTM16hPmLkU/Saeb7Pq+//vqq23MfFKUEQcDJkyfnDaYuB8sln2T7zWbzno68S80pLjWqZGxJhGLUGuRkeZZthQytyGWTPciZVodXBrZypX2HLZlhJtstrhRcvsdxeoN5+Xx+rj4ykMOKfgMZvYfBDUBh0ABAaYMQF8swkUIg6eDqACEKmMTEorTCEJK2NrHQgIcUEgOXCIeQiEAFZKVJQIAlDCAi0iDRhJigAwQGplCAT6RvYImr6OCbqPA30Ngo8QyFzKvAlntP2hLnfbECfblcZnZ2litXrvSaF5Jzspyn5Y02U/MguZ8HwbZtNm/e3Ku5Lmaj3d/WvVK9vscV+STks1K8//77/Lk/NydN9aM/+qMAfP7zn+c3fuM3uHv3bk84FmDfvn38wR/8AX/rb/0t/rf/7X9j586d/Oqv/mqvzRrgv/qv/iump6f5+3//7zMxMcELL7zA1772tXuaEJaDlHzuA6UUvu/3OlySodGrV68uO0JYLqSU8+ZmpqenOXnyJJs2bbqn02w1214s8lmoM7cSEl0O+Szc/sI03qXmJPXQ54mBLVzv3CUrs4S6wQ5nCxfbNygaeaCDiuL9yskc0OJE8w6jz27nwIEDvVmIZu0UNH8exzyObfoQxy9IXAIcLAIiPCxp4CswUERkMUQItGkrhcLAEfFCZOHS1gILjdG9xL4GWwQgoBEFmH2LlhYFBG0MfFztYOo2ba3RIoONh4EJSNAulmig9X/myW1/hpC/hGp/J1Hmf0TIlauB9xfoF9ppJzWRbDa7pNTNRot8ku/rettoL9byvtA64n7nIWk0epyRz0rxXd/1XQ+8T3/jN35j0fccP378gdv9m3/zb64qzbYQKfksQL+9dZJ39jyPmZkZoihadrF/JUgIQinFpUuXuHnz5rwU1VrwIDfT1dosLJXKu337NufOnXugW+rl1hQAho410QIVv6YVJK+Iv5rn62UKGQN0/MQZasWfTF/g+7buxAl+kR35tyHXwBaxIVqkBV5kkjHcbtQS0Iw8HJkBImypCVSET0S2u1sGECDxtcQWQRwBEUcDDSWRRGTE3PFqEQKSlnIItctA92FYaYXUPkIILAQB8ULlqoBIFJC6gcZB6QDHjLev9P+PqPMnKPbgO38baa7OvwjmNy/s37//gc0LiW1EoiO2kcjnYdh6LxY1tlqtHhldv369N3eV/NefwkzqUI8z8tlI12g9kJJPHxbO7kgpmZ6e5tSpUziOw6ZNm9adeJLPiaKId999lzAMlz2cutxtJ0QRhiGnT5+mUqmsqVZ1v8gniiLOnj3L9PT0Ay20tdZcbsbkc6VZQ5hQ8eK5hfP1WbYUHFpBfA1aUcDT2W00gniQNysDDsr/hWz7FpoAMJBE+NpA4wEZMqZPqAVSQ0SIKQSuCrGFwJLQ0TYGDdo45ITCw8GgQ6hBYxJphS3jG90WIXUVAQYZYRBpjYkBaEzh4WpNJfJwhA0onO76EGiFJZJ2PY1FCyEkkfYxhUlARKiySDoYQmCL8xje/0jkbSe0/y5YL6zq2vTjfs0L5XKZc+fOEQQBpVIJy7KIomjDqAokacCHudj2mw3u2rULpVQvhZm0dffPXyX3/eOKfNZrPdhISMmHxWd3tNacP3+e27dv8/TTT9NqtXpS5+uNWq2G53ls2rSJI0eOrOvTVXIsjUaD48ePk81m59k5rAaL1ZESbx/DMJa00L7TqdCOYrKZ9V1eLGzhXCWuzQRasdPZytVGu/f6MLKY7NT5L0Yu8bd3jVEyIwJtYHQXcykMDB3g4xDqNpYwMYUm1BGejpsWbKHwlcQNDAzZiRc37dOO8ijZQgowRBy9hOSw6QBxJGUBvo4IyaO0R06GfX/T3S45H08rPG2QEw6KHBAfg0+ObLenXIkiUrSRSDSduLkBhUcGqX2kmMTxfogweI7I/ttgPrvq67QQizUvJOKo7Xabb3zjG2tuXlgPPI4alJSSUqlEqVTq+fMsnL8CuHTp0j0q1A8bq027bXR825PPQomcxMlxbGwMgGPHjpHP57l69eq6G74ppbh48SK3bt1CSskzzzyzrtuH+Himpqa4ffv2mlvC+7fZTz6Tk5OcOnVq2d4+SdSTwGGAjmr2/t0OBFPeXMt12R3nf9n7xzybr6DRdFRApC0KRoAUBp4OCbSBIzwMBG2dISdcPO2gEYQ6xBQSWypmQpOi1AgEUkBNhzhorO60q68tQuq0lEFeStrawRJh9691OhRxVIAhBR5ZLBHvd6RNTBEAipbuEGiXBgJHZjBpozQoLGzRAgSukmS7NSZfG9i4CAGBbiGRWPoi0v1hIuMTKOenQK5vuqc/DSWlZGJigoMHD1KpVJiZmek1L/QPuz6qgc6NEIEtnL9qNpu8++67WJY1r9mlf/7qYQ0DN5vNlHw+auif3Uksbe/cucPZs2fZtWsXhw4dmudcuB5imgkSewKlFM8//zwnTpxYt20nCMMQ3/e5c+cOL7744roZUSXk01+jeuaZZ9i2bduy3n+jUZv378YCpZBmoMkZNu3I57/b9md8dtMdHKlRhITAgLSAgI6KqzURJhJFqDWmENi6zUykyEkfA+hoyKNoqzwZq0ZLGRS7/BsJFw8DS0cYQtDSPlkJgY7oKIHS7Z4Kg6vAFDUqWlBQBpFuY3XXyLpSlLr84GpJXipA01EdCjLeB09bWCJAA1GUxzPagEQS4IsMEgtJE0UBrdpIWcCOvkbQHiPM/CzCfGrF12o5SGoZyZP/nj17Fh3oTJoXEtuIh7XYbsShV4jnjA4ePAjEnZxJW/fVq1dptVoPbRg4Tbt9hLCY704URZw+fZrp6WleeOEFNm3aNO896+G5kyCJFLZt28aTTz6J53kopda18JsoLyilOHz48Lo6ICaSQu+//z6e5624RvX+zDg7skPc6cS6bVKb7MoOc6tTBiAnMxzJB/zQlt/ncK5FTmqECBCY5CXUIxEv7gI8FWILiSE0vgapwdcaIUICbWOJkIyAls4R0sACLBHR0QW0drFlCEQ0tEWRbkcbcQqupSIMYQFxVOxqQVaAJTRNHaIZIEOz+/rFu4qSJVQKsPCwBUQaMmYbKcBVipw0AA9fW2SkidYugdCYutPt2itjeT9CEP6/EZm/uMKrtTQW+94tHOjsX2yvXLlCu92mWCz2IqO1ztD0YyNEPguxsM3asiw2bdrUWyf6h4H7bdj7Z4xWe0ztdjuNfD4KWMx3p16vMzY2RiaTua9EjmEYa458+nXNnn766V6ksB7WB/0YHx/nzJkz7N69m0qlsq5T3hA/iSVPYy+99NKKt3+hPs2eUok7XdHQTqgYNIvcIiafIVnhb+3612xzOmQkVAKLAVPjKoWrJCVDc9eHvNkhKwUtZZAjxBbQVBGKCLP781D3dHraR6GxiNVwQt2irQW57t9NETAZmQz2rZ+BKNHQTQxlYMsIwRzBtKMsjlFlIiyQkx65bjec1vQ645SmrwGh72fA7n1ufO09BXnpEmhFS0FeOih8Qu2TFYpAu9jhz+B1LiOzP7Ki870UlvO9W2yxTWwjkuaFhcoLa7Hx2Gjks9SAaX89DZjX1j0+Pk4Yhj2B1MQ6Yrnnp9ls3rd558OMbyvyWTi7A3Djxg0uXbr0wLZgWLvVdbvd7qXWjh49Ou9Jpl8AdC03XRRFnD9/vucwuHnzZt599911i9i01ty4caMn8Pj888+veIFpBB532jVy5txxTnVc7O529tgV/vau36NgRIQaJgNJ3vDoKEnekFRDQS2KGLYiPB0v8HkZUo8EBQmBtgnpYAooyIiKMhgQgkB3CLQk1/1YgUFbx20BCXygpZKUGbiqhSMjZpRgBIEj5h4+QhHiALZsUlUGHWFQEBoNZLvvD8iTE3HTQUfncESn+9kO4NNRWaSAqgqROkBohcamKCOE8GmrLDkR4OoILUpI3cEI/y/CNhi5H1nReX8QVvPQ4zjOvBmadrvdW2yTwcXBwcFeZLSS5oWNNvQKKx8wzWazZLNZtm/ffs/5uXHjBsA8MnpQK3Wr1WLPnj3rchwbCd8W5LPY7E4QBD3b6Y997GO99ML9sJbIZ2JigtOnT7N9+3aefPLJRTWrYGXq0wuRkJsQgqNHj5LLxcvqanTYFkMYhpw6dYpqtcrhw4e5cePGqhaIC7W42eByvcyuwRytyOduo4kCXtwk+cl9f0LRjGs7PopBQ+NISagVtzyHUauDjaAZSgqmoqEMiiKiIOFOqCkZLQxsQh1gCkFGaMYji5z0cERENSgwaLVpqDw2VdrKISc9Qm1gENLUBhkl0EJiiTjdlpEhFT3EoKhCN/ox+4hIYCOFS0uD65dwDI1lBGht4RhxyUgCVSVxlUCKkKZSSCQDRgOQ5KWMGw5wEKKDqy1yokP8bosMbSIhgAgr+l38tsbM/a1VX89+rHWxF0KQz+fJ5/Ps3Lmz113Z37bcr0Y9PDz8wE6xD2Pk8yDc7/xUKpWeMkV/mnNoaGiedcRa0m4rsbz+ru/6Lv7Tf/pP9/z+e77ne3oSOz/4gz/IV7/61Xl//9SnPsXXvva1Fe/bR558FkuzlctlTp48yeDg4Dzb6QdhNZFPFEVcuHCB8fFxnnnmmfsqv67G+qAfD+o2W2vEBtBoNDhx4kQvLdlsNldNaBfq0wBoBNudERpRmxnaGIR8ed+/Y5PtUTQ0vhbku8cxFQgModlqd6hFgpLUWFLQiQRFI6IaQahFXMzXYAifhjIZMhQKk5aKehGPEi6hAl81sCS0tSCjoKZNDKGwUNxVeTKEOMYcwfgaJqIsW8w2rjZwxJzzrNldt4UALA2iQQCEKMo6ItCCnKgDEGIzLJP97LZiaxMhFQ0Vk5QPOMJHC0FHKzLCwMck1CGCEI2PiP4tQWcnVvYvr+o69GO9h0yFEPPalqMomqe8cO7cOXK53Dyb8f57cCM2HKyntE7/+UmUKer1OpVKhcnJSS5evIht24yPj1Mul5mZmVkV+azU8vrf/tt/O88naHZ2lueff56//Jfnf8c+/elP8+u//uu9f6+25fwjTT6L2VsnQp3L8cPpx0ojn1arxdjYGEIIjh071otEFsNK1Kf70V9Duh+5rdX4Lakf7d27l4MHD/b2ddXkU5trs275EQU7C7T5B0/+B0pmC4WkEkjypqIeKVqRwxbLR2FQV4oBQ1GODIaNiOnApKVDpFAgOmQFtNQAeVEjJyJ8bTITavLSx9MSRygcGXI3zJA3YkUER7hMq/jmSaR0sqJFU2Xov6Ui1cGSARNRBhNNyYjJx9cCsztMGmmwug0InpZkpd99jUlOxD9b3cYEV5sMyVgp2xaaqSiHoMOIUace5Rk0fHwdTwPF7eIBtnDQdFBkMQjww58n9Ldj2m+s6lokeNgKB4ZhMDw83BtqTpoXyuXyogKgYRhuuLTbwxQVlVIyODjI4OAg+/bt65H12bNn+dVf/VUuXLjAjRs3OHXqFJ/4xCf4ru/6rmXVgFZqeb1w6Py3f/u3yeVy95BPUt9aKzbW48U6IYl2fN/vPUW5rst7773H5OQkr7/++oq12VYSQdy9e5e33nqLoaEhXnvttQcSz2q2D3FB88/+7M8ol8scPXr0gVHVaiIfpRRnz57l3LlzPP/88zzxxBO987UW8rnUmOn9fK4yS+Aq/vLW47w6OM6gGWEJxYAZ0QokEsk2O8DTgpaCQSmY8DMoNOc7DobRpqEkhvBpq/jJ2RTtWOhTaGqqiC09DKFpqbknRx9JqOe++gYhSUdbfHzQ0QLVlfTxtIMl4y44SwTUIhPVfX+gB3vvaykH2SUXX889ySeNcEpDvhsxaSSBggm/gMbDFnUGZSxSKoTDVCgIdI6cFIQIbBF322lsbHwCbSEIibyfIAwrq7oWCR61vE7SvHD48GFef/11jh07xo4dO/A8j7Nnz3Lx4kWazSbXr1+nXq8/dgNAeLSioglZf+ELX+C9997jySef5POf/zyWZfGTP/mTPTuDByGxvO63xV6p5fVXvvIVPve5z90Tdb355pts3ryZw4cP8zf+xt9gdnZ2RceX4CMX+SSzO/3ihJOTk5w+fZotW7asWkFgOZFP4mg6OTnZK/gvFyshiUR4dDnHs5qIKplB0lrPqx+tZZsAkVI4fV+5ECiEN/hrTxynYMCEZ7MzExJoKFgaA8FkYOGFkLc73PIlm+0W5Uiyw/Fpa8GA4eMrg6IM8LWNI3xmogwFoenoOgZxxJMVHTxlAhopQmpqlBEjjsI62qKjs2yWVQDayooHUqM8m8069cggL+fICamZiPKMGgFN5ZPp8ligF3+WSxoVYjLpoDRxswQRthlHXG1lIrSkrWGbWaUaWTiiw1RokZFdKVTRoaEcLGHjUKej82iq+O7/F7Pwqyu+Hgket7bbwuaFq1evMjMzQ71e7zUv9NeLHoeV9uOyU9Ba43kef/7P/3n+wl/4C0DcabgUEi3K1Vpev/vuu5w+fZqvfOUr837/6U9/ms9+9rPs27ePK1eu8OM//uN85jOf4e23317xuvqRIZ9+iZwkzZY8vY+Pj89rbV4Nku3d70ZN5moSeZlsNruq7T8ISikuX77MjRs3eOqpp9ixY8eytruSJ8eZmRnGxsYeSGyrbWI4Pz3BxGytL97WfPHQH+JITYhgixNSV4J6kKFk+XiRgSlDdmYUt/wsW602lcgkLxS+FkTaJGt43PVzbLZauCqDLXzyIqCsCliyQTOycQwXKSJmw3zcam0EQINASywRS+JIAlqRRd4I6CgLQ0aARy0qovTcdfG1gSUUoJiOTNBz3wWDudfZXcIJtU1WdhcLUaAcZWipiE1mDa3BkS5KQagNMtJjUFjUQgspNIGOyAlJQQa4ysLTAUJY5ESDtnbIiDYdLYjUSVqdf00++1+v+JrA4yeffgghsCyLfD7PM888s6jmWtK8sCxPp3XC42yCWDhk+iiO9ytf+QrPPvvsPc0Jn/vc53o/P/vsszz33HMcOHCAN998k0984hMr+oyPBPkk3SNTU1Ps2LEDKWWv5iKlXLLmshz0d6QtXJATVYTdu3fzxBNPrOpLuhT5rNbfZ7kRldaaK1eucO3atSUVtVeTdpudneX/fu9tbnU8MiUTNwr52we+yYBZY5MdMuXnkCIEBPsyHm0lcMwojn4ii81WwESQZ8hqUgsdDBkwIH2mwiybrTYdlaUo6pRDm442qCvNqISMDAi1xBSKgnRpqkxv0HQqKrDNaHaPSTETFcgbFWIZ0fg4XS0w+jrbOsrClPG/NQIF3PRLjJiQk7E+XahNMiIZTC0idMhslMMUITmjRkD8YNJUGSwRcCcssdeu01Kj+EQI4VKQUIssHJGlHnaQkcOgqSgYLerKAAwaSmPKLIaO8IJ/SWh/AtNYua/KRiIfmN99t1Bzrb95YTGZm/V2L+3fp8ehaA2rUzgYHR1dteV1q9Xit3/7t/npn/7pJT9n//79jI6Ocvny5W8/8kmincS1b+fOnb2OmrWQwUIk24iiqPclTFScp6amVpxmW2z790vr9dtor9TfZzkpMt/3OXnyJO12e1mWESt1Mr127Vo8FV/KEdQ0zxQ20QpO8MbQNUAyHdjssD1qykQog4kwohM6FMyAIJIgNe3IxJIBlSCDY3RoKIOJoETe8mkqk9kgj21I2lpRkH6vWcAUmnKYY7PZpKxyeFGeYSMeZnVEQDnKIbpDoXnpUouy88gmQlJTOXIylgRSYhCIc9y+LmCJJqZQTIYZDApdO4UiGi/WnFOSYdNEi5CsjLvb7G6E5GqT6UiTM0xcJVHaR+ChKeJpiy1mjZqCYRGRMZsoDTNBkUjUyIgIC/CiECk9IgX11t9huDTXhbRcbLTusgdFGf3NC4mn0/2aFxLbiPU4tv77/lFCKbUq8lmL5fXv/u7v4nkef/Wv/tUlP+f27dvMzs6uKqv0oSWfhRI5pmkShiFjY2OUy+V11TKDe2dxGo0GY2NjWJZ1X1WElWCxVFa/BfVqbbSX0qSr1WocP36cUqnE0aNHl9V2vlzySWaDarUar776Kr/9rT8BwFQm/92ePyVjBNhCI3EYD2DYVOQtj0pksy/jEmmYRVCSEZOhw2Yz5FaYIQIy0iVr12hpmAyyDJqzdHSegvTxtUFe+lTCLENmB0cGBFqgNCAClAIpwZYRlXATWTHTPS6YCbOMWHOips3IRsiQqbDAZrNJpMOe1puvJFZ3PfK0pmAAaKbCkE2miyNAopBC0I5shOGjNAwYLo0oiyUDssLv1nYybDfbeDpDpD00FhVVYkg20cBMaNBSBjusGh2dQdKmjUFBelQijVI+bnCKqUv/F0Ol72B4eHjZ2msbMfJZLmEsVF5I3EvL5TJnzpwhDEMGBgZ6KbrVKi8opdbFtXilaLfjB5bVaLstZXn93/w3/w07duzgH/2jfzTvfV/5ylf4vu/7vns66prNJj/1Uz/F93//97N161auXLnCl770JQ4ePDjP7XS5+FCSz2KzO51Op9da/cYbb6x7XjRpMQ7DsGeWtmfPHg4ePLhukVV/hLLSaORB2w2C4J7fa625desWFy5cWLGpXEI+D1q0ms0mx48fJ5PJ9JxSL1TjRX6T/FMOFcoIIZEixBAuMrLJS0U9EkTKYCLUtMMcedOnHplYIqKpTBTgKRNX5RGGR6gVg4ZLhKAZGozYmkaYYcRsoYmZISsDxv0BHCPEwKPFEEUqKC2oRBqHmIwAIjK0lUWu23zgacgAPgaVMIct59S3Az13Xo2uagGA2R1EjTTku/Ue3XtPgZb2qCuDbVYcaYXCwBGa6TBLTmYpyA6uMpG0mNB5bBSGaLPTCpiMLLaaLg3lkBM+DeUwYLh0pETLAL/0a9y4sYszZ84sahy3GDYa+awlElvoXtput3syQAsN41bSvPC4Gg5arfhBaDXks5Tl9c2bN+85pgsXLvDNb36T//Af/sM92zMMg5MnT/LVr36VarXK9u3b+e7v/m6+/OUvr2q9/dCRz8LZHYDr169z6dIlAF566aWHFh5LKblw4QK1Wm3dI6v+CKVSqXDixAkGBweXHY3cD4tFKVEUcebMGWZmZh5o+vagbcL9F62JiQlOnTrFnj17ei3aZbfNVCe+kT61/V18TEqEtMIMW2wXV5tc92xyQrHZ7lCJLPZn4tdfc3NsdzpM+jmGLA9XmdR8AyEDcsKnrQzqymHIahJqk4LhobWmJNu0IhtLaBraxum2U3vKpCihrYbIGB4VNcSIjNuVIywqoUXOTo517v8TQZ6tVrM3D+T0dcAFOiJpMUnme1xlkTeD7mvja+vpAqFw0UgiJYi0QAoXLQQSh6wUNJTBkGzhyICGUhQluOTwcdlqBsxGg2REk5oeJNBlXDUMtDGFJOtMc+j5KbL8hXuM45IIYKFl9EZMu61H3aZfWSAxjEuUBaamprh06RK2bc+zjbjfIvq4aj6tVgvLslb9MP0gy+s333zznt8dPnz4vlmNbDbLH/7hH65qPxbDh4Z8FvruSCnxfZ9Tp07RarV46aWXeP/99x/al6TRaKCUwvO8Jc3SVoOEfK5du8alS5c4dOgQe/bsWfMT6cKIqtVqcfz4cSzLWvVx9Auh9iOxWLh16xbPPffcvDbPi9W4TvKdW88ymmmSFREtpdlsu1ztFDmYbVIJs2y2AzwlyQiDeqSoRpJB0wM0GRk3IJhAxlT4ymRWOUhDMGR00Chq0ShD5jTlMMeg0aEaZlE6R0Z26CiTrAzJiBquspgNDSxD0VSSEUDp2ODNkFAJc5SMTk9iB8DH5nYwxG67jAYyXQXsSEPOiAdNPWXMmc11Iy+loShdJoMClgywBWREyHS0ma3mFPUohy1sTDRK2xyw4+jqdlDAER6Bthg02rjKYSrShHhUQ8UWa4oZbZGXswRa0VBZpDCpu/87A6XvnWcctzACSPxqhoeHN9xQ58PSdpNSMjAwwMDAwLzmhXK5fE/zQmIbkZDg44x8PooW2vAhIZ+F9tZCCGZnZzl58iTDw8McO3ZsXhPAevqMaK25ffs258+fxzAMDh069NBMtW7evEkYhrz66qsMDg6uyzb7I59EY27nzp3zvIpWs02YTz6+73PixIleN97CNMGl2TKmkPwXu45Tsl0kJp5ymIpCSmaIFIAUXOrkwIA9VptIC4YMk7wRUQ1NHBlSVxbt0MQwFKZyCEMfLTpEyqYVOhTtGlprLGkDcfrKNDpIERNKVtZjMU9/CNGNUAqGR0cV8LWJ7DYbuDqPjBT9pyjSEscImAo2k5E1ikb8/lZk9yIcV9k98klarzvaphbmEEQURROlJV6YxzSgojaRE5q8cDBFmyGjwUxkUo9MNpkhRRkQaMVNPwtCU5Bg6CYlM6IW2QwaCh9BR+fJy4CObhFEkpnOv2JT7q/1rtfCCCCRc7l79y61Wo1arYbrug/dq2c5eFRtzYspLyTin5cuXcJ13Z5tRL/szKNEs9lcc6fuRsWGJp/72VtfvHiRmzdvcuTIEXbs2DFv8n49Dd/CMOT06dOUy2Veeuklzp0791CmrWu1GtVqdV59ZL2QRFSJJfiDNOaWi4XkU61We2nC+1ksnJqc4nt3TbIp06Hs59mdaRAoE4eQUSvkcqfAjkyLoqMR2JhCczcosN+JFQsCZTFsexRkyC2VZ5fd4rafY7S7L5NaxsrSQFON4sgGF91RMmZEM8pTMluYYi4CjKSN7NZohIBZr4iWLhkzOUafalRkQM41HyTqBZHwqYSbMJgmZ/i42iZPTD6675bKS0VHWZSjUQaMMq0wx7BZZtovMmg16YSDFFULS9qYpomrMpSJCXC/XSPQBreCDNtMF5+4sWaT6VJXBaCBgUYQ4ascg7JBR2cJlCKiTcX7/R75LMRCOZcTJ07gOA5CiHkdY/1ePY/yqf9xpQEty2Lz5s29rlXXdXvRYrvd5sKFC0xNTfUio/7U5cPCR9VIDjYw+SxsKhBC0Ol0GBsbQym1qIHZenjuJKjX65w4cYJsNttrYFhvN9P+on8ul2PLli3r3lEThiGVSoVOp3OPlcNq0U8+t27d4vz58xw8eJC9e/fe92Y8NzvNF158BwSUzICpMMduu81ddwBXe1iGwhGKySDPbtujEcW6Zpe8LM3AYsBUtHyHVmhRMBWzoU0nlOzOuAgh2aIibodNLgQDSDI4RoiLTYYOghzQIm/4VMMMg6ZLOTKBHCPd9mfHbtMM56drG0GJgtnGEBqtxbwUXDWycPUg2TDAkXMPJI7oSvJEklAM0VQ+bhQyYMQ+Pr4yUOQwdJ3Ddhkbi3LkkBMdiqZHQxmUZMTdoMQ2q85mM+KCZ7PfaRBqQSUsMmQ2mIlGGTJmmIlGGJSzzKoBNAFFQ9HW0FITzHb+mJHsn1/W9SwWi73Zrv6OsfHxcaIommeP8LDTQBtF1TqTybB9+3a2b99OvV5n9+7dKKXmpS77z8vDUF5I026PGP321lJKhBDzbAkOHz68aF1nPcinnxAWevysp5tpElVVKhVefvllxsfH1z2qKpfLXLt2DSklr7/++roN3yXn4+zZs72o8EFNC34UYZknKJhlhNA0Ipu81LF3jtmhYPhIEg8cyflODkPCAadOpKEjMwyaAZXQZnc2TqFNBFn2ZdtMBVlcDRYRR5wOB+wmU1GTs36GbE+PrUakJYZQtJSDE2mE8PBVDojJJ9Lg6gIF5nTSfBlwxxtid6ZMJ8rOcysVIsSQ4GPRjgrUIwtbhmRljhlPokSJgjGDEPSkeRwREkZZXsnMkhUmEVCUglGrQSOymQptSoZPTvpkhM95d5iS6bHfqTIZDrHFrGDLCFdJhmWZ20ERQ3rcDGNiNGgxq7ZiEGISMd75tWWRz8LGkYUdY61Wi3K53JP/N02zt+AuZY+wGmxUP598Ps/g4OC85oVyudxTonYcZ14n3Xo8SCbk81HEhiKfxeytlVI9vbRnn332Hq2ifqyVfIIg4PTp01SrVV5++eV7VF7XK/JpNBocP36cbDbLsWPHcByHiYmJdTV9u379OpcvX2br1q20Wq11nfp23bi43mq1ltW0cKkyy6f2jyGEQmEwaDVxlMW0n2VvpsWMn2fICjjfyfNEtg4WtKI4zz0eFNlnxwTRUjajIkRpkEgcqdjltLjmFtibcYm0INQho1Lw57MePi53ApsbhEwEA2y2G+SNkDtBEdMAW3oESmJJRTnME2GgdZyG85WNJTWRFnQiC19nexYIkRJkZF/7uvDRQtLSDkp7IAX1IKBgQKAk24wG+0zFkB1iCx07qgqJKQSNKMtN32TEdNnnNGkpk6lwkJKsYckm5dBmyIARo85saDNitrnmFTAk3cHVOnWVpyQbVKM84BHgo3QBuE3VO8ug89QDr8+DWq2FEBQKBQqFQu/JPynSJ8Pc9yvSrxYbJfLpx8J96m9eSJSoq9Uq4+Vxbt662Wte6LeNWM15ScnnEWCx2Z1ms8nY2BimaS5LL20t5FOr1Thx4gT5fJ433nhj0aeW9Yh8khmhfosCWL1Y50IkBFqr1XjllVfodDo0m82l37hMJNpvAM8///yymi/Oz55ie7FM0fIQSAJtEQBax1+/emRRMNs4ZnzOK2GGbVZieaBxleC2l8NAcN3P0IxMhoRmVlhMhRmOZGJZm6nQYYupkb0mC8VuK2CvpfCdWdpaU45CKl4ODI0UipYaZVBO0YksbDOkEuYYttqUgwyGEYt+TvgDZKSi0F17GpGDZXTVq5XE7BJRpCyQIYPC50imxbDp4QAjpsISAkMIOkpjC0k1kuSkwJE+JSOkqQyGtSAvQyzR4HSnwNPZMqHuMBFk2Wp1sKXDRGiTM5o0lMUms00lGmaTUaahHCQWOVGhrvO0dYAlstxq/wqDzs8/8PqsZM4n6ZJLzBcXK9KXSqVeIb9YLK6YSDYq+Tyoi9YwDEZGRrhoXOToE0d756VcLs87L8m5W24drdlspjWfh4nF7K2T1NfevXs5cODAsi7UasgnsYa+dOnSksOWa4l8+qV4FpsRMgxj0WHQlSCJqHK5XK9xwfO8dUnn9cvkHDlyhLNnzy57wero38ISBjN+gX3ZMlP+ANudKgrB2c4Iu50qllRko3g/PW1zyzOpKINNpoePhytyPOHEKTFLZBk1XQItGDUDbnoWjchCCYmNz6AZ4WtFVpogINSavNBkgJJU7B+cQgqNpw06qkJHK4Z0lRnlcDd0gDaessgZ8fUwpCLQc7dKoARbLY+8jLC0ZsT0GJCajFBkpcIWilDHrqO2MJAiVq9oRAG2kBhCMmJqapHJuD/AQWcCgMlwmFGjxnU/x267Ri2yGDACLKHxlMFMYBAJk01mQFN1W4C1ixTQUSYjZpVmNICrFI6QtJVG6Eu4YZWMOfjAa7vaNNfCIn2n0+kturdv30YpNU8EdDl22htt7ijJyCy1TzP+DOPeOHD/85IY6i2so92veaHdbqfk8zCwmL11UgupVqsrHoBcKfkkVtr1en3ZVtqriU4SxWvTNO8rxbNWx9FE3HTfvn0cOHBgnjDjWiOqhTI5AwMDy+78i5RPzrqBJSJsI+SmO8QWu0U9zNLSNpYIyMqQapBlu93hQmuAkt2hZLk0/EGGTBelYbPZAWDcy7MrE6e/bnklDmYalIyAamuYI/mYnGpRbNpWiyJMoXGEgRQCCeguISgNBhFZoRg2YLfVwFUNTKFRGtxMi4xQmEIAgkBDoMESCpGroIkVL2wRf49dpYnQZISIyYYIicDTITYGCo0pQKEohybDpuZOYLHdmuBukGGb5bLFLHOqM8ABZwZDCG75RYrSZ8R0Od0ZYas9hdbgqgyjZodyNMKoOctMuJnN5jRNlcXTghGjHZvs4dDWgqvNr/LU4P/nvtdoPRf7bDZLNptl+/btaK0XVaTurxctlmHYaDWf5Hu+1Pzgv5/59xzKHVr0bwvPS6vV6pF0UpddqLwAcdptta3WK7HQ/o3f+I2e7E4Cx3F6KXaIz8NP/MRP8Cu/8itUq1XeeOMNfumXfoknnnhiVfv32Mhn4eyOlJJqtcrY2BjFYvG+qa8HwTTNZZNP0h5cLBaX3d68msjn7t27nD59ekmR09WSRL+H0AsvvNDTuEqwVifTZrPJBx980KtPJedpudu90vhdpOGDhCAyMUxN3vC41NrE/vwMM94AALNRjnLHwTF9hs34C58U6ieDAru7dZ+GjiMTYF6XWdGcixp9bVI0QkDTUREemo4SCDR5GX/lpRCYKLJdTT1fBbHcDwJTSqSKMKVBpDUhEaApGCYgibQmQhFqMLrK1pbUOEIQ6vgzs0IjhMQRBqHWNKOQopHI/YScaW5md24CUyhyRNSjDFIIttkVrvkDHHTq7LIb3Ao2k5MNhq1p6mGOEavJeDDMdjmO2VVssIWPANp6iEjXaKtS7IIqTCxtMht+8MBr9LDkdZIuumKxyJ49e+YNdd68GddFCoXCvLpI8oC3kSKf/jXqfhh3x/lW/Vv8hZG/sOT2+uto92teuH79Ol//+teZnp7mxRdfXPE+r9RCG6BUKnHhwoV5+9mPf/yP/zH/7J/9M7761a+yb98+/uf/+X/mU5/6FGfPnl3V7ONjIZ+kvtP/hJMIaD7xxBOrnuxfDjkkxfhLly7xxBNPPLA9eCFWEvkkjRJ3795dluL1asin3W5z4sSJnlX3YjWxtUQ+i8nkJFhujepq448QhOQMP57AjyImgiI5M67pDFouN90hpAjYZje47Q0DLRqBzSYrJhmv6woaasGu7vT/dJDt/XzDK7LPiX8e93Ns7xJVqOmmuQQIaCtNXcW6A1IIcjImA028+JpC4Ctwo4hiV0PHEIJIa0wpaatYYQERYQkjjmS0xlMBGWkC8TaECmhpQUHGdR5XRTgSmhEUjFhpW4oO190iB7M18tJl3M9Tj2z2ZmpstVo0VazxNiir3Aol2+2QWpQFmmwxJ6iFGQbMGrf9Ilo4XPRG2GzX8ISmowZQukFGCizh0lBlJtrvsTX3yqLX6FFpuy0c6vR9v/f0f/78eXzfZ3BwEN/36XQ6G0Zzrt+Y8n74f2b+HxzpsMVeuaXFYs0LhUKB999/nz/5kz/hnXfe4Zvf/Caf+MQn+OQnP8lnPvOZJc/LSi20Ib6n7zcDqLXmF37hF/h7f+/v8Zf+0l8C4Dd/8zfZsmULv//7vz/P52e5eCzkI4ToqTh7nsfJkydxXbeX0lktlkq7JXI8jUZjVSoCiaTPUlhICg/DRjtxM926dStHjhy5742xmshHKcXFixe5ffv2PTI5/fu71Hbr3m3c6A5hZFIRebY6DRpehkDDZrtJK7TwtINjtBgy4utW6Bbvp8ISQ1aFm36ehtKcaBcIMNjvVPEjzZ3ABuHSUjZ3fYsZfwBbCJCiRz5NJRjsZkpaCrJSABqlFZ7WdELFgGHQVpqCEZ8/W4KvFZ5WCC2RwsDsylhnpKAeRVgoDOL0WkdH2NLA1RqL2Abb6V6LplJkZOw3JwWYMuK2V6AaZTiQnaIaOlRDm0HTpxratLrX35EBt71hCk6HyahI2BUw3WxOMRkU2GK1mAlzIAR1lWHYKmOKEoYIaYYl8rJKJBTVKI8tbSwCLrV/77GTz0LYts2WLVvYsmULWms6nQ7lcplqtcrly5e5cuVKLw3Vn4p61IiiqLdmLYZr7Vucbp7midwTSLH2iM0wDF555RVeeeUVyuUyr7zyCkeOHOHrX/86v/iLv8j3fM/3PPD9iYX2j/3Yj/V+txwL7WazyZ49e1BK8dJLL/EP/+E/5Omnn46P8do1JiYm5tlyDwwM8Nprr/H2229/eMgH4kVxZmaGU6dOMTo6et/J+JXgQeRTqVQYGxujVCrxxhtvrEo+ZDmRz+TkJKdOnWL79u08+eSTy04frMT07fLly1y/fp2nn36a7du3r8t2E3ie1zOte9BQ6nJI7WT1XxHpiJzl4WmbQIMwFG7kYNpNrrmD7M3PUg7yjJg1PGWw1WpSDTPUI5PbvklAwF4n9tK55o72BDoLIiBvBGRl/F/R8AmUIMTgsudQDTLsycx1+YV9u9rRgqwEUHR0SIBAKQspBZ1ulJLYrTYjn7y0sLtrsxQRUgjqSpGTumfKagmItKajFYXuoGlOwmykKElNHBXFBCSjuH41aHpcdQfJSEXRqLPN8ZjyS2y2G+x0JnmrsY0n87cpadmNdFw6Otm2zy3fYtSuUAszbLYascyPYWCLJlPBIJY0cRUobYC+ShC6WOa96ZGNEGEIIcjlcuRyOa5evcqLL76IUuqeOZqEiIaGhh6ZBNBSnW7fqLwLwJ7MnnX/7GazydatW/krf+Wv8Ff+yl9Z1ntWY6F9+PBhfu3Xfo3nnnuOWq3GP/kn/4Rjx45x5swZdu7cycTERG8bC7eZ/G2leGzkc+XKFS5durRsO+jlwDTNe/zN+7u01pLSgwen9ZJo4datWzzzzDMrNldaDkn4vs/Y2BidTmfZbqYrIZ9qtcrx48cZGhpa8mFgOeQz5Z+hHZmEUZYhq8O0N8D2TI2am+WON4hldQU4uwvqdFDkTmgx5FTYlZkha4RcaY6ypZt+G+zWguqhzVanDsAdv8guJ261vuENcjBbIWuHuMrAMTwmI4nSBoMSEiOe/rPhaYEtNFXtk1EGGk1CPIHW2ALaOkApozufE28jKzUNFZIRRm+7Ha1QKDwtcIQk0mCKiLKSbOquXZNBkUB3ep+/P1PlVHsvT2SvdPfHARq4ysQxW0RaYAjFpFdiwHTZZde47A5jSo+WzjFKm4hBpJigFmXZZle6OnKQETUiIWnoIrZ2Od38t7w4eK/V9kYr8Cc1n2Kx2EtFhWFItVqlUqlw7do1Tp8+3ZMAWk/TuAftz2K41LrJlB8vvnszB9b9s1ut1rJdi9eCo0ePcvTo0d6/jx07xpEjR/iX//Jf8uUvf/mhfOZjI5/EAGo9B6gWkoPneT3V67Wm9OD+kU8i+xNFEceOHVvVMS1Vr0oaJAYGBjh27Niyo8TlkES/qsNyCXqp7V5ufJNQN9E6REsQKCLdvYENjWEEZLs0UDB8JrwStchmX3Y2HjrNxORid9NxjdBmkxnrrE36JUasWCW7FcWLNUAnmnsSrkcZoE5WxsrYTR0yG9gMGJpsn1KB3yUfW0BbRSAUJhayO5OTlWADoY7wmItqumcuTpVJgS0EbSUoGODpCIGgrcCUmryIuBNk2GJGDJh1BswGp1qbeTY/SzsyGTDHqYU2A6bPVnuK850RXGWwOzvF1c4wT2Rn2ZOdoRxkyRsh5chit9VghNjdNCdniLTBgBHXSQJdYsScoalsPJXFFFk6yuau9w4vci/5bITIpx+Ldd+Zpsno6GhvRMHzvHtM45bTurwaPKjN+nfvfh3T8Njh7GZ7Zn0eovuxmiHTtVhoJ7AsixdffJHLly8D9N43OTk578E6aXRaDR5bS8nAwMC6T+72p93K5TJvvfUWhmFw7NixNRMPLE4Q09PTvPXWWxQKBV5//fVVH9P9IpRkDum9995jz549vPDCCytKTy4V+URRxOnTp7l8+TIvv/zyshswlmo4ONf4QzwVogQYhqaqsxQMn2bgYMoQL7QoGh6+MmhENqGMKHZtCTo67qiLNGyzY2Iph4VY+Rp6/4e5aAhgqz2XZhsy56ILreMif97wKKuImQiU0gRak+0TG20qA0NAWcVzQmY/SQFKKypR/PqWAlMIHKlp65CGUuS7KUFTQEuHRMxpwRWkz5/VNzFgxsezzalSjzJccgcpmW1u+XPfT5OQzU5svJftzhqZQjHhF7jsbmKbU8dVGQqGz6w/SkaGTLrDFA2PWjhETs4CmkbkkJU2Ji4an3o4Q92/N0WykcgnMSlcKopxHIetW7fy1FNP8cYbb/DKK68wMjJCpVLhgw8+4Jvf/CZnzpxhfHx8XrvwanC/tNuF5g1ONi5TC8tEqsCoPbimz1mIxApjLRbaCRIL7f7o5kGIoohTp071iGbfvn1s3bp13jbr9Tp/9md/tuxtLsSGGDJdLyRW2pcvX+batWscPnyYXbt2rduN1U9uSikuX77MjRs31iV1uBhJhGHImTNnKJfLi8r9LAcPch1NGiOklCv29nlQ5BOEATPeFWzRJGOGdAKbgu1SNNtcaGzjydJdJoMcUOdcawsH8zP4SjJsdluou4Qw5ZXYnYnrPaEymPCKNJWJryTnmqP4CrZnY+uFCb/Ajm76rexnej9HOm5t7ttzHBkwqUwkkmFj7mEiqSdlpKKsNDkkVveUNSJB3gBDR1SjuL061/2bLWAyEGwy5s6xpwzaWrO5u01LKrxuQ4Ih4mjvpruJUWsKgH2ZGab8HJvtNlVlM+0Oczg3wxa7wXV3lL2ZGUItKFotpFCUw01k5C1Et93cNv2+4w24424mY7bJyjKRymAKiUuWE43f5ztHvjjvem0k8llOZ9lC3M8yolwuc/fuXS5cuEA2m51nGreSB7j7RT7/58QfM2hmKRo2Qj8c24PVqlqv1EL7p3/6p3n99dc5ePAg1WqVn/u5n+PGjRv89b/+14H4HP/Ij/wI/+Af/AOeeOKJXqv19u3b+b7v+75VHdtHinySL53rumuynr4fkrRbUpT3PG/ZtZelsJB8ksHUxPRtteKN/cZv/QtMIpOzbdu2FTVG9G93MfLRWvPH1/8VoXKJRJGsU0FKRTtwuBVZmEbXDFBozjV3oLu7VPNyjObjaGXUTNqp81SCApbhkZcuhtnB8wtszcZRweXWJpBt7oaSS50iE36WIRnQCh2G7fgJ/2p7iP25MhCbumW7ytQ5GVKJDKYjySZD0VaCjJwjokhDS0QILbuDo/G1EQKEDmkrk5xMjhls6TOrTDbJ+HVtJclKl2pkM2iE3PaKPFmY4LK7g8PZOwAECGa6VuGGUMyEGYSALc4s5bAvghZhHMVYHcrBZnYYt7FFHaVh2JylFjqMWjWud0bRMse0Z+PqAjkFk24JR/oESKQOuNk6SzgQzlt8NyL5rGV/+i0jYE7ZvVKp3GMZMTw8TKlUeuD3f7HI52LjNqcalzlS2EIrVDxfXP+UG6yefFZqoV2pVPjCF77AxMQEQ0NDvPzyy7z11ls89dScLuCXvvQlWq0WP/zDP0y1WuU7vuM7+NrXvrZqf7PH2u22npidneXixYsAK6qJrARJq/Wf/umfMjIysi4dev3bTm68ZL5mqcHU5W4X5oqmWuveTNVaIrYH2XNfE+9i5QWhiph2B9iWKzPVKjCYmXMGbUU2W7MNal78xfW6X8VKkMMLba77BkpotmbL1AOHQTsmpkaUYWu3xqO6zOVIRdbw2J2L60C3a9s53tzMfqdOI5oj7bqyKHXTWEprHBFhipDboUNOaPp7p6RQsf22giZmzyAOoK0NhAjpKKPbeGBgigiDgEpkU5CKjPSQAtoRBCKeSypYdQpmmXZkkDMiEG1CskAVgP3ZWS509rA9c5tNVos7/mZ22FPscGqcae1lc2YCX8d1r5LZ4HZniN3ZCvVogNkwoqJGGDFnCMJhCkadEANlWFS1SQaFKRVVv8Ifvv17bM3t7y2+G6nhYDWRz1IwTbNXY4b5Pj2nTp1CKdWrFw0PD98jAbRY5PP1mRMA5I0c79eu8dktO9dtf/s/t9PprFpeZyUW2j//8z/Pz//8gzUAhRD89E//ND/90z+9qv1ZiA995NPferxr1y4mJycfCvForZmYmMDzPJ566ql1TefBXErv3Llz3Llz577zNStFv/dOIifUaDTWHBkuJJ9Op8Px48cJpUe0ycVEILWm1e1k0zJe0AfNNjdaw2zOxgQyYsWLaVYGlP0c19xRDhSmyQBBGN/wlSDHZjt+neyrwwxac3WdzX31nu25MgOWS1NJaqFJI7Qpmj6BNqBr+ubqmDAACtKjriyyOq7XuDqW5wGwpaISaaQSZGSiPSfJypC6AhuNj8YhjoqUDpkJHQrdCK9g+BxvbmNXNo6+SmaHW+5usrpJKVOlBFxpD3MgV6YaZJj2Fdu7D5K6e+7u+iWibqNDyawx7sZdgxHd2hg5DKNOScTnyERiSkU9GMSWIVK7dJSDhYNtaTg4yzb9Rs8+OrE/37x582Odp4H1iXyWQr9PTyIBVKlU7rGMSNJ0CyOfC4273PGmAagH8XU+kFt/8mm14uuZarttQLiu25tJef3114miiLt376775/i+z8mTJ2k0Gpimye7dux/KZ0RRRLlcXjfTN5h7gqzX65w5c4ZcLsfRo0fX7DXSTz6zs7OcOHGCrVu3Mj16FtUMCQAvMDGlZsItMmR3cEMHTwQ0sdgioB447LBrKK1p+Bl0Np6HgW53W5eYlJp76hyQMeG0I5Mt3WaEGa/AaFfhYMorsLn7c6glh0vjlCOTsldgwJxrw69HNsPdpoRQCwwiZiPJiKGphyalvteioYrBJhXbfVsiJrCMDLkdZSkIP9ltbKGYiiSFviyNEBGhtqDrnLrJvsOZ+hae7JJMU8Ux1+X2CPvyM9TDAiWzyag9yZ3OEC2KDFqzuJFJxghpqvjabc/Mcqq5jQGnRiUsMGy1mPbyDFgVQi0xhcQWVZoqi9J5pkNF3gi4G17me3fNLb5/8id/QqFQ6M3TZDKZeYvvw3iYux+SZoNHFYn1SwDt3r2bKIp69aJbt25x9uxZLMvCsixmZmYYGhriX936UyLpss0ZZcqvMmoNUrLW3/YgJZ+HhLV+uaanp3sDqi+//DKmadJoNNbVaRTmhlMHBgZ48cUXee+999Z1+zC3eAO89tpr63qzJ+f5gw8+uMfGYa3bjaKoJ1X05JNPsmvXLr5y/d+gtcLXCmlpcnjUogKbnRbNQDLhDiC6hNiJbJSGk81dHCjEdZy8jBf9RpjtkU++q3rQDG1Gnfh3U16JA90024w7Rz6zfr5HPnfdAfbmy+TMgFYIlcjEFJqcDDH6utzqkU3GCBAo7oYmkrnzE2qBIUJMIbgTZRiQCkvOEZNEUVMWm7r1olALMoZHLbIZMGKyMYTDHbfIk4WrAGgEDTWX5Nufn+Fya4RBu4kpNHfcTZS6da+ZYIhNubgpYdrfwnbjDjucGm5k0FYD1KIcg8Lr+ve0cJXFsGjTCDaRM2uEGpTOo3VARkpcNYBNjTvtm+zIzT1E7dy5k2w225unKZfLvfrIWi0SVoLHnQI0DKPXlHDgwAGCIOD8+fO0Wi0uXrzITa/MW9Yl9hUiRoyt3A1n+PjQyrXXloNWq4XjOI9smPZR40MX+SQpgps3b3LkyJGe9S/Mpa7Wo4DarwF36NAh9uzZQ6fTWbftJ5+RDMAePHiQCxcurOuNrZTqCQUm5LCeuH37Nq7r8sorr8SaXJFLJZjEkgatwGTA9uhEFgZxhNTWDpucJp2w+7XTmnPN7b2oIVSC0a43T9hNuUUatnRnfia9EiUrTnd4fYt31HcpdB9xtNVcdHerPcSB4gwVJahGWYaMuZSdi0mGpKU5ohmZDGqBITRNZWN0I52C4TETZtnWRz6uNgBFoASW1NQiBykj6pHFgOETKJOCOYMlNZNuni2ZFuPudvYXZ6gGGQatuA34rp/nUCkmmUFrFk8ZODIilAbtKLZ38FX8WluGXGmPYhkWVrdbzxZVtJ5LRbbCgKIVMOsXcaRGGk2ktvEiG19neLfxdf5fuTkV4+R7t3CeJqmPJJEA8FAlbzaaqKhlWWQyGRzH4dChQ3ztzP9JsWYjtct0ow4ZMMomt83bvfOxXuSZKFpvlHrceuNDRT5Jmi0IAo4ePXpPOGoYxn3bileCfquFfg24JO+7HuQTBAEnT56k2Wzy6quvksvluHDhwrrdfJ7nceLECYIg6Mm1rxfa7Tb1ev2eTry3yn9CpF0M7SGReIGJbUaY+JS9Ak63DlIyPCItaIZZNueaTLvxdaz6WQayiYlc/NpZv8DuTJVICxpBlvHOAAhQSvRcSEe69SCAYWvu5/4Wa7c7gGoITUNJvDDPDiuOLiwxFy23VBwFTYYZtpkdAi0w+i51iKAVWeSNREVbYcuI21GRfbKOhyRDRN7wudreRidUbCvE9Z4r3ihbMi06WpCXERcbm3l54DYAWghqQZEBq0He7HCptZkRq0XRnuF6a5inipPsyNaYdItsyTRoqxyb7BqbpKAd2ZQsjym3yOZMg2k/x2anQaQlkRZkjQodZRFGOUwM2spgvBM/lCSp0/t9nxfWRxaqL693im6jefnAXLfbzdYsb1Uu81RphJw5hJGBQDnsMrYwPT3NpUuXelbayflYS3q72Wx+ZF1M4UOUdpuamuLUqVNs3ryZp556atGhr+R3yzF+uh/6HU0XWi0k21zL9iGuvxw/fpxCodCrv/TPD60VlUqFEydOMDw8zMsvv8ybb765LoZyMJcitCyLPXv2zGsBP10/gcYk0hZZo0nNc9hst3DwKQcldmRn8SPJsN3kfHsLW7vaa5luZOGG8baUhs2ZBnfdAW60hiiHOYq2RygMsOLjyOBzNyow28oTBiZlt8imbI3NvfkewdauJhxAzpwThG0riwHT5VZQZNRokRVzf/O1gUOIJUOmomzPtgDilJojAqrKJicDAoxu956gKF1mwwymmHt9hEtLzc1/HCxMcbU1zIAdR287slVcZeFFBptzNaa97QxY8f7njZA73gBb8o1edAMw4xdwDIOC1caNHDKGx5SbZ2/Op9UlWDeyGbY63O4MMuq4aBR+VMIQEktohNa0lMvdzjibuyrMyx0sLpVKlEol9u7de98U3dDQECMjI6t2Md1oT/pRFGHbNn8wcRqFpmQ5vFe+y8sjgzRCi48feoGSle1ZaVcqFW7cuMGZM2d6lhGJBNBSnkD9SNqsN9r5WC9s+MinXzNtKSHNfvJZaZ60X2Jm//797N+//56Lnmx/LQSR2Ggv/Iz+lujV4n4yOethKJekIS9fvsyRI0eYnp6e9/cwCqmHkwRK0NYGm50IKSCKBDNBgUjEnWqNIEulnUPYBmZ3JmYo6WRTsZHbmeo2HDtkMOOCEAxn4lTSQLejreJlGXHm7BZ2laoAXGyOYneG2enUCLVkey4mn0BJtmXniChJzRky5EZQYqdV7/2tv5suQtFRDiMy/qyWcpBCYYuI8bBARkYYYm5uaSrMstma67obdFpMeHMRpyE0t9wST3XN8PKmz9XWNgIdsSVXp2hVeum7ktVhIow7ErZm6sx4eUadFlszDSb8TeTtOuPtQfbkJ7G7kduI3UZrGLUDQmVSCXIEDFMNA5Q22JVtoRVdVW+HP61+nb80GqsRr2aBe1CK7s6dOyil5kVFy1F332hpN4j3aSbqcL4ZNzMFyiDQCkNI6n5IyYpTj4mVdmKA6ft+r6X73LlzBEHAwMBA75wsRSztdjuNfB4WltIH63Q6nDhxAqXUomm2xbaXuKGuBMtVEki+KKtpaljKRlsIsWyPnPtt/8yZM8zMzNxzDGvZbrLt06dP9+TdBwcHmZmZmXft3iq/RahCFAqBZtbNU7A86r5Dxgrwg5i4a0GWkVyLSseBDDRDi21OTC6+MjjV2kFb22zJxA0ImW7E0gwshruzPtU+8unXcwuVze7SFL4WXCxvxpEhI5kWdzsDbMvNkU9GzhnPhRjcDUtsN+soRC8KA2hGTtcHyCInA3wtyXQbFQwRi5fm+x5kA20wE+QZ7ab+breGyNsuoZI9otVSUPGzDHWPJW/VqQdxxJc1OlxubeZIcZK73nYaoQQaSAETXolRp0UlyNFUJvGSFO/rqNPEixxKlkstGKIWSJp6K6bVwRNtkEOYdLjjD4B2saTA0xHX3ZtLpt1WgqVSdI7jMDIy0ivoL/aAuFHJ599VruKZHnnD4Wa7Ssm0aQWSJwr310qzbZutW7eydevWeZYR5XKZ69ev39e9NMFHPe22sa5yHyYnJ/nTP/1TSqUSr7/++rLbDVdqdd1oNHj77bfxPI9jx449UMJGCLEqK+12u80777xDs9nk2LFj9xBPgtVGKMn22+32osewHO+dpbbtui7Hjh3r1b8WEtrx2rdwlUYKCwtBO7LIWz7VKItpxHWVZmDj6Vi00+wOiDY7GZSGs42tOLmIAcdDd1urldYMd0mm4c3dhGE498xk9J0umQwoChAWVMhwvLybsj/3xF31smT6akEagSEVE2GRRmRj9EU+nrYwhWY2yqE0COb+ZgioqvmT3UJoXG2RnOrZIE/e7nC+Eae2QiUZyTS53pm7/koLWnpu3irpBIxExHCmRaji8zTQJatKlKMRxoy3JdvADZ24jhXGEda0N0xHGnjKwTEiAlVA4mPIiFZoUA4GULqAKRTVoMGsW+5dz/VEkqLbu3cvL730Eh//+Mc5dOgQQgiuXr3KN7/5Td5//32uXr1KrVbrfZc2Ys1n1m/zR9XrVIIG+3PbmPLqbHMGOVmd4tADyKcfiWXEzp07ee655/j4xz/Oc889Rz6fZ2JignfeeYe3336bCxcuMDExwfT09KpERRP8i3/xL9i7dy+ZTIbXXnuNd999976v/ZVf+RU+/vGP94jwk5/85D2v/8Ef/MHeA3Ly36c//elV7VuCDZd2Szq0bt++vSprgqUM5fqRpMBW0oK8UivtqakpTp48uSx/n9WQT2Iq9yCZnNWS2oMkePqjVq01k/4UES6hDugE8deq4Wd6i3le+txyhyl0IxlHxI0FfmRyurYDYYhedGB3LbEbXpYt3WHUoK+7ze6rgRT6hEWLzlwHW970cMwIp1Tn7OwWdvhZBu0Od5sD7Bue6b0uaTYQUjMT5thpzKXgErLJyJBb/iBDZoukNa+tLAwJlW7nXKAMbBEipGDc28SOzDRWt8HCMiOUhilvCxm7xaZMs9csMdsZIejTVtiaqXCmuoNioYkDTPub2JaZYthpc7G1l8FMEzNQKB2n8WaDUbaadxAorrRGaYmInBAoHZ/nUJlkzRq+yhIoQcGUlENBToYofN6qvcMQpYdeV1hOii5pWFiv+uR64Q/bt7CFpBq0KYlhNFA08yjgcHF55LMQC91L++tnb775Jl/84hcZGRlheHiYN998k6NHjy5bYmulFtpvvvkmP/ADP9DTd/zZn/1Zvvu7v5szZ87MU0D59Kc/za//+q/3/r1aya/eOVjTu9eIxYQu33nnHSqVCseOHVsx8UBMPkul3RLF1gsXLvDCCy/cYxG91PaXs5AntaqxsTGefvppnnrqqSWf6FZCEomyw4kTJzhy5MgDt79SN9OkBfz48eM8+eSTi267P5r61uwp/Mgj0jaaCG0GSBTTnQI5MyDSsXZbxgop2jFZDDhtWqFNVWUp5Xz8YG4BLnVJpO3PpSFkXyF/MBOntfxIMpqNayyd0GSo+/tIC0Yyc11vA1mPu+EAN+rDeHrueasZ2dh9em4NlWUyiKOQUEsysq8RQRi01dzN1urK9jSVjdZQU5nedyhQJo3AYVMuJs7hTJuLjS3Uwvh4CpbH9Vp8U7soRvIVql62e5ww4c9F+eXO3P7O+Jnu+32qfhzdii55+irEkxlyZodWYJG3m4TKwBAuQoAfZckYIYZoAT7NKIdFyAX3anc7j7aonaTonnnmGb7jO76DF198kVKpRL1ep9Fo8NZbb3H+/HmmpqYIgmDpDT4k1H2X/+zeZXs2xxP5HdiGoGBkaEcBppDLjnyWQkLOhw4d4nOf+xxjY2M8++yzhGHID/zADzA8PMxnPvMZ2u32ktvqt9B+6qmn+OVf/mVyuRy/9mu/tujrf+u3fov//r//73nhhRd48skn+dVf/dWeCnY/EiXx5L+1dtBumPh2YmKCt956i8HBQV577bVVh5tLRT7NZpO3336bVqvFG2+80dN7Wi6WE/l4nsf777/P5OQkR48eXTaJLjeqCoKADz74gDt37vDaa6+tq5tpGIaMjY1x48YNXn311ftqv/UT2jvV94nQgIkbFcmYikgKTDukaHk0PAfpaDqhhSE1ncDEkJprnRGKme4Tehgvfm5oMNglKF/NLYjFbtqp5dsMdclptl3E6ErezLjFntXCjJvvkUoQSYadFgXbJ3Iknb7Zn2Y0P21mCUVLW7SUTS3KIvsWZF+ZTIVzpOATp74sqZkMi/PmjopOnRPVnfNatCMpyPTJAWFG1Lwsw/lYpfpGKy5SKy0wzbkHha35Gn5kUnFzmKZPchm9bhfdgF2mHthMBnnK7ZjAOlE+TsV5BfJmGy8yCHVIwfTQGAhtx0VzMtTCMkqsvcNyLehP0e3cuZPh4WEOHTqEYRhcu3ZtXoquWq2uS0focvHvbp/DQzFgmdxquggZsSezldmgwXOlPRTNhyNFtGfPHg4fPsynP/1pxsfHeffdd/nsZz+7ZNNGYqHdb3e9HAvtfrTbbYIguCd9/+abb7J582YOHz7M3/gbf4PZ2dmVH1gfHnvaLYoiLly4wPj4OM8888yyzY7uhwdFJnfv3uX06dPs2rWLQ4cOrSq3vFTkk7Q5L8cNdCGWQxKNRoPjx4/3WsGX09W33IaDdrvNBx98gGVZS4b5/eRzs3MLUBgC3CADVoNQG6AEUmhmgwI77TqhF5/vtp+hEuSwzZBid8jSMmOyaHoZhu346S5Jr3mhZKSrbFDuFCjaXve1DnQFxdv+HKnUgyyj2Xgb050im/Lxey1Dkct7nJvdxpGRu4R67vr7ysDpft5EUMIR4byoyNcGWSNkKijM62gDCDDm1YMAPD1/viMjBbMdm53dZoRN+SpnprezZySuuRSc+Jhm3C2M5lvcbg6ys1AlY4ZMNDdTCQwGii6z7gCbcjUyXQUEQyjO1XcyUnBpdWthTvewpDARAsIoT65rxBepDAYGmohOlMERIRec23ySjYFkpmaxFF2/EOjCQdeHEbm1w4B3Zm4C4Eib260yI1nNTFvTEjU+Vjq87p/Zj1arxbZt2xBC8PTTT/P0008v+Z7VWGgvxP/0P/1PbN++fR6BffrTn+azn/0s+/bt48qVK/z4j/84n/nMZ3j77bdX1D7ej8dKPsliJ4Tg2LFjy2rFXAqLpd2UUpw/f57x8fE1C3beLzpJTN8uXbq0arvupRoDxsfHOXPmDPv27ePAgQPL3v5yGg6S2tH27ds5fPjwksSckM/N9jhN5eJIi0g3UUQ0PYe87eMGBtPtArIbwUgVz/BMewNsGyhTbzuILtEUe9HO3Fcyb3ncbA4x3RwgYwRoW9NyHWajPCYK3zfwIwPbiOjrE0DpuZuh6Wd65FPu5Mg5AZEB11sjONZcOqcRZbC73Qu2oagFGQb66klmNzpwtUVbWWSM+U0LM2Ge3Ua197tSJuBaY4R9xfjp8E6zQKBNdlLpvcZn7ql5JNviemOYQOfJmFXqQY5E7TpAkOlGiG5YAGpkzRbTbhFThHg4gNuLDnNmk0hBtkt0poiJte6VEGg0LRzDwo0k7TDDbWuuBva4sVjDwWJCoLOzs/MGO/tbutdLjuZ3rp6mpeKHginXwxCCgpHFNUNG7FGG7fW1bFmI1doprAU/8zM/w2//9m/z5ptvzrNK+NznPtf7+dlnn+W5557jwIEDvPnmm3ziE59Y1Wc9VvK5evUqQ0NDy1rslouFabfEMA1YF4JbLK0XhiGnT5+mUqnwsY99bNW50PsRW9KEcefOHV544YVVpQrvF/n0S/ysxGIhiab+48Q7aK2oByEGBjnLpe5lyNk+EkVDOz2fnIwZcLWxCXopMaP7f9mr85gKJjolJpolhkttTFvTMSw2D8b1k2aQYbAQk8KkLnHN20TLs5FRPCMkBWT7BkNVX2a54uXIOTUMCaEZy+8MEX+upyxsY042J8CgFmUYMFwaoYPVbYYwpOamP8SmPlWFWpRFY/RaqluBTc5u0fKGgJh8Am0wVGzihhkyZtx+Xci1e+QJUA3yFLs1rKFMm0gJDKlpRRLbjAk8Y8/tY9Mr0hGSwYxLpMExPSqdLEPZDnW/RMmuU3Uz5K1G9+HDxjE6mEZEI3CItKKtFMpoLOuaPwosNWTaLwS6d+/e3mBnuVzm2rVrnDlzZkVePfeDH0X85qUxSiXNVp3hRrvOrlyR8abHllyWQJscKd1bvF9PrGbOZy0W2v/kn/wTfuZnfoY/+qM/4rnnnnvga/fv38/o6CiXL19eNfk81prPM888w5EjR9a1tbKfHKampnp1pNdff33dIqv+hTxp1fZ9n2PHjq2pCLcYSXiex3vvvUe5XObYsWMrJh64f9otDENOnDjBzZs3H1jfud82tdZcat+M25URaCEwUahuHabZyWAZmpwVP7V3lIVhqV7EIbrhStPLIAXMNAtM+EU6MoO2JGZ3Oz3HOSBjzhFL0elgmYpSziVbDDhT38nF8lYG+poNMuZcdOP3zQRV3TyutikH8XeiPy70lYElNeUwF8v6qPnpx7Zy5s0XucrCMhR3OvHNfbc9GLfWOhWmWvHTcTHrYRma6Xb8mvHmII4VcKvRN48lNaIbYRVsj4oXX+uWspntxK/L2Q1mOvGCFOoI2wmwjJCKGx9Hqzsz5HZTnK3QwTI8vHAAKTQCHy/KoJSFHymk0HS04oPqJTYCVjrnkwx2PvHEE7z22mscO3aMHTt20Ol0OHXqFN/4xjc4efIkt2/fpt1uL7vx5vdunKMeuNx1G+QjC19HjDgFrrXq2IZkrDzDkdLaLU8ehGaz+cgstP/xP/7HfPnLX+ZrX/saH/vYx5b8nNu3bzM7O7uqprAEjzXyWY/J+4VI0m7nzp/j9q3VtWs/CP3RSZIG27Nnz4o65h607f7zkdSPRkZGePrpp1edW10s7dZqtTh+/Di2bd8jI7TcbXZ8jxlVAWFg4CBQ1DpZLBR+JDGdiDASZLM+tY5DKA1Mocl3C+9Ol0g6ocm5ylasTMRA183Ui+a+mv3yMr1OOM8i58TE0nIzFLMuVtaj6dlcqW1hV3GW4WyL4T4iMmSfknUnx5ZMndmoQEYG8+o7rcjBkApDwnV3BFNGOMz9XSGZDovsNhKH1Pi6KwmREkhRADykEEy2SljSINvdV92Nrqp+jqFMh6jv+a8eZqk2c+wfiKOlZpAlYzjkMj4tr68Dzi0wmm3R1kW051FwfEKVAdq9KMrp1tKE0FyubqXsZynmXFrBJooiiyGbFEwDP5JUkXxz5jgvDT6xnEv/ULHWIVPHcdi2bRvbtm3rpejK5fKKUnShUvz6xRPsKBTB9vH8+JxKnSicSDY7RQas1Tl4LhetVmtVLskrtdD+2Z/9Wf7+3//7/Ot//a/Zu3cvExOxC3ChUKBQKNBsNvmpn/opvv/7v5+tW7dy5coVvvSlL3Hw4EE+9alPrfr4HnvDwXpDa834+DiWbXLs2LF1nxBOIquzZ88yPj7O888/v2jv/GqQkI/Wmps3b3Lx4kUOHTrE7t2710RsCyOf6elpxsbG2Llz56obL4QQvBdcxZchApcQsLUmNARZETLRLLKl2MJ1LcjCRGOIrcM1PN9kKB/vS9HyaPs2k16JHYN1vMCg6MRRku7rdMtb8YLdcm1KmXhRbfiZHvk0XYdiNv59q5NleKDJdFjkxtQIz2wa720nqSsBBN3ivCU119xRdmTmFBA8ZZLrtllLQxGq+efHEAopFM3QIW94WDJZ8DuMt3bhRR2SGHtooMlEY5ChwSoAWafFzfowstvRNpxv0fAyFB0X01I0/LkFLe9UudEcJpePyNkNwkhgGhrHDJjt5JFOh9lmgYLj43T3YSjbxgslAxmXm7VhOtJBGRopdbfl2qKhIZQOm+wARAcp81x3p5Z97R8m1nPItD9Ft2fPnntSdKdPn55nF5Gk6L5+5yp32nVe3rIZrS1ass6OTIla4GILg1PVGT42tL4K8YthtfI6K7XQ/qVf+iV83+e//C//y3nb+Ymf+Al+8id/EsMwOHnyJF/96lepVqts376d7/7u7+bLX/7ymmZ9PlLkMz09zfj4OJlMhtdfP4pprP/hKaW4desWjuOsW5NEgkQa6NSpU8zOzq6pfrRwu4nad2KhvZRO3lIQQnAmvENkxQ6lhghpuxZ2NsQxQoKuIoEO4HZ9EN39sgfdAdQglBgaxv1BLDMmo44310Zt6/h3oRIUnZg0ml6mRz5e31xQGMxdZz+Mf2+ZiqZwODm5m6c33SKIDAYyczMS/VGQry2uuyMcyMaFd08ZPfIQQCXK96wPGqHTTQcKpoICo8RabAnqYcRgfu5zbEMx7dn0X8WKn2eoGA+sSgF3W4NI0SHnBNgmRJGBYURkTJ+2GiVHA9MImGwPsKNYZSTX4lJ5E8ViQDL0mnea+KGNbfrMuAUyhmDCKzJc6NDsZCg4fjyYCphW/PPdVomC1cEgZLJd48KNy+zevOOxO5muNsJfCgu11zzP6w269ttp/7vpawBkDIN3706zMycZMQe55k7zzMBWPqjd4cmHXO/RWq+p4WAlFtrXr19/4Lay2Sx/+Id/uKr9eBAeu7bbeqDfSnvTpk0IIbBMi0gHGKxP5wvEbYxTU1Pkcjlee+21db9Jko65fD7P0aNH53WbrAUJqZ04cYJarbZmC22Ir11ZNYiUgRFlsJ06rgAjlMy4BZK1XSlBKEzoDkNG3fTfTKOAdMCyI8ww/l1/hJG148ij4WbI5uMifBD224P2/dhHJP3tGpFvURhpcXp2FwOyxdahOfWCfHaucB+3UQc9F1THmKsTtSIH04BykGPYatOIMmS6beGOETETFChac8OonrK5Wxtm51C59zttzf+eK+HgR34v7WgbiunGAKLYxjQCZtub2Vy8S72TwQ3yQNwQ4HUHW/3Ipq6yFAkoZTu9xoSpZo4dgz5+aNLCJrm9HOkgpU/DdSjagoAIgjyGadGObBzZAqn52sS3eO7qLTKZTG+6fnBw8JE6mT5KbbfFUnT/94WzTHa6ArazdQKl8Yi422jTEB62iNPTz5TWL5V/P6xFXufDgA0zZLpaJAX5iYkJXn/9dYaHh3s1GblO3JqQ2/Hjx3u54vUmnunpaaanp8lms7zyyivrRjwQNxbcunWLMAw5duzYmokH4LI7TSB8dBTFBBMWcKyAKJJElui1JjeFjWlq7O6CbQpNvZVl2ithWppIQb7bwZUs0ZGCYjaOgNy+CKf/WcXua3XO2HM/21Zfm32X6Ioll5vt4V601AnM3vYhrtkIIaiqHM3QJtsnPNrpDo/WVRal4661uf0RVMP5UUIQ5WmGc9eu0s4xWHSptEfm3keOmdpg79+lfJtKOHcrut3PnGwOksnMkWShG32VO5tAxK+3zYhyO2maEGgt8BkEqcg5CSl2B3kjAyHbhErgBhpTRHg6pOzb2Kbmbi7g4x//OAcPHoybSS5d4hvf+AYffPAB169fp9FoLLtgv1o8LmHRJEX3+xN3UBmTnGkxHgWUDJOisrGCgJ0yT7VdZ39mmIOFkaU3ukastubzYcGHOu02OzvLyZMn5w101mq1ee3KXtTBMVafRvB9n5MnT9JqtXjttdeYmpqi0+ks/cZlQmvNlStXuHbt2ppaQ++HqakppqamKJVKvPzyy+u27W/UzxOEAtuK+5sbnsVwQdHq5Cg4Lo4dUGvnyDjxtUg63gSaSb9Ishu+ZyGtxKEzfm3LdcgVugX6vkFQp69zLUnFaQ2l3Fyaq5CZq+s4faQUCItLta0cGhyn3CoyWOqTKemSmm0orrsj7M7OzeKE2sAkwpBwxxtiYbAeaJNWkCHfPQakpFhoUOtkGch2qHQKZK2AVlhgqNt2HYoAt++5LwgldT/DMPETt5OpEUQSTxhkbZfZRp6RYotcxmO6UcBFMpD1exFPJ3SAFgO5NtPNbWirjY4yOKZLEGSw7Q5amVhGhBBg6CwZE5AuSEEQOSgFE6qMaZps2rSp11XZbrd7qakbN24gpWR4eLgXGa3FLG0xPE5h0W/cucm58jS5Ackzg5t5d+YOTw4McKfe4sktQzRdn0bUptixOfVn7z3UQdcwDPE87yMd+Xwoyae/dnH48GF27drVu/D9rdZCCCK9MnuFftRqNY4fP06pVOqpCSQTxOuBxM201Wrx+uuv9wQW1wP9pDYyMkI+n1+3m7pcLnOhdZfQ1GQMGy9o42mBUgIp4xbsnOMzXh9ic6lBFAqy2YAwktRVhkwmQnXPoe/PfQVz3Qiov55j9Um/lLq+Pq5nkneStJxDqZtCa3sWWbuPoLJzRGRJRaboc76yHUcHDNLunidw+lSuO9ph2i+wyU5UDOYWlACDbJ/lQqTjBoDp+gj5kTsAGHbc5TbRGGQg28FTJlkCDLuBH5iESiKdNkVb0HId8hmP6UYJKzO3D5YZcm12M07BBwQ1N8dIMe7am2qWyA55GIDnl8hlar30ndKS2dDBMkI8L0M25+KHFnnLpe1nKdhttBZEEdiWi68EUZjF0gZu5CCEy+nKLZ7pK6bncrmeGrNSilqt1rPUPnv2LIVCoUdEAwMDa/6OPU5LhV85eZythTyzuknkxxFeTjg0VB3LNLhcr7F9xGFzfgsvPf1Sr4vu8uXLWJbVI+X1GHRtNuPvXxr5PCSs5kmhPxJ59dVXGRgYmPf3hUOgUpgrjn601ty+fZvz589z4MAB9u3bN4/c1oMgGo0GH3zwQc/N1LIspJTrIqIYhiEnT56k0fj/s/fnwZJlV30/+tn7TDnczLxz3ZqHru6uobvVk1RdLQF+GCSBsM0LG4dtsML+Eeg5EGIwAcYEGCzZ8s9P4GeDCf8sEPzMM7IwgwAB1sBgkNTVY1V119Q1z3eecj7T3vv9cc7JPFldw61b1eoWvBVRUXkzT+484157rfVd32+TAwcOMDMzc18cZiZWd/z1k7TsGISioyI8WUCrkJVukaIdoSLJcpyw/gIEaa3m0uoo42nE4WXpsTSLozSUU4qZWFnMLteoRyViLVkxRbQRuLbC1CWhL6kWfTYOrdL2Cz3n0+iWGEudRrPjUSj2j7mQOqtSNWR+vtJjGmh2iziFnICcEdRViVHTxhIGKwfBjrBpRx6brQQZ14iS/iSKAX7oECsLK0XmeaUIpS1cN00BW4rrKyNYwiBrGiFgfrXKzsICrahIqRbS9SsUC2l9xxQpyZShwMk1TSuv10S73JKUClAtdgljl6uNEWJcHK9NpBRFkl4ggFAZCtLQDUsgfITQ+JFHQTqEWtBRBlcYvrRwYsD55C2vP/PAAw/0xNKWl5c5ceIESimGh4d7zmg90cBbpWT6ytwMRxbmeGTDOBvdMtmaJ1Ypc7uSbCxXmHJL7B0evyOKLt/ouh6n3G4n1/5rzXDwtbSvq8hndXWVo0ePDkQiN9qNzqdgFamHK2t2PnlRtieffLKHjMnsbiUVbma3osm5H31PrVaLI0eOUCgUehLdc3Nz9+zUtNY9MbzFrSXMLEhjYwiJUDgo2sqiWvSJuhaR3Z9AjJbMLNfQInFCxphe5GKlT3m34+EWNFcbo7Rij7HhNtJTFEyMZRsa7QJlNwJX0wwr6KGQa2aE1WYZg2TTyApxLmJq+wUKxeQBDiKLUqkPClCO5MLsFLumZmn4BWqFfhpVAJaEa/4Ik25zAMnWVQ6xsYi1wJYmaeB0DNLWXF0Zw7MivFriGDxPcXlpkmKtSxY9KSkJYosh0ogs3V2Twq47Qd/5xKKA0m0sCdVyl5bvUnJjrLIijGxcJ8Zxswgfmp0JKETEfirjkMLKy16AMWCnIIpICcqFED/yUEri2ZpQaqSWhNrjROP6mu+JG8XSbtZTkzmiTC7hTvZWRT6fO5s02RYcyfxql9Fagb21cZb8LkUhOLa4yEOjw5xdqvNPdgwi3W6Hojt+/HgPRZc5o1KpdEcH2+l0KBaLbxry7+1gXxfO5254027Fam2MueMFb7fbHD16FMuyetoWNxt/vQ4i45ibmZm5KU3OvTqfTDsoI07NjvdelUyDIODIkSM9RdmfPvX7IAVaWSBdjB1ALBAymQj9sEChECD9ZFINlQRHYNLaeRg6WEPJHwUnRmuYq1dZpYgsgdNK9jUIHYbSqCbOId2ymrcQAmVbtIseJ+a3UIhy8OmcI2q2ksgiM88NUa5mbrlGFDpA3/lkmkKxsFmOShRzUUekLWwLrvvDbC+tJEwIaRQiC5pOx8XLUfv4qkRR5PSGaj7zy/00SqXis9So4ZWS9JpKgQ5aC/B8VlpDjFdbCAFLrQqqILEdzUqjxIbRBpWyTxy72HbISsdDDMW4ro/SAs9VBEEBz/MJwyLlQpdYOZTspN8nilxKNgjLRyKQsSRWHvW4STcOKdp3V8u5WU/NysoKy8vLnD9/nm632+upGRsbo1Kp3PR5fCtqPkdn5rjcSKLZkuVwtT6PLBkqusBs0OFBd4jXwwZly2U58Nk3cnuWkVs1ui4uLnL+/Pleii77d7NFdKvVWpOT+nq2t5Wez80siiKOHj3KpUuXePrpp9mxY8dtv3cz5zNkVVkKb99ENzc3x6FDhxgdHeVd73rXLdFm6418fN/nxRdfZGVlhYMHD96UJme9zidD42XaQQ8//PDAOboXJdN6vc5zzz1HsVjkwIEDFItFLrYWEEAsFJ0o+f1YWohIoJQgSEECtq3ROnFG0gKZ0unkHYkwhrNLU7QpINOlUCFtHs3Xg0yOYkda/WOx045+txqzYEqcnp9CaTEADOjmGK/D0KJQUEgJKzKhz8msEzs9Sh8pYM4fTOlmPHGxsFFGIHJRkVeMad9Aw9MILPzuoAJrIxyMwK81qz3pBqfQodktsNSsgKXphP3xtBA9ue2MjVsI6Po1Or5LM0X/WZYhSLWBTIrEE7qAEKCjMo2uYKkxwXzbw+giYJCxi1ASITSdGP5o+iT3ahkz9UMPPcQzzzzDM888w9TUFK1Wi6NHj/KVr3yF48ePMzMzQxD0EX1vReTzyy8foaWSxcl8vYslkli1FUZoY3BSZOFSx2eqOMSot/YUfuaUt2/fzhNPPME3fMM3sGfPHmzb5tKlS3z5y1/mpZde4vz586ysrPSe/3uR0L4bFVOA3/qt32LPnj0UCgUeffRR/viP/3jgc2MM/+pf/Ss2btxIsVjkW77lWzh79t7pmN7yyOd2Qmf1ep2jR4/25APWgqzJnE8+0rEsiyAIb7q91pqzZ89y5coVHn300TuS760n8lkrTc56nE8URRw7doxWq8Uzzzxz0wLlep1alh7cvXt3z+lfbS3TjEMESSOnbVxUZGM5MVYsWF0t46QIN8+NmF+pYjnJbzvZPqT/za5UUI5AljRWkEYcsaCcOh+dc1JW7h7Jw6k9r59OdAsRsmQ4vbSRiuhPaCqHmGu3C3jV5DtOQbFUr7KBZNXbjhPIcWYd47IclnoSDxkXnS0NVzvDePbgIqRrBlewyhK0/OFe+s/3a3DDLewrF+gj71ba5STCcnUvrQZJX9JqnDQPeIX+vRwpwUKnhlOOCbouXjHEpFQ72Rwu0AShy5JfpWt3IPKIZMhsDLI7SkGE2I4ELekai0PL5/h72x7nflqxWGTz5s1s3rwZrTXNZpOlpSWuX7/OqVOnKJfLjI2NEUXR11TJ9MTcAs9dvUZlzOXB2ijnVlbYWK0wLItQhF12lUBrtpdrXGk3ODi55Z5+73YpuhMnThBFEb/wC7+w5jTljXa3KqbPPfcc//Af/kP+3b/7d3zHd3wHn/70p/nO7/xODh8+zCOPPAIkvG+/8Au/wH/7b/+NnTt38tM//dO8733v4+TJk/fUEvK27PPJ6GVefPFFtmzZwlNPPbVmSGd2wW6cbD2rwEqwPPBe1iO0sLDAwYMH16QldDeRjzGGS5cu8fLLL/PAAw/w6KOP3jaHe7dOotVq8fzzz/fSYbdCxtytkmmWHjx58iSPP/74AODi968dQxhQWibwXVsRt12EEEhbE1gS101SaWjwHYnjpc2UKSrLBmaXayyF5V60k+n5hN3+BJ6r9ff6eoyBYjr5qlj0oqRYCbxi6lSGFAtmiOVGsnK0cpFS6OejKbBHAq7NJboxoRp82KUwLIdJD01GNppZUxV64nUAYVCkNBzS7fRXq1YhJrDDXprQjwp4pZjVZp8Vw3gQhf2/PUsgUq9RLgUEfrLKDoIqrW7yuuDFBH7yO8LpEqePho6Sz3vRm9NGG1BGMd2t4actuFJLHEchtAAsFgMXCwtEDGiudfpUQ2+GZRLSu3bt4umnn+YbvuEb2LFjB1EUEQQBx48f5+jRo1y9epV2u/2mOqNPvnKEWtFjJfCZdEsoYxgvFTg5u4i0BTKSNEzE5kKNVhzy1Oj6WUFuZlmKbv/+/bz73e/m0Ucf5fHHH+fIkSNcvHiR7du3873f+7385m/+Zg8Bdzu7WxXT//Sf/hPvf//7+bEf+zH27t3Lxz72MZ588kn+83/+z0Ayh/3H//gf+amf+in+zt/5Ozz22GP8+q//OtPT0/ze7/3ePR372875ZEitc+fO8eSTT96Vbg3QC9lvdBDj3gTz4ULv7+XlZZ577rmUiueZNaNK1hr5ZMdx8eJFnn766TXxs92N85mbm+P5559nw4YNPPXUU7eFdt7NuJkSYuaQb0wPHlm6ColYNt1YogmJdDI5BJGNEUm6TYUWi+0KOraQMqH2KaTOodn1aDk2Iu6fDzeFGuugf0vKnPcppoAB33ew7D5IITulfqff0R9FFoWhiAXKzC9U8bx+pKBzUVC342FZ0C1I2p2kAN/fLmngtG1Y8IdoRoMptdA41Bt9RuowTJzB3HLyf6fjYhc0uBGLK0lTr5+ep3raFKpiG7sY47f7iwbpxuT6TVlaTRzKcssi8vsLsCB1WCvtAmHqfWTqDY3TRmuJtGIazRLTQRE/sDBWgFKgRYwQYBsPpTSOo5npQqhDIhOwGvqca/SflTfbHMdhw4YN7N27F8dx2Lt3L6OjoywtLfHSSy/x3HPPcerUqfsuqX1mYYm/vHSFqWqZ7ZUafpiCRcgYvwWXGk3aOsaPYjYWh9heGr5vv3+jCSEYHx/nZ37mZ/jhH/5h3vOe9/CpT32K0dFRPv7xj7OysnLb769HxfTQoUMD2wO8733v621/8eJFZmdnB7ap1WocOHBgzcqot7K3PO2Wt2azydGjR/E8j3e/+93rIq3LIoubRSdKa5RWXLl8hXPnzr2hR2it498p8skYox3H4dlnn13zcawlqspTCa0lTQhrj3zyKqkHDx58Q9hvjGHWXyVUoIXGkEyylmNQMcS2gHQCb/kuTllhOmmdJLCRFZ/FxQqhK3CE6AnAqRjKWZ9LjlA0630JfJtS6rjCwKGYvo5yNaEgdPDKyft+16FQiZAOLJkixa5iKAU45Os03cDFK4RYruHa6ijlXF9QJ3Z7kU1dFSiKCC/PBxfbdLXHMNkxuOAFiGqMUpJGuwQpkUQzLDBBg9iJsAAnLRksr5QQQ4JAmEyQFb87TKsj8IoJ6s1YSYSmSwYR5nSKUu67tnaSNFsxhBThJqSm1fSoVLvMtYewhzQ6sqAYEwUOsuBjDFgItB0ghMQom9W2ZMgzREbzuasn+JH9f4O3wsrlMlNTU2zbtu22ej0ZcGG9NaLPnjgNQNFz8GIbaQs8y6IdppIfCjYUC1QdB2kLNls19o7dvaTJeqzdblOtVvnWb/1WvvVbv5VPfOITd/zOelRMZ2dnb7p9xmyd/X+7bdZrb7nzySbG69evc/LkSXbs2MHu3bvXjfIQQtzSQWy0p/hfh7/AUKvEO9/5ToaHh+96/Ds5iAxxtnnz5rsWybtThHJjU+paG9DWEvnMzc3x2muv3fb8f2XmAq0oIhYaVzgYHeEbi6GCj9/0cKsxxAlay48cHFQvdWYiSX21RN22qRSSh1umyqGqa0MancjUOSSRUvJe2Ok7H5WLjLTq76PKhQuRb1OopM7KdwlcjVMvM1Jr4xRzTaJBPwVq12JaKyUqqZPqKgc7rf/YFjSCAhNOvzajYklc6rLaKDFc7dCJ4oS009PML9QIjYOd0to4lZiVRhkr6/nxIlZXyimgQKOLHQLfwStE+LFDZPrXqlT1qa9UkUWD60TEoYftBgivTatRRBTBpKoRwo7otF1K5ZAwsllZGUYLF/BxUuh72fJQMkJ1XBxHYQmDCS2MMriygFAJ1Py1xqAY2dfKbuzzubFGkklqLy8vc+3aNQBGRkZ6kO611iBOzS5ybjlJw3u2xcuXp3lgyyiPjExwqVVnrFjkxNwiW4cKLDZDNhRd/LZm7GtEutrpdP5K9/jA28D5ZH01c3Nz61LpvJndzPk0m02OHTlGu+Dz3me/Zd20IJZl9Rii8w9JPiJZr4bQ7ZxEq9Xi8OHDvajkbjqo76RkmjEh3CmS+vzMGUKjMTJGIXGNJLBiHEfR0gVcYiyhWV0tYaXdo9n/UVfSKnuY0EKkDiBrntRR33FkRfbIdymVk5W8DnN1slwAlwch5H2lyRGUhr6NVw6Z98vYDd2DNSfH3v9O4Dt0XZtYSWxLJ0X/HGy6HhWZ4I2s2K2gyjAdtBuS7WVX2LhOf5+lrWk2JxBun9i02SmBawHJZLu6WmZDYZWupbCHFFoJpGWwLMNsq4hbTFJlUWcI2w2wbM3CwgiMKKQXoTVImRxHqRwiLVhG4qbgDyutu2UErw42kfAxWiCVhSUTQEU3lhQcxXSnsab2hPttd0K73SipnQEXZmZmOH36NMVicYAU9VY11k8+9wpdlZwTFWq0gflum3GKLPldDmzYxAtz0xSkxYLfYoccZnzozdXvydt6SEXXo2I6NTV12+2z/+fm5gbmtGy+vhd7y2s+R48epdVqrVul82Z2Y3Ry/fp1nn/+eTZu3MieB/fSYf3cbDerKWW51pmZGZ555pl1i9fdyknMzs5y6NAhNm7cyJNPPnnX1B23SrtlTNfXr1/vQWFvZyeX5xBaYAmLSERESiBiCLoO2cxrCehKq1eXsW2FigX1qAi2QET9ySzjXjM5Chs3dUxxJ5VeiCwibfWinAGYtdc/V3auPiRyd3WcSnVbBcPlxggq7q+3hNv/ftB1sQqa6ZnRdJ8GzbJhIYVNB7GFU0ijtlJIc7WIU+r/vjccocTgo7XYHJzETVFBMUf9ZDn4XQflxUjH0Gz0V9gd1Z/0Qt13nKFJgQp2jM4g3OnPtsMiRki0FUPoghUT+RbK9sEk0ZyQBku5aDSeY4hEQCgiVOwQm5ivzl7ka2nZom6t2QIhBNVqlZ07d/LUU0/xnve8h127dqGU4vTp03z5y1/myJEjXLlyhVar1XsGTszM85ULV1nodBgtFDg1s0St6LG5XMG2JFIIrPREtoOYmuuw2g7Z9zVKucHXTsX04MGDA9sDfOlLX+ptv3PnTqampga2aTQavPDCC7dVRl2LveWRz759+3rUMvfLbNtGKYXWmlOnTvUElSYmJohUxKHlV/nGiTtLxd7MspVU5iQajQZHjhyhUqncdURys7HzzidjFr58+TKPPfbYG/Kua7WbObVOp8Phw4dxXbfHhHA7a4UBy3EbKSRxYEEBfEvjKPADDyvtt/EDF4qm13/jeIqFlQq4g5LYKhBYqahcFkXEoSTqOCwsVmkHLo5TRFgQKYdmx0aEEpoJ6/NItYVb7AMJ3EI/nWblGkPzji3SDlcXxti1Oen5cnOTfxRauCjimqEVur2eJEicjSUNzdhjgjZt3+tBpqVlmJkbYbjU7G/fcYjCMkPlvopq5AqiwOrB0MPIRWoPK5WLEEM+yysVsiKSHzrUSBx7zvdgPB+toVUvodz+A9xuSGoFKJQjuh2HtmfQHQevEhK0BZ4LcWjhFBJ0opOeO1dbtO0II0EqD0dYtAJNyRF84fp53rNx181uhzfFMuew3rnAcRwmJyeZnJzEGEO322VpaYnl5WUuXLiAbduMjo7yi0fPUnRsFtodDm7cxKHr0zw0OkrQiamUPPYXJmjFIRuKJa51umyrVDi9tMIPvWP8fh7uba3dbjM6OnrnDW+wu1Ux/aEf+iG+6Zu+iZ//+Z/nAx/4AJ/5zGd4+eWX+eQnPwkkDv6Hf/iH+Tf/5t/w4IMP9qDWmzZt4ju/8zvv6RjfcudTKpXuG1FnZpZl0el0eo1QBw8e7Im+OZaDr8J1pxTykU9Wp9q1axe7du26rzLaURTx6quv0ul0OHjw4D3lf29kOFhcXOTVV19l06ZNa65L/d7Fk6hYIR2BiC0IHXAjtBLEjmFIqMR5uBpigVXQaAWdrktYkHg6meizgr8OLEizCpalWVqosBwUKIxG4IJalElWCpBOkpoyrsGMCdqWTaMzjNMVTNYauIUIt5Tr/Sn1HZF0+setlYTxiJlro4yPN7ALufsuy0rZMN2sMlZNxN4gaT5Fgm3DcrdI2HGxcozZHeNQ0/2Iq9P2iDxFdsWMFoiyprFSZmwqSb11ui6u09cqEjLhiiuQ9ielUV2jWcQpx+iggPR8LDem0y7Q9AuooQAVCyzbYFJ0hGUr5paHoWx6dbDMjWZ3ZxQJ7HJM3HUQKCxHEQU2RWw6CrQ2GG1z+muIeIP+gu5+pPqEED1S1K1bt6K1ZnV1lRfPXuSV6QUmSg7aslhdTRYINc/j5cszPLJzkritWJUBD1RHeW7uGmU7WVDuG/vaOZ+vlYrps88+y6c//Wl+6qd+ip/8yZ/kwQcf5Pd+7/d6PT4AP/7jP0673eZDH/oQq6urvOc97+Hzn//8Pcu+vOXO580wpRRnzpxh06ZN7N279w2T61RhgpONc+yv3b1mvRCJ9suZM2dYXFy8b3WqbOysAS+POrtXhty8kmlGU7R37162bFl7w9xX5y6hjcBSBscBozxiERHGEuFobFfRXCrhjkaITjJ5xC2brmODNthpLSdLx5k0jdZdKdCIXUzZoH0LSJFGOVRa5iRUV2KX0ijJdxC1mOu6gnvVYnLjMo6nCH0Ly1O57/adRDZipyZZnqlQ3paTVcil85SxafglhlPNn1DZvR6f1bDIsOWgcvWgWEgaS2VqE8lEFscOuhLTXCpRGesQtAoIBwL69YfIWMQyJl++7sZOz/k4ZUW37RJoBzBE3RJeKiMRB2VCDxAGv+lRHvFxh5K6j4g8lCoCnd4xyfT8FYvJOeilLmOJKYRgwIptNIpAGyzLJYoEy6a1Lqqd9VrmfN4MhoNMCuKVxRMATI0NM6EUcQrdXl5MYMwqCrm+3CSuGGJP4UlJVyn2j44zXrx/qsV3snvR8rkbFVOA7/qu7+K7vuu7bjmeEIKPfvSjfPSjH13X/tzK3vKaz/0saGZpqlarxYYNG9i/f/9Nb+RHa7s521o7gWLefN/HGEOj0bglTc56LUu7ZfWp9dR3bmZZDezYsWNcvHiRd77znXfleAAuNVbRQKyTLp/YGIxKrp+MBUbJHpOAlTqWdr2AsIBQ9qKCzAkJDYvTVeYooEtZSq7/e1Zaj9Gh6DEkqKC/VspACkIKWsbhan2ExnKJoN2fKONYDkgViNTxCQsW49IAQs7K1WyittNrLoWkoba3nWNQZrCIbRxohf1VoJ2ulLt+8l67lfwtqjFRirDTHuhijN9y0+NxMBUzAIIQYRVTSs6lztWQjLR7ab8oSsaTjsZvenRbVbpR6uiLCq0T5618iXFCVCRxijHGQEkUiTpFuisFXGETEWE7GmRMpGP8QPO7p49/zRgH7jXtdid74dw1rq4mDbSOY3NlroFTLLK5WkFZDlJA0A6pOpLNlks76LLVLjDnd3jH2PpS3uu1v+oqpvA2cD73y8Iw5OWXX2ZmZqaH/7+VCSEwCNrx3QEPssZUKSX79+/vpfLuhxljuHgxKfA++uijPPjgg/fNMYdhSBRFtNttDh48eNcQ88v1FeqhT6QUzTimG2qE0eiGDZ5GxNBueNjZ/mpNZ7lALNNifwoyMNrgeDE6Eqx0i7QrFiaUPaRa/nCtrOm0+0aHk/xEHnItoQQLdpH6Sj89GbTcgTHtXEQUYzM/M5K8DmWv/gSgYgtp01MIzXtFIQSNdt/RGA2ipNA13WNP6KaaP7pi0EoQpaAHIQWN5TIqtBGlzLkm+xs2i+AYgpV+T9hSW6NSOHpgddDp7itV6L0eBE04LEqFKGUyDoY4PX9Rum9eXARlMzdb43rHYlHZNP0Cy76L37WxLLCkQAtNqOB/nTvGV7/61TelyfNGy2DWbxbC7r/+2cv46YlzjaQTxiz7XTa4JWbaHTZVK1xZ7bJhYoQglHRNTBhoulFEvFj/mqm5wl99FVP4K+J8VldXee6557Btm4MHD1IoFO5YR9pT2cVzaQh+J8tocl555RV2796N67r39QbM0HKLi4tAApm8X7ayssKxY8cAbkuYejv77PmTKJPUcLQwGCxiHREoCyFBRtC1E2JKAKShaRyElWmhJG+bUKJjydxyFeVmdAQ5RoOs7ycQSCetDYV5DHX/pdB5h5C8FlJQNwWmL49iDESdvuNSocQq5sAcEjo1aC+XCJqDaaWMxHQ1o6vJ8b3FbZtGKUpAF0DQ9JB2Ek3FzRF0ZCPK6QG7msZCGeX0jyEQFlG37yBTzTIareQ8BDl6IT9yek230tWEKQJuxShUK7mOdjkmTs9hENtoC6RriDvJ/hXSxF52TPWGZr5dIlIWylFIJbAk+CKiY2zcbg3LWNhSJo7WtXqgoIsXL/KVr3yFV155hYsXL9JoNO7rc/Bmkor++cmLvD69yGKnQ9l1ODu9hGNJIqVZbXQJlWJrpUqsDWXHYabRoVIqIaTgocoIj27aSKPR4PDhw3zlK1/hxIkTzMzMEIY354y8V2u32/d1cft2tLe85nMvq5xM3Oz06dMD5JdrYSHYW93KX84fv+NvxHHM8ePHWVlZ6TWmXrly5b4pjmaicpVKhQMHDvDnf/7n923sa9eucerUKbZv386lS5fWrQ1yZGEaENjCTqDUJqSswKTXLggtKIFIvUwndNEVcFSaw0+dg2pbzHc9VLFPMipyjaIZSs0EFhSy9Fz/8zx6OQ+5FjnnYCR0RyXXr45RMv1VetR2oJpzPq5GSsFCUKKmAqxalBsjwchJG2aaFbwcpDtoOZga1BeGGNtSJ+g4kPrzZa3Y0C4iCnmmbBdT071iv6jGxK0SpKqtUTlI9I8cAZgeTxskjqrcdjGpiqmJi/h1ReAoqNs4tTRa7JTAadEWDkInjN2qY2OXFB0/olBO0pgyKFCPPYxn+uiD1NErAUUcOiFIaeM6htgS1IOQuOCxe/dudu/ePdDkefXqVYQQPWmAsbGxe5LVfrOE5JTW/PKfvYLnWMw327xz80ZevjLD1rEao+UicawpqA4qvV/b3ZCRcgEZC1xHsNIK+cZ9exgtFgfUXLPna2hoqHf890PN1Rjz1yLyecudz3otjmNOnDjB8vIyTz311AAscS3OB6BkFbjYmmPn0M3zuRlNjuu6AzQ590NQDmBmZobjx4/3ROUyu1fnk9cNevLJJxMZhIvr79m41KyjjUkm5TBBhMWBxJJJ3UdbEtAIT6NaFlExmdtkmhKSlsZEgkarhDUZYZRBeBmyKY2OtOlFJvn0GjnggcyxPFs5lVKZR62l9aFgRKCulSiYLkJAHFjYKZ22MSCztFcFGtNFRug7H5FLwa2GRTZ4fch0HFmAISzaGJPJQ6TbVw2N+RIU+jQ9kWORIMnT45WCeteGSopqE4LWYglV0wgEVBRx18LyNFEJoq6Fnc5BxoZuqwBV0Lknt9My1JwSqgSyYyGHVB/hlqbgLFez2ChjigY0eJ4gJIlKdVFDBLaRREITxgLPGJAJbdJnz5/i//Vo0pqQb/LMs1NnE3Ge+qZard7VRPxmRT5/+toFLi2usm1DjdmoQ+Qn52S4XODM1UUe2jbOvrExmlHIRKnI6flldo2PcGp6kV3DBdrKMJoyG3wt1Fzhr0fN5+vS+WSaII7j9NJsebMsa03h8DMje/nz+WM3dT4ZTc6WLVt46KGHBh6Ke5XSNsZw5swZrl69yjve8Y4BqvN7FX4Lw5CjR48SRVEPYp6BJNYDL39l9hqBilFCE5sIIpBC4LuColLETQfjGYQyyKKmtVhEjscY3Xcw0tGsLAz14MAEEpE6jCwqMl0LkUUmucPPQ6Wt9DtagSy+8TWAzKXWWq6FuFJjYnt9wKHFHRuRW6A3jMdQ28Ypx8QdC5GT1Q60Q73rUUtF7RL9H0Nc0DTny1iejaZ/r7XiAh4559O1MV2H8oY+sq4ZSvLA+Y5yEFYfZuyvFCgNAQ50g7jH+xYXu7Q7yb0uKwodJ9EZBc3KigtDIGIHUIi0CVZ6GuG7hO1y4igLIa7vEBYipJJoO4mCRCxRQhNailgl1ENeUWEJh8PzN+fwytipM4bq/ER87NgxtNYDUdGdUr5vhvPphhFfevUcAJWyx4hVJCX3piAsumFMoBQrSx3ajmLv+BiHrl9nyHaItSGINXvG3yhFkNmNaq7tdpulpaUBNdfs+O9GJqHT6fz/I5832+52MpydneXYsWNs27aNBx988KY361ojnweHp/id6UPEWmHLvsRz1th5K5qce4l8wjDk1Vdfxfd9Dh48+IbVzb2omWY56VqtxpNPPtm70bNzvB7n87mzp9HKEGmFVRBo26ACAeUkaolCC7scY/mSqGET2RIPEJFIeMeMoV0v4FckxXaKZgpywnBZqi3M1X5yxZ0MJKBDgZU6M9W2sSop/LpjYw2lrwOBzKXIREHTLltY16o4pn+94q7db3oFtGdYWqwwVV4hajm9Rk9I+OO6K8We89E58GFXF3p8bZnVjWZCiV69y7I8wjhXM2rZdGqKcix66cIgdrBVQKoyTmgkbuiCp1BlhQkshKdAScLYTmh/LENYdymMhVglxUooEPTTlLKoEZGFcRRR02PB0lTwiAiJIwMFKGqPdiFhPCjbHl0Zok3iiDzp4MQChWK61WQtdjNZ7aWlJWZnZzlz5gylUmkgPXVjGvjNUDH9zP9+jW6cSno4FmcuLrJz6yhFx6bVTRYNJdtmLlYEIiaONJYQ+LGi5rlcbQd825611WCFEAwNDTE0NNRTc11dXWVpaemu1FzDMCQMw7/y3G5fN4CDjK3g+PHjPPbYY7dtjlyr8wHY6I3z/NIZoF/4n52dvS1Nzt2Mn7dGo8GhQ4ewLOumjgfW73xmZ2d54YUX2Lp1K48//vjACis7T3c7rjGGI9PXiKIYR9q4ygXHIFKIslYCTKoaqg2dwEFkcNlULiFcLNCppHDgdLIVuVOXRSoiB6LKGA+MMr2oRrX6E1VedmHgdTuHjIsFpKm1esUizAnT6fCG+6ak6Y6AP++huoMTot0WhFUIlpNQyRRz2kAlQ5Q7FmMgrhhUvX9dlYF2Oe4BJ8KWg7AFarUfBWhpEa30QzEzpOnqvgS6SHV8okYhYafOxk5ZvcMVF50CFeKcuJ7pJmMut20QgnYqqKhTYIjfiUCCFVpEOkZJjYwErrCQRtDqxISxYjX0Ob20yN1YpuC5Y8eOHvXNzp07ieOYU6dO8eUvf5lXX32Vq1ev0ul0MMbc95rPUqPDb/7lsZ7zsZWk40c0/IB9E+PMNloMFVxW6z4bhofYOz6Oloa9E+PMtlo8PD6GMvDY1Ppg1hkp6p3UXKenpwfUXNvtJM17r85neXmZ7/7u76ZarTI8PMz3fu/33lYTaHl5mY985CM8/PDDFItFtm3bxg/+4A9Srw/qO2WIxPy/z3zmM3e9f2955LMW832fo0ePEsfxLSftvN2Nc3j35EP8zrUXeNTdxNGjR9dEk7MeB5Gpgt6JDeFuo6osUrty5cobUniZZb91N/uslOK1115jttPCciykgCjWCEdgMKAMkbaRaRuNakviEYnTSR2MBt2StCOnR9Bp0igmY64xgUCU+ttD4kxURxLOFlGhhWvFWK7GBAJnNB0n159jokFHJNKcnW5LRPrsCilYsop4rTAh7Yz79XbdkQgHQLAUlBjSEXlYnUnTfvVGkVFXIbxcFNOwCTsW1VryQKuWjXAS6pzswep6CmEL/IUCpc1dopQkNVYOdsoxGBVAtGzcLH3nGFotq8f9po2NBFq+HIi8stfd0MVk2kgFg/RtdCFGGovukkfoCgQGXdQITe8YtJXBvUGVouSwQ3BdSRjHKAxWZKFswx+ePc3D99DhfyP1TbvdZnl5mcXFRc6dO4fneZRKJbTWxHG8LhXPG+1TX3iZbhiz0OpQK3pcnF5GCFjqdNEdxUrHZ8/UGKdnlnjHA1PML7Uo1jyKxmKh3WFXrcak47B34v6gT2+l5jo9Pc3p06cplUp85Stf6bVC3GvN57u/+7uZmZnhS1/6ElEU8U//6T/lQx/6EJ/+9Kdvuv309DTT09P83M/9HPv27ePy5cv8s3/2z5ienua3f/u3B7b9tV/7Nd7//vf3/l6PQsDb3vksLS3x6quvMj4+flsJ6rzdjfPZXdnA/GqdP736FR7fvXdAtfN+jK+15syZM1y7dm1NbAh349hulFi41Uopi3zWCosNgoDDhw/z0soiQjo4EoIoJBIK0ZbgKmxfEBUEbqhBg8IGdI9pWhpDo1NEmgxSDZTTz7Jmz46AEuhIEHYcGtc8ggJYVUCCDC2opj0yKxbWrEsp1Dha9dSoLdO/VlqJHoeA9i1I03EmEugqLKxUmSqtkKN7Q7XtXpotGhZ0Z1wKac3GhAJTNoCgOwLdxQLkuFeNb9EpSSoptU7UtqEGjUJEwZeYOKEeAgi0RQmI0rpXp6jwdEIzFLkMIORk28N0ZU8PyLcjSoAu2WhLYSKBcAxiKEYFEr8oB5pTdceGQkxgQnxTxBQMlkpSpl7kEHoRTmQTFeOE3cASxBa4vk0oDLGlCLRGOBIRSyRwbOHuIp/bWT49lWn2rKyscPXqVYIg4Mtf/jLDw8O99FS5XL7riOjC9BKff+UsRc9msdnhnds28vKlGaZGykyOVui2IujQk0goOQ4zKy121lzCWPHweAJA2Oi41Ir3n836xnpZFEWsrKzwqU99ii984QsAfMd3fAfvf//7ee9738vevXvv6hycOnWKz3/+87z00ks8/XQCFvnFX/xFvv3bv52f+7mfY9OmNyqyPvLII/zO7/xO7+8HHniAf/tv/y3f8z3f84YFwfDw8Jq0xG5nb3na7VYn1BjDhQsXOHz4MA8++OAdJajztlbnoLXmxIkTsBLT2Tq0Zn62tQIO8v07a2VDWKvzabfbPP/88xhj7sj9djeRT71e59ChQ5TLZa47HsoY/ChGmaTGE2qD8Qwm7UuRFoglG5Pel1nhPKjbxJ5Axil5aL5fJyvo+9CdLjG3OkTDcwmGZOJw0rtS5DAjwhjioqRRs1mOiixdrhKvOhiRO6a8xEVeDrSZ9sHUBKuXKpCLXm5MwdWVRyano5p2b0xhCerdwUlIxwJdgmA+eT9OU2JGQne+QNTohynBsMFEkjht3VAOhMseppMgKE3JoOrJ9zsrknbOm0SeIpj28G2d7M9qWsuzoD1XRFtgygmnHkAYpRREXUlWXitEibt2U1ZvTydM5G5g9yKh2Dc4BUkgYySQxG8GEQumO29ec6VlWYyPjzM1NUW1WuXAgQNMTEywurrKyy+/vK4m18/86WsobZgcrTBRKdFuJd8bqZa4Nr1KseSwdbhK20/eX6l3GKsUGZIOxaKDqyT1MKTI+toT7tayyPCTn/wkv/Vbv8XIyAjvfe97+fznP89TTz3FH/7hH97VeIcOHWJ4eLjneAC+5Vu+BSklL7zwwprHqdfrVKvVN0SiH/7whxkfH+dd73oXv/qrv7que+NtEfncSPkfRRHHjh2j0Wjwrne9i1qtdlfjWZZFHMe33cb3fY4cOYIxhv/jqW/h164d4rvXWJBfS2osX/x/4okn1pxGyHjYbmcLCwu8+uqrbN26lYceeuiO+5zlZe80bgb9fuCBB9i5cyenTx0nRBEQY0lBSTjEOknPaJGgvrA1vnZ6YACKBuoWUTGBJAthEj6xsP/boqhRyzbtZoFoY/q+yMAIYDJocX5/86fPhc6wpKNLVFY0lYkwKdY7ue3zL7uiF0XUR2yGW7oHu84L0hkN0aghmC5S2NJFdSR5WFrXOHhhgEjBCtkd1gkcCvh4BRc/TZ35wsYNczIPtqB9vYjJZUWtuIDfiSF9L647WDVFaCzimkFEspf267Q9MtibCmTvdEjtASqJFDsOuhom14CEELVoHNqlEJlSH6ks5Zm+sGJJWIiwY5tYGiI7RsSSIk6i9SMtVGjomIhDV67y7PZtvFmWod0yQtAtW7b0CEHzSqZ3Ktr/6UvnmFtNUqFDZZch3VelHbIcXm/6bJzSjLlFVn2fLSNVzs4u89CWcc5eX2Lvjgmuz9XZtKHKZvG1X593u11qtRo/8iM/wj//5/+cbrd710CM2dnZN6TgM1bvtSqQLi4u8rGPfYwPfehDA+9/9KMf5Zu/+ZsplUp88Ytf5Pu///tptVr84A/+4F3t49vC+eSt0Whw9OhRSqUSzz777Lqa1u4UmWSpvMnJSfbu3YtlWUSXnuNkfYb9w28MR282/u2c21rrOzez2zm2jILn/Pnz7N+//6ah8+3GvZ2g3Llz57h8+XKvbtSJIhbaHTxpIYCOiIgDga3B1CUmXdSLwELZAukaiA0UDR3f7Xf5ZxGR7kc7Yd2jXrJxLQkoRGx60UivdgGk1aXk/bysQFb0l4LVcZtgusZIrZ0gwrJt7H52zShJzxt1JMuqxETcQNiJAFvvWy0LPEFdOni6m9D25Kl1bEF43cXbmTaIpqkyfxgILNq6vyoPRzV6zhr4fiuFQff+tlXaI5VYJBKkYFAQIAVuu0gwnBSfNS4Z6WrspadVQz0Q/fpVBr4oa5xGkaAkKXRTGfMU7edbyRhBivBQQkPdoqCKrAQhFe0SmJjIKFxHgjIIIbGMxRcuXPiaOJ+8ZYSgo6OjA02uS0tLN21yVUbwX3/vBaY2JauNomtz+Ph19j68Acey8IOsjgbnL8+jypKnt27k2kqDsu3QDWMsI9kwXKHZDNi+eexNO95bWdbjk80bxZx66k/8xE/w7//9v7/t90+dOnXP+9BoNPjABz7Avn37+Nmf/dmBz376p3+69/qJJ56g3W7ziU984uvb+WSNalnT5XqRL7dKu2U0OefOnWPPnj1s3bq199m24gR/PndmTc7nVg5Ca83p06e5fv36utmub+UkMmLQ1dXVdUWDt4qo4jjm2LFjNJvNgbrR7504hTYGqQQCgZSCjoxxlUkm5aLGRIZAWD3QgR0JVMtFy0R8Deil2KSdNDSGMwX8yRT6nUYqli8hAyOQm65zkYzJ+nf8/pimK8CDrivoBkOM+T6yktaTcpxnJj9qVxKNCtpXSgzt6hDnJRc6EjyIhgT+1SJKDOwNYcGgYwePABODHkrqQViC9lWPeKOm5/KEwA/6UtoAnlsiUC1MCsOOSoa4k3M+wwZTt1EpmaiKM/g/dEoyaVaVoKsa4wvc0CMcBi8GbFBG95JEftuBou5JcnfdCGFAeRoRCOKCQgSCsG3TdSUigNiTtGJNSRWITUTkKiKjkEpSQnJq8f7VfW5ma4Fa39jk2mg0BtgGvnKmyVK9Q3E4WbR2mxHGQMMP2L9xgtl6EykTbrcNIxWaMiIIY6QQdIOIgmNxfnaZXRtHODu/xPa9W2+7P2+G3a7B9Ed/9Ef5J//kn9z2+7t27WJqaor5+fmB9+M4Znl5+Y61mmazyfvf/34qlQqf/exn70hufODAAT72sY8RBEGvEX8t9rZwPlntZW5ujieeeOKeuc0y55Pva8loclZXV3s0OXn7O9se4d8c/wLB7hjPuv1puVlklTV3hmHIs88+u25epps5n263y5EjR3oQ7bu5wJndrHm10+lw5MgRHMfhmWeeGYgyn7t8FQyEKLTRuL7ELxp0YFCFJNKRTYt4SOCk/TsiELRdiZMRAiiDyZyPNrRniyhpka3+TdZr00eZDjAaZEKddID0teiI3piiA6SnQgSSuUKJDdd8rI0BlPuLgzxCjLT2VB+1KSxa6ErKLMAgcq7uOBRz+G8Tgi5DiCCedxOG7FJ/cdQUDpbsR8NCCXzLGmgmrbdDqlaBYCRBuTm+Q9i2kKPp79iC9tUCpAj/lhVTAMyqhe8aSg0Jw0ndx6zaaOmBqxENCzOqUBWNpUAaSRjaUAzpulHStGuB3ZKoisYLHUIrRC6XaBcMMoYwjYxcbdGNI5RlKDQtlBsipCCOFSu+TxDHePcBiXYzu9smUyklw8PDDA8Ps2vXLs5dnuf5zyW1kdmVJhsrLpdnlgFYbnWJVkLmow6bRyucvjTP7m3jjFkllDDs3ZBArx+cHOPYzDzb4xpbaxVK90AXtF5rtVq3dD4TExNrWtQePHiQ1dVVXnnlFZ566ikA/uzP/gytNQcOHLjl9xqNBu973/vwPI8/+IM/WBMX5NGjRxkZGbnreektBxwYY3j55ZdpNps8++yz94VUMwMmZNFJq9Xi+eef7zmGm8ECdw9PUhAe/3v+7B3HvzHyqdfrPPfcc7iuyzPPPHNPhIA3Orbl5WUOHTpErVbjne9857ocT7bPNxt3ZGSEp59++g3pzcv11aTPRggKro0TZcJkEqlIZLPTNI9Mx42bFkjRS7HZvkgCgQiavotftnowa0zOMeWDyCzaiUyvdiH8/m0qcsAFkevxoWXAEsyVCoQXi4jc/GhyjAUm44qzBCuNMti5mo/qbxcPiYQPLrNGv/Dc7TqozmAhWkcWZinXKNt2CGoCy+/vSFiQhLlIR7QdwhsmW1/1xw2LGtOSxKkkg8n9pool9TQq09n5scHreKhZi6ytydhgpfpKdpxdL0G86CFJxi0qm7hgwCSlt9jWaAFBoCl2PYq2AwLiWPOF0+d5s+xe+nyMMXz6D48QRIqRWpFQG6pWKZHBLjuMWgJIpCQmykXCSOO6NuevLNEIQmwtWGx3qbguRcfm2mqT/ROjbxrR6e2s3W7fc4/P3r17ef/738/3fd/38eKLL/LVr36VH/iBH+Af/IN/0EvXX79+nT179vDiiy8CieN573vfS7vd5lOf+hSNRoPZ2VlmZ2d7893nPvc5fuVXfoXjx49z7tw5/st/+S98/OMf5yMf+chd7+NbHvkIIdizZw/lcvm+Xei81PXc3BzHjh1j69att2REyGyrN8JLC5d538a9dxw/m8gzNdOsSH+/1EzzpKkPP/ww27bdW649H/lcvXqV119//ZbjzjVaNPwAbQyOsAhVRKw1IgLtCKQ2iEbSXKoAKQWmLtFWkqZKJCtAxICGeNYhGk4777VBA9IXMPTGNGDPIXUkuFkDquhzleVqQnkanh4yTgpWKDB8xWBtizAKTKmfDtM5nxFrC3XVw96WshdYOcfWgqZ0GEnTZqZr9Qr+7RGBtTDofFQsMas27liyfdwUUBOEMxJrJxAI4jLUfU01zdb5XQiqUAjp6/MYC3JCdVbHo52BBYToPbCRJei4Wb8OvXSbCG26aAI3TtKhNhSUQ4cQ27ET8EhkEXpgddPmyzSdVwwsjEzQem4oUVrj4SCUIRSaONZ89coV/vb+h99w3e6H3Qu9zh/9+UkWG0lEOTZSZmOhRtROIsqNk8Ncm15l81SF1dUGzRSM4DfadIKIEaOJYsW2kSqtMGTv5Dgvz87y4J5d6ybjvRdbr4rpjfYbv/Eb/MAP/AB/82/+TaSU/N2/+3f5hV/4hd7nURRx+vRpOp2E+unw4cM9JNzu3bsHxrp48SI7duzAcRx+6Zd+iR/5kR/BGMPu3bv5D//hP/B93/d9d71/b7nzAajVaveNyRn6fS1nz55lenqaRx99dE2Y9H+w+x389JHPM9dtsaF465WHlLLXqT09PX1fUoX5sZVSnDhxgvn5+TeQpt7LuFprTp48yczMzG3H/YMTrxPHmlgYfD8CqVEonJYgqoHwDUb1i+naMajAggyEYPUbR8WsS+RKSCHYmbpmPoLpqYjGplfPEUHf4VhKcMe7w+QiCh8WxotMzmlE0Qykx3QeERfAasVhLAoQDui8rGhbEg5L9DUbuSXuKa8mOyTw2/30IYAS4JdtXBMmZaAUe+5bFmXA6bjgCFQRrFUHNRLRNQYsiVm2EVMxKOiOCoZDmyCV6ZbSIUz7o1Ql4U01MukxQgIeqIpBpr1GQawJysm58DoWQVVhpaCGwI0RbcGyIUmpekm0E6VwdUsZ2k5SI5EKbNcmRGE6BqsgMBLOLazc6Uqs29brfJZW2vzqb7/IjgeSZ7Bccrl8cZGtW5P7uyxt2p0Q23N4eHKcdhhhS5/5us9I2YV2QGBHlGyb+WaLbcM1do+PsqVSRso3LpDebLsfkQ/A6OjoLRtKAXbs2DFQB/4bf+Nv3BER+/73v3+gufRe7C1Pu8G9ySrczLJegKy/Zq3NUA8MT2Ibj/89e/vUm9a616F98ODB+6q/Y4zh2rVrPaXU++F4Mjtz5kxvn2837vMXr6C0wRYSbUyi4+OKvraMr1G26C23RVOgXNlLmZmURkd1LFplCyvXr2OyGk0eLJh+T7ZFH6KWp63JLUxMXj4hn1rLLVCNEhhHsGhKsDJYLNXlfDemIC5JwssexKDyn6XOsZ32x9wIL+lKewDOHXmCuCRgzkq/l6LLRgS0BDLq74cMkpMQpk7Rs5K8urVqYaRALPcfy64xvRSasul9pmOLcjftEXKgkFLpBC16fUpeWuwKrORkh44iXraJLbBaoKRB+uA7GgxIy8JYUFQWcayIhKJLTIDGjhI12no3YLHVZ/m+n7Zebrf/+j+eo9MNCVOhODuGRjMgNobhcgHfT44/Uppz5xeYa7R4ZOsky62ATZPDzK6GFIeKzC23kVqxuLKC7YdUCHu146+ltVqtv/K8bvA2cT7307L6ixCC/fv33/VF3FEe4dDs5VvecPV6nddffx1IUB73U/CpXq8zPz+PZVkcOHBgAGJ5L9ZqtXq9AmupSV1vtDEYLC0oWDaxpN8gAokAnEhW8YSG0LVAG1SaOjIeWMuCOO2R6PWBGoNO6zgyyjmU7L2BptL+63y0MlC/ySPa8iWr9K5WBUmj4dIDnHUEeLkoKN1uteZiZpN6Ve/300inM2Zh5ixUYTDd1x2zYDbzChCnWZKgnkYZxT7qTS04RLnIqWUbZMtCp/uykkKonThxJt0gR47asbBW+z9t2gk2vFUU+I2+B3dT59Z1LTzfGjg+31VIX1BsupjUk8kM4xClabsORCnzhGcscAWRbZAGHC3otCOiOCLWit89epI3w9ZT8/mzvzzN4RPXAVhudNk8XmVxKUmrrXZ8dozUWGi0QUDJsil4Ds1uiJMyY7jCJo41Q26BDWM1JoZqlGsVXBzCIGBlZeVrpuSa2V8HOQX4K+Z8rl27xosvvsi2bdvwPG9dEdX37H6cS/U6x1be2IiVjb9x40Zs274v/FOZTU9P8+KLL1KtVhkbG7tvueaFhQWef/55HMdh+/btd9znV69M0wwDDKCNQcRJj47VBaEMIkomdWKNccGbF2hXJI4jdVJCG0Ll9NNwWVtO0I9WMgJSEZpeD48IQXRBrAgITIJmgwFGApNGJ0aDzq0rVM6f6pwjipQguJLqMLUG74c4VRg1rqC9OojqyRFR02k6RLn6lGiAsQVhqpQqGgncGqA9akNLoIb6j5YvLdqm71A6RUN8PSfxUBaIJYFKU4dBVfSR4YFJKI2ybS2BWJQYR6Bz2JNmO8Bt2MQFSSFlMei4US8KknXwWwInpc52nOR/L73PXCXxLYWIQRmDcg3CQEk4qEjj2TZebKPQ/MWJ13nppZc4f/48q6ur9y1lfrdpt/nFJp/57Cu0OgGua7FQb1PBYmapiWVJBIIrlxZZrLeZHB7i7Ll5JsbK7Ns8QWwMBcem1QkoeTaXZ1aolj3OXF2kaDs8sn0T4+PjbNq06Wum5JrZ/ar5vN3tbVHzude0W1bLmJub48knn2RsbIzp6el1MU8/NDaJrSy+cP00j41u7I2fibM98cQTOI7DzMzMPe1zZsYYTp8+3eN+W1lZuS+rq3xP0/79+7l69eqavvdHJ84kE58xdFEQGmxLEDsSS2mcuiSsgdXV6Ah0un6xMkSvD7QtdFX0vI5IZ0ArED32gswxyZZALlpEWhK3oDuUToZGE/kCmoahdoyzrBBVhUkznCIHvzZhDpbNYO3GCGiMO4xfUm/I38e57wTaorCsMKNpyjA3RqdoU+jEmLS1SrQEjEJr1GLUB1Onx1KgC5L4igM5HIdfE1hBijLIfi8eRBfqukWzktbQCoJiy6FbiWg74JGI9QGENRALaT9SFdxIoB2TvG5YUAYrvSaxbbBbAl01yNCiUxZURNLYG6cOPUoZxG0nEcWrGoeOiDECysYmDGOkJRCWgEhgOYaucNm6dStLS0scO3YMY0yvyXN0dHTdiMy7cT7GGP7jf/kzimUXVmHDZJVSzaM13yGONZumaglVzniFlaUVdk4M8+LSNQpFh5WlNsXhAns3jnN2fpmdkyMcv77AjqkRhoouM4stvmP/Q2iteqwAd2pyzY79XpRcM/vroGIKbxPncy/W7XY5evQoAM8++2wvVbVe2QOAfSNTvDw7TbAvhlgNMGqXSiVardZ9We1FUcTRo0cHtH3q9fo9j50BFpaWlnoNqdevX1/TuCenF5KpKzLgghYGfANVibY0smVACKQGe7HfwNmDV68KgjELQo3OKXBCkovP3KqRIC9aRJGgtTHlG/NzBfw0EJERtEYcwMFZUhRWFc5EjPD70Y5sCVTqGExs0DmnotLU1lLZZXyp31AkumByqTSDIFy2cUYTLxoN9T+z2iIp8NcGtYeMLTBX5UDtB6AbDUatdlMg6qByi9mEIKefNvMtSTeXUpRdGyFi4pLExGCl8HbjCIIMsifBXpGEkwpdgKDpAJp2rt/I6ibOxzYJDU/bjhEKAkcjQ/ALJkkbps22MoaoYJBR4vTqIsbyLLoqRmqB2xE07ICWdNi/fz/GGBqNBktLS1y/fv2e1EzvpubzB//rGK+dmGbfYwlsuFopcPXCEpu3jECjyVilwIlTc+zbv5HRsEiU1uAKtsP12QYjtmbU8mj5IUMFDykE1xcbTA1XOHl9gX2bJ2jOXX+DM7lVk+vVq1c5efLkPSm5ZvbXJe32de18bkaTk9m9OJ9/+OCj/PPn/hefO/saYzN1RkdHeeSRR3rjZ4i09YizZdZqtTh8+DDlcpmDBw/20mH3IiYHfUZqYEDldS3jhlHMXLOFEAJLSAoRtByN04HYaKxIILPVuxGErsAJeo07WC0gSntKov7Uqr101R8nhW3nErRrLmbEojDdnyiNm5J4Rgad1kysjkaX01RRKGhOuRDajCxEMKzAAeELSJ2P1RDoHPlDNuEbR9LpOFg6TjRsWn2+N0hg1p0Jm7H5CApgcrUhOobWiMtQ1AFHoHNM2h3HwYsGqZaUkoiIPgVRAyLdj14AmmWRpCHTIEErCxH2a1cdrRCrEioJ0MBbFcRjBhmCzonx6VQ01VoBJ7ShFOIXNFYXTBHKBZfWckDD06CS+o7dhGg4qfPEw+A0oVtTECW/hUh6f7pxhPZAa4WjJUiBVKCE4Y9ePcMPfetBhBA3VTNdT1S01prPmdOz/OlfJHXXSCXn1NWSVjPAciRSCrx0alMYtg5X6QQpCGmhSbnkMlktIyLDjolhWn7I3k3jnJhdYONohe1jNbaO1Tg+c/W26e8bm1xvPPa7VXLN7H6h3d7u9rZwPnc7gedTSnv37mXLli1v2OZenM/eiQ2YUPNHp17lZ574f7B9+/aBfcxuyPU6n6z3aPv27ezevXtgjHtxPvV6nSNHjjA6OvoG+Ym1EIt+8fh5QqXRRmFsUB2FsJIoxYoAJdPMkUmg0kWJiRQZKY7VsHupLStInY/W/XqMFoirNl0nQaNBorWTWRbt2G1DnDoiGeWZqtP9tyTdyEZftykNBQi/n9KSXXqOSPgGXeyfg6BoUz6vMQ9qTJsB56MKgJCEdZtCrHrMCckPS+KiRF6R6AdMgvRLzR+zEXOD51V5FvZ0TLw9Y04QdMcsSoHCeALZgk5BUFmEaHM2kMCJIUzZDToVw1i9QOawysalTkDF9+gUJWEaQ2YgD9GQqFxasdCSdIuarowpBAV822C3IK4l1yYCyrZDnShBHgoYCi2sSOAtWclnQcBQzUGZpP7jWhZSC2wlODEzSN2S2Y1qpplmTRYVDQ0NMTY2dtPIYC1pt0ajyyc+8QXqKnH4q02fB7eP00h7fDphxCM7NtBoJV5ZCMHpU7OUNhR5eMsYZ68tsXPbGK3lLsOjZSrAXKvNzrFhqkWPRjfgye3JRVBK3VXkcrNjX15eXrOSKyRzyl+Xms/XHeAgjmOOHj3K5cuXede73nVTxwPrdz4Z1c+GEFYsSWFi7A0O5kYGhbVaRuD52muv8cgjj/Dggw++Yez1Op+ZmZke2OJm8hNrGferZy6m+jsCG0mswW6R0On4Bu0KjDSIyGCsjJ8tHb8jiEqyh7Ai/S27C0iBt2iIIougYmHnSlo9iLQyvTrLAOotv8v5OV4KgqrNqipimrl0VV4R9QbRxrgoWKl6yBWTz3iBNkTps97c4KGWBr+n0mPtyGSmD4uD3zWtwXMdFgU6R9UTC4FxJNZc6iDr6VfD/vekJRHd3KFKQTfoH1czlXymI2g5qoc+VLUEmRdbFh2rfz+60k7HgUacvO+kDbpZ4BbEyckSNjgNsJclTZVESLE2aM/CNMFtCVzLSjSDZMIEMd1o3XExI4SgWq2yc+dOnn76ad7znvewbds2fN/n2LFjPSXPmZkZgiC4o/MxxvAf/8OXUFrT6YbYjqTVCWhcbzK3mEh9t/2Iq2cXmVtuIaTABIpK2WOl2aXiehgDtVKB67MNkHB9dhXXtglixa6xERaaHTZVk6hDa71u4E927GtVcs1bq9W6LzWfu1UyhaTX50aV0n/2z/7ZwDZXrlzhAx/4AKVSicnJSX7sx37sjioCN7O3ReSzVmu1Whw5coRCoXBHxuv1OJ8gCDhy5Ahaa37wPd/Mj7/4p/zJtfN8z8OPD2yXPSBKqTuS7mWWEXg2Gg2eeeaZW95cd+t8bsZIfTO7GbfbjXZmfpkwVgRCIX2FMBpjJNpLCteqnKRt3OWk4dEYjSqC9CFMU2PZSpz0HFm+wZ4F33KwUsh0vscnQ6Y5HYiqWbTTj2REzuPo3N2qM6SaI+kKD++8In7AYKK0XZ9kv3rHHxviogAp8RccvNxOWHUD5f6kF4SDE06cRmT+qE3pYhe1IZfebUKnYuPqMKEW6hjikkXbFpTCEOMKojSFqMI09eYDVYirFkLHIEUSDUoLkXYUicikvUbJ8YcjEjuOaRuDcSXeiiIcT+DUtUWLxVISldp+EsXF6W3p1W1UUxMUwJGSLgozlIwblhPSUkdadAPTI1K1lKDjJuGQRyJU56+EiGEbYSwQgjhS/MWpC/yNfQ+wVrtdVPT6668jhGB+fh7P825aL/ns7x7h8OErPLBnA/NXfDZMVqlUCizONOh0QqrVIhPFInNuwHw7YOfmEc6cmeeBnRNMeFXi1AnHKbO11DA5XsXzbEKj0b5m60iVhzYlqJa7jXxuZ3dSci0UCpw6dYpyuXxbbre7sbtVMs3s+77v+/joRz/a+zvfmqGU4gMf+ABTU1M899xzzMzM8MEPfhDHcfj4xz9+V/v3toh81pK6mp2d5fnnn2dycvKmXGQ32t06n9XVVZ577jlKpRIHDhzgqe07KGiHQ9evvmGFJ6Vc02SeWafT4fnnnyeKIg4ePHjbVc3dyGhnUeDMzAzPPPPMLR1PNu7tVqozyw1WWh0CHROgCI1JYNMwQGOD0GghUa7ACsBYAm9WYdy0+TGdqLNmUNkW+I6NsUSPrTnfwxOnE7Po3kLuIZfi0oU3puiS9yX1sQL2mcHtyfXLWE3Tc4jtCY+4m0t1tm5Awdk21lL63dgQVXKOqT64XrMamrhs4VxPEX2rKRTcldgzCZQ8+74/YiURXnp5g0IC2pAdQ1i2iKpW7/v2EnRzdD/aFjgz0OrRD/X3IVo1PdG7qp94nVYhqeG0lOmxjvtpX1TkJelJZUNhwRBFAhmJhPEAcG0LZYEXJ02/oVEoW1IKLHwdE5gYoQT/+8Rl1ms3RkXvfve7cRynp+V1Y1T0l3/6Oi+9cCHZv0JyDcZqJc4cm2F0PIlUNk5UeP3EDGPjyfM1US2DAa9k0132URge2DTKwmqbseES5y4uUC67nL04j2dbOK5Fpxmyd2vyHN1L5HOnY89UXJ944gm+8Ru/kQcffJCrV6/ysz/7szSbTT784Q/ziU98olc3u1vLlEx/5Vd+hQMHDvCe97yHX/zFX+Qzn/kM09PTt/1uqVTqLRIygb/MvvjFL3Ly5En++3//7zz++ON827d9Gx/72Mf4pV/6JcIwvM2ob7S3hfO5nWUyBcePH+fRRx/l4YcfXrPa6Fon8atXr/LSSy+xc+fOgZTVY2MbuLSywquLb+z5WauTWFpa4tChQ4yNja3Jaa418ul0OrzwwgtEUXRbCe3M7uQsf/+lkyhj8IzEDQXakwgtQGmKDdJ0i8bryB7xtBOBu2L6mjShTpgQAO2BN6MTZJiUSJ9eqq63mMwBC/LpsvxdqXK1l8x5GW16ryHpkwGoTxYxjXwzaP+htdqDx+7bHiLIeo0Gz0VUkMil5B6wGkBOcyc2NrKTawL1U3h02ouTT52pSGKtkPDeAMqT2NOaqJSrxdXBWu5/x1pJ96kN3bLB6uZ6nFqid/J0vlaW+80soDMSaosOsSeRxWSyDguJowPwugKhQTYFsYAhYRNbBtk1PdCDFRkiYQgtgw1EbYVpa2KlibTi7PwN+cl7MNd1kVKyY8cO3vOe9/D4448narrXr/Pbv/lF/vPPf4H5hSRfGcSK0eFSEh2SOCPbllRcB0zy976dkwRphFNybGZm6iy3uxS1ZG6lxfbJYTp+jCMkhYJLtxVSKjigDUPF5ATcC9fc3Vim5PozP/MzPbDQ3/pbf4u//Mu/5JlnnuHnf/7n73rMe1Ey/Y3f+A3Gx8d55JFH+Jf/8l8OpAUPHTrEo48+yoYNG3rvve9976PRaCSq0Hdhb+u0WxiGvPrqq/i+v6YJNm+WZREEwW230Vpz6tSpgf6gvH3Xvv18+UuX+dyF13l8YuMbxr/dZG6M4fLly5w9e/aWoIib2Vqcz/LyMkeOHGHjxo3s2bNnTQ/InSKfVy5MoyONECaJGFyB8iQyUhALdFlghYbIElh+ktqSMZg4IRoFsIM+lNryIXIc3KyPJDCEGbmnSDj+na7pCbKJHINCnq0gcyyia3qRj90xxKV0svcNutA//uZogcp5n/ABOYhY83MOIzIEoxbV8wHRPnswstOGeMiiISzKDR/Z1L1+omQ/wZuGbsq7mDK60B5zKYZhn1YA6IzaVOa7kMugmKYg3NzfJnIlTtf0QBJZ35RGgpCUW4JGMYV456TBw6pMftxAt+YgVFI/82X/YFRTgycJikkUiyVwWoagJPCMpLAie1IKUTsGT2AHhk5BITQ4tk1DxhAZCjgEUcyQbSOLEu0bGp2AlVaHkaH7w/KRTfZZVFStVim4I/zi//kyUkqWlxMvO7uwSgXJckYQGsXs3zFJp5uCMDAsXa0zNFnGsgSz1+u4rkXJcwkDhZPWr2xLcnVmhY3jFV6/usg7iht7UQ8kKaavNbFou51QF33kIx/hJ3/yJwmC4I7z2M1svUqm/+gf/SO2b9/Opk2beO211/gX/+JfcPr0aX73d3+3N27e8QC9v9eqkJrZ2yLyuVkkk9Hk2LbNwYMH7xp6eKfIx/d9XnzxRer1OgcPHnyD4wF4ctMWhp0iL12bxr+hoHa7yCcTfrt48SLvfOc71+x4sv2+nfO5evUqr7zyCg8++CD79u1b88rsdk6t3W5zeX4BhEFrELHGahlwREK/bwuUC3bLoF3ZZ6HpJvWNLI1mpStRe1kTGyuJGDJAQo4yIKsLyZxDkLllUK/Hp6N78Gun3T/XVrs/lp2LaESg0UVJfbiAcykmyjkfkYNHOy0NUtKcKGKt6h6gAMBqaYwjMbZEXFO9yCYzLQW+m5M2yNKNnoV9VZNTREC7kqh7AxjBtnOhH/ijVo/ZACAYthEaVDU5SU5OxtmqeD35Ce1JnBUorUp00aKY0q21SxrCBBRiW8nJVxYUUymHXgoujGga3euDitM0qUBgBBQCQWxrjICiSdKFliuShtMAhCWIY80fvnya+2U39vnMz9T59f/rL2g1fKY2D2MMFEsOWyeGWbjeYmEhcT7tdpvTR6+zsJz8XRAWKysdZpea7N+1gem5OlNTNaxAUxry2LN1nGY3YO+2CeZW2pQch6Jjc/rqAo/t7E+sX6vIJ2/tdhshRK/OktW/MvuJn/iJNwACbvyX0X+txz70oQ/xvve9j0cffZTv/u7v5td//df57Gc/y/nz919K423hfG60q1ev8uKLL7J9+3Yef/zxddHY3M75rKyscOjQoV5953YcavtGJmn5IX96dfDk38pJZE6t3W5z8ODBm2oH3c5u5SQyFoczZ87w1FNP3bXEwq2g1svLy/y33/8SUQyedBM5B0tgd9Nzl9UMRNalnyzuRZxCn+ijpzAGGRrcFYFJJ+iskV+kTX4YQ5xSz9g5fx5nbNexSQg6AaeTQ7G1+tdSdvuv7ZxzsBsZl4ykVSySExEdlEtoZmJ2FmYmB5IA7Bxyrj1WRKvBhZF2JcGwi3M9WWVHQzlHpC384g2PVDj4fekL3KXcfSklKlfvUp7EvRjhp/vUECkAITQ0XXAW+vlJp6EoqcTBFLLGVikoNQXenOnVhwBkMznZKnXmXpSkqOKigCi9JtrgDKX9MV1FRyaouqK08bUidqBtYvwwwjICbQxHL94fpg8YnOwX5xr86x/6TVopZLpcS57RHdvHOHt0mokNVcJIUyo5iE5CF7S00mGobHHyteuMjBQxBoyvMAaGqwUuXlxCYVi4Vmd6qUnBsigXHNp+xJ5tE1hCsn9LX6jtfgIO1mo3SmjfaD/6oz/KqVOnbvvvXpVM85YJz507dw6Aqakp5ubmBrbJ/r6bceFt5HyEECilOH78OGfPnuXJJ5+8J30c27Zv6nyuXLnCyy+/zK5du24KSb7RvuuRR4h8xZ9cGHQ+N4t8Mqc2NDTEu971rjU3ld047s1UUl955ZU1MVLfzbjXrl3jlVde4VJbIIUk8EPiUGEsMEIilCEuWkilceoGnHSVb0N5MacQmvXsYCjMQIbQMlr3AAVZuGR1TQ8UoOMco0GaRrOburdtHoQgcqc6j5bLE5Ra+e1D0KGLSKMrlUvNiRwQoT1VHFBSFZ2cAmrBRnUH77+wkt4vdZBtjSr3F0adIRtjDT5SYc1LHXVqkcZa7DsQ2dFJ/1TOdCsXGZUkTsvgziuMFFg5hxwLQTsdu9vqH0TROBBJYkdgN1JHm34trkncJUOnKJMIUEBFJTo+dtvQthVosAsWRoAbQKwVyoMIgyNkwg8XaIyEK3N17pdlTaZLcw0++sP/k/mZOo1mclxGCDZurCUSTwaGU5DBngc2MH+9wdTmYQB2b54gjjXFssVkSdLuJtFQlKbkCo6NtC02j1eJtGb31CjXlxs4lmTvlgm2TY2k58u8aYCD21mGdLvVvDcxMcGePXtu+8913QEl08zWomR6o2XsMRs3JmWHgwcPcuzYsQHH9qUvfYlqtcq+ffvu6ljfNs6n2+3ywgsv0Gw2b5kGuxu70TlorXvqe0899dQbGkdvZe/cuplhu8CZhWWu1fsP2o2Rz7Vr13j55ZfZuXPnABvCevY7P26mwmpZ1j2ppObHNcbw+uuvc/r0aZ588kmmlztoYwgihUFgxQJsgd1IUm8ojfQNKoM3Swgd0QMDxJkkQlMTVh2stLbjdE3PkWSOysoV67EEMtAUrkS484bS2Qj3akzxTEzxbIDV0oNs2qnlslToOO9w+tfb6WjCqotzIXU+OaJPchGg1VaQUxslGnTQynF7wAWrHmO85Lp2J4q4S4PbOnWNd73vGWVHEw07FGf77ylbopz+7znLMVGt/xsAxIOPpbOoEKkTzNJ8AHHRop1eg6jaHzPSiqhip+cheU/Xkr+17KfgrNRfRath+rdJ0mw+ROm6achx6FgaLaFkJJ6QmEgThxqpoRtFHDl3e/TUWk1rzfVLy/ziv/4cM9dWkLZkbiZ55qJYES93CNPrbbkWO7ePEfuJUylVPfY+MIlOnfH45AiL130sz2PLZJnZ+VUcR3Dl4jzlioPpKrpKEXVjNo1UaPkh48Vib07InpW3KvK5V1uPkun58+f52Mc+lixIL13iD/7gD/jgBz/IN37jN/LYY48B8N73vpd9+/bxj//xP+bVV1/lC1/4Aj/1Uz/Fhz/84a8/GW1ILvSLL75IrVa7b1IC+bSb7/s9x/bss8/edeSwZ3SMVivg8xfO9d7LnFuWDssm8h07dtwTUWreSWSM1FNTUzzxxBP3xKKdpd3iOObw4cMsLCwkKyDbY7ndRUcKE6mEbTo2aDtJoUFSL1EFmTgQpSm0AJ0g4oxJiv/uqkZlKKF0cs/XdHQOQYU2FC9HiKbANByUcfHHCvjjJYx06E6U6I5XMJGNmLMovh73kE1wg45PHlqdq+tkqbnOxiEKx31UjulAuPk+HUV3vEjhajIBazsXIUUaf9ylcCmZpa16bjHjWejZQQJY2VZo2R/bXko+143+96KqQzDuIdMaluwYVMnCXcw5KMcaOHdxpFHpJBgM271z4TQMTj11riVJsZ06qGbc86/l9JoEhcQZDrUFKt0fmS4MsnPoemljalsRWiZZcGidSCuEhoKwCPyYSGtsS2LFicTTF4/cWXr+Tqa15vqFBh//wd/q+eGpzcNEkcJxLeJ6l5WFJsvLSXFLaU1rpk6UOiNhSWbPLxKmz45qR0SRotmNcbVNvR2zc/MoKysBUsRcvrxM1O0Q6xgRJoJ7WyaqA/sDvCWAg1KpdF80zn7jN36DPXv28Df/5t/k27/923nPe97DJz/5yd7nNyqZuq7Ln/zJn/De976XPXv28KM/+qP83b/7d/nc5z7X+45lWfzhH/4hlmVx8OBBvud7vocPfvCDA31Ba7W3BdpNSsmBAwfWzYZ7M8vSbisrKxw5coSJiQn27du3rpvp7z3yKIeuX+dPzl/g/3j8SaQQWJZFGIa8/PLLhGHYIx29V8ucz4ULFzh//jz79+/vrVTuddwoinj++efxPI8DBw5gWRa/+b9eSqCzvsYWMlEwLVlYwpDNo1acBASqKLCbGr8gsbuKGAu7q4ltgexAnPazZA2g+XRTPJRo/lh1hYtFWCkibYWwJJYfoWrpj+UiAC0FpmDTLdh4yxHe6QhT06hi/8HMI93ydR2C/oTvWwXshZB4IpmIIycHPggMIRClUGld7D8S9mpMNOQQp0SidjAYhekbIhQijT/lYTcCVNVOorwRCMYKybE3FXEhWVgV5xXtnRYp2AxrKYLJBOobVmzc2QB/RxJ+hFWH3qNqSdz5LsFmj6J0UaEhi8ftlRjKFiY0lDrQqQyi39y6RirRg2nrtD6VXTffUoDssU6UlMT3Ej6+oraIdeKUHFcSxQYCg2NZnL1275DrP/qNF/iz/3meTivstRVXRsvYy232PTzFa69cplhyWVxImAzoxqwutqGQhtRdRavuY6+02bV9jCuXlymWXcZrJfw0dVcpJefetUuMj2uUL3ArMDNfZyhyKe0eZXp6mrGxsV599K2IfO4Xr9vdKplu3bqVv/iLv7jjuNu3b+eP//iP73n/3haRD3DfhNMyk1L2nMPu3bvvKRV2YOcWKrbL7GqLF68nwlVKKS5evIjjOPeUDrvRspshow+6H44HkrTm0tISo6OjPPnkkz0n98q568RhjEIn+j1KIFTav2I0MtBERYkVJrWYQkMjLNmrtdihpnQtxkjRr+V4g82ksquxO4riRQWxRJUdjDK9Oo/MOQqTZzTwcpDkoiSYLBE6JexphQiT348ruYJ/bu0icrUXu6uQS/QcW1zrs1JkCt7hhjKjCxAP9z8bT9MfwdQQ5bqhWBys4bkjQ3i5aEh4CZKtOJeCBNJ5X5cdijNRLxICiNO6U1xKC/xpNGavxJiC3Ys6IamT2bl0ZZa6bCmFifo0Dq7jIJUhrDiUUsfYLphe3atqu3SKEp2m5IKCwAo0yhXYLU1Ukok0xpCFW9fYyzGibijMaAodQ9SI0AWBwiSOyChUoFiqt2l0cnQSd2Htps/P/ej/5Pf/7+do15PocyWNboQt2bl1hChNrU1uGcEYeOyxzZw7MU254rG01OahByc5ffw6pSGP1XoXTxla7YANU1UWr9UpVwrs3TlJqxswNV7h/MVFJseGmJ5tMlQqs3XzOAvLIft2bmB6epqvfvWrvVrH/WCZvxu7X+wGXw/2tnE+99OUUly4cAGtNU8//TTbtm275zD2sclJwjDiv71ylNnZWVZWVqhWq+tG493MgiDo3fSZFML9sOvXr3PlyhVKpRJ79+7tFVMBri80CP0YtEF5AksKZKQwlkTZAncpRrvJpGS3NSarsWQrw7YmrDlYuSJ+BjIw6exbnIkxvkM0UugxIditqA8syD3bJsdWFKdIMuGrHkGo7CiCLTW86+Be89G5hk1d68PW3FrfUex/527CDUM8NbKFEbeIyTm1qT19aG2xOoxy+p9tzvV8PLR5KxseHkTzVLaN8tiO7b2/h3YmdcqN+7cm33+sj0gcLQwxklvRRpMlpK+JUkh1OF5A+hp3NUm/xeX+ibAbCnu1n5bTno1dj1FVl93vmmeokPS/NIgYWtLgWH3pICEoZijArkZISVQQyBRY4aTO08uUTesRI4GN7AhwbIwQOJEh0gbtWNRWwIvBQeLaNlIIYqP5wqG7h1y//Oev859+4nd48c9eZ3xTcq8Xig7zsw0sSyJDxflXr/eWI6WKx4MPTRKmCLjJTcMMDxexYo3Whg2bauzdNYm0k3uiVi6wvNRO+n6uN5hfarFlQ40wUjjSwnMtzlxcwLNtdm8eY89Du3scdFNTUwghBtgWpqen19VzczfW6XT+WjBaw9vI+dyPHCf0oc5ZHvNuoc63sv/no/twsTk2Pc2LR48yOjpKrVa7b/tdr9c5dOhQb9WzVs6421kmVHfq1Cm2b9+O53m9OpWUkq8eu0Sr3kWFMXaUIMpiy2D7CSJNuSB6mtQat657ip1IgYgNli8QQqZ8bEmtxWSoOMtQPh9ixTKZEOnr61jdPHyt/zKrzQhfoQspy0CrHzEUU5brcLjAcHGE/dUEGjtkOwOItsKmfv4+G/7EtWV2lkcGz5HdP8/SWOyw+6vObm41f2xmiXrQx27bQjLTanF5fhVI+nEW/WT7s4vLTHhlFrp96oF4rMTUrr7zUq7Fgc07+uwJlqS6arBTNEU84mGvpsSfKiHzzMwfcfDmI8pFnx07FtlSStJe8bCDWkz2sa7756xkOaAMviN7Eq3l9GOR/p/1YTmrhnqsqAibrpuwSRQ8J8FkGLCMpNAREGtUHCcM6IHm+eOXWKstzqzycz/4af7fH/7vTF9O9t3xkuuwYesonmezc8cop48mAoirK1lNwubaiWnsFLBRKLuMDxVSITyoVIucPz6DdC1q1SJBSsZadG2U0nieTeDHbJqsslzvsGfXBoIgZqnR4V37tvb2z3VdRkZGcBxngG0hi4pefPHF+67imtlfFy0feBs5n/thy8vLPPfcc1QqlR6txHplFW60p7ZsxA4VUaCYqQwzNDR038a+kZEauOebOo5jjhw5wtzcXI/ItN1uMzs724O0fvHLJ/G7YYKMFgKrq1FeIj+MMthtlVGGYQFR0UL34NaC8mzcp8xJ16dWN1mhi9hg1yEaKaayC+l+pdDkPIBAWxk02xCnfSZ2sz95jlf7K8EHH9rcez01OcqZK3WeGNnEmNd/YKUQLPh9ShA/hXT7scIJBp36Yo46ZKQ8hCv66dN2ztnEWjNKP5qaLJZR2rDQDXigPMKmcrVXrjIIHiiPseL3V8mzrTad7mCjciZKl9kDD29j475+Q/KuFPEpx8rosWIfpWdL6Gr2PXAVKQ0bx1aT97VBpLBtVbGxGlF6HAGVRU1gC5x6ygKQOnSROvjQgdqswnaT8xM0fYxImnu1nSAMvRAsKVGaRJLClQhLYpTm/PQihw4d4uzZsywvL9/0/l2erfMrP/t7/NJP/DYv/slJhmpFFqaTfe+0k3NdGS4yVvEIuyEq1nhFh7nZOiNjZeYvLBB2I5rt5LwWLItLp2YJU02fuB0RBTGtdsDm8QpzCy3KZYdL5xYZ31BhrFRECcN4ucjsUhNLCvZsm6De8nlgahCElLEbrJWZ+35FRa1W669N5PO2ABzcqxljuHLlCmfOnOHhhx9m27ZtvZtfKXXPabF2u83hw4fZWSzxetDlj09f4G+8+6l10YjfuN83Y6S+G9LSm1m32+Xw4cM4jsOBAwewbRspJVNTU1y8eJETJ04wMjLCy0cuYTkSjEFjsIxBRgYtBTLSSCUxGTw7SrR3snqOVIaw5GCnE6pKpbJlqBGxoXDRJ5os9o4TQPqqB3kWuePLop1CYPDTOtBDD2/hxPIiAJu3TjA7lzQz2jk0mWfZKG149fw83/DQVi6lUPjxQomFZj/qqPv9CEbHgneMTPHqyixFy2al3Z8wbCE5t7DKw9vGOd1YJNdSw6jjcX2hSeZ/vBwke9gqE1sxl+nT1bdag/eGLSVVe7BmZKnBGuS1epNmp+/whiplhjshLScGB7ZXK1xuJse4aYtky4aEFG5kooN7MULMaKxcrchdjehWHYJhBzEdwJiD3YmJxlxEWmuKKhZojSctusLglJL7IeODc5C0LY3Q4ElJhKYrNcIWVAJBF0XZStJvq2GB4Tjm5MmTKKV6Qmrz5xs8/8fH+OofvUboRzz09C4ANuwY5/zrcwhLMHd9lbGpIkG9w/SFBfa+aydcXmFq6wgrDZ+aZ3P58jLSkszO1Nm+c5xLp5PmxsWlFvv2bmRmehUhBbZtMX9tlZUw5PFHt3D02DV2PjDOq4evsn3/FKEf8sCWMZp+yFDBZfvkMPt2D1LG3Ird4FbM3NPT05w+fZpyuXxLvaK1WLvdvm/p9re7fd07n7xk9NNPP83ISJJWyTii7jU6WVhY4NVXX2Xr1q38041b+cnP/Skr7Q6vL66ys7J+kEQmsdBsNt/AW3cvgnKrq6scPny4p+6a1Xccx+Ghhx7ioYceotPp8Nv/95/RDWMQNsJKe2RcC6+tCUsSy1fEQw6yE+J0FdoTCaFnQWBUAr3VBYFKEVMZowHaULocoItOr6ZDWuexmgFqKDlndg5VJseLYDTbNo1zZjWZUAtuP0IZyGzelJ5O0K0rnhrdyCvLM4x4hZ7zEcB8p93bMlaaufkOhYLNRLHMlXYr91maegptHClZyEVFG4YqnGwssXt8mHOtVaxcGuz12UX2TA2m81xsJoolFrrJGJtKFZabg0X5xWabqVKZ2XT/XCzGvCLXogTRdXmlzrbRGidJUlMThTKXm3U2lErsfvRC//xJ2DBcp362jPJyGkFpKk2GGkRfABGgW5agDLElcJYitHJwO4poROJ1DUExYTxwPZuu0DjtGIoebR0jpKCkJWEzRjiCQMY4xubl1xf4tm96L0E35JU/P8afffZlrp5f4PLxOaZ2jxGmwIG5a8k19kpJvWtq6yiVkSJnX7xIOJEyR6S1xaHhEkHLx3GT+2XDlmG6BnTDZ3W5TXW4iGNbLF9bZbXeZWrLMMFql/GNVVS902tkDtohpZKDJyWiUmB1pUNhrECsNSLWjNQGAUNraTDNc9Dt3LmTKIpYWlp6g4prJiC3FjRvp9Nh8+bNd9zur4K9bdJu66mdZI2pnU6HgwcP9hxPZveiZmqM4cKFCxw9epR9+/bx8MMP8+zuHdRsF2kknz15ad0O4k6M1Ot1PtPT07z00kvs2rWLffv29RyPEGJgBRZ1FH/6lUsIKYkdifYshJBoAdok/Tuyk6zctSexFyJU0cIKFNiS8lxAXPUg0r2oRXkCjMFqxkSjxQQdl5pKC/xO7pDGH0w0U6quS5hGTaW8w8kdV5Q7F3mOveiGa3v84iKPDk9StvvAg9FCsZeWAehGMfOtLo9Wp6g5g5FIlmY7ObvEY8NT+V5UClbqLNOIplrpr047saKxPCjSJTRsL/W3GfWKXFpaYbxQ6h3f9EqTLeV+bWq8UGKq2L8XVroBlZykapSmL7eNxJSrfXiz1oJaRbPp4S2oiRJ2elriNKXmzfo47TTdlgIcjC1x0+ZSbzEmciUyZQGgGaIl2O2Ydqq652pBSyXaQyUNJlTYlqAcC6QBvxvx0ssX+eFv+jd8/B//X/x/PvTrvPC540yfTfZzqJqkRSvjJepLibNdXW4ztW2EqQ1DnHn+ApWxIs3VZNEwP1NneKyMavvMXV7GTR1VbXyIojY9up2JzcN4OnkfYHJ8iJkrK9gFh42jQ7T9iM2baly4sMiGjcOce30Oz7OJlUJEGs+12Tz5xkhjPdQ6juMwNTXF/v3731Areu6559ZUK8r6fP462NvG+dytZVIFtVrtllQ263U+Silee+01rly58ga4897JCYQyXGg0qLfvHl66vLzMoUOHGBkZuaXEwt1o+kDiKM+ePcvJkyd5/PHH2b59O1rrAZbgvP3nH/p1pjudpMdGG7QlUEUrWSFrk8CYUxZsY4OxEgExO9TJZ93B+o7RhrhsUb7Ygax7P5c+kmPJRLH3qV2991bTesh4uf+gOXkHmXs42zmdkGbYT5O1cu8HsUJpw8Wrdcpy0PnkbTkFARy7vEDVGlyJLrT7kY4VDCYFVLoSv9LwqToenXAwrTZZHR/4e25phYWlPiOGgwQEO4aSiW6qNEQniglzMHNbS4Jg8LqLnIz4peU6UoA9fJlWu3+/z69WGaq1uDS/jDaGByeTfdGTRRwNsuhh0gZcNeRgpfU0p6uwGlFOhmHwPrE6MZEnkV1FrBWxK5DdGNWKiKKE460TRMTLPrFSdLohF64s0lhKHPGWhzcSpbIGnUZy3TbvTEAXhSEXS0TMnrrG7LUFAIZGk2s1OlmhVPYQHZ/pS0mU1G4HSEvgGMPspSWsNNIeKrpcv7CI49lMTlZ6QnGOIzlzbJqZuQaTtTJBEDNUdIgjRaPeZXxiiPPnF6nXuzzy0CBjPdy7ls96a0X3q8/nblVML126dEui0t/6rd8aOK4b/33mM59Z1z5+3aXd8lIFe/bsYevWrbfcdj3Op9vtcuTIkV4H742h8nc+uZdDl66ihOZ/vnqJb3r3M2se++rVq7z++uu9utSt7G4inxsVUkul0gCi7UbH88X/75d54S9OoZ59AJkSL9raJP0tWiMiTWFVEHtJb4/sxMgsDok1pbkQk44pUzob24+R8yHxSBnhJw5hdEONaTQVz6WuU/aAXCjRTLUIhpy+o8gzzOQdy3KuZrPY6ddylnJosswp+bFCtwyjXoHlwGcoFwXZUvYABqHS2DnF0rLjUM/xoxElDmK2kzywS6uN5BQYeLgyzoXF1d6mAjhxbYHKkEszSva7awSrzS7VYZuGillKHVEr/Y2JYpkFOpxfWMErWQRK0e6GXF1u4BQkkdZIIRIYfHZOgpCHdoIsNGg2CwyVfYyBwJLYVkSh4tNpFBmykmNWxvBgscjFkmBywwh+N4k4nNUQVXFQWuMthJihJOKMK+n/WZ9WisSz2nEPCCK7MVpaKc2PxPgGO04RihLkg1NcP5VQ6xfKybMzNFxi9nLiRGzPZs87thB2ulx4bQaEoL6QXMfs+tcmCsycmacyUmZ1sZPUea6t8tCDk8xdTc57sxXw4MMbaKRRVKsTUpKCxcU2CFiZabJhY5XSeJkoUoyNlmk2QzZvqnH+3AKPPrKJjRuqXLyyxGMPv9H53G9S0SwqulWt6OTJk5w9e5Zr167dl57Hu1Ux3bp1KzMzgySxn/zkJ/nEJz7Bt33btw28/2u/9mu8//3v7/29XkTx2ybyWUva7Uapgts5Hrh755NFJbVajXe+8503zdE+8+B2xr0iRhuO1lfp+tFNRhq0u2WkXqvzyWDlYRjyzDPPUCwWUUr1qOlvPKenX7rAL//Y/2Dk6QcQlkApjbQllgYiTTzkgRQoIVElG+HH6JLbg/mKSBOWXETqOGS6j/ZSgCmXEtDcSLIin9yZQKBHc5HNciOZgMdKReL0u25udemr/kS74icTkitl73XV9ejEKUGkZVHPrRiXck5ptR0wZSpYQmDnJAkmi6WBVNpKPWBXdST9bBDeaoxha6GfEssrKyysdFnu9h3iRKlMK4h4sJag0yqOy0o3wCB4aCQBkWQ9oheWVvGEIE6j5iBW7K6Npmm4Fn6k2FVL9mnzUIVzs8vYvYjEMDqRTBBRem3nV6vYqUJpbSxxlC2/77hH09TffLPNWNrhvy+NQC3PJh4pEQ85iG6MLtlYrQhVdRGhIk57qKTSqIKF7MRYUhIXklStFelkASIEdGOwJGKs0qsrLc0lDnvL7g089PhWtj0wzuVXL3HquTO4hbTes32MTspA0G3HPLh/A8aP8NshVnrrjG+qsn3HMNPn51iYqWO7FirWzJyeZfrqCpYtqQ55LM81WJhv8Mijm7l2aYnhyQqdxQ6xgKnRMtdnV9k4VWOo7DG70GTD+BCPPbSRqRytTmZvJqnozaKinTt3MjMzw7lz5/jIRz7Cd33Xd/Grv/qrb3AIa7H1qJhaljWgXjo1NcVnP/tZ/v7f//tviMSGh4cHtlsPgTK8jZzPnezG+s5avO3dOJ8rV67wyiuvsHv3bvbv33/bVc+eDRO4WEQYfv2PX7rtuOthpL6Tpg/0+4IyWHn+OzdzPCtzdT79736fOFLMdAMsaSG0SaHSBmc1QFgCS4GQEmMJXN+ALTGp2poVGYQl0ekzqZTGChSbxqtgCWoFt5cu60SJI6kU+nWcMN2niVKJd4xP8q7RjQxFNttNlamwhN2A/YVxDoxsYsfQMEOOy0Sp1MMYjOVSaBM5ZzHkOAOR0mrX5+zsMk8Nb0LnwqmaN/iQrHZ9SlGyf1VncKHhhzGnri5SEBJHSJZyjs5G8uBw/zpmdRw/rZNNlfoPa6cTUbDsXkpPGdhdG0PrnBJpy2fCK9AOE8datZN9mfBKdMKYHakzGh5pIdxkQreKCqUkgehPkCMTyW9cXFrpRatW3P98UzWRl26mta09D2+n5rogBF6aipP1AITAbUTEZRvRjTFp7cj1NcqV6IKF1Y0RgULqBCWZ6SWFtmDr/s088uxuxkbLbJgcwoQRr3/1NHEQ9SKVRspiMLwhmfg3bB9GxhFnX7hAK2U6qFRrSCmoVC3OvnSZcrqwmdhUJW50GZmsEgQxW3aMceaVy2zYNsLwSBmRXvOiazN3fRWtDa2Gz+T4EJ1uyO7tY3T8kHY3YvfmmxMYfy3lFBzH4du//dv5zGc+w/bt2/n4xz/Oo48+yi//8i/zr//1v77r8e5FxTSzV155haNHj/K93/u9b/jswx/+MOPj47zrXe/iV3/1V9cl8w1fJ2m3paUljh49ytTUFHv37l3zTbEW55NXM33qqafW5Bz+3oFHeOHiZVwEXzh7ge9uP8VQ+Y1RUqvV4vDhwwwNDfHMM8+sGfJ9J6j1zMwMx48fZ/fu3Wzfvr0HLLiZ0wEI/Yj/83t+ibkrSxRGSrRTuWDpSHSYMBjItLZgENiRIooFJk2riYKFs9glThFHGUx326NbKEoXRwiuTs9TdiQrqQ9YTPPLJnf+R0plNnpVrK7g6HSSmtm3aYKZlWTbThDjxzGbqkNMN1rYlmDXzhHKwx5nVpeo5Opj1YIHyTzMWLFE20+iKltKltKJ/sj5WZ7MQWhL+YZSIVhsd5hptNi3cxxXDq5y5+st/FjxaHWcReVzvdvPl1cdr8fcDVBKwQhn55YZmygOOLKz80s8vG2cU6uLvfc8HGZztat6qKkVHVZSHdjZxeRYMuG4EbcAGLZuX+jvvwVX50dwhvvRoleIEZYmVLCjWiXCcPLqApJErNVNHdWV1TpbahVOXZhn7+YJjk/P8/A7tvPqzDyubREBIq1pue2IcNjDWgmwWzGxbWF3VXr8Bi1BConAYIVJP9TppSZPFx1OPncWy7FppCCC4Yka1y8sMjRSZuZSAkSwbJsHH9lIu9lg5Vqd4ckKi9PJ8TfrPjsfGEOkVEFDwxXsBR/PNcycX2XLvgm8ok2t7HAlVHglj3ENYawolz1mr6xQGy0hY01lpETQjWl2Qmolj52bRvGNYuvGYW5mb4WcAiQ1n6effpp3v/vd/Kt/9a/WBTxar4pp3j71qU+xd+9enn322YH3P/rRj/LN3/zNlEolvvjFL/L93//9tFotfvAHf/Cu9/NtE/ncbNI0xnDp0iUOHz7Mww8/fMeI5EazLOu2vThBEPDSSy/11EzXynb9xK7NVJ0CRIYl0+W3/ujIG7a5F0bqW6Xdsr6g48eP8453vIMdO3agte6t0m52DrXW/Lef+S3OHb1MfaGBu3sKIxN+LiMF6ARCjZUUk+MhBxXGFBb9HhVO5ApsH0xaE3A3JCvoDdUKr19a6Clzjo0kKR4hYDWNFNqdDqOuyzvKo5w7s8jx83NYucJ2K12FVwteD8lWTTnUYmUIu4rLF1Z4R2mSmtuPXLzcxFD1+k5pvFQaqB01lkKG0/SpyDmMsWKRKEXBRU09ECFZQvTqTHOrXUa8wRy8IyRnp5coptfU5BiHdg2NIHPs2trAmBz8/sxKs+cgARbaXSbKw/3PWx3K0mJ6bgWAlXqLcrVLeWiwibEZDS54uu0SXi3ZZrRQYqpQphNGbBtJxl5NGRsipdlWqKC16TndIF0kTO5L6h+ymFxrK9AUrwd4DYMWNhQLuC2NVVeIQKHKDqEnUa6FtNJ4a3SIhRROvfPRLXRTOpzVxQRCvvmBSSa3jLD38a1cPHKJMy+cR6YOfHJbApaY2FRDRBHnX7vK9OXEcQe+Ytu2EWSqsy4tm/Fhl/n55LfiOODCiWnm55s8sHOM2Zk6GzbVOHdyFq/gMD+7yvCQB7ag0wyQWvDYvpvDmt8KFVN4I71Ofh/ebBXTzLrdLp/+9KdvGvX89E//NO9+97t54okn+Bf/4l/w4z/+43ziE59Y1++8bZzPjZYhztYjRZ3Z7dJXWdqqUCisS8Zh79QEUhuEFnzh+BmuTycThTGGixcv9iDaDz300F3DyG+230opXn31Va5du8YzzzzD+Pj4bYEFmf3qT/5P/viX/5y9B3YDMNcJsV0bGwFBjHEsrNCgLXBXg0R6AYO2HHTBxihNMTQURofQlqRccGgGIdtHahw7k6yiOmnKy0nlCMbLiQOQwESpSrAQsbjU7O1TN+jXS7JazWipf/4LOUedOarXry2iVhTvGt+EJUQfBAF4OQ3u4VydzpKCS4sr7HSHgUFodh4Fd2mxjq37j8KwbWPS8ecbHYbFYLoujjWdMGbvcDJRdnJ1v9WGn/RP5UzcsP6puQV2DQ+2BYhw4C/2jE2wnI57daVBbWODMOwfZ6NeJMw5YBVLWrbCqyXnNow1y8vpuU3v7SsrdTzLouQ4PXnwelq7urrcQKb/u5bEmqqwvTyEq210tYj0Y9SQC7FO7h3XQngFiithUvcxBiUMIjbIapHrqfNx0trO8EQFrTT7ntqB50hmXr9Gu9GhXe8gpGB1NknDScvi4ce3MjlVYeb8PBt3jNNpBrhFB88WXDx+jZkrydjVSomZc0u0m5rqcIGrry9QrnlYlmZ5cQUhwEnvn+ZKh6ktw1w9u4hrW5QrHvWlNlMb3ljvgbdGxdQYc1t6na+Viulv//Zv0+l0+OAHP3jHbQ8cOMC1a9fWxe7wtnQ+nU6H559/Ht/3efbZZ9eNprhV2m16eron0/3YY4+tK7z+rgN7kTFYRrBsR/z3//lCDxBx6dKle2KkvjHyyYAFvu/zzDPPUC6XbwssyOx//Lvf58JrlwE4eegsO57YgSkXMCZRHRXKQKQwroN2ZY/e39GgXRtVsqk4FqMbxtgwnjyk49UyjiWpKKc3yS63k0lOpblfF82QbfFQaYTllYBYGSZH+r0UrXTCK1iiF/kMeYMpscyiXI9OECuOnpnhIWf0lnnmYi61NpFGQSeuLPDE2IZerQOgbA/S7ASNuOfONlQGJyQZD57fRidF1rWT419o9aOYi4t1/O4gCKXZDCjluPqqrsewPRi1qBsg1nZskd0Cds3HLceooA/eaEUuxtOoNCVVXylhLCgOJ/vW6AZcW0jSVyqjn9GabSM19o6N4ae/d3WpjmtJOmHE1tFass3oMFPVIayuwIyWk0m85IIU2J2QyBhUyU50NgKD24yxSSYTy5II12b86V08cnA3wmi27Bpn6+5Jpk9d48zL5zjzStIgG6c9RJt3b6BV7zI8MQRxzOvPnSZO6ZdGJmt4RYf9T27j3OHLbNwxTrcT8sC+DZw4dI7JLSN02yE7do7jtyM27ZzEDg1eucCWrUNcv77E5IYi50/P4ToWcay4dmUFyxI8uv/WzZxvRdqt2+2itaZSqdz086+ViumnPvUp/vbf/ttMTEzccdujR48yMjKyLjmct43zySbQxcXFXh/MrRBna7Ub026ZgmfWD3MvMt0PbZmkJAVCGZQFFxZX+fT/+CLtdpuDBw/eE0VG3vk0Go0e4eg73/nOAXnwLNS+mf3RJ/+U3/z3n+PMSxfYtndTksJcamMXXbTWxFIgXRvLjwGD1YqQaeRiHIuSECAFD2+dYm6pRSlt8hsqurxjcgNhWg9ybNlzPlk/TtV2GPIdLl5fYSmdmL3c5KvSFEseCdfNMw3kHG836k/kzbQ36PzsMqah2VkbBhKnlJmdW60O5yQQLl+rE+Y45qzceXOk5P/H3n8Hy7af9Z3wZ8XOOeyc48nppiNdoSt0LbBkF2CQzWvZssEYPK9NDbbLTHk8LzhgyjMOQ2EYDDMGjGGcypaNMMYgCelKVzefHHZOvUPv3TmHld4/1urutY/CTUfiYvRUnTp77+5evXp19+/7e57n+3y/K4d55h2igE8+PXtVLDeZDA/ez5OqvUtfzxaZjUQpuQRIfbJM0nN6SDBbrrMYG5R0BRNy5YHqQsrv5+F+/lQpUeoTEizCE1XnJ/u8WjUv+OzhYa3pxTKh62juST4dSdVJe/19gsFheZB1RlQPpXyTg6J9TM2wwQYG2Wcy4Key3yAZDtDWdKbSUdRhG5Blw8QMq1gWiM0u6AaCYSHUdQzTxMTCaHQ4qXfQdYP7X1pl78EBJxmnDHd+sm/5XSvY1y02HOHslQmCfoWHr2wgiAIH23Z/SxAFknE/HUf7LZqOML2YxiNLWIZFdCjM4vLg8+hVRXIHFRBkOmWNWlUnmQyhKCJHB0WiMYVyqcHmZo7LZ7+SYt2LP4jMp9GwPxPvds7nnbiY9mJjY4MXXniBH/qhH/qK437605/m//l//p++I/Qv/MIv8NM//dP86I/+6Ds6z/cM+PTKVTdv3mRpaYmzZ8++6zffnflomsYbb7xBLpfj+vXrbwnVv16Ioshs1A+GhakZbHVLvHErz7lzl94x9dB9bNM0yWazvPLKK0xNTXH+/Hlg4HP/9TKef/+Pf4t//ff+E6NzaXTNoHxSI5oKIYzEMbq6Ta02THRFRHQsFERETBlCLQM94GVyJoUqS85wpL2jBXse5t7qUd8hMxkesNFOqlVmw0EiUohSrU3Qo9Do9OSTB+eXd/odURf4+P2DUkOuVOr/XHTP9bj6JAeFGqWDBmcTyVODp5oLiNxZEKbFkEuxWndlVCFn0Te7MsLpU7XPod5iSLbPNeHz0dIGG5pR5fQudSQUpFganGdQVSnUW331aIB6o8t+scaQU14ZCgTo6gZz8UEpTusYjEVCqOEOnoi98DYt+3krLU//LE3Dg9GIgDrIBD3RDuVClbhT8irUm6SDAef+Fge5KpVmm5GIvciFvfYGz7JsUFY7AtVGp09LjwR9lBtthqJBJi5OYskScrNr6/P5FMyAiulREHQTQbGHaS2/l+xRGYDJM2NkHTAxHJp+aipOajjK4oUxSvsF7r+4RjhhX8ux+WHqlRbTZ0Y4XDvgYD1LKW9vTlSPzNHaIYZD/w+GvKy8uk2na7PejvfLeHwKqiQSjgdYWEhjmCLLyyNUqhrReISZqRgBv0S1vMtrr73G1tYW1Wr1VDb9B5H5NBoNRFF81+sHvH0X01788i//MuPj43zkIx/5imMqisLP//zPc/36dS5fvswv/uIv8s/+2T/jJ3/yJ9/ROb5nwEfXdXK5HE899dQ76u98tej1Tur1Oi+99BKCIHD9+vXHIlkuSRLXJ8NIBnS6OjWvRbVt8iv/8ovv+tiCIPT1oS5evMjMzMybEgt68Rs/9Z/47G98iXajQ6elEUoEqBZqjC6O0tUtLNPC0g0UzUI0LQxZgmYH0+fBPxLhrCMt7/HKnB9J03GyBc00USQRs2VimoP+TsQ/+KKMBkNk9xv9hT0eGoBL19kERP3efqbikQdfbss1j9N1fhYZlPR8skTdoSJ7JIlyy+6t7GwWiauD/o1becCd3SQCfu5vH3M2YfdpTs/C2I/P5CtcSKRpu47hkSXy9SZrmTwBRSHpO53VaG3jFFhFVA+ZQpVxp3QyErAX+K3jYn+mKetkIuNBO5vwiTZI+l29q2KlyXAg2M96AHRZp1byYQZcJVnRomac/horPouDfIOGqxyYcJiCqjHolg05auFdB0yPq3WujAyz5gBFrmwv+D1AT8eC7OcrCAIsnRtHjnrRfQqmZSF2dRRdwABEj4SsynTiIabPjpGaiDN/eZKFa5O02w1GZxMMjyXYeG2TYrbMvtM7LDsSRbGhMMtXJqCrUcpWiSRDHO0WmFwcYvPmDp2mxtF+idGpBFt3MoiySCnfQDRMTg4rjM8kWbuVwRvykN3KUau30doa87MpavUuPp+X2fEhvvM7P8T4+DjNZpNbt27xpS99iQcPHnB8fIyu638gmU8gEHgsz9tzMa3ValQqFbmDbWsAAML2SURBVH75l3/5VEbVczF97rnnTj3up3/6p9nb2/uq5/Cd3/md3Lx5k1qtRr1e59atW/zIj/zIOz7f9wz49BSYH6eiqyRJNBoNXn75ZUZGRrh69epjM34TBIFEyIffsvALCn4U9JjE6sYJr728+Y6P27P+rlQqPP3006RSqbdELDB0g3/5t/8N/+Ef/xaGphOKBygclkiOxVl+YoY7a8cYmMiSiCAJmIaJUG5h+hUS6QgeVSIa8dNpOyU9EXZ3CjSdBb/e6XJxZIi645HSK41ZTqPofDrO1lYJw7D65begb1C+6vV2Yi6wciuG1pyGpSQIlFqOCkAoMLBUPtUzGfzsU2TW1k/6oFJye+i4spuwU75tFjqokkSuPih7RVxZV7Pa7bPCgH520tJ0zkaTBB/pFYmmwFJiMCvSG2oddTTaevTwZldnMR4n7ff3s8G2I0/UdSRhjp3F168oHJVq1KjijbkbuQLFuh93btZsibRdbnxmV8QM2+y9lguU9G4XRRB4uH5E2hF37TnNHpScspwFR3vlfpaTLdUJ+z0cObcLAjQ7GuPJCEgiHa+MIot4NB3JNLF0A6ncxrAsjK5BpWPSrDa49Zm7rL26QaNeZ//uMdnNHDv39wFIT9nvWzQd5mSvyJmrk9RyFR6+uIY/bJ/nyGyKpcsTSKZhEwemk6geBY8E5XyDsdkUQ+kgvqAH1SMTDHrAtFBEGwSjIS+iKtOutQgGVCwBEhEfkiQxNDTE+fPnefbZZ7lw4QIej4fd3V1qtRrb29vs7OxQr9ff8SzL24k/SnYK8B4Cn8cdlmVRKBSoVCqcP3+ehYWFx2b8pus6d+7cAeD9Z2aQBQHBhKKo4Q95+PR/udkvObyd6HQ6vPrqq+i6zvDwcN8z6M2IBY1Kk7//vf8nL37qNSKpEPn9IvGhCIGoH8EyyW6fII8kEBwGmtW1+zxer0rQrxIZjpFKhAhLKqJiP4dqStTqHYrO7lkSBFZXsxTrvf6O5pxzm+VUHJpCv0zTW7xVF9D3MpiAixbtZp/1WG/JoL8vwxNx9WxSkUF5K6gOjhuUJHTD4mCnzHIicao05/bj6WUdR6U6Z3wRap1BHUxwrSsH+eopanXUNZiayzcQrdNfmW7XIOAal+sByYkzRCm5aNdeSybtArrN4wJ+RSFfts/5qFxnOBhgIhzGsiCjZrGMweMFTaZtnt48NTsK3frgb62aB13SwW9yUm30tfM6SJxJJ+noFmGPff/MiT1rU262GQoFGFb8pJ1S3FDUPs/xRIRirUUqEqBQs88zHvZxVKxhmhbT4wkWLk+hBlUsWURWZBTDHl4WVAUpGkTXDCRFonxoX5P5K9PUnOtTOKowNJVg/tIEPlUgu3XC7gN7qj/nWCT4/B5WvryKzwGj5GgUq93GF7Lfm3gyyNqNPURZYn5xiGKuTnokwv0bewyNx1i/e4jPq+ANeCkcVNA7BhcujmEYBrqu0+12MU2TcDjM3NxcXysyHo9TrVZ54403+PKXv8zKygq5XO5dW6l8rWg2m39kjOTgPQY+jxMcbt26RblcJhQKvSV64VuNniK1rusIgsD3f/gSHkFCEURahs5hvcHRcYX/8x/+V9uo7S1Gj1jg9/v7TcG3QizYXzvi7/2pf8bBRpbiUZlQLIjHr1LMlpk9N0a91KCQr6EZJpJHQZdEBFUhFvUzc3GChdEkx8U60ZCX1fVjOrpByOdhazeHV5Uo1lv4vQpyBxDog9GJUzoaisXY3y7jcdhqsiT0Aaq3QfcpMlWHLKC6Sm09AAsoSj8zirjq3T5lsKh6JBed2rU7DDpg1tYMGgd10q6yWNGVwViuOZ58rkbSRe3uuHo4iYAfqzkARbf8z2GphqWdpsBXmm02Dwp9enjJmWk5LNaYDIdpuZhvOyclfNIgc9INi7OJZJ/AAHbpMiSrCD4d4hpCd3A9WhUPujT4HEi6B81voWmOXYIJfa+8qP28Yw7p4KBU7QvC+hxFhlJLI+AAeUwwWVk/gb7Ekf08vdLoUCzIYaFK0KuimxbFWot0LIjfp1JvdbHCPoj60FUJo2uCZSKrMiVBZuxcmnPftsjYXJqFq1MEIz7OPj3HleeW0eotjlYPOdo8oZKrMTI3hGVZpCcTKIrI2HiU1dftSkK50CCeDtKttygclul2TWbPjPRVE2RFYufeAYf7JcYmYuhdA9GyS8h7WzmCIS/+gIfMdp4rV6bxeDx9ryvLsvpApGkalmWRSqW4ePEiH/jABzhz5gySJLG5uckXv/hFbt68yd7eHs1m87FlRT1F68e1Dr7X4z0FPo8jejRtTdNYXl5+rG/ko4rUsiwTDngZDgUQNAvBtOiGBTx+D6VKg1/8p7/bV0P+enFycsIrr7zCxMQEFy5cQJZlTk5OWFtbo1wuf80P95f+06v87P/3l1l7fQtRFAhGA+yvHbF4bZZwPMCdLzygcFAkcnEOyaNgmfb0iulTSUymkFWJarFJrdnBI4hYpkWp0WZpOEGp2iYZC2JZsDSUYHuvQDJi/y6JUOtojEZDFLJNNN1EchbFRCjQz1x6Q6Pu3o/pMuTpkQniwQEQ+F1ZjVuXzR1uKnbEtVMMebzIVQOPKKAIAiUXWcE9e5OORE/ptlVag9JW3O9j86DInGPP4bavBvC7Mg9REDgp12l2dZYTCWRR5Lg6YO0Ne4OngKXS7ED39PEk7fTnU+8Y6JqBOO4Ap+FYIOgCdQUsj4XhOKBaLR+CIKDL9jE6VXuAEkCI2eDTU2KI+LxIDg5mHUUJC5hO2q8z6bfZeGXHB2n/2M6KSjVn/ka0M9vxVISsU4ZLx4PU2h0yJxV0w2BkKMroeBxFtbMf3bKoayZa02DlxXVWX1nH1A1e/53b3PviQ+qVFvmDIqMLw+yv232faqlJfCjM5MIQ2fUjZI9Co9IikrS1+gRNY/vhEZIioRsG+d0TMls54kMhMg+PGFsYYvnsKO2OwdziEAeZIrMLQ5RydbIHZaJxP9euTRMMehFFEUVR8Hg8qKqKoihIkkS1WqXb7SKKYj8rikajLCws8Mwzz/D000+TTCYpFou8+uqrvPzyy6ytrVEoFN6Vf9i3ym5/iKNns5BIJHjiiSfweDyPLUXOZDK88cYbLCws9Jl4PeuDD12eB8NCNARKRodQ3EcsHeb4uMK//Jnf7c9ZPBo9z6Dbt29z4cIFZmdnMU2T8fFxzp49258beuGFF7h3716/Edqqt/n1n/oU/+QHf4mjrROS4wlO9gokxmLMXZpi69YOlVyVs+9bxJ8MUeuaGF0NxTKZn0+TjPvZ2MrhVWRUj0w44KHV0pAkkY6m03TkUIIhL0GviuzMuQT89rY6GvAQ9KpIDZO8s7j25nEiLpmhmtPUj/gGf+vqBgFVYSmVYDoS4fLwEDPhCMupBMmAH8nVvDRcoNt1sdjc5To3MIcDfgr1LsvBBKnAaWLASanc/9mnKNzfPGY2FkMAcrUBYPRUC0KW/VqbLmKCJArc3Twi5pQD00F//3UbLYORYPCUUkKh2KT0iO2GXzhdNpMM4RRhYeu4SK5RRUzZz9twCB+tkscRwxLQmgqmLlBwJlMNj4WlC3TMQZYmxHQsTApVO1OdjUfxOv2qXLVBwgF8ryyzkI5zlLWJDfl6F1UWKTU1/KrEQaGGJMBRwb5+qiIiiSLXZkeIeb14JAlFFpkYiRGL+omlQsxfHEdSZSzTQPZ6kFJxoukwkiz2y23pySQbN7YBiA1H8QW9LD4xg88jUcrkOFjPYuhmv7Q2fXaU7MYR0aEYWkdnYnGIYqZAasLuGU0vpKkU6gQjPtZv7VKttJAsE12zy9ZnLozRbHSo17ssLZx2LQWbYSrLMs1mk/v37zM/P08wGPyqWZHH42FsbIzLly/zgQ98gIWFhf4Yxxe/+MX+MHjL1X98K/G47BT+sMR7StvtnWYpbpuFM2fO9Nly78ZMrhemabKyssLR0dFXaL/12HR/6rlL/PvP3aZh2qq/m+Uy4Rpo1Ta7K1lKx1X++k/9KVSPfOq49+7do1Ao8NRTTxEKhfrEAlmWSafTpNNpLMuiUqmQy+XY3Nzkt3/j9/jCL71BNVdn+sIEO3cz+CZ9BCN+/CEvlZMKwzMpNm7uUM5V6fr8mILtGjl+fgxf2EsoGSRf2qeQqxMIe5nzxzksVkkngiRjQUyntKQqEguJWH+B73TshSwVDWF1LI5PqjQMezvdUzlwO5D2SnSqLDERDTPkC9CpddGPNbrdLttle3d9eWaYbUfrS1EjXEsO0xT1UzM+buHQhqtf4walHo9rZTfP0+cmyDqzNAJQdWU+1Yq9c1eaFkm//xQ1enCME8bGQ4MSIpAOBsjV6yxFYrzeOiLh85PHmfk5yHNxcZQsA3aaV5SYikXYLdnDnookkjks4w69azCTiLFVsOnlsihhpht9LkZbNgmYAi1XuVLXRdRmAEu23ydBEGjmvRhhi165TDIldJ/FQalKOKTSrmq0XAZ/I9EQhXqLWrODqglsFaqEAl5qzQ5zw3E2jopMDcV5mMkxNRRlN1dmKOShc1ymuteiNSaQa2jk8w2WZlOEg37KrQ7thobV6pCYitA8qNGodjjKNxEyBc4/u0ytVGf5qVmC8SCJ0SiiKFA9KdMu15DFUR68ssHowjBH2zkQBGrlJnNnRqgXG3TbGqpPZXQ6QSjkZef+IeNLI8wvD1MrtxElgfJJFX/QSzTqwwImJ+MUig3S6TBTk3F0QeD8ha8+XFoul7l58ybz8/OnFPN7TNOehqJ7TRFFkXg8TjKZZHFxkUajQaFQ4OTkhPX1dfx+f99WOxKJfF1m2B8lIzn4HyDzedRmwU3Tfrfg82aK1L3MR1UlFoYTYJhopsGxt8vYUJhQzE9qNEoxX+ef/93/3Neo6na7vPrqq9TrdZ555pk+8Hw1YoEgCESjUUJKlNv/YZP/8vc/T2IshmlYHG5miQ6HyB8UmL08Sfm4zMF6lo2bO1z9yAViQ1HMgB+vT2Xh0iTBsI9mR8PQLMaHI+zsFLAEONwrki81iIZ9rK1k+8OmHlni4YMsdcfSwOd8MeKKl83dPIno4ItScBZp0ZEzCXpVGl2NM8NJAobMyXaVuw+O2DuugAVhv+fUa+xFvdnl3nqWrdU8Sh2uDA8jiUKfsACc+rnqKpm52W3dqsaCo2kW8ai4q2c9Wvd2tswQX0kgAHvmZdQToOB6rpgjU3NyUkPA5W6KreHmMU5vnoKqSso7uEaj4RDZYp1Jl9pDudom7iI1DMV81MIDAEMSkOoxLNfcqyYKNB/ZqLW6Cm4WnNz1YoRNLAsWUwm2MwUyuUq/h9MraRqmxV6maJfUEnYpMuRkqh6n5xYL+Dg7liZNgMOjDrIkYFkmuWKDgF9C1zoc7RRpHjWoN1rkiw06hsjY/CjhqB856Gfu+iJHm8fs3M1gWRav/7dbPHxpDUEUyawconiVPgMuNhwjlg5z+YNLnGwdc7R9ws7DQ6f3CYXdHNmMDdaKIrF+c4f97TwXrk2ys5JldCbF6us7KB6Z/GGZeMyPCWiaTrfRYWb+tOgmfG3gAfrlOVVV+/8kSeoLAPeyIsMw8Pl8TExMcPXqVT7wgQ/07bXv37/PF7/4Re7evfsVBnK9+KOW+fyhBp+e7ExPVeBRGZ53Az71ep2XX34ZSZL6Jm2PhluD7aPPnsFjSaiG3TvJVGokYwHUoIeubnL/jV3+5p/+Bf7Tv/w8X3zhS3i9Xp566ilUVf26xIKD9Sz/70//F3706f8fd154iMevsvnGHktPztJtavjDPsbPpLj9ufscbZ0wc2WCsx9YpHBQ4rhYRxAFpi9M0Grp1IpNvKpCs9PtWwd7ZYlAwINpWQQkGU0z6eoGggC1QgvLsig7GYwpipwfT9N1KMKB3iKlSpSd8lLPUmEyHuZsOMH2wzxNZzo97Pf0ey+qq7fjzl56TDlRgK3DIg8eZJkWQow7jfPejE8v8q5ZFvfsjq7rFA5rBBWZVOj0F7rpUjpQLfXUPFCuXBmcS7HVL7HBoCSXLdVZSiZOu99hl9DcIVoCx7mBukDMIVP0SBGyKHJUrFKsDACu4W9iiaeP2+yeLlAIhgfNRdGzNIEurpkpA8qWgRm23wuPJWFZNjhPJaMAlJzeTlRUmUzbf/Mo9jFaTmZZc2SEvJLE9p1jfF4VTTeZHIvT6NjPPzYcpdUxOTyuUjip4m9rjKRDRML2MO7U3BChRJBsSaOQLXP1+fN4/B7mLk8zMj/E7sN9ZFVi/uoMybEYZ6/P0W20Ke3nadXatBsdJs+MgWVx6QMLrLy8TiQdJndQ4sJTM9x+YZWJhWGmZhNoXRNZEcEwQRAon9RIT8TZvn+IZZj4A14mp5Jf8R37esDzaIiiiCRJqKqK1+v9CtJCj0GnaRqCIJBMJjlz5gzvf//7uXr1KsFgsG+r3RtwLRaL6Lr+2MDnH/7Df8j73vc+/H7/W5YmsyyLn/iJn2BkZASfz8fzzz/P+vr6qfu8XXfUN4v3FPi8nbJbuVzuy858PRvtXqr8duKtKlK77a4/+MQCIUVBMiGIQk7ROdjOo2sGh5kigiiSnozxmf/8Kv/mp17i/ueO2F3LojmlJXfGc7B5zGf/3xf5ye/9Gf7B9/8c/+Gf/jbTFyfJbueYuWgb0e3c2+f8B5aon1Q5XDnh3LNLyKr9eh98cY1qpUoTiYlzNnNOUSTabY1KrkGro9PpaIiiwO52gWDYSzIaoOO4Zlaabc5PDnFwZO8uG06TXEDgYKPYn/BXnMUqER40/VtdjWvjI3hbIlu7dimtBwoxF7HATRqoO0w40cWmiwf9GL3F3YTN1TxPpIcZdVGuQ17PKbWBoguIypUajbbBfCBOwGXFIAkCuergfh7Jw8XhIef1QdnFUJQMnXGXAKmbfOAzJRrt02zGo1yd8eiAyNBsdckW60w5mY7sfN1KJXvhH4uEMAyLzEmZRMCHJVoceCtYLVffqyZRf8St3TQVaLhERasKukdAdMRRrYqCIVkYIQMLC8FFcgg612K/UGUkEmR946SfhVacJ9rPVRCATK7C8miS7QcnYFnUnA1GwK9yUqgTi/qQVYWTYhNZEkgkvAQDPuS2jqE30a0O1VqTsYUUnliAuSdmqJWb3PnCQzKrByiqTC1fQ5ZF9lcO2bmzh2XA2utbeAIetu/ZmZDX7yGZDtJpaxi6SXIiwdkrE3Yv1bKIpkJs3tqjqxksnBlmbzPH0sUx9taOwbJIj8ZYuZMhe1Dm+rNzp67l2wGerxaPkhZ6WRFwisptGAaBQICpqam+ZcLExERfQXpqaopPfepT7O3tUSgU3vZ5uKPb7fLxj3+c/+l/+p/e8mP+j//j/+Bnf/Zn+Rf/4l/wyiuvEAgE+I7v+A7aLhfhT3ziE9y/f5/f+73f47d+67d44YUX+OEf/uF3fJ7vqZ7PW439/X0ePnzIwsICU1NTXxO03B+CtzKF27Nw2NjY4Ny5c28qDPqo+vSl+TG+dH+Hrm5gekQCwyH8Oswuj9BttagWqtSOW9DVufPSBi/+19sUD0tc/eAS+YMSgmmidTQ2b+8yc36crdt7TCyNIIgC2e0c0XSY1Vc3Off+JTAN1l5ZZ/7KNA++vMrW7V3mL89QyVe58NxZipUWwZE4XV3HaNSQVIVAQOX4pMl4Mkm7a3B2foh7q0cMj0UYiwQp1dsIokCt1cEoNGl2dEIBD6VOF0UW0UodWm2NqrMI9QgBoYDtrZMOB1AaFvczh1xcHOhm9eZD3EOnbhmcgrMLT4QC5Bx2VTTgJe+ARNjJsO6uZrkwk0aPhtkvV0n6fdQbNnD5FPkUa82SFKDDw+0Tnj4/WFQSAT/59oCBpukG2XwdVZYIeVXKhUEW4lc9ZI4qyD4B3bIoVwZZzMpujmR8ALoCcFKqsTybZt+x3O7pt6W8fnap0HZUqvdOyqRG/MS8Xo6wM62xUJATXxVTsjBbIpLPGeLVVRqWQS/vthoidXR8LQE5BFigSSIIAmJDxgx16fZmkWTwxWTurBzi9yk0O1qfQGFaFrPRKK/v1Pqq3Pu5Ch5FotHWGEuHaXY0pJpJpdZmfChC5qhs3+7Qx4dTEU4KdXTdZDjuIRqN0Kp1aTdMZBP8KS+m2aVaqhAaC9I66CLW65y5vkAg7GX7TgaAmYvTPPjyGqIkcbxnL7yzl6cxNANJErjz+fuYFrQ6JrIqIZomd19cY+LCFENjMY538yDYm6FmtYnPryIIAhMzCTbuH7J0eQJfyINmWFy4PHARLpVK3Lx5k8XFxceiqtJbY3rrTq8/ZJpmn7QA9iZbkiTS6TTDw8MsLS1x5swZfvzHf5wbN24wNDTEU089xcc//nH++l//62/7PHoGdL/6q7/6lu5vWRY/8zM/w//2v/1vfNd3fRcAv/Zrv8bQ0BD/+T//Z77/+7+/74762muv9U3q/vk//+d89KMf5Z/8k3/yjkSU31OZz5tFz/htdXWVq1evMj09/XWzJTf4vFm8E0XqR8t6f/qjl5AMy66nawbb3QaVWpvSYYFarUkh2yIQ9jFzfpxqucXhdp6x+TRrt/ZYv7WLKEts3smw/NQ8W3cyLD81R2b1iLPXF6iXmsSGY4zOpylni1iWSbfV4f6LqyxfX2T56QUsLBJjcTotjchYitRYmlAkgiB46LQtuu0uXj9srRyRLVSQHdqzJAmsrxxzUqyTiPlJqiIehxyRcBbYa1Oj7B9WEETIV+xFtenM5ngUmYXhBErVYtsRkOyR0AIepa+KoLia5r25noBH6WdG0cAge/W7iAvu2SDJFGlmWyynE/0ZH4BU8HRZ1M0y69a0/rDlKYUFoN7qUqg0uZBOkXiktKooKo2Owfkhu0dQbrqHVkVS6qBvlQoF6GgGB1k7awh7PZSdTOLY8bHJlwagNxkO9zMhgHKxipW0F3XTUSYw2yIt2cJUQdbt90Nr2r0d3enZmBUZo0e1boKno6K7XmIwLaPrJpMJO/vKnFSQRMHOPB1bhcxxBVGwy3ITqSgAyVCAEdVP0NGHi0X89u2jUfaPSsiSgCgK5Ap1Qn6ZRCJKsdIic1Ci0bR14Ty6SFcTCIajJOMxEtNDSBGFcrnCg5fWKByWOP/BZfSuxtnr81z7jvMkx6JMLA2Tz+RZeXkdQRIxdJOZCxPEkkGmF4e4+6U1YkMRTMPA65E42skztTTC9p09gvEgPkUgn6sRSwQYGYtQLNTx+FRmphP4HDbm4waerxZfi8oNp7MigA996EMsLS3xN/7G32Bvb48f+qEf+oYNsz4a29vbZLNZnn/++f7fIpEITz/9NC+99BLweNxRH433FPh8PSDpdru8/vrrFAoFrl+/TsIlafK1olfKejPw6SkLvF1F6ketD6bHUgxFg4hdEwzo+AQqrRattobPElk8P8LQVJL8SY2j3SKz58bodk3yh2WWnphl9cYO6ckEmbUsgYif/fUswXiQlde3mDo/htenEIr4OdnLcf9Lq0xfmGTpqXn2Vw+5+Zm7YIGkyITGYoSH48iiiKqIRKI+NN2iq4kMp+MIokDYr1AslgFoFOtEw166moEiGBxlmsTj9jXw+1WWx1PUnVJRIhLo04t7fZ6ArHC4VsCrDECi7ZTD4hHXjI+LFt1jkblnfHwuNqB0KlM9TcBotDR214vEXeZykus9jvg8p+Z6qvUOo4oNom5rAxgA6d5embCrPAfQcECzWmrZg7KugdGE38vx8YAYEHZee77SZD4ZZzg0yIqyhTpLqQSF6iCrata1fi8M4FBtYin29ekNkuqNHolAQGorWJpAR3VuU+2h0t6AKYAuiJit08SDtjM02hvYbWs6U8koiyMJSg7Lr9XR+qATcsDGK4psruf6WZHuXF+/z0NHMxgfiXGQtcuyY2Nxas0u2ZMq4bCX8YkEyaEQsigwlgrR1g26HQNvIMjEmQXG5sZIz6RZfN8MW3d2WHttk4ONI+5+YYWVlzcIRgMc7+SRFJnMWpah6SSRRJDdu3t4nBLh+NIw5YMiwXiQWCqIxyvTbnZRRJF2WyMR96NbtsROOOhFFARmHIr1NwN4Ho0eldtNWnh0wPXhw4eUSiVGR0f5wR/8Qf7W3/pb35Rz67mbDg2dpqAPDQ31b3sc7qiPxnsKfL5W1Go1XnrpJRRF+ZrN/68VbguCrxY9U7mv1zv6WvHVCA3fdmUOy7Sbz0ari5ZUGZlO44sE6FbbiJZJKV9j9vwYiCKZ9WNmz49z7PSFwqkwjUqTqbNj1MtNJpeGWb42Q7fRJr9f4OHLG6QmU/3ZiM2b23RbXa78sYtk9/KIqoInHAJRxAAM3fbtGRuOkMvVaDc1hkdjSB0RTyBEOh5gZ7uMrNiAElYUTMOi17/2KDLFvQoerzPjE7avjyKLFGstrk6NUM83MQzrlJV4xQGmoH+woPeUBHyK3PfECbkyETfguG0Vuq6+Tq9cZ5oW7VKXyyP2F0Z27Vvij2RBxVqL1e0cF4fTp9xMwz5Pn7ZdabTxGadVjAsVe3HeP6lyafj0FzMRClKqa8w6dgSii2mnaCbeR2y5k/Jps8KtoyLFSm/Y06I9PCgZGqqF1RLpKoNzbbVMzKpiN8YASxSwSgqab3AfXYGSNfg8CrpAVmhhYVGpDTLBqM+LqglksuU+ySDqbAKanS5Br0p+zy4H7h+VEUWBAwdoG877JlgapVqHaNiHKIrsH5XxeRVGRiPIikS7q9NodqmVW0T8quPcY6ELIt5QEF/Aj9GyaFc6zF2bYmg+RWw8RGQ0SK1WZ+r8CBefWyIU9tIs1rj7xVUATg5KnHtqhvJJlUa1RaejI2Oyt3HC7LlR7ry0wchUktU3dlFkGU9AIZ+tUshWePLZeYrFYl85/5sFPI9Gj7Tgzop+/ud/nqOjI86dO/dVH/PNcjH9ZsZ7Hnyy2Swvv/xyf6jr7QqDukkBj8bR0RGvvvoqk5OTXLhw4W1LqH81u+vv/dgVPIJIt61jChLHokmno5HZypHdL5LPFDh7fpRoPED+qMzoTArDgtJJlcVr02zc2mP6/Dj1SourH1pm59YOlqFzsHpEs9pkfGmEk70C44vDmIbJ4pNzLD+zQLveZvHJBbzhAJYoYzhqBqpHQpBEum2Nhbk0R8dVwgEv+7tF8qU608MxW7VAFZkZiWA6jK180d7VdopNqpV2fzPtdUAoGQlweWKYBzcPqDp9F9XZXQuC0B9uVF0SOT1atDsbUmUX4LgW8FbXNePjauy7f261NVYeHLMQCRIKurTfXMZ0PlXuA+HRXgXTpTiRfASktKbezxACqkLFLc/TPP0+90pmUcUGz4B/wFLaP6nRqNZO3f9Rs7iIVyXkZPpGyMTyuRhugkCnpGK5KgEdQUCTT38+249kOUJNQmwPrmeg48FUBPQgZE7KeB2GodbV2dzM2ew3h+mmOQzAzEmFxVSMg6MKQ4mgnRUNR6nW24ykwmSyZSQR2g4lfWQownHe1nmbGIthIZDN1djNFMlmK+RyNQrZCj6/SqdrYJgClqoQGYriC/u5+pGLWDqsfXmLo5UThsdTZO7ss3fvgLXXN9hfPSQ5k0Dv6sxdmcKjSuQyBTKrWVLjcarHZfyRAKGwF3/IiyQJ1CtNUuNR1m9nECWJxFCISNSPpBrcunWLpaUlxsa+tpHcNzMsy+Lnfu7n+Jmf+Rk+//nP84lPfOKr3u+tupi+k+jJjx0fH5/6+/Hxcf+2d+uO+tXiPQs+lmWxvr7OvXv3uHTpEvPz8+9oCPWrZSe9Y9+/f59Lly4xOzv7WI5tWRbZ7CFxD/hlybbwFQVaCozPpZk+O0Y0FeFwt8DNz90nHFSIxn14FJGr37aIYJosXR7HaHc53jhk/Y0dvAEP919c4/yzS9SK9vDhhWeXyKwesfLKhp09rRzhCXgxERA8CrpuUK+0OMqUyGerKLKI7JFBM6jVbHn5YMhDKOChmLd3uMFQmG6pi+40qw1BYXE0SqFg785zzqCkYdmL8Ew8woNbByAMSle9dTAW8vZLc/0lVaBPIAj5Tpe3euEGnLKL4pWvDdhpBRdTLVeyd+P7u3W8LjsCxZV1JF3lr2qjQ1gYPLe7ZwRQKDU5m7Z9nlKuxwEIutW3IIBBNra5m8enyNSbg8yl1TWI+E6Xbku5EilXZhgQwa/67awnZYK7vG+Crp0GGqstYbg/owYIj2RqhiVCxwVYDjtPC1sYpsVU0j4nnyj3te78zjU4cBhuYb+HRs4ZJo7brzcSdAQ8oz66mkEq5qNY69peUJK96z4zN0Qk5OU4XyNfqBON+hmbjJMeieD1e2kVG1iCgGWamAiIXgVRkWk3uuzc22f+yjRXv+MihQN703P2+iLNcptwKghYxEf81GtVMiuHhEciTJ8ZYWQ6wfFunmgqRD1fpVJosnxpnJ3VLMMTCYJhH2t3DzB0kwvXxrh16xbLy8vvKeD5xV/8Rf7RP/pH/Nf/+l958sknv+Z936qL6TuJmZkZhoeH+exnP9v/W7Va5ZVXXuH69esA79od9avFewp8egCg6zo3btzg6OiIZ5555itqjW8nHi279URHDw8Pefrpp9/Vsd2Zj2maPHjwgM3NTf7cx6+jWAKqLuA3YF9v0yzZPjebK0d02xqLl6eQPQr3v7xOu9Yis3LIysvrmLrJ3oMDps5NUM3XULwqvrCXBy+t8eRHL1E8KnHj9+5QzVW59pGLHG+fML48ihrwIvlUOm2DVlNDEAU8XoX93QI7qyd4PDKCCHMzSQr5OomhEFat1ddaC6oKueMaJ8V6f0E52a5Qa9qrYlu371esVJmN+Sif2At/LOzrO4T2fHBi4UFG0ev9xAK+/jyPR/kaMz5OhiKJA3HSoFel6ZTG3OQEwYK6oyBtWVA4qLOQjjvvhUtyxyXtA3B/9YhZR89McZX5BAdE93aLeBW5b7DWC0O3GHdlV70yVqurs5xOnnImBXu2xh2i5CXtKhd7JYndgxJCSMTwg9RxSeNUJKxHvpqmIaC67iNVRAxXWc7fUTA8AqZDRBAaAi3R/mxqEQdonH5XJddkwsl46g6JotroMJIIM+wLEHG0+CxnA9F2rnPV0a1LJaPohslTZ8Yx8m2qmyW8bYPjtTzaQZ0nzo4xOhJF8SoggKRKSKqMV5Voa4Y9HiXJeIM+VL/KlefPEUoEufHf75DfLzKxPMLR1jGYJuMLo2y9tguayMlWGVEW6LZb7NzZZWflgHDcx+HmMZIqE4p4MAyL5YtjHB9WGJtJMLc0BJaJ6KuzvLz8jq3tH3dYlsWv/Mqv8Hf/7t/l05/+dH+Rfxyxt7fHrVu32NvbwzDsbO/WrVunZnKWl5f51Kc+Bdjr7o/92I/xUz/1U/zmb/4md+/e5ZOf/CSjo6N893d/N/DW3FHfbrznqNaNRoMbN27g9Xq5fv06yiMN4rcb7uyk2Wxy8+ZNFEXh+vXr73in8Oixu90ut27dQtM0nnnmGbxeL7/+725w0mhimaB7JVpeE0+ry/zZUURBoHBYIrt1zOz5CTqtDrn9ImeemuP+l1ZZfnqOlVc2Off+Re6/uMaFb1umXW3w2n+9SSQZ4tyzS3h8KvVyg6lz4xxnSiQkBUVWkP0yPknCFEUCikQw6uPu3QNC2SqBhB+p3uEkV2MiAMf7DcbPpImEvKzcOyQW85Nrd0inQoSQkQJe6vUmsiJSrtk7+4lEkluv7zE77cyuSAPwqPSM31xlr15vJxbyUmm3SYcDBFWV5ZEkptMQ9igSumH2AScZCnDsGJklgv4+Wy4R9NNs2RlYNOChUhtkGyfFOkpdYiQVPJVBuVWpw34P9XKHZNNCFIRToq/xgJ9Kvkmna3B+auQrtmX1Rod8pYnXL6MZBiflwRe5Xe32zxFswsPD9WN8YblPfMgX6/i8LtFUUUXTmxgp+xwUQ8LAvpa6KWJJ/bYbYkNAUwW6TQucFplhiZgCyG0By2uh1wGP3feRTfAaHjTRMQIMW5iYVOttRuMh9jdKXDgzyu5xmUy2bNPodZPxRJi7r2aYdzx2jnL2BiNzVEYASrUe8FuMe3xo5Q5bGzlSyRCabpI9qpCMBTCaGu1mF3/Iw+5xFbOtE1IlogEPHo9Mp6PjkwUERUGvt9FaXbZubjF/dQawqBUbtiBuKsTW7V0Axs+OMdzWECSB+y9tMnluDMMCSYXMaoHJC8M8fGWT5ffNUTquEx+N0e2a6JpGs93i+rd9x3sKeH7913+dv/23/za/+Zu/yQc+8IHHevyf+Imf4F/9q3/V//3KlSsA/P7v/37fPG51dZVKZTBQ/eM//uM0Gg1++Id/mHK5zLPPPsvv/M7vnOqB/8Zv/AZ/7a/9NT784Q8jiiLf+73fy8/+7M++4/N8T2U+zWaTl156iXQ6zRNPPPGugQcGPZ9HFanfLfD0jt3tdnn55ZeRZZmnnnoKj8eDYRg8fWXK9rY3QdQtcj4BJIFGqQ6GQbXcYOHyJLphcrB5wtJTc6zf2GVoKsneyiGx4QilXJVrf+wc9z5/j+x2juWn52nWWuhdnRu/d5dOs4vWNUhPJfGGvSg+5ZQHdL3RRZJEZuZS7G3mUBWZblvHskBxdua5Qp358QStpkY8aZdZxhMhdjbzRB35nGQ8iGlZnJ1K8eDOAQCCbGcGcYfCizBwvtR1Z3BWEAh5Va5NDDMs+/GULUrbVRrZFrv3c2Qe5Mms5BFPDM4EYlweHmJhOEHUJb3jng1SXZ9W92BrNOClrenUGh3kut0L6oXbSiHh9Hj2DstcGh06NSTqZt3t75UxHrFOyJUbNFpdzgwlSYcC6K6BU9EUGI0NsqJ0JGgPPKZtRmYq5KfZ1imU24xG7WvcaOjofou6vyfn4/go1SRMRcSSBOROT73atqbukSXEuoDpcdSr2yKCDk3ZOR9RQKyJNAWXioNhZ1d7x2VGHTvtjnONNN1gKm1ngqou2OochzbJoFRpkY4HaHU00nEf9abGpYURsmsFCsfV/oxVeihEJlNClATSIxFqtTZ723nWb2UYj/oZGg7jC3lptTXa1RaCLNLt6uiGiepT8UV8TJ6fwhv0UDgoUTgsMbowzOylKdITcSaXR1h5cZX7X1qhWmwiiAKpsTjZ9SxeX4C582N06wbeoMr++jFKQGDrfoZ6pUq72+LikzPvKeD59//+3/M3/+bf5D/+x//Ihz70ocf+HL/6q7+KZVlf8c/tWmpZFn/xL/7F/u+CIPD3//7fJ5vN0m63+cxnPsPi4uKp476ZO+rbjfcU+Pj9fq5du8bS0tJjs0KQZZlCofAVitSPI1qtFsVikaGhIS5fvtzXegL4M9/3ND5RQrYEMKArCxxXmrRbGq1qk9n5FB6vjOpVWH5ihkK2gj/iY3g2zfS5MUZmkpSPStz43bucff8y1WKdo81j5q/MYGgGV56/QLPeQfGqiIqMhUCr1qGcr1HMVqjka6iqRLXWJhYPIIgCx5k8utBldjpGq2USSwRIxYM0nRKSx6cwnAz1Zf89Phv8w2Efs6Nxqof1vvZZxclSVGceJxH20+MLtLtdpiIeJiSZvbsnPLh1iN7WMZ071B3iQdDvodm2vVMECx7cPyLzIE9EV7k6MYxXkVFcmYuhDcDCPQfkBo5iqUlc9PSFOTsuynVvZgUgs1Pq04jBJhj0olxr4XXJ1cQCvv59y4Um8cBp5lpAUfp22TBQETAcV9iA6+M2EgrhU2WOS3VaowOA6PEEui51A6sOQhd0p7zWm+fBRSrwyQpiWQSXz49Vl3Ar/fg1BT0oYJgWWtV+HZnDcl9WKOhViYf9bK/ZDed2R2NyOAqA1xEvHUpGmRiOIjcMKuUWExMJ9veLeL0ymm7SanWZmEyg6QaZvSKqV2ZyfghJEvED8ViAYMyP5FXQGm0sZwyiq5t02zqyLLBxY5v0VJKhqRSxoQg3P3OP3fv7+MJ+Oq0uU+cnCEZ8TCwMceeFFXwhr63cUe9QPK5y5tosjXIbwZBJjkc43C5SzLUYnfexublJpVL5pjiSfr341Kc+xY/+6I/y7/7dv+MjH/nIH+i5/EHHewp8BEEg5vioPI4wTZN6vc7JyQnXrl1jcnLyzR/0FmNvb4+9vT18Ph+Li4t9GR9BEBBFEZ9PYXEygaUZyJaA3LXQRoMkxmIYFmze22f79h6KaJHbPqGyn2d4LMat372DpZvc/+IK0XSYYDzAvS+tcuX5C0ycHedgI0vppEKnrTFxZoyTTIHySZV6rYWFgNfvxR/2YRgW2a0TVFWm2egwORUlu1fBHwjQLXc5Pq4STwWhoaE6DDZLgKAp9i0LLKcf5PcqVHYrhJzGsyQJ/YHJXs/GptwKXJoextuSON5uokiDxb7kSvELTn8kHhks4m41bMG0eHD7iHBTJCyrfSAJhQbZhezaQARcoJIM+1ldP+HquK2wUHapUrsfY+gmY4HB8UROb3aKR3Ukh9acdPkRHRxXiSqn+0GCBfuZUv/+PRXTzd08AVVCdT1vsdBgNBrGkE06icFCqAsWYklE87pAxBBsYHGOa4qgVEV0dXCfrmWiP/I1ll3WCpjQsHS0IEylo31iRqujMeUATKPVZToWplRqMZK25YF6FHnZsWHQDZNutoHubD58fhVdN5mYiNtZjygQDHnZ2ysgigITU0lEWSSfr7O3lWfz5h6KLNJqaYiygmiZaKYtpOsLepE8KvHRBNVi3bHUzrNwbYZr33kJUYCps6NIssSDF9cIJUKIksjSE7M8eHGN2EiUiZkkx4dlLl6fI7dfQtN1Fi6NcenqDJefPNMv57/wwgvcv3+/b0/yzYxPf/rT/MiP/Ai//uu/zsc+9rFv6nO/F+M9BT7w+NxMe4rU3W6XsbGxr1CkfqfRIxasr68zNzfXJzT0JHzc5/+nvvsasiWg6wZd0+TE1DFEi2K+zvBMiqmztv5Up6Uxd2WalVc3Ofv+RR68tM65Z5c43DgmGA1w5flz3P7cPe698BBJlpBkmczKIYZukppMEh2O4vF5MQyTRqODaZhE434CYT/VXJVstoSAveMN+X0oioRpWoR8Kge7xT6A+CWJzFaemlNOaXZ0gn4Voa5Tr3XwOplQIh7oN/V7vY5Y0MuUN8jqzUMKzvBi2LVoI9qP9akiLaeB7XEN5/TUsAE0pxdTrXU43DxhXPAwFguhu0poblq223Qu4qgkPLh3xOJQ4hRTzu2rlIoEWF05YtixjdZcs0QRv5f94wrnR20yijsrApAfERBttbqUqy2Whu1eSdNp4psmjAX9+Dwu8DqpMhTw00paLiqgHWZDxl03NUQBTT79FbVcYAQgdyVM1+9SCzSJ/rGVKhgC6AGI+TyUK4PrEXZmrPLFBgebtuJ6yrHPzhfszUKlpiEKAmJdp1ZusX9QQhCg7Fh/qx7ZyXriVKotOm2dyekkJhaZ3QIn2Sq+gEpyOEwzXycS8VIpN6nVOqiKRKdr0G5pyLLE8HSKZtUWs7UMi2K2zNqrmzz48hqqV2Xr9h6KV0YUBbyqxN6KbSrXaXRo1DtEIj6azQ6xYQ9ejxdFUZk7O8ro6CgXL17kgx/8IBcuXEBRFDY3N/n85z/PG2+80Xck/UbG7/zO7/CDP/iD/Oqv/mq/if9HPd5zhIPHEfV6nRs3bhAMBhkeHn5sZTZN07h16xadTofr169Tq9XY3d3l8PCQdDr9FXNC585PMBwLclisowkWMgJHus7MfApLEHnw8jpRx3bh4UvrzF2ZZuPmLhPLIzz48jrXvuMCu/f2ufl7d5k8O04oEUBWFQxNR+uatOodTFHEE7SQPSoej4KEQPawQiDmJ5IOsbV2RHQ0hMcTIBDssnH3gMnFNKFmh27TBqRSpcXIUISNe0d278aRgynXWowFg1TrTmPfWeQiIV/fK6fSaHNlehgqOkcHFXweuc8Ek13Xo+YsyEPJKDuOYKnmKqPVXdYFDTdtuaNTrHWRyx0mL7pEO12ePoZr1qo3y2KaFnpJI+BR+6SHhosUEPKpHOgWQ6qfLPXBa8TOnurFFpWTJoJgq1O7o3BcJx709QkS+aK9cPVM904KAzKCpctUXeKMYNs2dOMCUhsMB5eELvCIq6nYtmd0BgezB0fdYdRMZFlAUx2LbF2hJZjIDezH6iIogAjbxRLaUYdQ2EOt2aHlvCfT6ShaqU212qHllERL1a5tiV5p8uSZMe68vMv0VIKd3YKd7RyUCIW8fSp+MOTjwb19QmEvXr/K7laOVrPL9GySgE/F7OpYXZ1OvUN6KES7pVGvNJFlEUmUaFUaiJZJYjTB/toR/rCPWDqCIApIsoisqsxdnCAQC3Dn9x+w+NQcrUaXC+9b4NaX1rny4XPc+uIqE+eH8AWDtOo61WKDZ7/j/OB6Ot478XicxcVFms0m+XyeXC7H2toaPp+PVCpFMpkkGo0+tnXjs5/9LJ/85Cf5pV/6Jb7v+77vsRzzf4R4z2U+7zYeVaR2Wxa8m2g0Grz88suIosjTTz+N1+slGo0yPj7O3t4eX/jCF7hx4waZTOaUEuyHP3QG2bSQDfBYkNd1tjaOOVw75OL1WabPjHKcKTJxZpRWs8vo/BDx4Sjzlyd4/bdvEQj7GJ0fotvqcLh+zO3P3kMUJVSvQjFXweNT8fg8KB4FSxQwTYvRyRgnRxWOD/NE0wGq2SbFYoPl5VEatQ6mIDA5HKFQqKOoEsVSg5hHoV7vEE8EaHd0vF6Z8ViI7bUTCkV7gen1T3q6b6OpMAlL4eHNg372FI8PVsueJIuqSP3yV8BFIAi6qMs1lxZbzrF5FoCqY99g6CYPbx9yZXgIVZb6lgDAqd6Ne2n2KwrTgQFgua0LerNAq2vHzA/FT1Gle2W8o5MqZ0dSp/pGYIPLtKNsEPSqVJxz2dw+YTQa7NOXAQ6zlX6pqhc7VgVEELuDsw10FKxHFjvLEJFdZphKFUxXJiQZAm3FGsw4GdB2FA6kloCqixguwY680Ma0LCaGHJ23Q1ujrZqt4Xdec+aghChAVzOZGIkznAxhOH2ikOMqGon4sCwYG4uRPa4Si/upVlv238Zj5At1GvUOk9MJ2+Cw0iSznWdvM8fRfon9zRMky0DyqgiShNbsEIwGQBQIxgLMXJgkNZFg98E+D768htY1ufnZexzv5lm/sUMg6icY8XO0fkghV+PMkzOs39ohNRXmcK2I1+MlPhRmaDRKYvhrS2X5/X4mJye5du0azz33HAsLC2iaxt27d/nCF77AnTt3ODw87OuvvZN44YUX+LN/9s/ycz/3c/zZP/tnH1tl53+EeM9lPoIgvKOm4NdSpH4cbqaFQoFbt24xNjbG4uJiX61WFEXm5+eZn5+n2WxycnJCNptldXWVcDhMKpXiQx9e5Dd/8yb1rk63a9qlq9kUibbGzv1DarkKU8sjlI8rNMsNYsNR1l7bwDJh8Yk51l7fZOHaDLpmEIqHmLsyzcOXNph/cp6JxREatQ6HuwUUv4f0VApf2E+t1iI57OXosMnZq0kquRaKKvcZTqossnH/kKYAoxNxInE/XYe2HIsHOGm0WZ5Jc/fGPsGgh0q9txtu9d4klqZSyC2DtX27XFN3dMpCQQ84g9A9NlkiFuCgWHXej8Hi6c5eGo7LpleVaDpluaBPpt4czA6Vyk1WHhwxOxEjZw4WBDcQdV0LvU+Vub+a5dLFYdZPiqckZkxXCc7Toj+rBCC5IEyr6X23VrCZdY1ci8M9u8czFAmwV7Cvj65bRAyTnOuzMxQLkQr5OO6Bmwy7spMZOacgmgJdLEzZ+ZsIwa5MS7UcgHK+D5qI4QFBA0uBkKZSFfV+9U6pCpgOOcGyBLvk5nGV8WT7WL3eV0czuLo0zt2XdhGcPlVXs/s4u4clQgEP3q6J3p/zsa9fwynLCk4mPDIcZWXliEBABVGg0WgzNZMgEvZxmClROCyTiPqJj0Xt/pdpYHQ1PKpIsdjEaHepl5vorTatWpOR2SFWXlpFVhWe+uhlGtU25963gD8SIJcpIHtkbn72HhNnxggGPXQ6HVSfSDAcIjmU4mDrmMRkio985CxvNR51D65Wq+TzeTKZDA8ePCAcDpNMJkmlUgSDwbcEIi+++CJ/+k//af7pP/2n/IW/8Be+BTyPxHsOfN5JGIbB/fv3+5bUbmHQdws+mUyGlZUVzpw5w9jYGKZpYprmV/R3/H4/09PTTE9P0+l0yOVyfevrsSGVB2stBMWe1WjLIuZunnjEz/Bkgt17e8iiSHoqzc69DGMLQ+QzObbv7/PkRy+T2yuw+2Cf2UtT7NzNMH9lip07u8w/OYcn5GM+HaFW77Byc4/h6QRSWEZCIpEKkTuoMDwRR+vqdDq63QTeL5MejbJ9WCYa8bF6c5+li/bUt+pXmZ6IYzkZRyIVpHJYQpJFCg7JICBJrN3dZ3l5IKuRd7IV2bUzLzp9gXDQw4Etdn1qALTSz4aUfknMr4q0HSmaRCRAvWn3HhRx8B52WwYhU0QK+6k2O5RcpAJ3BtXzDNpbKzCzGOdhbSAP0nRlJ6IB58bT3N+3b++6Mp2DwzKTE3GOcQYsIwEauRalSovlc0Mo0ulsxS/5gEH/IBbwUsgNynDKqIIl2Yu3KdhgEKjLNAXLLjG1wAiAWbdA6VGwLfyGTNtjIiAgNUGLQFszQICmZSDo2IwRJwzV7jn1n7cDnYhNWjh0BEEBZM1+P46yVfxBhWZbJxr0sgtIFqytnOD3q4iiQGa/iN+vkMkU8Xhkso7em2mZJBJBZsdiHG2e0DmoEI4HOV47xmh2uXJ5HFGWaNY7NCotuo026DqqaIvJBtMhOo0OWttr+1+tZ5k8N0F8KMKrv30LgPlrM9z/8rptlXB2jIVrMyhelQcvrTNxZRTBEMAUEGWJifk0giTzxIfO8E5CEAQikQiRSIS5uTk6nQ75fJ58Ps/Ozg6yLPeBKB6Pf1VZrldffZXv+77v46d/+qf5y3/5L38LeL5K/KEvu72ZIvU7BR/Lsnj48CFra2tcu3aNsbGxr0kseDQ8Hg/j4+NcuXKF5557jr/wQx9EEcDo6AimiWwaiHNJ4iNRVm/uEowHiY/F2L6/z5ln5jlYz7L89AKzFyd47bdvsXMvw8JVW0yx0+ywt5Zl9vIUW7d3Mdoa7baOx+th/uIIRzsFRF0iGAsRj/rJHpQIhrzsrh6TPapw8dI42b0igYhNPFAsu6TVM26TZZH6fhXB2R37gzazK5UMgQCXpofYW89jmVbfbjsa8fWn4HvK1X6fMtB8c7mW9lwyJVHol8HikcHMTiI6KNuFXJTmeGRQPsPocHJSQyrqzA3F+vYNggA5l21BLwtqtTUCmoT7LSu4ymx+j0I91+yz1aquDCkdC56yx3aTD8ymgfCIT6GEzGRq8BmUBYHscZWJVARTsCiGBlmUqYKgQ9s1UyR2BTyGSNuhOJvOpZOq9Od8BE0g1FXoOm6mgiDgrYkYrtE1uSUgus5bqoIgiGghKJbbBH0SXlXieMfO0ywLJkftuaRmu4ssiRR3y3i9Ms1ml8nxGKZpMT4ety0axmMUiw1GR6L4JJHaTp5mvs7RbonJuRT1WodctkIo4kNrahxvnFDczREMedB1A8WrInsUNM2gcFSiXW3iD3qZPDPK+PIosizxxu/eIT4S49K3nyMQ9nPu/Ys88Z0XaZQb1Et1Hr66ychykpP1IuOLo+T38kiSgKKqDE/E+2K47zY8Hg9jY2NcunSJ5557jnPnziGKIqurq3z+85/n5s2bZDIZMhnbn+jGjRt8z/d8Dz/5kz/JX/2rf/VbwPM14j0HPm/njXoritTvBHx0XeeNN94gn8/37bl7plBvBjyPhizLzMxOcv7sGB5JRhUkjI5JzrDYXt1j5nya+EgYr1/liT92HkPTOP++eW5/7i5rr26y9NQc555dptXoIMkiS88sEAz72Fs9YvbSNLWyPQ1eqVRp1JssXBpjbyWLqspYlkUw7KV0UiUxHCYQ9KA7pTcDWJpL2aKhQLXWQlEkOoUm1VKzL5XTK62EI16Wh+Js3j+i6CzwPVZaLDZgc/X6L4nYAETc/fpe6S4R9feBSnGt4D7Xe+hmwLkFShOxKACVSpvOQZmo31HcDnhPyfW4QUTQLS5N2plawDsARvsEIXtc5fz4EKIg9HtOvWOub5wwGg/379uLrZ08zeppllSj1iHpG4Bmx7FhSPp9aCHQXa9VQCDcVDFd1Gks8DYlhB6DTxJQWsKpoVELAcvVCwIImOopxW6pYxMaesfsycB1Q/Z9pkeSTCSCHB83UZ3n77QcFe+DMudmhzg+KDMxbrNEezT7nieT16MQDHoYi/q59+IW41MJ9nbyiKKAP+gls50jmvATTgQ43CtwlCmiKBJWu8vIcJj0SBhRkTEs0DSTWqXF9t0MO3czWBZs3Nzl7PuW8PgVDtaOuP3798msHLDy6ibFozLR0SjxkQBe1UcsHeZwK8fo/BBrN3Y4zhT4yPc/xTciRFEkkUiwvLzM+9//fp555hlisRh7e3tcunSJhYUFnn/+ef7Mn/kz/OiP/ui3gOfrxHsOfN5qvFVF6rcLPs1mk5dffhmgTywwDAPLst428Ljj+z95HS8Clm4iSrbWlZaKk7mfJfNwn1KxxGv/7Ra6YXD78w8ZXRglMRZDkiVWX90g8/CA9FSKN/77HVLTaeKpENt3M0TSEQRVoHRYRkTF4/EQSQZYv7mHpMpMTCQ42C2SGI7isax+hqMqEquv7XJ8XEWURE5OaixOJ8js2PWxHsC0uzp+n0JUktl8kCWZDvVLZ1VH/NPvIhGUnMU4GHBZKThAJksiJYf6HHENhprGoMzl7vfpLvkbN7VadFGrE7E4/qZAyCujiq6FXYC8SwLH1E12V3PEgj5SrkwL6NuHn2TKDMeCfVAFx8jOgrQDKB2Xpw8WiK6+FcBJvsbuTqFfjisU7et4eFiiGxXw6qc/p/Ijv1uiQOORz2uwq4CrvGcBLVcZEtPC1FyKCwYYMjhqPfhbIpZiP74bdoCm3aFyXMeyYHbCppRXqnYp0jAMShk7I5Kc4dWqk6We5GwmZL3eJmYJVJySYjDopVnvMDWfIntQxrJgdCpJ9qBMudhgemmYaCpMpdRk894BD19aR683icT9eHwqsZEoowsjKD4Pm7d3OfvsElpXR+8ahOJBzj27xOKTc0wsDXPmfXM8/NI6oqDg9XlIjMTwBRQ6bY1zz8wzf2GMmTPfeEUDQRAIBAJMT0/z/ve/n9/8zd+kUqmwtLTEf/yP/5Hh4WE+8YlPkMvl3vxgfwTjDx34vF1F6rcDPj0JnkQiwZUrV07ZMfQ8M95pzMwNMz0ZwyuI+CwBv2bS9ilMXJomPpwgu15k7okpNt7YZez8EMWTEqFUkG6ny+KTs1x87ixYFleeP8+9L64QiIdJjEVZv7WDokqkx5KY7Q7ZgxJzy6M0KnYm02600TUDv1dmf/2EUqmBP6BysJIlngrSbHRIDYVYmk9TOLCHVz1emaKzaHa6OkNeL62GvciGww5oCPZ8CNCnYKuqRNnJbFRFZnY8zqW5YULILMVinI3HGJd9zASCJFWV+XiAmaS/n8nAQJwUTlOj3T/3Snz2+wKlYou04GMsNTAYDHpkNFc5q97s0GppTASChB4RDe2dc7HUZCZ2umxrOsdYXzsmFvRRdJXrPLJIIdvpe+IkIn5aLY16vcPiWJKQz0PJ6Xsd0cKS6buHAvjaIpYLNACChtInIvRCeUThWm4J+DWXincVGoaO2JvtKdv9I0sGLJBdrDpLFTAkqFUbVAs9Srx9e6ncJhkLsDydJuyIoB7s27bW+/sl/H6FXK7G6GgEqh2Mts7eVh5/QOUka/d/fH6VYr7O2HSCRr1DMVdjYi6Nx6+yt5njeL9EfDjC9NlxfEEfjVKDdrWJ0dWRZZGR6QRnn5mnXqhSL9WJjUTZubsHwOv/7RYrr2xwuJ0jNRlndHaIhy+tI6kyoiDgD3gxTIuL71vgmx2rq6t88pOf5H/+n/9nbt26RTab5bd+67eYn58nGo1+08/nD0O858Dn6y3w70SR+q2Cz/7+fl+CZ3l5+SsUCx5H+vxn/uKziKaJZIGumZiGSdYCX9DLpeeWaZbaXHpumaA/QGoiTiVfZeONHYr5EvdfXGXt9U0O1o+ZOTfO3sN9ukaXkek4hxtFAhEvpiWQHgpRq7aJpoLs3DvAH/YxOhmncFjG51fJZassLw1TztWJD9mlpEQiwPobe0QTdqksNRzBsiAU8iBUuxxsF6g5WY7sLLTxeKDfmO8ZvCXjQZam05wfTyFWdQ7unrB6Y5+V2wfsbuTAgJPjGoeZMoWjIvsbFY7WqrSPmkzIPq5OD58qaxVcA5GF8uDnissRtO2U+Q4Pyvg0EdnJEIYSp0Hk+MQmLqytHON3WS4oknjK3lqv6/1ZIaA/cKvrJnOJKMXy4LmHk2GaTY2lMduGIenSmxM6JkNO6dECmmlHIscFiGbdpO3+bFoWls4penVIl0+5smI5ZcyGyzTOtDdGvr7qtfNZFUXCXbmvbg0Q1ET0oEA6HGFs1FYTcTuyjqbCnGwXadTt61qracTjfkzTIhKyr0tIsjjYypMaDmMYJhMzSXLHVYZHoxw5lgiReJDMVp5wzE8w6mN344ROu8vc+TGCUT8nRxU27u5TPK7iDXpRVJlaqcHDVzbJZQo0ax0EQWDt1U0uP38BQzNYeHKGyStjKJKMx6Ny5wsrnP/AEisvrxMfjVGrNMllCrz/o5f4ZsbGxgZ/4k/8Cf78n//z/IN/8A8QBAFJkrh+/Tp/7+/9vceiUfk/YrznwOdrRbPZ5JVXXkHTNK5fv35KauXrxZuBj2VZrKyssLq6ytWrV5mYmHjH/Z03izMXJpgYiWJ1dRRRRBIkiqJEtdbi3hceEkkEufP5hyiqzM7tfUr7Fa5+5AKRaIjxc8OMnhuiXqnTbLdp1lvoLYNQNMyZK5Os39xjaDLBxq1dDrbzzC4NUS026GgGkqZzuFdkaCrB8rlROg7TS/YqxBMBVNMmHfRkdoJhL+GQl+l0mKO90qnB0175qyc6CnZ2dGl+mGGPl+0bh6zfPerTcZPxYP8xbuKBYQ6ua6nSIndcY+XmAUf3c1wcSTE3Fu975AR8Sv9nURROgVKlOujrdCodLozaQOB3KWsHvCrtzmABLh8U+iZ28YjvlPioqZmcccAE6A9RAlRzjVPmdz2FgKZjMe5z9aU2NnPEnNs7UfpCoL0sUWqBoQoYAogdp/dVg45pnBokFdrQwURwLC0iugKSgOH8rnQETOelek0RuW6d6iGpVeGUKZ2mm+hBgePdUt/Ur1BoMJSyv0+KIFIuNDg6LBOL22A64sjwxKMRzsyl6Fbsz08uZ5doO237vUmkQ5QKDcanEuSPq5imxdh0koO9Iu2WxszyKIYJmw8OadXbTJ0dZWRuiFZLY+POHrVSg7kr0xSOKnj8KvVykyc/epntO3usvLJB4bjE3q0jcnsFEmNxxubTlHM1Fq9Os/rGDsGonz/2Z55B8XzzSLw7Ozv8iT/xJ/je7/1e/vf//X9/bIOpfxTiD8WVejeK1F8PfHq+QScnJ/3G4TcKeHrx//mhb0OywOoaCBYIHY2i18PCk3Osvb7F0lPz3PvSGktPznHp289x43fvsvrKFoFAkJ03DokMhTAtnfRcjOPtPO1Wk2arTSDsJbdfYGx+mOnFNPVqG0mRUEVQPbY1djjqY+P1nV4rAN0wCWDX72Ew66J4ZCKiiOXMfiSSwX5fpJcJeH0KiiJxcWGY6naJlVf3wLWI98p2keigt6OdssN2SnWKRMkpZaUSAXTNYO3eEUK+w6XxNCG/h4SrR5OMBPoyOZIonGKt1eptVm4fcnl6uE+zBki6gBIAU2XB8bORzNMDpK1ml731HD6PQizkOz3AamhMxAfH6s0DZfZKTA1F+yU6sNW05Y6JCbTS7lkbEAyQGwP2Wo8YIDgKBz3Wndi2aFo6giD0syG9Zb9HPS+foCH3j6N1jFNZE0CnMjh/qWXRFcEIiVRKrX4fByCdCNqyOQeVPtFjdMTOHnsZbrdjsH3rgOODKh6vTCnXweuTOdovIwiQPbJLdP6wyvFRheGxGKIgMDwS4crT04RDHrweicXzoyxdmcTjU9l9eESj2mb24iTBeJAHr24xdX6cxGiMqbNjvPbbt6icVBleSpIciTN9dowrz5/n1ufu44v4CEZ8IEnMnBlBVkS+7Xuu8c2KTCbDRz/6UT760Y/yMz/zM98CnrcZ77mr9eiCn8lk3pUitSRJ/RKaO1qtFi+//DKmafLMM8/g8/keC7HgzeL8lSkmx+LICIiagVcS6QZ95EpNzj67RLPa5Mk/fons9jG3PnuPkbkhnviOi4iiwPTlUVq1NtXDGvWTDuefXWTzjQztbgdRMTjcyuELqzx8eZ2DnQJLl8Z5+MoWvpCXQMhLq9JC7xqUCrYjqtg1ONzKkzuxs5pSqUEo5EUrt8juFZEcZlPU2QEjQN7JgIIehSQSua0i9apTmnLAyu9X+0wzN921WLZLX4IwyCgS8UCfKu3WggsFfazePsRT1hmPD2jW0eCADZeKBU7NDfXKZ+u3j2w1cSeC/tM9nkKhztZqgbFkmFTitJBtNluiUe8ymwyTCJ8GLVkUaZX0/uLcds0KxVRPfwizF0ZTRwuA4aq6CIKAXDv9N68oIzWtfgZjSBZYFkrDZaPQtcGj3SuhSQJy3aLpEsdsmSamSy8vYEp0vUJ/UyC3bGt1XbDQAwL7mSJBx12129ZZnEmzv11gasrunWkO6OztFfB4ZLqFBsPDETTNYGomhWGYTM2m6bQNpufSFHMt/EGV/EmZsYkAQdXg4QsPyW9kqeeqvPGZexxvZrE6Gls3dlj98ipDIyEmpuNUjyuYHY3zT8+yeWOLdqPD3RceMnF2lNhkGLMDa69sUcqWOdg84ez1edq1Dse7eVrVFmrAy/BkkkjinUv8v504OjriYx/7GB/+8If5+Z//+W8BzzuI9+wV6wl49uZs3qkidY8F585+SqUSL730EvF4nKtXryJJUl/h9t0SC95KfPwvXkcy7IFBwwTLsGiEAjz88hrBqJ/Xfvsm4USIybNjBGMBbn/+Afe+uIKuG5QPqyw9vYBgmhSPqqQm4nTLXeKpBEMTETIPD4kOB/CHFboOdbbZ0kgl/BzuFvAHPeSyFS5cmWT1xh7RZJBapYXHK9NuaUQUkeODMjDop3gcheNYzI/Xq3BmIkH5oErhuEbURbPuabIlkq4FwNXD6TiN70RiUIoLhwaZkcdVLukNq9ZrHbqFNhfG0/g8yqn7hF1AFA17++drGiadXJuoc2y3mnU07KPV1jANk6ApnWruB3wqrbb9h8xGAaN12p1UFj0U8g3OTNpluWJhcPv2Ro5G7fSA6/raMVZaRuqcOgyejjCgUuMAUmsANJYgIDfALU5tISC5siUAtQKu6iVq3SLgmhv3aiKiKKA0bMsKt/NpJyJimhYTo1H79WaKmHUbTAMOWGd2i0iSSKetc2F5hMPtQn8jIvYsHJz/fAEVy4JzFyawKh3MSpfcQQ0L8EYkNu7u4w97SYxG2bp/gNbVWbw6Q7PW4eGrW3j8CoIocPdLa8xfnWXt9S0Wn5mjlCsjWhLVXI2RuSFG5ofJ7+URRHtua3xpFNM0ye0X+e4f+Xa+GZHNZvnoRz/K9evX+aVf+qWvybT9Vnz9eE+CT0+Rulgscv369XelSP0o+BwcHPD6668zNzfHmTNnsCwLwzAeK7HgzeLyM/PMzqZQTIuAIGBVWrQFgbGnFmxF6w8sk905IZwI0ag0Sc8lmL8+jc/rZ+rsOLd//yGx4Si+gMrwZJJcpggI+P1easUWY7MjNI+rlItNBElA7zaplWo0qm2GJuMsnx+j7fRNkk5pJT0SJeqRqJdbVBxV6l7prDePMzUewyq02LhzSMm5zeuiWfeymUBgkGlUHOtlRRH72VA0PAAcVf3qX1zTZdZmGiZrdw5JWAoeabC4+tyePq5mvygI7O3mGVK8iOJpx9JEZACWO1t5ZBf4pGKDY3Q7Jgmfa7AVODm2m+mtYouAV+kz2QCiIR9TQ4MsKp0IUvOZtEUT0VXZEzULn3i6J9HV9P4cTi+8rUc8eiROZTX2sU4/RrBA7omTmhZVhwYudsDT4NTxDKcv1LOSSCSCyM41zzsEhHZbY2oqQSwewHDmwYp5+/3M7NjWCZlte7Azl61y7uwIhe0clVydxHCUaqHJzPIojbJtYJgYDbF1/wDTMknPxNlbt+1Blp6ao1pqcbR1wrn3LfLwpQ1mr0xSr9WJpWOkJ5IoHpnEaIzd+weMLw5jGgbdtoau6YTTYS6+b4Hh6STf6MjlcvzJP/knuXLlCr/yK7/yLeB5F/GeA5+egKckSTzzzDP4/f43f9DXiR6o6LrO2toaDx8+5MqVK0xOTp7q73yz0+Yf+LEPowoCelvD65HxKjKHpsTVj1xEAGYuTNJqtDjcyKJ3TPZuH7Hxxg6CJBIfjhCM+Ni7v8/mvX0WLk+RuZ/BF/IRjgeo5WpgWRSydc5dnSRz95iA03sxrQ6rr24iOJmF6lfwBzykoj4Ot/KkHDDyBdT+zr6rGZydTWHWNZq1Dj6/2gcf07JX71DYR8PRd5OVwbUsO32FVDLUL695XXbS7rJZ29Vf6fWhgL5jZi5bxSy0WZy0Fxn3TJDfVd6Lx/xomsnORo6LU0OnVLL9j0y9Vw5qfXZb0He6PFc6LOF3ztWjytQcBthBpsxw6PRxYiE/xcMBaywW9tEYsRcmtyq2UrVoaad7kFLVwnsqzbHwC6ePHzYVJBfYqG1OWSnITQtDFWk7c0iBjm3FDYAApotwITdMtLCMKcHBfhEBi7hPxetklcfZKsmUnb36fSojET8Hu3Y/5yhTIpkK0ai1mZxN0mx0mVkcIupXqJ9U2V3LEk+HOdjOI4gCqlelUmgwd36cWrGDrllMnhkhu12g3eyQnImy8/CARrVpq7rf2uXMs/MUs0UCgQClgxIPXlxj4sw4Gze2aZTrqH4v6ze2GZ5Nk88UKB1V+ON/8fFaUX+1KBaL/Mk/+SdZWlriX//rf40s/w+hTvYHFu858FEUpS9N87jeXFEUefDgAdlslmeeeYZEIvENJxa8WUwtjLB0bsQukpjQ7hh0gDv3D+k0uxxsHLN5Y5fZa1Mkh+PMX5nm2ndeoNPsEE4EufPCCnNXZ5heHkFWJRqVFs16m0QywO7DI8YWR1i8MI7l7Pp9wQATs0no2mW+guPXUq83iXhFWg5weJ2sJeWoAY9PxGkcVlm7kelnQKmhAdOw6Sx2iaQra3BkbUTRtosGCLnKa27tabfldcXVAO95AsEgAwMo5Ovs3zvmwtwQHde8j+RaiGOu7Gbl5gFe1+fI/U6HAh4O98ssj9tgJj3yOahXdRYd9txQPHiqhBiRTm+KtHaL42yVOUcRoCxqGD4nu3AyFkG3MEUBXQDFHPzNkAR8lov+XbNOzTsBaF0D0SWuHLBkkIU+U07q9XMkOwPqsePALuO5sya5ZYEAWkikWm0zN5Ni+94R2f1y/z5DKTvr0zoa6zf2KOXrjE/Zry3tbFD8AQ+SLBL1q2zeyhB01K6HJ2NUig1mzoywvXKEL+gBAUonNeYujFE6btBu2WW3Wq5DJBVgbDlB/jhHYiLEwy+ukhiJs/7qFggCT/7xy3RbXeKjMS59+3k8XoWFa7NkVo9IT6d58o+dZ3RuiG9klMtlvuu7voupqSn+7b/9t9+iTz+GeM+Bj8fjedPB0bcTrVYLwzDQNI2nn34av9+PruvfcGLBW4kf/tsfxadICIaJpBv4LBNxNMnexjGSInL+uSUOHhxx/8VVaoUatz/3gOOdHLVyg+nz47TrbXbu7rF5J8Pk2VEq2TI+p2kfjPhZf22DqjOXYhoWpb0cucMqgihQL2v4AyqdYpPj7SLZI1uduuXQZv0hL2fPjmAUG+QOy4DdfwEIuMpmeacM43OV2npGZKlUeCCh48qG3BYFvdKVJAl94dJQwNOnagcDaj/zkSSBQrGBaZisv75P2OVg6lazds/phINeKrvlPumg2xncL+nYP2zcPSIVC9B1gVnAp1Cvd9l5mCXoVwk9QlqQTIEhV3O7R33uVOpYwJY5yIK6WCimgFqxQLK7NgHLPke1ag+Eam3X4KwGGhaqkzEpNRPNspCsnrabRd1hDiodEAwLS7WvryAKhNoiLjdulKaF0nLAyLQzJIBu2Aa8WMBLt61RKtQZH7dLh70Myqi2GRq1wSbisAabjsp57qjC4myStdd3kCSBzGYOSRIpOAOniiLR7ehML42w9fCIqNMLjMQDXPvAAq1yHavVJhIOsPHlHfw+L0ereYYW0my8vsv4+RGG5hK8/t9vs3FjG1EQePDSOhs3t/H6VSIOQ+87f+Db+EZGtVrle77ne0ilUvyH//Af3hbb9lvxteM9Bz6PM8rlMi+99BKSJDE/P993HYVvDrHgzSIaD/G+b19CMixE3cDUTHRFRp4dIRwLcu/zq0iyxOVvP0diLM7Sk7Ncff48WquL1+dh6/Ye0xcnmTs/TjDsp3hUplFvs3R5gs1bO/j8KgfbecZmk2Q3jggngjTrHYYmEqgembGhECd7ZRSPTK1sb6uLxTqyIqLVa6y+tEWoRygQ4CTrsNWcLCMY9lJ3+ji9v1lAtdbF71cZGQoxN51kcS6N36MyM5lgKBXqA4uqSH1nzVRiINsTd9GZE3EXzToR7NOsZVnkwSu7XJq37bLdOm7uDCUR81MuNpmO2dlaxTUjFHCcWbWuQdrno1Co9W9LJ+2df6upMT+cQHmkLNusd/ouqPbvNhjks22UqHzKdVUAvB3htOOoji2L43wGDeekbdab3YnxOdI7vYxHcLIXtWr1UzivJKOWzVP6eb0sqP/8otjvD/mbQr/3o4VELKDjyjJjTnl2b7vA8tIQuw+PSKbta5c/rji35QmGvKRTQer5GvVKi5kzI9QrLaaXhzneLzE2m2RrNYs/5KFebZMejbJwfpSD+xm6lTpbt3fZe7DP2OIIK69uMnNpgszDLMMzSfK7ZRafmsWjquzePSQ9l2Ds/DDemIep86MsP7PA3S+t4g35WLw2Q3L0NGPxcUa9Xuf7vu/7CAaDfOpTn/qq+pHfincW7znweVyAcHh4yGuvvcbs7GyfRt2jW/9BZzzu+OTf+E5iUS9eRQLdxCw20BQPR0c1zn/gDMmJONt3M9z67D2K2TK3Pnefcq5G7rDM2MIQWqvL+o1tdu7vE06GCARVmpUmlXyd0fkRxqaTxBIBasUG0bS9g42ng3gx+6rUQxNxDN1E8ch4VA+poIemA0bNjp2NROO+fpmr7TSyE85goiCAiMnkiI+F0SChrol+UIVql8ytA3beyFDcLnB4+5DaVpHKZpGpcJBLCyMszqRRFIlwaPClDriyDPfPUVfpLpWywWrltT0uzQ/3De8AWi79tZ7u3Ma9Iy7ODw8kgRg02wG2V45RrEFWFHD1hnYeZk9lJgD54xqbD7MEAx58XoWC0x8zDItWUEBon6b2yw3zVMO/3dYIt+UBEDilOLk5AA6hYyK1B5mKbllILev00KhpcqqYaFpIriFVuW5iiiA4yg+qi2UXQCI1HWXl1n4fYEpOJqvrBqozt1R09NtODisMjUYwDYulMyOsvrJFxCFp9OaqevT8SCyA1tFZuDCO3yMhGRr3vrSKZVlIqkzhsMziE3OsvLrJ6EKaw+0cwYiPdqPLwpUpCvsFZFkhMRKjtF+BLmy8skO1VCN/kmfy0ghIFh/7kef4RkWz2eTjH/84kiTxX/7Lf8Hn8735g74Vbznec+AD7w6AetpvDx484PLly0xNTaEoCnt7e2Sz2cfiavo4QxRFvvsH3ofebKNYBoGQDwwT79lpdM2gclxlaDrFufcvkppIMn9lmqvPn0dVBYJhL2uvbzN3ZRrFqzB/aYL7X1ojlLAXklDMz8nWMV1n4dQMk+GJGHQ1cpkislOeCjnllPmlYRoHJU4yRYon9mLqD9i7e19oUGrIOVI1kbCX88sjxCWRzN19jh4WkQ2JetnOQgyXGGjeWcBS6RBa1+Bot0i72GL7jX38dYOE39un/boN59w/q+pXp1nntoosTQ+klsouFpr7k1Q7qBJ3lQzdIqHhoIJHU/qLqBuYWk2NkDwAo2jER73eodvRmRuNM5QI9bOtTkykbZ22WhBNME+LX9PBQnMRDwRAqRin6NCtto63I5x6DZ6qheW6j/QI401pWDQMs8/ik7r2iZkiKGWduuU6MR0akv37kCO1dJgpkUgGmF9IYzjX5yhT7Pd5kqkQ/qCHTrmBqZtkNnOIksD2ahZfULX/D6hkNnMsXx6ntJdj9dVNfH4vzVqb2QsT7Nw/YPbiJFt3MwTjfhq1JlrHYPL8BPHhCPurh8RHYqy+ukHpuMzy0wv4gj7OvG8R0ZKpHTfAEJm5NsyN26/z8ssvs7GxQaVSeUdGlF8tWq0W3//934+maXz6058mGPzmzA/9UYr3JPi80zAM45T2WzKZxDAMlpeXicfjp+yu9/f335U97uOKRqOBmmgzOhFCFkSsjo5gCTQMKHZMvEEfB2tHVAt1bn/uHrn9AndfWOFo64RyoYGkSPhDXjqVBtltu29zclDizNVJtm7t0m13Odi2VXVlSaSSyXOcsWVRag591hLg3MUxBE2jWWszNBbv9z8qRbtnFHO00lSPRCSskgpKlDMnrLy8RaPSolGzFyo39brmDF1Gon6aTqkt7CIDKI5OXKvZpVVscnL/mKXhKKoLcNwLtFsGR1UGDfpY1M/a63ucmUvjUeV+7wgeAZiAl4Q6yKRKrvulU1Gy+2XOzqWdcxow5LxehfU7+wSceaeUyy7icLNA2Ol3WQI0k/a5Ky6gjGgymnh6UVQbJnQeWShr1qmNlynZ8jvuCEiPNLrrhk0gcEKyRATBdmcVdAvD1WtTambf00jsmjQNkxO9bZdKXZp1I0MR9EqLnbVjPE5pMumQTKqlBpOjER6+tkM0EaRWbjKzPILW0ZleGLL/Xx5hbDyC2Wixt3rE/MVxNu9kGJlJsv3gAH/YS6fVpd3sEEr7URWVq8+d4c5n7qG1NUzdZP2NHc5/4Axnri+y+uoGm7d2kBSJ5GiM8eVxxmaH+Ut/5xN88IMfZGpqimazyY0bN3jhhRd48OABuVzuHW80O50Of+7P/Tmq1Sq//du/TTgcfvMHfSvedvwPAz7tdptXXnmFbrfLM888QyAQ6Jfa/H4/c3NzPPPMM7zvfe8jHo9zeHjICy+8wGuvvcbe3h6tVuvNn+QxR6lU4rXXXiOdTvO//l8/iEcUMQwTyzDxGAbFjoU/EWLGkR5JTSRIjsWJpkNcfO4s8XSI6bMj3PjduyRG4xxunTA6nyYS9lIr1CnnaowvDNGotjn/1Axrr6zjC3ooZKvIqsxRpmgzlFodHry47rhmQsRpDHv9CvkTu3lsGBZnzo6wOJXg8O4Jxf06PSeEUNzTp1G3OwOL5Zzz2Lhr6NS9KLuBpdfE3nl4THGzwNmJBKlEkJqrl+N2H3VnVV6PgmVa7N4+4uzc0KmejxtgFEViZ+WYC/PDqKrUL5XBwC/oeKuI1yNTyA9uG0qFaDU05sfsyX+fa9C1Um7iteyvUTsuYjl9mY5p2soChsNckwS8LiQRdAHRVZoTdHsQ1B1qzcSjubKctnmKWCEZYMoiPasfVbPZbmCrKwQ7Qr8XByC6y3FNC0EAQxUxfCL7O/mBkoVpsr92TLejM+OAccW5Vl6vQumgiGVajDpKCJJTvm01Onh8CqpgsvLSOg2HvahptnJIJB6iWWszc36Cg80Txs+m8Hu8ROMBXvvtm5x7domdexn8Ub9NoMlVuP25+3RbGhefO8f9L65hmhamZvB9f/2jCIKAoiiMjIxw8eJFPvjBD/btVdxGb/v7+7Tbp9UnvlZ0u10++clPks1m+Z3f+Z1vKVJ/A+M9SVQXBOFtpc+VSoUbN26QTCY5e9b2be/ter6e3XW73SaXy3FycsLa2hqhUKjv4x4IBL7qcz2uyGazPHjwgIWFBSYmJgD4nh94P//uX3wBzTAQZRXLp5I3Tba/tIqAxfIzCzx8aZ1A1E+70aWSqzL/xDwAkeEIkXQIUZa496I9qMp2gUg6jC/kw9Q0DM0gPZmgWNxndCaJoCq0i1XWbtmS9UXHq6XXC0qNxshkiiyfG6GVq5JZP+HMtan+ayg6C/TQSJJi4QCAktN7CYZVqjUbLHz+QTaku83eXOrUeee5BQFyx1W0/RKyKjF2bZKj4wqmaZ0Ckh7zDgYZka4ZmOU2w+kw2ZMqHo98iqZtOGC3ey/L0FSAw+ogK9K7vUyvyfmnJrl9e79/W0+CZnsliz+oYuqn+zlmU8MSbdWAfgjgNUTMhoHhAIBZNyAiEtYl2gqILuadWjUxZdEGLFGwrUUFAb2hgzOIK9ctdA9ImoWhCAS7Ai3BwnLIEELNQPDY9zVF0e4NOd+joCbQ9kgIuoUlC1guUNJCMnKry+holHKxQbfSIhoPUC42+q/1YLfAyFSC0l6ekYk4ucMKRWcYdXsliy/oIZspMTUZ5fbvP2RyaZi91Swz58bYvn/A5NIIa7f2SI3HyWxkGVuOUc1UEASBZqXF+OII919c5fwHligclug0O4RiQc5cX0RWZbqtLpc+dIb9jRM++kMfYursGI+GKIrE43Hi8TiLi4s0Gg1yuRxHR0esrKwQDAZJpVKkUilCodBXlPc1TeMv/aW/xM7ODp/73Ofe1XD7t+LN4z0JPm8nstksd+/eZX5+nqmpKUzT7APXmw2Oer1eJiYmmJiYoNvtks/nOT4+ZmtrC5/PRzqdZmhoiGAw+NgICpZlsbOzw87ODhcvXiSZHExlf+wvPMsrn73H9nqedqON4lOpNzWGL80yPhJk/fVtACbPTrDyygbjSyO0620uvH+eo40jSidVgk557OSgxNTSMPV8je17+8xembafRBARJZHUcJgbv/+QmXPjWEdV/CFPn1LdcBb2RCqI2Wyze3OXrrPemk5aEQirNJr2gu2WWmnU7L9FY/4++NRrAzJAL5MRBMg7mnLhiI+a06dJpkLknEUtEvHz4MVtZhfSdLwCB3ul/nF6GnNAv6QHtpSOUO0QDHiIRnwc1Yv923pCmp2Whv+RelalOGjK1E8axKL+Pg28VzFr1bucPTNM2U1aEAU27h/iWwxT1VvgGRzXZ0o0OJ3dABgNAwSwnOsmWmCJIoIoILdM9ICAWjVBlhB6M1MmfRacVxdoyBadrk3dRhaQmw54OSFpFqZs9b/her2LoMoodcMGH4cYIBgWRkjFOunSbHQYm4ixdWefs09MUy422Fk/xhdQaTVsB9Kb9/exDLt8l80UGZtLcbCdZ+HcGO1Knd4peJzya+974/GrWKZFeiLC5hvbqLEklVyNyTOjVPM1auUW0eEIumbYpnO5Chs3tpm9PMX665uYFlz+8AWmz47zXX/tI7xZCIJAMBgkGAwyMzPT/37ncjl2d3eRZZlUKoUkSYyNjeHxePgrf+Wv8PDhQ37/93+fVCr1ps/xrXh38Ye27GZZFhsbG9y9e5dLly4xPT2NaZqnPHjeTqiqyujoKFeuXOGDH/wgs7OzNJtNXnvtNV588UXW1tYol8vvqqHZ06vLZDI88cQTp4CnFz/+s3+egEfEKwlIlkU47KWgS7z+u/eo5Kpc/vB56sUa6ck4qkch8yCDYVjkD0rMXZ6mWqwztjBMIhGgclJi5/4BHp9CZi0L2NnB6GiIUraMZZj2ACAwPJW0N9uigGlazM3E6JTqHG7mGJ5K9LOL3HEZgKGxwa6w6QyoJlMhOs7QaDg6KLWZ5gCcjo9sskI8GeyX3RKJQZYZdUnc9Oy599ZP8DR0luftQcJo2HeK0dabNQLodnQK2RojAR8RF4NOdJUBAQKKj/OLtq22LIvkcoNjBPwexuKDQdqWC9z2Vo+pufojqWSQpmmQszoIj7QYusVO30IBbJdSf8tmtoFdMhM1i6gxYL2JDkFAcK6ZKYtggb85oLOLOnhbdk+oF3LtNJtO6lgIzkZA7JroTo9M0EHoWq7HaRheCdMrsreZI+Kz0ariXFOtazA9myY1HCa7egRAKVdj5oxNcY8475FXFdm6tcvWvQN8QQ8bdzIkR6Ns3dtneDpJZj3L0rUx7n3uIenROFu3M5x5ZoG9h4csPz1Pvdxg+swYrWqDhy+tcbhxzJXnz+ML+pi7PM2lbz/Pzr19/vzf/V5k5e3vmXvf70uXLvHcc89x7tw5BEHgH//jf8zk5CRLS0t87nOf49/8m3/D0NA3dmD1rcQ/+kf/CEEQ+LEf+7E/6FP5hsUfSvAxDIPbt2+zv7/PM888QyqVeqyK1LIsMzw83K8jLy0toWkat27d4oUXXuDhw4cUCoWvUMr+eqFpGjdv3qRWq/HUU099TT+iYDTAX/6J70awLNq1No1aF9OC5MU5zj27xO3P3SezckhiNM7mrV28QQ+7D+2Sly/kY+nKJJG4n4evbDAyO4RlWUws2yWKC0/PsHNnh8OtEw42bRJCb07HG/ASivq49MQUB/f22LqdoeQsyL2hUkEUKOcd7xr3UKlTMou6hi7dttfVykBwtGeNLcuukpPqYrR5BkQCj9uTx+9h8/VdLi6NnBIuDYUGs0YwaJzvrp0QcunAxeN+9O7gnLSORuZhlmjERzoVwnSdr2BarN/eZ9xh3+WOB1lWKOBlyjVXEosGaA6rWMKAQAFOlnOanY2pCKfYaQIgty1aDdeAqQUhbWB7LYgCng64e+cdw0LltKaY5CIvSIaTJTkvSa4Z/e+EJQiY7vN0lgAtrBCNBxB6ZbadPENj9uvXujoRv8rRboGpBbsH1Bsa3ls/4dyVCW783l0ml4ZpNzrMnBvDMi1SzgYlNRIl4Jc42TkBoFZq4gt62LqbITWZ4Hg3x6VvW+TmZ+6y9+CQs9cXmb8yw9prW9z/0gqiLKG1Nf703/oY0+fGebchiiKJRILl5WV+4Rd+geeff552u83Y2BjXrl3jmWee4dd+7dfe9fO803jttdf4xV/8RS5evPgHdg7fjHhPgs/XA492u82rr75Ku93m+vXrp4gF34jBUUmSSKVSnDt3jm/7tm/jwoULCILA/fv3+cIXvsC9e/c4OTn5usyaVqvFa6+9hiiKPPHEE286qHbt28/ywY9dxOeR8CsCIUWg3jV5+OCY8aURrjx/HkmWOPu+BS5+8Axjc2nmL09y53P32Lixw84DG4xqTpkpkvARDanoXR2trTGxMESn1UVWZQ53CiiqjM8joZfrdOqtfkZ04qhbd51p+lg60Bfp7GUtoYiv/zxu+4QeIASCnn65K+oeGE0OMqdGY1DGare/OqlAEgWw4OHL2yS8al/d2p01SZLQt4cAaOQbnFtyshvp9EahVGjQqncZjQSIhE7PbzSqLSzTwm8JNq3aBW7RiI/dB1n8Th+rKeh0o/a5aAxIA2rVxJJFFLeuW9NCMU+DRsCSMFzfQlO2+0TuCGrCqfuImnXq2shNA2Sp39/xd+zvgimJSBanMiJPxyLoECSUjonp9JP0iMpwOkjFlQH25rhM3SS/azMpvc7c1daDQwIhL/FUCKNulyd7ZoRHO3lESWDrXob5i+NsvLGBYWgUMhXOPjNPMVtm+uIknWbXlsUxDN7473eYvzpDMOanVqpzuJWlUWkydX6C3YcHJEZj/PEferyq1aZp8r/8L/8Ld+/e5caNG9y4cYODgwN+5Ed+5A9spqder/OJT3yC//v//r+Jxb5xw7PvhXhPgs/Ximq1yssvv0wgEOCJJ57oKxZ8s6Ryeg3N5eVlPvCBD3DlyhVUVWVtbY0vfOEL3Llzh2w227dnAJsM8eqrrxKPx7l06dJb1qv7Sz/5PUxMxTFaHdqNNoJpIaWTaBZs3Njh7hceUMqWufmZe6y8vIEgSna57Oo0jUqL2HAEv09ldCLK+mvb5PaLtBy2WNApiY3Oppg7O0LIK/LwpQ1a9XbfD84uw9m/nBzafZPUyAAwKqUmHq/C9FySs+fHOHd2BC8Wk+kg6aCCnq+T9qlMD0eYHY1wdiFNMupnbi6Fz6/2ZXcAVHXwRS8Vq67nGIBSy8V061TbjIT8BIMeAi5qdyoVOrUol/J1Nt/IkIiphIIDirfXq1BwsrWNu4cEH3G+zDlKDjsrxyxMnS6NyqJIs9ZhbjKBBex0Tw/weA0BsWtiOTI6qqvEJXYtJDdZwbJQtdOfWcUUTlltAwjN02Akdyx8XReLrW2CICDXDbAsuk52JYgCykkby5XpSJLUn/0J9O3wICDLrG8cc7iTZ3TSfp+PM0UEAbRqg/E5uwey/eAQf9CD1jWYPTtC/bhI1emBbd7dJz0eo3RcZeHyJKMzKSy9S6PURFVUex7o3j7RdJjVVze59pHz3Pq9u1gIDM+k2bixzejiCJFUhOlzE8w/MUM0HWF8YYQf/id/jscZpmnyd/7O3+HTn/40n/nMZ5iZmQFgaGiIH/iBH+DjH//4Y32+txp/9a/+VT72sY/x/PPP/4E8/zcz/tAQDo6Pj7lz5w5zc3On+jvw5sSCb0QIgkA0GiUajbKwsEC9Xufk5ITt7W3u379PPB7H5/NxcHDA/Pw8k5OTbxsc/+bPf5L/9ft+jkazi26aeBSZmuFlcjlI8bCIIIpoHZ3RhWHW39gmnAjiC3pZvjaFx+vh9gsrzF2e4nA7jy/oYc/p+9RrbZauTOL1ytx6YYXxxeH+FHuPdODveeGoUl96R1IkZheH8PtkSidVtHwFsx5j5Y1dAIamEhzvl0iPx/pZU3o4zO4Du1ewdGmc3dv7dmN9/P/f3pnH11XXef99zrn7vdm3JmnaLE3TJqVb2qaVRTbZCqSoD88gyqLiKMjgjI8Ojow6OqPjMzgiwgyozwCPIw9gW1pAwBakrcjSfUubNm2TNs2+5+73LL/nj3PvyQ0ia9qk9LxfL16v5HJz7i9Lz+d+t883m3m1xXT3hRiyWp4FkdDYjTaVzgPoTw62gtkQcfJoH4XTs3GkzQRlZfnoOWk+z+V2mKsBhIBhDXdhmkgVZtCRtvhNG47j87mIRBLk5fkZ7hh7LSIqcrIOBhBJNmMcP9CNnOsiGtfAN/Z79QgZI6SakQighzVwO0xhUGRz4DfVvRY2CBmAghWd+AyZaFzF8JrPUaIGMR2rC05SDZBl4sE4uF3ICQPDaYqInBA4RzWMtHSjHAM9maV0hDRUSUFVdSSXTETFqklpCQPVo+DBjFA7Twwy0DPKonNnsWvjPsKFmUiyRCKmUjVvOgd3HUcxdAaTfy+V50znWFMHecXZ9J4cwulw0LKvBUPVKZqZR3drP7UrZnHgtRZmzi0hf1oWuzbsZfayKg69eQRvhofFnziHIztbGR0I4cv0klOcA0Lmqw/eQuCt22g/BEIIvv/97/PUU0/xyiuvMGvWrAm79ofhiSeeYOfOnWzbtm2yj3JamJKRT/pNWgjB0aNH2bt3L/Pnz6eiosLaTPpBGgtOBZIkkZGRQVVVFStWrKChoQEwt7AahkF/f//7mjVIkVuYxdfv/ywOwIgl0OMqcUPiaNswvgw/Pa29ZBcGCGT5cDpl8kuy2bVhD4e3HrVSb65kmqRsbikOp0LtknIiA6M0/+kQA8l3+Fn5ZnoluyDDap8dHU22Uc/Iobq2mNk1hYS7BmndfpRQ3widR3oQuoGWTL+5PU56kzeinLSaTHp/xmiah9jRPSdpfu0oavcIuV4ns2cXkVeQYRla5ub5UZM1Go/Xwejw2M+ut8t8nd6Tw4hgnPxkesjpSBs8zfFaLz46GMGtC2sDaUZgvElo94kBKkvNFEdu7vhJ9ngowdxk6g6gr9P8mYXCcaJ+CT0xPiqJD8cQaTtejOQPwZVMt6mMtT87NDM6ciRXY7uFTCQx3h3BpUlmVJOMfpwRw1yR4FRAgCM8Vs9RFAUprc7kMkCSx9Jxspr8ZSgyroGE1W6tRDRU3UDP9iBkiRMtPSiKhKLIGFHz5z7UO0pVXQkAIwNBZs+fzq6X9zNroTkmkBLno/tOMmt+GQdfb6awPBtDF1aq7uieE8yYU8xIzzAOh4yW0Di89Si1586mrKaEvZsPEh6JUjF/BpULKxjqGeGTf3slFfM+2CLJt0MIwY9+9CMeffRRXnrpJebMmTNh1/4wtLe3c9ddd/Gb3/zmrPGPm/w79zug6zr79u2jvb2dhoYGCgsL0XUdXdenlD9bOoZh0N7ezujoKMuWLeP888+noKCAnp4eXn31VbZu3UpbWxuRSOTdLwZUL5zJl75/HV6vAwXwK+DOzWQgmEDXdKbPLuHw9mMk4iqx5FR+9ZJKRvqDOD0OThzqpHxuCYFMD1I8gaFq9B7vJ5Dtp+NIDzC2DrqwzBwalBUJXU8wq6aAXL+Lw68d4uiuNjrbzLy/P2299ECyg6xoRq7VEaekpXmCSSNPh1O2xKmwOMtyUChIRkZHt7YyLeBh7txiZFkiJ60+VJRc7wCQmeUmGhmr2h8/1IUYClNQkGEJIYCipH3skDmwrc2q/6Rb5/j8bgZ7QzRvP075zDw8b1luNzwQorO5B6/XSU6u39pWGitwoQkBjvH/hOTk8GYKwynjHNbQki3qkiKhRA2co5p180+JgiOsIwHCIYMQKDHd6lmQVXNgVZKTXWuyjDtmjBM6hyQj0rzb5KCKpMgoYQ2nwbhGAyVtwDUVEwpZQst0m0ahc4qpnlfCgdePWOayIpnSDA5FUJNLAmPJvUttTR1Mn1VorrHWYqhRlaGOEJl5AY4f7GRuQxXZ+Rl4vU4Gu4Y48Nph5q6oBgRCN0hE49QsqyK7KIOsgiwM3eAz/3Ad565aykQhhOAnP/kJDz30EBs3bqSurm7Crv1h2bFjB729vSxevBiHw4HD4WDz5s3cf//94wyRP0pMWfGJx+Ns27aNcDjMihUrCAQCk76D593QNI09e/YwNDTEsmXLyMrKwuPxMGPGDJYsWcIFF1xAaWkpQ0NDvPbaa7z++uscPXqUYDD4ji3cK65ayKf++iIUQ8NQNWIjEcI4mXNBLQKYu3wWCy6uxeFUKK+bjjfgoXZ5FQvOr0HEVXqOdbN3czPRUAwtWU8onT0NwxAoToWOY2bnmz/Tw4zqXHJynXTu6+LIzjbLeaCkIh81KRipQdFApteyzw+keaaldgPJijQmOCU5VrNCVlpXnC8tCpGBw68dpTjTQ05ay7U/zcetoDDb+jiQ6SISSjDSHybeO0xwZKxYnpU51k1YWJSJruo0b22loiJ/nHVOYdLTDAGJwQhaWiTjdjvo7RwhOBxlVnkB+clza26ZRI5ZXBepVBiQocngdqCk1WwkiT9bo63ExfgtpMKsEyVSBTdZRokZKBFjTCaFhCuojXOvloYS41q55aCKM5acCxJAUpiUmIFXHWvGccZ1JIcTdIGsGahGsrNON9AyPAggGgrRdegkakJjRtLl4FhTJ3nTsiguzSJVHGxv6aGirjT5+/CihUO0bD9OcVUB0WCMkkrza+PRBE4Fmt88QtHMfNx+Nwdfb2HJFQsIDoVo299O058OUzijkN1/aGJaRSHX3P4JJgohBPfffz/33XcfL774IgsWLJiwa08El1xyCfv27WP37t3Wf0uWLOHGG29k9+7dH8mNqVOy5hMMBnnzzTfJycmhrq4OWZb/omPBVCEWi7F7926cTidLly5922VTLpeL0tJSSktLUVWV/v5+ent7aWtrw+PxWO4KmZmZf/Y9XnPbRYz0jfL7J97Eocg4vA5ajgyi9/QxfVYRx/YcJx6JM2d5NTs37EWSJKZVFhEeiVB3Xg0H3jyKN8NDW7ItO3VXmzW/DIfTQffRbo7tPsZwT4g5DVUMdISQZJnONlOYMnID0Gpus0zVhQrKcggdNKOn9AaCVGqqsDSH7pPmYGhmto/O5DZMR9o78PRNpqnIpbt1gKxML3OqCugcCCGl+eV4vGM/18KibFqHzE66REQj0jWCP+AiHNIYHU4Tohwf3W0DCF0wcnwAd1pU5U9zX+htH6Jk+liHUVFxFu0j5vd3ZFc7c5aVmysIcp2khzcuTSKuCLO+A0hRA5KtyM5RDUmH9BYCJW5g+Ma+D+GQcQR1SLMeUiI6wumwxEc4ZKsN2nxAoGiQkkpJNdCQ8DgcqIBfBUvzJNmsTaXqYxEVye3CEVJxORXUlJlqKA5eF4bXicvpwEg2zrQePInskDA0wYyqAnb+fg8AZXOm0X64x0yByxLBwWEkh+k4ocimx1zztmPMP7+Go9uP4PF7yC7K4viBDsrnlZGR7WPb87sAKK2exrTKQkYHQnz8+ga++sAtTBRCCB566CF+/OMf8+KLL7JkyZIJu/ZEkZGRwbx588Y95vf7ycvL+7PHPypMychHCEFZWRnnnHMOMGaVMxV28LwdwWCQrVu3kpGRwaJFi97TlsOUJ1Vq6K26upp4PM7OnTv54x//SHNzM4ODg+NmiT77D41ceN1iZEMnOhRCdjnJqipDdkjEI3EC2T4rlVa9tIrupHAMJQv3M2un4/G5mbWgDIcEOVluFGHQtOUgiUSc4R7zhp3qGCupyCeajHxS8zmZeX7rel7fWEQykux4yikIEEra5mSl7eWR09p9080+g2kO1MMDY4IxMhCmZUcbYiA0bjmcnnYD9qbdwLNzPYQGY2QIiYwMt+WsDRBNS3FKAjIUxdIOke4R53Vy4PWjFE0zo6FAWsSlxjVcukDLcIyLNgC8DgV32LCEQNaTKTZdIBnyuBoOQozbSJp6vvQWxwUlNt5k1BnRUNQxEVbCGsKhWILkCGlmQ4BmIOmCeHjsRRwxHSVZP5NUHeFyJj8WWAschIBkSs/I8TJ0YpCySnPYMjIap6QiB8Up07rnCL4sM1p1Joc92w50MHtRKe37O0GVcLodnDzczdyGWRRXFNBzpAtflo/+jkHcHieZ+QH8mR5adh6j7twaCmfmk1eSS+/xfvJLc7n9/lut1QwfFiEE//Vf/8U//dM/8eyzz7J8+fIJua7Nh2dKRj5ZWVl4vV6ro22qRjsA/f397N27l4qKCsrLyz/QORVFsaIewzAYGhqip6eHffv2IYSgoKCAwsJC8vLy+MI/fRpDN3j12T0ICYIjYYK6Qf70fGbUFpOIqhiGwOP3MLehErffg5rQ8AdcGHGV0a5Bikqz2f/qIfPFkw0buSU5BId6kBSZzmQaLis/g46UU3YqfTY9l9FhM3pSk35oTreDng4zwsmblsXQQMT6vlKk0neA2YWGOZeTuq7L7aAv6X7gdClWdBUJxmjZeoya2dNo7xwmmOYHly5EnqQQ9XeMMKOmiN7Bscq7nnbT9gUUWvd3MKehnIPNPePEr6gkm/YDnfhlyRSntwwRH9rfjlroAX3845FQHFlWrPgsVcvJ1hUiMqZhqwAkyDIUYg6BQxVoydUInrhA0w3UZIebUwCGWZlKXVPSQCJN4DSz3uQzJCIC6/cIkGcojDrTltkZEj5ZIQg4wiokN3G6kVHjOrgUPKqBmrzh+zK9DLX2EhmJEMj2EhqOgiZTc04pTZsPMnN+McdHejm27yQF5bm43Aqdh04iO2T6O4ao+9hsml47zGh/ELdLorW5j5yiLPJLcug53s/Ci2uJjkaJRxJJP7c57N18gPJ5ZXz1gc9bq9w/LEIIfv3rX/MP//APPPvss5x//vkTct3TxaZNmyb7CKeUKSk+R44csXyZFEWZssLT3t5OS0sLtbW1TJs27d2/4D2Qmr7Oy8tDCMHw8DC9vb00NzejqioFBQVce+fHcTgUXv7tNhyKhOHyoLsEOzfsA6DuvDns3GCmRsrnz+R400lKq4utqEhK3qhKZhXSlUylKZJ5854+q4iTSfFJiUvutEyzzbq2hJxcH7WLytA1HQydmeU5BLJ8DPWZ67mzvA5mzcrH6TYHV2fPK2F0OGo1JgSyvFaUVFCSTfcJc4aosCSbk0nXhcLSHKsOlVsQYLA3SMv2NvJKs8d1tI2mzQFlBAKAKYCKEBRleziZ0FBVneDQWBSUqh+1bDtOQVUOXSfH/OICyfrT8YPdzF1ROc5GJyvXT7fL3DcqFBmHgJRJtBIyIDNNfBwyXkMiHNHMaF2R8CIR1Q3ioyrIEl5ZJohAjutoxvgmCGUkgVAUnDpEFVCCCSRFQQZUQAmPtXI7hIQnrKIrb2kmSF7OETXTbWpcB4eM4nJZAuaWJPRgFCPPj5K8NkKgxjT0vEwSXYNUL5pJ07ZWYpE4rqR/UEdzL7nTMhnsHsXlUehr6SEeSjBzQQnH93XRvO0oleeUMdI7jJ7QyCvNZaBjkPzSXBZeVMuujebfaW5xNlULywkNh1m2cjF3/PxWAmm1vg+DEIInn3yS//W//hdr167lwgsvnJDr2kwcU1J87r33Xv7v//2/XHzxxTQ2NrJy5UpycnKmjAilFtZ1dnayePHiU2a7LkkSOTk55OTkMHv2bILBIL29vRw9epQZ52dznlHLn9Y2EQ1HCeku8mtmUJjv4eBrZlQze2kVLTvbAAjkBoAeMvMzOLbPdLGWkm8wU95vilMmrzgbX6YXh1M2XbAL/OQWZnBw6zF6gcScYtpbeiiYnkt/MlKpXV5FZ1LYnA6FtoOdSLKMy+siHk2QX5KNOhKlqrqI7KIsTp4Ypqdz2KzFJMUnI2usYSEzy0uyMkVeUSaDSdcCpyzR1XSSuUsqOHSgy4qaYGz+BkwX7QPb2qiun0n3QJjRNNcDWZg3aWEIPJq54yg11BkaHXte58EulLS0m5LvQTfMdKEEeJAJYqCENCSHgtuQiCQdSCVJwh00iKanzTTQgyoiOYMj6YBipstwOsx12rqZMjOSUmSEEpDlMtNtTrNuJMc00w07aUkUjWkIXSAlS1dKQmc0oUFAMdODcQ2cTgwBzv4oenJ+S4qpRHUJSXYgRRJEJXNWyCdJJHQDsv0Y/SO0HTC9AbMyPYSHQkgSaAmdwtIchnqDxIZDzKgppmXHcU42dZNTnEFwIEIiESEWihIaipBXkkNucTZFM/PY80oTNUuriATNQeiOI90UluVx+/03k104cXtz1q5dy5133slTTz3FZZe9uxGpzelnStZ8Hn74YXbu3Mny5ct56KGHqKysZNWqVTzyyCP09fVN2LbCD4Ku6+zdu5e+vj6WLVt22vZ9SJJEZmYms2bN4mMf+xgNDQ1cdst5XHzLQlxeBadsEImqNO/rIpAbYN75c/BlepnTUMXsZZUkonFm1JYwq76cklkFFFVlk5UZYE59OXUNVWRlujDCMfqOddP86kGCvSM0v95CT1ufld7yZXqsiCS/dKwwH4+Mdbd1JetMxeX5xKNJw9FpWcTCcY7uPkFsKETPwXaKcj1kZnrIShX/036l6e8xXGnuA9m5AdS4xqE/tVA23WvNEEmIcUKUmr1p2XGcqpnjbfEH08xFMzN8lM8Y+z5CaRGS26uQ7Tdf21AkRtTxra6SKsyV1QmzamKktX8rUR0tOH7FqBpSIa0NOhbXkGPamLs0pk2OM6hZBqJCFyghFdKMNJWgatVsAORIwqrnAHglBVmSCAgJKaYh0uqPSprbgk8yBU6SZZRg3Iq7tFSnoiQhsjIIj0SZt7SCIzuO0XWslzlLKwE4vKOV6XNy6T82wMlDXeQWZ6NrBoGAn/I5xZzY04nDreDJdDPQOUReWRaJeAKHS+HQtqNk5Weyd9NBHA6Fv/3lX5NTlM1E8cwzz/DlL3+Z3/zmN6xcuXLCrmszsUxJ8ZEkidraWr7zne+wc+dOmpqauOSSS3jssceYNWsWK1eu5Be/+AXd3d2nVYji8Tjbt28nkUiwdOlSfL6Jm7p+vwQCASorK7n1f93AN/7zFtwumUQ0iuzzEhMSXa297H55P82vHyYRjnNsVys9x7ppfu0wx3efwOvy0LTlMAf+dIih3lH62gfJK83mZIvpgpCaKJcUmZNHzMdKZ02zDDgNfexdfleyLlRcXmA1E2SlDZpKafWI1BBpT2sfPS3dBE/2MXt2YXrJglCa+0AsrTkh/TmKBhUzc/F4neQVZVmzSjC2lwhADUapPcdsBfYH3AykmYRKkilQc+eV4PY4GE5bIBfIdNO2r5PCEh9qjptIfLyYCCFwjZhzNJBWfxLg0sZvXQWQwtq4n4OQJByj2rho3qEaVjoNQDgdyNG3WOvE9HFrtWUV5KTYOgxBNPmxEVVRYpr1XK8hkBQFVB0nEEuud5ANAyVZHvMAerLpgFAMMnxIfg+9rT3W30PHkR5cXgdZRX60kQSKUyEajJGZ60eSICPHj6HqOD1OhjpHycgKMOdjlRx+/RiHtx5DUiTmnFdFJByl4ZrF/PML3yK7aGyO68Py/PPP84UvfIFHH32UVatWTdh1bSaeKSk+6UiSRHV1NXfffTdvvvkmLS0tXHPNNfz2t79l9uzZXH755Tz44IOcPHnylApRKBRi69at+Hw+6uvrcblc7/5Fp4lFH5/Hv2/4FuWzpuFzy0hON5riILM4g7Jzimnda6bZimcXEU4W2FNF+LySHFr3tgNQWDbmY9aTTIfNqCkmkhQDR1rXWc8Js1ZUXJFPJDlomD6/k+4SPZLWxdad/DrFIdN1vB9DMzi25ziHX2+hoiKXmdUFVvMCYKX2AIYHxoTD6/VwbM8J8gIuipPuy2Cm3PqTDggAiZhK8+stzK4tprB4/E0umKw9te46zqw50xB6Wku3y0y5DUQ0hMus58jxsSaGeCiBlBbJGA4FDEFANfsRhEO2GhM8SEiSjBwb+3qXaqBo4/9eMxTnODHyvOU5joQOsgOSQuc3QHI4zC41IfAakiU2ibiB7EjrukyYTghKOIEjOiZKBGPIigMlFEeEkxGQIaxA1Fuax/Gmk0xPrrMYHQhRWJGDokPHoW5qlpiRUNv+dpZ84hz2bznAkV1tlFYV4cv0kFeSzeHXjzF7SSVVi8qZtbiC8EgMX4GbRZ+pofXkUTo7Oydkpf1LL73ELbfcwi9/+ctJ82azee9MefFJR5IkysvL+frXv86rr75KW1sb119/Pc899xx1dXVcfPHF3HfffbS2tk6oEA0ODrJt2zaKi4uZN2/elLD0eSu507K5d8Pd1C2rxO2SiUZ1HN4Mgn1Rys4poXReIaODputB2dxiTiTnfYqriqyfVX+XedMvrixkoNP8OL0AnLqpF5blWYKSnT82zJm+FjslGm6f0xKcwuk51mrlkvKxodWSinzUhEbrvnbig0Gml2ZRWJpNZo7Pak6QZImek8PW9VNmlp1He1ESCYqS6w8KS7LGWfr0dQ4jDEHb7uPWfiAwZ426kudKxFScmj5uxfdgzwi6RyHsHXtMSrUrC4EjYuBOi24kWUIJqcRTsz6ShJwc+HQkGw/ktOFTEUrgTXsDI8U0QiHVGlgF0EMJvOm7a0IJZElCSUaD8WQ7uSTLKKNxommbUZWoijcpflIkjnVZTWA1CWo6JI1uvbKMJiWbGBIqUrI2FQ/FICeT5q1HKa4yHTD8Xi9evynOTX86TPXiCspmF7Nz4x7qzq1BkqCt6SSzl1SBIXC4FA5vP4Yn4KFtbwc1i6v53hPf5LwLzyUzM5P29nZrpX1bW9s4l/P3yubNm/nMZz7Dgw8+yA033PC+v97m9COJySygTBBCCHp6enj66adZs2YNW7ZsYd68eTQ2NtLY2Eh1dfUHblbo7Ozk4MGDzJ07l5KSkgk++anhj2u38tDfP4kqJEQsjsctMDSd0EDEbCqYmYMW18nI8eP1+5AVBW+Gh3hUNYvO2X4iSZFw+dwkYgkcLqfpbCDAn+MnNBozc/w5fjqO9REcDuPyuBgZCJGVH7A2g1bUFtOaNBads7ic5mQDRO3SCg5sa/2zj+fWl3Nw2zEUp8LCi2pp2n2SWCRBVr6HkZ6UVY+C0HWz4w4ory6kv2uU7Jn5ZGZ6ObDdfI3sXD/DaYakdfUz6R6IMtAzyvSKfE4ml6MBzK4rQXE7Obi/E5/fTXg0QqIwAz0zLcJVdbQsF5mqIBbREaqKnjXWFqwMxxDpbcKqaaGjJFcYSIZBIsOJN66jJwRCCDSf2RjgGIwhOZ14/Q6CkkAOxlGSO3tUv4KS0JFUszYkDB1XlodEKM3ILRxDpFwmVB0lpoMw0LI9KMNRpGSdyBFNYMig+z244ypacmmdH4NQXEUEvLhUHU0HjyxIRFQQAnGym+xcN9mFObTtbCOQ48fpdjDYNcy08gIycn0c3nbM/FkuqQBJ4tiuVjRVx+V1Me+8OXQd6+UTt3ycT/3tVX/2N5taad/X18fg4CA+n89aeZ2VlfWO/37/9Kc/8alPfYqf/OQnfPGLX5wyjUk278yU7HZ7v0iSxLRp0/jKV77Cl7/8ZQYGBli/fj1r1qzhhz/8IbNnz6axsZFVq1Yxd+7c9/THmTI0bW9vZ9GiRWfUPvfzP7mM2o9V88PP/gcdbf3EdUFurp/QQISaZdUc+JPZDZdVkEnzG0cBmF43jY6DPThcCr6sAKP9QabPnma1Z9edW0PTay0AVC6YwbF97ShOBZfHRTQUY1pFAaHhENNn5FBUnk80qhEKxsb5wKVlqSzhgPERU2qoVlfNQVqnHierLIOMzAxLfIrLcmi32sYlutoGiEcTqKpKXsOYQ3F+ceY48ek42ovb58bnd5ORNd68sa9j0FwFsHwWqqpz2CUjXMkUV8q/TZGQIypRNZXeSmuPDiWQDYlxFRoh4RBS2vyPjGQItKiGlBwh8MsyiZhqNQYkQnHIcCFrWP86A4pCLGKKk/k9Kxhh1Xp9ByCQzAV+ioxb09ElCSQFn6oRTzUo6Ib5NQkNPAZ6UngcEkTCGgqgh6JoDlNw4yMRJKcTlwyJvFyioVFmZHkRQhAcDFEyqwh/lhenU+LY7jbqzq2m6U8txKMqwz3DVC6cicPpwJflQ9cMbv/Zzcy/sJa3I32lvaZpDAwM0NfXx65du5Blmfz8fAoLC8nNzR03P/bmm2/y6U9/mh/+8Ie28JxhfCQin79Eak7m2WefZc2aNWzYsIGZM2fS2NjIdddd9xdTaIZh0NTUxPDwMIsWLSIQCLzN1ac2IyMj7Ny5kzcfP0jTH48RiyQoKcvBn+EhPBwmEVfpaRtA13RKqovoOmpumSyeW0hXs9lAUPuxag6+cQSAaRVFdLf1EcgNEAlGMXSDqvkzOLrPrBfVnTubA6+bz53TUEXzVvNdcNWCMnQd/HkZGGCtX8gtyrQctLPyAlYaL39aJv3JzrWi8hx6Ws3aU/1l59C8t4PwaIy5i2dwcLsZKZXMzKMzeXaAwuJMMkvzONLURd3iMpq2ms/LyQ8wlEwbVswvw53htc6SnR9guMN8HX+mF0dVEb3J1dlC1zD85s1YAaS4jpH8mxFCIHwysiQhDScACeF3WFY6zlAC4U62USfJcCuEomm1H4dEPKKatZvkNf0+hWjaDp+ARyGY1mjgNgSJaAIj2QruiatomkBHx/C6cKRtNRWjIUiuBJeDMbPpADASCSS/GSk5Y3H0ZHRmRGOQFcArj3UxEokhKQ4CLhhpaaduxSya/mS+Eam/tI4ju1oZ7jFFftEnziEWitF1rJfwSIR558+luLKQ679xDTnTsnm/GIbB8PCwFRXF43H27NmDw+GgpqaGz3/+83znO9/ha1/7mi08ZxhTr3gxgaTmZG666SbWr19PT08P3/3udzl69CiXXnopCxYs4J577mH79u3WO+7u7m7Wrl1LJBJh2bJlZ6Tw9PX1sWPHDqqqqrj7l7fz3Se+SnF5Hn09oxzc1oqqaghDUF5XSt15s5lWXkBmslnAiCffDbsVjuxuA6CwPM+y6plRU2w1E7jTUkyh1LoESbLEwO1zcfxgJ23722nff5zmLQfJy3Ixv6HC2nqZW5RpCU9mrs8SHtkh0d8+bF3/ZNNJnIk4lXOLxzUzZKX5tGXnB+htH+TY9qPUnFM6bvanIFkTAmjd207atu5xjQijumEJD4CSdkOTBmME0tqcJckcHpUGokiS6cKRiqfkSAJ0cKW9t5MSGkZ4vMuoUxeW8EByNKd/vON5vD885m8nBCR0PKlaUEJDTRZ0JE0gp18/lkBWnMiGAbpuCY+cPAuYFnSp1BuRKLKs4JIE0WGz7iKSwqPI5h4ouSCfpjeOULtiFrXLq9j+4m4S0QS1K6qZVllIy/ZjHHy9BV0zWHLFAq649UL++ief+0DCA2MLHGtqajj33HNpaGhAkiR+8Ytf8MlPfpLs7GxUVaWlpeUDXf/D8qMf/YilS5eSkZFBYWEhq1at4tChQ5NyljONj7T4vJXMzExuuOEGVq9eTU9PDz/+8Y/p6uri6quvpq6ujttuu43ly5ezbt06lixZgts9MTYfp5OOjg727t1LbW0tM2aYe1BmLSznZ5u/w1W3XkAgL5NIRGOod5Sju9sQusHODXsZ6R3hnPNq8Pqc1C6vZNFFtZRWFZJVEMCdMVb3GE05R0uSlZIL5Po5edisn5TOMs0hwRSqlEt0SWUhQgj6O4aIByN0NZ1gelk2lXOLcSZneYqmj6U2c4szrPbljBwfPScGGO4LcmzbEbwu2TInTfe+K0wKjKEZtGxtwesbu6mnL53LzPGx5w8HqF1k7qJxJNNqhteFyM1AUscik9QNWxmOIisK4i37e+SwajpEJ9Ejqjn/EzeQkMZ26AByRCMRTqvT6AbxYBw5MdbGHTCAtNfwGAYGCs5kalIKx9E0QTxhIGk6SjRhveOXkMZ5xMkJDVmSYDSKP92PLhpDVpxIkRiEYkiShDCM5BVADIeQFBkhhOXfJqIxkGQUyUDOzaWrK0gioZFVkElkNMpA1zAOh0JucTa159dw7Z2X87WHv8Tya+uZKCRJIhAIcNlllzE6Osrf/d3f8fd///ds3ryZ+fPn881vfnPCXuu9snnzZu644w7eeOMNNm7ciKqqXHbZZR+oaeJs4yOddnuvRKNRfvazn/G9730PIQR5eXlce+21rFq1io997GPvefX1ZCKE4NixY5w4cYIFCxb8xRpVcCjIfV95hMM72sjO8yNhcKLpJIUzCxjuHU0alPqRFIngQIhAtg/Z6cQTcJNVlEFCVVETGi6Pm+5jgySiKnMbqmhONgzUfayapmT6bW5DFQffNGtKNUsqOJRMlc2uL+fwjjYA5iytoONoLzPOmYHkUGh63Xz+3CXlHExec/aCGRxONirkFGYw2DXM9Jpi4sjIQtCbtMipXTyDA8l03/TKQk4e6WHueTUc3HWC6TNzOXnEjMhmz59uXk+SmL28muholBNt/eiF2SBLCE3FCJgpKQEQT6CIpL+gEGh+U2xkVUcKxhAZY+4MImk7pEiO1C8Gze9ADsWRkw0EkkdGU2QcoTgICUPTMLJ8kNCSjQICI2C2XTtjOrouMDQVKduHHE6YXnGAz6sQjo+l43zCIBJOIDJ9yNE4UvJ5hqaheF3mFgRVA9VcxOhySsR0gawouIVOImGucJAScXRNR8gKsstlpgbDMdOBQRgosoQeSyS/V4P8ogyEIYhH4xSW5XHH/TdRUVf2Hv9y3x/Nzc1ceeWV3HbbbfzgBz+whDcUCjE6OjrpTUF9fX0UFhayefNmLrjggkk9y1TnrIp8/hLPPPMM//zP/8xPf/pTgsEgv/rVr1BVlc997nNUV1dz55138oc//AFVVd/9YpOAYRgcPHiQjo4Oli5d+o7NERk5GfzjE3/DD3/3DVAUOlsHmL1sFtMqCimuKkSSJcrmlBBMRi8z581gtD9Ib1s/LoeTE7s76DrQg2II4iMh/AGFWCxExbxpzKiZRnhkLGXUc9ysHUkSnGwZaxBIfQxmq3RwIETTpgN0t5ygbHYegSwvidjYz9rhHPszLSwzv7eTh7ogHCE7bbZopH9snigzzw9CcPDVQ9TVz6CrbWDseqkGAiHoONCOpuvo+ZljbtXpm0QBJZo2DCpJSNEEEuBWdTNllhiLZmQhkLS0KEOS8EsSkjH2mBGK4QFLRFL/x2OYTtaSLCNFEnh1Az01zCsrKKGY9TUA0d7RsXRcLE40arojKBLjIjQ5puJK/e1G42ORUkJDDkUQmk482aZthCMYBjgcClI0jixBYjRsRkcJ1VRjTUNRZGRFwulWGOoLEQlGuPiG5dz78rdPmfC0tLRw9dVXc9NNN/H9739/XI0nEAhMuvCAWWsFzqgGpcnCjnyARx55hGnTpnHllVeOe1xVVTZv3szq1atZt24dqqpy9dVX09jYyEUXXTQl0nIpu59oNMrixYvf9wreLavf4Nc/WMdo/whqLEHditkkogmQJMKjEbqO9qElNHKKsgiPRlDjGrnF2Yz0BdE1nbzSXAa7hhCGILMoQGggSsHMPIrKCwmPxGg/0kNxRQHth0yXhBlzSjjR3AlAaVURHUn3BH+Oh3DS3saX6aWqvpIj+8w26+IZeXS1mjWnmsUzaU629NbUl3Noeyt158+h7UgvsZGIVQ+qqivlaHJ4try2BF+2nwPJBoPishzreqU1xbSPJlA8TtRUI4FhYHidSIbAGU4kPx/7XRtqIlkLSqbrdB0R8CAJA2cogW4IhG/s+VIoikhbPyFU1dS5pJuAAAxVRVHSdvwkEuBMGzpVNYSqIaWuE44hI+HJ9hDRBdJoxKodOTFQZfNjtwzxcMKc5ZIFKE4kwOuAWDhhGqWqcWSfH0US6JE4SBIiEjWvpyYQigOBQFYc+Nwy4WAMEU/g8bkwNJ2aRTO46z8/T17xmFXRRNPa2soVV1zBJz/5SX76059OyVk7wzC49tprGR4e5tVXX53s40x5pt5vcBK49dZb/0x4wNy5c+mll/LQQw/R0dHB2rVryczM5G/+5m+oqKjgi1/8Is899xzRaPRtrnrqSSQS7NixA03TWLp06Qfa/X7Bp5fzi90/4lN/dxXFVcV0Hu2l+c0jDHYNEw/FKZieQ9251cxaPNNyOCiuLLJapaeV51tWMqVVJRi6oOdYPwPdfRzdcQwSCXIK/NQsnoE/02OtZAbILhwbUC0oG3unWFiWy96X9+EUGnXLKuhtH4taek70Wx+nbsxNf2ymqrrA2qYqyRKdx8Y64Hx+F01bDlJbPxN/hofu5Dpw4XTQGdZM3570Oo8sI0UTeOKaObAqmWutrf8f10j/pyMlv395JIohwJPmRycFI0hvcTKQo+q46ErSDfOx9OfEVBxpdRopmsCZCr4QSMlalxqM4ZPGmhZkCYy4htB1hBDERyNmKg0gFLU+jiZXUyi6hqwLnJKBOhoBSULWNSSHAxkBQsIpDKRoHLesExoIQiJOXlEmy6+Yx8Pbvs/31339lArPiRMnWLlyJVdfffWUFR6AO+64g/379/PEE09M9lHOCOzI5wOg6zpvvPEGa9as4emnn6a/v58rrriCxsZGLr/8cvz+ibGFfyei0Sg7d+4kEAgwb968CVmzq+s6v/nBOrY+vwuHU6GvvY/QYJh559Ww/9VDyIrMnIZZKE6F8GiM/o5BtIRGNBjD7XOhOJ1ERqM43Q5cHifhkSiSLOHJcBEdiaM4ZKqXVSKETNvBTopm5HLysJmCm7VwBkd2mzZAcxuqOPC62b00Z2klwaEIrgwf4WCUvhNjQpSVF2Ck37TcqV1WQeexPjKn5WAYBh2Hx1J7xTNyLTGqv3w+Ozc1I5wORJYf3GYzhdB1RHJqHyFgNIycJuZuv4uoLiASR1J1ZK9zXMu12yWjRjTrc9nvRo+pyHEzZecIuIkLzA60hIYn4CaamhYajaAoCprHBZKEU9MwYhrIAt3nxSsZxEOmOBkKKIaBEGNRlyR0pGQU7tJU1ISB060QT2jIyQjIaWiocQ1DkvBneYlGVLPJIBY3PecMzUzpORxIhm5uD44kPfZ0DbfXRSIaJxBw8/FPN/DZ734Sl/vdlyZ+WDo7O7n88su56KKLePjhh6fsOumvfvWrrF+/ni1btlBRUTHZxzkjsMXnQ2IYBjt27GD16tU8/fTTdHR08IlPfILGxkauvPJKMjMnziY+xejoKLt27aKoqIiampoJn28QQvD0z17k1bVvYugGTreDtn0ncDgdZOQG6Em2Xc87fw7hkQj+LB8un5tdLx8AYE7DLJrfNJsOqusraNlhNg4UVebTc8yMOrKLM/HletDiMNIXRpZlywU7b1oW/Ul7n+pFM621EEuvmM/hPScZHQwzrTyf7mTqDJLzQR1DONwOFl0yj+0vHwQgM9fPaN+oZSE0t34mw3HoGoqiyKCluT47vE5UQyCFoqAJSEudOSQBbifaSNRsqQ64iCSjFxcCWQjiaRGOz+8iOhyxJmtdHoUoMo6omQJzOCQSbhdyJAbJDjVDBhwKStJ2yEgJYjRhvds34nFwucwuNoBQGHNLnd9Mt0VMlwqEgZAkJMWBUFWzg0+SUBRzK63kduPQVTTVQMbAiJl7hnRVxRXwo4ajyIqM0yGhyDKGqjL/vGq+/O+fI6dw4oxA34nu7m6uvPJKGhoaeOSRR6ak8AghuPPOO3n66afZtGkT1dXVk32kMwZbfCYQwzDYu3evJURHjx7lkksusXYSZWdnf2ihGBgYsDanzpw585QP1m19YRfrH9hAZCSMN+AhEVNp23eCivkzObzN7EzLKsg0ay0SlFYX48/y0by1lUgwStWimRzdZdZa0kWppLaAzgOmeFQtLQOhcPxgN4Vl+XQdS+4G8jiQkSxRqqibTs/xfsrnz0B2OqyuusKyXHrbxoSobHYRgRw/LU1dzJo33aoRAbgKski4zYhGliX0NBdppwJqKI6kJBfDyZK1zsClQCKcsJypHQ5IuFyQUJGjGi63Qjz95hgMI3nTuuB0HaHryGmdkwYGko5lUCo0M7qRlbS14fH4WAQmBIQjCLcLyenEo0AsZJqBGjI4FQldN2+IRKO4vG5UxYkIR0xHBUDS1GQnm4zscCBJYERiZp1HVZFkGbdHQWgGkiworytj2eXncOUXLsTje/9p3Q9KX18fV111Feeccw7//d//PWU7Tm+//XYef/xx1q9fT01NjfV4ahuzzV/GFp9ThBCCgwcPsnr1atauXcuBAwe48MILWbVqFVdffTV5eXnvWzi6uro4cOAAtbW1FBcXn6KTvz39nYOs+ffnOfjaYZweB4oso+sGbftPUFZTytHkQGrtubM58KfDKA6F2o/NxhDQebSHRExDS2hmF5sE2QWZDCd365TWFNLR3I0/10vZOaW07e0hHkmMi3qy8gIEB0IYyfrKggvn0Nc1StfxAWobKjmQtP7JzAtYkU7ZnBKyirJNkVIUnPnZqAkV/GmigACXE8kwMEbCyOn/T9fA5wVVwxHX0ISBlErTCYFwmLUhWVbMzz0OkGW8CGKjMYRLGXMuCEdBAsmTjKaEQIQiSGkpWhExPdhSs0UeWRANRiA56OxU42iqgTAMlAw/ejBiPdclG8QNGUlONgskRVKRNHTJhRACjyKIxzScDpl4MIIr04saSSDJCh63TCySQDJ0JCGomFfKHT+7mZm10yfmD+h9MDAwwMqVK6muruaJJ57A6Tz16b0Pyl/6N/zII49wyy23nN7DnGHY4nMaEEJw5MgRS4h2797NeeedR2NjI9deey1FRUXvKERCCI4fP05rayvz588nLy/vNJ7+z3lt/Xb+uOZNuo72IAwDl9uJrMiEhiP0tfcTjySQZInpNcW0H+xEkiQWXz6f4f4ROlv7KC4vonVPao1DHn3t/WadRJEI5PiJRxLkVebi9Lg4sdfshqttqLLse/JKshnsHEJWJOYsn000plprIeYuq7TqRQ6XQk5+JsLvYyBsrhQQQiCcirWHx+2QiBsCR0JD04RpdJbqGlMkEsIs/iNA6Cr4kw0TQiDC0XF1IadbJpHQzTkawDA0JL8Pj0MiNhwBQ4eA+fU+yTBXVXg9IMuIWBzJDFuQ/D5EIoGkaghJwpXhI57WLCAQoGpIrmSdRzJIROIYQiA5nUjJf9IingAhUJwKituBGks2IiSSEY5LIhFVMXSDQG4AX8DN7MUz+dw/fpLCGWPrNU4nw8PDXH311ZSWlrJmzZoptbrEZmKxxec0I4Sgra2NNWvWsHbtWrZu3cqKFSu49tpraWxspLS0dJwQCSE4dOgQPT09LFq06JTUkD4o8WiCDY9uYvvv9xIZCdN5tIeimQW4vC5cLgd7Npk1oGmVhfS1D6CrOrJDZt55c1ATOm0HOqiaP4OmpNFpzdIqDiVTeYFcP3pCI78ij8HuIIFsH71Jn7e6j1VbX5M7LQvFIZNRkEVrUycVdSUcSwpRydxSurpDZhSQJhKGoSF5zc9FKJJMhSW3hxo6JNNLIpHArSioyVqO0A2Ez4UsgRyNmQv10q8bi43boSN0HdnnwojEkSTTMUDyOhGROAjzFWWnYi5wS0UrEuByIaJRpGQrtsstE4/pVjTj9yiEB0MInw9U1RSt5OsJQyB73DgVCTViWu1IGAhhoLjdGPG4eW5NxdAFHq+D8z+1hM//yw3WmoTJYnR0lGuvvZbc3FzWrVv3gbo3bc4cbPGZRIQQnDx5krVr17J27Vpee+016uvrrVUQ+fn5fOlLX+KTn/wkK1eunNI55NGBEBse3UTTH5sZ6BriRHMnM2tLCWT7GBkcpb3JtN+pO28OTa82A1BUXkB+aS7RcJzWfe3MmFtq7Rmq+9hs9r9qCkzJrCJ8OV762ocIDkbJKvQx0mMOlNaumEVT8nnzPj6Xky29jAxHkdwuJN/Yz8vhVKx9NUJTkf1ejJGQaYHjkDGSdRah6+D3mJ5mmm5O9addR5IFRnSs9uP0e1CNZJQRi+PK9JEy6Ra6jtetEEtbc+3zOQiPxqw3GE6XTCKSsNJnYM7gpLxHZck0+3R43WjIODDQkjUwSZasDnBhGDglgRrXcPrdqFEzuvF6FSLDEYRhIDQNd8CNP8PHtIo8Fn5iDhUrShgZHbG8yQoKCvD7/afdpDMUCnHdddfh8Xh47rnnpvTfus3EYIvPFEEIQXd3t7WTaPPmzbjdbgKBAI8//jjLly8/Y1x7Q0MhXvyvTRzaepQDbxwiNBhm+uxiCmbk09XSTXdbH5IEM+vKaNtvRinnXDAXIaC7tY/QaBhFViy3hJplVRzaehSHy8H8C+fS1nSS4d4gkgzegIvwUBQkieI50+nrCyNSBXthQLJe4PY4iBvJzjNZEA/FLAHx+JzE0jzRnIogkbaCWqSGPQ0drxOisTEx8We4icZ09HAMSZZwOGU0hwtFAj0YRlYkjFSDg6EjEgkMxWG+thDIiTgun5vUklM5EcfQDBwZPlTNwKEmTJcDIXBles2VC5hRmGTo+LJ8hMMJRNwURJdbQYsnkn5t5kZZoWk4XQp1l1Ry63duYEZ16bjfVyKRoL+/n97eXgYGBvB4PJYQvdsunYkgEonwqU99CoDf/e53Z6SZr837xxafKcjx48e57LLL8Hq9FBQUsGXLFmpqaqyI6L3uJJpMVFVl9+7d6KrO0MEIOzfu4+iuNnP5WFUhRWV5dLX20tPaR35pLpFQlEiyjbn+igWEhsIc2dVGwfQ8ulv7rFbpmbUlnDzUxeyllWhC4siediSHA8njRpJMn7RUHUZRQE9GOwhhzrWoKpIk4/W7iVoRiUA4nGAYOAwNl1MhmuYfKnTDtNVJpbdkacyJOh43nQqSvw8hBDgUiI9FR0KRAXN4UxgCt89FTAevIkyXAUPgCHhxyYJoMGa9pi/bZ31uqCoetwMNGWEI9OR8jjAMPB6FhGYKbGQ4DIbA53cyo7aUSz5zHtmz/MT0MEuWLHnXiELXdQYGBujt7aWvrw9ZlikoKLB26Uz0gGc0GuX6668nGo3y4osvTqm0ss2pxRafKUYwGGTu3LlcffXVPPDAAyiKwvDwMM888wxr1qxh48aNlJeXW8vxpuJa73g8zs6dO/F4PMyfP3/cfEbb/hNseHQL+187TE9bH063E09yW+po3wgl1cV0tHSDEPizfRTPmsZgzyhDXcMUzMinr3PYdCCQJSuqURQJI5VSMwxwOqz2ZadbwaHIRAZDCMNATnWrGanONbMJwYjFkRXZakpQvG7TiFMIjGgUyTFmdeP2OonryfTYqLnbSE7VkFQVkVCtz8HUIi2hjwmUYeDL9BBNrnwQQiALHZH2PSiGbnb2uVy4nBLxlAgZOrKigCTjdivERiMgIKcogDfgoeKcmaxYuZDljfXIskxzczP9/f3vSXjeSmqXTkqINE0jLy+PwsJC8vPzP3T7czwe54YbbmBwcJANGzaQnZ39oa5nc2Zhi88U5PXXX/+LabbR0VGee+451qxZw4svvkhxcbElRIsWLZp0IYpGo+zYsYPs7Gxqa2vf9TyHdxxjy+qtNL/ZQl/7ILpmmDUR2bS5MQwzYpGTQiM7ZAwx1hyQ2u7p9buJJc0xvX4X4WDM7AgTBpIz2TElBIrbiZ5s1zY0HY/fhRpLYGj62PMwBzxdAQ/EE6hxDSTZWkUtdB2f30k0lEheVqB43GjRGDICYQhcAS+qJjCiMSTDIJCfQTismk0BsTgurxNNMuds9LAZ8QkEssuFgoGWMO1xUrNBkgQej4PISBR/pgdvpgeX20HN0kqu+5srKasZb6ophKC5uZmBgQHq6+s/dA1FCEEwGLSEKBwOk5uba6Xn3q/PYSKR4HOf+xwdHR289NJLthHnWYgtPmcwoVCIF154gTVr1vD888+Tm5trrYJYunTpaZ8IDwaD7Ny5k2nTpjF79uwPlBpUVY2mVw9z4I0Wuo520364h6HeESKjMbTkfh93wIuuGxiajiEEbq+LWNC08nG6neiqhkAelwpLiZfTo6AmdIx4wmxC0IWVHgtkewmHNYSmIRkaAslyKHC6FFQURDwOuoHH77LMrIVh4HZKxNMaC9w+J7G0xgKEwOVzo0bjlheeYejWEjoANLOlW3I5zfShJHA4FGbWluJwOXB73Vz91xdT/4n57/gzTM2YDQ4OTojwvB3hcJi+vj56e3sZHR0lMzOTwsJCCgsL8fl87/i1qqpy6623cuTIEf7whz+Qnz85bd02k4stPh8RIpEIGzZsYM2aNTz33HP4/X6uueYaVq1axYoVK075hPjw8DC7du1i5syZVFRUTHhNKhFXeePZHex6aT/H9p5gqGeESDCG7FAQBmiqjuKQSW4gQJJAcjoRIjksKsl4/S4iIxEzGrMcrMd80URCRXbIiORFhGGYA6iAIglcbgfRyJgBqRAGCPNSQhcICXA48LgUoiNhXB4nmpBRZAk1EjMFKNnOrMimO4E3w0M8mkBoGv4sH3Maqqiur0CWJaZVFHLuqqXv62eZLjxLliw5Le3K8XjcEqLBwUF8Pp8lRBkZGePOr2kaX/rSl9i7dy+vvPIKRUVFp/x8NlMTW3w+gsRiMV5++WXWrl3L+vXrURSFa665huuuu47zzjtvwifG+/v72bt3L9XV1ZSVnZpdLn+J0FCIlp1tDHWPEBqJEBwOcXTXcQa7hug9OUAsGEcIcHqcCCS0ZB+0w+VAS+g43QqKWyYWTJiDpMkIRUvouDwOJBlzEDMZdTm9LpBlnDJERyN4MrzEoppZp3HIeH1OwqMxhDD3BkmSQEsYuH1ups8uwpfhMdN0DgfLVy7iwr9agds7MYOUkyE8b0XTNKtzrr+/H6fTiRCCkZERLrnkEv72b/+WN998k02bNk2J/Ts2k4ctPh9xVFVl06ZNrFmzhnXr1qFpmrWT6MILL/zQO4m6u7tpamqirq6OadOmTdCpJw7DMIgGY4z0BxkZGMXpciB0g0PbjtHW1MFg9zCR0QihcAi3301WYQYD3UNEB2KoEQ2X24Un4MHjd+PL8BKLxIiH4ySiKvnT8yiqyCevJJfuYz04XE6yCzLIL8tjxpwSZs6bjvc0+aEJIThw4ABDQ0OTJjxvxTAMBgcHWb9+Pd/97ncJhUK43W5+8pOfcOONN54W9/d34sEHH+Tf/u3f6O7uZsGCBfz85z9n2bJlk3qmswlbfM4iNE3j1VdftZbjhUIhVq5cSWNjI5dccsn7rg20t7fT0tLC/Pnzz9i8fSQSYceOHeTn5zNnzhwkSUJVVSuNNDAwgNfr/YtppKnAVBSedAzD4O/+7u9Yv349q1at4pVXXqG9vZ2VK1fy1FNPTUqTzJNPPslNN93EQw89RENDA/fddx+//e1vOXToEIWFhaf9PGcjtvicpaR2EqUcuAcHB62dRJdddtk7visVQtDa2srx48dZtGjRGdsiGwqF2LFjB8XFxVRXV7+tqGiaxsDAAD09PVYaqbCwkKKiotMygPlupIRneHiY+vr6KSk83/rWt1i3bh2vvPIKs2bNstKDO3fu5LOf/eyknKuhoYGlS5fywAMPWOcsKyvjzjvv5O67756UM51t2OJjg2EYbN++3RKizs5OLrvsMmsnUUZGxrjntrS00N3dzeLFi8f9vzOJYDDIjh07KCsro7Ky8j2JiK7rDA4OWu3GkiRZEVFOTs5pfwcvhKCpqYmRkZEpKzzf+973+M1vfsOmTZvGrRyYTBKJBD6fj9WrV7Nq1Srr8Ztvvpnh4WHWr18/eYc7i7DFx2YchmGwZ88eS4haW1utnUSXXnopt99+OzU1Ndxzzz3v2lI7VRkZGWHnzp2Ul5d/4K2T6QOYvb296LpuOQHk5eWd8jb3qS48Qgh++MMf8stf/pJXXnmFurq6yT6SRWdnJ6Wlpbz22musWLHCevyb3/wmmzdv5s0335zE0509TK3R+NNIPB5n4cKFSJLE7t27J/s4UwZZllm0aBH/8i//QlNTE9u3b2fp0qXcf//9VFVVsWXLFvLz84lEIpyJ71sGBwfZsWMHVVVVH2rdsSzL5ObmMmfOHM4//3wWLVqEy+Xi8OHDbNq0iT179tDV1YWmae9+sfdJSnhGR0enZI1HCMG9997LQw89xMaNG6eU8NhMHabmesDTwDe/+U1KSkrYs2fPZB9lyiJJEnV1dZSWlvLyyy+zePFirrzyStatW8c//dM/cf7551s7iQoLCye9/vFupFrCa2pqKC0tffcveI9IkkR2djbZ2dlUV1cTCoXo7e2lra2NpqYmy5KmoKDgQ++nEUKwf/9+gsEg9fX1H7pbcaIRQnD//ffzs5/9jA0bNrBgwYLJPtKfkZ+fj6Io9PT0jHu8p6dnSnZsflQ5KyOfF154gQ0bNnDvvfdO9lHOCD7/+c+TmZnJli1b+MEPfsC2bds4dOgQV155JU888QSzZ8/myiuv5D/+4z/o6OiYkhFRb28ve/fuZe7cuRMqPG9FkiQyMjKoqqpixYoVrFixgpycHDo6OtiyZQvbt2/nxIkTxGKx931twzCmvPA89NBD/PjHP+b5559nyZIlk32kt8XlclFfX8/LL79sPWYYBi+//PK4NJzNqeWsq/n09PRQX1/PunXryM/Pp6Kigl27drFw4cLJPtqUpaOjg8LCwrcdThVC0N7ebu0kev3111myZIll8zNjxoxJj4hSs0jnnHPOpLbRxmIxq0Y0PDz8vixpDMOgqalpSgvP//k//4d//Md/5He/+x3nnXfeZB/pHXnyySe5+eabefjhh1m2bBn33XcfTz31FM3NzbbrwmnirBIfIQRXXXUV5557Lvfccw9tbW22+EwgQgi6urp4+umnWbt2LVu2bGH+/PmsWrWKxsZGqqqqTrsQdXR0cOjQoSk3i5RIJMbNEvn9fkuIAoHAuJ9TKuIJhUIsWbJkyq2WFkLw61//mm984xs8++yzXHjhhZN9pPfEAw88YA2ZLly4kPvvv5+GhobJPtZZw0dCfO6++25+/OMfv+NzDh48yIYNG3jqqafYvHkziqLY4nMKEULQ399vCdEf/vAH5syZYwlRaqDzVJIagl24cOGUdk1WVXWcJY3b7R431NrU1EQ4HKa+vn5KCs8TTzzBXXfdxbp167j00ksn+0g2ZwgfCfHp6+tjYGDgHZ9TWVnJ9ddfz7PPPjvupqfrOoqicOONN/LYY4+d6qOelQghGBoaGreTqLKy0loFUVdXN+EzMm1tbbS2tp5xQ7BvXeZmGAaKojB37lwKCgomfWXGW1m9ejW33347Tz31FFddddVkH8fmDOIjIT7vlRMnTjA6Omp93tnZyeWXX87q1atpaGhg+vTpk3i6s4eRkRFrJ9Hvf/97SkpKuPbaa7nuuutYuHDhh7rBCiE4duwY7e3tLF68+IzdjGkYBnv37iUYDJKTk8PAwABCiHGzRJMtRM888wxf+MIXePzxx2lsbJzUs9iceZxV4vNW7LTb5BMKhXj++edZs2YNL7zwAnl5eZYD99KlS9/XDVYIQUtLC11dXdTX1xMIBE7hyU8dhmGwb98+IpGIlWpLOUP39PTQ29uLqqrk5+dTVFREXl7eKV+Z8Vaef/55br75Zh577DE+/elPn9bXtvloYIuPLT5Thkgkwu9//3vWrFnD7373O/x+v9U1t2LFind0DUht7uzv76e+vv6MdV94O+F5K+lbRXt7e4lGo+NmiSZ6ZcZb2bhxI5/5zGf41a9+xQ033HBKX8vmo8tZLT42U5dYLMZLL71k7SRyOp1WRHTuueeOu8Gmuzqfqs2dp4OU8ESjURYvXvyemwtCoRB9fX309PQQCoXIycmxGhYmuiV706ZNXH/99Tz44IPcdNNNk95Gb3PmYouPzZRHVVVeeeUVayeRrutcffXVVkR00003cd555/HVr351ys2/vFdSNZ5YLEZ9ff0Hjl6i0agVEY2MjFizREVFRR9alF999VU+9alP8e///u988YtftIXH5kNhi88k0tbWxg9+8AP+8Ic/0N3dTUlJCZ/97Gf59re/PeVaaqcKqZ1Ev/3tb3n66afp6+vD6/Xyv//3/+b666+fcj5n74WJEp638tb11oFAwIqI/H7/+xKPN954g+uuu44f/vCH3H777bbw2HxobPGZRF588UWefPJJbrjhBmbNmsX+/fu57bbb+NznPmdb/7wLkUiExsZGOjs7Oe+883jxxRcZHh7m8ssvZ9WqVVx22WVnRN0n5SIej8cnVHjeylsX5Hk8HkuIMjMz31FMduzYwTXXXMP3vvc97rrrLlt4bCYEW3ymGP/2b//Gf/7nf3Ls2LHJPsqU5rrrrmNwcJDnnnuOjIwMDMNg27Zt1iqI7u5uPvGJT7Bq1SquuOKKKbl3KCU8iUSCxYsXn/JGgRS6ro8banU4HJYQZWdnjxOXPXv2sHLlSu6++26+8Y1v2MJjM2HY4jPFuOeee3jxxRfZvn37ZB9lSnPgwAHKy8vfNroxDIPdu3dbQtTW1sall15KY2MjV1111ZTYQDpZwvN250gtyOvt7QVg7969lJSUUFlZyapVq7jrrru45557Jv1n9lbstPWZjS0+U4gjR45QX1/Pvffey2233TbZx/lIkNp9s3r1atauXcuhQ4e46KKLWLVqFStXriQ3N/e031R1XWfv3r2TLjxvJbUg71//9V95/PHHGR4epq6uju9973tcccUV77hafTKw09ZnNrb4nALeq9fcnDlzrM87Ojr4+Mc/zoUXXsivfvWrU33EsxIhBIcPH2bNmjWsWbOGvXv3csEFF9DY2Mg111xzWnYS6brOnj170DSNRYsWTRnhSaelpYUrrriCSy65hOnTp7N27VpOnjzJt7/9bb797W9P9vHeETttfeZgi88p4L16zaVSA52dnVx44YUsX76cRx99dNJtU84GUjY8a9asYe3atezYsYMVK1ZYy/FKSkomXIjOBOFpbW3liiuusFqqZVm25qji8TiLFy+e7CO+I3ba+szBFp9JpqOjg4suuoj6+nr++7//+x2n+G1ODamdRCkhev3111m6dCmNjY00NjZOyE6idOFZvHjxabfDeS+cOHGCyy+/nJUrV/LAAw+ccW+C7LT1mYUtPpNIR0cHF154ITNnzuSxxx4bJzz2Ot/JQQhBZ2entQrij3/8IwsWLLBWQVRWVr5vIdJ1nd27d6Pr+pQVns7OTi677DIuvvhifvGLX0yq8Nhp67MDW3wmkUcffZRbb731bf+f/WuZfIQQ9PX1WUL0yiuvMHfuXEuIampq3lWIUsJjGAaLFi2aksLT3d3NFVdcwfLly3nkkUcmPfq209ZnB7b42Ni8B1I7idavX8+aNWt46aWXqKqqsnYS1dbW/tlN70wQnt7eXq666ioWLFjAr3/96yl5xnfCTlufudjiY2PzARgZGeHZZ5+1dhJNnz7dEqIFCxYQDof5zne+w/XXX8/SpUun5E19YGCAlStXUl1dzRNPPDElGyDeCTttfWZji89ZzoMPPmjtsV+wYAE///nPWbZs2WQf64wiGAyO20mUm5tLPB4nMzOTV155hZycnMk+4p8xNDTENddcw/Tp01m9evUZOZRpp63PbGzxOYt58sknuemmm3jooYdoaGjgvvvu47e//S2HDh2isLBwso93RtLX18dFF11Eb28vsViMrKwsayfR8uXLp0RaaGRkhMbGRvLy8nj66afPSDNWmzMfW3zOYhoaGli6dCkPPPAAYE64l5WVceedd3L33XdP8unOPMLhMCtXrkSSJJ577jkURWHjxo3WTiK3280111zDqlWr/mwn0ekiGAxy3XXX4fP5ePbZZ8/Y3Uc2Zz52W8hZSiKRYMeOHVx66aXWY7Isc+mll/L6669P4snOXCRJYsWKFTz33HP4/X48Hg/XXHMNjzzyCN3d3Tz66KMA3HLLLcyaNYs77riDjRs3kkgkTsv5wuEw/+N//A+cTifr1q2zhcdmUrHF5yylv78fXdcpKioa93hRURHd3d2TdKozG5/Px49+9KO39UBzuVxcfvnl/OIXv6Czs5OnnnoKr9fLV77yFSoqKvjrv/5rnn/+eWKx2Ck5WzQa5a/+6q/QdZ3nnnuOQCBwSl7Hxua9YouPjc1pxuFwcNFFF/Ef//EftLe388wzz5Cbm8vXv/51KioquPXWW1m/fj2RSGRCXi8ej3PjjTcSCoV4/vnnp+R6CZuzD1t8zlLy8/NRFIWenp5xj/f09NhtqqcRRVE4//zz+dnPfkZrayu///3vKSsr45577qG8vJzPfvazrF69mmAw+IGun0gkuOmmm+jt7eWFF14gKytrgr8DG5sPhi0+Zykul4v6+npefvll6zHDMHj55ZdZsWLFJJ7s7EWWZZYvX869995LS0sLmzdvpqamhn/5l3+hvLyc//k//yf/7//9P0ZGRt5TK7Gqqtx6660cP36cDRs2kJubexq+Cxub94bd7XYW8+STT3LzzTfz8MMPs2zZMu677z6eeuopmpub/6wWZDN5CCHYv3+/tZPo8OHDXHzxxTQ2Nv7FnUSapnHbbbexb98+XnnlFfv3aTPlsMXnLOeBBx6whkwXLlzI/fffT0NDw2Qfy+YvIITg0KFDlhDt379/3E6igoICDMPgK1/5Clu3bmXz5s0UFxdP9rFtbP4MW3xsbM5QhBAcPXrUWgWxc+dOli9fjqZp9PT0sHnzZsrKyib7mDY2b4stPjY2HwGEEJw4cYJf//rX/PSnP+WPf/wjtbW1k30sG5u/iC0+NjY2p514PE5DQwN79uxh165dLFy4cLKPZHOasbvdbKYMP/rRj1i6dCkZGRkUFhayatUqDh06NNnHsjkFfPOb36SkpGSyj2EzidjiYzNl2Lx5M3fccQdvvPEGGzduRFVVLrvsMsLh8GQfzWYCeeGFF9iwYQP33nvvZB/FZhKx0242U5a+vj4KCwvZvHkzF1xwwWQfx2YC6Onpob6+nnXr1pGfn09FRYWddjtLsSMfmynLyMgIgD0c+RFBCMEtt9zCl7/8ZZYsWTLZx7GZZGzxsZmSGIbB1772Nc4991zmzZs32cexeQfuvvtuJEl6x/+am5v5+c9/TjAY5Fvf+tZkH9lmCmCn3WymJF/5yld44YUXePXVV5k+ffpkH8fmHejr62NgYOAdn1NZWcn111/Ps88+O86NQdd1FEXhxhtv5LHHHjvVR7WZQtjiYzPl+OpXv8r69evZsmULFRUVk30cmwnixIkTjI6OWp93dnZy+eWXs3r1ahoaGuw3GWcZjsk+gI1NCiEEd955J08//TSbNm2yhecjxowZM8Z9ntopVFVVZQvPWYgtPjZThjvuuIPHH3+c9evXk5GRYS21y8rKsrdu2th8xLDTbjZThrc6M6d45JFHuOWWW07vYWxsbE4pduRjM2Ww3wfZ2Jw92K3WNjY2NjanHVt8bGzeJ//6r/+KJEl87Wtfm+yj2NicsdjiY2PzPti2bRsPP/ww8+fPn+yj2Nic0djiY2PzHgmFQtx444388pe/JCcnZ7KPY2NzRmOLj43Ne+SOO+5g5cqVXHrppZN9FBubMx67283G5j3wxBNPsHPnTrZt2zbZR7Gx+Uhgi4+NzbvQ3t7OXXfdxcaNG/F4PJN9HBubjwT2kKmNzbuwbt06rrvuOhRFsR7TdR1JkpBlmXg8Pu7/2djYvDu2+NjYvAvBYJDjx4+Pe+zWW29lzpw5/P3f/7298sHG5gNgp91sbN6FjIyMPxMYv99PXl6eLTw2Nh8Qu9vNxsbGxua0Y6fdbGxsbGxOO3bkY2NjY2Nz2rHFx8bGxsbmtGOLj42NjY3NaccWHxsbGxub044tPjY2NjY2px1bfGxsbGxsTju2+NjY2NjYnHZs8bGxsbGxOe3Y4mNjY2Njc9qxxcfGxsbG5rRji4+NjY2NzWnHFh8bGxsbm9PO/wefcClap4XtrAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Anusha/Module0/Pandas.ipynb b/Anusha/Module0/Pandas.ipynb new file mode 100644 index 0000000..db5a649 --- /dev/null +++ b/Anusha/Module0/Pandas.ipynb @@ -0,0 +1,18829 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "P7kz3GPdqgz5" + }, + "source": [ + "### **Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oNslxjSw1bV1" + }, + "source": [ + "## **API Reference**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4AXafrt11LvI" + }, + "source": [ + "pandas.errors: Custom exception and warnings classes that are raised by pandas.\n", + "\n", + "pandas.plotting: Plotting public API.\n", + "\n", + "pandas.testing: Functions that are useful for writing tests involving pandas objects.\n", + "\n", + "pandas.api.extensions: Functions and classes for extending pandas objects.\n", + "\n", + "pandas.api.indexers: Functions and classes for rolling window indexers.\n", + "\n", + "pandas.api.interchange: DataFrame interchange protocol.\n", + "\n", + "pandas.api.types: Datatype classes and functions.\n", + "\n", + "pandas.api.typing: Classes that may be necessary for type-hinting. These are classes that are encountered as intermediate results but should not be instantiated directly by users.\n", + "\n", + "pandas.io\n", + "\n", + "pandas.tseries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "W_tyDLAKqomj" + }, + "outputs": [], + "source": [ + "In [1]: import numpy as np\n", + "\n", + "In [2]: import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WlXmSMM91ote" + }, + "source": [ + "# **Basic data structures in pandas**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r-lHSBQT1uUV" + }, + "source": [ + "Series: 1D labeled array holding data types\n", + "such as integers, strings, Python objects etc.\n", + "\n", + "DataFrame: 2D data structure that holds data like a 2D array or a table with rows and columns." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eqpRA24-2ESv" + }, + "source": [ + "# **Object creation**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qIGev81FYCii" + }, + "source": [ + "Creating a Series by passing a list of values, letting pandas create a default RangeIndex" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "-h1oNL9t0z5y", + "outputId": "836e0c35-2275-4a41-8dd6-3a4fa5362f08" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 1.0\n", + "1 3.0\n", + "2 5.0\n", + "3 NaN\n", + "4 6.0\n", + "5 8.0\n", + "dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
01.0
13.0
25.0
3NaN
46.0
58.0
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])\n", + "\n", + "In [4]: s" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pckqoiF2YNqG" + }, + "source": [ + "Creating a DataFrame by passing a NumPy array with a datetime index using date_range() and labeled columns" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PXt92f-LYEr_", + "outputId": "01a5fbe2-de13-413d-b1de-0ce8a9f73f94" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n", + " '2013-01-05', '2013-01-06'],\n", + " dtype='datetime64[ns]', freq='D')" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "In [5]: dates = pd.date_range(\"20130101\", periods=6)\n", + "\n", + "In [6]: dates" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "fGgh-H-cYXWf", + "outputId": "c5c5345a-f946-4aff-b637-47f41dd497c0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-01 -0.176561 1.045229 -1.555139 -0.417582\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084\n", + "2013-01-06 0.202263 -0.665797 1.643037 -0.536947" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-01-0.1765611.045229-1.555139-0.417582
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-03-1.3156441.2039790.737929-1.285193
2013-01-040.503960-0.0607001.610659-0.474795
2013-01-05-0.0493400.6292861.739975-0.577084
2013-01-060.202263-0.6657971.643037-0.536947
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31852914982701275,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.417582482440238,\n -0.6178152216408228,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "\n", + "In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list(\"ABCD\"))\n", + "\n", + "In [8]: df\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l8ABJqdqYjWj" + }, + "source": [ + "Creating a DataFrame by passing a dictionary of objects where the keys are the column labels and the values are the column values" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "Ey44rWe4YYK0", + "outputId": "54210e69-f658-45b2-be3d-0a36c4caa9d0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D E F\n", + "0 1.0 2013-01-02 1.0 3 test foo\n", + "1 1.0 2013-01-02 1.0 3 train foo\n", + "2 1.0 2013-01-02 1.0 3 test foo\n", + "3 1.0 2013-01-02 1.0 3 train foo" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDEF
01.02013-01-021.03testfoo
11.02013-01-021.03trainfoo
21.02013-01-021.03testfoo
31.02013-01-021.03trainfoo
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df2", + "summary": "{\n \"name\": \"df2\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2013-01-02 00:00:00\",\n \"max\": \"2013-01-02 00:00:00\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"2013-01-02 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"float32\",\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 1,\n \"samples\": [\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"train\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "In [9]: df2 = pd.DataFrame(\n", + " ...: {\n", + " ...: \"A\": 1.0,\n", + " ...: \"B\": pd.Timestamp(\"20130102\"),\n", + " ...: \"C\": pd.Series(1, index=list(range(4)), dtype=\"float32\"),\n", + " ...: \"D\": np.array([3] * 4, dtype=\"int32\"),\n", + " ...: \"E\": pd.Categorical([\"test\", \"train\", \"test\", \"train\"]),\n", + " ...: \"F\": \"foo\",\n", + " ...: }\n", + " ...: )\n", + " ...:\n", + "\n", + "In [10]: df2" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "ZkU5Gz34Yp7f", + "outputId": "ff4ef6db-f5b3-4f4e-e622-31aab416fa27" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A float64\n", + "B datetime64[s]\n", + "C float32\n", + "D int32\n", + "E category\n", + "F object\n", + "dtype: object" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
Afloat64
Bdatetime64[s]
Cfloat32
Dint32
Ecategory
Fobject
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "In [11]: df2.dtypes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LR7qmR71ZGnf" + }, + "source": [ + "In [12]: df2. # noqa: E225, E999\n", + "df2.A df2.bool\n", + "df2.abs df2.boxplot\n", + "df2.add df2.C\n", + "df2.add_prefix df2.clip\n", + "df2.add_suffix df2.columns\n", + "df2.align df2.copy\n", + "df2.all df2.count\n", + "df2.any df2.combine\n", + "df2.append df2.D\n", + "df2.apply df2.describe\n", + "df2.applymap df2.diff\n", + "df2.B df2.duplicated" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lhmBfR5xZMXc" + }, + "source": [ + "# **Viewing data**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BOL1kW6O566t" + }, + "source": [ + "Use DataFrame.head() and DataFrame.tail() to view the top and bottom rows of the frame respectively" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "JzwVd19xY_Zw", + "outputId": "6bdd2e15-4c65-4618-f206-1410d5ed30e0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-01 -0.176561 1.045229 -1.555139 -0.417582\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-01-0.1765611.045229-1.555139-0.417582
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-03-1.3156441.2039790.737929-1.285193
2013-01-040.503960-0.0607001.610659-0.474795
2013-01-05-0.0493400.6292861.739975-0.577084
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31852914982701275,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.417582482440238,\n -0.6178152216408228,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "In [13]: df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "yRCv3pyK6B8H", + "outputId": "6008651c-24a4-4718-fa02-57d57e30862b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084\n", + "2013-01-06 0.202263 -0.665797 1.643037 -0.536947" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-040.503960-0.0607001.610659-0.474795
2013-01-05-0.0493400.6292861.739975-0.577084
2013-01-060.202263-0.6657971.643037-0.536947
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.27702792846164276,\n \"min\": -0.0493403725701433,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.5039600990079922,\n -0.0493403725701433,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6480051457594239,\n \"min\": -0.665796925662916,\n \"max\": 0.6292863209873714,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.0606999130249917,\n 0.6292863209873714,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06729014910071417,\n \"min\": 1.6106594496991524,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 3,\n \"samples\": [\n 1.6106594496991524,\n 1.739974990916445,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.051537850120189695,\n \"min\": -0.5770839943675303,\n \"max\": -0.4747949705564016,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.4747949705564016,\n -0.5770839943675303,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "\n", + "In [14]: df.tail(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ACedy096Co8", + "outputId": "a1c44563-1d97-410a-b710-95fe2715f206" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n", + " '2013-01-05', '2013-01-06'],\n", + " dtype='datetime64[ns]', freq='D')" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "In [15]: df.index\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6m8NNe1V8wQc", + "outputId": "ab71dec7-1d31-44ca-da49-c3cf3fe8b690" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['A', 'B', 'C', 'D'], dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "In [16]: df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ac7Os7Gj80QA", + "outputId": "56d52f60-e277-4c63-ee4f-e02af829d431" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[-0.17656121, 1.04522889, -1.55513896, -0.41758248],\n", + " [ 0.00193081, 0.41797028, -0.48902371, -0.61781522],\n", + " [-1.31564372, 1.20397934, 0.73792943, -1.28519336],\n", + " [ 0.5039601 , -0.06069991, 1.61065945, -0.47479497],\n", + " [-0.04934037, 0.62928632, 1.73997499, -0.57708399],\n", + " [ 0.2022627 , -0.66579693, 1.64303703, -0.53694706]])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "In [17]: df.to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "I_aL3CBr880J", + "outputId": "985ad39a-1b53-40ed-824a-c064acfcf910" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A float64\n", + "B datetime64[s]\n", + "C float32\n", + "D int32\n", + "E category\n", + "F object\n", + "dtype: object" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
Afloat64
Bdatetime64[s]
Cfloat32
Dint32
Ecategory
Fobject
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "In [18]: df2.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W3EdqBd99EUH", + "outputId": "50a3f519-a1a3-46c1-ce32-b3574ffdfae2" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],\n", + " [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],\n", + " [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],\n", + " [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']],\n", + " dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "In [19]: df2.to_numpy()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yW_1CvU99IH7" + }, + "source": [ + "describe() shows a quick statistic summary of your data" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "qa0Vy22A9FBv", + "outputId": "c4d3ef13-f30b-46e6-8872-62a8bbe4ec44" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "count 6.000000 6.000000 6.000000 6.000000\n", + "mean -0.138899 0.428328 0.614573 -0.651570\n", + "std 0.623484 0.701278 1.360680 0.318529\n", + "min -1.315644 -0.665797 -1.555139 -1.285193\n", + "25% -0.144756 0.058968 -0.182285 -0.607632\n", + "50% -0.023705 0.523628 1.174294 -0.557016\n", + "75% 0.152180 0.941243 1.634943 -0.490333\n", + "max 0.503960 1.203979 1.739975 -0.417582" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
count6.0000006.0000006.0000006.000000
mean-0.1388990.4283280.614573-0.651570
std0.6234840.7012781.3606800.318529
min-1.315644-0.665797-1.555139-1.285193
25%-0.1447560.058968-0.182285-0.607632
50%-0.0237050.5236281.174294-0.557016
75%0.1521800.9412431.634943-0.490333
max0.5039601.2039791.739975-0.417582
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.2180404637770756,\n \"min\": -1.3156437154605234,\n \"max\": 6.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -0.13889861503875559,\n -0.023704781926848165,\n 6.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0413916235354153,\n \"min\": -0.665796925662916,\n \"max\": 6.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.4283279984961201,\n 0.5236282989217553,\n 6.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.1783126540782884,\n \"min\": -1.5551389591609266,\n \"max\": 6.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.6145730377479451,\n 1.174294438262618,\n 6.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.348417655724661,\n \"min\": -1.2851933564312215,\n \"max\": 6.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -0.6515695136912792,\n -0.557015525539496,\n 6.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 14 + } + ], + "source": [ + "In [20]: df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "ZaqYiuib9N9t", + "outputId": "0a902067-cdf7-4b3b-9b7d-34ef9321a148" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06\n", + "A -0.176561 0.001931 -1.315644 0.503960 -0.049340 0.202263\n", + "B 1.045229 0.417970 1.203979 -0.060700 0.629286 -0.665797\n", + "C -1.555139 -0.489024 0.737929 1.610659 1.739975 1.643037\n", + "D -0.417582 -0.617815 -1.285193 -0.474795 -0.577084 -0.536947" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
2013-01-012013-01-022013-01-032013-01-042013-01-052013-01-06
A-0.1765610.001931-1.3156440.503960-0.0493400.202263
B1.0452290.4179701.203979-0.0607000.629286-0.665797
C-1.555139-0.4890240.7379291.6106591.7399751.643037
D-0.417582-0.617815-1.285193-0.474795-0.577084-0.536947
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"2013-01-01 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.066423293385628,\n \"min\": -1.5551389591609266,\n \"max\": 1.0452288874072917,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.0452288874072917,\n -0.417582482440238,\n -0.17656120650293758\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2013-01-02 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4752444347592328,\n \"min\": -0.6178152216408228,\n \"max\": 0.4179702768561392,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.4179702768561392,\n -0.6178152216408228,\n 0.0019308087164469712\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2013-01-03 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3251666340309507,\n \"min\": -1.3156437154605234,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.2039793444138258,\n -1.2851933564312215,\n -1.3156437154605234\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2013-01-04 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9044161488315889,\n \"min\": -0.4747949705564016,\n \"max\": 1.6106594496991524,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.0606999130249917,\n -0.4747949705564016,\n 0.5039600990079922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2013-01-05 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9999340807493794,\n \"min\": -0.5770839943675303,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.6292863209873714,\n -0.5770839943675303,\n -0.0493403725701433\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2013-01-06 00:00:00\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0596947833025707,\n \"min\": -0.665796925662916,\n \"max\": 1.6430370313717337,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.665796925662916,\n -0.5369470567114617,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "In [21]: df.T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OycsRkoj9hRe" + }, + "source": [ + "DataFrame.sort_index() sorts by an axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "LFlRYZ6V9dGn", + "outputId": "abab4cf7-626a-4c1b-9639-91673ee1294a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " D C B A\n", + "2013-01-01 -0.417582 -1.555139 1.045229 -0.176561\n", + "2013-01-02 -0.617815 -0.489024 0.417970 0.001931\n", + "2013-01-03 -1.285193 0.737929 1.203979 -1.315644\n", + "2013-01-04 -0.474795 1.610659 -0.060700 0.503960\n", + "2013-01-05 -0.577084 1.739975 0.629286 -0.049340\n", + "2013-01-06 -0.536947 1.643037 -0.665797 0.202263" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DCBA
2013-01-01-0.417582-1.5551391.045229-0.176561
2013-01-02-0.617815-0.4890240.4179700.001931
2013-01-03-1.2851930.7379291.203979-1.315644
2013-01-04-0.4747951.610659-0.0607000.503960
2013-01-05-0.5770841.7399750.629286-0.049340
2013-01-06-0.5369471.643037-0.6657970.202263
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31852914982701275,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.417582482440238,\n -0.6178152216408228,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "In [22]: df.sort_index(axis=1, ascending=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6p5JM7xr9viz" + }, + "source": [ + "DataFrame.sort_values() sorts by values" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "OYNa5wCp9nGv", + "outputId": "cc5436ab-d0d8-46cc-c26b-0d03e045f7d4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-06 0.202263 -0.665797 1.643037 -0.536947\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084\n", + "2013-01-01 -0.176561 1.045229 -1.555139 -0.417582\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-060.202263-0.6657971.643037-0.536947
2013-01-040.503960-0.0607001.610659-0.474795
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-05-0.0493400.6292861.739975-0.577084
2013-01-01-0.1765611.045229-1.555139-0.417582
2013-01-03-1.3156441.2039790.737929-1.285193
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.20226269657663168,\n 0.5039600990079922,\n -1.3156437154605234\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.665796925662916,\n -0.0606999130249917,\n 1.2039793444138258\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012954,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.6430370313717337,\n 1.6106594496991524,\n 0.7379294268260835\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31852914982701275,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.5369470567114617,\n -0.4747949705564016,\n -1.2851933564312215\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "In [23]: df.sort_values(by=\"B\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wkNHZRsX9xkQ" + }, + "source": [ + "# **Selection**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ETetf-4fVhrv" + }, + "source": [ + "1. Getitem ([])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "80zhtjaJ94Of", + "outputId": "aed32d13-525b-49ed-fd19-17a5a7f307ab" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2013-01-01 -0.176561\n", + "2013-01-02 0.001931\n", + "2013-01-03 -1.315644\n", + "2013-01-04 0.503960\n", + "2013-01-05 -0.049340\n", + "2013-01-06 0.202263\n", + "Freq: D, Name: A, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01-0.176561
2013-01-020.001931
2013-01-03-1.315644
2013-01-040.503960
2013-01-05-0.049340
2013-01-060.202263
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "In [24]: df[\"A\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "v0s_v9BxVxKo", + "outputId": "460f3910-76d9-4fb2-e832-c1f0b270f319" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-01 -0.176561 1.045229 -1.555139 -0.417582\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-01-0.1765611.045229-1.555139-0.417582
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-03-1.3156441.2039790.737929-1.285193
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df[0:3]\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7147693087598678,\n \"min\": -1.3156437154605234,\n \"max\": 0.0019308087164469712,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n -1.3156437154605234\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.41562509677056514,\n \"min\": 0.4179702768561392,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 3,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n 1.2039793444138258\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1474739175170787,\n \"min\": -1.5551389591609266,\n \"max\": 0.7379294268260835,\n \"num_unique_values\": 3,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 0.7379294268260835\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.45428246596720695,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.417582482440238,\n -0.6178152216408228,\n -1.2851933564312215\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "In [25]: df[0:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "JlmhX5QrV2Qo", + "outputId": "1643484b-092a-4197-815b-fda0cb44d3eb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-03-1.3156441.2039790.737929-1.285193
2013-01-040.503960-0.0607001.610659-0.474795
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df[\\\"20130102\\\":\\\"20130104\\\"]\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9397689500349874,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0019308087164469712,\n -1.3156437154605234,\n 0.5039600990079922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6385333493195873,\n \"min\": -0.0606999130249917,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.4179702768561392,\n 1.2039793444138258,\n -0.0606999130249917\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.054809705189519,\n \"min\": -0.4890237131648172,\n \"max\": 1.6106594496991524,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.4890237131648172,\n 0.7379294268260835,\n 1.6106594496991524\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4325494019656552,\n \"min\": -1.2851933564312215,\n \"max\": -0.4747949705564016,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.6178152216408228,\n -1.2851933564312215,\n -0.4747949705564016\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 20 + } + ], + "source": [ + "\n", + "In [26]: df[\"20130102\":\"20130104\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "elFO2rLGV564" + }, + "source": [ + "2. Selection by label" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210 + }, + "id": "4_Liiid-V2x5", + "outputId": "f387d343-9556-4bda-8937-d554549b2107" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A -0.176561\n", + "B 1.045229\n", + "C -1.555139\n", + "D -0.417582\n", + "Name: 2013-01-01 00:00:00, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
2013-01-01
A-0.176561
B1.045229
C-1.555139
D-0.417582
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ], + "source": [ + "In [27]: df.loc[dates[0]]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "dwj98X0YWECa", + "outputId": "c74b15bc-48c1-45c3-b256-c5161a8bbeb9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B\n", + "2013-01-01 -0.176561 1.045229\n", + "2013-01-02 0.001931 0.417970\n", + "2013-01-03 -1.315644 1.203979\n", + "2013-01-04 0.503960 -0.060700\n", + "2013-01-05 -0.049340 0.629286\n", + "2013-01-06 0.202263 -0.665797" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AB
2013-01-01-0.1765611.045229
2013-01-020.0019310.417970
2013-01-03-1.3156441.203979
2013-01-040.503960-0.060700
2013-01-05-0.0493400.629286
2013-01-060.202263-0.665797
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 22 + } + ], + "source": [ + "In [28]: df.loc[:, [\"A\", \"B\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "n2W4GdP3Wj7P", + "outputId": "0ccb68e8-62d4-40bf-d9da-1763d7985b88" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B\n", + "2013-01-02 0.001931 0.417970\n", + "2013-01-03 -1.315644 1.203979\n", + "2013-01-04 0.503960 -0.060700" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AB
2013-01-020.0019310.417970
2013-01-03-1.3156441.203979
2013-01-040.503960-0.060700
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9397689500349874,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0019308087164469712,\n -1.3156437154605234,\n 0.5039600990079922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6385333493195873,\n \"min\": -0.0606999130249917,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.4179702768561392,\n 1.2039793444138258,\n -0.0606999130249917\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "In [29]: df.loc[\"20130102\":\"20130104\", [\"A\", \"B\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z-icLblWWnWf", + "outputId": "5f585269-c0a9-45f5-d1c8-0e12f3f1afe0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "-0.17656120650293758" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "In [30]: df.loc[dates[0], \"A\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u6RrHbJfWrRn", + "outputId": "95eb28ab-6fd0-4a9b-edbe-641a410b0532" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "-0.17656120650293758" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "In [31]: df.at[dates[0], \"A\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vCVO2UfhWyIS" + }, + "source": [ + "3. Selection by position" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210 + }, + "id": "9YES-Jc4Wvuy", + "outputId": "6d730b61-c830-43c6-b9d2-75aecb0b5fc6" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A 0.503960\n", + "B -0.060700\n", + "C 1.610659\n", + "D -0.474795\n", + "Name: 2013-01-04 00:00:00, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
2013-01-04
A0.503960
B-0.060700
C1.610659
D-0.474795
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "In [32]: df.iloc[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "lxnx1fwwW3jo", + "outputId": "70ff4aa2-896f-495c-f217-f1c2867ec7d4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B\n", + "2013-01-04 0.50396 -0.060700\n", + "2013-01-05 -0.04934 0.629286" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AB
2013-01-040.50396-0.060700
2013-01-05-0.049340.629286
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.39124251548661426,\n \"min\": -0.0493403725701433,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 2,\n \"samples\": [\n -0.0493403725701433,\n 0.5039600990079922\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4878939449955099,\n \"min\": -0.0606999130249917,\n \"max\": 0.6292863209873714,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.6292863209873714,\n -0.0606999130249917\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 27 + } + ], + "source": [ + "In [33]: df.iloc[3:5, 0:2]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "vl4vZqgxW7bA", + "outputId": "58c14b4c-bcba-4937-8916-a4ffb5e62a4d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A C\n", + "2013-01-02 0.001931 -0.489024\n", + "2013-01-03 -1.315644 0.737929\n", + "2013-01-05 -0.049340 1.739975" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AC
2013-01-020.001931-0.489024
2013-01-03-1.3156440.737929
2013-01-05-0.0493401.739975
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7463416908501141,\n \"min\": -1.3156437154605234,\n \"max\": 0.0019308087164469712,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0019308087164469712,\n -1.3156437154605234,\n -0.0493403725701433\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.116388861690723,\n \"min\": -0.4890237131648172,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.4890237131648172,\n 0.7379294268260835,\n 1.739974990916445\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 28 + } + ], + "source": [ + "In [34]: df.iloc[[1, 2, 4], [0, 2]]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "b83Glq1yW_RV", + "outputId": "818fd1c7-4db1-4e54-dab1-bc5ffaac5daf" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-03-1.3156441.2039790.737929-1.285193
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9316658807641744,\n \"min\": -1.3156437154605234,\n \"max\": 0.0019308087164469712,\n \"num_unique_values\": 2,\n \"samples\": [\n -1.3156437154605234,\n 0.0019308087164469712\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5557923417441554,\n \"min\": 0.4179702768561392,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.2039793444138258,\n 0.4179702768561392\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8675868854856932,\n \"min\": -0.4890237131648172,\n \"max\": 0.7379294268260835,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.7379294268260835,\n -0.4890237131648172\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.47190760472592064,\n \"min\": -1.2851933564312215,\n \"max\": -0.6178152216408228,\n \"num_unique_values\": 2,\n \"samples\": [\n -1.2851933564312215,\n -0.6178152216408228\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 29 + } + ], + "source": [ + "In [35]: df.iloc[1:3, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "lPQaswfTXCV7", + "outputId": "d3b3aa04-d6b7-438c-8af6-f0dd96fc95a2" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " B C\n", + "2013-01-01 1.045229 -1.555139\n", + "2013-01-02 0.417970 -0.489024\n", + "2013-01-03 1.203979 0.737929\n", + "2013-01-04 -0.060700 1.610659\n", + "2013-01-05 0.629286 1.739975\n", + "2013-01-06 -0.665797 1.643037" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BC
2013-01-011.045229-1.555139
2013-01-020.417970-0.489024
2013-01-031.2039790.737929
2013-01-04-0.0607001.610659
2013-01-050.6292861.739975
2013-01-06-0.6657971.643037
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 30 + } + ], + "source": [ + "In [36]: df.iloc[:, 1:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2d-fNWrDXHf9", + "outputId": "5d31fb3b-3996-4536-de0d-900b2d9b42b5" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.4179702768561392" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "source": [ + "In [37]: df.iloc[1, 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iABMRdzBXKA4", + "outputId": "16a2323f-199a-406f-e109-a9ae5acd82dc" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.4179702768561392" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ], + "source": [ + "In [38]: df.iat[1, 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vmJ6fgwPXRXn" + }, + "source": [ + "3. Boolean indexing" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "oqgSdnrDXMub", + "outputId": "055eb48b-ae77-4b1c-b257-16b136d6bbc5" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795\n", + "2013-01-06 0.202263 -0.665797 1.643037 -0.536947" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-020.0019310.417970-0.489024-0.617815
2013-01-040.503960-0.0607001.610659-0.474795
2013-01-060.202263-0.6657971.643037-0.536947
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df[df[\\\"A\\\"] > 0]\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25271446213664694,\n \"min\": 0.0019308087164469712,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0019308087164469712,\n 0.5039600990079922,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5431112370162852,\n \"min\": -0.665796925662916,\n \"max\": 0.4179702768561392,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.4179702768561392,\n -0.0606999130249917,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.221706505303351,\n \"min\": -0.4890237131648172,\n \"max\": 1.6430370313717337,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.4890237131648172,\n 1.6106594496991524,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07171393882725921,\n \"min\": -0.6178152216408228,\n \"max\": -0.4747949705564016,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.6178152216408228,\n -0.4747949705564016,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 33 + } + ], + "source": [ + "In [39]: df[df[\"A\"] > 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "ScJnC3-mXaVZ", + "outputId": "2bf65142-99db-4e51-b1ed-f4f63012701f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "2013-01-01 NaN 1.045229 NaN NaN\n", + "2013-01-02 0.001931 0.417970 NaN NaN\n", + "2013-01-03 NaN 1.203979 0.737929 NaN\n", + "2013-01-04 0.503960 NaN 1.610659 NaN\n", + "2013-01-05 NaN 0.629286 1.739975 NaN\n", + "2013-01-06 0.202263 NaN 1.643037 NaN" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
2013-01-01NaN1.045229NaNNaN
2013-01-020.0019310.417970NaNNaN
2013-01-03NaN1.2039790.737929NaN
2013-01-040.503960NaN1.610659NaN
2013-01-05NaN0.6292861.739975NaN
2013-01-060.202263NaN1.643037NaN
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df[df > 0]\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25271446213664694,\n \"min\": 0.0019308087164469712,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0019308087164469712,\n 0.5039600990079922,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.36336392302065795,\n \"min\": 0.4179702768561392,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.4179702768561392,\n 0.6292863209873714,\n 1.0452288874072917\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4665601574412762,\n \"min\": 0.7379294268260835,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.6106594496991524,\n 1.6430370313717337,\n 0.7379294268260835\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 34 + } + ], + "source": [ + "In [40]: df[df > 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "HUzTF-VLXe19" + }, + "outputs": [], + "source": [ + "In [41]: df2 = df.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "XPvadRMzXjoZ" + }, + "outputs": [], + "source": [ + "In [42]: df2[\"E\"] = [\"one\", \"one\", \"two\", \"three\", \"four\", \"three\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "1o3FlhyOXll2", + "outputId": "48e40f3e-ba0d-435a-fe20-adc731db29df" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D E\n", + "2013-01-01 -0.176561 1.045229 -1.555139 -0.417582 one\n", + "2013-01-02 0.001931 0.417970 -0.489024 -0.617815 one\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193 two\n", + "2013-01-04 0.503960 -0.060700 1.610659 -0.474795 three\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084 four\n", + "2013-01-06 0.202263 -0.665797 1.643037 -0.536947 three" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDE
2013-01-01-0.1765611.045229-1.555139-0.417582one
2013-01-020.0019310.417970-0.489024-0.617815one
2013-01-03-1.3156441.2039790.737929-1.285193two
2013-01-040.503960-0.0607001.610659-0.474795three
2013-01-05-0.0493400.6292861.739975-0.577084four
2013-01-060.202263-0.6657971.643037-0.536947three
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df2", + "summary": "{\n \"name\": \"df2\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6234836765017497,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.17656120650293758,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7012775334847292,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 1.0452288874072917,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31852914982701275,\n \"min\": -1.2851933564312215,\n \"max\": -0.417582482440238,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.417582482440238,\n -0.6178152216408228,\n -0.5369470567114617\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"two\",\n \"four\",\n \"one\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 37 + } + ], + "source": [ + "In [43]: df2" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "jQdl4mGGXn6s", + "outputId": "ddb81c4b-1ef8-4e7e-fe18-77c0284b0f3b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D E\n", + "2013-01-03 -1.315644 1.203979 0.737929 -1.285193 two\n", + "2013-01-05 -0.049340 0.629286 1.739975 -0.577084 four" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDE
2013-01-03-1.3156441.2039790.737929-1.285193two
2013-01-05-0.0493400.6292861.739975-0.577084four
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df2[df2[\\\"E\\\"]\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8954116807969816,\n \"min\": -1.3156437154605234,\n \"max\": -0.0493403725701433,\n \"num_unique_values\": 2,\n \"samples\": [\n -0.0493403725701433,\n -1.3156437154605234\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.40636933396544533,\n \"min\": 0.6292863209873714,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.6292863209873714,\n 1.2039793444138258\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7085532134261938,\n \"min\": 0.7379294268260835,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.739974990916445,\n 0.7379294268260835\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5007089317369162,\n \"min\": -1.2851933564312215,\n \"max\": -0.5770839943675303,\n \"num_unique_values\": 2,\n \"samples\": [\n -0.5770839943675303,\n -1.2851933564312215\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"four\",\n \"two\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 38 + } + ], + "source": [ + "\n", + "In [44]: df2[df2[\"E\"].isin([\"two\", \"four\"])]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dA9LMml5XvQx" + }, + "source": [ + "5. Setting" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "Atjvd-wYXr8i" + }, + "outputs": [], + "source": [ + "In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range(\"20130102\", periods=6))" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "ZFuCsrIsX882" + }, + "outputs": [], + "source": [ + "In [47]: df[\"F\"] = s1" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "qPw-KzcPX9pm" + }, + "outputs": [], + "source": [ + "In [48]: df.at[dates[0], \"A\"] = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "FvhWpCl0YBtw" + }, + "outputs": [], + "source": [ + "In [49]: df.iat[0, 1] = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "8tqvPY-qYE3d" + }, + "outputs": [], + "source": [ + "In [50]: df.loc[:, \"D\"] = np.array([5] * len(df))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "d4Pgs7MEYIrv", + "outputId": "6e2510bf-c4a3-4d8b-f2d4-e2cba05b323b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F\n", + "2013-01-01 0.000000 0.000000 -1.555139 5.0 NaN\n", + "2013-01-02 0.001931 0.417970 -0.489024 5.0 1.0\n", + "2013-01-03 -1.315644 1.203979 0.737929 5.0 2.0\n", + "2013-01-04 0.503960 -0.060700 1.610659 5.0 3.0\n", + "2013-01-05 -0.049340 0.629286 1.739975 5.0 4.0\n", + "2013-01-06 0.202263 -0.665797 1.643037 5.0 5.0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDF
2013-01-010.0000000.000000-1.5551395.0NaN
2013-01-020.0019310.417970-0.4890245.01.0
2013-01-03-1.3156441.2039790.7379295.02.0
2013-01-040.503960-0.0607001.6106595.03.0
2013-01-05-0.0493400.6292861.7399755.04.0
2013-01-060.202263-0.6657971.6430375.05.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6255138984084928,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n 0.0019308087164469712,\n 0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6449442081136393,\n \"min\": -0.665796925662916,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n 0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3606798756012952,\n \"min\": -1.5551389591609266,\n \"max\": 1.739974990916445,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n 1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 5.0,\n \"max\": 5.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5811388300841898,\n \"min\": 1.0,\n \"max\": 5.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 44 + } + ], + "source": [ + "In [51]: df" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "muAyyt_xYL2B" + }, + "outputs": [], + "source": [ + "In [52]: df2 = df.copy()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "K4bArN73YQUy" + }, + "outputs": [], + "source": [ + "\n", + "In [53]: df2[df2 > 0] = -df2" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "Kap8_ZwRYS5S", + "outputId": "43668ca2-a110-4a37-eb6c-60ac9bbf2500" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F\n", + "2013-01-01 0.000000 0.000000 -1.555139 -5.0 NaN\n", + "2013-01-02 -0.001931 -0.417970 -0.489024 -5.0 -1.0\n", + "2013-01-03 -1.315644 -1.203979 -0.737929 -5.0 -2.0\n", + "2013-01-04 -0.503960 -0.060700 -1.610659 -5.0 -3.0\n", + "2013-01-05 -0.049340 -0.629286 -1.739975 -5.0 -4.0\n", + "2013-01-06 -0.202263 -0.665797 -1.643037 -5.0 -5.0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDF
2013-01-010.0000000.000000-1.555139-5.0NaN
2013-01-02-0.001931-0.417970-0.489024-5.0-1.0
2013-01-03-1.315644-1.203979-0.737929-5.0-2.0
2013-01-04-0.503960-0.060700-1.610659-5.0-3.0
2013-01-05-0.049340-0.629286-1.739975-5.0-4.0
2013-01-06-0.202263-0.665797-1.643037-5.0-5.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df2", + "summary": "{\n \"name\": \"df2\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5122354766464214,\n \"min\": -1.3156437154605234,\n \"max\": 0.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n -0.0019308087164469712,\n -0.20226269657663168\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4448418358105003,\n \"min\": -1.2039793444138258,\n \"max\": 0.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n -0.4179702768561392,\n -0.665796925662916\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5378411561015154,\n \"min\": -1.739974990916445,\n \"max\": -0.4890237131648172,\n \"num_unique_values\": 6,\n \"samples\": [\n -1.5551389591609266,\n -0.4890237131648172,\n -1.6430370313717337\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": -5.0,\n \"max\": -5.0,\n \"num_unique_values\": 1,\n \"samples\": [\n -5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5811388300841898,\n \"min\": -5.0,\n \"max\": -1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 47 + } + ], + "source": [ + "In [54]: df2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lCyJFKwNYX-f" + }, + "source": [ + "# **Missing data**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QmC_z8exbAXr" + }, + "source": [ + "np.nan represents missing data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LQjhykAHbFlc" + }, + "source": [ + "Reindexing allows you to change/add/delete the index on a specified axis" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "mpMDc0G7YVH-" + }, + "outputs": [], + "source": [ + "In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + [\"E\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "Sl6rtWocbKx3" + }, + "outputs": [], + "source": [ + "In [56]: df1.loc[dates[0] : dates[1], \"E\"] = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "_-oHYEWhbNHH", + "outputId": "366a6863-1258-4b6c-a38a-b04470175498" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F E\n", + "2013-01-01 0.000000 0.000000 -1.555139 5.0 NaN 1.0\n", + "2013-01-02 0.001931 0.417970 -0.489024 5.0 1.0 1.0\n", + "2013-01-03 -1.315644 1.203979 0.737929 5.0 2.0 NaN\n", + "2013-01-04 0.503960 -0.060700 1.610659 5.0 3.0 NaN" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDFE
2013-01-010.0000000.000000-1.5551395.0NaN1.0
2013-01-020.0019310.417970-0.4890245.01.01.0
2013-01-03-1.3156441.2039790.7379295.02.0NaN
2013-01-040.503960-0.0607001.6106595.03.0NaN
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df1", + "summary": "{\n \"name\": \"df1\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7790962698400623,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.0019308087164469712,\n 0.5039600990079922,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.582687660952198,\n \"min\": -0.0606999130249917,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.4179702768561392,\n -0.0606999130249917,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.387226999901585,\n \"min\": -1.5551389591609266,\n \"max\": 1.6106594496991524,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.4890237131648172,\n 1.6106594496991524,\n -1.5551389591609266\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 5.0,\n \"max\": 5.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0,\n \"min\": 1.0,\n \"max\": 3.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 50 + } + ], + "source": [ + "\n", + "In [57]: df1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-yJ8kjZubUu3" + }, + "source": [ + "DataFrame.dropna() drops any rows that have missing data" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81 + }, + "id": "HczKvQpwbPGy", + "outputId": "dffef272-931f-4276-b37f-495416c446cb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F E\n", + "2013-01-02 0.001931 0.41797 -0.489024 5.0 1.0 1.0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDFE
2013-01-020.0019310.41797-0.4890245.01.01.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df1\",\n \"rows\": 1,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 0.0019308087164469712,\n \"max\": 0.0019308087164469712,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0019308087164469712\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 0.4179702768561392,\n \"max\": 0.4179702768561392,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.4179702768561392\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": -0.4890237131648172,\n \"max\": -0.4890237131648172,\n \"num_unique_values\": 1,\n \"samples\": [\n -0.4890237131648172\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 5.0,\n \"max\": 5.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 51 + } + ], + "source": [ + "In [58]: df1.dropna(how=\"any\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GdBwW9W3bdxm" + }, + "source": [ + "\n", + "DataFrame.fillna() fills missing data" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "wYpwJej3bZNQ", + "outputId": "cad14a07-b8c7-4529-b8d0-f2071b29a2c8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F E\n", + "2013-01-01 0.000000 0.000000 -1.555139 5.0 5.0 1.0\n", + "2013-01-02 0.001931 0.417970 -0.489024 5.0 1.0 1.0\n", + "2013-01-03 -1.315644 1.203979 0.737929 5.0 2.0 5.0\n", + "2013-01-04 0.503960 -0.060700 1.610659 5.0 3.0 5.0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDFE
2013-01-010.0000000.000000-1.5551395.05.01.0
2013-01-020.0019310.417970-0.4890245.01.01.0
2013-01-03-1.3156441.2039790.7379295.02.05.0
2013-01-040.503960-0.0607001.6106595.03.05.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df1\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7790962698400623,\n \"min\": -1.3156437154605234,\n \"max\": 0.5039600990079922,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.0019308087164469712,\n 0.5039600990079922,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.582687660952198,\n \"min\": -0.0606999130249917,\n \"max\": 1.2039793444138258,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.4179702768561392,\n -0.0606999130249917,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.387226999901585,\n \"min\": -1.5551389591609266,\n \"max\": 1.6106594496991524,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.4890237131648172,\n 1.6106594496991524,\n -1.5551389591609266\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 5.0,\n \"max\": 5.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.707825127659933,\n \"min\": 1.0,\n \"max\": 5.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.309401076758503,\n \"min\": 1.0,\n \"max\": 5.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 52 + } + ], + "source": [ + "In [59]: df1.fillna(value=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VTQzlJCUbmWU" + }, + "source": [ + "isna() gets the boolean mask where values are nan" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "y5eKZu8vbi-q", + "outputId": "0fa9665f-3746-411e-ba44-61864b6f23cb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F E\n", + "2013-01-01 False False False False True False\n", + "2013-01-02 False False False False False False\n", + "2013-01-03 False False False False False True\n", + "2013-01-04 False False False False False True" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDFE
2013-01-01FalseFalseFalseFalseTrueFalse
2013-01-02FalseFalseFalseFalseFalseFalse
2013-01-03FalseFalseFalseFalseFalseTrue
2013-01-04FalseFalseFalseFalseFalseTrue
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 2,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 2,\n \"samples\": [\n true\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 53 + } + ], + "source": [ + "In [60]: pd.isna(df1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dUaMC2-EbwRl" + }, + "source": [ + "# **Operations**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xGD3ojvdu8jr" + }, + "source": [ + "Stats: exclude missing data" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "Unm1tqfAbrgN", + "outputId": "c9cf8823-41f1-48ef-be08-8b09a67dbe69" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A -0.109472\n", + "B 0.254123\n", + "C 0.614573\n", + "D 5.000000\n", + "F 3.000000\n", + "dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
A-0.109472
B0.254123
C0.614573
D5.000000
F3.000000
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 54 + } + ], + "source": [ + "In [61]: df.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "lBiyU3SlQxT_", + "outputId": "288a6605-00b4-4b97-923b-bae365b103bb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2013-01-01 0.861215\n", + "2013-01-02 1.186175\n", + "2013-01-03 1.525253\n", + "2013-01-04 2.010784\n", + "2013-01-05 2.263984\n", + "2013-01-06 2.235901\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2013-01-010.861215
2013-01-021.186175
2013-01-031.525253
2013-01-042.010784
2013-01-052.263984
2013-01-062.235901
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ], + "source": [ + "In [62]: df.mean(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "-dqKYDV0Q24K", + "outputId": "0485d609-2903-48a2-d200-1442a39018ab" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2013-01-01 NaN\n", + "2013-01-02 NaN\n", + "2013-01-03 1.0\n", + "2013-01-04 3.0\n", + "2013-01-05 5.0\n", + "2013-01-06 NaN\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2013-01-01NaN
2013-01-02NaN
2013-01-031.0
2013-01-043.0
2013-01-055.0
2013-01-06NaN
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 56 + } + ], + "source": [ + "In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)\n", + "\n", + "In [64]: s" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "wXWhsY8BQ_nh", + "outputId": "39fe4668-ec18-46e8-ee20-60427e899bf1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F\n", + "2013-01-01 NaN NaN NaN NaN NaN\n", + "2013-01-02 NaN NaN NaN NaN NaN\n", + "2013-01-03 -2.315644 0.203979 -0.262071 4.0 1.0\n", + "2013-01-04 -2.496040 -3.060700 -1.389341 2.0 0.0\n", + "2013-01-05 -5.049340 -4.370714 -3.260025 0.0 -1.0\n", + "2013-01-06 NaN NaN NaN NaN NaN" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDF
2013-01-01NaNNaNNaNNaNNaN
2013-01-02NaNNaNNaNNaNNaN
2013-01-03-2.3156440.203979-0.2620714.01.0
2013-01-04-2.496040-3.060700-1.3893412.00.0
2013-01-05-5.049340-4.370714-3.2600250.0-1.0
2013-01-06NaNNaNNaNNaNNaN
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5288875855235267,\n \"min\": -5.049340372570144,\n \"max\": -2.3156437154605234,\n \"num_unique_values\": 3,\n \"samples\": [\n -2.3156437154605234,\n -2.496039900992008,\n -5.049340372570144\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.3559174780261674,\n \"min\": -4.370713679012629,\n \"max\": 0.2039793444138258,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.2039793444138258,\n -3.0606999130249917,\n -4.370713679012629\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5142615772191397,\n \"min\": -3.260025009083555,\n \"max\": -0.26207057317391647,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.26207057317391647,\n -1.3893405503008476,\n -3.260025009083555\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0,\n \"min\": 0.0,\n \"max\": 4.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 4.0,\n 2.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0,\n \"min\": -1.0,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 1.0,\n 0.0,\n -1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 57 + } + ], + "source": [ + "In [65]: df.sub(s, axis=\"index\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3yZdZMXSRNBu" + }, + "source": [ + "User defined functions: DataFrame.agg() and DataFrame.transform() applies a user defined function that reduces or broadcasts its result respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "weI2snHuRFPi", + "outputId": "24c05cdd-0fa1-4600-84e7-111ce29b97ff" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A -0.613042\n", + "B 1.423090\n", + "C 3.441609\n", + "D 28.000000\n", + "F 16.800000\n", + "dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
A-0.613042
B1.423090
C3.441609
D28.000000
F16.800000
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 58 + } + ], + "source": [ + "In [66]: df.agg(lambda x: np.mean(x) * 5.6)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "0HcGZE5MRcc6", + "outputId": "af6d6138-d58f-44d5-f19d-8a969925c5ce" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D F\n", + "2013-01-01 0.000000 0.000000 -157.380063 506.0 NaN\n", + "2013-01-02 0.195398 42.298592 -49.489200 506.0 101.2\n", + "2013-01-03 -133.143144 121.842710 74.678458 506.0 202.4\n", + "2013-01-04 51.000762 -6.142831 162.998736 506.0 303.6\n", + "2013-01-05 -4.993246 63.683776 176.085469 506.0 404.8\n", + "2013-01-06 20.468985 -67.378649 166.275348 506.0 506.0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDF
2013-01-010.0000000.000000-157.380063506.0NaN
2013-01-020.19539842.298592-49.489200506.0101.2
2013-01-03-133.143144121.84271074.678458506.0202.4
2013-01-0451.000762-6.142831162.998736506.0303.6
2013-01-05-4.99324663.683776176.085469506.0404.8
2013-01-0620.468985-67.378649166.275348506.0506.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 63.30200651893947,\n \"min\": -133.14314400460498,\n \"max\": 51.000762019608814,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n 0.19539784210443348,\n 20.468984893555128\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 65.26835386110028,\n \"min\": -67.3786488770871,\n \"max\": 121.84270965467917,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.0,\n 42.29859201784129,\n -67.3786488770871\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 137.70080341085108,\n \"min\": -157.38006266708578,\n \"max\": 176.08546908074425,\n \"num_unique_values\": 6,\n \"samples\": [\n -157.38006266708578,\n -49.4891997722795,\n 166.27534757481945\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 506.0,\n \"max\": 506.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 506.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 160.01124960452,\n \"min\": 101.2,\n \"max\": 506.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 202.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 59 + } + ], + "source": [ + "In [67]: df.transform(lambda x: x * 101.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O2YitDr9RhrL" + }, + "source": [ + "Value Counts" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "id": "wrM6vvK7ReKy", + "outputId": "3e03297e-df21-4f4e-df0d-8d7286f8bc0b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 3\n", + "1 1\n", + "2 0\n", + "3 2\n", + "4 4\n", + "5 2\n", + "6 4\n", + "7 4\n", + "8 2\n", + "9 2\n", + "dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
03
11
20
32
44
52
64
74
82
92
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "In [68]: s = pd.Series(np.random.randint(0, 7, size=10))\n", + "\n", + "In [69]: s" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "LitL7bKyRo3E", + "outputId": "9265ad57-86df-42c5-a2b6-0d7cf7731619" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2 4\n", + "4 3\n", + "3 1\n", + "1 1\n", + "0 1\n", + "Name: count, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count
24
43
31
11
01
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "In [70]: s.value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2PThQ9wsRvf3" + }, + "source": [ + "String Methods" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 366 + }, + "id": "KwhNw3kcRsIK", + "outputId": "d9a1a43f-231e-422a-e3bc-b51a4ae5e467" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 a\n", + "1 b\n", + "2 c\n", + "3 aaba\n", + "4 baca\n", + "5 NaN\n", + "6 caba\n", + "7 dog\n", + "8 cat\n", + "dtype: object" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
0a
1b
2c
3aaba
4baca
5NaN
6caba
7dog
8cat
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "In [71]: s = pd.Series([\"A\", \"B\", \"C\", \"Aaba\", \"Baca\", np.nan, \"CABA\", \"dog\", \"cat\"])\n", + "\n", + "In [72]: s.str.lower()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "10xD30KyR7AH" + }, + "source": [ + "# **Merge**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kT_SXqvqSBab" + }, + "source": [ + "Concat" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "id7OLU-PR27G", + "outputId": "6cabc65f-ddeb-4023-be45-0ae5be89ab45" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3\n", + "0 0.490360 0.010630 -1.469411 -0.701555\n", + "1 -0.223030 0.188428 0.329515 -1.043646\n", + "2 -1.765333 0.582814 0.976416 1.328257\n", + "3 -0.937951 0.526924 -1.540908 0.083997\n", + "4 0.383417 0.048477 1.334946 0.845943\n", + "5 2.471920 1.808514 1.353239 -1.200967\n", + "6 -1.494510 -0.702269 0.063251 -1.633973\n", + "7 0.431061 0.456757 -2.411493 -1.691382\n", + "8 1.880040 -0.451532 0.288611 -0.268862\n", + "9 -0.915097 -1.868042 -0.454740 -0.182717" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
00.4903600.010630-1.469411-0.701555
1-0.2230300.1884280.329515-1.043646
2-1.7653330.5828140.9764161.328257
3-0.9379510.526924-1.5409080.083997
40.3834170.0484771.3349460.845943
52.4719201.8085141.353239-1.200967
6-1.494510-0.7022690.063251-1.633973
70.4310610.456757-2.411493-1.691382
81.880040-0.4515320.288611-0.268862
9-0.915097-1.868042-0.454740-0.182717
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3874347333767592,\n \"min\": -1.7653334566904928,\n \"max\": 2.4719199494234565,\n \"num_unique_values\": 10,\n \"samples\": [\n 1.8800399420621532,\n -0.22302999919497066,\n 2.4719199494234565\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9594673485676204,\n \"min\": -1.8680416605506263,\n \"max\": 1.8085143702959805,\n \"num_unique_values\": 10,\n \"samples\": [\n -0.45153162180450596,\n 0.18842794211587593,\n 1.8085143702959805\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 2,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2946036535234604,\n \"min\": -2.4114928918352896,\n \"max\": 1.3532388136492448,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.28861057116454886,\n 0.32951494895621486,\n 1.3532388136492448\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 3,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0084872639521272,\n \"min\": -1.6913819117237123,\n \"max\": 1.3282574633914612,\n \"num_unique_values\": 10,\n \"samples\": [\n -0.268862091356421,\n -1.0436458102378459,\n -1.200967372142144\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 63 + } + ], + "source": [ + "In [73]: df = pd.DataFrame(np.random.randn(10, 4))\n", + "\n", + "In [74]: df" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "nIyvrzeaSKZ_", + "outputId": "bff8c39d-20ac-4b18-8778-48de4ab3d3da" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3\n", + "0 0.490360 0.010630 -1.469411 -0.701555\n", + "1 -0.223030 0.188428 0.329515 -1.043646\n", + "2 -1.765333 0.582814 0.976416 1.328257\n", + "3 -0.937951 0.526924 -1.540908 0.083997\n", + "4 0.383417 0.048477 1.334946 0.845943\n", + "5 2.471920 1.808514 1.353239 -1.200967\n", + "6 -1.494510 -0.702269 0.063251 -1.633973\n", + "7 0.431061 0.456757 -2.411493 -1.691382\n", + "8 1.880040 -0.451532 0.288611 -0.268862\n", + "9 -0.915097 -1.868042 -0.454740 -0.182717" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
00.4903600.010630-1.469411-0.701555
1-0.2230300.1884280.329515-1.043646
2-1.7653330.5828140.9764161.328257
3-0.9379510.526924-1.5409080.083997
40.3834170.0484771.3349460.845943
52.4719201.8085141.353239-1.200967
6-1.494510-0.7022690.063251-1.633973
70.4310610.456757-2.411493-1.691382
81.880040-0.4515320.288611-0.268862
9-0.915097-1.868042-0.454740-0.182717
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3874347333767592,\n \"min\": -1.7653334566904928,\n \"max\": 2.4719199494234565,\n \"num_unique_values\": 10,\n \"samples\": [\n 1.8800399420621532,\n -0.22302999919497066,\n 2.4719199494234565\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9594673485676204,\n \"min\": -1.8680416605506263,\n \"max\": 1.8085143702959805,\n \"num_unique_values\": 10,\n \"samples\": [\n -0.45153162180450596,\n 0.18842794211587593,\n 1.8085143702959805\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 2,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2946036535234604,\n \"min\": -2.4114928918352896,\n \"max\": 1.3532388136492448,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.28861057116454886,\n 0.32951494895621486,\n 1.3532388136492448\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 3,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0084872639521272,\n \"min\": -1.6913819117237123,\n \"max\": 1.3282574633914612,\n \"num_unique_values\": 10,\n \"samples\": [\n -0.268862091356421,\n -1.0436458102378459,\n -1.200967372142144\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 64 + } + ], + "source": [ + "# break it into pieces\n", + "In [75]: pieces = [df[:3], df[3:7], df[7:]]\n", + "\n", + "In [76]: pd.concat(pieces)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9Pvq0MisSSxW" + }, + "source": [ + "Join" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "id": "bi4m0wp8SOkf", + "outputId": "40b6b245-769a-4402-fb89-bc56e3048bc4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key lval\n", + "0 foo 1\n", + "1 foo 2" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keylval
0foo1
1foo2
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "left", + "summary": "{\n \"name\": \"left\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "In [77]: left = pd.DataFrame({\"key\": [\"foo\", \"foo\"], \"lval\": [1, 2]})\n", + "\n", + "In [78]: right = pd.DataFrame({\"key\": [\"foo\", \"foo\"], \"rval\": [4, 5]})\n", + "\n", + "In [79]: left\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "id": "yOuv796pSslz", + "outputId": "75f29e4d-0aaa-48bf-adfd-97caf9254d8a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key rval\n", + "0 foo 4\n", + "1 foo 5" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keyrval
0foo4
1foo5
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "right", + "summary": "{\n \"name\": \"right\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 66 + } + ], + "source": [ + "In [80]: right" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "pPV7TCWZSiTs", + "outputId": "67af552d-c23b-483f-c4fc-1e29a0dc68e5" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key lval rval\n", + "0 foo 1 4\n", + "1 foo 1 5\n", + "2 foo 2 4\n", + "3 foo 2 5" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keylvalrval
0foo14
1foo15
2foo24
3foo25
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 67 + } + ], + "source": [ + "In [81]: pd.merge(left, right, on=\"key\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "id": "cEkNRaX8SnnE", + "outputId": "fda45870-edb6-4d61-ccba-4bbbe63d07d7" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key lval\n", + "0 foo 1\n", + "1 bar 2" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keylval
0foo1
1bar2
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "left", + "summary": "{\n \"name\": \"left\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bar\",\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 68 + } + ], + "source": [ + "In [82]: left = pd.DataFrame({\"key\": [\"foo\", \"bar\"], \"lval\": [1, 2]})\n", + "\n", + "In [83]: right = pd.DataFrame({\"key\": [\"foo\", \"bar\"], \"rval\": [4, 5]})\n", + "\n", + "In [84]: left" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "id": "Okhdq3YAS8iK", + "outputId": "dcf8be09-7c7f-4a88-cd6a-6e347b5a23cf" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key rval\n", + "0 foo 4\n", + "1 bar 5" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keyrval
0foo4
1bar5
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "right", + "summary": "{\n \"name\": \"right\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bar\",\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 5,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 69 + } + ], + "source": [ + "In [85]: right" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "_b7x60IVTCML", + "outputId": "54b6cbc9-64b2-4c6c-a6e7-729e4a6db132" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " key lval rval\n", + "0 foo 1 4\n", + "1 bar 2 5" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
keylvalrval
0foo14
1bar25
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"key\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bar\",\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rval\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 5,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 70 + } + ], + "source": [ + "In [86]: pd.merge(left, right, on=\"key\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kJiY2h5dTIX3" + }, + "source": [ + "# **Grouping**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VdIV-VmyTWIX" + }, + "source": [ + "Splitting the data into groups based on some criteria\n", + "\n", + "Applying a function to each group independently\n", + "\n", + "Combining the results into a data structure" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "toRTTiMPTFxx", + "outputId": "e8500d32-b3e0-40f4-8e3e-965177cab46f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D\n", + "0 foo one 0.336159 0.545625\n", + "1 bar one -0.055781 0.723968\n", + "2 foo two 0.473502 0.669092\n", + "3 bar three 0.590595 -1.536383\n", + "4 foo two -0.034710 -1.156395\n", + "5 bar two -0.311617 -0.249302\n", + "6 foo one 0.401551 -0.319112\n", + "7 foo three -0.674127 -1.362838" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCD
0fooone0.3361590.545625
1barone-0.0557810.723968
2footwo0.4735020.669092
3barthree0.590595-1.536383
4footwo-0.034710-1.156395
5bartwo-0.311617-0.249302
6fooone0.401551-0.319112
7foothree-0.674127-1.362838
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bar\",\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"one\",\n \"two\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4370869152022397,\n \"min\": -0.6741268343368153,\n \"max\": 0.5905952503307661,\n \"num_unique_values\": 8,\n \"samples\": [\n -0.05578091859056336,\n -0.31161724983420097\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9325211268641463,\n \"min\": -1.5363833083292078,\n \"max\": 0.723968118946496,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.723968118946496,\n -0.2493015364626516\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 71 + } + ], + "source": [ + "In [87]: df = pd.DataFrame(\n", + " ....: {\n", + " ....: \"A\": [\"foo\", \"bar\", \"foo\", \"bar\", \"foo\", \"bar\", \"foo\", \"foo\"],\n", + " ....: \"B\": [\"one\", \"one\", \"two\", \"three\", \"two\", \"two\", \"one\", \"three\"],\n", + " ....: \"C\": np.random.randn(8),\n", + " ....: \"D\": np.random.randn(8),\n", + " ....: }\n", + " ....: )\n", + " ....:\n", + "\n", + "In [88]: df" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "RlRufU6ATdO6", + "outputId": "3a96cbd1-40e7-4b15-e8f5-5513034ce97f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " C D\n", + "A \n", + "bar 0.223197 -1.061717\n", + "foo 0.502375 -1.623627" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD
A
bar0.223197-1.061717
foo0.502375-1.623627
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"foo\",\n \"bar\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.19740881411245834,\n \"min\": 0.2231970819060018,\n \"max\": 0.5023753041558296,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.5023753041558296,\n 0.2231970819060018\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3973307379379499,\n \"min\": -1.623627244184922,\n \"max\": -1.0617167258453633,\n \"num_unique_values\": 2,\n \"samples\": [\n -1.623627244184922,\n -1.0617167258453633\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 72 + } + ], + "source": [ + "In [89]: df.groupby(\"A\")[[\"C\", \"D\"]].sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 269 + }, + "id": "Vg_9mt1HTlmV", + "outputId": "c0f59d3f-ee52-4919-938f-ec5c7b65b813" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " C D\n", + "A B \n", + "bar one -0.055781 0.723968\n", + " three 0.590595 -1.536383\n", + " two -0.311617 -0.249302\n", + "foo one 0.737710 0.226513\n", + " three -0.674127 -1.362838\n", + " two 0.438792 -0.487303" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD
AB
barone-0.0557810.723968
three0.590595-1.536383
two-0.311617-0.249302
fooone0.7377100.226513
three-0.674127-1.362838
two0.438792-0.487303
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5572214062268978,\n \"min\": -0.6741268343368153,\n \"max\": 0.7377098009949654,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.05578091859056336,\n 0.5905952503307661,\n 0.43879233749767954\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8821574380895825,\n \"min\": -1.5363833083292078,\n \"max\": 0.723968118946496,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.723968118946496,\n -1.5363833083292078,\n -0.48730270906902107\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 73 + } + ], + "source": [ + "In [90]: df.groupby([\"A\", \"B\"]).sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qvNfhfpxTsKm" + }, + "source": [ + "# **Reshaping**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H_gRDfbCTyIJ" + }, + "source": [ + "Stack" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WVci1uyxvNsc" + }, + "source": [ + "stack() method โ€œcompressesโ€ a level in the DataFrameโ€™s columns" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "JEyByB0mToj5" + }, + "outputs": [], + "source": [ + "In [91]: arrays = [\n", + " ....: [\"bar\", \"bar\", \"baz\", \"baz\", \"foo\", \"foo\", \"qux\", \"qux\"],\n", + " ....: [\"one\", \"two\", \"one\", \"two\", \"one\", \"two\", \"one\", \"two\"],\n", + " ....: ]\n", + " ....:\n", + "\n", + "In [92]: index = pd.MultiIndex.from_arrays(arrays, names=[\"first\", \"second\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "id": "BprLLppPu-Mx" + }, + "outputs": [], + "source": [ + "In [93]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[\"A\", \"B\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "3LOfx_-qvDzl", + "outputId": "389d3bd7-b4c1-452a-e6be-d94f21edfa86" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B\n", + "first second \n", + "bar one -0.500005 -0.978698\n", + " two 0.993277 2.014332\n", + "baz one -0.197767 0.025507\n", + " two 1.331446 -0.172642" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AB
firstsecond
barone-0.500005-0.978698
two0.9932772.014332
bazone-0.1977670.025507
two1.331446-0.172642
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df2", + "summary": "{\n \"name\": \"df2\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8919493137138382,\n \"min\": -0.5000049569356786,\n \"max\": 1.3314456178529264,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.9932768164915622,\n 1.3314456178529264,\n -0.5000049569356786\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2712831717065876,\n \"min\": -0.9786982816028207,\n \"max\": 2.0143322048847714,\n \"num_unique_values\": 4,\n \"samples\": [\n 2.0143322048847714,\n -0.17264177744416143,\n -0.9786982816028207\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 76 + } + ], + "source": [ + "In [94]: df2 = df[:4]\n", + "\n", + "In [95]: df2" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 366 + }, + "id": "_LQ9brEdvFiU", + "outputId": "5b1b09ba-3cfe-4b47-dc61-9dcf13e24300" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "first second \n", + "bar one A -0.500005\n", + " B -0.978698\n", + " two A 0.993277\n", + " B 2.014332\n", + "baz one A -0.197767\n", + " B 0.025507\n", + " two A 1.331446\n", + " B -0.172642\n", + "dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
firstsecond
baroneA-0.500005
B-0.978698
twoA0.993277
B2.014332
bazoneA-0.197767
B0.025507
twoA1.331446
B-0.172642
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 77 + } + ], + "source": [ + "In [96]: stacked = df2.stack(future_stack=True)\n", + "\n", + "In [97]: stacked" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "aO_L_5emvTEj", + "outputId": "9c693c38-6931-49cb-ea58-cbdfc32a0d6a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B\n", + "first second \n", + "bar one -0.500005 -0.978698\n", + " two 0.993277 2.014332\n", + "baz one -0.197767 0.025507\n", + " two 1.331446 -0.172642" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AB
firstsecond
barone-0.500005-0.978698
two0.9932772.014332
bazone-0.1977670.025507
two1.331446-0.172642
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"stacked\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8919493137138382,\n \"min\": -0.5000049569356786,\n \"max\": 1.3314456178529264,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.9932768164915622,\n 1.3314456178529264,\n -0.5000049569356786\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2712831717065876,\n \"min\": -0.9786982816028207,\n \"max\": 2.0143322048847714,\n \"num_unique_values\": 4,\n \"samples\": [\n 2.0143322048847714,\n -0.17264177744416143,\n -0.9786982816028207\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 78 + } + ], + "source": [ + "In [98]: stacked.unstack()" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "YufwNE-_vYES", + "outputId": "e8399456-f2e1-49cc-b488-8064fd11732b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "second one two\n", + "first \n", + "bar A -0.500005 0.993277\n", + " B -0.978698 2.014332\n", + "baz A -0.197767 1.331446\n", + " B 0.025507 -0.172642" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
secondonetwo
first
barA-0.5000050.993277
B-0.9786982.014332
bazA-0.1977671.331446
B0.025507-0.172642
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"stacked\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"one\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.43443365007021745,\n \"min\": -0.9786982816028207,\n \"max\": 0.02550689162893835,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.9786982816028207,\n 0.02550689162893835,\n -0.5000049569356786\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"two\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.9141365048908767,\n \"min\": -0.17264177744416143,\n \"max\": 2.0143322048847714,\n \"num_unique_values\": 4,\n \"samples\": [\n 2.0143322048847714,\n -0.17264177744416143,\n 0.9932768164915622\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 79 + } + ], + "source": [ + "In [99]: stacked.unstack(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "lThqoo2Uvdgu", + "outputId": "3301dfdd-0001-43c6-8eff-70e5af98dfad" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "first bar baz\n", + "second \n", + "one A -0.500005 -0.197767\n", + " B -0.978698 0.025507\n", + "two A 0.993277 1.331446\n", + " B 2.014332 -0.172642" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
firstbarbaz
second
oneA-0.500005-0.197767
B-0.9786980.025507
twoA0.9932771.331446
B2.014332-0.172642
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"stacked\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"bar\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3744817357813306,\n \"min\": -0.9786982816028207,\n \"max\": 2.0143322048847714,\n \"num_unique_values\": 4,\n \"samples\": [\n -0.9786982816028207,\n 2.0143322048847714,\n -0.5000049569356786\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"baz\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7300679514552133,\n \"min\": -0.19776674190459978,\n \"max\": 1.3314456178529264,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.02550689162893835,\n -0.17264177744416143,\n -0.19776674190459978\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 80 + } + ], + "source": [ + "In [100]: stacked.unstack(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FXEiUBRCvn0N" + }, + "source": [ + "Pivot tables" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gVCIHHxDvsoh" + }, + "source": [ + "pivot_table() pivots a DataFrame specifying the values, index and columns" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 426 + }, + "id": "HpQ3cZ_8vkqI", + "outputId": "d2651b5f-3d81-4a7c-b335-d3b3ca508e2c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " A B C D E\n", + "0 one A foo -0.241121 1.538183\n", + "1 one B foo -0.667869 -2.203686\n", + "2 two C foo 0.255034 2.191415\n", + "3 three A bar -0.775433 -1.592763\n", + "4 one B bar -1.499948 -1.230801\n", + "5 one C bar 1.111792 0.097635\n", + "6 two A foo -0.191653 -0.055661\n", + "7 three B foo -0.122200 -1.517827\n", + "8 one C foo 0.842303 0.915991\n", + "9 one A bar -0.819833 0.079429\n", + "10 two B bar -0.591528 -1.282339\n", + "11 three C bar -0.455518 -0.431882" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ABCDE
0oneAfoo-0.2411211.538183
1oneBfoo-0.667869-2.203686
2twoCfoo0.2550342.191415
3threeAbar-0.775433-1.592763
4oneBbar-1.499948-1.230801
5oneCbar1.1117920.097635
6twoAfoo-0.191653-0.055661
7threeBfoo-0.122200-1.517827
8oneCfoo0.8423030.915991
9oneAbar-0.8198330.079429
10twoBbar-0.591528-1.282339
11threeCbar-0.455518-0.431882
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 12,\n \"fields\": [\n {\n \"column\": \"A\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"one\",\n \"two\",\n \"three\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"A\",\n \"B\",\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bar\",\n \"foo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7272053094746393,\n \"min\": -1.49994751773312,\n \"max\": 1.1117916410965365,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.5915277906907453,\n -0.8198333082200823\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"E\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3501733069380282,\n \"min\": -2.203685882994015,\n \"max\": 2.19141526712094,\n \"num_unique_values\": 12,\n \"samples\": [\n -1.2823386054367893,\n 0.07942886733464351\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 81 + } + ], + "source": [ + "In [101]: df = pd.DataFrame(\n", + " .....: {\n", + " .....: \"A\": [\"one\", \"one\", \"two\", \"three\"] * 3,\n", + " .....: \"B\": [\"A\", \"B\", \"C\"] * 4,\n", + " .....: \"C\": [\"foo\", \"foo\", \"foo\", \"bar\", \"bar\", \"bar\"] * 2,\n", + " .....: \"D\": np.random.randn(12),\n", + " .....: \"E\": np.random.randn(12),\n", + " .....: }\n", + " .....: )\n", + " .....:\n", + "\n", + "In [102]: df" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "cFNrnn-qvxr2", + "outputId": "9afd20c1-a032-42bf-d16f-d4274bd943c5" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "C bar foo\n", + "A B \n", + "one A -0.819833 -0.241121\n", + " B -1.499948 -0.667869\n", + " C 1.111792 0.842303\n", + "three A -0.775433 NaN\n", + " B NaN -0.122200\n", + " C -0.455518 NaN\n", + "two A NaN -0.191653\n", + " B -0.591528 NaN\n", + " C NaN 0.255034" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Cbarfoo
AB
oneA-0.819833-0.241121
B-1.499948-0.667869
C1.1117920.842303
threeA-0.775433NaN
BNaN-0.122200
C-0.455518NaN
twoANaN-0.191653
B-0.591528NaN
CNaN0.255034
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 9,\n \"fields\": [\n {\n \"column\": \"bar\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.870186824421371,\n \"min\": -1.49994751773312,\n \"max\": 1.1117916410965365,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.8198333082200823,\n -1.49994751773312,\n -0.5915277906907453\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"foo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.515314207861556,\n \"min\": -0.6678690599200581,\n \"max\": 0.8423031802384363,\n \"num_unique_values\": 6,\n \"samples\": [\n -0.24112064522785165,\n -0.6678690599200581,\n 0.2550339524541242\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 82 + } + ], + "source": [ + "In [103]: pd.pivot_table(df, values=\"D\", index=[\"A\", \"B\"], columns=[\"C\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "J_bV7KESv5tS" + }, + "source": [ + "# **Time series**" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 115 + }, + "id": "MM1pLdoXv22g", + "outputId": "471b8f13-1015-40a3-ffda-b00e5ec816c6" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-01-01 25027\n", + "Freq: 5min, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-01-0125027
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 83 + } + ], + "source": [ + "In [104]: rng = pd.date_range(\"1/1/2012\", periods=100, freq=\"s\")\n", + "\n", + "In [105]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)\n", + "\n", + "In [106]: ts.resample(\"5Min\").sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JzZPcPhJwHBL" + }, + "source": [ + "Series.tz_localize() localizes a time series to a time zone" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "bFZpxwdYwBos", + "outputId": "c00f0a7a-5d4b-47ac-90c6-3a71222b1124" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-03-06 1.971688\n", + "2012-03-07 -0.011293\n", + "2012-03-08 1.320048\n", + "2012-03-09 -1.042392\n", + "2012-03-10 -0.666740\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-03-061.971688
2012-03-07-0.011293
2012-03-081.320048
2012-03-09-1.042392
2012-03-10-0.666740
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 84 + } + ], + "source": [ + "In [107]: rng = pd.date_range(\"3/6/2012 00:00\", periods=5, freq=\"D\")\n", + "\n", + "In [108]: ts = pd.Series(np.random.randn(len(rng)), rng)\n", + "\n", + "In [109]: ts" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "s8P2PH5LWfD6", + "outputId": "0d675894-c291-44f3-d2d5-bb2b98eff1c0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-03-06 00:00:00+00:00 1.971688\n", + "2012-03-07 00:00:00+00:00 -0.011293\n", + "2012-03-08 00:00:00+00:00 1.320048\n", + "2012-03-09 00:00:00+00:00 -1.042392\n", + "2012-03-10 00:00:00+00:00 -0.666740\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-03-06 00:00:00+00:001.971688
2012-03-07 00:00:00+00:00-0.011293
2012-03-08 00:00:00+00:001.320048
2012-03-09 00:00:00+00:00-1.042392
2012-03-10 00:00:00+00:00-0.666740
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 85 + } + ], + "source": [ + "\n", + "In [110]: ts_utc = ts.tz_localize(\"UTC\")\n", + "\n", + "In [111]: ts_utc" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n5mraBDzbDrP" + }, + "source": [ + "Series.tz_convert() converts a timezones aware time series to another time zone" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "G5rtIwPkWn0Y", + "outputId": "7313fe53-f796-4e22-adc7-6cf5b6e6c7d0" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-03-06 0.687452\n", + "2012-03-07 -2.342170\n", + "2012-03-08 -0.571990\n", + "2012-03-09 1.145736\n", + "2012-03-10 -0.348871\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-03-060.687452
2012-03-07-2.342170
2012-03-08-0.571990
2012-03-091.145736
2012-03-10-0.348871
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 86 + } + ], + "source": [ + "In [107]: rng = pd.date_range(\"3/6/2012 00:00\", periods=5, freq=\"D\")\n", + "\n", + "In [108]: ts = pd.Series(np.random.randn(len(rng)), rng)\n", + "\n", + "In [109]: ts" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "RJuEoqY3bNqW", + "outputId": "051c1622-0c3a-4b84-ed9b-287092a67551" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-03-06 00:00:00+00:00 0.687452\n", + "2012-03-07 00:00:00+00:00 -2.342170\n", + "2012-03-08 00:00:00+00:00 -0.571990\n", + "2012-03-09 00:00:00+00:00 1.145736\n", + "2012-03-10 00:00:00+00:00 -0.348871\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-03-06 00:00:00+00:000.687452
2012-03-07 00:00:00+00:00-2.342170
2012-03-08 00:00:00+00:00-0.571990
2012-03-09 00:00:00+00:001.145736
2012-03-10 00:00:00+00:00-0.348871
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 87 + } + ], + "source": [ + "In [110]: ts_utc = ts.tz_localize(\"UTC\")\n", + "\n", + "In [111]: ts_utc" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "Xp728rRJbOg8", + "outputId": "47f6c295-b7a7-4de6-edc3-12c06daa227a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2012-03-05 19:00:00-05:00 0.687452\n", + "2012-03-06 19:00:00-05:00 -2.342170\n", + "2012-03-07 19:00:00-05:00 -0.571990\n", + "2012-03-08 19:00:00-05:00 1.145736\n", + "2012-03-09 19:00:00-05:00 -0.348871\n", + "Freq: D, dtype: float64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
2012-03-05 19:00:00-05:000.687452
2012-03-06 19:00:00-05:00-2.342170
2012-03-07 19:00:00-05:00-0.571990
2012-03-08 19:00:00-05:001.145736
2012-03-09 19:00:00-05:00-0.348871
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 88 + } + ], + "source": [ + "In [112]: ts_utc.tz_convert(\"US/Eastern\")" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "guxLlvZ8w-IW", + "outputId": "002f8fac-38aa-4d7f-88ba-c268eae43473" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09',\n", + " '2012-03-10'],\n", + " dtype='datetime64[ns]', freq='D')" + ] + }, + "metadata": {}, + "execution_count": 89 + } + ], + "source": [ + "In [113]: rng" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yrT-LjpBxJh0", + "outputId": "88497d63-c5c1-4d27-93df-786c5902e770" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DatetimeIndex(['2012-03-13', '2012-03-14', '2012-03-15', '2012-03-16',\n", + " '2012-03-16'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "metadata": {}, + "execution_count": 90 + } + ], + "source": [ + "In [114]: rng + pd.offsets.BusinessDay(5)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Categoricals**" + ], + "metadata": { + "id": "jn4GjlLntk4s" + } + }, + { + "cell_type": "code", + "source": [ + "In [115]: df = pd.DataFrame(\n", + " .....: {\"id\": [1, 2, 3, 4, 5, 6], \"raw_grade\": [\"a\", \"b\", \"b\", \"a\", \"a\", \"e\"]}\n", + " .....: )\n", + " .....:" + ], + "metadata": { + "id": "8oJWTM78tnIY" + }, + "execution_count": 91, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "In [116]: df[\"grade\"] = df[\"raw_grade\"].astype(\"category\")\n", + "\n", + "In [117]: df[\"grade\"]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "WgigLtFuu0vS", + "outputId": "79eccc18-50a0-4529-e26e-27dbc1146ecc" + }, + "execution_count": 92, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 a\n", + "1 b\n", + "2 b\n", + "3 a\n", + "4 a\n", + "5 e\n", + "Name: grade, dtype: category\n", + "Categories (3, object): ['a', 'b', 'e']" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
grade
0a
1b
2b
3a
4a
5e
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 92 + } + ] + }, + { + "cell_type": "code", + "source": [ + "In [118]: new_categories = [\"very good\", \"good\", \"very bad\"]\n", + "\n", + "In [119]: df[\"grade\"] = df[\"grade\"].cat.rename_categories(new_categories)" + ], + "metadata": { + "id": "6UL94MM4u7Fs" + }, + "execution_count": 93, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "In [120]: df[\"grade\"] = df[\"grade\"].cat.set_categories(\n", + " .....: [\"very bad\", \"bad\", \"medium\", \"good\", \"very good\"]\n", + " .....: )\n", + " .....:\n", + "\n", + "In [121]: df[\"grade\"]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "LUKfGyCqvAJh", + "outputId": "d82b2d6f-e785-47b4-e21c-0ffc034ed327" + }, + "execution_count": 94, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 very good\n", + "1 good\n", + "2 good\n", + "3 very good\n", + "4 very good\n", + "5 very bad\n", + "Name: grade, dtype: category\n", + "Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
grade
0very good
1good
2good
3very good
4very good
5very bad
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 94 + } + ] + }, + { + "cell_type": "code", + "source": [ + "In [122]: df.sort_values(by=\"grade\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "Q0KnKS4gvGAQ", + "outputId": "dad4cfb9-ffd3-418c-fecf-fb447ce7c65c" + }, + "execution_count": 95, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " id raw_grade grade\n", + "5 6 e very bad\n", + "1 2 b good\n", + "2 3 b good\n", + "0 1 a very good\n", + "3 4 a very good\n", + "4 5 a very good" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idraw_gradegrade
56every bad
12bgood
23bgood
01avery good
34avery good
45avery good
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 6,\n \"num_unique_values\": 6,\n \"samples\": [\n 6,\n 2,\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"raw_grade\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"e\",\n \"b\",\n \"a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"grade\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"very bad\",\n \"good\",\n \"very good\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 95 + } + ] + }, + { + "cell_type": "code", + "source": [ + "In [123]: df.groupby(\"grade\", observed=False).size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "id": "UNkt7TBqvKxV", + "outputId": "325169f8-0e39-43d1-b307-9d37f6cc5657" + }, + "execution_count": 96, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "grade\n", + "very bad 1\n", + "bad 0\n", + "medium 0\n", + "good 2\n", + "very good 3\n", + "dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
grade
very bad1
bad0
medium0
good2
very good3
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 96 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Plotting**" + ], + "metadata": { + "id": "yqB3uJYEvRIJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "plt.close method is used to close a figure window" + ], + "metadata": { + "id": "zAXPNZX9velH" + } + }, + { + "cell_type": "code", + "source": [ + "In [124]: import matplotlib.pyplot as plt\n", + "\n", + "In [125]: plt.close(\"all\")" + ], + "metadata": { + "id": "qyVDzrlmvOrD" + }, + "execution_count": 97, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "In [126]: ts = pd.Series(np.random.randn(1000), index=pd.date_range(\"1/1/2000\", periods=1000))\n", + "\n", + "In [127]: ts = ts.cumsum()\n", + "\n", + "In [128]: ts.plot();" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 446 + }, + "id": "h65OmtwsvZiE", + "outputId": "df628b74-9516-4c07-8ab6-7700c99b8fb8" + }, + "execution_count": 98, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGtCAYAAAC2txYyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhGBJREFUeJztnXmcE+X9xz+5s1eyF3vA7nKfcikiIoogKCLy86BqtYd3q8VWxdqW1mrt8cPaVm37Q1qtFW3Fq/WuQpXLCxQQRECQ+9yDXXY3u9nNPb8/kmfyzGRybq5Jvu/Xa18kk0nmCZl55vN8T40gCAIIgiAIgiDShDbTAyAIgiAIIr8g8UEQBEEQRFoh8UEQBEEQRFoh8UEQBEEQRFoh8UEQBEEQRFoh8UEQBEEQRFoh8UEQBEEQRFrRZ3oAcnw+H06cOIGSkhJoNJpMD4cgCIIgiBgQBAFdXV3o378/tNrIto2sEx8nTpxAfX19podBEARBEEQCHD16FHV1dRH3yTrxUVJSAsA/eIvFkuHREARBEAQRCzabDfX19eJ9PBJZJz6Yq8VisZD4IAiCIAiVEUvIBAWcEgRBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEASRVkh8EARBEAQBAPjiWCe++4/NOHCyO6XHIfFBEARBEAQA4N5/fY5VO5uxYNnHKT0OiQ+CIAiCIAAAbXYXAKC9x53S45D4IAiCIAgCADC8qlh87PMJKTtOXOJj2bJlGD9+PCwWCywWC6ZOnYp33nlHfH3GjBnQaDSSv9tuuy3pgyYIgiAIIvloNMHHLq8vZcfRx7NzXV0dHnroIQwfPhyCIOCZZ57BZZddhq1bt+K0004DANx666345S9/Kb6nsLAwuSMmCIIgCCLlOD0+mA26lHx2XOJj/vz5kue/+c1vsGzZMmzcuFEUH4WFhaipqUneCAmCIAiCSAsC52lxeVJn+Ug45sPr9eKFF16A3W7H1KlTxe3PPfccKisrMXbsWCxevBg9PT0RP8fpdMJms0n+CIIgCIJIP7zgcHq8KTtOXJYPAPjiiy8wdepUOBwOFBcX49VXX8WYMWMAANdddx0GDhyI/v37Y/v27fjxj3+MPXv24JVXXgn7eUuWLMGDDz6Y+DcgCIIgCCIpODnxkUrLh0YQhLjCWV0uF44cOYLOzk7861//wt/+9jesX79eFCA8a9aswaxZs7Bv3z4MHTpU8fOcTiecTqf43Gazob6+Hp2dnbBYLHF+HYIgCIIgEmXOo+9jT3MXAOCdO8/D6NrY78M2mw1WqzWm+3fclg+j0Yhhw4YBACZNmoRNmzbhj3/8I/7617+G7DtlyhQAiCg+TCYTTCZTvMMgCIIgCCLJ8BkuWRnzwfD5fBLLBc+2bdsAALW1tX09DEEQBEEQKUYa85ElqbaLFy/G3Llz0dDQgK6uLqxYsQLr1q3DqlWrsH//fqxYsQKXXHIJKioqsH37dtx9992YPn06xo8fn6rxEwRBEASRJHjBccszm7D9F3NScpy4xEdLSwu+/e1vo7GxEVarFePHj8eqVatw4YUX4ujRo3jvvffw2GOPwW63o76+HgsWLMB9992XkoETBEEQBJFcXFyGi83hgdcnQKfVRHhHYsQlPp566qmwr9XX12P9+vV9HhBBEARBEJlBXtW02+GBtdCQ9ONQbxeCIAiCIACEBpnaHKlpMEfigyAIgiAIeLw+yHvJdTs9KTlW3Km2BEEQBEHkDi6PD16fAJ9C2a8uB4kPgiAIgiCSiNvrw+xH1kOn1eDF754d8nq3MzVuFxIfBEEQBJGnnOxy4sgpfw+29XtOhryeKssHxXwQBEEQRJ7CB5S+tb1R4XUSHwRBEARBJJHOnqD42HK4HQAwptaC+RP6AwC6KNuFIAiCIIhk0tkbFBcss6Wi2IiyQG2PXpdX8X19hcQHQRAEQeQpSm6V8iIjCow6AEAPiQ+CIAiCIJIJb/lglBUaUWjw56Mw8bGvpRtNnY6kHZeyXQiCIAgiT1ESH/1KTDDq/LaJXpcHLV0OzH7E3z7l0EPzknJcsnwQBEEQRJ7S0eMK2TagtEDidvmqqVt8TVAoRJYIJD4IgiAIIk851t4bsq2urACFAfHR6/ZCQFBw/HnNvqQcl8QHQRAEQeQprMAYzwBOfPS4vJJ+L4+8+1VSjkvigyAIgiDyEEEQcFRBfFSVmFFgDAacumWdbr3y7nMJQOKDIAiCIPKQ9h43nAFhodUEt+u0mqDbxeWB3SVNx+119z39lsQHQRAEQeQhp+z+YFNrgQFyY0aBIeh2kRca63H1veQ6iQ+CIAiCyEPaA5ku5UXGkNeY5aOly4mfvPKF5LUeJ1k+CIIgCIJIAGb5KC004MozBgAAvnl2AwC/NSQcyah6SkXGCIIgCCIPaQ+Ij/JCI359+VjMG1eLacMqAQAVxaaw7yO3C0EQBEEQCXEq4HYpKzKi0KjHrNHVMAdiPQCg2KRsn0iG5YPEB0EQBEHkIR09/tLqrIOtnH/ffo7idhIfBEEQBEEkRFego22JWVl8jKwpwcCKwpDt5HYhCIIgCCIhmIhgmS1KlJhDXS92snwQBEEQBJEI9kDKbFGY2A4AKDEFrSJ1ZQUAgPV7Wvp8bBIfBEEQBJGHxGv5uOGcQQCAj/a19fnYJD4IgiAIIg9h7pMiY3jLB1/vY0J9KQB/efW+9nch8UEQBEEQeUiPM2D5MIW3fAyqLBIf11rNwff2MeiUxAdBEARB5CH2gPgIV88DAPqXBgVHvxITdIEOdH1NtyXxQRAEQRB5CHO7FEZwu0ysLxMfm/Q6MT6ECZdEofLqBEEQBJGHMNdJUQS3y+DKIjx9w2RYA4XIiox6dDk8YqZMopD4IAiCIIg8w+Xxwe31B41GsnwAwMxRVeJjJlTsFPNBEARBEEQ88AGjkVJt5bCaIBRwShAEQRBEXLB4D6NeC4MudinAhEp3H90uJD4IgiAIIs9gAaNFcVg9gGBmTE8fA07jEh/Lli3D+PHjYbFYYLFYMHXqVLzzzjvi6w6HAwsXLkRFRQWKi4uxYMECNDc392mABEEQBEEkD0EQcMXSjwBEj/eQw/bva3+XuMRHXV0dHnroIWzZsgWbN2/GBRdcgMsuuww7d+4EANx9991488038fLLL2P9+vU4ceIErrzyyj4NkCAIgiCI5NHS5RTFg9Pji+u9YsBpOlNt58+fL3n+m9/8BsuWLcPGjRtRV1eHp556CitWrMAFF1wAAHj66acxevRobNy4EWeffXafBkoQBEEQRN85ZXeJj93eOMWHaPnIUMCp1+vFCy+8ALvdjqlTp2LLli1wu92YPXu2uM+oUaPQ0NCADRs2hP0cp9MJm80m+SMIgiAIIjW8tPmo+NgVp+WjUIz5SHPA6RdffIHi4mKYTCbcdtttePXVVzFmzBg0NTXBaDSitLRUsn91dTWamprCft6SJUtgtVrFv/r6+ri/BEEQBEEQ0XG4vXj6o0Pic1fclo/kuF3iFh8jR47Etm3b8Mknn+D222/H9ddfj127diU8gMWLF6Ozs1P8O3r0aPQ3EQRBEAQRNzaHW/I83u60rM5HX90ucVc4NRqNGDZsGABg0qRJ2LRpE/74xz/immuugcvlQkdHh8T60dzcjJqamrCfZzKZYDKZ4h85QRAEQRBx0e3om2hgAacZbyzn8/ngdDoxadIkGAwGrF69Wnxtz549OHLkCKZOndrXwxAEQRAE0Ue6Ze6SCfWlcb2fpdrKPyde4rJ8LF68GHPnzkVDQwO6urqwYsUKrFu3DqtWrYLVasXNN9+MRYsWoby8HBaLBd///vcxdepUynQhCIIgiCyAWT6KTXpcN6UBN5wzKK73Fycp4DQu8dHS0oJvf/vbaGxshNVqxfjx47Fq1SpceOGFAIBHH30UWq0WCxYsgNPpxJw5c/D444/3aYAEQRAEQSSHroDFYkR1MX56yei438/Kq6c15uOpp56K+LrZbMbSpUuxdOnSPg2KIAiCIIjkwywfLHA0XsSA03RnuxAEQRAEoU5YrEaJOTHxEbR8BN0uDrcXXxzrhCDEnjmT2NEJgiAIglAdTHwUJ2r5CAScujw+eLw+6HVaLHzuM6ze3YJfzR0S8+eQ5YMgCIIg8gRbr7/OR7HJkND7C03BLrg9br/1Y/XuFgDAPz85HPPnkPggCIIgiDyhpcsJAKiyJFZfy6gLyoYfvbxd4mrRQBPz55D4IAiCIIg8oanTAQCosZgTer9GExQYK3c24YO9reLzXY2x92Yj8UEQBEEQeUKTLSA+rImJDznbj3Uk9D4SHwRBZBVfHOvEFY9/hE8OtGV6KASRUwiC0GfLh5wDJ+0JvY/EB0EQWcXVf92ArUc6sHDFZ5keCkHkFLZeD3oDQaLJsnx81dKV0PtIfBAEkVWwyfGU3ZXhkRBEbsFcLqWFBpgNuih7x8ZXzd0JvY/qfBAEkTX4uPbeDeWFGRwJQeQOnb1uvPn5CbEjbbJcLoC/3kcikPggCCJrYFYPADDoyDBLEMngvtd24M3PT4jPk+Vy4blwTDUON7XiaIz709VNEETW0MOVbHYmuKIiCEIKLzyAvls+/vODc3HBqKqQ7WUFxpg/g8QHQRBZQy8nProc7gyOhCBygwMnQ2MyBpQW9OkzT+tvxaNXT5Rss/W64ypcRuKDIIisgXe72ByeuBpVEQQhxecTcMEf1odsH1RZ1OfPLpY1prMWGPCbK8bF/H4SHwRBZA33vLxNfOz1CWITLIIg4qejV9l6OLCi78HcOq20lPrP5o2O6/0kPgiCyArcXh92HJeWZ+ZjQOJl/Vcn8fnRjj6OiiDUyym7U3H7wPK+Wz54RtWUYGBFfJ9J4oMgiKzA4Q4VGvYELR97mrpw/d8/xWVLP8Lr247jgt+vw5dx9J0giFygrTu0Vs4/b54Ca2FiHW3DkYh3lMQHQRBZgcMdmt2SqOXj00OnxMd3vrANB1rtuP/1HQmPjSDUiLxQ3+p7zse5wyuTfhwB8asPEh8EQWQFSpaPXoVtsbDrRGfINh/FrhJ5RptMfFjMybV49AUSHwRBZAVK4iNWy0ePy4P3vzopVltUKs1elmRTM0FkO+3cdfD9C4ahX0nsqbCx8MOLRgAAfnXZ2LjfSxVOCYLICpTcLr2u2GI+Fr34OVbubMIPLhiGRReNRJcj9H3WOAogEUQuwLLFbj1vMO65aGTSP/+OC4bj5nOHoMAYf58YsnwQBJEVODyJWz5W7mwCAPz9o0MAoCg+ik3JaaRFEGrBHhDvhcbU2RkSER4AiQ+CILIEvrrp9BH9AAAtXf5UwQ/2nsSHe1ujfobZ4J/SlOqDuLwU9EHkFz1O/zVVlIXCm8QHQRBZAYv5OL2hFNYCf3zGQ+/sRmevG9966lN886lP0BPFDWPS+ydZpdLsiXbfJAi1kg7LR6KQ+CAIIitwBMSBWa/DsfYecfturj6H3RnqhnF7g6KCWT5sCm4Xp4JbhyByGea2JMsHQaSRk11OuuGoCEdgoiww6rCvOdgM61CbXXzsVciX5QspaTUaOD1e0cqx4pYpqCjyB5pSl1wi32BF+sjyQRBp4mCrHZN/8x6+/sTGTA+FiBEWcGo2aPHjuaPE7ftPBsWHUjruOzsaxcc2hxvdnNVjypAKLL7E33OC3C5EviFaPkh8EER6+NeWowCArUc6MjsQImaYsDAbdPjGlAbMGOkPOt3fErSCyK0Xbd1OPPjmLvF5R49bdM0UGHTQaTUw6bWB95IVjMgvxJgPcrsQRHpo71Hu5khkL2yVZjbooNFocM7QCgDAsfZecR+55UPetdPp8aEzsI3FfwTFB1k+iPxCzHYhywdBpIdOEh+qwuXxodnmT6tllUgri/3VGI93BMVHLAKi2eYAEMx8MTLxoVDEjCBymWC2S/ZZPrJPDhFEEmjvCS2vTWQvC5Z9jC+O+/uxVBT5RQcTH3zNDrnrRElQNHcFxIdo+fBPvC4viQ8if/D6BLFqcJEp+271ZPkgcpIOsnzEjM8n4G8fHMBnR9ozcny31ycKDwCoKPZnpzDxwSMvwa4kKJgFhblbmAihmA8in+CbMpLlgyDSBJ+S6fUJ0Gk1GRxNdrNyZxN+/Z8vAQCHHpqX9uPbZdVImeioLAntxRJq+QgVFCe7ZG4XHbldiPyjJ3Bd8UHX2UT2jYggkgylWEaGr6ORCeSl0Jnlg7lfeOSWD6UYELnlw2zwi5BeBaFCELmKPRDAXWj0B3BnG3GJjyVLlmDy5MkoKSlBVVUVLr/8cuzZs0eyz4wZM6DRaCR/t912W1IHTRDxQOIjMsWcP9imUJY81cibx1WXmAH4V2wf/nim5LUQy4fCb9vU6bd8sEBTVmSsy+Eh1wuRNzCLYjZmugBxio/169dj4cKF2LhxI95991243W5cdNFFsNulK6dbb70VjY2N4t/DDz+c1EETRDR8QtDt4vTSDScSHq7hGrtxpxPe8vH0DZNRVhR0t9SVFUr2DYn54MTH5EFlAIA2u9TyUVpogEHnX/m1dlMgMpEfMFGfjTU+gDhjPlauXCl5vnz5clRVVWHLli2YPn26uL2wsBA1NTXJGSFBJADf74MsH5Hh2883djoworokrcdnK7RRNSWYOaoq4r6hlg//8+kj+mHcAAs2HWrn3C7+SVej0aBfsQknOh1osTkwoLQg2V+BILKObE6zBfoY89HZ6Y9QLy8vl2x/7rnnUFlZibFjx2Lx4sXo6elRejsAwOl0wmazSf6I1PHcJ4fxrac+CQnyyzV4wdFX8dHj8kAQcrcdO98BdvvRjrQf3y62/Y6+FpIHjTK3i0mvDXk/y3IBgH4WvyvnZJezT2MlCLXACoxlY18XoA/iw+fz4a677sK0adMwduxYcft1112Hf/7zn1i7di0WL16Mf/zjH/jmN78Z9nOWLFkCq9Uq/tXX1yc6JCIGfvbqDnywtxVPf3Qw00NJKXwKZl/qO+w43okJD/4Xvwlkg+QSgiCg1+WVWD7+8O5X+PoTG8RKoukQXcHmV9FXaPIKpyzbxajXokQmPvgedP0CGTQtJD6IPIFZPoqy1PKRsCRauHAhduzYgQ8//FCy/Tvf+Y74eNy4caitrcWsWbOwf/9+DB06NORzFi9ejEWLFonPbTYbCZA0cMqe23UwnEmyfDzx/gG4vQL+9uFB3HfpmGQMLWv48b+345XPjmNwZZFk+8YDp/DX9Qfg8nrx7y3H8erCc1BrLUBrtxOH23owaWBZUsfBJsniGCwfbF9GJMsHb91jVVM7e3P7vCcIBku1LczCAmNAgpaPO+64A2+99RbWrl2Lurq6iPtOmTIFALBv3z7F100mEywWi+SPSD0eX27HQSTL7VLEBWtlIhMkVWw/1oGXNh+DxydgL9e4jfHoe19h6dr9aLI58Oc1/mv3isc/woJlH2PD/rakjsUWEATh3C5D+wXFEetYe8ruwopPjqDN7g8gNel1IeKF725bYvaLD97KQxC5jF3saJudlo+4xIcgCLjjjjvw6quvYs2aNRg8eHDU92zbtg0AUFtbm9AAifD05abq8eVuDIMgCBJXyw1Pb8JznxxO6LP4GIP9CjdptfLvLcdi3vfoqZ7Av/4eK698Fvt7Y2HjgVMAgBHVxYqvP3PTWaJLpjvgx1700jb89NUv8MT7BwD4LR9y8cGLRUuBXrLtnS8a8dG+Vqzd0yIJTiaIXGFbIH6robww8o4ZIi7xsXDhQvzzn//EihUrUFJSgqamJjQ1NaG31z8p7d+/H7/61a+wZcsWHDp0CG+88Qa+/e1vY/r06Rg/fnxKvkC+8rtVuzH+wVXYeaIz+s4KeL25Kz48PgF8qEK304Ofvbojoc9ifUKA3CpSxZczB4AJ9aWoL1fOArHJrAUvbzkmTmzJ4NNDfvExc6RypktdWSEeWuCfP7qdfvGwbs9JyT4mgxbFZpnlw6ls+dh06BRuf+4zfONvn+DGpzdh9iPr8fi6fSHxJAShVgRBEC2U00f0y/BolIlLfCxbtgydnZ2YMWMGamtrxb8XX3wRAGA0GvHee+/hoosuwqhRo3DPPfdgwYIFePPNN1My+Hxm6dr9cLh9eP7TIzG/x8dZO3LZ8pGoRWjN7mZ859nN+GBv8MbWYgsGKOZSS/Z2We+bAaVmzB2rbJ10e3whgae/X7VHcd94cXt94u/VryS0oimDBZPKq6EyTLrQmI/zhlcG3x8QJl0Ot1hKnnG4rQcPr9yDP6/ZG/8XIIgspMflFa+VYVXKFsVME1ckSrTI9/r6eqxfv75PAyKiwxeCGlRRFGFPKfzNM5djPiKJj4/3tWLVziYsvmS0WHab8b3nPoPD7cPupi68/yN/ZU3e2sFcMEdP9aDGaoZBp97uBKfs0mJbFUWmsNe32+sLEV7y9ycKb22Q/x48zKrB0nILDDrJb3PaAGuI2+Wnl4wWH1sC79/T1IXGMIXUPtzbinvnxPkFiJzi3V3N+OPqr/DYNadn7U07FjoCcVRGvRYFEa6rTKLe2TOPOd4RrJtijKNhED/Re3LY7eIIU0JbEARc97dP8MyGw3h83f7Q9wXExZFTwf9ftyxl9+N9rTjv4bX48b+2J3nU6cPt9YVkfVQUG1Gu0EuF7S+vC5MM8drZ48bhtuD/daTmV0xYsIDR0kD2CgCMrC7BrFFVEvExeVCZ6GoBAEvgcTjhAeSWZSufEAQhKSnhXp+AW5/djB3HbfjbBweSMLLM0R5YHJQWGLKyrwtA4kOV8JOkOyAiHG4vbvvHFry4Kbwb5lf/2SU+zmX/drj4Dv7/7ctGaTG7j/e3io/1XAdcNyfSnG4vnghMSq9sPZ6UsWaCjp7QrJ2KYhO+PXUgxg2whrzm9goh7o5kxL9M+OV/cemf/an6ZoM24iRZLLpd/GO3FvjFxKCKQrx021TodVpJnRCXTFzzQiQcu5u6sOsEFTlUG9966lNc8qcP+xw4fKw9KISztTBXrLDFBS/Ssw0SHyrC5xOw5O0v8epnwRufJ3DBvbzlGFbubMKP//1F2Pe/wr2vK4crnK7Z3aK4nV+998jqRVz35CfiYy13E+RdOE6PDzWBSpkA0Nqd2oJVJ7uceOL9/eIqJlkouUyqS0woMunxwnfODnnN5fWFpKj2uvo20ctvFJFcLkBQfDjcPri9PlEMPXLNRFGI8OLFI/v8ohj7W1zypw9i2o/IDrw+AR/ua8WXjTZsOniqT5/FNzhUewbU1iPtAIDSAmOUPTMHiQ8V8e6Xzfjr+wfwMpcmyS6Srgg1KFglS55OhdVvrsNPLix2QAmX1ydahviU3SOnevApN8EdTnEr+j+v2Yv/fXs3vvaXj5P6uR09oeJjYkMpAOUqoy5P8GavC1iF+mo5k4uZaH7pAm5cvW6v+FuGK0wmv3mY4vB7y4ULkb3wv/N1f/ukT+UHeGteuMBmNeDx+vD7/34FIPULpL5A4kNFKHUcZW4B1kQLCJ08f/rqFxh9v7Qp4CmFG1Cuw4sPuRiTY3O4IQiCZHJ74v0DONAaFBztKa4S+6+AyNx/0p7U5njyKqEAUBVoY6/k+uBjPliZ8l63t09+dnnMSTTLh0mvBRuawx2M5A9Xkl0e0xQpnkROM5VgVwV2pwe3/3OLZFtfujLzc4Kai9HxRQOrLOEzyDINiQ8V4VVIj2WBf0Zd8KbRIZvYn//0aMj72u2unG2WxszwvIsEkN50+cdK/w+bD7XDK6sXIkf+/5xMel3euMRSPDCrz5TB5fjd18bj7R+cF3F/t9cnxolUByYzr0+QxMPEi1x8RBMHGo0G5oDA7nJ4RDEWzvIh7+cTj/g43t4b875EZnjm40OY8r+rsVZW76XLmfg1yV9j3X34nEzzxbFgDZ9f/M9pGRxJZEh8qAhF8RG4AXRzbgQls3rI+3xCSPGoXIHVdHj8m2dItv/6rWDA7bH2XtFC5OCqmFYU+X2k33vuM2yNUkgrlv/nRJEXAetxJ++3YlaMYpMeV51ZjzH9I7c0cHsFtNn91oABZcFCZH0JOrXFafkAgq6XVs4yES4wMNTyEbvb5UQHiY9sxuH24oE3diq6RvrSu6dHZW6X1m6nWH2Y53jg/L1uSgNG1WRvuxISHyrCq7AMd3sF/G7Vbvx25W5xW3uPG802B9bsbo5o3Uh2IGO2wLJazHodln0jKEA+O9Ih2e/G5ZsABFdLGg3QvzR4c33ni6aIx2lPofj4XCZ8HnpnN9qS5L8Vez7E0XCKFVurKjEnJe5DfpOIpRaBOWC9YK6viiJj2FRzecyHQacB71GqkhU0u37qQAys8JehVnJLEdnDoQixVrbexH87B2/5yPKFmcfrwzlL1mD2I+tD5nF2XWZrTxcGiQ8VEc7tsnSttGbFKbsLV/91A25avhlvfH4i5D3s5tGWo+KDXXwmgxZzx9Vi3jjlyp0f7PWn1zL/brFJj4riYHS4gMhuBaWU1WRx+JR0gn192wnc+cK2Pn/u1iPt+FXAAhROfLzyvXNw9+wR2P6Li8RtTTa/L72iyCgKhb64guRN+o4orODkmAOT6d5mv0+7LkLPipE1JZLnGo1G4nqp4yw4980bjZ/OG40JdaUApJYwIrvo7HXjRxFq7MgtavGgpoDT9/eehCtQ/E9+7bDvka3FxRgkPlSEUmEwpZQwu9MjFm96QRbvUVZowKjAxGxzuNHj8uDJ9w/gq+auFIw4M/Bt1gHg7guHR9yfrXIsZgOMXNXSaCExqRQfSgFvH+5rVdgzPq54PJg5E25ldEZDGe6cPRxFnEujOSA+youNooskXDG3WJBbPo7H4OpgMR97W/znKi8gGP/5wbm4alIdfn/VhJDXeNfLJZwgveW8ITDpdTAb/L99LtfAUTv3v74D24+F72fVJ7cLJ6bbe9yKi71s4fOjwf8DeQFA9j0KsrxWSXaPjhDpcXnw6HtfhWxXCiblL6Ivm6RFkwqNevGm0uvy4oa/b8Knh05hw4E2/P2GyUkedfoRBEEMRmQ3Sd6VIufnr+0QMyaKTXpJjY9oq59UNppLR7R9NLeLTquBVgP4hKDlo7zQKN6kN+5vS9innIh5nMV8HAy4XQYo/K6n9bfidwrCA5AGnc4YWYUx/S3obw1+RjIsOkRqWbkjsiv0rS8aMaiyCBeOqY77s/nr2esT0NrtRLUsaD1b4GM95FbEoOUju20L2T06QuS9L5ULZynBT57y1XmRSYfCQMElW69b7CgarjCX2uCrmLKbTaRqhf/YeBh/DbRlLysyQMtdEdFiLFJZiCgVPudNh6RFmGIpvMX617R2+V101gKDWAH2v7uaEx6LfIX6k7mjor6HiR5Wu8Bijm/t5ONMWdUWE84ZWolBlcHeSMytk0vdi3MNeRaTnM+PduDWZzdHrHsUDrnFK5sDj49y1VjlQp7N/9lepZXEh0qIJy22J8LKrYCzfGzlAjDV3ESJRyo+4vN5ThpYhvKiYMxHtOZpyay9IUe+mkkGV/1lg+R5LAGnzA0lrqaMOtw6fQiAvn1/3jf/7E1n4buBz4wEs0ywmIx4zcq84FFK0Q1+PomPbCXWaTCRmA151eO+1AxJJYIg4GCrsuWjs9ctLiTNWR5wmt3SKMf5w3/3oKrEhG9NHRR133jSYjt6w980LWa96GbYEijBC+SOqdkZuHFoNf4MB8bE+lJsi5I6e9bgCoypteCfG/39cVq7I4uPlFo+ApNnVYkJLUkoetViC51IK4qil1426LUAd/hCox7VgYJk7jh94t1ODxY+9xk6e92iFeORqydg+oh+Mb1fXqU0XIGxcPB1SZSKqTE3HVk+1E8s85kgCJLzQN4yoEnhmskGdjd1SSqX8kJ+fqBXEgAUUsApocTRUz3485p9+PnrO2Na5caSZnnTtMEA/D1BwmEpMIgr3v0ng5Xw5KpfrQSDTXWSieWft0zBhPrSiO+dNLAM/UpMePQaf8wAu8AHVxZh688vxORBZZL9+1JkKxos5kNeoTBRa8Nf1ku7dI6oLsaMkVVR38cH4AJ+64A+IOriLUP+xrYTWP/VSWw72iEGDbKCcLEgj95PdjQ/WT5yh2gC0usTcPnjH+PmQLo9ADhlAdSRLMiZZOOBNslztjC1Oz2SzJeCLLd8kPjIEHxA4WeH2yPs6actyir8vnmjUVniX8lGEh9mvU5cMfImTHuWXmjxwiYQkyzYqtikx1PXnynWcpBTZNSJpnjWfp0JGaNOi7IiY8hqOVWWD0EIdpFlVgZGorVFWIbIb64Yi09+OguvLzw3psJeBr30OxcYdWIciFL2VSR4tweb2C1xiA+z7DdN9uQqd+sQ2UU8ojCa5WN3kw2fH+3A6t0tYlYLu95ZTJMzyvHaup14d1dz2rNiWCYjg1k+5DEqsVzfmYTER4bgrR07Y2jjHUlQXHtWPW45b4hoZou0r06r7Ot3eXw50VCL3TiUymlXFpuw/t6ZWHPP+RKTfVmhAS9+d6r4XH5DZDfga8+ql2yPFvyWKJ29wTS/aqtUfCTaKIoJJYvZgGqLOeYbt0Fu+eDER7ziS2n/eCwf8qyleN0ujHCBqmLAaY4I8VwjlnmSEYvlg+Fwe7FmdzPeDQRQs+vfGcXKePnjH+HWZzfjHxsOxTyuZHAsEGw6otofp8dS3o/JxEei10e6IPGRIXg/XSSxwDjQ2h32NRZAyqKb2ef1t4amiem0mrAnZU8OmJvZ6iiS6h/SrxhXTaoTn3/28wsxdoBVfF4iuzmxm+3lEwfg9YXTsOKWKQBSZ/l4fZu/MNzwquKQSpz7TybWSZe5a8JVBA1HJLeL2+fD/pPdeC/GrBel/y9mZYqFm88dHDKWRBhYUaS4vYBiPrKaaDFbPNFcJnLxcdPyzeJzJk6jWVqOnvLf7N+Okv6bbNhxWZIAu7bV1pOIxEeG4N0uJ2NI6YxU24BZMthqtitgsi8vDg0o1Go0kuJRPD0R2syrhZ4Y08xO6x8UG3J3ivyGyMSHRqPBhPpScWXk9gQnsGQ26dsX6Eo557SakKyMHzy/NaFjMStNvOKDD/I06rXQaTUwBPKR7U4vZv1hPW55djN2N0VflSpZiuKxfJj0OoyuDdYVidft8vg3zsDoWgsevWai4utUZCy7kbcciES035AXmHKxaY3R8iGS5lpkLV3+QNiGcr+IZuPcInPfKxXhyyYo2yVD8G6XcMGkHT0uFBh1OHqqF26vgCKjLmRVDgTTBuUWDaV0Qp1WI3G7aDT+OJBetzcnelqwwNloJscFk+rQandi6pCKkNfkbhd5JVB2A2cr+e8/vxWfH+3AqrumJyUOgf0OJWa94u/99Sc2StxEscCEktySEY0S7lxhlgFm+eBTkfc0dUUtOCYPljXoNCFxHNHobzXjy0a/0Im3jsEl42ollU3lsOviVKDjs1JGDJE5Pj/WAcDv/hxZXYLHVu+V1DEy6rSiwI1m+eAXWvIYn1jdLoxobRiSDRuvXCS9/5W/w+9fvzUJE+tLURKHVTETkOUjQ/CFYZRSOlu7nZj4y3dx4SPvo7HTb04bUFaAMbWhEzwrGia/8SmJj4EVRTi9oVR8Xl5oRGmh/yTNLctHZBGg02rwvRnDcHpDWchrcrHxo4ulBbBYQJrb60OPy4M3Pz+BI6d6xMmRsWpnE/6x8XDclope7jsUm0InkE8Onoq7KWCilg9e/LD/U3kcCBC+JsoDr+/A5Us/gtPjDXG7WAsMcd/g+biPZPu0R9WUwKDToKXLGRLUR2QWn08Qq3reOWsEbpg2GBt+Mkuyz6c/m4Vpw/yLiWhxO/xCS24lYZbPWC1gSTR6xnAsQQyqZ9emy+NDZ69b7NV13vDKrK3MykPiI0Pwlg+lIMKP9/vTqY6c6hE7ilZbzPjpvNF49JoJeOTqYAnpqkBGhHwlKBcf108diG+e3YD+pQU4d1glAP+JypqpHWtX/4Rrj1F8RIK/IV43pUFi6gfABVwK+LKxK2Q747v/2IKfv7YDq+OoTgvw30HZ8gEA+06GjwFSglkdlIRDJPjjM8sHXz+FoVQTQRAEPLPhMLYd7cDH+9okbiogvkwXxpj+wd8i2dH8hUa92FwunvgCIvV0OT1gYRpssVRg1OHyif0BABPqS1FaaERdqT+bLVrcDi9OQsRHgf+cj93ykRhOj1dcWMaKxyeI/w/s+tl2tANn/vpd/zazPusrmzJIfGQIvhmQUh8PfrXcHPDx9SsxobLYhCtOr8PQfsGKpOcN9wsJ+Q2Xd6/MHVuDBy8bK1b9/Nv1Z+Lft5+D31wxTpxwPzsSPeU32+kNrGjCxbXES43CCoJ3u/AN+fjUPP73e2XrsbiO2cu5jsK5cVhn11gRLR9xi4+gQDCLbpfQz2hWqAbJF8Yz6LQhlo94gk0Z7FwHUhPN3y8Q4JuKCrNE4nQEUswLDDqJ6Pz1FePw0JXj8Pfrz/S/HmPGkt0Vwe0Sp+UjEVweH+Y+9gHOeWgNjsRhZeMFEb8wYDWH4ilGmWlIfGQIPvjO6xNCcsX5PhTM3Mib0sbXWfHA/DF44TtnixejPPq/2KTHY9dMxIVjqrHkynGS18wGHSYNLEORSY8zA8Wz1u45mdTAyUxgdwbLgPeFH1wwDCOrS3C9QvVZsc6FT8CTHwSLd/GrLQ/3e8bSLp6H/w7hxAILOgNiKzyWaLYLP8GxXjAGbajlQ8l1yFdV9QpCSMBpPMGmjLqyQjx9w2Qsv3Fy3FacWGDfNx2N/YjYYbEdZYXSc6bYpMfXz2pARbFfNLLrPnrMR/D3lVtJ4o75iDJn8nV7GB/ta8WBVjsEAdgfIZNRDr/Aibe3UbZB4iNDyMWG/AbCz9OHAnX8+bRLjUaDG6cNxtlcwKRSwOnlpw/Ak98+E6WF4UtpzxpdDbNBi30t3RI3ghphE0ksfUsiseiikVh193RYC0NvkLzb4QCX+sqvoPjfs9kWX20O/jvwqzw+0+mLY53Y29yF/337S4x9YBU+3t8a8TNdnr5bPsoC55DSTb9LoZcG/717nJ5Qy0cC4gMAZo6qiqk6ayKw70uWj+zhWHsPrnnC35co0jwGBK0W8saFcuwR3S5MfMQY8xHl9R++vB1jH1glsZLyGY6+GIqUsRpMTm4RodS7avmN6ulMTuIjQ8irQ8rFRy8XEHWozX+DqyqJHEQk9/XFegO2mA04c2A5AGC7LGhSbTB3VrJLb/OEW3Hzkxi/amrtdsZVBZFl7BQYdBheVYwLRlXhyjMG4LlAfREAWL27BRc++j6eeP8AXF4flry9O+JnuhMNOOXOIRYbpOfEF7NedCvcrHnrjN3lDSlH3780+4LiWJwUWT6yh3te+lwU9qUKiwEeZhnp6HHh6KmesC6NnogBp6zOR3jLB1+QMZqx+N+f+d2uFz36Pl7behyAtM5TuDYNPS4Pfr9qD85ZshpTH1oDm8PNtY/QKhZSTJUoTwUkPjKEfBUoV9ndXOZJY8CfXi3r8yHHbNCCTx5QynYJBwvk29UYexXBbIT5emNpF58o4cQHb77lxaQgAFf95WPsawmufD450IbzHl6DtbtDg1FZ1lGRSQ+tVoO/3zAZj1w9EYMqi/Cji0cqHrtCoaYLw+cTRDeQUrBoJFjwHQCx4y///dk2u0KmVDuXBtnrCrV8DKlULvaVSZjbpZvER9ZwoDVoXSyLYvlglpGWLifOe3gtpv9urWLsBm8ZScTywS8u4nFU3/XiNgBS8eHxKYuc/2xvxP+t3YcTnQ6c7HLi86MdwfYRel3cC4lsQ92jVzHylbDcv2hXMGNHs3xoNBrJij8e1wOrlneQu9DVCEuhi7fdejzoFGIeAOkkJrdkfXakA//zfx+Jz695YiOOnurFrc9uluwnCIJYaVYpoDJcp8r6MuWeNYA0vijeCYuvBsomfj33/dlKVKmFOX8O213ekP+TqixMB2Rm+y5yu2QNvGUhXPYXg1k+DnDZYC0Kbk9eGIcPOA1v+XCECS6PBY/XJwkMDVcpWR4rptdq4eTaR5D4IBJC3o5cHoynNJnLO5wqwd+wopkold6XaNfUbKE3cHGm0u0SDl5Auryhq6ZYumQ6PT5RmCoFzYYLpA1XrOv1bcdx4aPrxefxTlh8VhX7frz4Ki0Iig+575oXHz0uaZ2PskIDzhwYWmMl0xRTwGkWEjyvoi2oypgljrvWWu2h4qODa9Aot3xYWapthGwXB3+txzlnHmvvxScHT4nPw7ldGmUZZA63N+h2MWjjjt/KNtQdLqtivDJTm/wElosPi1kfU12DggTFR6LNwrINl2iWTP+FGS7mIxLyEsisa61Oq1wGP5xFJ9wE+Nt3duMEN4mx0uixwouV0bUlAKR1UHgzeI/bK3H18edwj9MjCuwnvjUJ5wyrjMstmC4o2yX74DVtNPGhNOcp9c7iu0PLs13YPBvpGuaFSaRFhZJV5I3PT4hVeoHw3aGPyiwfvW6vGG+VC26X7Lv68wS52pX4EAUBO453Sl5vCNMKXk6hIfiTRvOP8hi5wllqho0/FWmY0eBrC4QTA4IgSNJwa2TN/050+IVCjcWs6N6Ru10KjTr0uLxhJ0p+u0GngTaMyygS7y2aju3HOjFTIZit2KyHXquBxyeg2+GRCAp+Ura7vGKRsSKTPiuFBxCMYUm0ezCRfPgbeHGUWK7SgtA5T0l8dNiV3S6Xjq8Vs0icHl/YMvv8e5ptDvh8guK1peS64dPzAeUF356mLtE6YtRr4fL40OvyivO0KUy2i5pQt3RSMZFSbY+e6sXuJmnK65DKYsQC32cgHvGRO5aPoE803Tg80S0fHT1uiTvCbNBBEARxgmUVD2sVOhIDUsvWilum4M5ZwwGEFzvMDA2Ej1WJxrCqElx5Rp3iJKzXakVXRbdTGifBWz74gNNMCMNYqQvEzrTZXZKMCCJzxGP5MOq1Ie0R7nttBz7aF0xFd3t9ktRw/nr89eVjJS7McNcxH7Dq9PjQEqYzuVK/LLlVTWnO3XQo6JaZMtifidjLu1302pDg8Ye/Nl5xDNlK9s4COY5HdsLdvHyTaGZTqjEwpF9smQG8WT6eQlvsRFbqPKomEi2mFS8vKTR2C1fng6fL4ZFMPj7BH3x6xeMfw+cT0BiwfNQqdC8GpCXFB/crEr+nM8zvxscARQqgSxSDLuge6pZlvIQEnIriI3sbtlkLDKLrRW0tynMVn8TyEd1iplQL5Kblm3DXC1ux+JUvJEIEkAoJef2McOLjeIf03GDlEOTE0i/Lo5CGz8b0tUl1qAgsIJ775Aj+vGYvAH+3aX4x8OS3z8TVZ9ZHPVY2QeIjQ8jdG11OD+791+cAlPsSKJX5ViLRNsryTq1qJV2r67MGl+P8Ef0k25RSbeXGAnn34FN2Jz49eArbjnagucshBpn1D2P54K0XRSa9+LuFd/PE+IUSRK/ThC1pbZdYPryqsHwAQevHMRIfGeXoqR6/hZg7h2PpW1JWFBr34fT48Nq2E3j+0yP41xZpuwOJ+ND5LQrsMlMKOrU7Pfjhy59LtoU7VyJ1CmdCSr4QBYILUGuBQby+vmy0iRZxuWV3cBamrUcju2eBHEap6NTO4zZc9ZePQ05sIPa02csm+BstlcTpU2c3BLVnuzjTZPkAQvPzJTEfgQlF7vrqdXslNST4ic/rE0S3izwWhN+HUWTUi6u0cL9bqsWkQacVzdSOkFo1vOXDIwrubA+UY/V0TlLcR8Z4fdtxnPfwWtz32g50czdwfQyuw2ju5n0t/jRcZk1mN3qtxt+3SKPRSOI+5Mjj8QDl0giAtJjZ/ZeOkbx2wSh/DJVLIc7uVKBdgcVsUEw0KA98x9cWTsOT3z5TLJWgJuKaBZYsWYLJkyejpKQEVVVVuPzyy7Fnzx7JPg6HAwsXLkRFRQWKi4uxYMECNDc3J3XQuYDbF2qC7nJ6sOlQu2I771ibaF10Wg3+8s1JePP758Y1nqDlQ90Bp+k07cv/r/gJiIkBefS9w+2V+JvlgW8sM6XWqmzBGjvAggGlBTijoRQ6rSaq5YMXH/EK0lgYWFEIM5uoZatEPuC0s9ct1s5IRUO4ZMKqtnb2UK2PTPHbd/wVe5//9IjEeqcQdhRCtBLsTHwwkcLEBy+KTUxQK1g++Ou+odxvJVMqjQAEi++NqinBnLE14vYbpw0Sg5vllo8vG214OWCdsRboFcsGjKzxZ55NrC/FhWOqlb9olhOX+Fi/fj0WLlyIjRs34t1334Xb7cZFF10Euz3o77r77rvx5ptv4uWXX8b69etx4sQJXHnllUkfuBp5b1cz5jz6PrYf6xBXsLG2P46nTfLFY2swKE4znBhwqnLLB7vZpiPgVG5V4E2srBKhkuVD0tGYe+xwe9EY8CWHKz1u0uuw7t4Z+Ndt5wAIZimFi9XhJ8r68tgypmJh+Y2TsXDmUFw2YYC4MpPHlPBVHA+ctMPtFVBi1kt61GQjoviI0h+ESB3hbuYVRdFrHcmbz8lhMRalMpHJ180wR7B8MGtGWaFBtF5Es3wUmfSo5npz6TTBhYM85oPPhrEUGBRjQlgzUDUT11Jo5cqVkufLly9HVVUVtmzZgunTp6OzsxNPPfUUVqxYgQsuuAAA8PTTT2P06NHYuHEjzj777OSNXGW4vT7cEqhmufzjQ2Jud6wm6FSvFnMu4FSX+tW1PD9/d2MXth3twMT60qDlQ9Y8zeHyhi3dfe2TG8VJN5zlA5DGTJjisHz87qrkRcPPGBls7mZWWCW6vT5JoSfGaf0tilkz2QSJj8wjr51RUWTETecOxrg6a9T3xiJQgKCFhFUbNXKBpszyoVRincV2ja61iHEbr3x2HPdcNDIko4x9j0KjDnruuvX4BBSGibPj4/sKjTpJsbE37zgXzTYHxteVxvQds5k+LQ87O/2+r/JyfyrQli1b4Ha7MXv2bHGfUaNGoaGhARs2bFD8DKfTCZvNJvnLRfiCMRazQYwXUMpBVyKVvUoAvs5HbogPgz71N7hJsgqdHp+Ay5d+hP0nu8UVU7GsHHSv2xt2Vdfl8EAQ/K6aygi9Wnhidbu8/YPzcFr/6BN3IphEy4fUzaJEQxKtL6mCxEfmka/2rz2rAQtnDovpvXya+nnDK8PuJ3eJ8tZSZvnY2xza7p7FdhUYdCgMzMtNNgde3nw0ZF8mwFlGGBvPNZPrRTHCrtF/bzmGRS9uk3R79gmAgRM04+qsmK1SN4uchMWHz+fDXXfdhWnTpmHs2LEAgKamJhiNRpSWlkr2ra6uRlNTk+LnLFmyBFarVfyrr1dXulCssOJRgD9Qka2aI5WY5kV0PG6XRGA3MZ+gHAyrBvgGaukoPfzDOSNx56zhePLbZ0q2r/myRZKP/+g1E8TXIokPxhkNZTFbB0TxEUY0inVPwpRfTwZsonZ4fOjsceNgqz3sjTue2jOZwkLiI+sojGPxVcu5LCMJbrlVkrdCN9n88/VPXvki5H3MmlFg1ElSf9d/dTJ038C1zsb/1PWTsXHxLIyutYiigt0L7nn5c7yy9bhExFwwqgp3XzgCkwaWYel1Z4T9Lmok4TvawoULsWPHDnz44Yd9GsDixYuxaNEi8bnNZstJAXKCywt3uH3iTfLO2cOxckcTnvvkSMh7THqdaOJLvdsleOG5PL64aoRkC31poJYIxSY97r5whKR1PADsP9ktdpktNOpxxel1WLfnJF7fdgK9Lm9Y/zBjbKDDcCwwkRWuD4WYYZJCMca7Xab/bi06e91iMF1lsUlSLTRaMGA2QJaP7COeiri8yzKSBbG0SPoaf41E+u35OZlvgaDU9E5u+TDqtWImmz5MVek2uz/T5RtTGmA26FBfXoh/335O2PGolYRmpDvuuANvvfUW1q5di7q6OnF7TU0NXC4XOjo6JPs3NzejpqYGSphMJlgsFslfLnJcIj68YoRzQ3mhWKVSDl83ItWWD4n4UKnrhXcZpbOWhLwHy/GOXsnqCAg2unO4vSHFuOQMiKNWC2/56Ox144O9JyXlqNNRW4MPOGWT9qnABFptMUkyFOLpN5QpmPiwkfjIGpT6HIWDd7tURBAfVpnlI5x1UN6fhQWRFhr1Yq8VACgxh57bcssHD4uz8/h8Emsz+8RsT0nvK3F9O0EQcMcdd+DVV1/FmjVrMHjwYMnrkyZNgsFgwOrVq8Vte/bswZEjRzB1amhFyHyCX/053D6xq61eF1uN/lSfiHxqqlrjPvi4h3R2fJSnwrV2u0S/MOvFwm7Q8mwXJSIFm8oRK5x6fHjonS/xrac+xeDFb2P5RwclfWRSmXqsFHDKKC00SPrRyE3d2QhZPjKL0vwTT8xbkUmPx79xBv507eko54JP+5VIA1HlVpFwc4Y8/qTXFeicHeirxFAS+HZxHggVT3xLCyWhm+viI67l9MKFC7FixQq8/vrrKCkpEeM4rFYrCgoKYLVacfPNN2PRokUoLy+HxWLB97//fUydOjWvM10AafS20+MVla5eq0mpPz5WNBoNDDoN3F5BveKDq/GRSAO1RJEfq7XbGWr5EKuA+qL2DAmXZqsEWxH2uLx4/tOgr/gXb+7CdVMGis8NKZzIWMyHvMIp4G/0VWjSi5Ow2twu4RqLEalDScTGWmSRccm4WgDAx/uDpdRrLGZJgH+1xQyjTivOG+Fu9k6PTyIset0Ba4ZBJ9bbAPz9i+T0iqm2oeKJWU3cXgEdnPhgc4cpyysB95W4vt2yZcvQ2dmJGTNmoLa2Vvx78cUXxX0effRRXHrppViwYAGmT5+OmpoavPLKK0kfuNqQl5qWiI8wJ/33LxiGurICzA9ULU01YsaLR50Bp2zcmSjffe6wYFR9W7dTDCplk2YBZ/mIFnDaP446GJYC/+d7fUKIX5wXkamN+fB/N6WeRNZCg6TRl9zUnY2wMXp8QsR26URqUGovEa/4YPBzK6tcyygw6CQuZn7eePwbweBOPp7K5xNEkV9g1OGMhjIx603pXBEtHwpuI4M2UOfD6wtpVAcEs8hylbh+UbnvSwmz2YylS5di6dKlCQ8qF+EvKP7mw8r5srbJPD+YNRx3zx6RtlW8Qa8FuAZgasPl9f8fZ8Jc+cxNZ8Hu8mDCg/+FTwgGGBcqxHzYI8R8PH3D5LjiewoMOui0Gnh9AuRnCX8+pTbmw//Z7T2ukNf8vSmC38eqgpiPQqMOeq0GHp+Azl53wjc+IjEcLgW3S4Ixb3y9n2pZfyx52XI+7uKScbWiVYQvNPZVS7DbODsv5o+vxZbD7ehREE09ESwfrByA2yugQ+HaSafrOBPQVZUm7LI+FwzWq8DEiY9aqxmvfm9a2lfwBpXX+hD7umTgotVpNbCYDehvLcDxjl6xARQTHWYjJz4Cv7+1wIDOXjdmj65GXVkBbpo2GA0V8dXB0Gg0KDHr0dHjllRLBYKCV6tBSPGjZMJWaB0K5chLCwySeJN4shYyhUajgbXAgDa7C5297rgsUUTfkVs+pg2rSLh3CV/vJ1R8SOcJ+eLPpA8VH3wV39mj/fU22GJBye3ILBpK571eG5xvleo9UcwHkRR4kxxf4ZL5/Ux6Hbrg3/5/150RtrFYKhFLdau0xLpYYCyDK4aLTqvG0x8dEp+zialAIeB0+Y2ToddqcVp/S5+sW0x8yPn7hwcB+Gu3pBI2sbYqNGKzFhgkvTnUID4ASMQHkV6YtaCurAAf/viCPn0WvxCRdwY36XX4xfwx+MWbuwCEVjM1GbTockq3e33BLEUWwMriueSxXK3dTuw47i+aqRREzgeL72nqCvt6rpLb3y6L4NU8b3Zn6pdX4eloiqYEfzGokXTVRInE8KoSyXM2MbHf11/nIxh8Oa7O2me3WolJ2ZXxt4D4SDWsvkFrd6jpuLTQIDFnp9ICk0xYobH9J0MrXBKphV3HSg3V4oW/gVdxMR9mgxY6rQY3TAtmbMrnPZaFuPiVL0QRygqC8d112Xyz8cAp+Lhz/fq/fyo+VkqfL+IsJrsVxEc6+lNlktz+dlkELzhYTIWGM4fzJxoTJOnGrFAmW02wcWeyQJq80JA85qOXc7skq2S+UnGjdKJU34BhKTDAF0OsWLZxekMpAOClzccyO5A8JJnXMW/54BsaakIipELrGzHhsvVIB5YHrJnewLnMi2h+nOv3Bquc7jwRbBViUbhGRYuJ2yOpAyU/fq6S298ui1BKw+rPmeL4Wh+ZsnxEqtegBnpcyVsxJYq8l4tcfJyyu0Q3RKJBdHL4XhBaTfpdG5HET0WRSZXi4/KJAwAATZ2hN4V0YHO48dSHB9HU6Yi+c47B6mjIA0ITgbcqlnEVTZXOSbm7uZH77bsCmVzMiseLj1E1wcKYh1qDHd55lNK12eKjx+lVnHNzPeA0t79dliAIgmIk9NVnBsvI87U+9Bk66cR6DSoVH72uzFs+5CscS8AqwAJOWVyERpM891A5Vzuj2KQPCaR7eEHyutkqURJB7AyvKk55zEkqYOXhMxXzseTt3fjVW7vw9SeUG3LmMsl0u5QVGlFZbEJlsVHSVygW8cEHl7I52SMWhwyKifIiI649yz+Xs8q+QLCJ4q8vH6s4Nr5Gj5KrO9ctH+qI/lI5DrcPSos/3g9o5iwf+gz5xdlNy+lWV8yHx+vDPS9/ji+O+bssZ9TyIYu/YJaQAq4EOeCfeJJVvKq+PHge9S8tQBcX0FxVYsLVk1PbK0nJ7TJtWAVumjYYWq1GlZYPJhodbh+cHm9MVYiTyfuBJmWH2nqi7Jl7dAesDMkQ5zqtBh/+eCa0Go3EWqEkiCPFurFgUm8g5kMnu3ZZJg0f98QCVSfWlyp+plh40O2FgNAB5br4yO1vlyV0KRRfAqQFl0ySgNPM/CzsYnB41GX52HK4Ha9vO4EDAZNntsR8FBh04m8pF0TJivcAgHquTX1DeaHkXEpHmqjZoA0RzM/dcjZmBVIRLRFiQrKVErNe7Elj641cFC4VlBdlfyXYVLH/pP86biiPL+08HGaDLuRGzgviG6cNAgAsnjsq7Gew2kxKMR8AUBH4vU7ZgxlfTMzILZEM3u3qUFjwpbqfV6Yh8ZEGmBquLDZJ4jl48cH79/SZivnQqzvglJEtMR+8CJALomTFewDSSbqurFCySo+nVHuiaDQayf/5Ly87TfL67742HiOrS/B/152e8rEkC61WI8bOKFVuTRUdPS488u5XEnfP2j0taTt+NrCn2Z/5wZcuTza8Me7+S8fgwx/PxNfPagi7f08gYSBYmVp666wo9mfStHGWDzaPhrOamQ1ayI2frFoqAIypzc0mqwwSH2mA+fkri40S9wrf4ZMXHIYMZbuwYlG9ChUGsxmHzFyayVTbYk5UaLmZRR48l8yqmWP6W8TS0af1t0gyp/rH0aSuL/Ary6smSd08w6tLsOru6bh0fHraBCSLTHS3/eVbu/Cn1Xtx5FTQ3fLPDYfTdvxsYH+LP715RHXqxAePRqNBXVlkKwvLUPMoBJwCQctHWyDmQxAE0ZoRLnBWo9FImi4CwENXjkONxYyfXjKK3C5E32mzM/FhkqyGecsHb2LLlOVDjEtQmdtFbqnJpOWDj67nKx6m0u1i0uvw37vPx9M3TsZlE/tLxEdtmqpz8t87VyZN5i5KZ9DpR/taQ7ZlQ+PJdNHr8oo38PokuV14xg2wAgBmj66Kuu+KW6aIj0W3S6DImFx8sJiPpk4HBEGQpO1G+v0KZBbQYVXF2PjTWfjO9KFRx6d28uesziCtXcztYpS0Z+bFB/84Y26XwEWybN1+eFRUYl0eKGbOoOWDh88akqdPJzsd1lpgwMyRVdDrtJKGVBVpih3gYz7UUkgsGix+hw/gTTVKwo0VtsoHTgTSW4tNesXaGH3lqevPxOK5o/C7r02Iuu85wyrxXECAMLcL+y3k5zirSN3r9sLW65HEcJgjBCvzixCjXptXHZRJfKSB1oDlo6LYJFml8+Y4Xnxkyu3Cj2fNbvX4meWWD7kpM91cMMq/qhrar0jcptFo8NNLggFtqQwm4y0frOttqtHm4KTJhEA62w0o1XaQuxVzGdaQsX+pOSU34iqLGd89f6ik5kckmAt3T3MXbnj6Uxxr949PHmBtNuhQFnCjN9p6xUwXjSZy3SY+sNicIxbDWMmvb5shWC+PErM+bDoXLz7S1cVWDj/Jqmmt5ZSLjwxHiT9y9QR8d/oQ/PVbkyTbWfYHkNyYDzl83Y10ZZpkylqXSpiIS2eXZ6XqxvLzO5cJio/saObHX6fr9pzEH1fvBaBs3asJxFc1djrEcgVmvS6iiHrwf4LB2cY0p3NnmtzO5ckS3B7/rdyg0yrW+wCk4iNTNNmC1RTVtJKVp6kNq06sA2ayKC00YvElo0O280KAt4okm8qSYA8LS5rOq1xxtfBkwvKhlJav1l5LiXC8wz8HZYv4COcyURLblcV+K0a73QVnWSDTJUq8Dp/RotSYMZchy0caYCunSOVyE20ZnUwqioMmQHmHxmxG7nbJ1hQ13gUyPIWR/JXc75guy4e86FIukO4uzz6foNicL5/ER2PA8jEgS8RHuOBppcWZSSxV4AtmukSxZmSqmnU2QJaPNCCKjwg+vbEDrPj15WND2j6nk9vPH4q/rj8AQF21PvjsnGvPqk9KT4hUYNLrMGNkP7R1uzB1SEXKjsNH0Kcr5iOnLR9pcruc7HYqHiuv3C6dwZiPbCBcZ1mlKtQsYP9Pq/eKVuRYMpWsBYaMlfHPJCQ+0gBbOUWrXPrNswemYzhhKS00Yt74Wvxne6PYpE0NsFXGbecPxU8iVCnMBp6+YTIA5UZTycLImYTTlXacy+IjXZaHY+3+2h4DSgtw07mDsW5PCz7Y25o3lg+vT8C+QI2PdNWniUY48aBTiM1h1xrvvo7l+htYUYjtgdYQ+UT+2nzSiDsGy0e2UMi1flcLzEoTroxxNqHRaFKeTse78NKVupeT4kPnvxbY9etwe/Hz13Zgze7mlByPZVLUlRXg5nMH42fz/HFDTpXV3UmUd3c1o9nmRJFRh1FZ4joN5ypXtnyECo2qGCzZP7xoJADgfyaoqwhfXyHLRxoIWj40OHdYJT7c14qrJtVleFTKiM2OVGj5yFZ3S7qZNLAcv7liLAZXpC6oVU5Oig9ZwOmbn5/APzYexj82Hsahh+Yl/XiNndJgSxYvoLZGj4nSFHC5nDu8MisC8AF/TIZOqxHLqjOUMhKVFj81FlPINjnTR/TDBz+aKdYKyRdIfKQBtnIy6bVYet0ZWLunBRedVh3lXZmBiQ9VuV0CK8N8y5OPxDempNeFl5MBpzLxwbs/Pt7XinF1VsWOvonSHShmxoprMZO/2ioOJwqrZyLvDJ1pTHptyHwYq+VDqXuuEqmo5prt0GydBviYD2uhAZefPiDjtSjCUWjwj0tNbhen6HYhy0em+PmlYwAAP7hgWIZHkjxMMvHB33Cu+9sn+NqyDUk9HivhzWpLsOwJt1cIWXnnIszCk23l5JXc5UqWPqX5pzRLLDjZSHbeAXMMV6AkrxpiPgqM/jGS24WIhwn1pdj9q4tz6jdglSlZBgoTBwzWfZXH7fXhHxsOY/qISgyrii+dmn0+64zMm/FdHl9IZ+RcI2jBzK7vqZTxEovlY3BlEW6bkfs9WhKFxEcacAUuqmjZLtkAS9NUl/hQT8BpLpNLwgMIrfMRiyvymY8P4df/+RIAMLG+FHfOGo6Zo6I3MQOCbhdWoZYPdnR6vDkvPrLV8qHkUlS2fEjH/db3z01pJWO1k12/co7iVpHlg2W79KjI7cJWTKYcu/kRmYWVu3Z6fNiwvw0HW+0h+7hldTk27G8TH2872oEbl2/CIYX3KcHatrMbll6nFQWImmKwEiVbLR9KDi9F8SEbdya7a6sBkmVpgK2cIlU4zRaC2S5qqnAaWzVBgogHtlh478tmvPelcnpte48LVSXBLAWlG9WJzl4MqoyeecS65/Idjy0FBrR2O9HR486akuOpIlstH0otMWJxu2SqR5dayK5fOUdhqyN1uF2ozgdBALFZKk/ZpeXQBYU7VaypsnZZzAcAsVNqR09o2fVcQ7RgZpmFWFCQlEpFxlQwvWcVZPlIIR/sPQmtRhO0fGTZRaUEMxWqycxLAadEKojFUnlK1oulQ6FMdqytCsSAU87yUcrERx6U33Zm6XWsaPlQaCzHLFdEbJD4SBGdvW5866lPJdsMKmg7XhiwfDhUJD4o1ZZIBbGswG2yG47cEgLEXqejW8HtUloY6JSaB5YPZ5ZaPlq6QrvNKjWWmzO2Bvf+azsAYEgMbrZ8h8RHijgR6M7IowbLBxMfagw4JbcLkUzCXa8DSgtwPHB922Xpt0oWw15XdLeLIAjodkVyu5DlI5tQivmwmA049NA87Dphy5rGeNkMzdYporFTQXyowCloVpnbxesTxGwiEwWcEkmksli5NPbqe87H3LE1AIIZKoyegBi5Y+YwTKizAojN7dLj8ormfSXLx8YDbUpvyymy1fLxo4tHQqMB/u+608VtkTodj+lvEX83IjzZ9SvnEMfb1Wr58E98Lo9PFVUV+YmdLB9EMmlQKHldazXDbNCJ6bB2Z/D823+yG/aAaL/+nEEYXu0vMhaL24XFe2g10hTNof385vuP9rXipIL5P5fI1tit780Yhl0PXoxLxwcbv7EOxETi0GydIo7J3C5ajUqyXbgLvy8ZLy6PL6Qb55rdzXh3V3I7gkrEB1k+iCSiVNSLWUOYdeLj/a1inMesP6wX9ysy6UQx7Igh24UPNuU7EV81qR4lZj18AsR287lKtlo+gNBz4WRX7sfgpJrs+5VzhBMdDsnzC0ZVqUJ8mA1asLnvN//Zhd1Ntrg/QxAEXLb0I0x7aK0oDhxuL25avhm3PrsZnUmM3HdwNVQor55INeVFfnN6kcl/M/pgbyvufGFryH5mvY7rShuD5UMh2BTw14qYNLAMAHCoLbZiZWqFibRsdp8unjsKxSY97po9PNNDUT3ZfzdUKcdlZrlJA8szNJL40Gg0ovXj+U+P4uLHPgi7b4/Lg39sOIQvG224//Ud2Nfi73Xh9gr4stGG1m4nPjvSDkBqoWhXyAhIFPa52VaYiMgN1v1wBh5eMF60YlwciPXgG0N+sLc15H1arSaumjnyvi48gyr8rhelCqu5RE8gfqbQlL3i47vnD8XnD1yEsQOsmR6K6ol7xn7//fcxf/589O/fHxqNBq+99prk9RtuuAEajUbyd/HFFydrvKrhuMztUpTFF5ScWMsC//o/X+Lnr+/E3D9+gGc3HMbsR97HpkOnJD5uFvvCm57lDbrixe31YeGKz7B07T6xBw2VMiZSwaDKIlw9uR6r7pqOP1w1AdecWQ8g1EKhVFyMxS7EEnCqVOODMSIQO/JlY/xWSLUgCIIY5F6UpR2/GUql1Yn4iVt82O12TJgwAUuXLg27z8UXX4zGxkbx7/nnn+/TINWG2+sLyQ0vzPILiifWBlavbT0esu2qv2yQ1Ag5cspvAeLjP/qSNigIAub+8QP8Z3sjfrdqD1q7/f/PFWEyEwgiGQysKMKCSXWia88nExtK9T1Y7EJMMR8OaV8XnvGBrJntxzoVRU4u4PL64AkEuOd6Az3CT9x3xLlz52Lu3LkR9zGZTKipqUl4UGqnvccVUhWvSEUXlNyK4PUJimo/3IqOn2ybbY6QbR29ibtdthxulwTetdj84qPaQuKDSB9Oj1RQKLlE4rF8sJTdEgW3C7N8dPa60WZ3hU0BVjM9XNZQoYrmSiJxUuIoX7duHaqqqjBy5EjcfvvtaGsLn6PudDphs9kkf2qnU2FlX6ii1sryiz9cdcVwmbi8j5uVHOYn4L5YPjYdapc8Zylv1SVU1IdIH1efWY/TG0rF54faQlMv42lV0BYo024tCK0PYdRrxTR9lye2PjFqg80xRr1WFYH5RN9J+q988cUX49lnn8Xq1avx29/+FuvXr8fcuXPh9SpfgEuWLIHVahX/6uvrkz2ktKPUh0FVlo+QtLL46gvwYsXmcMPmcKPNHvyMvjTJ2nmiU/L8YGDSryLLB5FGyouMePV700SXSFt38Pz+2SWjAQAVxX4h0dod+foRBAFrdrcAAKpKlM9jVqDQHaG4lVpp7XbigkCacq6KKyKUpC/Hv/71r4uPx40bh/Hjx2Po0KFYt24dZs2aFbL/4sWLsWjRIvG5zWZTvQBRWtmrKuZD5nZRLhkdfjXHB8a1dbsw6w/rJQLm9W0nsHDmMEk9g1iRW2He/PwEAKDKQpYPIv0wUdAeuOYHlBbg1ulDAAD9AkIimvh4bdtxfHHcL6rDiWjWFyoXxceqnU2ZHgKRAVJu3xoyZAgqKyuxb98+xddNJhMsFovkT+08+f4BAIC1wCBuU1O2i1woyYuFAcAJhfLxjO3HgtaJ3U1dIZaTvS3daEsw3Tacy6a+rCChzyOIvsDcIZ2BOCb+Oq8KuALb7C54IoiGf248EvIeOcwV4fLkXsCpvDMwkR+kXHwcO3YMbW1tqK2tTfWhsoJelxefHjoFQHrTVopiz1bkbhenQrR+o6yIGgCMqC4GAHx+rCPqMVigaLyEEx9KpbAJItUwUXAskFLOC/fyIiO0Gn9LdqVsGMbwqmLxsVLAKX+cXLR8nMqDjr1EKHGLj+7ubmzbtg3btm0DABw8eBDbtm3DkSNH0N3djXvvvRcbN27EoUOHsHr1alx22WUYNmwY5syZk+yxZyU9XKMpDYJuBTXVoZCPVSlaX6lr7+WnDwAAHD0Vve/BySimaIYgCPjbBwdw1m/ew7ajHbCFqY5aV0big0g/zPLBCo2NDGSmAP56ECwFXKktO4MXLKf1V7b8suPkovjIh469RChxL8c3b96MmTNnis9ZvMb111+PZcuWYfv27XjmmWfQ0dGB/v3746KLLsKvfvUrmEz5ERDo4AKm/n7DZLyw6QhMeq2qLB/ybBd5WiEA0W1SVmhAe48b980bLcZwsC6zkWixhVpOlPj9f/dg6dr9AICFz32GrjAFytTQtI/IPfjzrsiow70Xj5S8XmzS42SXM2KV0163/5z+7vlDUGI2KO7DYj4idVNVK3wcFy/eiNwm7jvijBkzIha6WbVqVZ8GpHZYH4cSkx5Th1Zg6tCKDI8ofuQ9UpQsH8zC8z8T+uPei/39Dp775HDMx4jV8sGEBwA0hokzYf02CCLdGLm00Fmjq0NqcBh10VNkWUB3vwj1O4Jul9yL+WDtFi6f2B8/mzcmw6Mh0gUtF5OM2BxJRW4WOfIAMCXxwVqJF5r0YknoeBpCJdLfhdUVkfvFn7r+zLg/iyCSAS8+lFwmBn3AYhGD+IhU2VMUHzmYispiPr559kAxQ4jIfUh8JBnW18Ss4kZncquEktuFWT74+iXyVtisBoISfcnnLy004McXj4JOq8EL3zkbpzeUJfxZBNEXeLfLiJpQlwETJ0rXEENsqBZBfORqnQ+Xxyd2AKe4rfxCvXfILEXssqriGIQFZ9RJniv1prAHVmt8sJz8O985K7TtNCuD3hffdWmBEbfPGIqdD87B2UPU59Yicge+GmdpQWi8hliZNML53qNwLYUcR5+bMR+H2+zw+gQUm/TUIiHPUO8dMkthKxyzit0ul4yrwRt3TMPXJ/uLvSnV+ehxskZYwe/Jf+e6sgJMHlwuPi8rNGBEdTGuO2tg4DMTn0RZ/RQ1/x8TuYEk4FQhqNwYcEVGsvT1iuIjBrdLjsV87D/p79M0tKo4oaKDhHpRTwqGSmABp2q+MWo0GoyvK8XbX/grDypbPpipWNnyMW6AFRazAVeePgBdTg+e+NYkAMDyjw8B6JvbxVqonBFAEOkmqviII+A0FvFx9FQPBEHImRv10VP+IPKBVKcn7yDxkWTYjVrNMR8M9h0cSpaPwITJWz74INsBpf6Ko49cM1HyPjZZv7W9EWMH7Mdt5w8Ne/xwWVVK5m2CyAR8YphS/yaT2BAufKqtGHBqCD8dMxHzx9V7AQB3Xzgi7rFmI42d/niP2lJqj5BvqP8OmWUwF0U8mR/ZCvsOfIXTbqcHf3xvL3ae8PdvCWf5sIQRCHx2wEPv7EZ3mLodQPhuoKVk+SCyBA/nBlGK2Ygl5sOu4MKUw+p8AEEBkguw9Pla6s2Ud5DlI8nksuXD5fFh7APSOi5F3ITLu5qs4cSHLCi1tcsppurK6QxTzbRUoe04QWQCPvtEqdBdNLeL2+sTC5BZwhQYA5CzbeaZ5aPGSr2Z8o3cPKMzCMt2MeeA5YP5oNnK7N+fHQvZpyBMqq2lQFlQyDNiInX83HK4XXF7jZVWSUR2EC37RLR8hBEfXY6g5S9cXxcAMKg4ey4SrOlkuG6+RO6Sm2d0BmFZHGouMsZg1RrbAkXHPtzXGrIPb+HhhUWxKUbLR4SOlp8cbBMfXzCqSnxcT8FpRJbgiZJ9ws53ZxiRwnoVFRl10Eewbhhz1PLBxJuael8RySE3z+gMkgt1Phis2uDuJhv2tXSLnTt5+EmRF1zhJhOjTro9kuWjs9e/Krz/0jG49bwh4nbqYEtkC9GKfkWzfLyy9TiA8DFSDD7mI5dg/y+56lYiwkMxH0kmGPOhfiXPxIfbK2D2I+sV9+EtGWY9L0SUJ5NQy0d48eHg0pYri4NxHmUUcEpkCaWFkeOPmDh3uL1werwhgeh/CgSPstiHcOTqzZmJt1y17BDhIfGRZHKhvDqjoii6H5afFHmzcU2Y6HW5+IjUTpuJjwKjFsOrS/Dw18ajv7UgZ2ocEOrn9hlDsa+lG5ef3l/xdXa+P//pUazc0YR3F50f0nwuFuTiI1dqfTDxwSq4EvkDiY8kw9JScyHVNpY29fJ9nvz2mejsdYeNy5CvcDp6wsd8yIN3rz6zPup4CCKdWAsM+FuExoa8+7W9x41nNxzGxafVYEx/S8Tu4ErH4XG4fREb0akBQRDEiq25atkhwkO/eBJZ/WUz3vz8BIDcsHwAwG8XjIv4ul4rXbFcOKYaX5tUF2ZvBcuHQjqtIAj41Vu7sOmQP9slF1xYRH4iP9//tHovLvnTBzjUape0GLh+6sCIn1NRLHXvdDnCWwyzHZ9PwNo9LWjpCrpcSXzkH2T5SBJOjxc3P7NZfJ4rN8xrJjfg1a3HsfHAKcXX4zX9ygNxldwuzTYnnvrwYPA9OSLkiPwjXCzDjhOdKOPiRX46b3TEzymTxZbYHB5UWfo+vkzw4uajWPzKFygvCn4nivnIP+gXTxK2XmmlzlyxfACRu23Gi3wlyFIN7U4P/rO9Eb0ur9g3hpErQo7IP8K5RgqNOjE+TKuJfvPlb9QAYFOx5eM/2xsBAKfsQZdrrmbzEOEhy0eSkJtBcyHmg8FPoEa9tk9N4eRuGuZ2ufCR9TjR6cAv5o+RdMMFcqNgG5GfhBPubq8gxoeZDbqoFsSyIrnbJXxbgmzH45POHxoNoNOS+Mg3cmd5nmFsjhy2fHCWB3Mf65fIJ+OOHheaOh04EUg13HHCFtJFN5f+L4n8QqnZHAD0urz47crdAEIFuRLlhbkT8yEvzGbQaXMic4eID5rVk4R8Msil1Trf6ruvlVsLjDr8+/ap+NdtU2HSa+ETgE2HgvEkxSa92JyPQW4XQq0Uhulb1OPy4j9f+N0P8oWLEgVGHS4+rUZ8LnfzqgmPTyo+TBTvkZfQr54k5GbQXCivzijgrBXJsI5OGliOMweVY1StP2Ju7Z4W8TWH2yvpoguQ+CDUC2/5uPKMAeLjHlf84uEv35qEK0/3f4aaLR9emfjI1b41RGToV08SoTEfufNfKyA4WTTbwlckjZfT+vvFx/tfBXvG9Lq9Yn0PBrldCLXCWz7G9rfi2rP8tWraI9S3iQRrPqfumA+524VcLvkIzepJIjTbJXdW6/uau1PyuYMrigBIS6w73F4xC4CRSy4sIr8okgVrFxj84mHp2v0JfR7rAaNmy4dH1g+HanzkJ/SrJ4mQmI8cWq1/S1YAKVmB6XVlBSHbHG5fiNtFS5HwhEqRB1gX9rEqKbN8xBInkq3I3S5U4yM/oV89SfS4cjdIcsbIKsnzSK2/46GuLLQEu9zt8vQNk5NyLILIBHxdGwH+87svlJjVb/nwCqHZLkT+Qb96kpC7Cvq6wsk2UlGNsKEiVHw43V44AnVEFpxRh5mjqkL2IQhVIghotkXuXhsNS0B8qNnyEZJqS03l8hISH0mi1+W/YY6pteAPV01IalXQbIAXH/okBYhZCwxYOHMoAOCqQD8Y3vJBZdWJXGJAWQG+M31ISO2Px66ZGPNn5EbAKcV8ECQ+kga7YV59Zh0WRGisplYeu2Yi+pWY8NsF45I6Wdw7ZxS2/vxCfP2sBgCBmI+A5YMCTYlcYPmNk3HPhSMwc2QVxteVYvsv5khev/z0AWHeGYoY86HQkFEtyIVTp4q/C5E4ubU8zyBMfKi9zXU4xg6w4tOfzoJGo8HRU734v7X7cHpDaVI+u6zICHNnL4BAtkvg/zKXgnaJ/GXGyCpJ3JROq0FFkRFt9vjTbVnMx/GOXtgcbtENoxa6nZ6Q+LgDJ+0ZGg2RSWh2TxK94g0zN8UHEOxg+4NZw/HXb03C8hvOStpns/+3XpcX+1q6JdsIItd4+GvjAQDfv2BYXO+zFATXi39evTepY0olTZ0OXPrnD/D7VXtCXps3rjYDIyIyDVk+koQjD8QHw6jXYg5X6jkZFAT+37qcHnyw1190LJcKtREEz6zR1dh832xUyBrGRYO3dDz90SH8bN6YZA8tJTy+bh92HLdhx3FbyGv/e+W4DIyIyDQ0uyeBdrsLnx3pABC8iRLxoSTa8kHIEflLZbEp7oZqZoNOrAw8OtCeQA2E64St0fgDz4n8g8RHEvjxv7eLj+mGmRhK8R0U80EQofx2gd9l09jZt7TddMICZeXUWMxpHgmRLdDsngT+u6tZfEyWj8RQymwhIUcQoQwo9VcGbu12hnSAzla0YSw8N587OM0jIbKFuMXH+++/j/nz56N///7QaDR47bXXJK8LgoD7778ftbW1KCgowOzZs7F3r3oCo/oKrdYTQ6vVSKpBAhTzQRBK8G4KeU+pbKXLKR1nQ3kh/veKcSQ+8pi4Z3e73Y4JEyZg6dKliq8//PDD+NOf/oS//OUv+OSTT1BUVIQ5c+bA4VCPiTBWNh5ow9n/u1qyjVbriSO3Gpno/5IgQtBqNeK10utSh+VDXttjyuByXDelIe6YFyJ3iDvbZe7cuZg7d67ia4Ig4LHHHsN9992Hyy67DADw7LPPorq6Gq+99hq+/vWv9220WcYdK7ZKOrICCFm9E7FjNmgRKPfhf05FxghCkSKTDr1uL3rc6rB8dMt60dA8SST1DDh48CCampowe/ZscZvVasWUKVOwYcMGxfc4nU7YbDbJn1rodUkv/CKjDpXFpgyNRv3IrUbkwiIIZVgxQ3nBrmxFbvkg8UEk9QxoamoCAFRXV0u2V1dXi6/JWbJkCaxWq/hXX1+fzCGllAKuf4tBp8GWn18IHbV/T5gQtwtZPghCkUKDf+7pcWa3+PB4fXjond3YfLhdsj1ZzSkJ9ZLxM2Dx4sXo7OwU/44ePZrpIcUM37m2rqyQ4j36iDzGgywfBKFM0PKR3W6XD/a24i/r94dsJ8sHkdQzoKbGX/WyublZsr25uVl8TY7JZILFYpH8qQU9Z+UYWV2SwZHkBmbZhERijiCUKTIFAk7d2W35kGe5MMjyQST1DBg8eDBqamqwenUwA8Rms+GTTz7B1KlTk3morIB1Y6wqMeE75w/J8GjUj7wpH4kPglCmIOB2aU+gOV06cQcqm5aY9Dh7SLm4nSwfRNzZLt3d3di3b5/4/ODBg9i2bRvKy8vR0NCAu+66C7/+9a8xfPhwDB48GD//+c/Rv39/XH755ckcd8YRBAEdAfHxxh3nosZKlfr6ijy7hep8EIQyzOX7izd3oazIiMsmDsjwiJTx+Pzi46zB5Sg08TFydG3nO3GLj82bN2PmzJni80WLFgEArr/+eixfvhw/+tGPYLfb8Z3vfAcdHR0499xzsXLlSpjNuXVzdrh98PoEAOFLBxPxQZYPgogNPt7s0Xe/ylrx4fL650iDTguDLuimJssHEfddc8aMGRAEIezrGo0Gv/zlL/HLX/6yTwPLduxcoBeVVE8OcrFBmUMEocyBk3bx8ZB+xRkcSWQ8Xr/lQ6/TSOI8SHwQdAYkiD0QSFVk1EFLN8mk0K842F78nzdPyeBICCK7WTApOy0dctwB8WHUaSWuFgo4JegMSBB7IL+e92MSfaMf1+FyYkNp5gZCEFnO1ybV454LRwAAumTVQ7MJt8TtQpYPIgidAQnC8uuLjORySRb9uOqwtDIiiPDotBpMqC8FEFo9NJtwc24Xg56L+aDrO++hMyBBugNul0IjWT6SRUN5ofiYD04jCCIUFuiezeLDw1k+eMFhIMtH3kN3zgRhPRWKye2SNEbXluC284eivMhA3S4JIgpB8ZHNbhe/5cOg01DMByGB7pwJwgJOC03kdkkWGo0GP5k7KtPDIAhVUGI2APBbYQVByErBHi7mgxZtBMnPBHlxk78HTSHFfBAEkQGY5cMnZG9322DMh1bSjqKyxBjuLUSeQOIjAQRBELs0nuxyZng0BEHkI3xF4Gzt8cIqnBp1GolAqigyhXsLkSeQ+EgAjy9YZO3S8f0zOBKCIPIVrVYjtiBwRBAf7391EnP/+AG2He1I08iCuDz+uVKv04q9sABKtSVIfCQEMyUCwFVn1mVwJARB5DOsJUEk8fHr/+zCl402XL70o3QNS4RZPgw6LWxZHBhLpB8SHwng9gQtHxS1TRBEpmCul16XL+w+fHBnpNYYqYDPdqkvK4yyN5FPUMhxArgCF5RGQ/1HCILIHKLlwxPe8mEtMIiPnR5fWhs28tkut04fjG6nGxePrUnb8YnshcRHAri8QVNiNqa3EQSRHzAh0Rsh20XPWWcdbm+axUcg20WrQaFRj5/NG5O2YxPZDfkMEsDtCTZLIgiCyBQFBv8cFCnbhfe0pDMl1+nxYt2ekwAowJQIhc6IBBA7NdIFRRBEBmFWjEgBpyzoE0iv+Hhp8zHxsV5LcyUhhc6IBHBxQVQEQRCZoiAW8eENmj4i7ZdsTnT0io/1NFcSMnJWfLzx+Qnc/eI2OCMEYiWKyxOM+SAIgsgUZmP0mA++NEA6LR+VXJfqU3ZX2o5LqIOcDTj9wfNbAQDj66y4cdrgpH42i+CmmA+CIDIJs3z0usOn2vJFEdNZCZUt0gBpxg1BADls+WC0dSdfcVPMB0EQ2YDZEL3CqYezfPS6PCkfE6OHO9ac0yi9lpCS83fPVJTh4FNtCYIgMkUsMR9uLuYjnW6X7kDn7+/NGEr1kIgQcv7umYo6HMGYD7qgCILIHKZAhVOnJ5LbhbN8pNHt0uP0H6vIlLPefaIP5IH4SP5nusnyQRBEFsBcvxHFB2f5iBSYmmzsAbdLkTF9Rc0I9ZCTd08fF2ClTYH6oJgPgiCyAZMoPrzYeKANcx59P6R7rZuzfHxy8BTe29UsCQZNFfaA26WQLB+EAjl59+RXAalwjLDGcpTtQhBEJmHi45XPjuPrT2zEnuYu/PSVLyT78JaPd3c145ZnN+PPa/amfGz2gJWlyEjigwglJ++efPBVKtwuTnK7EASRBRj1oS4Ng8wiywecMl7YdDRlY2KwbJdCE7ldiFBy8u7Jd3j0psC6yHq7yC9ygiCIdGJSmIOqS0yS53zAaaT3JRsWcFpMbhdCgZy8ezq4gjsub3ICrBa/sh3f+NtG9Lg8+M8XjQDI7UIQRGZRijuzOdyS5x4Fy0c64tVYqm0hBZwSCuSkJOXdLs4Ilf9ixe314flP/WbK2//5GbYcbgdAAacEQWQWJQtGZ6+0kJib60WVzurMPRTzQUQg5+6eJzp6sWpnk/jclQS/S0uXU3y8/quT4uOxAyx9/myCIIhEUbR89MosH4HsvxJzsMR5qt0ugiCIqbYU80EokXOS9JyH1kieJyOlrKnTobidSgYTBJFJTAoBp7z4EAQB3oD44OdCbYorjva6vRAC3h6K+SCUyDnLh5xYxMeBk924+LH38cf3lNPPlMTH92YMlXRtJAiCSDcmQ3AK/8NVEwAAXU6PKDj4TBcWgwEEg0FThT3w+RoNYFYQSASR8+LDGYPb5cN9rdjd1IVH3/sKh9vsIa832ULFx6hacrkQBJFZ+NiNGqtZfNwVCDrlM11+c8VY8TEvRPrKnqYuLP/ooKSBnZhma9Cl3MpCqJOcEh87T3SGbIvF8sGXHG7tdoa83tTZG7KtlFpEEwSRYcyc5cNiNoiN5myBoFPe8vG1SXV4b9H5AILiJB4+P9qBh97ZLelWCwBzHnsfv3hzF/615Zi4jVk+qLopEY6cOjPm/enDkG2Reh4w+GZLdgVzZJMtVJBYSXwQBJFhjLqgS6PAqIO1wIBetxedgbgP3hph0GpREEh7dSQQC3fZ0o8AAAIELJ47OuT1HdzijwWbUrwHEY6csnwo4fJ4cbyjFx09rrD78OJDruqBMJaPQhIfBEFkFj7mg4kPAKL4YJYPrcYfZMrcNC6PD4IQWv8jFnY3domPectysSk4J9qpxgcRhaSLj1/84hfQaDSSv1GjRiX7MCHwzeR4PjvcgWkPrcHZS1ajUUFEAICDc7t0K1o+QmM+yPJBEESm0XPxFEadFpYCv6WBFRpj7hVLYL7iU3OVyq7Hgo8TLc3c3MiPhWp8ENFIyZlx2mmn4b333gseRJ/6E7CzV9mHyep8ONw+7DxuQ621IGSfSJYPQRDQ3BnqduFz5gmCIDJBEefWKDHrQywfHYF/WYwaH6Dq9voSKpQoCMDyjw5i06F2sdozALR0+YXIx/tb8cAbOwFQjQ8iPClRBXq9HjU16a2BoRQoKudkmH16uSqo8piPU3aXYqEyHUVwEwSRYcwGHd64Yxo00MBs0MESWBSxWh8dPQHxUWgEILV8uDw+FCVQLeDDfa34cF9ryPaXNh/DrecNwXVPfiJuK6KYDyIMKYn52Lt3L/r3748hQ4bgG9/4Bo4cORJ2X6fTCZvNJvlLhNbu8DEdjJNdYcQHZ+2wy1LQmMulstiY0LgIgiBSyfi6UoyrswIAyor88xRbjLUHYt1YjJpOqxEXTsmo/iznj6ultZKKKOaDCEPSxceUKVOwfPlyrFy5EsuWLcPBgwdx3nnnoaurS3H/JUuWwGq1in/19fUJHTeW1DFmFpQjyXaRuV1YgbEaq5msHQRBZDWDK4sAAPtaugEAnT1Stwvg7/ECJKf6s5wWWWZgIcV8EGFIuviYO3currrqKowfPx5z5szB22+/jY6ODrz00kuK+y9evBidnZ3i39GjRxM6biwpteEtH1zMh8ztwiwfNRYzdBoSHwRBZC8jqksAAHsD4qOjl1k+gpZbMeMlBZaPU7KswiKK+SDCkPJU29LSUowYMQL79u1TfN1kMsFisUj+EkEuPh65ekLIPic6wlk+gu/tllk+2u3+i6miyARtzicmEwShZoZXFQMAjrX3wu70iDEffHaeMVDuPJmWj9GBis9ytzXFfBDhSPnttLu7G/v370dtbW1Kj+P0SC0W/zOhf8g+R9t7FN/r4NwuvBUECKbeFpn0uHeOP2X4uikNfRorQRBEKigrMoo9p/af7BazXcq4ukRGmdvF6xPwg+e34vF1ygvEcHzr7IHi4yEBd0+jrA8W9XUhwpF0WfrDH/4Q8+fPx8CBA3HixAk88MAD0Ol0uPbaa5N9KAlOt1TF63Whuqqjx43OXndIjQ4+vZZ/7Pb6RFdNsUmHm6YNwjlDK8TVBUEQRLYxvKoYrd1OfNXcLRZXlLhdAhkv7oDb5d1dTXjj8xN443PgezOGxXycsQOCVuoqi3LajMOT2gZ2hHpJuvg4duwYrr32WrS1taFfv34499xzsXHjRvTr1y/Zh5LA+y/Li8Jnphw91QPrAKv43OcT0MZlyvAumGuf2IjNh9sB+C0fGo1GNC8SBEFkI8Ori7HhQBv2tnQF3S685UMfrHIKAIfblC3C0RjLzaPh4uFS3T2XUC9JFx8vvPBCsj8yJpjlY0i/Irz83alh95MXIzvV44KHq47K0m49Xp8oPADyXRIEoQ6Gs6DT5u5gnQ9JtotffLCO3y1cIL4gCNAoCAmlUuxVJcEuunaXssgYXk1WYkIZ1YZQdjs9uPaJjXh2wyEAwZiPGSOqUFEsNQHOG1eLMxpKAYQGRDXLSqezssCn7NKobWqQRBCEGmBu4b0tXeJiS9Ht4gkVH54wbSq8CtutBQZMH+G3aF97VmiJhB/MGo7540Nj7wgCULH4eOHTI9hwoA33v+4v48uyXfgKfvdcOAJjai343yvHiZaLHplCZ3nprC8BCz5t6ZLnq1PgFEEQ2c+Qfv7gz6OnetEdWGxJA06DqbZurw8f7D0pvhYuA0ZJlBj1Wjx1/ZnYsPgCjK8rDXn91vMGQ0u1kYgwqFZ8yC8GZvkwceLj+7OG4+07z4O1wCCKB3kRMWb5GFhRCCAoTuSl2MnyQRCEGpAX9tJopL2o+JiPw2120TUDhK+XFK4miEGnVeyXxV4jiHCo9uywcBeTw+0VYz74FtM8rLuiPACqLeBeaSj3i49etxeCIIQUJKOYD4Ig1IBRdtPvV2ySVGdmr7u9vhBLsNzy8erWY9h+rAMeWQfc754/JOo4SHwQkVDt2cFKBAP+yqVMmZvC5JWz7opyywfLdBlQ5lfvguBX/3LxQW4XgiDUAD83AkBtqdQywVs+5HWN+HpJnxxow90vfo7/+b+PxLRcxuK5o0OO+/DXxkueUzsKIhKqFR+8GfCdHY14fdsJAAjbIlq0fLjkXWv9ImNAaaG4rcfllYiPK88YgGFU24MgCBWg0Wgk82B/q1nyOnvN6fFJ+loBUsvHzhM2xe3huPrMxPpyEfmJasUHX1Tsf9/eLT42hREfBQHLxeovmyXbmdulX4lJvCjtTg9e2uzvMfPA/DF45OqJiulnBEEQ2YiJc3nUyMWHLig+HG655SM4r/q49Fo++0+pdQWDjB1ErKhXfIRR4uHEB7N87D9px5bDp8Tt7KKqKDaKrpVnNxwSLST9SpQr9xEEQWQrvOWjvqxQ8prZ4J/n9jR14bcr90he4+dVvibSD17YCsBfwPHKM+piOi5BREK1Z0o4M2C4mI9We9CNsmDZBtGtIoqPIiMKAhflC58GO+tWFJH4IAhCXfAigHW6ZZgDQflvfH4CB1vtktf4mA++BhKrgqqPYtooNhkivk4QDNWKD3kjOUa4bJfhVdILcM3uZghCsLR6eZFRdM1UctaO+nLlNDKCIAg1MEJWZZQtspRgi7rOXrcYR8cTLYPFUkBZgURsqFh8KFs+SsKkxMq73BaZ9Oh2esTA1Yoik+h2OdHRCwC4ZFwN6mQmS4IgiGyn2xHM6pO7jk0RxAebV697cqPiHBut3hFfAoEgIqFi8aFs+SgJc/Ib9VrMG1crPu92eESXS4FBhwKjTlwRsIuOSgMTBKFG+GxAebC8OQbLB5/pwjOipkRxO8NSQOKDiA31ig93GMuHObwyv3P2cPGxzeEWM11YF9wCWWVAeY8YgiAINSCvy8FjDuOaBsJblBljonT1tpL4IGJEveIjnNslgvgYUV2Cb509EIDfp3mqO5jpAgAFsouystgIgiAItRGmPxwAwBwmKB+IXs+DFWMMx+zRVQCowBgRHdVGB4VzuxQZI38l1mDJ1ht0uzDLB98TodCow8CKomQMlSAIImuI5HaRd/mWUxjhvYA/tk6n1WCCQqM5guBRreUjnEKP1kWR+SQ7e91i87h+AfdKAVdCfdwAK6l3giByDiW3C6vg/MfVe0MKj/FEazOh0Whw6fj+qC+nQH0iMqoRH802B975ohG+gD0xmm8yHEx8dPS6xVofLBqcT0H7n4kUbEoQRO6hZPmYNrRCfMyqOytRQD2uiCShGrfLtU9uxIGT/oI4b//gPHQ7PVHeoUy1xV9quLnTIablVgXEB6/4rzh9QF+GSxAEkZUoWT5mjqrCMxsOAwDuf31n2PeS+CCShWosH0x4AMANT3+K4+3+Whx8OfX7Lx0T9XNYk6U9zV041u6v2tevxL+N1fcApPEfBEEQuYJOGzrtVxSZ8IMLhkV9b6GB5kUiOahGfPC0dDnFNNn75/sFx8CKQtx07uCo7+XbS39+rBNAMKulnEqpEwSRA0wd4nejyIsrAsrxctYCQ9jSAnzoG1k+iGShChkrCMp5YyUmPb4xZSBqrWaMqomcf85QqtBXFsh2+dHFI+HweMV0XIIgCDWy7Jtn4L+7mnEJV1iRMbG+FCOrS7CnuUvc5hcfoaUFBlYUin1dABIfRPJQheWjN0z0df+AFeOCUdXi41gYXiXtdVAUECTVFjOWXncGzh5SofQ2giAIVVBaaMTVZ9YrLraMei1W3nUe/nHzWeK2ErM+pInmvHG1WHXXdMm2SH1hCCIeVCE+Nh1qV9xeWZJYEbAlV46TPC+m+A6CIPIIjUaDAdyCTavVSIoqnj2kHEu/cUZIZgyVHyCShSruuve+/Lni9kiV+iJRLKuCWmQiNU8QRH4xpF8xnrr+TFQFAu75mA+ycBCpRhWWj5ZAPY6h/Yqw4pYp4vZoBcXCwZsiTXot9FHaRBMEQeQis0ZXY1ydFQBQyvVl8USqz04QSSDrLR+9rmC8x79uO0cMDgUAnSY54oMgCCLf4Rdz0Xq8EERfyfo77+FT/voe1gKDRHgAifsfizjxIW83TRAEke9E6opLEMkg68XHoVa/+BhUGWzyVhOoUjpnbE1Cn2ng3Czh0ngJgiDyFa/CtEhWYiKZZP3ZdLDVn2M+uCLYqOiN70/D0zdMxvzxoTns8WJzJFamnSAIItf48cWjYNRr8cD80GrR0ZrKEUQ8ZH3MB7N88O3tq0rMqBpl7tPnjq614MtGGy4Zl5j1hCAIIte4fcZQ3HzuYBgVrBzUcoJIJll/Nh1s84uPwZzbJRm89N2z8cKnRzFrdFVSP5cgCELNKAkPgCwfRHLJevFxuC005iMZlJgNuHX6kKR+JkEQRK5C4oNIJlkd89Hj8qDZ5q/xMbgiueKDIAiCiJ3TG8oyPQQih8hqywdraFRWaIC10BBlb4IgCCLZvHHHNLy1vRF3zhqe6aEQOURWi492uwsAUBmm1TNBEASRWsbXlWJ8XWmmh0HkGClzuyxduhSDBg2C2WzGlClT8Omnn8b9Gd1OfxpskUJnRoIgCIIg1ElKxMeLL76IRYsW4YEHHsBnn32GCRMmYM6cOWhpaYnrc+wuv/hQagtNEARBEIQ6SYn4eOSRR3DrrbfixhtvxJgxY/CXv/wFhYWF+Pvf/x7zZ5yyu9BudwOgrrMEQRAEkUsk3aTgcrmwZcsWLF68WNym1Woxe/ZsbNiwIWR/p9MJp9MpPrfZbACA6Q+vhdbkr2pKbheCIAiCyB2SbvlobW2F1+tFdXW1ZHt1dTWamppC9l+yZAmsVqv4V19fH7IPuV0IgiAIInfIeJ2PxYsXo7OzU/w7evRoyD5k+SAIgiCI3CHpd/XKykrodDo0NzdLtjc3N6OmJrSPislkgskUOZWWLB8EQRAEkTsk3fJhNBoxadIkrF69Wtzm8/mwevVqTJ06NaHPtDncyRoeQRAEQRAZJiUmhUWLFuH666/HmWeeibPOOguPPfYY7HY7brzxxoQ+r7TAmOQREgRBEASRKVIiPq655hqcPHkS999/P5qamjBx4kSsXLkyJAg1GmMHWHDWoAp88+yGVAyTIAiCIIgMoBEEQcj0IHhsNps/6+Wul3DduSPx0ILxmR4SQRAEQRBRYPfvzs5OWCyWiPtmPNslEl0OT6aHQBAEQRBEkslq8UGBpgRBEASRe2S1+LjqzNCCYwRBEARBqJusLaCx4tYpmDa6NtPDIAiCIAgiyWSt5WN8XSk0Gk2mh0EQBEEQRJLJWvFBEARBEERuQuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0QuKDIAiCIIi0os/0AOQIggAAsNlsGR4JQRAEQRCxwu7b7D4eiawTH21tbQCA+vr6DI+EIAiCIIh4aWtrg9VqjbhP1omP8vJyAMCRI0eiDj4ckydPxqZNm9L2PrUeNx/fm6lj22w21NfX4+jRo7BYLGk7rhr/r9T63kweW43ndF+Orbb/q0y+N53H7uzsRENDg3gfj0TWiQ+t1h+GYrVaEz6hdTpdQu9N9H1qPW4+vjfTx7ZYLGk9R9T6f6XG92by2Go8p/tybDX+X+XTecnu4xH3SWg0Wc7ChQvT+j61Hjcf35vpY6f7uGr9v1LjezN5bDWe0305thr/r/LxvIyERoglMiSN2Gw2WK1WdHZ29knpEUQ2Qec1kWvQOU3IieecyDrLh8lkwgMPPACTyZTpoRBE0qDzmsg16Jwm5MRzTmSd5YMgCIIgiNwm6ywfBEEQBEHkNiQ+iBA0Gg1ee+21TA+DIJIGndNErqH2c5rERx5www034PLLL8/0MAgiadA5TeQa+XZOk/ggCIIgCCKtpF185Ju6yzYGDRqExx57TLJt4sSJ+MUvfpGR8eQKdF5nDjqnUwOd05kjH85psnwQBEEQBJFWMio+Vq5ciXPPPRelpaWoqKjApZdeiv3794uvHzp0CBqNBq+88gpmzpyJwsJCTJgwARs2bMjgqAkiMnReE7kGndNEssmo+LDb7Vi0aBE2b96M1atXQ6vV4oorroDP55Ps97Of/Qw//OEPsW3bNowYMQLXXnstPB5PhkZNEJGh85rINeicJpJNRhvLLViwQPL873//O/r164ddu3Zh7Nix4vYf/vCHmDdvHgDgwQcfxGmnnYZ9+/Zh1KhRaR1vLqDVaiGvK+d2uzM0mtyEzuv0Qud06qFzOr3kwzmdUcvH3r17ce2112LIkCGwWCwYNGgQAODIkSOS/caPHy8+rq2tBQC0tLSkbZy5RL9+/dDY2Cg+t9lsOHjwYAZHlHvQeZ1e6JxOPXROp5d8OKczavmYP38+Bg4ciCeffBL9+/eHz+fD2LFj4XK5JPsZDAbxsUajAYAQcx8RGxdccAGWL1+O+fPno7S0FPfffz90Ol2mh5VT0HmdXuicTj10TqeXfDinMyY+2trasGfPHjz55JM477zzAAAffvhhpoaT0/h8Puj1/p968eLFOHjwIC699FJYrVb86le/yjlFnUnovE4PdE6nDzqn00O+ndMZEx9lZWWoqKjAE088gdraWhw5cgQ/+clPMjWcnKalpQXDhg0DAFgsFrzwwguS16+//nrJc+o1mDh0XqcHOqfTB53T6SHfzum0x3wwdafVavHCCy9gy5YtGDt2LO6++2787ne/S/dwcpr29na89dZbWLduHWbPnp3p4eQ0dF6nBzqn0wed0+khX8/ptFs+eHU3e/Zs7Nq1S/I6r+YGDRoUou5KS0tVr/jSxU033YRNmzbhnnvuwWWXXZbp4eQ0dF6nBzqn0wed0+khX8/ptImP9vZ2fPTRR1i3bh1uu+22dB02r3n11VczPYSch87r9ELndOqhczq95Os5nTbxka/qjsht6Lwmcg06p4l0oBHILkYQBEEQRBqhxnIEQRAEQaQVEh8EQRAEQaQVEh8EQRAEQaSVlIiPJUuWYPLkySgpKUFVVRUuv/xy7NmzR7KPw+HAwoULUVFRgeLiYixYsADNzc2SfY4cOYJ58+ahsLAQVVVVuPfee0M6JK5btw5nnHEGTCYThg0bhuXLl6fiKxFE2s7rxsZGXHfddRgxYgS0Wi3uuuuudHw9Ig9J1zn9yiuv4MILL0S/fv1gsVgwdepUrFq1Ki3fkchOUiI+1q9fj4ULF2Ljxo1499134Xa7cdFFF8Fut4v73H333XjzzTfx8ssvY/369Thx4gSuvPJK8XWv14t58+bB5XLh448/xjPPPIPly5fj/vvvF/c5ePAg5s2bh5kzZ2Lbtm246667cMstt9BJTaSEdJ3XTqcT/fr1w3333YcJEyak9TsS+UW6zun3338fF154Id5++21s2bIFM2fOxPz587F169a0fl8iixDSQEtLiwBAWL9+vSAIgtDR0SEYDAbh5ZdfFvf58ssvBQDChg0bBEEQhLffflvQarVCU1OTuM+yZcsEi8UiOJ1OQRAE4Uc/+pFw2mmnSY51zTXXCHPmzEn1VyKIlJ3XPOeff75w5513pvaLEESAdJzTjDFjxggPPvhgir4Jke2kJeajs7MTAFBeXg4A2LJlC9xut6SU7KhRo9DQ0IANGzYAADZs2IBx48ahurpa3GfOnDmw2WzYuXOnuI+8HO2cOXPEzyCIVJKq85ogMkW6zmmfz4euri7xOET+kXLx4fP5cNddd2HatGkYO3YsAKCpqQlGoxGlpaWSfaurq9HU1CTuw5/M7HX2WqR9bDYbent7U/F1CAJAas9rgsgE6Tynf//736O7uxtXX311kr8FoRZSXuF04cKF2LFjB7VgJnIKOq+JXCNd5/SKFSvw4IMP4vXXX0dVVVVKj0VkLym1fNxxxx146623sHbtWtTV1Ynba2pq4HK50NHRIdm/ubkZNTU14j7yiGr2PNo+FosFBQUFyf46BAEg9ec1QaSbdJ3TL7zwAm655Ra89NJLedXBlQglJeJDEATccccdePXVV7FmzRoMHjxY8vqkSZNgMBiwevVqcduePXtw5MgRTJ06FQAwdepUfPHFF2hpaRH3effdd2GxWDBmzBhxH/4z2D7sMwgimaTrvCaIdJHOc/r555/HjTfeiOeffx7z5s1L8Tcjsp5URLHefvvtgtVqFdatWyc0NjaKfz09PeI+t912m9DQ0CCsWbNG2Lx5szB16lRh6tSp4usej0cYO3ascNFFFwnbtm0TVq5cKfTr109YvHixuM+BAweEwsJC4d577xW+/PJLYenSpYJOpxNWrlyZiq9F5DnpOq8FQRC2bt0qbN26VZg0aZJw3XXXCVu3bhV27tyZtu9K5AfpOqefe+45Qa/XC0uXLpUcp6OjI63fl8geUiI+ACj+Pf300+I+vb29wve+9z2hrKxMKCwsFK644gqhsbFR8jmHDh0S5s6dKxQUFAiVlZXCPffcI7jdbsk+a9euFSZOnCgYjUZhyJAhkmMQRDJJ53mtdJyBAwem4VsS+US6zunzzz9f8TjXX399mr4pkW1QV1uCIAiCINIK9XYhCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKtkPggCIIgCCKt/D9V080zFE022AAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "In [129]: df = pd.DataFrame(\n", + " .....: np.random.randn(1000, 4), index=ts.index, columns=[\"A\", \"B\", \"C\", \"D\"]\n", + " .....: )\n", + " .....:\n", + "\n", + "In [130]: df = df.cumsum()\n", + "\n", + "In [131]: plt.figure();\n", + "\n", + "In [132]: df.plot();\n", + "\n", + "In [133]: plt.legend(loc='best');" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 463 + }, + "id": "ZhqbskOnvjLI", + "outputId": "e376385e-f7e6-407c-ad92-49cd011d5472" + }, + "execution_count": 99, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGtCAYAAAA4bV9OAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+QpJREFUeJzsnXWYVGX7xz8zu7PdvXR3CSgSEgoigomBLbairx34/uzueG3EFgMFEQRUQAFJ6e6F7e6e+v1x5tTEdgzL87muvfbEc855ZnZ2zn3u+N4Gu91uRyAQCAQCgcALMbb2BAQCgUAgEAg8IQwVgUAgEAgEXoswVAQCgUAgEHgtwlARCAQCgUDgtQhDRSAQCAQCgdciDBWBQCAQCAReizBUBAKBQCAQeC2+rT2BxmKz2UhPTyc0NBSDwdDa0xEIBAKBQFAH7HY7JSUltGvXDqPRs9/kpDdU0tPT6dixY2tPQyAQCAQCQQNISUmhQ4cOHvef9IZKaGgoIL3QsLCwVp6NQCAQCASCulBcXEzHjh2V+7gnTnpDRQ73hIWFCUNFIBAIBIKTjNrSNkQyrUAgEAgEAq9FGCoCgUAgEAi8FmGoCAQCgUAg8FpO+hyVumK1WjGbza09jWbFZDLh4+PT2tMQCAQCgaDJaPOGit1uJzMzk8LCwtaeSosQERFBQkKC0JQRCAQCQZugzRsqspESFxdHUFBQm72B2+12ysvLyc7OBiAxMbGVZyQQCAQCQeNp04aK1WpVjJTo6OjWnk6zExgYCEB2djZxcXEiDCQQCASCk542nUwr56QEBQW18kxaDvm1tvV8HIFAIBCcGrRpQ0WmrYZ73HEqvVaBQCAQtH1OCUNFIBAIBALByYkwVAQCgUAgEHgtwlARCAQCgUDgtQhDxYvZsGEDPj4+TJ06tbWnIhAIBAJBqyAMFS9m7ty53HPPPaxZs4b09PTWno5AIBAITlLyKvJ4ZM0j7Mnd09pTqTdtWkfFGbvdToXZ2irXDjT51Ksip7S0lB9++IEtW7aQmZnJF198weOPP96MMxQIBAJBW+XNrW+yLGkZy5KWsfuG3a09nXpxShkqFWYr/Z78vVWuve/ZyQT51f3t/vHHH+nTpw+9e/fm2muv5b777mP27Nmi/FggEAgE9WZz5mZlecHhBVza89JWnE39aPbQT1paGtdeey3R0dEEBgYycOBAtmzZouy32+08+eSTJCYmEhgYyMSJEzl8+HBzT8vrmTt3Ltdeey0A5513HkVFRaxevbqVZyUQCASCk43VKavJLMtU1p9a/xQpJSmtOKP60awelYKCAkaPHs2ECRNYtmwZsbGxHD58mMjISGXMq6++yrvvvsuXX35J165deeKJJ5g8eTL79u0jICCgSecTaPJh37OTm/Sc9bl2XTl48CCbN29m4cKFAPj6+nLllVcyd+5cxo8f30wzFAgEAkFb5PO9n7tsm39wPrFBsQyIGcBjax7j0TMe5exOZ7fC7GqnWQ2VV155hY4dO/L55+qb1LVrV2XZbrfz9ttv83//939cdNFFAHz11VfEx8fzyy+/MGPGjCadj8FgqFf4pbWYO3cuFouFdu3aKdvsdjv+/v689957hIeHt+LsBAKBQHAyEe7nes9wNl6eWv+U1xoqzRr6+fXXXxk+fDiXX345cXFxnHbaacyZM0fZn5SURGZmJhMnTlS2hYeHM2LECDZs2OD2nFVVVRQXF+t+2hIWi4WvvvqKN954gx07dig/O3fupF27dnz33XetPUWBQCAQnERklGXUOibML6wFZtIwmtVQOXbsGB9++CE9e/bk999/58477+Q///kPX375JQCZmVLMLD4+XndcfHy8ss+Zl156ifDwcOWnY8eOzfkSWpwlS5ZQUFDAzTffzIABA3Q/06dPZ+7cua09RYFAIBCcRKSXSfIW35z/jccxcUFxLTWdetOshorNZmPo0KG8+OKLnHbaadx2223ceuutfPTRRw0+5+zZsykqKlJ+UlJOnoSgujB37lwmTpzoNrwzffp0tmzZwq5du1phZgKBQCA42ai2VlNUVQRAl7AuTOk6xe24kuqSlpxWvWhWQyUxMZF+/frptvXt25fk5GQAEhISAMjKytKNycrKUvY54+/vT1hYmO6nLbF48WJ+++03t/vOOOMM7HY7gwYNauFZCQQCgeBkJL8yHwBfoy9hfmEEm4KVfed1OU/xspSaS1tlfnWhWQ2V0aNHc/DgQd22Q4cO0blzZ0BKrE1ISGDlypXK/uLiYjZt2sTIkSObc2oCgUAgEHg9drudhYcXklSU1KDjcytyAYgOiMZgMJBeqqqcX9XnKkL9QgFIK03jYP5Bt+dobZrVULn//vvZuHEjL774IkeOHGHevHl88sknzJo1C5CqcO677z6ef/55fv31V3bv3s31119Pu3btuPjii5tzagKBQCAQeD0LjyzkyfVPcsXiKxp0vGyoxATGANAhpIOyb2j8UEJNocr6PavuacRMm49mrdU9/fTTWbhwIbNnz+bZZ5+la9euvP3221xzzTXKmEceeYSysjJuu+02CgsLGTNmDMuXL29yDRWBQCAQCE42VqdIQp+V1kqqrFX4+/jX63hnQ+XOIXdi8jExved0AMWjAnWrDmoNml1UZNq0aUybNs3jfoPBwLPPPsuzzz7b3FMRCAQCgeCkQjY0AA7mH2RQrJqjmFeRx9MbnmZUu1Fc1ecqt8fLoZ74IKm6NiYwhsfOeEzZrzV8tN4Vb0J0TxYIBAKBwAspqCxgd67aQPBE8QlleVXyKqYsmMLfKX/z4qYXeWTNIzy74VmsNn3j3dSSVAA6hrqX8jAYDLw94W3HSpNOv8nwfplWgUAgEAhOQbZnb8eOXVlPK00DoMpaxb1/3asbuyxpGQBTu01lWPwwZbvc08eToQJwRsIZgFSiXGGpINA3sGleQBMhPCoCgUAgEHgha1LX6NZlQ2VTxiaPx8iaKQDl5nL25O0BoENoB0+HEGIKUYyTnPKcBs+3uRCGikAgEAgEXsbmjM38fPhnAGIDYwFILpY0yPbk7tGNfeLMJ5TlgsoCZfnSXy9VlruEd/F4LYPBoCjTZpVneRxXF04Un2Bl8soGl1O7QxgqAoFAIBB4Ga9veV1ZPiNRCs1sy95GcnGyTu/k2VHPckXvK7iou9TYt6BKMlSqrFWKBwaotVpINlQa41EpqCxg2sJp3PfXfdz0+00NPo8zwlDxUm688UYMBoPyEx0dzXnnnSfk8wUCgeAUoLhabbg7ImGEsjx14VRWpawC4JNJn3BJz0sAiAqIAlQl2rQS1Ug5t/O5tV5P9tr8lqQqo5utZt2YzLJMssuz3R5fba1m7A9jlfXcilwqLZUer1dmLmN50vJa5wXCUPFqzjvvPDIyMsjIyGDlypX4+vrWWOotEAgEgpMfq81KVpkUgpnWbRoXdr+QvlF9XcbJ2igAkQGRAHy972tsdhuppanKvidHPlnrNeXy5TWpa/j50M88vf5phn4zlMVHFwOSYTHpp0lc9MtFWGwWl+PdhXq0YShnUktSeXrD07XOC4Sh4tX4+/uTkJBAQkICQ4YM4bHHHiMlJYWcHO9LdhIIBAJB05BTkYPFbsHX4Mvzo5/Hx+jDvKnzXMaF+6vNa7uGd1WWv9n3De9tfw+AczqdoxvniUmdJynLT294WsmPefyfxwHYmb0TkHoCuTNA3PUKkr077sirzKt1TjKnVnmy3Q7m8ta5tikIDA0vUi8tLeWbb76hR48eREdHN+HEBAKBQOBNyAqx8cHx+Bh9AKmp4McTP+b2Fbcr48L81Ka8YzuoYZfXtrymLMshndoYGDuQT8/9lLtX3k2lVR+yufWPW9mYsVFZz6vMIzZIf153xktNhkpN+5w5tQwVczm82K51rv14OvgF1z5Ow5IlSwgJCQGgrKyMxMRElixZgtEoHGECgUDQFlmTuoZZK6V+eInBibp9o9qPIiYwRlGrDfBVW80YDUaGxQ9ja9ZW3THa8FBtjEgcwb/X/stXe7/SGTtaIwUkRVxnZL0WgAHRA9iTt4eXN7/MWR3Ocnstd+fwhLjjeTETJkxgx44d7Nixg82bNzN58mSmTJnCiRMnaj9YIBAIBCcVpdWlipEC0C7E9cFa25unLvvqY6jIXNP3GrqHd/e4XyvrD5J2y5tb3wTgwu4XKvNOLkmm2lrt9hzCo+IJU5Dk2Wita9eT4OBgevTooax/+umnhIeHM2fOHJ5//vmmnJ1AIBAIWplt2dt069GBrmF+bbinLvvkaqD64GP0YcFFC7j9z9tdvCmgzy+x2+26rss55Tk8esaj/HHiDwCOFx+nV2Qv13MIj4oHDAYp/NIaP43IT1Gnb8BoNFJRUdEEb4ZAIBAIvAnnm7e78t6BMQM9Hh9sck0vCGrAQzJIoaQRiSPc7ntr61v8m/kvAKmlqWzP3q7su67fdXSP6M6Q2CEAHC086vYcWo2X2ji1PConGVVVVWRmZgJQUFDAe++9R2lpKRdccEErz0wgEAgETU1hVaFufXrP6S5j7j7tbiosFUzpOsVlX4VF/xB7QbcLGB4/vMHzqUl2/6bfb+LWgbfSLaIbACajiX9m/KMYRt0jurMjZwdHCo+4HJtbkcuWrC11nocwVLyY5cuXk5goJVOFhobSp08f5s+fz/jx41t3YgKBQFALNruNoqoiRd9DUDty5cyM3jO4eeDNJAQnuIwJNgXz9Kin3R6fU6GXrnjxrBcbNZ+OIWojw+Hxw7m81+U8uvZRZduc3XOU5RGJI3Tem+4RUo7LscJjLud9ZfMrAPgZ/eo0j1Mr9HMS8cUXX2C325Wf4uJiNm/ezPTprha2QCAQeBvPbHiGsT+MZVeOUNOuK3KCaXxwvFsjpTYmdVK1ULS6Kg1F61FJDE6kf0x/j2Odk3ZlQ2VF8goXY0VWt53YeWKd5iEMFYFAIBA0OQsOLwBgzq45tYwUgOSBWnR0EQCR/g3zQl3c42LeHv829w69l08mfdLoOYX7h3Nh9wsBGBw7mA4hnkNBZyScoVvvH60aNUuOLdHtk/sRTe02tU7zEIaKQCAQCNyyMWMjt/xxC8eLjjf4HCYfU9NNqA2j1T9x1k+pKz5GH87pfA63DLylQR4Zdzw/+nmWT1/OFb2vwMfow68X/+p23LRu+vYu4f7h3D5IEqc7kH9At08OcUX4RdRpDsJQEQgEAoFbbv3jVjZlbFLEv6w2KynFKbUchU47w8+nbnkIpzqpJWpvHk/VNq2BwWCgfUh7DI7KVbknkJZekb2U/VrGtB8DoOv2/OnuT5Wk4brmLwlDRSAQCAQu2O12ZbmoqgiQ8k7OX3g+S48trfFYbYddm93WPBM8SfjhwA9M+mmSkqeRW5HLyhMrXd4XORH2kh6XKLL53kiQKcilGsmO3e3YjqFSMm5ORQ4Wm4W8ijze2faOsj/M37MmjBZhqAgEAoHAhfQyVRxzZ85OBn45kIVHFgLw0a6PajxWa6gsS1rGI6sfqZduRlvi+U3Pk1mWqXil7lpxF/f9fR8/HfpJGVNQWcD/tv8PwKWHjjfy5Mgn+XHaj8p6uYceehH+EfgYfLBjp6CygG/3f6vb72usW+GxMFQEAoFA4MKe3D0e99VWVppVnqVbX3Z8GZcsuoTCykKPx9jtdnbn7Ka4urhe8zxZMFvNAOzP3w/ADwd/UPb9nfK3slzXm3drYjQY6RvdV1l31m+R8TH6EOEfAcAnuz5RROICfAJ44swn6n69hk9VIBAIBG2R9enr+e7Adx73y3knVdYqt6EdrUdFpsJSwfLjyz2ec0PGBq5eejXXLb2uATP2fkw+Jl047XDBYSw2C4CuW3FjBNpaC0+GCqhy+98f/J4dOTsA+Hbqt1zR+4o6n18YKgKBQCBQSClJ4fY/b3fpwqvFz8ePoqoiJs6fqDTRM1vNPLLmEb7d/63iURkaN5SxHcZiNEi3mprUSFclrwLgWJGrQNjJii6p2Oin5PqAlNexMnkli48uZn36egC6hHXh9ITTW3yeDWVo3FAAzu96fp2P8TX40jWsfhov3u9jEggEAkGLsTZ1ba1jTEYT/6T9Q2FVIf+k/YPFZmHJsSUsS1rGsqRl9IiQmqme2+Vcrul7Df9m/stNv9/E78d/Z3KXyZzT6RzFeJHRVoBUW6vbRLWQtnePHTsZZRm6/Q+tfki3flGPi1pkXk3F2xPe5q+Uv5jcZbLHMfcPu5+3tr6lrI9qP6reJevCoyIQCAStwHMbnuOc+ecomhLews6cncry6+Ne590J7/LVlK90YyosFZhtZmU9syxTdxOW+7vIVR99o9R8hgf+foDP9nymrC89tpTZa2frwiKppWqp7smM9nXsy9vnYqg4Exvo/Ym0WiIDIrm056VumyHKzOw/k4eGqwbZjf1vrPd1hKHixWRmZnLPPffQrVs3/P396dixIxdccAErV65s7akJBIJGUGYu48dDP5Jdnq1LpPQGUkoknZS3x7/N5C6TmdBpAqfFncbFPS5WxpRWl5JVpibMXrnkShdRL1DzLUL8Qgj3D1e2f7n3SwB+PvQzj659lCXHljDvwDxlf2ZpZpO+ptZiX94+ZTmrPIvX/pUqfwJ9A13GGg1GhsYPbbG5tRQGg0GnaNsQaX9hqHgpx48fZ9iwYaxatYrXXnuN3bt3s3z5ciZMmMCsWbNae3oCgaCBPLfhOc6cd6ay7kmDojWw2+3szt0NQMewjrp99w69l+v7XQ9ASXUJmeWqMVFcXcxfKX/pxl/X7zpdk7o7Bt2hLBdWFZJemq4rcy6pLlGW71x5J6tTVjfBK2pd9ubu1a3LHpbR7Ubrtl/f73rWXLlG8UC1NbQ9g6IDout9vMhR8VLuuusuDAYDmzdvJjhYdav179+fm266qRVnJhAIGsOPh37UrWvzGFoKq83KsaJjdI/orssV+WSX2h/Gua9LTGAMM/rM4Kt9X1FiLnErq98rshf/HfFft56Ba/tdy8TOE5n0k9Q4b/LPnvMabHYbd6+6m9037K7vS/Mq9uRJJd7Tuk3T9bsZEjeEFckrlPWHT3+4xefWkvSO6s3zo5/XKdzWh1PKULHb7TWWUTUngb6Bdf4D5efns3z5cl544QWdkSITERHRxLMTCARNzcH8g2zL3sYVva5QlEa1XgMZuXyzpbDb7dz39338nfI3Dw1/iBv636Bsl42o3pG9dd4QmVBTKCDlqMi5LBM7TVRuum+Pf9vFE6OlqfrPnAwUVRUpYbTHzniMtNI0tmdvByQjMC4wjuyK7FPmPWlMovApZahUWCoYMa91eihsunqT2398dxw5cgS73U6fPn2aeVYCgaC5uGPFHeRW5FJhqaDMXMbSY0uZdZpr2LalPSr/pP2j5MUsOLxAMVTm7pmr6J+8Nu41t8cG+6kPTmabmSDfIC7tealiqGhd/HWla3hXkoqS3O47mat/ThSfACAuKI5w/3B6RfZSDZXQDjw24jEWHVnEY2c81prTPCk4pQyVkwVt9rtAIDj5yCnPIbciF4BFRxYp2iCz1852GduSHpVyczl3rbxLWT9WdIy8ijyiA6PZma1W+3QJ6+L2eJPRRKBvoOKZTghOYEz7MTw58km6hHWpk9f4y/O+5IblNyjrA6IHcPeQu3lw9YMuY7PKs07avA258Z6ckxETGKPs6xjakd5RvZnUeVJrTO2k45QyVAJ9A9l09aZWu3Zd6dmzJwaDgQMHXLPoBQKB96OVn3cXbn5w2IP0je7LLX/c0qIeFWdpe4DDhYeJDowmrUzqxfPm+DdrNDhCTaHKa4oKiMJgMHB5r8vrPIeh8UO5deCtzNk9B4DTE07n3C7n8mT1kzy74Vnd2KSipJPWUJGbEMr6MO1D2iv76updF0icUoaKwWA4KT4gUVFRTJ48mffff5///Oc/LnkqhYWFIk9FIPBitAaBs3aGr8GX87udT3GV1NOmJT0qOeU5LtsO5R9iRMII0kokQ0UWa/NEqF8o2RVSiEgr0lYfQv1ClWW5hPnyXpeTUpLC53s+V/b9lfIXYzuMbdA1WpOc8hze2PoGgNLr5ryu57ElawunxZ3WijM7ORHlyV7K+++/j9Vq5YwzzuDnn3/m8OHD7N+/n3fffZeRI0e29vQEAkENLDi8wOO+/jH9iQuKIzpQCgkUVRXpxNOaE3celePFxymoKqDcInXAbRfSrsZzhPiFKMtRAVENmodWIEyb13JDvxsYFj+MKV2nAPDToZ90WiQnC3+n/q0syzk2JqOJZ0Y9o9OjEdSNU8qjcjLRrVs3tm3bxgsvvMCDDz5IRkYGsbGxDBs2jA8//LC1pycQCDywNnWt0iHXHe2CJUMg3D8cH4MPVruV/Ip84oPjm31u7poFppSkKN6UuMA4/H38azyH1hvSEE0MgIt7XMzu3N2M6zBOF2aKDozmi/O+wGw180/aP5RUl3Dlkiv59NxPGZHYOoUQDWF5ktp8sTXKz9sawqPixSQmJvLee+9x/PhxqqqqSE1NZdGiRYwfP761pyYQCDygVVjVcnrC6RgNRm4bdBsgKZHKoZOWCv+4k3DfmLGR5JJkoG5VO1qZd9krVF/8fPx4bvRzTOw80e1+k4+JbuHdlPU5u+Y06DqtQXppOpszNyvrDVFiFegRhopAIBA0IZll7uXfP574MSsvX0mPSDUHRDZUCisLW2JqOpE2bcXJm1veBPQJn57QirmNTGy+MPSsIWopd4nZVX/G2yg3l3Ppr5dy+WI1sfjC7hcqhqmg4QhDRSAQCJqQnAopYXXBhfo8FZOPSVeiChDmFwZIEvQtgaxXctfgu3jprJfoFNoJQEmOTQxJrPUcZ3c6m06hnTi749k1irs1lpHtRvL86OeBljPkGsPWrK0cLjis/C1HJI7ghTEv6HocCRqGMFQEAoGgiai2VlNUVQRIIZJBsYMAz5U0LWmoZJVlKQbJNf2uwd/HX+ndIxPpX3sVT5hfGL9d+hvvnP1Os8xTi1whI2uS2Ow2bHZbs1+3Icgdo2VOtk7I3oxIphUIBIImQhZ5MxlNhPuH8+yoZ1mbupZJXdwLezWnobI3dy/PbXyOB4c/yLD4YYrI2mlxpynXjQnSe3i0ibLegOyNKLeUc9eKu7DYLBwqOMSiixd5nafCOYH6ZFXU9UaEoSIQCARNhGyoxATGYDAY6B7Rne4R3T2OD/Ovm6Fit9vZnr2dftH9CPANqNNc7lp5F/mV+dz0+018ed6XpJVKlT039FNVYZ2f+r3NUNHOZ23aWmV5Z85Or9NX0Sr7AgT5er9m18mCCP0IBAJBE5Femg7Uvfme4lGpqtlQWZW8ihuW38B9f99X57nkV+Yry6tTVwMwtdtUzul8jrLdOWfG2wwVbWdnLaklqS08k5rJKc8hvSwdo8HI++e8z6TOk7h10K2tPa02gzBUBAKBoIk4Xnwc8Nwrx5m6hn4WHJESc9elrXPbgbk2DhUcAmBo3FDd9sRgffKsPB9vwl0/nNRSLzNUHAnUMQExjO0wljfHv9lgMTyBK8JQEQgEgiZC7pjbOaxzncbLeRZ/nviT+YfmexynDSPIRkdNODc23ZixEYCekT112w0GAx9OVAUkvdFQeX3c64zrME63LaUkpZVm457S6lJAr9oraDqEoSIQCARNxMGCgwB0Ce9Sp/FyeTDg0pBPS3pZurIsG0M14Sw6Z7FZCPQNpGdET5exci8a8L7QD0jhn4dPf5hOoZ2Y0HECIIV+rDYrf574U6myak1KzcJQaU5EMq1AIBA0kjJzGZcvvlx50h8cO7hOx9XFoLHb7bqcjNoMFbvdzsubX3bZPrP/TLc3Um13Ym9t2to5rDO/XfobycXJ/JXyF2mlafx54k8eXvMw7YLb8ftlv7fq/BRDxSQMleZAeFS8lBtvvBGDwYDBYMBkMhEfH8+kSZP47LPPsNm8U0dAIDhV2ZixUTFSuoR1cUlS9YSzB+Pp9U9z2x+3cTD/oLLtUMEhXWLsurR1LqEdLRWWCrfbPTXDC/cP56cLfmLRxYs8Jq96C4nBiRgNRiosFUrjx/SydBYeXtiq85LzhoSh0jx496fyFOe8884jIyOD48ePs2zZMiZMmMC9997LtGnTsFgsrT09gUDgQCub/9zo5+p17APDHlCWfz78MxsyNnDZ4ssoqS6hwlLBjN9mAJJXIdA3kIMFB2tseqg1amR8jb41ViL1juqt663jrZh8TEr+z4aMDcr2ZUnLWmtKgJqj4o2hs7aAMFS8GH9/fxISEmjfvj1Dhw7l8ccfZ9GiRSxbtowvvviitacnEAgcfLX3KwBu7H8jQ+KG1OvYK3tf6Xb7S5teYlnSMiw26aHkntPuYVj8MAC2Z2/3eD7ZUNEaJhabRdel+GTmmj7XuGxz12yxJSkzlwEQbApu1Xm0VU4pQ8Vut2MrL2+Vn5pctfXh7LPPZvDgwSxYsKD2wQKBoNnZlbNLSXZtF9Ku3scH+gZiMppctqeVprEvbx8AMwfMZHKXyQyJHQJIgmfusNvt3LHiDkCfJNuWcGcIZpVnNdl3bF2x2W1klmVitpqVpokimbZ5OKWSae0VFRwcOqxVrt1721YMQU2TqNanTx927drVJOcSCAQNp9xczjVL1Sf8MxLOqPc5DAYDYX5h5FXmAVIi7s6cnRRXFyulyL0jewNqebG2C7KW1JJUJV8iqSiJF8e8yOP/PM6TI5+s97y8FXel3xWWCoqri1tUVv+TXZ/w/o73CfINotxSDkC4n3fJ+rcVTimPSlvBbre3GTeuQHAyIyu+guT1qEkuvya0fWHuH3Y/IKnVygaJfF5ZSO5E8Qm3HoRNmZuU5TC/MC7ofgF/X/E303tOb9C8vJEA3wBOTzgdfx9/ll66VGmkmFWe1ehzV1urqbJW1WnskmNLABQjBWBwXN2qvQT145TyqBgCA+m9bWurXbup2L9/P127dm2y8wkEgvphsVkoqS5hV47q2fRUVVMXnh71NHeuuJPpPacTHxQPQH5VPlabFVB78nQM7YjRYKTcUk5ORQ5xQXG682jF4F4b9xoA0YHRDZ6Xt/Le2e9RYakgOjCacP9wCqoKGq2n8tmez3hr61t0C+/GTxf+5DYcJ5NRmsGJ4hMYDUZiA2PJKs/Cz+hHn8g+jZqDwD2nlqFiMDRZ+KW1WLVqFbt37+b+++9v7akIBKcsr/77Kt8f+B47klfjpbNealTVzKh2o1h5+UrC/cOV8mI5idZoMCr5JiYfk3JjzCrLcjFUkouTAXh65NNK4m1bJMgUpGi+yO/N0cKjnJ5weoPOV2Yu462tbwFwrOgYB/IOMDB2oNux1dZqzv35XAB6RvTkmVHP8M3+b7im7zX4GH0adH1BzYjQjxdTVVVFZmYmaWlpbNu2jRdffJGLLrqIadOmcf3117f29ASCJsdisygVFN5KlbWK7w58pxgp4NpDpyHEBMZgMppctDgi/CN0N0BZo0XOadEii8F1Cuvksq+tIuelvLDpBbel2XUhv0J/3LbsbR7HHi08qiz7GH3oH9Ofl856iQExAxp0bUHttJih8vLLL2MwGLjvvvuUbZWVlcyaNYvo6GhCQkKYPn06WVmNjzO2FZYvX05iYiJdunThvPPO46+//uLdd99l0aJF+PgIy13Q9rhjxR1M+XkKWWXe+z2wO2e3bj02MNaluV9jcBZdM1vNunU5lLM7d7fidZHHydVHde011Bbw9/FXlndk72jQOQqqCnTrNZV/a9sZ3DTgpgZdT1A/WsRQ+ffff/n4448ZNGiQbvv999/P4sWLmT9/PqtXryY9PZ1LL720Jabk9XzxxRfY7Xbsdjtms5ns7Gz+/PNPZs6cidEoHGGCtoXdbqfKWsWmjE0UVBUw8aeJVFurW3tabjlWdEy3PiRuSJMnt0/sNFFZlktfZaIDJEPlk12f8MaWN8ityAWkjsI2u41A30Alp+VUQJavB6i2NewzU1Dpaqh4KnfOKJU0W3pH9ubczuc26HqC+tHsd7zS0lKuueYa5syZQ2RkpLK9qKiIuXPn8uabb3L22WczbNgwPv/8c9avX8/GjRube1oCgcBLyC7PZvLPkxnz3Rjd9n8z/22lGdWM1vUPde/rUx/eHP8mn577KcGmYB4a/pBun1ae/5v933DRLxdRVFWk5Kd0Cu10SlUFFlcVK8u55bkNOoccMhqRMIIAnwDyK/M5UnjE7di00jQARrYbeUq9z61Jsxsqs2bNYurUqUycOFG3fevWrZjNZt32Pn360KlTJzZs2OB8GoWqqiqKi4t1PwKB4OTlyiVXklGWQaW1Urd9S9aWVppRzWg9KiMTRzK129Qmv4bBYGBE4gjWX7WeG/rfoNvn3MiwuLqYrVlbFXG4Uyk/BWBsh7HK8gc7P2hQ2LCwqhCAuKA4JQl5Y4b7B2bZgDnV3ufWpFkNle+//55t27bx0ksvuezLzMzEz8+PiIgI3fb4+HgyMzNdxsu89NJLhIeHKz8dO3b0OFYgEHg3mWWZSujCGW/1qBwrlAyVb87/hk/O/aTODQgbgrsmgVO6TuH8rufrtu3P38+3B74F4Kz2ZzXbfLyRmwbepOjLlFSXcPMfN9f7HNnl2QBEBkQqhsqr/77Ka/++phtnt9uVPkv9ovs1YtaC+tBshkpKSgr33nsv3377LQEBAU123tmzZ1NUVKT8pKSkNNm5BQJBy+JOCj7IVyo73Zu7l3Jzucv+1qSkuoTsCumm1lpN/ExGE6+MfYVHT39U2fbRzo8oqiqifUh7Lux+YavMq7Xw9/HntkG3Kety5VN9kI2PnpE96R3VW9n+1b6vlK7YAMklyRRVFeFr9KVnRM9GzFpQH5rNUNm6dSvZ2dkMHToUX19ffH19Wb16Ne+++y6+vr7Ex8dTXV1NYWGh7risrCwSEjx3+fT39ycsLEz3IxAITk7cVWl0C+9G+5D2WOwWNqR7DgO3BklFSYBU6dPanXKv7XctL4x5Qb+t77WnpJZHbJA+ebgufX/sdjtvbn2TW36/ha1ZkhBo/+j+SrsCmU0ZqtrvurR1gFSOrlUTFjQvzWaonHPOOezevZsdO3YoP8OHD+eaa65Rlk0mEytXrlSOOXjwIMnJyYwcObJJ52Kz2Zr0fN7MqfRaBSc/skcl0FdVbo4NiuXsTmcD8FfKX60yL08kl0gJq95S/jsyUf2uDDGFcEXvK1pxNq2Hc5VTXVRqd+fu5vM9nyttB2ICY+gW3o344HjduAP5B5RlOW9qZLumvUcJaqbZlGlDQ0MZMEAvgBMcHEx0dLSy/eabb+aBBx4gKiqKsLAw7rnnHkaOHMmZZ57ZJHPw8/PDaDSSnp5ObGwsfn5+bTZL2263U11dTU5ODkajET8/Ye0LvJ/UklQAnSLro2c8ytHCo3y972t25+7mw50fklyczDOjnmn1p9iUYikM4C2JlDGBMfSO7M3BgoNc1eeqVn9/Wgtnj8rhwsM1qtTa7DauX6YXzbyqz1WKN+rrKV9z3bLrAHShn925koZOc1R6CTzTqhL6b731FkajkenTp1NVVcXkyZP54IMPmuz8RqORrl27kpGRQXp6eu0HtAGCgoLo1KmT0FoRnBTIKrTdw7uTWSYl0bcPaa+IeB0rOsYHO6TvhF6RvZg5YGazz2lv3l7CTGF0DHNN1Jc9Kh1DvSOJ32Aw8O3Ub0krSfMaL09rEGrSh+H25e2r0VDJr8zHarfqtsn6NCBp43w++XNm/j6T5OJkDuYfpMxcRmZZJgYMIpG2hWlRQ+Xvv//WrQcEBPD+++/z/vvvN9s1/fz86NSpExaLBavVWvsBJzE+Pj74+vq2Wa+RoG1htpoVga5HTn+Ej3d9zOW9LgckT0GEf4RSNgqSrPlMmtdQOVJwhBlLZuDv48+Wa13Lo2VDpVOod3hUQEom7RbROom93oLBYODuIXfz3o73ADU51hPuOi3LPYNkZMMvtTSVyxZfpmxPCE4g2BTcyBkL6sMp0ZTQYDBgMpkwmTx3wxQIBC2LtqdPx7COvDL2Fd3+ML8wnaGSW55LcXUxZqu5WToCV1oqueTXSwCpn4/ZZtZ10D1ScETpluwtoR+Byu2Db6dLeBceWv0QaSVpHsdllmXyn5X/cdku9wyS8VR2rvW8CFoGER8QCAStQplFMlT8jH46g0AmzE9f0bcvfx+XLrqUixZdRHF10ws9OkvjOzequ+l3ta+Lt4R+BHrah7QHVPVYd3y972ulxFwbMnL2qBgMBtoFt3M5XtZcEbQcwlARCAStguxRCfELcbs/zF9vqNjsNrLKsyiqKmJr5tYmn4+z8Jy24qiwslDXuE64/r0T2VDJqcihylrldoycCwUwpoPatsFduflr415jROII3bZTtbKqNRGGikAgaHHsdrsi5iYLvDnj7FHRsi17W5PPKa8iT7f+wqYXFD2OpOIkZfvHkz5u8msLmoYI/wil1F1uHrgxYyPn/nQufxz/A1DzU/pF9+O/I/7LsPhhDIod5FI5BDAodhCfnvspSy9ZyqU9L+WJM5/gpoGiY3JLc0rkqAgEAu/haOFRbvr9JiV84sk7oTVUgk3BupyWhvRzqQ13Uv4FVQVEBUQpTesGxQxiVLtRTX5tQdNgMBhoH9KeI4VHSC9Np3NYZ27941YA3t/xPjZsinbPzAEzCfcP5/PJnyvHeqJjWEeeGfVM878AgVuER0UgELQoL216ifzKfOWGodWp0KK9cdw5+E7dvqLq2gW96ou73AO5I3FBpRT2iQyIdBkj8C7k8E9qaarub2o0GHl49cPKeqS/9Lc0GAyiUtLLEYaKQCBoUeRERhmTj/tqPG3VhaxUK1MX5dH6YLaalZyUp0Y+Rc9IqY/L8eLjgDBUTibahUgJsOml6TpVWa1HDlyTZwXeiwj9CASCFuNo4VGlX47MW+Pfcjt2Ru8ZFFQWcFmvy0gI0vf/ampD5VjRMbLKswg2BTOt2zSOFh7lcMFh9uft5+IeFyuhH2GoeD+yRyW5JFkXzssoy9CNcy5HFngvwlARCAQtxsaMjbr1SZ0neVQQjQiIYPaI2cr6jf1vZF36Og4XHFZCP+vT1lNhreCcTuc0eE6HCw5zz6p7AKnsOMA3gEGxg2A/7MjZAaDoucjhAoH3Ine1Plp41GOZ8h2D7yAh2HPzW4F3IUI/AoGgxXAuGXWnU+GJB4c/yJxJcwAoqS6h3FzO7Stu576/7mNf3r4Gz+nev+5VnrbjguIAqTuuAQP78vaRVJRETkUOQLMIzQmaFjlsd6zomPJ5GxI7RNn/2BmPMWvIrNaYmqCBCENFIBC0GKXVpbr1SV0m1et4rbbKiHmqvsVvx36r91ysNispJSm6ZN6ogCgA4oPjOTNRao66Pn29UuqaGJxY7+sIWpb4oHjl7whSxdhr415T1ntG9GyNaQkagTBUBAJBi1FSXQLA1G5TmXvu3Hp3oTUZTYrXQ4s2abKufLbnM85fcL5uW4hJFZ+Ty6cXHF6g9PiREzUF3ovBYOB/Z/9PWS8zlxEfFM+gmEF0DO3IwNiBrTg7QUMQOSoCgaDFKDVLHpU+kX04I/GMBp2jb1Rfl1LiQwWHsNvt9Soz/fPEn7r1kYkjuabvNcq6nGx5qOCQss2dkSTwPgbFDtKtGwwGvpryFXbs+BrFbe9kQ3hUBAJBiyF7VDzJ5teF/tH9XbYVVhW6FWzzRIWlQmeAzBwwk0/O/YQOoR2Ubc5VIV3CurjtSSTwTnpE9AAk/RQAH6OPMFJOUsRfTSAQtBiyoeKur0pduarPVeRW5BLoG8jguMG8vOllsiuyOVRwyK0MujuOFR3DarfiY/DhqZFPMa3bNJcxWmXcyV0m89Dwhxo8Z0HL88b4N3hh4wvcOujW1p6KoJEIQ0UgELQYcuhH27W2vkQERPDEyCeU9d+P/87vx39nf/5+RrUbVafwj6zlMiRuCJf0vMT9dTSCYDf0u0GUs55kdAvvxtzJc1t7GoImQIR+BAJBiyELtTXGo+JM94juALyz7R0u/fVSzFZzrcfIhkrX8K4ex/gYfZTlLuFdGjdJgUDQYIShIhAIWgSrzarkkTRlUmqHEDWv5EjhEXbn7tbtt9vtzN09l+8PfK9syyzLdDnWGa0R05SGlUAgqB8i9CMQCFqEvMo8rHYrRoOxSYXTtAmwAJszNzM0fqiyfiD/AG9vexuAC7tfSJApSPHs1CSJ3zG0I9+c/w3RAULkTSBoTYRHRSAQtAhySXFMYEyTVl/IvV1kDhcc1q2vS1+nLMvibrKhEu5Xc7+XwbGDXQwhgUDQsghDRSAQtAhZ5VmApBzalMQExtA3qq+ynlSsb3qYWpKqLN/7171klWUpvYK0SrcCgcA7EYaKQCBoEQoqCwB08uZNgdFg5Lup37H44sUAnCg6oUuoLa4uVpbTStOY+NNE8iryAH0JskAg8E6EoSIQCFoEuc9PY8TePOFj9KFjaEdiA2OptlXz3YHvlH1aQ8V5m7Oom0Ag8D6EoSIQCFqEErND7K0RGio14WP04aYBNwHwv+3/41jRMd7a+hZHCo54PEYYKgKB9yOqfgQCQYsge1Sas9T3mr7X8NbWt6i0VjJjyQwqLBUex4aYQgjwCWi2uQgEgqZBeFQEAkGLIKvSNkfoR8ZgMNAprBNAjUYKwLD4YfVqYigQCFoHYagIBIIWQWlIaGo+QwXwWPr8xXlfMCR2iLI+uv3oZp2HQCBoGoShIhAIWgSlz08zq7wacO8l6R/dnw8mfkCgbyCA20aEAoHA+xCGikAgaBGUqp9m9qg8esajLl6VUFMoAb4BhPqF8v2071l26TIhiy8QnCQIQ0UgELQIzdGQ0B3D4oex7dptXN3namXbmA5jlOVu4d2E2qxAcBIhDBWBoI1Sbi7n8sWXc8/Ke1p7KtjtdvIqJZG1mMCYZr+ewWBg9ojZLLpoEZf2vJR7h97b7NcUCATNgyhPFgjaKL8e/ZUD+Qc4kH+A3IpctmVtIyYwRtewrznILs/mRPEJTk84XdlWYi6hyloFtIyhItMtohvPjHqmxa4nEAiaHmGoCARtlOXHlyvLE36cAEhhl7VXrsXH6NNs173wlwspM5fx1ZSvOC3uNAByK3Kl6ztyRQQCgaCuiNCPQNAGKawsZGvWVpftJdUlJJckN9t1zTYzZeYyAN31c8slQyU6MLrZri0QCNomwlARCNogcj6IOw7mH2y26x4vOq4sz9s/D6vNCqgeldig2Ga7tkAgaJsIQ0UgaIPI4mruOFx4uFmumVeRx6W/Xqqs51TksPiY1NFYNlRiAlouP0UgELQNhKEiELRB5O7A/aL78eKYF3X7koubJ/SzOnW1y7a9uXsBjaESJAwVgUBQP4ShIhC0QWRDJdQvlDMSztDtO1F8olmu6c6LI1f6KIZKC1b8CASCtoEwVASCNkhxlWSohPmFER8cz3dTv+OdCe8AcLz4OGabucmvmVOe47Jtf/5+7HY7ORXSvthAkaMiEAjqhzBUBII2iOxRCfMLA2BAzADGdxxPpH8kFZYKduXsatLrrUldw5f7vgQgMThR2X4g/wB78/YqHhVR9SMQCOqLMFQEgjaIHIaRDRUAo8HIiMQRAGzJ3NKk13tjyxvK8swBM7lryF1Kc8Cc8hzyKlpOlVYgELQthKEiELRB8ivzAYgIiNBtHxAzAICDBU1bolxYVagsj0gcwZ2D7+TMxDOVfQVVBYAI/QgEgvojDBWBoA2SVpoGQLuQdrrtvSJ7AU2rpWK2mSmolAyR+RfMp1t4NwBC/KQuyXLyrq/Bl3D/8Ca7rkAgODUQhopA0AaRDZUOIfouwb2jegOQXJKsKMg2lryKPOzY8TX4KoYQQIhJMlSOFx8HpPwUo0F85QgEgvohvjUEgjZGtbVaqcBx9qhEBUQRFxQHwKGCQ01yPW2irNYQCTYFA6parchPEQgEDUEYKgJBGyOnIgc7dvx9/In0j3TZ3ztS8qocym8aQyW7PBtwzT8J9QsF4GjRUQC6hndtkusJBIJTC2GoCARtDDlfJDIgEoPB4LJf9qjkV+U3yfU89fGRPSoy4zqMa5LrCQSCUwthqAgEXs4jax7hjj/vUBr81YZc8ePOmwIQ5i+VLNfUD6g+eBJzk1VpZQbHDm6S6wkEglML39aegEAg8EyZuYxlScsA2Ju3l0Gxg2o9Ri4VjgzwYKj4NbGh4siHce7j0z28u249ITihSa4nEAhOLYRHRSDwYrSy9EcKj9TpGG3oxx2hJil3pKk9KnGBcbrtZ3c6W1d15C4MJRAIBLUhDBWBwIuRjQCAfXn7dPvsdruSH6KlttCPnOTa1B4V5xwVg8HAoosXMXPATL45/5smuZZAIDj1EIaKQODFaD0qzobKjwd/ZMKPE1hweIFue1Z5FuC5r46co3Ko4BB2u73xc3QYU+7Kj/18/Hhg2AMiP0UgEDQYYagIBF7MhowNyvLB/IOYrWrX4+c3PQ/AU+ufUtRfAY4VHgM8lwPLHpXCqkIeXP1go+ZnsVkUD45cTSQQCARNiTBUBAIvxWw1s/TYUmW92lbNrlz3XY+nLZxGtbUam92mKMHKUvbORAeonpY/T/zJy5tfbvAc8yvzsdltGA1Gj6EmgUAgaAzCUBEIvJTMskyqbdUYMDCl6xQA1qevB9SEWS1JRUlklGVQYanA1+hLx9CObs/bIbQDT5z5hLL+7f5vGzxHOewTHRCNj9GnwecRCAQCTwhDRSDwUjLKMgDoHNaZ0e1GA7AhXQoF7c/f7zL+UMEhJezTJawLvkbP6gNX9L5Ct15pqQRgTeoabvnjFhYdWVTr/JYnLWfGkhmAKD0WCATNR7MaKi+99BKnn346oaGhxMXFcfHFF3PwoL5ra2VlJbNmzSI6OpqQkBCmT59OVlZWc05LIDgpSC9LByAxOJGR7UYCsCd3D2XmMg7kH3AZvyVrCx/v+hjwHPbRcmH3C5XlgsoCbHYbs9fOZlPGJp7Z8Eytx7+19S1leUz7MbWOFwgEgobQrIbK6tWrmTVrFhs3buTPP//EbDZz7rnnUlamdm29//77Wbx4MfPnz2f16tWkp6dz6aWXNue0BIKTgoxSyaOSGJJIXFAcUQFR2LGTUpLC/jxXj8qCwwvYmbMTQNfF2BP/HfFfZbmgqoD9+fspri4GwGwzK8vusNvtiiEFcEmPS+r2ogQCgaCeNKsy7fLly3XrX3zxBXFxcWzdupWxY8dSVFTE3LlzmTdvHmeffTYAn3/+OX379mXjxo2ceeaZzTk9gcCr0XpUADqEdCC/Mp/UklTFo3LH4DtYeHihUpIsc3nvy2s9f5ApiF6RvThUcIg3t7yp5MHIpBSn0D+mv9tjC6qkHBkDBv699l/8ffzr9+IEAoGgjrRojkpRUREAUVFRAGzduhWz2czEiROVMX369KFTp05s2LDB7TmqqqooLi7W/QgEbRHZo9IupB0A7UPbA1IuilyOPKP3DP687E/dceuuWkdUQFSdriGr127K3MQ7297R7Zvx2wze2PKG2+NSS1IBqSRZGCkCgaA5aTFDxWazcd999zF69GgGDBgAQGZmJn5+fkREROjGxsfHk5mZ6fY8L730EuHh4cpPx47uKxsEgpMdOZlW61EBWJm8Ejt24gLjiA6MdpGml3v51AVtLovsJdHyxd4v+PHgj9jsNt32tNI0ANqHtK/ztQQCgaAhtJihMmvWLPbs2cP333/fqPPMnj2boqIi5SclJaWJZijwZrZlbeOGZTe4TSJti5SZy5TQj+xRkcuNDxUcAqBvdN9GX+eh4Q9xZqI+xHrLwFswGtSvhuc2Psea1DW6MbJHpUNoBwQCgaA5aRFD5e6772bJkiX89ddfdOigfrElJCRQXV1NYWGhbnxWVhYJCe7LHf39/QkLC9P9CNo2drudG5bfwLbsbVy++HKlRLct8/vx37HYLHQJ60K7YMlQcTYKzkg4Q1l+euTTGDDw6thX63UdPx8/rut3nW7biMQRzJs6j8dHPK5skz0oMqmlwlARCAQtQ7MaKna7nbvvvpuFCxeyatUqunbVS3oPGzYMk8nEypUrlW0HDx4kOTmZkSNHNufUBCcRmWX6MOBtf97WSjNpOTZnbgbgvK7nKaEdbSdigGv6XqMsT+81nY1Xb3RJiK0LfaP0nplI/0j6R/fnqj5XcUUvSW+lsKpQN0bxqIQIQ0UgEDQvzVr1M2vWLObNm8eiRYsIDQ1V8k7Cw8MJDAwkPDycm2++mQceeICoqCjCwsK45557GDlypKj4ESjIkvCnErtyJKn8IbFDlG3OvXSclWCDTEENulZsUCwzes/g+4NSWDbcP1zZFxEQAUBhZaGyLa00TTGkPKnfCgQCQVPRrIbKhx9+CMD48eN12z///HNuvPFGAN566y2MRiPTp0+nqqqKyZMn88EHHzTntAQnGcnFyS7bys3lDb4xeztV1ipSSqTcK20eSnNK1HeLUJNqI/wjXJaLqoqUbdctVUNFIvQjEAiam2Y1VOrSQj4gIID333+f999/vzmnIjiJOVZ0zGXb0cKjVFmrGBI3pEap+JORrDJJEyXQN7DFGv2ZjCZlOcA3QFmWDRU59FNtrVb6+4C+waFAIBA0B23rG17QJpHDIFquXno1APcOvZdbBt7S0lNqNj7Y8QE/H/oZkPrnOJceB5uCKTOXEegb2KTXHddhHAC9I3vrtsthINlQOZivb4HhPD+BQCBoakRTQoFXY7aalZLkad2muez/cMeHLT2lZsNqs/Lhzg/JrsgGVP0ULR9N/Ih+0f344JymDY/GBsWy5so1fDtV30k5OlDymMheFFnbBeCnC35q0jkIBAKBO4ShIvBqiqqLsNgtGDDwwpgXmH3GbN3+als1o78bzcaMja00w5rJq8hzEUvzOLYyT7fuzlAZEjeEH6b9wPCE4U0yPy2RAZEuKrNyVU9uRS7l5nJljud0OofeUb1dziEQCARNjTBUBF5NmVlqYBlsCsZoMHJJT9fmd8XVxXy88+OWnlqN2O12vt3/LeN/HM+Fv1zI/EPzdfuzy7O5YOEFDPxyIL8f/x2Ai365SDcmIdi9llBLEu4froR/UkpSyK/MB0RuikAgaDmEoSLwakrNpYBaehvoG8jO63fSM7KnbtzOnJ1YbJYWn58nNmVu4uXNLwNwovgEz254lu3Z25X9/9v+P6Xs+qHVD1FYWai8Vhl3HpXWoGOIVIJ82eLLOJAnheHkkJBAIBA0N8JQEXg15eZyAEJMIco2o8HI55M/140z28wu6qmtyc7snS7btPL/lZZK3b49eXtcxscHxzf9xBpAn+g+yvLfqX8DwqMiEAhaDmGoCLya0mrJy6A1VEAvSiZztPCobn13zm7++89/XSpVWoKscqnEWJvzoZ2HtpcOqP17tLRUaXJtaEXnZGKDYlt+IgKB4JREGCoCr8Y59KMlJjBGt/71vq9163N2z+HXo79y2eLLmm+CHpAbCv53xH95fdzrgN6jklchJaUGm4IBvREzuv1oZvafSa/IXi013Ro5v9v5Ltv6RPVxM1IgEAiaHmGoCLwaOZnW2aMC8Nnkz7im7zW8dNZLAGzJ2oLZZlb278xRwy9mq9nl+OYko1Qq400MSVR66RwuOKzk0eRW5AIwOHYwAEuTlgIQFRDFRxM/4oHhD3iNRonJaOLpkU8r65H+kV6TPyMQCNo+wlBpBuqiyCvQk1+Zz4c7PnRpQKit+nGma3hXHjvjMc7vej4+BklePr8iX9mvNVqcS3+bG1lyPtI/kg6hHQg2BVNtqya5OJlyczlHi6QwlbNnQq6q8Ta0oZ5+0f28xogSCARtH2GoNDE7sncw/sfx/Hr0V49jViWvYlnSshaclffzyOpH+GDnBzy65lHd9poMFRmjwUhUQBSgGiRFVUWUVJcoY3LKc9we21yUW6Qk4CBTEEaDkfigeGV+UxaoHY7d5X94I/2i+ynLouJHIBC0JMJQaWIeW/sY+ZX5/Pef/7rdX24u596/7uWRNY/oOtKe6mzK3ATAtuxtuu1yiETu4usJ+eYpj5+3f55u/4ubXmyKadYJm91GhaUCUA0suWdOWmmazmsSFxzncrw3EhMYw5j2YwC4uMfFrTsZgUBwSiF6/TQxxVXFLttyynP4cOeHDIsfxuP/PK5sz67IrvUGfCpyMP+gonqaWpoKQMfQjjUeIxsqcpLq2rS1uv3uyn+bC7mkGlwNlR3ZO5R9z456lij/qBabV2N5Y9wbpJSkCEVagUDQogiPSj04mH+Qh1Y/xJtb3vQoi27Ddfv7O95n/qH5PLb2Md1x8tP/qY6czyFz2eLLyCnPoaiqiH8z/wVUKXdPxAVKnomk4iRdf6BbB96qjGmp3CE5XOVj8MHP6AeoHqHNmZsBGB4/nEt6XkJkgHeUINeFIFOQMFIEAkGLIwyVenDZ4sv4/fjvfL73czamu+8t486ASS9NdztWGCoSRwqPuGx7e9vbfLH3C2W9Q2jNhsrIdiMB+Cv5Lw4VHsJsMxPmF8YN/W9QxmiTa5uTMotkqASZgpSkU9mjklKSAsDQ+KEABPgG6I4dFj+sReYoEAgEJwsi9FNHnJ/6PVWRWG1WZdlis+Br9PwW15bgeTD/IHN2z+G+offVeqM+mVmbutZlm3Mycm1KqMPjpSZ9J4pPsDtnNwD9o/vr9FcqLBX4+fg1drq1Iod+tAnAsqEic1F3ta/PZ5M/I600DZPRxOh2o5t9fgKBQHAyIQyVOlBUVcSknybptslt77VYbVYsdrXfTGFVIVllWUqehTO1eVTu/ete0krTSCpK4ucLf27AzL2bams1APMOzKtx3NdTvq61HFZWqrVj54VNLwAwIGYAJqMJk9GE2Wam3FzuVtG2qZENlSBf1UjqFNZJWfYx+NA+pL2yfnrC6ZzO6c0+L4FAIDgZEaGfOrDg8AKlikPGXTgnpyJHF/p5ct2TzPhthuLud6awqrDG68q9aw4VHNJ5arQcKzzGO9vecfH4eBuf7/mcp9c/jd1uJ7cil3E/jGPYN8N4ZfMrLu/tQ8Mf0q13j+he6/ndeUq6hncFVFVb5+s0F+5KquWKGQCr3YqP0adF5iIQCAQnO8JQqQOrkle5bMsoy3DZ5my8OFee/D79d3Zdv4tnRz0L1GyoOAt/jf5+NHtz9yrrBZUFLD22lBm/zeDT3Z/y1ta3an0drYXZaubNrW/y8+Gf2Z27my/2fKG8vh8P/QhICq0Xdb+I8R3Gc03fa3h93Ov4Gf14cNiDhPqFNui67ULaAVLHZVC1TZobbY6KjL+PPwOiBwDuVXYFAoHglCFtG6x+FcrrJnApQj+1kFuRq5Nil3GXX1JT997YwFjlxinnK9TkBZEl2GXKzGXM+G0GP13wE70ie/Hw6ocV7RGATRmbnE/hFVRZq3hn2zvKelFVESeKT7iM6xHRg6dHPa2sT+4ymYmdJjbK89AuWHq/5RBMS3lU5EaKoSa9gfXO2e/wyuZXmNFnRovMQyAQCLyOfz+F3x4C7LD8+TodIgyVWvjzxJ/YcS1rdZdfInfMdYf2hiuXqtbkUcksz3S7/bLFl/HYGY/pjBQAk4/J47lakyVHl+iaBWaVZ7mViZerYLQ0Njwiy74rHhVzy3hUZEVcZ09QXFAcb4x/o0XmIBAIBF7JvkXg5p5aEyL0Uwu/HPkFUHuyyHkPeZV5Lnkj8g14ePxwIvwjOL/r+Yr+x7gO45RxskelJmXarDLJ6BndbrSL2NnLm192Ge9J16W1OVGi955klWcpOTtGg/rxG5Ewokmv2yWsi1JxVW2TknbvXnV3k2ip1PZel5jdGyoCgUBwylOYLP0eeAVEdKp5rANhqNRAfmU++/L2AfDhxA/54rwv+HqK5B2w2W0M+XoI3x/4Xhkv55CM7TCWtTPW8srYV/h+2vc8NPwhbht0mzJONlRKzCUewxFyvkvX8K4svngxp8WdVuNcvVWTRdskEGBf3j4KqgoAKW9DJj44vtHX6h6uJt1+c/43yvLhgsPKsnPeUH15/d/XmfDjBJfmiVo8eVQEAoGgTVOYDGteh4oC9/ttVihypEic8yTcub5OpxWGSg0sProYgJ6RPYkJjGFY/DDC/cOV3AeA5ceXA5LQmNynRm6QB1LZ7A39byAuSO3pEuYXpoyZs2uOsl1+2rfarErTwn7R/fAx+rh4VZz1WcrMZV7pVcmtlAyosR3GArAmdQ0A7UPa8+CwBwG4pMclTXKtjyZ9xMPDH2bDVRt0Zcg3D7hZWdZK2DeEL/d9SX5lPguPLPQ4RhgqAoHglOSb6bDqOVj6iPv9JZlgM4PBB0IT63xaYajUwPxD8wG9OBfAK2NfUbrhygm02iaEtcmi+xh9uLzX5QDM2T2HD3Z8QLW1mqt+u4qZy2eSWZ5JdkU2JqOJyV0mA3B2x7N157DYJL2WL877QtnWUjkY9UH2qJzV/izd9p4RPbm89+V8cd4XPHHmE01yrYTgBK7vfz0hfvqqmllDZjGjt5TAuit3l/Le1ZX00nQeWf0I5/50rrIt2NdzN2dhqAgEglOG6jI4sgIs1ZB7SNq2/1f3Y1OlFiJE9wCfuqfICkOlBuSbrOwNkBkSN4Qfpv0AQGZZJieKTyh5CVC38tPOYZ2V5Q93fsjM5TPZm7eXLVlbOF50HJAa7cn6IGd3OttFXwQgPihe8a6Umkvr8epaBjkkNTB2IJH+qgHXPaI7RoORYfHDmj0R2ORjYkLHCYBUHXXrH7fWcoSeW/64hWXHl+lK0msSoFMMFZMwVAQCQRtnyQOSJ+WvF9RtHnS/OLJC+t3rXPf7PSAMFQ9YbBbF+HCWPwcpvBPgI/VpmbZwmm5ft/ButZ5f9sjI7MrdpSwfKzoG6GXjDQYDN/S/gTMSztAdF+oXqhhGstCYt2C1WZUE49jAWM7upHqF6iLi1pR0DFNDZ1uytngU0HOHO8G+L/Z8we1/3q6UIq84sYJXNr9CTnmO0hBReFQEAkGbxGqBz86Db6+AXY48zXVvq/s9ea3lRNqEwfW6nDBUPFBcXawsu7vhGAwGEkP0Mba+UX1ZPn25Un5cE9qcFWdkQyUmMMZln/O2IFOQooAqP8l7C4VVhVjtVgwYiAyI5JKeai5Kj4geLTqX2MBY3XpORQ57cve46NU4U1DpPiksuyKb9enrGfndSHLKc7j/7/v5Zv83TF04FbPNTPuQ9gyIGdBk8xcIBAKvIWsPJG+Aw797GGCHyiLYNV8KCcmUOvTHgl3vbTUhDBUPyGJsoaZQj40FnXMrXhv3mq6HS03UaKgUOjwqga6N+HpH9VaWA3wCMBlNXutRkcM+kQGRmIwmBscO5paBt3BJj0t0r6MlcO5S/OPBH7nqt6u4YfkNHo6QSCpKqvXccgk7qKJyj57+qMs1BQKBoE1Q6Cra6cIHo2DBLbD9K3VbmcNQCfF8/3OHEHzzgGyohPmHeRxzesLpbL9uO+WWckJNobU2ztMSZAri/0b8H89vclXmk0MH7jwqw+KHKcs9I3sCak+ZdenrGN1e7b6bW5HLquRVLE1aysjEkdw++PY6zw+kEmwDhnq9Li2/H5esbW0V1L1D723QuZqaObulaquMsgysNs+9d/bk7qn1XMeLj+vWO4Z2ZFzHce4HCwQCwcmOnDRbE8WOZryHfofTb5HCReV50rbgWM/HuUF4VBwsPLyQ+/+6XwmfyIaKu/wULb5GX8L8whp0M7+yz5UMjXNVZJV70gyMGeiyb0D0AKVnzNRuUwEUSfqv933NBQsvYEvmFp7f+DwTfpzAcxufY2vWVt7b8V695pZZlsn5C85n9Peja9QM8YTFZlGMgdQS992jvQW5E7bZZnbZtyNnh27dnXft16P6DPdR7UbpxOwEAoGgTZFfu6dZIcAhFVGRj6RIa4DAqJqOcEF8mzp4cv2TrEhewRtbJInz7IpsoPZS48by6thX3W73Mfh4lJX/dPKnvDvhXa7sfSUA07qpybzHi48z8/eZ/HDwB5djbXZbnbVW1qSuIa00jZLqEjZnbq7TMVrm7Z+nLMvzbG1eHfsq7UPaEx0Qzeh2qudp1spZvLz5ZUbOG8nB/IPKdrvdzs5sfZ+nuoT2tH8PgUAgaHMU1ePhs8TxoFviyAcMjqlXaTIIQ8WF1amrATiUL7m2mjvpMyrQNSziZ/Tj+THPE+bnPuwUbApmQqcJytP9fcPuq1OFyT2r7mHM92M4Wni01rH78/cry3K5dH2Yu2cuICWx/mfof+p9fHMwpesUlk9fzt9X/s1Hkz5iRKIk23+o4BDf7v+WKmsVly2+TEmkXpu2luyKbHwMPtwx+A66hHXhqZFPeTz/OxPe4espXzMkbkhLvByBQCBoHZwNlWlvex5bkgGVxfCxQ+YjqvaqWGdEjgpgtqouf1kM7FCBZKj0iuzVrNc2GU38fcXfGAwGwvzCGBo3lK7hXevlyfE1+nJu53P5+fDPNY6TVWE/2PFBrc3x5NcPrjkYtWG1WZVqmbcnvK1owXgb1/e73m3X6Vt+v4UzE89kQ8YGALpFdGPWkFnMGjKLamu1y3iAeefPY2Csa6hOIBAI2hR2OxSnqevnvQyDr4L170ohnc6jpOXBV8POeVKYaM9P6nhTYL0v2WYNFbPVzEubX+KMxDM4r8t5bsccLjhMu5B2umqZwqpCVp5YqeRV1EUTpbFoq3vchXvqgpxYWxfqkj+h7dFTH0OlwlJBakmq0nG6b3TfOh/b0oztMJa/r/ib8T+O123fn79f51G6c/CdyrLW6OoZ2ZOjhUeZ2nWqMFIEAsGpQUUBWCql5bs2QmwfMBjgnm2S0Ju1GvpeAB1Oh4LjkLweltyvHh9cv4ofaMOGyrwD85h/aD7zD82nV2QvtmRuYXrP6Up1x47sHVy37Dr6RfcjMVivh3Lf3/cpy+5KhL2Ri7pfxM+HfyY+KJ7xHcbz+pbX6RHRgz15rlUrdSmbLaouUpaTi5Ox2W11MnCu/u1qjhQeAST9GZOxeVVnG0t0YDS3D7qdj3d97HGMs1ft8RGPs/LESl4d9yoGDLq+QgKBQNCmqSyUfpuCIE7zIGowSLknPr7Q0SFMeuadkqGiZdKz9b5kmzVUtmRuUZYv+kXq1WMwGJQeO0uTlgJSN1+5Q7I7tOqw3kyIXwgLLlygrE/rPo0AnwDSStO4cfmNSmULSIm6NWG1WRXFVYAqaxWZZZm0C2nnMtZutysVT5WWSsVIAXSS+d5Mbcaotrwa4Ko+V3FVn6uac0oCgUDgnVQ6xFAD6vCA1nuKfv2SjyGs7s0IZdpkMq3dbndrfDy74Vl+O/YbULd+PECz96FpLoJNwfgYfegU1olVV6zirfFvKfu0qrvuKDWXKqEbuSfR7tzdLuOe2/AcUxZMUc4nl0nL1EWh1xu4qPtFDI0bqiTXOlPXz4pAIBC0eaoc948aNMYUfExw6Rx1veMZnsfWQJs0VA4XHlbKi515bO1jgOQlcObBYQ9yftfzm3VurcU5nc5RbsR/nvizxl43xY4PYqBvIOd0OgeA5UnLlf1HC4+y4sQKfjz0I2mlaSxPWs7e3L1ctvgy3XlOFo9KkCmIL6d8yZxJc9yWHzdU8E4gEAjaHIpHpQ6GCkjJtSB5YCK7NuiSbdJQ2ZxRs+5HpaVSaZan5Yb+N/DK2Fe4tOelgHSjbisYDAZu6KfKxa9MXqnbb7fbleU/TvwBSK9fVsJNK1WzvC/79TLu/1tNjrLYLNy96m6Xa3YK69Q0k28hDAYDF/e4WLdtcpfJrTMZgUAgaA2S1sLhFZ73V9Uj9AMQ3gFm/Ssl3jbwoa9N5qhsy95W4/5/M//lUNZ2l+3yk/PjIx4nKiCKszue7TLmZEbbsXhXzi7O7XIuGzM28uPBH1mfvp5vpnxDqbmUt7e9DUi5LLKWi7bhocWu74xZYalQvDBa+kX3a4ZX0bxc3utyvj/wPWd1OItr+17b4l2eBQKBoNWwWuBLh2DlQ4fd9+SpdBRa1CX0IxPbOJmPNmmoJBcn17j/rpV3KcuDKqvYFeCv2+/v4+81PWmaknYh7Zg5YCaf7/mc48XH2ZO7h1v/uFXZ/+72d3XCcdf0vUbJzyg1S8m1Ws+LTHZ5tmK8TOo8iR3ZOyiqKmJ4/PDmfDnNQnRgNKuuWCUk8AUCwalHmVp0QX6SB0OlnqGfJqBNfhtnlElSvbPPmM0Vva5g09Wb3BoeA6qqmJOZzTRC+d/Z/2vpabYKsnT8ieITbM3aqtuXVJTErpxdAHw88WNuHngzIX4OQ6W6FLvd7rZD89asrYo0/4tjXuTHC37kpwt/IiE4oTlfSrMhjBSBQOAVFKdD0hpJZK0lKM1Slz11SG6IR6WRtKlv5HJzOXesuEOpQrmw+4U8MfIJgkxB3DLwFnbfsJsRUf2V8ePKKwiy23kpO4fxHU6NbrdyuXVBVYFOfRYgqzyL9NJ0QM0vkT0sFruFSmul24qhgwVSfxxfoy/+Pv7EBMbQNbxhSVMCgUAgcLDwDvjyAljfQg/SWkPl4FL3YwocDQkjWi4HsU0ZKp/t+Yx1aesACDWFKt4AheSNtDuhSqb3CkwAoy+UZUNRSktOtdWQS4aLqoqUrr9yY8QKSwXVtmqMBiPxwfEABPkGKR6GL/Z+oXSVNmDgpwt+Ii5IdQ02tIu0QCAQCNyQJPWe488nWuZ6WkNl/2Iody06IcfRuDWmedvLaGlThsrGjI3Ksnyj1bHta2Ksallur5gBkvwvQPZ+1/G1UZIFWZ7F4ryRcD/XTO0x7cfoGiDGBcUpirIGgwFfg5TK9MGOD/g75W8AuoZ3pXdUb54b/ZxyXF0aIwoEAoGgDlicJDTyam8m22i0horNArmH9fury1SPSmzv5p+PgzZjqJSbyymsKlTW3ZYWl2RQrXnibxfdB0IdeRSlbnRX7HY4uAx+/Q+kbnHd/9VF8OFI2P5tI2ffcjgL2E3oOIFQv1CdYdczQt83qNqmNuLbmbsTQJGNj/CPUPaFmoShIhAIBE1Cxi79euYu9+OaEuf7YN4R/frBZWC3QWQXCHHjDGgm2oyh8vHOj8ksy1TWfY1uCppKMplYVg5A9+pqjJ1Hqg2StNnOAH88Ac9EwHczYNuX8MO1+v3mSshxeGGWPwaaDswnC6GmUN6e8DYA3cPVMlxZR0bmrPZnKctyaE32wGj73LiE2gQCgUBQfzJ3w9yJ+m0FjuTW4nRXb0tTUZKpX8938uIkSx3l6TOtwZooDaHNGCp/p/6tU5t12wyvsoghVdV83+8uvjzzOehyFoTESvucDZX17+rXSzL0xkhRqrpcVQyrX2nkK2h5uoR3UfJPxnYYq2wf11GfWPzauNc4t/O5um2yoaL1qGjDRwKBQCBoILvnu25L2Qzp2+Gt/rD4vua5ruxR6Xim9HvtG/DvXM1+R2goskvzXN8DbcZQySrP0q2Pbj/adZCj62P/bucSPvAKySKUPSpal5e5wv1FcjVVMoXH9fvWvKaWbXk5Q+OGAnB9v+uVbVO7TeWh4Q/x7fnfuhh5waZg+kb31W0Lc5SmBfkGKdvc5gUJBAKBoH4clzzXhMTDuc9Lywd/gwW3S6GXnfOax4svGyKy7D3Abw+o97ZSxwN9cGzTX7sG2oyhIjModhCzz5jNdX2v0++wWkDuCKxtlie/4flHpXDOn0/B3oX6Y30DpN/aDOhCN6JyC+9o1Nxbiv+d8z++OO8LnTy80WDkhv43MCh2kNtjZvSeQbApWFmXvSfaKp9ekS2XBS4QCARtEku1FPoBuGk59L9E3Zd7UF3OdG0U2yh2zVcTZTs7PehXFEq/yxwP9O6E4JqRNmeoXNzjYq7ue7Vr12OtxLtWUa/j6VKJcvp2eCEe1r0Nv9yp7h/3KMQ5pOBlQwfUeGF3jcy+c915YbJayuVFhPmFMSx+WL1KiUP8Qvj2fDVpWBvmeeLMJ7iw+4VM7Ta1SecpEAgEpxw5+8FaJT1QR3aVeuVc/6vrOHcFIA3FZoVFDsX28I7QxclQke+f8jVbMJEW2qCEfvtg1+63gBL2wRQstZ6WieoGXcbAsb9dj+kxCSY8riYQVWtUWWWPSscz4egq99f8YKRk3PSZJskRGwxQlgvT3oI+LdSl2W6HzXMgvp/0OhuBVjPFz8dPWb6i9xVc0fuKRp1bIBAIBKj3lpieasJqeAfXcfI9rSkozwOro7rzrg1gCoQblqh9fyqLoLpcfVgXoZ/GER0Y7X6HHGNz1/ExNNH9MQkDpd+yPkiV2phP+TDFe2i8V12m/lEPLIHsvZC1B0oz4furPL+ApubgMlj2MHzReG+H3PcHpA7U3oitooLStf9gt9laeyoCgUBQf5ReOpp7VZibB3A5HNMUyMUkQdHg77jfdT0L2g9X5yQXkPiHqWNaiDZnqMQExrjfIf9R3Rkqdg83tU6OzGc/R27GkvvgxAb491NIc+iqRHSC81+Xlo2+ak8G5yoil2u2UO+GpDXqss3qeVwd0IaKBsYObNS5mgNLbi4pd9xJyq23kv7Io9itNb9ea2kZSVdeSdZrr7XQDAUCgaAW5DCLtpeOKcB1XFN6VMo8JMnK98vKIvXhPLxji5YmQxs0VLTlsjrkBkvuXGij7tGvz1wO096Gno6SXH+NPsjn58FvD0rLRpOkbHuaI3HXZoGKAmm5LK/miZbXsr+p0LYGqM14qgNLL1nKB+d8wGlxpzX6XPXFbreT8cQTZL30sss+a2kph8eOo3yT1CKheMkSjp0/lZTb78CcleUyHqDk9+VU7txF/tzPsJtPPh0cgUDQBvHUnbj/JeAbCL2mSOtN6VHxVM0jz6GioFV6/Mh4haHy/vvv06VLFwICAhgxYgSbN29u8Ll8jD7ud+Qfk35HdXPdlzAQuk1Q1zuPhOEzVavRk5BZfH/w9Zes3SBHyOnwn9Lv8lzNpPzhiq/h8XSQBdLc9VBoDtK3q8vFaY0+XcewjpzV4azaBzYDlvR0Cuf/RP6XX5L2yCOYs9VksqpDh8Ep3FN94gSlq1eT+dTT7s+Xr/4Nqo4ccTtGIBAIWhR3HhWASz6B+/eqnv6W9Kj8PhuWPiQtR3RsuuvWkVY3VH744QceeOABnnrqKbZt28bgwYOZPHky2dn1y2juGtaVp0Y+5XlATYYKQGCE52M9GSodz1CXh90o/d67QPpd5jBUuo2H2SnQ70IphBQUKW2XPS/NSXGG3jgpTm/+azYj5iz1M1H862Ly5nyqrNtKXLs6y1QdPux2e/XRY8py5QHvq84SCASnGCVZcMzRiNDZo+LrB8HRqvHQlB4V2VsS1k6/3V3SrJy30oK0uqHy5ptvcuuttzJz5kz69evHRx99RFBQEJ999lm9zvNdehaXxQzzPEC+SXuyBgdMl3676wjpLmTSaaRUESQjlynLTQrlkEtIguR1kQlsQUPFWf64KA3+eVv6aS4J5mbEkpmhW6/cuxeA0rVrKf7jD4/H2SoqsLvJCapOUcNilnoaxgKBQNCkbJ4Db/SCLIc+ir+bfEqAyM7S7xPrm05kVO4rlOCkozX8Jtexvc513dbMtKqhUl1dzdatW5k4Ue1pYDQamThxIhs2bHB7TFVVFcXFxbofAPIOwcpnPV9M/oPKhoIzfabBjUvhpt9d92kt25hecNvfkhCP9lyy1kpRMvx4A+xz1L13Hqk/V0saKs4G1vZvYMVT0s8hN6/Ty6lO04eurMVFVB07Rsqtt1H08wJle/c/fifi8svVcfn5WNzkqWi3WXKc3iubDTZ9DGnbmmj2AoFAUANbv9Sveyry6DoeIjpDVRGk/tv469psUkUqqJWuMs4eFvB8D21GWtVQyc3NxWq1Eh+vF4+Jj48nMzPT7TEvvfQS4eHhyk/HjqqHpLqixO0xQM3lySDlo3QZDUFRrvvOnAWDr4IbFsPd/0I7N4mkQVFqiGjfL1I5Mgboe6F+nPxHdvZ2NBa73dVLUparX8/SKBmeZGEgu9lM4XffAxA6STJszSeSKXMyaKPvuB2/Tp2IfeB+2r/9Nn49pGaLsvdFOZ/drvOiuBgqB5bAskdgzgQEAoGg2SnRe4w9Jq0ajarnvzhdqubcv6ThAnAFSZKUho+/+4jCJR+ry9f83LBrNJJWD/3Ul9mzZ1NUVKT8pGjc93tzPZSj2u21Gyo1ERwNl3wEXcfWPM651j2un6vhI/fRWfOa555C9cVSBZ9PgRfbS+5AGfmDq20ZIFPRQsm8TUTpunWY09MxhoYS/9hj4OOD3Wwm593/6cYFDhgAgG9kJGHnTSagj9SjqPr4CWwVFWS//jpFi5dgzc3FXl2tHOdiqGgVhRtZ1i0QCAQ1YqlWCzBmLocL/we9p3geL3s6ijNg21fwwzXw2WTP42siY6f0O74f+LjRgB10JTySBE8VQs+JrvtbgFZVpo2JicHHx4csJ7d8VlYWCQkJbo/x9/fH39/f7b7w8uP6DeX5kL0P2g1VVfcaYqjUlYve17fm7nG265iEAeAIB5K5R5LwbyypW1T13JTNakMpOfSTOBiSVuuPaany6EZit9tJf/BBipcuAyD8wgsxtW+PKT4ec3o6tiJ9jDZkgt4D4hstGYrWwkKy33iTgm++AR8f/Lp00Y1zyVHR/sMWpbR4t1CBQHAKITcDNJqkqh7nlAFn5Ifi4jRIdjyc5h/zPL4m5Iey+P7u9xsM7iMNLUirelT8/PwYNmwYK1euVLbZbDZWrlzJyJG1/KHc0M1yDNZrnrA/mywpsu5xuKsMRs8VPE1Bx9Mlq/Ps/4PTb4Hxs13HaJOT5k5smqd1Ob4I+twXraHiTEuVRzcSS3a2YqQABA4ZAoBvO/dqwgYffXm6T0QEANbCAip2OyxEq5Xqo1LozdRZcq+aU1OpPn5cPdARNqsu8cGWqg8bCQQCQZNS4kh1CE2sm5ia4lFJV730nrDbpUoiWZ9l9Wuw8E5VzqHEkQYQ3vJlx3Wl1UM/DzzwAHPmzOHLL79k//793HnnnZSVlTFz5syGnfCP/5P+IDYb5B6Stu36QfrtH1bjhyC/rJrdqY3MojYYYOzDMPUNVdFWi1+w3oD5+mKpJK0x1GaoOGdyw0njUbFk60My/r2kGKqpnWuSV8xdd7ls84mUcoIK5/9E5c5dLvvbvfiisnz0vCmwZwFkH4DSbHL3hnD0t3iO/+dZbBVNFKYTCAQCLVYLLP6PtBzsQVndGVm3qyJf37vOXTXn2jfgqwulIgq7Hf56HnbOgxPrpP1aI8lLaXVD5corr+T111/nySefZMiQIezYsYPly5e7JNjWi68uhDyNgJevQ364lrDP1HfXcsF7/zTeWKmNkbPU5aQ1MO9yz2PrgtzJGdwbKuFu+kQ0gUptS2DJ0idV+3ftIv3upurhBA4dSqfP5hJz5x0ux/tE1Jyhbuqof4qw/zATPhiBrSCDvP2S960qo5jSf/5pyPQFAoGgZrZ+LqUoQN1DLLLuV0Wh3itf6uahd9Vz0u8tn+kb68pj5SReYajUzN13382JEyeoqqpi06ZNjBgxot7nGFQ5R11J3w6H1HABKQ6l21D3eS/gkGcvkhrt/XWwmTU1/EPV/kAgJTM1pPePzQYL79Dnn+gMFUdyVnCc/jiDUfrHyHUvhOZNmDP1/3gGP6lrc0Dfvso2U2IiwaNGYTC5ukB9wsNctmnxjdY3sawq8SV7RyjHP0/CZlH/PczHDtV77gKBQFAr2u/vupb+ygUS+UfhsEZqothhdMj3E+f7ilYAtCxHSgHIdFSDhglDpdmxOb+UP59Ul6scHpLubpJbHeSVqRUgvj5SeOjBH3dy5osrydfsqy/uhMYA6DpOv+5cSlwb5kp4NhJ2fqffLhsq5kpVijk4Bs68SzJQblgMnUdL2z8cpbewvQG7HX66Cb6/Bmw2j0JsAf3UrtW2Ms+vwSdKNUTCL5tOwlNP0nnet8o255yWwiPB5B0IpSpPr2FgPryzXi9DIBAIPJLyL/z+X+n7t1DTj62uOZSeogN5R+Cz8+DtQZK3pbpUv/99jZr6gd/g1a7SstHk1QUDbcZQMdqs/GV1kzSqpdd5HnedyFNvdrtTi7j4/XX8vC2VzOJKVh1omIelbPNmDo8aTdHiJa47Y3rC8JvV9frmjKRt9XDRHOlmL4d2fPykD/WkZ+HBg1KJdXQPaZ+1WlKp9SaKUqXk5wNLIO8ItlJVG6f9m28oy76xsUq+kXMFj5aA3r1IePopOn76Ke2ef57Iq64iaOhQOn7yMd2W/gZAl/nzlfHFKfoupcZAyZApWLIWW3l5o19es1FdBvOuhF9mtVxnboHgVMRuh8X3wYpnGv6/NncibHhP+v4tOK45dx2LKzy1fNn4oVQBWpQsSVXUVDRxfK26PO0tydPvpbQZQ+XBsR25x3wP++nqfkBglPvqFwcn8tSb0LI9mRTv3suEFEmVtKiiYZ11U269DWtBAekPP+zqWTEYYNqbECUJkumaGNaGzeZeB8U3QIo7pm2TbvQghbsMBinhKsQRAtLmrGTsqPt1WwI5VguQcwBbmfR3ib33P4Sdf75uaI+VK4i+7Taib7+txlNGzphByJjRum0hY8cqeS6BAwcQ/8T/AWCt0ntYQs8cqiyXrPqrfq+lJfnnbTi0HHZ803Sy2gKBwJX8Y1JeyT9vwsGl9T9eey/Y87O+uaDVUrdzmILUZd8A9aFXK+qZvr1uelkJAyVBUy+mzRgqF/eKpJQglpuHuh8w/dMaK360hoqvzcL7f7/FI1vn0Sf/BH/uc6+SWxv2KjUD+z/f73A/SM7y/unmulnn27+BV7rArh/VbaYguPZn6OHQcNn1Ayx/TFoefLXrOQyaP7tcsgZSr4m557Ze6XLaVinhSybngFJtYwx3dXWa2rUj7oH78Y1svKRz4MCBLtuCO0D8k2qjy6pDB+p2suWPw/+GQ1YzljVXlcCmT1SjRCulve1L98cIBILGU6K5H+xfXP/jtQqyzgrlhjrekrX3sn4Xqf1/tGTtrb1VS59pcMc/7oXevIg2Y6gEWKqIC/WnAKcY38i74ckC6HFOjccn55cTUl3OExs/5/E9qkxwp5Is/Nas4sWpt/HRXw1PqFy8M52s4krXHXIHzNJMyHP60B79C5I36rctmiXl3Oz/Vd32SJJkpMgxRq067VkPul6zgyZOmbJRsrw3fSy18U7ZBBver+vLajryj8GcsyWvgEz2PtVQCQzycGDTENC/Pz6aqE+HMfl0urY7PgndiD9dylEqX7/Ww9EabDbY+D7kHYYFtzfTbJH6SS17GJY+LBm4mZonqT+fVDUSZPKOSl9c276SVDAFAkHDKNMYGkl1+E7QUlEIb3kQVguMhLFuvq89IXc2HnKN+4qd0szaHzqH3lD367UibcZQsZWV0SU6mBK75obWaaSkaWI0YrbaSC+Ubnpmq41Xlx9g0zE1L+REXhnTj6xmVOZeRh5Tn05jKgqZveUbLjm6ln8++6nO8zEXFOrWE8ty3RsquRrjJ1ljYJRkShorn00GqyP0pJV1lzn3BTA57rDyh1V2/3UdK7UGd6brWXDlt6q64Z9PSn1tZFo6wdZcCe+66Z+UvV/JCzEGBqrb9yyQPEpNmIthMBoJilU9YH6hFsm4NRgI6CmVMFfsOUj5NikcaKuqIveTOVTs1mjY5ByEFzVfGM6JbE3JUYdI4q4fpHCfc+jQrMmnKUqDD86Ukqd/vUeKjQsEgoZRqpF2KE6tXyf6tC1gc5NKMPJuePgYRHVz3eeJW1bC9Yug2zgPhkp2zR6VyC7QZUzdr9eKtBlDxVpWTp/EUAIN6tPiBaWzyaiW5Pbv+Horo15exdYTBXz7xy66PPcA3z3yKgA2m51DWaWEublBT4lQP1SxFYWeq3icyNmrNyqe2PQluaVuPtDnPqcup29Xl7VPyEWp0j/H5/ocDUCfb+JcXhZUg3hQ32lqcnHSGv0+d8ZNc5Kyyf323MPYyqW/iTE4SPIEzD0XfpoJC26Fnd833RwqCvANVP/WpvgYJW4b1L8HQXHS3650rfQElfHEE+S8+SYZj2vE+/55CywaY7SuiXH15YSmEWNIvNSKwRntZ3nvQrWFBMDuuhvcAoHAiTKn4oqiVEjf4erFdIcs7pk4BEwaQdDILhT/8SdVSUl1n0dkZ+g2Xlp2a6hkqWGqsA7qdr9QePgo3LMN/JrXU91UtBlDxVZWxqAOESy3nk4hoSywjmF3eikjX1pFl8d+Y6WjcufzdUmYl/3GwLwkbt/zK+aMDJLyyiitsmB1o8ORkKH2T/CzWsgtrZvbPHPXft161+IMckukY9cezmHg07+zfE+GVDZ8hiNEoBWp06rNZu+DN3q7T7jVfgCdP6y1WfrhHdxvr6qhC3VzkLzB/Xa7Fbuj9NgYGAi7vtcbNcebUIStOB1TkGpYGO/fouruhHckrLPkjcv78COKFi2i+FcpNl11WPM383H6/JTXEh9uKHsXqMvVZZDpUNzVduret0gN8cgKlDLZe+HY380zN4GgraMV2AT49nL4ZJyUyO6OqlKpZPiPJ6RwDEh9dWJ6KEPK022k3Xcfx6acX+eHYR3uNMKs1ZDreGAefiPcuwtmp8H9u6XcSKOP6zFeShsyVEo5s1sUJT7hDK98nwfMrnLqANUWGxHpqtV64rrrKXj4QfwtVXTE9cZuOaF+KG/cv4wzX/iDKkvtT8q/LvvXZVuOw6My69ttlFRauOObbSQXVMHAy6QBco6K3S617ZbZs8Dz07nWo5IwUG+41JZI5clQ2fIZfDal9uObCq2BJuMvJc/KHhVDxkZY8bR+jHMiWn04/g/ka55eCpOJ6F5OUAcTcQ89qC/VCwgjJEH9bKQ/+pjuVLZKhxfFORGuuqRu+SApm+HAUukLbcP70nJNFKVqrlGqGmzth6px62UPw/wbpByn1C2u59DqDJXnQ7UXl14LBN6CuRIOLtNvk7+H1r7pOr44A15qLz2MrX8XVj4rbQ+Jh5heyrDKAvW7o+pAHZP2tfiHSC1inElzeOlDEyUPjH9I3UXlvIg2Y6iY09PpEBnEneO6Y9E2hbbbuW7fct7++x0iKkuwVFbS7Ygq3mVOTSV44xqmJa0nrkzNWQkZ5yTI5uDcpE38uz+jxrlUW2zEubnJZxVKN4PiSrUEbexrf1EZ7ohLFqdJT8hbPpNimTJ7anDVh2haDfiHwn27of8l0vroe2ucJxGdPO9LXg//flrz8U2Fu66fDkEjW4VkBBj/etJVa0Z7XHU5vH8mfH0J/PUSvNzZUfpXjAtZ+6Rmle8O0ZzrKD4mO51vH0b0Lbfox8cPwBRsJTjBTY4RkPvRR9JCabbrztrKA60WmDsJvr8Klj0Kvz8uLbs7l0xRin5dVraMd6pcOrhUynEqywaDDzyg+QLM2Ckla5flwdsDpdyaBbe5f78EAoFE/jHpASQgHHpN0e8rSIIlD8DRVdJ6YQq82cf9eULioOe5yqqtSn0QLd+8uWFz0xoqsuxFseOhpgZV9pOBNmOoVB2UklIn9dP/QQbmHuXqQyvoXZjCaTmHSDyym6BK1yTHW/b+Rrt0yTLuOOcT2r3xussYgP/s/BnfD91YzhoKK6qJc7j9j99wj7I9fctOtm11TYjNsQRJOi8gSeKvdQibjXDtXSNNYruUX3L2E67uO6MRLvkE7t4KvT0L3AEQ10+/3meafr2lqkPyneKyvc6DgDDM5UZFR8Xo68YdWpqltgE4sR5y9ktfEqtflrQJfrpJcrk6k6FRmZVfo+zNiu7uOr7HROh+Du1HFxDeL9Blt9LdWe6dMWOemh9UnO7mBWvI0YQIta5jrTFit0PuETV5uNDJULE5DN+EAZ41VMLbSzlMl3yiblv/LmTuVJN+d/0Aq56veb4CwamMLEEf3hE6j3Tdv2Wu9LC0a76UR+eJzqNg4OVSK5WbV2DOUluFVLhpnlonJj0j/e5/CfS9QL8vwk358klEmzFUytaupeCHH4kIUvMEpgxI4N3u6lNwRFUpdocWxpp2bjoKI/WSCT7zTHxCQjAEuU80Cl+1rMY4YmG5mVhH2fH480fj4xAWe/DnF/G/5hICzfon85zSKkmpFqSy4+I0wNGF2d9JP2TWZikz/OofYOxD7ifg66eLf3okwMlVOO4R/bqvf+3naAj5SaqwUUWBq9fh0k/AP4zcvWr4RWeodD8HfB0Gw3vDpSS29G3ur5XtRktAa9zJBoFs8LjLujcYYOxD+JjsxPZIwhRswWiyEdlTusHbSh1eCNkLEhIvheFAr3fjjjQP89Z6VHZ8C+8Ng9WvSIm0lYWAQVUYBklLJyRenzSrJdzhPeulPsXh4+dqJGoF9wQCgYrdDkvul5bD2kuVOp5YcIs+9077vzrmfkl81GCAM26FjqdjyVC1WSr3NfB/cOBlcMsquPA9aKepouw8Rr2/nKS0GUMFIPe993SGSoDJB8M+tXqmW1E61x34A4ADUe4tzO4r/lSa2/lrpNn9e+pv/Oa0NDxRkF9CdIX0ZGtq356ABNXLY8ROn4JkAGJCpOqa3JIq/QcZIKqrlPAUEqtu6zYeYnt7vG6DmPi0dHO+4x/pKUFLUyfV2u3w71wp5PJcNHx5oV47xjcALvlYcqsGhFOWqRpKRpPGUJkxD868U13POQDHNI29nMl2ivlqQ0gFSZI794QjzyNxiPtzOBo7moJsdJ+WTa9LM4nuKxkq1qJi7HsWqkZPSBwMniEta6u33FHiIYyoNVRWS9Vp/P0SLHaE8067BiI1KsyyArEnIhx/28BIuMwhqpd/TBIQdL7u24Pg5xqeBgWCU5H9i9X/8epS6YEn1kNoRyYkHm5fA5M01Z29p+qGWHJzKduo6mVVp6ZiNzdMDZ0Ow6Q8FO19os9Uz+NPEtqUoWLJySEINdZntdkxp6uu94kpan+cHbE9+azf+VR06cHhfmq3ZlOc2mk44emn8E1MxCcykqgbb9Rdq+qQ587DpUeP4YOdcv8gfKKjibzuWt3+F9d/gr+lihHRPoRVlUmVRAlOHp6JT0u/tZ2P69qwqj6MuV8KJSUMVDtyytRFfrk+fDcDfntAXU9arSamdRopZaQ7bvA2n2DM5ZLno8dFmfp7sCkAxj+melWOrHCtHOp7AfSYJC075/hoG0D+9ZKq4eIX4tkQ1BiMBgMYep2Lr7+jHNFqw/rtTZqx8WpMuLYeTp4SlnU5KhojTc7iH/coBGk6P4fUEoPWGqGdRwMGScNH9kTJIoC5B6HwBOz+sf6NMgWCtoi5QpJw0H6P9LtI+n3F165hlsFXSU3+IjpJlTaJgyXtqvbD4HTJg6KlYs8e7JWVmDp1whAYCBYL1SmpNIooTQhbVj8/iWkzhoocprGkq0+oNosFS5ZrUuLHAy4kKbwd83udzdbH32Hx2dexLbYnaXfoQx+BgwbRY+UKeq5fR/illxL08Wf8m9AXgKw9+vLjeZuSeXHpfux2O8HffQ5AQUx7DAYDoRMmEHvffbrxLxWs44737+OjVa+RV1gKXTS9aB48qP4jhGgMFXdZ3U2J0enj0JRVPzarXnVWRi43juyqk3E2l/qC3YDRZMM3wI0+ga8/nO7ob7HnJ9eqqFH/gTjH086/n+qbL2rLvLVJyzE9PZfs+YdJoRKZbuMxDLwYHz/pupYKzXvn66/mHNVm7GmVIwOj4DSHUStrNez+CQqTXY+L6KT/AqotWa7DcP3YrmPV9c6j4eIPXY/RtjOoD3a79PTpKawlEJxMLH8MvrxAKvkHGHiFquga2wuu/EbfYLbvBXDnOrh5hSrG6R8Kt66Cqa65j1aHOKhfp05Kg9Xq4/XQU3GHr58kVxDWAXpNbty5vIA2Y6gYTdJN7vjllyvbAorywKq/gWUERfFrd1WNr7CimnSbH/8dfTuc6yqoZjAaMRgMGAwGOo8bSW4HKURTclAqqf1uczLPLN7L4wt388maY2z/dQXhWyWF2fxOajgn+rZbideIg/VdtxRfi5nIqlIKUzLYWd2B3L7XwZmzdDedZLPGOPFvBo9KTdQkv5yfVD/5aE/nkjt4OikkVldJYkimYKvkTZFDY4NmqIPklgHa5FiZgHCI7auur1B79uiUJbXU1D3UYNB7t8LaQ2AkvoGSEWWpdDJwghyGSnl+zQq6siFz/utwz1a1cqc0W8q9+flm12Pk0I22asuNoVJFd6pLfSRPWVenKraOmjYK4x513+L9rxfgvTPg04m1JwXLFKXBL3fCD9fCnAlShZVAcLJiqYKtX+i3nfOkaoDI9NNoGMX0kjyzofG4o3DhLyRdcSXmDOmh2logPRD6RETg37ULANUa4besV1/j6LRpWPJq8c46c8VXcN8upYLyZKbNGCqmzl0ASfjNaJduHpElrn/YpLBEbAYjYQGSYfPv8QL2phdjNEDvhNrbXJe3l3Jb7EekKqPZC3bz+brjyv6idVKs8Uh4e9IvvV7ZbjAaibr+euL/+1+Xc6YkpXPRB+sZvn0Klec8x9rDOZzzxt888MMOvtyn8Sa0RBvuK79R6/tPrJN6wzhTcELKM/lymtRIsC6UeTAOZHpO0q2ajdJN2C/EkXR70+8wfS5MfUMd5FxeLSewgvTP6VzBI1f45Oi9YXVG690K7wBBUYq3xyp7VOSuprJHxWaWyoTlnk7OyAac43zKNUqzocpDqfCA6dJvbY6KHLK6/ldIHIJ1xhKOfV/B0SXx2G/4zfWLVZs0HN1d35QsohMMd4Sycg9KDQ/n31i3lgWL7oKd36nrIjlXcDLjrI0SGOVef8qo+f9xZ/RryJg9m8pdu8h+6y1AY6hERuLXRfqflhVqy7dvJ/+zz6g+cpSSlSuVc1QlJVGyYkXNczcYTipRt5poM4ZKu5dfUpafOj2SDgFw6XJJByRgkJr/UeInPal3ipZuKJuTpBvF2X3i6BhVu5ywuacUTvBPScLqaJinZdcOyYBZ124g7RKiXfb7Jrha2YVpasZ3Sn45P25J5WhOGQu2p5Fq1yTThri30JuUvhfAnZp8j1/vcb1BfaTxfvziXljPBWdDZdhMddkvRBUqc1D6r6TM6xdqgZ6TpTDHwMv0XiXnkrs+mlhxQAR0HCHl4GjnUFms6q+c8xR6akhGBQhrp1luD4FR+ARIHrv0TZEUcQ7c9rfjNQWpOTTfXw0/O2mzyMjhNVmESTZUyrLdlxpr1Ye1HVPlJOBu4+D21ZhR30+LzY3AU5hGKDC0nX6fb4A++Q+kEN0K5/fLDc7hHk/JwgLBycDql/XrPSe5T1rvOEIqdjhzlqtCNWDOzsZWWYmtTG1tYU5OwZyVTeHChQD4REbg11UyVKqPSt9RFdt3KOMr96pG/7Ep55N69z2Urdf0h2vDtBlDxRQfj39v6any0mgzP1T+A1mSARA4YIAyLjHcH1+jgfG94nTHj+5Rt4Sj4PbtKPAPwWizUaL5EMnEVEhPwbmB4bSPdNXcMMW7GhsRlWp1zbHcMnJK1PLlVLtmXp1H1WmOjcbHV4rDyrzeS5/cqX3SzzkAv8yCguM1n1ObF3LBO3rDJLyj7p8/96OPKFsnyb5HTL8YpnnQrXF+cuk5UV02BUjnnPi0mmhali15B+RrJg7WHz9erzjrgknz9wyJ04V+ANK/369PxtUmux750/05ZY+K7IGRjdHSHL2hMuo/UpfU635Rt0V2lfRaAiJcNHFsJepnqnyLG2XaLmdJrRumvumamxQY6T7MuOkT1221USwMFcFJiM3m+nDh4wcjPHRE9zFJDQLPe9FllzkrmyNjx3F41GgODlNzxWxVVWQ++STWXOm70TcyksCB0r2qYs8ebGVlVGxXDf+K3a76KmUNFYc7yWgzhgqAf3fJnV199CjlGkszeIzqARjTPZptT05iaOcI3bEjurp6P9yREBHIEYdsfcZNN/Hc+jlKqAkgprIQgNyAcLrFBrsc76sxVPz7SN6ZeE3S6u1fb2XjMTWf44i9PWn2aI76dIM4D+3Bm4NLP1E1XMqyVXe+2dWLxI5v3AuraZErSPpeCMNudDJUVFeqpaCAnLffUdb9rn3Ps9S/czij3VDpiWbKq/rtcsVOaQ7sni8td58g5WnIeScXfVC7IWjUPCkZfSBhoPtEXxnn0NOWz/XKr9XlUOUwRuR4tvy+VBWpxmFYe6l55cUfqAnCICXMzdosVW05NZK0FBYqy+mPPobduWGa0Qjnv6omJIP0vgVGSfky7rBUSEq2nrCaVSNW9phtfL9Ju1wLBC1C2hb1u6LrWKl6595dUuVOPSnbIN2L5E7wMtUnTlC6WpVV8I1PwNS5M6b27cFsJuXOuyj5Uw3vVO3bT9Hixbpz5H30Mcm33IqtuoXEOVuJNmWo+HWXbgzlW7ZiyZa+5BNfeIGQCeOJuPJKMJmIueVmwgJMdIhUwzzhgSb61CE/BWDKgETSNLkKw7MPMjBX1QKJdnhU/nv9WBLDXT0qvjGqhyTkrLMAuCztX0yyAJoTVfhxdtUbXGt/zvXJtzkxGPRVJQYj7P0FDvwmrfsGwGTN00NtLn45GVMOOWj1YWSND6Byz976zVPO0+g9VZrzeS+6PvXIxsjxtarBNWC6lPNz97+SSNKQq2u/1umOJyy5Y2niIHynPakbYrdo/o5+Tobqkvvgq4tg36/SuvyemYLUiq6AcNVA3Pal9DvMKTSje23RauKuBjnuLWNOSXEZ48KI2+GRY5DoCJXe+BsMvR4eS1bLm/M8l+XrPEA9zlGXU06Npz5BG+LQ7+ryFV9LYVbn7vR1xOjvXjjTrjFc4h59lJCzxmAwGJQHa1lKP+x8Vao//fH/umislP3zD2Vr61HYcBLSpgwVf4ehUvr33wCYOnYkYvqlGAwGEp5+il4b1uPfQ6oe6aTJR+kZF4LRWEt+goPYUH8Kpk3XbetSLIWYXji3K8EWKWwzdLh7ISCDjw/dV/xJt2VLib7tVoxhYfiVFvHH5EhC/X3dHlOFHxnlBtYdaWFdi+4T1OX170lN7uQqFEulpH2ixUlxV4csPS3fdJ1DPw4q96qGSvzjj9c+x+t/kXoaXfy+5zHyF8z6d6XfnceoxkZghCSSVJNYmkyHYVJr9Ku+Vzb5DRihG6LLzB+g/5wAkm7Jj9dJ1TCyoRKaqF7fYIDR/5GW9zsMmnpm7dsqKihasFC3Tfu+1oj2fegyBi78nyMx2VF1lVuDoSInDPuHS20QZNz1chIIvJkSR97gOU9K3xGNwKrxbgL03rEdfNQkV9/YWKJn3qgIjYaMU6UD4h5+mHavvUbkdddJG8xmrKWuLWBcGqK2MdrUqwvQ5KIAmDSKsAaDAZ8QNe4eYFI/KHJibV0J69SRpDD13HfsXkT7kmyGBktP08bgYHxCXMM+Mn4dOuDftSs+oaGEjJU+lCEHdrNu9tnKmFB/X+ZcP5xvbh7BNSOk6paftjZSBKi+nKPxFpRmuu53FqkrqKH2v0jukeHwqGgNFU31TuVeKYk2/LLpRF5TBy9HZBeY9GzNHUGdk267nlX7eT0R3V2Xq+KnUS8GsGh6djBgOsz4Dh5JgnOdeugUnlDzN5w9JqP+o1e8rKd+TsZTT1GxY4duW9GiX+t1DhdkCe7cQ55DOUpicLgUsx/i0IQpbuHPrUDQWOSQbBNoV2kNlc7z5mEMCCDxBfX7wFljK2T8eBKefYauCxcQffNNGHx8iH/4IcWjnnavfjyAvdJNSL4N0aYMFb8OHfDvpbbO9o2tOUH25jFdiQnx54FJvWoc50y7iEA+GXiRbtvr/kfpZJMyun0TXDUtPOHXWbqJWnJzCAtQcyBKqixM6hfPmJ4xXDhYupH9fTAbm60F4/0B4VLiqzumvCol3Wr3y14Td8g3qzBHvonWUNGE0iocT/7hF1yIQfPU0Sicy5g7ndk050XSPtBSdVTjPTAYoM/5Umimx0T9gZVFcHyNY35OhpSvn5QzI1NT6McNxb+qceyIK68EHx9KV6/WxcPrjVyyvv5deC5WUvR1Zu8C6becGCzPu64aLAKBtyDnkjmrdTcA2VCJuvkmgoZKKtgRF19Mzw3r6fTF54RfeoluvMFoJPKKKwjoq+pAGfz8MHWQvjvddVe2aqqJ2iJtylABCDpTdcX7xNRsqDwxrR9b/m+iLl+lLvSIC2FHbE9SNXkW7QszMGdKT9Om+DhPh7rgEyblxtiKpSqNSEevosEdVHf/0M6RBJp8KCg3cyTHjduvOdHqbYx5QIrXPrBfzQMZdiN0d3iCSrJcDgekBoTyzUpOjNV+ATiqdywFBYqycEA/jVhbYwl0yuFoP9z9uAYSoREZzJg9W9cJVSHI6bNYmqUqXQ65ynV8h2Fw/14psXX0fXWeiyVfL6wXefVVhJ0nhWEqdroRxqsr2mommxl2fa/fbzXDjnnSspzvI3vP0rfDjzfAd1fDwjulsQKBNyPnWzk3bm0AsqHiG6n3+vpGRhJ85pkY6hJ2BoLO0Evv+3XuTNhUqY+P3SlRt63R5gyVwMFqyalvVN0qeeqLnHi7KV69mVanpCiNCn0T6p50ZQyRzmUtlQyVn+4cxQWD2/He1UOVMSYfI4M7SobLluNNKGtfFzppKmESB0kKjM5P+HL5r7vwEEBRMtgsUgKurANiNErJmjPmKR4POZHWr3NnfEKbUNyuy2g1D2bk3U2u8Jv43LOS58KBVphJwTnh9c8n1S9Dp9JihfAOUndVbeJxDeTN/YzMp55W1oPPOgv/Xr3w6yy9v5aCRnx2Oo2SQlJy8nK507lS/5W6OgdGqXLi0Y5wUfp22PcLHPwNds6DA0saPg+BoCWQq9eaIvRTJJ3LGN44hdiIS/U5b9bSUozBUoqB8KicZASPUm+sPtGu1RBNQWyoP5FBJub1mcTSLlIYwZyeTtVBqUuvnNRbF4xOHpXusSH876rTXMTnhnaSrPFdqYWNnX798PGFG5ZI+Sp9L3I/Ri6tTfnX/f48Rzgkqpu+cqnLGF1nT1k7JaB/E5dh+wXDfbvh6SKY/ELTntuBvVJNJJaT4nR4Uog0+DSJe9lSUED2a69R8qek1+Lfswed5nwi5WZFSJ8duadIg/DxlUqkb3GUS1YVSZ4ymfQd0u/Oo1SV23anuU/yq2phr6BAUF+U0E/9DZWqY8d0SfU2R/KrNkeyIQQNPY3uK1bg4zB4gs88UzFUct/9n77isI3R5gwV38hIOs6ZQ/hFFxE2xbV3T1NgMBjoFBVEuSmQ/w2ejsXkD1YrJav+AqSbRF2RPQeyR8UTA9tLH87daW7USjWkF1bwyZqj/LE3s+nyWbqeBWc96Lk8WvaoHFrmXuAr31G+rQ0jabDb7RyfcRX5X3wB6Mvxmow6ulcbSuAQ1ZNnzfPQ1+iKryFen/BNUFSTlJ07lyP7aLyJPg6Xs3P1QYMIiEBR8NU2rcxyVBVpX59fkGvIC9SKCoHAG7HbVY9KPSvuqlPTOHb+VJI04WBrueTtkI2KxuDXoT3d//idDh9+QMKTT+jOWbJqVaPP7620OUMFIOSsMbR75eUaK28aS1ig46nZYMC/v8N172iAKCvk1gVjqN6j4okBDkPlUFYJlWarx3GP/LSLF5ce4Lavt/LHPumGsGhHGnvSijiRV0ZReTPkB/TRGIS5h1z359ViqFRV6apUQs45x+04byZi+nSMjg7eOW+/jd1dZUy/C6VyXy3ubuQNwFqkN2B9Nd5ExVBpTOhHOZmv+uW94mlVIyVH8iYS55RbdNlnklCeVvpfVAEJvJmDy8DqEFCrZ+indI2UsG5Jz8Dm8LLay6T8kaYwVAB8wsMJnTABn/BwbBVqborzd0Bbok0aKi1BcaXqZos4U+1EGzxqpFuZfE+oHpWa3eEdIgOJCDJhtto5mOneqLHa7Pyj0VrZcDSPdUdyuff7HUz73z+Me+1vrv+8GcS3IjpJ2iTg2tPHXAGbP5aWnZVakbwplbt3K+sdPvygzsll3oTBz4+om25S1rWvSYdzhU9Q0+RR2Yr1DQx1HhVHZVJ9DZWK3XvIfv11F0VNJd9mxzcw19FMstzh6nbuR9X1LHjoENy3By5w6NiIKiCBt1JVCt9rktvr2QjWnKIa4eZUabkpPSrOWDJU72STeEy9FGGoNJCJfaTKng6RgURdcw1h559P5PXXkfD00/U6j+xRsZeXY69BBtlgMCjhnz3p7i3nY24qguZtStat70wpxNocJc6yim15nn77xg/VZTcelaJfFnHiOqnLtNHxpHCyok3ktnrykDkn1QY3jaFidTJUtKWNvlGSR8VSUOAqpV8Dxy+/nLxP53Jw6DCy33iT41ddjTkr29W4qiiUEmnBvThWUJTkiZGrgIShIvBWKpyM+Xo+NFUdOaIsVydL3722JvaoaImaeaOyrDVaQHr4LV37D9aSmr31JwPCUGkgt47txnMXD+CH20fiGxtL+zffIOHxx/Hr1Kn2gzX4hIdjDJPci5UHD9Y4tku09EHPKnKvAFvgFNbZkVrEb7tdc0ZmfbvNZVujkQ0VuaeP1Qz7l8DmOeqYhIEuh2W/rHYnbdJKn1YgeMxoZdmj0WkwwNn/p65rVHkbg7VQMl6DR42iy/wfCb9YTXz2jYuTlDDNZiw5DVM3zpszh4rt26U8ojPv1AvsZezQlHNGeD6J3D6hSIR+BF6Ku47l9UD2ooD0EGa32ZTSYTk03JQEDhxI7H33Std2kkU4cf31pNx6K9lvemjqehIhDJUGEmDy4bozO9M+wrWfT30wGI0EDZd0PdwJ+WgJd+TFFFa4zzMpctq+M6XQ7bjle5shmVHOtVjzqpSM9us98MM1UOJ4er51lVv1WN/2aqmzUWOopBaU88zivaTknzz6AAaDgaDTJa0De1UN7QRG3qMuB9et9Lg2rMXSF6ypQwcCBw7UieUZfH3xdWj7yCX0DcZgkBR3HzwoNYEEyD4AcmPOmuTG5bL2ykKoOvmf8lqcwmT4dCLMnSzev+ZCa6jUswGh3WbT/X+VrV+PVVP90xweFQD/XlJOpCUzk8p9+7CVlWG326natx+AkhUrajr8pEAYKl6A7KavTq65cVyEQwzO2SCRKXZs9/et/c9aUtnESbVarY83+6rN/2S0kvAO7BaLrkmjNs/itq+28vm649z7/famnWczY3A0ILNVVnkepO363EQ5KtXHTwDgE+4++c/UTjISzOl1C7u4TQYGjHKCuq+/KgInJ1D7+OvaC7igraD44bo6zUOgYfd8Sa8mZSPs/L728QLPWKphz8+uBp8cwgSY/mn9TpmTq/Ok2kpLSX9strJu8NCcsLGYEqWqy8q9e0m6dDoZzzyDvUKV1LeVnvwaK8JQ8QJ8Y6WbvCUnp8ZxikfFQ+VOscP4OLOb/uZ346guvDp9EEdemILcezElv4l7Q/S5QF1210nZqZNw6T/rODhsOGVr1K6f2qeRfRmS0bItubBJp1kflu7OYNWBLI83bXcYAqQvI3tVDYYKKGq8LtL6DaDg+x8odrR/941zn8htSpQMFUtmLV2uHXhSusx9938U/PijtBKi6UoN9dOccE66FtROjiY0nNSIdginGjkHIXWrftvSB+Gnm6TKNS2yR6XHRI9Vip4wp0lhH99EtcJN1oYCmq1IwLllS/Gviyn86Wdl3V5R4ZoQf5IhDBUvQO5JZMmtOX9ANlQ8e1SkSqT2kYE8MU1VO53cP4ErTu+Ir49RKXNOKWjiD25oPPSY5HH36kM5vLvyMEeypSeYjCefqP1m7qDK4rkcu7nYnlzAXd9u46YvtrDhaF7tBzgw+kvekhpDPwB3/AMPHGhw63gtmZoEblM79+dTKn9qKYOXkVVsDQEBdPz4I11SYeaTT0mlkMEOQ0X2qJR70I/RcvV86XfWHrW0uRmxVVZSvGwZtoomNsxbmszdsOsHdb00u/XmcrLx/hnw6dmqxpPdDtu+kpb//RQ+Ow9sju8YJdeq/iqycn6KX6dOuu7IQLPqOPlERGDw89Nty3rxRf3cMur2gFIbJStWKHphLYkwVLwAOfxhya35KTMiSPowejJU5O1hASZiQtQP7iBN36COjr5GzZL7MelZj7tu+Gwzb/55iIlvriE5rxyDG6XW9m+/DUBuqd6A+WLdcWU5Jb+cV5YfILu4FkOgkRzOUiuo9nsoB3eHEvqp8lzBBUhlj01gpDgjh3icUcrgS4rd7nfG6jCafSIjCRk3jvjHH9ftL1u3zrUUedCV1Iq2/cJcz4ZtY7HbbBy/9loODjmNtPsfIG/uZ812rVqx2WDjR5C5B46ugo/HqjfKupC2FT4ao99W6qGvlkCPtq9UrsMjVXBcPyZ5g9RsE9SqnwYYKtUOQ8XUob2iqSXT9Zdf6n2+umIwGBSvvCecNVZSC8r5z3fbWeam2MITlrw8Uu++h9S77sJWx4fMpkIYKl6AYqikZ7hvaOegNo/K34ekp6ywQF/G946jfUQgFw5uR7C/rzKmQ5SUQ5Ba0AxPmPH9JPXVWvhhS7IiAy3T4++/CDtvMoCLTsy7Kw8ry3d+u5UP/z7Kg/Mb0WCvDqRqPE6yUWe22nh35WG2JXvWIzHKoZ/K5jWktGhj354MFTlRufC778l8/oVaw1lyF2i/Lp0dx+vlv6tT0yBCU7HU90K4+ANqxbk8uxFYCgrI/fBDXUmosi87m4otqru/aNGiJrtuvTm6EpY/Ch+Nhq8vgYydUrK5c6l4fpKUO3F8nVQtJ/+Njmh6R8k5TaUidFYntDkoX10Eliopz8eZFU9DwQm1UWho/R8izKlS6NrP0eVYJmDQIAJ696r3+eqDITCgxv1yVSDAgcxiHvxxJ7/uTOfOb7eRV1q70WG32Th2wYXq+ZpCPLIeCEPFC9Baw0fGjVfc7vbqair27lW0LyKDJUOloLwas1X/JXc8t4xjOVLSVLvwQMIDTax77Gzeveo03bhOjh5Cyc1VTaO9eTnEzY4N+I9uyPwtqdg0SWfRd9yOSRNndTZUBnWIUJb3pEkegbWHG1ZmW1dSC1VD7kSe9L4u3J7Gm38e4tIP1ns8zuAne1RazlCRjZCAAQNcDEAZuUs3QME331C23vNrAKg6LBmHAb2kL1i7k4eoct8+fVVEVLe6ubedK7+qG57ol//VV+S88y7Hpl3g8oTnXIbtrv9WdXIy2W+80fxCWcUeKq0yd6nLSWvh3SHwyx3wxfmw9CE196fQoYXkFwrX/yotm8tEz6S6UO30HqVvV1WU+zn1LvvxemlfQAQMv4n6YlY8KnpDhRbowRM0tOYKpS9+38XUd9dSVG7mvLfXsilJDdPm1MFQqT5+HKumM7uzoZL/5ZcUNqPXSBgqXoDBz4+IGarbvOhnKREq88UXOT79Mgp/kGLTMcH++PkYsdshyyn0kea4sRoNcMFg90/VoBoq+9KLsVjrLv5VVyqDNf+kI27H/kgSL5dJlvjk/vGclX+IlxY8TbXjRtj110XE3Xefcojdbme9IyckMVx6Sqh05KgUlNUSTmlCMgrV9/dAZonUjyhXval6Es1Tk2mbf67W4mIK5s9XwjQdPnjf41ijk0aNtmWBO6qOSm0P/Bw3eOfcl5Lly6k8kgQT/g+ie8CI2+s2aeeqoBfb6bV2aqHg++85cvY5ZL/zDnkffqRstzyeCN9errjunRPTtcZI5aFDpD38CMk3ziRvzqekPfBAna9fb+x2SZ3ZHdqk83XvSL/3qEmQ5CdJv2VD5fzXIL4/mBx6HGUiT6VWnI254jRVlDKuH0zVaIxk7JB+D7tR1YWqB4qh0r4D0XfeoWwPHje23ueqL3GPPELElVfio6miDBg4EOPZUnj1yLEM9qYXM/jZP1yOLams3ZByVtouXe1oFZCTQ/rj/yXrpZfJeGx2jaKljUEYKl5C3EMPKzeF7NffoHTtWgq/lwyU3A8kdVej0UC7COnmneYUuskpkaziM7tF42P0/GQ7vHMUUcF+ZBZXsvpQ07uPn/hd8/QY0Zmf95fzx37pC/VsUxGPr/mEdmVqcqpzxvqvO9NZsV8Kf53bT8qByC+rxm63u4R7qi2NN7QqzVb2phe5hEK0WjUZRZU8/9t+gvzUvJrnluxzez5jQB2TaZuA9Mdmk/nEk4CU9Oob5Tms4hOmr8jJ/fAjSv9Z52E0mFOkUnm/TpJXLHjMGOL/+19i779fGVO+dQuMexju2arPPakvSx+q0zBbWRmZTz+DOT1dZ6QAWKqMcPgP+OYysNuVfC9ZTNGieRpMuvAiihcvVkq1y9ZvqLWFRYP5/b+w/DH3+7RhCaeqOEDyBtjtkO/oPh7RUfJayV6pisImnWqbxLn8+Keb1KaYgVGSUXLb31I/KpmuZ9X7MnazGXOmdF5Th/bE/uc/dPnhe+IefZSY225r2NzrgU9IMInPPE3Y5MnKtpBx4/gtSXq4Cqn27EEv9pBKoKXyoL6HW87b72AtLSX5ppspWrBA2S6/B02NMFS8BJ+QYGLuulNZT7lV/XD79VDd1u0cAnN/7tPnssgJqDEhNdfqB/r5cI5D/n9natM3sVq0M4NnzNfxk3Us9J7Cp2uPKfsGHdzkMn7q3B26Josfr1bHj+wuxePzy6p5449DrDqgf4KUQzKN4davtjD13X9YvieTrSfyeX7JPiqqrS7/vH/uy9Ip/36x/jh73HSyVkI/NemoNBGlmm6pwSNHYvD19TjW2aOCxULKLbe4HWu32ZSbuKmDpCZrMBiIuu5aom9Vj7HmNzBOfdlnMPCKOg3N/ehj0mc/jt1spsJT/yTAWukwItO2wKrnsKRLXogAR4NQWXjLU5lmyfLldZ29Qv5XX3Nk4iTPInrmCtjo2culExezuPm8/P5fKfm2KEXyosT3l7bLiZ6NVFE9Jah2kwh/yPG3DooCow+0O02vZ1RPoTdwVNXYbBj8/fGNjcVgMBA4eDDRM2/EGNg4UdD6IDcgBYi8/jqKHJpNoZ68ekBZdk6trTXcSWdUbN2qhIhlqlNq1gJrKMJQ8SKck7BktIqG3WKl5c/WJSmhkN2pRTz/m6RCGBtau6hQ/3bSU+a+9LpVgNSHaquNz61TeMh8B3aDkeMOY+Ku8d0JOqa3ynMDwjmYVcLWE+oNLz5Mnf/wLpKHoKTSwnt/uSZMHnXT26i+yLkun68/zoxPNvLpP0n8d+FuRRBvzvWSanB6YYXitZKZ9r9/XM5XZx2VJibwtNNq3O8bGel2u7MnoXz7dlLvvkdy4fr46HKHQFJSjrnnbgAsNSR+18iA6TB9Dpz3imPy7udmt9nIefttihYupGjRIsr/3eIyxuAjfcFaqjRfZWvfwLLpJwAC+kliirayMiy5uVSfOOH2WpWH3HT9rgG73U7Wiy9iTk0l/5tv3Q9KdZ2vjqoSqbP4gaWulSjSVWCXQ7Om13nq+yQbKlVN///b5qgpj0f7udOG0Tx8Hmui+oRkGPt16tiqTVUjr7yC4DFj6PDB+5T7BVLqCLUOyDvGwBzpO9RggOcuHsCo7tGMTd1Bz9svJ/PzLyks9xy20SrsypRqNLBk5ITipkYYKl6EqaP7vi+2IvUL6f6JvYgMMmGzwxt/HsRut/O+5iYeHeLn7hQ6+rWTvuj+PZ7Pi0v38/fBpol1O4dPMooqqTRLN5I7x3Smcs8eAJ6aMItF3cbw2Bgpjrv+qJr4mO8wvuZcP5zoYD+lEaMW2ZjRlhA3ls1J+Zit0vwXbE+jpEqK2w7qEI7Jx4DFZmevh2aQWmQdleZOpnV+AvJzeD484ZuYqIQWtVic9BVOXHW14qkxJSS49dL4xkkeOUt2Iz83Ay+XflcUSNUuTmhLKvO/nUfu+5J3IugMR7dyg4GgGOm4zH8jFCkMaW6SC9qvc2f8HRUXRYuXkPWS2lsKpEaYAOZaVKEBCubPp3zrVuwWC1Uaw8aTGrDHEuIzHN7Sf+fCjzdI3Xpz9rsfmyX9zyjieiA8KvVBTqbtMREu/1K/T1uBFufwVgXWXJVmt9nIevU18r74Qn8ZhwFs6tzZzVEth29sLJ0+nUPo2WeTV1pNkZ9Urde9KJ1X133EGXmH+fe/E7nuzM50igpi9pZvACh87VXOfmO1EmZ3xuIwVKJuuF7ZVvCtq4HurgKvKRCGihfhGxVF3KOPumzXdsaNDvHnqjOkxoffbEzm153pSiItwNietfeO6ZMohQGKKsx8suYYT/26t7FTB6C0Sp+UtcsRWvLzNVL1wzxsZWX4xMbQc+JZfDToYtIcsvtHslWDI9vhtYgL9cdgMPDydNdGhmc5XuMbfx7icFbz9DyR/1fDA01KP6ejObWHmoyOMkF7efMKjJWt36BbN7Wv2VAxGAx0/Wk+ic8/p9tuzvTsFfHv5b6k0uQwVEpXrybtkUdcNBrqTGAkGB2GkBulWku2uq1qv3ojb//mG7R/603aP34bfmHqZ+7g/HYUJUl/K4sjFOSz9S1CwqSnvOxXXnHppxVzu5QEXJ1as6FSvmULmU88yYlrruXgaUNJuuhiZZ+twoNRqpVj1yI3bixOhSwP4azu50i/5QoVbWhCGCp6yvJg0d2Q7BpaVjwq/qEQ4dQwVmuUXPox9D4fbvi15kutXUv+Z5+R/fIr2M2S17U6JYWs558H1JwubyC3tIrCAL2swDNrPybC8Z742dX/nWqjL/ll1Qx97k8ufn+dS1WpJV8yVMIvuoh2r77i8ZoFX39Nxd6muZ9oEYaKlxE980alSaGPIzlSa6gAdI5Wu3C+t+oImY4KoCX3jFGUZ2si1NfAA4eXMipd+pI8kVfO9Z9tZvWhHJfwhifcCf4UlpsJMlcQVSF9ga47InlKooL8yPv4EwDCJp/HzLO6EaLRdpENraIKs3L9OIfXpH8719czobf6dPnK8oNkl+hvFDabnYfm7+SMF1aw/ojnMubaqp78fIz4+xrpGOW566mzaq4cpmtuyeqSP/TZ+570U7QYAwOJuOwy3TazRlLf2Uvj70H7wa9rV2W5+NfFZL/RwO6sRiOEOuad7trTyZ0AYti0afjGxBA2ZQphg9sR0V3/PmdsiQDAWiF9tZmqkojp7P4pL+buuwmdJLUwMJ9Idvs3s1sspD3wACeuVXsTyTcoGZsnET1Pya7aXk8y/uFw42/QZxpc9YParNLmuJlon/6FoaLnnzdh+9fw2bmuybNyJU9wnCKXoKAVLIzvD1d957bDuxa52gUg5Y47yfngA5I1uV5+rexR0bLmUA4F/q4d6WVpgq65yeo2zWdyZ2qRTiLCbrUq+WiPrkrlo73697jDe/+j87ffKOvFS35rmhegQRgqXki7118j+rbb6PD+ewDYnJ5YE8LV5KyYEH8lkVYu562NkpWrmLR3FU9s/hJ/h8t9zaEcbvhsMw/8uKPW4ysPHODQ6We43KAKist5e/W7zF3xMpGVxXy98QT+lipOO7ZFaTgYM+suesSFsuqhcXzqyP9ILahgya50Bj/zBxabnQCTkbhQz69lbC+1BG/F/izOeGElS3apzfb2Zxbz09ZUskuquPrTTdz/g/Sa/jmcyyGNB8aTcJ5MWKAvBoOBDpF6Q+XDa4Yqy1fP2cQfmm7Ucit3W1nTNAKrPn7cJeM+6+VXKJT77QCh556rK0usjcCh6vwtGo+Kc8Jc8KhRbo931oko3+TmSbau9L9Y+v3DNbDpY90uq5uWEoEDB6grJZkERFjwi1LzmnwDrdisYK7wcazbMPraCejXW3eeHitXEHv3LEwdOmBq3x672UzpP/qcI7vNRvLNt1C8dFmNL8FjWwKtR2XM/ZKBMeoe11YDPSbBQwehyxiY8S30Ps+1PDZQGCoe2btQXc7SPM3b7bDP4SEZeJmr2KA7g7EG7DYbJX+qnYjL1q0j993/YT6h3vC9yVD5aPVRt4aKnOv1/+2ddZhU5dvHv2d6c7aL7SCXXFK6URBRVARFUEBRDBQJxRdF8YcNKiiCiooIFqGodOPS3SzssrDJdk+e94/TM2e2m+dzXVzMnJpzZp85537u+N4Dy27zyzwNRVBbBA+LOP+v5NgxwGKB2ckFfyWXYXOKcN8M+XoF3IYMgXNcHH9fyFm9GsZk4TupDYih0ghRBwTA79VXGLEtpRLWkhLJHz42SIiJx9/IBk0zs38vl4rzUwDAJHJzd7ojzdo+cC1LNkZJm0y48+WXKL1wAXeWLAVtNCJ71SrcuFOENYdv4mZ2MUp27kRI0R3oLCZE5TPu9k/3L8NLB79nL0zN95zxc9OhJ1vVk1diwgs/CzPqGD83hyXW+2cPhJtOjW0zpdoE4v1vZktnxhtPpeBCaj6e+PYIhi3ZDyurgZLroLkjh5uOKVkM8ZJm7d/bPpBPWj5xMxfPrBEUUHmPioyhYikqQuanSyqduElbLLg+4l4kPvAALAUFoK1WWPLykCOKj0ft3Ingzz+rUgJfyJfLoWvL9IISe1QMl5kwg1KvR/TePXDhckFsoBQKSajJlFG1xo0SuotKN/+dA5QJ3gm5SgNxVQOnh2G1iK6dVuDa5gCAZpYpdYzHSxsqzJ7D1v3Mnz9FUXAdOJA53GGpwVV84ECljDBLgQODgTMkBr4JDHkbmJMIDFsEaG1yWoI62+vL2BoqcqGfEvsEx7uKO1eBxaFSQb080QOyOIsRxgMFBHaqcb8dU2pahY1jNWGh5a6vL7KKDDBZaORrXe3WGW8lw3jzJkpXSCvSAouFicGV9EKUHD+O66NG8XldR8M6wapQIsPZCwiLgK5tW7j07s3v4zd3Dv86/R1piLmmEEOlEaNwcYFzHFMqV7RvP7/c21WLuSNaS7Z10igr/bAy3BBKgN8+shoeZdIZ4bmUfEnJMABkrVqFrM+/QNLYhyU/+EGf7MP/bTqPl9adAo4d5pf7l+QCNI3IAuFBqPLykpyjq1YFF5E2CUdLf/tZAEcoG/Zq6e8KlY0xc5RVW7yeaZ9ku+uSkPi55vBNJGYVI7ecLHcAiPFjfuRc6wIA6BLqAQDwdVAGXp6hkrF4MbJXrkTypMnlfi6HuJFYwqDBSHzwIRhFpbCeEydC3aLq+iVKDw94PvEEACD/jw0o2LYd1pIS3HqWSW52GzbUrtrHluAvl8NvNqN/QpeVwXDtGm7cPxrZ33xTtZPxCAGGixqobZnJv7RVl+XOnYeterEahLFqKlbAahRua1xLKbeuQhhLGx0tOSYXai05cQIFW7fi+n0jkfPjj/z3URFWRx4VLvTDGRbcyfS0OW5gB/t9XW2+fzfRe2/2/DMvV+r8mi3XtgMGGyMxT1TVVcB6DFz9ABU7iWvDdnkP74uMxe/jSo+eKNy5E5XBkl2xGrbKX757eX1zlQ3dhPi6Qc0aT95TpwAASuIPI2XOHLt9vt79MdRsb6TknBLceuZZGBOuw3CF6ZF0XMuMQYtCiYIvf0T4r79Iku25Du2AfW8hMdcyCpFVZKjS5IYYKo0cl149AdgriXYNl5bQDW9X+R+I4fIVyft1WxdiweHVULJlE6OXHbILAZWIkjeNovFF0Uxew7lbudCdEcoxA4qz4WKS5o4oZQTJPGW8QJx+SnlQFIUuodLv4PNd11BqtOCTHfYeC7EGy1t/XsD4lYf5fJhOIR6yn/Fsf6bN++iOQbgnyhvD2vrjy8cZwzHKz36mAkhzVGxzPgr/ZfQbKtsnI+8XIbxjLSqC4coVftavbdsGAfPfqHYppMpfyPNJefllpIu6rboNG1bh/rpWreA9ZQpfAZT50ccwXLuGzI8/qfrJ9JoBhLFN987/AaScgCktDcXxzJjzeETIq5G0CGC9L9ayigWrXNsGwnvaNPjNfo1v0Mjh3DUOoCgYrlxBysxXYLxxAxn/Wyx7HF1srF1nXId/Ty704+RhcxA9MPoL4X1Ef/t9fVrCVKrArQOeKCoMAXxE+UJcHkXWFanqLScOV4EmRrOhRGQ4OLMeKNajkrNiCTKeGw3aCsBdlGg+ZgUw9F0Ye7yDnB9+gDU/H3kbRKEjB+T/9ReSxj1W7jYB774DStE4HqlX2BB3S383hKxYgbCff4bHY+P59WVn2PYNShVuuwoFGC2KmO906/l0u5ytVFfBy5dVbLKrCNS1jOFfU2o15LiVU4KhS/aj66KdeO6nk5W+nsbxrRIcouvAzLZsxa7E+SiDW/vhzVFtHR7DnJ3NeERWrYIlLw9ll+1nYr3SL2DETcHN/c+5dJSZLLBYafzwXxJKcvL4dWfPXudfu7O9WuIyrkCbJ7ii/Uty+XUccloe7jr7AT0itvzZPMebo9pgRLsAXuvkv+tZOJYkxP/VSuEhfvpWnmTf9IIy/HmayWvxdBbOQaNS4MyCYTj+5hDEhTGGlZtOjZ+n9cTKJ7sigP3edSrpT4dLqhVr3lhtKn+qkmBLW63IXmUvLZ/50UfMtflX7jtyhDYyUvI+/3dGut2pSxe49q28MidXUl8mqsq5PuJevl9VpREbXPkpSH7qab4EmPN4ADbGLutR8RrZo+LDG3LhN+tVeE+ZYrdO5eMDp7guMntJCf/9d0T8/hsiN2+SnLfx5k0UHTyE3F9+xa3nZwizyUI2/0dOjj32YaDzE8ATfwA6mfJm35bIOKlHUYoTbv1tkX4/7i0Yj4vVDJxZLyw/8T3weWdgx/9VeC31RsJOYON0+yTX2oCrFBv0JjCMDTVkXYMlPxcZS1ci54oritO1gF5kqGhdgd4vofCw0GepaPdu5FeQAJo6W/BAuPTri9aXpMrU6uBgeD7ySM2upxbhkmFbBbhBGxEB5y6doRZNTjj8X58HH0ow9F1Yw9cs0yIkxUUwaGw73ANMK5jwXxk1dU4w0haxZtbWC+mVFu0khkojh88lSJZWJQR7OmPJuI5YM6U7vp3cTfaBz5E8ZSrufPIp7nzyKW6/8opdC3KOgSqpu+5cSj5W7LuORRtPw5wohIta5wo5Luv/XYjxV3ehRzqTxJbLxkT9SnIRVCx1lSp97D0l4qqZ7uFeOPPWMElFUHl0CPbAiolxGNzaDyoFBSstKPaO6hCIQ3MHlbv/CbYLsqeLhjdWJnQPhd5ZXaHC79N9IiR5NP9jBfconY6pZgFgLRF+hGYZwaTyEDcAk0MdWDNDRR0YiNAff7Bbrr9/VJWO49KDyWMRJ74ak5KqnmArEi+zZCbDmJTEv1f5ByBk5dcIfG8RNGKtIdaj4jtxFIJXfAWnruUoihamO14HqTEkh7ZtGzjFMlob2uhoRGzaiJj/DsGpY0cAwK2pU5H+1lso2r0bWV9+CVgtgvS9txBqMqWm4tqgQbjzzffAA8sZfQ/ZD3RDWYGDajOKAnq/zLw+/KVQS7/9Teb/+GXlXku9kZsE/DQWOLMO2Ps+8O9c4NKW2js+d39x8RNKj5PjUfp/guFalK4FvKT6QZb8fGR99ZX0VGU0QRyh8mRC2JzXQOHsjNDvvq3GBdQdnEelVYDgPaTUarvQlMrHBx5hQnL8lCuM19dWct9CKZDt5A4/NjfvrT8vIDHL3sjgcr/MGRmyfX+MNpWW4uaI5UEMlUaOytOT71diK9X9YOdgXlOkPAwiD0pJPJNHQunsM97bndiFlrlCMlpafhnWH0tGZH4qVLRjd/KTF/9F1wwmnLQzhLnht8q7hUXx0nwFbXSM3b5i7ZVfp/eS5INwTOvLlMO+MDDabh3A9EDiEonXHGZi1O1b6OHnruPzTADwPzIOLvTj6azBumd6Yu6I1pg/so3D6xTTJtAdR98YzL//IZ5JKKYoSjZPJX+zVJ/BWkHzrorE1FQ19KgAgEv37gixySnRjxlTtWP06iW73JSaJrvcWlqKzCVLme7LYno+z7803pAmeKuDAuHarx88xo6V7sMaNwo3b7gNGICgxYvhco9wPq5BotBjmrRPlC1yY1NyDoHSXCBd69ZQeXlB26a13bbG5FtMroTVBCi1sGp8+ElG1qpVMKemIevzLyqM0dNOwm876bHxKDpwAObcXEamvPMTgNoFyLrKdFm+vgco5zfaIGwS/qaIXwYcWcFUd4kTXmsC51Fx8ZVopJSlCb87Y4EKtG9bFB8+AlNGJmiaxrU+ffkqRF4rqIJwmdRTyhw/7Kc1cLt3BCK3/AVNaONIogUYeQYuR6WVTb6fuIwYAFQ+3gh8bxH/vs2dG2ivMyK4SHr/UdJW0JQCj3YVJgovr7eXFFB6eTHPFpq26/uz+XQK5vx+VrKsso1miaHSBOCk9Y23blewZeXxmzULbqIGVhwTL23jX+eVGJFZYEArkQfFEf5s19r/ghzoEKjV0D8w2m5xsUHeuyNm3r1tsOXFPnhlqLyuByAIxXFE+jIGyjVRYu2sYfL7ezip0TrAHc8NiIJaWfmfhLerlu9GDYCPuXIlyluOXOcfRrYztoryVEwiQ0Xh4gJde+n3qg6onaQ91z69+V5S1EOPYumBZJQYK9+WXtva/kENSBOBAcB4+zZMKSm40rkLsr/+GokP2Rgd7R9lNEQAmJIE713A2287fghw4QQ2dKIJCUHod98hJv4/+L8wCYE98oRtE/cBG5+zPwZ3HaJ+WpI8GADOPXogYP4b8vuJNGU4aIsZyGQ8bGXWMCQMHYarve5B1ooVyFsnhGoc9ggCE/qzFgoP3NLTp3Fr2jO4ce99uHH/aJiLTUzJLQCseQhYMwYw1a12T5VJOSG//BvWi7RjAfBRdPUNlyKRoeImGJLGQsEjW5yuw7VnP0Xy5Mm4fu+9zExfpIMT+N57zD6p5fwtLBZYywSj130kM06dOnZE8JIlldIwqk9S8kpRbLRAraQQ7iNtdqnylU5sld7e0LVqBbXoN/b9A5HoStlrA7npVBjYWtj/7O18HLkh9RRTFMV/H1mrv0dWkQHF7GT05fWn7Y6ZV4mGiAAxVJoEXB6A6VbVf9COZm261q0Q/NlShK7+DtF79/Az6xZFQvndplMpMJitiMljDBXTE0/jZCcmnJLqYh/GSXP2RpanfRzUfeRIxOzdA7VMRvz9HQMBCNU0cigVFGJb6MvtCi3uEQQIonicN2b28FYY0S5Qko/C4SRTeVRZfpoiuJkvphWApmko3ZlZzI87zmPbhXTQNC0xPADAmJhU7nG5MkjX/v3R6sRxhK/7Gb6zXuXXqwICq33OtoSsWAG/eXPxpKYnPt+dwPeNqgxKNzfJjZpraW+8mQSAeeCWHDuG60OGImGwgzAHwITLWK9K0Snm8z3GjYPnY+Mc78OVMmulhoXK0xNez8+BKu4hQaYfAM78DDjoIisWsVOHhiLm0EGoQ0Lgft+9CPvhe4cPI7m2F9aiYiDpIGgrkHZQAUt2NmiDAXeWfibZziiqvuOgTSZY8vKYUK9ciXteHlNllXAdCO7GfmDlbvb1joyGBwChtcChzxivyL4Pq35ss1EoS9YHA0oV0HkizGUK5CdJQ2YWtgUJXVKCtDel+Ttc003LnSyJMSL5qOxsJlyuUCB6z264Da842bwh4bSionxd7SZeCq30PsmFUp06CJVn2oI8hBdmSLb7oc0ItPBwQttA6W9t3MrDdhMbzhucv24dui7aiTHLHXdpz69AIoI/70ptRWhQuFJR24cdwBgi5dX2OxIe4yxol169oA4I4HvF6EUJsCeT8wAAMXmMJyc1MBIruozFhBELMG3wHEwe+joS44SKhWseLeAmk4fi3KM7VN7ylTzzR7bF/x5sj5VPlp8jUBErnpDmJ3CejleGtsTmGb0xY2A09M5qxL8+2G7bBzuXLz9fHqHezrj23r3QsDeEL/deB+XGzPDfP/Q1TJ98AGthIcDO4lwHM+GikuPlN6wzsb1DuJgypVJBf999/HrbmVFN0AQHw3vyZGSWMe7vv07LJ8I5wrlbN/6152NMZUTxwUPI//tv3Hz8Cdyc+KSjXaWE9gRcA1CUzHyX7qLrhdUCJB8WqlzMRiGvRaeHHQoF8PC3wFibculSeU+W+AZuLSqCytsbUdu3ocWn5avuuvbpA49x45hqIBbj9eugb+xD7nVnlN1y3DgwZ81PSH1jvkTl+dbzM3CtX39krWQSqXUdO8g2nDSlpkr7/9htULe9pirEahF0XsRaOQBjWIoNxqQDwMkfAUvlPXnITQRoC6BxE0q3H1iGvMLyk6KLRaJ+QR99CKWHBx8G5x6wliLpPdOSmweAKY1XBwY2aNPBynA7l/mNRNh4Uzi4vCqFiwtfueMv0kAxZ2XBOy0JAPBZp4cxs9+L+C1mIII9neCkUeLQPGnun22hgrhKT0FbcS2zyG7CPKwtc1/LL23A0E9SUhKmTJmCiIgIODk5ISoqCm+99RaMNnH5s2fPom/fvtDpdAgJCcGHH1bDsr4L4JJQLVn2CZmZH3yIa337oWj/frt11pISXHcwi7VzAbLVFM5mAx7v7A+V1Ywp5/9CXMZlPil2bboCt3JKkatzZ4R/XLyR102oEEnwCEaA3gm6jox1rgoMhNLXB25Dhzq8NletChN6hFaYvFoRnUM9cemdEegc6oExnYKgUzNeEmeNCh1F5cc6tRK+bkJJ9OM9QuFdw89WKxVw0zE/+D2XM2F0Em4Q0fHbeBVZytkZLr0ZtdesZcuQ9/vvDo/JdSYVGwGqgAAo3N1BOTvzM8G6oNBQhQcGGKEn1wEDEPDOQrgOGMA0P7RakTrrNZSeso9jO0ShhDV6FCwG5m+nE0v4H1kBfDcc+Gc28z77GgCaeejJVdU4orSc5D32AcQlsFfmgUSp1Qhc+DbCf1kP72mMlLolPx95/yUi9yoTfnQdMEB23+IDB5C/YQNy162TLKONRuRv2AAAcIptj9DV39mFo0xpqYLMvuzBa6fRaLUpyWZzZiig69PMMq5M2FAAZIvaGuQmAX++CGyfX/njZ7ESBD7R/N+NtlqRc6RirROAqdLR338/KIqSNNnM27ARV7t2Rd6GjUidOxfpi97jw7RKBx3IGxt5rJdCTvoBYHpluQ4ejJBVK/llKl9f6B98EABgSk9Hy0JmsqJu0xZXvMJgUSh5he4WHk5YO1XwJNsaKgXjhco6TvmcM5442gS6M3IY6fK5bLbUiaFy+fJlWK1WfP3117hw4QKWLFmCFStW4I03hDhvQUEBhg0bhrCwMJw4cQIfffQR3n77baxcubKcI9+dqLyZG7FZRlKcUym99cyzdu3mi48e5UslVQEBvCS6tnVru3p/hZsbX63SJukcuqVfxsMJ+7Ao/huorRYYFSocKmAexveIdE7oToJ34rarHx7oFITQlSsRvXsXondsR/SuXbJlyXWBk0aJjc/3xtLH7GegYloFCOWgBnPtJCB+/AgzS8krNaFEI3U9c9oiKg8P6EQ5HbZuaA5LQQFfmmvq3I1P+qWUSkTv2omYPbuh0FROhbi62Ar+lYfKywshK76C56OPgqIoaCPt8zZskUvmBgCzZydmvVLobIzSPGAbe+84tYb5n80BgV+bihVHx4oqMm4fE6pkbIj443d4jBsH/3n2jUErglIq4TdrFrRtmGTs9OMeTK6EUomgD94HpXVsDJddvAiaplF25YrdOl1sLBQ6HZxtkpYZj0o5eUpFjr2s9QIX3nH2Zv5GL5wApu1hV9JSqXuOIysgaYFdHmw4Gp7h/KKCv/+BpYh5MLboIzVIxW0jAGl+kMqPMfjMmZlIY59RaW+8gfzNfyL3p5/4bSVig42YPNZLIVeYADCVOSHLl8HZ5jvhJq9ZXyyDoqgQCg8PLJn7EB6JC0bfGB9M7CW0B+gd7YOXBjHFDSk2Rsj1fCOsYI1+C3Mu4sTbYUlHMGTB09jy51y89PPblbqmOjFURowYgdWrV2PYsGGIjIzE6NGj8dprr2EDO0sAgLVr18JoNOK7775Du3bt8Nhjj+Gll17CpxW4Wu9GVKxHxbbE1dadlrFokaSBofFGIv864O23EPDOOwhYuFC2lI6iKD7zPW71h1hw9HvJ+jQXb1gpZriM6SSazTs5wf/tt1E4ZBTmLHwaj3UPhVKvhzooCJRKVecP1OrgqlXhkTgmQVmcxV4T/N2ZB29CZhEupuTJbqP09LRTRbUVhQPAK0GqAgMx6JvTGLF0Py6mFsBqpaF0c7ObXdcGVisNcQrQpTTHIYuKUDoI83k/8wzC/2C8SLTBgMzPPsPNJyZKQh9mBfPwVeksoMxs+GLrPPuDZbJVQ36VqNJq/zAQzLYD2PIKozcig65tWwQufLtGYTW/V2ZK3jvHxUGp10PXRjhPt3tHSLYp+PMvXG7TVtKRmYMriQ54cz7chg+HB6vVYbqZLPWouEv7L8l1o643SnKAFayAH2dI+EQDbv6AijVQc+zzcwAAt9ju1hYzcHod422Rg/MYiYy1oj27+dc6vQnB7zMTAb85cxD2/Wrp/qJ7p9qPOYajYgUjK82g9PSQP5dGBpf34eHAUHGE+8iRkvee48ZBpdPio0c6Ys2UHojylYpc+rH3vIwCaSHDqdv5KGOVgHWsR4VLIwCAMTcOQpVbNbmGestRyc/Ph5dIrCk+Ph79+vWDRvQgGz58OK5cuYLccioiDAYDCgoKJP+aOyq24ZzZRsLZbFP+BTCNsjgMCYx71ef55+A2YAA0wS3gOe5RqGQUYivieoRQdTKivVAaq1Yo4PXYOHRf9hE6R9Re3kRd87+H2uPQvEHoHlH170IOD1GSbqmoWqNQK4oTq9WgXN2k+Qw3RZLfLFwTwpKQSBSUmZFdbMR9nx/A0l3X7LatLQoNZog1nv67Xv0+MpRa3jj1fOJxQWiOppH91QqUHD+Ogn+Fpn/mYsZwU+ksgpjZmXXSA5lKRR4Vx0KHEsShEM4rUwe49uuH1sufgG+HAjiFeSDg7bcBAPqxDwEAlL4+cO5Sjt6LCMrZGRr2+1L5+CD4s6XweJQxVAxJiYwsfEB7Jk9j0p/AwPlCmW5Dhn6SDgivuaaTHFw+Uc51yJLE5pCc/gnYNB1Y1h2mtDSmMZ4YccUPAFNGJt880rWlOzSPvAe3MRPQ8nA8vCZPAqXRIGLTRv7v4DdX8Jqpg5jE9DtLlsieUvY3zMSu6XhUWENFpnCgPHStWkoT4x1ID3BwkzNx9/rsIgO+P5SEMiVzD4hxt/HcWy0IKalceE6yX5X3qAYJCQn44osv8Oyzz/LL0tPT4W9TBcK9T5d5AHMsXrwYer2e/xcik3Xf3OBmqJY7Wbgx5kHcfvFFALCrUwcAwzXGOKGtVl6CXBdbfutyjqCPP5Zd7jpkMB7+fCE2PH8Pkt4fCXedGrOGtkT3cC/c37FxleZVFrVSgRYeThVvWEnENwWNRchkf/TehdjXoiNKVFq8pYpF53d34P/6TkeuG/M3NdioBJecOoWMRYyuQZLWQ7Lu8zoyVAxmi6QDNABetbc60GWCK5h7MACAytubCfnYSNBbi4phKSwEbbUif9NmZltnC9P3R9wZlyP9vMijIl8eDTDVDwmZbAmzuGNxykkg9XSVrqkqUEVp8GlbhPA3HuLDYB4PP4zAxYsRvmZNpXMddDExoGy+K646yXInC5bCQuDp7cAr5wDvKKD/HCCcbdZZVANDxVgMHP+OSV6Wo6IeLeIeRF1tlIC5kND5P+T3TWJz7RLZ/y0GJAwchJsTn0TpufPCdrxHhckvKfhL0CnyfX810JMpRVd6ePBhbl3r1ghctAjRe/fAa/IkfnvPxx8v/3pYVE3EUOG6wuudquHNFsniO3WU6UElgqu0zCgQDJU/z6TCYLbCpGGMGE9KGsrbPcofKrNwf9waLt/41JYqGSrz5s1jFPnK+XfZ5sabkpKCESNG4JFHHsG0adOq8nGyvP7668jPz+f/3bpVscZHU0fs6jdcvozCHTtBG42yOStcPNVwLQHmtDQoRAmcFaEfNdKuz4v3tKkIWbYM/gFekt46Lw6Owa/Te9WotLc54aQWvod/IpiZyClfRkTs/W4TMXbUe9gf3An5pSYcTCvDf97MurKL0lLgm+Mn8K/PllRtRlRd3vv7EmazQkw+rszNLTGrmO8yXVV07drxr+kywS1MKZUSQTyOjEWLcLVbd2Qt/xLF//0HAPCIZKtCOO2T8L68zgo2zxBCAr7yhkqZyYKxX/2HIZ/uZ8JYDyxjuhYr1ABo4HItKqTaks+GENyFEnKKouDx4BhowsPh2qc3XPv3h//r88pV05UrfVa6ukLpy3hYjYmJgMYZcBIZPlzflsxLdvtWFsvmechf9gasPzxqb5QYS4Av4oBfJ9ntZ87JQeGevaCvsyGYoe8w5ycm1MEsnQsRJe4HzvwCqJn9xB9fekrUG6ZY6lExiJSMtW0chwMpioI6IECSKK0OlJb6+77yiuy+2latHB63MZFTXH6OSnlY8vL41wqn8idyAaxH5U6hAaVGxiA5zkrku+iZMNGtVGmukGorY1C6DhmM9Pe/xOmRlasIrJKhMmvWLFy6dKncf5GiHiKpqakYOHAg7rnnHrsk2YCAAGRkSGu1ufcB5XRu1Wq1cHd3l/xr7ih0OrtkPHNOjmxZsjGFuUmabjMGnCY62q52vjxs4/Puo+6v6unelYhvfIcD2uG5ga/i7Z5PO9z+hp7xRGWvWgVDQgJOJefi4B87JNsk0fIJp7UJTdP49zzjTdE7MT2NFBQjdZ1VbN/PozJ4jB0LvzlzELFpIy+pLUbpKt/QMWv5cl5228WP/Wwz651pEQdEs0rAWWzSqdrZYeVLVpEBhWVM9dKy3QlA2weA128xXgegZh6H8jAUCp4I/3aymyg9PBDy9Qp4TZoETViYZF2rk4JImqPKLm0441UxJibar4xiS0cvbED+H+txqW07pMx6rXKdaq1WYMdbSF3xF1IPeyLtAIW8tatgTbsCXNzM5I2knGDCNhc3CTo2LOlvL8Tt555Dzg62L1m0TLXf0Hel70ctAR7/HXh6m2B0bnyG8XoBsJpEiVPiJnjc38+F8aiYkpgQatBHH9a4fFg/aqTsctd+/Wp03Prg7O08Xtq+Oh5jOa0rR/i6aRGo18FKA8dvMgYJl1ircmUmI3H+wj3MyVSGIjbM6z15MgaOGYjVT/es1GdVyVDx9fVF69aty/3H5ZykpKRgwIABiIuLw+rVq6GwqTLp1asX9u/fD5NIJXDHjh1o1aoVPJtIGVh9YptAab6TJemvwmG6nYKcn39GHttkzna2UCGiv1PUtq3SElFCuXCidX883xtrFz8Bo1I6o9n+Sj9e6v+GqFFa8vMzMPGbI/Ce/5Jk+1ydvWBWfokJX+5NwBe1FAZKyi7BnUIDNCoFjrwxGC393eDnxtxcXvvtrF1IqDJQajW8n34Kutat4T1tKvRjxiBE1GCRKwd1hMqFAmXrqPOOArpMlmpyeITJVvxcTC3Ag1/+x7/ffjFdqGLiSpnrKtn09jHGuPIIBQI7Vbi538yZcOrcGS69eyN6z27GA9q3LyitlteksYUL/xjkDJWIfoBbECwGGqnzFwJWKwr+/hum5EqIRd48BBxaiqIU5gFXkOyMtEVLkD97APDrk2xVjkigK10kh358NQq3bwcAZJ7Ww+zaBvCXyR8K6QZMF7RM4N4CiBnKaKGIO0RnMlVB5lJhINAXtzMqvLeOCmJvHiGgjUY+H8/W8KssFKsmTanVULdoAa+nnuI9Vxx1kcRem2QUlGH0MiZH8b72AQj1dtArqhwC318Mp44dEcpWk5YHRVHoFcmEsI8l5eJKeiFfhqxhvaaPxQrf4fSE7aBLS6Hy84NTXOXytDgq1/2tinBGSlhYGD7++GPcEc38OW/JhAkTsHDhQkyZMgVz587F+fPn8dlnn2GJg4Smux2lXi/p/2K+c0cas+WWp6cj4x1h1lJlQ0VUhVLdH/3dyk9TeyC7yIgQL+kNwttFgx2v9oeXiwZ/vdgHN+4UYerXgqaQOTkZdGyR7eFQrNJh5cQ4TP/pBJ/oejQpBx9uZTwK42tBf+Y622Igxs+V154J8tAhvaAM+6/ewf6rd5D0vvwMszIo3dwQ9P5iyTJHpckcKjmdKq8oxojuMR04ynpn9cEyGwLTfjzOl3QDgMlCIyGzCLEt9PwMvM48Kpyip1dUxWXTYDyY4et+liwL+XI5rGVlULrJK7tyhopDdWO3AJRekSZDp86dB6dOncovvb4s30G4OF0Lz+gSRudEKeQ90OnncWfDMWh9neFycS4A4V5TkKiCwzT1gPbAExuAW0eAyIHCcu9ou03NpcLEyXJhJ6AqBJ2wCyWZGmjczUAxjZI922HJy4PK19dhS4eKCFnxFdLfeQcBbzKNHf3nzoH/3DnI/fVXZLy7CC0+/6yCIzQ8m04JJdcjYqunXO3Urh3Cf1lf8YYsUWwvtc93XZPk0Dm5u8IAwEtpwcKhEbi6fBWGXWHyjtQhIVX2etVJMu2OHTuQkJCAXbt2ITg4GIGBgfw/Dr1ej+3btyMxMRFxcXGYNWsWFixYgGeeeaacI9+9KPTSENft559H8QEmu95t6FBEbNwASiamWNUuu15PTgSl1fJlkITK46xR2RkpADDv3ta8J6WFhxP6xvhizYz+2BMs6L0ElNhX2fi0icGwdgE4OHcQWrNdUKf9KCjaZhdVTtWxPJLYNuvh3oJ1EOMnfUAO/XQfMkUJczXGpns3p5TJoYmWyTHwZnvxeEUCoWzOVVAnu83O3s5DSl6p3XK+3JoLFdWVR8UmybM6UGq1QyMFAJ+gW7htG5KnTJX0rmFWpKE0W5pIWXr6NHK+/x6Fu/fwVWWmjEwUHz0K2mxmQlZHvgJNAyon6d9HoRGV0FuEMVdy6iyyV65E6ntLUZQiNT4N+RU8iKIHAwPfYCqXOPrY54YUpQnHNZcxj6v8JCck7/FBwuYAJPQfgLzffgMA6B98sNpyCC7duyNqyxa49JSGIjwffRStzp6B28CBDvasX2iahtGB9lOuSI5+UOvqj7+qIBde8nRWQ6tnxq8lPx8Df/4UT1zcyq+vTmiuTjwqkydPxuTJkyvcrkOHDjhw4ECF2xEApd7D4Tr9gw9C16YN1C2CYEyQlv1pouQ7DjtCExaGlvH/yRo9hKqxbEJnnL2dj4e62M/848I88fyAp9Dl16vQG4sRlymIfU0a9gZAA31aMA/VIA8n3Nc+EJfZjqgcJ5NzJW3cq8PNbCZpNUzkJu7X0he/HBeS1K9lFuHdvy/hi/HlC+lVFk1UJF9u2uYyk/RZdOgQ8jdthiY8DB4PPAAosoCVQnsGXi+DooAnNwOpp4AW9nLpXGNIW2b/fhZxYZ6IdK1rQ0Wa5FkXiPsSFR86hOKjR+Hau7ewwZC3YfhXRnsGzAQHAGIOHkDi6NGw5OfD94Xn4JX7AZK2+kKhogGVEwDBILEYFMCE34CfpZMXQ6IwRtKOMuF6hcYKq1EBY27V1I0BMM0lp+4CvhG6khckC/chi5ExVPJuSCcDJUcZ7RWXXpXLd6gqjUkyf+4fZ/Hv+XRsm9kPQTZGAlcmPGdEK7hq6+TRbkewp/1zYlq/SGgvM9ozRQcOovSEtDmlxUFbl/IgvX6aCOVlYHMJsJoW9g9Epw6VK02WfJazc6P6cTZVRnUIwhv3tZFtpqhUUBjc2h/JbswD+KmLTJLZSd8YZDp7IdPFC+O7Cx1NY1vYJ42/vuEcDObKK8jKkc56SsQ3vUGt/dA3Rhqfv1wDAThbfF9+Ge733YeQb4U+PK69e6PFRx/Cd8YMqIOD7b0l4vGo0gChPQCbHKC8EqOdN0Ujasr2ws+nBAPCVMKU4dYmNA0cY8UU69BQsU1QttpqSXUYB4OSqSqTeENE5P/5F69anbViBZL+doIhT43SLA3MhYyR4tueOa5FFwK0tG/EZ7hwxm6Zd2smlGjMrl4itlhp1mqmJDkqXGsFhUo+MViuJ1Jz49fjt1FYZsY97+/Gr8elFa+ZrPAaV41TH4TKeJDvifLhhS1tjRQA0N9f9QINYqg0EbyeYGr91cHBUNnknajYpC+xZgUAOPfsCeVdUBXVVJnS115qPpsVxNo0oze6hQtR/tgg+US+zIJqPhBYitjKGHdRKaOTRok1U3pgSh/h/HIr2eXUESaL8MBUeXoy/UbEXgA5uHJk0cOrPFYdkKqdUhTwTD+hCvFiWgGgcRXUUWs7TyXlJGMAATUK/VSErbaKKU2a8GxKTYXxNtNDJXKE/DXmb9rEv6bNNAx59qWsGjdmbFjK5A0DuX30YYyhaC4oA22phhHt7A0oGG+AsUh6nRaDArQVKE6zfxBrW7eGooLcp6bIxdQCFJTJ//bm/C4kMxvMFmZ8QxBiqw/83HVYMq4j5t8nhGtbB7jZKXBTzs7wGP8YAt9fDK+JT1T5c+rHP0SoMU6dOiFq+zZQOh1SXnoZ5jShmROnNOs+bBioFV9B7e/PSNhXoSyZUP+09HdD4KLXcPu55/llx/2ZZMBOokaKAHNDmNY3AuuO3kKRqGlgZqFBNi+msnDHcpNxFXONFgGm3LegzAR3XcXaDGn5pfB01vDJubN/O4NdlzPx67M9Ee1XhVDVmK+AA1FA54mV2lysprttZj9E+7nCYLZg2R6hAd6wpfuxltbDF2XA7eOAl0xfIpquVCKsBIsZSNgpvHekF1JbqFSAmfnbGUUaIgCQ/9cWwGKBcwsF1M5WuA/sgYI9RyTbcL2kXIPKYDVRKLljf69QuzKGhqXI3himaaAsnxkfYUPuoKxQD90L66H6awhA0YAVMGdlQ+1fRYONohitG6sZBvb4CpUVVrMCZoMCeYn2Y911yGD41IJGV03JKjLgUEIWRnUIkvWiVpXTt/IwZvkhBOp12Dyjt2QyIeb9fy9jxT4m5K9VKdAuqH4npw92Zjz5FAV4uTC/ezokBJRWC5ptj+HUrh0C33qr2p9BPCpNCE1oKNR+flCHCkJQSg8PUKIEMrcBA6Br0wZKvb5ZzjCaG24DB8L3ZaYsOcnNH4cD2zm8yc0f2RbnFw7H/tlCYt/1O/bVQlWBM1RcdfaGiotGuuz34/K9UMRcTi9Ar8W7MWOtkCvy24nbyCk2Ysin+7H2iH3LAIfo3BnRMJ+YSm3OxeUn9AhFqwA3KBUUnDUqHH5dyHm4mlEkhMs2TAUsNrPVkhxgWTdZQTOHWC3AD/cDe//HvO84Qd4AqkUUzsIDu2DLFlhFcX+uJ5hTCyacF/DMaHg8Nk72OE7eRgTdY9+yRKV3gtrFDFA0LPlFKD1zBnjgSyZXaOoumIqUoM0KUAoaTl4meHVyhnO3bqDajIRKx3jPzBlVL20HAIxfByg1KDIwrSbcgpnwpNWoQKm/9Dp8XngBIcuW2SVkNwTzN57Dy+tP48OtlyveuBIcucH8HdPyy7Bk5zW+KzKHj6sGuy9n8EYKAAxp6w8P54bprza1bySfj0cpldBECd5MRQ09+8RQaYL4z5sHt+HDoX94LKK2b2vo0yHUEO9nn0X4L+vhv3YdfL3d8dljncrdPtTbmdcvmPP7WUlYpapwomhyyXcPxwXzMtkAsOawYGTcyinB5tMpMNt89oaTTInkrsuZeHbNcfRavEuyfv5G+5L62oIrSR7RTlrpFqDXoWekEEYLpkT6Q2lnJdsifhmQfY0RNDNXMqyWcgJIFnRboG/heNtaInCRIEFgLSmBISEBBTt2wFJYCGsBk3uidGWMGaXCCF+27YYtGjcz1E5WhL0zBS0++ZBfrvL1hkpLw60FYyQUx8cDnR8HXrsKBHdFcTDTDkWrN4FSAIhjDbtHVkMVweinyLX4qBRRA4HZCShJZcaWPqKEX5W/hb3fqdVodeI4fF+YUb3PqAO2XWBK07/e76DhYgUUlplwMlkwGi+K8sJOJecit0Ra5ZdXYsLT3x+XLPOtoVxBbaKLESYYNU1BIIZKE0Tl5YXgz5YiaNEikoPSDKAUCjh17IguLQNxaN4gjOpQcf+kEqMQ/rmda1+OW1mKDMwsTc5Q8XTRIH7eYN4jkZhVjKSsYqyJT0LfD/fg5fWnsehvpmrn813XMOTTfTCYhLyEbRcykJZfi2XNNvwYnyQRvuMMFV83+5t1O1GOzwmrcAO1ivvZWK3A9T38W/PvU3HkYmLFqq5c/xoO97o3VNyHDUPMgf28XHz6e/9DyosvIWXWLFjyGENF4caWnJcVQOnlZde6ABDyUJzHzoTbfaP45TTNhBnULmz4J194aJrv3EH615uY9XFDgQe/Bnq/zKxUaaEOY7xJptuCrkfpufO4s2y5pFN2eVjMSr7pqs7TPkcjeOkS2etpKGzbTZSZqpafY7JYMeTTfXjoy/9wgpWhP3s7n1+fW2LkDRWuJNgs0+Kiqo0I6xKNKE9F6V6z6kRiqBAITZDZwwVhq9m/nUGWTB5BRZgsVpSZmFmrm0zoBwAUCkriVRn0yV783+YL/PvfT9yG2WLFpzuuIiGzCD/EVxzasVppXEwtQKd3tuPrfdfL3W7r+TTkldjrxRjMFizYfAGf7LiKnw7fRLHBjBx2OzlDJdpPkO1/yfgC/7r0jkjd9dBSIFUIWaku/4nrP7+Kv88J+WCylOZJ39dx2IdD5esLlR9TXVR2lvEMFe8/gKJ9+wCIHg6GfFAUhajt2+D77EQAwgNO42YBnvoXUKpAURQC3loAAPCbOw+YsgPKvoyulYX10lgKC3GtryAl79yzL9DxMUkFFicUKe4MnvTII8hatgx5v/1eqWu7s2Qpcw2uaig1NFyDpAavJjRUZq+Gw7bajJOxrwy3c0sQM/9fZLCJ8RdS85GSVyo5RkaBgW8UGuzpJKlmE+PZQGEfOcQJtQo34lEhEO46+sT4YHg7prT5+M1crKyGu5mr+AEAl3J0F8Sl6raTuGKjmZ8Biikvl/BsSj6e/ek48kpMWPzvZYcei0V/X8L0n07i3S32DfbE1U5vbjqPUV8cBE0zYlPeLvY360gfYfb9zqR78ZaJCVW4nFol5KnsWmi33yDlKfxyrILGp2V50veB9ZcvYdubSwyvvcT25FF5e8Mn5g4A4Y+jUNGAm1BF6Dl+PFqdPcP0tQnpDkUQI7THlUBzmiUcHjaVhgCgCQsHwBgqNE3DUiTkUcn2J5IhfwvTNFLN6nQE98mBrq0gyS/WkmkoTibn4tk1x5GaV2qXK3Y1o9DBXvasOyptb5BfYsL5FMYwjPIVxu16dhyO6dzCYWJtY/KoiJuTakLkVaQrCzFUCIQmSusAYZZSlRsjB5dIq1MroHYwQ+N4abA0odXPTQudWgGaBg4l2PecWvpYZ96Q4uA6M49Zfgi3coQZqG3oasfFDKzcfx3fHWIean+ctE/itQ0pcbPPDsEeshpAYo9Kv5a+UOlFJf4/j7PvEszigjK4WvKBi39K2ktIsPWoiLsZ1zHqcvomKX3ZEFTmRcBUynR1zk5AQNc8AIB/Fza0wPU/YhGruyrdmZAZF/opOSF4nIJXfCWr76QJY7wdptu3ceeTT3C1azd+HaWu+EFqKSyEldV4CfrwE8A/FtTopdC2FHoBUaqGL1h98tuj2HYhA9N/OoGETKmhciunxMFeUjILyrB8j9SrmFVk4FWnI3zsw1tdQj2hUQpj/I/n7uFfNyb9K7WfH8J/+w3By76A+3331ehYxFAhEJooz/SL5BVlq9Pzh6siqEw7+FeHtsRrw4QHxZjOLRDiyXz2cRmPSusAN3w9sStmD28FgGmSxjU7tMXWbf7cTyfwv3+Eygk5D0lavnxeTrdweSPB21WL9c/0xKYZvaFWKnAyT/SAvb4LOLOOKYsFgNix/Co3qhRfpT4C/DpR6DEk5vQ64MDHzGuFGpj8j+zn1xXOPR2rsSrbstVhifuZSqYl7YDE/fCIKkHUqAx4xrChBa3j/AEl27qj5OhRlF29ity1awEA3tOfhduAAfL7sE1lLXl5KNq3X7LOnJkBU1oart7TG+nvLrLbt+T4caS9MR8A4y3Sdu4DPHcI6PoU/Ga/BpfevRG87AuH51ufcIb+2dv5uH5HGuqxHdO3ckrw6Ip4LBeVyqfmlaL3B7sBMKHXuSOYcG5WkRHZbCjX28X+d+3looGbSCYgLkwY85Eyhk1D4tQ+Fm5DhlTKQC0PYqgQCE0UF62KF2UTJ9dWljtFjFdCLqdDjnvbB0KtpNA6wA0vDorm9VvkDBWud9CMgdFYN60n3n0gFgF6qaHC5cXkFgs5KGUmi12SYInRYhceSs2TT9J9oJPjRNaekd68Ps3YgTY6J9e2M52BFSqg/aOy+xt2fyBdYLUC298U3g96EwivQMSulnHp3h1+bKNBpV6PVieOw+upp+DxyCNQtevDNBG0GIF8IXxFUYAmqg0jFePXzsGRGcTJ+omjHwBtMEAXGwvf5593vI+HBwDAWlQEM9vh3aVPHwCAKTMTl1f+AEtODnLXrkXC8OEo3LsXtMUCa0kJbj4xEYU7dgAANJGRkuOqvL0R+u03cBsypHJfTh3y8xFpuIYL3/SOZqrxNp9O5b18mQVl6PvhHhxNysFH267wY/nEzVyYLMzrRWNi0YINc90pMiCb/U14u2r4Pl8cns5quDtJPUo7X+2Hbyd1ZRpvNkOIoUIgNGGcWa2TYkPVVUD5KplKemOifF1xcO4gbH6hN9x0al4+W65JmkYl3Fp6RXnD21UrScod2SEQPdkS6xxRsqxcUnCpyYKCMqkhduZWnt12c0a0qrT43YTB3fGi8k3ssLD9gi5sZP73j4U1ajC2Wrvb7VNiMEqrOzIvACWisJexZpo21cV78mS0OnEcUTu2Q+HiAv+5cxD47jugFArAyUEP4wm/AL1eAJ7cVO6xOaNDjNekSRLtJrt9RA0VLbmMEat/cAwAoCT9Dk7sFvJcTDeTcXv6c0icPQ9Fhw5JjmPbKqCxcONOEd7YeE52Xb8YJmeoxGjBhFWHYbZY7XK4Jqw6gu8PJeIG64V5JC4YD3RqAT92wpBRUMb/DrxdtVg3radEW0mlVGAO630Z353R1Ir2c8PgNtJQa3Oi4QN9BAKh2jhrGPXXUmMNDJVKelQAqTy3bUOypeM64fStPAxuI583IQ79dAvzxKU0Jq+GC0EVlJnw8vrTsvtmFpTxISqapnEsKYdfF6jXYdes/rzRVhkUCgqWyEHYfjETQ5WiRoYxw5BZbMF040yoFTSuaR7nV+lRjHVHEvF4L3amny/KnfGMAOImV/rzaxuHpbpOnkCRjJ6JPhgY/l6Fx9WEhUETHs6r3yrc3eE2bGi5+1AqFRRubrAWsnlTCgU04eHMutvJ6CGzj+GfLfg0lYJYzk1t0yqksSAuG7blvvaB+GTHVRjNVqTllyH+RjaKbX6b8TeyEX8jG4GshzGCTZjlfk+peaX878zHVQNPFw36RPtg31WhkWa3cC8cfn1wlX67TRniUSEQmjCcoVLMhn7KTBYcvpFtp+sgB2eoOModqQhb70W0nyveHt0OfWPkK1HERo6nC3MDBoCcYiM2n05B10U77WafXG7gK7+e5l3mRQYz7xo/Nn9IlY0Ujh4R3siibVzlPZ/DkURGETTKT1pSqaBofLxZJEVfzHpTYoYBL59mHv6NDWcHHpUqEPTB+/xrl549oahEaw5xsqvK29uu+/s57wg8O+g1mOIEs2Xc6b+kx9A1zocwV5EDAFte7MMnvPaI8EKIlzN+ny6EFb/ae53vamwLlxDeNpAZZwHuOqgUFEwWGpdYsTcuR2VAK/vfVIBeVytS/U0BYqgQCE0Yrqy4hJ21fb3vBh5beRjvbLlY7n75pSb8yCrNikMyVYHLQ+HfV5DI11WU6OqiUcGTLaXMKTbi5fWn7UJIP03pgS6hzD7nUwpwMjkPAHi9CTedCr5u2moZKQCjvFumEc6JvuclvLMrnffqDGpt7xnyogqRm18IbJsPbGeSPuHsY7ddo6EWKpC0LVtCFcR4N9yG2XdRloML+QCA+333QenmKlm/JaI3kt0DMDrkEfwbJudjAbSNoAQZYPK/xF3Kk7KZkM2iMbGIbaHHntcG4PK7I7BuGpPY3CHYA3tfGwAAOJKYI6lws8XfXcuHi1RKBQI9GGOeU4z2ZivlnuwVjrfub4ttM/vJH6iZQwwVAqEJ48Q2/uOSab/YzSi1fv9fUrlelXf+ushX5HYOrd7DjKs4AgClgpJVtxXT0t8NQ9v6w12nQudQD97DIqfD8sHY9ugT4yN5QHAln5kFzEzUr4ZubxetCk+M6AcTzXyH5z0G8iXRCgoY1y0EGL0MBhdBKbgDdQNlO//HSO2XyZf31iYZBWWYsfYk/rtuXwJeKWrBo6JwckLUX38hYtNG6EeNrNQ+hwMYzZOb0R3hN28uFK5SQ+WylyDYtryjVIvFbcaL8Js7F66DBtXwzGuO0WzF4E/2off7u3E0kQk3cuX0LUShT51aCYXIuxHm7QwvFw0sVhoHE5iQjVgThWN4uwDJfqE2XkrOUFEqKDzVOwKtAmqm8NpUIYYKgdCE4T0qbDKtWC/EUcNCmqYl2iSc67mqcN2RgcorYn71eBec/L+h8HbVone0DygKSLbRnFgyriPGdWMeZCWiJOErrFZMJhuyqo129l3bxmCiZQGGGT7A/RuEma+XixZh3i5Al4nQzr4EhDCz/iWarxB47kvpQaxVr7iqLI+tPIy/z6VhpoPcnQpxkQnDxT5c5cMoXFyga9264g1Zvug4Fgt7TMZPD8wERVGglErJ+kyRp8eiUOJGB6Za6oc2I3Bj+CPwfmoykwzcwGQWliEtvwxZRUY8v/YELFaaLz0O9rDXkOGgKIrvYsx5VMbGBUOpoBDj54ofn+6Oh+OCMWtYK8l+Ub5Sg86rESnNNiQNPxIIBEK1cRHlqGQWluFyuiD8dooNldjy5iahMeCWF/tIZnRVZXz3UDiplVj1ZFyltlcpFVCx4nK+blp0ZsuFxXg4CTdnJ43wgPtq73X8ciyZj+3X1KMCMMbOk+PG4SodIllu95W4OhZWg0fdyLlnFRmEEtfCqrdIAAB0ehwI7MSUKY/5Cnh4NXD/UtlN91zJxLAl+3Aq2d7DVVVynPQ4HBgLOYm8YpUOKyZKx0vilFfxzdxVWN9qCM7ezqvx59cWBaWCEZpVZMTpW7l8WKaFp2NDBZBOGgAgLtQTu17tj9+m90K/lr74+JGOdhpGMTb7qCoQYrxbIN8CgdCEcWW1SKw00P09aadiuR411zIKsZbVgBja1r/Gugv/ezAWx98cUu3w0XCbTscAEOMv3Kz/92B7PrwFAH+cTOETDW1nn9XlvvaBmNZXmg9hJ/AZJqOPMv4XYMAbQLeptXIetuy4KDQ7jJQJG1QK7yjg2X3A/HSg0wQg9iGHAm9PrT6GqxlFmPbjCQBA/PVsPPHNEdxw4JlzhLghHxdevJ0reM3SXb0xvF0AHu8hGHi+Xq5oE82E2M6UU1VT3xSUSRsivvUn0+eqfQt9hblRkTbj089dh3AfF3iU4yXpHuFdzTNt3hBDhUBowjhrVA77exxMyJLkqXxz4AaGLhGUQuff16bGn09RVLl9gipi0j3hmD28Fb6eGIf9swdiy4t9EOwpxOk7hnjg0rsjcF97xqDRqhQ4w864O8p4Y6rLGzbfRXtbA67TBBT52PTwiR4MDJgrachXm4ib0hWU2ncQrhIKZcXbsGQVGTDx2yMYv+owDiZkYeYvpyvcp8xkweTVR7F8TwJfkQUAZWyO0XcHk2CimHM4HdkVFEXx5bkA0MLDGR2CPQAAZ2/n4fCNbNlmlPWNrSfrfApjJE/tW3Gib5RNcnllSolbBbjh12d7oaW/KxaOLl+M726C6KgQCE2cFh5OvBaJGIuVRonJwie5LvpbaO7XJtC9wiqd+kCnVmLGwOgKt3uwczD+OZeOO4UG3MxmZudcDkBtYNsjZdGY9jYnqkfppB14ZfH7WKX5lFlWRwYKx81swVDJKzGBpul66+Vy4JqQvJtoIw8vxy/HbmHvlTvYe+UO+kQLycVc88gigwkvDXgZcZlXkdiL6fvSStSrqkekF0wWKxQUU9X12MrD6BCsx58v9KmtS6oyBrMFL607JbuuSyU8iB1sDOmKks05ukd4Yfsr/Su17d0C8agQCE2cFjJJfZy+QlGZGe9uuYhVNt2V3XVNa47CnS+Xg+OqVcFLpgdQTXhzZBuoFBR+mtLDTu4fYMS3jmp6Yqn5ISQPX12rny1Hsqis1Wyl7YTDahNxdZUtFSvySLVFMgoE3ZCUvFK0W7AVZ27lI0kfhD9iBsDZifEsDG7th4Wj2+Gfl/pCrVTAWaOSNNosT1itrsksLMPrf8irz7ppVXZih3K4alX4emIcnNRKDJTRQSFUnqZ1tyIQCHbE+Ltiuyif4c2RbfD5rmsoKDNj/bFkfHsw0W4fR23iGyt6m/BWsKdTrXsXpvaNxBM9wyTVTGIoikKUnyuWJj+MCKdOqJsUWgaappGcLfVkPL/2JL6b1LVOEixvlOM14YT2rFbaYeJ1qqhJ5DWbTsLFRgtfsQUI7RUUCgqT7gmXbDulTwRm/XaGf899ZkpeKeb8fgbjuoVidMcg1DXTfjwhadMQpNfhka4h0KgUmNo3otJjb3i7AJz8v6GSlhKEqkO+PQKhiTO1TyR6RHhhcGs//PNSXzzdO4Lvrrp05zXZfdx1TctQsT1fcR5LbeLISOHgko8dVVTVFtnFRhQbLaAoIJzVq9l/9Q6v5VFbHEvKwWMr4/FjfBIARl016f2R6BsjhG9KTBbM33gOHRZux/Ek+c8Xi5qJK8/k0JRjaA2PlSZXcz1v3tx4DocSsvHSulOSZN26Qq6X1CtDW2LGwGhoVZXP9wGYyrW7RUG2riCGCoHQxPF00eCXZ3vh28nd0DbIHQoFBRdt+TdT2+6rjR3bMk458az6oFs4I6B2zMEDu7bg8nAC3HVYyyqeAsDJWigdFvPW5gs4fCMH644y3ZXbsnk/MX5CZRBNA2uPJKPIYMa2C/Z9g4xmq6Sq568zqeV+5guDHOckuWpVGNdVKBW/xYqricNADRES+uiRjhVvRKgziKFCIDRDKkrco9C0ZnjOGiVUollpdcuhawrnUblxp5gPidQ2qXmlGPvVfwAYpdIWHk5YMIpRej19q/Ye0vmlJlxkS7052gUx1/fykBhZY1BOz2X7xXTIiSA/NyAK307qKll28v+GVlgS//7Y9ugdzZTpXr9TBIuVRp6o6un/Np3H1B+Ol5tXU5vMGdEKvaMbcZuEuwBiqBAIzRBXmdCOOAkwtkXtVczUBxRFSfQnOod6NMh5BHnoQFFAqcmCrKK6KZ/deCqFf90zknlgt2al0xMyyw+rVAUurCKGUynWO6mx89X+dqrFt2xUhAHg1+O37ZYBQNcwTwxu48/3THppUHSlEqApiuI9OlfTC5FbYoRFZAldySjEzksZGPn5wSoZi2UmC4oM9irCZosVR25kw2SRk6ez9+YR6p+m5f8lEAiVQu4G/ueLfeDvrsXRxJwmOUO0iq6pNlRpq4NWpUSAuw5p+WW4lVtSKW2MqiLOwXiiZxgAIJoVwUvOKUGZyVJhLk1lyC22N7TEaqoURSG2hbvE65KQWQSD2SLJ00hhwz5rpnTHxG+P8ss5A+WDsR1wITUf/VtWvvKF62nzzcFE3MiST/RNyCxC/PVs3FPJsTzk033ILDTgzIJhEsXjz3cn4PNd1/Bs/0i8fq+9thAxVBoe4lEhEJohtjPXiT3DEOHjAmeNCgNa+UHdBKW5TaLuyvWlJyJHCJvIK+ddqA04T83MITG8IeTrqoWnsxpWGjgp08SxOmTLGCq21SniMI27ToWCMjPe+UvozE3TNN/SINjTGRNYtdlVT3bl/0a+bloMaOVXpb/ZoNZ+0LLnsvtypsPtHPWzsqXMZMHt3FIYzVZcTpeGuz7fxSScf73vhtyuxFBpBDS9uxWBQKiQiT3D0DfGB2/f3xZjOgVVSlStsTOmcwsAQMfgmsn+15QoPyZ341pG1aTlKwsXkvFxFbw1FEVhRGwgAOCvs+Unq1YWW4/K+O72Bdcj2gWAopjQ04cPMwmla48k8w/7glIzSlh9l0C9Dv83si12vtofQ9v61+jc/N11durAcoUztqXQjsgX5bgYWIM3Ja8UCzafl2y3Jj4JOTbfCzFUGh4S+iEQmiFdw72wZkqPhj6NWmXuva0R7eeKe2Pt+wPVJy39mbCEWBukNpEzVADgnihvrDuaXGsGUg4rUX9f+wCM7hiEwW3sjQs/dx2OvD4YWpUSemc1hrb1x46LGZj7+1ksfCCWl/b3dtHw4SjbZnzVRRyeAYDe0T4SxVyg8hVAYkOFM9Be+PmkXZn5/22+gC/3XpcsI4ZKw0M8KgQCoUngqlVh0j3h8HO3V42tTzhDJaGSs/mqks2GfnxcpeG7EC825JRb85DTrZwSfLj1CnNcT2eMiA10GA70c9fxgnucN+vM7XyMWX4I//uHacswqkNgjc/JFttQEZdYLOZCan6ldFXELSayWEPFkRYOF8riIIZKw0MMFQKBQKgCnLy+XNVMbcB17LV9QIawFVsZBYYai56tFLVUqEqYJsJH6i25nF4IrUqBFwfH1Oh85BCHeiJ9XPBI12D+faBeBx9XDUwWWiLf7whxg8McmWqt5wZEScrfxbg1MXHE5ggxVAgEAqEKeLFl0oVlZoclrdWFpmkUsyW0rjb9mLxcNHBmwyGpeaV2+1aFG1mMN6hvjA+6siJ2laFVgH1YJ9LX1S5MVRv0jmKqeZQKCrtfGwA/N8GTpqAovjHgiUokF4tLvrOKDHaJ0P1ifLHjVWkjwO+f6oaj8wcTVdlGADFUCAQCoQrondT8bF+uxLcmGMxWmCxMGbataB9FUULFUa5gqBTLaINURFIW86CeOaRqnpBoPze8+0A7yTLvWm4OyTG5dzjeur8tts3sxy/jSp5HxAagSxhjqJytwKPy0+Gb+Pe8oKh7LbMQT3x7RLJNkIcOET4ucBKVffeL8ZUYR4SGgxgqBAKBUAUUCgqerFclp6R2DRWx0eGisa91CPFiwj+cR2DPlUy0f3sbvjkgX1orR1aRASmsRybMu+qtCCb2CpdUCHm71o2holYq8FTvCEly7sqJcdj5an/MGdGK7xqeJaOWy2E0W/HmJmllz+EbOXyLAgAY0safNwBLRSE1Rw0YCfUPMVQIBAKhiniyXgTbUtaawimnumiUsg/KYE9pQu2bG8/DSgOL/r7ES8rfKTRg2e5rSMuXDw/98F8SAKBDsL7a3pBIH8HAqYzabG2hUioQ7ecKrUrJf25uOcbif9ezHK4DgK8nxuGbSV357/qzxzoBAD4f37l2TphQK5DyZAKBQKgiXJ5KbRsqhWXy+SkcfOUP61FRKQVj5ss91zFzSAzGLD+ElLxS3MgqxqePdrI7BtdYcEqfiGoL54WLDJW6Cv1UBO/VKjbJri8sM2Hy6mOSZZxoHQfnleEY3TEIw9oG2JVGExoW4lEhEAiEKuLjxjwkX/j5lKRzcE3hQj8uDppKhrKGSnJOCa7fKZKEMD7bdQ1nbufzYZ0/T6fatVK4lVOCqxlFUCooDGjpV+3zbBck9ACK8q0d3ZSqIvao0DTN/wOAQwlZaP/2drt9uBwXjlBvZ8l7iqKIkdIIIYYKgUAgVBF/kZbLB6weSW1wnK1gkctPAUSGSnYJZqw9KVnnplPhC1YOHgDMVhqX0wVRusvpBej74R4ATMNAThulOgR5OOHPF3pjzZTuGN6uYQT4PNjzt1hpFJSZMXn1MfT5YA+KDGZ8sPWy3faRvi4Y2lY41w8f7gB3UnrcJCChHwKBQKgiASJDJaWWPCoWK42PtjFGj6OyZ85QKSgzoyBdqoxbWGbGLrYvToC7DukFZTh4LQttAt1htdIYsfQAv22fWmhK2SHYo8bHqAk6tRIuGiWKjRYcTczBvqt3ADC9kMR5Mx893AGpeWV4qEsLPrcIAIa3bViFY0LlIR4VAoFAqCLi7sXGWtJSOXIjm3/tSOnVSaO06xwd5Sut3PFy0WBq3wgAwIEEJpk0xUZ3pSXbnbip48+K77322xl+2a3cEj6EFuLlhIe6BOPlITEI8XKGq1aFv1/qgw3P31MjjxKhfiGGCoFAIFQRcejnfEoBrtVC3x+ud9Dwdv54YZBjfRPOqwIwyaA7bYTKInxc0DfGFwCw/+odfLbzGuKvZ0u2iamlfjwNDVd9JO7lc+NOMVLzGBn8zx7rbCfY1i5Iz4vFEZoGxFAhEAiEKjKsrT+e7h3Bvx+6ZH+525stViRnl+B8Sj72XMnE1B+OYcfFDMk2GQWMHkig3knuEDziBNBQL2dQFIW9rw3gl7X0d0VLf1doVcztfcnOq5jzx1l+ffcIr2rppzRGuE7IYg7fyOZLs4M9yv8uCU0DkqNCIBAIVUShoLDg/rb47lCi7HqD2YL3/72Mfi19MbCVH+b+cQ5/nLwt2eZcSr6kz05mIeMF8HMvX45e7FHhxNDCfVywblpPHEvKwbhuIaAoClqVwu5B/vn4zhjdMajyF9rImdInwq6j8oXUAgCAm1YFX7fal/Yn1D/Eo0IgEAjVRFzuarUKpcBf7rmO1YeS8NTqY6Bp2s5IARgPyoy1J3mhtkNsPol/BbLt/Vv68q8HtxE+v1eUN14aHMOHpcxWaWmyq1bVrIwUABjQyg/LJ3SBp7Maix9qL0lyjvJzrbZODKFxQTwqBAKBUE2WjOuEjgsZvY7CMjOfoPnXmVR+m+xyROH+PpeGCB8XmK00H/oR57/I0TnUE7OHt0JKXmm51Ttmi2CoOGuU+GBsh4ovqAkyskMgRrLJx2uP3ER6AeOZaivSeiE0bYihQiAQCNVE76TmS2RzS4zQO6thtdK4kVXMb/Poivhyj7FsT4LkfedQjwo/d8bA6Aq3MVmFsM+FhcPvCu+Cm1ao5JnaJ6KcLQlNCRL6IRAIhBrgwUq557GVJxfTCiTrOaOlU4hHhcdaMKqtQ1XaqiIWpb0bjBQAKDEK8vgRPs0jYZhADBUCgUCoEZxCKtccb93RZNntekR68a+5ipzytqkpK56Ig1JB4cNmGvKRo1DUffpuMc7uBoihQiAQCDUgiC2B3c42+9vDqsPaIi6VHdOpBabYhCZ+mtID7YL0tXZeI2IDcGHhcDzaLaTWjtnY4eT8bUXwCE0bkqNCIBAINeCZfpHYcTED64/dQudQT6Tml0GpoGARVd3cE+WN0Z1a4GhSLradT8f0AVHwdFbj24NMefNDnVugT0zNZe1tESvo3g28NCgGIZ7OkmooQtOHom3bazYxCgoKoNfrkZ+fD3d3kuVNIBDqn1d/OY0Np1L4911CPXAyOQ8AI4e/bEIXAEwJc6HBDL2TkPR5MbUAod6MvDuBcDdR2ec3Cf0QCARCDZkzorXk/ZO9wvnXGqVwm1UoKImRAjBltMRIIRAcQwwVAoFAqCEBep2kp8zAVkLooWekd0OcEoHQbKhzQ8VgMKBTp06gKAqnT5+WrDt79iz69u0LnU6HkJAQfPjhh3V9OgQCgVAnjOnUAgDQI8ILemc1dr7aH+8/1B4PxwU38JkRCE2bOvc3zpkzB0FBQThz5oxkeUFBAYYNG4YhQ4ZgxYoVOHfuHJ5++ml4eHjgmWeeqevTIhAIhFrl/bHt8Vj3EET7Mv13ov1c+V48BAKh+tSpofLvv/9i+/bt+OOPP/Dvv/9K1q1duxZGoxHfffcdNBoN2rVrh9OnT+PTTz8lhgqBQGhyqJUKdAuvPR0UAoHAUGehn4yMDEybNg1r1qyBs7Oz3fr4+Hj069cPGo2GXzZ8+HBcuXIFubm5Do9rMBhQUFAg+UcgEAgEAqF5UieGCk3TmDx5MqZPn46uXbvKbpOeng5/f3/JMu59enq6w2MvXrwYer2e/xcScveIGREIBAKBcLdRJUNl3rx5oCiq3H+XL1/GF198gcLCQrz++uu1fsKvv/468vPz+X+3bt2q9c8gEAgEAoHQOKhSjsqsWbMwefLkcreJjIzE7t27ER8fD61WK1nXtWtXPP744/jhhx8QEBCAjIwMyXrufUBAgMPja7Vau+MSCAQCgUBonlTJUPH19YWvr2+F233++edYtGgR/z41NRXDhw/HL7/8gh49egAAevXqhfnz58NkMkGtZgSQduzYgVatWsHT07Mqp0UgEAgEAqGZUidVP6GhoZL3rq5MiV5UVBSCgxlNgQkTJmDhwoWYMmUK5s6di/Pnz+Ozzz7DkiVL6uKUCAQCgUAgNEEaTLdZr9dj+/btmDFjBuLi4uDj44MFCxaQ0mQCgUAgEAg8pCkhgUAgEAiEeoc0JSQQCAQCgdDkIYYKgUAgEAiERgsxVAgEAoFAIDRaiKFCIBAIBAKh0UIMFQKBQCAQCI2WBitPri24oiXSnJBAIBAIhKYD99yuqPi4yRsq2dnZAECaExIIBAKB0ATJzs6GXq93uL7JGypeXl4AgOTk5HIv1BHdunXDsWPHqvXZZN+m8dlNcd+CggKEhITg1q1b1dIHqu5nN8Xvqib7kzFdf/uSMd00Prs+983Pz0doaCj/HHdEkzdUFAomzUav11dr8CuVymoLxZF9m8ZnN8V9Odzd3et1XDfV76ohrrem+99t+3KQMd24P7sh9uWe4w7XV+tsmhEzZswg+9bDvg352U1x35pS3c9uqt9VQ1xvTfe/2/atKWRMN+99y4NI6BMIjRAyrgnNDTKmCbbcNRL6Wq0Wb731FrRabUOfCoFQa5BxTWhukDFNsKWyY6LJe1QIBAKBQCA0X5q8R4VAIBAIBELzhRgqhBpBURQ2bdrU0KdBINQaZEwTmiNNeVwTQ4UgYfLkyRgzZkxDnwaBUGuQMU1ojtxN45oYKgQCgUAgEBotjdpQuZssxsZIeHg4li5dKlnWqVMnvP322w1yPs0FMq4bDjKm6wYyphuW5j6uG7WhQiAQCAQC4e6myRgqW7duRZ8+feDh4QFvb2+MGjUK169f59cnJSWBoihs2LABAwcOhLOzMzp27Ij4+PgGPGsCoXzIuCY0N8iYJtQ2TcZQKS4uxquvvorjx49j165dUCgUePDBB2G1WiXbzZ8/H6+99hpOnz6Nli1bYvz48TCbzQ101gRC+ZBxTWhukDFNqG2aTFPCsWPHSt5/99138PX1xcWLFxEbG8svf+211zBy5EgAwMKFC9GuXTskJCSgdevW9Xq+zQGFQgFbPUCTydRAZ9M8IeO6fiFjuu4hY7r+ae7jusl4VK5du4bx48cjMjIS7u7uCA8PBwAkJydLtuvQoQP/OjAwEACQmZlZb+fZnPD19UVaWhr/vqCgAImJiQ14Rs0PMq7rFzKm6x4ypuuf5j6um4xH5f7770dYWBhWrVqFoKAgWK1WxMbGwmg0SrZTq9X8a4qiAMDO5UioHIMGDcL333+P+++/Hx4eHliwYAGUSmVDn1azgozr+oWM6bqHjOn6p7mP6yZhqGRnZ+PKlStYtWoV+vbtCwA4ePBgA59V88RqtUKlYobF66+/jsTERIwaNQp6vR7vvvtus7LSGxoyrusHMqbrDzKm64+7aVw3CUPF09MT3t7eWLlyJQIDA5GcnIx58+Y19Gk1SzIzMxEdHQ0AcHd3x/r16yXrJ02aJHlPelpWHzKu6wcypusPMqbrj7tpXDfqHBXOYlQoFFi/fj1OnDiB2NhYvPLKK/joo48a+vSaFbm5udiyZQv27t2LIUOGNPTpNGvIuK4fyJiuP8iYrj/uxnHdqD0qYotxyJAhuHjxomS92EIMDw+3sxg9PDyatBVZnzz99NM4duwYZs2ahQceeKChT6dZQ8Z1/UDGdP1BxnT9cTeO60ZpqOTm5uLQoUPYu3cvpk+f3tCnc1ewcePGhj6FZg8Z1/ULGdN1DxnT9c/dOK4bpaFyN1qMhOYPGdeE5gYZ04T6gKKJv41AIBAIBEIjpVEn0xIIBAKBQLi7IYYKgUAgEAiERgsxVAgEAoFAIDRaGtxQWbx4Mbp16wY3Nzf4+flhzJgxuHLlimSbsrIyzJgxA97e3nB1dcXYsWORkZEh2SY5ORkjR46Es7Mz/Pz8MHv2bLtOnHv37kWXLl2g1WoRHR2N77//vq4vj3CXUl/jOi0tDRMmTEDLli2hUCgwc+bM+rg8wl1IfY3pDRs2YOjQofD19YW7uzt69eqFbdu21cs1EhonDW6o7Nu3DzNmzMDhw4exY8cOmEwmDBs2DMXFxfw2r7zyCv766y/89ttv2LdvH1JTU/HQQw/x6y0WC0aOHAmj0Yj//vsPP/zwA77//nssWLCA3yYxMREjR47EwIEDcfr0acycORNTp04lPwBCnVBf49pgMMDX1xdvvvkmOnbsWK/XSLi7qK8xvX//fgwdOhT//PMPTpw4gYEDB+L+++/HqVOn6vV6CY0IupGRmZlJA6D37dtH0zRN5+Xl0Wq1mv7tt9/4bS5dukQDoOPj42mapul//vmHVigUdHp6Or/NV199Rbu7u9MGg4GmaZqeM2cO3a5dO8lnjRs3jh4+fHhdXxKBUGfjWkz//v3pl19+uW4vhEBgqY8xzdG2bVt64cKFdXQlhMZOg3tUbMnPzwcAeHl5AQBOnDgBk8kkkQpu3bo1QkNDER8fDwCIj49H+/bt4e/vz28zfPhwFBQU4MKFC/w2tnLDw4cP549BINQldTWuCYSGor7GtNVqRWFhIf85hLuPRmWoWK1WzJw5E71790ZsbCwAID09HRqNBh4eHpJt/f39kZ6ezm8jHvjcem5dedsUFBSgtLS0Li6HQABQt+OaQGgI6nNMf/zxxygqKsKjjz5ay1dBaCo0KmXaGTNm4Pz586QtOKFZQcY1oblRX2P6559/xsKFC7F582b4+fnV6WcRGi+NxqPywgsvYMuWLdizZw+Cg4P55QEBATAajcjLy5Nsn5GRgYCAAH4b28xy7n1F27i7u8PJyam2L4dAAFD345pAqG/qa0yvX78eU6dOxa+//nrXdAkmyNPghgpN03jhhRewceNG7N69GxEREZL1cXFxUKvV2LVrF7/sypUrSE5ORq9evQAAvXr1wrlz55CZmclvs2PHDri7u6Nt27b8NuJjcNtwxyAQapP6GtcEQn1Rn2N63bp1eOqpp7Bu3TqMHDmyjq+M0Ohp4GRe+rnnnqP1ej29d+9eOi0tjf9XUlLCbzN9+nQ6NDSU3r17N338+HG6V69edK9evfj1ZrOZjo2NpYcNG0afPn2a3rp1K+3r60u//vrr/DY3btygnZ2d6dmzZ9OXLl2ily9fTiuVSnrr1q31er2Eu4P6Gtc0TdOnTp2iT506RcfFxdETJkygT506RV+4cKHerpVwd1BfY3rt2rW0SqWily9fLvmcvLy8er1eQuOhwQ0VALL/Vq9ezW9TWlpKP//887Snpyft7OxMP/jgg3RaWprkOElJSfS9995LOzk50T4+PvSsWbNok8kk2WbPnj10p06daI1GQ0dGRko+g0CoTepzXMt9TlhYWD1cJeFuor7GdP/+/WU/Z9KkSfV0pYTGBumeTCAQCAQCodHS4DkqBAKBQCAQCI4ghgqBQCAQCIRGCzFUCAQCgUAgNFqIoUIgEAgEAqHRQgwVAoFAIBAIjRZiqBAIBAKBQGi0EEOFQCAQCARCo4UYKgQCgUAgEBotxFAhEAgEAoHQaCGGCoFAIBAIhEYLMVQIBAKBQCA0Wv4fyy829fhbnYkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Importing and exporting data**" + ], + "metadata": { + "id": "dtq7LRDXwEa_" + } + }, + { + "cell_type": "markdown", + "source": [ + "CSV" + ], + "metadata": { + "id": "GQL3J7RQwLGb" + } + }, + { + "cell_type": "code", + "source": [ + "In [134]: df = pd.DataFrame(np.random.randint(0, 5, (10, 5)))\n", + "\n", + "In [135]: df.to_csv(\"foo.csv\")" + ], + "metadata": { + "id": "ilrppGrivoP2" + }, + "execution_count": 100, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Parquet" + ], + "metadata": { + "id": "mC7sal-owjL2" + } + }, + { + "cell_type": "code", + "source": [ + "In [137]: df.to_parquet(\"foo.parquet\")" + ], + "metadata": { + "id": "nYlKMSYZwOvd" + }, + "execution_count": 101, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "In [138]: pd.read_parquet(\"foo.parquet\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "rtr7-CdQwqTj", + "outputId": "afb45883-5c55-4971-f007-fadc11fc9334" + }, + "execution_count": 102, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3 4\n", + "0 0 2 2 2 2\n", + "1 0 0 2 0 3\n", + "2 1 3 2 2 3\n", + "3 1 2 4 0 1\n", + "4 1 1 2 2 2\n", + "5 3 4 3 1 2\n", + "6 4 4 3 0 1\n", + "7 4 0 0 3 1\n", + "8 0 2 4 2 0\n", + "9 3 1 3 3 0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
002222
100203
213223
312401
411222
534312
644301
740031
802420
931330
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"samples\": [\n 1,\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 5,\n \"samples\": [\n 0,\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 2,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 0,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 3,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 0,\n 3,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 4,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 0,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 102 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Excel" + ], + "metadata": { + "id": "Sp5wl8gPxFz9" + } + }, + { + "cell_type": "code", + "source": [ + "In [139]: df.to_excel(\"foo.xlsx\", sheet_name=\"Sheet1\")" + ], + "metadata": { + "id": "LIQfb_zowx17" + }, + "execution_count": 103, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "In [140]: pd.read_excel(\"foo.xlsx\", \"Sheet1\", index_col=None, na_values=[\"NA\"])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "tvLEyL9cxh0z", + "outputId": "70b72cd1-1862-43c2-8c16-21fe3259f898" + }, + "execution_count": 104, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 0 1 2 3 4\n", + "0 0 0 2 2 2 2\n", + "1 1 0 0 2 0 3\n", + "2 2 1 3 2 2 3\n", + "3 3 1 2 4 0 1\n", + "4 4 1 1 2 2 2\n", + "5 5 3 4 3 1 2\n", + "6 6 4 4 3 0 1\n", + "7 7 4 0 0 3 1\n", + "8 8 0 2 4 2 0\n", + "9 9 3 1 3 3 0" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 001234
0002222
1100203
2213223
3312401
4411222
5534312
6644301
7740031
8802420
9931330
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"pd\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Unnamed: 0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 9,\n \"num_unique_values\": 10,\n \"samples\": [\n 8,\n 1,\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"samples\": [\n 1,\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 5,\n \"samples\": [\n 0,\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 2,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 0,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 3,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 0,\n 3,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 4,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 0,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 104 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Gotchas**" + ], + "metadata": { + "id": "Zge0lWs9xoaM" + } + }, + { + "cell_type": "code", + "source": [ + "In [141]: if pd.Series([False, True, False]):\n", + " .....: print(\"I was true\")\n", + " .....:\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "id": "X0iF7ki9xklZ", + "outputId": "66d542a8-edff-45b7-a94d-7245edc57f41" + }, + "execution_count": 105, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"I was true\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__nonzero__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1575\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mfinal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1576\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__nonzero__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mNoReturn\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1577\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 1578\u001b[0m \u001b[0;34mf\"The truth value of a {type(self).__name__} is ambiguous. \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1579\u001b[0m \u001b[0;34m\"Use a.empty, a.bool(), a.item(), a.any() or a.all().\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()." + ] + } + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Anusha/Module0/SciPy.ipynb b/Anusha/Module0/SciPy.ipynb new file mode 100644 index 0000000..dd7d0a7 --- /dev/null +++ b/Anusha/Module0/SciPy.ipynb @@ -0,0 +1,2465 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "MJCXJaaAzVYw" + }, + "source": [ + "# **SciPy**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ljh-Gp1QzfmL" + }, + "source": [ + "open-source software for mathematics, science, and engineering" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oy7Xqp1ye6g1" + }, + "source": [ + "cluster = Clustering algorithms\n", + "\n", + "constants = Physical and mathematical constants\n", + "\n", + "differentiate = Finite difference differentiation tools\n", + "\n", + "fft = Fourier Transforms (scipy.fft)\n", + "\n", + "fftpack = Fast Fourier Transform routines (legacy)\n", + "\n", + "integrate = Integration (scipy.integrate)\n", + "\n", + "interpolate = Interpolation (scipy.interpolate)\n", + "\n", + "io = File IO (scipy.io)\n", + "\n", + "linalg = Linear Algebra (scipy.linalg)\n", + "\n", + "ndimage = Multidimensional Image Processing (scipy.ndimage)\n", + "\n", + "odr = Orthogonal distance regression\n", + "\n", + "optimize = Optimization (scipy.optimize)\n", + "\n", + "signal = Signal Processing (scipy.signal)\n", + "\n", + "sparse = Sparse Arrays (scipy.sparse)\n", + "\n", + "spatial = Spatial Data Structures and Algorithms (scipy.spatial)\n", + "\n", + "special = Special Functions (scipy.special)\n", + "\n", + "stats = Statistics (scipy.stats)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Msaq1-3YzQGF" + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from IPython.display import Image" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4PomcyP5f66B" + }, + "source": [ + "Special functions (scipy.special)\n", + "\n", + "Integration (scipy.integrate)\n", + "\n", + "Optimization (scipy.optimize)\n", + "\n", + "Interpolation (scipy.interpolate)\n", + "\n", + "Fourier Transforms (scipy.fftpack)\n", + "\n", + "Signal Processing (scipy.signal)\n", + "\n", + "Linear Algebra (scipy.linalg)\n", + "\n", + "Sparse Eigenvalue Problems (scipy.sparse)\n", + "\n", + "Statistics (scipy.stats)\n", + "\n", + "Multi-dimensional image processing (scipy.ndimage)\n", + "\n", + "File IO (scipy.io)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lCxVYTPWfxHR" + }, + "outputs": [], + "source": [ + "from scipy import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XdbPvaGkgJ51" + }, + "outputs": [], + "source": [ + "import scipy.linalg as la" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K3YFFOZrgZLP" + }, + "source": [ + "# **Special functions**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fGaEziSKgQoY" + }, + "outputs": [], + "source": [ + "# The scipy.special module includes a large number of Bessel-functions\n", + "# Here we will use the functions jn and yn, which are the Bessel functions\n", + "# of the first and second kind and real-valued order. We also include the\n", + "# function jn_zeros and yn_zeros that gives the zeroes of the functions jn\n", + "# and yn.\n", + "#\n", + "from scipy.special import jn, yn, jn_zeros, yn_zeros" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "n7hxntx5gfoB", + "outputId": "7420190e-8fdd-4775-d6ac-74f9eaea7165" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "J_0(0.000000) = 1.000000\n", + "Y_0(1.000000) = 0.088257\n" + ] + } + ], + "source": [ + "n = 0 # order\n", + "x = 0.0\n", + "\n", + "# Bessel function of first kind\n", + "print(\"J_%d(%f) = %f\" % (n, x, jn(n, x)))\n", + "\n", + "x = 1.0\n", + "# Bessel function of second kind\n", + "print (\"Y_%d(%f) = %f\" % (n, x, yn(n, x)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "ASjnYOz7gjVL", + "outputId": "4ba12924-2f8c-44b5-9bf6-44c182e957b6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAw1RJREFUeJzs3Xd4k+XXwPFvkqaTDqC7FMqGQqHsIQgIMmWoyFBBUfAnyCwOQJYgQwUEEUWRobK3ssoGWbLasssulNK9d9Mk7x8PFPuyOpI+Sbk/19WLNHnGKUpzco9zFHq9Xo8gCIIgCIKZUModgCAIgiAIQmGI5EUQBEEQBLMikhdBEARBEMyKSF4EQRAEQTArInkRBEEQBMGsiORFEARBEASzIpIXQRAEQRDMikheBEEQBEEwKxZyB2BoOp2O+/fvY29vj0KhkDscQRAEQRAKQK/Xk5qaiqenJ0rls8dWSl3ycv/+fby9veUOQxAEQRCEIggPD6dChQrPPKbUJS/29vaA9MM7ODjIHI0gCIIgCAWRkpKCt7d33vv4s5S65OXhVJGDg4NIXgRBEATBzBRkyYdYsCsIgiAIglkRyYsgCIIgCGZFJC+CIAiCIJiVUrfmRRAEQRCMRavVotFo5A7DbKnValQqVbGvI5IXQRAEQSiAtLQ07t27h16vlzsUs6VQKKhQoQJlypQp1nVE8iIIgiAIz6HVarl37x62tra4uLiIIqhFoNfriY2N5d69e1SvXr1YIzAieREEQRCE59BoNOj1elxcXLCxsZE7HLPl4uJCWFgYGo2mWMmLWLArCIIgCAUkRlyKx1B/fyJ5EQRBEATBrBg1efnnn3/o3r07np6eKBQKtm7d+txzDh06RMOGDbGysqJatWqsWLHCmCEKgiAIgmBmjJq8pKenU79+fRYtWlSg42/fvk23bt1o164dISEhjB49msGDB7N7925jhikIgiAIghkx6oLdLl260KVLlwIfv3jxYipXrszcuXMBqF27NkePHuX777+nU6dOxgpTEARBEIT/iI+Pp3bt2pw6dQofH58CndOvXz+aNGnC2LFjjRscJrbm5cSJE3To0CHfc506deLEiRNPPSc7O5uUlJR8X8ZwLzGDLzaeZ9HBG/x97j4h4UkkpueI/f6CIAiC2WjWrBlDhw597nEzZsygZ8+eBU5cACZOnMiMGTNITk4uRoQFY1JbpaOionBzc8v3nJubGykpKWRmZj5xe9qsWbP46quvjB7b9eg01p0Jf+z5cnaW9KjvyTvNKlLd7fltvAVBEARBDlqtlgsXLjB48OBnHpeRkcHSpUsLvWSjbt26VK1alZUrV/LJJ58UJ9TnMqmRl6IYP348ycnJeV/h4Y8nGIZQsbwtYzrU4M2GFWjiUxY3BysAEtJzWHE8jFe//4e3Fh9nS/A9sjRao8QgCIIgCEUVGhpKZmYmDRo0eOZxO3fuxMrKiubNm+d7fs2aNdjY2BAZGZn33KBBg6hXr17eaEv37t1Zu3at4YP/f0xq5MXd3Z3o6Oh8z0VHR+Pg4PDUokBWVlZYWVkZPbaqLmUY1aF6vucyc7T8ezueNSfvsj80htNhiZwOS2TO7mt827seL1VzNnpcgiAIQsnT6/VkyvRB1UatKlK9lODgYCwsLPDz83vmcUeOHKFRo0aPPd+vXz9mz57NzJkzWbhwIVOmTGHfvn38+++/ODo6AtC0aVNmzJhBdna2Ud+bTSp5adGiBTt37sz33N69e2nRooVMET2bjaWKdjVdaVfTlajkLDacCWfVybtEJGXyzm8nebtZRSZ0rU0ZK5P6axYEQRCKKVOjxXeyPDthL0/rhK1l4d9XgoOD8fX1zUsqtm/fztixY9HpdHzxxRd500l37tzB09PzsfMVCgUzZsygd+/euLu7s3DhQo4cOYKXl1feMZ6enuTk5BAVFUWlSpWK+BM+n1GnjdLS0ggJCSEkJASQtkKHhIRw9+5dQJryGThwYN7xH3/8Mbdu3eLzzz8nNDSUn376ifXr1zNmzBhjhmkQ7o7WjGhfnf1j2zCgufQfbPXJu3T6/h+OXo+TOTpBEAThRRccHJw3ZZSbm0tAQAAHDhwgODiY7777jvj4eAAyMzOxtrZ+4jVee+01fH19mTZtGlu2bKFOnTr5Xn84S5KRkWHEn8TIIy9nzpyhXbt2ed8HBAQA8N5777FixQoiIyPzEhmAypUrs2PHDsaMGcOCBQuoUKECv/32m1ltk7azsmB6r7p08XPni03nCU/I5N2lJxn7ag2Gv1JNlJYWBEEoBWzUKi5Pk+e9yUZdtJ5AISEh9OzZE4BTp05Rp06dvFGTLl26sGfPHvr374+zszOJiYlPvEZgYCChoaFotdrHNtgAJCQkAFIPI2MyavLStm3bZ24lflL13LZt2xIcHGzEqEpGy6rOBI56mdm7Qvnz3zvM3XuNhIwcJnXzRakUCYwgCII5UygURZq6kUtYWBiJiYl5Iy/379/PN93j5eVFREQEAA0aNGDlypWPXSMoKIg+ffqwdOlSVqxYwaRJk9iwYUO+Yy5evEiFChVwdjbumk+z321kyh6Owkzp7gvA8mNhfLrhHBqtTubIBEEQhBdJcHAwCoUCf3//5x7bqVMnLl26lG/0JSwsjG7dujFhwgT69+/PtGnT2LRpE0FBQfnOPXLkCB07djR0+I8RyUsJGPRSZeb39UelVLA5OIKhK8+K7dSCIAhCiTl79izVqlXDwcEBkBbWPhxpAYiIiMhbpOvn50fDhg1Zv349IE0Fde7cmZ49ezJu3DhAKnbXpUsXJkyYkHeNrKwstm7dypAhQ4z+84jkpYT0auDFkoGNsLJQsu9KDO8vPyUSGEEQBKFEBAYG5qtg37RpUy5evEhERARpaWns2rUr3/rSyZMns2DBAnQ6HeXKlSM0NJTFixfnu+aOHTsIDAzM+3758uU0bdr0sfowxiCSlxL0Si03/vywGfZWFvx7K4HPN54X7QUEQRAEo9Dr9YSFhTF9+nQuXrzIiBEj8l6zsLBg7ty5tGvXDn9/f8aOHUv58uXzXu/WrRsfffRRvtGZ51Gr1SxcuNCgP8PTKPSl7N0zJSUFR0dHkpOT84bHTM3xG3EMXHaKXJ2e0R2qM7pDDblDEgRBEJ4hKyuL27dvU7ly5aduIzY1Fy5coHnz5tSrV4/Zs2fTpk0buUN65t9jYd6/zWepdCnSspozX/eqy7jNF5i/7zo+5e3o1cDr+ScKgiAIQgH5+fmRnp4udxhGIaaNZNKvaUX+93IVAD7feJ4zYQkyRyQIgiAI5kEkLzL6onMtOvq6kaPV8dGfZ7kbb9yKhIIgCIJQGojkRUZKpYL5/fyp6+VAQnoOI9YEiRowgiAIgvAcInmRma2lBb8OaIyDtQXn7iXzw/7rcockCIIgCCZNJC8mwNPJhplvSC3KFx28Ida/CIIgCMIziOTFRLxWz5M3Gnqh08PodSGkZmnkDkkQBEEQTJJIXkzIVz3qUKGsDfcSM5n692W5wxEEQRAEkySSFxNib63m+77+KBWwKegeO85Hyh2SIAiCIJgckbyYmCY+5RjWthoAE7ZcIDY1W+aIBEEQBMG0iOTFBI3qUJ26Xg4kZ2qYtfOK3OEIgiAIgkkRyYsJUquUfN3LD4UCNgdHcPJWvNwhCYIgCC+Q+Ph4XF1dCQsLK/A5/fr1Y+7cucYL6j9E8mKi/L2d6N+0IgCT/rooitcJgiAIxdasWTOGDh363ONmzJhBz5498fHxKfC1J06cyIwZM0hOTi5GhAUjkhcT9nmnmpSzs+RadBorjoXJHY4gCIJgxrRaLRcuXKBhw4bPPC4jI4OlS5fy4YcfFur6devWpWrVqqxcubI4YRaISF5MmJOtJeM61wJg/r5rRCVnyRyRIAiCYK5CQ0PJzMykQYMGzzxu586dWFlZ0bx583zPr1mzBhsbGyIjH+2EHTRoEPXq1csbbenevTtr1641fPD/j0heTFzvRhVoWNGJ9Bwt03eI2i+CIAgmQa+HnHR5vvT6IoUcHByMhYUFfn5+zzzuyJEjNGrU6LHn+/XrR40aNZg5cyYAU6ZMYd++fezatQtHR0cAmjZtyqlTp8jONu5OWQujXl0oNqVSwfRedem+8Cg7zkfSr0ksrau7yB2WIAjCi02TATM95bn3hPtgaVfo04KDg/H19cXKygqA119/nUOHDtG+fXs2btyYd9ydO3fw9Hz8Z1MoFMyYMYPevXvj7u7OwoULOXLkCF5eXnnHeHp6kpOTQ1RUFJUqVSrCD1cwYuTFDNTxdGRgCx8Apm+/jFZXtKxbEARBeHEFBwfnmzIaNWoUf/zxx2PHZWZmYm1t/cRrvPbaa/j6+jJt2jS2bNlCnTp18r1uY2MDSOtmjEmMvJiJMR1qsCU4gmvRaWwNjuDNRhXkDkkQBOHFpbaVRkDkuncRhISE0LNnz7zv27Zty6FDhx47ztnZmcTExCdeIzAwkNDQULRaLW5ubo+9npAgNRZ2cTHuDIEYeTETjrZqhratCsC8vdfIztXKHJEgCMILTKGQpm7k+FIoCh1uWFgYiYmJz12sC9CgQQMuX358jWVQUBB9+vRh6dKltG/fnkmTJj12zMWLF6lQoQLOzs6FjrEwRPJiRt5v6YO7gzURSZms/Peu3OEIgiAIZiI4OBiFQoG/v/9zj+3UqROXLl3KN/oSFhZGt27dmDBhAv3792fatGls2rSJoKCgfOceOXKEjh07Gjr8x4jkxYxYq1WM7lAdgEUHb5CapZE5IkEQBMEcnD17lmrVquHg4PDcY/38/GjYsCHr168HpKmgzp0707NnT8aNGwdIxe66dOnChAkT8s7Lyspi69atDBkyxDg/xH+I5MXM9G5UgaoudiSk57Dkn1tyhyMIgiCYgcDAQDp06FDg4ydPnsyCBQvQ6XSUK1eO0NBQFi9enO+YHTt2EBgYmPf98uXLadq06WP1YYxBJC9mxkKl5LNONQH47eht0XVaEARBeCK9Xk9YWBjTp0/n4sWLjBgxIt/rHTp04K233mLnzp1UqFCBEydO5L3WrVs3PvroIyIiIgp8P7VazcKFCw0W/7OI3UZmqFMdd+p7O3EuPIkfD1znq5515Q5JEARBMDEXL16kefPm1KtXj927d1O7du18r+/bt++Z548ePbpQ9xs8eHBhQywyMfJihhQKBV90lkZfVp+6S3iCcffTC4IgCObHz8+P9PR0Tpw4QZs2beQOx6BE8mKmWlZ1pnV1ZzRaPT8fvil3OIIgCIJQYkTyYsZGvCLtPNp45p5o2igIgiC8METyYsaaVi5HU59y5Gh1/Cp2HgmCIAgvCJG8mLnhr1QDYPWpO8SniZ1HgiAIQuknkhcz17q6M/UqOJKl0bH06G25wxEEQRAEoxPJi5lTKBR80k4affnzxB2SM0XVXUEQBKF0M3rysmjRInx8fLC2tqZZs2acOnXqmcfPnz+fmjVrYmNjg7e3N2PGjCErSyxGfZZXa7tRw60Mqdm5/HE8TO5wBEEQBMGojJq8rFu3joCAAKZMmUJQUBD169enU6dOxMTEPPH41atXM27cOKZMmcKVK1dYunQp69aty9c7QXicUvlo9GXpsdukZ+fKHJEgCIIgGI9Rk5d58+YxZMgQBg0ahK+vL4sXL8bW1pZly5Y98fjjx4/z0ksv8fbbb+Pj40PHjh3p37//c0drBHitnic+5W1JytCw+qToOC0IgiCUXkZLXnJycjh79my+RlBKpZIOHTrk65/wXy1btuTs2bN5ycqtW7fYuXMnXbt2fep9srOzSUlJyff1IlIpFQxtWxWA347eIidXJ3NEgiAIgmAcRkte4uLi0Gq1uLm55Xvezc2NqKioJ57z9ttvM23aNFq1aoVaraZq1aq0bdv2mdNGs2bNwtHRMe/L29vboD+HOenVwAvnMlZEp2Sz80Kk3OEIgiAIZio+Ph5XV1fCwsIKfE6/fv2YO3eu8YL6D5PabXTo0CFmzpzJTz/9RFBQEJs3b2bHjh1Mnz79qeeMHz+e5OTkvK/w8PASjNi0WFmoGNiiEgBLj95Gr9fLHJEgCIJgSpo1a8bQoUOfe9yMGTPo2bMnPj4+Bb72xIkTmTFjBsnJycWIsGCMlrw4OzujUqmIjo7O93x0dDTu7u5PPGfSpEkMGDCAwYMH4+fnx+uvv87MmTOZNWsWOt2Tp0GsrKxwcHDI9/Uie6dZRSwtlFyISOZ0WKLc4QiCIAgmQqvVcuHCBRo2bPjM4zIyMli6dCkffvhhoa5ft25dqlatysqVK4sTZoEYLXmxtLSkUaNG7N+/P+85nU7H/v37adGixRPPycjIQKnMH5JKpQIQowgFVL6MFW808AJg6VHRMkAQBEGQhIaGkpmZSYMGDZ553M6dO7GysqJ58+b5nl+zZg02NjZERj5aljBo0CDq1auXN9rSvXt31q5da/jg/x+jThsFBASwZMkSfv/9d65cucLQoUNJT09n0KBBAAwcOJDx48fnHd+9e3d+/vln1q5dy+3bt9m7dy+TJk2ie/fueUmM8HwftKoMwJ7L0dyNz5A5GkEQhNJHr9eTocmQ5auoH+aDg4OxsLDAz8/vmccdOXKERo0aPfZ8v379qFGjBjNnzgRgypQp7Nu3j127duHo6AhA06ZNOXXqFNnZxm1XY2HMi/ft25fY2FgmT55MVFQU/v7+BAYG5i3ivXv3br6RlokTJ6JQKJg4cSIRERG4uLjQvXt3ZsyYYcwwS50abva0ru7MketxLD9+mynd68gdkiAIQqmSmZtJs9XNZLn3ybdPYqu2LfR5wcHB+Pr6YmVlRXh4OAMGDCAmJgYLCwsmTZrEW2+9BcCdO3fw9PR87HyFQsGMGTPo3bs37u7uLFy4kCNHjuDl5ZV3jKenJzk5OURFRVGpUqWi/5DPYdTkBWD48OEMHz78ia8dOnQofzAWFkyZMoUpU6YYO6xS78NWlTlyPY71p8MZ82oNHKzVcockCIIgyCg4ODhvysjCwoL58+fj7+9PVFQUjRo1omvXrtjZ2ZGZmYm1tfUTr/Haa6/h6+vLtGnT2LNnD3Xq5P9wbGNjA0jLQIzJ6MmLII82NVyo5lqGGzFprD8dzuDWVeQOSRAEodSwsbDh5NsnZbt3UYSEhNCzZ08APDw88PDwAMDd3R1nZ2cSEhKws7PD2dmZxMQnb/gIDAwkNDT0iaVQABISEgBwcXEpUowFZVJbpQXDUSgUfPCStPZl+bEwcrWiaJ0gCIKhKBQKbNW2snwpFIpCxxsWFkZiYuITF+uePXsWrVabVyetQYMGXL58+bHjgoKC6NOnD0uXLqV9+/ZMmjTpsWMuXrxIhQoVcHZ2LnSMhSGSl1LsjYZelLVVE5GUyd7L0c8/QRAEQSiVgoODUSgU+Pv753s+ISGBgQMH8uuvv+Y916lTJy5dupRv9CUsLIxu3boxYcIE+vfvz7Rp09i0aRNBQUH5rnfkyBE6duxo1J8FRPJSqlmrVfRvWhGAlSfvyByNIAiCIJezZ89SrVq1fLXQsrOz6dWrF+PGjaNly5Z5z/v5+dGwYUPWr18PSAlO586d6dmzJ+PGjQOkYnddunTJVwE/KyuLrVu3MmTIEKP/PCJ5KeX6N62IQgHHbsRzKzZN7nAEQRAEGQQGBubrNajX63n//fd55ZVXGDBgwGPHT548mQULFqDT6ShXrhyhoaEsXrw43zE7duwgMDAw7/vly5fTtGnTx+rDGINIXko573K2tKvpCsAq0W1aEAThhaHX6wkLC2P69OlcvHiRESNG5L127Ngx1q1bx9atW/H398ff358LFy7kvd6tWzc++ugjIiIiCnw/tVrNwoULDfozPI3YbfQCeLd5RQ6ExrDx7D0+61QTa7Uo+CcIglDaXbx4kebNm1OvXj12795N7dq1815r1arVU9vuPDR69OhC3W/w4MFFCbNIRPLyAmhTwxUvJxsikjLZfj6S3o0qyB2SIAiCYGR+fn6kp6fLHYZRiGmjF4BKqeDtZg8W7v4rFu4KgiAI5k0kLy+Ivk28UasUhIQncTHC+O3KBUEQBMFYRPLygnAuY0XnulI1xVVi27QgCIJgxkTy8gJ598HU0dbg+6RkaWSORhAEQRCKRiQvL5CmlctRw60MmRotW4IKvv1NEARBEEyJSF5eIAqFgneaSS3KV528g16vlzkiQRAEQSg8kby8YF5v6IW1Wsm16DSCw5PkDkcQBEEQCk0kLy8YB2s1Xf2khbvrT4fLHI0gCIIgFJ5IXl5AfRtLbc+3nbtPRk6uzNEIgiAIQuGI5OUF1LRyOXzK25Keo2XH+Ui5wxEEQRCEQhHJywtIoVDw1oPRl/VnxNSRIAiCkF98fDyurq6EhYUV+Jx+/foxd+5c4wX1HyJ5eUH1blQBpQJOhyVyMzZN7nAEQRCEEtCsWTOGDh363ONmzJhBz5498fHxKfC1J06cyIwZM0hONn4Vd5G8vKDcHKxpW9MVgA1n7skcjSAIgmBsWq2WCxcu0LBhw2cel5GRwdKlS/nwww8Ldf26detStWpVVq5cWZwwC0QkLy+wPg+mjjYF3SNX++zW6IIgCIJ5Cw0NJTMzkwYNGjzzuJ07d2JlZUXz5s3zPb9mzRpsbGyIjHy0VnLQoEHUq1cvb7Sle/furF271vDB/z8ieXmBta/tinMZS2JTszl4NVbucARBEMyGXq9Hl5Ehy1dRC4wGBwdjYWGBn5/fM487cuQIjRo1euz5fv36UaNGDWbOnAnAlClT2LdvH7t27cLR0RGApk2bcurUKbKzs4sUY0FZGPXqgklTq5S83sCLJUdus+50OK/6uskdkiAIglnQZ2ZyteHjb/AloWbQWRS2toU+Lzg4GF9fX6ysrEhKSqJDhw7k5uaSm5vLqFGjGDJkCAB37tzB09PzsfMVCgUzZsygd+/euLu7s3DhQo4cOYKXl1feMZ6enuTk5BAVFUWlSpWK/kM+h0heXnB9m3iz5MhtDl6NISY1C1d7a7lDEgRBEIwgODg4b8rI3t6ef/75B1tbW9LT06lbty5vvPEG5cuXJzMzE2vrJ78XvPbaa/j6+jJt2jT27NlDnTp18r1uY2MDSOtmjEkkLy+4aq72NKzoRNDdJLYERfC/NlXlDkkQBMHkKWxsqBl0VrZ7F0VISAg9e/YEQKVSYftg9CY7Oxu9Xp83HeXs7ExiYuITrxEYGEhoaCharRY3t8dH6xMSEgBwcXEpUowFJda8CHk1XzYF3RPNGgVBEApAoVCgtLWV5UuhUBQ63rCwMBITE/Mt1k1KSqJ+/fpUqFCBzz77DGdnZwAaNGjA5cuXH7tGUFAQffr0YenSpbRv355JkyY9dszFixepUKFC3rWMRSQvAl39PLC0kJo1XrqfInc4giAIgoEFBwejUCjw9/fPe87JyYlz585x+/ZtVq9eTXR0NACdOnXi0qVL+UZfwsLC6NatGxMmTKB///5MmzaNTZs2ERQUlO8+R44coWPHjkb/eUTyIuBoo+bV2tLw35bgCJmjEQRBEAzt7NmzVKtWDQcHh8dec3Nzo379+hw5cgQAPz8/GjZsyPr16wFpKqhz58707NmTcePGAVKxuy5dujBhwoS862RlZbF169a8hb/GJJIXAYA3Gkqrxf8KiRA1XwRBEEqZwMBAOnTokPd9dHQ0qampACQnJ/PPP/9Qs2bNvNcnT57MggUL0Ol0lCtXjtDQUBYvXpzvmjt27CAwMDDv++XLl9O0adPH6sMYg1iwKwDwcg0XyttZEpeWw5HrcbSr5Sp3SIIgCEIx6PV67ty5w59//snFixf5888/8167c+cOH330Ud5C3REjRuSr/9KtWzeuX79OREQE3t7eBbqfWq1m4cKFBv85nkQkLwIg1Xzp4e/J8mNhbAq6J5IXQRAEM3fx4kWaN29OvXr12L17N7Vr1857rWnTpoSEhDzz/NGjRxfqfoMHDy5ClEUjkhchz5sNK7D8WBh7LkeTnKnB0UYtd0iCIAhCEfn5+ZGeni53GEYh1rwIeep4OlDdtQw5uTp2XYh8/gmCIAiCIAORvAh5FAoFbzSsAMBmsetIEARBMFEieRHy6dXAE4UCTt1OIDzBuOWdBUEQBKEoRPIi5OPhaMNLVaXKiKLmiyAIgmCKjJ68LFq0CB8fH6ytrWnWrBmnTp165vFJSUl88skneHh4YGVlRY0aNdi5c6exwxT+42HNl82iXYAgCEI+4ndi8Rjq78+oycu6desICAhgypQpBAUFUb9+fTp16kRMTMwTj8/JyeHVV18lLCyMjRs3cvXqVZYsWZKv3bZgfJ3quGOjVhEWn8G5e8lyhyMIgiA7lUoFSO9TQtE9/Pt7+PdZVEbdKj1v3jyGDBnCoEGDAFi8eDE7duxg2bJleSWG/2vZsmUkJCRw/Phx1Gppm66Pj48xQxSewM7Kgo513Pgr5D5/hUTg7+0kd0iCIAiysrCwwNbWltjYWNRqNUqlWHVRWDqdjtjYWGxtbbGwKF76odAbaQwsJycHW1tbNm7cSK9evfKef++990hKSuKvv/567JyuXbtSrlw5bG1t+euvv3BxceHtt9/miy++eGqWlp2dTXZ2dt73KSkpeHt7k5yc/MQeDkLBHAiN5oMVZ3AuY8XJCe1RKQvfxVQQBKE0ycnJ4fbt2+h0ooVKUSmVSipXroylpeVjr6WkpODo6Fig92+jjbzExcWh1Wpxc3PL97ybmxuhoaFPPOfWrVscOHCAd955h507d3Ljxg2GDRuGRqNhypQpTzxn1qxZfPXVVwaP/0XXuroLZW3VxKVlc+JmPK2qG7e9uSAIgqmztLSkevXqYuqoGCwtLQ0yamVSFXZ1Oh2urq78+uuvqFQqGjVqREREBN99991Tk5fx48cTEBCQ9/3DkReheNQqJV39PFh18i5/hUSI5EUQBAFp5MDa2lruMF54Rpu0c3Z2RqVSER0dne/56Oho3N3dn3iOh4cHNWrUyDdFVLt2baKiop6a6VpZWeHg4JDvSzCMnv7SQunAi1FkabQyRyMIgiAIEqMlL5aWljRq1Ij9+/fnPafT6di/fz8tWrR44jkvvfQSN27cyDefeO3aNTw8PJ44PyYYV+NKZfF0tCY1O5eDoU/eIVYoOelwPwQubJS+ru+D8FMQEwoZCcW/viAIgvBCMOq0UUBAAO+99x6NGzemadOmzJ8/n/T09LzdRwMHDsTLy4tZs2YBMHToUH788UdGjRrFiBEjuH79OjNnzmTkyJHGDFN4CqVSQXd/T345fIu/Qu7Txc+jcBdIjYJzayHsCMReg+S7zz7etQ5UewWqtoeKLUAthmYFQRCExxk1eenbty+xsbFMnjyZqKgo/P39CQwMzFvEe/fu3XwLd7y9vdm9ezdjxoyhXr16eHl5MWrUKL744gtjhik8Q8/6Xvxy+BYHrsYUrNN0bg5c3w3BK+H6XtD/v+km2/LgXAOUFpCVBFkpkJ0CmYkQc0n6Or4QLGyg9mvQeiy41n7irQRBEIQXk9G2SsulMFuthOfT6/V0/P4frsek8W3vevRp/JTF0DotBP0OB2dCeuyj572bQd3e4F4XnGuCXfknn58eD7cOws0DcGM/pEU9es23J7z8Gbj7Ge4HEwRBEExKYd6/RfIiPNePB64zZ881WlVzZuXgZo8fEHEWdoyF+8HS92XcoH4/8H8XXGoU/oZ6PdwPgqPz4crfj56v9Rp0/BrKVS7SzyEIgiCYrsK8f4sSgcJz9agv7To6fjOOmJSsRy9kJMC2UbCkvZS4WDlA529gzCV4dVrREhcAhQK8GkHfP2HoCaj7JqCA0O2wuJU0JVW6cm5BEAShEETyIjxXxfK2NKjohE4P285HSk/eOwM/tYCzKwA91O8Pw89A849B9Zx1MYXh5gu9l8EnJ6FiS8hJg78+gXXvSlNNgiAIwgtHJC9CgfSs7wnA9vP3IWQNLO8qrUtxrgGDdsHri8He7TlXKQaXmvD+dugwFZRqaRTmp+bSdmtBEAThhSKSF6FAuvp5YKHQ0vX+j7D1Y9BmQ81uMOQAVGpZMkEoVdBqDAzZDy61ID0GVvWG07+VzP0FQRAEkyCSF6FAXC2z2eQwnyEWO6UnXv4M+q4EK/uSD8ajPnx0GBoOBPTSYuEDX4t1MIIgCC8IkbwIz5edCn++Qf3ss2TqLZlVZhy8MhHkbAmvtobuP0Db8dL3/3wHf48Aba58MQmCIAglQiQvwrPlpMOqtyDiDDrrsvTLncIvcfUIi0uXOzJpV1LbcfDafFAoIfhPWPcO5GTIHZkgCIJgRCJ5EZ5Okwlr+sHdE2DliHLgFhyqNAEeLNw1FY0HSVNYFtZwLVBKYHJFy3pBEITSSiQvwpPlZkvbkW//A5Zl4N1N4NmA7g92HW07FylzgP9PrW4wYCuobaUqvVs/hv80+BQEQRBKD5G8CI/TaWHDILixT0oG3tkA3tKISydfd9QqBVejU7kenSpzoP9PpRZSYTulGi5ugl2fi0W8giAIpZBIXoTH7ZsKV3dI0zD91+bbCu1oq+bl6i7AfwrWmZJqHaSaMyjg9BI4/I3cEQmCIAgGJpIXIb/zG+D4D9LjXj9BlTaPHfJafQ9AWvdikq2x/HpD1++kx4dmwakl8sYjCIIgGJRIXoRH7ofA38Olx63GPOgp9LgOtd2wslByKzady5EpJRdfYTQdAm3GSY93fiZNgQmCIAilgkheBElaLKx9B3KzoNqr8Mqkpx5qb62mXU1XALab4tTRQ23HQYMBgB42DYbEMLkjEgRBEAxAJC+CtK14/UBIuQflq8Gbv0ml+J/B5KeOQKoD022u1KE6M1HaPSVqwAiCIJg9kbwI0gLdu8fB0h76rQYbp+ee0r6WG7aWKsITMjl/L9noIRaZhRX0+QNsnSHqAmwfI3YgCYIgmDmRvLzobh6EfxdJj9/4RereXAA2lira1ZKmjnZeMOGpIwDHCvDWcqkK7/m1opGjIAiCmRPJy4ssIwG2DpMeN/5AKvRWCN38pKmjHRciTXfq6KHKL8Or06THgePg7r/yxiMIgiAUmYXcAQgy0T/oxpx6H8pVhY5fF/oS7Wq6YqNWcS8xkwsRydSr4GT4OA2pxXCIOAuXtkgLeIceA2vHIl9Oo9UQnREtfaVHE5MRQ0J2ApZKS6wtrLGxsMFaZY2rrSu1ytXCxdbFgD+MIAjCi0skLy+qCxvh0mZQqOCNJWBpV+hL2FiqeKWWKzsuRLLjQqTpJy8KBfRYCPeDpZ1Hu754UNCuYDRaDefjznMq6hSno05zLuYcObqC91Aqb12eWuVrUbtcbdpUaEM9l3ooFWLwUxAEobAUepMf7y+clJQUHB0dSU5OxsHBQe5wTFNSOPz8EmQnQ9sJ0PaLIl9q54VIhq0KwrucDf981g6FQmHAQI3k7r+wvAvodfDW71Cn11MP1el1nIw8yabrmzgcfpgsbVa+1y2VlrjZueFm64abnRtlrcqSq8slS5tFVm4WmbmZhKeGE5YShk6fv9eSh50HnXw60dmnM77lfc3j704QBMFICvP+LZKXF41OB3/0gLAjUKEJDAoEVdEH4DJztDScvpdMjZZtw1vhV6Ho0zAlav80ODIXbMrCsH/B3j3fyzEZMWy9sZXN1zcTkRaR93w563I0dmtMU/emNPFoQmWHygVKOjJzM7mWeI2rCVcJigniUPgh0jXpea9XdqzMYL/BdK3cFQulGBAVBOHFI5IXkbw83dkVsG2U1HDx46NQvmqxL/nJqiB2XIjkf22qML5L7eLHWBJyc+C39hB1XuqH9M5GUCiIzYjll/O/sOn6JnJ1uQDYq+3pWqUrr1d/Hd9yhhkhycrN4ljEMXaF7eKfe/+QmZsJgLe9N0P8hvBa1ddQK9XFvo8gCIK5EMmLSF6eLC0WfmwMWUnQaRa0GGaQy+44H8knq81s6gggJhR+eRm02SR3nsFydS6rrqzKmxryd/Gnd43edPTpiI2FjdHCSNekszZ0Lb9f+p3E7EQAvMp4MarhKDr7dDafv09BEIRiEMmLSF6ebMvHcG4NuNeDIQeLNV30Xxk5uTScvpcsjc68po4A7YlFrDoxi8VlHUlVSotn67nUY3TD0TRxb1KisWRoMthwbQPLLy4nPisegJcrvMzEZhPxKONRorEIgiCUtMK8f4utDi+K2/9IiQsKeG2+wRIXAFtLC155ULBuh6kXrPuPG4k3GBB/lO/KlyVVqaQaan5ot4CVXVaWeOICYKu25b067xH4ZiDD/IehVqr5594/9PqrF6uurEKr05Z4TIIgCKZIJC8vgtxs2B4gPW7yIVRoZPBbdH1QsG6nGRSs0+g0LD63mLe2v8WF+IuUsbBlSkIKG2/fpF1irOzTNNYW1gytP5SN3TfSwLUBGbkZzD41m/cC3+N+2n1ZYxMEQTAFInl5ERz/AeKvg53rM7tFF8crtVyxViu5m5DBpfspRrmHIdxMukn/7f1ZFLKIXF0ubSq0YWuvv+ndaAQqgN3jpcrDJqCKUxVWdF7BxGYTsVPbcS72HH239+XE/RNyhyYIgiArkbyUdgm34J850uPOswrUdLEobC0taFdTmjraft40p4523d5F/x39uZp4FScrJ2a3ns3CVxbiZucGLUeCS23IiIc9xknwikKpUNK3Vl8299iMb3lfkrKT+Hjfx/x24TeTH+ESBEEwFpG8lHaB4yE3C6q0hbpvGvVWD6eOdl00rakjjVbD7FOz+fyfz8nMzaSZezO29NxCtyrdHk0RWVhC9wXS45CVcPuIfAE/gWcZT/7o8gdvVH8DnV7HgqAFjDk0hrScNLlDEwRBKHEieSnNbh2Ca4GgtICuc6Ty+Eb0Si1XrCyU3InP4EpkqlHvVVBR6VEM2j2IVVdWATDEbwi/vPoLzjbOjx9csRk0GiQ93j5aWitkQqxUVnzV8iumtJiCWqlm/939DAwcSGxGrFHup9fp0Gs06LKz0WVmos/NNcp9BEEQCkuU8iytdFrYPVF63PhDcK5u9FvaWVnQpoYLey5Hs+tiJL6e8m5Vvxx/mU/2f0JcZhz2antmtp5JW++2zz6pw1S4uhPib8CRedBufEmEWii9a/SmZtmajDo4iuuJ1xm4ayC/dvwVb3vvQl1Hr9ejuXePzOBgsm/dQnP/PpqI+2ju3yc3Jga0/293k1KJRfnyWLi6YuHmhtrdDauatbDx98eqWlUUKpUBf0pBEISnE3VeSqvgVfDXMLByhJHBYFe+RG67NTiC0etCqOpix/6xbUvknk9y5N4Rxh4eS2ZuJtXLVmdB2wV4OxTwzf3iZtg4CFRWMPw0lK1k3GCLKDw1nI/2fMS9tHs42zizuMNiapar+cxzsm/fJv2ff8g4G0RGcBDa2DiDxKK0s8Omfj1sGjfGoVMnrKoWv3KzIAgvFlGk7kVPXnIyYGFDSI2EV6fBS6NK7NYpWRoaT99HjlbH3jEvU93NvsTu/dDm65uZdmIaWr2W5h7N+b7t95SxLFPwC+j18Ht3qf+Tby/o87vRYi2u2IxY/rfvf1xPvI69pT0/tf8Jf1f/fMfk3LlDyq5AUnbvJvvKlfwXUKux8fXFqnYt1F5eqD09pS8PDxRWVtKaIJUKhVKJLiMDTXQMuTHR5MbEoImIIPP8BTIvXECfkZHvslY1auDQtSsOXbtgWbGikf8WBEEoDUTy8qInL4e/hYMzwKkifHIa1NYlevsPV5xmf2gMYzrUYFQH409XPaTX6/n53M/8fO5nALpX6c5XLb9CrSpCj6Coi/BLa6nz9Ps7wKeVgaM1nOTsZIbvH05IbAjWKmt+6vATjcrWI2XHThJXrybr4sVHB6tU2DVrhm3z5tg2bIB13boorYv3/4c+N5fs69fJDAkh7dBh0o4fB40m73XbJk0oP/hD7F5+WfYaOoIgmC6RvLzIyUtqFPzQEDTp8OZS8Otd4iFsOBPOZxvPU8vdnsDRL5fIPXV6HTNPzmTd1XWAtDB3RIMRxXuz3B4AZ5aCmx/87zAoTXdNR4Ymg4BDAVy+epRuISq6X7RGkfSg3o5KhV3z5jh06UyZ9u2xKFvWqLFok5JI3bePlJ27SD95Mm/tjFX16pT78AMcu3ZFYWlp1BgEQTA/JtceYNGiRfj4+GBtbU2zZs04depUgc5bu3YtCoWCXr16GTfA0uTgTClx8Wps9K3RT/OqrxsWSgWhUancijX+Vl6dXse0E9NYd3UdChRMaj6JkQ1HFv9TfrsvwdoRoi9A0B+GCdZI1DGJfHnAiZ9+0tHjaI6UuLg54zI2gOpH/qHi0t9w6t3b6IkLgMrJCafevam4bCnV9u+j3AcfoLSzI/v6dSLHjedGx04k//UXep3O6LEIglA6GT15WbduHQEBAUyZMoWgoCDq169Pp06diImJeeZ5YWFhfPrpp7Ru3drYIZYeMVcg+E/pcacZRt8a/TROtpa0rCZtRd51Mcqo99LqtEw5PoVN1zehVCj5utXX9KnZxzAXtysPbR/sNjowHTKTDHNdA8qNiyNqxkxudu5C2pa/UOn03K1ShrmvKxn+sYqMvp2wKFdOtvjU7u64ff4Z1Q4ewGVsABYuLuRGRXH/i3GE9e9P5rlzssUmCIL5MnryMm/ePIYMGcKgQYPw9fVl8eLF2NrasmzZsqeeo9Vqeeedd/jqq6+oUqWKsUMsPQ7OlNZo1HoNKjaXNZSudd0BqWCdsWh1WiYdm8TWG1tRKpTMbDWTHlV7GPYmTQaDcw2p8u7hbw177WLQpacT8/18brzakcQ//0Sv0WDbvDk+a9fQfMs+ElrUJCYnniF7hhCVbtwEsiBUDg44DxlC1X17cRkbgNLWlqxz5wnr24/7X3yBJvrZH2YEQRD+y6jJS05ODmfPnqVDhw6PbqhU0qFDB06ceHp/lmnTpuHq6sqHH3743HtkZ2eTkpKS7+uFFHkervwNKKTpDpm96uuGUgEXI1K4G5/x/BMKSavTMv7oeLbd2oZKoeLbl7+lW5VuBr8PKrXUVgHg1C8Qd93w9ygEvV5Pyu493OzajfhffkGfmYl1vXpUXL6MSiuWY+Pvj6OVI7+++iuVHCpxP/0+H+/9mNQc0ygaqLSywnnIEKoE7sLx9dcBSP7rb251707y9h0yRycIgrkwavISFxeHVqvFzc0t3/Nubm5ERT350+DRo0dZunQpS5YsKdA9Zs2ahaOjY96Xt3fhCnWVGocevMHWfQPcfOWNBShfxormVaTaMoYefdHr9Uz7dxq7bu/CQmHBnDZz6OTTyaD3yKdaB6jeCXS5sP8r493nOXLu3CF8yEdEjBpFbnQ06goV8Fr4Az7r1mLXokW+Y51tnFny6hJcbV25mXyTzw5/Rq7OdCrkql1d8Zw1E58N67GuWxddSgr3P/2UiIAAtElJcocnCIKJM6n2AKmpqQwYMIAlS5bg7PyE8u1PMH78eJKTk/O+wsPDjRylCYo4K1WFVSgfrdEwAV3yeh0ZbtpCr9cz98xcNl/fjFKh5JuXv6FDpQ7PP7G4Xv1K+vu9sg3CTxv/fv+h12iI+/lnbnXvQfrRoyjUapyHDaPK9m04vPrqUxcme5TxYOErC7GxsOHY/WN8e9p0pr0esvHzw2fNapyHDweVipSdu7jVoydpR4/JHZogCCbMqMmLs7MzKpWK6OjofM9HR0fj7u7+2PE3b94kLCyM7t27Y2FhgYWFBX/88Qd///03FhYW3Lx587FzrKyscHBwyPf1wjk4U/qzXt8SaQNQUJ3quKFQQEh4EhFJmQa55pILS/j9slQ0bmqLqXT06WiQ6z6Xa23wf1t6vHeyVMiuBGTfukVY/7eJXfAD+pwc7F56iSrb/sZl5IgC1WfxLe/LrFbSqNya0DWsCV1j7JALTaFW4zL8E3zWrsHSx4fcmBjCBw8mZt736P9/iwJBEASMnLxYWlrSqFEj9u/fn/ecTqdj//79tPh/w9wAtWrV4sKFC4SEhOR99ejRg3bt2hESEvLiTgk9y92TcGMfKFTw8mdyR5OPq701TSpJO10CDTD6svrKahYGLwTg8yaf83r114t9zUJpOx4srOHucbi+x6i30ut0JPzxB7dff4OsixdROjjg+d23eP+2BEsfn0Jdq32l9oxuOBqAb059w7EI0xzVsPHzo/KWzZR9W0oS43/9lfBhw9C+qOvYBEF4KqNPGwUEBLBkyRJ+//13rly5wtChQ0lPT2fQIKl778CBAxk/XprqsLa2pm7duvm+nJycsLe3p27duliKwlaPOzhD+tP/bShvev1kOj/YdRRYzHUv229tZ9YpaQTh4/ofM8B3QLFjKzTHCtDsf9LjfVOl5pdGoImK4u6gD4ieOQt9djZ2rVpRZdvfOHbvXuTaNR/U/YAeVXug1Wv59PCn3Eq6ZeCoDUNpY4P75El4fvctCisr0g//Q1ifvmQ/YdRVEIQXl9GTl759+zJnzhwmT56Mv78/ISEhBAYG5i3ivXv3LpGRxttOW6qFHYXbh0Gphjafyx3NEz1MXs7cSSQmNatI1zgZeZJJxyYB8E7tdxhWf5jB4iu0VmOkwnUxl+H8OoNfPu3IEW6//gYZJ0+isLHBfeoUvJf8ivr/LXovLIVCwZQWU2jo2pA0TRpjDo0hQ2P4XWCG4ti9O5VWr8LCw4OcsDDC+vQl9cBBucMSBMFEiPYA5mx5N7hzFBp/CK/Nkzuap+q56BjnwpOY3qsuA5oXrkPzjcQbDNw1kFRNKh0rdeS7Nt+hVMi8zvzYAmndi0MFGHHWIL2j9Lm5xP74I/GLfwHAyrc2FebNK/QU0fPEZcbRZ1sfYjNj6ValG7NazTLpfkO58fFEjBpNxpkzoFTiPmUKZfsaqAihIAgmxeTaAwhGcOeElLgo1dB6rNzRPFOXIk4dxWTEMHT/UFI1qTRwbcDM1jPlT1wAmn4EDl6Qcg9OF2xL/7NoYmK4O+iDvMTFqX8/fNasMXjiAtIW6u/afIdKoWLHrR1suLbB4PcwJIvy5am4fBlOb/UGnY6oKVOIW7yYUvaZSxCEQjKBdwKhSI4+GGnx7w+OXvLG8hwPk5d/byWQmJ5ToHPSNekM3z+cqPQofBx8+KHdD1iprIwZZsGpbaDdBOnxkbmQVfQFpRnBwdx+800yTp9GaWuL59w5eEyZgtLKeD9rI7dGeQt4Z5+azaW4S0a7lyEo1Grcp02j/MfSeqPY+QuInjVL9EYShBeYSF7MUeR5abeLQgkvjZY7mueqVN6O2h4OaHV69l6Ofu7xubpcPj38KVcSrlDOuhw/dfgJJ2sn4wdaGPX7Q/nqkJkIJ38p0iWSNm3m7sD30MbGYVW9Oj4bN+LYzQhVgp/gvTrv8Yr3K2h0GgIOBZCcnVwi9y0qhUKB6+jRuE2QFvcn/vEn978Yh16jkTkyQRDkIJIXc3T0e+lP314mucPoSboUotfRnDNzOBpxFGuVNT++8iPe9ia4RV6pgrbjpMcnFhaqaaM+N5eomTOJ/PJL9BoN9q92wGftGqyqVDZOrE+gUCiY3mo6FcpU4H76fb48+qVZTMWUGzgQz+++BQsLUrZtIyIgQCQwgvACEsmLuYm/CZe3So9bB8gaSmE8TF6O3ogjJevpbzYbrm1g1ZVVAMxqPQs/F78Sia9I6rwBLrUhKxlOLCrQKdqkJMI/+ojEP6Tu387Dh+O1YAFKOztjRvpEDpYOzGs7D0ulJYfvHWbt1bUlHkNROHbvjveiH1FYWpK6dx8Rn32OPtd0Wh8IgmB8InkxN8fmS52jq3cEdxN+Y/9/qrvZU9XFDo1Wz4ErT+4gfDrqNDP/laoFj2gwomTK/heHUgntHrRj+PdnyEh45uE54eGE9X+b9OMnUNja4vXDAlyGf4JCKd8/w9rlaxPQWEqC556Zy80k86inUqZNGyos/AGFWk1qYKA0hSSq8QrCC0MkL+Yk5T6EPCjvbuI7jJ6kS92HvY4enzoKTw0n4FAAufpcuvh0YYjfkJIOr2hqdQc3P8hJheM/PPWwzPPnCevbj5zbt7Hw8MBnzWocOpZQa4PneLvW27zk+RLZ2mzGHRlHjrZgi6rlVqZNG7wWLJCmkHbsIHLCBJHACMILQiQv5uT4j6DTQMWWULG53NEU2sOCdYevxZKR82iYPy0njRH7R5CUnUSd8nWY9tI0k649ko9S+Wjn0clfIS32sUNS9u7lzsD30CYkYOVbG5+1a7GuWbOEA306hULB9JemU9aqLKEJofwY/KPcIRWY/Svt8Jo3F1Qqkv/6m8hJk8UuJEF4AYjkxVxkJMDZ5dJjMxx1Aajj6YB3ORuyNDoOXZXe5HV6HeOPjOdm8k1cbVz54ZUfsLYoftG3ElWzC3g2AE26NK33Hwl//EHEyFHos7Kwa/MyPn/+idrNVZ44n8HF1oWpLacCsOLSCk5FnpI3oEJw6NgRrznfgVJJ8ubNxM4z3YKNgiAYhkhezMWpJaDJkNa5VGsvdzRFolAo/jN1JDVqXHxuMYfuHcJSacmCVxbgamt6b+zPpVBAuy+lx6d/g9Qo9Ho9MXPmED1zFuj1OPXri/eiRbIszC2oVyq+wpvV30SPnglHJ5j89un/cujSBY+vvwYg/relJDxYEC0IQukkkhdzoMl6VMn1pdHSm6WZejh1dOBKNLtv7+fncz8DMKXlFOo615UztOKp1gEqNIHcLPT/fE/klxOJ/20pAC4BAbhPmYLCwkLmIJ/v8yafU8mhEtEZ0cw+NVvucArF6Y3XcRk9GoDoWbNI2bVL3oAEQTAakbyYgwsbID1WKknv21PuaIrFv4IT7g7WZBDFxGPSWpH+tfrTo2oPmSMrJoUC2oxDlwv35m0kefNmUKnwmDED54+GmM0aHlu1LTNbSW0Ytt/azuHww3KHVCjl//cRZd9+G/R67n/+BeknzWf6SxCEghPJi6nT6x/VEGn2MajU8sZTTEqlgvZ1HLCp8AdZ2gwaujbksyafyR2WQWhdGnP3RCXSIixRqFVUWPgDTm++IXdYhVbPpR7v+b4HwLQT00jJKXr7g5KmUChw+3IC9h07otdouDd8OFlXr8kdliAIBiaSF1N3cz/EXgHLMtBwoNzRFJtOryNctRyVVSzkOvJN6zmoleadkIHU/fjO+4PIjNCgVOuo+EoK9s395Q6ryIb5D8PHwYeYzBi+O/2d3OEUikKlwvO7b7Fp3AhdairhQz8mNz5e7rAEQTAgkbyYuoejLg0GgI2TrKEYwrKLywiOPwJ6Fenh73C9cI2mTZImMpI777xLdmgoKufyVHqrLLZlk6XCdWbK2sKa6S9NR4GCrTe2cjTiqNwhFYrSygrvRYuw9PEh934k90aOQpdjHvVrBEF4PpG8mLLoS3DzgNSAsfnHckdTbCcjT7IweCEAftaD0GVVzNt1ZK5y7tzhzjvvkhMWhoWnBz4rV2L95oOeRyd/kVoHmCl/V3/eqf0OAFOPTyUtJ03miApH5ehIhZ9+QmlvT+bZs0RN/cos+jcJgvB8pr/94UV24ifpz9rdoayPrKEUV3R6NJ//8zk6vY5e1XrR3rk/x0NOs+dSFNN71kWlNI8Frf+Vde0adz/8EG1sHJY+PlRcvgy1hwfoKoJLLYgNhVO/wsvmu6ZnZMORHL53mPDUcOaencuUFlPkDqlQrKpUxuv77wn/6COSN2/GqkZ1yr//vtxhmQy9Xs+tuHRuxKRxMzaNW7Hp3IxNIzlTg1KhQKkABQpUSgUVy9lS3a0M1d3sqe5ahioudlhZqOT+EYQXlEJfyj6KpKSk4OjoSHJyMg4ODnKHU3Sp0TC/Lmhz4MO94N1U7oiKTKPVMGj3IM7FnqNm2Zqs7LoSJZY0/novKVm5rPuoOc2qlJc7zELJvHSJ8A8+RJucjFXNmlRc+hsWzs6PDji/ATYPBptyMPoCWJWRL9hiOh11mg92fwDAsk7LaOLeROaICi/hjz+kmjtKJd6/LKZM69ZyhySbXK2O02GJ7L4UxZ5LUdxPzirSdWzUKtrWdKFzXXdeqeWKvbX5r10T5FWY928x8mKqTv8mJS4Vmpp14gIw9+xczsWew15tz/dtv8+roNvB143NQREEXooyq+Ql89w57g4egi41Fet69aj46y+onJzyH1T3DTg0CxJuwpml8NIoWWI1hCbuTehTow/rr61n2olpbOqxCUuVpdxhFUrZAQPIvn6dpA0biRgTgM+G9VhVrix3WCUqLC6dJUdusfNCJIkZjzq7W6uVVHeVGqdWcSlDVZcyOJexRA/o9Hr0esjJ1T0YoUnlWnQa16JTSc3KZdfFKHZdjMJSpaRVdWf6NK5AR193lGY4kiqYFzHyYoo0mfB9HciIh7d+hzq95I6oyHbd3sXn/3wOwMJXFtLWu23ea3svRzPkjzN4OlpzbNwrZlELJePsWcI/+h+69HRsGjXC+5fFqMo8ZVQleBX8NQzsXKTRF7VNyQZrQCk5KfTY0oP4rHiG+Q9jaP2hcodUaPqcHO4M+oDMs2exql4dn3VrUdrayh2W0YVGpbDo4E12nL+P7sFveydbNR1qu9GpjjutqztjrS7c9I9er+fS/RR2XYxk18UobsWm571W1cWOj9tUpae/F5YWYlmlUHCFef8WyYspCl4Jf30Cjt4wMgRU5jlAdivpFv129CMzN5MhfkMY2XBkvtezNFoaTd9Leo6WrZ+8hL+3kzyBFlD6vycJHzoUfWYmts2a4f3zT89+89Nq4IeGkHwXus6BpmbSKfspAm8H8tk/n6FWqtncYzM+jj5yh1RompgYbr/5JtrYOBx6dMfzm2/MImkuitCoFObsvsq+KzF5z71Sy5UPXqpM8yrlsFAZLrG4EZPKluAI/jxxh5Qsqemqp6M1Q16uwjvNKokkRiiQwrx/i/+jTI1eL+1SAWjyodkmLhmaDAIOBZCZm0lT96Z84v/JY8dYq1W0qyX1Mtp10bT3TKcdPUb4//6HPjMTu1at8P5l8fM/tavU0HKE9Pj4D6DNffbxJq6TTyde8noJjU7D9H+nm+XOHbWrKxXmzQOVipS/t5G0bp3cIRlclkbLnN1Xee2Ho+y7EoNCAd3qebBjZCuWvd+EVtWdDZq4AFRzteezTrU4Nu4VxnephYu9FfeTs/hq22W6/XCEk7dEnR3BsMTIi6m5exKWdQQLawi4Arbl5I6o0PR6PV8e/ZJtt7bhbOPMhu4bcLZxfuKxO85H8snqICqVt+XQp21N8lNw2j//cG/4CPQ5OZRp2xavBfNRWlkV7OScDJjvBxlx8MYSqNfHuMEaWXhqOK//9TrZ2mxmtJphtm0d4pctJ+bbb1Go1VRatRKbevXkDskg/r0Vz4TNF7gVJ03jdPR144sutajqUrILxrM0Wjaevcf3e68Rny7V1+ndqALju9SifJkC/tuRW24OJIZJ69ZSIqQPlv9l7QTlq0C5KmBTVo4ISx0xbWTOycvGD+DiJvB/F3otkjuaItl0bRNTT0xFqVDyW8ffnrk7JT07l4bT95Kdq2PnyNb4eprWf7PUgweJGDkKvUaD/asd8Jo7F4VlIRer/vMdHPgaXH1h6HGzbqwJ8NuF31gQtAAnKyf+7vU3Za3N7xe3Xq8nYuQoUvfuxcLTg8qbNmFR1vx+jocyc7RM33GZ1SfvAuBqb8W0nnXo/KCLu1ySMnL4JvAqa05JcTnZqpn8mi9vNKwga1xPlBQO13fDjf0QcxmS7oJeV7BzbcpB+WpQufWjJq1m3spFDiJ5MdfkJSVS2h6ty4X//QMe9eWOqNBCE0J5Z8c75OhyGNVwFIP9Bj/3nCF/nGHv5WhGvlKNgI41SyDKgkk9cIB7o0aDRoN9x454zZ2DQl2EX0iZSfB9XchJhf7roGZnQ4daojQ6DX229eFG0g1er/Y6016aJndIRaJNSyPszd7k3LmDXevWeP+yGIXS/GbSwxMy+OjPs1yJlHpQ9W9akXFdauFoYzpvnmfvJPLllguERqUC8GbDCkzvVQdbS5mnxSPPw8WNcG2P1Ibl/1PbSaMrjhX/M4WvAPSQFgsJtyDtCYU2rRygShuo9ZrUTNeMF+uXJJG8mGvycnAWHJ4N3s3hw91yR1NoqTmp9N3el/DUcF6u8DILX1mIUvH8N4MtwfcYs+4c1V3LsDegTQlE+nwpe/cSMSYAcnOx79IZrwdTDEW2Z5K07sW7GXyw2+xHX4Jjghm4S+q1tarrKuq5mOe0S9bVa4T16YM+OxvXzz+n/AeD5A6pUP65FsvItcEkZWhwLmPJD/0a0LLak6do5Zar1fHToZvM33cNnR6qu5bhp3caUt3NvmQD0Wnh6i6pfced/7S9UCilf5/VO0rlKcpVBXv35/9bzU6DxNsQdVHqRXdjP2QmPHrdphw0HACNP4SylYzzM5USInkxx+QlN0cadUmLht7LoO6bckdUKHq9nrGHx7L3zl487DxY/9p6nKydCnRucqaGxl/vRaPVsy/gZaq5lvAvs/8nZfceIsaOhdxcHLp1w/Ob2SgsivkJMTVKWvuizYFBu6BSS8MEK6Mvj37J3zf/xre8L6u7rkalNM9qq4lr1xE1dSqo1fisXo2NX125Q3ouvV7Pz4dvMmf3VXR6qO/txOJ3G+LhaPqf8E/cjGfk2mBiU7OxUauY3qsuvRuVwDSSJhPOLIeTiyHpjvScQgW1X4PaPaDqK4ZZY6jTwv0QuL4HQlZBcviDFxRQoxO0HmvWtbv0ej25ulx06LBSGXb9kkhezDF5eViRtYw7jLlodvOlq66sYvap2VgoLfi98++F/iT+/vJTHLoay9hXazCifXUjRfl8Kbv3EBEQAFotDt274zlrZvETl4e2jYKzK6Daq/DuRsNcU0ZxmXF039KdNE0ak5pPok9N81yMrNfriRg1mtQ9e1BXrEjlzZueXrvHBGi0Oj7dcI6/Qu4D0K+JN1/1rGNWpfpjU7MZsy6EozfiABj0kg8Tu/kap02IXg9X/oY9E6V1LCAtsG00CJoMBkcvw9/zIZ0WrgXCqSVw6+Cj52v3gA5ToXxV4927CLQ6LTeSbnAj6Qa3k29zK/kWt5NvE58ZT44uhxxtDhqdVOCwtVdrfurwk0HvL5IXc0xefusA905D2wnQ9gu5oymUC7EXGBg4kFxdLuOajstr5lcY60+H8/mm8/h6OLBzlDyl21MCA4kY+ylotTj27IHHzJkoVAZ8Q4i/CT82lhYBfnwU3P0Md22ZrLy8km9Of4OjlSPbe20v8GibqdEmJ3Pr9dfJvR8pJa3fmmb9lyyNlk9WBbE/NAa1SsFXPerydrOKcodVJFqdnh8P3OD7fdcA6FzHnfn9/AtdMO+Zoi5A4HgIOyJ9b+8JbT6Dev3AsoQLFMbdgGPfQ8hq6XeA0kKaSmrzBdjJV2E8KSuJ4/ePcyTiCMcijpGYnVig85p7NGdJxyUGjUUkL+aWvEQEwZJ2oFTDmEtg7yZ3RAWWnJ1Mn219uJ9+n1crvcrcNnOL9Es/MT2HxjP2odXpOfxZWyqVtzNCtE+XsmsXEZ9+9iBx6YnHzBmGTVwe2jAILm2Gur2h91LDX7+E5epy6bO9D9cTr/NWjbeY3GKy3CEVWUZQMHcGDACtFo9Zs3B6vZfcIeWTlp3LkN/PcOJWPFYWShYPaES7mq5yh1Vsf4VE8NmG8+RodTSqVJYlAxtTzq6Y7SdyMmDfVDi9REoULKyh5UhoNRosS/Z3y2OiL8HeKXBjr/S9lSN0mQ31+5fYWjiNTsOBuwdYf3U9Z6LPoPvPrqoy6jLUKFuDyo6VqeJYhcqOlfGw88BKZYVapUatVKNWqbFSWYlpI0Myy+Rl6ycQshL83oI3f5M7mgLT6/WMPDCSQ/cOUaFMBdZ3X4+9ZdHXq7zz278cuxHPuC61+LhNyQ2n5ktcevXCY8bXxklcACLPwS8vS3PtI4NLxQK+M1FnGLR7EAoUrHltDXXK15E7pCKLW7yY2PkLUNjYUHnzJpPpf5SUkcP7y08TEp5EGSsLlr7X2Kz6gT3Pv7fi+eiPM6Rk5VLZ2Y4Vg5oU/QNM1EXY9KHU1R2gzuvw6jRwMrERqluHpKmsqAvS9zW6QPf50iJhI4nNiGXjtY1svLaRmMxHlZerl61Oa6/WtPZqTX3X+qiV8ixbEBV2zUlmolTXBaT5VzPy+6XfOXTvEJZKS+a2nVusxAWgy4OaFLsuPmHroZGk7Nz5KHF5/XXjJi4gbX+v0hb0WvjXsPPFcmns3phuVbqhR8/Mf2fm+xRnbsoPGYJts2boMzO5//kX6DWa559kZPFp2fT79V9CwpNwslWzanCzUpW4ADSvUp7Nw1ri5WTD7bh03vz5ONejUwt3EZ0OTvwkjWLHhkIZN3h3E7y1wvQSF5B+Dww5BO2ngMoSru2CRc2k9Y8GHlOIy4xj+onpdNzYkZ/O/URMZgzlrcvzUb2PCHwzkM09NjOm0RgauzeWLXEpLJG8yO3cWsjNBNc60jY9MxEUHcT8oPkAfNH0C3zL+xb7mh3ruKFQwLnwJCKSMot9vedJ3r4jf+Ly9XTjJi4PPewwHfQHZCQ8+1gzMbbRWGwtbDkfd55tN7fJHU6RKVQqPL+ZjdLBgawLF4j75VdZ40nLzmXQitOERqXiYm/Fuo9aUN/Ee4AVVTVXe7Z80pLaHg7EpeXQf8m/XCtoApMeB6vfgt3jpR19NTpLBSGrdTBu0MWlsoDWAfDRYemDTVaStHFj04eQk/7c058nQ5PBTyE/0XVzV9ZfW0+uPpcGrg34pvU37O29lxENRuBVxogLlo1IJC9y0uvhzDLpceNBZlP7IyErgc8Of4ZWr6VL5S68VeMtg1zX1d6aJpWkrYqBRh59Sd62nfuffw46HY5vvmH8EZf/qtJOWqyryYDT5r/uBcDF1oWP638MwIKgBaRriv+LVy5qd3fcJ0trd+J+/pnMc+dkiSM7V8tHf5zh/L1kytlZsmZIc2q6y1tGwNhc7a1ZPbgZdTwfJDC//svVqOckMDGhsOQVuLFPWtvSdQ70Xwt2plnv5oncfGHwfmj3pbSQ9+ImaRNH/M0iXU6n17Hh2ga6bu7Kz+d+JjM3Ez9nP5Z3Ws4fXf6ga5WuqM1sR+v/J5IXOd05BnHXpCqO9frKHU2BaHVaxv0zjpjMGCo7VmZqi6kG3ZXRxU+a7w00YqPG5G3buP/FF1Li0vtNPKZPL9nKqgoFtHww+nJysVR/ohR4p/Y7eNt7E5sZy28XzGft1pM4vtYNh27dQKvl/udfoMvIKNH7a3V6Rq0J4fjNeOwsVawY1IRqrqa7fduQytpZsmpwM+p6ORCfLo3AhEalPPngmwdgaUepbktZHxhyUOrebiYfBPNRqaHN5/DedmnKK+Yy/NoOrgYW6jLhqeF8uPtDpp2YRnxWPBXtKzK3zVxWdV1FY/fGRgq+5InkRU4PP3XXewuszWNx8a8XfuVE5AmsVdbMazMPW7Vhtxt2rislL2fuJBKTkmXQawMk//03978YBzodTm/1xmPaNHlKwtfpJZUcz4iDc2tK/v5GYKmy5NPGnwLwx6U/uJd6T+aIisd98iQs3N3JuXOH6G+/LbH76vV6vtxygcBLUViqlCwZ2Jh6FZxK7P6mwMnWklUfNsfPy5GE9BzeXnLy8QTm9FJY2Ruyk6FiCxh8QBrBMHeVWkjTSN7NpJ9tTV+p+rru2WvJdHodq6+s5s2/3+RM9BlsLGz4vMnnbO25lY4+HU1y639xiORFLmkxcOXB2oDGH8gbSwGduH+Cn0N+BmBSi0lUK1vN4PfwcLTB39sJvR52XzLs1FHSlq3/SVzewv2rr+TrZaNSQ4th0uPjC6ViVqVAO+92NPNoRo4uh3ln58kdTrGoHB3xnDUTgKS160g7fLhE7jt3zzXWng5HqYAf+vubbLl/Y3O0VbNycDPqVZASmIFLTxGekCG9ie/+EnYESAvf6/WFgX/JWivF4Bw8pBGYJkOk7w/Phi0fSZXYnyAiLYLBewYz69QsMnMzaeLehE09NjHAd4DZTw89TYn85l60aBE+Pj5YW1vTrFkzTp069dRjlyxZQuvWrSlbtixly5alQ4cOzzzebAWvBJ0GvBqbRQPGmIwYxh0Zhx49b1Z/kx5VexjtXl0ejL7svGC45CVp40YiJ0wAvR6nfn1x/2qq/E34GgwAayepuVvodnljMRCFQsEXTb5AqVCy985eTkedljukYrFr0YJy70k9nO5PnIg2Kcmo99sSfI8fD94AYObrfrJ3hZabo42aPz9oRk03e2JSs3lv6b9kbR0JJ36UDmg3EV7/BSwMW2/EJFhYQrc50HORtA7mwgZpUXJW/hGoYxHH6LOtD6ejTmNjYcP4puP5reNveNt7yxR4yTD6b+9169YREBDAlClTCAoKon79+nTq1ImYmJgnHn/o0CH69+/PwYMHOXHiBN7e3nTs2JGIiAhjh1pydFo4u1x6bAajLhqdhk8Pf0pCVgI1y9ZkXNNxRr3fwy3TJ2/HE5+WXezrJa5bT+TESaDXU/add3CfMkX+xAXAqow0Pw9wbIHBt0fKpXrZ6nmLuL859Q1aMx9VcgkIwLJqVbSxcUTNmGm0+4SEJ/HFJqnmxyftqtKvqQlu75WBo62a3z9oirejJcNSvsf6/J/oFUro9bNULbeUTYc8psG78PY6aW3krUOwoiukRqPT6/j1/K8M3TeUlJwU/Jz92NR9E2/XfrtADXHNndF/wnnz5jFkyBAGDRqEr68vixcvxtbWlmXLlj3x+FWrVjFs2DD8/f2pVasWv/32Gzqdjv379xs71JJz84DUY8PaEeq+IXc0zzX/7HyCY4Ipoy7D3LZzsbawNur9Kpa3pa6XAzo97LkcXaxrJaxeTdSUKQCUHTgAt4lfmtbcb9P/gcoKIs7CneNyR2Mwn/h/gr2lPVcTr7L5xma5wykWpZWVNH2kVJKybRspe/ca/B7RKVn8788z5OTq6FDblbGv1jT4PcyZexkLdlZcRW/VP+TqlSwq+wXZdc1jk4NBVOsA728HOxeIukDq0g6M2j2YhcEL0aPnrRpvsaLzCrwdSvdoy38ZNXnJycnh7NmzdOjwaK+9UqmkQ4cOnDhxokDXyMjIQKPRUK7ck7t9Zmdnk5KSku/L5D3cHu3/DqhNuwvsnrA9/HH5DwC+bvU1lRxKpiJsVz9p9GXnhaLvOopfsYLoadMBKDdoEG7jx5tW4gJQxgX8+0uPHw6FlwJlrcsyrL60pufH4B9Jy0mTOaLisalXj/IffghA1NSvyE0sWP+XgsjSaPnoz7NEp2RT3bUM3/f1R2mMBoXmSquBTR9gf30LeoUFY/WjmXPfj7Hrz6HTlY7RygLxaggf7uFueR/ettNwKPo0lko101pOY3KLyViqitlSwcwYNXmJi4tDq9Xi5pa/V4+bmxtRUQVbz/DFF1/g6emZLwH6r1mzZuHo6Jj35e1t4plncoTUZRSkrqYm7HbybSYfl+pdDKo7iPYV25fYvR9OHR2/GU9i+pMXqT1L3K9LiJn9DQDlhwzG9fPPTC9xeajFcOnPqzsh7rq8sRhQ31p98XHwISErgaUXzb+ejfOI4VhVr4Y2Pp7o6V8b5Jp6vZ4Jmy9wLjwJRxs1v73XGHvr0rnAskh0Wtg8BC7/BSpLFP1W0nvAMNQqBdvPRzJ371W5IyxRl3SZDHBxIMxSjUduLn/EpvK6w4s5SmfSE2OzZ89m7dq1bNmyBWvrJ09VjB8/nuTk5Lyv8PDwEo6ykIJXSo3CKrUClxpyR/NUGZoMAg4FkK5Jp7FbY0Y2GFmi96/sbEdtDwe0Oj17Lhd84a5eryd24Y/EzpN2ujgPH45LQIDpJi4AztWlviYAJxbJG4sBqZVqAhoFANLW6ftp92WOqHiUlpZ4zJwFKhUpO3eSEri72Nf8/XgYm4MjUCkV/PROwxJvSGrS9HrY+Rlc2iI1re23Gmp2oXV1F2a/UQ+ARQdvsjnIvLfkF9TRiKMM2j2IhOwkajvVYLWmHHVSYuD37lKzxxeMUZMXZ2dnVCoV0dH51y1ER0fj7v7s5lNz5sxh9uzZ7Nmzh3r16j31OCsrKxwcHPJ9mSydFoL/lB43ek/eWJ5Br9cz7d9p3Ei6gbONM9+1+Q4LpUWJx9HNr3C7jvR6PbHz5hG3SEoAXMYG4DL8E9NOXB5qOUL689waSIuVNxYDauvdlibuTcjR5bAgaIHc4RSbjV9dyg+RepBFffUVuQlFb+9w/l4SM3ZeAWBC19q89IJuiX6qQ7PgzFJAAW/8CtVfzXvpzUYVGNZWat46btMFzoSVjjYbT7Pt5jZG7B9BZm4mLTxasLzrHzgP3AYe/lKtqN+7Sw0pXyBGTV4sLS1p1KhRvsW2DxfftmjR4qnnffvtt0yfPp3AwEAaNy49FQG5eQCSw6XtsbWNt9W4uFaHrmbHrR2oFCrmtJmDs408v1S7PFj3cuxGHMkZz26Qp9fpiJ4xk/glUmVXtwnjcR4yxOgxGkylluDZEHKz4LR5V6f9L4VCwaeNP0WBgp23d3Ih9oLcIRWb87BhWNWogTYxkeivZxTpGilZGoavDkaj1dPR140PXvIxbJDm7uSvcFia9qXbnCdubPi0Y00613EnR6vjf3+elWrAlEK/X/qdCUcnkKvPpVuVbixqvwg7tR3YloOBW8GzAWTEv3AjMEafNgoICGDJkiX8/vvvXLlyhaFDh5Kens6gQdJ6j4EDBzJ+/Pi847/55hsmTZrEsmXL8PHxISoqiqioKNLSzHvBHwBnV0h/1u8HauPu2Cmqs9FnmXN6DgABjQJo5NZItliqupShlrs9uc+ZOtLn5hL55UQSV64EwH3qFMoNHFhSYRqGQvFo9OX0klLTMgDAt7wv3at2B2DOmTnozXxLuDR99GD30c6dpB44UKjz9Xo94zdf4G5CBl5ONnzXu755jA6WlAsbYdfn0uO2E6DJ4CceplQqmNe3fl4bgQ9/P01qlvxdwA1p2cVlzDkj/T5+v877zGw1M3/ROZuyMGAreDWCzAT483VIuC1PsCXM6MlL3759mTNnDpMnT8bf35+QkBACAwPzFvHevXuXyMhHO0p+/vlncnJy6N27Nx4eHnlfc+bMMXaoxpUa/WihbkPTnDKKTo9m7KGx5Opz6VK5CwN8B8gdUt7C3V1PadSoy8khImAsyVu2gEqF57ffULZfv5IM0XBq9wCnitKnqFLSMuChkQ1GYq2yJigmiP13zb/sgU3dOpT/QPoAFjX1K7SF2OW45lQ4O85HYqFUsPDtBjjaigW6ecKOwZaPAT00/Ujq9fMMtpYW/DawCW4OVlyLTmP02pBSswNp2cVlfH/2ewCG+Q9jbOOxT67fYuME724C1zqQFg1/9oJU4za2NQUlsmB3+PDh3Llzh+zsbE6ePEmzZs3yXjt06BArVqzI+z4sLAy9Xv/Y19SpU0siVOMJWQW6XKjQ1CT7b+Rocwg4HEB8Vjw1ytYweMPFour6YN3LkeuxpPy/T1W6zEzuDfuE1D17UKjVVFgwH8cepjsd91wqC2j+ifT4+I/P7WViTtzs3HivjpS0zzs7D43W/D8hOw8fjmWlSuTGxBDz3XcFOudKZApfbZOG9j/vXJOGFcsaM0TzknAb1r0rVR737QWdvylQATp3R2uWDGyMpYWS/aExeRWKzdn/T1yG1h/67BNsysKAzVC2MiSGSSMwGaV7HZBJ7zYqNXQ6CJJqpZjqQt3Zp2ZzPvY89pb2zG873+ANF4uqups91V3LoNHq2fefgnXalBTuDhlC+tGjKGxsqLD4Z+yfsp3erDR4VypemHATru2SOxqD+qDuBzjbOBOeGs7aq2vlDqfYlNbWeHwt1RFK2rCR9OfUrsrSaBm+OojsXB3tarowuFWVkgjTPGQlw5p+0tSHZwN4fTEUogp2vQpOzOhVF4Dv913jYOiTK7ibg0InLg/Zu0trYMq4Sx2pV/eFnHTjBSozkbyUhLAjkHgbrBygzutyR/OYzdc3s+HaBhQo+Kb1NyZXpbFLXsE6aShUExPDnQEDyTxzFmWZMlRc+htlXnpJzhANx6rMo5YRxxfKG4uB2aptGe4v1bT55fwvpOSYQUHJ57Bt0oSyb0tFBiMnTUaX8fRFo98EhnIzNh1Xeyvm9hGF6PLotLDxQ4gNBXsP6LemSMU732rszbvNK6LXw6i1wdyJN7837tVXVhctcXmorA8M2CJtCrl3CtYNkIr8lUIieSkJQb9Lf/r1BkvTquMQFB3E9H+lT4+f+H9C6wqtZY7ocQ+njv65HkvC1Rvcefsdsq9eReXsTKU//8C2YUOZIzSwpv+T6lrcPQH3zsodjUH1rNaTqo5VSc5O5rcLpWNXlUtAABYeHmju3SN2wZO3gx+/EcfyY2EAfNu7HuXsXqxqqM+0ZxLc2AsWNtB/jdRRuYgmv1aHBhWdSMnK5X9/niUjJ9eAgRrXrtu7mH1qNgBD6w8tfOLykJsvvLMR1LZwc/+D7tulYx3Qf4nkxdjS4+HKNumxiS3UjUyLZMyhMeTqcnm10qsMqWeaW4trutlTxcUO77i7RAwcgObePdQVK+KzZjXWtWvLHZ7hOXhIiS7AidI1+mKhtCCgsVS4btXlVUSmFb39g6lQlSmDx1dTAUj4408yz5/P93pKlobPNkrPvdOsIm1rupZ0iKYr6E/490Fhxtd/lqaMisHSQsnP7zTCuYwloVGpjN98wSx2tx2POM6EoxPQo6d/rf5FT1we8m4CvZeDQiktWTgy1zCBmhCRvBjb+bWgzQGP+uDpL3c0eTI0GYw4MIKErARqlavF1y99bbKdSBUKBQOtYvn26M9YJCdhVbs2PqtXYWnqrSCKo8WDhbuX/4LEO/LGYmCtvVrnFa5bGFw6krMyL7+MQ/fuoNcTOWkyes2jofpp2y4TkZRJxXK2TOhaCpPtorofDDvGSo/bTjDYlLq7ozWL3m6ISqngr5D7rDp51yDXNZYLsRcYfWg0ubpcOvt0ZlzTcYbZLFGzM3T5Vnp8YDqc31D8a5oQ03y3Ki30+kcLdU1o1EWn1zHx2ESuJl6lnHU5fmj3g8ks0H2S5L/+otniadjmZnPBpSrlf/0NC+dSXo3U3Q+qtJVaSZxcLHc0BqVQKBjbSHrT2n5rO1fir8gckWG4jR+HysmJ7KtXiV++AoA9l6LYePYeCgXM61MfO6uSr1RtkjISYP1A0GZDza7w8mcGvXyzKuUZ17kWANO2X+ZiRLJBr28ot5JvMWz/sLzKuTNbzTTsh8imQx71TvtrmLQVvZQQyYsx3TsjLUKzsHk0DWACfjn3C3vv7MVCacH8dvPxKFP0OWZj0uv1xC1ezP0vxkFuLmerNOLL5oM5cK90VtJ8TIsHReuC/oDMJFlDMbQ6znXoUrkLevTMOzvPLIb2n8eiXDlcx30BQNyiRURfuc74zVJF4Y9erkJjn3Jyhmc6dDqplkvSXWmBaa+fC7WzqKAGt65Mh9qu5OTqGL46yOQK2MVlxjF071CSspOoU74O37f7Pn8BOkN5dbpUQ0qbA2vfLjXNX0XyYkzBD0ZdfHtK219NwK7bu/jp3E8ATG4+mQauxZtjNha9RkPU5MnEzpcWQJb78ANiRk1Eo1Kz47z5r5MokGrtwaU25KQ9WvRdioxsMBK1Us2/kf9y7H7p+ETo2LMndi1boM/O5vyY8cSnZVPTzZ6AV023CWuJOzoXru8GC2vo86dUZM0IFAoFc96qj5eTDWHxGSa1/iVbm82og6O4n36fivYV+anDT1LJf2NQKqXeUBWaQFaStIU6M9E49ypBInkxlpx0uLhZetxQ/kq1IO0s+vLolwAM8B3A69VNb9s2gDYtjfBPPiFpw0ZQKnGbNBG3zz7jNX8vAP65Fkdypml9ijIKheLR2peTv5S6LY8V7CvQv5a0zXje2XlodVqZIyo+hUKB+9Sp6CytqBB2iU7hZ5jbpz5WFiq5QzMNNw/CwZnS425zwePpTXcNwcnWkoVvN8BCqWD7+UiTWP+i1+uZdGxSXl2tH9v/SDlrI4/KqW2kLeiO3lINqQ2DQGs+O7GeRCQvxnJpq/SJuWxlqCR/DZI7KXcYeXAkGp2G9hXb5605MDU54eHc6d+f9H+OoLC2psKPCyn3zjsA1HhQsC5Hq8tXsK5Uq9cH7FwhJUL6f6qU+ajeR9hb2nM98Trbb22XOxyDyHb1YGPdzgAMC91BLWvzfpMwmJRI2PShtI6rwQCpIGMJaFixLOO6mM76l5/P/cyu27uwUFjwfdvvqexYuWRuXMYF+q2WtlDfOgh7JpbMfY1EJC/GEvyn9GeDdwtU4tqYErMSGbZvGMnZydQtX5dZrWehUpreJ8GMM2cI69OX7Os3sHBxodKff2D/yiv5julWT1qfs+PCCzJ1ZGEl9XgBadu0iQx7G4qjlSOD/aTGez+G/Ei2NlvmiIrv28Cr/F6hJXfLVcAyI43oWbPlDkl+Oi1sHiL17XL3g64Fa6dgKB+2erT+ZcSaYNKz5Ukod9zawc/nfgZgYvOJNPNo9pwzDMyjHrz+i/T45M+PNpSYIZG8GEPcdanAmEIJ/m/LGsrDudW7qXfxtPNkYfuF2FgUvnqlsSVt2sSdQR+gTUzEuk4dfDZuwMbP77HjXnuQvBy5HktyRumaRnmqJh9Ki74jz0nVmkuZt2u9jZutG1HpUay+slrucIrlTFgCf/57B51ShdPkKVLn6e3bSTtaOtb0FNmx+dL/u2o76L2iSBV0i+Ph+hcPR2tux6Uz9e9LJXp/gHOx55h8bDIgdYh+s8abJR4DAL49pK3pANsD4M6z21qYKpG8GMPDUZdqHcDBU7YwtDotE45MIDgmGHu1PT91+AlnG9PaYqzXaIieNYvILyeCRoN9585UWvkn6gddx/+/aq721HK3R6PVs/ty6e+cCoBtOWggTZ1x/Ed5YzECawtrhjeQtnMuubCE5GzT3Nb6PNm5Wr7YJBWj69vYm2adW1H2Xem/W9RXX6HLzJQzPPncOwMHZkiPu34LztVkCcPJ1pL5ff1RKmDD2XtsO3e/xO4dmxHLmINjyNHl0Na7LaMbji6xez9Rm8+l5pc6jdQMM/mevPEUgUheDE2rgZA10uMG8i3U1ev1zDw5kz139mChtOD7dt9T1amqbPE8SW5cHHcHfUDC79LQpfMnn+A1by5Km2d/Kuv2oNfRC7PrCKD5MEAh7dKIvSp3NAbXvUp3qpetTmpOqtm2DVh04AY3Y9NxsbfKK0bnMnIUFu7uaMLDifu5dNXrKZCsFNj4Aei1UOcN8H9H1nCaVSnP8HZS8jRh8wXCE4xfdkGj1TD28FhiM2Op4liF2a1nyz9tr1BIW9Td/SAjTuqBpMmSN6ZCEsmLoV3fC+kxYOsMNTrLFsaikEWsv7YeBQpmt55d8nOrz5ERHMztN94k48wZlHZ2eC38AZcRw1EUoN5D1wdTR8duxJGYnmPsUE1D+apQq5v0+MQieWMxApVSlfdpdPWV1WbXNuB6dCo/H74JwLQedXC0lep1qMrY4T5JWhgZv2wZWdeuyRZjidPrpb46SXfAqSK89r3s6/8ARravTsOKTqRm5zJqbTC5Wp1R7/ft6W8JjgmmjLoMC9otMN6W6MKytIW+K8GmLNwPgl2GLRRobCJ5MbSHU0b1+4GFPM3XVl1ZxS/npUVZE5tPpJNPJ1nieBK9Xk/imjXcGfgeuTExWFapgs+G9Ti8+mqBr1HVpQy1PRzI1enZ86JMHcGjSpnn1kJarLyxGMF/2wb8GGI+02N6vZ5Jf11Eo9XTobYrneu653vdvn17ynRoD7m5RE2Zil5n3DdLk3F+HVzYAAoVvLnUaPVcCstCpWRBvwbYW1kQdDeJH/Ybr2jb1htbWXt1LQCzW8/Gx9HHaPcqkrI+0n+bhz2QziyXO6ICE8mLIaVGw7Xd0mOZpoy239qe15l0uP9w+tTsI0scT6JNTeX+2LFEfTVNWt/SsSM+69djVaVKoa/1cOHu9hdp6qhic/BqJJVUP22eUyvPolAoCGgkNW3cdnMbVxPMY3rsr5D7/HsrAWu1kind6zyxL437xIkobW3JDA4maX3p6jHzREl3Ycen0uO248G7qbzx/D/e5WyZ8Ya0IeDHgzc4dTvB4Pe4FHeJ6SemAzDMfxhtvNsY/B4GUa09vDJJerzzMwg/LW88BSSSF0M6v1aa2/VqDK61Svz2++/uZ9JR6X/Cd2u/y0f1PirxGJ4m8/x5br/+Bik7d4GFBa6ffYrXgvmoyhRtCPXhupfjN+OJTzP/7bUFolA8Gn05vQQ0pW8BaF3nunTy6YQePfOD5ssdznOlZGn4eofUm2nEK9XxLvfkHmFqd3dcRo8GIGbuXHJjS9/IWR6dDrYOg5xU8G4GrQPkjuiJetT35M2GFdDpYcy6EFIM2D4gKSuJ0YdG5y3Q/V+9/xns2kbRaozUQkCngfUDIC1G7oieSyQvhqLXQ/Aq6XEJFV/6r/139/PpoU/J1efSvUp3PmvymWE6kxaTXqcjfulSwt5+B829e6i9vPBZ+SflP/ywWPH5ONvh5+WIVqdn58UXaOqodg9wrCjVyzi3Ru5ojGJkg5FYKCw4GnGUU5Gn5A7nmebtuUZcWjZVXOwY3PrZxcbKvvM21nXroktNLd21X04ufrQt+vXFIPfi1GeY2sMX73I2RCRlMvUvw2yf1ul1jD86nqj0KCo5VDJ8s0VjUCig10/gXBNSI82iAq+J/42akYizEHdVqsdR940SvfWBuwfyEpculbsw7aVpJvGPRRMVRfiQj4j5bg7k5mLfqROVt2zGxt/fINfvXl8afSnJLY+yU1lA86HS4xOLpE+5pUxFh4r0riE1MjXlpo0XI5L540QYANN71n1uCwCFSoX7V1Ol2i87d5bO2i8xobBvqvS409dQrvBTwiXJ3lrN932k7dObgyMM8rtk2cVlHI04ipXKirlt5mJvaW+ASEuAlT30WwWW9nDnKByYLndEzyT/O1xp8XChrm+PEm3CeCj8EGMPj5USF58uzGw1EwulRYnd/0n0ej3Jf/3Fre49SD92DIWVFe5ffYXX/O9ROTgY7D6v1ZNq6JwOSyAyufRNoTxVwwFg5QjxN6St06XQx/U/xtbClkvxl9h9x/R+Rp1Oz8StF9HpoXt9T16qVrD6STZ16uSv/ZJlXttTn0mrgS3/k9ZkVesAjQbJHVGBNPYpl7d9+sstF4r1u+R01GkWBi+UrtXsS2qWq2mQGEuMc3Xo+WCx/LH5ELpD1nCeRSQvhpCT8agJYwnWMTgUfogxh8aQq3uQuLSWP3HJjYvj3ogR3P9iHLrUVKzr1aPyls2U7dvH4NNYnk42NPUpJ+3IfJEW7lrZQ+P3pcfHF8oairGUtynP+3XfB+CHoB/QmFhTynVnwgkJT6KMlQUTu9Uu1LkuI0dh4eYm1X5ZXIpqv/zzHUSGgLUT9PjRJLZFF9SI9tWpX8GRlKxcxq4/h05X+NG+uMw4vvjnC3R6HT2q9qBXtV6GD7Qk1On1oK4UsGUoJNySNZynEcmLIYRuh+wUqZaBT+sSueXfN/9m9MHR5Opy6ezTWfbERa/Xk/z339zq3oO0fftBrcZl9Gh8Vq8q0m6igno4dfT3izR1BNDsY1BawJ1j0pRlKfSe73uUty5PeGo4G69vlDucPMkZGr7bLe2EGt2hOm4O1oU6X1XGDreJUnf3+KXLyL550+AxlriIIPhnjvT4tXng4CFvPIWkVin5vq8/NmoVx2/Gs/To7UKdr9VpGXdkHLGZsVR1rMqXzb40iTWHRfbqNGmxdXYyrBtokpsDRPJiCMErpT/934ECFFkrrt8v/c6XR79Eq9fSvUp3ZrWeJWvikhMWxt0PPuD+51+gTUzEqmZNKm9Yj/PH/0NhYdy4uvh5oFIqOH8vmbC4dKPey6Q4eILfW9LjUjr6Yqu2ZWh9aX3P4nOLSdeYxn/f7/ddIyE9h+quZXivpU+RrmHfoQNl2rUDjUaq/WKi63oKJDdb2l30sIpuXZl69hRTFZcyTHrNF4Dvdl8lNCqlwOf+ev5XTkaexMbChnlt52GrfvKuM7OhUsNbK6Riq9EXYOenckf0GJG8FFfiHbh9WHpcv79Rb6XX65l3dh5zzkifcN7zfY+vW30tW+Kiy8kh9qefuNWjJxkn/kVhZYXL6NFU3rAe61ols1XcuYwVLauWB16whbvwaNv05b8gMUzWUIzljRpv4OPgQ0JWAr9f+l3ucLgWncqf/94BYEr3OqhVRfsVqlAocJ/4JQobGzLOnCF58xZDhlmy/vkOYq9Ib3Rd58gdTbH0b+pN+1qu5Gh1jFl3juxc7XPPORN1hsXnpem/Sc0nUcXJtBcpF5iDJ/ReCiikD+gPd9OaCJG8FNfD7aqVX4aylYx2G41Ow+Tjk1l+UaqAGNAogE+bfCrLriK9Xk/qgYPc7tGTuB8Wos/Jwe6ll6iy7W9ptMWyZCsL96gvLdzddv4FS17c60LVV0Cvg39/ljsao1Ar1YxsOBKAFZdWEJcZJ1sser2eadsuo9Xp6ejrRqvqxWtyqvbywmW4lIDGfPcduYmJhgizZEWegyPzpMfd5oBdeXnjKSaFQsGsN/0oZ2fJlcgU5u97dvXd5Oxkxh0Zl7fOpXvV7iUUaQmp0hbaSVOc7BgL0ZcByLx4SfbRQpG8FIdOByEPslF/49V2ScxK5OO9H7P1xlZUChXTX5rOoLryrOTPunKFu4M+4N6wYeSEhaFydsZzzhy8f1uCZcWKssTUsY47liol16LTCjXUWyq0lN7YCfoTMgxfJdQUdKjYgXrO9cjMzWTxOfkWuO65HM3RG3FYWiiZ2M3XINcsN3AAVjVrok1KIubb7wxyzRKj1cBfn0jTRbV7QJ3X5Y7IIFztrZn5ulR995fDNzkd9uR/V3q9nsnHJhOdEU0lh0p82ezLkgyz5LQeK31Iys2EDe+RfuQQYX36cH/sWPQ58vWWE8lLcdw5KpXBtnKA2sbJuK8mXKX/jv6cijqFrYUtC9otkGUVuyYqivsTJ0rNFP/9F4WlJeWHDKFq4C4cX+sm6+I0Rxs1bWu6AC/g1FGVtuDmB5p0OLNM7miMQqFQMKbRGAA2XtvI7eTCLaY0hCyNlq93SJ86h7SuTMXyhlnToFCr8fhqKigUJG/ZQvpJ0y7Kl8/R7yHqAtiUg25z5Y7GoDrXdc+rvhuwPoS07McLtq2/up4D4QewUFrw7cvfmv86l6dRKuGNJWDviebuDSJGjwSdDoWlFajV8oUl251Lg4dzgHXfkDp0GtjusN0M2DWAiLQIKtpXZFXXVSXeH0MTHUPU1zO4+WpHkjduAr0eh65dqLJzJ65jA1CVKVOi8TxN94dTR+ciZR/OLFEKBbQcIT0++Yu0eLIUauzemLYV2qLVa/kh6IcSv//So7cJT8jEzcGKYW2rGfTaNv7+OPWVepBFTZ2KTsZPswUWfQkOfys97vItlHGVNx4jmNLDFy8nG8ITMvl6++V8r11LvMa3p6Wff0zDMfiWN8xInMmyc0bX4xfuHSuHNl2DVSVX3KdOkfVDq0heiiorRVooCQafMtLoNHx/9ns+PfwpmbmZtPRsyepuq6lW1rC/NJ8lNzaW6FmzuNmxI4krV6LXaLBp3IhKq1fjNW8elhW8SiyWgmhf2xVbSxV3EzI4dy9Z7nBKVt03wMEL0mPg/Hq5ozGa0Y1Go1Qo2Xd3HyExISV236jkLH48cAOA8V1qY2dl+AXyrgEBqJydybl9m/jfTLzppjZXmi7SaaBmV/DrLXdERuFgrWZun/ooFLD2dDj7LkcDkJmbyeeHPydHl0Nrr9YM8JWnCW9Ji159kKx4S5SWOirUv4oyUd7GqSJ5KarLW6U5QOcaUKGxwS57K/kW7+58l2UXpSmA9+u8z6L2i3C0KpmqvdnXr3N/4kRutO9Awu9/oM/OxqZhQyouX0alP//EtmGDEomjsGwtLehQ2w2Av0IiZI6mhKnUj1oGHF9YKlsGAFR1qpo3ZVqSbQO+232VTI2WRpXK0tPf0yj3UDk44DZuHADxi38hJyzMKPcxiJOL4X6wVOW52zyzKkZXWM2rlGdwK6ln1bjN54lPy2bemXncTL6Js40z01+abt71XAooactWktasBYUCrzerYGmb+aD/kXzFI0XyUlQPp4z83zbIP169Xs+a0DX03daXy/GXcbB0YG6buYxtPNboW6H1ej1px45xd8hH3Oreg+SNm9Dn5GDj74/3b79RadVK7Fq0MPl/pA/fWLadiyRXWzrfwJ+q4XvS2qu4q3B9j9zRGM2w+sOwVlkTHBPMwfCDRr/fhXvJbAq6B8Ck13yN+m/AoVtX7Fq2RJ+TQ9S0aaY5/ZlwGw58LT3uON3sitEVxdiONanhVoa4tByGbl7F2qtrAZjx0gzK25j37qqCyLp8maipUwFw/uQTyny2CjzqQ5dvpA9OMhHJS1HE34Twf0GhhHr9in25qPQohu0fxsyTM8nSZtHCowWbe2ymo09HAwT7dJqYGOJ+XcKtzl0I/3Aw6UeOgFKJfceOVFq9mkprVlOm1Usmn7Q89HINF8raqolLy+bYzXi5wylZ1g7Q6H3p8fGSXxNSUtzs3HjXV5qmnR80n1yd8Trf6vV6pj9YpNvL3xN/byej3Qse1H6ZMhmFpSXpx0+Qst3E+sro9bB9jDTi7NMaGg6UO6ISYa1WMa+PP2rLdC5plgDwbu13aenVUubIjE+bnMy9kaPQZ2dj1+ZlnIcNBdty8NFhqP6qrLGJ5KUoHm6Prtq+WJ88snKzWHxuMd23dOdoxFEslZaMazqOxa8uxs3OzUDB5qfLziZ1/37Ch33CjXavEDtvHjl37qC0taXswAFU3R1IhR8WYNuwgdkkLQ+pVcq8hbt/Bb9gU0cg9SNRqqWWAeGn5Y7GaD6o+wFOVk7cTr7NlhvGK+62+1I0p24nYGWh5LPOJVN00bJSJekNAoiePRttUlKJ3LdAzq2FWwdBZQXdF5Tq6aL/r46nAzXq7ERpkQY57vSp+j+5QzI6vV7P/fET0Ny7h9rLC69vvkHxsIK8Cfy3F8lLYem00j9igAZFa8Ko1+vZe2cvvf7qxaKQRWRps2jo2pB1r63jndrvGLzw3MOEJeKzz7ne8iXufTKctAMHQKvFpkEDPGbMoPqRf3CfMAFLb2+D3ruk9fSXFhIHXooiI8d4n8pNkoMH1O8rPT42X9ZQjMne0p7/1ZPePBYFLyJDk2Hwe2Tnapm16woAH71cBS8nG4Pf42nKf/ABllWroo2PJ2auiWxBTouF3eOlx23HQfmq8sZTwtZfXc/drLMo9Bak3+vHl5tDi9S80ZwkLFtG2oEDKNRqvBYsQOXkJHdI+YjkpbBuHYKUCKlzao0uhTpVr9dzNOIog3YPIuBQABFpEbjZuvHdy9+xovMKg+4m0kREkLhuPfdGjMxLWFK2bUOXno6FmxvlBg2iyo7t+KxZjdObb6C0szPYveXUsKITFcvZkpGjZe+D3QEvlJajpD9Dd0Dcs6uDmrO+Nfvibe9NfFY8Ky6tMPj1/zxxhzvxGbjYW/Fxm5J9o1ZYWuIx7SsAkjZsJOPMmRK9/xMFjoPMRKmm0MOt+S+IW0m3+O6MVEDwgzrDsdJ5cfxmPCuOh8kbmBFlnD5NzLzvAXD78kts6taROaLHydfNz1yFrJb+9HsL1AXrJqvRaQi8HcjyS8u5nii9oVgqLRlUdxAf1P3AIMWNNJGRZIaEkHE2iPRjx8i5nb+Ql4WHBw4dO2LfqRM2/vUfDf+VMgqFgl4NvPhh/3W2BEfkjcS8MFxqQM1ucHWHtPalR+ls2qhWqRnVcBSfHv6UFZdW8FaNt3CxdTHItRPSc1iwX/p3+mnHGkbZGv08to0a4fTWWyRt2EDklKlU2bK5xNtu5Lm2By5ulNb49fhB1kWaJU2j1TDuyDiytdm09GzJyMaDKK8NZ9LWi3wTGMrLNZyp5movd5gGlRsXR0TAWNBqcejePa8GkakpkXewRYsW4ePjg7W1Nc2aNePUqWdXkdywYQO1atXC2toaPz8/du7cWRJhPl9mEoRulx77v/3MQ/V6PVcTrrIweCFdN3dlwtEJXE+8jo2FDQN8B7DjjR0MbzC80ImLXq8nNzaWtCNHiV+6lHtjxnC9bTtutHuFiDEBJK5cKSUuKhU2DRviPHIEPhvWU23/PtzGj5PWspTSxOWhXg92HR25HkdcWuks2vZMLz0YfTm3FlKj5I3FiDpW6kg9F6ltwKKQRQa77oJ910jNyqW2hwO9G8k3jeo6NgBV+fLk3LxJ/DKZqifnpEs9bUBaU+XVUJ44ZPLzuZ+5knAFRytHpr80HaVCybvNKvJyDReyc6XmjZpStLNRr9US8eln5MbGYlmtKh4yF6J7FqN/pFi3bh0BAQEsXryYZs2aMX/+fDp16sTVq1dxdX28KuPx48fp378/s2bN4rXXXmP16tX06tWLoKAg6tata+xwn+3SZsjNAldf8Hy83kmONoerCVc5GH6QvXf2EpYSlvdaeevyvOv7Lm/VeOu5NVv0ej265GQ0kZHk3A1HE36XnLvh5Ny9S/a1a2gTntBrQ6XCulYtbBo0wLZJE+xaNEfl4FDcn9gsVXEpQ/0Kjpy7l8z2c/d5/6XKcodUsio2g4ot4O4JqWHjq1/JHZFRKBQKPm38KQN3DWTLjS28W/vdYk+93opNY9XJuwBM7FYblVK+X9wqJyfcxo3j/mefEffTzzh06YJlJeM1f32igzMh+S44ekPb8SV7b5mFxISw9OJSACY3n4yrrfR+pVAo+K53PTp+/w8XIpJZuP86AR1ryhmqwcQtWiS1f7G1pcKCBSa9nEChN3IxgWbNmtGkSRN+/PFHAHQ6Hd7e3owYMYJxD4oy/Vffvn1JT09n+/btec81b94cf39/Fi9+flO2lJQUHB0dSU5OxsGAb956rZacXzqQEhVCSquRpNbqSkpOKjEZ0VyNu0Jo3BVuJ91Eq81FpQcLLVjr1TRzbkQrt2Y0LeuPRXYuusxM6Ss1DW1KCrqUZLTJKWiTksiNiyM3Jobc2NhnN7xSKrGsVAmrWjWxriklLDZ+dVHaltLeGkWw/Nhtvtp2mfreTvz1yUtyh1Pyru6CNf2k2i9jLoJ1yRQ5lMPog6PZf3c/L1d4mUXtizcC878/z7D7UjSv1HJl2ftNDBRh0en1esIHDyH92DFsWzSn4rJlJfdJOPIc/NpOarz49nqo0alk7msCMjQZvPn3m9xLu0f3Kt2Z2XrmY8dsP3+f4auDUSkVbPy4BQ0qlpUhUsNJO3qM8CFDQK/H87vvcOz+WonHUJj3b6OOvOTk5HD27FnGj3+UsSuVSjp06MCJEyeeeM6JEycICAjI91ynTp3YunXrE4/Pzs4mO/vR1EBKinG6Cp9YM4OyP0QB7rB+PVasxwVwAZ6+lEkLHAOOUZR2gaqyZVFX9MbSuyKWFb1Re1fEqlo1rKpVRWlTcrsfzNFr9Tz5escVzoUncTsuncrOpvsJwiiqdwKXWhAbCmdXPJpKKoVGNxzN4fDD/HPvH05FnqKpR9MiXed0WAK7L0WjVMD4LiWzNfp5HtZ+udW9Bxkn/iV56184vd7L+DfWaWHbKClx8e31QiUuAN+e/pZ7affwsPNgfLMnjzi9Vs+TvZej+SvkPgHrz7FjZCtsLc1zGakmOpr7n30Gej1OffvKkrgUllH/puPi4tBqtbi55a9Z4ubmRmho6BPPiYqKeuLxUVFPnrufNWsWX31l/GFx64wnt0V/GoVaDWo1igdfSmtrlDY2KGxsUNrYoLSzQ+XggMrRAaWjIyoHRyycnbFwdcXC1QULFxeUVlZG+mlKPxd7K1pVc+bwtVi2Bkcw5tUacodUspRKaDkS/hoGJ36CZh+DRen8/8nH0YfeNXqz9upa5pyZw9rX1ha63IBer2fGDmlrdN8m3lR3M51FmJYVK+I8/BNi584jZvZsyrzcGovyRq7semrJoxYAXb4x7r1MzKHwQ2y6vgkFCma0moG95dP/X5jWoy6nbidwOy6dmTuv8HUvv5IL1ED0ublEjB2LNjERq9q1cZtgHtOD5pkm/sf48ePzjdSkpKTgbYRaJXXfm0V692GU0eagKls5f5EelUoaylUqpeeVSpNd5PQieb2Bl5S8hEQwukP1F++/id9bcHCGtLU/ZDU0HiR3REYz1H8o225t40rCFXbc2kH3qt0Ldf6OC5GEhCdha6liTAfTS3TLv/8+KTt2kh0aSvTsb/D67lvj3Sw5Ag5Mlx53mAL27sa7l4mJz4xnyvEpAAz0HUgT92dPHTraqpnzVn3e+e0kK/+9S4fabrStaV4dtmMX/EDmmbMo7eyoMP97s/nQbNRtJ87OzqhUKqKj89fbiI6Oxt39yf8g3N3dC3W8lZUVDg4O+b6MwdLKhrIeNVBXqIvSzg6lre2jLysrFJaWKCwsUDxMZATZdazjhq2lijvxGQTdTZQ7nJJnYfmoJsex+VI34FKqnHU5hvgNAWBB0AIyczMLfG52rpZvA6UOuR+9XAVXh4KVQChJCrUaj+nTQKkkZds20o4cNd7Ndn0OOWlQoSk0Kr0J7/+n1+v56sRXJGQlUM2pGiMaFqyezUvVnHm/pQ8An208T0L6M9Yrmpi0w4eJXyK1PPCYMaPkF4QXg1GTF0tLSxo1asT+/fvzntPpdOzfv58WLVo88ZwWLVrkOx5g7969Tz1eEJ7G1tKCznWlpHfj2RewXQBI/Wdsy0NimNQJvRR71/ddPO08ic6I5o9LfxT4vD9P3OFuglSQbkjrKkaMsHhs/PwoN0Dq6xQ1dSq6DMNXFiZ0h1QOQmkB3edLo8kviL9u/sXB8INYKC2Y1XoWVqqCj0CM61KL6q5liE3NZtym86bZVPP/0URGcv8LadNM2XfewaGzea1rMvr/mQEBASxZsoTff/+dK1euMHToUNLT0xk0SMroBw4cmG9B76hRowgMDGTu3LmEhoYydepUzpw5w/Dhw40dqlAK9W5UAYDt5+6TpdHKHI0MLO2gudQrhyNzQVd6alL8f1YqK8Y0GgPA0otLic2Ife45yRkaFh64AUDAq/IUpCsMl5EjsfD0QBMRQezCHw178ew02Pm59LjlCHAzvaqqxnI/7T6zT80G4BP/T6hVrnALtq3VKub380etUrDncjTrz4QbI0yD0Ws0RASMRZuUhHWdOrh+8bncIRWa0ZOXvn37MmfOHCZPnoy/vz8hISEEBgbmLcq9e/cukZGRece3bNmS1atX8+uvv1K/fn02btzI1q1b5a/xIpil5pXL4+VkQ2p2Lrsvld6Cbc/UZAhY2kPMZbi+W+5ojKqTT6e8wnU/hjz/zf2nQzdIztRQ3bUMbz1IdE2Z0s4OjynSmoyE338n88JFw1380CxIuQdOleBl83szKyqdXsfEYxNJ16Tj7+LPoDpFmyqr4+nI2Af1Xr7adpmwuHRDhmlQsQsWkBkcjNLeHq/536OUq3pzMZTImODw4cO5c+cO2dnZnDx5kmbNmuW9dujQIVasWJHv+LfeeourV6+SnZ3NxYsX6dq1a0mEKZRCSqWCNx+8KW0KekGnjmycoMmH0uMjc8EMhrSLSqFQ8HkT6Y13y/UtXE24+tRjI5IyWf6gP834rrWwUJnHFEmZNm1w6NoFdDoiJ05Er9EU/6KR56WChgDd5oLli1MzauXllZyOOo2NhQ0zWs1ApVQV+VpDWlehWeVyZORoGb0uhFwTrL6beugQ8b9Jxfc8Znxtts14zeNfqyAUw5sNpf5GR6/HEpWcJXM0MmnxCVhYw73TEGbExZ4moL5LfTr7dEaPnu9Of/fU9Qdz91wlJ1dH8yrlaGdmO0TcvvwSlZMT2VevEr90afEuptPC9tGParpUf9UQIZqFm0k3WRC0AIBPG39KRYeKxbqeSqlgXl9/7K0tCAlP4seDNwwRpsFoIiOJfLjOZcAAHDp2lDmiohPJi1DqVSpvR1Ofcuj0sDn4ntzhyKOMK//X3n3HN1W9Dxz/ZHRPWuikhTLL3iBTBGSKC3dRGTKUDaJMRdkbEQRxC6iIgqIoiuy9y96ze1DatE1p1v39cbFf+SnQQpKbpOf9evVFmuTe8zRA8+Sec56HBvJiT3bMVTYWOxjeaDjuanf2pe5jW+K2fz1+KlnH2iPylbixXWo43Q5BbXAwoePHAZC5+CMKL168/5Md/BySDsnVmDvPsFKEjs9oNjJ2x1gMFgOtIlvxbLVnrXLeyEAvpjwpL3P4cPMFDl0tWY0wW5GMRpJGjMSck4Nn7dqEjH5T6ZAeiEhehFLh74W7PxxKdIqdADbRYiioNHBpCyQdVjoam4r0jaRnTTlZm3twLkbz7VMrMzacQZLgsbrh1IsKVCDCB+f/2GP4PNwGyWgkZfwEJPN9LEjPTYVN78u3278D/uHWDdKBLT22tKjp4nst3rNqAvtE/UieqB+B2SIx7Lt4dDetMLX3gNIXLKAgPl5e5zJ/nlOuc/knkbwIpULXuuF4uWm4lJFPfEK20uEoo0wFqHurvf32OcrGYgf96vQj2DOYK7orfHPmm6L7d5zPYPu5DNw0KkZ3ct6GeiqVivBJk1B7e1MQH8+Nld/c+6D/b8MYKNRBRENo3Mf6QTqooxlH+fT4pwBMeGhCUdNFa5r8ZG3Kl/Ei8UYBE9aeUPRDU+6WLWR9Jncmd+Z1Lv8kkhehVPD1+GfNl1I6dQTQehSggrPr5UWaLszX3ZdhDeWeTkuPLiWzIBOLRWLG73JrkrhmFagQ7Nw9r9zCw4su/6fPn48hsQSL0s//BSfXgkp9q6bL/S9UdSZ6o57xO8djkSx0jelK54qdbTKOv6cbC19sgEatYt3RZNYotGHAmJRE8hi5HImzr3P5J5G8CKXG31NH60przReAslWhdg/59vbZysZiB09UeYJawbXIM+bx4ZEPWXc0mZPJOvw8tAxpV0Xp8Kwi8Pnn8W7cGKmggNR3JhbvE75BD+tvtVVp9jqE17NtkA5k/qH5XNVdJcQ7hHHNxtl0rIbRZRjRoSoA7/x8wu7bpyWDgcSRI7Hk5OBZpw6hTr7O5Z9E8iKUGs0rBRMR4EnuTRMbT6Xd+wBX1eZNQAWn10HaSaWjsSm1Ss2YpvLuirXn1zJj018ADGxbmWBf5+jhci8qtZrwKZNReXiQv3sP2d+vvvdB22dD9lXwj4RHbPsG7kh2J+3mu7PfATC55WQCPAJsPubrbavQLCaIfIOZYd8dwWCy3/bp9LnzuHn0GGp/fyLnz0fl5Otc/kkkL0Kp8c+aL6tL89RRSA2o+YR8uxRcfakfUp9ulbohIZHjs5oQf3f6tIxROiyrcq9YkXIjhgOQPnMmxqS7TFGkn4bdC+XbXWaBh6/tA3QAOYU5TNw1EYAXY1+kRUQLu4yrUauY/3x9ArzcOJqYw9yNd649ZE25f/1F1ldfARAxfRru5SPtMq69iORFKFX+njracT6DhCwb9IZxFm1Gy3+e/AnSzygaij30rTEYLO5ova/SuWkqXu6ut74j6OWX8WrYEIteT/KECf89fWSxwC/DwWKC6l2hxmN2j1MpU/dOJb0gnYr+FYvaSNhLRKAXM3vUAeDjbZfYcibdpuMZEhJIHjcegKBevfBr396m4ylBJC9CqVIh2IeWVYKRJFjt4P1HbCqsNsQ+Bkiww/V3Hv1wIJfCzLYA7LrxJXqj6yWuKo2GiGlTUXl6ot+zl+xVq/79pCPLIWEvuPnIV11KifWX1vP7ld/RqDRMazUNL62X3WPoXDucV5vLXZtHfh9PSk7xO5+XhKWwkKRhw7HodHjVq0fIqJE2GUdpInkRSp0XmshVNL8/mOiQ5bvt5uG35T9P/AiZ55WNxYaSsgv4YtcVDFmtCXIPI12fzrJjy5QOyybcK1YkZKR8VSFt1mwMif+YHs3LgI3vyLcfGQuBzr9dtjhS81OZuncqAAPqDqBOuTqKxTKuWw1qR/pzQ29k6LdHbPL7J23adG6eOoUmMJDIBfNRublZfQxHIJIXodTpWCuUMt5upOpusu3cvTsPu6zwuvLUgWRx6aq78/48h8FkoVnFUN5tKW8Z/erUV1zKuaRwZLZRpmdPvBo3QtLr5eJ1f3cS/2Mc3MyG0DryDqNSwCJZGL9zPLnGXOqUrcNrdV9TNB4PrYbFLzXEz0PLgSs3mLfxnFXPn7NunXzFTaUiYvZs3MJdt+igSF6EUsdDq6FHQ3nty7f7S/HUEfxv7cuxVS559eV0iq6oJcTYrjV4JOoR2pRvg8liYvq+6S5ZbVmlVhMxdSoqLy/0+/bJxesubobj3wMq6P4BaLRKh2kXK06tYH/qfry0XkxrNQ03tfJXISoE+zCjR10APtp60WofoArPnyfl3UkAlH3jDXxbt7LKeR2VSF6EUumFpvIl8y1n00nTldJmjQCRDaFaF/nqy1bX62sz81YbgG51wqkfFYhKpWJMkzG4q93Zm7KXP6/+qXSINuFeoQIho0YBkD5nDoXLh8sPNO0P5RspF5gdnb9x/ramixUDKiob0D90qxvOyw/J619GrHrw9S/mvHwShw5DKijAp0ULyr7h+lfWRPIilEpVQvxoUrEMZotUuhfuwv/qfJz40aXqvuy+kMnWsxlo1be3AYjyj6Jvnb4AzDowyyUX7wKUeelFfFq2RCosJPmPfCTvCGg3Qemw7MJgNhQ1XWwd2dpqTRetaXy3GtSK8Ccr38DrKw5TaLq/wpmSJJH6zkQMly+jDQ0lYs5sVBrX2033/4nkRSi1nr+1cHfVwQQsFtebPii28LpQ80lAgi3TlI7GKiwWiWm/nwYgrlk0Fcve3gagT+0+lPctT7o+naVHlyoRos2p1GrCR/ZC7W7h5g13MnLbg6e/0mHZxcLDCzl74yxlPMrwfsv3HbJruKebhiVxjQjwciM+IZvJv566r/Pc+PprdL/9DlotkfPnoQ0KsnKkjkkkL0Kp1a1OOH6eWhKyCth1MVPpcJT1yDi5x82ZXyH5iNLRPLBfjiVzIkmHr4eWoe2r/utxT60nY5vJi3eXn1rOxeyL9g7R9iwW3Pa+T3jjbACu/7gF/WHn/7u9lz3Je/jqlFyc7b0W71HWq6zCEd1ZdLA3C16oj0oFK/ZeK3HfNf3Bg6TNkgtNhr79Nt4NG9oiTIckkheh1PJy1/Bkfbnq5HelfeFuuepQ51bH6c1TlY3lAd00mpm1Qa5i+vpd2gC0Kd+GtlFtMUkmpuyd4nqLdw99AQn78K+ixb9ze7BYSH77bSz59u2vY0/ZN7MZv1MuzvZcted4JPoRhSO6t0eqhzC8fTUAxq89zomknGIdZ0xLJ3H4CDCb8e/enTI942wZpsMRyYtQqv29cPfPU6lk5hUqHI3C2r4NKg1c2AjX9iodzX1bvucqSdkFhPl73rMNwJimY/DUeHIw7SA/XfjJPgHagy4Z/pok3243gbDJ09FGhGNMSCBthustzAZ57cekPZPIKMigon9F3mziPE0Ih7SrQrvYEApNFgauOES23nDX50sGA0nDh2POzMSjWjXC35vkkFNjtiSSF6FUqxURQL3yARjNEt+X9oW7QZWgQU/59qbJ4IRXIrL1Bj7cLG/5Htmx2j3bAET6RjKo/iAA5hycw/WC6zaP0eYkCda/CYU6iGwETfuj8fMjYvoMUKnIXv0Dug1/KB2l1a05v4ZN1zahVWuZ2WamIlV075darWL+c/WJDvIm8UYBQ+5RwC5t9hwKjhxB7edH+Q8Xovb2tmO0jkEkL0Kp93LzigCs3HsNc2leuAty3ReNO1zdCZe2Kh1NiS3ecgHdTROxYX5FtXzupWfNnsQGxaIz6Jh1wAVK5p9eB2fXg1oLj38IajmB82nWlODX5CJtKRMnYki8S/NGJ3Ml5wozD8wEYGiDodQMrqlwRCUX4O3G0p6N8HLTsON8JlPWn/7P5+X8/DM3li8HIGLmTNwrVLBnmA5DJC9CqfdY3XDKeLuRlF3AptNpSoejrMAoaNRbvr3pPbmRn5NIyNLz1e6rAIzpEotGXbzL6Fq1lknNJ6FWqfnt8m/sTNppyzBtqyAbfrtVeLDVCAitddvD5YYOwatePSy5uSS/+SaS0Wj/GK3MYDbw1va3KDAV0DSsKa/WelXpkO5bzQh/5j9fD4Avd1/hm33Xbnu84PhxUibKLR6CXx+IXzvHX9NjKyJ5EUo9TzdN0bbpr/dcVTgaB9DmTXD3lXcdnVyjdDTFNufPsxjMFlpWCebhauVKdGytsrV4KfYlAKbsneK8tV82vgN5aRBcFVr/e82Hys2NiLlzUPv6UhAfT8aixQoEaV3zD83ndNZpAj0CmdZqGmqVc7+tda4dzpsd5QW87/x8gt23dkKaMjJIHDwEyWDA95FHKDdkiJJhKs65/5YFwUrimkWjUsHOC5lcSM9TOhxl+YZAy2Hy7U3vg8nxFzIfTcjm5/hkAMZ2qXFfixeHNBhCuE84SXlJzln75fIOOCxvEab7B+Dm+Z9Pcy9fnvApkwG4vmwZ+Xudd3H2toRtrDi9AoApLacQ6hOqcETWMeiRKjxRPwKTReKNlYe5nJJN4rDhmNLScK9UiYjZs1CpS/fbd+n+6QXhlqggb9rHyr/4VuwVV19oPgh8QyH7Khz8XOlo7kqSJKbeWh/wdINIakcG3Nd5vN28mfCQXIH261Nfc+r6/RUNU4SxAH65lXA26g0VW9716f6dOxP47LMgSSSNHo3puvMtVE7LT2PCLvnvq2eNnjwc9bDCEVmPSqViZo+61IsKJFtv5K/XR1Nw+LC8QHfxIjS+vkqHqDiRvAjCLa80lxe+/XgokbxCk8LRKMzdB9rKRdzYNgtuFq/2hBL+OJnG/itZeGjVvPmPNgD3o035NnSq2AmzZGbCrgkYzU6yJmTLNMi6CL5h8Oh7xTokdNxY3KtUxpyRSfLo0Ujm+ytPrwSzxcyYHWPILsymRlANRjQaoXRIVufppuGTlxvxQsoBWp3ZiYSKcjNm4hFz9+3/pYVIXgThllZVylKprA+5hSbWHnGdnRj3rcHLULYaFGTBzgVKR/OfDCYLM261AejXuhIRgQ++PXZcs3EEeQZx/sZ5lh5zgumjxIOwZ5F8u/sC8CzelSe1lxfl589H5eVF/u49ZCxaZLsYreyT459wMO0g3lpvZj88G3eNu9Ih2YTPicO8cuAHAL6o2YUJqf5iR+QtInkRhFvUahU9b3V6Xb7niutVXC0pjRY63PoUv/cjyHG8hG7F3qtcua6nrK8HA9tWtso5gzyDiqaPPjv+GSczHbhZpakQfh4kdwWv8xxU71Kiwz2qViX8/fcBuL5kKblbttgiSqvan7KfJUeXADDhoQlU8HfNrcKFly6ROGw4KouZwraP8nNse347nsrkX0+J302I5EUQbtOjUXm83TWcS8tj76UspcNRXvUuEN0CTDdhq2M1bczRG1n4d0G6R6vh66G12rkfrfAonSt2Lpo+MpjvXvFUMdtmQcYZ8CkHXWbe1ykCuj9GmTi5tHzy22MwJDhuscYMfQZvbX8Li2ThicpP0L1yd6VDsgnTjRskDHwdS24uXg0aUPeD2cx9vj4gb6Feuu2SsgE6AJG8CMI/BHi58WQDud/R13uuKBuMI1Cp4FH5kzlHVkLKMWXj+YcPN58nW2+kWqgvzzUuXkG6kvh7+uhC9oWiT/oOJTkeds6Xb3ebC97330049O235PovOh2JQ4dhuXnTOjFakcliYvT20Vy/eZ2qZaoy/qHxSodkExaDgcQhQzBeu4ZbZCTlF32I2sOD7vUimPiYXHxv5oYz/FjCJo6uRiQvgvD/vHqr4u4fJ1O5dt1J631YU1QTqPU0IMHvbztE24Cr1/P56lZyOa5rDbQa6/8qK+NZhncekguCfX7ic45nHLf6GPfNZLg1XWSGmk9CzSce6HQqd3ciP1iApkwZCk+fJvX9yQ43NbHoyCIOpR3Cx82HeQ/Pc6ry/8UlSRKp77xLwcFDqH19iVq6BG1wcNHjfVvF0L9NJQBG/3CUX48lKxWq4kTyIgj/T/UwP9pUK4dFgs93XVY6HMfQcTJoveDabocoXDf9tzMYzRKtq5albfUQm43TvkJ7usZ0xSJZGLdznOMUr9s5D9JOgHcwdJ1jlVO6hYUROW8uqNXkrFnDjeUrrHJea9iWsI3PTnwGwHst3qNiQEVlA7KRzI8+Iuenn0CjIXL+fDyqVv3Xc8Z0juX5xlFYJBj2XTwbTqTaP1AHIJIXQfgP/VvLn26+P5hwzw6vpUJAeWg9Ur7950Qw5CsWyp6L19lwMhW1CiZ0s30Pm3HNxhHiFcIV3RVmH5xt8/HuKfkIbL8VR5dZ4FuyasJ349O8OSGjRgGQNmMGeTuUb5WQlJfEuJ3jAIirEUenip0Ujsg2bqxeTeaH8o6vsAnj8W3d6j+fp1armP50HZ5uGInZIjHk28P8dar0tTURyYsg/IeWVYKJDfNDbzCz8v/1Fym1WgyBwGjQJSm2ddpskXj/V7l4XFyzClQP87P5mAEeAUxtPRUVKn449wN/Xf3L5mPekbEA1gwAi0meLqrdw+pDBPXpTcDTT4PFQtLIkRRevGj1MYqrwFTA8C3D0Rl01C1bl1GNRikWiy3lbtlC6iR5Z1/wgAGUefHFuz5frVYx+5l6PF4vAqNZrsK75Wy6PUJ1GCJ5EYT/oFKpiuaWv9p9hUKT8xTwshk3L+g4Rb696wO4ccXuIaw6kMDpFB3+nlpGPFrNbuM+FP4QvWvLDSvf3f0uqfkKXarfNBkyz8rVjx+bLy+otjKVSkXYpHfxatQIS24uCa+/genGDauPcy+SJPHu7nc5k3WGIM8g5radi5vGze5x2FpBfDxJI0aC2UzAU09RbviwYh2nUauY91w9utYJw2C2MGD5ITafKT1XYETyIgh38FjdCML8PUnPLWRdfOldGHebGo9DTBswF8KfE+w6dE6BkTl/ngVgxKPVCPKxb2GywfUHUyu4FjqDjnE7x2G22Dmhvbwd9t5qpPj4ogfaXXQvand3yn+4ELfISIzXrpE0bLjdO1B/dfIrfr/8O1qVlrkPzyXMJ8yu49tD4aXLJAx8HenmTXzatCb8/fdK1JdLq1HzwQsN6FgzFIPJQr+vD7HmcOnYhSSSF0G4A3etml4tKwLw6Y7LDrf7QhEqFXSeCSoNnP4FLm2129AfbjpPVr6BKiG+RcUE7clN48bMNjPx0npxIPUAX5z8wn6D38yBn96QbzfqBdU62nxIbVAQ5Zd8hNrbG/3+/aRMmmS3/wO7k3Yz/7C8Dfztpm/TOKyxXca1J2NyMgmvvYY5OxvP2rXlasduJb+y5KZRsziuIU83kNfAjPz+KJ/ucP06MDZLXrKysoiLi8Pf35/AwED69u1LXt6du/VmZWUxZMgQqlevjpeXF9HR0QwdOpScHMftqSK4vhebRuPjruFsWi7bz2cqHY5jCK0JTfrKt9e/aZeu05cy8vhy9xUAJnSrgZsNtkYXRwX/CoxrJi8eXXRkEfHp8fYZeMNYyEmAMhWh41T7jAl4VqtGxNw58g6kH9eQ8cEHNh8zQZfA6O2jsUgWnq76NM9Xf97mY9qbMT2dq717Y0xOxr1CBaI+Xorax+e+z+emUTPn2Xr0bSX3PZqy/jSzNpxx6Q9cNvsNEBcXx8mTJ9m4cSO//vor27dvp3///nd8fnJyMsnJycyZM4cTJ07w5ZdfsmHDBvr27WurEAXhngK83Hi+STRAqfg0U2yPjJfXXVw/Dzvm2Xy4qetPY7JIPFK9nE23RhfHE5WfoEvFLpglM6O2jSKzwMZJ7amfIX4loIKnPgYP+3YU9nvkEcImvQvA9aUfk2XDLdR5hjyGbhkqL9AtV5fxzcaXaBrFGZhu3OBanz4Yr17DLSKC6C+/uK2Wy/1Sq1VM6FaD0beak3609SJv/3gMg8nywOd2RCrJBqnZ6dOnqVmzJgcOHKBxY/ly34YNG+jatSuJiYlEREQU6zyrV6+mZ8+e5Ofno9UWr/S3TqcjICCAnJwc/P397/tnEIS/JWTpaTtnK2aLxPqhragVUbzGdy7v5FpY3QvUbvD6Lij3YB2d72TLmXR6f3kArVrFHyPaULmcfd+8/0u+MZ8X17/I5ZzLNAlrwrJHl6FVW689QZHsBFjaUp42ajUCOkyy/hjFlLlkCRkfLASVisi5c/Dv2tWq5zdZTAzePJhdSbso51WO7x77jhBvZRNVazPrdFzt1YvCU6fRhoRQYeUK3KOirD7Ot/uvMX7tcSwSNK5Qho96NiTEz9Pq41hbSd6/bXLlZc+ePQQGBhYlLgAdOnRArVazb9++Yp/n7x/gbolLYWEhOp3uti9BsKaoIG+61QkH4KMtym0bdTg1n4RqncFihF+GgcX6n/BuGs1M+kVujNinVYxDJC4APm4+LGi7AG+tNwdSD7Dw8ELrD2I2wZp+cuIS2Ui+2qWg4IEDKfPSSyBJJL09hvzdu612bkmSmLZvGruSduGl9eLD9h+6XuKSl09Cv/4UnjqNJiiI6C+/sEniAvJ092evNsHPU8vBqzfo/uFO4hOybTKWUmySvKSmphIScvs/PK1WS1BQEKmpxdtimJmZyeTJk+861QQwffp0AgICir6ibPSPQSjdBj1SBYDfTqRwLi1X4WgchEolV3d184Fre+DwV1Yf4pPtl7h6XU+ovwdD2/+72qiSKgVWYnLLyQB8cfIL/rzyp3UH2D5bfl3d/aDHZ6DwNmGVSkXo+HH4de4MRiOJg4egP3zEKuf+6uRXrD63GhUqZrSeQa3gWlY5r6Mw63Qk9O1LwdGjqAMCiP7iczwqVbLpmI/EhvDzoJZUCfElTVfIc0v38P1Bx226WVIlSl7GjBmDSqW669eZM2ceOCidTke3bt2oWbMmkyZNuutzx44dS05OTtFXggN3RBWcV/UwP7rUDkOSYNHmC0qH4zgCo6D9RPn2xnch13r1TxKy9CzaIr/W47rWsGrXaGvpWLEjvWr1AmDirolcyrbSuqgru2D7LPl29wUQFGOd8z4glUZDxKyZeDd/CIteT0K/fg+cwGy8upG5h+YC8FaTt2gX3c4aoToM040bXO3V63+Jy6ef4lndNlOs/1+lcr6sfaMFj9YMxWC28NYPx3hz9VF0N+277d0WSpS8jBo1itOnT9/1q1KlSoSFhZGefnu1P5PJRFZWFmFhd9+rn5ubS+fOnfHz82Pt2rW43WPrmIeHB/7+/rd9CYItDG4nX3355VgyF9LvvHOu1GnaHyIaQGEObBhjtdNO/vUUhSYLD1UK4vF6xVsnp4RhDYfRJKwJepOeYVuGkVP4gDsk9VnydJFkgfpxUOcZ6wRqJWp3d6IWL8a7WTMs+fkPlMAczTjK2B1jAXgx9kXiasRZM1TFGdPTufbKK/JUUXAwFb7+Cq86te0ag5+nGx/3bMTwDlVRqeCHQ4l0WbCD3Rece/dkiZKXcuXKERsbe9cvd3d3mjdvTnZ2NocOHSo6dvPmzVgsFpo1a3bH8+t0Ojp27Ii7uzvr1q3D09PxFxgJpUetiAAerRmKJMFHW8TVlyJqDXRfKNd+OblW3h3zgLaeTefPU2lo1Sref6K2Q+840aq1zG4zm1DvUK7orjBi6wiM5vv8ZCtJsG6I3IIhqLLcu8gBqb29iVq65IESmPM3zjNo0yAKzYW0Kd+Gt5q85dB/zyVlTEnh2suvUHj+grw4d/nXdrvi8v+p1SqGd6jG9wOaEx3kTVJ2AS99uo9J605SYHDO6uE2WfNSo0YNOnfuTL9+/di/fz+7du1i8ODBvPDCC0U7jZKSkoiNjWX//v3A/xKX/Px8PvvsM3Q6HampqaSmpmI2O+eLK7ieoe3kdRc/xSdxJVO55oQOJ7wutBou3/5l+ANNHxWazExaJy/S7dWiItVCbd+/6EEFewWzuP1ifNx8OJB6gHd3v3t/NTZ2fQBnfgWNOzzzud23RZeE2svr9gTmtdfQHz5crGMTchMYsHEAOYU51C1bl9ltZttmt5ZCCs+f50pcHIarV3GLjKTCyhU2X+NSHE0qBvH7sNbENZPLP3y5+wpdPtjOHydTna4mjM3qvKxcuZLY2Fjat29P165dadWqFcuWLSt63Gg0cvbsWfR6ucX84cOH2bdvH8ePH6dKlSqEh4cXfYl1LIKjqFM+gHaxIVgkWCyuvtzu4TEQVhcKsuDnwfJVhPvwyfZLXLmuJ8TPg2EdHGuR7t1UD6rO3IfnolFp+OXSLyw9urRkJ7i0DTbJzfnoMhMi6ls9Rmu7LYHR67nWuw+5mzbd9Zh0fTr9/uxHRkEGVQKr8FGHj/B287ZTxLaXv3s3V158CVNyCu4xMVRYsdxmu4ruh4+HlqlP1eGrPk0J9ffgynU9A5Yf4vllezme6DxFYW1S50VJos6LYGtHrt3gqY92o1Gr2PpmW6KCXOcX7wNLPwMf3+p91G0uNHmtRIdfzsyn04LtGEwWPnihPk/Uj7RRoLbzw7kfeG+PnIRMbTWVxys/fu+DcpLk102fKa9zeWKxTZou2oqloICk4SPI27YN1GrCJk74z87I2Tez6f1Hby5kX6C8b3m+7vI15bzLKRCxbWT/+CMp704Ckwmvxo2IWrQITWCg0mHdUV6hiaVbL/LJjksU3ipm93SDSIa2r0rFsvdf8fd+KV7nRRBcWYPoMrSuWhazRRJXX/6/kFh49NbVgz8mQGbxXx9Jkhi/9jgGk4XWVcs69CLdu3mm2jP0qd0HkDtQ70nec/cDTIXw/Sty4hJWR076nChxAfkKTPnFiwh89lmwWEh9733S582/bSoi15DLG5ve4EL2BUK8Qvik4ycuk7hIFgvp8xeQMn4CmEz4P/YY0Z9/7tCJC4Cvh5Y3O1Vny5tteaqB/EFhzZEkHpm7lT5fHmD7uQyHnU4SyYsg3Idht2qOrD6UyKUMsfPoNk0HQMzDYCqQd80Uc/Hqj4eT2H3xOp5uaqY+WcepF28OaziMThU7YbKYGLZlGAdTD975yX+Mg6SD4BkAzy0HNy/7BWpFKq2WsPffo+zQIQBcX7aMlDFjsBgM5BTm0O/PfhzPPE6gRyDLOi6jvF95hSO2DrNOR+LQoVz/+GMAyr7xOhGzZ6F2t2/X8wcREejF/Ofrs25wS9rFhiBJsPlMOq98vp8O87bx+c7LJN7QKx3mbcS0kSDcpz5fHmDzmXS61A5jSc9GSofjWHKSYElzuTpsm7eg3d2rw17PK6T9vG1k642M6RLLwIcr2ylQ2zGYDQzdMrSoauyyR5dRP6T+7U86sgJ+HiTffmm1XbpF20P2j2tIeecdMJvR1oxl5uNm9qkuy4nLo8uoEVxD6RCtouDkSZKGj8CYkIDKzY2wSZMI7PG00mE9sMuZ+Xy95wqrDyaSV2gquj82zI92sSG0rxFC/agyaNTW/YBRkvdvkbwIwn06m5pLlw+2Y5FgzRstaBhdRumQHMvxH+DHvoAK4n6Aqh3u+NSRq+JZcySJGuH+rBvcUrGu0dZ203STIZuHsDdlL75uvnzS8RNql71V5+PyDlj+JFhM8mLnR8YqGqu15e3cReKokUg5OvI84asegQwfvJwqZaooHdoDkySJ7FXfkzZtGpLBgFtkJJELFti9hout5RWa+PFQIuuPpXDwahaWf2QLtSL8WT+0tVXHE2teBMEOqof50aOhfOl7xm+u3X7+vtR5Bhr1BiRY8xrcuPqfT9txPoM1R5JQqWDG03VcJnEB8NR6srDdQhqFNiLPmEf/jf05ff20vBZoVU85can1NDz8ttKhWl1eg8pMHhDI+XDwvQmDVmbj/+WvSCbTvQ92YOacHJJHv0XqpElIBgO+7doRs+ZHl0tcQF4T82qLinw/sDmHJjzKgufr071eBP6eWupHBSoam7jyIggPICWngLazt1JosvDpK43pUDNU6ZAci6kQPu8MyYchvD70+QPc/ld8ssBgptOC7VzL0tO7ZUXe7e5aPW3+lm/MZ+DGgcRnxBPg7s+irHzqZ1yG8k3g1V+cdp3LnZzJOsOgTYNI16cT7RnBBycbYPxeLl7o1agR4ZMn41HJMVoelIRu40ZS338fc0YmaDSEjBxBUJ8+Tr0+634YzRb0hWYCvK3bb0tceREEOwkP8KJ3S/mX8MwNZzCZrd9Z2alpPeC5r8ErCFLi4ffRtz08c8MZrmXpCQ/wZFRHZaqP2oOPmw8fdfiIumXrkGPQ8Zq3kU1lo+GFb1wucdmasJVXfn+FdH06MQExfNrtS6q8P4OIuXNQe3tTcOgQl598ksylHyMZnaPHjikzk8Rhw0kaMhRzRibulSpRYcVygvv2LXWJC4CbRm31xKWkRPIiCA/o9baVCfR243x6Hj8eTlQ6HMcTGAXPfAao4PDXcEjuPr3n4nW+3H0FgBk96jpk40Vr8nPz5ZNCH9roCyhUqxnpp2JV4halw7IaSZJYfmo5QzcPpcBUQLPwZqzouoJw33AAArp1o9Iv6/Bp1QrJYCBjwQIuP/scBcdPKBz5nUlGIze++45L3R4j948/QKMheOAAYtauwbtBA6XDK9VE8iIIDyjAy43Bj8iLEOdtPOe0vUJsqnI7aDdBvv3baPQX9zD6h6MAvNg0moeruUa9jzuSJPhjHN7HvueD9Cx6hD6EBYkp+6bwweEPnH69lNFiZOq+qcw6MAsJiR5Ve7CkwxL83W+/9O8WGUnUJ8uImDUTTWAghWfOcOX550keMxaDA1VSlywWdL//zqXHupM66T3MOTl41KxBzA+rCRk+HLWHh9IhlnpizYsgWEGhyUy7OdtIyi5geIeqDO9QTemQHI/FIi9SPbuefE0A3fUTMQRWZsPwNi5/1YUt02DbTPn2k0uQ6r3Ix8c+ZnH8YgAerfAo77V4Dz93x+/j9P8l5iby9va3OZZ5DBUqRjYayau1Xr3ndIrp+nXSps9A9+uv8h1aLYE9elB24ADcwsPtEPm/SZJE/q7dZMyfz82Tcn8tTVAQZV9/nTIvPI/KTdmpElcntkqL5EVQwK/Hkhn8zRHctWr+HN5GkfLaDs+Qj25pZ/yzjpFgKUfqs+toUqem0lHZ1q6FsHGifLvLbGjWv+ihtefX8v7e9zFZTET6RjL34bnUKus8i5Y3XN7Ae3veI8+Yh5+7H1NaTqFddLsSnaPg2DEyFn5I/s6dAKjc3Ah46ikCn30Wz9q17LKmxJybS85PP3Pju+8wXLwIyJ2zg/r0IahXLzS+4v+yPYjkRSQvggIkSeKVz/ez43wmbaqV46veTUrlYr67ySkw8sK8dXxUOJYYdZpcDr/Xb+Dpov9XD34Bvw6Xb7d/B1qP+tdTjmccZ/T20STlJaFVaxnVaBRxNeIc+t+O3qhn5oGZrDm/BoD65eozs81MInzvv6WD/uBBMhZ8gP7g/6oRe1SrRmCPp/F//HG0ZaxbR0kyGtEfOYLul1/J+fVXpIICAFTe3gQ+04OyAwagDQ626pjC3YnkRSQvgkIuZeTRecEODGYLS+Ia0qWOMpe/HdWIVfGsPZJEizI5rFS9g0qfAZXaytVltc5TTr1Yjqy8VT1XglYjoMOkOz5VZ9Dxzq532HRN7sjcNqotE5pNINTH8bbeb0/czoz9M0jITUCFitfqvMYb9d9Aq37wqT9JktDvP0D26tXk/vknksEgP6DV4lW3Lt5NmuDdtAneDRqg9i5ZQ1RJkjAmJZO/Zzf523eQv2cPlrz/tfbwqFqFwBdeIOCJJ9D4+j7wzyKUnEheRPIiKGjen2dZuPkCYf6e/DXqYddfz1FMPx5KZNTqo6hVsHpgcxppr8CXj4ExXy7U9vQnoHGR12rPYrlnEUCTftB19j2bLUqSxLdnvmXOwTkYLUa8tF4MrDeQl2u8jJtG+bUWibmJzDwwk60JWwEI8Q5hWqtpNAtvZpPxzDk55KxfT86Pa4rWnxTRavGoUgW38HDcwsPQhofjFhoKKjWSyYRkMoLJhCkrC8PlKxguX8Zw+TIW/e39eTRBQfi2bk3gMz3watzYoa92lQYieRHJi6Cgm0YzHefLhdf6tY5hfDcXX9NRDBcz8uj+4U70BjMjH63G0FuNLbnwF3zzvFxpNvYxeOZzuTaMs5Ik2DwFdsyRv28+GDpOKVGX6LNZZ5m8dzJHM+TdWDEBMYxtOpbmEc1tEfE96Y16vjr5FZ+d+IxCcyFalZaeNXsysN5AfNzssxbEkJCAfv8B9Pv3k79/P6aUlPs7kUaDV+3a+LRpjW+bNnjWqoVKLTbdOgqRvIjkRVDYlrPp9P7iABq1ivVDWxEbVnr/Ld40mnnqo92cTtHRvFIwK15rdntDt7O/w/evgrlQ3lL9/EpwL9mUgEOwmOG3N+Hg5/L37d+BViNLlLgUnUqy8MvFX5h3aB5ZN7MAaBnRkldqvULz8OZ2uUKQWZDJN6e/4buz35FryAWgaVhTxjUbR+VA5RpnytM/SRguXsSYkoIxJRVTagrGtHRQgUrrhkqrReXmhtrPF/eKFfGIicE9Jgb3qChUTtTtubQRyYtIXgQHMHD5ITacTKVxhTKsGtDc6h1YncU7P5/g6z1XCfZx57dhrQn19/z3ky5thW9fBKMeolvAS6ucaxGvQS+vbzm5BlDBY/OgcZ8HPq3OoOOj+I/47sx3mCW5flCVwCq8UvMVulbqiofG+lepLty4wMozK1l3YR0Gi7zmpKJ/RQbVH0Snip3E1IpgMyJ5EcmL4ACSswt4dN428g1mxnaJZcDDyn1aVcqGEykMXHEYgC97N6Ft9ZA7P/naPlj5LBTmQEQDeRGvrxMUr8u6DKtehrTjoHaDpz+G2j2sOkRCbgLfnP6GNefXoDfJ6zYCPQJpU74Nrcu3pkVEi38VhCsuSZI4kXmCTdc2senaJq7orhQ9VrdsXfrU7kPbqLZo1Bpr/CiCcEcieRHJi+Agvj+QwFs/HsNNo+KnQS2pFRGgdEh2k5Clp9vCHehumhjQphJju9a490HJ8bD8KSjIAr8IuS9SVBObx3rfzv0pd8y+mQPeZeHZLyGmtc2G0xl0rDm3hhWnV5CmTyu6X6PSUD+kPnXL1SXaL5oovyii/KII9Q5FpVJhspjkL8lESl4KF7MvciH7AhezL3Li+gnS9elF59KqtbSKbEWvWr1oGNJQXGkR7EYkLyJ5ERyEJEkMWH6IP0+lUS3Ul3WDW+Hp5vqfYPMLTfRYspszqbnUiwpk9YDmuGuLuTAy4xysioPMc/KVjE7ToGm/+1o7YjMWi1wxd9tMQJK7Qz/7FQRE2mV4o8XIkbQjbE/czvak7VzOufxA5/PSetE6sjXto9vTunxrp6z0Kzg/kbyI5EVwINfzCum0YAeZeYX0blmRd7s7TwXV+2GxSLy+8hB/nEyjrK8HvwxpSXhACTsnF+bCuiFwcq38fe1n4PGF4O4AlU4zzsmF567ukr9v8pqcYCm4SyohN4HdSbu5mHORhNwEEnMTScxLxGQx/eu5fm5+VA6sTOXAylQJrELVMlWpH1LfJutnBKEkRPIikhfBwfy9+whged+mtK7qBGs57tO8jedYuOk87ho13/Z/iEYV7rMyqiTB3iVyaX2LCYIqy/VSqrS3bsDFZSqEnQvkbdBmA7h5Q7e5UP8lZeK5B7PFTHZhNhqVBo1ag0alQavW4qZ2E1NBgkMqyfu32OAuCHbwSPUQXn6oAgBvrj5Ktt6gcES2sf5YCgs3nQdg2tN17j9xAXmaqPkb0Gs9+IVD1kVY8bTc3DH7mpUiLqYru2BpK9g6TU5cqjwKb+x12MQFQKPWEOwVTKBnIH7ufni7eeOucReJi+ASRPIiCHYyrmsNKpXzIU1XyPBV8ZgtLnXRkxNJOYxaHQ/Aa61ieKZReeucOPohGLQPHnoDVBo4/QssagrbZkFh3r2Pv1+SJG/h/upx+LKrvAbHp5xcSC9uNZSpYLuxBUG4KzFtJAh2dDI5hx5LdnPTaHGp6rsJWXqeXbqHVN1N2lQrx+evNkarscFno7ST8NtbcFXuQIy7H9R/ERr3hZBY64xhMcOZ9bBzPiTL27xRaaDhy3J/Ii/rNggUBEEm1ryI5EVwYOuPpTDoG/lNcfYzdXm2cZTCET2YdN1Nnv14D1ev66ka4ssPA1sQ4G3DXjySBCd+hC3T5Kmkv1VoBQ3ioEILCKxQst1JhXlwaQuc3QDn/4D8DPl+rRc0fAVaDIbAaOv+HIIg3EYkLyJ5ERzc/I3n+ODWotZv+jWjccUgpUO6L9l6A89/vJezablEBXnxw8AW/11B1xYsFri8DQ58Cmd/A8nyv8d8w+Tppqhm4BcGHn7g7gsevvLi3xtX5XUz2Vfh+gW4ukduT/A3z0B5e3azgeBT1j4/jyCUciJ5EcmL4OAsFonB3x7mt+OplPV156dBLSlfxrn6+eQVmoj7dB9HE7IJ8fPgh4EtiA5W6GfISYLDX8uNHlPi5QSlpAIrQPWuUL2z3KJAK3rgCII9ieRFJC+CE9AbTDyzZA+nUnTEhvmxqn9z2063WNFNo5k+Xx5g98XrBHq7sap/c6qHOUhhM4NeXqtybS8kH4GCbDDkylNDhjxAJU8BBUbLi24DK0BUUygX61iF8AShlBHJi0heBCeRnF3A44t2kZlXSO1If1b0bUagt2N/4s8pMNL/64Psu5yFj7uGlf0eon5UoNJhCYLg5ESdF0FwEhGBXqx8rRnBPu6cSNLx0if7uJHvuDVgUnNu8vzHe9h3OQs/Dy2f92oiEhdBEOxOJC+CoLDqYX581/8hyvp6cCpFx4uf7OV6XuG9D7SzC+l5Rf2Kyvl5sGpAc5pVClY6LEEQSiGRvAiCA6gaKicwIX4enEnN5aVP9pGR6zgJzKGrN3hm6W6SsguoVNaHNa+3oGaEmJYVBEEZInkRBAdRJcSX7/o/RKi/B2fTcnl80U4OX7uhaEwWi8SnOy7x4rK9ZOuNcofogc2JCnKunVGCILgWkbwIggOpVM6XVf2bE1PWh5Scmzy3dA+f77yMEuvqM3IL6f3lAaasP43BbKFjzVC+7deMYF/RfVgQBGWJ5EUQHEzFsj6sG9ySbnXCMVkk3v/1FG+sPEzuTaPdYth6Np0uH2xn27kMPLRqJj9Zm49fboS3u9ZuMQiCINyJ2CotCA5KkiS+2n2Fqb+dxmiWqBDszbiuNehYM9RmnYGvXdczb+NZfopPBqB6qB8LX2zgODVcBEFwWQ6xVTorK4u4uDj8/f0JDAykb9++5OUVrwOsJEl06dIFlUrFTz/9ZKsQBcGhqVQqerWM4fsBzYkI8OTqdT0Dlh+ix5Ld7L+cZdWx0nNvMvGnE7Sbu7UocXm1eQV+HtxSJC6CIDgcm10DjouLIyUlhY0bN2I0Gunduzf9+/fnm2++ueexCxYssNknS0FwNg2iy7BhRBuWbbvEpzsvcfhaNs99vIf2sSH0b1OJxhWD0KhL/v9FkiROJOn4OT6JlfuuUWA0A9CmWjne6lSd2pEB1v5RBEEQrMIm00anT5+mZs2aHDhwgMaNGwOwYcMGunbtSmJiIhEREXc8Nj4+nscee4yDBw8SHh7O2rVrefLJJ4s9tpg2ElxZuu4mH2w6z3cHEjBb5P+6wT7udKgRSsdaobSsUhZPN80djzeYLJxO0fHbiRR+P57KtSx90WMNogN5q1MszSuL2i2CINhfSd6/bXLlZc+ePQQGBhYlLgAdOnRArVazb98+nnrqqf88Tq/X89JLL7F48WLCwsKKNVZhYSGFhf+rh6HT6R4seEFwYCH+nkx9qg59WsWwdOtF/jyVxvV8A6sOJrDqYAJatYpyfh7yl68HZX09yDeYSM4uICm7gPTcQv75ccXTTU272BCeblCe9jVCxBVPQRCcgk2Sl9TUVEJCQm4fSKslKCiI1NTUOx43YsQIWrRowRNPPFHssaZPn857771337EKgjOqXM6X2c/WY5rZwoHLWfxxMpU/T6WRknOz6OtOfD20tK1ejq51wmlbvZzYQSQIgtMp0W+tMWPGMHPmzLs+5/Tp0/cVyLp169i8eTNHjhwp0XFjx45l5MiRRd/rdDqioqLuKwZBcDZuGjUtqpSlRZWyTHq8Fik5N8nILZS/8uQ/vdw0RJbxIjLQi8gyXgT7uIsrLIIgOLUSJS+jRo2iV69ed31OpUqVCAsLIz09/bb7TSYTWVlZd5wO2rx5MxcvXiQwMPC2+3v06EHr1q3ZunXrfx7n4eGBh4comiUIKpWKiEAvIgK9lA5FEATBpkqUvJQrV45y5crd83nNmzcnOzubQ4cO0ahRI0BOTiwWC82aNfvPY8aMGcNrr71223116tRh/vz5dO/evSRhCoIgCILgwmwy2V2jRg06d+5Mv379WLp0KUajkcGDB/PCCy8U7TRKSkqiffv2fP311zRt2pSwsLD/vCoTHR1NTEyMLcIUBEEQBMEJ2axI3cqVK4mNjaV9+/Z07dqVVq1asWzZsqLHjUYjZ8+eRa/X3+UsgiAIgiAItxPtAQRBEARBUJxDtAcQBEEQBEGwBZG8CIIgCILgVETyIgiCIAiCUxHJiyAIgiAITkUkL4IgCIIgOBWRvAiCIAiC4FRE8iIIgiAIglMRyYsgCIIgCE5FJC+CIAiCIDgVm/Q2UtLfBYN1Op3CkQiCIAiCUFx/v28Xp/C/yyUvubm5AERFRSkciSAIgiAIJZWbm0tAQMBdn+NyvY0sFgvJycn4+fmhUqmsem6dTkdUVBQJCQmib5INidfZPsTrbB/idbYP8Trbj61ea0mSyM3NJSIiArX67qtaXO7Ki1qtpnz58jYdw9/fX/znsAPxOtuHeJ3tQ7zO9iFeZ/uxxWt9rysufxMLdgVBEARBcCoieREEQRAEwamI5KUEPDw8ePfdd/Hw8FA6FJcmXmf7EK+zfYjX2T7E62w/jvBau9yCXUEQBEEQXJu48iIIgiAIglMRyYsgCIIgCE5FJC+CIAiCIDgVkbwIgiAIguBURPJSTIsXL6ZixYp4enrSrFkz9u/fr3RILmf69Ok0adIEPz8/QkJCePLJJzl79qzSYbm0GTNmoFKpGD58uNKhuKSkpCR69uxJcHAwXl5e1KlTh4MHDyodlksxm81MnDiRmJgYvLy8qFy5MpMnTy5WfxzhzrZv30737t2JiIhApVLx008/3fa4JEm88847hIeH4+XlRYcOHTh//rzd4hPJSzGsWrWKkSNH8u6773L48GHq1atHp06dSE9PVzo0l7Jt2zYGDRrE3r172bhxI0ajkY4dO5Kfn690aC7pwIEDfPzxx9StW1fpUFzSjRs3aNmyJW5ubvz++++cOnWKuXPnUqZMGaVDcykzZ85kyZIlLFq0iNOnTzNz5kxmzZrFhx9+qHRoTi0/P5969eqxePHi/3x81qxZLFy4kKVLl7Jv3z58fHzo1KkTN2/etE+AknBPTZs2lQYNGlT0vdlsliIiIqTp06crGJXrS09PlwBp27ZtSoficnJzc6WqVatKGzdulB5++GFp2LBhSofkct5++22pVatWSofh8rp16yb16dPntvuefvppKS4uTqGIXA8grV27tuh7i8UihYWFSbNnzy66Lzs7W/Lw8JC+/fZbu8Qkrrzcg8Fg4NChQ3To0KHoPrVaTYcOHdizZ4+Ckbm+nJwcAIKCghSOxPUMGjSIbt263fbvWrCudevW0bhxY5599llCQkJo0KABn3zyidJhuZwWLVqwadMmzp07B8DRo0fZuXMnXbp0UTgy13X58mVSU1Nv+/0REBBAs2bN7Pa+6HKNGa0tMzMTs9lMaGjobfeHhoZy5swZhaJyfRaLheHDh9OyZUtq166tdDgu5bvvvuPw4cMcOHBA6VBc2qVLl1iyZAkjR45k3LhxHDhwgKFDh+Lu7s6rr76qdHguY8yYMeh0OmJjY9FoNJjNZqZOnUpcXJzSobms1NRUgP98X/z7MVsTyYvgkAYNGsSJEyfYuXOn0qG4lISEBIYNG8bGjRvx9PRUOhyXZrFYaNy4MdOmTQOgQYMGnDhxgqVLl4rkxYq+//57Vq5cyTfffEOtWrWIj49n+PDhREREiNfZhYlpo3soW7YsGo2GtLS02+5PS0sjLCxMoahc2+DBg/n111/ZsmUL5cuXVzocl3Lo0CHS09Np2LAhWq0WrVbLtm3bWLhwIVqtFrPZrHSILiM8PJyaNWvedl+NGjW4du2aQhG5ptGjRzNmzBheeOEF6tSpw8svv8yIESOYPn260qG5rL/f+5R8XxTJyz24u7vTqFEjNm3aVHSfxWJh06ZNNG/eXMHIXI8kSQwePJi1a9eyefNmYmJilA7J5bRv357jx48THx9f9NW4cWPi4uKIj49Ho9EoHaLLaNmy5b+2+p87d44KFSooFJFr0uv1qNW3v5VpNBosFotCEbm+mJgYwsLCbntf1Ol07Nu3z27vi2LaqBhGjhzJq6++SuPGjWnatCkLFiwgPz+f3r17Kx2aSxk0aBDffPMNP//8M35+fkVzpwEBAXh5eSkcnWvw8/P71xoiHx8fgoODxdoiKxsxYgQtWrRg2rRpPPfcc+zfv59ly5axbNkypUNzKd27d2fq1KlER0dTq1Ytjhw5wrx58+jTp4/SoTm1vLw8Lly4UPT95cuXiY+PJygoiOjoaIYPH86UKVOoWrUqMTExTJw4kYiICJ588kn7BGiXPU0u4MMPP5Sio6Mld3d3qWnTptLevXuVDsnlAP/59cUXXygdmksTW6Vt55dffpFq164teXh4SLGxsdKyZcuUDsnl6HQ6adiwYVJ0dLTk6ekpVapUSRo/frxUWFiodGhObcuWLf/5+/jVV1+VJEneLj1x4kQpNDRU8vDwkNq3by+dPXvWbvGpJEmUIRQEQRAEwXmINS+CIAiCIDgVkbwIgiAIguBURPIiCIIgCIJTEcmLIAiCIAhORSQvgiAIgiA4FZG8CIIgCILgVETyIgiCIAiCUxHJiyAIgiAITkUkL4IgCIIgOBWRvAiCIAiC4FRE8iIIgiAIglMRyYsgCIIgCE7l/wDNn1tTD2YZMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.special import jn # For Bessel functions\n", + "\n", + "x = np.linspace(0, 10, 100)\n", + "\n", + "fig, ax = plt.subplots()\n", + "for n in range(4):\n", + " ax.plot(x, jn(n, x), label=r\"$J_%d(x)$\" % n)\n", + "\n", + "ax.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nVOxn2j4goU9", + "outputId": "55f1916c-851c-4d22-bb2d-42d7d3a627e7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.40482556, 5.52007811, 8.65372791, 11.79153444])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# zeros of Bessel functions\n", + "n = 0 # order\n", + "m = 4 # number of roots to compute\n", + "jn_zeros(n, m)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ucubYCE7hHGV" + }, + "source": [ + "# **Integration**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iBnFR9wShY-K" + }, + "source": [ + "Numerical integration: quadrature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kUY9GCltgrMq" + }, + "outputs": [], + "source": [ + "from scipy.integrate import quad, dblquad, tplquad" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xIE5aVBEhcSt" + }, + "outputs": [], + "source": [ + "# define a simple function for the integrand\n", + "def f(x):\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "n-_vEjpIhfmL", + "outputId": "1c72824b-9f44-4dde-9f26-30047757fc10" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "integral value = 0.5 , absolute error = 5.551115123125783e-15\n" + ] + } + ], + "source": [ + "x_lower = 0 # the lower limit of x\n", + "x_upper = 1 # the upper limit of x\n", + "\n", + "val, abserr = quad(f, x_lower, x_upper)\n", + "\n", + "print (\"integral value =\", val, \", absolute error =\", abserr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PdfMCL2hhr0i", + "outputId": "82ab434f-d15c-409b-b0e3-a67faad3a2fb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7366751370811074 9.389256877192047e-13\n" + ] + } + ], + "source": [ + "def integrand(x, n):\n", + " \"\"\"\n", + " Bessel function of first kind and order n.\n", + " \"\"\"\n", + " return jn(n, x)\n", + "\n", + "\n", + "x_lower = 0 # the lower limit of x\n", + "x_upper = 10 # the upper limit of x\n", + "\n", + "val, abserr = quad(integrand, x_lower, x_upper, args=(3,))\n", + "\n", + "print (val, abserr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DxJvrKb8hzC4", + "outputId": "f2945386-8213-4501-95cb-4c28f7cd5fd4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical = 1.7724538509055159 1.4202636780944923e-08\n", + "analytical = 1.7724538509055159\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from scipy.integrate import quad\n", + "from math import exp, sqrt, pi\n", + "\n", + "val, abserr = quad(lambda x: exp(-x ** 2), -np.inf, np.inf)\n", + "\n", + "print(\"numerical =\", val, abserr)\n", + "\n", + "analytical = sqrt(pi)\n", + "print(\"analytical =\", analytical)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YrqzqdnYh6wE", + "outputId": "a4859711-6366-43d4-db7b-8252a80e5ab7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical = 1.7724538509055159 1.4202636780944923e-08\n", + "analytical = 1.7724538509055159\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from scipy.integrate import quad\n", + "from math import exp, sqrt, pi\n", + "\n", + "val, abserr = quad(lambda x: exp(-x ** 2), -np.inf, np.inf)\n", + "\n", + "print(\"numerical =\", val, abserr)\n", + "\n", + "analytical = sqrt(pi)\n", + "print(\"analytical =\", analytical)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zG3CoReFiXqB" + }, + "source": [ + "# **Ordinary differential equations (ODEs)**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oF6V9WDFigXo" + }, + "source": [ + "An API based on the function odeint, and object-oriented API based on the class ode" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3DssxtD8iJjM" + }, + "outputs": [], + "source": [ + "from scipy.integrate import odeint, ode" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "nGLGbRJQikWC", + "outputId": "1d5b174e-65be-44a7-edb9-6b0d04bd4e41" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image(url='http://upload.wikimedia.org/wikipedia/commons/c/c9/Double-compound-pendulum-dimensioned.svg')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NRnWR9dNn7JN" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "g = 9.82\n", + "L = 0.5\n", + "m = 0.1\n", + "\n", + "def dx(x, t):\n", + " \"\"\"\n", + " The right-hand side of the pendulum ODE\n", + " \"\"\"\n", + " x1, x2, x3, x4 = x[0], x[1], x[2], x[3]\n", + "\n", + " dx1 = 6.0 / (m * L**2) * (2 * x3 - 3 * np.cos(x1 - x2) * x4) / (16 - 9 * np.cos(x1 - x2)**2)\n", + " dx2 = 6.0 / (m * L**2) * (8 * x4 - 3 * np.cos(x1 - x2) * x3) / (16 - 9 * np.cos(x1 - x2)**2)\n", + " dx3 = -0.5 * m * L**2 * (dx1 * dx2 * np.sin(x1 - x2) + 3 * (g / L) * np.sin(x1))\n", + " dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * np.sin(x1 - x2) + (g / L) * np.sin(x2))\n", + "\n", + " return [dx1, dx2, dx3, dx4]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6nTG3512oBnT" + }, + "outputs": [], + "source": [ + "# choose an initial state\n", + "x0 = [pi/4, pi/2, 0, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wUsFAGRFoFNy" + }, + "outputs": [], + "source": [ + "# time coordinate to solve the ODE for: from 0 to 10 seconds\n", + "from numpy import linspace\n", + "t = linspace(0, 10, 250)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "65hERpRbpXzv" + }, + "outputs": [], + "source": [ + "# solve the ODE problem\n", + "import numpy as np\n", + "\n", + "x = odeint(dx, x0, t)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "id": "KHW6nARipbOr", + "outputId": "b3d05c98-c043-479c-8c62-41ae10fd095c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAFlCAYAAABBdXOQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FNX3xt9NJ4QEkkBCC116RxCkCkqxAGJHsSA2sIEF9Cd2sSE2FMtXsYDYQVFRBBGF0EWK9N4SSAIJpCe7vz/O3r0zu7M1W2Y25/M8eWa2ZPdmszNz33vec47JYrFYwDAMwzAMwzAMwzCMIYkI9QAYhmEYhmEYhmEYhvEdFvYMwzAMwzAMwzAMY2BY2DMMwzAMwzAMwzCMgWFhzzAMwzAMwzAMwzAGhoU9wzAMwzAMwzAMwxgYFvYMwzAMwzAMwzAMY2BY2DMMwzAMwzAMwzCMgWFhzzAMwzAMwzAMwzAGhoU9wzAMwzAMwzAMwxgYFvYMwzAMwzAMwzAMY2BY2DMMwzAMU2Vmz56Npk2bIi4uDr169cK6detcPv/rr79GmzZtEBcXh44dO+Lnn38O0kgZhmEYJvxgYc8wDMMwTJX48ssvMXnyZDz55JPYtGkTOnfujKFDh+LkyZOaz1+9ejWuv/56jB8/Hv/88w9GjRqFUaNGYdu2bUEeOcMwDMOEByaLxWIJ9SAYhmEYhjEuvXr1wvnnn4+3334bAGA2m9G4cWPce++9mDp1qsPzr732WhQWFmLx4sW2+y644AJ06dIFc+bMCdq4GYZhGCZciAr1APyN2WzG8ePHUatWLZhMplAPh2EYhmFgsVhw9uxZNGjQABER4WWWKysrw8aNGzFt2jTbfRERERgyZAgyMzM1fyczMxOTJ09W3Td06FAsXLjQ6fuUlpaitLTUdttsNiMvLw8pKSl8vWcYhmFCTqiv9WEn7I8fP47GjRuHehgMwzAM48CRI0fQqFGjUA/Dr+Tk5KCyshJpaWmq+9PS0rBz507N38nKytJ8flZWltP3mTFjBp5++umqD5hhGIZhAkiorvVhJ+xr1aoFgD7QxMTEEI+GYRiGYYCCggI0btzYdo1ivGfatGmqKH9+fj4yMjL4es8wDMPoglBf68NO2As7XmJiIl/oGYZhGF0Rjpbx1NRUREZGIjs7W3V/dnY20tPTNX8nPT3dq+cDQGxsLGJjYx3u5+s9wzAMoydCda0Pr0Q/hmEYhmGCSkxMDLp3745ly5bZ7jObzVi2bBl69+6t+Tu9e/dWPR8Ali5d6vT5DMMwDMO4Juwi9gzDMAzDBJfJkyfj5ptvRo8ePdCzZ0+8/vrrKCwsxK233goAGDduHBo2bIgZM2YAAO6//34MGDAAM2fOxKWXXooFCxZgw4YNeP/990P5ZzAMwzCMYWFhzzAMwzBMlbj22mtx6tQpTJ8+HVlZWejSpQuWLFliK5B3+PBhVYXgPn36YP78+fi///s/PPbYY2jVqhUWLlyIDh06hOpPYBiGYRhDE3Z97AsKCpCUlIT8/HzOuWMYhmF0AV+b/A9/pgzDMIyeCPV1iXPsGYZhGIZhGIZhGMbABFTYz5gxA+effz5q1aqFevXqYdSoUdi1a5fb3/v666/Rpk0bxMXFoWPHjvj5558DOUyGYRiGYRiGYRiGMSwBFfZ//vknJk6ciDVr1mDp0qUoLy/HJZdcgsLCQqe/s3r1alx//fUYP348/vnnH4waNQqjRo3Ctm3bAjlUhmEYhmEYhmEYhjEkQc2xP3XqFOrVq4c///wT/fv313zOtddei8LCQixevNh23wUXXIAuXbpgzpw5bt8j1LkNDMMwDGMPX5v8D3+mDMMwjJ4I9XUpqDn2+fn5AIDk5GSnz8nMzMSQIUNU9w0dOhSZmZmazy8tLUVBQYHqh2EYhmEYhmEYhmGqC0ET9mazGQ888AAuvPBCl+1ssrKybO1xBGlpacjKytJ8/owZM5CUlGT7ady4sV/HzTAMwzAMwzAMwzB6JmjCfuLEidi2bRsWLFjg19edNm0a8vPzbT9Hjhzx6+szDOOcDz4Arr0WWLwYMJtDPRqGYRiGYRiGqZ5EBeNNJk2ahMWLF2PlypVo1KiRy+emp6cjOztbdV92djbS09M1nx8bG4vY2Fi/jZVhGM/IzATuuosE/VdfARMmAO+/H+pRMQzDMAzDMEz1I6ARe4vFgkmTJuH777/H8uXL0axZM7e/07t3byxbtkx139KlS9G7d+9ADZNhGC8pLgZuuYVEfdeudN///gccOhTSYTEMwzAMwzBMtSSgwn7ixIn4/PPPMX/+fNSqVQtZWVnIyspCcXGx7Tnjxo3DtGnTbLfvv/9+LFmyBDNnzsTOnTvx1FNPYcOGDZg0aVIgh8owjBd8+imwezfQoAGwbBkweDCJ/HffDfXIGIZhGIZhGKb6EVBh/+677yI/Px8DBw5E/fr1bT9ffvml7TmHDx/GiRMnbLf79OmD+fPn4/3330fnzp3xzTffYOHChS4L7jEME1xEN8qJE4E6dYB776XbH35I0XyGYRiGYRiGYYJHUPvYB4NQ9w9kmHCnpARISQGKioDNm4HOnYHKSqBFC7Lif/01cNVVoR4lw+gLvjb5H/5MGYZhGD0R6utSUPvYMwxjfFauJFHfoAHQqRPdFxkJXH457f/9d+jGxjAMwzAMwzDVERb2DMN4xc8/03bECMBkkvf36UPb1auDPyaGYRiGYRiGqc6wsGcYxit++YW2I0ao77/wQtr+8w9F9BmGYRiGYRiGCQ4s7BmG8Zj8fKqGDwADBqgfa9wYaNgQqKgA1q8P/tgYhmEYhmEYprrCwp5hGI/Zto22jRoBycnqx0wmGbVftSq442IYhmEYhmGY6gwLe4ZhPGbLFtqKonn2cJ49wzAMwzAMwwQfFvYMw3iMO2HfuzdtN2wIzngYhmEYhmEYhmFhzzCMF2zdStuOHbUfb9OGttnZwJkzQRkSwzAMwzAMw1R7WNgzDOMRFov7iH1iIvW3B4Bdu4IzLoZhGIZhGIap7rCwZxjGIw4dAs6eBaKjgdatnT9PPMbCnmEYhmEYhmGCAwt7hvEDhYXAX38BZnOoRxI4RLS+XTsS985gYc8wDMMwDMMwwYWFPcNUkR9+oNzy/v2Bxx8P9WgCx/bttHWWXy8Qwn7nzsCOh2EYhmEYhmEYgoU9w1SBPXuAK68Ejh6l26+9BuzfH9oxBQrxd7Vs6fp5ooAeR+wZhmEYhmEYJjiwsGeYKvDZZ0BlJUXrhwwBysqARx8N9agCw8GDtG3a1PXzRMR+zx76bMKR+fOBSy8FmjcHli8P9WgYhmEYhmGY6k5UqAfAMEbFYgE+/5z277qLLOqdOgHffEPt3tLSQjs+fyOEfbNmrp+XkQHExgKlpfQ7LVoEemTBZccOYOxYefuBB4DNm4EIXiZlGIZhGIZhQgRPRRnGR1atAg4cAGrVAkaOBDp0oB8AyMwM7dj8TWUlVcUH3EfsIyOBVq1oPxzt+PPn07Z3b/rfb90KLF4c2jExDMMwDMMw1RsW9gzjI198QdsxY4D4eNrv04e2q1eHZkyB4sQJoLwciIoCGjZ0/3ylHT+csFjk/33SJOCee2j/uefoMYZhGIZhGIYJBSzsGcZH/vqLtiNHyvvCVdgLG35GBkXk3ZGRQVtRVDBc2LAB2LcPqFEDuOIKYPJkav23fn34Fk1kGIZhGIZh9A8Le4bxgXPnZPu3Xr3k/ULYb9hAOebhwoEDtHVnwxc0bkzbI0cCMpyQ8dVXtL3iCiAhAahXD+jRg+77++/QjYthGIZhGIap3rCwZxgf2LQJMJuBRo2A+vXl/S1aAHXrkqj/55/Qjc/feFoRX9CoEW3DTdivWUPbyy6T9/XrR1vh4GAYhmEYhmGYYMPCnmF8YN062vbsqb7fZApPO76nFfEF4Rixt1ioUB5A3Q8EQthzxJ5hGIZhGIYJFSzsGcYH1q+nrb2wV94XThF7X634x4+HTy/7Y8eA/HyqMSCKAwJyIWfXLuDkydCMjWEYhmEYhqnesLBnGB8QEfvzz3d8TLR627cveOMJNN5a8dPTSQBXVgJZWYEaVXAR0frWrYHYWHl/crJsc7hqVfDHxTAMwzAMwzAs7N1QURHqETB64+RJEromE9C9u+PjLVrQNlyEfWWltNR7KuwjI4EGDWg/XOz4QtgLEa+E7fgMwzAMwzBMKGFh74IdOyg69+uvoR4Joye2bKFtq1ZAUpLj40LYnzwJnD0bvHEFilOnaIErIkJdKNAd4ZZnv20bbTt2dHxMLPAI8c8wDMMwDMMwwYSFvQueeYZ6Uw8bBjz0EBXPYpjdu2nbpo3240lJQEoK7YdDb3Nhpa9b17Me9gIh7MOll70Q7VrCvm1b2u7YEbzxMAzDMAzDMIwgoMJ+5cqVuPzyy9GgQQOYTCYsXLjQ5fNXrFgBk8nk8JMVoiTd//0PmDiR9mfO5Mg9Qwhhf955zp8jovZ79wZ+PIHmxAnaehOtB8IrYl9RIUW7lhVfLPIcPRoeLg2GYRiGYRjGWARU2BcWFqJz586YPXu2V7+3a9cunDhxwvZTr169AI3QNfHxwNtvAw88QLdffjkkw2B0xq5dtPVE2IdDnr1YV0tP9+73wqmX/b59QGkpnRO0Wv4lJwPiNCW+HwzDMAzDMAwTLKIC+eLDhw/H8OHDvf69evXqoXbt2v4fkI9MnkwC/48/qM2ZViV0pvrgTcQ+nIR9dY7Yi3Z/LVpQrQEt2ralugo7dgA9egRvbAzDMAzDMAyjyxz7Ll26oH79+rj44ouxSgf9oxo3Bm64gfbffDO0Y2FCS2mpbP2m7GVuTzgJe2HF9zZiH0459mJxQvxNWnCePcMwDMMwDBMqdCXs69evjzlz5uDbb7/Ft99+i8aNG2PgwIHYtGmT098pLS1FQUGB6icQjB9P219/BczmgLwFYwD276f/f61aQFqa8+e1bEnbcBD2vlrxGzak7YkTxj9mWNgzDMMwDMMweiagVnxvad26NVorwqB9+vTBvn37MGvWLHz22WeavzNjxgw8/fTTAR/bBRcANWtS66+tW4HOnQP+lowOUebXm0zOnyci9ocPA2VlQExM4McWKHwtnpeaSluzGcjLk7eNCAt7hmEYhmEYRs/oKmKvRc+ePbHXRWnxadOmIT8/3/ZzJEAJvTExwIABtP/77wF5C8YAeJJfD1B0u0YNErVGzzH3NWIfEwPUqUP7J0/6d0zBRvwPMzKcP0dUxt+7lxZzGIZhGIZhGCZY6F7Yb968GfVdhApjY2ORmJio+gkUQ4bQloV99cVTYW8yAQ0a0L6IeBsVX4vnAbJSfLgIe1cR+0aNyNVTWUkpGwzDMAzDMAwTLAJqxT937pwq2n7gwAFs3rwZycnJyMjIwLRp03Ds2DF8+umnAIDXX38dzZo1Q/v27VFSUoIPP/wQy5cvx2+//RbIYXqMEPYrV1IRtdjY0I6HCT579tDWnbAHKMK9b5+xhf25c/QDeB+xB0jY79plbGFvsXgm7E0maoW3bRsVWBQRfIZhGIZhGIYJNAEV9hs2bMCgQYNstydPngwAuPnmmzF37lycOHEChw8ftj1eVlaGKVOm4NixY4iPj0enTp3w+++/q14jlHToQELl5ElgwwbgwgtDPSIm2Iiva9Om7p8rItxGFvYiWl+zJpCQ4P3vh0PEPi8PKC6m/UaNXD+3SRMS9ocOBX5cDMMwDMMwDCMIqLAfOHAgLBaL08fnzp2ruv3II4/gkUceCeSQqoTJRD3sf/oJ+PdfFvbVjcpK2brNVeRWIIS9EMdGpCo2fCA8hL1YzKlXz71Lp0kT2rKwZxiGYRiGYYKJ7nPs9UanTrTdsiW042CCT3Y2UFEBREZ6JnSFdd3IEXtfe9gLwkHYe2LDF7CwZxiGYRiGYUIBC3svYWFffRGR24YNgSgPvC4csWdhzzAMwzAMwzDBgIW9lwhhv3UrtTJjqg9C2Hsi8IDwyLHniD0Le4ZxR15eHsaOHYvExETUrl0b48ePxzlRddPJ8++99160bt0aNWrUQEZGBu677z7k5+cHcdQMwzAME16wsPeS886j/tznzvHkvbrhSS9zJeFgxT91irZ16/r2+9VV2B8/DpSXB25MDKMnxo4di+3bt2Pp0qVYvHgxVq5ciTvuuMPp848fP47jx4/j1VdfxbZt2zB37lwsWbIE48ePD+KoGYZhGCa8CGjxvHAkKgpo1w7YvJns+M2ahXpETLDwNWJ/6hTl5nti39cbubm0TUnx7ffDQdgfO0ZbdxXxASAtjRb+ysqo0CKfH5hwZ8eOHViyZAnWr1+PHj16AADeeustjBgxAq+++ioaNGjg8DsdOnTAt99+a7vdokULPP/887jxxhtRUVGBKCOeLBmGYRgmxHDE3gc4z756IoS9pxH71FQqtGexGFfY5uXRtqrCPj8fKC31z5iCjfjfib/FFRERbMf3hEOHgJ9/BkpKQj0SpqpkZmaidu3aNlEPAEOGDEFERATWrl3r8evk5+cjMTHRpagvLS1FQUGB6odhGIZhGIKFvQ+wsK+eeGvFj4yUYtCodvyqRuxr15ZOBWHrNxrepiOwsHeNxQIMHw5ceikVovz881CPiKkKWVlZqGe36hUVFYXk5GRkeVg5NCcnB88++6xL+z4AzJgxA0lJSbafxp7apxiGYRimGsDC3gfat6ftjh2hHQcTXLy14gPGr4xfVWEfESEFsRFdC5WV8jPwJGIPsLB3xz//yHNnXh7w5JOhHQ+jzdSpU2EymVz+7Ny5s8rvU1BQgEsvvRTt2rXDU0895fK506ZNQ35+vu3niFhtZYxNaSlwyy3AG2+EeiQMExruvBMYNAgoKgr1SBiDw4lsPtC8OW0PHKDok8kU2vEwgae4WEZuPY3YA8aujG+xSFGbnOz769SrR3+/EYV9Xh59DoDnixss7F3zzTe0vfhiYNkyYP9+csNw8FVfTJkyBbfccovL5zRv3hzp6ek4aXdwV1RUIC8vD+lu2mmcPXsWw4YNQ61atfD9998jOjra5fNjY2MRGxvr0fgZA3H0KPDJJ/QzZoxnBU0YJlzYvh14/33aP3kSaNo0pMNhjA0Lex9o0oTEfFERiT1PI3mMcTl6lLY1awJ16nj+e2Jea8SIfWEhFYEDfI/YA8YuoCcWc+rUAdxoDhti4YeDiY5YLMDXX9P+bbcBZ84A69cDf/4J3HhjSIfG2FG3bl3U9SD/pHfv3jhz5gw2btyI7t27AwCWL18Os9mMXr16Of29goICDB06FLGxsfjhhx8QFxfnt7EzBkNESwBg4kRg0aLQjYVhgk2HDnKfRT1TRdiK7wOxsZQbClC0iQl/lDZ8bxwaRo7Yi2h9TAwtaPhKOAh7b9r9iSLgRvyfB5qtW4G9e+kceumlwMCBdP+KFaEcFVMV2rZti2HDhmHChAlYt24dVq1ahUmTJuG6666zVcQ/duwY2rRpg3Xr1gEgUX/JJZegsLAQ//vf/1BQUICsrCxkZWWhsrIylH8OEwqUF9UffgjdOBiGYQwOC3sfUdrxmfBHiDSNzk0uMXLEXlkRvyrpJqmptM3JqfqYgo0vwl4s5hw/7v/xGJ3ly2k7ZAhQqxYwYADd/vPP0I2JqTrz5s1DmzZtMHjwYIwYMQJ9+/bF+8JaCqC8vBy7du1CkTV/dNOmTVi7di22bt2Kli1bon79+rYfzpuvpnz0kdwXPUYZJtz55BO5/3//F7pxMGEDW/F9pFkzYOVKjthXF7KzaesmZdQBIWpF9NtIVLVwnkCkLpw+XbXXCQVVidjn5VFNKE4Jlvz3H227dqVt375UYHHvXprLCycUYyySk5Mxf/58p483bdoUFlGsAsDAgQNVtxlt3n4byMykub+LLoDhwS23UH4OQFaePXtCORqGCQ7KOibPPhuyYTDhA0fsfYQj9tULEXFPS/Pu94QoFtFvI+GPwnlA9RP2depIMc92fDWiGn67drRNSgK6dKH9NWtCMiSG0SVmM3DvvcD8+dUkVUVpC9u7N3TjYJhgwYubTABgYe8jzZrRloV99UBE7L0V9kIUc8S++gh7k8nYtRUChcUiI/Zt28r7W7emLbufGEZy8KDcrzZ1BSdNkvv/+1/oxsEwweD+++W+InWJYaoCC3sfEcKeJ6PVA1+t+ELYGzliz8LeO2EPcJ69FqdO0XFgMkkxD/AiKcNokZ8v96tNPcG33pL7t98eunEwTDBQft8nTAjdOJiwgoW9jwgr/pEjQHl5aMfCBJ6qWvFLSqg9opFQFs+rCtVR2HNlfEeEDb9ZM6BGDXk/C3uGcaS4WO6LtqPVDrYqM+FKaWmoR8CEKSzsfSQ9nfJoKyuN3a+6sBB4+GFg5kx2H7jCVyt+QoIsemS0qD3n2HPE3p9o2fABFvYMo0W1FfaidQYAXHhh6MbBMIFEmV/DNSUYP8LC3kciIsJjQvree8CrrwIPPUT22F27Qj0i/VFZKQWet1Z8k0lGvI2WZ+9vK/6ZM1QQykhwxN5/iIi9M2F/8KDxvh8MEyiUDq9qJewHDZL7mZmhGwfDBIsWLUI9AiaMYGFfBTIyaGvkiP1vv9HWZAIqKoBffnHx5D17gKlTq536z80lwWEyeS/wAOPm2ftb2FssQEFB1V4rmJjNQE4O7XPEvurYV8QXNG5MC6WlpTLlhWGqO9U2Ym8PWwmZcOOff+R+vXqhGwcTlrCwrwJGj8qVlAB//kn7Y8fSduVKJ0/OygKGDAFeegk4/3zghx+CMkY9IMRGSopvvYSNWhnfX8I+Lk66zoxkxz9zhha7AI7Y+wNnEfvoaBL3gLHdTwzjT6q1sD93Tu5zNJMJN7p1k/tHj4ZuHExYwsK+CojJu1Gjcn//TeK+QQPgrrvovr/+0qhXU1kJjB4NHD5MyvbsWeCaa2TieZjja369wKi97P2VYw8YM89e2PBr1ZJ96T2FI/ZqSkqAY8dov2VLx8fDIa2JYfyJ0opf7Qr01qwZ6hEwTGCwn2BHR4dmHEzYwsK+Chhd2Asb/sUXUxA+Lo6sxzt32j1x1SpgzRpSOFu20GpjaSmwYEHQxxwKfG11JzBixL6ykiLWQNUj9oCxhb0v6Rfi3JCbW82K3+bnAzffTBU5FT26RFAiPl77+8TCnmHUVOuIPQC8847cv/LK0I2DYfzJ8OFy/5NPQjcOJmxhYV8FjB6VW7qUtpdcAsTEAL17020HO76w3Y8eTT7aW26h2599FoxhhhxfW90JjBixP3NGLixX14i9+H+lpnr/u8nJdEwB1ShvPCcHuOgi4NNPqSLnww/bHjp8mLYZGVSrwh4W9gyjRqQBAdVU2N99t9z//vvQjYNh/Mmvv8r9ceNCNw4mbGFhXwWMnEdbWQls20b7oqNM//60FXn3AEjdLVpE+5dfTtvrriNL/saNMnE2jKmqFd+IEXsRrY+PlwK1KhhR2IvPQIzdG0wm4y/8ec2UKcCmTUDt2nR71izgyy8BqIW9FizsGcY51VLY28MV8hmj89NPcj8yMnTjYMIaFvZVQGnFd8hL1zlHj1JEIDoaaNSI7hMRe2XBTuzaRT02Y2KAoUPpvrp1gWHDaH/+/KCNOVRU1YpvxIh9fj5tk5L883pGFvZCp3qL+L5Ui1IUxcXAt9/S/qJFwCOP0L7VanjoEN1s0kT715s2hep5DMNIqq2wVxYa6NMndONgGH9w2WVyv1rl6DHBhIV9FRAT9/JyY0VjARkZa9JELhy2aiUfs/WT/vFH2g4aRDn2glGjaPvXX4EeasipqhXfiBF7fwt78RlUR2FfLaz4v/wCFBZSSL5fP8qzB4Dly4HCQrcRe/FZnTwZ+KEyjNGotsK+Rg31bSNdQBhGycGD6tscsWcCRECF/cqVK3H55ZejQYMGMJlMWLhwodvfWbFiBbp164bY2Fi0bNkSc+fODeQQq0RMjMy/NZrdVrSGbd5c3peRQQ770lLF37NiBW1HjFC/QM+etN24UVUkKxzxlxXfSBF70W+eI/Ys7D3i669pe/XVlIfQti3560tLgWXL3Ap70cq3sJB+GIaRVFthD6ir+fqj4AvDhAKRbwbICTjDBICACvvCwkJ07twZs2fP9uj5Bw4cwKWXXopBgwZh8+bNeOCBB3D77bfjV2WxCZ1h1Dx7EbFXnmuioqRVdt8+651bttC2Rw/1C7RtSwnY586RXT+Mqc5W/MRE/7weC/swprhYOnuuuYa2JpO0HS5e7NaKr2wpKLoRMAxDVGth37q1+naYBxKYMOTcOfVt5cSbYfxMQIX98OHD8dxzz2H06NEePX/OnDlo1qwZZs6cibZt22LSpEm46qqrMGvWrEAOs0oYteWdlrAHgBYtaLtvH0iJij5VHTqonxgVRW3vAGD9+oCNM9RUVkqh4Q8rvlFqMXDEnoW9x6xeTWH2Ro2ob6bAKuwtPy7G4cP0xXcWsTeZZNSe7fgMo6ZaC3tA1u8AaO7BMEZCmcb67ruhGwdTLdBVjn1mZiaGDBmium/o0KHIdFENtbS0FAUFBaqfYGJUYa9lxVfe3rcPMlrftKl26FbY8cNY2OfkUL0Bk8m3fuaAjNiXlxvHZswRey6e5zGbNtH2ggvUvewGDABiYnAqqwKlpSaYTEDDhs5fhoU9w2hT7YU997FnjEp5ufr2XXeFZhxMtUFXwj4rKwtpdmHRtLQ0FBQUoLi4WPN3ZsyYgaSkJNtP48aNgzFUG0ZtaeUuYr9/P6Sw79RJ+0VEdC6Mhb0QZampvgcKlC3jjFJAjyP2HLH3mI0baSscPILYWKB9exwGhekbNHDdOpGFPcNoU+2FPQBMnCj3RY9ehtE7yove7beHbhxMtUFXwt4Xpk2bhvz8fNvPkSNHgvr+RsyxLyqSYsM+Yq+y4nsq7DdvDtuZR1UL5wEUxBRRe6MIe253V3VhL74zWVnGScHwCRGx797d8bHOnXEIlFjvzIYvYGHPMNoou75VW956S+6vXh26cTCMp9jXg/jgg9CMg6lW6ErYp6enI9vOt5qdnY3ExETUsG97YiU2NhaJiYmqn2BiRCu+6LqRmCgFl8ArYd+8OamesjJ15dowoqqt7gRCHArBrHcCZcU/c0bRSlHniEWIqgr7khLpgAg78vOBPXto3z5iDwCdO9si9izsGcY3jJLCFVBMJrUl/+qrQzcWhvEEpc1T9JNmmACjK2Hfu3dvLFu2THXf0qVL0bt37xCNyD3Cim+kiL3Ir2/WTJ0SC8gIfl4ecGar1f3gTNibTMB559G+rYx+eOGPiD0gBbJRBF6grPhms2OBWD1iNsvFDV+FfXy8/L+HrR1/82baZmTI3p9KOnViYc8wVcQI58ygoCyi9803oRsHw7ijokJ9e/fu0IwjTKisBP78Ezh7lhyQRplLh4KACvtz585h8+bN2Gyd/B04cACbN2/GYWtT42nTpmHcuHG25991113Yv38/HnnkEezcuRPvvPMOvvrqKzz44IOBHGaVEAXVjNSiyVl+PQAkJMgJ9v6S+kBcHNCypfMXE4+JqF2YUdVWdwKjCXt/R+xjY+Xi9dmz/nnNQCIuHoDvwh6oBnn2zvLrBYqIfZM07TopAhb2DKMNR+wViKK9AHDddaEbB8O4Ijpa7mstejNeMWUKMHAg1fKOiKCg08qVoR6VPgmosN+wYQO6du2Krl27AgAmT56Mrl27Yvr06QCAEydO2EQ+ADRr1gw//fQTli5dis6dO2PmzJn48MMPMXTo0EAOs0oIYV9cbJyLr3AXOKszaLPjowXZhyIjnb+YsBft3eu/AeoIf1nxjSbs/R2xN5mM9RmI/PrYWFrb8pWwr4wv8uudCfuUFByKpsW/jMqDLl+KhT3DaGOUuUVQUHZJ+vJL7mvP6A/7mlN8UasS69cDb75J+3l58n5lPU1GEtCGoAMHDoTFRdWouXPnav7OP//8E8BR+ZeEBJr8l5ZS1L5mzVCPyD3iHCMm0vY0bUrXzkNoAjRzUxRPROzDVNhXVyu+vyP24rXy8ozxGVS1cJ4g7CP227fTtnNnp085bLIWz8vfCqCt0+exsGcYbdiKryAiAhgyBPj9d7p93nlhmwrIGJTYWLlfq5ZjzivjMRUVwJ13koMyIkJdo2nbNgpUipRohtBVjr0RUfY3N4odX4zTmbBvQvNwstCKG85gK75HGE3Y+ztiD9D1DTCGFZ+FvQdYLHJC7SRdp7gYOFVWGwDQ5MQaly8nFs9OnTJOgUWGCQYcsbfjt9/k/v79vPLB6Af7SZ5RJn06ZfZs4J9/yDgs5gVCcwGARny42sPC3g8YTdiLiJjy4FAiilwdQhMK37tCTOiPHqVZfJjhLyu+EMhGOMcrC5P4U9gbaXHDX8Je2fIu7MjJkas0WgU7AIhMq1ooQNLBf12+nDgfVVTIz59hqivKRkAs7O0wmYBnn5W3xaoxw4Qaf06aqjlHjwL/93+0P3AgbVu1Av7+Wz7nnXeCPizdw8LeDxhV2LuL2Hsk7FNSpPoR5fbDhMpK0i5A9bLinzsnV0b9bcUHjPEZ+C1iH0EHW9bv24AdO6r2YnpDROsbNVKrEAVC2GfgMEx7Xbt6YmLk5812fKa6o0zrKynhVHIHxIxfIDp0MEyoWL9efdtFKjLjngceoPlo796y/uDo0erSX0ePOjYgqO6wsPcD1VrYm0yaefbl5cYvGJaTQwJXmW7hK0LUGqGPvRDekZHUss1fVDsr/tGjSJ/1KAAg60gZ0KWL44XfyAhhL6ptaiCEfRMcAo4ccevq4Tx7hiHs6/Vw1F4D5fnUWqSZYUKGsmPDQw+FbhxhwOHD1N3SZALeegtYsoTuHzmS7rv0UvlcI8wpgwkLez9gJGFfVCTT0ZwK+3o0+T6DOihIbur+RTXy7G+5hQJ533/v+1hDjbBPp6bKVm2+YqRotbJwnj9rvhjpM6iysDebgdGjkX6S7OdZ0Y2pUu5rr/ljePpALOR5IOwzYqwHk5siVyzsGYZISFDfZmGvQY8e6tuTJ4dmHAwzfLj69iuvhGYcYYLQDn37AqdP07y0Xj2gVy+6/6KL5HONMKcMJizs/YCRhL0YY0yMc5t1Qt5hJCMXAHD4bB33L2rX8i4/H/j6a7LH3HqrcR362ftpJpWWcK7KliojidpA5NcDxvoMqizsP/8c2LAB6bWKAAAnzakww0RL0EY4UXiCBxH7Q4dom1G3hHbcFNkU51IW9kw4YrEACxYA7doBgwcD//3n/Ln2EXuuD+eE0lK5P2sWV95kgk9FhQwpA8DWraEbS5jw7be0vfJKYNEi2r/iCmnB79dPPpdr8qhhYe8HjCTslTZ8p9HYgweRAQq1HTrsQci2eXPaHjgAAPj5Z7LiAyTy77yzCgMOFbm5yJ7yEgAg/UAmVe6owj/YSKJWROz9LeyrjRW/qAh4/HEAQN1pt8NkAiorTcjtMoQOjHAp4+qFFV8U5HQn7OtY1xH5Qs2EGytXUrTp+uup3Mby5ZSd8+STam0qYCu+h8TEqG+LmT/DBIvoaPXtDh1CM44wITtbFsgbPVoK+5Ej5XM6dZL7mZnBG5sRYGHvispKj5KihbAXhdb0jLv8egDAwYOUEwsZcXNJo0a0PXYMgLTQiIPwr78MWNxi5EhkH6Boa1pEDs3KrrjC58r/RhL2Yoz+LJynfD0jfAZVEvZz5lBFl4wMRD84yVb0JWvUXbQTbsLeSas7QJFj3zqOdtwIe/F5s7BnwoVdu4BRo4ABAyglPCEBeOop4LLLaJ3vmWeAzp3pEqOErfheYG9n2L07NONgqh/2B25JSWjGEUYsXEjuph49gLw8Ks8TH08uJ4EyPXb58qAPUdewsHfFL78ADRsCd93lsqK1USP2Tjl0yDth37AhbY8eRXExRewB4LHHqFh2aanb1Fp9sX07sGoVsiLo70q76RIKJa5ZA9x+u08vaSRRG+iIvRE+A5+FfVkZ2UEBqtocFyd72be3XpX++4+SxozMuXOyOqaTiL3ZTBdkAMjobA3Fs7BnqhHPPQe0b08Rp8hImkrs3UtR+h9+AL76ijqu7NpFwv+OO+Spga34XlCzJnD55fJ269ahGwtTfbBY6MAVpKcDsbGhG0+YIGz4Y8bIaP3QoU6b7+Do0eCMyyiwsHfF4sW0TP7ee+SZUzZPVGAkYS/G6GnEXkTcXCIi9vn5WPlrMQoLgcaNgfPPp0kNYLCUoy+/BABk1+8CAEhvn0JLiJGRwPz5lCTpJULYl5Zq2y71hLJ4nj8Rr2ckK77XixsLFtBVJj0duOkmAIpe9sVJUgSvW+eXcYYMsVKXnOx09ePoUVrniI4GGpxvXfxjYc9UE3btAp54gox/l19O18B335XnA5MJuPpqihnccQfd98EHQNu2wKZNbMX3mh9+UN++777QjIOpPkTYSagTJ0IzjjAiLw/44w/aV+bXK2349ohC1wzBwt4V775L37ABA2iGOmaMDEEpEMK+oED/oi0gVvxatWzh2K2rSbX17k0Tl44d6Snbtvk44GBjsUhhX6cNAOtErH9/mqUBwD33eH0CF9FqQP/Clovnyf+RV5+BxSIr4T7wABBH9nNbxD4LsqTr2rX+GGboOHiQtqK+hgZCwzdvDkS1tRbYPH7cpULhHHsmXHj7bdpedhlpzrZttZ9Xpw7FDlauBNq0ISPMLbfYTh82WNh7gHLB9K23DJgDyBgGexvqmjWhGUeY8eOPdNh26ECLm5s30/qJsr2dPUZvre1vqtjEK8wxmaho2k8/AX36AFu2kBX7119VT6tdm/I9Kiooz1440/WI51b8MgC2enjuadQI2LEDu7bThbQNaWJbDRHDROy3bKH8vNhYZFnoQxIRFjz2GJ11Nm6k4mgffeTxy0ZFUY5QUREJW5F3rUe4eJ4co32eq0tWr6YVrBo1VBUjhbDPzgZwwQXk+jC6sD9+nLYuTnZC2LdqBYrsJyfTcvzevZRUrAFH7JlwoKBAltK47z6aF/z0E80RzGbHn1atyGr611/kIt+6FXj/fTKJVVbS67AV3wPOP199Ozq6yh1tGEYT+9oyYtGeqRLffUfbMWOkSbprV9dz5qKiwI/LSHDE3hNq1qSkj6go4LffHIplmEzyS6d3O75bYV9aChw/jpag1nVZWR4KMesEf+deqkgrUtwMF7FfvJi2w4cj+xT9LTZhHx0twzBz5wL//uvVSxslYs3F8+Qk2ith/8EHtL32WpU93WnE3sgTTuFYadDA6VOEsLfNf0RbTBd2fBb2TDgwdy6dQ9q2perNXbpQFP7228l2f9ddZPyaNImE//DhtG6ckgK8+CK9xpNPSlEPcMTeY8rK1Ld9SJ1jGJfYV73nFot+4exZGTe98kpa6ASolz3jOSzsPaVlS1k47fHHHSblRsmzF8JejNcBa1J97fhy1KtHf6ObtFjCmme/6xgpIRGxF8J+716fC8oHl40bAQCVfQfYuhwIYQaAIq7XXkv//0cf9eqljSJsxfiU6QP+wCh/f2WlXAH2WNjn51MlLACYMEH1kErYd+5M7Zlycw1VUXLVKrv5sYjY16/v9HdUEXvljgfC3ui1BZnqgVJ4C8xmuf57993A2LHUMKZhQ7LlX3EFVckfM4Zy7EXNtxdfBB56CLjtNqBnT8cFdY7Ye0h0NK2iCK6/ni35jP84epQKLAvefttF72jGG37+mWKLLVuSdhARe2XPesY9LOy9wVrlGn//Dfz5p+ohowl7pxF7kTvbtCnOO49OVh51jmnUCHmog1OFVPHnvPPo7rQ0ikKYzS4bC+iHTZsAAKea9YTZrHZj2HjhBfJI/vorWfc9RFjb9S5sxQTS38JevF5xsb7nWUpbl8efwYIF9Ie1b08FJhSohH1sLPnKAMMU0MvLI5vw9dcDy5ZZ7/QiYu+LsD9zxtiGBia8efttoEkT4PnnHR/79Vf6iicmAvv30zETH0/3//gjFYP6/nvgm29oLfCHH4DZs+l3X3uNynPMnu2oFXixyws+/lh9277POMP4gsVClaGVTJwYmrGEIUobfkGBnF5feGHoxmREWNh7Q8OGwM030/4776geEuJPz73sLRYPhL2oltekiU2ceyTsGzbELpD/vlEjGek0VAG93Fzb359djwadmqrulwmAqoGNGUP7r7/u8csbJWLtkw3dA4xSQFD8/RERjgWsnCLC2bfc4jAjVwl7gHy5ALW9MwCzZ0sb8GuvWe90E7GvrCRRA/gm7CsqOG+O0TeHD2vXy3rrLdrWry8vDx98IDvEaHHPPfQck4kWDT78UFWmAwAXiPIa+0rGXjrsGMYB+yr4bMH3GyUlVIcEIBv+6tWkWVq2tHPNMm5hYe8td99N2++/V1VGF8I+NzcEY/KQwkKgvJz2k5OdPEkRsRd58p5G7IWwt28h26wZbTUaCuiLf/6hbcuWyC4iFer0hPLgg7SdN8/jGZfRhL2/I/YxMVIo6/kzUBbO88hhl50t625cdZXDw6JGQ26uNf1TrJh5lOMSWoqKgDfflLd//tnqvBHC3knE/vBh+ltjYhQBDg+Efc2aciGN8+wZvXLBBbS1L5WxZw/wyy+0v2sXbe+5B7jhBvevefvtFGg2mahKvv1lhVs6eUlMjLq3/csvy9VGhvGW5cvVt1esYAu+H/n7b9IoDRpQDUy24fsOC3tv6dyZKuRXVAD/+5/t7pQU2uo5Yi8mylFRjj1ybais+LQrJiguadgQO0GJ9SK/XiDm/rpv8WnNr0e3brZJlK1wnj0XXEA/ZWWOtj8nGE3Y+ztiDxijMr7Xf/9339HKfc+eQNOmDg8nJ0uxevIk4J0VJrR8+SWd05o2pdxgAHjz9UqZc+RE2Avt3qIFZa0AkMI+O9vpQWAycQE9Rv906kRZNaLJg0Dk1gt69lS4XDzg5puBzz6jwOD336sf27DB9/FWW+x727doQaFBhvGG4mJg8GD1fQMGhGYsYYpYNxk8mOYBQthz4TzvYWHvCyJq/8EHNiuOEPZ6jtiLiXLt2i4WGoUVXyHsd+/2IN9VGbFvoU6gFnN/EeTTLdb8enTrZouWOBX2ADB+PG2/+MKjlzeKsPep1ZuHGOEz8NqxIIrmXX215sMREfJ7lJ0NeHdghRYhJq65RtYO/WuFmcYdFeW0B41Dfj1ARSZEDpBSDdnBwp7ROzExQPfutC/s+GfPqtd4k5Pp1BAb691rjx1LlxTbgpgVrorvI/Z26Ro1QjMOxphYLFQkw/4+xq8IYX/RRZRFIzoCs7D3Hhb2vjBmDE1SDx8G/vgDgPGEvVNExL5JE7RoQQsABQUyN98pqanYibYAgDZ11R+CSMM1orB3mdszZgwV5dmyxaMCAkLUij7xeiWQEXsjCXuP/v7cXJc2fIH4Hp04AcpNiYwkn7vODwrh1mnTRgqZnfuiUIw4+qPscw6tCDOCStgr7+CWd4zBUXauBMi4o3QizZtHBfZ84Zpr5HqhEtGNlfECk8mh2DH7exmPse9Xb4AUOqORnw+sX0/7gwaReba0lOIADnMIxi0s7H2hRg0qEQ3YlujDQtiXlVFfHgBo2hSxsdJZ7M41XF5hwj40BwC0jlcn0xvCil9UJKOIXbp4FrGvUwcYMYL2PYjaG0HUKlu9+TvHXvmaerbie+VY+P13igh16KBpwxeIY+DYMdBiUHM6VvRuxxfCvnVrWqCrWxeorDRhO9q7rIi/eTNtReFMG9zyjgkTRJ69iNgrU9buuw8YNqxqr3/llbYusjauucaxJhzjAf37q2///bf2ygnDKPn6a3VdhssvdxT6TJX56y+aRrVoQYuhShs+lzHwHhb2vnLrrbT99lsgP98QVfHdCvsjR8hiFBdns8wK1/DOna5f+8ABoBwxiEchGlUcVD0mIvYnTujYwSR6itepA9St6z7HXiAWeL74wu0fZwRhr6xEzhF7D568ZAlt3cziRQE5WwFJA+TZFxZSy16AhL3JJAv6/4OuTivim81S2IvOfjaEsHfxd9epQ1uO2DN6Rgj7f/+lFFxhdgOA0aP98x7i8iIoLlYXs2S8wP76fO21undMMSHk+HFaSVNiX7OB8QtKGz5AQh9wbcPXrZbQASzsfeX884F27agQy5dfhkfEXtHqTiyTdepEdwmXujNEtOI87EZEtjo0L2zI5eU6/nyEsLeuxnpkxQdoBTc2llY2duxw+VQjWPF9avXmBSJibwRh79axYLGEtbAXQ0tJkY4kIew3o4vTiP2BA/T/jY0F2ra1e5Ct+EyY0LgxXR8qKuj6qCyaLWz6VUWryO3s2eSsYnzAPt++YUNuWcY4UlZG3w0lrCQDhrJwntkMrFpFt10J++LiwI/LqLCw9xWTSUbtP/7YNvEtKtJv0VW3wl5REV/Qsydt161z/doiot8GOx089zExZOEFdLxALmz4LVoAgGdWfICKqgwaRPs//+zyqUIoCuGoR7xu9VZSQuHZvXs9uvCJxQ09W/E9jthv2UI9qOLj3VZ4MaKwV+bXC1TC3knEXnSN7NCBsg5UsLBnwgSTSW3HF9eM6Gj/1WfTEvaHDgFLl/rn9asdJpO0EwnsqxQyjH3Fy7Ky0IyjGpCTQ64nABg4kOJjp0/Tuc/B8adAGSAT80qGYGFfFW68kS4Ka9Yg8dgOW0srvUalqyLst2xxvUJmy8XFLk31rrTj6xIh7Fu2RFmZLBboIo1YMnw4bd0IezFJ03N1Y69s6GvWkEDt2pUE24UXum22HFZWfBGtv+git6WvjSjsxWJd69byPiHs/0VnmNO1Dw4h7DUvyiI/MTfXaRI9C3vGKAhhL6yjAHDTTf57/eRk7fvfe89/71Ht6NwZmDRJfR8n8jIC++/C3LkaK9SMv1ixgrYdOlAgTZxLL7hAtglWUloKfPqpOpYiAocMwcK+KqSn24qnmT6Za7sI6zXPXqxwubXiK4R948Z0sFVUOC50K3EVsQcM0PJOWPFbtLCNMSbGaTcvNaKA3t9/u1SsQigaQdi7taEvXUqVhY8coSfHxACZmbQSdPiw018zghXf4+J54oo0ZIjb1xTC/uhRq7FBCNz9+3Xrq1UWzhOcdx4QZypBIRKwF9pFhFwK+4QEeTJwErVnYW888vLyMHbsWCQmJqJ27doYP348znloTbJYLBg+fDhMJhMWLlwY2IH6GWG5X7RI3jdmjP9e394NLFi4UMfXUiPw1luO99mLfab6IVbqlNx8c/DHUY2wz6931r8+Oxt4+mnKFL75ZnVNQzZUqAmKsJ89ezaaNm2KuLg49OrVC+tc+Lrnzp0Lk8mk+okLRLKvv7jtNtp+8glSUyhXy/ARe0WPHpPJMzu+KmKvIex13/JOEbEXjQEaNvRwIb9lS/opLweWLXP6NBGx17MV36No9enTlIZSUQGMGkVqdds2Un1HjlDDcye2/LCx4ldUyESwAQPcvqb4LpWUWM8PDRpQIYOKCunh1Rlawj4qCugYSbUk/snT7uXlUtgDbgvocVV84zF27Fhs374dS5cuxeLFi7Fy5UrccccdHv3u66+/DpNBI6Y9ejh2fLzwQv+9vjNhDwAffeS/96mW2F+jZs92ef1mwpwXXpC9KwWcVx9wnAl70ZHyn3+AW24BMjKAp56i6VLDhurmBEeOAN9/H6wR65+AC/svv/wSkydPxpNPPolNmzahc+fOGDp0KE66aIyemJiIEydO2H4OiUiyHrn0UlKt2dlIsVCo3vDC3q5tlzthn5srXQrnYbemetd1y7vSUhllbtnSVgncvtWQS4Qd/7ffnD7FCFZ8j6LVDz5IfdtataJmzYmJtP/jj1Rxb+lS4IMPNH/VSFZ8l66Ff/+lDyspSaOnmyMxMbJew5EjIIUsZu02f75+sFik7lYKe5SXo0cF9ffacNjR/3b8OGVjmEyy8KYDbvLsuSq+sdixYweWLFmCDz/8EL169ULfvn3x1ltvYcGCBTjuZiV38+bNmDlzJj4yqEpNSHA8/JOS/Pf6rq5BL72kW7OPcbAXbkOGyFYgTPVh0SLg8cfV97GoDzjHjlEAISKC4iNHjpBxODKSshsHDAC6dQM++YSi8hdcQA2oDhyg85+SK68Exo/Xd9AoWARc2L/22muYMGECbr31VrRr1w5z5sxBfHy8ywu5yWRCenq67SfNbQWzEBIdDVgjEymnKMRlSGFfXi4vaE6Evf1ipkBE9ho3rERNFNEHYOeN0bUV/+BBKsVZsyaQlqaK2HuMKKD3559OnyLEckmJfidkbqPVW7bQWdZkotyz+Hj52Hnn0ao3AEydqln+3wh97D2K2K9cSdu+fT0uviQm6TYdL/z5LlIXQsWZM3IBSnU6yM5GD6wHAGz4L97+12wBr27dtAt/AXAr7NmKbywyMzNRu3Zt9OjRw3bfkCFDEBERgbXOLhoAioqKcMMNN2D27NlId9t+hCgtLUVBQYHqJ9T06RO4105KUp9iW7eWC23nzgG//hq49642lJaqbzdurG9bHeNf/v6bnIdK7L8TTED44w/adutG130Rra9bl1KaVq6kGMgNN5D+yMwErruOZJf99NJkIhdT16461RlBJKDCvqysDBs3bsQQRQ5qREQEhgwZgszMTKe/d+7cOTRp0gSNGzfGyJEjsX379kAOs+pMmABERiIllxSuXnPsXQr7Y8dI3CpDi1Z69aKDa98+6VhXIv49rdtG0O8DDkXUdF08T5FfD5PJt4h9//603bFDVt6zQyl09Bq1dytqn32WtldfrT2jve8+6nF2+jQwa5bDw0aI2HvkWhDCXvzfPcChgF5Ght0d+kEcvrVr27U9PHECPbABALBxo8mhU9Tvv9P24otdvLgoHOhG2LMV3xhkZWWhXr16qvuioqKQnJyMLBfFNB988EH06dMHI0eO9Pi9ZsyYgaSkJNtPY3FQhRDlKaBbN/++tsmkXmA+dQp44w15+7HH/Pt+1ZKYGMeir7Vq6Xf1nfEfGzdKz7fg4EE5j2UCijMbflYWTaM7d6Z/x7x5MsAoUM4hZ8ygkkeNG9N0fvbsQI9c3wRU2Ofk5KCystIh4p6Wlub0gt+6dWt89NFHWLRoET7//HOYzWb06dMHR53Yo3Sxgt+wITBqFFJAoXpDRuyV+fV2SYNJSdSGAtDOYxE1xC64wOQ0mV7XEXtFfj0A3yL2KSnSkylEnx1xcTJnX+/CXtOGvnUr8M03tP/EE9ovEBlJFU4AEvZ5eaqHjSDs3S5umM3+EfYOd+gHcXp2MEsdP452+A9xphKcPavW5haLbMPlsp6gMsdew+4oviMcNAstU6dOdah3Y/+zU1RN9ZIffvgBy5cvx+uvv+7V702bNg35+fm2nyM6OHY6dJD7l13m/9dXLjDn5ZE5TFyb/v1XXq+YKpCWJlWFQKskNxM+bNtGRTKU/PabqsYUEzgsFunwE8Je2V0kOZn0hrN5uDJin5JCUzFhGP3xR/+P10jorip+7969MW7cOHTp0gUDBgzAd999h7p16+I9J/1ddLOCf889SIU1xz6rPDRjcIHF4qGwt7PhC0aPpq29sLdYZJRuyBA4Dc0Lp6Uu64SJ8prNmwOAbxF7QK5+iJUOO0wmKRb1KlpcitqXX6btVVepZ7P2jBlDCdYFBcCrr6oeMpIV32mO/a5dNMOuUcOrEJ3TiL0OrfjiOHVwSB8/jihUomvtgwCADRvkQzt20GEfF+emgJjVGYOCAgpB2iG+e+Xl7IgMJVOmTMGOHTtc/jRv3hzp6ekONXMqKiqQl5fn1GK/fPly7Nu3D7Vr10ZUVBSirCJqzJgxGCjOoxrExsYiMTFR9RNqhOELCMz31X5ie/Kkugr/vff6/z2rJRde6OgyM2hRR8YNe/c6FseYM8eN1YzxJ/v309QnKooyGk+fptiRYMECoFkz57+vnDaJ7lUjRlBsaetWysOvrgRU2KempiIyMhLZdmouOzvb45y66OhodO3aFXu1PODQ0Qr+oEFISadel7nb9BeWLiqiAtyAk+I+Gq3ulAi3ZGamWrNv20YTjRo1rJ1CnAh70QqwtBQoLvbpTwgc4jtjFVpC2HsVsQdkdXQXefZ6L6Dn1IZ+5AidaQHKn3dFRATwzDO0/+abKvFmi9jnlVNemw5XONxG7NdQ8Ticf75Xlj0jRuwdTtPW47pHI9pu3CgfEtH6fv3s7Pv2xMXJRQ0NO74yZUWHX49qQ926ddGmTRuXPzExMejduzfOnDmDjYovw/Lly2E2m9FL9IOzY+rUqdiyZQs2b95s+wGAWbNm4eOPPw7Gn+c3lKf7QNT5tb8OZWcD3bvL299/z65xv/HAA8C0aer7TCY45BwxxuXQIekaE9xyC3DnnSEZTnVF2PAvuICu+TNnysdefNH9Goty6iCEfXKybJNXnaP2ARX2MTEx6N69O5YpWoiYzWYsW7YMvXv39ug1KisrsXXrVtQXgtEO3azgm0xIuZT+ptz9jkXDQo2I1kdGOilqpdHqTknDhrJnr3BjA9JK078/VbF05rlPSJDONjt3dugRSr5xY5jNcuheR+yFLXvbNqf5GHoX9k5F7Ztv0srQwIHqWaUzrriCbG6FharypeLwLDNHo3TRL8A99+iu+qzHwl6r560LhJa1Tf51XDzPqbC3Hhw9WlEuhTLr5KuvaOtR0MNFy7uoKFooBFjYG4G2bdti2LBhmDBhAtatW4dVq1Zh0qRJuO6669DAej04duwY2rRpY2t1m56ejg4dOqh+ACAjIwPNXIVpdMiXX8p9J2UjqoT9dUjESf77T943ZYr/37fa8sILwLhx6vsiI3UYkWC8Zv9+x+DVFVcABltMDAeU+fXHjwPPPy8fe+QR97+vJewB4PLLacvCPoBMnjwZH3zwAT755BPs2LEDd999NwoLC3HrrbcCAMaNG4dpihXSZ555Br/99hv279+PTZs24cYbb8ShQ4dw++23B3qoVSZlDEVsc4ri1f48HaC04Wu6y9xY8QHgxhtp+9JL5AAA7Gz4gNOIvckko/a6E/YiYtqoEU6eJP1qMmmIGnfUrStLFgvxZ4durfizZwMtWuDcb6sB2NnQ8/IAkQrz0EOevZ7JJKP2b71lm4Um7PnH9pSzqAV89hlVRtEJlZXyu+1vYS/6rh45Yp0jCqWfna07z7m7iP0lFxYiOpoi9uvWAatX009MDHDTTR68gZvK+OKz13PKBiOZN28e2rRpg8GDB2PEiBHo27cv3n//fdvj5eXl2LVrF4rEwRUmWCzqNezNm/3/ndWK2ANUo1TwxhscVPYrn3zieK2Lj3cssscYh3XrKA1MyZAh6rwWJihYLFLY9+tH2Z2CN990nwFz9qxaYiiF/RVX0HbFCs3GTNWCgAv7a6+9Fq+++iqmT5+OLl26YPPmzViyZImtoN7hw4dxQvEfOn36NCZMmIC2bdtixIgRKCgowOrVq9GuXbtAD7XKpDSlcGQuUoBffgnxaNT42sNeyYQJFNA/doy02saNGsWynBTPA3Qq7MvL5cW6cWNbIaL0dGqp4TWiUvzq1ZoP6zJiX1FBBe/278e5ExSJTTArqtvNnEln0o4dgeHDPX/dYcMo6amsDLj1ViA/H5Fjr0NN0KpGwb3/R8+bM8dff0mVUf5fNHPsz54lRwYgLSwekppKx5/FYl33S0mRnnWd9U52F7FPb1sH119Pd82aBbzyCu3fdJOHC2IeCnvdLYAxmiQnJ2P+/Pk4e/Ys8vPz8dFHHyFBsTLWtGlTWCwWl/nzFosFo+zbThmMykqnp36fcSbsAXW9Nw46+plXXpF1ZQT16wObNoVmPIzvfPKJ4/X6ttvkBJYJKv/9J1N4v/iCUnwFw4a5/31lZrbJBNSpI2+3agW0aUPT2iVL/DdmIxGU4nmTJk3CoUOHUFpairVr16ry7lasWIG5c+fabs+aNcv23KysLPz000/o2rVrMIZZZcSq0RnUQcVifX2j3PawF3ZgawE5LWJjgeeeo/3p0+kALCuj/PvOna1PElZ8jb52uhT2J06Q0oqOBurW9T2/XiCEvZN2jroU9itWUB58SgrO1aQFt4Sl1iqJOTmyv9LTTzt0THCJyQS8/z4VdVi3jiLUu3ejVgT98QWDrRUZ168HSkr89MdUDSEkIyOtqSX2bNhAobGMDPld9xCTSXZ6273beodOW965E/aoXx8PPki7CxYACxfSvseWYDct74xQZJFhtCJLLkqs+IT9tUgZNFYWqTSAqdF4PPwwcPPN6vu6dwfeeSc042G85+qrKYdeyezZwP/+F5LhMDJaX1xMvecFaWnS2egK5bShdm3HBhbV3Y6vu6r4Rka5anR6xb/S06sDXAr7w4dJrMTFuQ233XAD1TwrKyPN16wZRQpsExwXDet1KewVNnxERNgi9l7n1wtE7Yi1a2W1QgW6jESKJNExY3C2HlnVEpZ8Q8uid91FqxDdutE/3lsaNqQzd82aVAU9IgKJDUm1na2TQekLZWXqKmwhRJlfr2kH89GGLxB6dtcu6x06zbPXFPbl5bIQYoMG6NIFuOQSuhkZST21lfZglygj9ho1FnR5nDCMB/hb2Ken0/ElsO8s8/jjcl9np5HwYO5cRxE4cSIFQXRWH4ZRUF5OF3FlUSiAqk3ec09oxsQAkMJeIAJefft61ojCWX69QNjxf/qJvgbVDRb2fiQqCqhdm070OaUJwB9/hHhEEpfCXvSFaNbM7VEVEUHnxZUrgQcfpIwD5YKGTdifPOlwROlS2Nv1thMfhc9dE9u2pQh1URGwZYvDw7qL2JeXA999R/vXXotzJhLdCWW5VC/g22/JzfD66763/rnySpqNfvUV8PvvSEyLBwAUnDXJEqarVlXxD/EPTrsCCISw99KGLxAlGGw143QYsa+slPpd1cc+O5smslFRtqvpV1+R4SMvT138xi3NmpFaKSrSTNsREXsW9oxRENeM9ev9u6YfGaleYLMX9k88IfeVuaqMH7ntNpmCJThwgCZEGgv4TIjJztbuWLNrl28BCsZvVFaqyxqMHCnrTovpoDvcCfvevSnT8cwZ3UwtgwoLez+TkkLiJxcpxhH2dn3cPaFfP+C116RQsZGaKn0xdjMQIwh7kbtj3w3FYyIiZNReI9lSCEbdCPtVq+gfUq8e0L8/zp2j72+tTs3JxREZSRH9fv2q9j41a5IlbtAgm2grKID0kiqTRUOIy4r4FovfIvY2YS98thriNlTk5NC/3mQiQ4UN4cJJT7elZCQlUZdHr5uRREfLeh4adnwunscYjVq16DJSXu60dqrPKO349sI+NlYK//XrWWcGjPbttatxRUframG22rN2rbbztKJCXoCZkLF5szS6NGtGhhgxVfZ0mulO2EdGApddRvs//eTrSI0LC3s/k5JC21ykAP/84/rJQUQIe80e9j4Ie6dERMiTqpNe9k46wYUGcUG2hlvECcNnYQ+4FPYiYq+bSKT4jvbrB0RFSWH73ae0rLpyJTB6tF/fUojAs2chl2hXr9ZFWWfx92sWzjt0iJwoUVGAj3U/HIS9k/aQoUTY8OvWtctdE2P0sraAU1zk2bMVnzEaubm0yAX4346vTA2zF/YA8Ouvcl/RjIDxN4mJ2tepjAzO2dYDr72mvehusajzWZiQoWyCNGsWTcHz82lubKvV5QZ3wh6gdTiApmzVDRb2fkZ8yXKRQtVTdZKDJSbImpE1Iez91T/YSWV8vUfszWbZpbBKwt5FAT3dWfH//Ze2nTqpW70lRlCikvhb/Ij4DhYUgARyjRo0K9boaR5sXEbs166lbefOstG6l4jCMDk51uNAx8LeVeE8v+Cilz1b8RmjkZMjLaWBLKCXm0tlSZR06iT3J07073szdphM2vO622+nFRgdLFBXO8rK6P+iVb1VJ3Nwhpg1S+5fcQXw11+037u3YxE8eywWikWJVEHAubAXmcA+dbcyOCzs/YyI2OdEpFGYXLSRCzEuBYtILPdHxB5wWhlf18Le2uqupIROLk2aVOE1e/Yk58LBgw6CTXdWfFEHoFMn1Zic5pj7AZUVPyaG2ugBwPbtgXtTDxHHiViAUVFFGz5An6uYpO/eDWMJe3E8+yti76LlHVvxGaNRWSkj9mvW+LfRh31lfK0ieVOnyv1Dh/z33owTLBbgoovU9x07RpHh6hgmDBX79mm3sBk/nkW9zti5U+6/8QatxYgsTGc2/LNnqevOnXfSvLxbN/XjzoS9WPzUKrUQ7rCw9zM2K35da/K5TnqeuhT2/rTiA04r4+tS2Cuq4ov8+mbN3K8cuiQxUYpVu6i9rqz4FRVSTHfqpGr1JtqrBwKVFR+QhRpspeJDh1jc0BT2ImLvY+E8gfhzd+yAehFMJ5EetxH7IAp7XRwnDOMhzZtTwcnSUnm68Af2wv6//xyf8+ijcv/++/333owLli1zLPEN0JdA9ABlAscDD2j3RztwAPjww6APh3GNskf9pEm0FcJeZGVaLHR+e/VVYPBg0lSjR1OKkVYpC2cReY7YM37DJuyTqG2YXvLsnQr7M2ek0vaXFd9JFFJ3wr68XC4+NG7sn/x6gZM8e11Z8XfvpmXNhASgaVP3rd78hMqKD+hK2ItUBAdhX1YmF+mqKOxFev6aNaAJoMmkLkUfYkQOb716dg+IY8VfVnyRY79vH/39CtiKzxgFZbDw9GmajALqvPeqYt9+VUvYKwvjLlpUPds8hYRBg7QXZUePpnM7/yP8z5Ej9Nm+8YbjYxaLLMzK6IZ//5VOopYtydR66BD9KyMjaV40dSr969q3Bx5+mNbMysuBFi1oIeDnn4HJk9WvO3mytPMrYWHP+A2bsK9hXWLXe8Re2PDr1vWf/9ooEfusLLoIREcDdevaIvZaC8BeI3LT7YS9rqz4wobfsSMQEeG+1ZufEKLNUBH7LVsoDFenTpVXflQFtqKiZE85ndjxT5+mrTiX2fB3xD4jg3xypaUOS/FsxWeMgtLdlZcHjBhB+z//7L/38CRiDwCffCL3lS2lmADjLO8eoHPc+vXBHU+4Ul4OTJsm28QqueEGtt7rmMcfl/sPPURbEa1v1w4YNw546SVKM4qNBYYOpXWb3bupW9VbbwHDh2sXDx0wAHjsMXXtEbbiM35D5HvkwLqzcaMuTjZuhb2/bPiAW2FfWEhz+ZBj177LrxF7Iew3bVIlW+rKii+EvbUUqRBRmhXh/YjLiH2IjxUh7OPj7R5Q9q+vop2hb196iV27rBcpneXZi4W3OnXsHvB38bzISHnesbPjsxWfMQoRillUXh5NSE0milAdO+af9/BU2I8ZI/cnTPDPezNeYLHInrlKevaUzizGN1atIpX24ouOj505oy63zuiKv/5St50TpSmEsN+6FVi8mFJAP/+czqNLlgD33ec4H7fP3Lv+ejrsZswgo6wQ/hyxZ/yGLWJfavUznzxJ5XJDjFNh7+/8esCpUElKkppIRAVDip212K/CXiRblpUB69bZ7taVFV9RER+QQtvrnuRe4iDsW7akL8aZMyG3ozuN2Pspvx4gwSxKMPz1F3Qn7MWxqRL25eXyf+OviD3gtOUdW/EZo6Bc58vNpcV9cZr45Rf/vEd8vPp43LFD2/1ds6Z87zNntDUmE2BatHC+QB0VBcyeHdzxGJ28PDrIRBK2PRaLkz7OjB6wWMhkIWjUSLpila6mmjXpfDl2rEZgRfFayiY6HTsC8+cD33xDgcNNm4BXXqHHWNgzfsMm7PMiZGKcRnGoYBNUYS8ieidPqlaoIyLk5EQXdnxFBLKyUra684sV32QCBg6kfUVxHV1FInfsoK214WewIvYOVvwaNWQbghDb8Z3m2AthX4WK+EpEW6yVK2EMYZ+dTVfVqCjnZWh9wUkBPbbiM0bBPmIPBN6OX1SkXRkfUFfHnzPHf+/PeInF4uBaBEDJwiaTasGf0UB0HXDICbNSVBRyhx/jnp9+IrOF4KKL6Ou/f7/6HPbbb3LK7IzcXFqwFHTpQtsxY4B33pGvA0grPgt7psrYhH0uYGmlHY0KBU7bePm7hz1A+foRERRSsGv7oqs8e0XEfutWcszXquXHuiuDBtH2jz9sd+kmYl9eLs+q1pWMkFnxAd3k2Wta8XNz5THcs6df3kcI+2XLAEt9EvYlh09i27bQuzWFsBfHKgCHtBW/4aSXva4WwBjGBcqIvb2wX7rUsee8r3hqxx8+XO7PnKmTtLfqSno6ic/rrnN8TKR1bdwY/HHpnccfp+uMYu5k45ln6DOtUSP442K8orJSHa0HSNjn5JCxRbBhg8xedYW9lBKFiAEqWmoyka0/K0tG7DnHnqkyQthXVgL5TcjiHGphX1Eh07yDkmMfGSl7ZdlFIXUVsVf05Ra5Pn360PD9gkgkWrMGKC4GoBb2IV1sPnKEvqRxcbb/VbCs+Ko+9gIh7O0EXrDRtOKLyEqrVnZq13cGDqQCMf/9Bzy98TLchE+R8slMdOxI85ZQoplj7+/CeQInEXu24jNGwd6KD9CEMy2Nvr/i2lJVPBX2sbHAjTfK299955/3Z6rAF184b2faowd9ibjaIfDUU/RZvPCC9uNmM/DEE0EdEuM7X3wBbNumPke2aydjXgBw/vlA9+6evZ69lBIRe4CMhELo//47W/EZP1Kjhoz25aaTxTnUwl4ZHVYJ+8pK4OBB2vensAekHV/PLe8UEXv7Xpp+oWVLmo2Vldmq44vPv7ISKM1oBdx8sx/f0AtE3kGzZrYIbLAj9mfPKhY3RK61Hq34frbhA2RqefVV2n96cXd8jptQVBkHAHj7bds6UNApLZXvrSns/VU4TyD+7wcOqNpCKSP27LZk9IyWFT8iQkbO/WXH96TlnUAp7N9+2z/vz1QRUTnf2WrlqFH0nLvvrl4nvcJC4Npr6W9/+mnt54jJQiD78DJ+pawMmD6d9kX357g4Ojdt2yafd889nr+mK2EPABdfTFulU4qFPeMXbHb8FOukNcRRSHEdiYxU99zF8eP07Y+Kcpw1VBXxekePqu7Wo7C3pNe39cHs18+Pr28yyaVJa569UjAWHs0DPv0UWLHCj2/qISIFQ+GHEsI+WMXzKisVAlZEbsW4QoSmFV+0LPRD4TwlEyfKKtadsRl/J1+BJk3o2PjqK7++lccIG77JZFePSOFu8SsNGtBqaEWFXGSEFPZmc+gWORjGE7Ss+ID/8+w9jdgD0iwG0OnL1XOZIFOzJolUZ0WV58yhlSGTSReFlwPGli30WSQkOL/giZbEge7By/idDz6g9fr0dKBDB7qvpITkkNL46M2cWynsmzRx7NwzZAhtly5lKz7jZ2zCvlZT2tmzJ6QrsEKsJCTYLXgKEdWkiR/951YaN6atXX9qcSDqqSr+ITTB8eO0snf++X5+D7GE+N13gMWCqCggJpKSqAthVflTpwb/+6FRNFFY4wMdsa9ZU34PbXZ8UTzv0KHQHCtFRcCpUyg8Z7GNEQCpSrHq466yi5eYTMCCBcDqxXlYj/Nx4enFuHMCfTdEIZhgI47L2rXtUukDZcWPiJDVKhULoPHx8jvCdnxGz2hF7AE69UdGUo1SkfFWFYSwF4vz//3n/FQZHU2BX8H771f9/Rk/k5JC/0C7OkQq6talE+G774ZHFL+4mBSfyURtdoVFzp5Vq+jvTUsL7vgYv3DuHPDss7Q/fTq1sBO0aCGNGc2bq3Pt3aEU9sr8ekHfvuQKOHEC2LyZ7uOIPeMXbMI+pj5d9QsLaeUxRAS1h73AibBX2rBDSmWlreHl3wfJXdC9u/M2Gz4zahS96M6dlGtfUoIEcz4A4Nw9j9Jja9cCv/7q5zd2g7DiK/73wYrYm0walfHF9+XsWXXZ02Dw228Unq5XD0X7SMDahP2ff9Iyc+PGlBzmZ6KigN7DayM60gJYLBh/2UlER1Navz/EgLc47WFv1xrSr7RpQ9udO213RUTI/0HIzxUM4wKtHHuAFscuvJD2/dH2Tpjg4uLovHH2LHDsmPPnK+u1vf++cw3FhJi6dUnE5uc7f84998go/q+/Gk/kL1pEY4+PB+64w/nzTp2iv82TSmqMbnnjDZpet2hB5ZPEuSc5mToBiYZMQ4d6/pr2re7sbfgAnRuFA0DEIljYM35BdIPKORMlS6yHMM8+qK3uBGIW4kTYqwqnhQBL9kmUmKNRZorFrI/JcywqlfuVxETgqqto/+OPgS++QE0L/UMKb7xTJkMuXRqAN3dBCCP2gMb3ID6eJjgARe2DyXvvkRUcQKGZKu3ahP2SJbQdNixw+X0RETbBXK/sqOg+iK1bA/N2rtBsdQcELmIP2NotYvt21d1cGZ8xAsrFYPsUM3/a8UXjmvx8aWV1ZbHv21fWsC0uDl16D+MhiYmkXpwV2RMMGyZF/pdf6vMEmZ9PVWBNJvoZNcr18ysr6W/3ZytVJiTk5gIvv0z7U6dStXrBjh00hRBxLG+E/ZEj6q+6VsQekCZZAVvxGb8gzk2nTsFp1edgEhJh7yZiHyphX1ICXH45kNiqHuJRhK6R/2LTJhOSk4H77w/Qm956K20XLABefBEJsAr70ihZrS8zM0BvroHF4jJiHwxhr1kZX2nHDxZFRTKcNn68LT3CNllXCvtAouhlL3SussBMsHAr7AMRsRdOCDuVwpXxGSPQrZvcdybsly+veq2IxEQ5nRCv5UrYR0QA118vb7/3XtXenwkSosiexeL+InDddXSiFAI6MzM00fyzZ2liJcZRuzbw5JOuf+fECfl3+rOFKhNSXnyR5nWdO0s7PACMHQvUq0dTz337yHWkrI7vjpUr1be1IvaAo7APxnxWb/DRFABEWlB2Nowh7P3Zw14ghP3Ro6oVaAcLdpBZuBBYvBg4VxQJCyLwXwW1Wfvgg8AEIwGQFaBtW/qjd+9GTRPNys6dgywXunFj8BoO5+VJRa343wfLiq98D9X3IBTC/rffaJbcpAkqnn8JZaAE1poHt9PxsWsXJcoql50DgYawtwtgBwXNHvalpTIP1N9FNgG1sFdMSsX5iq34jJ5R1tQsKFA1d0CHDnTIFBdTVk9VEW2hPBH2gNqOv2aNeqLNGID27aX49cT20aePjOaLn7vuogK9Bw7IUuG+YjbT64gq9uInMZEmVu548UX59wg7CRM2nDolu3AMHQrMni0fu+Ya2opofZ8+3s01lTWmk5OlxLCnUyf17Z49PX+PcIGFfQAQ56vsbMiIaCgSZq2ERNg3bEgn/LIyq3WBCHXEfsEC2j44ZCu2ox0mN/seb74JXHllAN80IoKs9g89BLRvj5rN6wGwFjVs0YIsHmVlwD//BHAQCsT/vX59lY80pFZ8IDTC/vvvaTt6NIpqpNjurvnpu7L6y8CBdiXiA4BOhL1mjr1I5I2LkwVE/EmrVjJpWNFFI+RW/OPH6Ts5eLDxclqZoGHfBVNZGNZk8q8dXwh7a+aQ23PE+eerDXlcRM/ADB8uRfGdd3r+e++9R6HR5s2p8qJSkHv7ExlJr+NNXseCBXLcjz7q/d/NGIZ33yVXbJs26q9IRIRMdfXFhg+ohX2XLs4zI+3NH8EIVOkNFvYBQETss7IgxcrhwyEbj6awP3PGVjzO1kvan0RHyxUOhR0/lML+zBnpur7tvL/RDjswc/DPuPfeILx5w4bAK68A27YhoQ0tNRYWgs5OYmYYLDu+kwWdYEbsNZ0bwRb2ZjPw44+0P3q0rXuECWbE/m82MHcu3fH884Efi4aw37lTTuCDhaYVXxy/jRsHps5ATIx0NilCkCG34h88SOftffu4fzLjlG7d1E1lnNnxf/qp6utDQtgLXFXGB+hrq4zaf/EFTbwZgzNnjhTLerM0XXutHJvFQreZsKe4WEbrs7NV3WvRvTtlZ5SV2To/e51fL7JHAec2fHu8sfqHEyzsA4AqYh+KKKQdmsJ+1y7a1q8fOCWnkWcfSmG/cCGdWNq3BzqYt9CdgcgZdoMozGYTLMKOv2ZNcAYgFplEYUfQ9bfaRez37iUlGxcH9OljE/Y1Y8phk3Hjxvm9f70mCmHfrBm1di8tVV/MgoFbYR8ohB1fEYIMuRVffA8VxwnD2BMfr7Z/inIUgsGDaZ17//6qZ+Qp8/kBWqx213BHKezPnKHrIBNGJCSohbTFQilmwSA2Fti0Sf3ewhbJVCs+/1yac8U8IiODthddRNvMTJr31q3rvPidFvZpTK5+V9lcYsIEz98jnGBhHwCEsM/KAiyNrd/sEyeCl0Nth0thL1pNBQIXwj4Uk3Xhur72WgS2fZcbhLAXQtIm7IMVsdcQaiUlVJgWqEbCXiScduoEREXZWrLUrBMDPPww/V9eeik4YxFNqo8fR0SEps4NCiLaqMqxF9+XQOTXCzQK6IVc2IuQg/heMowTlHZ8+yJPCQnAgAG0X1U7flIS0LKl+j53efYdOqg7dX78cdXGwBiAiy92FPvip7KSVnh+/BF4800Ksz7+OK0A9e6tTre6+27g668pHKv1WiUl3ik0Jiwxm4HXXlPfd889cl8Ie2HDv/hi7+olKm34gOuIvXIRYPhwz98jnGBhHwCEFb+8HDgdmUrhN0CVPxpMNIW96BkdZGGvrIYe7LTVLdYg/YABCKmwF/8Hm7AXYZgjR1z3svUXGkJNKZ4cajEEAJdW/FOngtN0WdQ0sF4lxP8jPt5E/VpWrw5egR9FxB5w2gEu4IQsYq/xBzscJ8FGLDCxsGfcoDT1LFvm+Hgg8uwF7oS9yaSujr90qUOzGqY6ERFBK0SXXQbcey8wcSLw3HOUp7F6NZCTI4X7O+9Qu964uFCPmtExP/8sJQVAZRjuuIPModHRwIUX0v3+yK+PjXUtWz78UO7Xru3d+4QLLOwDQGys/EJlnzSF3I7vMmLfunXg3thFxN5iCe6EvahIfvxt20IXEXubFT8pSQo75dkxUIgFJoVQE5HzhITgdJ7RjNjXri0VfzBqUghhb4042Kz4NZ08P5CI/39ODlBaatO57ibt/iZkwr5jR9pu2WIrLODgbAk2bMVnPEQp7P/+27EuhBD2f/5Z9ZoR3gp7QJ3mbLEAn35atTEwDMMIZs5U3/74Y2DdOtq/4AK6lp88SVkbAHDJJZ6/tn1+fceOVGvXGaJsUnUmKMJ+9uzZaNq0KeLi4tCrVy+sE/9xJ3z99ddo06YN4uLi0LFjR/zsj2XuIKO049sSTfQk7EMUsY+Pl8IxmHn2u3bRhCYlBaibYpaJiQHrceccTcHSti1tg6HkNIRaMAvnAU762JuCvAgmrPhWYW+z4odC2NepQyuCAJCVZatrGOzIWsiEfevWdIIqKgJ27ACgA2HPVnzGQ847Tx0d+usvx8ebN1cXj/IV+zx7Ty4ZrVqpFwTmzuVGDwzDVJ2NG9UR9fvvpwr4S5bQbWHDX7qUtp07e2eE9Ca/Xol9t5LqRMCF/ZdffonJkyfjySefxKZNm9C5c2cMHToUJ0VfZDtWr16N66+/HuPHj8c///yDUaNGYdSoUdi2bVugh+pXVMI+xJXxHYR9RYWs4hNIYa+xoCFangLBFfaqdYzcXNlsWORNBBHNNl5C2FtFTcAoLZXdEDSEfTDy6wEXtRZEeoBosRYoTpygzyEiwhYtllb8wL61JiaTyo4vUu6Dmb1jsbjJsQ+ksI+MBHr0oH3rwm9Ihb3FwlZ8xmMiItT9ku3t+Mq2dz/9VLX38kXYA+oienv3krOAYRimKiij9S1bAi+8QCUZhO3+8stp6w8bPuA6v14YcQHgttu8e59wIuDC/rXXXsOECRNw6623ol27dpgzZw7i4+Px0UcfaT7/jTfewLBhw/Dwww+jbdu2ePbZZ9GtWze8LfooGAShF7Ozob+I/cGDJGxr1AjsZF2EHY8fV/XYCUUBPaGXVTb81FRqtRVkQhqxF4I5Npb+fivBrIgPuFjcURSRCygiWt+6tU3Jh9SKD6iEvVjfOH6cCtMEg+JiiigCioh9UZFU+4EsngdIZbR+PYAQC/ucHPpAgMCeI5mwQRkh+v13x8fFBPf77+W6si/UqaPuTZ+TI6tRu+Kaa9S3uYgewzBV4fBhKs0gmDuXplPLltF1u1EjWog0m2WjhqoKe1cRe2XhUuVCa3UjoMK+rKwMGzduxJAhQ+QbRkRgyJAhyHRSATwzM1P1fAAYOnSo0+eXlpaioKBA9aMHNCP2ehH2Inx93nmBTaiuW5dm58roF5zYsAOMprAPQX494ESwiLLFgY7YKwvnKXpz68KKD0hxG+iIvV3hPEBfwr5+ffr3lJd7Nmn3B2fO0DYiQrHAIywDNWsGvhKNuBJbI/aazpZgIWz4DRrIFAmGcYEyz/7ffx2P24suogX/U6eq3o3Mlzz7jAygb195+6uvQnRsMQwTFjz1lNyfMkUWyVu0iLajRtE8ZssWCnLGx8vneIJ9fr3JJMvxaPHdd3LfvntIdSKgwj4nJweVlZVIs7M7p6WlIctJ89WsrCyvnj9jxgwkJSXZfhrrJLqiJ2EvBItN2ItZQCAL5wF0FIqo/YEDtrtDYcXXk7B3acU/cEBGCgOBRuE8IHQRewfXRrAi9uIYUFwlQppjD6iEfXS0dP0Eeo1DIL4DiYmKNR+lDV+xEBQQhLDfsgUoLg5txJ5t+IyX2EeI/vhDfTsqSlan//zzqr2XL8IeUNvxCwuBb76p2jgYhqme5OerXT/PPkvbykrghx9of+RI2gob/qBB3q2T2+fXn3ee665NX30l90M2j9MBhq+KP23aNOTn59t+juikj4umFf/IkeD5ahUIAWn7oovSlK6SVfyF8Azu32+7K9jCvqIC2L2b9vUg7DUFS7165LG0WGTHgkDgJF862BF7p9+BYEXsxWesqDER0hx7wKHlnXC+ByvPXinsbQQjv17QqBGtiFZWAps3y+PknCX4lb5Y2DNekpqqjhJptb278UbaLlxYteufr8L+qquonIWA7fgMw/jCZZfJ/dWrZVfvNWuoAn5SkrW1NIKTXy9KRwFAp07evU+4EVBhn5qaisjISGQrP3EA2dnZSHdSFjE9Pd2r58fGxiIxMVH1owdUEfuGDcnfWlam/vYFCQcr/saNtBXFqgKJEPYhjNjv3y9LCmRkQEaD9STsTabg2PHdCPtgReyVfexVa13BiNhbLDIdReFa0ZMVH5AfRbAi9prfAVHwMxjC3mSSfuZff5XHye6jtFL62mtVS072BmHF51Z3jBe462ffrRutJZaUqG2j3uJrAb20NPXkeuVKKqTHMAzjKSdOyOKbdesCvXvLx4QN/7LLqIf9uXPyub4KezEncSXslfn1yvNwdSSgwj4mJgbdu3fHMsUVzmw2Y9myZeit/CYo6N27t+r5ALB06VKnz9crKmEfHS1FZDDLXIM0jErYnzkjr+T2s4NAIKz4GhH7YBXPE39uq1bWkgIiYh+CVneAi9xhYccPZC97J8I+VFZ8wG6BQ/xPsrNt/cz9zokT9OFHRgItWtju1pMVH9BJxF4kuCmrdQWSq6+m7dy5qFmDVnwKy2MoMXnKFOC554IzDo7YMz6gnFDu2+eYfWcyyah9Vez4ycny0gp4V3P1ppvUt+fO9X0cDMNUP5RTZ9FgCyC98f33tC9s+CtW0Hp806Y0B/cUkV8fGSnnzK4K5ymj+968TzgScCv+5MmT8cEHH+CTTz7Bjh07cPfdd6OwsBC33norAGDcuHGYNm2a7fn3338/lixZgpkzZ2Lnzp146qmnsGHDBkyaNCnQQ/Urwop/6hQ5S4MefrNSUiIjogkJkDb8Zs2oqXug0bDiB7t4nhBGIiNCl1Z8QPo4AxlC0YkVPy6Ock4Bu+9B3bp0JjebA+duETb8Zs1UCV96s+IH+5ShKezFcatYAAkoV15JHr5Dh1Bz+Y8AgELUlLOETz4Jji1ffOg6qdnCGAP73slaUfuxY2m7fHnVFu2UdvysLNm8wh0jR6qP8U8+sc5RGIZh3PD113J/5Ei6XAt27KDpa0wMMGwY3ae04XtTpkfk17dubQ2QwnXEnoW9JODC/tprr8Wrr76K6dOno0uXLti8eTOWLFliK5B3+PBhnFA0H+zTpw/mz5+P999/H507d8Y333yDhQsXokOHDoEeql+pV4+ES2Wl9UsZ7PCbFWVUOD4ewIYNdMM+SS9QKCP21gl5sK34Yo4uhFKohb1YfSwutptQCWGvLAPqbxw+DCLYEXuTyckCT2Sk/L8EStFq2PABHVnxz5wBior0EbEXwj5YEfsaNWzKJ2HyBABAIRJg/nw+/WMOHZKpRIFEfPdC5OphjEnnzuriUFrCvmlToF8/uhwqW0V5i/0l3NMMrho1KNdecPSo9jgZhmGU5Oer22b+73/qxxcupO2QIXJ+V9X8+rg4OlfWry8DpvacPKl2LfXp4917hRtBKZ43adIkHDp0CKWlpVi7di16KfxqK1aswFw7L9jVV1+NXbt2obS0FNu2bcOIESOCMUy/EhUlgz0HDiBkEXsh7OPjrUVzhLAPRn49IIV9QQFw+jSAEAt7iyXkwl4pHIX9G0DgI/bl5dT0GHAQLMHOsQdcpGTYRa79jkbhPEAHVvxateSbnzhhE/Yhy7EvLpb/g2BF7AHg9tsBADUhLS3FpnhAXAcCXcq7vJxmCoDDAhjDuCImRm0XXbZM22DiDzu+rwX0AGDcOPVtLqLHMIw7XnhB7o8f72j6Ffn1wmB34ABZ9SMjqd2nNwhhL6asl17q/LnK/Prbb6fAanXG8FXx9Yyq01uII/YhKZwH0IqCKDhgjf4FO8defOQNG4KioSUldEeIhH2NGtKSpLLjC/GUm2tbBPErp07RLDMy0uGMLHqYB7pVuRKnCzyBXgQTwt5JxD5kVnyTSbWoIT6GI0eC4z53iNiLgpeJiZTUGyy6dgV++gk1vptvu6uwEMCYMXTj228D+4FkZdHrR0dTqXOG8QKlHT87G9i+3fE5V19NiwBbttCPL/haQA8gx4AtNQ2UFxuISw7DMOHBwYPAyy/L248+qn782DFg3TqaxlxxBd3322+07d1bbdl3h7J/vVhjF+V3tHjvPbn/0EOev0+4wsI+gKiEfSgi9mvW4NxLswFYhf3OnSSuIyODUzhPYFdAL1QR+0aNIKP1SUmyP0eQMZmc5NknJMhFkEDY8UWiUr166p5HkJO6OnX8/7bOUFbGVxHoiL1erfiAprAvLAzOseIg7MV3sEWLwPewt2fECESMHmlbZCksBC3Zx8aSo0VZscffKLtmRPAlkvEO+4rMWjb3OnVkuyhfo/YpKeqmDd4I+4gIdRG90lJgwQLfxsEwTPijKIWGUaMc89hF7/oLLpDTWF9t+Mr+9SUldK4bNEj7uRUVwO+/y9t207pqCc9aAoi46IZE2H/wAdCvH87NWwgASEiwAB99RI+NGBFcBSfOANZm8sEunqey4qtUfugQ4tGhMn4g7fhC2Gu0jhSFl4IZmA1JxL6kRJaqtrPi603Y16wpHRTBMPo4CPtg59droFoAS0iQ/uM1awL3ppxfz1QBTwroAdKO/9pr1Ppu+3bvG4Eo7fhbt3pnZLGvjs92fIZhtFizRr3wN2WK43OEDX/UKNqWl8tzX1X7148eTQY6LWbPlvvCIVDdYWEfQESg+uBBqK34gfbVbt0K3HEHUFGBcyAPfkL+MeDTT+nx224L7PvbI/qzWz2JwYzYFxfLaHTDhpBV4XUi7B0q4ws7fhCFvcUSmoi90+9BICP2oohjYiJV4FcQ8hx7wOFvF9kigWoQoMQhxz7YFfE1cDhORDh07drAvan43nF+PeMDTZqoczz//FNbsA8ZQtvKSsoy6dCBjr0LLgDuuYfW5jdupGi6M5TC/sQJmWXkCa1bAz17ytvr12unDTAMU32xWIDJk+XtXr2ACy9UPyc/n7p8ADK/fu1amtulpHhvELYX9s5s+BYL8MAD8vbFF3v3PuEKC/sAomnFLyqioyCQiKW1ESNwbtw9AICEQ9tJHaSlua5CEQjat6dtCIS9CL7Fx1tzfJy0ews2TnvZB7IyvhNhX1goJ566sOIHMmIv8sabN3ewl4v/hZ6EvVh7OHUq8G/t1Iofwoi9w3ESDGHPEXumCphMajt+QYGsWStYssSxzE1CAhmK1q4F3n2X1uZ79KD7u3Sh9fi33wYyM2U3FfsCer/84t1YOWrPMIwrvvmGzjmCKVMcM/N++YUi9G3aSCu8sOFffLFD5qdLlPn1gGsbvnAJALQQyhAs7AOIEPZHjgDlUTWkzzmQvlqLRTaavOkmnOs5GACQEFFM991+u3NPS6AQwn7nTqC8PKjF85Q2fJMJ8rMPsbAPSS97J8Je2PBjYoJbOM7pAo8YXyDC1E7s5RZLaDoDOKAnYa83Kz4gFdO//5IdJxA4aQnJMJ7izI6/fz9ZVYcPt2WmAaDveVYWRdy/+AJ45BGK6Ccn06Lrv/+S6L73Xmrl1LcvlZmwF/ZLlng3zuuuow4+gs8+owk6wzBMaam6SF7TpmSLt8fehg/4J78ecG3DV47l1lu9e59whoV9AElLo1pPZrM1UByMPPstW+iKHxcHXHYZzhXRvzjh6uF01X/qqcC9tzOaNCHFWF4O7N1rE07FxYGfRDjM0fVuxQ+BsFfa8INZI81prQXRrDQ31/9fECFWxaqbleJiOk6V4woJehH2ZrN0N+jJit+kCX0/KiqAf/4JzJsKKz5H7BkfufZadd3Fn34Cpk+nrLRFi0hMT55M596mTen7/eOPwHnnkdh+6SVg6VJq9XTwIFWtf+IJMtslJFDOa5cutIavrG7/5592LVTdkJoqu0gCVIHa26g/wzDhyVtvyWkAADz4oHohECDx/9NPtC9s+Dk50qV0ySXevae9Df+aa7Sfp3RBTZ3qnSsg3GFhH0AiImQBPYc8+0AhovXDhwMJCbLdXUosLZ3ZH5XBICJCZcdXCicHK7qfER+1TcfrJGLv1IovRFRWlobqryJuIvbBtOEDLtoepqTIs7S/Fa3Siq9AOYbqasUXn0FiImgBpKSEFgiVyiHIOAh7pc85UHZ8jtgzVaRFC+DKK+XtzEzg2WdpEjxkCK2/z5xJxTFd9bQ3mWgta9Qo4JlngMWLKaNt0CAS8HffDRw+LJ9fWuo4MXYH97RnGMaenBzguefk7dq1tctzrVhBc4f0dFmz4/ffyQXZsaP36+PK85crG/7558v96dO9e49wh4V9gAl6yzux3G6dVYgJsa2PfahQCPuYGLJ9A4G34zuN2OvVil+njmz4efCgf9/UTcQ+mBXxAVnx3aF/ckSEVLT+tuM7sZeL72FCQog7nIlqeefOAWfPhiRiX6sWZHPt9u1DsxhoRfM4EcJ+3brAvCkXz2P8gFY/5RdfpMrNbdvK+4SwX7JE9mx2RUYGTZxnzSJHoD3e2vEvu0yeiwFaPPBkHAzDhC9PP60uB3bnndo6QtjwR46UcydxDvLWhm+fX3/lldrTD+XUeMyYkHWu1i0s7ANMUIX92bPA5s20P3AgABkR1pOwB1xErP2MStgXFEj1olcrPmDXTsGPeGDFDyapqbTNydF4UNjx/SnsLRa3wj6kNnwAqh53hw8HTdiXl8uU9cRESGHfuXNg39gNmseJKLErznX+5Nw5eY5gKz5TBXr1Avr1U9930UWO6U6tW1P0qbIS+PJLz147IoKqQW/a5PjYF194N87YWLXdtaJC2z3AMEz1YNcuYM4ceTs6mup72GM2q4U9QPOI77+n/csu8+597fPrnVXDV9b/fu89796jOsDCPsCICpFbtiDwVvy1a+lIa9LE9l56FfZOK6L7GZWwF5977doh/0BcLmyoVoP8RGGh/LB1YsUPurDPyaHPQfhbFehG2ANy0eHAgaAJe+VxqIrYd+oU2Dd2g+ZxIhYbdu/2fwE9Ea2vVUsnXwbGyDz8sPq2M6OYKzu+K9q1c+wKmpMDvP++d6+jZccPdFdehmH0ySOPqFt03nSTtoFtwwY6/yQk0KIlACxcSGvjTZo4Lmy6448/5L4zG35uLvDff7Tfti09j1HDwj7AiJyTNWsAS4MAR+xXraKtosmkboS9mIzv3AmcPh20iL2wFKalQTc2fMBNxF5VmMFPCIFco4aDYAmVFV8Ie03RGghhL6L1DRs6eFh1c5wAcmFn//6gC/u4OGuajE6EveZxkp5OqRpmM7Btm3/fkFvdMX7EvrOsSEGz57rrqKzIunXe9aIHKHvHvgzGnXdSRN/Tda8+fdQmpm3bgI0bvRsHwzDG548/gB9+UN+nlVYEyGj9iBFySvXJJ7QdN867tMaSEloUEDiz4d9xh9wXRfsYNSzsA0zXrmRjOXUKOGiyTtgDFbH/+2/a9u1ru0s3gqVBA1peM5uBZcts2jLQwl5Eg+vWhUYlvdDhkRXfh4j9sWN0slWutgJQ2/DtvKChsuIL0VpQAJSV2T2oIewtFiqSMm4ctWUSvZw9xkX7Nl1G7BXCPjdXVu0PBKr8+nPnZKJbx46Be1MP0DxOTCa5UPjvv/59Q86v94m8vDyMHTsWiYmJqF27NsaPH49zHpzcMzMzcdFFF6FmzZpITExE//79URyoNoYhICICuOUWefv337WfV6+ezEedN8/79xFt75TtSt94g+73RKCbTNzTnmGqO2Yz9alXcsUV6pogSoQQFzb848epmwfg6AJyxzffSPcooG3DLy4GvvtO3rZrbsRYYWEfYOLiqC0NAKw9ZhWUubm0POVPKirIFgDoM2IPyJnLr7/axhNIK35ZmRQsqanQVcTepWPBh4h9ZSVw//10ohs1Cpg2ze4JTvLrAXkyDUXxPLGim5tr96CGsP/rL6os/dlndNFQ9lf1CCet7gCdCvsDB2yuBrNZfdHzN6pWdyIK3qCBtFWECKcLYIES9hyx94mxY8di+/btWLp0KRYvXoyVK1fiDmVoRYPMzEwMGzYMl1xyCdatW4f169dj0qRJiAhp9Ur/M2CA3L/2WufPU9rxvbXBC2GvPLXVqQPs2AFccAGdNx0We528v2D+fP9PUxiG0S+ffebYRdbZPGvPHrLER0VRxL60lBxKIgAxbRr97nvvkdjft89192JlrrwzG74yz1/IHcaR8LqC6hRRxHnN1pqyfKO/7fhbt5JKTEqS+ezQqbBfsgS1atHMJZAReyEWIyKs9ch00sMe8H/EfsEC4M035Ynz9ddpUmfDhbAPVcQ+IkLmRzlYzTWE/Ztv0lZ8vWfP9rJ6s5NWd4BOhf3+/YiOlrX0AmnHVwl7ndjwgRAIe47Ye82OHTuwZMkSfPjhh+jVqxf69u2Lt956CwsWLMBx+wRwBQ8++CDuu+8+TJ06Fe3bt0fr1q1xzTXXIFar1LuBsT9HOYugjxxJ1+kDB4DVq717DyHsy8pkY4133gGuuooE/fTpZORTVpy2p2VLsuQLzpyRRbAYhglvCguBxx6jfbG2euGF6nOCEmHDb9YMeOklipcp69l+8w3w8svAXXdRL/uWLSnQ2awZMHgwMGECMGMG8PPPVHpLGI4BbRv+uXPA//4nbwtdxTjCwj4I2NourzMFrjK+6Oncs6fsAQ4pnEPam1vQvz8l4hw9ioRK6qNxdt4iYO5cjZ5nVUfY8FNSrCcqHUbsXebYnz6t7jfihMpKisgAwFNPAZdfTpO5Bx5QPMmDiH2whT0g7fgOBfTshP3hw3KSuWABVZEuKZFi3yOMYsVX5NjDYnFdi8BPqIS9uMIKq1EIcSvst2zxb5Uvjth7TWZmJmrXro0ePXrY7hsyZAgiIiKwVlyX7Dh58iTWrl2LevXqoU+fPkhLS8OAAQPwt3J2p0FpaSkKCgpUP3rHfh3ZWUGp+Hhq3QR4X0RPCPs9e6Rhb/164KuvKAqXlERThH795GlQC3s7/uzZ3o2DYRhjMnMmrWsnJ1P6MEBF9LSorJSFQffsoTaeyvnJp59ScOm++6gyftu2JOrNZjKiLl8OfPghLSRceinQoYP69ZVdOgTKdIBDh3z9K6sHLOyDwAUX0HbTJqCkvnXS7m9hv2EDbc8/X3W3riL28fE2X2KtDVT+8tzfm4Fbb6Uj28/Nc4VYtLmJRbhCQ9gFGyFYNB0LCQly0B7Y8b/6igou1akDPPgg9TcGqF+y7WTrQcQ+2FZ8wEVlfDth/+GHdFG46CL6qkydSg+//baTxREtjCLsmzShpNeiIuDkyaAU0LP9/TXNsnKOfeWvEOA0ZaVNG5p95Of79yrPEXuvycrKQr169VT3RUVFITk5GVnivGPHfuux+NRTT2HChAlYsmQJunXrhsGDB2PPnj1O32vGjBlISkqy/TTWwSKtO667Dhg+XN4uLtZuUwdIO/yXX2rUHXFB3bpyvVqcOpcsodPIjTeSoa99e+DECWDIEOfTj2uuURf4W7WKi+gxTLhz/DhF3QGaHpWWkpC2b1d38iRF2e3nSRdfLBcwr7uOFgjvv5/qfPz4I1n2CwvpvPPXX1Rg76mngOuvdxxLaqqtW7eNFStkiawePRyLhTJqWNgHgRYtaJ5YVgZ8VHID3envAnrr19NWz8IeoGW+uDgkHN8NADhbx9qa7/hxWjL0IyphX14uBUDLln59H19wKewBr/Ls332Xtg88QBHXFi1km0Wx3qNHKz7gojK+mJ3m5ACVlcjMpJvXXUfbUaPo5J6fTyd9t5SXS8eG3nPsY2LkLD1IlfFtEfuiLPpQ69d37sELIk4j9jEx1OsL8K8dnyP2NqZOnQqTyeTyZ+fOnT69ttmaiHnnnXfi1ltvRdeuXTFr1iy0bt0aH330kdPfmzZtGvLz820/R8QxrWMiIihqruTKK7WfO2gQffVOnyaLqjeIqH2dOvSe//1HTieATidLl9K14cABmohrtRlNTnaczHvlimIYxnA88QTFEbp1k5fAhx+m84jFQmL8+utpqv7YY+puG7t3A4sXy/tuvln7PSIi6NzWty/VSHrySarjYT8ds7fhFxSo8+29PS9WR1jYBwGTSRYze+a/MShEvH8j9kVFtv7wUNghy8tp5Q3QkbAfMgTYtAm1mpFaOXf5dVKZzp7tpKm5b6iE/aFD5B+qUUMmIYaQxETaOnWSephnn5sruxwqT6iizeK6ddY7nAh7s5lyKQGdWfFTU+nAMZuBnBxbPTfhwI6IkFGwX3/14I0OH6bXiovTXNzQlbAHVP//oAr7LFpww+jR3vWqCRAua1H4O8/eYuGIvYIpU6Zgx44dLn+aN2+O9PR0nLRzW1VUVCAvLw/pGscaANS3noPbicUZK23btsVhoUY1iI2NRWJiourHCKSkyGw5gC5H9kWqAMqiu8G69v/pp969hzjnb9ggXYJLlsjH69enqvwNG1L9lWHDtDO97KtZL1jg366jDMPoh3//lR0wunUjV0+DBpTSOXs2Ncbp35/OA+Xl6tz2554DWrWitnO5uXSOufhi795fxHAE9rnzDz4o98eNk3NGxjmhn7lVEyZMIItLdmEt3In3cHq/H3PKN28m0ZqerpqQKifDuhH2ANC2LRLuuw0AcLYsjiy/XbvSgN94w29voxL2e/fSjRYtHNq9hQJREM1pCr2HEfuffya92qkTObgFngr7/HyZohzKiL2DsI+Ksj2YszPHNnylDlDUYnSP0oav8f/XnbDXaHkXEGFvsQDz5qFgNa2cJB6wimSR7Btigirsc3Jk9UkngrQ6UbduXbRp08blT0xMDHr37o0zZ85go8KzvXz5cpjNZvRyUuGoadOmaNCgAXbZNW3fvXs3mihPZGFEz57AbbfJ2926aT9PLNAuWiQvW54gXABLl8r1fftzY9OmJO5TU8lif/nlFBdQMny4LGoKkNNQWbGaYZjwwGKh9nYWCxXaFEGiM2foXDFpEsUM4+NJw2zaROcPUd9UtLkTvetvvFFV4sstW7c6Vrd/7TXpZP3hB0Bp4HrySW//wuoJC/sgERNDFSIBYB5uRLslM726aLtE+K179FCJFnFwREer8+b0gKqPvckke2r40uvHCSphL/LrW7Twy2tXlaQk2paUOMml9DBi/+OPtL38cvX9SmFvMVucCnthw4+PlyfrYOKyMJx1KXfbevJ4NW+uXqC66CLS/3v2uC4IBcBlqztAx8J+377ACvunnwZuvBFnl1KuQ63SU5S/3r9/AN7Me4Iq7EW0vl49/Z0wdUzbtm0xbNgwTJgwAevWrcOqVaswadIkXHfddWhgTWk4duwY2rRpg3XWlUaTyYSHH34Yb775Jr755hvs3bsXTzzxBHbu3Inx48eH8s8JKB9+qL69eLHjczp0kG2jXnzR89du3Zrs+JWV8nz2+++OLabatCGXU2IiWWzHjFFfg2JiZMqTMO28+653Of8Mw+ifn38Gli2jY75vX9lJqaiIrrlt21IqzvHjwPvvU/ztt9/ICdyiBdXtOHWKIvaAcxu+M7QWDLdvp8j8yZO0mCC49lpdlMcyBCzsg8iYMcDvb+9Ea+xEVnkqrrzSi8JfrjBKfr0Chz72l19O6vLgQb9V69GM2Osgvx6QVnzASdTeg4h9WZmMyNgL+86daUEnJwc4+G++nN3Z+Z5CWREfcGHFB2xj3bqFFnrsK6cmJck0cLd2fBet7gB5rOhG2J93Hm137AicsP/4YxL2AAqSmwIAEi/pTbN9+14zIUII+6Ii2R/XhhD2+/YpTiRVwC6/vqSEztkvvOC6/y4DzJs3D23atMHgwYMxYsQI9O3bF++//77t8fLycuzatQtFivDwAw88gGnTpuHBBx9E586dsWzZMixduhQtdLL4GghMJip2Krj8crK42q9lP/44bT/9VJYG8QRh49+5k86tZ89qt87r1o0m4zVq0DXkxhtpQUAgquNHRNC1OisL+Pprz8fBMIy+qaiQle3vu0+9iBgXR3VBtm+n3vEiEAUACxfSdtQoOp998QW9Vvfuqk7bbiksdKw98swztMjw/fc0/VNmeImxMu5hYR9kBo+qheW4CGnIwtatfvqyCmGvyK8HjCHsbcXj4uNlFe5vvvHLe+g5Yh8ZKT8DTWGvjNg7cTCsXk0Tt3r1HNZ0EBsru5WtW279kOvUcQjLh1rYO7XiAzJiv4eipx07Oj5F2PGXLXPzRi4q4gM6jNiLHvJbtyI1mRSt+F/5hbIy2bT2//4PBT0pMS7x+ksVbSRCj/Lc5bAImpoqi9xt3Vr1N7PLr//3X+C776htj07WOXRLcnIy5s+fj7NnzyI/Px8fffQREhT/vKZNm8JisWCgXbnjqVOn4siRIygsLMTq1avRt2/fII88+Fx1lfr29ddTNXrlwl3v3lQwqrwcePVVz1/72mtpsp2ZKQuoOktV6tuXJtDR0STa77hDLp717ElrixUVci2Yi+gxTPjwwQcUoU9JoSmmMHWaTMDKlbTYZ5+1WF4uXUb2Nnxvo/VffqmuMZWaSrXIFOvBNgYPlsVBGfewsA826eloEHkSc3ELAGDePFngzify86nXGWCoiL0QUKpA29VX0/brr/1ix9dzxB6Qq6Cawl7kmZ49K/3ydohiTP37a9c5E1+HjeusoRiNvGGxImpfwCRYeGLF33qYPij7iD1AE2BAUf3fGUYT9i1b0rJ5URFSSiiSnJvrx9f/9lu6kqenA088oe5jryNq1JA5e5pBeX/a8UXE3irslUYoHZTlYMIEk0kWqxJ88w1Fu777Tt4n1t0++MDzTrANG8pWUaIoqqsaJEOHUsQtIoJyWSdPpkuvySSj9jVqUBRt3Tp1AUCGYYxJfr7MV69bV92Q6tgxx0CR4O+/aTqamkpuyW3bKO8+Olq7dZ0r7G34ohq+Vt1a0d6Y8QwW9sEmMhJIT8cl+A31U8tQUAAsX16F1xOKplkzh3KRIsKlR2Gv2Z96xAiaRezfTwUBq4hN2CebpbDTScQecCPsa9SQQtxJnr0ojCfy6e0REZv9B6yqREPYnzjh9KGgoIzYO6zlpKXBAmDbKRL4WhF7UYDq0CE3wld8hm5y7HVzrERF2SoFJmdT4ptfI/ZvvUXbu+4CYmL0t7BhxWRysggo8KewFxF7qwvASYYTw1QZrUnwqVOU+nHDDXQuGzyYzu3FxcCsWZ6/trDjnzpFx8/mzfI8r8WYMbJA1RtvUH9pgCJ2ANlxhZHCj7VtGYYJETNmyGCKsmPp5s2um0Z9/jltL7+cpIyI1l/qpdFv82aavyoXzK+5hhxD9lX1r7+emmkxnsPCPhRkZCACFozuTslzylV6r3Gh7gwXsa9ZU3qrRVW4KmAT9hVZZIuIiqLm5zrBpbAH3ObZi3+9k8LTsrD6cav9XkO9C/tVqDoAirWosjK7RR4ASEvDETTG2fIaiI6WaedKkpKkCcNpaYYzZ6Qq1hD2FosOc+wBmx0/5TD1xTp3zk8FrDZvJq9udDRw550AoNuIPeCmNWQVhb3FAhw9SourBQet3xGNiD3D+JPYWHVO69ChlFcfGUkR9A4dyPIqcu1nz5YReHeMGUMR9uxsmXnlrgbJzTdLq/0zz1Bl6qZNyQ1mscgq+V9/Lde/GIYxHgcOAC+95Hj/qFHycqpFTo5cAOzaFfjlF5kmdOQIuX1uvplE/4UXUuG9evXIeDljhnruIqL1ojtUaiowYACd55TUrcspQL4QUGGfl5eHsWPHIjExEbVr18b48eNxzmH2rmbgwIEwmUyqn7vuuiuQwww+VnE5ptkmAFSMQlm4xiuEN85gwl4ZsVdFakUVuCoK+6Ii2cYn9fQe2mnaVFfJsm6FvYvK+MePkyCJiHDeNsn26zlWtepC2IcqYh8fT+YEQMOOn5aG/aDViWbNSIdqIXKvnAp78fnVq6d5MBQWyu+groS91aKQtHu9bWXbL1H7BQtoO3Kk7R9vBGHvMmK/datGdT33XH010LgxRUdHrn4EFgBo0ABnz8pIBgt7JhBY19QAkPAeM4bW29q2pfPyFVdQ1eqWLem7//bbnr1unTpkfgOoACRAk3B33Hsv8OyztD9lClXwFz3tt2+nyXpFBTBnjmfjYBhGf4hzgz2iMZU9ZjNl7ikNwffdp36djRvJVfTpp7QguXo1XT9PnaI0osceo5pPK1bQnH/ePPq95GTajhlD2bLKnvUAGQt1VPLHMARU2I8dOxbbt2/H0qVLsXjxYqxcuRJ33HGH29+bMGECTpw4Yft5WfSJCxes+dP9ozORnEwrYVqVa91isRhW2AsBZbHY9dG99FLy52zYUKXQgLBlR0cDtXZbFZ9WknYIqUrEXkTr27d3/v8Vwv5MaTxOo7YuhT0gT9wOeaT16uEA6I8QH4UWomak0zx7D/PrIyJooUE3WCP2Edu22IobVjnP3mKRZbmvucZ2l56FvThXaEbsW7WiWgSFhbJApods3UoTFoAipSvOnY8vcD3QqBE2bqTPJSOD1oMYxt/Urq2eyD79NC0ibdoEPPQQ3ffee7I8zOuva7ianCDs+IKlS0mUu+Pxx+V7i2J6cXHAf/8B/frR/XPmyAUDhmGMw0MPqa33l11G2379gAsuUD/XYqGFxR49HAt+2ufB33478Mgj5AT44AO6rq5YAWzZQnb9unWpUN+gQXQ9P3uW5qeifNTo0bSIqAxwjhxpm6IwXhIwYb9jxw4sWbIEH374IXr16oW+ffvirbfewoIFC3DcjWCLj49Henq67SdRj7PNqmCN2EcdOYBBg+guIdS84tgxUmaRkeSNsUPPwl4poFSTlbQ06S3XavLrIcrCeabNZGV2GtoOEVWJ2LvLrwfoMxZF8fajuW6FfaNGtBW1y2ykpeEgmgIAmjZxXkzR44i9B/n1uiqSJirj792LFH9Vxt+4kT6P+HjbkntJibyg6sqxYMWlFT8qSi7YeWnHF3bAMWOAZ6ZTP7uH8CoKEhs5azTCMH7lgQfk/qJFwD//kJB+5RXqF608L+fmaleM1uKyy9TX/dOnZWqJK0wm4OWXSdRbLMA990iTW0EBnatPnaKK1gzDGAOLhRYOlUXy9u8H/vyT9h95RP38P/6guhqXXkrnJEFEBNX82LZNpvls2EBi/qWX6HVuv50K4Q0YQKbDceOovvddd6nnVwcO0Hymbl3qsGt/fnr3XZ3NxwxEwIR9ZmYmateujR6KmdGQIUMQERGBtW5Kq86bNw+pqano0KEDpk2bpup9a09paSkKCgpUP7pHVDw/fNimNTdt8uF1hLrr0EE2fFagZ2Ev+uMCGhZbYcf/4QefX18I+5QUyDOTxuJHKPFHxN6VsAdkkPoAmulW2IuyB4cP2z1Qr55N2DdLc34OcFtAz2gV8QUiQc1iQXIMHcxVjtiLaP1ll9nOGcpTph7PFS6L5wE+5dkXFckeunfcAUy5+ghaYC9OoAEeer6OLROIbfhMIMnIAMaOlbefeUbuX3wxfaWVltcpU+g8544aNWhyrcQTOz5Ak+l33gGuu46i/GIeMW+etOa/8YZfGtcwDBNgCgupDaYoiglQGudXX9E1tX17eY5Zs4YK1V10EbmI4+Ioym+t44tp0+i+r76islXt23sWL6tTh4S6VjrRqVPA88+r7xs4MHR1n8KBgAn7rKws1LPzMEZFRSE5ORlZQk1ocMMNN+Dzzz/HH3/8gWnTpuGzzz7DjaI8qwYzZsxAUlKS7adx48Z++xsChlAyhw75R9g7UXd6FvaAk8r4ACUXAtSc3MWijitkRfxK8gABxo3YHzzoMIv67z/ail71zhAvoRWxLy2VEWBdCvuYGByIagUAaJroPFSdlCQ1+5YtGk8wqrAHbL2rUsqorHWVIvYWC1W/AmRrSUhhX6uWdtvEUOMyYg/4JOy/+45er3lzmsjE5hzD+6A0sQ8+NOGvv2gCM2qU7+NmGE8Q1neA6u2IdWiLhSba9ilKTZuS+O7cmYru3XILTbjffJMO77//piw2ezu+q7Z39kRGUr6ssOoC8joVF0djXLXK89djGCb4HD5MNntx2QdIRKemUmoPADz8MM2bLruM2gcvW0YprBMn0tTpxhtpvhkZCdx9N/2Osne9N1F1ZfTfFSJFjvENr6dxU6dOdShuZ/+zU5nE4SV33HEHhg4dio4dO2Ls2LH49NNP8f3332Ofk/zJadOmIT8/3/Zz5MgRn987aAglk5uLrudRT7pduzzPn7PhobDXCObrAqeRuPbtafZSUgL8/rtPr20T9lFnKFEwLU13S4BuhX1GBp01i4pUs7uCAtm+SLS0c0bzJuSx1orYZ2fTNjpaFjEJBU6FPSCt+DWyXb6G+Bz27NF40I0VX5cV8QXWpfTkPEq0rVLEfsMGWiRS2PABfefXA26K5wE+Cfs//qDt1VdbFzOOHsVF+AN3N1gEgA67+fOBNm18GzPDeEqXLup2Tk89RX3tu3alPNMNG2SBUSVbtpBd/5NPqML+/fdTTmq/fpQDa19hesMGjQKlLoiOpsicSBcEgBdekHmvXK2aYfTLqlXkOFOK6YwMquvx2WfSrfn993Su+eknEu/jx9M86u23acosOuOOGUPnlT17KJofESFbYnpCQQF1/ABk7E6L//4L7Xw0HPBa2E+ZMgU7duxw+dO8eXOkp6fjpN1Sc0VFBfLy8pDuRXiwlzXfeq+oIGNHbGwsEhMTVT+6p3Zt22w1rfQwGjak1XmvUkQrK2W1MCfCXu8TdqcRe5OpynZ8IYBSy61nr65ddZew41bYx8TYemorVe/u3bRNS5Ov4YxmqfQl2I8WsmeRFaUNP5QfjTNhX1YGHKugIgHNolwv2IlWeOKzsVFZKVMZjBixHzYMAJCSRysWVYrYCxv+5Zerilzo+u+Hm+J5gKxFcPiwrMbjhsxM2vbpY73j6FEAwCv9f8TDD1NEf/Ro38bLMN7y9NNy/4cfaMHp33/pGjlxIoloZRV9T7BvLGOx0EKAN9SoQbn/yjZYwkT33XfU5ophGH3x0Ue0IHfypLr460svUW68iLwDdHybTNQv/r//qBuGyBbOzZUV7O+7j7affkrbSy7xPFZmsdDiYyHFMZ1O6995h7qCMFXDa2Fft25dtGnTxuVPTEwMevfujTNnzmCjoqLV8uXLYTabbWLdEzZv3gwAqK+zaGuVUagZn+z4u3bRjDw+XibA2KF3Ye8yd1Ys6S1e7FMbK1vE/pw1WqszGz7ggbAHNFWvEK9afd3taZ5AIZoDkS1oOVaBHvLrAVVmioojRwAzIhGHYtQrdp1Y6lTYHz9OKwRRUbJKnx26Frb16gE9eiAZpOh9jtgrq+ErbPiA/s8Tbq34tWvLmYhmLoaa06dldo6tErBV2NdskoqXX2YLPhNc+vQBpk9X3xcRQV/r994DJkyQxR61sI/oJydrf4eVOfyeUqsWsHy5vP3NNxRLqKykiTjDMPrAYqE6HOPHA+XlFGW3ZvPhgguoZWX9+uoOGaNG0SLi/PmOc8oPPyTjbLdudI4ym6Wwv/lm5+MoKqKCeK+8QmNo1Ih62btiwADvFy8ZbQKWUdm2bVsMGzYMEyZMwLp167Bq1SpMmjQJ1113HRpYo5DHjh1DmzZtsM5qKd+3bx+effZZbNy4EQcPHsQPP/yAcePGoX///ugkojLhgpiIKvLsnVb11kLY8Lt3d9qbXe8TdqcRewDo358Gnp3tU8sAm7DP3k47OiucB/gu7Hftoq07Gz4ANIshwXLQnKFqJQLoT9ifOkUVVwUi0N4UB2E66dqK71TYi/z6pk0dFjYEuhb2ADBiBFJAit7niP26dfQdqlkTGD5c9ZDezxNui+cBXtnxxemkRQtFNEO0ZHCy+MMwgeaJJ9S3zWbqH19RQV0d77pLba8fN05e+q++mnLrn3uO1rny8mg9036da/duyssXjhVPSU5WH1riGHr/ffU5m2GY0PHoo8Brr9H+U09R/3hlfn2rVuqaHevXkxW/Y0fH16qokOebe++lqP6KFTSNSEqiNCElO3ZQVfzu3Wku0b8/3f7uO886V3/4oT5r/BiRgH6M8+bNQ5s2bTB48GCMGDECffv2xfuKfi3l5eXYtWuXrep9TEwMfv/9d1xyySVo06YNpkyZgjFjxuBHe09ZOKARsfe0sAQAj8qiC8Hozq4dKlxO2GNiZOWe+fO9fm2bsD++hQTdgAG+DTKAeCTsFQtAAm+EfaOKQ4hCOcot0Q4nV70I+zp1ZB0IpbVTCPtmOCALAjhBCPt9++z6NbvJrweke7t2bY+HHFyuuQbJoEHm7jvj22t8/jltr7hC3WsS+hf2biP2gFfCXoia3r0Vd1oj9izsmVARFeXoWpozh9Ymd++mqtL33AP83//RY9u2kU02IoKiaPPn00R+8WKK4P/8M9lfp01Tv+Zvv1H07ZJLaDHAUzp1cjS+5eVJqy7DMKHj5ZcpQg6QSJ4+naL3ou7ymjVUMFlw4oTrdq4//EDzsdRU6pAByKJ511xD55iiIrqvXz8yDr/yCjmPKyvJGXDllXRfq1aOr690B6SkAC1b+v63M2oCKuyTk5Mxf/58nD17Fvn5+fjoo4+QoCjR3rRpU1gsFgy0ekUaN26MP//8E7m5uSgpKcGePXvw8ssvGyNv3lsUgk046Xfv9sJ17oGw1/uE3WXEHpCVORYsIF+RF9iEPXLIi1S3rk9jDCTBsOJHnjyBJqDZogheC/Qi7E0m7Tx7ZcTenbBv1IiqNVdU2HUHdFMRH5DCvk4db0YdRNq3R8plpELzdmZ7fSygrExWrRH9qhTo3bHg74g9C3tGr2RkqFs/5ec7rknefz+tzW3aRNf2Tz6RLeoeeohE+zff0ELB/PnahreoKGDpUpqQX3SR7GftjkWLHO97801ufccwoeTDDylaD5CQHj+ejtUVK+RzGjakgpgAtXh1N+8TxTHvuIPmVvv2SRv+Bx/QOadmTerKYb9A2KQJTbvPO4/mZFpFjZXuysmTPfxDGY9g40OoEErm4EE0bUoX2pIS6Qh1yblzgLX2AFzUK9C7sBcTdqfC/uKLSZCfOuV11R+VsL/qKt8HGUCEsC8uJu2liZ3itVjkCdGTiD2ystAcJG5F8FogKuuHWtgD2sJejNcTYR8RIVeFVXb8cBD2AJIfIEGeW1KTlsuVS+/u+OknSs6vX5+OKTv0fp7wKmK/bZudZUONxQKsXUv7NmFfUSEPBhb2TIh57DG5/+ijjqe+1FSy5QO0CHDjjWSJB8iG+8QT1PRCCP5ly9S/f+GFdI684w6a6P/xB03CBwygXHpXIr1RI8e1wa1bPV8YYBjGv3z7rcxNnzqVFvfKytTFX3v0AD7+mGICJhNF8l2xZQsd05GRVFTv8ce9i6gfOkSxBC3HkD39+wO33+75azPuYWEfKoQK2bsXUVFyVV6zXZc9mZnkdcnIkJF/OyoqZAVKvVrxRcTe6YQ9KorOKgD15/AQiwXIyaHZSSpydVsJSymkXLa8A2yK99gx+r9GRrrUqpKsLLKyQ78Re0Bb2P/3H21bYY9bYQ84ybP3woqvZ2Gf0pwO4jwkU7PrK690sRpkh/DP3XijZp2BsBD2zZvTCaW0VKPQguToUTrWoqKoqyYA+m6ZzXSnsoQww4QIZb2dzp0dnXxTplC22t9/AytX0sT47bfpseefp1z7G27QbkmXmUlpR++9R/ONu++m11q5Ehg8mCbaykifPQ8/7HjfSy95+xcyDFNVli2j49xspnPACy/QvjKt8JJLSKSLlJnRo927PUWLu8pKcvW88ILjc2JiSLSvW0eX3Oxsmp+uWQN8+SU5ByZNcv0+zz9PY+PLrn9hYR8qhLDPygIKCmw3PRL2K1fS1kXeuNK2qleLrVhwcDlhF6U3v/1Wu9G5BoXnLCgtpf5tqX3b6EO5ahAVJXPL3Qr7U6eAoiKbZmneXNqqXOIiYi9uN27s1bADglifEv/i8nIqHAUAXbCZjhM3eSrCwRCWEXtrX9dixKM4rg4l0N50ExwqItqzd6/se3XLLZpP0buw98iKHxEhKwC5sOOLavgtW9LEBIC04TdowNV7GF3QrZvs4pidLQtiCRo0AG69lfbFpHviRGDmTNp/4gk5sR4yRP27ZjPw+++036QJWfj37qXfF4sFgwZR8S2tU26HDsCll6rvW7LE8frCMEzgWL+eYlZlZVR5fs4ccn8OHiwLWtarB/zyi7pt3SOPuH7dEyfI2i84c0b9+KRJdE4qLaVzz/nnk5ypV4/OS716kanwoYdkXE6JMNB26aK9SMhUHZ7FhIqkJLlMtWePb8K+f3+nTxGT9bg4xQRWZwgh4TLHvFs3mmVUVMhZixtyXqdCYXEoRvzMZ6s4ysDiNs++dm2pbI4cselUj21RTiL2p0/LIHibNt6MODCI9QsxOdy5ky5YiYkWNMUh+v+fOuXyNRyOoaIiaUswuLBPTJTB9rwPv6NVna++oqunK155hWbnI0Y4bYup9xx7cZ44d87N2o4HefZC2Ks+CiHsGzb0eYwM428WLJD7Dz9ME3kljz5K54RffwU2bKD7Jk+WOfqPPEL9rB980PG1lyxR327cmCL++/dTfi4APP00Vb7WujZpiQObA4ZhmICyYwc1tzl3joT8vHlU7X7AALXb5vhxWqt+/XWaQg0Y4DJ7F8XFJM6d0bYtRfM9jbCLYn6COXNk/Y+PP/YwOMV4DQv7UKLwDjtt12VPSYlMEvVA2Os1Cgd4GLEHZJLOBx+oe3XYU1QE3HMPcqa/AQBITSqHqef5VR9oAHEr7O0qy4mq8R5H2Z1E7EVl/YYN9SHohCbbsIEuQKKEROfOJpjS0+iGmwIU9lF/2x9cu7ZL1W4EYW8yyah9XqeBMjXl9dedN5M+fhyYO5f2XSS66f1cofx+Oq3HAXgk7EV6R9u2ijttVRqb+jA6hgkMbdvKatQAReeU18pmzciGC6itso89RjmxAHDffeRksq/HsmSJdi59w4YUrfv4YyA2lirs9+wpjxtBv36OAqG4mBYZGIYJHIcPk70+N5ei5d9/T0K/Z0+5wAeQKycykuY3ogaHq2i9xQLcdpvr93YX7VeSm0tZg4J77gGefJL2p06liD0TGFjYhxKh5r2J2K9bRx6Y9HTtHhJW9N7qDvCwKjxAXsIePWjmMGmS9oxkwwbqVf/uu8hBKgAgtZkOFKsbvK2ML4KLHgn7wkLg7FlbxP7ECWnR2rmTtnqI1gNk76xdW9aFFNqsc2fISKobYS8+k6NHrV8RD/LrLRZjCHuAWsIAdMHEtdfK0Ny99zqG4CwWOlbKyoC+fenHCXoX9rGxcmXf5SKgmCls2uS0ApiI2KuE/b59tPWoaAXDBI+XX5a96o8fp8mx8qs9dSptv/9epi4BwDPPUHSusJAi8Pfeq37d48ep6J0zRKXrxo0p2NCrF/WjFphMcpKvnGMMG+ZhAWCGYbzm1Cmqf3v0KF3Dfv6Zil/27SuNZwBw+eUUyQeAGTNoXtWhA0X5nfHqq2qXEECOX1GYLz6eLP+eYu/gyc0ll2i7drJlJxMYWNiHEkWYXmj0/fvdpM3+8Qdt+/enq6sT9D5ZBzy04gOyl09UFPD119TQV1BRQQKnd2+agTRsiJypZNlPTXX++egFUeTEI2F/6JAtYu9R8W6r1z45tgiJiTQbFMFJvQn7iAiq1gwAf/0lhX2XLvBY2IunFRVZxboH+fWFhbKIut6FvS1in2e9Y9o0moGbzZTU9tdf8slz5tBsPzoaeOMNl6+r93OFyeRFy7vISHL1KGc5CjSFvQffE4YJBY0bq6Pg8+ap68i2a0d1NAGqQC2IiCAbfs2aVJyqoMDx/PbLL67fu0cPKuI3cCAJgzFjyA0g5icjR1JsIT9fbc298krvmnYwDOOeggIS5rt305Twt9/IkDdqlCyUDdA0+dVXaX//fnn5nzHDuWT45RfZLk+QkUGLe2IhccwYz92dv/2mrnd8yy1UUE+cl2JjPXsdxjdY2IcShbBv3Jhy4cvK3NSIE1d5jbZVSvQ+WQe8sOID5DlSVgm66ioKV7RqRct/FRXA1VcDW7YgJ42WClNTAzNuf+Ig1rRQeMy9suJb88tN9dPRrBmd0YWG0ZuwB2RmycqVSis+PBb2NWrI//mRI/BIsInPPTqaVqT1jPiu5OZa7zCZqLT1oEGkeAcOpIpa111HoT2Arubdurl8Xb3n2AMeVsavUYPCEoBjQjKoBaZog6myJrOwZ3TMRRfJiTpA9WSVKXuiPd4XX6jrqDRvLnNcn32WThNKvv3Wff/5unWp373oMz1jBhXOy8ujNTTRNkvZoGPdOkeHAMMwvlNSQgJ+40Y6Jn/6iWpgPPwwHcO33y7nchMnSmkxdSodm4MHOxa8FOzaRUXulOeC884jE2y7diTIAVnH2h0HDwJDh8rb8fHS7fPgg65z/Bn/wMI+lCiEfWSEBS1a0E2ndvzTp2V+vfLI0cBoVnx3EwwANIt4+GFa9vv2W+qxc/Agnek++YTOQMnJsoe9AYS9GKMYsybWiL3lkG/CHunpNs2iZ2Hfrx9tlyyhzyMiwmrn8lDYA2o7vs2K72HhPBcGGF0grPiqRaCYGGDRIqqQbzbTEv6XX9Ifc++92pWz7DDCIqBHwh6gBUBAU9iLaH2TJrIbBSorpY2FhT2jUyZPpnVrQf/+MirevTtZ4CsrHdvO3XmnrJKtzL8F6BD57Tf37x0VRXVr582jtbNff6XDbMsW6mlfrx5VzhYLjwCVwxF5vQzD+E5FBQnvP/6gxff586l2xocfysJ4559Pc7o6dYDp0+n3/v6bDK4mE3XV0JrfnDkDXHGFo2N0+3aaVv/wAz3WuLHjwqAWJSWOdv2iIrpuX3ihdts8xv+wsA8lLVrQ0ZafD5w6pWxtr83vv9PkvV07t8rOSJP1igqZ++2SiAhKOly3jgTLpElk0T94kGYY1jNXuAr7/IOnbZYrj6z4CmEv0sz376dWciKtWE/Cvnt3mjiWlNDtCy6g274Ie1XE3uA97AUOEXtBrVrAp59Swt3jj9NxsXo1NbF2076tslIWpNPzucIjKz4ghb29ioGTivjHjtEBER3NVfEZ3WIyUUE7sbiXnS2j6ICM2s+dqz5NRkQA//sfHT9aTsDp0z1cVAcV6svMpNPp/v2U/bZoEYkMgCbwSiZNouczDOMbFgtwxx1UhC42lhbYJk4kkZ+QQML71lupvSVAxemSk0kmiPPD+PGydaaSykpaMLAv2P3XX7SYZ7HIrNebbnLfCdZiobFt2uT4WIMGVA1frx26wg0W9qEkLk7mT+/ebXNcHzrk5PmiQNawYW5f2gjCPiFBriJ6ZMcXdO9OS5BvvQXcfbeDhzpchf2Ro/RhJSd7aBtXCHtRyGTlShL1FRUUtdSTlomJIbsZQKvI8+dbH/BC2IsFjyOHLWHTw16gGbFXMnw48NxzdFxccIFHr6msMq/nc4XHEfsePWi7YYODYhGdIFSLWeI70rSp7CfIMDqkZk1p2ANoTfvnn2m/Xz/6KStT2/YBcqi89pr2a65bR7ZeT+ncmQ6tSy4hIX/99XQIxcbSgqxy8l9eTtG7Eyc8f32GYQiLhQyqH39Mx9Xdd1MevMixX7WK7PUzZlBZmfPOkxl4X3xBjpyEBErD0WL6dMeau23ayFpHP/5I9TliY2lxwR0ffED58/bExJAVPz3d87+dqRos7EONUFybN9u6LWkKe4tF5te7seED0lqj58l6RIQXBfS8IOyEfcOGQEQEjlZQ2zePovUAbL79hg1x+eWkWzZtopVTgE7ierOf/+9/FFlatEiWFvApYr+nhGaeJpPihRwxkrB3GrGvAiICHhWl74I2HkfsO3akP+TMGQfrkzivqrracX49YyBatFAXvbv0UimcRYu799+n6tlKxo93Hg/wJmoP0Hno559lRf6PPpJpAWYzbU0mOhefOEEpBMocfIZh3PPyyxShB0hsv/02zVd69aIFvk6dyKw6axY955VXyHhWVCSPzWnTtAV1drZ8bSWPPELHblkZ8NBDdN+DD7qcQgGgBcJJk7QfmzOH8+qDDQv7UKOIMLmM2G/YQMKmZk2X/esFIrKl5xx7wIuWd15gJGFfty5tXQr7qCigYUMcAalWj3vYiy9SkyaoW1fmSIleokOGeD3cgFOjhsbfJ4T9mTOOfk87bDn2B6wzyUaNXPq/hLBX5ofqFbcRex8Q54latfS3yKPE44h9dLRse2eXZ684HCQs7BmDMWyYtN4CVAjSbKYoevfudIq0b4RhMlFETWs+8M8/6n7TnhAZSZHCr79W1KtQYLGQ+yopiSKLHpT6YBjGygcfSHEeGUn2+IoK6nL7xx9SrE+dSotqF11ELe4AcuccPUpzIWfH3ezZjp0rUlPJgQOQGN+zh+pnTJvmeqwnT5Izp7zc8bGJEylVgAkuLOxDjaLYk0thL8Ksl11GFn43GMGKD3gxYfcCIwl7MUb7CIsDGRlVEvaALL5kNtPn/vDD3o01ZCQmytmjm6i9zYp/1HpqcyPYqnvE/swZ2ur97xcRe4/OEyI8sGaN6m4W9ky48NRTsmXj2bOUT2syyVz7t95yXCxu1Mh558vp02W03Ruuuoqih6I+kJIlS6g1n+hWq2XTZRhGzTffAHfdJW+L9pLTp1N6Yo0adHv1alknVxTHO3FCtr188UX5XCWFhdQh2p4JE0ha5OXR+QUgG78rDVFRQU14tLrL9usn3QRMcGFhH2qEsN+xA01SKOH1xAlZQAwALX8LYX/VVR69rFGEvb8j9haLMYV9Xp48gWuSkYGjINXqkRXfbJZWfKuSGT1aphE/+qiMAOsek8ljO74tYp8bBwsQVsI+EBF78ffXru2/1wwEXp0nevemraJyV1GRXDxjKz5jdCIi1OtWb7xBUb1RoygbpaCAcnLtLfbjxmnHBbZtk1MMb2nfnqy4olyQYM8eut48/TTdvvtueh7DMNr8/jswdqx6kS0mBvj8czqORA0Ls1lG42+7zdoWGOTkKSyktW0Rfbfn448dF/EiI+n4BEjMnz5NnWNvu831eB97jBwE9qSnk5snOtr17zOBgYV9qElLIzVisSD10EbbCpvQZACoqff+/bT8Nny4Ry9rhHZ3gP+FfX6+FMhGEK5ijGazjJ5q0qSJdxH7EyfIGxUZaRPFdevSxeHqq4H776/SsIOPh8JePK2kIhq5SAkrYa+M2HuTE+sKo/z94m8X43WJEPabN9vabYiK4ImJikUMi0X2FmVhzxiMxETZthSgDL2CApq4R0WRUJ83T/07JhOJeC2eesrN4rILateW3UWVPPoo5f6PHEl5u1deSfm9DMOoWbeOFuaU9ShSU0k4jx2rfu6CBfT8hASqlwvQ5U64Ypy1t6uspC64gq5daTt6NM0rd++mXH7xGlFRzsf77beU16/Fjz+StGFCAwt7PWDNszdtWK9dQG/BAtoOH66d0KaBUSL2/rbii2h9QoJHGQshJzpaLm64q4zvVcRefIEaNVKdnR9/HPjqK4+/RvrB5rE/4vJpsbGUFwaAFkJctLoDjCNsAbkIVFbmttSAxxjFii+EvUduhYwMoH598gla295p2vCPHaMXjIzUV99HhvGQ1q2p06WgTh2gWzfZy3rSJMdTZosW2q+1YwdV0/aViAhg+XL1fdu20YLBp5/SWI8dA665Rjsfl2GqKzt20PRetDMGpKjv00f9XK3ieBYLMGUKba+5xvF3BMoK+Q8+KBcGRcvKRx6hy+aIEcDFF7se7y23aD/2ySeydBgTGljY6wFXefZlZdScFnBctnOBUYS9vyP2RrLhCzwqoJeRgWOgcLRXwt5dOVOjIAS6sE67wFYZH43DKmJfs6a0tvkrz94oVnyvhL3J5GDHP3iQbqoOh3//pW2bNsZYBWQYDW66iQrnCe69lyb8vXrRdfWWWxytt/ZFtcRp8umnaWLvKwMHOk7qn30WWLaMCvTVqkUtVw1T34VhAsyhQySilde21FRaJOvQwfH5s2bRYl1GhjyOFy+m58fGAi+9pP0+ZWUyLQagBYHiYqo127cvLSIsWkTr3PYtM5WcPUvOG2WrXMHAgZTuw4QWFvZ6oGdP2q5ciSYZdAW2CfsffqCyk+npsuylBxih3R3Awh7wrIBeQXJTnANVEGvQwIMXDTdhL6ozCeu0Cxqk0zF0AvXdCntxMTWCsDeZ/J9nb5SFDa+EPeAg7DUPByHsRYIiwxgU0c8eoIrXn39OUfIaNWjC/9Zb6ufbTyVq16br0N69VPDOV0wmivrZc+WVFL0X7oI33qja+zBMOHDqFC3KKTMMU1JoIaxjR8fnnzhB3SgAWRxP2ZrugQfsasgoEDn0AF363nmH9u+9lxb+Jk+m23fdJQtz2mOxUJV7ZQqQkt9+076fCS4s7PVAv340s87KQhMzJaqJCBPef5+2t93mcSWK8nJbaqnuc+wDZcU3Qn69wJNe9sejSZEkIh8J0FgqtSfchH3LlrS1602uRf0EanZ+IipD+vKdYBRhK/B3ZXyj/P1eC3vhRVy9GrBYWNgzYU1kpPqccOuttAYqIm9Tp5J9ViDWvQSbNgE33kj7zzxTtb7zV14p11M7dZL3X301XedFq7477qD3ZZjqSFERLbDt3i3vS0mhhTjlcaPk//6P7PoXXEDV6AFqTbd7Nzk/RVcMe8xmdVeK/ftpipiSQkX2Pv2UcvSTkmQ7ZC1eeYVy67X4918ulqcXWNjrgZgYagQJoMleSlI7dAjUYHbpUnrO7bd7/HJnz8p90SZKr3DE3kNhX5AAAGiA47ISmCvCVdgfPeo2wbxBDFkfjtc6z2VzdovFODnmAn9H7I3y94vxFRR4mJ/bvTuFM06eBP77T/tw2LKFts5mUQxjIJKTacoguOwyMjoNHUpddm66SR47cXFkm1VSuzYVvDp4UGb/+UJkJOX7AnRdV66b3XwzmQ9HjKAxjR7tQatXhgkzRJu4tWvlfcnJFKl3djnKzKTCmIAsjudpazqlPX/9euDNN2n/jjuooN7jj9Pt//s/mRpqz7JlznvaX3EFX0b1BAt7vXDDDQCAJhu/AwAcOmSRV8cbbnBbBEyJEMk1auh/BU0Ie39H7I0k7D3JsT9+nLYNcQzYt8/9i4absE9JkYngbvLs61eSr+1EjOu//cwZmU9qlO9LoCL2es+xV47PZfcIQWwsJQ4CwPLljodDcbEMlXDEngkTunQhG77gkkso57VOHWDjRnXxrH791L/71FNy4v7cc0Bpqe/juOUWOqceOgQMGqR+bOJEKvDXqhWtUY8ZUzWHAMMYCYuFjoEff5T3CVHv7FJUWEjHscVCW+G4Ea3p2rcHxo93/n7KSH5cHOXTixZ3L79MFv/mzdUV85UcPkwLEWYzEB/v+Pj8+e7/biZ4sLDXC/37A/Xro8nZrQCAo0csqPzjT5qgvvCCVy9llFZ3gFxh5Ii9a2EvcrAa4Ljau6WFxRJ+wt5k8tiO36CEhP9xS32Xz8vKom1SknFqp1XXHPuoKHk+8/hvv+giAED573/aFsZsh8O2bTRLqVuXQogMEyaMHSurXIvbou7uCy/IKGGXLo6/278/tQw9cgT48EPfxxAfL0XCn386FtR67jky1SQmAn/9RdX7/dXCk2H0zPPPywxbgK69v/+ufTwKHn2Upj2NGlF9CkDdmm7mTOet6YTpFwC+/FLW2xg9mrYiXefll0lu2FNSAlx1Fc1PGzVyNEx+9JEBuyyFOSzs9YLVv1YfJxCJClSaI5CFdCp76aU4ExNfEd3TM2zF99CKbxUmDXDcfQG5nBzZNyUjo+oD1AseFtBrkE/JpCdKXKtV0U/ZSLrO61xzNxjFig/48Ldbhf3RP/bAbFa3QsTmzbTt3NllugbDGJGZM4ELL5S3336bTH+VlWTJLyzUFhI33CBtuc8/L2v1+MLEiSTw//kHGDKEWtACwHnn0XbBAupgYjIBH3wgRQrDhCtz58oaEwBdd5ctk/3ktVi6lApiAmTFF+61Rx8lx+Hw4ZRu44yrrpL7gwbJopX33kvHenExuXeuvFL79ydPJvt+crJjAKRDB66Cr0dY2OuJyZMR+fSTZLcGcPiGaer+FB4ibLpGKCDHVnzPquKrrPjuIvb//Ufbpk2NE4r2BA8j9vWzKNE0+1xNVFY6f56I2Kel+WNwwaG6WvEBH4R9t25AYiIOnaVVi4wM6rUNQJbvta8ixjBhQFQUtZdT1g49QHV5sWcPVa5v2tSxBs/OndR6KyOD7Llz5vg+hpQUaQ/+7DPK3wXoWv/MM7S/fbuM1D/4IEUuGSYc+fVXKmopEJF6V6L+zBn5OxMn0gIZQFb6hQvdt6bbuFHW3OrRg3rMFxfTenaNGlLki5x9e774Anj3XXrsiiscp16vv05jYPQFC3s9YTIB06cjowOp3SMjJ1FhPS8xkrBnK34ArPjbt9O2ffuqD05PeBKxr6xEvb2rEYFKmM0mnDzp/KlGjNj704pfUSEv+mEZsY+KAgYMwCGQ48lmfCoro1kW4FULUYYxEqmpwC+/aD/2zjsUCRQFr15/XT7WqpUU4S++KM1fvjB5Mk38ly4FBgygtdmsLOqB/f77ajFRWUmV8z3oaMowhmLTJmDYMHk7KYlEfbdurn/vvvto7teqlSyAV1kpW9PdcQfQrp3z33/xRbk/fryM/N97r3yNm24i0W/Pzp3AhAnyfewLal52GTB4sOvxM6GBhb0OadyxNgDPip9rIYS9kaz4hYWykFlVMKKwF8XzsrOd5xmqIvbHjrmebQlh36GD/wapBzyJ2O/fj8jSIqSBFL343LSo7hF75WJaWEbsAeDKK6Wwz7AeXH/9RSsaaWmU6MswYUq3bhSl0+LWW2Wm1rFjwDXXyMcKC6mY1smTUgz4QtOm8nXffBOYNYv2Z82iqvyffaaO+J05Q5FBfy30M0yoOXCAalcI4uPJfu9O1H/3HR0fERHUjk7ksX/2GWWSJSa6NvTu3g188428XVpKHS9SUigt7e+/KWqvVcKrqIgW2QoLyb7/3nvqxyMjqfUdo08CJuyff/559OnTB/Hx8ajt4azRYrFg+vTpqF+/PmrUqIEhQ4ZgTzVcvm3cmLZHjvj2+0aM2APqNn2+UFkpJ/1GEvYNG9K2sFB7QmOxKHLsk6yVS1yJ223baBuuEfsjRyjko4X1b28QTx5zV8LeyBF7fwh7YcNPSNB/9wzAR2F/1VU4FNUCANAkwnpCXbyYtpdeqvDmM0x4Mm4cFaez58QJstoCJBTefVc+9uCD1N8aoKJaVbk2P/wwbb/6itaahw2jtnuTJ1NRv6+/Vp9/du6k93aVRsUwRiAnh5qziDiMyUTFJN2tJ2dnA3feSfuPPkp96wF6HVHh3lVrOkAtvJs3l90yxo2TveoffpgK4tkzaRJNpdLStN18d94JtGnj+m9gQkfAZjVlZWW4+uqrcffdd3v8Oy+//DLefPNNzJkzB2vXrkXNmjUxdOhQlJSUBGqYukSsolc1Ym8EYR8TQ6uGgIdtrFxw+rSMeBvhbxfEx8uFCK3FnJwc2X84vbXV4uDMjm+xhK8VPzVVXoU2bdJ+jhD2ydSr6cQJ5y8nhL2RIvbiQu6P3s9Gyq8HfBT2CQk4VJd8hk32/E5hi4UL6bHLLvPr+BhGr7z2muz+qMXmzTSBV7bF+vVXoEULmk+Ivte+0LUr5e1XVlKkftYsypJZvBhYsoSqc//wg7oczC+/AFOn+v6eDBNqioqofqsyuLB2rbbtXYnFQsI5J4dSZYQIB2RrumbNnLemA8iBo3Tq7N8PbNhA13qTiW7Xry8X3ZR8/DH9REQAt91GzgElDRtSa0xGvwRM2D/99NN48MEH0bFjR4+eb7FY8Prrr+P//u//MHLkSHTq1Amffvopjh8/joViIlZNqE4Re8B/9mJhw09KMkYEUon4n2st5ogLQ716QEzrZnTDmZPl5En6IE0moG1b/w801Iir4vr12o9bhX39hnRq88SKb6SIvSiGlZtb9dQVo7S6E/jaEeBQBB0zTTK/oJz6gwfpxS6+2L8DZBidEh1NkfEGDbQfP3WKzoci7xYgISAW3V99tWoL7488QtsPP6TFSdGO74EHqOTFsGEk8kXlfPGeztIIGEbPVFYCI0cCW7fK+9auBc4/3/3vfvIJsGgRHbOffSZb0B09KqPwL73kui7yrFkyGKTk6adlG8sXXlAfbwCNd+JE2r/pJmDGDPXjqalUG8CVU4AJPbrxIR44cABZWVkYIso+AkhKSkKvXr2QmZnp9PdKS0tRUFCg+jE61SliD/jPXmzE/HqBq8Ucmw2/AWSvIGcRe2HDb9FCzsrCCXFl3LBB+3ERsW8VDyD8IvYpKbLglKtii55gpFZ3gG/C3mwGDp+i46BJ2R6q4mUyAfPmOc5qGCaMSU+nr7+W9RagqH1KiiyYBQA7qHMozpxRF9jzlsGDKXJfVESF+6ZPp0XKXbtkm7sBA0g0KB1Et9wCuJj+MYzusFioUJ2yw8PatUDPnu5/9/Bh4P77af+ZZ2RxS0C2prvwQnULO3tOn3bMiQeAa6+l462ggI5F+zZ1Z89SXn1xMbXCtF9US0qiZjJswdc/uhH2WdbwWZrdLDstLc32mBYzZsxAUlKS7aexUEgGRvwJp0751keWhX3VXicUuFrMsVXEbwCgdWu6oVwKVhKuNnyBEPZaEfvSUtuCR/0O9CVwFrE3m42ZYx8ZKb/frir+e0J1iNhnZwNlZSZERFjQ8L6rKPzxyivqEsUMU01o1w5YtUpeRpSMGEFbpcVXmec+a5bv3ThMJhm1f/NNSsETRbueflqei3v1AlasUM9d+vTx3b3IMMFm+nS1KF6zxjNRbzZTQcuCAurCqrTJb9hABfQA563pBPPnO5YgatCAjmsh+F97TV1exmKhyve7dlELTPu4UXw88PPPrlvzMfrBK2E/depUmEwmlz87d+4M1Fg1mTZtGvLz820/R8LgCpCcTAcSQPYbbxEXXxb2xsFVxP7gQdpmZIBmPgDw77/alfG3bKFtuAp7YcXft89xlrl7N/nTk5LQoF1tAM6F/enT0squ7PVsBMR4/SXswznH/tAh2jZsaEL0G69SWGLKFP8PjmEMQkYGVcTWsgUvXw507EjRc3sKClz3zHbHVVdRlfycHLID33orFRErKFDn9nfuTI0rlIV1u3WjaD/D6Jn33gOee07ezsyUUzZ3vP02HX/x8bQwILpFWCwyRWbsWPeLBPY58QC1qnv+eVqoGzWKOlLYj3vBAtovLXU81hYtogU2xhh4JeynTJmCHTt2uPxp3ry5TwNJt4bNssXSrZXs7GzbY1rExsYiMTFR9WN0TCbf8+zN5v9v77zDo6i6P/5NL0ASICEhlJAAEqQGKYau5IUgIr4oiBRBERAp8tKRJk0REUUEC9J+CiIgSO9VIBJaMEDoIRQNSEIaIf3+/jhOZidbsrvZZHeS83meeXb3zp2ZOzM7c++5p8kDdjWkuwMsJ9hLAcXUKNgb0thLAfDr1Pm3YvXq9IaOjNSufOQIfUphVEsbFSvKae/OnlWukwLqNWyIGjVpSlufO4tkBFSxImmP1ISlBPuyYIovCfb5OezVFnyDYYoBb28SIgqGmejUicYcuqLoA6RtNzdwp6OjrLWfOpWeTSko36pVSu+q+vWB8+eVbkft2ulPB8sw1mbrVuC99+TfJ08aPwy7epWi3wNkUCYlAAKALVtoosvVVdvnvSCPHlHUfU2ef57kgt27qftbsEC5/tw52fwfoJgXmmzZAmh4SDMqwCTB3sfHB8HBwQYXZzNHyYGBgfDz88PBgwfzy1JSUnDq1CmEhoaatU81Y66ffVISPcRA2dPYq9G0WsJQ8LybN+lTkmfzp05PnlRWjIujyg4OulUupQVJ1XTqlLJ892767NgxX5B79Ei3YYOa/yuW1tirTbB//Fh+xxWGlmDPMAwACjGxfTv51WpSsyZ1MZIvvqbJ7pMn2oKBKQwdStH5U1MpOFerVkD//iSwjx6tFNyDguTnFyABpG9f84/NMMXFyZOkCZc4fpzM6Y0hJ4f83TMyaKJNM5FYZqZskj9+vDxO1Mf27dppIvfskY3URo5UThokJdHzX1CYl/jxR+V5Meqg2Hzs79y5g6ioKNy5cwe5ubmIiopCVFQU0jScP4KDg7FlyxYAgJ2dHcaMGYO5c+di27ZtiI6OxltvvQV/f3+8Wgb/WeZq7CXhuHx59WgiLSXYS1pYNQVDk5Amcu7fV76YhZAD4Neu/W9hmzb0WVCwP3SIPlu0UNoxljbataPPrVvlspwcys8EAN26wctLNjHXHBxKqPm/UlZN8aUJCCGA5GTjtmHBnmH04+Ii57LXpFo1WeCvU0funwBg6VL5/WkqDg7kK1yhAvn6f/opLeXKkdny2rXK+jVqKI+1fj0wfbp5x2aY4uDKFXlIBtAwTPN3YcyfT8aXnp7AypVK//mvv6bUdH5+skbfEL/+qvxdpw49M5cu0cS45rMjBKWzu3VL976++IIm3Rj1UWyC/YwZMxASEoKZM2ciLS0NISEhCAkJwRkNe6urV68iWWOENnHiRIwaNQpDhw5FixYtkJaWhj179sDVUF6HUoq5Gnu1Bc4DLK+xV6OwVrUqaUays+XzAMjsWHpE8r1cNAV7TdWlZO3SqVOxt9eqvP46jRDPnJGjvERE0PRz5cr5TmiSMCfFKNCENfbq09i7uMiB7I01B5YE+1q1iqVJzL8kJiaiX79+8PDwgJeXFwYPHqyYxNdFfHw8BgwYAD8/P5QrVw7NmjXDrwVHpkyx4+AgB2jVZNUq+rx2TalFfPqUhBFzCQwEliyh7zNnUuaSqVPp96RJ2oG/fH2VGUDmzgW+/db84zOMpbh/X5lVeOdO4IUXjN/+/HkKHgmQEK+ZseLRI2DOHPo+b17hSVxSUuj4mgwdKgvzM2cq+/rFi8nMXhc9elAqSkadFJtgv3r1agghtJaOGlEbhBAYNGhQ/m87OzvMnj0b8fHxyMjIwIEDB/CMlN6rjFFUjX1ZFuzVKKw5Oso5hjXvuWSG7+8vB1RE48b0IykJuHyZyoQoO4K9jw/QuTN9X7eOPqUeLTw8P+qMJMzpEuylNHhqnASylGAvCcdqCh4oPdsFQrHohTX2JUO/fv1w6dIl7N+/Hzt27MCxY8cwdOhQg9u89dZbuHr1ar6FXs+ePdG7d2+cP3++hFrNSPj702BeE8289RcvKv1wFy82L7CvxFtvAa+9RoZW/fuTb3JQEAU7laLla1K5snJ8MHw48Msv5h+fYYpKYqJSEF+/Xs4sYQyZmfQc5OQAPXtSYDxNZs0ipU6TJsDAgYXvb8cO7bK9e6mff+YZ5eTcH38oo+4X5LffjDoFxkaxmXR3jBLW2JuOms2rAd33XBE4T8LJSfah/+EH+jxxgi6Aq6vxzl1qRuoF166lP440yuvWLb+KIcFeMj8LDCy2FhYblhLspe19fIq2n5JEEuyliRlDCMGCfUkQExODPXv24IcffkCrVq3Qtm1bLFmyBOvXr8df+tJSADh58iRGjRqFli1bIigoCNOmTYOXlxfOFgyKyZQImvnrC7J2LQn2mmnyCgvkZQg7O4rEXbUqmTLPmEEpuADg88/lCW1NKlVSTib06cMCCGMdJONAiW+/pTzxpjBjBk2YValC22ua4MfEAN98Q98XLZIj5Bui4MQAIOt6Fi6U48YmJFBbpaxABdEVk4hRFyzY2yiaGntTIsFKwrFaIuIDlhHss7Jk02I1auwB+Z5r+oTrFOwB4H//o8/ly8lma8oU+t2/Pwn3pZ0ePcg27cYNCj5w+zapnTQEe0mY0+Vjr/e6qgBLCPZCqFNjX7UqfRoj2CclUZAuQOkjzFiWiIgIeHl5obmUihJAWFgY7O3tcapggEsNWrdujV9++QWJiYnIy8vD+vXrkZGRobDqY0qO8HClBrIg06dTMC2JZct0v1uNpXJl2dz/66/J1eY//6G+XErvVZBq1YCoKPn3f/+rO0YAwxQXiYlKk/Z584Bhw0zbx/HjFP0eoCFcwcn1CRMo1tIrrwAvvlj4/jTnQqU+UqJTJ+Dll+l7Xh5p//UpDI8d07AMZVQLC/Y2iiTkpaUpTeIKQ80a+9RU/dE5C0MSchwd1eMzXBDJV+vCBblM0lzkB86TCAujJMDp6WT/dfw4CfQffVQSTbU+5cuT7Zu7O9mrubkB27Ypggbq09gLIQv2mhFi1YIlBPukJHnGXk0ae2nQYkzwLknoqFKF/h5M8RAfH48qBWaHHB0dUalSJcQbuFEbNmxAdnY2KleuDBcXFwwbNgxbtmxBHQOzbZmZmUhJSVEsjGVwcKBgWgB1LQVZu5a0eTNnymXvv1+0Y3bpAowaRd/ffpsmDxwc6FW+b5/ubZo0ofUSfftSQD+GKW4ePFCOrSdOBD780LR9pKWRcC0EMGgQCe+a7N9PnoWOjsZloMjKAjTmVBXPpJ0dWcBI1gBz52r74UuMHCnHJWbUDQv2Noq7u/wCMcXPXsrxrCbB3stLfvGYkqNaE00zfHuV/qv/jfmmyOKmV7NsZydr6U+fps/Ro0mlUVbo1o0mNHr3pgj5BUaj+gT7+HgaoNrbqzOomiRDPXlivtmcNCng4UGaMrVgiik+m+EXjcmTJ8POzs7gcuXKFbP3P336dCQlJeHAgQM4c+YMxo4di969eyM6OlrvNp988gk8PT3zlxqF5X9iTGLwYOpa9HlDvPCC0hx/1y7dZvOm8OmnNKkdHw98+SUJGAAF78rO1r1N9+5KoWfkSPJJ5jz3THFx967SGvTdd+m/ayoTJpArYM2a9H/XJDdXTk33/vvKZ00fUoA9gEzsNS1a3nmHJsIA8sHXnJTTpEaNogXEZGwLlYpAZQNzAuipUWPv4CBr2c01x1dzRHwJSbC/fp0mOHSmutOkZ0+yjZw6lVQdM2aUWFtthpAQ8q//z3+0VklC+8OHZNggIV3TgAD1pITUpEIFWRg3Njp8QSTBXk1m+IB5GnsW7M1j3LhxiImJMbgEBQXBz88PDwuYj+Tk5CAxMRF+evyibt68ia+//horV65Ep06d0KRJE8ycORPNmzfHUgPq1ylTpiA5OTl/uWtqdFnGIDVrkom9oX60b19Zsw8U3Z3JzQ346SfSUG7eTHFPfHzIz9iQJn78eGVQsY8+orltzUQxDGMJbtxQunO98gqZ0JvKnj1yRofVqynFnSYrVwLR0TQe1ieEaxIRQVp4iZEjlSnvpHXXrhnOR79uHaWcZEoHLNjbMOYE0JMG+moS7IGi+9mXBsG+cmVZgD99moIK/fMPCZ/BwTo2sLMjn/q5c4HZs/nNXAAvLxKCAd0BCdVohg/QbS+qOb4a/esB1tiXJD4+PggODja4ODs7IzQ0FElJSYqgd4cOHUJeXh5atWqlc9/p/8602Rcwr3JwcECeAcnMxcUFHh4eioWxLO+9R2m8Dh1SCvCarFyp/L17d9GO2ayZrHmcNo20oQAJ6/omL6UAfJqxYr/+GhgwQL+mn2FM5fJl5VghNFR/mjhDPH5MFjEATUAVTIt365ZshDljRuFxstLS6L8u4eurbOfo0dRfpqaScWNurvY+nJzI6LFtW9PPh7FdWLC3YczR2EsDXil1mlooqmAvafDUGjhPQhoHR0YC27fT9xdeYJndHOzsdJvjSxp7NQbOkyiqYK/GiPiAaRp76Z6zYF+81K9fH+Hh4RgyZAgiIyNx4sQJjBw5En369IH/vx3R/fv3ERwcjMjISABAcHAw6tSpg2HDhiEyMhI3b97E559/jv379+NVQ6olpkRwcKB+Z8UK4M8/C6//0ktkQDZzJoU+uXAByMgw7ZgTJpCPb1oacOQImRAnJ8s57nXh4kJafs2gf+vWUWxVTSsthjGHc+eABg3k3/Xq0YSXOe6eI0dSOsdnntHOKJGURMJ3QgJ5FBoTu2L8eKUbzKuvyhMHAJnW5+VRSj1JmaFJxYo0adGmjennwtg2LNjbMOZo7KXsQmVNsC8NGntA6WcvCfZSRFPGdCTh/dIluUztGntAFuyNzedeELWb4v/zj/50PRKssS851q5di+DgYHTq1AkvvfQS2rZti++//z5/fXZ2Nq5evZqvqXdycsKuXbvg4+OD7t27o3Hjxvi///s/rFmzBi+ZkgyaKXYaNdL2BdbFli1kOPbmm0DTpjQZXacO+cNPmkSmx6dOAfriHTo4AP/3f2RlFREhh4v54QcSsPTh50fB9DQDZO7eTd5ZUqYchjGVEyeUYXuqVqX/pTlJhzZupAknBwfyntSMPJ+dDfTqRRaa1arRf7kwF8GdO8laRZM2bZSB8dzcaAJBV0rIoCBScKhZucHox9HaDWD0Y6rG/skTudMsmPLC1rGUYF9aNPbHj8upurp3t1571E7LljTg/OMPuaw0aOylQe/9++Ztr1ZTfG9vGhzl5tLkhKEJTBbsS45KlSph3bp1etfXqlULokBks7p16+JXTYdQxmYZNYommqW82Ppo2ZJ85WNiSKi+eZOWHTuU9QICgK5dScv4wguyIFOrFrBkCUUL37ePNKRXr5JZ8e+/K3N9axISAqxZQ3FUJU6eBNq3p/2obTzEWJcDB5RheypUoEkpczIuxccDw4fT9ylTZOUNQHGURo2i47m70zNWmFLun39kzXyrVtQuLy/lszl5MgW2nDZNe/vnnwcOHy4bWZHLKqyxt2FM1dhLZvju7oqsX6rAUqb4atfYh4TQfU9OJjOqRo1YMCkKzz9Pn5Jgr/ZUdxJFFezVaopvby8/44b87J88AR49ou/8/DBM0bC3p3R3UoRtfURGkqlyQgL1yYcOUQC8kSMpH7ckYMfFURCx8HB6B/XtS1rN1FQyHX7tNbLIkd5vJ04Unq++Vy/t+LEXL5Ims6iR+5myw/btSqFe8kM3JwGHEMCQIfQ8hIRQjGNNvvySNO92dvT/DgkpfH/DhpEiq0EDWRFUvTpZu0hUqECm/QXp2ZOeJRbqSzcs2Nsw0ovk3j3dgS8KommGr29m21ZhU3zCxYU0E2Fh9LtfP+u2R+20aEEa3nv3aLl5k4Q+Bwd1prqTkHxK790zb3u1muIDxvnZS5OhHh6kzWAYpmj4+gLHjhU+IdqwIY0/fH1JG//++6SFP3iQxiiPH5Op/LBhZGGXkkJCTe/eJOR37y5r/tPS5P1OnFh4es+ZM2lSQMLZGYiNJeH+wgXzz50pG6xfr8wr7+FBGvHGjc3b38qVZK3i7EyCt6aJ/fbtcmq7zz7Tzmevi//7P7JAdHIik/59+6j84kVlqkddcSlGjKCI+WpNB80YD99iG8bfnx7gnBzjBvBqDZwHkIktYH76rtISPA8gjf2+faRZnjDB2q1RN+XKyZ1yRITsb9ahg7rytxdEEuzLmik+YFxk/NLgbsEwtoaHBwkRmjzzjPL3jRskXOvLKe/lRZr6b7+l99fJk9TP1akDZGaSn/CkSdoxNO7f1w46VhB7ezLJlywLKlemiYgHD+id//vvRp8qU8ZYsYLiQ0j4+ZFQX5gWXR+3bwNjxtD3uXNpwksiKoqOJWn0x441bn+jRtH3WbNobHPlinFt+egjyhjBlA1YsLdhHB1lraIxpmRqDZwHyFo4Y9JYFeTpU4oqqrkftWNnR6nveHa16Gia40tpanr2tF57LIFkil9Ujb3aTPEB494V167RZ0Ghg2GYouHsrIx4f+0auYxpsnkzpcorzNLQ3p7Shy1YQPu5eJHS3mkGLdNk3jx6h+ubNABI4Nm6ld5tf/9NrjitW5N7W+fOygBjDAMAixfLKRYBIDCQFAE60wwbQV4exYlIS6NUcpqC+99/k1XKkydAp07kqlKYhW1uLjBwILmqtG5N1iubN8vrDW2/aBFZsjBlBxYbbBwpr7kpgr0ahVupzdI5mIIUXLB8ecDT03JtYkoHUp7jrVtJOwRQ0CY1I2nsExJMTyuVmyv7n6tZY2/IFF/S2Ks5jgLD2CouLhSASyI6Wnank1i9msyLCzOfl7CzI7/hadOAM2fID//TT7Xr9exJ46KxY8k1QNfkQUCAbLJ84AC5BXTpQu/KHj3IjJlhAODjj2XNOkD/wRMniuaqt3gxcPQoTTKtXk2ufwClYHzlFZqQr1eP4ko4ORW+vy++oP96+fL0383OlnPeA8DChbq3W7oU+N//zD8PRp2wYG/jSKakpV1jL7X5wQPj4gloIgn2NWqoL7YAU/y88AINRKVn6PnnZY23WvHyktM7mWqOn5goa7wkFxg1Id07Q9lCWLBnmOKlY0cKeieRkKA9sb5rF2k9zUnLWbMmaSbPntVeFxtLwk6HDjTRN3gwaeI1xw5t2lDAP0dHEvIdHCjAXm4uBehbvNj0NjGlByFIONb0R2/ZkgTooijHYmJkofvzz2XlXF4eMGAATVpVrkz/V2Oi7EdHy2384gvqs1u0kNcvXiz76mvyzTcU34Ipe7Bgb+NILwUpkrch1Oxj7+tLQrmmNtFYpEBZ5kQtZUo/1avTAFPqrDVTIqkVOzvzA+hJZviVKtGgV20Y805kU3yGKX4WLlRm4ElO1haK7t0j4fvqVfOO0ayZbt/6N98kwejRIwpS9vLLNJG3eLGcKrZXL4qr4upKfcCjR7LJ9ZgxFEXfkFk/UzrJyyN/9fnz5bKOHcm6o1Il8/ebnU2TRpmZFEdi6FB53dSpZD7v5EQTTVI/ZojMTKB/fyAri8z3e/Qg833NOBfr12tv99VXwHvvmX8ejLphwd7GMccUX42CvaOj7O9rqp+9pLmT0gMyTEFefJFmvrdsodRLpQFzU95J2jM1+tcDshb+5k3d1j1PnsjXhDX2DFN8VK2qLXTr67+Dg8k82RwmTADatVOWPf88vcsOHqR3euXKpMkfM4Ym+SdOpEmFbt0oCn/58uQ+cPGirOGcM4e0mqZaCTLqJSeHLDyWLpXLXn6ZJn4qVCjavj/+mDTyFSsCP/wgW5CuWiVPIvzwg/Z/WR8zZgB//kl99UcfkYXKmTPKOhERyt/z58tB9piyCQv2No6mKX5hM8tqFuwB8wPoaZriM4w+Klcm33pjfNrUgLkae6m+tL3aqFGDAnhlZek2x5c0+ZUqFU37wjBM4bz/PmnFmzcvvG7HjuZF53ZwoFRfmoLXzJkUNPfFFymd3p07FGn/mWfIcuCzzygIWr9+tN3BgyRw/fEHaWZnzSLB69tvyaUgK8v0djHqIiuL7vXq1XJZnz6kSZdc28zl7FkSvgFyAzlxgiYLZs+mQJIABdTr0UM744Mufv+d/sMAZYno2ZPM/A1NyH/4IdVlyjYs2Ns4gYHU+aSmGjZRT0uTzc/UGDwPMD+AHpviM2URc1PeqX0izMEBCAqi77rM8SX/ejbDZ5iSoUcPIDIS2LsXePZZw3VHjSItuqkm8LVqKScFkpKU/tHu7sCwYST8bN9OsVVycoB162jSYeJEYPx4Chh64QL53y9cSBO9GzaQqXNammltYtTD06ckHG/cKJcNHQr89JPpk/2PHpEv/nffAR98QBp4zYmtHTuAN96g/7lmRPrVqyk+jpMTTST4+NAYv2FDskAJCyPlwyuvAO3by8/I+PEUTBLQb1UwZQql1WMYFXpYli1cXcnk9t490trrm62TtNzlyxfdnMhaSJYGbIrPMIVjbso7tQv2AJnYX7lCQnxYmHKd5F/PZvgMU3LY2VE6uUuXSMAPD9dfd9cuSnWXmkpjFmMZMICE9k2b6Pfy5RQBX1PAt7cn0+qXXwbOnaOAY+vXkxvA0aOyefS1a+SP/+WXZOq/bx+9S3bu1I7wz6ibtDQSljUzOUyYQFkX9AVcFoLGopcv02TR5cvy93/+0X8sZ2fKxJOYSO5/Ei4uNNEkuX1kZNBiakypW7e0y15+mdwAGAZgjb0qMCZYlKS1U6u2HjDPFF+I0iGoMIyplFWNPSAL7ZJ2XhPW2DOMdenShQKJNW1quF6FCto+w4aQTOc1xznTptGiywKgWTNKDxYbSybKXl7KenfuACNGkIBfqRJw6hRpSk19pzK2y+PHNGGjKdTPnSsL9Xl5wO3bNNm0cCH534eGkttGtWrAf/4DjB5N/7tjx2ShvlYtOZWuxG+/UcC7ffvkyaGaNWlMm5FBz4QkzN++TfEe/viD3ES2biUrkq5ddZ9H27a6y7t3B1asMP/6MKUP1tirgDp1aKbZUAA9aZ1koqpGzBHsk5Jk8zm1+gwzjDkYk/ZNF6VdsL9wgT6Dg0uuPQzDKHF0JI35jBmGTYSl1F3ffAM89xzQuDFpN/VRuTKZNHfpIpfNm0em1gsX6tbAVq9OQcWmTaNAZl9+qdR8DhkCjB0L/PILaWXbtCHhjCcH1c0//1AUeU3N+Zdf0oTP+PHAkSNk+ZWernt7e3safz/7LFC/Pn0++yzloE9LIwsVgCaMdu8mc3ohgOHDad/ly5OFiZ8f1bOzo/+2i4tuq5AHD8i0X5OuXYH//lcZYR8g3/3p002/JkzphwV7FVCvHn1evqy/jpRKRs0dkTmCvSSkeHuTjx3DlBVq1aJPSRvg6mrcdqXBdUWfYJ+eTlGEAcpJzDCM9bCzo8jzfn6FZyMZPpw+HR2BRo1IyJeWgsJ+586kRf3qK7ls0SJ6Dy5ZQgKZLsqXJx//998nDen06fK4atEiuV5cHGlI9+4FQkJMP2/G+ty/T1HkNRViTk40CVTQlN7ZmcbOkuAuCfF16+qeZIqLI03+9euUqnnfPvqPAhTwbuVK+g/+8otcXhhCUCpGTdP8jh2BhARtoX7SJBbqGf2wYK8CpBeDNGDVheRXKk0CqBFzBHsOnMeUVby9KYd0SgqZmtavX/g2aWlk5QKo+5mRBPtbt8hv0fHfnuzcOfJh9PNT9/kxTGlixAiKSD52rFw2ZYru/PQ5OcD587T88AOVOTlRgDFNYX/2bIpuLwnmdnbAsmUk3H//PQXZ1IeDAwVS69mTzKALxukASPh7/nkS7jt2NPvUGSsQG0uCeUaGsjw7m+5rxYpyHIamTcnS1dFIaejKFRLq792j+A4HDpBWXwgS5KWo9OPG0WRBTAzg6UnxsQwF6VuxgoLuSdjbk9a/IDt2UFA+htEHC/YqQBLsr10jczNdaTkkwV7NGnvN4HlC6A9qoklpMCtmGHOws6MBxblzFH/DGMFeel48PdUbZBMg01pXVxq43bkjuyBFRtJnq1bGvT8YhikZ/vc/ICqK0tYBJNQvXkwCfkFT6L59SWg6e5aWhARtYd/NTfkO69CBfKBXrqT3wpo1xglrnTrRuOr552U3HomsLIquv3w5aVMZ2+avv8h3XtOSQ6J6dYo4/+qrFEdBU8jOyKB+9MwZ8ntPTSVfec0lI4P84TWJiyOz/sxM7XSJn30mp6uTqFiRsjL4+NCntKSmUpBHTfLytM8hOpomuBjGECzYqwA/P9LOPXpEs3/NminX5+bKgfXULNhLfkhZWRRR1JjItKyxZ8oymoK9MZSWiTB7e6BBAxr0R0TIgv2pU/TZqpX12sYwjG5Wrybh+/Zt+v3BB+TzPnWqMs3tunXAa68Be/bQ7zt3SOiSBH1J2H/6VN5GU7u5bh0JYj//TGbWheHqCpw+TXnG163TXj9kCFkdXLjAsTtsjatXKWjdli3y+1+Tjh1JwH7uOZrszcigCSLpf3TmDGVyMCa3vC6kNNMFcXIiM34nJyA5mQT1x49pkVxnTSE2Vna/YxhDFJtgP2/ePOzcuRNRUVFwdnZGkmT/aYBBgwZhzZo1irIuXbpgj/R2L6PY2ZHW/tAhMscvKNjHxZGJkaurugfsLi4UmTYxkTp5YwR7yce2Tp3ibRvD2CLS/95Ywb40TYSFhdHAbN8+oF8/KmPBnmFsFzs74ORJ2ToPAN5+m3zeIyJI4JL49VeawEtOJu19QAAJ+wBZ9F26RGbQ+/dTRPOCbN5MY4offiDTZUlxoA8nJ4qg7+FBEdABGmudO0ffs7LIKqpbNzK3btuWrYKsQV4eCeOSMH/liv66ERHkdnHmDN3Ts2dJI69LiPfxIeE/JITGnlKQOxcXmjRatUquu3s31ZdS2IWF0URT9ep0DG9vZZyHvDwa1/7zD/Dwobzcu0dBHQvjwQPS7DOMMRSbYJ+VlYVevXohNDQUK0zIxRAeHo5VGk+Qi6HwqGUITcG+INLsX926+oPGqIWaNekFGBdHAXQKozTEFmAYczEmFaYmpUVjD1AArU8/JcFeCBooxcXRYLt5c2u3jmEYXVStSs/qpEmysLRsGX0GBpJmUhNPTzKB1pyss7Mjk+SGDYExY+j9J8XdKIhkQt+gAZndh4WR2b6Hh3Zde3tqi4cHsGABCfXTp5OfveTms3MnLaGhdA7du6t/3GXrZGdTZqgtWyjooWY6Qjs73akO3dyAdu10C/He3tRHSPEamjcnoVzXRM3GjcBPP9H3rl2BTZvkQM25uRSnISGBBO/ff9ctgNvb0zG9vWWXufR0+m2Ihg2BEyd0/1cZRh/FJtjPmjULALB69WqTtnNxcYFfYVOrZRBDAfRKg3+9RO3a5IdnKLWfRF4e56xmyjamauxLQ0R8iTZtaPAWH09amKNHqbxRIx4IMYwt4+NDvvBTpij77oJCvcTzzwOTJwMff6xb+KpTh3zqBw4kv/qDB0mrqqkNvXSJlq++Ii1uixYk5HfqREK6pEOys6PtPD3JRWDOHJo86NuXPiUiIshfOzgYmDAB6N/fOLN/xjjS0mhC5bffKGCcptGvszMJ4k+ekDZbF5Kbhre3UoB/7jma2DbG2mLFCopIn5cHvPEGxYfQvMeTJgHbttF/57ffjDeVT06mFHmGePVVciUxNtsNw0jY3DzjkSNHUKVKFdSrVw/Dhw9HQkKCwfqZmZlISUlRLKURSbC/cEF7drK0CfaAcYL93bvkL+XkRGZ6DFPWkAT727e1g/foojRp7F1c5GjVu3YBn39O34cNs1qTGIYxgbp1SaMq5QM3xPz5JFTFxeleP2AA8PrrtL+hQ0nTXlDb+cYb9M7MzSUrgLlzKThexYpAly6kpT97lsZYH34oB2H78ksKXBYVRVHUNblyBRg8mKwNFi6kLCWMeSQm0oTPK6/Q5M/rr5O2vKAnb1YWZUTRJdQ3bkz37tdfqV98+JBiNcybR/nga9Y0TqhftIisPfLyKMbC2rVKoX75crnPWb2aJoeM4ejRwoX6IUPIMoCFesYsRDGzatUq4enpaVTdn3/+WWzdulX8+eefYsuWLaJ+/fqiRYsWIicnR+82M2fOFAC0luTkZAudgW2Qni6Eg4MQgBBxccp1nTpR+apVVmmaRfnuOzqXl14qvO6+fVQ3OLj428UwtkhenhBubvQcXLtWeP2gIKp75Ejxt60k+OILOh8XF/r09hbiyRNrt0o3ycnJpbJvsiZ8TUsHeXlCfPIJPcPGLN99R9sU5NEjIapWpTojRlDZ6dNCVKxIZc2aUZ3bt4VYsUKIvn2F8PXV3n/VqrT94cNUz96eynv3FiItTYipU+WygounpxBTpggRH1+SV1C9JCUJsXq1EF27CuHoaPx/oOBSpQrd26KSlyfE9OnyfidM0P6vHTggt3XWLOP2m5MjRO3ahZ/Hhx/q/m8z6sHa/ZJJgv2kSZN0CtGaS0xMjGIbUwT7gty8eVMAEAcOHNBbJyMjQyQnJ+cvd+/eLbUd/fPP04P/ww9yWXa2EB4eVH76tPXaZikOHKBzqVev8Lpff011e/Qo9mYxjM3SqBE9B7t2Ga6Xni6EnR3VLS2DzsePhQgJkQdFs2dbu0X6sXZnXxrha1q6WLPGeOGufXsh7tzR3sfevXId6Z144YIQPj5U1rCh8v2XlydEdLQQX34pRPfuQlSooC0wSttKSof0dCEiIoSoW1cud3MTokYN+beLixDDhglx/XrJXDs1kZIixE8/0fV2djbufj/zjPa9kZaOHWmfRSU3V4hRo+T9fvyxtpAdE0OTN4AQ/foZJ4Rv3WrcOS5aVPRzYKyPtfslk0zxx40bh5iYGINLkJR3yAIEBQXB29sbNww4kLq4uMDDw0OxlFa6dKHPvXvlstOnyfSrYkWK5ql2JFP82FgylzNEaXJBYBhzkczxpedBH9eu0fChUqXSE2HXy4uCWi1ZQumo/vc/a7eIYRhzeestYPt2oFw5uczBQXfdY8fIrHrFCijcEzt3BkaPpu/vvENpghs3JhPoqlUpHkeHDnIANikQ3wcfkL/0o0cUHO/tt2lc9fAhRTOX2LWLgqc98wxF8R8xgsqfPiVT7UmTKCZAZibw3XcU2Ld3bzLxL8s8eQJs2ECZDapUoZgE27frdyErV44CEy5bRvEM6tXTnVru5ZfpnlSoULT25eRQusMlS+j30qUUA0LTbP/RI8qKkJwMtG5NGRcMmfUnJ9P6Hj0MH7tXL/ovcf/FWITinjkoisb+7t27ws7OTmzdutXobaw9U1KcnDxJs3oVK5JZjxBkBgQI8frr1m2bpcjJEcLJSbfLQUHCw6ne8uUl0zaGsUWmTqXnYPBgw/XWraN6bdqUTLsYJaW5b7IWfE1LJ5GRspa8Vi35HadvCQ8X4u5defv0dCGefZbW/fe/slb1+nUhatak8qAgMsk3RFaWEHv2CPHuu0JUrqx93FdfFWL3biF27hSiWjUqs7cnc+oDB0i7r1m/UydyISwrptbp6UL8+iu5MLi7F66xbtBAiPHj6dplZNA+Nm0iFyuAtPuaVhJ9+tA9KipPn9K9BMjl9ccftetkZAjRti3VCQwU4uFDw/vUNOfXtzRqJMTly0VvP2NbWLtfKjbBPi4uTpw/f17MmjVLlC9fXpw/f16cP39epKam5tepV6+e2Lx5sxBCiNTUVDF+/HgREREhYmNjxYEDB0SzZs1E3bp1RYb0hBuBtS9ocZKdLYSXF70QIiKoTHrRfPedddtmSaQX96FDhusFBlK9o0dLpl0MY4ts2kTPQUiI4XrSQOPdd0umXYyS0tw3WQu+pqWX69flmCCVKgkxd67sdqhr8fAQYuVKWWg+d05WEqxcKe/39m15vzVqGG8qn5UlxP79QjRvrn1sLy9yCZR8+QEhmjYV4s8/aenfX46RBJCv//r1NKYrbWRkCLFtG5mpS/FfDN2znj2F+P57bbeKx4/pukl1mzQRYtAg+ffQobKCqyikpspxqlxcyGy+IHl5QgwYILf50iX9+7t0yTiz+9LgOsvoxtr9UrEJ9gMHDhSAtg/+4cOH5YMDYtW/Ed/S09NF586dhY+Pj3BychIBAQFiyJAhIt5EZ1BrX9Di5vXX6aUwdSr5FEn+aLduWbtllsMYTXxGhhy8prT4CzOMOdy6Rc+Bk5MQmZn660nvDvbjsw6lvW+yBnxNSzfx8UpB2stLiOrVDQtML70kxL17tP38+VTm7k4xeSRB+t49iuMDUKA8U7WmFy4YJ7wBQixYQALo7dtCjB6t1FwHBQmxbBlpttVMVhbFMxg4sPDr0bSpEJMnk0JGn7Z9715tC4jJk+V96ApoZw4JCXLsqnLlhDh4UHe9uXNlbf6+fbrrJCYa938YPNgyExKM7WLtfqnYBHtrYe0LWtysXUsvBzc3Id5/n77Xrm3tVlmWESPovCZP1l8nMlKeyS8rZm0Mo4u8PNmS5/x5/fUaNKA6u3eXWNMYDUp732QN+JqWfrKyKOOPJIgbs3h5USC+nBwhOndWan1//532Gx9PgfQAMvuPijKtXTdvylaDgBD/+Y8Q/v7623TxIm33zz9CfPSR0rS/ShUSHhMTLXnlipfsbLJgKEyY9/IS4o036B7+9ZfhfaalyeNagKw3T5wQ4oMP5LK5cy0z5vv7bznwbKVKQpw6pbvehg3ysb/5Rnv96dPG/y+3by96uxnbx9r9Egv2KiM3VzYbkpbFi63dKsuyaBGdV69e+ussW0Z1unQpuXYxjK3ywgv0PKxYoXt9drZsllqYXylTPJT2vska8DUtO+TkCLFxozILRmFL9+7ke790qdJMvl8/Ie7fJyFb2l/FiqabR9+7J0T9+vLkwNmzQhw/LsSYMfotCzZsIAE2LU2Ir74SIiBAXle+vBBjxyrjBdgSOTmUAlBzskTX8txz5Pp18qTx7gYnTwpRp468jxEjSKP+9tty2VdfWeY8YmPl1HNVq1JWBF2cOiWEqyvVGzNGLk9Pl8egxiyNG3N2hLKEtfslk6LiM9bH3h5YvZqiQQPAzJlyBNjSQr169Bkdrb/O6dP02aJF8beHYWwdKSPG+fO619+8CWRnU6ThGjVKrl0MwzCWwMEBeP11ii6/ezfQrl3h22zfTu87T0/KCjJ0KEUpX7uWxhmrVgF79lAU+8ePgU6dgJMnjW9TtWoUbT8khCLnv/gi7f+LL4C4OIrm3rOncpvevYHy5SkCe5UqQFQU8NNPQKNGQFoasGgREBREUfljYky5QsXD06fAwoV0Xo6OwAsvAPv2adfr04fO4+FD4MwZYPZsIDSUtjFEZibw4YdA27bAjRt0TXfvBpo3B5o2pXskjXtHjSr6+cTE0LFu3gQCA4Hff6esCAW5cwd45RUgI4Mi7y9cCFy9SvfF3R14/33jjtevH/0PpOw1DFPsWGU6oRix9kxJSXHrFs2clkYePKBZTjs7IZKSdNeRTOhMSJjAMKWWn36i50FfxPtff5U1KYx1KCt9U0nC17Rsc+yYEGFhxmlNW7Qg8+szZ2S/aoBM/DdtEqJ9e/pdrpzpY6ukJDmQsbs7mahrkpNDEdx1tcvVVYhu3UgD/P33QnTooFz/yitkjl5SxMdTf9GuXeHXdMYMsnLIzTXvWBcukDZb2l///uRCIbmNAeRrv22bZc7t7Fk5wv6zz8qxGAqSkiKb6QcHU7wnKcuCsYujI1kYsKto2cPa/RIL9oxNIpmn6QpmkpYmB867f7/Em8YwNocUibdcOd2mj2PG0Pphw0q+bQzBfZPl4WvKCEECm7EC15IlJIiuXk2+7VJ5ly5yRh5XV0pzZwpPnsgm6s7OQmzZol3n4sXCXQmaNCF3Sz8/ZXnbtkL8/DMJnZYiJ4eE62XLhAgNLfzatW9P2YqePi36cefPl93DKlcmF4Q2beRjVaxIgQctFVjw2DE5q0Lz5uSGoa9t3boZ/3967jntMn9/cslgyibW7pfYFJ+xSSQTe8nkXpNz54C8PMDfnxaGKevUqwdUrgw8eUJmfwU5fJg+X3yxZNvFMAxT3DRrRiLVggWF1x01isz627Yl8/z//Y9+790LXL9OdTIyyAx72zbj2+DuTvV79gSyssht4KeflHUaNABOnQJmzKBjSnToALRuTSbnFy4ABw8C8fHKbY8fB958k8z3X32V9p2cbHz7ACAlhczo331XNq1v0oTMynX1GwDw2WdAejpd36NHyRTf1dW042py4wbQvj0weTK5h9WuTWbqixYBJ07QvidNIlP5CRMANzfzjyWxaxfQuTOdf4cOdH29vbXrZWXRNdm5s/B9LlgAzJ9PriGafPYZ/a/atCl6uxnGHFiwZ2ySli3pMzJSex371zOMEgcHIDycvhcclDx6RINFAOjYsUSbxTAMU2JMmEAT/8ZQpw7QtSvw8cf0fnzhBeX6rCzgtdeAjRuNP76LC/DLL8BbbwG5ufT5zTfKOk5OwKxZ5Mv/zDNUdvQo0LgxcOsW8OOPwBtvUFwAXWRkAFu3AgMGkJD/8svkf56YqKwnBO1v0SIgIIAEeU9PoEsXYMUK/efQvz+wYQNNEgsBjB9vGeFaCLoWTZoo4xjcukWTHfb2wJAhJPjPnw9UrFj0YwJ0P3r0kH3ld+8GPDzk9UlJdDw7O7p/hTF/PvCf/wATJ9LkhER4OMVIGD+eYtkwjNWwip1AMWJtEwjGMhw+TCZNNWpor+vRg9bNm1fSrWIY22XdOnouGjZUlm/apLucKVm4b7I8fE0ZXdy/T+bWxppT29sLsX69ENOmKdPQScuPP5p2/NxcIUaOlLcfMkR3VPQnTyi3vVSvdm3ZhDsrS4gjR4QYP16OvG/ppUULyhhw9qwQmZlFv+76uHvXcCT9nj2FiImx/HG//55iNQFCvPkmXdPsbIrAP22a5a6jLpdRpuxi7X7JTgghrDu1YFlSUlLg6emJ5ORkeGhOyzGqIjWVZpeFAP7+G/Dzo/K0NMDHh2Zfo6Jo9pdhGNLY+PiQm0pcHFCzJpWPGAEsW0YmqF99Zd02lmW4b7I8fE0ZfeTlARcvknl9ZKRxZvqGGDoUWLIEcHY2rr4QwLRpZBEAkEb4v/8lq4Lnn1fWPXiQoq3fvUua64kTgY8+UmqQb94ka6ydO4EjR8iiwBTKlaMMSt2707jJ3d207c1BCGDdOmDkSNKMF6RDB9KAF7welmDhQrrWAJnF9+tH1/nXXy13jE2byOqjJK4lox6s3S+xYM/YLA0bApcuUWqavn2pbMMGMlOrXZs6bDs767aRYWyJdu3IF3PJEhpM5eaSueetW8CWLeSbyVgH7pssD19TxhSePAGWLiUfbksRGAgEBwO1apGZvb09jUvs7Wn5/Xfgjz+0t2vWjPz4HR2pXkoKCbmavPMOCeHZ2TRJcfIk+W+bSocO5PPfs2fJxSV69AgYPpyE34I0bkznGh5u2TGcEDSp3bmzHC/B0owbB8yZYxn3BKZ0Yu1+iQV7xmaZOZNyob74Is20ApQr9ZdfaEb700+t2z6GsTW+/JKCQVWvDly5QhNh77wDVKoE3L4NVKhg7RaWXbhvsjx8TRlzyMwkoXPVKmu3xHL4+JBW/vZtw/XatJGFfMmqy9Ls2AEMHkw57TUJCADmziVFjb0FInwlJlLMpchIWv74gyYULI2vL1lfvPtu0QIHMmUDa/dLLNgzNktcHM2GC0EBVXx9gapVyRz/1Ck5wB7DMERGBvDss0BsLDBsGEUDvnuXzBLHjbN268o23DdZHr6mTFFISqJJ0CdP9Nd56SUgNBSYPr3EmlUo779PFln162uv+/tvChC3YwdFwDd0bq1aUYDA114DgoKK3q6UFGDsWO3gfN7eJBi/955xAep08fQpuV9KQnxkJI0Li5Pq1YEpU2hynAV6xlis3S+xYM/YNOHhlIZmxAjqNH78kc3wGcYQv/1GvpwS1avT88IDE+vCfZPl4WvKWIKtWw27KXXtSj76X38NfPedXO7tTT70gwYBf/1F79lr15SfsbFATo7pberYEbh8WdZ6u7sDn39OE7bGjn0yM4Fjx0jI37GDXLL0ERBAcQR69QLq1jW9vUePamddcXAAPvyQIsWb8njm5pLFmaYQ/+ef5l1Hc6hRg9r99tvmT0QwZRdr90ss2DM2zZYtZDImYW9PgWPatbNakxjGphGCtCaHD9NgcOZMSnHEWBfumywPX1PGUjx8SKbW27frr/POO5SG7fPPleXNm5PQ36qV9jbZ2WQef/26tuB/5w4Jv7oE1l69SCD29SUB8/BhKpfS1VWrZtr5CQFcvSoL+UePFr5Nr17kr16jBpnt16gBlC+vrPP0KZnW//absnzECLJy8PUtvF337imF+DNnyDKzIL6+5E724AEFWDaVBg0ALy/gxAnd62vWJIF+0CAW6BnzsXa/xII9Y9MIQUFWPvmEXuQff0ymUQzDMGqC+ybLw9eUsSRCkIC6aBEFITWVt9+msUphwqxEZiYJ9o6OdOzDh4HPPgP27JHrtG9PblQ3b5LQmZFBwumyZRRzyFzLxcePyVR/xw5g/XrjteFeXiTg16hBwY3j4pTrw8IoX32dOob3s2gRTS5ERgLx8drry5enCZPatcla89w5ugamUKECuVLUrw+kp+vPjFCrFl3bgQONz3rAMPqwdr/Egj2jChITaZa7ZUs2wWcYRn1w32R5+JoyxcWZMxSMdO1a07bz8KCgvyNGkMBuDtHRZBWwbh1p/AESTl96iYTx6Gi5rG1bCojXpg0JweaOjzIySHN+4QJlDpAsBMyhShVZw19wqVmTYiV16CBrzh0dKVJ+y5ZA06aUqvDaNbr+5jB4MGnc09LIFUFXQMFatcgioWNHmoxggZ6xFNbul1iwZxiGYZhihvsmy8PXlClu/vqLtOPz5pm+7ZgxpG2vVs08gfv+feCrr4BvvyWtNQBUrkwCa2amdn1fX1nIb9MGCAkxX2B98oSsFj7+mITj0sKkSaSd59cFU1xYu19iwZ5hGIZhihnumywPX1OmpHj6lLT3X35JJuim0rUr5a5/7jlaatQwXthPSQGWL6dj37snlwcEAC1a0ATAmTOydl/C1ZW04JKgHxpKqU81ycsjjfaff8rLhQtk9l6apIOPP6ZJFtbMM8WNtfslFuwZhmEYppjhvsny8DVlShohgAMHSMjetato+/LxIXPwF18kYT8gwLCwn50N/PILpS+9cIHK7O1pH6NGUdtOnKDl5EkgIUH/vtzcyAc9PV13oDqALAAePFCWVaxIGu9q1SiHvNQGe3uaJLh1iyLax8QYfx0sRatWwAsvkHuCh4fcrjp16FozTElg7X6JBXuGYRiGKWa4b7I8fE0Za3L1KpnKL1tm2f16e5Ow3qsXZQAq6KsvTS589hmwf79c/sILFEm/c2fSuG/cSIHs/vrLuOM+8wwFAGzenEz9Fy0CDh2idRUqABMnknuBmxvt/9Il5XL1KpCVZZFLYBAnJ7JE6NiRltBQoFy54j8uwxiDtfslFuwZhmEYppjhvsny8DVlbIHHj8lUftKk4j1O5cok7IeFkRY6KAg4e5aiud+5U3zHDQoCevQg7f2lS6SR1+XjX5y0a0dCfIcOJMi7u5fs8RnGWKzdL7FgzzAMwzDFDPdNloevKWNLZGcDW7YAkycDsbHGbbNyJWmgU1IoWN2mTdq+8pYgIIA08ZUq0bFSUoB//iHffFtl9mwgPBxo2JCsBBhGDVi7XzIzGQfDMAzDMAzDMAAJ6L1703LqFPnhb91Kgff08c47yt9BQZSqLTFR27+9KMTFaeecL2lq1ADeeIM0725udG1+/pkmGADyix82DBg9Gqhe3apNZRjVwoI9wzAMwzAMw1iIVq1IaAVIO37/Pi3HjgHff69faL91q+TaWFzY21Mu+fbtyYQ+IEBed/s28MUXwIoVlFIPICF+zBjg3XcBT09rtJhhSg/21m4AwzAMwzDqZd68eWjdujXc3d3h5eVl1DZCCMyYMQNVq1aFm5sbwsLCcP369eJtKMNYAQ8PoH598o2fPRuIj6cAeP/8Q7nmLYmnJ1CrFpmv16pFQe9Kmrw8msA4fBg4eJCC6p05A/TpA9SuTQEHnzwBmjQBfvyRJjPGjWOhnmEsAWvsGYZhGIYxm6ysLPTq1QuhoaFYsWKFUdssWLAAX331FdasWYPAwEBMnz4dXbp0weXLl+Hq6lrMLWYY6+PtDZw7R/74P/0E/P035amPiwMuXiQB2VSSk2kpLpydKSK9pI0PDSXrAynN3okTFFzv6lVaVq7U3kfnzhS9PyzMcHo/hmFMh4PnMQzDMEwxUxb6ptWrV2PMmDFISkoyWE8IAX9/f4wbNw7jx48HACQnJ8PX1xerV69Gnz59jDpeWbimTNkkIQHYuxfYuRPYs4d87iWcnGhxdKRF83vB37rW3b9P0e2NoXx5oHVrWZBv2RIobN4tIQE4eVIW9E+fBnJzgTffJM18kybmXxeGsXWs3S+VOo29NE+RkpJi5ZYwDMMwDCH1SaVsLt0sYmNjER8fj7CwsPwyT09PtGrVChEREXoF+8zMTGRq5NlK/lc1yf09U9pwcgJefpmWvDwgJ4cEc3sLOtA+fgysWgV8+63s81+xIgnybdqQNr5xYzquRFZW4bnqnZwoLV2HDvQ7M5PaL+Wa58eVKc1Yu68vdYJ9amoqAKBGjRpWbgnDMAzDKElNTYVnGXcmjY+PBwD4+voqyn19ffPX6eKTTz7BrFmztMq5v2cYy/D4MVkJ7Nxp7ZYwjLpJSEiwSl9f6gR7f39/3L17FxUqVICdBZx3UlJSUKNGDdy9e5dN/YyAr5fp8DUzHb5mpsPXzHQsec2EEEhNTYW/v7+FWle8TJ48GZ9++qnBOjExMQgODi6hFgFTpkzB2LFj838nJSUhICAAd+7cKRWTJaXxGeVzUgd8TuqAz8n2SU5ORs2aNVGpUiWrHL/UCfb29vaoXgwJMD08PErFH66k4OtlOnzNTIevmenwNTMdS10zNQmf48aNw6BBgwzWCQoKMmvffn5+AIAHDx6gatWq+eUPHjxA06ZN9W7n4uICFxcXrXJPT89S9Z8ujc8on5M64HNSB3xOto+9Jf1mTKDUCfYMwzAMwxQNHx8f+Pj4FMu+AwMD4efnh4MHD+YL8ikpKTh16hSGDx9eLMdkGIZhmNIO57FnGIZhGMZs7ty5g6ioKNy5cwe5ubmIiopCVFQU0tLS8usEBwdjy5YtAAA7OzuMGTMGc+fOxbZt2xAdHY233noL/v7+ePXVV610FgzDMAyjblhjXwguLi6YOXOmTvM/Rhu+XqbD18x0+JqZDl8z0+FrZhwzZszAmjVr8n+HhIQAAA4fPoyOHTsCAK5evZofxR4AJk6ciCdPnmDo0KFISkpC27ZtsWfPHpNy2Je2+1Pazgfgc1ILfE7qgM/J9rH2+ZS6PPYMwzAMwzAMwzAMU5ZgU3yGYRiGYRiGYRiGUTEs2DMMwzAMwzAMwzCMimHBnmEYhmEYhmEYhmFUDAv2DMMwDMMwDMMwDKNiWLA3wNKlS1GrVi24urqiVatWiIyMtHaTbJZPPvkELVq0QIUKFVClShW8+uqruHr1qrWbpSrmz5+fnwaK0c/9+/fRv39/VK5cGW5ubmjUqBHOnDlj7WbZLLm5uZg+fToCAwPh5uaG2rVrY86cOeC4qTLHjh1D9+7d4e/vDzs7O/z222+K9UIIzJgxA1WrVoWbmxvCwsJw/fp16zS2lFLYPdDFkSNH0KxZM7i4uKBOnTpYvXq1Vh1r9+OmHL9jx46ws7PTWrp165ZfZ9CgQVrrw8PDS+JU8jHlnFavXq3V3oKZD2zh+TLlnJYvX4527dqhYsWKqFixIsLCwrTqq+0+AcDGjRsRHBwMV1dXNGrUCLt27VKst4X7pEliYiL69esHDw8PeHl5YfDgwYoUm7rqjxo1CvXq1YObmxtq1qyJ0aNHK7J1AND5DK5fv764Tye/jaacE6D7vfHee+8p6ty5cwfdunWDu7s7qlSpggkTJiAnJ6c4TyUfU8/p9u3bOu+BnZ0dNm7cmF/Pmvdp3rx5aN26Ndzd3eHl5WXUNsY8P+bcf10HYnSwfv164ezsLFauXCkuXbokhgwZIry8vMSDBw+s3TSbpEuXLmLVqlXi4sWLIioqSrz00kuiZs2aIi0tzdpNUwWRkZGiVq1aonHjxuKDDz6wdnNslsTERBEQECAGDRokTp06JW7duiX27t0rbty4Ye2m2Szz5s0TlStXFjt27BCxsbFi48aNonz58mLx4sXWbprNsGvXLjF16lSxefNmAUBs2bJFsX7+/PnC09NT/Pbbb+LChQvilVdeEYGBgeLp06fWaXAppLB7UJBbt24Jd3d3MXbsWHH58mWxZMkS4eDgIPbs2ZNfx9r9uKnHT0hIEH///Xf+cvHiReHg4CBWrVqVX2fgwIEiPDxcUS8xMbFEzkcI089p1apVwsPDQ9He+Ph4RR1rP1+mnlPfvn3F0qVLxfnz50VMTIwYNGiQ8PT0FPfu3cuvo7b7dOLECeHg4CAWLFggLl++LKZNmyacnJxEdHR0fh1r36eChIeHiyZNmog//vhD/P7776JOnTrizTff1Fs/Ojpa9OzZU2zbtk3cuHFDHDx4UNStW1e89tprinoAxKpVqxT3rqTO0dRzEkKIDh06iCFDhijam5ycnL8+JydHNGzYUISFhYnz58+LXbt2CW9vbzFlypTiPh0hhOnnlJOToziXv//+W8yaNUuUL19epKam5tez5n2aMWOGWLRokRg7dqzw9PQ0ahtjnh9z7n9BWLDXQ8uWLcWIESPyf+fm5gp/f3/xySefWLFV6uHhw4cCgDh69Ki1m2LzpKamirp164r9+/eLDh06sGBvgEmTJom2bdtauxmqolu3buKdd95RlPXs2VP069fPSi2ybQoKlXl5ecLPz0989tln+WVJSUnCxcVF/Pzzz1ZoYenHGMF+4sSJokGDBoqyN954Q3Tp0iX/t7X78aIe/4svvhAVKlRQTJAPHDhQ9OjRw9JNNRpTz2nVqlUGB7628HwV9T7l5OSIChUqiDVr1uSXqe0+9e7dW3Tr1k1R1qpVKzFs2DAhhG3cJ00uX74sAIjTp0/nl+3evVvY2dmJ+/fvG72fDRs2CGdnZ5GdnZ1fZsz7pzgw95wKGzfu2rVL2NvbKybUvvnmG+Hh4SEyMzMt0nZ9WOo+NW3aVGscY637pElh7zcJY54fS10rNsXXQVZWFs6ePYuwsLD8Mnt7e4SFhSEiIsKKLVMPkmlTpUqVrNwS22fEiBHo1q2b4v/G6Gbbtm1o3rw5evXqhSpVqiAkJATLly+3drNsmtatW+PgwYO4du0aAODChQs4fvw4unbtauWWqYPY2FjEx8crnk9PT0+0atWK+wMrEhERofXO7NKlS/49sXY/bonjr1ixAn369EG5cuUU5UeOHEGVKlVQr149DB8+HAkJCRZtuz7MPae0tDQEBASgRo0a6NGjBy5dupS/ztrPlyXuU3p6OrKzs7XGO2q6T4U9T9a+TwWJiIiAl5cXmjdvnl8WFhYGe3t7nDp1yuj9JCcnw8PDA46OjoryESNGwNvbGy1btsTKlStLxHWtKOe0du1aeHt7o2HDhpgyZQrS09MV+23UqBF8fX3zy7p06YKUlBTFs1gcWOI+nT17FlFRURg8eLDWOmvcJ3Mw5vmx1H/asfAqZY9Hjx4hNzdX8RAAgK+vL65cuWKlVqmHvLw8jBkzBm3atEHDhg2t3RybZv369Th37hxOnz5t7aaoglu3buGbb77B2LFj8eGHH+L06dMYPXo0nJ2dMXDgQGs3zyaZPHkyUlJSEBwcDAcHB+Tm5mLevHno18aObZIAAAllSURBVK+ftZumCuLj4wFAZ38grWNKnvj4eJ33JCUlBU+fPsXjx4+t2o8XdRwRGRmJixcvYsWKFYry8PBw9OzZE4GBgbh58yY+/PBDdO3aFREREXBwcLDoORTEnHOqV68eVq5cicaNGyM5ORkLFy5E69atcenSJVSvXt3qz5clxnuTJk2Cv7+/YtCutvuk73mS7oG171NB4uPjUaVKFUWZo6MjKlWqZHR7Hj16hDlz5mDo0KGK8tmzZ+PFF1+Eu7s79u3bh/fffx9paWkYPXq0xdqvC3PPqW/fvggICIC/vz/+/PNPTJo0CVevXsXmzZvz96vrvknrihNL3KcVK1agfv36aN26taLcWvfJHIx5fixxrQAW7JliYMSIEbh48SKOHz9u7abYNHfv3sUHH3yA/fv3awUTYnSTl5eH5s2b4+OPPwYAhISE4OLFi/j2229ZsNfDhg0bsHbtWqxbtw4NGjRAVFQUxowZA39/f75mDGOjrFixAo0aNULLli0V5X369Mn/3qhRIzRu3Bi1a9fGkSNH0KlTp5JuZqGEhoYiNDQ0/3fr1q1Rv359fPfdd5gzZ44VW2YZ5s+fj/Xr1+PIkSOKflxt98lWmDx5Mj799FODdWJiYop8nJSUFHTr1g3PPvssPvroI8W66dOn538PCQnBkydP8Nlnn5ktMBb3OWlOTDRq1AhVq1ZFp06dcPPmTdSuXdvs/RqipO7T06dPsW7dOsU9kbDWfQoODjZr/yUFC/Y68Pb2hoODAx48eKAof/DgAfz8/KzUKnUwcuRI7NixA8eOHUP16tWt3Ryb5uzZs3j48CGaNWuWX5abm4tjx47h66+/RmZmZrHP7KuNqlWr4tlnn1WU1a9fH7/++quVWmT7TJgwAZMnT84faDZq1AhxcXH45JNPWLA3Aumd/+DBA1StWjW//MGDB2jatKmVWsX4+fnp7KM9PDzg5uYGBwcHq/bjRRlHPHnyBOvXr8fs2bMLPU5QUBC8vb1x48aNYhcYLTE2cnJyQkhICG7cuAHA+s9XUc5p4cKFmD9/Pg4cOIDGjRsbrGvr90nf8yTVL6n7NG7cOAwaNMhgnaCgIPj5+eHhw4eK8pycHCQmJhZ631JTUxEeHo4KFSpgy5YtcHJyMli/VatWmDNnDjIzM+Hi4mLUeWhSEudUsL0AcOPGDdSuXRt+fn5aGRGke23uu7CkzmnTpk1IT0/HW2+9VWjdkrpP5mDM82Op+88+9jpwdnbGc889h4MHD+aX5eXl4eDBg4qZZ0ZGCIGRI0diy5YtOHToEAIDA63dJJunU6dOiI6ORlRUVP7SvHlz9OvXD1FRUSzU66BNmzZaaRSvXbuGgIAAK7XI9klPT4e9vfJV7+DggLy8PCu1SF0EBgbCz89P0R+kpKTg1KlT3B9YkdDQUMU9AYD9+/fn3xNr9+NFOf7GjRuRmZmJ/v37F3qce/fuISEhQTFYLC4scU1zc3MRHR2d315rP1/mntOCBQswZ84c7NmzR+ETqw9bv0+FPU8ldZ98fHwQHBxscHF2dkZoaCiSkpJw9uzZ/G0PHTqEvLy8fMFWFykpKejcuTOcnZ2xbds2o6wlo6KiULFiRbOExZI4J13tBZD/XwsNDUV0dLRCaNy/fz88PDy0FCW2dk4rVqzAK6+8Ah8fn0LrltR9Mgdjnh9L3X+Oiq+H9evXCxcXF7F69Wpx+fJlMXToUOHl5aWVpoUhhg8fLjw9PcWRI0cUqSfS09Ot3TRVwVHxDRMZGSkcHR3FvHnzxPXr18XatWuFu7u7+Omnn6zdNJtl4MCBolq1avnp7jZv3iy8vb3FxIkTrd00myE1NVWcP39enD9/XgAQixYtEufPnxdxcXFCCEpT4+XlJbZu3Sr+/PNP0aNHD053Z2EKuweTJ08WAwYMyK8vpbubMGGCiImJEUuXLtWZ7s6a/Xhhxx8wYICYPHmy1nZt27YVb7zxhlZ5amqqGD9+vIiIiBCxsbHiwIEDolmzZqJu3boiIyOj2M9HCNPPadasWWLv3r3i5s2b4uzZs6JPnz7C1dVVXLp0Kb+OtZ8vU89p/vz5wtnZWWzatEkx3pFScanxPp04cUI4OjqKhQsXipiYGDFz5kyd6e5s6T0YHh4uQkJCxKlTp8Tx48dF3bp1FanB7t27J+rVqydOnTolhBAiOTlZtGrVSjRq1EjcuHFDce9ycnKEEEJs27ZNLF++XERHR4vr16+LZcuWCXd3dzFjxgybPKcbN26I2bNnizNnzojY2FixdetWERQUJNq3b5+/jZTurnPnziIqKkrs2bNH+Pj4lGi6O1POSeL69evCzs5O7N69W2uf1r5PcXFx4vz58/lp+KS+SzMdX7169cTmzZvzfxvz/BR2rYyBBXsDLFmyRNSsWVM4OzuLli1bij/++MPaTbJZAOhcNPPvMoXDgn3hbN++XTRs2FC4uLiI4OBg8f3331u7STZNSkqK+OCDD0TNmjWFq6urCAoKElOnTi32NDdq4vDhwzrfXwMHDhRCUKqa6dOnC19fX+Hi4iI6deokrl69at1GlzIKuwcDBw4UHTp00NqmadOmwtnZWQQFBensb6zdjxs6focOHfLPT+LKlSsCgNi3b5/WvtLT00Xnzp2Fj4+PcHJyEgEBAWLIkCElrnAw5ZzGjBmTX9fX11e89NJL4ty5c4r92cLzZco5BQQE6Pyvzpw5UwihzvskBKV+e+aZZ4Szs7No0KCB2Llzp2K9LdwnTRISEsSbb74pypcvLzw8PMTbb7+tEKxiY2MFAHH48GEhhP53DAARGxsrhKD0Yk2bNhXly5cX5cqVE02aNBHffvutyM3NtclzunPnjmjfvr2oVKmScHFxEXXq1BETJkxQ5LEXQojbt2+Lrl27Cjc3N+Ht7S3GjRunSPFnS+ckMWXKFFGjRg2d197a92ngwIE6/0ea51BQBjLm+SnsWhmD3b8HZxiGYRiGYRiGYRhGhbCPPcMwDMMwDMMwDMOoGBbsGYZhGIZhGIZhGEbFsGDPMAzDMAzDMAzDMCqGBXuGYRiGYRiGYRiGUTEs2DMMwzAMwzAMwzCMimHBnmEYhmEYhmEYhmFUDAv2DMMwDMMwDMMwDKNiWLBnGIZhGIZhGIZhGBXDgj3DMAzDMAzDMAzDqBgW7BmGYRiGYRiGYRhGxbBgzzAMwzAMwzAMwzAqhgV7hmEYhmEYhmEYhlEx/w/auISimk88ngAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the angles as a function of time\n", + "\n", + "fig, axes = plt.subplots(1,2, figsize=(12,4))\n", + "axes[0].plot(t, x[:, 0], 'r', label=\"theta1\")\n", + "axes[0].plot(t, x[:, 1], 'b', label=\"theta2\")\n", + "\n", + "import numpy as np\n", + "\n", + "x1 = + L * np.sin(x[:, 0])\n", + "y1 = - L * np.cos(x[:, 0])\n", + "\n", + "x2 = x1 + L * np.sin(x[:, 1])\n", + "y2 = y1 - L * np.cos(x[:, 1])\n", + "\n", + "axes[1].plot(x1, y1, 'r', label=\"pendulum1\")\n", + "axes[1].plot(x2, y2, 'b', label=\"pendulum2\")\n", + "axes[1].set_ylim([-1, 0])\n", + "axes[1].set_xlim([1, -1]);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "O4X5aqC6pgG3" + }, + "outputs": [], + "source": [ + "from IPython.display import display, clear_output\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 731 + }, + "id": "vIHDSdCTqR-7", + "outputId": "20c409b7-fc84-4db7-ed22-2eaaa3fef420" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAFlCAYAAAD8hw89AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALEtJREFUeJzt3X1cVHW+B/DPDMgg2syIPAwkPlJi5lMYE26bJfMS0r2r3TbTKNQXQZnaGqbC7qqrlpi63V3Nq1kpddfUui/twYpiUa97lcBFWc2nK4aixmDKMiM+IMz87h9TJyce5IeemRE+79frvJg553d+8z3nNZ6P52HO0QghBIiIiFpI6+0CiIjo9sLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpHgmOVatWoWfPnggMDITZbEZRUVGTbXNycqDRaNyGwMBAtzZCCMybNw8RERHo2LEjLBYLjh8/rvZiEBERPBAcmzdvRkZGBubPn499+/Zh0KBBSExMxLlz55qcR6/Xo6KiQhlOnTrlNn3p0qVYsWIF1qxZg8LCQnTq1AmJiYm4evWq2otDRNTuadS+yaHZbMb999+PN954AwDgdDoRFRWF6dOnIzMzs0H7nJwczJgxA9XV1Y32J4RAZGQkZs6ciZdffhkAYLPZEB4ejpycHIwfP161ZSEiIsBfzc6vXbuG4uJiZGVlKeO0Wi0sFgsKCgqanK+mpgY9evSA0+nEfffdh8WLF6N///4AgLKyMlitVlgsFqW9wWCA2WxGQUFBo8FRW1uL2tpa5b3T6URVVRW6du0KjUZzKxaViMirhBC4ePEiIiMjodWqezBJ1eA4f/48HA4HwsPD3caHh4fj6NGjjc7Tt29frFu3DgMHDoTNZsPy5csxbNgwHDp0CN26dYPValX6+HmfP077uezsbCxYsOAWLBERkW87ffo0unXrpupnqBocrREfH4/4+Hjl/bBhw9CvXz+8+eabWLRoUav6zMrKQkZGhvLeZrOhe/fuOH36NPR6/U3XTETkbXa7HVFRUbjjjjtU/yxVgyMkJAR+fn6orKx0G19ZWQmTydSiPjp06IAhQ4agtLQUAJT5KisrERER4dbn4MGDG+1Dp9NBp9M1GK/X6xkcRNSmeOLwu6oHwgICAhAbG4v8/HxlnNPpRH5+vtteRXMcDgcOHjyohESvXr1gMpnc+rTb7SgsLGxxn0RE1HqqH6rKyMjAxIkTMXToUMTFxeHPf/4zLl26hMmTJwMAUlJScOeddyI7OxsAsHDhQjzwwAOIjo5GdXU1li1bhlOnTuHZZ58F4ErTGTNm4JVXXsFdd92FXr16Ye7cuYiMjMTYsWPVXhwionZP9eB48skn8f3332PevHmwWq0YPHgwcnNzlZPb5eXlblcA/Otf/0JaWhqsViu6dOmC2NhY7NmzB/fcc4/SZvbs2bh06RLS09NRXV2NBx98ELm5uQ1+KEhERLee6r/j8EV2ux0GgwE2m43nOIioTfDkdo33qiIiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKS4pHgWLVqFXr27InAwECYzWYUFRU12fatt97CL3/5S3Tp0gVdunSBxWJp0H7SpEnQaDRuQ1JSktqLQURE8EBwbN68GRkZGZg/fz727duHQYMGITExEefOnWu0/c6dOzFhwgTs2LEDBQUFiIqKwsiRI3H27Fm3dklJSaioqFCGjRs3qr0oREQEQCOEEGp+gNlsxv3334833ngDAOB0OhEVFYXp06cjMzPzhvM7HA506dIFb7zxBlJSUgC49jiqq6vx0Ucftaomu90Og8EAm80GvV7fqj6IiHyJJ7drqu5xXLt2DcXFxbBYLD99oFYLi8WCgoKCFvVx+fJl1NXVITg42G38zp07ERYWhr59+2LKlCm4cOFCk33U1tbCbre7DURE1DqqBsf58+fhcDgQHh7uNj48PBxWq7VFfcyZMweRkZFu4ZOUlIT33nsP+fn5eO211/A///M/ePTRR+FwOBrtIzs7GwaDQRmioqJav1BERO2cv7cLaM6SJUuwadMm7Ny5E4GBgcr48ePHK68HDBiAgQMHok+fPti5cycSEhIa9JOVlYWMjAzlvd1uZ3gQEbWSqnscISEh8PPzQ2Vlpdv4yspKmEymZuddvnw5lixZgq+++goDBw5stm3v3r0REhKC0tLSRqfrdDro9Xq3gYiIWkfV4AgICEBsbCzy8/OVcU6nE/n5+YiPj29yvqVLl2LRokXIzc3F0KFDb/g5Z86cwYULFxAREXFL6iYioqapfjluRkYG3nrrLbz77rs4cuQIpkyZgkuXLmHy5MkAgJSUFGRlZSntX3vtNcydOxfr1q1Dz549YbVaYbVaUVNTAwCoqanBrFmz8PXXX+PkyZPIz8/HmDFjEB0djcTERLUXh4io3VP9HMeTTz6J77//HvPmzYPVasXgwYORm5urnDAvLy+HVvtTfq1evRrXrl3Db37zG7d+5s+fjz/+8Y/w8/PDgQMH8O6776K6uhqRkZEYOXIkFi1aBJ1Op/biEBG1e6r/jsMX8XccRNTWtJnfcRARUdvD4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIikuKR4Fi1ahV69uyJwMBAmM1mFBUVNdv+ww8/RExMDAIDAzFgwAB8/vnnbtOFEJg3bx4iIiLQsWNHWCwWHD9+XM1FICKiH6geHJs3b0ZGRgbmz5+Pffv2YdCgQUhMTMS5c+cabb9nzx5MmDABqamp2L9/P8aOHYuxY8fim2++UdosXboUK1aswJo1a1BYWIhOnTohMTERV69eVXtxiOScOQPs2OH6S9RWCJXFxcWJqVOnKu8dDoeIjIwU2dnZjbYfN26cGD16tNs4s9ksnnvuOSGEEE6nU5hMJrFs2TJlenV1tdDpdGLjxo0tqslmswkAwmazyS4OUcu9/bYQWq0QgOvv2297uyJqwzy5XVN1j+PatWsoLi6GxWJRxmm1WlgsFhQUFDQ6T0FBgVt7AEhMTFTal5WVwWq1urUxGAwwm81N9llbWwu73e42EKnqzBkgPR1wOl3vnU7guee450FtgqrBcf78eTgcDoSHh7uNDw8Ph9VqbXQeq9XabPsf/8r0mZ2dDYPBoAxRUVGtWh6iFjt+/KfQ+JHDAZSWeqceoluoXVxVlZWVBZvNpgynT5/2dknU1t11F6D92T8vrRaIjvZOPUS3kKrBERISAj8/P1RWVrqNr6yshMlkanQek8nUbPsf/8r0qdPpoNfr3QYiVXXrBqxdC/j5/TTu7ruBO+/0Xk1Et4iqwREQEIDY2Fjk5+cr45xOJ/Lz8xEfH9/oPPHx8W7tASAvL09p36tXL5hMJrc2drsdhYWFTfZJ5BWpqcDJk8CGDUBgIHD0KJCT4+2qiG6e2mffN23aJHQ6ncjJyRGHDx8W6enpwmg0CqvVKoQQ4plnnhGZmZlK+927dwt/f3+xfPlyceTIETF//nzRoUMHcfDgQaXNkiVLhNFoFB9//LE4cOCAGDNmjOjVq5e4cuVKi2riVVXkcUuXuq6u6tJFiMpKb1dDbZAnt2uqB4cQQqxcuVJ0795dBAQEiLi4OPH1118r04YPHy4mTpzo1v6DDz4Qd999twgICBD9+/cXn332mdt0p9Mp5s6dK8LDw4VOpxMJCQni2LFjLa6HwUEeV1cnxODBrvCYMMHb1VAb5MntmkYIIby7z+N5drsdBoMBNpuN5zvIc4qLgbg419VWn38OPPqotyuiNsST27V2cVUVkU+IjQVmzHC9njIFqKnxajlErcXgIPKkBQuAHj2AU6eAefO8XQ1RqzA4iDypc2dgzRrX67/8BfjHP7xbD1ErMDiIPC0pCXjqKde5jrQ0oK7O2xURSWFwEHnDf/wHEBwMlJQAf/6zt6shksLgIPKGsDDgT39yvZ4/H/j2W+/WQySBwUHkLRMnAiNGAFeuuO6c2/6ujKfbFIODyFs0GuDNN123I/nb34C//tXbFRG1CIODyJuio12HqgDgpZeA77/3bj1ELcDgIPK2mTOBgQOBCxdcr4l8HIODyNs6dADeest16Oq//gv46itvV0TULAYHkS+IiwOmT3e9fv554NIl79ZD1AwGB5GveOUVICoKKCtz3ZqEyEcxOIh8xR13AKtXu16//jqwf7936yFqAoODyJeMHg2MGwc4HK7bkdTXe7siogYYHES+5i9/AYxG1/M7VqzwdjVEDTA4iHyNyQQsW+Z6PXeu65wHkQ9hcBD5otRUYPhw4PJl4IUXeDsS8ikMDiJfpNEAa9cCOh2Qmwts3OjtiogUDA4iX3X33cAf/uB6PWOG65flRD6AwUHky2bPBvr3d93D6uWXvV0NEQAGB5FvCwj46XYkOTlAfr63KyJicBD5vPh41wlywPXcjitXvFsPtXsMDqLbweLFwJ13AidOAAsXersaaucYHES3A70eWLXK9XrZMuDAAe/WQ+0ag4PodjFmDPD4467bkTz7rOsvkRcwOIhuJytWAAYDsHcv8MYb3q6G2ilVg6OqqgrJycnQ6/UwGo1ITU1FTU1Ns+2nT5+Ovn37omPHjujevTtefPFF2Gw2t3YajabBsGnTJjUXhcg3REYCr73mev373wPl5d6th9olVYMjOTkZhw4dQl5eHrZt24Zdu3YhPT29yfbfffcdvvvuOyxfvhzffPMNcnJykJubi9TU1AZt169fj4qKCmUYO3asiktC5EPS0oAHH3Q97Im3IyFvECo5fPiwACD27t2rjPviiy+ERqMRZ8+ebXE/H3zwgQgICBB1dXXKOABi69atra7NZrMJAMJms7W6DyKvOnxYiIAAIQAhNm/2djXkAzy5XVNtj6OgoABGoxFDhw5VxlksFmi1WhQWFra4H5vNBr1eD39/f7fxU6dORUhICOLi4rBu3ToI/q+L2pN+/YDf/c71+sUXgX/9y7v1ULvif+MmrWO1WhEWFub+Yf7+CA4OhtVqbVEf58+fx6JFixoc3lq4cCFGjBiBoKAgfPXVV3jhhRdQU1ODF198sdF+amtrUVtbq7y32+2SS0PkgzIzgc2bgSNHgFmzgLff9nZF1E5I73FkZmY2enL6+uHo0aM3XZjdbsfo0aNxzz334I9//KPbtLlz5+IXv/gFhgwZgjlz5mD27NlY9uPzCxqRnZ0Ng8GgDFFRUTddH5HX6XSuO+gCwDvvADt3erUcaj80QvIYz/fff48LN7hLZ+/evfHXv/4VM2fOxL+u24Wur69HYGAgPvzwQzz22GNNzn/x4kUkJiYiKCgI27ZtQ2BgYLOf99lnn+FXv/oVrl69Cp1O12B6Y3scUVFRymEwotvalCnAmjWuu+n+85/ADf69UNtkt9thMBg8sl2TPlQVGhqK0NDQG7aLj49HdXU1iouLERsbCwDYvn07nE4nzGZzk/PZ7XYkJiZCp9Phk08+uWFoAEBJSQm6dOnSaGgAgE6na3Ia0W1vyRLg44+B//s/4NVXgUWLvF0RtXGqnRzv168fkpKSkJaWhqKiIuzevRvTpk3D+PHjERkZCQA4e/YsYmJiUFRUBMAVGiNHjsSlS5fwzjvvwG63w2q1wmq1wvHDr2Q//fRTvP322/jmm29QWlqK1atXY/HixZg+fbpai0Lk2wyGn34MuGQJ8M033q2H2j41L9m6cOGCmDBhgujcubPQ6/Vi8uTJ4uLFi8r0srIyAUDs2LFDCCHEjh07BIBGh7KyMiGE65LewYMHi86dO4tOnTqJQYMGiTVr1giHw9Hiung5LrU5TqcQY8a4Ls994AEh6uu9XRF5mCe3a9LnONoCTx4LJPKYs2ddl+levOjaA5k61dsVkQd5crvGe1URtRV33uk6VAUAWVnAmTPerYfaLAYHUVvy/POuBz9dvOja42h/BxTIAxgcRG2JVut61GyHDsAnnwBbtni7ImqDGBxEbU3//sCcOa7X06YB1dVeLYfaHgYHUVv0+98DffsCVqvr1iREtxCDg6gtCgwE3nzT9frNN4G//9279VCbwuAgaquGD3c9YhYA0tOB6267Q3QzGBxEbdnSpUB4OHD0KJCd7e1qqI1gcBC1ZV26uJ5TDgCLFwOHD3u3HmoTGBxEbd0TTwC/+hVQV+c6ZOV0ersius0xOIjaOo0G+M//BDp3Bnbv/ukZHkStxOAgag+ioly3XAdcv/H47jvv1kO3NQYHUXsxdSoQFwfY7QAfQ0A3gcFB1F74+bluR+Lv77oVyUcfebui29qZM8COHe3zXpIMDqL2ZOBAYNYs1+upU117HyTt7beBHj2AESNcf995x9sVeRafx8HncVB7c+WKK0BKS4EXXgBWrfJ2RR5VX++6ebDN5srN6/82Nu7nf6uqGt7+y88POHkS6NbNG0vk4tPPHCei21zHjq7bkCQkAKtXA8nJwLBh3q7qhoQALl9ufqPekg3/pUu3vjaHw5XD3gwOT2JwELVHI0YAkycD69fjzNOZOP78n3DXI93Q7f4IVT6urq5lG/cbbfgdjltXk07nely7wQDo9c3/vf715ctAYqL7z2H8/IDo6FtXm69jcBC1V8uW4Z33OyK9bAWcc/yghQNrJ/4dqTm/VJo4na7/obd0497UtCtXbl3ZWq1rI97YRr0lG/4f59XpWl/D2rXAc8+5gszPz7UD1172NgCe4+A5Dmq3zuytQI+4MDjhd91Ygb6963G5rgPsdtdG/1ZuIYKCbrxRv9G0Tp1cv2n0tjNnXIenoqN9IzR4joOIVHf871Y48fNDUxoc+7ZDg7Z+fk1vyFu64b/jDteDCduKbt18IzC8gcFB1E7d9UsTtHC47XFo4cBfV1ajT1xXtw1/x46+8b988g38HQdRO9Xt/gisnbgHfqgHAPihHmsn7sGEaV0RF+d6gKDJ5Dq8xNCg6/EcB89xUDt3Zm8FSndXIvoX4apdVUXq4zkOIvKYbvdHMDBICg9VERGRFAYHERFJYXAQEZEUVYOjqqoKycnJ0Ov1MBqNSE1NRU1NTbPzPPzww9BoNG7D888/79amvLwco0ePRlBQEMLCwjBr1izU19eruShERPQDVU+OJycno6KiAnl5eairq8PkyZORnp6O999/v9n50tLSsHDhQuV9UFCQ8trhcGD06NEwmUzYs2cPKioqkJKSgg4dOmDx4sWqLQsREf1AqOTw4cMCgNi7d68y7osvvhAajUacPXu2yfmGDx8ufvvb3zY5/fPPPxdarVZYrVZl3OrVq4Verxe1tbUtqs1mswkAwmaztag9EZGv8+R2TbVDVQUFBTAajRg6dKgyzmKxQKvVorCwsNl5N2zYgJCQENx7773IysrC5cuX3fodMGAAwsPDlXGJiYmw2+04dOhQo/3V1tbCbre7DURE1DqqHaqyWq0ICwtz/zB/fwQHB8NqtTY531NPPYUePXogMjISBw4cwJw5c3Ds2DFs2bJF6ff60ACgvG+q3+zsbCxYsOBmFoeIiH4gHRyZmZl47bXXmm1z5MiRVheUnp6uvB4wYAAiIiKQkJCAEydOoE+fPq3qMysrCxkZGcp7u92OqKioVtdIRNSeSQfHzJkzMWnSpGbb9O7dGyaTCefOnXMbX19fj6qqKphMphZ/ntlsBgCUlpaiT58+MJlMKCoqcmtTWVkJAE32q9PpoLuZm+8TEZFCOjhCQ0MRGhp6w3bx8fGorq5GcXExYmNjAQDbt2+H0+lUwqAlSkpKAAARERFKv6+++irOnTunHArLy8uDXq/HPffcI7k0REQkS7WT4/369UNSUhLS0tJQVFSE3bt3Y9q0aRg/fjwiIyMBAGfPnkVMTIyyB3HixAksWrQIxcXFOHnyJD755BOkpKTgoYcewsCBAwEAI0eOxD333INnnnkG//znP/Hll1/iD3/4A6ZOncq9CiIiD1D1B4AbNmxATEwMEhISMGrUKDz44INYu3atMr2urg7Hjh1TrpoKCAjA3/72N4wcORIxMTGYOXMmHn/8cXz66afKPH5+fti2bRv8/PwQHx+Pp59+GikpKW6/+yAiIvXwtuq8rToRtQGe3K7xXlVERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUlQNjqqqKiQnJ0Ov18NoNCI1NRU1NTVNtj958iQ0Gk2jw4cffqi0a2z6pk2b1FwUIiL6gb+anScnJ6OiogJ5eXmoq6vD5MmTkZ6ejvfff7/R9lFRUaioqHAbt3btWixbtgyPPvqo2/j169cjKSlJeW80Gm95/URE1JBqwXHkyBHk5uZi7969GDp0KABg5cqVGDVqFJYvX47IyMgG8/j5+cFkMrmN27p1K8aNG4fOnTu7jTcajQ3aEhGR+lQ7VFVQUACj0aiEBgBYLBZotVoUFha2qI/i4mKUlJQgNTW1wbSpU6ciJCQEcXFxWLduHYQQTfZTW1sLu93uNhARUeuotsdhtVoRFhbm/mH+/ggODobVam1RH++88w769euHYcOGuY1fuHAhRowYgaCgIHz11Vd44YUXUFNTgxdffLHRfrKzs7FgwYLWLQgREbmR3uPIzMxs8gT2j8PRo0dvurArV67g/fffb3RvY+7cufjFL36BIUOGYM6cOZg9ezaWLVvWZF9ZWVmw2WzKcPr06Zuuj4iovZLe45g5cyYmTZrUbJvevXvDZDLh3LlzbuPr6+tRVVXVonMT//3f/43Lly8jJSXlhm3NZjMWLVqE2tpa6HS6BtN1Ol2j44mISJ50cISGhiI0NPSG7eLj41FdXY3i4mLExsYCALZv3w6n0wmz2XzD+d955x38+te/btFnlZSUoEuXLgwHIiIPUO0cR79+/ZCUlIS0tDSsWbMGdXV1mDZtGsaPH69cUXX27FkkJCTgvffeQ1xcnDJvaWkpdu3ahc8//7xBv59++ikqKyvxwAMPIDAwEHl5eVi8eDFefvlltRaFiIiuo+rvODZs2IBp06YhISEBWq0Wjz/+OFasWKFMr6urw7Fjx3D58mW3+datW4du3bph5MiRDfrs0KEDVq1ahZdeeglCCERHR+P1119HWlqamotCREQ/0IjmrmNto+x2OwwGA2w2G/R6vbfLISK6aZ7crvFeVUREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkRbXgePXVVzFs2DAEBQXBaDS2aB4hBObNm4eIiAh07NgRFosFx48fd2tTVVWF5ORk6PV6GI1GpKamoqamRoUlICKixqgWHNeuXcMTTzyBKVOmtHiepUuXYsWKFVizZg0KCwvRqVMnJCYm4urVq0qb5ORkHDp0CHl5edi2bRt27dqF9PR0NRaBiIgaI1S2fv16YTAYbtjO6XQKk8kkli1bpoyrrq4WOp1ObNy4UQghxOHDhwUAsXfvXqXNF198ITQajTh79myLa7LZbAKAsNlsLV8QIiIf5sntms+c4ygrK4PVaoXFYlHGGQwGmM1mFBQUAAAKCgpgNBoxdOhQpY3FYoFWq0VhYWGTfdfW1sJut7sNRETUOj4THFarFQAQHh7uNj48PFyZZrVaERYW5jbd398fwcHBSpvGZGdnw2AwKENUVNQtrp6IqP2QCo7MzExoNJpmh6NHj6pVa6tlZWXBZrMpw+nTp71dEhHRbctfpvHMmTMxadKkZtv07t27VYWYTCYAQGVlJSIiIpTxlZWVGDx4sNLm3LlzbvPV19ejqqpKmb8xOp0OOp2uVXUREZE7qeAIDQ1FaGioKoX06tULJpMJ+fn5SlDY7XYUFhYqV2bFx8ejuroaxcXFiI2NBQBs374dTqcTZrNZlbqIiMidauc4ysvLUVJSgvLycjgcDpSUlKCkpMTtNxcxMTHYunUrAECj0WDGjBl45ZVX8Mknn+DgwYNISUlBZGQkxo4dCwDo168fkpKSkJaWhqKiIuzevRvTpk3D+PHjERkZqdaiEBHRdaT2OGTMmzcP7777rvJ+yJAhAIAdO3bg4YcfBgAcO3YMNptNaTN79mxcunQJ6enpqK6uxoMPPojc3FwEBgYqbTZs2IBp06YhISEBWq0Wjz/+OFasWKHWYhAR0c9ohBDC20V4mt1uh8FggM1mg16v93Y5REQ3zZPbNZ+5HJeIiG4PDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIimqBcerr76KYcOGISgoCEaj8Ybt6+rqMGfOHAwYMACdOnVCZGQkUlJS8N1337m169mzJzQajduwZMkSlZaCiIh+TrXguHbtGp544glMmTKlRe0vX76Mffv2Ye7cudi3bx+2bNmCY8eO4de//nWDtgsXLkRFRYUyTJ8+/VaXT0RETfBXq+MFCxYAAHJyclrU3mAwIC8vz23cG2+8gbi4OJSXl6N79+7K+DvuuAMmk+mW1UpERC3n0+c4bDYbNBpNg0NdS5YsQdeuXTFkyBAsW7YM9fX13imQiKgdUm2P42ZdvXoVc+bMwYQJE6DX65XxL774Iu677z4EBwdjz549yMrKQkVFBV5//fUm+6qtrUVtba3y3m63q1o7EVFbJrXHkZmZ2eDE9M+Ho0eP3nRRdXV1GDduHIQQWL16tdu0jIwMPPzwwxg4cCCef/55/OlPf8LKlSvdguHnsrOzYTAYlCEqKuqmayQiaq80QgjR0sbff/89Lly40Gyb3r17IyAgQHmfk5ODGTNmoLq6ukWf8WNofPvtt9i+fTu6du3abPtDhw7h3nvvxdGjR9G3b99G2zS2xxEVFQWbzea2N0NEdLuy2+0wGAwe2a5JHaoKDQ1FaGioWrUooXH8+HHs2LHjhqEBACUlJdBqtQgLC2uyjU6ng06nu5WlEhG1W6qd4ygvL0dVVRXKy8vhcDhQUlICAIiOjkbnzp0BADExMcjOzsZjjz2Guro6/OY3v8G+ffuwbds2OBwOWK1WAEBwcDACAgJQUFCAwsJCPPLII7jjjjtQUFCAl156CU8//TS6dOmi1qIQEdH1hEomTpwoADQYduzYobQBINavXy+EEKKsrKzR9tfPU1xcLMxmszAYDCIwMFD069dPLF68WFy9elWqNpvNJgAIm812i5aWiMi7PLldkzrH0VZ48lggEZEneHK75tO/4yAiIt/D4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKaoFx6uvvophw4YhKCgIRqOxRfNMmjQJGo3GbUhKSnJrU1VVheTkZOj1ehiNRqSmpqKmpkaFJSAiosaoFhzXrl3DE088gSlTpkjNl5SUhIqKCmXYuHGj2/Tk5GQcOnQIeXl52LZtG3bt2oX09PRbWToRETXDX62OFyxYAADIycmRmk+n08FkMjU67ciRI8jNzcXevXsxdOhQAMDKlSsxatQoLF++HJGRkTdVMxER3ZhqwdFaO3fuRFhYGLp06YIRI0bglVdeQdeuXQEABQUFMBqNSmgAgMVigVarRWFhIR577LFG+6ytrUVtba3y3mazAQDsdruKS0JE5Dk/bs+EEKp/lk8FR1JSEv793/8dvXr1wokTJ/C73/0Ojz76KAoKCuDn5wer1YqwsDC3efz9/REcHAyr1dpkv9nZ2coe0PWioqJu+TIQEXnThQsXYDAYVP0MqeDIzMzEa6+91mybI0eOICYmplXFjB8/Xnk9YMAADBw4EH369MHOnTuRkJDQqj4BICsrCxkZGcr76upq9OjRA+Xl5aqv4LbEbrcjKioKp0+fhl6v93Y5twWus9bhepNns9nQvXt3BAcHq/5ZUsExc+ZMTJo0qdk2vXv3vpl6GvQVEhKC0tJSJCQkwGQy4dy5c25t6uvrUVVV1eR5EcB13kSn0zUYbzAY+KVsBb1ez/Umieusdbje5Gm16v/KQio4QkNDERoaqlYtDZw5cwYXLlxAREQEACA+Ph7V1dUoLi5GbGwsAGD79u1wOp0wm80eq4uIqD1TLZrKy8tRUlKC8vJyOBwOlJSUoKSkxO03FzExMdi6dSsAoKamBrNmzcLXX3+NkydPIj8/H2PGjEF0dDQSExMBAP369UNSUhLS0tJQVFSE3bt3Y9q0aRg/fjyvqCIi8hShkokTJwoADYYdO3YobQCI9evXCyGEuHz5shg5cqQIDQ0VHTp0ED169BBpaWnCarW69XvhwgUxYcIE0blzZ6HX68XkyZPFxYsXpWq7evWqmD9/vrh69erNLma7wvUmj+usdbje5HlynWmE8MC1W0RE1GbwXlVERCSFwUFERFIYHEREJIXBQUREUtpkcOzatQv/9m//hsjISGg0Gnz00Uc3nGfnzp247777oNPpEB0dLX1zxrZi1apV6NmzJwIDA2E2m1FUVNRk25ycnAa3wQ8MDPRgtb5BZp0BwIcffoiYmBgEBgZiwIAB+Pzzzz1Uqe9qzeMSHn744Qbfv+eff95DFfuG1jy+QgiBefPmISIiAh07doTFYsHx48elPrdNBselS5cwaNAgrFq1qkXty8rKMHr0aDzyyCMoKSnBjBkz8Oyzz+LLL79UuVLfsnnzZmRkZGD+/PnYt28fBg0ahMTExAa/1r+eXq93uw3+qVOnPFix98musz179mDChAlITU3F/v37MXbsWIwdOxbffPONhyv3La19XEJaWprb92/p0qUeqNZ3tObxFUuXLsWKFSuwZs0aFBYWolOnTkhMTMTVq1db/sGqX/DrZQDE1q1bm20ze/Zs0b9/f7dxTz75pEhMTFSxMt8TFxcnpk6dqrx3OBwiMjJSZGdnN9p+/fr1wmAweKg63yS7zsaNGydGjx7tNs5sNovnnntO1Tp92eHDhwUAsXfvXmXcF198ITQajTh79myT8w0fPlz89re/9UCFvq+l/xadTqcwmUxi2bJlyrjq6mqh0+nExo0bW/x5bXKPQ1ZBQQEsFovbuMTERBQUFHipIs+7du0aiouL3daDVquFxWJpdj3U1NSgR48eiIqKwpgxY3Do0CFPlOsTWrPO+F1r6EaPS2jOhg0bEBISgnvvvRdZWVm4fPmy2uXe1srKymC1Wt2+gwaDAWazWeo76FO3VfcWq9WK8PBwt3Hh4eGw2+24cuUKOnbs6KXKPOf8+fNwOByNroejR482Ok/fvn2xbt06DBw4EDabDcuXL8ewYcNw6NAhdOvWzRNle1Vr1llT37XmHgvQ1rX2cQlPPfUUevTogcjISBw4cABz5szBsWPHsGXLFrVLvm39uD5v9jvIPQ5qtfj4eKSkpGDw4MEYPnw4tmzZgtDQULz55pveLo18QGZmZoOT1z8fmgrYlkhPT0diYiIGDBiA5ORkvPfee9i6dStOnDhxC5fC89Reb7cC9zgAmEwmVFZWuo2rrKyEXq9vF3sbABASEgI/P79G10Nzt6y/XocOHTBkyBCUlpaqUaLPac06a+q71tJ1fDtp6WMYWvu4hJ/78Q7ZpaWl6NOnj3S9vkLNx1f8uD4rKyuVu47/+H7w4MEt7ofBAdf/nH9+SWReXh7i4+O9VJHnBQQEIDY2Fvn5+Rg7diwAwOl0Ij8/H9OmTWtRHw6HAwcPHsSoUaNUrNR3tGadxcfHIz8/HzNmzFDGtdXvWksfw3CrHpdQUlICAG4bxNuRmo+v6NWrF0wmE/Lz85WgsNvtKCwslLoyq01eVXXx4kWxf/9+sX//fgFAvP7662L//v3i1KlTQgghMjMzxTPPPKO0//bbb0VQUJCYNWuWOHLkiFi1apXw8/MTubm53loEr9i0aZPQ6XQiJydHHD58WKSnpwuj0ajcofiZZ54RmZmZSvsFCxaIL7/8Upw4cUIUFxeL8ePHi8DAQHHo0CFvLYLHya6z3bt3C39/f7F8+XJx5MgRMX/+fNGhQwdx8OBBby2CT0hKShJDhgwRhYWF4n//93/FXXfdJSZMmKBMP3PmjOjbt68oLCwUQghRWloqFi5cKP7xj3+IsrIy8fHHH4vevXuLhx56yFuL4BWnTp0S+/fvFwsWLBCdO3dWtnvX3zG8b9++YsuWLcr7JUuWCKPRKD7++GNx4MABMWbMGNGrVy9x5cqVFn9umwyOHTt2NHpL94kTJwohXLd8Hz58eIN5Bg8eLAICAkTv3r2V2723NytXrhTdu3cXAQEBIi4uTnz99dfKtOHDhyvrUAghZsyYobQNDw8Xo0aNEvv27fNC1d4ls86EEOKDDz4Qd999twgICBD9+/cXn332mYcr9j03elxCWVmZ22MZysvLxUMPPSSCg4OFTqcT0dHRYtasWcJms3lpCbxD9vEVQrguyZ07d64IDw8XOp1OJCQkiGPHjkl9Lm+rTkREUnhVFRERSWFwEBGRFAYHERFJYXAQEZEUBgcREUlhcBARkRQGBxERSWFwEBGRFAYHERFJYXAQEZEUBgcREUlhcBARkZT/B//GSZFf2T5PAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAFlCAYAAAD8hw89AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALEtJREFUeJzt3X1cVHW+B/DPDMgg2syIPAwkPlJi5lMYE26bJfMS0r2r3TbTKNQXQZnaGqbC7qqrlpi63V3Nq1kpddfUui/twYpiUa97lcBFWc2nK4aixmDKMiM+IMz87h9TJyce5IeemRE+79frvJg553d+8z3nNZ6P52HO0QghBIiIiFpI6+0CiIjo9sLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpHgmOVatWoWfPnggMDITZbEZRUVGTbXNycqDRaNyGwMBAtzZCCMybNw8RERHo2LEjLBYLjh8/rvZiEBERPBAcmzdvRkZGBubPn499+/Zh0KBBSExMxLlz55qcR6/Xo6KiQhlOnTrlNn3p0qVYsWIF1qxZg8LCQnTq1AmJiYm4evWq2otDRNTuadS+yaHZbMb999+PN954AwDgdDoRFRWF6dOnIzMzs0H7nJwczJgxA9XV1Y32J4RAZGQkZs6ciZdffhkAYLPZEB4ejpycHIwfP161ZSEiIsBfzc6vXbuG4uJiZGVlKeO0Wi0sFgsKCgqanK+mpgY9evSA0+nEfffdh8WLF6N///4AgLKyMlitVlgsFqW9wWCA2WxGQUFBo8FRW1uL2tpa5b3T6URVVRW6du0KjUZzKxaViMirhBC4ePEiIiMjodWqezBJ1eA4f/48HA4HwsPD3caHh4fj6NGjjc7Tt29frFu3DgMHDoTNZsPy5csxbNgwHDp0CN26dYPValX6+HmfP077uezsbCxYsOAWLBERkW87ffo0unXrpupnqBocrREfH4/4+Hjl/bBhw9CvXz+8+eabWLRoUav6zMrKQkZGhvLeZrOhe/fuOH36NPR6/U3XTETkbXa7HVFRUbjjjjtU/yxVgyMkJAR+fn6orKx0G19ZWQmTydSiPjp06IAhQ4agtLQUAJT5KisrERER4dbn4MGDG+1Dp9NBp9M1GK/X6xkcRNSmeOLwu6oHwgICAhAbG4v8/HxlnNPpRH5+vtteRXMcDgcOHjyohESvXr1gMpnc+rTb7SgsLGxxn0RE1HqqH6rKyMjAxIkTMXToUMTFxeHPf/4zLl26hMmTJwMAUlJScOeddyI7OxsAsHDhQjzwwAOIjo5GdXU1li1bhlOnTuHZZ58F4ErTGTNm4JVXXsFdd92FXr16Ye7cuYiMjMTYsWPVXhwionZP9eB48skn8f3332PevHmwWq0YPHgwcnNzlZPb5eXlblcA/Otf/0JaWhqsViu6dOmC2NhY7NmzB/fcc4/SZvbs2bh06RLS09NRXV2NBx98ELm5uQ1+KEhERLee6r/j8EV2ux0GgwE2m43nOIioTfDkdo33qiIiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKS4pHgWLVqFXr27InAwECYzWYUFRU12fatt97CL3/5S3Tp0gVdunSBxWJp0H7SpEnQaDRuQ1JSktqLQURE8EBwbN68GRkZGZg/fz727duHQYMGITExEefOnWu0/c6dOzFhwgTs2LEDBQUFiIqKwsiRI3H27Fm3dklJSaioqFCGjRs3qr0oREQEQCOEEGp+gNlsxv3334833ngDAOB0OhEVFYXp06cjMzPzhvM7HA506dIFb7zxBlJSUgC49jiqq6vx0Ucftaomu90Og8EAm80GvV7fqj6IiHyJJ7drqu5xXLt2DcXFxbBYLD99oFYLi8WCgoKCFvVx+fJl1NXVITg42G38zp07ERYWhr59+2LKlCm4cOFCk33U1tbCbre7DURE1DqqBsf58+fhcDgQHh7uNj48PBxWq7VFfcyZMweRkZFu4ZOUlIT33nsP+fn5eO211/A///M/ePTRR+FwOBrtIzs7GwaDQRmioqJav1BERO2cv7cLaM6SJUuwadMm7Ny5E4GBgcr48ePHK68HDBiAgQMHok+fPti5cycSEhIa9JOVlYWMjAzlvd1uZ3gQEbWSqnscISEh8PPzQ2Vlpdv4yspKmEymZuddvnw5lixZgq+++goDBw5stm3v3r0REhKC0tLSRqfrdDro9Xq3gYiIWkfV4AgICEBsbCzy8/OVcU6nE/n5+YiPj29yvqVLl2LRokXIzc3F0KFDb/g5Z86cwYULFxAREXFL6iYioqapfjluRkYG3nrrLbz77rs4cuQIpkyZgkuXLmHy5MkAgJSUFGRlZSntX3vtNcydOxfr1q1Dz549YbVaYbVaUVNTAwCoqanBrFmz8PXXX+PkyZPIz8/HmDFjEB0djcTERLUXh4io3VP9HMeTTz6J77//HvPmzYPVasXgwYORm5urnDAvLy+HVvtTfq1evRrXrl3Db37zG7d+5s+fjz/+8Y/w8/PDgQMH8O6776K6uhqRkZEYOXIkFi1aBJ1Op/biEBG1e6r/jsMX8XccRNTWtJnfcRARUdvD4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIikuKR4Fi1ahV69uyJwMBAmM1mFBUVNdv+ww8/RExMDAIDAzFgwAB8/vnnbtOFEJg3bx4iIiLQsWNHWCwWHD9+XM1FICKiH6geHJs3b0ZGRgbmz5+Pffv2YdCgQUhMTMS5c+cabb9nzx5MmDABqamp2L9/P8aOHYuxY8fim2++UdosXboUK1aswJo1a1BYWIhOnTohMTERV69eVXtxiOScOQPs2OH6S9RWCJXFxcWJqVOnKu8dDoeIjIwU2dnZjbYfN26cGD16tNs4s9ksnnvuOSGEEE6nU5hMJrFs2TJlenV1tdDpdGLjxo0tqslmswkAwmazyS4OUcu9/bYQWq0QgOvv2297uyJqwzy5XVN1j+PatWsoLi6GxWJRxmm1WlgsFhQUFDQ6T0FBgVt7AEhMTFTal5WVwWq1urUxGAwwm81N9llbWwu73e42EKnqzBkgPR1wOl3vnU7guee450FtgqrBcf78eTgcDoSHh7uNDw8Ph9VqbXQeq9XabPsf/8r0mZ2dDYPBoAxRUVGtWh6iFjt+/KfQ+JHDAZSWeqceoluoXVxVlZWVBZvNpgynT5/2dknU1t11F6D92T8vrRaIjvZOPUS3kKrBERISAj8/P1RWVrqNr6yshMlkanQek8nUbPsf/8r0qdPpoNfr3QYiVXXrBqxdC/j5/TTu7ruBO+/0Xk1Et4iqwREQEIDY2Fjk5+cr45xOJ/Lz8xEfH9/oPPHx8W7tASAvL09p36tXL5hMJrc2drsdhYWFTfZJ5BWpqcDJk8CGDUBgIHD0KJCT4+2qiG6e2mffN23aJHQ6ncjJyRGHDx8W6enpwmg0CqvVKoQQ4plnnhGZmZlK+927dwt/f3+xfPlyceTIETF//nzRoUMHcfDgQaXNkiVLhNFoFB9//LE4cOCAGDNmjOjVq5e4cuVKi2riVVXkcUuXuq6u6tJFiMpKb1dDbZAnt2uqB4cQQqxcuVJ0795dBAQEiLi4OPH1118r04YPHy4mTpzo1v6DDz4Qd999twgICBD9+/cXn332mdt0p9Mp5s6dK8LDw4VOpxMJCQni2LFjLa6HwUEeV1cnxODBrvCYMMHb1VAb5MntmkYIIby7z+N5drsdBoMBNpuN5zvIc4qLgbg419VWn38OPPqotyuiNsST27V2cVUVkU+IjQVmzHC9njIFqKnxajlErcXgIPKkBQuAHj2AU6eAefO8XQ1RqzA4iDypc2dgzRrX67/8BfjHP7xbD1ErMDiIPC0pCXjqKde5jrQ0oK7O2xURSWFwEHnDf/wHEBwMlJQAf/6zt6shksLgIPKGsDDgT39yvZ4/H/j2W+/WQySBwUHkLRMnAiNGAFeuuO6c2/6ujKfbFIODyFs0GuDNN123I/nb34C//tXbFRG1CIODyJuio12HqgDgpZeA77/3bj1ELcDgIPK2mTOBgQOBCxdcr4l8HIODyNs6dADeest16Oq//gv46itvV0TULAYHkS+IiwOmT3e9fv554NIl79ZD1AwGB5GveOUVICoKKCtz3ZqEyEcxOIh8xR13AKtXu16//jqwf7936yFqAoODyJeMHg2MGwc4HK7bkdTXe7siogYYHES+5i9/AYxG1/M7VqzwdjVEDTA4iHyNyQQsW+Z6PXeu65wHkQ9hcBD5otRUYPhw4PJl4IUXeDsS8ikMDiJfpNEAa9cCOh2Qmwts3OjtiogUDA4iX3X33cAf/uB6PWOG65flRD6AwUHky2bPBvr3d93D6uWXvV0NEQAGB5FvCwj46XYkOTlAfr63KyJicBD5vPh41wlywPXcjitXvFsPtXsMDqLbweLFwJ13AidOAAsXersaaucYHES3A70eWLXK9XrZMuDAAe/WQ+0ag4PodjFmDPD4467bkTz7rOsvkRcwOIhuJytWAAYDsHcv8MYb3q6G2ilVg6OqqgrJycnQ6/UwGo1ITU1FTU1Ns+2nT5+Ovn37omPHjujevTtefPFF2Gw2t3YajabBsGnTJjUXhcg3REYCr73mev373wPl5d6th9olVYMjOTkZhw4dQl5eHrZt24Zdu3YhPT29yfbfffcdvvvuOyxfvhzffPMNcnJykJubi9TU1AZt169fj4qKCmUYO3asiktC5EPS0oAHH3Q97Im3IyFvECo5fPiwACD27t2rjPviiy+ERqMRZ8+ebXE/H3zwgQgICBB1dXXKOABi69atra7NZrMJAMJms7W6DyKvOnxYiIAAIQAhNm/2djXkAzy5XVNtj6OgoABGoxFDhw5VxlksFmi1WhQWFra4H5vNBr1eD39/f7fxU6dORUhICOLi4rBu3ToI/q+L2pN+/YDf/c71+sUXgX/9y7v1ULvif+MmrWO1WhEWFub+Yf7+CA4OhtVqbVEf58+fx6JFixoc3lq4cCFGjBiBoKAgfPXVV3jhhRdQU1ODF198sdF+amtrUVtbq7y32+2SS0PkgzIzgc2bgSNHgFmzgLff9nZF1E5I73FkZmY2enL6+uHo0aM3XZjdbsfo0aNxzz334I9//KPbtLlz5+IXv/gFhgwZgjlz5mD27NlY9uPzCxqRnZ0Ng8GgDFFRUTddH5HX6XSuO+gCwDvvADt3erUcaj80QvIYz/fff48LN7hLZ+/evfHXv/4VM2fOxL+u24Wur69HYGAgPvzwQzz22GNNzn/x4kUkJiYiKCgI27ZtQ2BgYLOf99lnn+FXv/oVrl69Cp1O12B6Y3scUVFRymEwotvalCnAmjWuu+n+85/ADf69UNtkt9thMBg8sl2TPlQVGhqK0NDQG7aLj49HdXU1iouLERsbCwDYvn07nE4nzGZzk/PZ7XYkJiZCp9Phk08+uWFoAEBJSQm6dOnSaGgAgE6na3Ia0W1vyRLg44+B//s/4NVXgUWLvF0RtXGqnRzv168fkpKSkJaWhqKiIuzevRvTpk3D+PHjERkZCQA4e/YsYmJiUFRUBMAVGiNHjsSlS5fwzjvvwG63w2q1wmq1wvHDr2Q//fRTvP322/jmm29QWlqK1atXY/HixZg+fbpai0Lk2wyGn34MuGQJ8M033q2H2j41L9m6cOGCmDBhgujcubPQ6/Vi8uTJ4uLFi8r0srIyAUDs2LFDCCHEjh07BIBGh7KyMiGE65LewYMHi86dO4tOnTqJQYMGiTVr1giHw9Hiung5LrU5TqcQY8a4Ls994AEh6uu9XRF5mCe3a9LnONoCTx4LJPKYs2ddl+levOjaA5k61dsVkQd5crvGe1URtRV33uk6VAUAWVnAmTPerYfaLAYHUVvy/POuBz9dvOja42h/BxTIAxgcRG2JVut61GyHDsAnnwBbtni7ImqDGBxEbU3//sCcOa7X06YB1dVeLYfaHgYHUVv0+98DffsCVqvr1iREtxCDg6gtCgwE3nzT9frNN4G//9279VCbwuAgaquGD3c9YhYA0tOB6267Q3QzGBxEbdnSpUB4OHD0KJCd7e1qqI1gcBC1ZV26uJ5TDgCLFwOHD3u3HmoTGBxEbd0TTwC/+hVQV+c6ZOV0ersius0xOIjaOo0G+M//BDp3Bnbv/ukZHkStxOAgag+ioly3XAdcv/H47jvv1kO3NQYHUXsxdSoQFwfY7QAfQ0A3gcFB1F74+bluR+Lv77oVyUcfebui29qZM8COHe3zXpIMDqL2ZOBAYNYs1+upU117HyTt7beBHj2AESNcf995x9sVeRafx8HncVB7c+WKK0BKS4EXXgBWrfJ2RR5VX++6ebDN5srN6/82Nu7nf6uqGt7+y88POHkS6NbNG0vk4tPPHCei21zHjq7bkCQkAKtXA8nJwLBh3q7qhoQALl9ufqPekg3/pUu3vjaHw5XD3gwOT2JwELVHI0YAkycD69fjzNOZOP78n3DXI93Q7f4IVT6urq5lG/cbbfgdjltXk07nely7wQDo9c3/vf715ctAYqL7z2H8/IDo6FtXm69jcBC1V8uW4Z33OyK9bAWcc/yghQNrJ/4dqTm/VJo4na7/obd0497UtCtXbl3ZWq1rI97YRr0lG/4f59XpWl/D2rXAc8+5gszPz7UD1172NgCe4+A5Dmq3zuytQI+4MDjhd91Ygb6963G5rgPsdtdG/1ZuIYKCbrxRv9G0Tp1cv2n0tjNnXIenoqN9IzR4joOIVHf871Y48fNDUxoc+7ZDg7Z+fk1vyFu64b/jDteDCduKbt18IzC8gcFB1E7d9UsTtHC47XFo4cBfV1ajT1xXtw1/x46+8b988g38HQdRO9Xt/gisnbgHfqgHAPihHmsn7sGEaV0RF+d6gKDJ5Dq8xNCg6/EcB89xUDt3Zm8FSndXIvoX4apdVUXq4zkOIvKYbvdHMDBICg9VERGRFAYHERFJYXAQEZEUVYOjqqoKycnJ0Ov1MBqNSE1NRU1NTbPzPPzww9BoNG7D888/79amvLwco0ePRlBQEMLCwjBr1izU19eruShERPQDVU+OJycno6KiAnl5eairq8PkyZORnp6O999/v9n50tLSsHDhQuV9UFCQ8trhcGD06NEwmUzYs2cPKioqkJKSgg4dOmDx4sWqLQsREf1AqOTw4cMCgNi7d68y7osvvhAajUacPXu2yfmGDx8ufvvb3zY5/fPPPxdarVZYrVZl3OrVq4Verxe1tbUtqs1mswkAwmaztag9EZGv8+R2TbVDVQUFBTAajRg6dKgyzmKxQKvVorCwsNl5N2zYgJCQENx7773IysrC5cuX3fodMGAAwsPDlXGJiYmw2+04dOhQo/3V1tbCbre7DURE1DqqHaqyWq0ICwtz/zB/fwQHB8NqtTY531NPPYUePXogMjISBw4cwJw5c3Ds2DFs2bJF6ff60ACgvG+q3+zsbCxYsOBmFoeIiH4gHRyZmZl47bXXmm1z5MiRVheUnp6uvB4wYAAiIiKQkJCAEydOoE+fPq3qMysrCxkZGcp7u92OqKioVtdIRNSeSQfHzJkzMWnSpGbb9O7dGyaTCefOnXMbX19fj6qqKphMphZ/ntlsBgCUlpaiT58+MJlMKCoqcmtTWVkJAE32q9PpoLuZm+8TEZFCOjhCQ0MRGhp6w3bx8fGorq5GcXExYmNjAQDbt2+H0+lUwqAlSkpKAAARERFKv6+++irOnTunHArLy8uDXq/HPffcI7k0REQkS7WT4/369UNSUhLS0tJQVFSE3bt3Y9q0aRg/fjwiIyMBAGfPnkVMTIyyB3HixAksWrQIxcXFOHnyJD755BOkpKTgoYcewsCBAwEAI0eOxD333INnnnkG//znP/Hll1/iD3/4A6ZOncq9CiIiD1D1B4AbNmxATEwMEhISMGrUKDz44INYu3atMr2urg7Hjh1TrpoKCAjA3/72N4wcORIxMTGYOXMmHn/8cXz66afKPH5+fti2bRv8/PwQHx+Pp59+GikpKW6/+yAiIvXwtuq8rToRtQGe3K7xXlVERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUlQNjqqqKiQnJ0Ov18NoNCI1NRU1NTVNtj958iQ0Gk2jw4cffqi0a2z6pk2b1FwUIiL6gb+anScnJ6OiogJ5eXmoq6vD5MmTkZ6ejvfff7/R9lFRUaioqHAbt3btWixbtgyPPvqo2/j169cjKSlJeW80Gm95/URE1JBqwXHkyBHk5uZi7969GDp0KABg5cqVGDVqFJYvX47IyMgG8/j5+cFkMrmN27p1K8aNG4fOnTu7jTcajQ3aEhGR+lQ7VFVQUACj0aiEBgBYLBZotVoUFha2qI/i4mKUlJQgNTW1wbSpU6ciJCQEcXFxWLduHYQQTfZTW1sLu93uNhARUeuotsdhtVoRFhbm/mH+/ggODobVam1RH++88w769euHYcOGuY1fuHAhRowYgaCgIHz11Vd44YUXUFNTgxdffLHRfrKzs7FgwYLWLQgREbmR3uPIzMxs8gT2j8PRo0dvurArV67g/fffb3RvY+7cufjFL36BIUOGYM6cOZg9ezaWLVvWZF9ZWVmw2WzKcPr06Zuuj4iovZLe45g5cyYmTZrUbJvevXvDZDLh3LlzbuPr6+tRVVXVonMT//3f/43Lly8jJSXlhm3NZjMWLVqE2tpa6HS6BtN1Ol2j44mISJ50cISGhiI0NPSG7eLj41FdXY3i4mLExsYCALZv3w6n0wmz2XzD+d955x38+te/btFnlZSUoEuXLgwHIiIPUO0cR79+/ZCUlIS0tDSsWbMGdXV1mDZtGsaPH69cUXX27FkkJCTgvffeQ1xcnDJvaWkpdu3ahc8//7xBv59++ikqKyvxwAMPIDAwEHl5eVi8eDFefvlltRaFiIiuo+rvODZs2IBp06YhISEBWq0Wjz/+OFasWKFMr6urw7Fjx3D58mW3+datW4du3bph5MiRDfrs0KEDVq1ahZdeeglCCERHR+P1119HWlqamotCREQ/0IjmrmNto+x2OwwGA2w2G/R6vbfLISK6aZ7crvFeVUREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkRbXgePXVVzFs2DAEBQXBaDS2aB4hBObNm4eIiAh07NgRFosFx48fd2tTVVWF5ORk6PV6GI1GpKamoqamRoUlICKixqgWHNeuXcMTTzyBKVOmtHiepUuXYsWKFVizZg0KCwvRqVMnJCYm4urVq0qb5ORkHDp0CHl5edi2bRt27dqF9PR0NRaBiIgaI1S2fv16YTAYbtjO6XQKk8kkli1bpoyrrq4WOp1ObNy4UQghxOHDhwUAsXfvXqXNF198ITQajTh79myLa7LZbAKAsNlsLV8QIiIf5sntms+c4ygrK4PVaoXFYlHGGQwGmM1mFBQUAAAKCgpgNBoxdOhQpY3FYoFWq0VhYWGTfdfW1sJut7sNRETUOj4THFarFQAQHh7uNj48PFyZZrVaERYW5jbd398fwcHBSpvGZGdnw2AwKENUVNQtrp6IqP2QCo7MzExoNJpmh6NHj6pVa6tlZWXBZrMpw+nTp71dEhHRbctfpvHMmTMxadKkZtv07t27VYWYTCYAQGVlJSIiIpTxlZWVGDx4sNLm3LlzbvPV19ejqqpKmb8xOp0OOp2uVXUREZE7qeAIDQ1FaGioKoX06tULJpMJ+fn5SlDY7XYUFhYqV2bFx8ejuroaxcXFiI2NBQBs374dTqcTZrNZlbqIiMidauc4ysvLUVJSgvLycjgcDpSUlKCkpMTtNxcxMTHYunUrAECj0WDGjBl45ZVX8Mknn+DgwYNISUlBZGQkxo4dCwDo168fkpKSkJaWhqKiIuzevRvTpk3D+PHjERkZqdaiEBHRdaT2OGTMmzcP7777rvJ+yJAhAIAdO3bg4YcfBgAcO3YMNptNaTN79mxcunQJ6enpqK6uxoMPPojc3FwEBgYqbTZs2IBp06YhISEBWq0Wjz/+OFasWKHWYhAR0c9ohBDC20V4mt1uh8FggM1mg16v93Y5REQ3zZPbNZ+5HJeIiG4PDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIimqBcerr76KYcOGISgoCEaj8Ybt6+rqMGfOHAwYMACdOnVCZGQkUlJS8N1337m169mzJzQajduwZMkSlZaCiIh+TrXguHbtGp544glMmTKlRe0vX76Mffv2Ye7cudi3bx+2bNmCY8eO4de//nWDtgsXLkRFRYUyTJ8+/VaXT0RETfBXq+MFCxYAAHJyclrU3mAwIC8vz23cG2+8gbi4OJSXl6N79+7K+DvuuAMmk+mW1UpERC3n0+c4bDYbNBpNg0NdS5YsQdeuXTFkyBAsW7YM9fX13imQiKgdUm2P42ZdvXoVc+bMwYQJE6DX65XxL774Iu677z4EBwdjz549yMrKQkVFBV5//fUm+6qtrUVtba3y3m63q1o7EVFbJrXHkZmZ2eDE9M+Ho0eP3nRRdXV1GDduHIQQWL16tdu0jIwMPPzwwxg4cCCef/55/OlPf8LKlSvdguHnsrOzYTAYlCEqKuqmayQiaq80QgjR0sbff/89Lly40Gyb3r17IyAgQHmfk5ODGTNmoLq6ukWf8WNofPvtt9i+fTu6du3abPtDhw7h3nvvxdGjR9G3b99G2zS2xxEVFQWbzea2N0NEdLuy2+0wGAwe2a5JHaoKDQ1FaGioWrUooXH8+HHs2LHjhqEBACUlJdBqtQgLC2uyjU6ng06nu5WlEhG1W6qd4ygvL0dVVRXKy8vhcDhQUlICAIiOjkbnzp0BADExMcjOzsZjjz2Guro6/OY3v8G+ffuwbds2OBwOWK1WAEBwcDACAgJQUFCAwsJCPPLII7jjjjtQUFCAl156CU8//TS6dOmi1qIQEdH1hEomTpwoADQYduzYobQBINavXy+EEKKsrKzR9tfPU1xcLMxmszAYDCIwMFD069dPLF68WFy9elWqNpvNJgAIm812i5aWiMi7PLldkzrH0VZ48lggEZEneHK75tO/4yAiIt/D4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKaoFx6uvvophw4YhKCgIRqOxRfNMmjQJGo3GbUhKSnJrU1VVheTkZOj1ehiNRqSmpqKmpkaFJSAiosaoFhzXrl3DE088gSlTpkjNl5SUhIqKCmXYuHGj2/Tk5GQcOnQIeXl52LZtG3bt2oX09PRbWToRETXDX62OFyxYAADIycmRmk+n08FkMjU67ciRI8jNzcXevXsxdOhQAMDKlSsxatQoLF++HJGRkTdVMxER3ZhqwdFaO3fuRFhYGLp06YIRI0bglVdeQdeuXQEABQUFMBqNSmgAgMVigVarRWFhIR577LFG+6ytrUVtba3y3mazAQDsdruKS0JE5Dk/bs+EEKp/lk8FR1JSEv793/8dvXr1wokTJ/C73/0Ojz76KAoKCuDn5wer1YqwsDC3efz9/REcHAyr1dpkv9nZ2coe0PWioqJu+TIQEXnThQsXYDAYVP0MqeDIzMzEa6+91mybI0eOICYmplXFjB8/Xnk9YMAADBw4EH369MHOnTuRkJDQqj4BICsrCxkZGcr76upq9OjRA+Xl5aqv4LbEbrcjKioKp0+fhl6v93Y5twWus9bhepNns9nQvXt3BAcHq/5ZUsExc+ZMTJo0qdk2vXv3vpl6GvQVEhKC0tJSJCQkwGQy4dy5c25t6uvrUVVV1eR5EcB13kSn0zUYbzAY+KVsBb1ez/Umieusdbje5Gm16v/KQio4QkNDERoaqlYtDZw5cwYXLlxAREQEACA+Ph7V1dUoLi5GbGwsAGD79u1wOp0wm80eq4uIqD1TLZrKy8tRUlKC8vJyOBwOlJSUoKSkxO03FzExMdi6dSsAoKamBrNmzcLXX3+NkydPIj8/H2PGjEF0dDQSExMBAP369UNSUhLS0tJQVFSE3bt3Y9q0aRg/fjyvqCIi8hShkokTJwoADYYdO3YobQCI9evXCyGEuHz5shg5cqQIDQ0VHTp0ED169BBpaWnCarW69XvhwgUxYcIE0blzZ6HX68XkyZPFxYsXpWq7evWqmD9/vrh69erNLma7wvUmj+usdbje5HlynWmE8MC1W0RE1GbwXlVERCSFwUFERFIYHEREJIXBQUREUtpkcOzatQv/9m//hsjISGg0Gnz00Uc3nGfnzp247777oNPpEB0dLX1zxrZi1apV6NmzJwIDA2E2m1FUVNRk25ycnAa3wQ8MDPRgtb5BZp0BwIcffoiYmBgEBgZiwIAB+Pzzzz1Uqe9qzeMSHn744Qbfv+eff95DFfuG1jy+QgiBefPmISIiAh07doTFYsHx48elPrdNBselS5cwaNAgrFq1qkXty8rKMHr0aDzyyCMoKSnBjBkz8Oyzz+LLL79UuVLfsnnzZmRkZGD+/PnYt28fBg0ahMTExAa/1r+eXq93uw3+qVOnPFix98musz179mDChAlITU3F/v37MXbsWIwdOxbffPONhyv3La19XEJaWprb92/p0qUeqNZ3tObxFUuXLsWKFSuwZs0aFBYWolOnTkhMTMTVq1db/sGqX/DrZQDE1q1bm20ze/Zs0b9/f7dxTz75pEhMTFSxMt8TFxcnpk6dqrx3OBwiMjJSZGdnN9p+/fr1wmAweKg63yS7zsaNGydGjx7tNs5sNovnnntO1Tp92eHDhwUAsXfvXmXcF198ITQajTh79myT8w0fPlz89re/9UCFvq+l/xadTqcwmUxi2bJlyrjq6mqh0+nExo0bW/x5bXKPQ1ZBQQEsFovbuMTERBQUFHipIs+7du0aiouL3daDVquFxWJpdj3U1NSgR48eiIqKwpgxY3Do0CFPlOsTWrPO+F1r6EaPS2jOhg0bEBISgnvvvRdZWVm4fPmy2uXe1srKymC1Wt2+gwaDAWazWeo76FO3VfcWq9WK8PBwt3Hh4eGw2+24cuUKOnbs6KXKPOf8+fNwOByNroejR482Ok/fvn2xbt06DBw4EDabDcuXL8ewYcNw6NAhdOvWzRNle1Vr1llT37XmHgvQ1rX2cQlPPfUUevTogcjISBw4cABz5szBsWPHsGXLFrVLvm39uD5v9jvIPQ5qtfj4eKSkpGDw4MEYPnw4tmzZgtDQULz55pveLo18QGZmZoOT1z8fmgrYlkhPT0diYiIGDBiA5ORkvPfee9i6dStOnDhxC5fC89Reb7cC9zgAmEwmVFZWuo2rrKyEXq9vF3sbABASEgI/P79G10Nzt6y/XocOHTBkyBCUlpaqUaLPac06a+q71tJ1fDtp6WMYWvu4hJ/78Q7ZpaWl6NOnj3S9vkLNx1f8uD4rKyuVu47/+H7w4MEt7ofBAdf/nH9+SWReXh7i4+O9VJHnBQQEIDY2Fvn5+Rg7diwAwOl0Ij8/H9OmTWtRHw6HAwcPHsSoUaNUrNR3tGadxcfHIz8/HzNmzFDGtdXvWksfw3CrHpdQUlICAG4bxNuRmo+v6NWrF0wmE/Lz85WgsNvtKCwslLoyq01eVXXx4kWxf/9+sX//fgFAvP7662L//v3i1KlTQgghMjMzxTPPPKO0//bbb0VQUJCYNWuWOHLkiFi1apXw8/MTubm53loEr9i0aZPQ6XQiJydHHD58WKSnpwuj0ajcofiZZ54RmZmZSvsFCxaIL7/8Upw4cUIUFxeL8ePHi8DAQHHo0CFvLYLHya6z3bt3C39/f7F8+XJx5MgRMX/+fNGhQwdx8OBBby2CT0hKShJDhgwRhYWF4n//93/FXXfdJSZMmKBMP3PmjOjbt68oLCwUQghRWloqFi5cKP7xj3+IsrIy8fHHH4vevXuLhx56yFuL4BWnTp0S+/fvFwsWLBCdO3dWtnvX3zG8b9++YsuWLcr7JUuWCKPRKD7++GNx4MABMWbMGNGrVy9x5cqVFn9umwyOHTt2NHpL94kTJwohXLd8Hz58eIN5Bg8eLAICAkTv3r2V2723NytXrhTdu3cXAQEBIi4uTnz99dfKtOHDhyvrUAghZsyYobQNDw8Xo0aNEvv27fNC1d4ls86EEOKDDz4Qd999twgICBD9+/cXn332mYcr9j03elxCWVmZ22MZysvLxUMPPSSCg4OFTqcT0dHRYtasWcJms3lpCbxD9vEVQrguyZ07d64IDw8XOp1OJCQkiGPHjkl9Lm+rTkREUnhVFRERSWFwEBGRFAYHERFJYXAQEZEUBgcREUlhcBARkRQGBxERSWFwEBGRFAYHERFJYXAQEZEUBgcREUlhcBARkZT/B//GSZFf2T5PAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(4,4))\n", + "\n", + "import numpy as np\n", + "\n", + "for t_idx, tt in enumerate(t[:200]):\n", + " x1 = + L * np.sin(x[t_idx, 0])\n", + " y1 = - L * np.cos(x[t_idx, 0])\n", + "\n", + " x2 = x1 + L * np.sin(x[t_idx, 1])\n", + " y2 = y1 - L * np.cos(x[t_idx, 1])\n", + "\n", + " ax.cla()\n", + " ax.plot([0, x1], [0, y1], 'r.-')\n", + " ax.plot([x1, x2], [y1, y2], 'b.-')\n", + " ax.set_ylim([-1.5, 0.5])\n", + " ax.set_xlim([1, -1])\n", + "\n", + " clear_output()\n", + " display(fig)\n", + "\n", + " time.sleep(0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "18s87GDBqYD9" + }, + "outputs": [], + "source": [ + "def dy(y, t, zeta, w0):\n", + " \"\"\"\n", + " The right-hand side of the damped oscillator ODE\n", + " \"\"\"\n", + " x, p = y[0], y[1]\n", + "\n", + " dx = p\n", + " dp = -2 * zeta * w0 * p - w0**2 * x\n", + "\n", + " return [dx, dp]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IpwBwPr7qbZN" + }, + "outputs": [], + "source": [ + "# initial state:\n", + "y0 = [1.0, 0.0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bKOod8sYrLXV" + }, + "outputs": [], + "source": [ + "# time coordinate to solve the ODE for\n", + "t = linspace(0, 10, 1000)\n", + "w0 = 2*pi*1.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WOSWcHo8rV0S" + }, + "outputs": [], + "source": [ + "# solve the ODE problem for three different values of the damping ratio\n", + "\n", + "y1 = odeint(dy, y0, t, args=(0.0, w0)) # undamped\n", + "y2 = odeint(dy, y0, t, args=(0.2, w0)) # under damped\n", + "y3 = odeint(dy, y0, t, args=(1.0, w0)) # critical damping\n", + "y4 = odeint(dy, y0, t, args=(5.0, w0)) # over damped" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "iJQQrl_5rZV4", + "outputId": "d73c3ed3-d324-4cb6-9eac-c0d22f41aecf" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsJ1JREFUeJzsnXd8FOXWx3/bs5tN70BCgEAA6T2AgoIQURSsFKWIWFEUBeQVUEQFFb2glyvXgohSrwUVFUGKIiX0ooQWgqEkpJdN2TrvH5Ndsslutk17wvPNZz6zOzvl7GR2nt+c5zznyBiGYUChUCgUCoXShJCLbQCFQqFQKBQK11CBQ6FQKBQKpclBBQ6FQqFQKJQmBxU4FAqFQqFQmhxU4FAoFAqFQmlyUIFDoVAoFAqlyUEFDoVCoVAolCYHFTgUCoVCoVCaHEqxDRADm82Gq1evIiQkBDKZTGxzKBQKhUKheAHDMKioqECzZs0glzfuo7khBc7Vq1eRmJgothkUCoVCoVD84NKlS2jRokWj69yQAickJAQAe4JCQ0NFtoZCoVAoFIo3lJeXIzEx0dGON8YNKXDs3VKhoaFU4FAoFAqFQhjehJfQIGMKhUKhUChNDipwKBQKhUKhNDmowKFQKBQKhdLkoAKHQqFQKBRKk4MKHAqFQqFQKE0OKnAoFAqFQqE0OajAoVAoFAqF0uSgAodCoVAoFEqTgwocCoVCoVAoTQ5eBc4ff/yBkSNHolmzZpDJZNi0aZPHbXbt2oUePXpAo9EgJSUFq1atarDO8uXLkZycjKCgIPTt2xcHDhzg3ngKhUKhUCjEwqvAqaysRNeuXbF8+XKv1s/Ozsadd96JW2+9FceOHcPzzz+Pxx57DL/++qtjnQ0bNmDGjBl49dVXceTIEXTt2hXDhw9Hfn4+X1+DQqFQKBQKYcgYhmEEOZBMhu+++w6jRo1yu87s2bPx008/4a+//nIsGzNmDEpLS7FlyxYAQN++fdG7d2/8+9//BgDYbDYkJibi2Wefxcsvv+yVLeXl5QgLC0NZWRmtRUWhUCgUCiH40n5LKgZn3759GDp0qNOy4cOHY9++fQAAk8mEw4cPO60jl8sxdOhQxzquMBqNKC8vd5r44MKZi4ic0hefrVjDy/4pFAqFQqF4h6QETl5eHuLi4pyWxcXFoby8HNXV1SgsLITVanW5Tl5entv9Llq0CGFhYY4pMTGRF/vvXTgTJUkH8NjVSfjup828HIMPVq1ahTNnzohthk/873//w+HDh8U2wyd+/vln7N69W2wzfGLHjh347bffxDbDJ/bu3YuffvpJbDN84siRI/j666/FNsMnzp49i88//1xsM3zi6tWrWL58OaxWq9imeE1JSQk++OADVFdXi22K11RXV2PzZvHbQEkJHL6YM2cOysrKHNOlS5d4Oc7Xc99G6IUBgMKCp7fOgUC9fwGRkZGBPn36YO/evWKb4jXnz59HXFwcTp48KbYpXlNUVASTyYSsrCwirguA9ZhevXoV+fn5MBqNYpvjFQzD4PTp07BYLCgqKhLbHK85fvw44uLicO7cObFN8Zo9e/agf//+2LNnj9imeM3WrVtx//33O0IeSODHH3/EpEmT8OOPP4ptitds3rwZgwcPFtsMaQmc+Ph4XLt2zWnZtWvXEBoaCq1Wi+joaCgUCpfrxMfHu92vRqNBaGio08QHKe1b48P4FwFzEPIi/8Iv56T/Izp79iw6duyI0NBQVFVViW2OV2RkZGDgwIFISkrClStXxDbHK3bt2oVhw4ahd+/eOHr0qNjmeMXvv/+OIUOG4Pbbb8fOnTvFNscrTpw4gZ49e2LYsGHYsWOH2OZ4xdWrV5GYmIgBAwYgIyNDbHO8orq6Gnq9HqmpqcjKyhLbHK9gGAZKpRJxcXEoKSkR2xyvkcvlCA0NhclkEtsUrzEajdDr9WKbIS2Bk5aWhu3btzst27ZtG9LS0gAAarUaPXv2dFrHZrNh+/btjnXE5sHpg6A4+DgA4NUtC0W2xjNyOXsJDBgwgCgvjlwuR1paGvbv3y+2KV5RU1MDnU6Hjh07IjMzU2xzvCI/Px8JCQmIiYkhxhty6tQpdO7cGVqtlpgGISMjA2lpaZDL5ZDJZGKb4xUZGRno168fAEChUIhsjXecPn0aHTp0AABiznNBQQGio6MBsO0fCde0xWKBSqUS2wwAPAscg8GAY8eO4dixYwDYYeDHjh1DTk4OALbraMKECY71n3zySVy4cAGzZs3C6dOn8Z///AcbN27ECy+84FhnxowZ+OSTT/DFF18gMzMTTz31FCorKzF58mQ+v4rXBDWLRLejdwBWFQ6V7MO+S+6Dn8XGarU6bk7x8fHEDbXXarWoqakR2wyfIOXGSio2m80h2kk511VVVQgODna8J6EL88qVK45YRq1WS4T398SJE+jatSsAoHnz5kR4fw8fPoxevXoBADp37uw0wliqnDt3Dm3bthXbDAA8C5xDhw6he/fu6N69OwBWnHTv3h3z588HAOTm5jrEDgC0atUKP/30E7Zt24auXbvivffew6efforhw4c71nnooYewZMkSzJ8/H926dcOxY8ewZcuWBoHHYjIo2gYcfwQA8Paet0W2xj1ZWVlo06aN2Gb4RFlZGcLCwsQ2wydMJhPUarXYZvhMXYFAilioi0qlgtlsFtsMj9Q9twkJCY0OmJAiHTt2xOnTp8U2wyNWqxVKpRIA0L17dyK6iouKihwenHbt2uHs2bMiW+SZzMxMh6dMbJR87nzw4MGNPo24ylI8ePBgjxfetGnTMG3atEDN441+3YzAtplA98/x/ZnvkVmQiQ4x0viH1+XUqVMYNmyY4z0JjdiJEyfQpUsXsc3wiezsbLRq1crxXqPRwGg0QqPRiGhV49TPMREWFobS0lKEh4eLZ5QHzGazowEDgNatW+PChQtITU0V0SrP1L1Hpqam4uzZs0hISBDRIt9o3bo1vv/+e/To0UNsUxql7nkOCwvjLV0Il9S9JysUCthsNhGt8Y6amhpotVqxzQAgsRicpkKfmzVAYXvITt8NAHh377siW+Saqqoq6HQ6p2VSd49funTJaZh/aGio5G9U9V22ycnJ+Oeff0S0yDNnz551Egbt27eXfCqBCxcuICUlxfGehCfe+h7JZs2a4erVqyJa5BmGYZwaXrVaTZynjHJjQAUODyT1bwE9KsDsYTMrf3XiK1wuvyyyVZ6Ji4trMEJNitS9UbVu3RrZ2dkiWuMZe+ZNO61atcKFCxdEtMgz2dnZSE5OdrxPTk6W/Hmu7ykLCQlBRUWFiBZ5pr7NMplM8g8Z+fn5iI2NFdsMn7BYLMQEQ5OOlK5fKnB4QNY2BR1xCrjcDx00A2C2mbFs/zKxzfJI69atiRnyaYcEsVCfyMhIFBcXi21Go5jNZqeRECS4x4uLixERESG2GT5x8eJFJyFJAtnZ2WjdurXYZvjEpUuXkJSUJLYZPlFZWdnAwy51AcwwjCPIXwpIx5KmhE6Hjlr2abf7lakAgP8e/i9Ka0pFNMoziYmJvCVB5AudTkdUhk+Ausr5hLRzW38EFQnk5OTwlg2eLy5cuNBgQIVarZZ0AssLFy40EJJSD0IvKCiQlHePChye6Ni8FABgPnALOsd2RoWpAh8d/Ehco+rgKsiVhKd0ijCQJhQAMm12hdSf0l3lObEHoUuV/Px8xMTEOC1r1aqVpLtdXQmclJQUSWe7lpr4pQKHJzq1Yr0Kmf8EY9aAWQCAZRnLUGORRt6W+sG6dqR8Yy0vL0dISIjYZviElM/njYDUxYIrIiIiJJ1p19X5bN68ueSDo+sL4BYtWkg6F05lZWWDbMAJCQnIzc0VySLPUIFzg9A2lT21WUXheLDjQ0gKS8K1ymv44tgXIlvGkpOT47JPWspPwe5slnIDVjePBSnYbDaX14FcLieqSCEAREdHo7CwUGwz3OJOLEi54XWF1G12dZ5jYmJQUFAggjXe4eo3KHUvu5SGiANU4PBGy47BUMCCaosahfkqzOg3AwCwZN8SWG3iNxLXrl2TVF+pN+Tk5KBly5YNlktZlF25cgXNmzdvsDwoKEiyWZjdjZJxVStOKtTU1LjMK9SiRQtcvizdEYyurl2piwVXNktdSLoT7FJ+OKIEDhU4PKFKbo4ksFmas7KAx3o8hkhtJM4Xn8e3md+KbJ1zSntSKCkpcZnFOCgoSLKBxu4ETnx8vGSDBd3ZLGWx4K7grpTFQnV1NYKCghosj4iIkPwou/pI+SGDcuNCVgtHEi1aoA3YIddZWUCwOhjTerPZl9/e87boTw7ubkhSrisjk8lc2i3lfunS0lKXokzKNrsTOFIWC7m5uS4FjpQTQboTZVIWC+5EGYUiRajA4Yu6AueMBQDwbN9noVVqcTj3MHZk7xDTOrc0a9ZMsg2vO6QsFgDXDVZ8fLxkbTYYDC6DubVarWQ9ZXl5eS7FgpRxJ8qkTF5eHlFlJAB2KL6U4kIowkEFDl+Eh6O1kk3Hf/4vtlGI1kVjSvcpAKRbhFPqYsEVUu7ucQeJldClTHV1dYOkaFKHijJhyM3NJU6UGQyGRvMjid0D4Aop2kQFDl/IZGgdVQoAyDp//R//Yv8XoZApsO3CNhzNlV41Wyl7FtwRFBQk6YRd7pByVwSFf0gVZaSJhcYEjkwmk+SopMZsjoiIkGTOIXeeXzGhAodHUlqwjW7W5eujO5LDk/FQp4cAAO/sfUcUuxqDlMJ5TQEpPvFQKI1RU1PTaAyOFK/pxjxlUVFRKCoqEtgiz+Tm5qJZs2YuP2vWrJkkY+GuXbuGuLg4sc1wggocHklJYmNvig0a1BXcs/qzif82/r0RF0qEr6NkMBgaJJCiUEhGig1roJD2naTqWTCbzVCr1S4/i4mJkeTw9sbSeMTGxiI/P19gizwjxdQjVODwiL5FOOLAxobUrWHZNb4r0lPSYWNseG/ve4LbJUWl7QlSRRnthpIGpImFsLAwyY7+cofUE+e5Qqo2uyqHYUeqXqf8/HzJtStU4PBJXBxagg00zslx/sjuxVl5bCXyK4VV4yQKHE82S1FIuKoGTAJSPJeBoNfrUVlZKbYZPiHVhrcxpGpzY9dzdHS0JG1uDJVKBYvFIrYZDaiurpbcaDUqcPikjsD55x/njwYnD0bvZr1RY6nBhxkfCmqWJ1eiFBu4vLw84kRZQUFBgwJ/dZHiea6urnaZEdhOcHAwcWJBqi79xv7/JIqFmJgYSZ7nxtBoNDCZTGKbQeEJKnD4JDbWrcCRyWSYPWA2AODDAx+itKZUMLNIHL3hrnyAlPEkcHQ6neSSKnqyWYoNb1VVVaPXsxRtBhrvNiNRLNDUB9whxYcfEqECh08a8eAAwOgOo3FTzE0oM5bh/X3vC2yce6QYr+BJlKnVaskNFfckFqKioiQX4FhQUNCokJSiN6SoqAhRUVFuP5eizRaLBQqFwu3nUvWUSfHe0BSh55kbqMDhk7g4Rz2qnJyGF6xcJseCwQsAAEv3L0VRlTQCx5RKJXFDxaOjoyUXeFdWVuayTIMdKRYo9CTKpCgWCgsLG63YrtfrUVFRIaBFnikpKUFkZKTbz92VJRETT6KMVKR2nincQQUOn9TtorroWpGP7jAa3eK7ocJUgXf3viukdW6Jjo6WXLE/TzchKYoFwHOAo9RsLikpQXh4uNvPQ0JCJDe6x5MHR4oNmCebAek9xXsSZVLEZrN5/P9L7TxTuIMKHD7R6dA8iH3aLSySw5XHWS6T4/XBrwNgY3GuGa4JaaFLpNjweoJEmyMiIlBSUiK2GU4wDNNolXmpigXSGl5vBI7U8OQpkyJlZWWNCnYpQgUXd1CBwzP6KCVCwD7xXrrkep272t2FPs37oMpchXf2iJ/dWIpiwdOPPjIyUnJdVJ5sVigUkkwTTxpWqxVKpbLRdaQmzEgUOEVFRR4FjtQaZxJFWUVFRaNd2wB7PUvtXEvtNwZQgcM78uioRgONAfbCsHtx/nPoP7hacVUo81wiRYHjCSnmhvDmBy+1m1RTRWrn2VMxRSlSWFjoUZRJrZHzVuBI6frwxubQ0FCUlZUJZJFnpFqxnQocnlF4GEllZ1ibYRiQOAA1lhos2r1IIOtco1araW4Iiluk1oiRiBSDiD3haTi+FPFGLGi1WlRXVwtkkWcKCgo82hwVFSWpOMni4mJJdhNTgcMzipgYrwSOTCbD67eyXpz/Hv4vskuyebFHSk8qXNOUvxuFQgIKhUJSnlSDweBRlEktFs6b7ksSbRYDKnD4JiqqzlDxxle9rdVtuL317TDbzJi7cy4v5nhb0l5qT5dSs4dCFqReP6SJ9vDwcMkV3PT0v5dakdCKigqP9+jw8HBJCRzqwblRifIcg1OXxUMXAwDWnlyLo7lHOTfH2wtRSjfWmpqaRssH2CG1EaMIg5SuaW8ICQmBwWAQ2wyfkJpnwZt7gtRsttlsjY5kBKQnyqgH50YlOtongdMjoQfGdR4HAJj922zOzZGq0m4MEkWZ2Wz2OLJHipAoEr2xWafTSSrOwhuk1vB6g9Rs9uaeIDVviDeoVCpJJWM1mUxQq9Vim9EAKnD4pk4X1ZUrgDfd02/c+gZUchW2XdiGbVnbODWnKQscKVFaWoqIiAiP60lJUHiTFA1gb66kBaFHRERIKijTG6QmFrz1hkjJs+ANer2eOE8ZxTsEETjLly9HcnIygoKC0LdvXxw4cMDtuoMHD3aMMKg73XnnnY51Jk2a1ODz9PR0Ib6K70RFIQG5UMnMsFqBq16MAG8V0QpP934aAOvFsTHc5UopLi72quGVEt4KHCmJBU8ZgesiFc+TN33/AJtzSCoNr7fnLjIykgocAQgLCyNO4EjpvkHhFt4FzoYNGzBjxgy8+uqrOHLkCLp27Yrhw4e7rWfz7bffIjc31zH99ddfUCgUeOCBB5zWS09Pd1pv3bp1fH8V/4iKghwMEuVXAHjXTQUAc2+ZixB1CI7mHcX6v9ZzZo7ZbJakK7ExSOyiKikp8UpIhoSESKZOkrc2S0kseBs0LyWbATJjQ7z5fSmVSlitVgGsoVA8w7vAef/99zF16lRMnjwZHTt2xIoVK6DT6bBy5UqX60dGRiI+Pt4xbdu2DTqdroHA0Wg0TutJ1itRG3iVZLsIwHuBE62LxuwBbAzOKzteQY2lhg/riMBTJXE7Uqoo7q1YkNKoExIFTmlpqVeeMimJherqagQFBXlcT6vVoqbmxv3dUyiBwqvAMZlMOHz4MIYOHXr9gHI5hg4din379nm1j88++wxjxoxpkPVz165diI2NRWpqKp566qlG0/QbjUaUl5c7TYJRK3BaMhcBeC9wAOD5fs+jWUgzXCy9iKX7l3JvWyPIZDLiyghERERIJrunp0ridqjACQxvBY6UxAKJtbMYhqFdORTi4FXgFBYWwmq1Ii4uzml5XFwc8vLyPG5/4MAB/PXXX3jssceclqenp2P16tXYvn073n77bfz++++444473LpGFy1ahLCwMMeUmJjo/5fyFZ0OVpXKMZLKUy6cugSrg7F4CDts/M3dbyK3IpcPC10SGhoqma4Tb7uepDQawmazQaFQeFxPSkGZ3gqc4OBgVLqqHCsC3gocQDpdmN4GoEsJb7sCKRQpIelRVJ999hk6d+6MPn36OC0fM2YM7r77bnTu3BmjRo3C5s2bcfDgQezatcvlfubMmYOysjLHdMld1Us+kMlgCgnxOtlffcZ3GY8+zfvAYDLglR2v8GCga6QkFrxFSt4Qb5HSeTaZTMTlG/JF4EgFb717UsKXoHmpYDQaiYs3JBUp3RPqwqvAiY6OhkKhwLVr15yWX7t2DfHx8Y1uW1lZifXr12PKlCkej9O6dWtER0fj/PnzLj/XaDQIDQ11moTEGh7uUy6cushlcixLXwYA+PzY5zh09VBAtnh7IUrJs+AtJNqs0+kk4w0hkcrKSuKKVpIocEgVkqTZ7G2qBop38Cpw1Go1evbsie3btzuW2Ww2bN++HWlpaY1u+7///Q9GoxEPP/ywx+NcvnwZRUVFSEhICNhmPmAiI508OL56yvu16IeHu7Dn4fktzwfkavelu4c0sRAaGkqczfRmFjiknUNvh+NLCRIFDolep4qKCp8ewKXQ7SoFG9zBexfVjBkz8Mknn+CLL75AZmYmnnrqKVRWVmLy5MkAgAkTJmDOnDkNtvvss88watSoBumfDQYDZs6cif379+PixYvYvn077rnnHqSkpGD48OF8fx2/kEdHIxFst1hlJeBPj8TiIYuhU+mw59IebPh7A8cWNkRKXSfeNmBSGqLqS6MrlQbalxuVlG9qUsebVPxSw5e4IalczyTGOvkiyqQSC1dTUwOtViu2GS7h/Vf20EMPYcmSJZg/fz66deuGY8eOYcuWLY7A45ycHOTmOgfPnjlzBn/++afL7imFQoETJ07g7rvvRrt27TBlyhT07NkTu3fv9ip+QAyUCQnQogaxwWy2TF+7qQCgeWhzvDzgZQDArG2zUGWu8ssWb28+Uhp14gtSublSKE2JyspKr1I1SAlfvE5Syc7tiyiTSpd8aWmpZLtcBSmWM23aNEybNs3lZ64Cg1NTU90+IWq1Wvz6669cmsc76lox1zK4CPmVeuTkAN27+76fl/q/hE+Pfoqcshy8/efbWHDrAp+2J23Yt52m7lkg0WbKjYUvw8TtKSbE9lL50vDa8yTVH/ErNCUlJWjfvr1X69q97C1atODZqsaRcqwTWX5SQpHV5rxICmKzN/vjwQEArUqL94a9BwBYvGcxzhWd82n7yspK6PV6/w5OoVBEgTQBHBYWJol8VN6magCkE3PoqwdHCmEEUvbgUIEjBLXqNknJlmvwdah4Xe7rcB+GtxkOk9WEZ35+xqebn6+jN6RwYzWbzVCpVF6vT7uoKE0JqcRZ+IJUGl5fkIrN3ma5BqRjM/Xg3OjU/vNb1o6k8teDA7AN+L9H/BsahQbbLmzDxr83er0ticNTy8vLiRtVYLVaiQwyloodfCGTySRxffhCWFiYJBJu+nJtSMUb4sv/WipiwRekkmKirKxM8NQr3kIFjhDUuhyTLBcABObBAYCUyBT8383/BwB44dcXUG70rvSEr2JBCpSXlxMnykjN+kpa4+8rJHpDQkNDJdHd4wuhoaHClsPhABJtlsoDidVqhVIpSDivz1CBIwR2D47xLIDAPDh2Zg+YjbaRbZFryMW8HfO82oZED46vNkvhR0+i18nXrK8KhQIWi4VHi7hHKrEhviCVhteXa1QqNvtyL1AoFEQOwpDC/U7KUIEjBPYYHMMpAMC1a0CgI7A1Sg3+c+d/AAD/PvhvHMk94nEbEj04vro/pSAWfD3PCoVC9Pw9viYYCwsLE70R8/V/TQWOMOh0OlRV+ZfGgkukcC+giAsVOEJQK3CiKv+BTsf+6C5fDny3Q1sPxZhOY2BjbHhy85Ow2hpvJC0Wi2Rdie7wx+sk9o3N1241KTS8/tgsdpyFr6MCpXCefYVEgUO9Cv5Dzx23UIEjBLUCRwYgqTkrQrjopgKA94e9j1BNKA5ePYgPMj5odF1ffzxS+LFVVVX5VGsoKCgIRqORR4s846sHRwqNmK82S0Es+Fo+QAo2+1prSKPRSCIBnRTuBRSKr1CBIwRKJcy1Q/9axrM3q0ADje0khCTg3dvfBQC8suMVZBVncbPjWsT2hviSYAxgxYLYo07Ky8t9CjKmAsc/fM2/IYXzTGIdKoZhRL8PUCj+QAWOQJhq05wnRbGjOLjy4ADA1B5TcWvyrai2VGPqj1M5uxkFBwdLoi/dF6TQiPk6qkAqoow0geOrWJBCrTISA/2rq6uJK9NAoQBU4AiGubabpWU42yhw5cEBWPfxJyM/gVapxc6LO/HJkU9cruer8AkJCRFdLPgKtdk/DAaDT12BUggkJTVonrSYMlK9TrRbjUIFjkBYa2/ESfpiANx6cACgTWQbvHnbmwCAl7a+hMvlgUcxS8Eb4itS8Ib4SkhIiOg2MwzjU+0gKTQeJDa8JHpwSDzPlZWVPgl2StOEChyhqL2ptdSy9ai49ODYea7vc+jXoh8qTBV4cvOTDZ78fG2USBQLJIoypVJJXE4ZKeBrGQ8pQKLAIdFT5mvaAylgtVp9LlAqtndPKja4gwocgXAU3FRcr0fFdV4phVyBz+7+DGqFGj+d+wlfnfjK6XNfL0QSxUJwcDAMBoOoNkj5B08RFxK9If7YLPZvwNdAfylgMBj8KoYs5rmWelcgFTgCoYiOBgA0Zy5DLgdMJiA/n/vjdIzpiPm3zAcAPPvLs8gp899VRKLAkcvlot9c/UHKNwl3kHiexcZms/n8lC42N4ooExt/vE46nQ7V1dU8WeQZqXcFkvVLIxhVrcBRVRSjWTN2GddxOHZmD5yNvs37osxYhkmbJsHGsK4iXxvRoKAg0QNJSWz4/YGKBd+5Ua4NsfHXsyAm/nSryWQyUcs1+ON1EvshVOrdl1TgCIQ6NpZ9UVqKpCT2JR9xOACglCvx5egvoVPpsPPiTizbvwyA740obUAojSH29eGPKBRbSIp9zvzB1wB0KeCPByckJETU7m1/PDhiCxype8rIumoJRlnrwUFJCVq2ZF/yJXAAoG1UW7w/7H0AwJztc3Dk8hGfiinaEfuGLHaDJBRin+cbBXqehUGlUomagbmqqsrn3D1iiwV/PThiDgShAofCEhHBzut4cPjqorLzeM/HcWfbO2G0GjFh0wRoQ7T8HpBjpB7ARqH4ir+CnTShL3bDC/g3alRsbwj14HALFThCYa+ZU1oqiAcHYH/gn979KaJ10fi76G9suLaB3wNyjNQD2CjicqOIX7EDSf0RV2I3vP4gts1GoxEajcanbcS2WerD8anAEYo6AkcoDw4AxOvj8fFdHwMAvsr+CtsvbPdpezGfHH2tFi0FSH1CJ1Es+HPO5HK5qOUa/DnPYjdi/kBtFgatVivqQJDKykpJl/GgAkco7AJHoBicuozuMBojm40EAwbjvx2Pa4Zrwhw4QHwtHyAFSBRlNxJ6vV70PEm+InbDS6Io80f8SqFkiq9I4cFECja4gwocobDH4NTUICm2BgBQXAwI1U39aLNH0SGqA65VXsMj3z3iGDruCTEvXhLFgr/DJsU8zxaLBQqFwuftlEolzGYzDxbxhxTKYvgKiWJBbJv9Qa1WE3c9UxqHChyhCAkBU9uIhTJlqE1sjIsXhTm8tcaKtaPXQqfSYduFbXj7z7eFOXAAkOjB8VfgMAwjWjeVvzaTKBaoB0cY9Hq9qNeGlL0KFOGgAkco5HKYtbWjmEpL0bo1+/LCBWEObzQa0bVZV/z7jn8DAObtnIc/c/4U5uB+4q8HR8ybm79iISgoCEajkQeLPEOiwLHZbH79n0kUZaGhoSgrKxPt+P6cZ1IzilOaFlTgCIjJ7o0oKRFc4ADsjWpSt0l4uMvDsDJWjP1mLIqqihrdRsybVCAeHNK8IWIOqw1E4IjlWfA3uy6JAicoKIi4UVQUihSgAkdAHAJHBA+OHZlMhv+M+A/aRbXD5fLLePi7h2G1iTeqpDH8GTYJsAU3KysrebDIM/4W+RNTLPiby0JMseDv8FQxbTaZTH5VPye1u0XsIpAUChU4AmKyD6cTyYNjJ0QTgo33b4RWqcWW81uw4PcFbtdVKpWwWCwCWncdfxP9iekNqampQVBQkM/biWmzv12BYgscf0SZTqcTbVitwWDwOymamCKHVIHlDyQKIxJtFgoqcATEbBc45eWiChwA6BrfFR+PZPPjLPxjIb4//b3L9aSQkdRXSAzKFLu7x5+uQDEFjr+eMjEb60CyvorViBmNRr9KvJDKjSTmuEDq54sKHAFh7E/JZWUOgZOdDYhVwPbhLg/juT7PAQAe+e4RnCk802AdKhaEQczz7G8jptFoRKs3JPUU8a6oqKi4YdIeAOI1fjdaiRcxv6vUvUdU4AhJWBg7LytDYiKgUABGI5CXJ55JS4Ytwc1JN6PCVIF7N96LCqPzEzkVC8Ig9vBl0hoEqaeId0Ugokys/w+JQtKfQpuUpokgAmf58uVITk5GUFAQ+vbtiwMHDrhdd9WqVZDJZE5T/ZgGhmEwf/58JCQkQKvVYujQoTh37hzfXyNg5PZkf+XlUCrhKNkgVjcVAKgUKmx8YCMS9Ak4VXAKk7+f7KTKxW54/UHMrhN/GyK5XA6bSK480sQNAFRXV/sV6yQmJIoFUoUkaTZbrVbI5f41x1L3oogJ7wJnw4YNmDFjBl599VUcOXIEXbt2xfDhw5Gfn+92m9DQUOTm5jqmf+oVbXrnnXfwwQcfYMWKFcjIyEBwcDCGDx+Ompoavr9OQCjsAqc2p4XYcTh24vXx+ObBb6CSq/BN5jdOQcchISHECZygoCDJXwuUwCFNmAUSZCwW/sY6AeKmaiDN5kCvDbHslvpvkHeB8/7772Pq1KmYPHkyOnbsiBUrVkCn02HlypVut5HJZIiPj3dMcXFxjs8YhsHSpUsxd+5c3HPPPejSpQtWr16Nq1evYtOmTXx/nYBQRUezLyQmcAAgLTENH935EQBgwe8LsO7kOgBkenCk/qNzB6l2k4aYAbv+pD0QE1K9TjeSzWJVmychAJ1XgWMymXD48GEMHTr0+gHlcgwdOhT79u1zu53BYEDLli2RmJiIe+65B3///bfjs+zsbOTl5TntMywsDH379nW7T6PRiPLycqdJDNQxMeyL2uNLSeAAwJQeU/BS2ksAgMnfT8b+y/uh0WioN8QHSHQXB2IzFWVNGxLjhgINjBbjNxyIzWJ52QPxlAkFrwKnsLAQVqvVyQMDAHFxcchzE1mbmpqKlStX4vvvv8dXX30Fm82G/v374/LlywDg2M6XfS5atAhhYWGOKTExMdCv5hdBsbHsCwl6cOwsHroYd6feDaPViHvW34OcMoFKnlMoAkFFmffYbDa/CrGKCYnekEBsFsvLTkKsk+RGUaWlpWHChAno1q0bBg0ahG+//RYxMTH473//6/c+58yZg7KyMsd06dIlDi32Hil3UdlRyBVYc+8adI3rivzKfIxcNxLVNvHSxJMGbTwpTYlAvRlieEMqKyv9LvEillgIxIMjpsC5oT040dHRUCgUuHbtmtPya9euIT4+3qt9qFQqdO/eHefPnwcAx3a+7FOj0SA0NNRpEgNZeDj7ol4XVW4uIFJyVZfo1Xr8OPZHxOvjcTL/JJZdXQaz1Sy2WRQKJ9CATGEQM2u0v+darCropHpwbmiBo1ar0bNnT2zfvt2xzGazYfv27UhLS/NqH1arFSdPnkRCQgIAoFWrVoiPj3faZ3l5OTIyMrzep2jYhVVZGcAwiIi4nhrn4kX+DutP5eXEsER8P+Z76FQ6nKg6gcd+fIzI+BKKZ260hlcsAo11EiONQCDXhlixIYGcZ7HEQiAB6CSKMqHgvYtqxowZ+OSTT/DFF18gMzMTTz31FCorKzF58mQAwIQJEzBnzhzH+q+//jq2bt2KCxcu4MiRI3j44Yfxzz//4LHHHgPA/uCef/55vPHGG/jhhx9w8uRJTJgwAc2aNcOoUaP4/jqBYVczZjNQUwOZ7LoXJyuLv8NWV1f7lfiqT/M+2Hj/Rsghx+rjq/F/2/+PB+uaFlQESh8SBZ1YsSEkioVAIDEthljn2WAwSD4zt5LvAzz00EMoKCjA/PnzkZeXh27dumHLli2OIOGcnBynBEclJSWYOnUq8vLyEBERgZ49e2Lv3r3o2LGjY51Zs2ahsrISjz/+OEpLSzFw4EBs2bJF+om/9HowMhlkDMN2U2m1SEkBjh4FanvgeCGQC/HOdnfisbjH8PG1j7F4z2IkhCTgub7PcWxhQ6hQoPCF3Rvib2I1MbAnr/Q3tkQMSBQ4JNqsVqthNBoFP67VaoVSybuECAhBrJs2bRqmTZvm8rNdu3Y5vf/Xv/6Ff/3rX43uTyaT4fXXX8frr7/OlYnCIJfDHBQEdXU1200VF4d27diPzjQsA8UZgQTdAcDgsMFI6piEuTvn4vktzyNeH48Hb3qQQwsbUlNTA61W6/f2Yggkf7oCpQAXgaQkfe/g4GBUVlZK3r1eFxIbXr1ej5wcskZhknie7Rn/KQ0h5xGmieCoKF47kio1lX179ix/xwzUlcgwDP7v5v/D072eBgMGj3z3CH49/yuHFjaEBPdnffztCiQZrVZLXNeJWKU8AmmExGp4bzSb1Wq1KAVkSRQoJHjZqcARGIfAqR1JZffg8ClwKisrAxYLMpkMH9zxAe7veD9MVhNGbxiNP/75gyMLGxKo10kMSLQ50JuUXq9HZWUlR9Z4R6A2iyVwbrR4FhJtBshouCneQQWOwJjt3S61Hhy7wLlyBeDrXmAwGDhpeO05cka0HYFqSzXuXHsnDlxxXzg1EEj04AQqJJVKJcxmYYfjB9oVGBwcLHgjZjQaA4q3E7MYq7+QaLNarRb8eqYIBwleJypwBKa+wImIAOwVHPgqiM6FB8eOWqHG1w98jdta3QaDyYDhXw3H8bzjnOy7LiR6QwIVkmJ4QwI9z6TaTJpnQQwheaMiRsNNYkJFEjxdVOAITP0uKoD/bqrq6uqAnnjr/+C1Ki2+H/M9+if2R2lNKW7/8nZkFmQGaqYTgXpwVCqV4H3pJDa8gYpfMRreQM+zGN4Qs9kMlUrl9/YqlQoWi4VDi4SBhEaQ0nShAkdg6ntwAGHicLh+KtGr9fh53M/okdADBVUFGPzFYPyd/7fH7byFRM9CoKJMDIFzI3qd7KOohISLpGgkdAlQ/IPE/y0JNlOBIzD1R1EBwgicQHA3siAsKAxbH96KbvHdkF+Zj8FfDOasu6qqqiqg2BCxvCEkenACFQtiiLJAhKRcLhfcs8CFwBHaZpPJFJDXCSCjEZQCgf5vSexWEwIqcATG5MKDI8RQ8UBorOGN0kVh+4Tt6JnQE4VVhbht9W04knuEk+MGkohNDLFQXV1NnCgLVCyIMUyc1PgsEoPmSTvPXEBCw03xDipwBIaxP8W5iME5cwaQ4m/LU8MbqY3EbxN+Q9/mfVFcXYwhq4fg4JWDAlrYEDHEAsMwxImyQBsxuVwueI0kEhteEur21IeLwQlCiwWz2Sz57LquINHTRYLNVOAIjCIykn1Rx4PTpg0gk7GL8vNFMqwRvGl4w4PCsfWRrY7A46FfDsWenD0CWdgQsQROIOh0OsFjQ6qqqohLTsiFwCGxi0pouEovISRcXBu0u8c7SLCZChyBUUZHsy/qCJygoOtFN0+dEsEoD3grFkI1ofj14V9xS8tbUG4sx+1f3o6fzv4kgIUNIXEosEKhENwbEqjXSQwsFgtxT+mkdlFxkSBUSLhMiSEUgY6wA8gQG2JA1p2tCaCOimJf1OmiAoCbbmLnf3M3EIkzfBEL9tFVd6TcgWpLNe5Zfw9WH1/Ns4UNEcMbQiIk3hhJcI3Xx2g0QqPRiG2GT5DowSHRZq66XIX+LZPwO6QCR2A0sbHsizoeHKDpCBwACFYH4/sx3+PhLg/DylgxcdNEvLf3PZ+OGeiPVYyRMjcqJNzoxIaLgqTUG+IZEuOGuPDuabVa1NTUcGSRZ8xmMxQKhWDH8xcqcARGGx/PvqgncDp1Yud//SWwQV6g1WpRVVXl0zYqhQpfjPoCM/rNAAC8tO0lzN42W9Cbh9ANAm3ohYGLa4jE/5UYDS9psU5c2CyTyQS1mwuBExISImiXPCnilwocgdHGxbEvKisBq9WxvK4HR2qOB39HyshlciwZtgRvD30bAPDO3nfwyHePwGgxcm1ik4HEhpdEqDvfM1arlbhYJy4aXp1OJ2jqAy66qISOOaQCh+IShwcHcIrDSU0FFAqgpATIzRXBMJ6QyWSYNWAWVt69EgqZAmtOrsHQL4eisKqQ92PTLqqmCYli4UZF6DQCXHhwhBYLXHhwxLCZhFgnKnAERqbRwGKPmK83kiolhX0txTicQJncfTK2PLwFYZow/JnzJ/p92g+nC0+LbRanUEFFDiSKJBJtFtobYrFYAh6RRAWOZ0gZFUgFjgg46lG5GUklxTgcLhjaeij2TtmLVuGtkFWShbTP0rAje4fYZt3QcNFoCi3suDgeiTbLZDLB0wgEConpGsTo7rkRvU5CQAWOCLiqRwVcDzTm0oPD1Y2cq6fHjjEdsf+x/UhrkYbSmlIM/2o4Vhxa0SS8HyQ+YTeF836jIHSRUC6uDb1eL3jl9kAR2mar1RrwiCShbSYlmzgVOCLgTuDw4cExGo0ICgriboccEBscix0Td2Bsp7Gw2Cx46qen8NgPj6HGItwwRwq5cCEkhY4N4cJmoUfKcAH14AiDRqMRdJg4jcGhuMVdF1VdDw5X916pXohByiCsuXcNFg9ZDLlMjpXHVuKWz2/BpbJL1KtA4R2hY0O4gMSGl0RRRqLNMplMUA8yKSPsqMARAXcenHbt2GBjgwE4f56bY0l5OJ9MJsPsgbOxZfwWRGojcfDqQfT8uCe2ndtGXNZX4Mbt7hE6bwgXxwoODiauESO1u4e086xWq2EymcQ2g8IBVOCIgMODU0/gKJVA167s6yNHuDmWVD04dbm9ze04NPUQusV3Q0FVAUasH4Gfy36GjSEnoNJkMkGtVotthihoNBoYjWTlNiIxnkVom7mARFFGaTpQgSMC7rqoAKBHD3bOlcCRsgenLq0iWmHPo3sc5R0+y/kMI9aMQH6lBMuru4CroDtSR8oI2fBy4YoX2mYuIFHgqFQqWCwWsc3wmRvVG9vUoAJHBNx1UQHXBc7Ro9wciwQPjh2dSofVo1bj9V6vQyPX4NesX9FtRTfszN4ptmke4WrYZHBwsM9lMfyFq6rcQnb3cNXwkNhFRaLAIRU6IrJpQAWOCJjcdFEBzh4cLq5XUjw4dmQyGdJj0/HtHd+iY0xH5BpyMWT1ELy681VYbL49CcrlcljrlMPgE648OELGLHBps1ANb3V1NbT2308ACC0WuGgwSY0NoQ2vMJAoyviGChwRsNg9OC66qG66CVCpgOJiICcn8GNVVlZCZz9eAAh5k6qsrET35t1x4LEDeLTbo2DA4PU/Xsctn9+Cc0XnvN6PkA0vV0JSSIHDpdeJNJuFvDYsFgsRlZcp16GirGlABY4ImBrpotJorufD4SIOh2EYyOWB/5uVSqVgfen2RixYHYzP7vkMa+5dg1BNKPZd3odu/+2G/xz8j1c3ICEDHLnqCqQenMbhymatVitYVyCXSdHoUzqF4j1U4IiApZEuKoD7QGMuENKlX9/rNK7zOJx86iRua3UbqsxVeObnZ5C+Jh1Xyq80uh+hbeZKLAgpykjz4HAZzC0UJMXB2eEiu64dKsqEgXqdGkIFjghY7Dc7F11UwHWBc/iwQAYxDHDpEtDIUF8hn9JtNluDm2tSWBK2PbINy9KXIUgZhK1ZW9Hpo0746sRXbn/YQnf3cNGIkSjKdDodcTYLCWlxcACZ55lLqChrGlCBIwKq6Gj2hRsPTp8+7Dwjg7uMxm7JzQX69QOSkoBmzYAffnC5mhRGnchlcjzX9zkcfeIoejXrhdKaUjzy3SO4Y80duFh6scH6Qooyq9UacBVjQFiBw5UoUygUgg1tJ6XIX11IFAsk2my1Wjnpjqc0HQS5GpYvX47k5GQEBQWhb9++OHDggNt1P/nkE9x8882IiIhAREQEhg4d2mD9SZMmOVJT26f09HS+vwZnqOsKHBfeh27dAK2WDTQ+c4ZHQxgGGDMGsJ/f4mLggQeAU6carCqlvCHto9tj76N78catb0CjYIeT3/Sfm/Cvff+C1XZ91JQURJmvqNVqmM1mQY5FYiNGbRYGEoVkVVUVceeZwi+8C5wNGzZgxowZePXVV3HkyBF07doVw4cPR36+6wRuu3btwtixY7Fz507s27cPiYmJGDZsGK5ccY63SE9PR25urmNat24d31+FMzSxsewLqxVwUQ9Hpbruxdm7l0dD1q0D/vgD0OmA06eB9HTAZAKmTm0gvKQmFlQKFV655RUcf/I4bml5C6rMVZixdQb6fdYPx/OOAyA3b4hQfelms5mz7MtCufSrqqo4GRUoJCQKHBJtJjHWyWw2c+L5BWi3mit4Fzjvv/8+pk6dismTJ6Njx45YsWIFdDodVq5c6XL9NWvW4Omnn0a3bt3Qvn17fPrpp7DZbNi+fbvTehqNBvHx8Y4pIiKC76/CGdqYGDD2i9FNN1X//uycV4Hz3nvs/OWXgdRU4OOPWdfR3r3Arl1Oq0rJg1OX1OhU7Jy4Ex/f9THCNGE4dPUQen7cE89veR5VtirBvCE0wE8YbDYbcd0QXDa8Ql1nJHpwaKwTvQ/Vh9c7hclkwuHDhzF06NDrB5TLMXToUOzbt8+rfVRVsY1UZGSk0/Jdu3YhNjYWqampeOqpp1BUVOR2H0ajEeXl5U6TmOhDQmC1X9RiCZwjR9hJrQaeeopdlpgITJrEvn7/fafVpebBqYtcJsfUnlOR+Uwm7u94P6yMFcsylqHdh+2wq2wXUTWtKE0PEuuUUQ+OMHApJLVaLapd9Ahwjclk4szrxDe8CpzCwkJYrVbExcU5LY+Li0NeXp5X+5g9ezaaNWvmJJLS09OxevVqbN++HW+//TZ+//133HHHHW6z1i5atAhhYWGOKTEx0f8vxQHBwcHXyzW4EVv9+rHz06eBRrSb/6xZw85HjQLsMUEAMH06O//5Z+DaNcdiIWND/CUhJAH/e+B/2PrwVrSPbo+CqgJ8fO1jpH2WhoNXDoptHoUDSHTD2+MESYLLhlcorwLXHhwh7OZSlAnVJU+S+JW0r3fx4sVYv349vvvuOwQFBTmWjxkzBnfffTc6d+6MUaNGYfPmzTh48CB21etWsTNnzhyUlZU5pkuXLgn0DVyj1+thsn8fNx6c6Gi21wgA9u/nwYiffmLnDzzgvDw1lQ0AstmAjRt5ODD/3N7mdhx/8jiW3L4EWrkWB64cQN9P+2LSpkm4VCbu/94bSGsMKU0Po9FInNeJS1Gm0WhgbCRtBldwKcqEFDikdAXyKnCio6OhUChwrY4nAACuXbuG+Pj4RrddsmQJFi9ejK1bt6JLly6Nrtu6dWtER0fj/PnzLj/XaDQIDQ11msRErVZ7FDjA9W6q3bs5NiArix2epVAAt9/e8PNx49j5+vUcH1g41Ao1Xuz/IpYkL8GErhPAgMEXx79Au3+3w8u/vYzSmlJOj0dFiTCQGGNAos0At9e0EOeAS8+CUGKBS1FGos18w6vAUavV6Nmzp1OAsD1gOC0tze1277zzDhYuXIgtW7agV69eHo9z+fJlFBUVISEhgRO7hcDkoYsKAAYPZuc7dnB88F9/ZecDBgBhYQ0/v/dedr5/Pzt0nGAilBH4YtQXOPDYAQxqOQg1lhq8vedttPmgDf61718wWvh/SqNQuEIoIc3lcTQajSBFQrn0OgkVc0hiFxVJsU68d1HNmDEDn3zyCb744gtkZmbiqaeeQmVlJSZPngwAmDBhAubMmeNY/+2338a8efOwcuVKJCcnIy8vD3l5eY6LzWAwYObMmdi/fz8uXryI7du345577kFKSgqGDx/O99fhDHMj9ajsDBnCzg8dAkpKODz4n3+y89tuc/15YiJbEMtmA7Zu5fDA4tG7eW/snLgTm8duxk0xN6G4uhgzts5A++Xt8cWxL3yuVM4nJD7xC2Uz9ZSRh5DpGri6PoQaNUqi14l2UdXhoYcewpIlSzB//nx069YNx44dw5YtWxyBxzk5OcjNzXWs/9FHH8FkMuH+++9HQkKCY1qyZAkANmvqiRMncPfdd6Ndu3aYMmUKevbsid27d0Oj0fD9dTjD7KEeFQA0bw506MCmpNm5k8OD79nDzgcMcL/OHXew819+4fDA4iKTyXBnuztx/Mnj+Ozuz9AspBkull7EpO8nocPyDlh9fLXfQodEUUIRBi5FmVKplHywf31IzEcllM1WqxVKpZKTfdEuqoZwc2Y9MG3aNEybNs3lZ/UDgy9evNjovrRaLX61d7EQjDceHAAYOhTIzAR+++16z5G3uBzOd+kSkJMDyOVA377uN77jDmDJEmDLFtaTQ1jukcZQyBV4tPujGNNpDJYfWI539r6D88XnMXHTRLzxxxuYd8s8jO08Fkq5ID+PBpDopRDKZhKFJJc22xux8PBwzvbJN6QKnPrJZaUO7aJqSNNptQjDGw8OcD0GeNs234/h0v1pH5LVtSsQEuJ+44EDAb0eyM8HTp70/eAEoFPpMHPATGRPz8bbQ99GtC4a54rPYcKmCei4vCM+O/KZ1zE6JIqSGx3qDREGarMwKBQKt6lSuMRVMWSpQgWOSJg8JPqzM2gQO9jp/HnAg3OrAS77So8dY+eegrfV6utdWH/84duBA8BsNnPmsvUWvVqPWQNmIXt6NhYNWYQobRTOFZ/DYz8+huRlyXj7z7c5H3VF8Q8uhSSJjRi1WRiEsvlG90jyDRU4IuGtByc09HpP0pYtvh3DpSvRLnC6dvW8g1tuYecCChwxk0jp1Xq8PPBlZE/PxnvD3kPzkObIM+Th5e0vI+lfSZi5dSYul19usJ3NZiNuSC3XqFQqQUbKcIlUy480hpQziruDRIGjVCoF8YZQ+IUKHJFwxOCUlnpcd+RIdv79974dw6UH5zhbiBLdunneQV2BQ2g2Un8I0YRgRtoMXJh+AV+M+gI3xdyEClMFluxbgtbLWuOR7x5BxuUMhxDhugCkTCYjTuQIJRa4jmcRQixQrxN5NgsF113bQnSVk9QdTwWOSJi89OAAbDUFANi+3avVHTTw4BQWAvbAOQ/JEwEAvXsDGg0bh3P2rPcHDgApReirFWpM6DoBJ586iZ/G/YRBLQfBbDPjqxNfod9n/dDn0z744tgXKCwt5NRmIWrKcO11op4F9/ARZEwSarWaOO8exT0kPXxRgSMS3o6iAoD27dnJbPZt1HYDb4jde9OmTeMBxnY0mutFsQTqpuK6i0omkwXsapbJZBjRdgR2TdqFg1MPYmLXidAoNDh09RAmfT8JPb7qgS8uf4F/Sv/hxGa9Xs+7WKiurubU6ySEB8dqtXIa3EhqFxVpNlPcQ5JYsEM9OBSPmHwQOAAwejQ7/+4774/RwINjj7/xpnvKzsCB7NzL6u+BwrUHJzg4GFVVVZztr1ezXlg1ahUuvXAJi4YsQmJoIkqMJVidvRqtlrXCsC+HYcNfGwLKkCxEI8a1kBTCg8N1VyCJXifqDWlakCQWSIQKHJFweHBMJqCmxuP69m6qn3/2anUALpJI2T043gQY27FHOGdkQCaTwWazeb+tH/DR8PIhFmKCY/DywJdxYfoFLOq6CAMSBoABg20XtmHMN2PQ7P1meO6X53A877jP+xbCs8B1LgshvE6kXBt1MZlMnBatJLEyOUBmQ06id4XiDBU4ImEOCgLsP3ovAo179QJatAAMBmDzZj8PmpnJzjt18n4bu8DJzEQowKk3xBWkNbxKuRI9g3ti072bkPVcFubePBctQluguLoYHx74EN3+2w09P+6JDzI+QJ4hz6t9CuFZ4DqYWwixwLV3TwhviJijAv2FNuyUpgIVOCIhUyjA2ONgvOimksuBRx5hX69a5ccBGYatIA4AqanebxcbCyQnAwyDhMuXeW/ELBZLw+zLASBUwxscHIzWEa2x8LaFuDj9In4Z/wse6PgAVHIVjuQewfQt09H8/eYY9uUwfH70c5TVuP+fk9pFRZrNAP+eBRIFDtfxWZSmBUkCmAockdDpdGDslby9jMOZNImdb9kC1Cnf5R15eUBFBauU2rTxbds+fQAA0RcuEBezIFTAblBQkOO9Qq5Aeko6Nj6wEVdfvIpl6cvQt3lf2Bgbtl3Yhkd/eBRxS+Jw74Z78fWpr1FldvaKCWEz194QIfKG8CEW+L5Zk5TW3g6JNjMMQ+SQawq/UIEjEnq9HlZ7A+OlwGnXDujfH7BagTVrfDyg3XvTqhU7OsoXarupws6cIW4Eh1CjTtzdDKN10Xiu73PY/9h+nH/2PBbeuhAdojvAaDXiu9Pf4YH/PYDod6IxesNofHn8S5RUlwgyTJxEzwK1mYVvUSaFXFS+Qr1OFFdQgSMSwcHBsHhZrqEudi/O55/7mHvv9Gl27kv3lJ1agaM7eRKGigrftxcRIbwh3j7ptYlsg7m3zMXfT/+NY08cw+wBs5EcnoxqSzU2nd6ECZsmIHZJLIZ9NQxbS7biSjl/xf6qqqqgtediIgQ+ciTRLqqGkOjBIdFmrnNRCQVJNlOBIxJ6vf56uQYvgoztPPggEBwMnDrFVhj3Gn/ib+z06AEolVAWFMDqa0EskdFoNDAa/R+yzQcymQxd47ti8dDFuPDcBRx5/Ajm3TIPnWI7wWKz4LcLv+Hz/M/R4l8t0OvjXpi/cz72XdoHq43bLiCSblQAUFNT49QVyAXUG9IQarMwcJ32gNIQKnBEIjg4GEYfshnbCQsDpkxhX7/3ng8HDETgaLWOzMdqey4dQpB6Iy6TydA9oTtev/V1nHzqJM49ew7vDH0HbYPaAgAO5x7Gwj8Wov/K/ohdEoux34zF6uOrkV+ZL7Ll4iD1/2d9qAeHhcY6NYSv7ks+zzVpXicqcERCr9ejxh4L40v9BQDTp7Oxwr/+Cvz1l5cb2QVO+/Y+HctBbTdVqH2oOcUBlzeUlMgUzBwwEwuSFiD3xVx8fs/nePCmBxEeFI7i6mKs/2s9Jm6aiLglcej1cS+8/NvL+PX8r6g0kRUb5Q983Lj5vlmbzWZORwUKAYneEFJt5lrgBAUFocbbRGl+UF1dTVTXNhU4IhEcHIwqewIwHwVO69bXMxsvWeLFBiYTYO9a8seDAzgETlRWln/bU3wmXh+PSd0mYcP9G1AwswC7J+/G/w38P3SP7w6A9e68vedtpK9JR/jb4Ri4ciDm7ZiHHdk7UG3mN0i5qUDSkFehIDU+iw8PDp/XBx+ijO8koaR5JJWeV6HwgVarRbX9yc5HgQMAM2cC33wDfPklMHs20KFDIyv/8w9gswE6HRAX55/BtUPFI7OzAYsFUNJLx44QLlulXImBSQMxMGkg3hzyJvIMediatRU7L+7EjuwdyCnLwZ5Le7Dn0h68sfsNaBQapCWmYWDiQAxIGoB+LfohPCicdzv5hCTXOMmQOOSaj4bXnghS4+uoUy8xGAyIj4/ndJ/2UaPR0dGc7tcOFTgUr5DJZD5VFK9P375s+YZNm4A5c9i5Wy5cYOetWl3PnuwrqalASAiUFRVsRuTOnf3bD8UrPDUI8fp4TOg6ARO6TgDDMMguzcbO7J0OwZNryMWui7uw6+IuxzY3xdyE/on90T+xP4pNxbw0ZKRB4vcn0Wa+4aPrxC4W+BI4fIgFvtNiUIFD8RpHPSofRlHV5a23gB9+AL7/HtizBxgwwM2K2dnsvFUrv44DgA366d0b2LEDOHCAChye8cU1LpPJ0DqiNVpHtMaUHlPAMAzOFp3Frou7sPfyXuy9tBfni8/j74K/8XfB3/jkyCcAgEVLFqFfi37oldALPZv1RM+EnkgISeDrKwUMH90FtIuqIXwIKJVKxXldrrrwIdbtJVMiIyM53a8dvgROqZ/tiTfw6R3iAypwRMTXiuL16dABePRR4NNPgaeeAg4dAlzeP7gQOICzwLEP5aJIDplMhtToVKRGp+KJXk8AAPIr87H30l7HdODyARRWFWLz2c3YfPZ6cbNmIc3QM4EVO72ascInXs+tG50SGCSKMrtngS+Bwwd8x7Pw5XW6coW//FmVlZVo2bIlb/vnGipwRMQcoMABWC/Od98BJ08Cb78NzJvHLrdarZDLa2PIuRI4tXE4OHAgsP1wQWUlO4wsK4sdOz94MJvqmeKS2OBYjGo/CqPajwIArF6zGm1vaYsDVw7gcO5hHM49jMyCTFytuIqrFVfx49kfHdsm6BPQJa4LOsd2Rue4zugc2xkdYjogSMltThpP8OFZILG7R6lUEjc6yy5wIiIixDbFa4KDg1FeXs7b/hmGuX6P5gjaReUMFTgiwoXAiYkBPvgAGD8eWLgQuPtuoGvXehH6doHTunVgBtsFzsmTQHU1mx9HaBgG+OQTNvCouNj5s5EjgeXLgcREgU0i74laJVchLTENaYlpjmUGkwHH8o7h8NXDOJR7CIevHsbpwtPINeQi15CLX7N+dayrkCnQLqqdQ/B0ju2MXFMuLDYLlHKybiukxSLZG7Hw8HCxTfEaoUqmcElwcDByfS76Jy5CCBySkhOSdSdqYjgFGTOM3wHAY8cCGzaw8Tj33st2VdXU1FHaXHlwmjdHVXg4dKWlwNGjbGEsDnHyOrnCZgOefhr473/Z961asTbk5gK7dgE//gj8/jt7MtLTObXtRkCv1jtGatmpMFbgZP5JnLx2kp3Xvi6pKUFmYSYyCzOx8e+NjvVffvNltIlsg/bR7ZEalYrUqFT2dXQqIrWBxTLwISTteUNIGhZNBU5D+BCoJIoyvove2mw2KBQK3vbPNVTgiIjDg2OxAFVVbA0GP5DJgJUrgV692AFT48cD771XW7envBwoKmJXDFTgyGQobt0auiNH2G4qjgVOVVVV4+7PuXNZcSOTAe+8A7zwAmD/sZ0+DUyeDOzfz3pyvvwSGDOGU/tcQdrTv6+EaEIcI6/sMAyDqxVXGwifzGuZMNqMOF14GqcLTzfYV7QuGqlRqUiJTHEERdunuOA4Uc6jvREjUeCQRHBwMAoKCsQ2wydIPM98Q9q9jgocEbEEBbGjk2w21osTQN9mVBQbi5OWBvzyC6BQRGHxYst1701UFBASErDNRW3aoIVd4HBMo8m6vv0WWLSIff3558DEic6ft2/Pem8efZQttf7II0BkJDBsGOd21oWvPBlSvpHIZDI0D22O5qHNkZ5y3VP23abv0KFvB1yquoTThadxpugMzhSdwenC07hcfhmFVYUorCrEnkt7GuxTq9Q2ED2twlshMSwRSWFJiAiK4OWc2ANJSRoZQmLDS6LNKpUKFotFbDMoAUAFjpjIZGyAbEkJK3CaNQtod926AevWAfffD2zeHAm9Xo0v79/O/pMD9d7UUtSmDfuCB4HjNrNnYSHw+OPs6xdeaChu7KjVwOrVrGBctw647z5g927O7awLXxlUlUolr8Nq+SBEH4JIRSTat2mP29vc7vSZwWTAuaJzOFN0BhdKLjhNl8ovodpS7RjG7gqdSocwhGHllyuRGJrITmHO8xCN7wLePhSYJIKDg1Fk98ryAB9dgXq9nrjzTCEfKnDEpq7A4YBRo4CvvgLGjWOwfr0e5cc7Yz30COFK4NgDlbOy2CBfDnNEuBULs2ax3WydOrFDxRpDLmc9PNeusUPaR4+G+v/+j7euJL5GFdg9C3wIHL6EU2NP6Xq1Ht0TuqN7QveG9lhNyCnLaSB87OKnsKoQVeYqVKEKuRfcB32GakIRr49Hgj4B8fp4p9cJIQmO91G6KMhlcofNxfWD1SUOid4QtVoNs9ksthmUGwwqcMQmLIydcyRwADb05PDh/Vi+vB9+zmyNXjiEL4O2og8H+zYHBwNt2wLnzgEHDwLDh3OwV5bKysqGSbUOHWIFi0wGfPwx4M3QWI0G+PproGdPIDsbA/77X1SPHQsdD8X4DAYDL0X++BxWy5fXyd+GV61QIyUyBSmRKS4/rzZXI7s4Gxt+2YDW3VrjUvklXCq7xM5rX5cZy1BuLEe5sRxni842ejyFTIE4fRwS9AkIU4ZBYVSgU0knxOhiEK2LRrQuGjHB119HaiMdgkgK8J2fhUI2JI7q5AsqcMTGLnA4zj7Zo8dF/P57GkbfUoizNanov6YtXohj43Tth/QXpk8fyM6dY7upOBQ4LhveuXPZ+fjxbICRt0REsMW60tIQf/gwKhctAt58kzNb7fA1moVPlz5flZf1ej3y8/M5369WpUUzTTP0je2LEd1GuFynwliBKxVXkGfIQ54hD7kVuezckHt9mSEXhVWFsDJWR74fO9vyt7k9vlwmR6Q2khU+tSIoUhuJ8KBwRARFsHNtRIP3YZoAf2husNdI4gspx38JDRULZEMFjtjYG0cOPTh2evcGTrS8G0+feQ4bbGOwZAmwahXw3HNs5mN/4iq1Wi3M3btDvWYN53E4DRre3bvZZH5KJbBgge877N4d+M9/gClToFu8GLj9djYhIIdUVlaiRYsW3m/AMGzXXlkZ62mKiGCLoNYjODgYFRUVHFp6Hb661fjsOvFkc4gmBO017dE+un2j+zFbzbhWec0hgq4ZrmFnxk40b9schVWFKKgqcARDF1QWoMxYBhtjcyw7jYajwxpDLVNjxnszGgifEHUIQjQhCFGHIFQT6njtah6qCYVGoXEID5lMRhveetDzQXGFIAJn+fLlePfdd5GXl4euXbviww8/RJ8+7jtM/ve//2HevHm4ePEi2rZti7fffhsjRlx/cmMYBq+++io++eQTlJaWYsCAAfjoo4/Qtm1bIb4OpzBhYZABvAgcAIjM/RvrMRYTV/THi8uSkJkJzJ/PDki69142h87tt7sp8eACvV6Pyo4doQZYgRNA/p76GI1G59iQxYvZ+ZQp/icpfPRRFP/4IyI3bWK/7NGjAIcVfD129zAMe8wNG1jBduQIYDQ6r9OiBRshPngwMGQI0LUrr0nGDAYDQkNDOd+vmALHW1QKFVqEtkCL0OuiVHdGh3G3j3O5vtlqRlF1kUPw2EVQSXUJSmtKUVLDzuu+tn/GgIGJMTk8SIGglCudhI+xwohPV38KnUqHYFUwdCqdy8ndZ8Fq5+UquQoymcxzLiqK5KEeuOvwLnA2bNiAGTNmYMWKFejbty+WLl2K4cOH48yZM4iNjW2w/t69ezF27FgsWrQId911F9auXYtRo0bhyJEj6NSpEwDgnXfewQcffIAvvvgCrVq1wrx58zB8+HCcOnUKQUHCpo8PhKCgIFiDg9l/Ah8Cp7ycnQDcMS4Ct08B/vc/YMkStp1ds4adgoOBW25h29bevYEuXa47luoTHByM8qgoRCiVQH4+cOkSkJTEmcmOH+epU8DPP7Pi6aWXAtpn2RtvIOjECeguXADGjQO2bbuePydA3Da8ViuwcSMr0k6caPi5VguYzWwOpMuX2WlzbU2olBREjRqFC61aAYMGcWJnfZubBThizxU6nQ5VVVWc7xfgL9YJaLxBUClUjoBlX7AxNpzKOoXT2aeR0jnFSfiU1pSiwlSBCmMFO6/7us683FiOSjMrGC02C0pqSlBSU+I4xvns8/59YRfIIEOQMoj1FFllmL10NvteqXEsd/W+sc80Sg00Cg3UCjVUChWOVR5D7IVYqBQqdplc5dVrhVy8xHJULJAN7wLn/fffx9SpUzF58mQAwIoVK/DTTz9h5cqVePnllxusv2zZMqSnp2PmzJkAgIULF2Lbtm3497//jRUrVoBhGCxduhRz587FPffcAwBYvXo14uLisGnTJowRILkbV+j1epi0Wv4Ejr3oWlgYEBICJVgnxpgxbD68devYNvjaNTZ3zi+/XN+0ZUu2tFNSEvu6ZUsgLg4oKopBWRmD0I4DEHbiD8gPHOBU4Dh4/312PmoUkOI6+NRbgmNicGzuXPR/7jlg507gtdfYuhYc4DKz55EjwKRJbEkLgO2Kuvtu4K67gH792JNpz51TVAScPQvs28fatn07cP48gpYswc0A8NFHbPzRuHGcnWePXqfqauCff9gM0VevAnl5bO2vmhrW+6RQsAItKIjtXouJAWJjIY+Lg7qkhBVtSm5vLZWVlYiJieF0n3wil8mhMCuQEpOCbvHd/N6PjbHBYDI0EEA//fYTeqf1RqWpkh1hVmeqNHu5zFQJK8NmvWXAoNpSjWpLNQCgpKykMbP85p0v3/F5G7lM3qgAUivUMJQZsPTTpVDKlVDIFOxczs5dLXO897BuZlEmLvxxwfW29bZRyBVQyBSQy+QuJ4Xc+bPMqkz8mfPn9c8b2dbV9i7XkSlQZa1ChbHC7TqBiDbSugJlDI8Wm0wm6HQ6fP311xg1apRj+cSJE1FaWorvv/++wTZJSUmYMWMGnn/+eceyV199FZs2bcLx48dx4cIFtGnTBkePHkW3bt0c6wwaNAjdunXDsmXLGuzTaDTCWKdboLy8HImJiSgrK+PFVe8te/bsQceffkLEokVsYrrVqznb97p16zA2KooNAr7pJuCvv1yuZ7Ox7fD27WyevGPHgJwc744hgw06lRnaMA20WjhNQUFsG6dQeDfJ5UBW1nm0aZMCWU0VsHYdYLNCds/dQBz79Fz3d+nLa4vFjEuXLqG1xQLZ1i3swrvvgSw58Kq4Z86cQWpqKvvGagUOHmBHlzEMoAli44C6dGFPiDeYTWxyxrPnwGRnQ8bYrn/WrDnQPhVIaev9/lxw7txZtGmTArlMBhgMQGEBm2uosBAoKKwNeA/ktiBjLwKd7voUbH8dzM41GkClBJQq9kJRKthDMjbAxrDnz2ZjvVxmM/IuXUKkXg+1TAaYTI7lsNTOzZba13XmNhv7PRiw+wNqv5es9sKTAwoFKqtrEBwaAsjrXpRyQCa/PpfXn2Ts+jKZ8zHqTIaKCiiVCgRpghp8BjDXvyfqfmbfj63hPutQXl6O0LDQ6+cbDV/We1Nnsaz2TDCwyS0wK2pgVZhhVZhQY62CETVQ6RSwKkywys2wKNm5473C+b1VYYJFYWZfy03se7mJ3afcBJvcCqvcArPNCJmKPaZVZoVNbmZfyy2wySyO15CR1YiSiIyRAwzruQNkkDHX5zLIAPv7up9BBsbGCk4wtVsyctivMxkjr90fareRY6jidnyzaBWntpeXlyMsLMyr9ptXD05hYSGsVivi4uKclsfFxeH0adfBenl5eS7Xz8vLc3xuX+ZunfosWrQIC/wJUuUZvV6Pao0GEQDno6gAsN0eQKPFJ+Vytjhn167AjBnsspISVvRkZ7MP8v/8w4qeggKgsNCKoiIGNTVKMJCj0qxBZSFXBqdg504A0AGYwi5qqIH9QAXAHsNTW3H8By72CwCp+NVRg1IBIK12AmAEsL928ho1gNTaqR5Xa6cd/ll6nbpV10NqpwALsdanunbiLB9dnOdVAoG/vHn8QVYdSO+RWQGFGVCYALm53msT+97Va7kFkFtr5xZ2P3WXeXrPxTYym4vJ3fI6k9ttvdyH3Ob5vNaBkdkAWWCPMd6QeZ4fT6C33BCjqObMmYMZ9tYb1z04YhMcHIwqe14XPrqo7ALHl1E+YAf23HILO9XHYKjGjh07MDwxBSU9bkOlNgbV+46hxqxAdTUcU00N21NhtXo3MQxw/PhxdOncGXj/X0BJMZjR9wE9ejg9vNpfu1rW2Od//fUXOnXqBMZsAb5YBSbvGlu+YsLEgKqinzp5Eh1LS4E//2SfurVattBnh45+79PO33//jZtuuol9U14OnPqb9cS5GoodrAf0ekCnZT0LNhtgtbBdSxUVrNfDFXIFEB0FxMYCsXG181h2X/7Y/NdJ3NSqFXtcQyVQaajzuva9oZLt6qrrcWmAjFXfahWg1qDGZoMmNBQytQpQqdmoeLWazYtkn9Qq1iNknytqny5lstqHzNo5wwBWm+Piu/zPP2iRkNDworTZAFvt3GqrfW9zXm6z1e6/3gQZyioqEByih1KhdL2O3Hl9dpm8zjpgvUd17QcAMMjLu4b4+Lh6LRTj8qUvy8vKy6FWq6ANqv1NuHPw+7E8v6AAsfW7Gd12IDCNvK31wtVSU2OC2WJGiN6HTNa1jjN40AWFhYWey3j40eNjtdpQVlqKyChuEqUytV+IkTHILyxAdEwUGNjAyBjH3CazggHDihvUipzaLVG7nAEA+zaO1+wfZAyKi4sRHhUO+wlkao/Z4HWtFy6tG3cDOvyBV4ETHR0NhUKBa9euOS2/du0a4t2MZImPj290ffv82rVrSEhIcFqnbpdVXTQaDS/1ggJFr9cjzx6/wYfAuXSJnfsocBrDHkiq6ZKK+GADUHkNUGQCXTsFvO91605hbEwBUPISGzf01SusM4cD1q49gXHjOgFQAtPS2Zw6ly8DGV+ywUf+dFWeOIHitfcg8uJF9v2997LD0uO48TasX38SY8bUChyEwuEdOnOGzdK8cyewdy8ba1UJdmqMli2BTp1wSi5HxwceYN127dt7P4TOC9auPYlx4zoD8EEgMQwreOTy6/2V9eIE1q1bh7Fjx3Jmp/O+j2Ps2Ds43+/GjRtx7713QMlxPBJgPx/9ON/vtm3b0LVrF5cDQAJl7dq1GDeO+6D5kydPQiaTOQahcAl7nm/lfL/5+fk4ceIEhg7lft/r1q3DmDG3cx4gzTAM1q9fz9vvkA94HQ+oVqvRs2dPbN++3bHMZrNh+/btSHOTtC0tLc1pfYD90dnXb9WqFeLj453WKS8vR0ZGhtt9SpXg4GBU2Idk8unB4dBbJZfLYbPZ2IbIPtT/zz852z8+/pidP/ywy/wwnNCiBbBlCztUbO9e4Lbb2P43bzEa2bw8vXqx4iYyko3Y/vprzsQN0EhAX2oqm8ho40b2f1xaCmRksKOwvvgC+OwzNp5r3TpWCJ0+zcbaXLwIbN6M42PHsjFfXbpwKm4AP0edyGRsTJFazV5XTWTkitVq5UXc8AlfSSAB/kYk8ZXXiU/4tJmvRJDV1dXQBuDtFgPef30zZszAxIkT0atXL/Tp0wdLly5FZWWlY1TVhAkT0Lx5cyyqrRQ9ffp0DBo0CO+99x7uvPNOrF+/HocOHcLHtQ2fTCbD888/jzfeeANt27Z1DBNv1qyZUyAzCeh0OmEEDoceHCcGDWK9CL//Djz5ZMC7CyorY0uiA8DUqQHvr1FuuomNrB4+HDh8GOjblxUEffu634Zh2G2efZYVDQAu9eyJxM2bOc2t4zNhYdfFZhOFtNEbpEJiI0aqwOFLSNrzUXHda0HieeZd4Dz00EMoKCjA/PnzkZeXh27dumHLli2OIOGcnBynxFL9+/fH2rVrMXfuXPzf//0f2rZti02bNjm5H2fNmoXKyko8/vjjKC0txcCBA7FlyxaicuAAgEKhQI3d5rIyTpPmAeCli8oJe46W33/nxPZWf/zBBu707ct2n3CIy6fHHj1Y71N6OhtR3b8/MHkyMH06W9jTvk1VFesd+eADYM8edllcHLBsGXZbLBgnpriRGFSIkA9puV/4bHhVKhUvxWn5THtgFzgN6voFCBU4bpg2bRqmTZvm8rNdu3Y1WPbAAw/ggQcecLs/mUyG119/Ha+//jpXJoqG2d4NY7Ox3QghPgTKNYKyuvq6V4ivgOq+fdluhdxc4Px5tginv9hsaLOjdnjQ449zY583pKaymYafeQZYu5bt3vnsM1bAJCay4ubsWVZ4Aezw5ieeYHPpRERAtm6dcLbewJDW6FKEo6qqijevk10s8CFwkpOTOd2nHb4yipMocGhObpGxqtXXk6Jx2E2lLS5mX4SGciaaGh5Ee71r5PffA9vXrl0IuXaNtfWhhwK3zRfCw9mUznv3Avfcw4q2a9fYSuanTrHiJjkZmDMHuHABWLaMHWpGaQAVIhR3KJVKmM2uRswFBsMwvJWXCA4O5qXoLZ9igUSb+YKsCLimiEzGxlAUFbECh4PuJJvNhmC7wOGre8rOoEFsN8/vvwOPPeb/fuzBxePHs7UjxCAtDdi0ifWkZWayGXyDgtiRRi1aNJngVxIhseuLRJv5xO5ZCHdXB0aC6PV6XrwhVVVV0PE0iCI4ONhtTrhAqKyslER6FV+gAkdkZDIZ60EoKuIs2V91dTXC7Qqe7wty0CDgzTcDi8MpKLgeXPzEE9za5w96PVuUi+IztFEXBoVCAYvFQtQoLRIFDl/eEJvNxpvXiS9RRqIHh3ZRSQF7d0cJN1kfKysrEVpRwb7h24PTvz+bZO3SJeDcOf/2sXo1YDKhqHVrtqo2hVIPvru++BBmfNrMZ+V2vqA2CwONwbkOFThSgGOBYzAYEGLfF98CJzgYuPlm9nXdap3ewjCO7qlL6ekcGiYM1GPhDIkxOFqtFtXV1WKb4RN8NWJ8Xs98eUP4hESBo1KpYLEPiuAQq9XasLCwxKECRwrYh/PZ42YCpLKyEtqi2uI6QvSZjhjBzn/+2fdt//gDOHsWtuBglBImcEj8wfONXC6H1WrlfL98Nrx6vZ42vALAV9cJn5B4ninXoQJHCvDgwdHYM/Py7cEBgDvvZOe7drEBur7wyScAAMNddyGIp7wQfMG3y1Ymk7FZownCXsqDJEj1hpDW8JJos1qt5mXkF4mQ6J2lAkcK8ODBUdqj6IUQOKmpQKtWbEHHemU2GqWwkC1vACB/1CjeMnva4brB4TMbKVBbjJVjsWC1WnkLbgT484bQeBZn+LKZxPNMYsNLEQYqcKQAxx6c6oICyPlO8lcXmQy4+2729f/+5/12//kPW9epZ08UJCXx6g3RaDSc12cxGAy82sxHzAKfw1MBfhoxvuOcSBU4pHWr8VUjiUJxBxU4UoBjD47s6lX2RUiIf1Wy/cFeYXbTJsCbxqKmBli+nH390kuorKri3RvCdYPAdxcVHzELQniduLaZj1T5dSHRs0BiPAv1tFCEhgocKcCxB0dnDzDmqXvKpTekTx+gTRtW3Pzwg+edfPUVkJ8PJCUB99/PuzeEjwbBYDAQJxaE8DqRdp756Fbj2+uk0WhgNBp5PQYp8H2uSUshQLkOFThSgGuBY/cE8dQ95dIbIpMB48axr1evbnwHFguwZAn7evp0QKnkvYoxqR4cPmwmTSzwfZ75CIzm+3omtYGkaRUoQkIFjsgolUqY7bWiOOqi0vFcpsGtN2TCBFbobNkCnDnjfgdffMF+HhnpVN6BNJc+id09JHpw+BY4crmclwB00pKi2Ww23oUTqcKMQiZU4IiMXq9HlUbDvikpYRPfBYiWZ4Hj1huSkgLcdRf7+r33XG9cVQXMn8++njtXsBghPjw4RqOR99gQ0jw4QUFBqKmp4XSfJIoFvs8zH/AdgE4qJIoy6iljoQJHZIKDg2GwN5Jms3cBuh7Q8Zzkr1FvyMyZ7HzlSuD06Yafz58PXL0KtGwJPP00L/a5gq+gTD5vfnyIBb49ODKZjPObK98xOHzA93nmAxKFpBBeJz6gAkQYqMARGb1eD4PNxtZzAjiJw+G7i6pRz8LNNwMjRwJWKzBlCiva7Pz0E/D+++zr5csBu+dKAHQ6HXHDavm4cRuNRmgEPO9cQGLDS6LNJIoyvmOdKNchUZRRgSMywcHBMFRWcjpUXLQYHDvLlgFhYcDevWzg8fnzwKpVwAMPsF1wTzxxPfuxQCgUCs6zApP4gwf4d7lzvX8SxQKJXVSk2kzatUHqfYNEqMARGYdY4GokVVUVNHZPhZCjqOrSqhXw5ZesV+rrr4G2bYHJk4HqalbYfPghL3ZRmiYWiwVKpVJsM3yCRG8IiWKBRJuF8DqR2G3HB1TgiIxDLHAlcC5fZud6PW8BvF55Q0aOBH77Dejbl30fGwssXMgmArR3xxEOvYm4hj6hkhmwS6JYoDYLA6m/abIei5ogjmG1XHVR2QVOixbskG0xueUWYP9+wGYDeKx/RGnakCgkGYbhteYXH5DY8FZWViKGFultgEql4jQDeE1NDZGxTmT9ApsgKpUKFouFOw/OpUvsXIgaVN5C2I2+KSPEkxjXgkQIm0l9QuUSEgN2hRJlXF4fQtjMdT4qEsUvQAWOdODDg0PhFdooUpoS1OvkGq7TNQgRzE0FDgtZV3NThusYHCpwKC4QoruHa+EnhM0kdoORCtfeEL5jnbguP0I9OMJBBY5U4MiDw0ixi6qJQhtFCsU3uPaGCOF1IlEskGgzH1CBIxU48uA4BA714FBEggo/4eDSGyJElytfGcX5hGsPjhAj7Ej0OvEBFThSwS5wbsAYHKFiWWjDS3EHifFUfJTy4Bs+6qvxDdfeEJvNBoVCwdn+XEE9OCxU4EgFexdVIB6cqirI7QKJoC4qEssHUJoWcrmc80zXfEOqN4REm290UUYFDiUwuOiiunIFAGDVatlSCYRAYop4Ep/4ATLtFsJmnU6Hqqoq3o/DJVx7Q4TwcFIPjjCo1WqY69YBDBCr1UpcNnGAChzpYPfglJayhSr9obZ7ypqQIH6SPx8gMa19TU0NgoKCBDkWaaJEqVRyenMVAhIbMVK9IaTZzLX4Je33DJBpM0AFjnSwCxyGYUWOP9QGGDPNm3Njk0CQ6MExGAyC2KzRaGAymTjZF8Mwgj2lk9aIkWozid4Q0myWy+XENvA3OlTgSAWV6nq3UkGBf/uoFTjypCSOjBIGoTw4XHoWhOqT5rJBMBqNgnidSHxKJ1HgkHieSewKpJALrwKnuLgY48ePR2hoKMLDwzFlypRGb9bFxcV49tlnkZqaCq1Wi6SkJDz33HMoKytzWk8mkzWY1q9fz+dXEQZ7TZXCQv+2rxU4ylatODJIGITy4HDZIJBos1BCkktRZrVaeR9xApAbSEqazdQbQiakjkDlNWpo/PjxyM3NxbZt22A2mzF58mQ8/vjjWLt2rcv1r169iqtXr2LJkiXo2LEj/vnnHzz55JO4evUqvv76a6d1P//8c6Snpzveh4eH8/lVhCE6Gjh/PmAPjkwAD45CoYDFYuEk8EzohpeLa8VgMCA6OjpwozzAZSMmlCjj0hsipKeMekMolKYFbwInMzMTW7ZswcGDB9GrVy8AwIcffogRI0ZgyZIlaNasWYNtOnXqhG+++cbxvk2bNnjzzTfx8MMPN2hMw8PDER8fz5f54hCoB8eeA0eAIeL2BiGMg9FaQqRbB7j34LRs2ZKTfTWGXq9HSaDlO2oRUkgW+CvS60GiKBPK60S9IWRCqjeERHjrotq3bx/Cw8Md4gYAhg4dCrlcjoyMDK/3U1ZWhtDQ0AaegmeeeQbR0dHo06cPVq5c2egP3Wg0ory83GmSEnK5HFarlfXgAAF7cIQQOFyKBSESXwHcekOECjIm0RtCYreaVqtFdXU1J/sSSrBzDRVLlKYGbwInLy8PsbGxTsuUSiUiIyORl5fn1T4KCwuxcOFCPP74407LX3/9dWzcuBHbtm3Dfffdh6effhoffvih2/0sWrQIYWFhjilRYknwgoODWVdzIB6cysrrOXQE8uCQ1v/PZcMrRLp1gNwuKtJs5tIbQuKoQJvNRj0LlCaHzwLn5ZdfdhnkW3c6ffp0wIaVl5fjzjvvRMeOHfHaa685fTZv3jwMGDAA3bt3x+zZszFr1iy8++67bvc1Z84clJWVOaZLdk+HRHA0CIF4cGq/k0mrBUJDObTONSSO4OCy4RWiyB/ArQdHKG8Il0nGhMyRxKXAIS2vU1VVFXE2UxqHeuT8iMF58cUXMWnSpEbXad26NeLj45Gfn++03GKxoLi42GPsTEVFBdLT0xESEoLvvvsOKpWq0fX79u2LhQsXuk35r9FoJF0KwCEWAvHg1AqcqqgoqDm0zR1cxlkIBYmBpAqFgrMSAkJ5nbhEqK5ALiExcSWJoow24BRP+CxwYmJiEGNviBshLS0NpaWlOHz4MHr27AkA2LFjB2w2G/r27et2u/LycgwfPhwajQY//PCDV3k7jh07hoiICEmLmMbg0oNTFRWFcO5McwuJHhyVSgWLxcLJvki8uQoV68QlQja8XHXRVFZWItKeuJMQSBQ41dXV0Gq1YpshWWiXI4+jqDp06ID09HRMnToVK1asgNlsxrRp0zBmzBjHCKorV65gyJAhWL16Nfr06YPy8nIMGzYMVVVV+Oqrr5wCgmNiYqBQKPDjjz/i2rVr6NevH4KCgrBt2za89dZbeOmll/j6Kryj1+vZbjO7cAxE4Ah0YyUxBudGh0RRZjQaoVYL4ZPkDhLFArVZGIT8DZL4e+caXvPgrFmzBtOmTcOQIUMgl8tx33334YMPPnB8bjabcebMGUcuhyNHjjhGWKWkpDjtKzs7G8nJyVCpVFi+fDleeOEFMAyDlJQUvP/++5g6dSqfX4VXHGKhbVt2QYBdVELAZZyFkE8a9EdPFva4PpIgtYuq/qAQqUOiwHEXRiF1SL1v8ipwIiMj3Sb1A4Dk5GSnEzd48GCPJzI9Pd0pwV9TwNHdY++iqqpiJ1/iJWpz4AjlwaFQmhpc3cRJbMRIFAvU5sZRKpWcJGMlVdwAtBaVJFCr1TAajUBICGB3x/vqxRHYg0OhUNxDmteJigVhENK7x9WgCqFq2PEBFTgSwHEzlMn8DzQmWOCQ/IRAaTqQJkq4hMQRdkIKHLVaDZPJFPB+hLSZq/pqJApJO1TgSA1/hoqXlQEVFQDIFDg3csNCoUgBm80mSF4nLhEyhQBXgyqETALJ1UhXKnAo3OGPB8eeuDAyEjYCXYnUg0NxB702mh4qlYoTb4iQXicSvSFcijIqcCjcEBfHzr0sZwHAIXBsLVp4TIpIoVBcQ8WUMHDlWRAyrxNX8SykdlGRlmzTDhU4UiMhgZ3n5nq/Ta3AsSQkEHch0kaFQvEfrrwhQnYTc+VZEPLeQaIHhyshWVFRQVy7YocKHKkRgMAxxsQQdyGSHKFPaVpw1cgLKRa4asSEFgtc2Cy0KOPCZqvVKqjXiQtRRmK5FDtU4EiNAAROdVQUQkJCeDCKP0j88VCvk3AI2YjJ5XJYrdaA9yPk9UFifTUSs6Bz5cEREpVKxUkyVhqDQ+EOfwROdjYAoDwqijixYDAYiBNlNTU1tAaOF5AmBHU6nSOrOimQ2PCSWMeOKyEp9IhRLo7HMAxxI+zskGl1U8YfgXPxIgCgNCKCSIFDbW4cLjwLQosNjUbDJq8kCBIbMVJtJk2UKRQKTrx7QkPaQwbXUIEjNewCp7ycLdfgCbPZUaahKCSEigUPcHGjEtrrxMUTb3V1taCJ3EjtOiExnoU0sUDitQHQfF0kQgWO1AgNBezdH954cXJyAJsNCApCiVotaNcJFzdyoQUOFzdXarNnuLDZZrMJHrBLxQL/KJVKIr0hXCC0R+VGF2VU4EgNmey6F+fqVc/r13ZPITkZDIQPyrTZbAHtQ+iGlwtviBhiIdCGV+hcFlyIBaHLB9zI3T03eldGU+VG/79SgSNFfInDqQ0wRqtW/NnjBi6CMqurqwUdJs5Fg0BFmWduVK8TwzCCNio3sjeEIgwkiyQqcCSE40LyReDYPTgiCByuXPqk5Q0h0YNDolgQ2uvEhc0mkwkajYYji4TjRu/KEAoSR1GRDBU4EkGn06G6upp9448HJzmZF7sag8T+fy7EQk1NjaCNGKmijAubhcy/odVqr/8G/USMnCGBNmIkP6FTKI1BBY5EcGp4CemiIjEok9QsqiR6cEiLG5LJZAE39iQmRRM61ulGhkQxSbIXiAocieDU8DZrxs59DDIWmhvVgyM0arU64HpDQnudlEolJwHopHlDxLA5UEjMRSX0CDsKmVCBIxGcGt7ERHaek9P4RgbDdS9P69b8GecGEj04XIgFoSGxRhIXiFHFONAnbBIzc5Noc1VVFXFCkiI8VOBIBCdvSMuW7DwnB2jshnvuHDuPjgYiIwVvwEj04JDWyJNMoGJBaK8TF1RUVBAnFkj04JBos9VqJbbkAanQsy0RnLwhiYlsPpyaGiA/3/1GZ86w89RU/g10QVBQUMBBmRRKY5AmSEkUOBUVFcSJBRIFDvU6CQ8VOBLByRuiVl8PNP7nH/cbnT3Lztu1A0CzZFKkBYmjewK1ubq6mrhCrCSKBVJtFlr8KhQKWCwWv7e3WCxEe53ItbyJodVqnZPm2bupGhM4IntwuIDEUQUUSmOQJvxJFAvUU+YdgY4aFSMOjkuowJEIcrncubH3RuDYPTgECxxK0yVQ8SqGULgRBbfZbIZarRbbDJ8QQ5QpFAqYzWa/txfD5kAHgpAofutCBY5U8SRwGOa6B6e2i4pCoYgLiQKJRJvFGI4fqDdEDLEQaFoMEkfY1YUKHKliH/adleX687w8oKICkMuBNm1gNpuhVCqFs49gSLyhkwhpXTUAmTaTiFwuD6iGlsVigUql4tAizwQ6alQsDw5pNnMJFThSxe6VsXtp6mPvnkpOBjQaYvtKaYNCaUqQeD2LYXOgDa9YNgfqDRHD60S7qCjSwx5Xc/EiYDQ2/Pyvv9h5hw4AyLwQTSaT4E9hFOEg0VMWqM1ifOdAvSFiEGjXiRjnOVAPjtVqFdzLzkUXFWntSl2owJEq8fFASAhgswHnzzf8/Phxdt6tGwAyL0RSvU4UYRBLIJEmzEhMuMlVTTghITFzOxfdaiTn7qECR6rIZNe9OK66qY4dY+dduwIgU+CQaDP1OgmHGN0QWq0WNTU1gh83EEhteEm0mTRRplKpAsqDY7VaoVAoOLRIWKjAkTLt27Pz+gLHYgFOnmRf13pwSMwLQaLAoV4n7+GiOrfQhISEoKKiQmwzfILaLAwkCskbHV4FTnFxMcaPH4/Q0FCEh4djypQpHi+QwYMHQyaTOU1PPvmk0zo5OTm48847odPpEBsbi5kzZwakUiXLTTexc3t3lJ1z59gyDsHBQJs2AMgUC9Rm3/BXLIjlddJoNDC6ih+TMCQ2vDeizWJ49wL1hogFaQ8ZXMJrxNP48eORm5uLbdu2wWw2Y/LkyXj88cexdu3aRrebOnUqXn/9dcd7nU7neG21WnHnnXciPj4ee/fuRW5uLiZMmACVSoW33nqLt+8iCr16sfNDh5yX79vHzrt3Z4eJg/Us1D1PJGAwGJBor5wuIDKZDDabza8U5GIJHHvXiT9lAMTyOtkbsaCgIMGP7S8kPqWHhobi0qVLYpvhE4Ge5xu50RYSEkcF1oU3D05mZia2bNmCTz/9FH379sXAgQPx4YcfYv369bh69Wqj2+p0OsTHxzum0NBQx2dbt27FqVOn8NVXX6Fbt2644447sHDhQixfvhwmk4mvryMOPXuy86wsoLj4+vLdu9n5zTc7FjEMQ1zNELHEgk6n87tIqFg2BxKzIJbNgTylG41GUbLrkuhZCNRmMcSCQqGAzWYT/LiUGwveWsR9+/YhPDwcvexeCABDhw6FXC5HRkZGo9uuWbMG0dHR6NSpE+bMmeNUo2nfvn3o3Lkz4uLiHMuGDx+O8vJy/P333y73ZzQaUV5e7jQRQUSEowsKhw9fX/7nn+y8jsARE39vkGJ5nQJ5ehRT4Pgb4CiWzaGhoX7/1sSKKQtELNhsNtECo53q2FEodSDdCxMIvAmcvLw8xMbGOi1TKpWIjIxEXl6e2+3GjRuHr776Cjt37sScOXPw5Zdf4uGHH3bab11xA8Dx3t1+Fy1ahLCwMMckRreI3/Tpw87tXpvLl9lh4zIZkJYmnl21BDLqRCyvE4ligURRFohYEEvg6PV6v20Wa0htoA0YiQ0giTZThMfn1uXll19uEARcfzp9+rTfBj3++OMYPnw4OnfujPHjx2P16tX47rvvkOWuZIEXzJkzB2VlZY5Jyv3VDbwh6ens/Pvv2fnXX7PztDQgPFwwu9xBYsxCIDaL5XUiUZSRKHACCSQlsW6PWF4nCkUIfA4yfvHFFzFp0qRG12ndujXi4+ORn5/vtNxisaC4uBjx8fFeH69v374AgPPnz6NNmzaIj4/HgQMHnNa5du0aALjdr0ajgUaj8fqYYqHRaGAymZxtvfNOQKEATpwALlwA1q9nl48dK46R9bA3vDExMWKb4jV6vR65ubl+bSuW10mv1+OfxirLNwKJXqeKigq0aNGCY4u8w98Gn8RUDVVVVcQNTgBokLEvBHKuSD/PPgucmJgYrxqztLQ0lJaW4vDhw+hZGyy7Y8cO2Gw2h2jxhmO1Ce0SEhIc+33zzTeRn5/v6ALbtm0bQkND0bFjRx+/jbSwNwhOAicqChg0CNixA7jrLiAzkx05df/9TtuKdSGS6MEhNckYaV4npVLptzeERLFQUVHhNCCCBEhM1UC9ThRv4e1RtEOHDkhPT8fUqVNx4MAB7NmzB9OmTcOYMWPQrFkzAMCVK1fQvn17h0cmKysLCxcuxOHDh3Hx4kX88MMPmDBhAm655RZ06dIFADBs2DB07NgRjzzyCI4fP45ff/0Vc+fOxTPPPEOEl6Yx3HZDzJzJzjMz2fmjj7KlHCQAidk9A0kTL5aQ1Ol0fgeSkjrCTiyB4+//mERRRmK3WlVVFdHlA4TmRhaDvObBWbNmDaZNm4YhQ4ZALpfjvvvuwwcffOD43Gw248yZM44bt1qtxm+//YalS5eisrISiYmJuO+++zB37lzHNgqFAps3b8ZTTz2FtLQ0BAcHY+LEiU55c7jCarXCbDZzvl93BAcHo7y8vGHQ7uDBwNKlwJdfAp07A4sXs4n+6qBWq0VJMa/RaFBVVeXXsVUqlWhp8S0Wi1/HFuo8q1QqpxTpcrnc74ZXTDezvzdXi8VCXEkMEsUCiR4cEs+z1Wol7iEDIF8c8SpwIiMjG03ql5yc7HTzTUxMxO+//+5xvy1btsTPP//MiY2uYBgGeXl5KC0t5e0YrlAoFLBYLMjOzm744bBh7AQA9WKbAPZcutyOZ2w2G0JDQ/06tlg2B3JsIW0ODw9HfHy84yZDen84Kfh7Uycx2WZFRQWioqLENsMnSBRlYnqdGIYBwzB+Xdek33OErd1OCHZxExsbC51OJ5iKNZlMMJlMfv14S0pKEBERwYNVjcMwDMrKyhDux4gusWwO5NhC2MwwDKqqqhxB+vb4M38R8ymM9BukL5DaFUiaWKioqCDSZrEEjj2xqa/im/RCmwAVOA2wWq0OcSP0k41KpYLNZvMrtb1arRYtJX5VVRVxNvt7bKFstpdksAfTKxQKv4XKjSQyuOBGOl8kChyDwSDaqE27l12p9K3prKioQFhYGE9WNY49XYOvAofEoPn6kPW4IQD2mBsxXM1yuZymL6c4sF+D9muSxIaX9D78po7ZbCYu1qm8vFy0hjckJMSv0Yxi2+xPPioxbeYKKnDcIMaNWSaT+dWIkdjwUTxT/xr095qkIsM3bqTzJeZ3VavVflWbF7OLKiQkxK/yI+Xl5aIFRlOBQyEam81GfF8phUIJDNIedPxteMWMdQoNDSVOLFCBQyEaPoPBdu3aBZlMxvmIMn+j+v0hOTkZS5cuFeRYfEJaAwZQm4XCHkjqK2J+V3/Fgpj468Gprq4WLd7Q36K3VOBQJIHNZiNu9EZTiNCnNF1IEzmB1P0SC3/FgpgEIsrE6g70N9u8mN1qXEFWq0hxCYligUSbSRSSYkNiPEtQUJBfsSFicqOJBbEg8Tz7myTUarX6PFpMatC7dRPALhZcdcV069YNr732GgC2sfn0008xevRo6HQ6tG3bFj/88IPT+j///DPatWsHrVaLW2+9FRcvXnT6vKioCGPHjkXz5s2h0+nQuXNnfPPNN07rDB48GM8++yyef/55REREIC4uDp988gkqKysxefJkhISEoGPHjti2bZtjG3tX2E8//YQuXbogKCgI/fr1w19//eW07z///BM333wztFotEhMT8dxzzzmVXcjPz8fIkSOh1WrRqlUrrFmzxs+z2hCxRRmJibrsw2pJIpDYELHwVyyIKUBJ9Dqp1Wq/stuLLfTFvg+IBRU4TQBfGt4FCxbgwQcfxIkTJzBixAiMHz8excXFAIBLly7h3nvvxciRI3Hs2DE89thjePnll522r6mpQc+ePfHTTz/hr7/+wuOPP46nn366QYX3L774AtHR0Thw4ACeffZZPPXUU3jggQfQv39/HDlyBLfddhumTp3aoL7SzJkz8d577+HgwYOIiYnByJEjHTeUrKwspKen47777sOJEyewYcMG/Pnnn5g2bZpj+0mTJuHSpUvYuXMnvv76a/znP/9pUNXeX0hMty52tWgSi7GS2PCS6FnQ6/XEnWcKWZDtfxKQmpoanD9/nvfjlJaWIjw8HCkpKV4HpflSXXfSpEkYO3YsAOCtt97CBx98gAMHDiA9PR0fffQR2rRpg/feew8AkJqaipMnT+Ltt992bN+8eXO89NJLjvfPPvssfvzxR2zcuBF9+vRxLO/ataujhticOXOwePFiREdHY+rUqQBYIfPpp5/ixIkT6Nevn2O7V199FbfffjsAViS1aNEC3333HR588EEsWrQI48ePx/PPPw8AaNu2LT744AMMGjQIH330EXJycvDLL7/gwIED6N27NwDgs88+Q4cOHbw6N54Qe7SaP0nGxA4UtIsFXzJdi/206a8oo94Q31AqlbBarWKbQWnCUIHTRPD25mqvyg6wxT1DQ0MdHo7MzEz07dvXaf20tDSn91arFW+99RY2btyIK1euwGQywWg0NmjA6h5HoVAgKioKnTt3diyzZ4mu712pe7zIyEikpqYis7aK+vHjx3HixAmnbieGYWCz2ZCdnY2zZ89CqVSiZ8+ejs/bt2/vVxkJV1itVlEr1tu7IXwpFSF2NlJ/RnBUV1c7MjmLQUhICC5fvuzzdmIKs+DgYKeuWgqlLmJ3kYkFFTheEhQUhE6dOvF+nKKiIr9LRLgKJqvfX1w/a6lMJvMpe/K7776LZcuWYenSpejcuTOCg4Px9NNPw2QyeTyOq4ypvhzbYDDgiSeewHPPPdfgs6SkJJw9e9brfdm/ty9dTmLH4NjFgi8CRwoeHF+7CCsqKkQdveGPN0TsayOQavMUSlOFCpwmRExMDHJzcx3vy8vLfap83aFDhwZBx/v373d6v2fPHtxzzz14+OGHAbACJSsry8k7Ewj79+9HUlISALaw5dmzZx1dTD169MCpU6eQkpLictv27dvDYrHg8OHDji6qM2fOuMzho1AofBY4Yo+i8scbUl5ejhYtWvBkkWdCQkKQlZXl0zZlZWWiizJfz7PYoswfqCC6cbhR/9dkRUxSGuW2227Dl19+id27d+PkyZOYOHGiT0+VTz75JM6dO4eZM2fizJkzWLt2LVatWuW0Ttu2bbFt2zbs3bsXmZmZeOKJJ1BQUMDZD+j111/H9u3b8ddff2HSpEmIjo7GqFGjAACzZ8/G3r17MW3aNBw7dgznzp3D999/7wgyTk1NRXp6Op544glkZGTg8OHDeOyxx1x2dygUCp/7/4VMTuiK0NBQlJWV+bSN2F1U/nhDysrKRCtMCLDeR19Hfoltsz+IHYBOkTZNoVuLChyJ4W89KoAN5h00aBDuuusu3HnnnRg1ahTatGnj9fZJSUn45ptvsGnTJnTt2hUrVqzAW2+95bTO3Llz0aNHDwwfPhyDBw9GfHw87rrrLs4EzuLFizF9+nT07NkTeXl5+PHHH6FWqwGwcT2///47zp49i5tvvhndu3fH/Pnz0axZM8f2n3/+OZo1a4ZBgwbh3nvvxeOPP47Y2NgGx/FH4IiNPx6cqqoqUeNZNBoNampqfNqGRLFAos1id18CvjeiJI5klAJNQaz4A+2ikhj2hteXkTL2izc0NBTr1693+mzixImO165ESP3um7vuugt33XWX07LJkyc7XkdGRmLTpk1On1dVVTn9gHbt2tXgOPXz6bizZ+DAgQ1y39Sld+/e2Lp1q9vP4+PjsXnzZqdljzzySIP1FAoFkcncSMt1IpPJfD4+iWKhrKwMycnJYpvhE1IQOL4+GBkMBuK6AqXAjVrEmUphieFv14mY+GOz2E8UJHpw7HFDviD2teEPJpNJ1NFq/kCiKCsvLyfSZrFFma/3LqPR6HKABYV/qMCRGCQ2vHK5nDhR5o/NlBsHXxsxg8EAvV7PkzX8IAWx4CtSsNnXe5fYcXCA76EPYt+fuYIKHIlBosDhwubBgweDYRjOctZ4QmwPklBI4Xs2lZtlYzAMQ1xsiBTEgq9Qm/3D1zxJ1dXVTSIAnaxf5A0AiQLHnxwcUmh4bwRuBHFB8Y+amhrRuwJ9vQ9IQSz4eo+Wgs3h4eEu02W4Qwo2cwEVOBJDLpf7HGdBxQJFytwI16cUvqM/YlZsu321uby8XPQgY1+D/aUgFsLCwnxKMSGFbjUuoAJHYvjaV+qrGJIK1LMgDGI3YBThIPF/rVKpGmRBbwyLxSJ6wK6vAkcKYsFXgSMFUcYFVOAQjtgFIP2Bihv/oeeO4g5fy65I4VoKDw/3OXml2PjjDRE7AJ12UVGIROwaOP5AoigjFSk0Yr4iFU8EaefOn0SQYhMREeFTwysFfBULUghA97X8iBS6ArmAChzCsVgsPiUFlAKkijKpNLwU/tHpdKiqqvJ6fSmIIV8bXikQHh6OkpISsc3wCX8Ejtj4mkNL7AzoXEEFDuHwLRZ27doFmUzG6Y2zMZsHDx6M559/nrNjcYW32aVXrVrF61B3X0SW2MVB7SgUCp9qO0mhQfC1G0IK+OoNkYJgJ1Es6PV6GAwGr9eXwnkGfLdDKnYHgvh3P0pAkOgNkYrXyZcfsFTOsy83eCkENwKsWCCt6yQsLIxIbwhpYoFEIRlIvUAxIdHmQKECh3Ck8pTeGPVHSZAoFqRisy+jTkpLSwVLnNgYvjS8UsjNApDZ8JLYRaVUKn3KKUOiV+FGFBZSQdotI8VrkpOTsXTpUqdl3bp1w2uvveZ4L5PJ8Omnn2L06NHQ6XRo27YtfvjhB6dtfv75Z7Rr1w5arRa33nqryyKZf/75J26++WZotVokJibiueeec8qSmZycjIULF2LChAkIDQ3F448/7rS9XZRVVlZiwoQJ0Ov1SEhIwHvvvdfgWF9++SV69eqFkJAQxMfHY9y4ccjPz3d8bu9C+/XXX9G9e3dotVrcdtttyM/Pxy+//IIOHTogNDQU48aNc4qpGDx4MGbPno1nnnkGYWFhiI6Oxrx585xuRkajES+99BKaN2+O2NhY3HLLLQ0Kia5atQpJSUnQ6XQYPXo0ioqKGnwHLomIiPA6ZoFEgSOVmk6+CBypxGcFBQWhurpabDN8hgoACl9QgeMNDANUVgo/8fDDX7BgAR588EGcOHECI0aMwPjx41FcXAwAuHTpEu69916MHDkSx44dw2OPPYaXX37ZafusrCykp6fjvvvuw4kTJ7Bhwwb8+eefDdZbsmQJunbtiqNHj2LevHn1TicDmUyGmTNn4vfff8f333+PrVu3YteuXThy5IjTumazGQsXLsTx48exadMmXLx4EZMmTWrwvV577TX8+9//xt69e3Hp0iU8+OCDWLp0KdauXYuffvoJW7duxYcffui0zYYNG6BUKnHgwAEsW7YM77//Pj799FPH59OmTcO+ffuwfv16/PHHH3jggQeQnp6Oc+fOAQAyMjIwZcoUTJs2DceOHcOtt96KN954w7d/iI9QgSMMvoxIkkodKimILEpD6P9FRBgeKSoqYsaNG8eEhIQwYWFhzKOPPspUVFS4XT87O5sB4HLauHGjYz1Xn69bt85ru8rKyhgATFlZWYPPqqurmVOnTjHV1dXXFxoMDMPKDWEng8HjdyksLGQYhmFatmzJ/Otf/3L6rGvXrsyrr77qdN7mzp1b52sZGADML7/8wjAMw8yZM4fp2LGj0z5mz57NAGBKSkoYhmGYKVOmMI8//rjTOrt372bkcjlTWVnpsGXUqFGN2lxRUcGo1Wqn/2tRURGj1WqZ6dOnu9324MGDDADHdbRz504GAPPbb7851lm0aBEDgMnKynIse+KJJ5jhw4c73g8aNIhJTU1lampqnL5rhw4dGIZhmH/++YdRKBTMlStXHDYzDMMMGTKEmTNnDsMwDDN27FhmxIgRTvY99NBDTFhYmFv7fcHVtZiVlcXs3bvXq+03bdrk+J+ISXV1NfPNN994te6BAweYs2fP8myRd6xZs8ar9XJycpg//viDZ2u8Y+3atV6tV11dzXz99dc8W+Md3trs67p8Qm0Wj8ba7/rw6sEZP348/v77b2zbtg2bN2/GH3/80aC7oi6JiYnIzc11mhYsWAC9Xo877rjDad3PP//cab1Ro0bx+VWaDF26dHG8Dg4ORmhoqKPLJzMzE3379nVaPy0tzen98ePHsWrVKuj1esc0fPhw2Gw2nD9/3rFer169GrUjKysLJpPJ6XiRkZFITU11Wu/w4cMYOXIkkpKSEBISgkGDBgEAcnJy3H6vuLg46HQ6tG7d2mlZ3a4tAOjTp4/T0Mm0tDScO3cOVqsVJ0+ehNVqRbt27aDX69GyZUvo9Xr8/vvvyMrK8vp8cY0vI2WkMtQzKCgINTU1Xq0rFQ8O4P2Tt5Rs9pbS0lJERESIbYZPWK1WyccbuoKRSBecVOwQEt6GsmRmZmLLli04ePCgo7H78MMPMWLECCxZsgTNmjVrsI1CoUB8fLzTsu+++w4PPvhgAxdweHh4g3V5Q6cDfBgWGCilpaXQ6/VQ+lDN1VXBS7PZ3GC9+mnOfc1+ajAY8MQTT+C5555zWl5VVYXk5GTH++DgYK/36Y7KykoMHz4cw4cPx5o1axATE4OcnBwMHz68QaBt3e8lk8m8+p4ymcxtgKPBYIBCocDhw4ehUChQUlLiaBDE7I7wNfiVNPc4iWKhrKwMLVq0ENsMn6h7PZNCaWkpcdfGjSgqpARvAmffvn0IDw93epIfOnQo5HI5MjIyMHr0aI/7OHz4MI4dO4bly5c3+OyZZ57BY489htatW+PJJ5/E5MmT3d7MjUYjjEaj473PQ1ZlMoCDBttblAwDq0oFpQ+NU0xMDHJzcx3vy8vLkZ2d7dNxO3To0CDoeP/+/U7ve/TogVOnTiElJcVpudFodCmo3NGmTRuoVCpkZGQgKSkJAHvTPXv2rMNLc/r0aRQVFWHx4sVITEwEABw6dMin79QYhw4dcsrPsn//frRt2xYKhQLdu3eH1WpFfn4+br75ZhQVFSEqKspp+w4dOiAjI8NpWf3zxTX+VG4nCZPJJIlRVL5QVlaGm266SWwzfKKkpMTlQ6aUIVGUVVZWSiI+60aFN39fXl4eYmNjnZYplUpERkYiLy/Pq3189tln6NChA/r37++0/PXXX8fGjRuxbds23HfffXj66acbBJDWZdGiRQgLC3NM9sZSqiiVSp8SowHAbbfdhi+//BK7d+/GyZMnMXHiRJ+HNT/55JM4d+4cZs6ciTNnzmDt2rVYtWqV0zqzZ8/G3r17HYG1586dw/fff48XXnjBp+Geer0eU6ZMwcyZM7Fjxw789ddfmDRpkpMLOikpCWq1Gh9++CEuXLiAH374AQsXLvTpOzVGTk4O5syZgzNnzmDdunX48MMPMX36dABAu3btMH78eEyYMAHffvst/vnnHxw4cACLFi3CTz/9BAB47rnnsGXLFixZsgTnzp3Dv//9b2zZsoUz+25EpCTevLVFKvmGfIFEsUBit5qUzrO3CTdNJpPoBU25wmeB8/LLL0MmkzU6nT59OmDDqqursXbtWkyZMqXBZ/PmzcOAAQPQvXt3zJ49G7NmzcK7777rdl9z5sxBWVmZY7p06VLA9vGJQqHwSSwA7HccNGgQ7rrrLtx5550YNWoU2rRp49M+kpKS8M0332DTpk3o2rUrVqxYgbfeestpnS5duuD333/H2bNncfPNN6N79+6YP38+mjdv7rPN7777Lm6++WaMHDkSQ4cOxcCBA9GzZ0/H5zExMVi1ahX+97//oWPHjli8eDGWLFni0zEaY8KECaipqUGfPn3wzDPPYPr06U4xYp9//jkmTJiAF198Ef369cOoUaNw8OBBh8epX79++OSTT7Bs2TJ07doVW7duxdy5czmzj0IGjARqDflKRUUFcbWGpCQWGuverouUbPY24SaJQtItvkYw5+fnM5mZmY1ORqOR+eyzz5jw8HCnbc1mM6NQKJhvv/3W43FWr17NqFQqJj8/3+O6mzdvZgA4jYhpDJ9HUQmMzWZjioqKvFrXPrpHCnhrixRsHjRoEDN9+nRJ2+zuWvR2hIOURkJ4OyLJ2/WEwFtbpHSeSbw21q5dy9hsNo/rbdy4kTGZTAJY5Jmff/6ZKS4u9rje77//zly6dEkAizyzd+9e5sKFCx7XO336NHPo0CEBLPIPX0ZR+RyDExMTg5iYGI/rpaWlobS0FIcPH3Y8le/YsQM2m63ByBNXfPbZZ7j77ru9OtaxY8cQERFBXN+9O7xNBU5CFuOmAmnBupTAof9zYdBqtaipqfE44s9isUim68Q+mtGTp0NKHhx7YdNWrVo1ul5paalX7S4J8NY6dujQAenp6Zg6dSoOHDiAPXv2YNq0aRgzZowjuO3KlSto3749Dhw44LTt+fPn8ccff+Cxxx5rsN8ff/wRn376Kf766y+cP38eH330Ed566y08++yzfH0VyWKxWCRRPsAXmNokf6ThjeCUGiSeZ0pg+NO9LTbeJoKU0m/Q2yroVVVV0PkwGpZPIiMjvbK5pKREEglCuYDXiodr1qzBtGnTMGTIEMjlctx333344IMPHJ+bzWacOXPGKYU+AKxcuRItWrTAsGHDGuxTpVJh+fLleOGFF8AwDFJSUvD+++9j6tSpfH4VSeJthWspIZWaTvaSC96UVpDSjZVUSBRb9tQCnrykUvpu9jgLqXgNvMEuFhISEsQ2xWsiIiJw9epVj+tJ6YEuMjLSkbW+MUhM1eAOXlvHyMhIrF271u3nycnJLhuPt956q0Fwq5309HSkp6dzZiPJWK1WybhsvUUqAscXGAKDSAFpCTNvbZFKYwBczznkSSxI6TzbxQJpAscbsSAlwsLCvC6ZIhVUKpVXo6hIvEe7g7y7NsUBiRciid1qFouFSE+ZlESZSqXyKU+SFIiKiuK9eCrXkFhR3Jfs3FIhKCjIKbeaO6Qk2L2FRJvdIZ07IMVnSBQ4tFstcJRKpUexUFZWJql+dG/c41Kpym0nKirKK5e+lPC2G0JKhISEeDV8WUrXBiA9eygNoQKHYKTUv+stUhML3pSqkJoHx5un9MLCQkRHRwtjkBdER0ejsLCw0XWkKMo8eXCk9huMiIggTuCQmp3bG5tJ/F5NCSpwJIqUbpre4s3wdqkNbVcqlR5HnUhN4ERERHjs/5eawPGmu6e4uBiRkZECWeQZb+p+SWmUDODd9UyhNEZTEmXSaWkoTpB4kZE4RNUbm6UWZOyNwCkqKqICJ0C88SxIzWbA88MRqan4pXZPJPEh9EZDOndtihNyudynKt/+sGrVKq+6BGQyGTZt2uRxPW8FTnJyMpYuXerZwDpMmjQJo0aN8mkbb/Cn7tfgwYPx/PPPc26Lt3gTZ2EwGCTlWdBqtaiurm50HSmKBU9I0WZPQoC0UVYAmYMTKOIjHb87xQl7w6tWq3k7xkMPPYQRI0Y43r/22mvYtGkTjh075rRebm6uVzdEu80kZZRWKpUeG976fPvtt6I+AXvTdQJI7wnTkz2lpaXE5d8oKioirpJ4QUEBcZlqi4uLERUVJbYZPiG1kYw3IlTgSBS+BY7ZbIZWq/WYHh0A4uPjvdqnUqn0auiklJDL5V51UdVF7Cf2phqUabPZiHtKLywsJK7hLSgoQIcOHcQ2wydIFGUlJSWi3yvqY4+TdPewIbWRjIFC5aVE8TWexWaz4Z133kFKSgo0Gg2SkpLw5ptvAgAuXrwImUyGDRs2YNCgQQgKCsKaNWucuqhWrVqFBQsW4Pjx446q8KtWrQLQsIvq8uXLGDt2LCIjIxEcHIxevXohIyMDCoUC58+fxz333IO4uDjo9Xr07t0bv/32m0/f3Wq1YsaMGQgPD0dUVBRmzZrVoHHcsmULBg4c6FjnrrvuQlZWluNz+3feuHEjbr75Zmi1WvTu3Rtnz57FwYMH0atXL+j1eowYMcJpdI+9K2zBggWIiYlBaGgoXnzxRZhMJsc69buokpOT8dZbb+HRRx9FSEgIkpKS8PHHHzvZu3fvXnTr1g1BQUHo1asXNm3aBJlM1sBb5i2ebkJN6SYlZaSY9sDT/55UUSZFgdNYGIEUbQ4NDW10SH6TqiQOKnC8gmGAykphJ6NRCbPZfWxI/QZ/zpw5WLx4MebNm4dTp05h7dq1iIuLc1rn5ZdfxvTp05GZmYnhw4c7ffbQQw/hxRdfxE033YTc3Fzk5ubioYceanBcg8GAQYMG4cqVK/jhhx9w/PhxzJo1y6H8DQYDRowYge3bt+Po0aNIT0/HyJEjkZOT4/X5fu+997Bq1SqsXLkSf/75J4qLi/Hdd985rVNZWYkZM2bg0KFD2L59O+RyOUaPHt3ghvPqq69i7ty5OHLkCJRKJcaNG4dZs2Zh2bJl2L17N86fP4/Fixc7bbN9+3ZkZmZi165dWLduHX766ScsWLDAo829evXC0aNH8fTTT+Opp57CmTNnAADl5eUYOXIkOnfujCNHjmDhwoWYPXu21+fDH0j08FC4wdP/XkpFK+vSmN1SGxUIsOkaGusqLigokJzN0dHRKCgocPt5YWGh5ERZIEjr0UOiVFUBer3QR5Xjn39scOfhrOvOr6iowLJly/Dvf/8bEydOBAC0adMGAwcOdNrm+eefx7333utyf1qtFnq9HkqlstEuqbVr16KgoAAHDx50uF9TUlIcn3fq1AmDBg1yvF+4cCG+++47/PDDD5g2bZrnrw1g6dKlmDNnjsPWFStW4Ndff3Va57777nN6v3LlSsTExODUqVPo1KmTY/lLL73kEHPTp0/H2LFjsX37dgwYMAAAMGXKFHz22WdO+1Kr1Vi5ciV0Oh1uuukmzJ49GwsWLMDChQvd9qmPGDECTz/9NABg9uzZ+Ne//oWdO3ciNTUVa9euhUwmwyeffIKgoCB07NgRV65cCah+GhUwlKZESEgIDAYDQkJCXH5uMpl4jUf0B3tuJ3cej8LCQvTp00dgqxonLi4OV65ccbpn16WgoAAtWrQQ2Cr+oB4cQqmbmyUzMxNGoxFDhgxpdJtevXoFfNxjx46he/fubvuWKysr8dJLL6FDhw4IDw+HXq9HZmYmcnJyvMqBU1ZWhtzcXPTt29exTKlUNrD93LlzGDt2LFq3bo3Q0FAkJycDQANPUZcuXRyv7R6tzp07Oy2rn4Cua9euTiOQevfuDYPBgEuXLrm1u+5xZDIZ4uPjkZ+fDwA4c+YMunTpgqCgIMc6UrvxUVxDYlefNyPWpIY3iSClhiebjUaj029eCsTGxuLatWtuP6cenBsQnQ4wGIQ/bmP3qLoCx5tAYQAIDg4O2CZPx3r11Vfxxx9/YMmSJUhJSYFWq8X9998Pk8nEacK8kSNHomXLlvjkk0/QrFkz2Gw2dOrUySlWBoCTK97eWNVf1lg/urdBd/Vd/t5kSL7RIFEsqFQqGI1GokYGRkVFobCwEImJiS4/l6L3zy4WWrVqJbYpXhMdHY2//vrL7edSPM9arRY1NTVuP5da4spAoR4cL5DJgOBg4Se53H2DUFcstG3bFlqtFtu3bw/oe6rVao+BzV26dMGxY8fc5mHJyMjApEmTMHr0aHTu3Bnx8fG4ePFiA5vdERYWhoSEBGRkZDiWWSwWHD582PG+qKgIZ86cwdy5czFkyBB06NCB08q+x48fdzwBWywWHDlyBHq93m2D4YnU1FScPHnSaYTZwYMHObHVFWazWXKBrwCg0WgavblKkbi4OIcnjhRItDkmJqbR2BApotfrUVFRIbYZlEagAkfCNPYEUDfxVVBQEGbPno1Zs2Zh9erVyMrKwv79+xvElngiOTkZ2dnZOHbsGAoLC10O+R47dizi4+MxatQo7NmzBxcuXMA333yDffv2AQBat26Nb7/9FseOHcPx48cxbtw4hyfDbDZ7Fdw4ffp0LF68GJs2bcLp06fx9NNPO9VeioiIQFRUFD7++GOcP38eO3bswIwZM3z6ro1hMpkwZcoUnDp1Cps3b8aiRYswbdo0v3Na2M/B448/jszMTPz6669YsmQJAP+9Gmq12u2Q/Pz8/AYB5lIgLi7OrXtcqtl14+PjkZeXJ7YZPpGQkIDc3FyxzfCJ0NBQr3I7SQkSPZI3GlTgEEzdH9i8efPw4osvYv78+ejQoQMeeughn5/i7rvvPqSnp+PWW29FTEwM1q1b12AdtVqNrVu3IjY2FiNGjEDnzp2xePFih9hauHAhIiIi0L9/f4wcORLDhw9Hjx49AHifjfTFF1/EI488gokTJyItLQ0hISEYPXq043O5XI7169fj8OHD6NSpE1544QW8++67Pn3X+tTtThoyZAjatm2LW265BRMnTsTIkSPx2muv+b3v0NBQ/Pjjjzh27Bi6deuGV155BfPnzwcAv/voY2Ji3Pb/5+XleZ27SEgaEwsFBQWIjY0V2CLPNGaz1GqU2SHRs2BPTUGhcIn0fp0Uv5DL5XjllVfwyiuvNPgsOTnZpTdo0qRJmDRpkuO9RqPB119/3WC9+tu2bNnS5Xr2Y/32229O3o5nnnkGANu1JJPJHF1W7lAqlVi6dGmj5RyGDh2KU6dOubXT1XcePHhwg2WTJk3C/fffD7PZ7BRnsWDBAixYsABFRUWIjIx0uvnu2rXLaR+uvk/9/Db9+/fH8ePHHe/XrFkDlUqFpKQkt9+xMezBgs2bN2/wWW5uLtq1a+fXfvkkLi7ObcyCFHOGAKxYMLgJwJNqPpnGhIKUSx5IMWaFQjbUgyNhhKhHxTUqlQpms1lsM3zCk81cPFmuXr0af/75J7Kzs7Fp0ybMnj0bDz74oNcB4vVp1qwZrl696vKziooK6IXPa+ARvV6PyspKl59du3ZNkh6cxsjNzUVCQoLYZviEVL17jWE0GiU3RNwO9TpJGypwJAyJYkGpVBJps68FN30lLy8PDz/8MDp06IAXXngBDzzwQINsx74QGhraaDcEaTdeKRat9MSVK1eIyxly5coVl14/KSNlIenO61RVVeX3wwuFO2gXlYQhsXilSqUibqRM3bIY9vIUXDNr1izMmjWLl303FUgTZRUVFW4T00mVq1evOuVsIgGpizJXtZ1yc3PRrFkzkSxqnKCgIFRXVzcQYAaDQZKe30CgHhwJo1arG+R1AaTdV+1rDS0KhSIcNTU1kvYsuLq3SdmD465cw9WrVyUrylq0aIHLly83WC7l8+wvVOBIGHcxOFIs8OcJKYsyCqUpQtpvzp1YMJlMkvViuxuSn5eXJ8lUDQCQmJjoMiv71atXJet18hcqcAjE23wyUoKKMuEg1W6pIpfLifNKRkZGuk3GKVUSEhLcBs5LFXcCR6oFTQH35RpIDPT3BBU4BEKiwJFisTxPSP08uxIyUk2YZ4fEOkmNjViTKq1atUJ2dnaD5VIWv8nJyR5TSEiN2NhY4rJGy+Vyl9eBVPM6BQIVOAQi1VT8jSHloZ526v/opewaB9hgwaqqKqdlOTk5aNmypUgWeaZly5YNCqJWVVVJrihhXUgUCy1btsQ///wjthk+4a6LSsrn2V0YgZRtvpGgAodQpDziRCaTNfiB22w2ySYYA9jRX/WHikvd69SqVasGjVh2drakCxa6ekqX+nBrV10n5eXlCA0NFckiz2g0mgYDFLwtHCsmVBhQuIQKHIlDarK/+jfXdevWITw8XByDvMBVbaf6wz9lMhk2bdoksGXuadu2Lc6ePeu0rLCwENHR0SJZ5JmIiIgGsSHnzp1DSkqKSBZ5RqFQNPgNnjlzRpLZohvj8uXLfheMFQsSqlvXF41UpEkHKnAkjruh4lLG1dOj1CHxPLvKDOwqJ4eUcGVbaWkpIiIiRLDGf6TuKQMaNrRnz54lTpSdP39e0uIXaHie8/PzJR+sWz9wnsSwB2+gAkfi2JMy2ZHS04E7QeDKgyN13AXeUbinKZxnq9Uq6WBuV+Tn50uy3ld96l4fWVlZaNOmjYjWeCY4ONipXtn58+fRtm1bES3yTOvWrXHhwgXH+5ycHL/r4kkZKnAkTn33uLvhh0ajEc899xxiY2MRFBSEgQMH4uDBgwDYvvcWLVrgo48+ctrm6NGjkMvljjiO0tJSPPbYY4iJiUFoaChuu+02pwKRr732Grp164ZPP/0UrVq1chsYKpPJsG7dOiQlJUGn02H06NEoKSlxWicrKwv33HMP4uLioNfr0bt3b/z2229O6yQnJ+ONN97AhAkToNfr0bJlS/zwww8oKCjAPffcA71ejy5duuDQoUOObVatWoXw8HBs2rQJbdu2RVBQEIYPH94g78P333+PHj16ICgoCK1bt8aCBQucYnDOnTuHu+66C0FBQejYsSO2bdvm8rtKDRLFAwk2MwzjZCcJNtcvm0JCxe6YmBinUUnV1dWS76Jq3bo1srKyHO9zcnIkHVMGAB07dnQqVpyVlSV5T5k/UIHjBQzDoNJUKfjk6iZaU1PjUljMmjUL33zzDb744gscOXIEKSkpGD58OIqLiyGXyzF27FisXbvWaZs1a9ZgwIABjlE3DzzwAPLz8/HLL7/g8OHD6NGjB4YMGeIUM3H+/Hl88803+PbbbxtUzLaTkZGB6dOnY9q0aTh27BgGDhyI999/32kdg8GAESNGYPv27Th69CjS09MxcuTIBiNs/vWvf2HAgAE4evQo7rzzTjzyyCOYMGECHn74YRw5cgRt2rTBhAkTnM5VVVUV3nzzTaxevRp79uxBaWkpxowZ4/h89+7dmDBhAqZPn45Tp07hv//9L1atWuWw0WazYfTo0dBoNMjIyMCKFSswe/Zsl99VSki5UnRddDqd26KbUiUpKcllcjQpk5qaijNnzohthk907tzZbcV5qdKuXTunWDipD6gA2O7tul6ngoICREVFiWgRTzA88cYbbzBpaWmMVqtlwsLCvNrGZrMx8+bNY+Lj45mgoCBmyJAhzNmzZ53WKSoqYsaNG8eEhIQwYWFhzKOPPspUVFT4ZFtZWRkDgCkrK2vwWXV1NXPq1CmmurrascxgNDB4DYJPBqOBYRiGKSwsdNhSWFjI2Gw2J5sNBgOjUqmYNWvWOJaZTCamWbNmzDvvvMMwDMMcPXqUkclkzD///MMwDMNYrVamefPmzEcffcQwDMPs3r2bCQ0NZWpqapz23aZNG+a///0vwzAM8+qrrzIqlYrJz89v9PyOHTuWGTp0qMPOoqIi5sEHH/R4Hdx0003Mhx9+6HjfsmVL5uGHH3a8z83NZQAw8+bNcyzbt28fA4DJzc1lGIZhPv/8cwYAs3//fsc6mZmZDAAmIyODYRiGGTJkCPPWW285HfvLL79k4uPjGYvFwvz666+MUqlksrOzHZ//8ssvDADmu+++a/Q7cImra7E+v/76K3Pt2jWGYRjm1KlTzKFDh4Qyz28uXLjA7Nmzh2EY9nr++eefRbbIMxUVFcz333/PMAz729qwYYPIFnmmpqaG2bhxo+P9V199JaI13lPXzrr3NClT12YSzzMpNjNM4+13fXjz4JhMJjzwwAN46qmnvN7mnXfewQcffIAVK1YgIyMDwcHBGD58uFPxxvHjx+Pvv//Gtm3bsHnzZvzxxx94/PHH+fgKkqF+QFh9N3NWVhbMZjMGDBjgWKZSqdCnTx9kZmYCALp164YOHTo4vDi///478vPz8cADDwAAjh8/DoPBgKioKOj1eseUnZ3t5H5t2bKlx378zMxM9OnTxxGHwzAM+vfv77SOwWDASy+9hA4dOiA8PBx6vR6ZmZkNPDh1CwPaU5937ty5wbK6bm2lUonevXs73rdv3x7h4eGOc3H8+HG8/vrrTt9z6tSpyMvLQ1FRETIzM9G8eXOnfDJpaWmNfmex6N27Nw4cOAAAOHHiBBGFFOsOFc/IyEDfvn3FNcgL6j7xHj9+nIjzrNFoHCMDL1++LPluEztMrTe2urpa0vmR6mK3mSGg69IOQ1iXqz/wFja9YMECAN5XZ2YYBkuXLsXcuXNxzz33AABWr16NuLg4bNq0CWPGjEFmZia2bNmCgwcPolevXgCADz/8ECNGjMCSJUt4q6OhU+lgmGPwvCIPxwWu31wDzbsxfvx4rF27Fi+//DLWrl2L9PR0h1vSYDAgISEBu3btarBd3eHdwcHBXh1LrVajsrLSbaK8l156Cdu2bcOSJUuQkpICrVaL+++/v0Fwct14I7uwc7XMl6H0BoMBCxYswL333uu0nHExLFzq1B12LfUsxnZkMpkj3qmoqAiRkZEiW+Qd9oeMzMxMjB8/XmRrvMPecO3fvx8jRowQ2RrvkMlksNls2L17d4MHI6mi1WpRVVWFs2fPEiF+ATZD9+XLlyGXyxEfHy+2ObwgmXFh2dnZyMvLw9ChQx3LwsLC0LdvX+zbtw9jxozBvn37EB4e7hA3ADB06FDI5XJkZGRg9OjRLvdtNBqdcpyUl5f7ZJtMJkOw2ruGnQ9UKhXMZrPbcvZt2rSBWq3Gnj17HF4Hs9mMgwcP4vnnn3esN27cOMydOxeHDx/G119/jRUrVjg+69GjB/Ly8qBUKpGcnByQvR06dMCBAwdgs9kcT2H79+93WmfPnj2YNGmS439mMBg4S9NusVhw6NAh9OnTBwCbs6S0tBQdOnQAwH7XM2fOuAyqKywsREpKCq5cueJUXbe+/VJCLpejuLhY0lmX66PT6VBUVCS2GT4RGxuLS5cuwWKxQC4nI3yxY8eOOH78OMrLyyUfrGvn5ptvxo4dO3D58mUMGzZMbHO8YsiQIdiyZQvKysowadIksc3xioEDB+J///sfAOD+++8X2Rp+kMyvNC8vDwAaVGCNi4tzfJaXl9cgv4BSqURkZKRjHVcsWrQIYWFhjom0ZFcA6zmxWCwuG7Hg4GA89dRTmDlzJrZs2YJTp05h6tSpqKqqwpQpUxzrJScno3///pgyZQqsVivuvvtux2dDhw5FWloaRo0aha1bt+LixYvYu3cvXnnlFadRSt7w3HPPYcuWLfj0009x8uRJfP7559iyZYvTOm3btnUEKh8/fhzjxo3jLKGhSqXCs88+i4yMDBw+fBiTJk1Cv379HIJn/vz5WL16NRYsWIC///4bmZmZWL9+PebOnYuwsDD06tUL7dq1w8SJE3H8+HHs3r0br7zyCie28cGoUaOwbt06jBo1SmxTvOaee+7B+vXribJ52LBh+PXXX4nxhABAz549cerUKdxyy/+3d68xTV5/HMC/baGlase8ghWr1bjg0CmIqGDEBCIaQ+IlW5ioqNG9KRmVZcqm6AtFvMQbSlRM3HzhdS/wll0kSDAaBYbWaDZRoxlmTNFEaEWdsz3/F8b+U++Ytocevp+kL3pawpeThz6/nuec80yQHeW9WSwWuFwun8vMHd3HH38Mo9GIuLi4kBj5BZ6PssfExKBfv34h9eWoPdpV4BQUFHiXGr7pcfXq1UBl/WDfffcdWltbvY9QWw0BPB8CfdtmaGvXrsXMmTMxZ84cJCQk4MaNG/jtt99e+Zns7GxcunQJ06dPh9Fo9LZrNBr8/PPPmDBhAubPn49PPvkEWVlZ+Ouvv14pOt9l7Nix2L17N0pLSzFx4kScPHkSy5cv93nPpk2b0L17dyQnJyMzMxMZGRlISEho1+95ky5dumDp0qWYNWsWUlJS0K1bNxw6dMj7ekZGBk6cOIGTJ09i9OjRGDt2LDZv3owBAwYgPDwcUVFRKC8vx+PHj5GUlISFCxeiqKjIL9kCoVu3brDZbB36thIvCw8Ph81mg8lkkh3lvWk0GixcuLDd/w+yffnllyG3BHj69Ok+c+1CwZQpU7xfokJFamoqJk6cKDtGwGhEO2YX3bt3753DyoMGDfL5oP3xxx9ht9vR0tLy1p+7efMmBg8ejIsXL2LkyJHe9tTUVIwcORJbt27Fnj178M033/jsqfLs2TNERETgp59+euMlqpc5nU5ERkaitbX1lXktT5488e5SGioT3Oj/3vd4CwU8FomIfL3t/P2yds3B6d27d8B2wrRarYiOjkZlZaW3wHE6naipqfGuxBo3bhxaWlpQX1+PUaNGAQBOnToFj8cTEisxiIiIKDgCNgensbERDocDjY2NcLvdcDgccDgcPpsLxcbGory8HMDz4V+73Y7Vq1fj2LFjuHz5MubOnQuz2ey9Tj906FBMnjwZixYtQm1tLc6ePYvc3FxkZWUFbAUVERERhZ6AraJasWIF9u7d630eHx8PAKiqqvJe82toaEBra6v3PUuWLEFbWxu++uortLS0YPz48fj11199huf37duH3NxcpKWlQavVYubMmSgpKQnUn0EhZt68eSGzioGIiAKnXXNwVME5OBQKeCwSEflqzxycDrNMnIiIiMhfWOC8gb/2ZCH6UDwGiYg+XIfZybij0Ov10Gq1aGpqQu/evaHX60Nm4yZSgxACT58+xb1796DVakNqfxsioo6CBc5LtFotrFYr/vnnHzQ1NcmOQ51Yly5dYLFYQua2AEREHQkLnNfQ6/WwWCx49uyZz128iYJFp9MhLCyMo4dERB+IBc4baDQahIeHh8TdmYmIiMgXx76JiIhIOSxwiIiISDkscIiIiEg5nXIOzovNm51Op+QkRERE9L5enLff5yYMnbLAcblcAID+/ftLTkJERETt5XK5EBkZ+db3dMp7UXk8HjQ1NcFkMvl9Ga7T6UT//v1x+/btd94ngz4c+zk42M/BwX4ODvZz8ASqr4UQcLlcMJvN79wjrFOO4Gi1WsTExAT0d3z00Uf8BwoC9nNwsJ+Dg/0cHOzn4AlEX79r5OYFTjImIiIi5bDAISIiIuWwwPEzg8GAlStXwmAwyI6iNPZzcLCfg4P9HBzs5+DpCH3dKScZExERkdo4gkNERETKYYFDREREymGBQ0RERMphgUNERETKYYHjR6WlpRg4cCAiIiIwZswY1NbWyo6klOLiYowePRomkwl9+vTBtGnT0NDQIDuW8tauXQuNRgO73S47ipL+/vtvzJ49Gz179oTRaMTw4cPx+++/y46lFLfbjcLCQlitVhiNRgwePBirVq16r/sZ0ZudPn0amZmZMJvN0Gg0OHLkiM/rQgisWLECffv2hdFoRHp6Oq5fvx60fCxw/OTQoUPIz8/HypUrceHCBYwYMQIZGRlobm6WHU0Z1dXVsNlsOH/+PCoqKvDff/9h0qRJaGtrkx1NWXV1ddi1axc+++wz2VGU9ODBA6SkpCA8PBy//PIL/vjjD2zcuBHdu3eXHU0p69atw44dO7B9+3b8+eefWLduHdavX49t27bJjhbS2traMGLECJSWlr729fXr16OkpAQ7d+5ETU0NunbtioyMDDx58iQ4AQX5RVJSkrDZbN7nbrdbmM1mUVxcLDGV2pqbmwUAUV1dLTuKklwulxgyZIioqKgQqampIi8vT3Yk5SxdulSMHz9edgzlTZ06VSxYsMCnbcaMGSI7O1tSIvUAEOXl5d7nHo9HREdHiw0bNnjbWlpahMFgEAcOHAhKJo7g+MHTp09RX1+P9PR0b5tWq0V6ejrOnTsnMZnaWltbAQA9evSQnERNNpsNU6dO9Tmuyb+OHTuGxMREfP755+jTpw/i4+Oxe/du2bGUk5ycjMrKSly7dg0AcOnSJZw5cwZTpkyRnExdt27dwp07d3w+PyIjIzFmzJignRc75c02/e3+/ftwu92IioryaY+KisLVq1clpVKbx+OB3W5HSkoKhg0bJjuOcg4ePIgLFy6grq5OdhSl3bx5Ezt27EB+fj6+//571NXV4euvv4Zer0dOTo7seMooKCiA0+lEbGwsdDod3G43ioqKkJ2dLTuasu7cuQMArz0vvngt0FjgUEiy2Wy4cuUKzpw5IzuKcm7fvo28vDxUVFQgIiJCdhyleTweJCYmYs2aNQCA+Ph4XLlyBTt37mSB40eHDx/Gvn37sH//fsTFxcHhcMBut8NsNrOfFcZLVH7Qq1cv6HQ63L1716f97t27iI6OlpRKXbm5uThx4gSqqqoQExMjO45y6uvr0dzcjISEBISFhSEsLAzV1dUoKSlBWFgY3G637IjK6Nu3Lz799FOftqFDh6KxsVFSIjV9++23KCgoQFZWFoYPH445c+Zg8eLFKC4ulh1NWS/OfTLPiyxw/ECv12PUqFGorKz0tnk8HlRWVmLcuHESk6lFCIHc3FyUl5fj1KlTsFqtsiMpKS0tDZcvX4bD4fA+EhMTkZ2dDYfDAZ1OJzuiMlJSUl7Z6uDatWsYMGCApERqevToEbRa39OdTqeDx+ORlEh9VqsV0dHRPudFp9OJmpqaoJ0XeYnKT/Lz85GTk4PExEQkJSVhy5YtaGtrw/z582VHU4bNZsP+/ftx9OhRmEwm73XcyMhIGI1GyenUYTKZXpnX1LVrV/Ts2ZPznfxs8eLFSE5Oxpo1a/DFF1+gtrYWZWVlKCsrkx1NKZmZmSgqKoLFYkFcXBwuXryITZs2YcGCBbKjhbSHDx/ixo0b3ue3bt2Cw+FAjx49YLFYYLfbsXr1agwZMgRWqxWFhYUwm82YNm1acAIGZa1WJ7Ft2zZhsViEXq8XSUlJ4vz587IjKQXAax8//PCD7GjK4zLxwDl+/LgYNmyYMBgMIjY2VpSVlcmOpByn0yny8vKExWIRERERYtCgQWLZsmXi33//lR0tpFVVVb32MzknJ0cI8XypeGFhoYiKihIGg0GkpaWJhoaGoOXTCMGtHImIiEgtnINDREREymGBQ0RERMphgUNERETKYYFDREREymGBQ0RERMphgUNERETKYYFDREREymGBQ0RERMphgUNERETKYYFDREREymGBQ0RERMphgUNERETK+R809qpwd2sGCQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(t, y1[:,0], 'k', label=\"undamped\", linewidth=0.25)\n", + "ax.plot(t, y2[:,0], 'r', label=\"under damped\")\n", + "ax.plot(t, y3[:,0], 'b', label=r\"critical damping\")\n", + "ax.plot(t, y4[:,0], 'g', label=\"over damped\")\n", + "ax.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kB0WB4urrimN" + }, + "source": [ + "# **Fourier transform**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dvgLd7Q7rdtK" + }, + "outputs": [], + "source": [ + "from numpy.fft import fftfreq\n", + "from scipy.fftpack import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_3IFODo1toi1" + }, + "outputs": [], + "source": [ + "N = len(t)\n", + "dt = t[1]-t[0]\n", + "\n", + "# calculate the fast fourier transform\n", + "# y2 is the solution to the under-damped oscillator from the previous section\n", + "F = fft(y2[:,0])\n", + "\n", + "# calculate the frequencies for the components in F\n", + "w = fftfreq(N, dt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 291 + }, + "id": "lqn8tYSkttIx", + "outputId": "b691c06d-9c52-4d67-f37f-c8f5a30b1cf7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAESCAYAAACvuyByAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMGBJREFUeJzt3XuYVPWd5/FPnbr2/QJ0t0CjKCgagkYU7MQYL0Ti4zga2Uyy646Xx0li0joi2Y1hZjZmMpkH1+wGo2kvyTiYyRMHh+xqojvRMRgwMwHFNiig4j00tN0N0jf6Utezf1Sd6qruqu6qpm59eL+e1NNVp845/SOF8OHb3/M9DtM0TQEAAAAoCUaxFwAAAABgDAEdAAAAKCEEdAAAAKCEENABAACAEkJABwAAAEoIAR0AAAAoIQR0AAAAoIS4ir2A8SKRiDo7O1VVVSWHw1Hs5QAAAAA5YZqmBgcHNXfuXBlG+jp5yQX0zs5ONTc3F3sZAAAAQF50dHRo/vz5ad8vuYBeVVUlKbrw6urqIq8GAAAAyI2BgQE1NzfH8246JRfQrbaW6upqAjoAAABsZ6o2bi4SBQAAAEoIAR0AAAAoIQR0AAAAoIQQ0AEAAIASQkAHAAAASggBHQAAACghBHQAOAH0DgXU1T+a1TEfHBnSSCCcpxUBANIhoAPACeATf/ecLtiwVf3DwYz2f+VAry7+X9t01Y/+Pc8rAwCMR0AHAJszTTP+/N0jxzI65le7OyVJ7/Rktj8AIHcI6ABgc8GwOfVOAICSQUAHAJsLhCPx52aGWd3MdEcAQM4R0AHA5vzBxAs9MwvexHMAKB4COgDYXGIFPRAiegNAqSOgA4DNBUIJAT0hrE+GDhcAKB4COgDYXGJAT253yQz96ABQWAR0ALA5/zQq6IlCEQI6ABQSAR0AbC4xlPuD2Qf0xAo8ACD/COgAYHPT6kFPmONCQAeAwiKgA4DNTacHPZzQ1jKdthgAwPQR0AHA5qZTQU/qW6eCDgAFdVwB/e6775bD4dDatWvj20ZHR9Xa2qpZs2apsrJSa9asUXd39/GuEwAwTdPpQU8M6H4COgAU1LQD+q5du/Twww9r2bJlSdvvuOMOPfXUU9qyZYu2b9+uzs5OXXvttce9UADA9Eyngh6ggg4ARTOtgH7s2DFdd911+slPfqK6urr49v7+fj3yyCP6wQ9+oEsvvVTLly/Xpk2b9Pvf/147d+7M2aIBAJnzh8IJz6fR4kIPOgAU1LQCemtrq6688kqtWrUqaXt7e7uCwWDS9iVLlmjBggXasWNHynP5/X4NDAwkPQAAuTOdanggIdRTQQeAwnJle8DmzZv1yiuvaNeuXRPe6+rqksfjUW1tbdL2xsZGdXV1pTzfhg0b9Ld/+7fZLgMAkKHkfvLMprhwkSgAFE9WFfSOjg7dfvvt+vnPfy6fz5eTBaxfv179/f3xR0dHR07OCwCISrpINOMKemKLS2ahHgCQG1kF9Pb2dvX09Ojcc8+Vy+WSy+XS9u3bdd9998nlcqmxsVGBQEB9fX1Jx3V3d6upqSnlOb1er6qrq5MeAIDcCUxjIgsVdAAonqxaXC677DLt2bMnadtNN92kJUuW6M4771Rzc7Pcbre2bt2qNWvWSJL279+vAwcOqKWlJXerBgBkbHo96IxZBIBiySqgV1VVaenSpUnbKioqNGvWrPj2m2++WevWrVN9fb2qq6t12223qaWlRRdccEHuVg0AyNj0KuhcJAoAxZL1RaJT2bhxowzD0Jo1a+T3+7V69Wo98MADuf42AIAMJfagBzK8SDQYNlMeDwDIv+MO6Nu2bUt67fP51NbWpra2tuM9NQAgBxIr4JEMs3YoTA86ABTLtO8kCgCYGRKr4aEME3o4knBMwvEAgPwjoAOAzSWG8sTgPfkxY/sFMy27AwBygoAOADaXGLZDGQb0iDm2X5gKOgAUFAEdAGwusZ98ehV0AjoAFBIBHQBsLpxlBT0SMZVQQFeYFhcAKCgCOgDYXFKLSwYjE8NmcojnIlEAKCwCOgDYXCicXQV9fBtMpn3rAIDcIKADgM1lO8VlfCDPpOoOAMgdAjoA2BwVdACYWQjoAGBziQE7kwr6hIBODzoAFBQBHQBsLrHFJZN2lfF3G6WCDgCFRUAHAJtLrIBPq4LOmEUAKCgCOgDYXLZ3EqUHHQCKi4AOADYXPu4edCroAFBIBHQAsLlgQsAORUyZ5uQhfXzFPJNQDwDIHQI6ANjc+IA9Vd6OjNshyBQXACgoAjoA2Nz4gD3VRZ9U0AGguAjoAGBz4XGBfKrAPf79ID3oAFBQBHQAsLnxNxqaairL+IBOBR0ACouADgA2N6FlZYqe8vH7BwnoAFBQBHQAsLls55pPrKDT4gIAhURABwCbC2bZgz7+ItLxLTIAgPwioAOAjUUipsaPPZ9qisv4t7mTKAAUFgEdAGxsfPVcmk4FnRYXACgkAjoA2FhiGPe4on/kZ9uDTgUdAAqLgA4ANpZ4kyJvLKBnOgfd44wFenrQAaCgCOgAYGOJYdzrckqaOnBbx3gzrLgDAHKLgA4ANmb1jxsOyeN0SMqkBz0W0N1WQKcHHQAKiYAOADZmhW2X05AzFtCnnOJiWhX0aMV9qhsbAQByi4AOADZmtbO4DIdcRmY96NYxtLgAQHEQ0AHAxqxqudNwyGlYFfQMLxJ10eICAMVAQAcAG7PCuNtpyGVk24PuTHoNACgMAjoA2JjVrpJVBd1MbnExzalDPQAgdwjoAGBjVnuK23AkVNAnb1kJxya/+GIV9MTzAADyj4AOADZmVcudzoQK+hRTWULj5qBncgwAIHcI6ABgY1ZritswMp7iEjFTBHRaXACgYAjoAGBjwXD2U1zGKuhjLS7WeQAA+UdABwAbC4YTprhkeCfRcPyYzNtiAAC5k1VAf/DBB7Vs2TJVV1erurpaLS0t+vWvfx1/f3R0VK2trZo1a5YqKyu1Zs0adXd353zRAIDMBEOxi0RdRtZTXJyGQ+5YqKeCDgCFk1VAnz9/vu6++261t7fr5Zdf1qWXXqqrr75a+/btkyTdcccdeuqpp7RlyxZt375dnZ2duvbaa/OycADA1KzpKx5nFlNcImN3H3U7o39NENABoHBc2ex81VVXJb3++7//ez344IPauXOn5s+fr0ceeUSPPfaYLr30UknSpk2bdOaZZ2rnzp264IILcrdqAEBGAmErbGdeQbfeN5ICOi0uAFAo0+5BD4fD2rx5s4aGhtTS0qL29nYFg0GtWrUqvs+SJUu0YMEC7dixI+15/H6/BgYGkh4AgNwIhcdaXDKd4pJcQafFBQAKLeuAvmfPHlVWVsrr9eqWW27RE088obPOOktdXV3yeDyqra1N2r+xsVFdXV1pz7dhwwbV1NTEH83NzVn/IgAAqVnB2m1kfsFnOKGCboV6AjoAFE7WAf2MM87Q7t279eKLL+prX/uabrjhBr3++uvTXsD69evV398ff3R0dEz7XACAZIHEKS5GZlNc4lV3w5AnNgudOegAUDhZ9aBLksfj0aJFiyRJy5cv165du/TDH/5QX/ziFxUIBNTX15dURe/u7lZTU1Pa83m9Xnm93uxXDgCYkhW2Xc7s56C7Ei4stabBAADy77jnoEciEfn9fi1fvlxut1tbt26Nv7d//34dOHBALS0tx/ttAADTYLWmeJLmoE8etkPhFFNcqKADQMFkVUFfv369rrjiCi1YsECDg4N67LHHtG3bNj377LOqqanRzTffrHXr1qm+vl7V1dW67bbb1NLSwgQXACiSxBsVZV9BN+SOtbhQQQeAwskqoPf09Oj666/Xhx9+qJqaGi1btkzPPvusPvvZz0qSNm7cKMMwtGbNGvn9fq1evVoPPPBAXhYOAJhaMKHFJfMpLrFjDIfcBlNcAKDQsgrojzzyyKTv+3w+tbW1qa2t7bgWBQDIjdA0KuhWO4uTFhcAKIqsLxIFAMwc8TGLTocMR2ZTXMLhsRYXq2+dFhcAKBwCOgDYWCAe0MdmAkw1Bz2U0OLicRpJ2wAA+UdABwAbS2xxMc3o8ymnuEQmTnEJTBHqAQC5Q0AHABtLbHEJRzLrQQ8nzkF3WncfpYIOAIVCQAcAG0scs+hwWBX0KS4StSa/GEa8xYUpLgBQOAR0ALCxsTGLhkxFn2dcQTfGKuhBWlwAoGAI6ABgY2N3EnXINDOb4mKF8aQxi1TQAaBgjKl3AQDMVMGEkYmZzkG3ArzbacQD+lSTXwAAuUNABwAbCyaMWXQZVgU9syku0Qo6dxIFgEIjoAOAjVnzy91Oh5xGZtXwULxvPXHMIgEdAAqFgA4ANhYMjbWrjFXQM71I1JCLFhcAKDgCOgDYWOKdRK0e9OBUF4lGxiroHlpcAKDgCOgAYGOhhLBtjUycqgc9HE4cs2hNcaGCDgCFQkAHABuzWlw8iVNcpupBjzBmEQCKiYAOADYWjKSa4pJZQHc7jXiLS2iKqjsAIHcI6ABgY8GEiSzxKS5TBfTYMc6EFpdAiBYXACgUAjoA2Fhii0vWFXTDYMwiABQBAR0AbMwfCkuSvK7M7yQa70F3OuR1WRX0cB5XCQBIREAHABvzh6KVb6/LmfGdRMfmoI8FdOs8AID8I6ADgI0FrIDuzqyCbppmckB3O5POAwDIPwI6ANhUKByJh3GP00iYg54+oCeGd5dhyOOkgg4AhUZABwCbSryw0+s25LKmuEwyBz3xPZfTIa/bCuj0oANAoRDQAcCm/MGxgJ54o6LJK+hjxzgTe9CDVNABoFAI6ABgU1YF3RWbZ+5yTt2Dnhje3U5DXpcz6VwAgPwjoAOATVlVb0+sCp7JFJdgQouL4RAVdAAoAgI6ANhU4gx0SRndSTRxgovDkThmMSzT5G6iAFAIBHQAsKnEGeiSMrqTaNBqi4m1w1jHRsypb3AEAMgNAjoA2JQV0D3xCnrmPejWxBfrWIlZ6ABQKAR0ALCp8S0umVTQrfBuVdATAzqz0AGgMAjoAGBT/oS7iEpKGrOYrp/cGrNohXmn4ZA7FtaZhQ4AhUFABwCbsiavjPWgj/2RH0xzsyLrRkVWmE88nkkuAFAYBHQAsClrdrnHObGfPJRm1GL8mIR9refMQgeAwiCgA4BN+YOxHvRYi4vVqiJJwVDqCnowlBzqJWahA0ChEdABwKbGxiyO9aA7YhndH07dT25Vyd2pAjo96ABQEAR0ALCpwLg56A6HIx680/WgB1O0uFjHM2YRAAqDgA4ANjV+Drokea2AniZsB2KtL4ktLp54BZ2ADgCFQEAHAJsaPwddktxTXPAZpMUFAIqOgA4ANjU6bsyiNHahaLp2FWu7OyHU+9zR40eCBHQAKISsAvqGDRt0/vnnq6qqSg0NDbrmmmu0f//+pH1GR0fV2tqqWbNmqbKyUmvWrFF3d3dOFw0AmNpIICRJKveMBXSrXSU4RQXdkzDxJR7QA7S4AEAhZBXQt2/frtbWVu3cuVPPPfecgsGgLr/8cg0NDcX3ueOOO/TUU09py5Yt2r59uzo7O3XttdfmfOEAgMkNB6IV7zJPYgU91uKSpoKe6iJRK+APxwI/ACC/XNns/MwzzyS9fvTRR9XQ0KD29nZddNFF6u/v1yOPPKLHHntMl156qSRp06ZNOvPMM7Vz505dcMEFuVs5AGBSw7GWlKQK+hRTXKwLQRN70K3jRwK0uABAIRxXD3p/f78kqb6+XpLU3t6uYDCoVatWxfdZsmSJFixYoB07dqQ8h9/v18DAQNIDAHD8rECdXYtLNLgnBnSrAj9MDzoAFMS0A3okEtHatWv1qU99SkuXLpUkdXV1yePxqLa2NmnfxsZGdXV1pTzPhg0bVFNTE380NzdPd0kAgAQj8RaXsR+WWsE73cjEVFNcqKADQGFNO6C3trZq79692rx583EtYP369erv748/Ojo6jut8AIAoq+Jd5p44xWWqi0QTRzOWuQnoAFBIWfWgW2699VY9/fTTeuGFFzR//vz49qamJgUCAfX19SVV0bu7u9XU1JTyXF6vV16vdzrLAABMIvUUl+jzdAE9PmYxYYqLVYGnxQUACiOrCrppmrr11lv1xBNP6Pnnn9fChQuT3l++fLncbre2bt0a37Z//34dOHBALS0tuVkxACAjqaa4eKaagz5piwtTXACgELKqoLe2tuqxxx7TL3/5S1VVVcX7ymtqalRWVqaamhrdfPPNWrdunerr61VdXa3bbrtNLS0tTHABgAJLdZGo25nhHPSUYxapoANAIWQV0B988EFJ0sUXX5y0fdOmTbrxxhslSRs3bpRhGFqzZo38fr9Wr16tBx54ICeLBQBkzgrU5e6JF4kG0oxZDIZSTHFxE9ABoJCyCuimmfoP9EQ+n09tbW1qa2ub9qIAAMfHNE2NBFO0uEwxZjEQv5NoYgU9+lfFKD3oAFAQxzUHHQBQmkaDYwE8mzuJjvWgJ14kGj2GCjoAFAYBHQBsaDjhgs7EMYueqcYshqwe9LFjymItMgR0ACgMAjoA2JAVpr0uQ05jrBputbgEpmhxSaygM8UFAAqLgA4ANjScYoKLNHWLS8opLt7YRaLBsCKRqa9FAgAcHwI6ANjQMX9QklTlcydtn3LMYoopLlXe6DlMk5sVAUAhENABwIYGRqPtKFW+5GFd8SkuodSV8FRTXHxuQ65Ym8zgaDDnawUAJCOgA4ANHYsF9ErvuIDunKIHPdb64k5ocXE4HKqMBX3rvACA/CGgA4ANDcYr6MktLlYF3R9K3apibU+soEfPEw3oAwR0AMg7AjoA2JDVg149rsXF547+sZ84Jz2Rtd3az2L1oR/zE9ABIN8I6ABgQ1YFvXJCQI9OZEl3V1Crgu5zJ09/sc5DDzoA5B8BHQBsaDDNRaJe1+QB3aqgl40L6NX0oANAwRDQAcCG4hV0b3IP+tQtLmkq6F6rgk5AB4B8I6ADgA2NzUFP0+KS4iLRUDiiUOxGRBN60GMXmw7Sgw4AeUdABwAbStfiYgV0f4oK+mjC3UXpQQeA4iGgA4ANpQ/oVovLxAp64javK/mvh+pYBX1ghAo6AOQbAR0AbKh3OCBJqi33JG33TXKR6Eggus3rMuRwOJLeqy2PBvT+kUDO1woASEZABwAb6huOtqLUjQvoZR6rB31ii0u6EYvR80QDeu8wLS4AkG8EdACwmUAoEr+hUG3ZuCkusQp6OGIqGE4O6eluUiSNVeKtyjwAIH8I6ABgM32xNhSHQ6oeF9C9CeF7fJtLuhGL0lglvo8KOgDkHQEdAGzGCtE1ZW45jeRe8mh/efT5+Fno8Qq6K32LS99wQJHYKEYAQH4Q0AHAZnqHohX08f3nkuRwOOITWtJX0NO3uERMblYEAPlGQAcAm7Eu5LQmr4wXn4U+7mZFo5NcJOpxGaqIXWBKHzoA5BcBHQBspm84fQVdShy1mO4i0YkBXeJCUQAoFAI6ANjMR5O0uEjpb1Y0WYuLJM2qjJ7vo2MEdADIJwI6ANjM4UG/JKmh2pvyfatCPpLFFBdJmlMZPd/hY/6crBMAkBoBHQBsxgroVqAez7pZ0XAgOaBbr8s9aQJ6lTfp/ACA/CCgA4DNxAN6VeqAXul1SZKG/MnTWKzXFR5XyuMI6ABQGAR0ALAZqwUlXUC3AvjQuAr6UCAW0L0EdAAoJgI6ANjMVBX0cm+0hWViBT0a2Cu89KADQDER0AHARoYDIR2LBe9sW1ys46aqoPcMjuZkrQCA1AjoAGAjH/ZHw3OFx6mqNEHbCuDH0vSgV6Y5bm5tmSSpq39U4YiZk/UCACYioAOAjXT2jUiKhmmHw5Fyn+leJNpY7ZPb6VAwbKp7gCo6AOQLAR0AbOTDvmhwtqrdqVR4rB705ItEp2pxcRqO+Hk7jg4f91oBAKkR0AHARg4lVNDTsQK4NbXFYs1BT9fiIknz66LnPdg7clzrBACkR0AHABuxWlzm1frS7jP1RaKpp7hIUnNduSSpo5cKOgDkCwEdAGzEqmxPVkEvj18kOtbiYprmWA96BhX0jqNU0AEgXwjoAGAjf/xoSJJ08qyKtPtUppiDPhqMyBrMMllAb66PVtAPUkEHgLwhoAOATYwGw+qMjVk8ZVZ52v0qvW5JyWMWrecOh1TuTt/iQg86AORf1gH9hRde0FVXXaW5c+fK4XDoySefTHrfNE19+9vf1kknnaSysjKtWrVKb7/9dq7WCwBIw5qsUuV1qb7Ck3a/mrJoQB8YCco0o2Xz/pGgJKna55ZhpB7PKI31oH/YP6JgOJKTdQMAkmUd0IeGhnT22Werra0t5fv33HOP7rvvPj300EN68cUXVVFRodWrV2t0lJm5AJBPH3wUDegLZpWnnYEuSbXl0YAeipgaik1u6R8JJL2XzuxKrzwuQxFTOkQVHQDyIn2jYRpXXHGFrrjiipTvmaape++9V3/zN3+jq6++WpL0T//0T2psbNSTTz6pL33pS8e3WgBAWm/3DEqSFjVUTrqfz+2U12XIH4qobzigSq9LfcPRCnpt2eQB3TAcOm1Opd74cEBvdQ/qlNnpe90BANOT0x70999/X11dXVq1alV8W01NjVauXKkdO3akPMbv92tgYCDpAQDI3tvdxyRJpzdWTbmvVSm3grn1taY8fWuM5cyToud/s2twWusEAEwupwG9q6tLktTY2Ji0vbGxMf7eeBs2bFBNTU380dzcnMslAcAJ463uaGBePEUFXZJqy6JB3Oo97xvJrIIuSWc2VUuS3viQggoA5EPRp7isX79e/f398UdHR0exlwQAM04wHNE7PdEK+uIMKug1sQp673C097xvOLMedElaQgUdAPIqpwG9qalJktTd3Z20vbu7O/7eeF6vV9XV1UkPAEB23uoelD8UUZXPpZPr049YtFiV8vEtLplU0JfEKugffDSk4UBoir0BANnKaUBfuHChmpqatHXr1vi2gYEBvfjii2ppacnltwIAJHi1o1+SdPb82knHJFqsSvn4FpdMetDnVHk1u9Ir05TeivW9AwByJ+uAfuzYMe3evVu7d++WFL0wdPfu3Tpw4IAcDofWrl2r733ve/rVr36lPXv26Prrr9fcuXN1zTXX5HjpAADLqx19kqSzm2sy2r82FsSPDo1rccmggi6NXSi6r7M/m2UCADKQ9ZjFl19+WZdcckn89bp16yRJN9xwgx599FF985vf1NDQkL7yla+or69PF154oZ555hn5fL7crRoAkOTVg32SohX0TDRUeSVJhwf9kqSegejXhmpvRsef01yr3719RO0f9Oq6lSdnt1gAwKSyDugXX3xx/M5zqTgcDn33u9/Vd7/73eNaGAAgM0P+UHyCyznNtRkd01gdLZp0DYwmfW2qzqyYsmJhvSTpxfePZrNUAEAGij7FBQBwfF7t6FPElE6q8akhw4BtBfSegVGNBsPxXvRMjz93QZ2chkOH+kZ0sHd4egsHAKREQAeAGW7724clSS2nzcr4mKaECnp3rHpe5naq2pfZD1YrvC59fF603/0lqugAkFMEdACY4V5464gk6TOnz8n4GKvXfDQYid+BtLHaK4dj6gkwlpVWm8t7BHQAyCUCOgDMYD2Do3rjwwE5HNKFi2ZnfJzP7YyPWnzlQK+ksbaXTH0y9v1+u79HkUj6a5MAANkhoAPADPa7WPV86dwazarMbAKLZeHsCknSM3u7JEmnzqnI6viWU2epyutSz6Bfu2NTZAAAx4+ADgAz2K/3fihJuuSMzNtbLEuaorPM3zsyJEk6vbEqq+M9LkMXL2mQJP3bvu4p9gYAZIqADgAzVO9QQNv2Ry8Q/dNz5mZ9/PhAfkZTdgFdki4/q1GS9Oy+rklH8AIAMkdAB4AZ6td7uxSKmDrzpGotasg+XCcGcsMhndlUnfU5Lj5jjnxuQ+8fGdIrB/qyPh4AMBEBHQBmqP/7ykFJ0tXTqJ5L0sdOqok/v/bc+aqr8GR9jiqfW1d+PPr9H991YFrrAAAkI6ADwAy091C/Xv5jr1yGQ5//xLxpnaOm3K3H/mKlViys19pVi6e9li+taJYkPfXqhxocDU77PACAKAI6AMxA//gf70uSrlx2UtbjERN9ctFs/ctXWzS/rnza5zjv5DqdNqdCI8GwNr/UMe3zAACiCOgAMMMc6hvR069Gp7fc9KmFRV6N5HA49NWLTpMk/eR372k0GC7yigBgZiOgA8AMc99v3lYgHNEFp9brnObaYi9HknTNJ+bppBqfegb9enwXVXQAOB4EdACYQd7pOaZfxC4O/e+rlxR5NWM8LkNfvzhaRb/3N2+pf4RedACYLgI6AMwQpmnqb57co3DE1KozG7T85LpiLynJl1Ys0KKGSvUOB3Xvb94q9nIAYMYioAPADPGL9oPa+d5R+dyG7rrqY8VezgRup6Fv/8lZkqRHf/+B2v94tMgrAoCZiYAOADPAHz8a0nd+tU+S9JeXLVZz/fSnruTTRafP0bXnzpNpSv9ty2uMXQSAaSCgA0CJGw6E1PrYKxoKhLXilPr4xJRSddeffEwn1fj0/pEh3fH4q4pEzGIvCQBmFAI6AJSwcMTUX/7zH7T30IDqKzza+KVz5DQcxV7WpGrK3Xrovy6Xx2XoN290ayP96ACQFQI6AJSoSMTU//jlXv3mjR55XIZ+cv15mldbVuxlZeTs5lpt+PzHJUn3P/+O/uF37xV5RQAwcxDQAaAEhSOmvvl/XtNjLx6QwyFt/LNzSm5qy1TWLJ+vtasWS5K+9//eIKQDQIYI6ABQYgZHg/rqz17WL9oPymk4tPHPztGVy04q9rKm5fbLFuvWSxZJiob0u365V6FwpMirAoDSRkAHgBKyv2tQ17T9R7ytpe2/fELXfGJesZc1bQ6HQ9+4/HR964roTZV+uuOPuv4fX1L3wGiRVwYApYuADgAlIBSOqO237+iq+/9d7x4e0kk1Pv3ilhZ9bunMrJwncjgcuuUzp+nB685Vmdup37/7ka744e/09GudMk0mvADAeA6zxP50HBgYUE1Njfr7+1VdXV3s5QBA3r30/lH93dOva8+hfknSpUsa9D/XLNOcKm+RV5Z77/Qc01/+8x/0+ocDkqRPL56t7169VAtnVxR5ZQCQf5nmXAI6ABTJW92D+t//tl/P7uuWJFX5XLrrqo9pzbnz5HCU9ijF4+EPhdX223f10PZ3FQhF5HY69GfnNav1kkWaO0Om1ADAdBDQAaAEmaapne8d1Y9feFe/3X9YkmQ4pC+tWKC1qxarocpX5BUWzgdHhvSdp/ZpW+z/B4/T0Oc/MU83fPIUnTWXP/8B2A8BHQBKyJFjfj35h0P6RftBvdk1KCkazD+3tElrV52u0xurirzC4nnxvY/0g+fe0ovvH41vW3FKvf7zymZdflaTKryuIq4OAHKHgA4ARXZ40K+tb3Tr2X1d+t3bRxSK3fLe6zL0hfPm6y8uPFWn0Hsdt+uDo/rp7z/QM3u74v9f+dyGPntWk678+En69OLZhHUAMxoBHQAKLBCK6LWDfdrx7kfa/tZhtR/oVeKfsGc31+o/LZ+vP102VzXl7uIttMR1D4xq80sdenL3Ib1/ZCi+3eM0tGJhvS5Z0qBPL56tRXMqZRj27dUHYD8EdADIs/7hoPYc6terB/u0872P9PIHvRoJhpP2WTa/Rp89s1GfW9qkxSdwG8t0mKapPYf69cvdnXru9W4dODqc9H5tuVvnn1KvFafU67xT6nTmSdXyuZ1FWi0ATI2ADgA5YpqmOvtH9Xb3oN7uPqY9h/r12sE+ffDR8IR96ys8uuDUerWcNlurzmzQSTVMJckF0zT13pEh/fbNHm3bf1gv//GoRoPJdyR1Gg4tbqjUx+bWaOm8an1sbo0WN1SqrsJTpFUDQDICOgBkwTRNDYyE1NE7rI6jw/rj0WG93X1M7/QM6p2eYxoKhFMet6C+XMvm12j5yXVqOW2WTm+oou2iAAKhiPZ29mvX+0e164OjeuVAn44OBVLuW1/h0WlzKnTanMroo6FCC+orNK+2TGUeKu4ACoeADgAJRgJh9QyOqmfQr+6BUfUM+HWwd0QHe4fV0Tuig0eHNegPpT3eZTi0cHaFFjVU6mNzq/Xx+bVaNq+G6myJME1TXQOj2ntoQHsP9WtfZ79e7xxQZ//opMfNrvRoXl255teWaX5dmebVlamx2qeGKq8aqn2aU+mVx8VNtwHkBgEdgK0FQhH1DQd0dDig3qFg/HnfcFC9QwEdPuZXz4A/GsoH/JOG70SzK71qri/TgvpyLZpTqcWNlVrUUKmTZ1XI7SSozTTDgZDeOzykdw8f07vW155jOtg7omMZ/p6oK3drTpVXDVXR4D6n2qv6co/qyj2qLXerrsKjunK3asqir/l9AiCdTHMu86oAFFw4YuqYPxR9jIY0OBrUYPx5SMf8wehzf+z1aHTf/pGgeocD6h0KpG05mUyZ26mGam+0Olrl09xan5rry9VcV67m+jLNqy2n5cFmyj0uLZ1Xo6XzapK2J7Y0Heob0cHeER2K/USle9CvI4PRf9wFw6Z6h4PqHQ7qre5jGX3PKq9LtRVu1ZV7VFPmVrXPrSqfS5Velyp9LlX53KqKPa/0ulTlc8Xej+5X7nHa+k6yAKZGQAcg0zQVCEcUCMUe4Yj8wUh8mz9kfQ3LH4poJBDWSDA84etwIKzR2OvhYFij8e0hjQYjSc9zwXBIteXR6mW0mulRfSwYzar0qLHaN1b5rPaqyusi+ECS5HA4VFPuVk35xPBuMU1TfcNB9cTC+uFBf/T5gF99w4HoPxaHg7HnQQ2MBmWaiv7D0h9Sx9GRaa+vzO1UmcepMrdT5Z6x52We2Gu3S2UeQ+Uel3yxfco9Tvnc0YfXZcjjMuR1GfK6nLGv1jZnwnuGXFT8gZJDQAemwTRNRcxoJThiRh/hiKlIRApbz2NfrUcoElEwbCoUjj4PRUwFwxGFwtH3g+GxbeFIdL9gJPp+fFvCMaGIqdC4Y4LWucPRwB0N1uF46E4M29bDH9teDB6XMaGSaFURU1Ucq3yuWDuBR/XlHlX5XFyQibxxOBzR328VHp3RNPWIzHDEjP+Up89qvRoJ6thoUMf8E38iNDgajP3EKBT/Go7doGkkGJ4wsjNfDIeSQ7vbkMc5FuQ9TkMup0MupyGP0yGXEX3tdhpyx7a7jdhXa5thyO1yyG2kPjZ6zth5YtucRuzhSHg+xTbDcMiVYhsw0+UtoLe1ten73/++urq6dPbZZ+v+++/XihUr8vXtcqZ3KKB/+Pf3onexi3XnW036Vru+OW578rbkfcbeH9tgTnFMqvNq/D6TfL905x//67HWZf1SI6Yp0zRlmtZzKfp3RWyf2L6R2Ikj4/Y1zej3iiRtMxPOrfh54sfF3tO415FYXoyM2zfx2MRzmYr+5Rg2TUViX0vr6gr7Sazwxb+O35Zme7nHqSqfSx5n9u0kw/6whv3RdgSglPncTjW5nVK1L6P9TZkaDUY05A/FfyI1Eggl/XRqOJD8PPGnWMOxfYPh7P7wi5iF/QeBHRgOyXA4ZDgccsSfa+y14YhvcyS8l3b/8e8Z1nuJx46dy6Hovo6E5xaHwyGHrPeSX0e3JL438Vyx/016Lo37vqnOJet5/HsnvB87l5T61xD/tYx/nWqfFBsnbBm34QvL52tRQ2nflyIvAf3xxx/XunXr9NBDD2nlypW69957tXr1au3fv18NDQ35+JY58/kH/iPlbGMAyfgLHcCJaqxYRSVoJnp4+3v6w//4bElP4crLFJeVK1fq/PPP149+9CNJUiQSUXNzs2677TZ961vfmvTYYk9x+cG/7dd9z79T8O+L0mM4ojc+MRxjPzp1xLYlbo+/bziSjgEA5If1k1SrpXDCI9V2frKKmOUn1+lfvtoiZxHaoYo2xSUQCKi9vV3r16+PbzMMQ6tWrdKOHTsm7O/3++X3++OvBwYGcr2krKy7/Aytu/yMoq4BAAAAJ66cX7p95MgRhcNhNTY2Jm1vbGxUV1fXhP03bNigmpqa+KO5uTnXSwIAAABmjKLPVlq/fr36+/vjj46OjmIvCQAAACianLe4zJ49W06nU93d3Unbu7u71dTUNGF/r9crr9eb62UAAAAAM1LOK+gej0fLly/X1q1b49sikYi2bt2qlpaWXH87AAAAwFbyMmZx3bp1uuGGG3TeeedpxYoVuvfeezU0NKSbbropH98OAAAAsI28BPQvfvGLOnz4sL797W+rq6tL55xzjp555pkJF44CAAAASJaXOejHo9hz0AEAAIB8KNoc9ONl/Xuh2PPQAQAAgFyy8u1U9fGSC+iDg4OSxDx0AAAA2NLg4KBqamrSvl9yLS6RSESdnZ2qqqqSg9ulF9TAwICam5vV0dFBe9EJhs/+xMVnf+Lisz+x8fkXh2maGhwc1Ny5c2UY6YcpllwF3TAMzZ8/v9jLOKFVV1fzH+sJis/+xMVnf+Lisz+x8fkX3mSVc0vR7yQKAAAAYAwBHQAAACghBHTEeb1e3XXXXfJ6vcVeCgqMz/7ExWd/4uKzP7Hx+Ze2krtIFAAAADiRUUEHAAAASggBHQAAACghBHQAAACghBDQAQAAgBJCQAcAAABKCAEdSfx+v8455xw5HA7t3r076b3XXntNn/70p+Xz+dTc3Kx77rmnOItEznzwwQe6+eabtXDhQpWVlem0007TXXfdpUAgkLQfn719tbW16ZRTTpHP59PKlSv10ksvFXtJyLENGzbo/PPPV1VVlRoaGnTNNddo//79SfuMjo6qtbVVs2bNUmVlpdasWaPu7u4irRj5cPfdd8vhcGjt2rXxbXzupYuAjiTf/OY3NXfu3AnbBwYGdPnll+vkk09We3u7vv/97+s73/mOfvzjHxdhlciVN998U5FIRA8//LD27dunjRs36qGHHtJf/dVfxffhs7evxx9/XOvWrdNdd92lV155RWeffbZWr16tnp6eYi8NObR9+3a1trZq586deu655xQMBnX55ZdraGgovs8dd9yhp556Slu2bNH27dvV2dmpa6+9toirRi7t2rVLDz/8sJYtW5a0nc+9hJlAzL/+67+aS5YsMfft22dKMv/whz/E33vggQfMuro60+/3x7fdeeed5hlnnFGElSKf7rnnHnPhwoXx13z29rVixQqztbU1/jocDptz5841N2zYUMRVId96enpMSeb27dtN0zTNvr4+0+12m1u2bInv88Ybb5iSzB07dhRrmciRwcFBc/HixeZzzz1nfuYznzFvv/120zT53EsdFXRIkrq7u/XlL39ZP/vZz1ReXj7h/R07duiiiy6Sx+OJb1u9erX279+v3t7eQi4Vedbf36/6+vr4az57ewoEAmpvb9eqVavi2wzD0KpVq7Rjx44irgz51t/fL0nx/87b29sVDAaTfi8sWbJECxYs4PeCDbS2turKK69M+nwlPvdSR0CHTNPUjTfeqFtuuUXnnXdeyn26urrU2NiYtM163dXVlfc1ojDeeecd3X///frqV78a38Znb09HjhxROBxO+dnyudpXJBLR2rVr9alPfUpLly6VFP3v2OPxqLa2Nmlffi/MfJs3b9Yrr7yiDRs2THiPz720EdBt7Fvf+pYcDsekjzfffFP333+/BgcHtX79+mIvGTmS6Wef6NChQ/rc5z6nL3zhC/ryl79cpJUDyKfW1lbt3btXmzdvLvZSkGcdHR26/fbb9fOf/1w+n6/Yy0GWXMVeAPLnG9/4hm688cZJ9zn11FP1/PPPa8eOHfJ6vUnvnXfeebruuuv005/+VE1NTROu7LZeNzU15XTdOH6ZfvaWzs5OXXLJJfrkJz854eJPPnt7mj17tpxOZ8rPls/Vnm699VY9/fTTeuGFFzR//vz49qamJgUCAfX19SVVU/m9MLO1t7erp6dH5557bnxbOBzWCy+8oB/96Ed69tln+dxLGAHdxubMmaM5c+ZMud99992n733ve/HXnZ2dWr16tR5//HGtXLlSktTS0qK//uu/VjAYlNvtliQ999xzOuOMM1RXV5efXwCmLdPPXopWzi+55BItX75cmzZtkmEk/2CNz96ePB6Pli9frq1bt+qaa66RFG1/2Lp1q2699dbiLg45ZZqmbrvtNj3xxBPatm2bFi5cmPT+8uXL5Xa7tXXrVq1Zs0aStH//fh04cEAtLS3FWDJy4LLLLtOePXuStt10001asmSJ7rzzTjU3N/O5l7JiX6WK0vP+++9PmOLS19dnNjY2mn/+539u7t2719y8ebNZXl5uPvzww8VbKI7bwYMHzUWLFpmXXXaZefDgQfPDDz+MPyx89va1efNm0+v1mo8++qj5+uuvm1/5ylfM2tpas6urq9hLQw597WtfM2tqasxt27Yl/Tc+PDwc3+eWW24xFyxYYD7//PPmyy+/bLa0tJgtLS1FXDXyIXGKi2nyuZcyAjomSBXQTdM0X331VfPCCy80vV6vOW/ePPPuu+8uzgKRM5s2bTIlpXwk4rO3r/vvv99csGCB6fF4zBUrVpg7d+4s9pKQY+n+G9+0aVN8n5GREfPrX/+6WVdXZ5aXl5uf//znk/6hDnsYH9D53EuXwzRNsxiVewAAAAATMcUFAAAAKCEEdAAAAKCEENABAACAEkJABwAAAEoIAR0AAAAoIQR0AAAAoIQQ0AEAAIASQkAHAAAASggBHQAAACghBHQAAACghBDQAQAAgBLy/wH1KgtllomROwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9,3))\n", + "ax.plot(w, abs(F));" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "evBP3qTKtwW1" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "indices = np.where(w > 0) # Select only indices for elements that correspond to positive frequencies\n", + "w_pos = w[indices]\n", + "F_pos = F[indices]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 291 + }, + "id": "CBRKgCTAtzJX", + "outputId": "7e0168aa-9d73-42a6-a3ae-d15551b69c82" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAESCAYAAABJkus2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOPpJREFUeJzt3Xl8lOWh9vFr9sk2E7IDSdgXEQEJixF3UaTqkYpWrW2p5fS0Fm2Res6R921r+7Y92Poeta1LrUel7avFFa22ShU1uIBAaJSAIJsQQnbITLZZMjPvH5MMRBYJJHlmkt/385nPTJ555pmLdsBr7tzP/ZgikUhEAAAAAOKW2egAAAAAAE6M0g4AAADEOUo7AAAAEOco7QAAAECco7QDAAAAcY7SDgAAAMQ5SjsAAAAQ56xGB/i8cDisAwcOKC0tTSaTyeg4AAAAQI+IRCJqamrSkCFDZDZ3b+w87kr7gQMHVFBQYHQMAAAAoFdUVFQoPz+/W6+Ju9KelpYmKfqHcblcBqcBAAAAeobX61VBQUGs73ZH3JX2zikxLpeL0g4AAIB+51SmgHMiKgAAABDnKO0AAABAnKO0AwAAAHGO0g4AAADEOUo7AAAAEOco7QAAAECco7Qjoe2sbVJbIGR0DAAAgF5FaUfCermsUrPvW6OFf9ygSCRidBwAAIBeQ2lHQqpv9uunf90iSfpgV4NW/rPS4EQAAAC9h9KOhPSzV7bqUGtQTlv0I/xff/9EnragwakAAAB6B6UdCefNrTV65aMDMpukp/71HI3KTlF9c0D3/WO70dEAAAB6BaUdCcXrC+pHL5VLkr59/kgVDRukn18zUZL053V7VV7pMTIeAABAr6C0I6Hc89o2VXt9Gp6ZrMWzx0qSzh2dpX+ZPEThiPSjl8oVDnNSKgAA6F8o7UgY63Y36OkP90mSll07SUl2S+y5H115hlIdVpVVNOqZjRVGRQQAAOgVlHYkBF8wpLte+FiSdNOMQhWPyuzyfI7LqTsui468/+r1bTrYEujzjAAAAL2F0o6EcP+bn+qzhlbluhxa+qXxx9xnQfEwjc9LU2NrUL96bVsfJwQAAOg9lHbEvY/3N+qxNbslSb+cd5ZcTtsx97NazPrll6MnpT6zsUKlew/1WUYAAIDeRGlHXAuGwvqP5z9WOCJdPXmIZk/IPeH+RcMydH1RviTpxy+Vqz0U7ouYAAAAvYrSjrj2hzW7ta26SenJNt199YSTes1dc8fLnWTT1iqv/rxuby8nBAAA6H2UdsStnbXN+s2bOyRJd189QVmpjpN6XWaqQ/9xxThJ0n3/+FS1Xl+vZQQAAOgLp1Xa77nnHplMJi1evDi2zefzadGiRcrMzFRqaqrmz5+vmpqa082JASYcjuiuFz5WIBTWReOyNW/K0G69/sbphZqc71aTv13/9fdPeiklAABA3zjl0r5hwwY9+uijmjRpUpftd9xxh1555RU999xzKikp0YEDB3TttdeedlAMLP/vw73auPeQUuwW/fLLZ8lkMnXr9RazST+fN1Emk/RS2QF9sKu+l5ICAAD0vlMq7c3Nzbr55pv12GOPadCgQbHtHo9Hjz/+uO677z5dcsklKioq0pNPPqkPPvhA69at67HQ6N/2H2qNLdn4n3PHa2h60ikdZ1J+um6eWShJ+snLWxRo56RUAACQmE6ptC9atEhXXnmlZs+e3WV7aWmpgsFgl+3jx49XYWGh1q5de8xj+f1+eb3eLjcMXJFIRP97ZblaAiFNGzZIX5s57LSO9++Xj1dmil07a5v1xPt7eiglAABA3+p2aV+xYoU2bdqkZcuWHfVcdXW17Ha70tPTu2zPzc1VdXX1MY+3bNkyud3u2K2goKC7kdCPvFRWqZJP62S3mvWr6ybJbO7etJjPcyfbtPRLZ0iSfvPmDh1obOuJmAAAAH2qW6W9oqJCP/jBD/TUU0/J6XT2SIClS5fK4/HEbhUVFT1yXCSe+ma/fvbKVknSDy4do1HZqT1y3PlTh2r68EFqC4b0fzqODwAAkEi6VdpLS0tVW1urqVOnymq1ymq1qqSkRL/97W9ltVqVm5urQCCgxsbGLq+rqalRXl7eMY/pcDjkcrm63DAw/fSvW9TYGtQZg136twtG9thxTaboSakWs0mvb6nWO9tre+zYAAAAfaFbpf3SSy/V5s2bVVZWFrtNmzZNN998c+yxzWbT6tWrY6/Zvn279u3bp+Li4h4Pj/7jja01evXjKlnMJt173STZLD17CYHxeS5989zhkqS7/7pFvmCoR48PAADQm6zd2TktLU0TJ07ssi0lJUWZmZmx7QsXLtSSJUuUkZEhl8ul22+/XcXFxTrnnHN6LjX6lSZfUD96abMk6dvnj9TEoe5eeZ/Fs8fo1Y8PaG9Dq35fskuLZ4/tlfcBAADoaT1+RdT7779fV111lebPn68LLrhAeXl5evHFF3v6bdCP/H1zlWq8fhVmJGvx7DG99j5pTpt+dOUESdLD7+zS3oaWXnsvAACAnmSKRCIRo0Mcyev1yu12y+PxML99gPjW8g16a1utllw2Vt+/tPdKuxRdUvLrj6/XezvrdfXkIfrdTWf36vsBAAB0Op2e2+Mj7UB3NPvb9d6O6NVK55x57JOVe5LJZNJdc8dLklaVV+tQS6DX3xMAAOB0UdphqHe21yoQCmt4ZrLG5vbMEo9fZOJQt84c4lIgFNZLZZV98p4AAACng9IOQ63aUiMpOspuMp3ehZS64yvTohfxemZDheJshhgAAMBRKO0wjL89pLe3RddMv7wPpsYc6ZopQ2S3mrWtuknlld4+fW8AAIDuorTDMB/salCzv105aQ6dXZDep++dnmyPzaF/diNX4QUAAPGN0g7D/GNLtSTpsgm5Mpv7bmpMp69My5ckvVxWycWWAABAXKO0wxChcERvbD08n90Is0ZlaWh6kry+dq3q+AIBAAAQjyjtMMSmfYdU3xxQmtOqc0ZmGpLBbDbpuqLoaDtTZAAAQDyjtMMQq8qjI9uXjs+R3Wrcx7CztL+/s0EVB1sNywEAAHAilHb0uUgkolVbo6XdqKkxnQoykjVrdHSk/7nS/YZmAQAAOB5KO/rcJ1VNqjjYJofVrAvHZRsdJ7Zm+/MbKxQKs2Y7AACIP5R29LnOkz7PH5OtZLvV4DTR0X6X06oDHp8+2FVvdBwAAICjUNrR5zpL+5wzcw1OEuW0WXTNlKGSoldIBQAAiDeUdvSpfQ2t2lbdJIvZpNlnxEdpl6QbpkenyPxjS40aWwMGpwEAAOiK0o4+1TnKPmN4hgal2A1Oc9iZQ1w6Y7BLgVBYL5cdMDoOAABAF5R29Kl4mxrTyWQy6YaOK6QyRQYAAMQbSjv6TF2TX6X7DkmSLjd4qcdjuWbKUNktZm2t8qq80mN0HAAAgBhKO/rMG1trFIlIk/LdGpKeZHScowxKseuyjt8APMcVUgEAQByhtKPPHJ4aE3+j7J1u6Fiz/aWyA/IFQwanAQAAiKK0o094fcHYGujxNp/9SLNGZ2mI2ylPW1D/2FpjdBwAAABJlHb0kbe31SoYimhkdopG56QZHee4LGaTriuKnpD6LCekAgCAOEFpR5/4x5boqHU8T43pdH3HFJn3d9Wr4mCrwWkAAAAo7egDvmBI72yvlZQYpb0gI1nnjspUJCK9sGm/0XEAAAAo7eh97++sV0sgpDyXU5OGuo2Oc1K+0jHa/tzG/QqHIwanAQAAAx2lHb2uc9WYy8/MldlsMjjNybliYp7SnFZVNrbpg10NRscBAAADHKUdvao9FNabnyTO1JhOTptF10wZIkl6ljXbAQCAwSjt6FUb9x7SwZaA3Ek2zRiRYXScbumcIvP6lmp5WoMGpwEAAAMZpR29qnNqzKVn5MhmSayP21lD3Rqfl6ZAe1gvf1RpdBwAADCAJVaLQkKJRCIJtdTj55lMpthoO1NkAACAkSjt6DVbDnhV2dgmp82sC8ZkGx3nlMw7e6hsFpPKK73acsBjdBwAADBAUdrRazqnxlw4NltJdovBaU5NRopdl0+I/pbguY2s2Q4AAIxBaUev6SztiTg15kjXT8uXJK38Z6V8wZDBaQAAwEBEaUev2FPfok9rmmU1m3Tp+Fyj45yW88dka7DbKU9bUG9srTE6DgAAGIAo7egVnaPs54zMlDvZZnCa02Mxm3RdUXS0nRNSAQCAESjt6BWHp8Yk9ih7p87S/t7OelU2thmcBgAADDSUdvS4Gq9P/9zXKEm6bEJiz2fvNCwzReeMzFAkIj27gdF2AADQtyjt6HH/6Jj3PaUgXXlup8Fpes5NMwolSX9et1etgXaD0wAAgIGE0o4e949+smrM51151mAVZiTrYEtAK9Yz2g4AAPpOt0r7I488okmTJsnlcsnlcqm4uFivvfZa7Hmfz6dFixYpMzNTqampmj9/vmpqWG1jIPG0BrV2V4Ok/jOfvZPVYtZ3LxwlSfrDmt3yt7P8IwAA6BvdKu35+fm65557VFpaqo0bN+qSSy7RNddcoy1btkiS7rjjDr3yyit67rnnVFJSogMHDujaa6/tleCIT29tr1F7OKIxOakamZ1qdJweN79oqHLSHKr2+rRyU6XRcQAAwADRrdJ+9dVX60tf+pLGjBmjsWPH6pe//KVSU1O1bt06eTwePf7447rvvvt0ySWXqKioSE8++aQ++OADrVu3rrfyI86sKo/+ZqW/TY3p5LBa9G8XjJQkPVKyS+2hsMGJAADAQHDKc9pDoZBWrFihlpYWFRcXq7S0VMFgULNnz47tM378eBUWFmrt2rXHPY7f75fX6+1yQ2LyBUMq+bROUv8t7VL0hNT0ZJv2NrTq7+XVRscBAAADQLdL++bNm5WamiqHw6Hvfve7WrlypSZMmKDq6mrZ7Xalp6d32T83N1fV1ccvNsuWLZPb7Y7dCgoKuv2HQHx485MatQVDGpqepIlDXUbH6TUpDqtuOXeEJOnht3cqHI4YnAgAAPR33S7t48aNU1lZmT788EPdeuutWrBggbZu3XrKAZYuXSqPxxO7VVSwKkeiem7jfknSl88eKpPJZHCa3vXNc4crxW7RtuomvbWt1ug4AACgn+t2abfb7Ro9erSKioq0bNkyTZ48Wb/5zW+Ul5enQCCgxsbGLvvX1NQoL+/4UyUcDkdsNZrOGxJPtcend3dEp8Z0Xj20P3Mn2/S14mGSpAff3qlIhNF2AADQe057nfZwOCy/36+ioiLZbDatXr069tz27du1b98+FRcXn+7bIM69sGm/whFpxvAMDc9KMTpOn1h43gjZrWaVVTRq7e4Go+MAAIB+zNqdnZcuXaq5c+eqsLBQTU1Nevrpp/XOO+9o1apVcrvdWrhwoZYsWaKMjAy5XC7dfvvtKi4u1jnnnNNb+REHIpGIni+NTo25blr/H2XvlJPm1A3TCvTndXv18Nu7dO6oLKMjAQCAfqpbpb22tlbf+MY3VFVVJbfbrUmTJmnVqlW67LLLJEn333+/zGaz5s+fL7/frzlz5ujhhx/uleCIH6V7D2lPfYuS7RZdedZgo+P0qe9cOFJ/Wb9P7+2sV1lFo6YUpBsdCQAA9EOmSJxNxvV6vXK73fJ4PMxvTxB3vfCxVmyo0HVF+fq/1082Ok6f++GzH+mFTft12YRcPfaNaUbHAQAAcep0eu5pz2nHwNYaaNerH1dJGhgnoB7LrReNlMkkvbG1Rturm4yOAwAA+iFKO07L6+XVava3qzAjWTNHZBgdxxCjc9J0RcfFpB55Z6fBaQAAQH9Eacdp6Vyb/bqi/H6/NvuJLLp4tCTprx8d0N6GFoPTAACA/obSjlNWcbBVa3c3yGSS5g/QqTGdJg5168Kx2QpHpN+X7DY6DgAA6Gco7Thlncs8zhqVpaHpSQanMV7naPsLpftV7fEZnAYAAPQnlHacknD48Nrs1w+gtdlPZMaIDE0fPkiBUFj/8y6j7QAAoOdQ2nFK1u1uUGVjm9IcVs3pOAkTh0fbn/pwnw62BAxOAwAA+gtKO05J5yj7VZOHyGmzGJwmflw4NltnDnGpLRjS8vf3GB0HAAD0E5R2dFuTL6i/l0fXZmdqTFcmkyk22r78g8/U5AsanAgAAPQHlHZ0298+rpIvGNao7BSdXZBudJy4M+fMPI3MTpHX166nPtxndBwAANAPUNrRbc/FTkAtGNBrsx+PxWzSrReOkiT9z7t75AuGDE4EAAASHaUd3bKrrlmlew/JYjbp2rOHGh0nbs07e6iGpiepvtmvZzdWGB0HAAAkOEo7uqXzBNQLx2Yrx+U0OE38slnM+s6FIyVJj5bsVjAUNjgRAABIZJR2nLRQOKIXN0VL+3UD/AqoJ+Mr0wqUlWpXZWObXi47YHQcAACQwCjtOGlrdtSpxutXerJNl56RY3ScuOe0WbTwvOho+8Pv7FQoHDE4EQAASFSUdpy0zqkx86YMlcPK2uwn42vnFMrltGp3XYv+vrnK6DgAACBBUdpxUhpbA3pjS40kpsZ0R5rTpltmjZAk/eJvW+VpZd12AADQfZR2nJS/fnRAgVBYZwx2aeJQt9FxEsp3LxylEVkpqvH69fO/bTU6DgAASECUdpyU5zZ2rM3OKHu3Jdktuve6STKZolOM3tpWY3QkAACQYCjt+ELbqr3aXOmR1WzSNVOGGB0nIU0bnqFvdUyTWfriZnnamCYDAABOHqUdX6hzlP3SM3KUmeowOE3iuvPycYenybzKNBkAAHDyKO04oWAorJf+WSlJur6owOA0ie3z02Te3lZrdCQAAJAgKO04obe21aqhJaCsVIcuGpdtdJyEd+Q0mbte/JhpMgAA4KRQ2nFCnWuzXzt1qKwWPi49gWkyAACgu2hhOK76Zn9sCgerxvQcpskAAIDuorTjuF76Z6XawxFNLkjXmNw0o+P0K0yTAQAA3UFpxzFFIpHYqjFcAbV3HDlN5hdMkwEAACdAaccxba70aHtNk+xWs/5lEmuz94Yku0W/7pgm8xzTZAAAwAlQ2nFMnaPsc87MkzvZZnCa/mv68Azdci4XXQIAACdGacdRfMGQ/vrRAUmcgNoX/n1OdJpMtdfHNBkAAHBMlHYc5Y8ffCZPW1BD05M0a3SW0XH6vaOmyWxnmgwAAOiK0o4uPK1BPfT2TknSHZeNlcVsMjjRwNBlmswLTJMBAABdUdrRxcMlO+X1tWtcbpq+fPZQo+MMKP8+Z5yGZyYzTQYAAByF0o6YA41tevL9zyRJ/zl3HKPsfSzJbtG9109mmgwAADgKpR0x97/xqQLtYc0YkaGLx+UYHWdAYpoMAAA4Fko7JEnbq5v0wqboMo9L546XycQou1GOnCbzy78xTQYAAFDa0eHeVdsUjkhzJ+bp7MJBRscZ0I6cJvPsxv16vbzK6EgAAMBglHZo/Z6DevOTWlnMJt05Z5zRcaDoNJmFs6LTZL6/okzrdjcYnAgAABipW6V92bJlmj59utLS0pSTk6N58+Zp+/btXfbx+XxatGiRMjMzlZqaqvnz56umpqZHQ6PnRCIR3fPaJ5KkG6YXaFR2qsGJ0OmuueM1+4xcBdrD+vYfN6q80mN0JAAAYJBulfaSkhItWrRI69at0xtvvKFgMKjLL79cLS0tsX3uuOMOvfLKK3ruuedUUlKiAwcO6Nprr+3x4OgZ/9hao037GpVks2jxpWOMjoMjWC1mPfjVszVjRIaa/O1a8MR67a5rNjoWAAAwgCkSiURO9cV1dXXKyclRSUmJLrjgAnk8HmVnZ+vpp5/WddddJ0natm2bzjjjDK1du1bnnHPOFx7T6/XK7XbL4/HI5XKdajSchPZQWHMeWKNddS267eLRTI2JU15fUDf9YZ22HPBqaHqSnr+1WIPdSUbHAgAA3XQ6Pfe05rR7PNFf12dkZEiSSktLFQwGNXv27Ng+48ePV2FhodauXXvMY/j9fnm93i439I3nS/drV12LBiXb9J0LRxodB8fhctr0x2/N0MisFFU2tunrj6/XwZaA0bEAAEAfOuXSHg6HtXjxYs2aNUsTJ06UJFVXV8tutys9Pb3Lvrm5uaqurj7mcZYtWya32x27FRQUnGokdENbIKT73/xUknT7JWOU5rQZnAgnkpXq0J8WztBgt1M7a5t1y5Pr1exvNzoWAADoI6dc2hctWqTy8nKtWLHitAIsXbpUHo8ndquoqDit4+HkPPH+HtV4/coflKSbzyk0Og5OQv6gZP154QwNSrbpo/0efefPG+VvDxkdCwAA9IFTKu233XabXn31Vb399tvKz8+Pbc/Ly1MgEFBjY2OX/WtqapSXl3fMYzkcDrlcri439K5DLQH9/p1dkqQ7Lx8nh9VicCKcrNE5aXrylhlKtlv0/s4GLV5RplD4lE9LAQAACaJbpT0Siei2227TypUr9dZbb2nEiBFdni8qKpLNZtPq1atj27Zv3659+/apuLi4ZxLjtD309k41+ds1YbBL/zJ5iNFx0E1TCtL12DemyW4x67Xyav2vFzfrNM4nBwAACcDanZ0XLVqkp59+Wi+//LLS0tJi89TdbreSkpLkdru1cOFCLVmyRBkZGXK5XLr99ttVXFx8UivHoPftP9SqP63dKym6DrjZbDI4EU7FrNFZ+u1NU/S9pzbpmY0VSk+xaencM4yOBQAAekm3RtofeeQReTweXXTRRRo8eHDs9swzz8T2uf/++3XVVVdp/vz5uuCCC5SXl6cXX3yxx4Pj1Nz3xqcKhMKaNTpT54/JMjoOTsMVEwdr2bVnSZIeLdmt35fsMjgRAADoLae1TntvYJ323vNJlVdf+u27ikSkv942S5Py042OhB7waMkuLXttmyTpV/PP0g3TObEYAIB4ZNg67Ugsv359myIR6apJgyns/ch3Lhyl7144SpK09MXNer28yuBEAACgp1HaB4i1uxr09vY6Wc0m3Xk5Vz7tb/7zinG6cXqBwhHp+38p03s76o2OBAAAehClfQCIRCK657VPJElfnVmo4VkpBidCTzOZTPrll8/S3Il5CoTC+rc/b9T7OynuAAD0F5T2AeC18mp9tN+jFLtF3790jNFx0EssZpMeuHGKzhudpdZASF9//EP9z7u7WQ4SAIB+gNLezwVDYd27arsk6dsXjFRWqsPgROhNDqtF/7Ngmq6dOlThiPSLv32iO54pky/IlVMBAEhklPZ+7pkNFdpT36KsVLv+9fyRRsdBH3DaLPrv6yfrJ1dNkMVs0ktlB3Td7z9QZWOb0dEAAMAporT3Yw3Nfj3w5g5J0vcvHaNUR7eupYUEZjKZ9K3zRujPC2coI8Wu8kqvrv7de1q7q8HoaAAA4BRQ2vupUDiiH6woU32zX6OyU3Qja3cPSOeOytJfb5ulM4e4dLAloK89/qGWv7+Hee4AACQYSns/dd8b2/Xeznol2Sx65GtFslv5v3qgyh+UrOe/e67mTRmiUDiin76yVXc+9zHz3AEASCA0uX7oja01eujt6CXtf3XdJI3NTTM4EYyWZLfo/hum6EdXniGzSXph037d8OhaVXmY5w4AQCKgtPczn9W3aMmzZZKkb547XP8yeYixgRA3TCaT/vX8kfrTt2YqPdmmj/Z7dPXv3tP6PQeNjgYAAL4Apb0faQuE9N3/V6omX7umDRuk//WlM4yOhDh03pgsvXLbeTpjsEv1zQF99bF1+vPaz5jnDgBAHKO09xORSET/+6XN2lbdpKxUhx66eSrz2HFcBRnJeuHWYl01abDawxH9+OUtuuuFzfK3M88dAIB4RKvrJ576cJ9e3FQpi9mkB796tnJdTqMjIc4l26363U1na+nc8TKbpGc2VuiGR9dpT32L0dEAAMDnUNr7gX/uO6SfvbJFkvSfV4zTOSMzDU6ERGEymfSdC0dp+S0z5E6yqayiUXMeWKMH3vyU1WUAAIgjlPYE19Ds1/ee2qRgKKK5E/P0ba56ilNwwdhsvXr7ebpgbLYC7WE98OYOXfHAGr27o87oaAAAQJT2hNZ5AaUqj08js1P06+smyWQyGR0LCaogI1l/vGW6HvrqVOWkOfRZQ6u+/vh63f6Xf6rW6zM6HgAAAxqlPYEdeQGl33+tSGlOm9GRkOBMJpOunDRYq394oW6ZNVxmk/TKRwd06X+X6I8ffKZQmBVmAAAwAqU9QXEBJfSmNKdNd199pv5623manO9Wk79dd/91i+Y99L4+3t9odDwAAAYcSnsC4gJK6CsTh7r14vdm6efzJirNadXmSo+ueeh9/eTlcnl9QaPjAQAwYFDaE8yRF1Aq4gJK6AMWs0lfP2eYVv/wQs2bMkSRiPSntXt16X+X6OWySi7KBABAH6C0J5CuF1Cy66GvcgEl9J2cNKceuPFsPf2vMzUyK0V1TX79YEWZvv74etZ2BwCgl9H4EsiRF1D63U1TlefmAkroe+eOztJri8/XDy8bK7vVrPd21uvy+0u09MXNqjjYanQ8AAD6JVMkzn637fV65Xa75fF45HK5jI4TN/6575C+8uhaBUMRLZ07Xt+5cJTRkQDtbWjRT17eopJPo+u5W8wmzZsyVN+7eJRGZacanA4AgPhyOj2X0p4APq1p0tf+50PVNvl1xZl5euRrU1mPHXFl/Z6D+t1bO/TujnpJkskkXTVpiBZdPErj8/h7DACARGnv10r3HtS3lm+Upy2ocblpev7WYtZjR9wqq2jUg2/t1Juf1MS2XT4hV7dfMkZn5bsNTAYAgPEo7f3U6k9qtOjpTfIFwyoaNkiPL5im9GS70bGAL7TlgEcPv71Lfy+vUue/MBeNy9btl4xW0bAMY8MBAGAQSns/9NzGCt314maFwhFdMj5HD311qpLsFqNjAd2ys7ZJD7+9Sy9/dCB2NdXikZm6/dLRKh6ZyTQvAMCAQmnvRyKRiH5fslu/en2bJGn+1HzdM/8s2Sws9IPEtbehRY+8s0svbNqvYCj6T07RsEFadPEoXTQ2R2Yz5R0A0P9R2vuJcDiiX/79Ez3+3h5J0ncuHKm7rhjPaCT6jcrGNj1asksrNlQo0B6WJA1NT9IN0wt0/bR8DXYnGZwQAIDeQ2nvBwLtYf3H8x/ppbIDkqQfXXmG/vX8kQanAnpHrdenx97drWc2VMjra5ckmU3SReNydOP0Al08PoffLgEA+h1Ke4Jr8bfr1qc2ac2ndbKaTbr3+kn68tn5RscCep0vGNJr5VX6y/oKrd9zMLY9O82h64vydcP0Ag3LTDEwIQAAPYfSnsAOtgR0y/IN+qiiUUk2ix7+2lRdPC7H6FhAn9td16xnNlTo+dL9amgJxLYXj8zUjTMKNOfMPDltnIwNAEhclPYEtf9Qq77xxHrtrmvRoGSbnvjmdJ1dOMjoWIChAu1hvbWtRn9ZX6E1O+piS0amJ9v05bOH6sbphRqXl2ZsSAAATgGlPQFtr27SgifWq9rr0xC3U39aOFOjc7jsO3CkysY2PbuhQs9trNABjy+2fXK+W186a7DmThyswsxkAxMCAHDyKO0JZsNnB7Vw+QZ5fe0ak5OqPy2cwaoZwAmEwhGt2VGnZ9ZX6M1PatQePvzP1oTBLs2dmKe5Z+VpdA4j8ACA+EVpTyCrtlTr+3/5p/ztXOUUOBV1TX69Xl6l18qr9eGeg7GLNknS6JxUzZ2Ypysm5mnCYBfLpQIA4gqlPQEcagno53/bqhc3VUqSLh2fowe5yilwWg62BPTG1mq9Vl6t93fWxy7cJEnDMpN1xZnRAj+lIJ0CDwAwXJ+W9jVr1ujee+9VaWmpqqqqtHLlSs2bNy/2fCQS0d13363HHntMjY2NmjVrlh555BGNGTOm1/8w8SgSiejVj6v0s1e2qL45IJNJ+tasEbpr7njWoQZ6kKctqLe21ei1zdUq+bRO/o6LN0nSYLdTc87M05wz81Q0bJDsVv7uAQD63un0XGt336ylpUWTJ0/Wt771LV177bVHPf/rX/9av/3tb/XHP/5RI0aM0I9//GPNmTNHW7duldPp7O7bJbRqj08/eqlcb35SI0kak5Oqe+ZPUtEwVogBepo7yaYvn52vL5+drxZ/u97ZXqfXyqv09rZaVXl8Wv7BZ1r+wWdKtlt0zshMnT8mS+ePydao7BRG4QEAce+0pseYTKYuI+2RSERDhgzRD3/4Q915552SJI/Ho9zcXC1fvlw33njjFx6zP4y0h8MR/WXDPt3z921q8rfLZjHpexeN1vcuHiWHlekwQF/yBUN6d0e9Xiuv0ppP61TfHOjy/GC3M1bgZ43OUkYK55gAAHpHn460n8iePXtUXV2t2bNnx7a53W7NnDlTa9euPWZp9/v98vv9sZ+9Xm9PRupzu+uatfTFzfqw4+qOUwrS9av5k1hXGjCI02bRZRNyddmEXIXDEW2rbtK7O+r07o56rf/soKo8Pj27cb+e3bhfJpM0cYhb54/J0nljslQ0bBBftAEAcaFHS3t1dbUkKTc3t8v23Nzc2HOft2zZMv3sZz/ryRiGCIbCeuzd3XrgzR0KtIeVZLPozjnj9M1zh8ti5lfvQDwwm02aMMSlCUNc+s6Fo+QLhrR+z8FYid9W3aTNlR5trvTo4Xd2Kclm0TkjMzRrdLTAnznEzXx4AIAherS0n4qlS5dqyZIlsZ+9Xq8KCgoMTNR95ZUe/ecLH2vLgehvCc4fk6X/+vJZKsjgoi9APHPaLLpgbLYuGJstSar1+vTeznq9t6Nea3bUq77Zr7e31+nt7XUd+5s1OT9d04YP0rThGZpaOEjuJJuRfwQAwADRo6U9Ly9PklRTU6PBgwfHttfU1GjKlCnHfI3D4ZDD4ejJGH3GFwzpgTd36LF3dysUjsidZNOPr5qg+VOHcmIbkIByXE5dOzVf107NVyQSnUrz3o56fbjnoEr3HtSh1qA+3HOwY/rbLplM0rjcNBUNGxQt8sMylD8oib//AIAe16OlfcSIEcrLy9Pq1atjJd3r9erDDz/Urbfe2pNvZahIJKJ3Pq3T/3llq/bUt0iSrpw0WD+9+kxlpyXmFxAAXZlMJp0x2KUzBrv07QtGKhKJaFddizZ+dlAb9x7Sxs8O6rOGVm2rbtK26iY99eE+SVKuy6FpwzM0bdggTS0cpHF5aXLamBcPADg93S7tzc3N2rlzZ+znPXv2qKysTBkZGSosLNTixYv1i1/8QmPGjIkt+ThkyJAua7knKl8wpJf+Wakn3t+jT2uaJUX/A/3zaybq8jPzDE4HoDeZTCaNzknV6JxU3TijUFL06qylHQV+495DKq/0qMbr198+rtLfPq6SJFnNJo3NTdNZQ906K9+ts4a6KfIAgG7r9pKP77zzji6++OKjti9YsEDLly+PXVzpD3/4gxobG3Xeeefp4Ycf1tixY0/q+PG45GOt16c/r9urpz7cp4Mt0eXiUuwW3TijUD+YPUYuJ3NaAUhtgZA+2t+o0r2HtOGzg/p4vyf2b8aROov8pHy3Jg6NFvnxg9NYqQYA+rk+vSJqb4un0l5e6dET7+3RKx8fiF0efWh6km6ZNVxfmV5AWQdwQpFIRAc8Pm3e39ixKo1X5ZXHLvI2y+ER+QlDXBqXm6bxeS65k/l3BgD6C0p7DwqFI1r9SY0ef29PbK11SSoaNkgLzxuhyyfkymphyTcApyYSiaiysU3lHUtLfrzfo/JKjw61Bo+5f57LqXF5adFbbvR+dE4q02sAIAFR2ntAs79dz22s0PIPPtPehlZJksVs0pVnDda3zhuhKQXpfZYFwMByZJH/eL9H2ztObq1sbDvm/hazScMzkzuKvEvj8tI0Pi9NBRnJXBcCAOIYpf0URSIRba9p0vMb9+uZDRVq8rdLktxJNt00o1ALzh2mwe6kXs0AAMfT5Avq05pogf+0o8hvr2lS43FG5e1Ws0ZkpmhkdopGZad2uU9jOh8AGI7S3g37Glr1/q56vb+zXut2N6i++fDc0pFZKbrlvBGaP3Woku2GX3cKAI4SiURU2+TX9uqm2Ij89hqvdtQ0y98ePu7rstMcGpWdopHZqYcLfVaqhg5KYnQeAPoIpf0Eapt8WrurQe/vrNcHuxq0/1DXXzc7bWYVj8zU14uH6aKxOTLzHy8ACSgUjqjyUJt21Tdrd12LdtU1a3dds3bVtaiuyX/c19mtZhVmJGtYRrIKM6P3wzJTVJiZrIJBybJbOYcHAHoKpf0InragPtzdoA86ivqO2uYuz1vNJp1dmK7iUVmaNSpTUwrTWWYNQL/m9QW1u65Fu+uOLPQt2lPfokDo+KPzZpM02J2kYZnJGpaZrMKMlI776M9MuQGA7qG0S7rvjU9Vsr1Wmys9Ch/xJzKZpAmDXTp3VKbOHZ2lGcMzlOJg6gsAdI7Of9bQor0HW7WvoUV7G1q172Cr9ja0qi0YOuHr3Uk25Q9K0tD0JA0dlKT8Qckamp6k/EHRmzvJJpOJ314CQKfTKe39pr2u29Wgj/Z7JEXnphePytSs0VkqHpmpQSl2g9MBQPyxmE0qzIxOi/m8SCSiuma/9jVEC3ys1B9s1b6GVjW0BORpC8rTFtSWA95jHj/FbulS5od2FPwh6Uka7HYqJ83BEroAcJL6zUj7qi3VavK169xRmRqSzoovANCbmnxBVTa2qfJQmyob27T/UPTx/sY2VR5q7XKS//GYTVJOmlN5bqcGu50a7I6W+Ty3U0PSncpzJyknzSEbxR5AP8H0GABAXPEFQ13KfGVja+xxlcenGq9P7eEv/s+PySRlpzo0OD1JuWkO5bgcyk1zKsflUI7LGXuckWxnIQEAcY/pMQCAuOK0WTSqY3nJYwmHI6pv8auq0acqj0/VnjZVeX2qavSp2uNTlbdN1R6fgqHoEpe1J1gBR4ouMpCdFi3yOWkO5bocyklzKtflUFaqQ5mpDmWm2JWd5uBqsgASEqUdANDnzGaTctKcyklzanLBsfcJhyNqaAlES7ynTTVNftV5farx+lXbdPi+oSWg9nBEVZ7oF4AvkmK3REt8ql1ZqQ5lpdqVmdJx32W7Q+lJNkbwAcQFSjsAIC6ZO0bPs9McOivffdz9gqGw6pv9qvX6VeP1HVXuG1oCqm/yq74loEB7WC2BkFoORlfJ+SIWs0mDku3K6ijymUfep3zu51RG8QH0Hko7ACCh2SzmjpNYT7wIQSQSUbO/XfXNATU0+6P3LX7VN0XvG5oDqmv2q6HZr4aWgBpbgwqFI6pv9qu+2S+p6QuzpNgtSk+2a1CKTelJdqUn2zQo2a5BybbjbLcrzWllNB/AF6K0AwAGBJPJpDSnTWlOm0ZkpXzh/oH2sA61BlTfHC30sfvPFf3O7YFQxyh+ILqizskym6Jr3g9KPlzm02OPO8r+EcW/c58kO6P6wEBCaQcA4BjsVrNyXU7lupxfuG8kElGTv10NzQEdag2osTU6Un+oNajG1ui2Q61BeVqDHc9H71sDIYUj0qGOfbvDYTUrPdkmd5JNLqdNriSbXE5rx71NriSrXM6O5z+3Lc1pZY18IMFQ2gEAOE0mkylaip02jdAXj+J38reHOop8MFb2o0X/2GW/80tAezgif3tYNV6/arwnXlnneFLsFrmSjiz91uOX/87HTptSnValOqyyWyn9QF+itAMAYBCH1aIcl0U5JzGa36lzbn5jR7lv8gXl9QXlbWuXp63zcVBeX3vHfdfnWgMhSeqYyhM6qRV3jsVuNSvNYY2V+FSHVWmdj51WpTpsh392WJXyuec7X5tks8hkYk4/8EUo7QAAJJAj5+YXZHT/9cFQWE3HKfRHbjuy/HvaDj/nC4YlRef8N7QH1NDyxVe/PRGzSR2F33ZE4e+4t1uV7LAo1WFVst2qFIdFyXarUjvuO39O6Xic4rDKYTXzJQD9EqUdAIABxGYxKyPFrowU+ym9vj0UVos/pCZ/UM3+djX72tXUcd/ib1ezv11NvvbYc83+zuc/t7+/XZGIFI4o+lsBX3uP/PnMJnWU+GjhT7FblWzvKP4Oq1LsRxT/I35OcUT3S7JblGSL3icf8dhu4csAjEVpBwAAJ81qMcudbJY72XZax4lEImoNhI5R8oOxn1v87WoJhNTacf/5n1sDHfv4Q2oLRqf9hCNSU8cXhZ5kNknJdquctq5lPqnjZ6fdouQuj61KspuVZLfG9jnqNZ3b7RY5rRaW/sQJUdoBAECfM5lMSumY657rOv3jhcIRtQU7ir2/Xa2xkh8t9a1H3Dcf9XP0NW3BsNoC7WoLhtQaCMkXDCkYikiKfhlo7vgNQW9x2sxK7ij5nSP9x/qS4LRZ5LSZ5bQefuywWeSwmjt+tsh55GNb9HHn80whSkyUdgAAkPAsZlPspNeeFAyF1RYMqS0QvbUGQod/DkZLvy/4ue2BkFo/99gXCKk12B7b1vnFwN8ejr2XLxiWL3h65wicrMMFv+PeapGj44uAw3as8m+Ww3rEF4BjfDE48vnO4zisZtmt0ecs/CbhtFDaAQAAjsNmMctmMcvlPL3pQMcT7vgNQdcvAp2P29UWCHf5YtAaCMnXHpI/GJa/PdRR9EMdt7B8Hdv8wegXgthz7WGFwpHY+/rbw/K3h+U5+euAnTaL2SSHtWuRP/z4WNuixd9uMXd8AbB87vXRbcd8HHud5YjXmxP63ARKOwAAgEHM5sPThHpbMBQ+XO6PKPVdy3/HfccXgyO/BHT9YnDkl4Lw536ObguEun5RCIUjsS8eRjpc8qMl3t7xJcBmOXzf+dyR2zpfZ7OYumyzH3F/1DG6HNekQFvzKeemtAMAAAwAnb81SDv5ywKctvZQtLz7g4fv/e2h2Eh/oP3wz4GObf720OHHwbACodBRrz/8+HjH6LrtSIGObU199z9DTNjfesqvpbQDAACgV1gtZlktZiWf2gqjPSISiSgQ6lroY0U/GFaw47nOfYKhiAKhkILtEflj27red+4b2xYKK9AefZ9gl2N13b/NHFDFKf45KO0AAADot0wmU8d8eIvSDM7i9XrlXnZqrzX3bBQAAAAAPY3SDgAAAMQ5SjsAAAAQ5yjtAAAAQJyjtAMAAABxjtIOAAAAxDlKOwAAABDnKO0AAABAnKO0AwAAAHGO0g4AAADEuV4r7Q899JCGDx8up9OpmTNnav369b31VgAAAEC/1iul/ZlnntGSJUt09913a9OmTZo8ebLmzJmj2tra3ng7AAAAoF/rldJ+33336dvf/rZuueUWTZgwQb///e+VnJysJ554ojfeDgAAAOjXery0BwIBlZaWavbs2YffxGzW7NmztXbt2qP29/v98nq9XW4AAAAADuvx0l5fX69QKKTc3Nwu23Nzc1VdXX3U/suWLZPb7Y7dCgoKejoSAAAAkNAMXz1m6dKl8ng8sVtFRYXRkQAAAIC4Yu3pA2ZlZclisaimpqbL9pqaGuXl5R21v8PhkMPh6OkYAAAAQL/R4yPtdrtdRUVFWr16dWxbOBzW6tWrVVxc3NNvBwAAAPR7PT7SLklLlizRggULNG3aNM2YMUMPPPCAWlpadMstt/TG2wEAAAD9Wq+U9htuuEF1dXX6yU9+ourqak2ZMkWvv/76USenAgAAAPhipkgkEjE6xJG8Xq/cbrc8Ho9cLpfRcQAAAIAecTo9t1dG2k9H53cI1msHAABAf9LZb09lzDzuSntDQ4MksV47AAAA+qWGhga53e5uvSbuSntGRoYkad++fd3+w2Dg8Xq9KigoUEVFBdOpcEJ8VtAdfF5wsvisoDs8Ho8KCwtjfbc74q60m83RVSjdbjcffpw0l8vF5wUnhc8KuoPPC04WnxV0R2ff7dZreiEHAAAAgB5EaQcAAADiXNyVdofDobvvvlsOh8PoKEgAfF5wsvisoDv4vOBk8VlBd5zO5yXu1mkHAAAA0FXcjbQDAAAA6IrSDgAAAMQ5SjsAAAAQ5yjtAAAAQJyjtAMAAABxLu5K+0MPPaThw4fL6XRq5syZWr9+vdGREIfWrFmjq6++WkOGDJHJZNJLL71kdCTEqWXLlmn69OlKS0tTTk6O5s2bp+3btxsdC3HqkUce0aRJk2JXtywuLtZrr71mdCwkgHvuuUcmk0mLFy82Ogri0E9/+lOZTKYut/Hjx3frGHFV2p955hktWbJEd999tzZt2qTJkydrzpw5qq2tNToa4kxLS4smT56shx56yOgoiHMlJSVatGiR1q1bpzfeeEPBYFCXX365WlpajI6GOJSfn6977rlHpaWl2rhxoy655BJdc8012rJli9HREMc2bNigRx99VJMmTTI6CuLYmWeeqaqqqtjtvffe69br42qd9pkzZ2r69Ol68MEHJUnhcFgFBQW6/fbbdddddxmcDvHKZDJp5cqVmjdvntFRkADq6uqUk5OjkpISXXDBBUbHQQLIyMjQvffeq4ULFxodBXGoublZU6dO1cMPP6xf/OIXmjJlih544AGjYyHO/PSnP9VLL72ksrKyUz5G3Iy0BwIBlZaWavbs2bFtZrNZs2fP1tq1aw1MBqA/8Xg8kqJFDDiRUCikFStWqKWlRcXFxUbHQZxatGiRrrzyyi79BTiWHTt2aMiQIRo5cqRuvvlm7du3r1uvt/ZSrm6rr69XKBRSbm5ul+25ubnatm2bQakA9CfhcFiLFy/WrFmzNHHiRKPjIE5t3rxZxcXF8vl8Sk1N1cqVKzVhwgSjYyEOrVixQps2bdKGDRuMjoI4N3PmTC1fvlzjxo1TVVWVfvazn+n8889XeXm50tLSTuoYcVPaAaC3LVq0SOXl5d2eR4iBZdy4cSorK5PH49Hzzz+vBQsWqKSkhOKOLioqKvSDH/xAb7zxhpxOp9FxEOfmzp0bezxp0iTNnDlTw4YN07PPPnvSU+/iprRnZWXJYrGopqamy/aamhrl5eUZlApAf3Hbbbfp1Vdf1Zo1a5Sfn290HMQxu92u0aNHS5KKioq0YcMG/eY3v9Gjjz5qcDLEk9LSUtXW1mrq1KmxbaFQSGvWrNGDDz4ov98vi8ViYELEs/T0dI0dO1Y7d+486dfEzZx2u92uoqIirV69OrYtHA5r9erVzCUEcMoikYhuu+02rVy5Um+99ZZGjBhhdCQkmHA4LL/fb3QMxJlLL71UmzdvVllZWew2bdo03XzzzSorK6Ow44Sam5u1a9cuDR48+KRfEzcj7ZK0ZMkSLViwQNOmTdOMGTP0wAMPqKWlRbfccovR0RBnmpubu3w73bNnj8rKypSRkaHCwkIDkyHeLFq0SE8//bRefvllpaWlqbq6WpLkdruVlJRkcDrEm6VLl2ru3LkqLCxUU1OTnn76ab3zzjtatWqV0dEQZ9LS0o46NyYlJUWZmZmcM4Oj3Hnnnbr66qs1bNgwHThwQHfffbcsFotuuummkz5GXJX2G264QXV1dfrJT36i6upqTZkyRa+//vpRJ6cCGzdu1MUXXxz7ecmSJZKkBQsWaPny5QalQjx65JFHJEkXXXRRl+1PPvmkvvnNb/Z9IMS12tpafeMb31BVVZXcbrcmTZqkVatW6bLLLjM6GoAEtn//ft10001qaGhQdna2zjvvPK1bt07Z2dknfYy4WqcdAAAAwNHiZk47AAAAgGOjtAMAAABxjtIOAAAAxDlKOwAAABDnKO0AAABAnKO0AwAAAHGO0g4AAADEOUo7AAAAEOco7QAAAECco7QDAAAAcY7SDgAAAMS5/w+DbaK4ABfJgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9,3))\n", + "ax.plot(w_pos, abs(F_pos))\n", + "ax.set_xlim(0, 5);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TPksz7ANt3C7" + }, + "source": [ + "# **Linear algebra**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bS_h-tzCt2fB" + }, + "outputs": [], + "source": [ + "from scipy.linalg import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jFCHy1-juFLj" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from scipy.linalg import solve\n", + "\n", + "A = np.array([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])\n", + "b = np.array([1, 2, 3])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y8VmPeOF4ATb", + "outputId": "1024f4fe-1469-4200-fb6c-3d6f7f911a86" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solution: [-0.05555556 0.11111111 0.27777778]\n", + "Residuals: []\n", + "Rank: 2\n", + "Singular Values: [1.68481034e+01 1.06836951e+00 4.41842475e-16]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "A = np.array([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])\n", + "b = np.array([1, 2, 3])\n", + "\n", + "# Using least squares method for approximate solution\n", + "x, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)\n", + "\n", + "print(\"Solution:\", x)\n", + "print(\"Residuals:\", residuals)\n", + "print(\"Rank:\", rank)\n", + "print(\"Singular Values:\", s)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NPGHjK5sEiPx", + "outputId": "a3b0c950-55be-4523-aad8-640ca5b9ffb0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Determinant: 0.0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from numpy.linalg import det\n", + "\n", + "A = np.array([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])\n", + "\n", + "determinant = det(A)\n", + "print(f\"Determinant: {determinant}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "Tf5BX52luJMa", + "outputId": "92596d1e-d10d-4f93-fa85-64bbecddc2b1" + }, + "outputs": [ + { + "ename": "LinAlgError", + "evalue": "Matrix is singular.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mLinAlgError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msolve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/scipy/linalg/_basic.py\u001b[0m in \u001b[0;36msolve\u001b[0;34m(a, b, lower, overwrite_a, overwrite_b, check_finite, assume_a, transposed)\u001b[0m\n\u001b[1;32m 217\u001b[0m (a1, b1))\n\u001b[1;32m 218\u001b[0m \u001b[0mlu\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mipvt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minfo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetrf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moverwrite_a\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moverwrite_a\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 219\u001b[0;31m \u001b[0m_solve_check\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 220\u001b[0m x, info = getrs(lu, ipvt, b1,\n\u001b[1;32m 221\u001b[0m trans=trans, overwrite_b=overwrite_b)\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/scipy/linalg/_basic.py\u001b[0m in \u001b[0;36m_solve_check\u001b[0;34m(n, info, lamch, rcond)\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'LAPACK reported an illegal value in {-info}-th argument.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 40\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mLinAlgError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Matrix is singular.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlamch\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mLinAlgError\u001b[0m: Matrix is singular." + ] + } + ], + "source": [ + "x = solve(A, b)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gmYNhK1puMs1", + "outputId": "ab6b8e4a-8afc-4b3f-edfd-b96e0314f8ea" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.11022302e-16, 8.88178420e-16, 1.77635684e-15])" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check\n", + "np.dot(A, x) - b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qprFrDJguQCT", + "outputId": "e800bae1-05eb-40e6-a710-8bdde0a34761" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Matrix A:\n", + " [[0.95019888 0.66194852 0.56446595]\n", + " [0.70981873 0.91945398 0.86654513]\n", + " [0.12835208 0.67897854 0.77179328]]\n", + "Matrix B:\n", + " [[0.71093219 0.75973116 0.20471848]\n", + " [0.0670231 0.87294039 0.97237829]\n", + " [0.16064186 0.29623586 0.97444629]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# Generating random 3x3 matrices\n", + "A = np.random.rand(3, 3)\n", + "B = np.random.rand(3, 3)\n", + "\n", + "print(\"Matrix A:\\n\", A)\n", + "print(\"Matrix B:\\n\", B)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YRicNz0wuSuP" + }, + "outputs": [], + "source": [ + "X = solve(A, B)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3bwvA8oRuU_y", + "outputId": "8580baaa-c127-4a2b-f762-331af674f3f0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 2.73154382, -0.09819417, -1.4558697 ],\n", + " [-10.55637333, 3.79259058, 4.46733057],\n", + " [ 9.04075433, -2.93634107, -2.42540514]])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DwN56fNuuYkH", + "outputId": "3685cf54-4a48-46c9-9126-efc52eb87238" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Result: 0.6444567142717144\n" + ] + } + ], + "source": [ + "# check\n", + "import numpy as np\n", + "\n", + "# Example random matrices\n", + "A = np.random.rand(3, 3)\n", + "X = np.random.rand(3, 3)\n", + "B = np.random.rand(3, 3)\n", + "\n", + "# Correct dot product and norm syntax\n", + "result = np.linalg.norm(np.dot(A, X) - B)\n", + "\n", + "print(\"Result:\", result)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CpDg9Vi6uotW" + }, + "source": [ + "## **Eigenvalues and eigenvectors**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HKtkpTXtuctg", + "outputId": "187c52f0-0874-4042-afb6-c973471f17aa" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.27597295+0.j, 0.38133147+0.j, -0.17697118+0.j])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evals = eigvals(A)\n", + "evals" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fkkXNBuFuuM8" + }, + "outputs": [], + "source": [ + "evals, evecs = eig(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OPVSLK-buzCa", + "outputId": "11cdeb42-3f3c-40f2-9122-373a820f3815" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.27597295+0.j, 0.38133147+0.j, -0.17697118+0.j])" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evals" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mUHu2Vjhu0RU", + "outputId": "a313d386-e5ba-4f90-c9cc-506f988289fb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.86438883, -0.62943301, -0.34303594],\n", + " [-0.21049417, 0.65062514, -0.02860492],\n", + " [-0.45664445, 0.42485411, 0.93888663]])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evecs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aBw84OlLu3Ci", + "outputId": "fa7cf9c8-9b2a-410a-8e93-e5152d7718af" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Result: 2.220446049250313e-16\n" + ] + } + ], + "source": [ + "n = 1\n", + "\n", + "norm(dot(A, evecs[:,n]) - evals[n] * evecs[:,n])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9DUlXU7nu7VC" + }, + "source": [ + "## **Matrix operations**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SUojkh0yu54I" + }, + "outputs": [], + "source": [ + "# the matrix inverse\n", + "inv(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YJfDwaFCvCtK", + "outputId": "30611ea1-c65c-42f1-e01f-7606e1e347ce" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.0861086267068873" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# determinant\n", + "det(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RMHucu4VvFcs", + "outputId": "2ca961bc-8726-4f05-a7cc-40491e91cb3a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.116672736016927 5.0\n" + ] + } + ], + "source": [ + "# norms of various orders\n", + "import numpy as np\n", + "from numpy.linalg import norm\n", + "\n", + "print(norm(A, ord=2), norm(A, ord=np.inf))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rA3BzwClvIh5" + }, + "source": [ + "## **Sparse matrices**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "baOy_yePvHbg" + }, + "outputs": [], + "source": [ + "from scipy.sparse import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tZjU_nPovXs1", + "outputId": "d794bbec-4873-495e-b7c6-1d5ad56d45e7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 0 0 0]\n", + " [0 3 0 0]\n", + " [0 1 1 0]\n", + " [1 0 0 1]]\n" + ] + } + ], + "source": [ + "# dense matrix\n", + "import numpy as np\n", + "\n", + "M = np.array([[1, 0, 0, 0],\n", + " [0, 3, 0, 0],\n", + " [0, 1, 1, 0],\n", + " [1, 0, 0, 1]])\n", + "print(M)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jhITlzShOhBv", + "outputId": "5ce24aba-e49a-456c-a595-ac789192070e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# convert from dense to sparse\n", + "A = csr_matrix(M); A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cF_ZZRIuP9Na", + "outputId": "e9d130ca-a13f-4ce1-cceb-3ef416ff9618" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1, 0, 0, 0],\n", + " [0, 3, 0, 0],\n", + " [0, 1, 1, 0],\n", + " [1, 0, 0, 1]])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# convert from sparse to dense\n", + "A.todense()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1uytQMUNQA_x", + "outputId": "44dba57b-9fbc-412f-f794-5efb25330abe" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2qtaU7NgVHK0", + "outputId": "a6e2d7e8-1544-4a07-c1a2-276b8a2f7fba" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = csr_matrix(A); A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uaL2CQMpVILD", + "outputId": "a9606a72-33c2-4abe-9a3c-5d29b0dcd553" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = csc_matrix(A); A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s2QmD4QkVMGc", + "outputId": "0df06339-d75a-424d-ff5a-c75f94aef98e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1, 0, 0, 0],\n", + " [0, 3, 0, 0],\n", + " [0, 1, 1, 0],\n", + " [1, 0, 0, 1]])" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.todense()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fyYVDvzkVXvl", + "outputId": "bee77cfe-5d10-449f-a829-6ed4bfe4781c" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1, 0, 0, 0],\n", + " [0, 9, 0, 0],\n", + " [0, 4, 1, 0],\n", + " [2, 0, 0, 1]])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(A * A).todense()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XKnPdQB0Vai4", + "outputId": "1f139795-4c3d-434b-c1e0-23d1cd2e3539" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1, 0, 0, 0],\n", + " [0, 3, 0, 0],\n", + " [0, 1, 1, 0],\n", + " [1, 0, 0, 1]])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.todense()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Fcg49_BRVc8G", + "outputId": "09a6ac94-f40d-434a-8809-d23dc782e0b9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1, 0, 0, 0],\n", + " [0, 9, 0, 0],\n", + " [0, 4, 1, 0],\n", + " [2, 0, 0, 1]])" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.dot(A).todense()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cGbxCXxxVfqR", + "outputId": "30784ef5-c2c3-4479-c0a5-69fb1de371e5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1]\n", + " [2]\n", + " [3]\n", + " [4]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "v = np.array([1, 2, 3, 4])[:, np.newaxis]\n", + "print(v)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ziq6qwMRVie7", + "outputId": "e4336910-d69f-427c-8906-7a9fe682eb5d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1],\n", + " [6],\n", + " [5],\n", + " [5]])" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sparse matrix - dense vector multiplication\n", + "A * v" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xfPXgk0dVlJI", + "outputId": "3160b24c-acd9-47e9-e9bd-870e9abd031a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1],\n", + " [6],\n", + " [5],\n", + " [5]])" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# same result with dense matrix - dense vector multiplication\n", + "A.todense() * v" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bkDQmfBAWJrd" + }, + "source": [ + "# **Optimization**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rRvSuVveWGSP" + }, + "outputs": [], + "source": [ + "from scipy import optimize" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ybt31lR6WUYW" + }, + "source": [ + "## **Finding a minima**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "rdHV318DWQrS", + "outputId": "ef054d6b-076b-4f08-f639-e34af3920ae6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASMdJREFUeJzt3Xl8lOW9Pv7rmT3LzGTfyB72JWGPKFIQKmAP6k+KVVGxIi4H7BH6rTY9rVt7hKqtHtGjdoO6FbUt4K4oCCohrJFFAgQSsidkm0kmyazP74/JDETCkmQmzzMz1/v1el6amcnk84gwF/f9ue9bEEVRBBEREZGMKKQugIiIiOj7GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdlRSF9AfLpcLNTU10Ov1EARB6nKIiIjoMoiiiLa2NqSkpEChuPgYSUAGlJqaGqSlpUldBhEREfVDZWUlUlNTL/qagAwoer0egPsGDQaDxNUQERHR5TCbzUhLS/N+jl9MQAYUz7SOwWBgQCEiIgowl9OewSZZIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIi8vqmtBH/vfEQPj5UK2kdDChERETktetUE94sqsCOE2ckrYMBhYiIiLxOnbEAAHLiIyWtgwGFiIiIvE6eaQcAZMdHSFoHAwoREREBAFwuEWWNHEEhIiIiGalu7YTV4YJGqUBqdLiktTCgEBEREYCz0zsZseFQKgRJa2FAISIiIgDyaZAFGFCIiIio26lGeTTIAgwoRERE1O1kA0dQiIiISGY4gkJERESy0tZlR73ZCgDI5ggKERERyYFn/5O4SC2MYWqJq2FAISIiIpxdwSOH6R2AAYWIiIhwdg8UOTTIAgwoREREhHP3QOEIChEREcmEXA4J9GBAISIiCnFOGR0S6MGAQkREFOJqZHRIoAcDChERUYjzTO9kxkl/SKAHAwoREVGI8y4xjpPH9A7AgEJERBTy5NYgCzCgEBERhbyzS4wDeARlx44dWLBgAVJSUiAIAjZt2tTjeUEQer2eeeYZ72syMzPPe37NmjUDvhkiIiLqu6AYQbFYLMjLy8NLL73U6/O1tbU9rr/97W8QBAELFy7s8bonn3yyx+sefPDB/t0BERER9Vtblx0NbfI5JNBD1ddvmD9/PubPn3/B55OSknp8vXnzZsyaNQvZ2dk9Htfr9ee9loiIiAaX3A4J9PBrD0p9fT0+/PBDLF269Lzn1qxZg9jYWEyYMAHPPPMMHA6HP0shIiKiXshxegfoxwhKX/z973+HXq/HTTfd1OPxn/3sZ5g4cSJiYmKwc+dOFBQUoLa2Fn/84x97fR+r1Qqr1er92mw2+7NsIiKikCHHBlnAzwHlb3/7GxYvXgydTtfj8VWrVnn/PTc3FxqNBvfddx9Wr14NrVZ73vusXr0aTzzxhD9LBQB8dKgWf/nqFK7IjsXD80b6/ecRERFJ7ewpxvIaQfHbFM9XX32FY8eO4Z577rnka/Pz8+FwOFBeXt7r8wUFBTCZTN6rsrLSx9W6WawO7K9oxbdVrX55fyIiIrkJuRGUv/71r5g0aRLy8vIu+dri4mIoFAokJCT0+rxWq+11ZMXXchLcvzgnGyx+/1lERERSc7pEnOpukg34HpT29naUlpZ6vy4rK0NxcTFiYmKQnp4OwN0j8u677+IPf/jDed9fWFiIoqIizJo1C3q9HoWFhVi5ciVuv/12REdHD+BWBi6ne4vfOnMX2q0ORGr9OgNGREQkqaqWDtgcLmhU8jkk0KPPn8B79+7FrFmzvF97+kmWLFmC9evXAwA2bNgAURRx6623nvf9Wq0WGzZswOOPPw6r1YqsrCysXLmyR1+KVIzhasRFatHYbsXJhnbkpUVJXRIREZHfnKj39J9EyuaQQI8+B5SZM2dCFMWLvubee+/Fvffe2+tzEydOxK5du/r6YwfN0IQId0A5w4BCRETB7USDO6AMS5BX/wnAs3jO42kS8nQ1ExERBasTDW0AGFACgjegsFGWiIiCnGeKZ1iiXuJKzseA8j3elTwcQSEioiDmcoko9UzxJHIERfY8G9WUN1ngcLokroaIiMg/qls70Wl3Qq0UkBEjrxU8AAPKeVKMYQhTK2F3iqho7pC6HCIiIr/wjJ5kx0VCpZRfHJBfRRJTKATvZjUnz7APhYiIgtPx+u4GWRlO7wAMKL3iSh4iIgp2Z5cYy69BFmBA6dXZlTwMKEREFJxOyLhBFmBA6VVOgnuKp5QjKEREFIREUURpvXz3QAEYUHp17gjKpXbNJSIiCjQ1pi5YbE6oFAIy4+R1SKAHA0ovsuIiIAiAucuBxnab1OUQERH51Inu0ZOsuAioZbiCB2BA6ZVOrURa96mObJQlIqJgI+cN2jwYUC4gx7vUmAGFiIiCi3eJsUxX8AAMKBfk6UMp5UoeIiIKMnJfwQMwoFzQ2TN5uFkbEREFD/cKHnnvgQIwoFwQ90IhIqJgVG+2os3qgFIhIDNOfmfweDCgXMDQ7hGU6tZOdNqcEldDRETkG57+k8zYcGhVSomruTAGlAuIidAgOlwNADjVyFEUIiIKDnLf4t6DAeUizp7Jwz4UIiIKDqUN8j4k0IMB5SK4koeIiILN8e4G2aEy3eLegwHlIjxn8nAvFCIiCgaiKHp3kR2eyCmegMWVPEREFEzOtFlh7nJAIbi3uZczBpSL8Ax/lTVa4HTx0EAiIgpsngbZjNgI6NTyXcEDMKBcVGp0ODRKBawOF2paO6Uuh4iIaEDObnEv7/4TgAHlopQKwTsEdqK765mIiChQBUqDLMCAckmeZVieX1QiIqJAdazODAAYkSTvBlmAAeWSPF3OnmExIiKiQCSKovcv2yOTDBJXc2kMKJcwvHsE5QRHUIiIKIBVtXSi3eqAWikgO17eK3gABpRLGtY9gnKioQ0uruQhIqIAVVLnngnIiY+EWin/j3/5VyixjJhwaFQKdNldqGzpkLocIiKifvH0n4wMgP4TgAHlklRKhXfDNjbKEhFRoPKMoIxMln//CcCAclmGe1fysFGWiIgCkyegBMIKHoAB5bJ4VvKcYEAhIqIAZHU4UdZoARDEUzw7duzAggULkJKSAkEQsGnTph7P33XXXRAEocc1b968Hq9pbm7G4sWLYTAYEBUVhaVLl6K9Xb7TJ54d9zjFQ0REgai0oR1OlwhjmBpJBp3U5VyWPgcUi8WCvLw8vPTSSxd8zbx581BbW+u9/vGPf/R4fvHixThy5Ai2bNmCDz74ADt27MC9997b9+oHiWcE5eSZdp7JQ0REAaek9uz0jiAIEldzeVR9/Yb58+dj/vz5F32NVqtFUlJSr88dPXoUn3zyCfbs2YPJkycDANauXYvrrrsOzz77LFJSUvpakt+lxYRDq3KfyVPR3CH7EyCJiIjOday7RSFQpncAP/WgfPnll0hISMCIESPwwAMPoKmpyftcYWEhoqKivOEEAObMmQOFQoGioqJe389qtcJsNve4BpNSIZyz5T37UIiIKLB4V/AEwA6yHj4PKPPmzcNrr72GL774Ar///e+xfft2zJ8/H06nEwBQV1eHhISEHt+jUqkQExODurq6Xt9z9erVMBqN3istLc3XZV/S8ITuLe/rGFCIiCiwlNQGzhk8Hn2e4rmUW265xfvv48aNQ25uLnJycvDll19i9uzZ/XrPgoICrFq1yvu12Wwe9JDi2VH2eAMbZYmIKHC0WGxoaLMCCKyA4vdlxtnZ2YiLi0NpaSkAICkpCQ0NDT1e43A40NzcfMG+Fa1WC4PB0OMabGfP5OEIChERBQ7P9E5aTBgitT4fl/AbvweUqqoqNDU1ITk5GQAwbdo0tLa2Yt++fd7XbN26FS6XC/n5+f4up988K3lOnbHA4XRJXA0REdHlKene4n5EYuD0nwD9mOJpb2/3joYAQFlZGYqLixETE4OYmBg88cQTWLhwIZKSknDy5Ek8/PDDGDp0KObOnQsAGDVqFObNm4dly5bhlVdegd1ux4oVK3DLLbfIcgWPx5CoMISplei0O1He1IGh3XujEBERydmxusBbwQP0YwRl7969mDBhAiZMmAAAWLVqFSZMmIBHH30USqUSBw8exPXXX4/hw4dj6dKlmDRpEr766itotVrve7z55psYOXIkZs+ejeuuuw7Tp0/Hn/70J9/dlR8ozlnJw2keIiIKFGfP4AmsgNLnEZSZM2dCFC+8Wdmnn356yfeIiYnBW2+91dcfLbnhiXocrDLheH075o+TuhoiIqKLc7lE7/YYQT+CEsq8hwY2cASFiIjkr7KlAx02JzQqBTJjA2uTUQaUPhjGQwOJiCiAHO3e4n5YQiRUysD6yA+saiV27koem4MreYiISN48DbKBtP+JBwNKH6QYdYjUquBwiShvskhdDhER0UUdq3cvMR4VQFvcezCg9IEgCN7lxTyTh4iI5O7cU4wDDQNKH3kbZeu55T0REclXl93pHe0PtBU8AANKnw1noywREQWA4/VtcIlAdLga8Xrtpb9BZhhQ+sgTUI7xVGMiIpKxIzXu/pMxKUYIgiBxNX3HgNJHnp34ypss6LQ5Ja6GiIiod0dqTACAMSmB1yALMKD0WYJeh7hIDVwiG2WJiEi+PCMooxlQQsfI7uVanhMiiYiI5MTpEr0reMakGCWupn8YUPrB0w3t2aGPiIhITsoaLei0OxGmViIrLrC2uPdgQOmHUcnuEZSjtRxBISIi+fH0n4xM1kOpCLwGWYABpV88jbJHa80XPdmZiIhICt95V/AEZv8JwIDSL0MTIqFSCDB3OVBr6pK6HCIioh7OXWIcqBhQ+kGrUiIn3r2jLBtliYhITkRRDPglxgADSr+dneZhoywREclHnbkLLR12KBWCd3PRQMSA0k9slCUiIjk6Uu3+XBoaHwmdWilxNf3HgNJPZ5caM6AQEZF8HAmCBlmAAaXfPCMoZY0WdNm55T0REcmDp/8kUHeQ9WBA6acEvRYxEe4t70/Ut0tdDhEREYDgWMEDMKD0myAInOYhIiJZMXXYUd3aCQAYncwRlJDlOZPnKJcaExGRDBypdU/vpEaHwRiulriagWFAGYBRyRxBISIi+QiGHWQ9GFAGwNMoW1LXxi3viYhIcsHSfwIwoAzI0IRIKBUCWjvsqDdbpS6HiIhCHEdQCACgUyuR3X2MNad5iIhISl12J0rPuFeVcgSFMDKZjbJERCS9Y3VtcLpExERokGjQSl3OgDGgDNDZpcY8k4eIiKRz7g6ygiBIXM3AMaAMkGedeQmneIiISELBsoOsBwPKAHlONT7FLe+JiEhCh4NoBQ/AgDJgSQYdjGFqOF0iShu45T0REQ0+m8OFo90BJS81RAPKjh07sGDBAqSkpEAQBGzatMn7nN1uxyOPPIJx48YhIiICKSkpuPPOO1FTU9PjPTIzMyEIQo9rzZo1A74ZKQiC4N2wzbO8i4iIaDAdr2+DzemCMUyN9JhwqcvxiT4HFIvFgry8PLz00kvnPdfR0YH9+/fjN7/5Dfbv349///vfOHbsGK6//vrzXvvkk0+itrbWez344IP9uwMZ8Ayneeb/iIiIBtO3Va0AgNxUY1A0yAKAqq/fMH/+fMyfP7/X54xGI7Zs2dLjsRdffBFTp05FRUUF0tPTvY/r9XokJSX19cfL0tgh7oakwxxBISIiCRyqcv8FedyQ4JjeAQahB8VkMkEQBERFRfV4fM2aNYiNjcWECRPwzDPPwOFwXPA9rFYrzGZzj0tOxnaPoHxXY4bTxS3viYhocH3bHVByU6OkLcSH+jyC0hddXV145JFHcOutt8JgOLvs6Wc/+xkmTpyImJgY7Ny5EwUFBaitrcUf//jHXt9n9erVeOKJJ/xZ6oBkx0dCp1ag0+5EWWM7hibopS6JiIhCRKfNieP17r248tKCZwTFbwHFbrfj5ptvhiiKePnll3s8t2rVKu+/5+bmQqPR4L777sPq1auh1Z6/+11BQUGP7zGbzUhLS/NX6X2mVAgYnWzA/opWHK42M6AQEdGg+a7WPXofF6lFkkEndTk+45cpHk84OX36NLZs2dJj9KQ3+fn5cDgcKC8v7/V5rVYLg8HQ45Kbsd3zfoer2ShLRESD52B3g2xeEDXIAn4YQfGEkxMnTmDbtm2IjY295PcUFxdDoVAgISHB1+UMGk8fymGu5CEiokF0KAj7T4B+BJT29naUlpZ6vy4rK0NxcTFiYmKQnJyMH//4x9i/fz8++OADOJ1O1NXVAQBiYmKg0WhQWFiIoqIizJo1C3q9HoWFhVi5ciVuv/12REdH++7OBtmY7pU8R2rMEEUxqFIsERHJ17lLjINJnwPK3r17MWvWLO/Xnt6QJUuW4PHHH8d7770HABg/fnyP79u2bRtmzpwJrVaLDRs24PHHH4fVakVWVhZWrlzZo8ckEA1L0EOjVKCty4HK5k6kxwbHRjlERCRfbV12nGq0AADGhXpAmTlzJkTxwktpL/YcAEycOBG7du3q64+VPY1KgRFJehyqNuFwjYkBhYiI/O5wtRmiCAyJCkNc5PmLTAIZz+LxIe+GbWyUJSKiQXAwSKd3AAYUnxrjbZSV10ZyREQUnA5WB2eDLMCA4lOepcZHqk2XnOoiIiIaKI6g0GUZmaSHUiGgyWJDnblL6nKIiCiItVhsqGzuBHD2L8jBhAHFh3RqJYYlRAJwNy4RERH5i2d6JysuAsYwtcTV+B4Dio95+1DYKEtERH50KIindwAGFJ8b692wjQGFiIj8JxhPMD4XA4qPnT2Th1M8RETkP8HcIAswoPjcqGQDBAGoM3fhTJtV6nKIiCgI1Zu7UG+2QiEAY1Lkd4CuLzCg+FikVoWsuAgAnOYhIiL/+LayFYD7mJVwjc/P/ZUFBhQ/8JxsfIQbthERkR/sr2gFAEzMiJK0Dn9iQPEDbnlPRET+tL+iBQAwIS1a4kr8hwHFDzwjKIcYUIiIyMfsTpe3QZYjKNQnY7pX8lS1dKLZYpO4GiIiCibH6trQZXfBoFMhOy5S6nL8hgHFD4xhamTHuxtlv+1OuURERL7gnd5Jj4ZCIUhcjf8woPjJ+O6Nczyd1kRERL6w/7Q7oExMD97+E4ABxW/y0qIAMKAQEZFveVbwTEiPkrQOf2NA8RNvQKkyQRRFaYshIqKg0NhuRUVzBwQBGM+AQv0xKlkPtVJAs8WGqpZOqcshIqIg4JneGZYQCYMu+E4wPhcDip9oVUqMTnbvh1LMaR4iIvKBA92fJ8HefwIwoPgV+1CIiMiXQqVBFmBA8as8z0oeLjUmIqIBcjhdOFjl3gA02BtkAQYUv/KMoByqNsHhdElbDBERBbSSujZ02p0w6FTIiQ/eDdo8GFD8KDsuAnqtCl12F47Xt0tdDhERBTDPBm3jg3yDNg8GFD9SKATkprm3vec0DxERDcQBzwnGITC9AzCg+F0ed5QlIiIf8IyghEKDLMCA4neePhQuNSYiov5qbLfidFNobNDmwYDiZ+O7A8rx+jZ02BzSFkNERAHJM70zND74N2jzYEDxs0SDDkkGHVwicLjaLHU5REQUgEJtegdgQBkUeZ5GWU7zEBFRP3g3aMuIkraQQcSAMgi8fShcyUNERH1kc7i8fYyTMjiCQj7ElTxERNRfh6pbYXW4EBOhCYkN2jwYUAbBuFT3FE9VSyca260SV0NERIFkd5l7emdKZjQEIfg3aPPoc0DZsWMHFixYgJSUFAiCgE2bNvV4XhRFPProo0hOTkZYWBjmzJmDEydO9HhNc3MzFi9eDIPBgKioKCxduhTt7cG706pBp0ZOfAQA4CCneYiIqA92lzUBAKZmxUpcyeDqc0CxWCzIy8vDSy+91OvzTz/9NF544QW88sorKCoqQkREBObOnYuuri7vaxYvXowjR45gy5Yt+OCDD7Bjxw7ce++9/b+LAODpQ/EsFSMiIroUp0vE3u4G2amZMRJXM7hUff2G+fPnY/78+b0+J4oinn/+efz617/GDTfcAAB47bXXkJiYiE2bNuGWW27B0aNH8cknn2DPnj2YPHkyAGDt2rW47rrr8OyzzyIlJWUAtyNfkzKi8e/91djX/T8aERHRpZTUmdHW5UCkVoVRyXqpyxlUPu1BKSsrQ11dHebMmeN9zGg0Ij8/H4WFhQCAwsJCREVFecMJAMyZMwcKhQJFRUW9vq/VaoXZbO5xBZrJGe7kW1zZypONiYjosuwpawYATMyIhkoZWm2jPr3buro6AEBiYmKPxxMTE73P1dXVISEhocfzKpUKMTEx3td83+rVq2E0Gr1XWlqaL8seFMMSIqHXqtBhc6Kkrk3qcoiIKADsLncHlPys0JreAQJkFU9BQQFMJpP3qqyslLqkPlMoBEzoXr/OaR4iIroUURS9K3imMqAMTFJSEgCgvr6+x+P19fXe55KSktDQ0NDjeYfDgebmZu9rvk+r1cJgMPS4AtFkBhQiIrpMZY0WNLZboVEpkNu9XUUo8WlAycrKQlJSEr744gvvY2azGUVFRZg2bRoAYNq0aWhtbcW+ffu8r9m6dStcLhfy8/N9WY7sTGJAISKiy7Sne3pnfFoUtCqlxNUMvj6v4mlvb0dpaan367KyMhQXFyMmJgbp6el46KGH8Lvf/Q7Dhg1DVlYWfvOb3yAlJQU33ngjAGDUqFGYN28eli1bhldeeQV2ux0rVqzALbfcErQreDzGp0VBIQDVrZ2oNXUi2RgmdUlERCRTRd0NsqG2vNijzwFl7969mDVrlvfrVatWAQCWLFmC9evX4+GHH4bFYsG9996L1tZWTJ8+HZ988gl0Op33e958802sWLECs2fPhkKhwMKFC/HCCy/44HbkLUKrwqhkA47UmLHvdAv+I5cBhYiIeucZQQnF/hMAEERRFKUuoq/MZjOMRiNMJlPA9aM8uvkwXis8jZ9elYnHFoyRuhwiIpKhWlMnpq3eCoUAHHx8LiK1fR5PkKW+fH4HxCqeYOLpQ9nPPhQiIrqA3d3TO2OHGIMmnPQVA8og8wSUIzVmdNqcEldDRERy5AkoU0K0/wRgQBl0Q6LCkGTQweES8S0PDiQiol6Eev8JwIAy6ARB4HJjIiK6oBaLDcfr2wFwBIUGGQMKERFdiGd7+2EJkYiJ0EhcjXQYUCTgbZStaIHLFXCLqIiIyI8KTzYBAPKzQ3f0BGBAkcToFAN0agVaO+w41dgudTlERCQjO082AgCuyomTuBJpMaBIQK1UIC81CgCneYiI6KyGti4cr2+HIABXZMdKXY6kGFAk4pnm2VvOgEJERG6e6Z3RyQZEh3D/CcCAIpnJmd2NshUMKERE5PZNaff0ztDQnt4BGFAkMzHdHVBOnXEfp01ERLSzewTlypzQnt4BGFAkExWuwcgkPYCzOwYSEVHoqmjqQFVLJ1QKIaT3P/FgQJFQfvcOgUWnmiSuhIiIpPZN9+qdCelRiAjR83fOxYAiIU+H9q5THEEhIgp1nv6TK0N8ebEHA4qEPGcsHKtvQ7PFJnE1REQkFZdL9K7gYYOsGwOKhGIjtRiWEAkA2F3GaR4iolB1vKENTRYbwtRKjE+LkrocWWBAkRineYiI6JtS919Sp2TFQKPiRzPAgCI5z1kLRVzJQ0QUsnZ69j/h8mIvBhSJefpQSurMaO1gHwoRUahxOF3ev6Sy/+QsBhSJJeh1yImPgChyPxQiolB0sNqEdqsDxjA1RiUbpC5HNhhQZCCffShERCHLM70zLTsWSoUgcTXywYAiA55G2SKu5CEiCjmeBtmrhrL/5FwMKDJwRXcfyne1Zpg67RJXQ0REg6XD5sC+0+5DY69k/0kPDCgykGDQISvO3Yeyh30oREQho/BkE2xOF4ZEhSE7LkLqcmSFAUUmrvAuN+Y0DxFRqNh+/AwAYOaIeAgC+0/OxYAiE/lZbJQlIgoloijiy2OegJIgcTXyw4AiE54N247UmGDuYh8KEVGwK2u0oKK5A2qlgCu5Qdt5GFBkItkYhozYcLhEYF95i9TlEBGRn3mmd6ZkxiBCq5K4GvlhQJGR/O7VPIWn2IdCRBTszk7vxEtciTwxoMjIlTnuJWZfn2iUuBIiIvKnLrsTu7r/Msr+k94xoMiI5wyG72rNaGy3SlwNERH5y65TTbA6XEg26jAsIVLqcmSJAUVG4vVajEzSAwC+KeUoChFRsDp3eofLi3vn84CSmZkJQRDOu5YvXw4AmDlz5nnP3X///b4uI2BdPYzTPEREwc7TIPuD4ZzeuRCftw3v2bMHTqfT+/Xhw4fxwx/+EIsWLfI+tmzZMjz55JPer8PDw31dRsCaPiwef/6qDF+XNkIURSZrIqIgc7rJgrJGC1QKgefvXITPA0p8fM9u5DVr1iAnJwc/+MEPvI+Fh4cjKSnJ1z86KEzNjIFGqUCtqQsnz1gwlHOTRERBxTN6MikjGnqdWuJq5MuvPSg2mw1vvPEG7r777h4jAW+++Sbi4uIwduxYFBQUoKOj46LvY7VaYTabe1zBKkyjxOTMaADA1yfOSFwNERH5GnePvTx+DSibNm1Ca2sr7rrrLu9jt912G9544w1s27YNBQUFeP3113H77bdf9H1Wr14No9HovdLS0vxZtuSme/pQ2ChLRBRUuuxOFJ50Ly/+wXDuf3IxgiiKor/efO7cudBoNHj//fcv+JqtW7di9uzZKC0tRU5OTq+vsVqtsFrPLrs1m81IS0uDyWSCwWDwed1SO1RlwoIXv0akVoUDj/4QaiUXWxERBYOvTpzBHX/djUSDFrsKZodcn6HZbIbRaLysz2+/ffKdPn0an3/+Oe65556Lvi4/Px8AUFpaesHXaLVaGAyGHlcwG5NiQHS4Gu1WB4orW6Uuh4iIfGRrSQMA9+hJqIWTvvJbQFm3bh0SEhLwox/96KKvKy4uBgAkJyf7q5SAo1AIuLJ707avuNyYiCgoiKKILd/VAwDmjEqUuBr580tAcblcWLduHZYsWQKV6uxCoZMnT+K3v/0t9u3bh/Lycrz33nu48847MWPGDOTm5vqjlIB19VDPfihslCUiCgZHa9tQ1dIJnVqBq4ex/+RS/HJ84ueff46KigrcfffdPR7XaDT4/PPP8fzzz8NisSAtLQ0LFy7Er3/9a3+UEdA8jbLfVplg7rLDwKVoREQBzTN6Mn1oPMI0SomrkT+/BJRrr70WvfXepqWlYfv27f74kUEnNTocWXERKGu0oPBkE+aO4b4xRESBbMvROgDAtWM4vXM5uDxExqZ3T/PwXB4iosBW3dqJw9VmKARg9kjuf3I5GFBkbDrP5SEiCgqfd0/vTMqIRmykVuJqAgMDioxNy4mFUiHgVKMFlc0X322XiIjky9N/cu1oTtdfLgYUGTPo1JiU7t72/stjDRJXQ0RE/WHqtGPXKffusT8czf6Ty8WAInOzuucqvyhhQCEiCkRfHmuAwyViWEIkMuMipC4nYDCgyNzsUe6AUniyCZ02p8TVEBFRX33WPb3D0ZO+YUCRuWEJkRgSFQarw4WdJ9ksS0QUSKwOJ77sHgG/lttF9AkDiswJgoBrOM1DRBSQCk82wWJzIkGvRe4Qo9TlBBQGlABwTfc0z7aShl43wCMiInnynr0zOhEKBQ8H7AsGlAAwLTsWOrUCtaYulNS1SV0OERFdBpdLxOdHPcuL2X/SVwwoAUCnVuKqHPembVs5zUNEFBD2V7Sg3mxFpFaFaTmxUpcTcBhQAoRnmocBhYgoMHxwsBaAe/REq+LhgH3FgBIgZo1wB5QDFS1osdgkroaIiC7G6RLx4SF3QPmPvGSJqwlMDCgBIiUqDCOT9HCJwPbjZ6Quh4iILmJ3WTPOtFlhDFNj+tB4qcsJSAwoAcSzaRuXGxMRydsHB2sAAHPHJEKj4kdtf/C/WgDx7Iey/VgDHE6XxNUQEVFvHE4XPjlcBwD4j9wUiasJXAwoAWR8WjSiw9Uwdzmwv6JV6nKIiKgXu041o8liQ3S4mqt3BoABJYAoFQJmjvBM89RLXA0REfXGM70zb2wy1Ep+zPYX/8sFGM80z5Yj9dxVlohIZuxOFz454p7eWZDL1TsDwYASYGaNTIBGqcCpRgtONLRLXQ4REZ3j69JGtHbYERepQX42p3cGggElwERqVbh6mHtXWU8TFhERycMH37r3Ppk/NhlKnr0zIAwoAWjeWPeR3R8zoBARyYbV4cRn33lW73B6Z6AYUALQnFGJUCoEHK0143STRepyiIgIwI7jjWjrciDRoMWUzBipywl4DCgBKDpCg2ndc5uc5iEikof3vnWv3rluXDIUnN4ZMAaUADW3e5rH0y1ORETSMXXa8Vn3n8f/34QhElcTHBhQAtTc0YkQBOBARStqTZ1Sl0NEFNI+PFgLq8OFYQmRGDfEKHU5QYEBJUAlGHSYlB4NAPjsCDdtIyKS0r/2VwEAfjwpFYLA6R1fYEAJYGdX89RKXAkRUegqa7Rg3+kWKARO7/gSA0oAmzvGHVB2lzWjqd0qcTVERKHpX/vcoyczhscjwaCTuJrgwYASwNJiwjF2iAEuEfj8KKd5iIgGm8sl4t/d0zsLJ6ZKXE1wYUAJcPPHujcD4qZtRESDr/BUE2pMXdDrVPjh6ESpywkqDCgBzjPN801pI0yddomrISIKLZ7pnQV5KdCplRJXE1x8HlAef/xxCILQ4xo5cqT3+a6uLixfvhyxsbGIjIzEwoULUV/P6Yn+GpoQiWEJkbA7RWz5jv8diYgGS7vV4R295vSO7/llBGXMmDGora31Xl9//bX3uZUrV+L999/Hu+++i+3bt6OmpgY33XSTP8oIGdfnpQAANhdXS1wJEVHo+OhQLTrtTmTHRWBiepTU5QQdlV/eVKVCUlLSeY+bTCb89a9/xVtvvYVrrrkGALBu3TqMGjUKu3btwhVXXOGPcoLeDeOH4A9bjuOb0kY0tHUhQc8uciIif/NM7yzk3id+4ZcRlBMnTiAlJQXZ2dlYvHgxKioqAAD79u2D3W7HnDlzvK8dOXIk0tPTUVhY6I9SQkJ6bDgmpEfBJZ496puIiPzndJMFRWXNELj3id/4PKDk5+dj/fr1+OSTT/Dyyy+jrKwMV199Ndra2lBXVweNRoOoqKge35OYmIi6uguvQrFarTCbzT0u6unG8e7fIJzmISLyv7eK3H/xvnpYPFKiwiSuJjj5PKDMnz8fixYtQm5uLubOnYuPPvoIra2teOedd/r9nqtXr4bRaPReaWlpPqw4OPwoNxlKhYBvq0woa7RIXQ4RUdDqsjvxzt5KAMDt+ekSVxO8/L7MOCoqCsOHD0dpaSmSkpJgs9nQ2tra4zX19fW99qx4FBQUwGQyea/Kyko/Vx144iK1mD40DgBHUYiI/Onjw7Vo6bAjxajDNSMTpC4naPk9oLS3t+PkyZNITk7GpEmToFar8cUXX3ifP3bsGCoqKjBt2rQLvodWq4XBYOhx0flunOBZzVMDURQlroaIKDi9scs9vXPr1HSolNxOzF98vorn//2//4cFCxYgIyMDNTU1eOyxx6BUKnHrrbfCaDRi6dKlWLVqFWJiYmAwGPDggw9i2rRpXMHjAz8cnQSd+hDKGi04VG1CbmqU1CUREQWVo7Vm7DvdApVCwE+mst3An3weUKqqqnDrrbeiqakJ8fHxmD59Onbt2oX4+HgAwHPPPQeFQoGFCxfCarVi7ty5+L//+z9flxGSIrUq/HB0Et7/tgabDtQwoBAR+dgbu04DcO/izS0d/EsQA3AuwGw2w2g0wmQycbrnez7/rh73vLYX8XotdhXMhlLBtflERL7Q1mXHFU99AYvNibeW5ePKnDipSwo4ffn85uRZkJkxPB5R4WqcabOi8GST1OUQEQWNTQeqYbE5kRMfgWnZsVKXE/QYUIKMRqXAdePcJxxv4moeIiKfEEXR2xx7+xUZ3Dl2EDCgBCHProYfHapFu9UhcTVERIFv7+kWHKtvQ5haiZt4MOCgYEAJQpMzopEdF4EOmxMffFsjdTlERAHv9UJ3c+z1eSkwhqklriY0MKAEIUEQ8JMp7uVvG/ZwUzsiooGoaunAh4fc55zdMS1D4mpCBwNKkLppYipUCgHFla0oqePZRURE/bXum3I4XSKuGhqLsUOMUpcTMhhQglS8Xos5oxIBAG9zFIWIqF9MnXZs2O1ujr13Ro7E1YQWBpQg5tnlcOOBanTZnRJXQ0QUeN4qqoDF5sSIRD1mDOO+J4OJASWIzRgWj2SjDq0ddnz2Xb3U5RARBRSbw4V135QBAJbNyObS4kHGgBLElAoBiya7R1He3lMhcTVERIFlc3E1GtqsSDRocX1eitTlhBwGlCC3aFIqBAH4prQJFU0dUpdDRBQQRFHEn786BQD46VVZ0Kj4cTnY+F88yKXFhGP6UPe86Tt72SxLRHQ5th8/g+P17YjUqnBbfrrU5YQkBpQQcMsU92+ud/dVwuF0SVwNEZH8/WmHe/TklilpMOi4MZsUGFBCwJzRCYiJ0KDebMW2Y2ekLoeISNYOVrVi58kmKBUCfjo9S+pyQhYDSgjQqpRYNMl9dsT6nWUSV0NEJG/Pf34CAHBDXgqGRIVJXE3oYkAJEXdMy4Ciu1n2eH2b1OUQEclScWUrtpY0QKkQ8ODsYVKXE9IYUEJEanQ45o5JAuDetpmIiM733JbjANynwmfFRUhcTWhjQAkhd12ZCQDYeKAKrR02aYshIpKZfadbsP34GffoyTVDpS4n5DGghJCpWTEYnWxAl92Ff+zmkmMionM9/7l79GThxCHIiOXoidQYUEKIIAj46VWZAIDXC8u55JiIqNve8mZ8daIRKoWAB69h74kcMKCEmAV5KYiN0KDG1MXzeYiIuj3XPXqyaHIq0mLCJa6GAAaUkKNTK727InoOwSIiCmVFp5rwTWkT1EoBy2ex90QuGFBC0O1XZEClELCnvAWHq01Sl0NEJBlRFPGHz9yjJzdPTkNqNEdP5IIBJQQlGnT4UW4yAOBvHEUhohD26ZF67C5vhlal4OiJzDCghKifXuXevvn9b2tQ09opcTVERIPP5nBh9cdHAQDLrs5GCneNlRUGlBA1Pi0K07JjYXeK3kOxiIhCyWuF5Tjd1IF4vRYPzMyRuhz6HgaUELaieyOif+yuwJk2q8TVEBENnmaLDf/7hfvMnV9cOwIRWpXEFdH3MaCEsCtzYjE+LQpWhwt//Zq9KEQUOv738+No63JgdLIBC7sPUyV5YUAJYYIgYEV3U9jrheXc/p6IQkJpQzveKKoAAPz6R6OgVAgSV0S9YUAJcbNHJWBUsgEWmxPrd5ZLXQ4Rkd899dFROF0i5oxKxJVD46Quhy6AASXECYKA5bPczWHrvilHu9UhcUVERP6z/fgZbC1pgEoh4FfXjZS6HLoIBhTC/LHJyI6PgKnTjjd3nZa6HCIiv+iwOfDfGw8BAJZcmYns+EiJK6KLYUAhKBUCHviBexTlz1+VocvulLgiIiLf+9/PT6CqpRNDosKw6ofDpS6HLsHnAWX16tWYMmUK9Ho9EhIScOONN+LYsWM9XjNz5kwIgtDjuv/++31dCvXBjROGYEhUGBrbrXizu3mMiChYHK424S/dqxV/e+MYLisOAD4PKNu3b8fy5cuxa9cubNmyBXa7Hddeey0sFkuP1y1btgy1tbXe6+mnn/Z1KdQHaqXCuy/KS9tK0dZll7giIiLfcDhdKPj3IThdIv4jNxnXjEyUuiS6DD6PkJ988kmPr9evX4+EhATs27cPM2bM8D4eHh6OpKQkX/94GoBFk1Lx569O4dQZC/684xRWXTtC6pKIiAZs/c5yHKo2waBT4dEFo6Uuhy6T33tQTCb3abkxMTE9Hn/zzTcRFxeHsWPHoqCgAB0dHRd8D6vVCrPZ3OMi31MpFXh4rrur/c9flaGhrUviioiIBqayucN7WvGvrhuFBL1O4orocvk1oLhcLjz00EO46qqrMHbsWO/jt912G9544w1s27YNBQUFeP3113H77bdf8H1Wr14No9HovdLS0vxZdkibOyYRE9Kj0Gl34oXubaCJiAKRKIr4702H0Wl3YmpWDG6ezM+OQCKIoij6680feOABfPzxx/j666+RmnrhrYS3bt2K2bNno7S0FDk55x/YZLVaYbWePSvGbDYjLS0NJpMJBoPBL7WHsqJTTfjJn3ZBqRCwZeUMLsUjooC0/psyPP7+d9CoFPj4v65GDv8sk5zZbIbRaLysz2+/jaCsWLECH3zwAbZt23bRcAIA+fn5AIDS0tJen9dqtTAYDD0u8p/87FjMHpkAp0v0Do0SEQWSkjoznvq4BADwq/kjGU4CkM8DiiiKWLFiBTZu3IitW7ciKyvrkt9TXFwMAEhOTvZ1OdRPv5g3AoIAfHioFsWVrVKXQ0R02brsTvzXP4phc7gwa0Q8llyZKXVJ1A8+DyjLly/HG2+8gbfeegt6vR51dXWoq6tDZ2cnAODkyZP47W9/i3379qG8vBzvvfce7rzzTsyYMQO5ubm+Lof6aWSSATdNcI98rfn4KPw4E0hE5FOrPzqKY/VtiIvU4plFeRAEHgYYiHweUF5++WWYTCbMnDkTycnJ3uvtt98GAGg0Gnz++ee49tprMXLkSPz85z/HwoUL8f777/u6FBqgVdcOh0alwK5TzfjwUK3U5RARXdLWknr8vdB9ZMezi3IRF6mVuCLqL5/vg3Kpv2mnpaVh+/btvv6x5AdDosLwnzNz8PznJ/DbD77DzBEJiOTui0QkUw1tXfjFuwcBAHdflYWZIxIkrogGgmfx0EXd/4McZMSGo95sxfNb2DBLRPJkc7jwn2/sR5PFhlHJBjwynxtNBjoGFLoonVqJx68fAwBYt7McJXXcJI+I5EUURTz23mHsPd0CvU6FF2+bAK1KKXVZNEAMKHRJs0YkYN6YJDhdIh7ddIQNs0QkK2/sOo1/7K6EIAAv3DqBS4qDBAMKXZZHF4xGmFqJ3eXN+Pf+aqnLISICABSebMIT738HAHhk3kjMYt9J0GBAocuSEhWGn80eBgB46qOjMHXwtGMiklZlcwf+8819cLhE3DA+BffNyJa6JPIhBhS6bEunZ2FoQiSaLDY89dFRqcshohBm6rRj2Wt70dJhx9ghBvx+YS73OwkyDCh02TQqBf7nxrEQBODtvZX44mi91CURUQjqtDmxdP0elNS5N2P70x2ToVOzKTbYMKBQn+Rnx+Ke6e7jCx751yE0W2wSV0REocTmcOH+N/Zh7+kWGHQqvHb3VKREhUldFvkBAwr12c+vHYFhCZFobLfivzce4qoeIhoUTpeIlW8XY/vxMwhTK7Hup1MwOoWHxwYrBhTqM51aied+Mh4qhYCPD9dhc3GN1CURUZATRRH/vfEQPjxUC7VSwCt3TMKkjBipyyI/YkChfhk7xIj/6l7V85vNh1Fr6pS4IiIKVi6XiMfeO4INeyqhEID/vWUCfjA8XuqyyM8YUKjfHpiZg7y0KLR1OfCLdw/C5eJUDxH5lt3pwsp3ivFa4WkIArDmplxcNy5Z6rJoEDCgUL+plAr88eY86NQKfF3aiLVbS6UuiYiCSKfNifte34fNxTVQKQQ8/5PxuHlKmtRl0SBhQKEByYmPxG9vGAsAeP6L49hW0iBxRUQUDEyddtz5tyJsLWmATq3An++cjBvGD5G6LBpEDCg0YIsmp2FxfjpEEfivDQdwuskidUlEFMCqWjpwy592YU+5+/C/15fmY9ZIbmEfahhQyCceXTAaE9KjYO5y4P439qPT5pS6JCIKQF+faMSCtV/jaK0ZcZFavH3vNEzJ5GqdUMSAQj6hVSnx8uJJiIvU4GitGb/i/ihE1AeiKOLV7Sdx59+K0NJhR26qEZtXXMV9TkIYAwr5TJJRhxdvmwilQsDGA9X42zflUpdERAHAYnVgxT8OYPXHJXCJwKJJqXjnvmkYwh1iQxoDCvnUFdmxKJg/EgDwuw+/wwcHuYkbEV1Y0akmXPfCV/jwoHsDtt/eOBZP/ziXZ+sQVFIXQMFn6fQsVDR34LXC01j5djGiwzW4amic1GURkYx02px4+tMSrN9ZDlEEko06vHjbBO4OS14cQSGfEwQBjy0Yg+vGJcHuFHHf6/twuNokdVlEJBN7y5sx/393YN037nDyk8lp+HTlDIYT6oEjKOQXSoWA534yHi2WPSg81YS71u3Gvx64EhmxEVKXRkQSqWntxDOfHsPGA9UAgCSDDmsWjsPMEVxCTOfjCAr5jValxKt3TsLoZAMa222446+7UdPKM3uIQk271YFnPi3BrGe/9IaTmyen4tOVMxhO6IIEMQDXgprNZhiNRphMJhgMXIImdw1tXfjxy4WoaO7AkKgwvLUsnyMpRCHAYnXg7T2V+L8vS9HYbgMATM2Kwa9/NAq5qVHSFkeS6MvnNwMKDYrq1k7c/pcilDVakKDX4o178jE8US91WSRDNocLbV12mLscaO9yoNPuRJfd6f2n3SnC5RLhFEU4XSJEUYQgCFAqBCgFAYIAaFQKaFUKaNVK6FRKaNUK6LUqROpUiNSqEKFRQaEQpL7VoNXQ1oW/7yzHG7sqYOq0AwCy4yLwy/kj8cPRiRAE/rcPVQwoJEsNbV2486+7UVLXhuhwNV67Ox/jUo1Sl0WDwOkS0dDWhVpTF+pMXahp7URDmxWN7VY0ttvQ1G5FU7sNrZ02dNldg1KTXquCMVyN6HANorr/GRupQVykFvGRWsTpNYiP1CHRqEVshBZKBpqLEkUR+yta8PaeSmw6UAOb0/3rmBUXgXuuzsLNk9OgVrKrINQxoJBstXbYsGTdHnxb2Qq9VoW/LJmM/OxYqcsiH7A7XTjd1IGTZ9pR1mhBRXMHKps7cLqpA9WtnXC6+vZHTaTWPdoRplFCp1ZCp1ZAp1JCo1JAqRCgEAQoFYBCEOASRThdgEsU4RJF2J0udNldsDqc6LK70GV3wmJ1oK3LAUcf6wDcTd8Jei0SDTokG3VINoYhJUqHlKgwpESFYUhUGOIiNSE5MlDeaMHGA9XYVFyN000d3scnZUTj3hnZmDMqkeGOvBhQSNbarQ4sXb8HRWXNUCsFPH79GCzOz5C6LLpMTpeI8iYLSmrbcKzOjJK6NpSeaUdFU8dFP/xVCsH7AZ9k1CHRoEO8XovYCPeoRWykBtHhGhh0akTqVH75UBNFEVaHC+1WB0yddrR22NHaYUNL9z8b221obLfiTPfojuefl5NptCoFhkS7w0pqdDhSo8O6r3CkRYchLlIbFNNKdqcLBypaseP4GXx5vAGHq83e58I1Sswbm4TF+elcMky9YkAh2euyO/Hzd77Fh4dqAQC3Tk3H49ePhlbF3SPlxOpw4nhdOw7XmHC42n2V1LXB6uh9GiZco0ROfCSy4iKQERuO9JjuKzYcCXpdQP5N2uF0obHdhjqze3qqztSJmu5pKvfVhfq2LlzqT1KNSoHUqDAMiT4bYFKidBgSFY6UKB2SDDqoZDgF0m514FCVCQerWrG/ogU7S5vQZnV4n1cIwPRh8bhpwhBcOyYR4RruXkEXxoBCAUEURby8/SSe+fQYRBGYmB6FV26fhASDTurSQpLLJaKsyYLiilZ8W9WK4spWHK01w+48/4+IMLUSw5P0GJmox4gkPYYn6pGTEIEkgy4kpzlsDhfqTF2oaulAVWsnqls6UdXS6f66pRO1ps5LjsIoFQLiI7VIMrrDyrmjTPF6LeIiNYjXaxEdrvF5L4fLJaLJYkNFswVljR043WRBWaMFR2vNONVoOS98RYerMWN4PGYMi8eM4fGI12t9Wg8FLwYUCijbjjXgv/5xAOYuBxL0Wjy7KA8zhsdLXVbQs1gd+LaqFftPt2Df6Rbsr2j1rrg4V1S4GuOGGDEmxYixQwwYk2JEekx4QI6GSMXu9AQYd2ipbOn0jsBUt3aitrXL21R6OSK1KhjD1IgKV8OgUyNco4ROo0S4WolwjRIqpQICAIXCvaoJImB1uHtx3JcLpk47mi02NFmsaLbYLhqghkSFITfViNzUKFyZE4uxQ4z89ad+YUChgFPeaMG9r+/F8fp2AMCtU9Pwq+tGQa9TS1xZ8Ghqt2JPeQv2lDdjT3kzjtSYz2tc1akVGDfEiLzUKIxPj0JeahRSo8NCclRkMLlcIhrbragzn13pVGvqQoO5C2fO6YVpstguOZXUX4IApBjDkBkXjozYCGTGhmNoQiRyU6MQF8kREvKNgAkoL730Ep555hnU1dUhLy8Pa9euxdSpUy/5fQwowanD5sDTnxzD+p3lANx/a1uzcByuHsbRlP6oM3WhqKwJRWXN2F3WjNKG9vNek2LUYWJGNCZnRGNSRgxGJuu5FFTGnC4RbV3dzb2d7sZec5cDnTYHOmzuvWI6bU44XO7VTBDdK5sA987OOrUCOrUSWrUSBp0KsRFaxERoEBepQXSE76eOiL4vIALK22+/jTvvvBOvvPIK8vPz8fzzz+Pdd9/FsWPHkJBw8a2PGVCCW+HJJjz8r29R2ezeFn/RpFT8/NoRSDKyN+Vialo7setUE4pONWNXWVOPJZ8ewxMjMSUzBlOzYjA5MwZDosIkqJSIQlVABJT8/HxMmTIFL774IgDA5XIhLS0NDz74IH75y19e9HsZUIKfxerA7z8pwWuFpwG4px7umZ6N+36QzWmfblUtHe4wcso9SlLR3DOQKARgdIoB+VmxyM+KwZTMGERHaCSqlogoAAKKzWZDeHg4/vnPf+LGG2/0Pr5kyRK0trZi8+bNPV5vtVphtVq9X5vNZqSlpTGghIB9p1vw1EdHse90CwAgJkKDn10zFLdMTYdOHTpLkkVRREVzB4rKmlF0qhlFZU2oaul58KJSIWDsECOuyIpBfrZ7hMTAMEdEMtKXgCLJgvXGxkY4nU4kJib2eDwxMRElJSXnvX716tV44oknBqs8kpFJGdH45/3T8Nl39fj9xyU41WjB4+9/hxe2luK2qem4Y1oGEoNwWbLLJeJ4Qxv2lLdgd1kzdpc1od5s7fEapULAuCFG5GfH4IrsWEzOiOboEhEFjYDYUaegoACrVq3yfu0ZQaHQIAgC5o5JwjUjE7BhTyVe+fIkqls78eK2Uryy/SSuG5eMO6ZlYFJ6dMDu1NludeBgZSv2nW7B3tMt2F/RgrYuR4/XqJUC8lKjMCXLHUgmZUQjUhsQv4WJiPpMkj/d4uLioFQqUV9f3+Px+vp6JCUlnfd6rVYLrZbL3EKdWqnAHVdk4NYpafjsu3qs+6YMe8pb8N63NXjv2xokGXSYPy4JPxqXjIkyDiue3VkPVZtQXNmC4spWnGhoP2/5aLhGiQnpUZiaGYupWTGYkB4VUtNaRBTaJG2SnTp1KtauXQvA3SSbnp6OFStWsEmWLtvhahPW7yzHJ4fr0H7O9tuJBi2uGhqHqd0rVrLiIgZ9Lw9RFNHQZsWJ+nYcr2/D0VozDteYcaK+rdcza4ZEhWFCehQmZ0RjcmYMRibpZbn1ORFRf8m+SRZwLzNesmQJXn31VUydOhXPP/883nnnHZSUlJzXm/J9DCj0fV12J7460YiPDtXi8+/qe5wVAgBxkVqMT4vC0IRI5MRHICchEjnxkTCGDaxno8vuRGO7FdUtnahs6URFcweqmjtQ3mTBiYb286ZpPKLC1RibYkRemhHj06IxPi2K24UTUdALiIACAC+++KJ3o7bx48fjhRdeQH5+/iW/jwGFLsbqcKLolHu31KKyZhRXtsJ2gcPtdGoFYiPcJ+nGRmhgCFNDpVBArRSgVAhQKxWwOV3o8myCZXeivcuBxnYrGtttPUZteqMQgMzYCAxLjMSIRD3GDDFi7BAjUoyheWYNEYW2gAko/cWAQn1hdThxsMqE72rMOHmmHSfPtKO0of28VTH9pVEqkGTUIT0mHGkx7pNq02PCMSzRfaovT2gmInKT/TJjosGkVSkxJdO9Udm5LFYHmtptaLRY0dzuPjStrcsBh0uEw+nq/qcIjUqBMLX7MLYwtRIRGiViI92ny8ZGamHQqTgaQkTkYwwoFLIitCpEaFVIjw2XuhQiIvoeLhEgIiIi2WFAISIiItlhQCEiIiLZYUAhIiIi2WFAISIiItlhQCEiIiLZYUAhIiIi2WFAISIiItlhQCEiIiLZYUAhIiIi2WFAISIiItlhQCEiIiLZYUAhIiIi2QnI04xFUQQAmM1miSshIiKiy+X53PZ8jl9MQAaUtrY2AEBaWprElRAREVFftbW1wWg0XvQ1gng5MUZmXC4XampqoNfrIQiCT9/bbDYjLS0NlZWVMBgMPn1vOeD9Bb5gv0feX+AL9nsM9vsD/HePoiiira0NKSkpUCgu3mUSkCMoCoUCqampfv0ZBoMhaP/HA3h/wSDY75H3F/iC/R6D/f4A/9zjpUZOPNgkS0RERLLDgEJERESyw4DyPVqtFo899hi0Wq3UpfgF7y/wBfs98v4CX7DfY7DfHyCPewzIJlkiIiIKbhxBISIiItlhQCEiIiLZYUAhIiIi2WFAISIiItlhQLmIzMxMCILQ41qzZo3UZfmc1WrF+PHjIQgCiouLpS7Hp66//nqkp6dDp9MhOTkZd9xxB2pqaqQuyyfKy8uxdOlSZGVlISwsDDk5OXjsscdgs9mkLs1n/ud//gdXXnklwsPDERUVJXU5PvHSSy8hMzMTOp0O+fn52L17t9Ql+cyOHTuwYMECpKSkQBAEbNq0SeqSfGr16tWYMmUK9Ho9EhIScOONN+LYsWNSl+UzL7/8MnJzc72bs02bNg0ff/yxZPUwoFzCk08+idraWu/14IMPSl2Szz388MNISUmRugy/mDVrFt555x0cO3YM//rXv3Dy5En8+Mc/lrosnygpKYHL5cKrr76KI0eO4LnnnsMrr7yCX/3qV1KX5jM2mw2LFi3CAw88IHUpPvH2229j1apVeOyxx7B//37k5eVh7ty5aGhokLo0n7BYLMjLy8NLL70kdSl+sX37dixfvhy7du3Cli1bYLfbce2118JisUhdmk+kpqZizZo12LdvH/bu3YtrrrkGN9xwA44cOSJNQSJdUEZGhvjcc89JXYZfffTRR+LIkSPFI0eOiADEAwcOSF2SX23evFkUBEG02WxSl+IXTz/9tJiVlSV1GT63bt060Wg0Sl3GgE2dOlVcvny592un0ymmpKSIq1evlrAq/wAgbty4Ueoy/KqhoUEEIG7fvl3qUvwmOjpa/Mtf/iLJz+YIyiWsWbMGsbGxmDBhAp555hk4HA6pS/KZ+vp6LFu2DK+//jrCw8OlLsfvmpub8eabb+LKK6+EWq2Wuhy/MJlMiImJkboM6oXNZsO+ffswZ84c72MKhQJz5sxBYWGhhJVRf5lMJgAIyt9zTqcTGzZsgMViwbRp0ySpgQHlIn72s59hw4YN2LZtG+677z489dRTePjhh6UuyydEUcRdd92F+++/H5MnT5a6HL965JFHEBERgdjYWFRUVGDz5s1Sl+QXpaWlWLt2Le677z6pS6FeNDY2wul0IjExscfjiYmJqKurk6gq6i+Xy4WHHnoIV111FcaOHSt1OT5z6NAhREZGQqvV4v7778fGjRsxevRoSWoJuYDyy1/+8rzG1+9fJSUlAIBVq1Zh5syZyM3Nxf33348//OEPWLt2LaxWq8R3cWGXe39r165FW1sbCgoKpC65z/ryawgAv/jFL3DgwAF89tlnUCqVuPPOOyHKeAPlvt4fAFRXV2PevHlYtGgRli1bJlHll6c/90ckN8uXL8fhw4exYcMGqUvxqREjRqC4uBhFRUV44IEHsGTJEnz33XeS1BJyW92fOXMGTU1NF31NdnY2NBrNeY8fOXIEY8eORUlJCUaMGOGvEgfkcu/v5ptvxvvvvw9BELyPO51OKJVKLF68GH//+9/9XWq/DeTXsKqqCmlpadi5c6dkw5aX0tf7q6mpwcyZM3HFFVdg/fr1UCjk/feO/vz6rV+/Hg899BBaW1v9XJ3/2Gw2hIeH45///CduvPFG7+NLlixBa2tr0I3sCYKAjRs39rjXYLFixQps3rwZO3bsQFZWltTl+NWcOXOQk5ODV199ddB/tmrQf6LE4uPjER8f36/vLS4uhkKhQEJCgo+r8p3Lvb8XXngBv/vd77xf19TUYO7cuXj77beRn5/vzxIHbCC/hi6XCwBkPQrWl/urrq7GrFmzMGnSJKxbt0724QQY2K9fINNoNJg0aRK++OIL74e2y+XCF198gRUrVkhbHF0WURTx4IMPYuPGjfjyyy+DPpwA7v9HpfrzMuQCyuUqLCxEUVERZs2aBb1ej8LCQqxcuRK33347oqOjpS5vwNLT03t8HRkZCQDIyclBamqqFCX5XFFREfbs2YPp06cjOjoaJ0+exG9+8xvk5OTIdvSkL6qrqzFz5kxkZGTg2WefxZkzZ7zPJSUlSViZ71RUVKC5uRkVFRVwOp3efXqGDh3q/X82kKxatQpLlizB5MmTMXXqVDz//POwWCz46U9/KnVpPtHe3o7S0lLv12VlZSguLkZMTMx5f+YEouXLl+Ott97C5s2bodfrvb1DRqMRYWFhElc3cAUFBZg/fz7S09PR1taGt956C19++SU+/fRTaQqSZO1QANi3b5+Yn58vGo1GUafTiaNGjRKfeuopsaurS+rS/KKsrCzolhkfPHhQnDVrlhgTEyNqtVoxMzNTvP/++8WqqiqpS/OJdevWiQB6vYLFkiVLer2/bdu2SV1av61du1ZMT08XNRqNOHXqVHHXrl1Sl+Qz27Zt6/XXa8mSJVKX5hMX+v22bt06qUvzibvvvlvMyMgQNRqNGB8fL86ePVv87LPPJKsn5HpQiIiISP7kP2FNREREIYcBhYiIiGSHAYWIiIhkhwGFiIiIZIcBhYiIiGSHAYWIiIhkhwGFiIiIZIcBhYiIiGSHAYWIiIhkhwGFiIiIZIcBhYiIiGSHAYWIiIhk5/8HQpdNu+8ielkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def f(x):\n", + " return 4*x**3 + (x-2)**2 + x**4\n", + "fig, ax = plt.subplots()\n", + "x = linspace(-5, 3, 100)\n", + "ax.plot(x, f(x));" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NHDHxWIJWcZJ", + "outputId": "fcb71651-962b-4951-9983-edeaf567dd53" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -3.506641\n", + " Iterations: 5\n", + " Function evaluations: 16\n", + " Gradient evaluations: 8\n" + ] + }, + { + "data": { + "text/plain": [ + "array([-2.6729815])" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_min = optimize.fmin_bfgs(f, -2)\n", + "x_min" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Jj2RLxoHWhKn", + "outputId": "8bedac41-57ca-40be-e78d-29fa3db6fab2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: 2.804988\n", + " Iterations: 3\n", + " Function evaluations: 10\n", + " Gradient evaluations: 5\n" + ] + }, + { + "data": { + "text/plain": [ + "array([0.46961745])" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimize.fmin_bfgs(f, 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qMgBjV1paici", + "outputId": "d8ad0604-6be2-4b1d-970d-a3091d0310a4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.46961743402759754" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimize.brent(f)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rJz8FTb7amiJ", + "outputId": "0b6e650a-bbde-48bc-a983-c13631160805" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-2.6729822917513886" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimize.fminbound(f, -4, 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JXGjZ-WNfFoq" + }, + "source": [ + "## **Finding a solution to a function**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "G8fXB9-2ap6x" + }, + "outputs": [], + "source": [ + "omega_c = 3.0\n", + "def f(omega):\n", + " # a transcendental equation: resonance frequencies of a low-Q SQUID terminated microwave resonator\n", + " return tan(2*pi*omega) - omega_c/omega" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 654 + }, + "id": "2yX8rrAIfRKL", + "outputId": "9b1d3057-9a1c-4c46-b070-b46a90722c51" + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'tan' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwhere\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNaN\u001b[0m \u001b[0;31m# get rid of vertical line when the function flip sign\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mf\u001b[0;34m(omega)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0momega\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# a transcendental equation: resonance frequencies of a low-Q SQUID terminated microwave resonator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtan\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0momega\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0momega_c\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0momega\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'tan' is not defined" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAFlCAYAAAAktEOqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHTVJREFUeJzt3X1s3VX9wPFP29FbiLQM59ptFicoIE8bbqwWJARTaSIZ7g9DHWZbFh5EJwEalY2HVUTXqUCWSHFhgPgPbkiEGLYUsLIYpWZhWxOI2wjOuYXYblNpZ9GWtd/fH4b6q+tgt+sD3Xm9kvtHD+fc77nkMHjzvb23IMuyLAAAABJVON4bAAAAGE+iCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEha3lH029/+NubPnx/Tp0+PgoKCePbZZ993zebNm+PTn/505HK5+MQnPhFPPPHEMLYKAAAw8vKOou7u7pg1a1Y0NTUd0/w///nPcfXVV8eVV14ZbW1tcdttt8UNN9wQzz//fN6bBQAAGGkFWZZlw15cUBDPPPNMLFiw4Khz7rjjjti4cWO89tprA2Nf/vKX46233orm5ubhXhoAAGBETBrtC7S2tkZNTc2gsdra2rjtttuOuqanpyd6enoGfu7v74+///3v8eEPfzgKCgpGa6sAAMAHXJZlcejQoZg+fXoUFo7MRySMehS1t7dHeXn5oLHy8vLo6uqKf/3rX3HyyScfsaaxsTHuvffe0d4aAAAwQe3bty8++tGPjshzjXoUDceKFSuivr5+4OfOzs4444wzYt++fVFaWjqOOwMAAMZTV1dXVFZWxqmnnjpizznqUVRRUREdHR2Dxjo6OqK0tHTIu0QREblcLnK53BHjpaWloggAABjRX6sZ9e8pqq6ujpaWlkFjL774YlRXV4/2pQEAAN5X3lH0z3/+M9ra2qKtrS0i/vOR221tbbF3796I+M9b3xYvXjww/+abb47du3fHt7/97di5c2c8/PDD8dRTT8Xtt98+Mq8AAADgOOQdRa+88kpcfPHFcfHFF0dERH19fVx88cWxcuXKiIj461//OhBIEREf//jHY+PGjfHiiy/GrFmz4oEHHohHH300amtrR+glAAAADN9xfU/RWOnq6oqysrLo7Oz0O0UAAJCw0WiDUf+dIgAAgA8yUQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkbVhQ1NTXFzJkzo6SkJKqqqmLLli3vOX/NmjVxzjnnxMknnxyVlZVx++23x7///e9hbRgAAGAk5R1FGzZsiPr6+mhoaIht27bFrFmzora2Nvbv3z/k/CeffDKWL18eDQ0NsWPHjnjsscdiw4YNceeddx735gEAAI5X3lH04IMPxo033hhLly6N8847L9auXRunnHJKPP7440POf/nll+Oyyy6L6667LmbOnBlXXXVVLFy48H3vLgEAAIyFvKKot7c3tm7dGjU1Nf99gsLCqKmpidbW1iHXXHrppbF169aBCNq9e3ds2rQpvvCFLxz1Oj09PdHV1TXoAQAAMBom5TP54MGD0dfXF+Xl5YPGy8vLY+fOnUOuue666+LgwYPx2c9+NrIsi8OHD8fNN9/8nm+fa2xsjHvvvTefrQEAAAzLqH/63ObNm2PVqlXx8MMPx7Zt2+KXv/xlbNy4Me67776jrlmxYkV0dnYOPPbt2zfa2wQAABKV152iKVOmRFFRUXR0dAwa7+joiIqKiiHX3HPPPbFo0aK44YYbIiLiwgsvjO7u7rjpppvirrvuisLCI7ssl8tFLpfLZ2sAAADDktedouLi4pgzZ060tLQMjPX390dLS0tUV1cPuebtt98+InyKiooiIiLLsnz3CwAAMKLyulMUEVFfXx9LliyJuXPnxrx582LNmjXR3d0dS5cujYiIxYsXx4wZM6KxsTEiIubPnx8PPvhgXHzxxVFVVRVvvPFG3HPPPTF//vyBOAIAABgveUdRXV1dHDhwIFauXBnt7e0xe/bsaG5uHvjwhb179w66M3T33XdHQUFB3H333fHmm2/GRz7ykZg/f358//vfH7lXAQAAMEwF2QR4D1tXV1eUlZVFZ2dnlJaWjvd2AACAcTIabTDqnz4HAADwQSaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApA0ripqammLmzJlRUlISVVVVsWXLlvec/9Zbb8WyZcti2rRpkcvl4uyzz45NmzYNa8MAAAAjaVK+CzZs2BD19fWxdu3aqKqqijVr1kRtbW3s2rUrpk6desT83t7e+PznPx9Tp06Np59+OmbMmBF/+ctf4rTTThuJ/QMAAByXgizLsnwWVFVVxSWXXBIPPfRQRET09/dHZWVl3HLLLbF8+fIj5q9duzZ+9KMfxc6dO+Okk04a1ia7urqirKwsOjs7o7S0dFjPAQAATHyj0QZ5vX2ut7c3tm7dGjU1Nf99gsLCqKmpidbW1iHX/OpXv4rq6upYtmxZlJeXxwUXXBCrVq2Kvr6+o16np6cnurq6Bj0AAABGQ15RdPDgwejr64vy8vJB4+Xl5dHe3j7kmt27d8fTTz8dfX19sWnTprjnnnvigQceiO9973tHvU5jY2OUlZUNPCorK/PZJgAAwDEb9U+f6+/vj6lTp8YjjzwSc+bMibq6urjrrrti7dq1R12zYsWK6OzsHHjs27dvtLcJAAAkKq8PWpgyZUoUFRVFR0fHoPGOjo6oqKgYcs20adPipJNOiqKiooGxT33qU9He3h69vb1RXFx8xJpcLhe5XC6frQEAAAxLXneKiouLY86cOdHS0jIw1t/fHy0tLVFdXT3kmssuuyzeeOON6O/vHxh7/fXXY9q0aUMGEQAAwFjK++1z9fX1sW7duvjZz34WO3bsiK997WvR3d0dS5cujYiIxYsXx4oVKwbmf+1rX4u///3vceutt8brr78eGzdujFWrVsWyZctG7lUAAAAMU97fU1RXVxcHDhyIlStXRnt7e8yePTuam5sHPnxh7969UVj439aqrKyM559/Pm6//fa46KKLYsaMGXHrrbfGHXfcMXKvAgAAYJjy/p6i8eB7igAAgIgPwPcUAQAAnGhEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJG1YUdTU1BQzZ86MkpKSqKqqii1bthzTuvXr10dBQUEsWLBgOJcFAAAYcXlH0YYNG6K+vj4aGhpi27ZtMWvWrKitrY39+/e/57o9e/bEN7/5zbj88suHvVkAAICRlncUPfjgg3HjjTfG0qVL47zzzou1a9fGKaecEo8//vhR1/T19cVXvvKVuPfee+PMM888rg0DAACMpLyiqLe3N7Zu3Ro1NTX/fYLCwqipqYnW1tajrvvud78bU6dOjeuvv/6YrtPT0xNdXV2DHgAAAKMhryg6ePBg9PX1RXl5+aDx8vLyaG9vH3LN7373u3jsscdi3bp1x3ydxsbGKCsrG3hUVlbms00AAIBjNqqfPnfo0KFYtGhRrFu3LqZMmXLM61asWBGdnZ0Dj3379o3iLgEAgJRNymfylClToqioKDo6OgaNd3R0REVFxRHz//SnP8WePXti/vz5A2P9/f3/ufCkSbFr164466yzjliXy+Uil8vlszUAAIBhyetOUXFxccyZMydaWloGxvr7+6OlpSWqq6uPmH/uuefGq6++Gm1tbQOPa665Jq688spoa2vztjgAAGDc5XWnKCKivr4+lixZEnPnzo158+bFmjVroru7O5YuXRoREYsXL44ZM2ZEY2NjlJSUxAUXXDBo/WmnnRYRccQ4AADAeMg7iurq6uLAgQOxcuXKaG9vj9mzZ0dzc/PAhy/s3bs3CgtH9VeVAAAARkxBlmXZeG/i/XR1dUVZWVl0dnZGaWnpeG8HAAAYJ6PRBm7pAAAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0oYVRU1NTTFz5swoKSmJqqqq2LJly1Hnrlu3Li6//PKYPHlyTJ48OWpqat5zPgAAwFjKO4o2bNgQ9fX10dDQENu2bYtZs2ZFbW1t7N+/f8j5mzdvjoULF8ZLL70Ura2tUVlZGVdddVW8+eabx715AACA41WQZVmWz4Kqqqq45JJL4qGHHoqIiP7+/qisrIxbbrklli9f/r7r+/r6YvLkyfHQQw/F4sWLj+maXV1dUVZWFp2dnVFaWprPdgEAgBPIaLRBXneKent7Y+vWrVFTU/PfJygsjJqammhtbT2m53j77bfjnXfeidNPPz2/nQIAAIyCSflMPnjwYPT19UV5efmg8fLy8ti5c+cxPccdd9wR06dPHxRW/6unpyd6enoGfu7q6spnmwAAAMdsTD99bvXq1bF+/fp45plnoqSk5KjzGhsbo6ysbOBRWVk5hrsEAABSklcUTZkyJYqKiqKjo2PQeEdHR1RUVLzn2vvvvz9Wr14dL7zwQlx00UXvOXfFihXR2dk58Ni3b18+2wQAADhmeUVRcXFxzJkzJ1paWgbG+vv7o6WlJaqrq4+67oc//GHcd9990dzcHHPnzn3f6+RyuSgtLR30AAAAGA15/U5RRER9fX0sWbIk5s6dG/PmzYs1a9ZEd3d3LF26NCIiFi9eHDNmzIjGxsaIiPjBD34QK1eujCeffDJmzpwZ7e3tERHxoQ99KD70oQ+N4EsBAADIX95RVFdXFwcOHIiVK1dGe3t7zJ49O5qbmwc+fGHv3r1RWPjfG1A/+clPore3N770pS8Nep6Ghob4zne+c3y7BwAAOE55f0/RePA9RQAAQMQH4HuKAAAATjSiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkjasKGpqaoqZM2dGSUlJVFVVxZYtW95z/i9+8Ys499xzo6SkJC688MLYtGnTsDYLAAAw0vKOog0bNkR9fX00NDTEtm3bYtasWVFbWxv79+8fcv7LL78cCxcujOuvvz62b98eCxYsiAULFsRrr7123JsHAAA4XgVZlmX5LKiqqopLLrkkHnrooYiI6O/vj8rKyrjlllti+fLlR8yvq6uL7u7ueO655wbGPvOZz8Ts2bNj7dq1x3TNrq6uKCsri87OzigtLc1nuwAAwAlkNNpgUj6Te3t7Y+vWrbFixYqBscLCwqipqYnW1tYh17S2tkZ9ff2gsdra2nj22WePep2enp7o6ekZ+LmzszMi/vM3AAAASNe7TZDnvZ33lFcUHTx4MPr6+qK8vHzQeHl5eezcuXPINe3t7UPOb29vP+p1Ghsb49577z1ivLKyMp/tAgAAJ6i//e1vUVZWNiLPlVcUjZUVK1YMurv01ltvxcc+9rHYu3fviL1wGEpXV1dUVlbGvn37vFWTUeWsMVacNcaKs8ZY6ezsjDPOOCNOP/30EXvOvKJoypQpUVRUFB0dHYPGOzo6oqKiYsg1FRUVec2PiMjlcpHL5Y4YLysr8w8ZY6K0tNRZY0w4a4wVZ42x4qwxVgoLR+7bhfJ6puLi4pgzZ060tLQMjPX390dLS0tUV1cPuaa6unrQ/IiIF1988ajzAQAAxlLeb5+rr6+PJUuWxNy5c2PevHmxZs2a6O7ujqVLl0ZExOLFi2PGjBnR2NgYERG33nprXHHFFfHAAw/E1VdfHevXr49XXnklHnnkkZF9JQAAAMOQdxTV1dXFgQMHYuXKldHe3h6zZ8+O5ubmgQ9T2Lt376BbWZdeemk8+eSTcffdd8edd94Zn/zkJ+PZZ5+NCy644JivmcvloqGhYci31MFIctYYK84aY8VZY6w4a4yV0ThreX9PEQAAwIlk5H47CQAAYAISRQAAQNJEEQAAkDRRBAAAJO0DE0VNTU0xc+bMKCkpiaqqqtiyZct7zv/FL34R5557bpSUlMSFF14YmzZtGqOdMtHlc9bWrVsXl19+eUyePDkmT54cNTU173s24V35/rn2rvXr10dBQUEsWLBgdDfICSPfs/bWW2/FsmXLYtq0aZHL5eLss8/271GOSb5nbc2aNXHOOefEySefHJWVlXH77bfHv//97zHaLRPRb3/725g/f35Mnz49CgoK4tlnn33fNZs3b45Pf/rTkcvl4hOf+EQ88cQTeV/3AxFFGzZsiPr6+mhoaIht27bFrFmzora2Nvbv3z/k/JdffjkWLlwY119/fWzfvj0WLFgQCxYsiNdee22Md85Ek+9Z27x5cyxcuDBeeumlaG1tjcrKyrjqqqvizTffHOOdM9Hke9betWfPnvjmN78Zl19++RjtlIku37PW29sbn//852PPnj3x9NNPx65du2LdunUxY8aMMd45E02+Z+3JJ5+M5cuXR0NDQ+zYsSMee+yx2LBhQ9x5551jvHMmku7u7pg1a1Y0NTUd0/w///nPcfXVV8eVV14ZbW1tcdttt8UNN9wQzz//fH4Xzj4A5s2bly1btmzg576+vmz69OlZY2PjkPOvvfba7Oqrrx40VlVVlX31q18d1X0y8eV71v7X4cOHs1NPPTX72c9+Nlpb5AQxnLN2+PDh7NJLL80effTRbMmSJdkXv/jFMdgpE12+Z+0nP/lJduaZZ2a9vb1jtUVOEPmetWXLlmWf+9znBo3V19dnl1122ajukxNHRGTPPPPMe8759re/nZ1//vmDxurq6rLa2tq8rjXud4p6e3tj69atUVNTMzBWWFgYNTU10draOuSa1tbWQfMjImpra486HyKGd9b+19tvvx3vvPNOnH766aO1TU4Awz1r3/3ud2Pq1Klx/fXXj8U2OQEM56z96le/iurq6li2bFmUl5fHBRdcEKtWrYq+vr6x2jYT0HDO2qWXXhpbt24deIvd7t27Y9OmTfGFL3xhTPZMGkaqCyaN5KaG4+DBg9HX1xfl5eWDxsvLy2Pnzp1Drmlvbx9yfnt7+6jtk4lvOGftf91xxx0xffr0I/7hg/9vOGftd7/7XTz22GPR1tY2BjvkRDGcs7Z79+74zW9+E1/5yldi06ZN8cYbb8TXv/71eOedd6KhoWEsts0ENJyzdt1118XBgwfjs5/9bGRZFocPH46bb77Z2+cYUUfrgq6urvjXv/4VJ5988jE9z7jfKYKJYvXq1bF+/fp45plnoqSkZLy3wwnk0KFDsWjRoli3bl1MmTJlvLfDCa6/vz+mTp0ajzzySMyZMyfq6urirrvuirVr14731jjBbN68OVatWhUPP/xwbNu2LX75y1/Gxo0b47777hvvrcERxv1O0ZQpU6KoqCg6OjoGjXd0dERFRcWQayoqKvKaDxHDO2vvuv/++2P16tXx61//Oi666KLR3CYngHzP2p/+9KfYs2dPzJ8/f2Csv78/IiImTZoUu3btirPOOmt0N82ENJw/16ZNmxYnnXRSFBUVDYx96lOfivb29ujt7Y3i4uJR3TMT03DO2j333BOLFi2KG264ISIiLrzwwuju7o6bbrop7rrrrigs9P/mOX5H64LS0tJjvksU8QG4U1RcXBxz5syJlpaWgbH+/v5oaWmJ6urqIddUV1cPmh8R8eKLLx51PkQM76xFRPzwhz+M++67L5qbm2Pu3LljsVUmuHzP2rnnnhuvvvpqtLW1DTyuueaagU/SqaysHMvtM4EM58+1yy67LN54442B8I6IeP3112PatGmCiKMazll7++23jwifd2P8P79DD8dvxLogv8+AGB3r16/Pcrlc9sQTT2R//OMfs5tuuik77bTTsvb29izLsmzRokXZ8uXLB+b//ve/zyZNmpTdf//92Y4dO7KGhobspJNOyl599dXxeglMEPmetdWrV2fFxcXZ008/nf31r38deBw6dGi8XgITRL5n7X/59DmOVb5nbe/evdmpp56afeMb38h27dqVPffcc9nUqVOz733ve+P1Epgg8j1rDQ0N2amnnpr9/Oc/z3bv3p298MIL2VlnnZVde+214/USmAAOHTqUbd++Pdu+fXsWEdmDDz6Ybd++PfvLX/6SZVmWLV++PFu0aNHA/N27d2ennHJK9q1vfSvbsWNH1tTUlBUVFWXNzc15XfcDEUVZlmU//vGPszPOOCMrLi7O5s2bl/3hD38Y+GtXXHFFtmTJkkHzn3rqqezss8/OiouLs/PPPz/buHHjGO+YiSqfs/axj30si4gjHg0NDWO/cSacfP9c+/9EEfnI96y9/PLLWVVVVZbL5bIzzzwz+/73v58dPnx4jHfNRJTPWXvnnXey73znO9lZZ52VlZSUZJWVldnXv/717B//+MfYb5wJ46WXXhryv73ePVtLlizJrrjiiiPWzJ49OysuLs7OPPPM7Kc//Wne1y3IMvcvAQCAdI377xQBAACMJ1EEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0v4PYND4PixDUAcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,4))\n", + "x = linspace(0, 3, 1000)\n", + "y = f(x)\n", + "mask = where(abs(y) > 50)\n", + "x[mask] = y[mask] = NaN # get rid of vertical line when the function flip sign\n", + "ax.plot(x, y)\n", + "ax.plot([0, 3], [0, 0], 'k')\n", + "ax.set_ylim(-5,5);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/", + "height": 252 + }, + "id": "CBqPNUfSxpMs", + "outputId": "41a0cbc3-01e8-4f18-f582-77e6c9170cf1" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.21612385])" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimize.fsolve(f, 0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/", + "height": 252 + }, + "id": "WFqSUNlOxxFZ", + "outputId": "2ba27e3d-2a73-48c3-984b-75a724a2dace" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.6574377])" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimize.fsolve(f, 0.6)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4Bmu_JzWxzc3" + }, + "outputs": [], + "source": [ + "optimize.fsolve(f, 1.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UWNBpIR9x5bQ" + }, + "source": [ + "# **Interpolation**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OYV-49mpxz-W" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from scipy.interpolate import interp1d\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Define the function\n", + "def f(x):\n", + " return np.sin(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 368 + }, + "id": "HyTA9VtCx-v-", + "outputId": "612a1bd3-5595-4bc3-f388-0967a4ad14e8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAFfCAYAAACWd/eoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyXlJREFUeJzs3XV4FFcXwOHfZqOECBAghBLc3a0Ud0rTAsWtuLtbcHco1uJO8eIOxRvgg+KuCZ6EeLJ7vz8GFrYJBVqSTcJ5n2cednbuzJ5JyO6euXfO1SmlFEIIIYQQQggh/pGVpQMQQgghhBBCiIRAkichhBBCCCGE+AiSPAkhhBBCCCHER5DkSQghhBBCCCE+giRPQgghhBBCCPERJHkSQgghhBBCiI8gyZMQQgghhBBCfARrSwdgCUajkUePHuHk5IROp7N0OEIIIYQQQggLUUrx6tUrPDw8sLL6576lLzJ5evToEenSpbN0GEIIIYQQQoh44v79+3z11Vf/2OaLTJ6cnJwA7Qfk7Oxs4WiEEEIIIYQQlhIYGEi6dOlMOcI/+SKTpzdD9ZydnSV5EkIIIYQQQnzU7TxSMEIIIYQQQgghPoIkT0IIIYQQQgjxESR5EkIIIYQQQoiPIMmTEEIIIYQQQnwESZ6EEEIIIYQQ4iNI8iSEEEIIIYQQH0GSJyGEEEIIIYT4CJI8CSGEEEIIIcRHiNXk6fDhw3z77bd4eHig0+nYtGnTB/c5ePAghQoVws7OjixZsrB48eJobWbPnk2GDBmwt7enePHinDp16vMHL4QQQgghhBDviNXkKTg4mPz58zN79uyPan/79m1q1qxJ+fLlOXfuHN27d6d169bs2rXL1GbNmjX07NmTYcOGcebMGfLnz0/VqlV58uRJbJ2GEEIIIYQQQqBTSqk4eSGdjo0bN+Ll5fXeNv369WPbtm389ddfpucaNGiAv78/O3fuBKB48eIULVqUWbNmAWA0GkmXLh1dunShf//+HxVLYGAgLi4uBAQE4Ozs/O9PSoi/iYyM5P79+9y5c4fbt29z584d7ty5w9OnT7G3t8fBwSHa4uzsTO7cuSlcuDCpU6e29CkIIYQQCV6EIYK7/ne59fLW28X/Fs9CnmGnt8PWyhZDhIGwoDDCgsIIDggm/FU4LuEuuEW5kdyYHDsbO6ytrbGxscHe3p5s2bKRL18+8uTJw4sXSXn27P2v7+YGnp5xd77iv/mU3MA6jmL6KMePH6dSpUpmz1WtWpXu3bsDEBERgY+PDwMGDDBtt7KyolKlShw/fvy9xw0PDyc8PNy0HhgY+HkDF1+s+/fvs2PHDrZv387Zs2d58OABRqPxXx/Pw8ODwoULU7hwYQoVKkThwoXx8PD4jBELIYQQic/T4Kdsu76Nrde24vPIh/uB9zGqT/g8dni9vBEFPAZ8Ab/Xy0Pg9SF1ukwolQ94s5QDUph2t7eHq1clgUqM4lXy5OfnF+3Ke+rUqQkMDCQ0NJSXL19iMBhibHPlypX3Hnfs2LEMHz48VmIWX5bIyEiOHj3K9u3b2bFjh1kv6efw6NEjHj16xNatW03PFShQgCZNmtCwYUNJpIQQQghAKcXlZ5fZenUrW65t4fj94yjMB1PZWdnhGOFI6MNQQh+FwksgGO2mFet3Fv3rf5MAqQF3wA5I+3p5Ixi4BPwF6t4t4Baw6fVGa6ASUB/wIizMlWfPJHlKjOJV8hRbBgwYQM+ePU3rgYGBpEuXzoIRiYTm5MmTzJgxg99///29PZeurq5kyZKFDBkykCFDBjJmzGh67O7uTkREBKGhoYSEhBAaGmpanj59ytmzZzlz5gxnzpwhICDA7Ljnzp3j3Llz9OnThwoVKtCkSRN++OEHGXIqhBDii+P7ypcZJ2ew7tI6br68abatoHtBshiz8PzUc07tPEWQXxDhhEc7RpIkSciaNStZ02fV/n29eHp6otPpCI8I547/Hf56/heXnl/isv9lzr84T6BjIBRFW17p4KKCi8ADQEUBO18v7YCqbN9en6xZa+Pk5BTbPxYRh+JV8uTu7s7jx4/Nnnv8+DHOzs44ODig1+vR6/UxtnF3d3/vce3s7LCzs4uVmEXiZTAY2Lx5M1OmTOHo0aPRtut0OooXL0716tWpUaMGhQoVwsrq39Vgady4MaDdw3fr1i3OnDmDj48PBw4c4PTp04B2lW3fvn3s27ePDh06ULt2bTp06EC5cuX+9TkKIYQQCcHtl7eZeGwiC88uJNygJUR2ejsqZKxAtUzVCD4bzMJJC1l3Y120fW1sbKhQoQK1a9emevXqZMiQAZ1O94+vl4UsVOLtrSSRhkj2397P2otrWXdxA6+c/KEEUAJSBuhJftqeq6eD0XK1CGArQ4ZsZdQoO+rXr8+gQYPIli3bZ/t5CMuJdwUjtm/fzoULF0zPNWrUiBcvXpgVjChWrBgzZ84EtC+bnp6edO7cWQpGiM/i1atXLFq0iGnTpnH79m2zbcmTJzclS1WqVMHNzS3W47l27RorVqxgxYoV3Lx5M9r2ChUqMHLkSEqVKhXrsQghhBBx6dLTS4z7YxwrL6zEoAwAlEpXih4lelDCrQTLfl3G9OnTo11YT5YsGTVr1qR27dpUrVr1s37fO3kihEHNBuGU5xf25Qji1evr89ahSYg6kRdO3oUwP7N9rKysaNSoEYMHDyZ79uyfLRbxeXxSbqBi0atXr9TZs2fV2bNnFaCmTJmizp49q+7evauUUqp///6qadOmpva3bt1SSZIkUX369FGXL19Ws2fPVnq9Xu3cudPUZvXq1crOzk4tXrxYXbp0SbVt21a5uroqPz+/j44rICBAASogIODznaxI8Pz9/VX//v2Vi4uLAsyW3Llzq19//VWFhoZaLD6j0aiOHz+uOnXqpFKkSBEtxho1aigfHx+LxSeEEEJ8Ln8+/FN9v/p7hTempeqyqurQnUPq/v37qlevXipp0qTRPgsrVqyoduzYoSIjIz9/UJGRSi1ZokLTZVEKlAJ119pNDcmXReXo9DZOBjgpKjZWtRu0VMmSJTOLz8rKSjVq1Ehdvnz588cn/rVPyQ1iNXk6cOBAtP/UgGrevLlSSqnmzZursmXLRtunQIECytbWVmXKlEktWrQo2nFnzpypPD09la2trSpWrJg6ceLEJ8UlyZN4l9FoVEuXLlWpU6eO9n+1atWqateuXcpoNFo6TDMRERFq2bJlKnPmzNFi/uGHH9SFCxcsHaIQQgjxyV6Fv1Kdt3U2JSI6b52qs6aO+vPhnyosLEyNHDlS2dnZRUtI6tWrp/7888/YCSoqSqlly5TKmtWUND3BTfVmgkpCkLIjVO3Xfa3W5kLlbG9tit1+ZBLVeWtnNXD0wGgXPXU6nWrYsKEkUfHEp+QGcTZsLz6RYXvijQsXLtCxY0f++OMP03O2trY0adKEHj16kCdPHgtG92GRkZEsXbqUESNGcO/ePdPzOp2Opk2bMmXKFFKkSPEPRxBCCCHih7239tJmaxvu+N8BoHHexgwqM4icKXNy8OBB2rdvz9WrV03t7ezsaNmyJb169SJLliyfPyCDAdasgREjtLrjAClS8LBRH7LP7EQwSU1NXXnJEcqQS3eRn7OlpXtZNwwe/9O22bsy4usRvDr8iimTp/D8+XPTfjY2NgwcOJCBAwdia2v7+c9BfJR4M2wvvpKeJ+Hv76+6d++u9Hp9tF6bO3fuWDq8TxYWFqZmzZql3N3dzc4nderUatOmTZYOTwghhHgv/1B/1Xpza1OPTfqp6dXuG7uVUko9efJENWvWzOyzTa/Xqx49enzSLRufJCpKqZUrlcqRw9TTpJInV2rMGKUCA9Xdu0rZ27/d9GZJy311j6+UAnVMV0ItPbBRFZxb0HReXy/8Wp2+c1qNHz9eubm5mZ1Tnjx51KlTp2LnfMQHxZthe/GVJE9fLqPRqJYvXx4tyciSJYvasWOHpcP7z4KDg9WkSZOUq6ur2fk1btxYPX/+3NLhCSGEEGa2Xt2q0k5Oa0owOm/rrF6Fv1IGg0EtWLAg2j1DJUqUUOfOnYudYAwGpVavVipnzrcZUbJkSo0apdTfvjPevauUj0/05eK6iyrSOZm2b+3aKjI8VE05NkU5jnZUeKNsRtioIfuHqKcvn6qBAweaXcS1srJSvXr1UsHBwbFzfuK9JHn6AEmevkz+/v6qbt26Zm/CDg4OatSoUSosLMzS4X1WDx8+VDVr1jQ7V3d3d7V582ZLhyaEEEKoV+GvVJMNTUxJU5YZWdThO4eVUloBsdKlS5t9hrm6uqq5c+cqg8Hw+YMxGJRau1ap3LnfJk2urkqNHBktafooR4687Zpq00Ypo1HdeXlH1VpZy3S+WWdkVftv7Vdnz55VBQsWNDvXzJkzqwMHDnz20xTvJ8nTB0jy9OXx8fFRmTJlMntz+v777xPkEL2PZTQa1eLFi6NVD2zatKl68eKFpcMTQgjxhbrrf1flm5NP4Y2yGm6leu/qrYIjtN6WLVu2xDh6IlaG6BkMSq1bp1SePG+TJhcXpYYPV8rf/78de+NGpaystGMOHaqU0j6X111cp9JMSmNKotpuaasCQwLV2LFjoxXCaN++vQoJCfnPpyk+TJKnD5Dk6cthNBrV7Nmzla2trdnVqw0bNlg6tDjz4MEDVaNGDbM3ZA8Pj0+uUimEEEL8Vyfun1CpJ6ZWeKNST0ytjt47qpRSKjIyUvXv39/ssypTpkxqz549nz8Ig0Gp9euVypfvbdLk7KzUsGFKvXz5+V5nzpy3x5871/S0f6i/6vh7R6Xz1im8Ufnn5FfXn19XV65cidbjVrhwYdMUPyL2SPL0AZI8fRn8/f1VvXr1zN6EihUrpm7fvm3p0OKc0WhUixYtMuuFsrOzU0uWLLF0aEIIIb4Qqy6sUnYj7UwJw11/LSnw9fVV5cqVi1bAyf+/9v78ndGo9Qjlz2+eNA0dqlRsjcgYOlR7HSsr7bXfsffmXpVyQkqFN8p5rLPacGmDMhgMatasWSpJkiSmn0XKlCllGF8sk1LlHyClyhO/s2fPUq9ePW7evGl6rkePHowbNy5OSoFGGaO4H3CfO/53uON/hyfBT7DSWWGls0JvpUev05v+tbe2J1OyTGRLkY1UjqnQ6XSxFteDBw9o1KgRR44cMT3Xs2dPxo8fj7W1day9rhBCiC+XUgrvg96MODwCgNrZa7PihxUktU3KkSNHqF+/Pr6+vgBYW1szYcIEunfv/vk+D5WCLVvA2xvOndOec3KCbt2gRw9InvzzvM77XrttW/jlF7C3h717oXRp0+aHgQ9psL4Bf9zTpkzpWaIn4yqN48qlK3h5eXHr1i0A9Ho9kydPpmvXrrH6PeFL9Sm5gSRPkjwlOsuWLaN169ZEREQA4OrqyqJFi/Dy8vrsr6WU4uLTi+y/vZ8zvmdMydKDwAcYlOGTj+di50J2t+xkS5GN7Cmyk8MtB2U8y5A6aerPFnNERARdu3Zl3rx5pueqVKnC6tWrSZYs2Wd7HSGEECI0MpSWm1uy5uIaAPqU6sPYimOx0lkxefJk+vfvj8GgfV56eHiwdu1aSr+TXPwnSsHvv2tJ05kz2nNJk0LXrtCzJ8TVPIhRUfDDD7B1KyRLBn/8AblymTZHGiIZuG8gk45PAqB0utKsqbsGhygHGjVqxK5du0xtmzZtyrx583BwcIib2L8Qkjx9gCRPiZNSigkTJtC/f3/Tc0WLFmXNmjVkzJjxs73OHf877Lu1j32397H/9n4eBz+OsZ2t3pYMrhnI4JoB96TuABiMBgzKYPZvcGQwN17c4K7/XRQx/zkW9ShKjaw1qJm1JoU9CmOls/rP5zF37ly6dOlCVFQUAFmzZmXz5s3kzJnzPx9bCCGEeBr8lFqranHq4SmsrayZV2sePxX8icjISFq3bs3SpUtNbStUqMCqVatIlSrVf39hpWDbNi1p8vHRnnN0hC5doFcvcHP776/xqUJCoFIlOH4c0qWDY8fgq6/Mmmy8vJEWm1sQGB5IyiQpWVVnFeXSl2Pw4MGMGzfO1K5QoUJs3LgRT0/PuD6LREuSpw+Q5CnxMRgM9OjRg5kzZ5qea9++PdOnT/8sw/QuPL7Ar2d/Zeu1rdx6ectsm4O1A2XSl+HrdF+TOXlms4TpU5KcsKgwbry4wbXn17j67CrXXlzjnN85zvmdM2uXyjEV1bNUp2bWmtTIWgNHW8d/fV6HDh2ibt26PHv2DABnZ2dWrlxJzZo1//UxhRBCiBehLyi/pDznH58nuUNyNvy4gbIZyhISEsKPP/7Itm3bTG0HDRrE8OHD0ev1/+1FlYIdO7Sk6fRp7TlHR+jcGXr3tkzS9K7nz+Hrr+HKFciTB44cAVdXsyY3X9yk7rq6nPM7h16n55fav9CiQAvWrVtHixYtCAkJAcDNzY1t27ZRrFgxC5xI4iPJ0wdI8pS4hIWF0bRpU3777TfTc2PGjKF///7/aVxwcEQway6uYcGZBZx4cML0vF6np/hXxamYsSIVM1akxFclsLO2+0/n8E98X/my48YOtl/fzu6bu3kV8cq0zdXelTaF2tCpaCfSu6b/V8e/c+cO3333HefPnwdAp9Mxf/58Wrdu/VniF0II8WXxD/On0tJK+Pj6kNoxNYdaHCK7W3ZevHjBt99+y7FjxwCwtbVl5cqV1KlT57+9oFKwa5eWNJ08qT2XJAl06gR9+kDKlP/t+J/T3btQsiT4+sI332hx29ubNQmNDKXt721Zfn45AKPKj2JgmYH89ddfZvdBJU2alK1bt1KuXLm4PotER5KnD5DkKfHw9/fHy8uLQ4cOAdoNlb/++ivNmzf/18f0eeTDgjMLWHlhpSlRsbaypnb22jTP35zyGcrjZOf0WeL/VBGGCI7eO8q269vYcHkDt/1vA2Cls+L7HN/TrXg3vvb8+pOTxuDgYFq0aGGWgE6fPp2uXbt+1viFEEIkbq/CX1FleRVOPDiBWxI3DjY/SO5UuXnw4AHVqlXj4sWLADg5ObF582bKly//719MKdi9W0uaTry+yOng8DZp+hxDAGPD+fNQpgwEBkKdOrBmDfyt100pxYB9Axh/dDwAHYt0ZEb1GQT4B1CnTh0OHjwIgJ2dHb/99hu1atWK67NIVD4pN4iFan/xnpQqTxwePHig8ubNayrlmSRJErV9+/Z/dSyj0ah23dilii0oZpq47s2M5+OOjFN+r2Jhcr7/KMoQpbZc2aIqLqloFnPBuQXV4rOLVVhk2Ccdz2g0ql69epmVih0zZkwsRS+EECKxCQoPUmUWllF4o5KNS6bO+Z5TSil1+fJl5enpafpsSZ06tTpz5sy/fyGjUandu5UqVeptyXEHB6V69lQqNibTjQ0HDihla6vF3qmTdk4xmHFihmk+qB/W/KBCI0NVSEiIqlmzpunnaW1trVatWhW38ScyUqr8A6TnKeG7cuUKVapU4f79+wCkTJmSbdu2UbRo0U8+1okHJxi4byAH7hwAtEIPP+T8gTaF2lAuQ7nPUpwhtv315C9mnJzBsvPLCIsKAyCDawYmVZ7EDzl/4P59Ha9va4qRmxt4er4uJ+vtzYgRI0zbBg0axMiRI6U0qhBCiPcKjQzl21Xfsu/2PpztnNnXbB9FPIpw6tQpatSowfPnzwHIlCkTu3fvJnPmzJ/+IkrB/v0wbBgcPao9Z28PHTpA377g7v4ZzygOrFsH9etr5zV6NAwcGHOzi+tosrEJEYYIyniWYXODzSS1TkqzZs1YvXo1oA25nzt3Lm3bto3LM0g0pOfpA6TnKWG7evWqSp06tdkM5NevX//k41x4fEF9t+o7U4+N7Uhb1W1Ht3jZy/SxngU/U2OPjFVpJqUxnVeJueWUrec508W5mBZ7e6XencB8/PjxZj1Q3bt3V8b3XBUTQgjxZQuLDFPVl1dXeKOSjkmqjt07ppRSau/evcrR0dH0WVKgQAHl6+v7715k/36lypR5+8FlZ6dUt25KPXr0+U7EEmbMeHtOCxe+t9mB2weU81hnhTcq9+zc6p7/PRUVFaXatGlj9nk9YcKEOAw+8fiU3ECSJ5Gg3Lx5U6VNm9b0JlGwYEHl94ld9Lde3FJNNzQ1dYNbDbdSLTe1VHde3omlqONeUHiQGrp/qLIfZa8lUUOtFDXbK5I8eW8C5eNjfoyZM2eavSG3adNGRUVFWeaEhBBCxEsRURGmC5EOoxzUoTuHlFJKHT58WDk4OJg+Q8qVK6f8/f0//QUOHFCqbFnzpKlLF6UePvys52FR/ftr56bXK/X77+9t9j+//ymPyR4Kb9RXU75SN57fUEajUfXu3dvs83rQoEFywfMTSfL0AZI8JUx3795V6dOnN7uC9eLFi4/eP9IQqcYcHqNsR9qaemXqrKmjLj25FItRW9adl3dU5fk/vr0nqr+L0pWYpLAK/2DypJRSv/76q9LpdKafeePGjVVkZGTcn4gQQoh4x2g0qtabWyu8UXYj7dSem3uUUkqdOnVKOTk5mT47ateurUJDQz/t4IcOKVWu3NsPKVtbpTp3VurBg1g4EwszGpVq1kw7zyRJlDpx4r1N7/rfVTlm5VB4ozyneqrbL28ro9GoRo4caZZADRgwIA5PIOGTe54+QO55SngePXrEN998w82bNwHInTs3Bw4cIOVHlh89//g8P23+CR9fbbK8ChkrML7SeIp4FIm1mC1CKXj5Eu7d08qh3rvH49P3mHPYh1XVTnItjTY/RKbHSXjw22EinhY27erjA4UKRT/kqlWraNq0qWkG+BYtWrBw4UK5B0oIIb5ws07NosuOLljprNjcYDO1stXi/PnzlCtXjpcvXwJQrVo1Nm3ahJ3dR07pceSIVj1v/35t3dYW2rSB/v2jTSqbqERGQu3asHMnpEihTaKbLVuMTX1f+VJuSTmuPb9GRteMHGpxiHQu6ZgxYwbdunUztZs4cSK9e/eOoxNI2KRU+QdI8pSwPH78mHLlynHlyhUAsmXLxqFDh3D/iBtDIwwRjD0yltFHRhNpjMTV3pVpVafRLH+zhPnlPyICHj40JUYxLsHBMe5q0MGigjCgIjxzBJtIPZG7ZsCfHQDde5MngM2bN/Pjjz8SEREBQO/evZk4cWIsnaQQQoj47sDtA1ReVhmDMjCx8kR6l+rNtWvXKFOmDE+ePAGgbNmybN++nSRJknz4gEePaoUg9u3T1m1soHVrGDAA0qWLxTOJR4KCoHx5+PNPyJBBS6DSpImx6cPAh5RdXJabL2+SOVlmDrU4RFrntMyePZvOnTub2i1YsEDmbfwIkjx9gCRPCcezZ88oX748f/31F6BV6Tl8+DBp06b94L5nfM/QcnNLzj/WJn/9Lvt3zKk5hzROMb8RWZxS8OLF+5Oie/e0SfU+5k82dWqtfF66dDx2SM/YFZ7cQ1tSOF7Cyqs5O7O+bnulNmz5FZ8jbu9NngB+++03fvzxR968ZYwfP56+ffv+9/MWQgiRoNx+eZuiC4ryPPQ5TfI1YanXUu7evUuZMmV48OABAMWLF2fPnj04OX1gXsRjx7Sepj17tHUbG/jpJ63ynKdn7J5IfPTkCZQuDTduQP78cOgQuLjE2PR+wH3KLi7Lbf/bZEuRjUMtDuGe1J1Ro0YxZMgQAKysrFizZg1169aNy7NIcCR5+gBJnhKGly9fUrFiRc6ePQuAp6cnhw8fJn369P+4X6QhkuGHhjPuj3EYlIEUDimYVWMW9XPXt2xvU0QEPHgQPSF6txcpJOTDx7G31z5QYlrSp9eGNbwzW/mZM1C4sPkhuuqmkLF4L/pVgghrINCDOVWX0b5KhX986fnz59OuXTvT+q+//spPP/30KT8FIYQQCVhQRBClfi3FhScXKOJRhMMtDvPiyQu++eYbbt26BUD+/Pk5cOAAyZIle/+BTpzQepp279bWra3fJk0f+JxP9G7dgpIltUSqQgXYvh3eM+zxjv8dyi4uy72Ae+R0y8nBFgdJmSQlvXr1YurUqQDY2Niwbds2KleuHJdnkaBI8vQBkjzFf6GhoVSqVIljx44B4OHhwaFDh8iSJcs/7ucX5MeP637kyL0jANTLVY9ZNWaRyjGWZxn/e69RTMPq/Pw+vtcofXpTz5Hp8ZvFzQ0+IQmMKXkCxVKakdd9OT/W0XM9pQEdOvqW7suI8iOw1du+93ijR49m8ODBgHZFa/369Xh5eX10PEIIIRImozJSd21dNl7ZiHtSd/5s8yc2YTaULVvWNLQ+R44cHDp0iFSp3vO5e/Kk1tO0c6e2bm0NLVrAoEHaUDWh8fGBcuW0oXz168PKlWAV87yTt17eouzisjwIfEDeVHnZ33w/ye2T06pVKxYvXgxAkiRJ2Lt3LyVLloy7c0hAJHn6AEme4jej0UiDBg1Yt24dAKlSpeLQoUPkyJGDe/d472Sv/3txjP5n6vIk1BdnO2d++fYX6uWu93mCCg+Pudfo3eVjeo0cHKL3Fr2bIP2t1+hzuHcPsmeHsDDz5+0J5Q++JofNGZpVS8GGwtoEhsXTFmdj/Y3vHd6olKJHjx5Mnz4dADs7O3bu3Em5cuU+a9xCCCHil+EHh+N9yBtbvS0Hmx8kX/J8lC1bFh8frRjTPw6tP3VKS5p27NDW9Xpo3lxLmjJliruTSEj27IEaNSAqCrp3hylT3nvx9Prz65RdXBbfIF8KuBfgQPMDJLVOSr169di0aRMAyZIl49ChQ+TNmzfuziGBkOTpAyR5it8GDBjAuHHjAHB0dOTIkSMULFjwvUkAKCg6B6p1B30k2Vxzs7XJBrKliLlKTTRKwfPnMSdEb3qQ/Pw+7ljv9hrFtHxir9Hn8r6k08b3HjmaFsHm5VPWt/2aNpku8jLsJemc07Gt0Tbypo75DdZoNNK8eXOWL18OgJOTE4cOHaJgwYKxeRpCCCEsZMPlDdRZWweAhbUX0jx/c+rWrcvGjRsBSJs2LX/88QcZ/t579OefWtK0bZu2rtdDs2Za0pQ5c9ydQEK1YgU0aaI9njgR/qF63pVnVyi3uByPgx9TIWMFdjTegTHSSM2aNdn/unqhu7s7R48eJZMkrGY+KTeIhVLp0cyaNUulT59e2dnZqWLFiqmTJ0++t23ZsmXN6tS/WWrUqGFq07x582jbq1at+tHxyDxP8df8+fNNv1MrKyv1+zuTxfn4xDC5q3WIwqv523mM6v6ojpx8ZX7QsDClbtzQZidfvFipESOUat1aqSpVlMqRQ5tT4X0zx767ODgolT27UpUqKdWqlVLDhyu1aJFS+/Ypdf269joJ0YED2sR8oK5PHKCyzcym8EY5jXFSO67veO9uERERqkaNGqbfV6pUqdT169fjLm4hhBBx4rzfeeU42lHhjeq2o5tSSqm+ffua3v+dnJzUhQsXzHf680+lvv327WeolZVSzZtrn5fi00ya9PbnuGzZPzY963tWJR2TVOGNarqhqTIajSowMFAVLVrU9PvKkSOHevnyZdzEnkDEq0lyV69erWxtbdXChQvVxYsXVZs2bZSrq6t6/PhxjO2fP3+ufH19Tctff/2l9Hq9WrRokalN8+bNVbVq1czafcpkqZI8xU+7d+9Wer3e9Mc9a9Yss+3RkifX24p2BbWkaaiVyl2yherMNOXXpJdS9eopVayYUu7uH5cYgda2WDGl6tRRqmdPpaZNU2rDBu0D4OlTbRK7xGrGDNOH2/Pt61XZRWUV3ij9cL36+dTP790tODhYlSpVyuwN+V/NIC+EECJeCokIUTln5VR4oyouqagiDZFqwYIFpvd9vV6vdu7c+XaHM2eUql3bPGlq2lSpa9csdxKJQc+e2s/T2lqpXbv+senO6zuVfrhe4Y0avG+wUkqpZ8+eqRw5cph1Osik92/Fq+SpWLFiqlOnTqZ1g8GgPDw81NixYz9q/6lTpyonJycVFBRkeq558+bqu++++9cxSfIU/1y4cEE5Ozub/qi7d+8erc27yVMGz8XKua/2xuDWB7Uv40f2GlWurPUajRih9ULt36/1SiXUXqPPxWjUrgiCUsmTq/DrV1Szjc1MPXo9d/ZUUYaoGHd98eKFypUrl+l3V61aNRUVFXNbIYQQCUvX7V0V3ij3Se7qafBTtXfvXmVtbW16z//559cX2M6dU8rLyzxpatxYqStXLHsCiYXBoFTDhtrPNmlS7cLuP/j1zK+mz/AFPguUUkrduHFDJU+e3PS769q1a1xEniDEm+QpPDxc6fV6tXHjRrPnmzVrpmrXrv1Rx8iTJ49q06aN2XPNmzdXLi4uKmXKlCpbtmyqffv26tmzZ+89RlhYmAoICDAt9+/fl+QpHnn06JFKly6d6Y/5u+++i/HL95vkSZ/9N2U3SKfwRhVtg7rnjHqEuzpBMbWWusqvcU+lpk79cnqNPpfQUKWKFtV+yPnzK2NQkBp5aKTpzfe7Vd+poPCgGHe9efOm2Rty79694zh4IYQQn9uuG7tMnwE7ru9Qly5dUi4uLuYXOv/3P6V++OFt0qTTKdWokVKXL1s6/MQnLEypihW1n3OqVNrF338wdP9Q0yiSN8PwDx48aJb8zps3Ly4ij/fiTfL08OFDBahjx46ZPd+nTx9VrFixD+5/8uRJBUS7R2rVqlVq8+bN6vz582rjxo0qZ86cqmjRou+92j1s2LAY76OS5MnygoKCVOHChU2/kyJFipj1Mr7Lx0cpCixUuqFa4lS1ga3KaX1a2RJm1snk4xPHJ5GY3L+vvSGDUg0aKGU0qpXnVyq7kXYKb1TheYXV0+CnMe66f/9+szfkxYsXx3HwQgghPpdnwc9UmklpFN6ozts6qydPnqhMmTKZ3uM7ffONMv49aWrQQKlLlywdeuIWEKBUgQLazzxzZqXecxuMUkoZjUbTKJKkY5KqM4/OKKWU2bBLa2trtX///riKPt5KNMlT27ZtVd68eT/Y7ubNmwpQe/fujXG79DzFTwaDQXl5eZn+gD09PZWvr+9723ddM950Bazld6g6VitjHKEnydN/dPiwNqYalJowQSml1B93/1BuE9wU3qi8P+dVj4NifrP++eefTb9PW1vbaH/7Qggh4j+j0ajqrKmj8EblmJVDPQ98rkqXLq0AlQvULldX86Spfn2l/vrL0mF/OXx9lcqYUfv5Fy6s1KtX720aHhWuKi2tZBp6eeflHaWUUj169DB9XidLluyLL/j0KclTzLNtfSZubm7o9XoeP35s9vzjx49xd3f/x32Dg4NZvXo1rVq1+uDrZMqUCTc3N27cuBHjdjs7O5ydnc0WYXljx441zT3g7OzMtm3bYvx/YVRG+uzuw4zL/QDo+wfU3OzFemODuAz3y1GmDLyew4n+/WHPHkp7luZIyyOkSZqGC08uUH5JefyCopdv79ChAx06dAAgIiKC77//nvv378dl9EIIIf6jpf9byvrL67G2smb598vp1rEbz48eZRVwAaji7681rFcPzp+H1ashd24LRvyFcXfXJhl2c9Mm061TByIiYmxqq7flt3q/kTdVXvyC/Kixsgb+Yf5MnDiR6tWrA/Dy5Uu+/fZb/N/8XsU/itXkydbWlsKFC7Nv3z7Tc0ajkX379n1whuN169YRHh5Okze17f/BgwcPeP78OWnSxDypp4h/du/ezZAhQwDQ6XSsWbOGPHnyRGsXaYjkp80/Men4JAAm7oZ+e5PRiTlA9PmS7O219xLxH3XoAK1agdGozWx+6xY53HJwsMVB0jql5dLTS5RbXI5Hrx5F23X69OmmCXMfP36Ml5cXIR8zgbAQQog4de8enDljvmz94zadtnUBoEeB4Vz5eSPVly/nItCA118c69bVkqa1ayGGz24RB7Jl0+bOSpIEdu9++5kdAxd7F7Y33m76/G6yoQk6Kx2rVq0iV65cAFy5coX69esTFRUVl2eRMMV2N9jq1auVnZ2dWrx4sbp06ZJq27atcnV1VX5+fkoppZo2bar69+8fbb+vv/5a1a9fP9rzr169Ur1791bHjx9Xt2/fVnv37lWFChVSWbNmVWEfWTFNqu1Z1u3bt82KC4wcOTLGdsERwarWylqmmx0XF9bmIro9Yqny8VExLnfvxvHJJGahoVrpdlAqb16lXt+LduP5DZVuSjqFNyrrjKzqfsD9aLs+ffpUZcyY0fQ7/vHHH5VRinYIIUS8cfeuUvb2fxv6rotS/FRa4Y2y/6mQWq6vrAzvNHhQvLhWIELEH9u3m+ZqVH37/mNTn0c+yn6UvcIbNXT/UKWUdutLihQpTJ/XPXr0iIuo4514c8/TGzNnzlSenp7K1tZWFStWTJ04ccK0rWzZsqp58+Zm7a9cuaIAtXv37mjHCgkJUVWqVFEpU6ZUNjY2Kn369KpNmzamZOxjSPJkOaGhoWYFImrVqqUMBkP0dpGhqvLSytob+Ch7teXb7NobQ40aUjkvLj14oFTq1NrP/scfTT/7Wy9uqQzTMii8UZmmZzKNoX7XX3/9pZImTWr6XY8ePTquoxdCCPEeMU48//UY7XN3gI267qozbdgAakqzZpYOWbzPokVvf4nTpv1j06XnlpruH990eZNSKnoFvt9++y0Ogo5f4l3yFN9I8mQ5rVq1Mv1xZs6cOcYZriOiItS3K79VeKMcRzuqwxM6a28Izs5aNTgRt/74QykbG+13MG6c6em7/ndVpumZFN6o9FPTq1svbkXbdcuWLUqn0ylAWVlZSUUfIYSIJ/6ePLml2an0Q7RqtosKaE9uBFUA1DfffCMTqsZ3Y8a8LeCxevU/Nn0zd5fTGCd1+alWUn727Nmm72fOzs5fXAGJeFMwQoh3/fLLL/z6668AODg4sGHDBlxdXc3aRBmjaLyhMVuvbcXe2p6t38ylzDBtHyZPhq++iuOoBaVLw4wZ2uMBA7SbVAFPF08OtThE1uRZuRtwl7KLy3LX/67Zrt9++y3e3t6Adr9jo0aNohWQEUIIYWFWEbh4fY9Br6hzCZKdy0Ih4Hvgfgp3Vq9ejbW1taWjFP+kf3/o3FnLhZs2hf3739t0UpVJfJP+G15FvMJrtReB4YF06NCBBg20QlyBgYHUq1eP0NDQuIo+QZHkScSJ06dP06lTJ9P6/PnzyZcvn1kbozLSaksr1l1ah42VDRvrraf8oAUQGgoVK2o3QwrLaNcO2rTR3pQbNoTXlS2/cv6Kgy0OksMtB/cD71NleRWeBj8123XQoEFUqlQJAD8/Pxo3bozBYIjzUxBCCBGznMXbczN1KMlD4Obvw/HiBmcB0DN+/FopyJUQ6HQwbZpWzCMyEry84Ny5GJva6G1YW3ctXzl/xdXnV2m2sRkKxfz588mePTsA586do3v37nEVfYIiyZOIdc+ePaNu3bpEvC6j2blz52hVFJVSdNzWkaX/W4pep2dtvbVU23sHDh8GR0f45RftjUFYhk4HM2dCyZLg76+9KQcFAeDh5MHepnvxdPHk2vNr1FxZk6CIINOuer2eFStWmD589+3bx6hRoyxwEkIIIaJxvsed8ksAKL+nLOdCpryzcQIFC5axTFzi0+n1sGwZfPMNvHoF1avDnTsxNk2dNDXrf1yPrd6WzVc3M+bIGJycnPjtt99wcHAAtAvdy5cvj8MTSBgkeRKxymg00rhxY+7duwdAqVKlmDx5slkbpRS9dvdins88dOhY9v0yvOwLQN++WoNx4yBDhrgNXERnZwe//abNL3HxIrRoofVEAWmd07K7yW7ckrhx+tFpfljzAxGGt3NOpEqVilWrVmFlpb3lDB8+3GwKAyGEEJbhXr0+obZGStyz4sC5Z0DA6y11gB4WjEz8K/b2sHmzVkLezw+qVoVnz2JsWixtMebUnAPA0AND2XZtG3ny5GHOnDmmNu3atePixYtxEnpCIcmTiFUTJ05k9+7dAKROnZp169Zha2tr1mbogaFMPTEVgF9q/0LDPA2gbVsIDtYmbO3YMc7jFu/h4QHr14ONjfbv2LGmTdndsrO90XYcbRzZc2sPzTc1x6jezjlRtmxZRowYAWgJc6NGjfD19Y3zUxBCCPFa1t/xy3kCawMU/T0zL9SbL8nZgIXENJ+iSABcXbX7k9Olg2vXoFYt7TtVDH4q+BMdinRAoWi8oTHXn1+nefPm/PTTTwCEhIRQr149goKCYtz/SyTJk4g1p06dYvDgwYA2Ee6qVavw8PAwazPx6ERGHdGGcM2qPoufCv4ECxfCnj3a1ZNffwUr+W8ar5QqBbNna48HD4bt202biqYtysb6G7GxsmH1X6vptqMb6nXvFMCAAQOoWrUqAE+ePKFRo0Zy/5MQQliAo2sIjjW1e4k7nrBmxZPrr7ckAdYDzjLxfEKWNi3s2gXJksHJk9qE9++ZAHdatWmUSleKgPAAGqxvQHhUOLNmzTLdm3758mXat29v9nn+JZNvpSJWvHr1ikaNGplmqh44cCDly5c3a7Pu4jr67tWG5k2oNIFOxTrBw4fQs6fWYNQoyJo1TuMWH6lNG62IhFLQqBFcv27aVDlzZZZ+vxQdOmadnsXoI6NN26ysrFi2bBlp06YF4ODBgwwfPjzOwxdCiC/dklsjCXZ9QroAcDuq48Xr50eMmIuPTx58fODqVfD0tGiY4r/ImRN+/127GL1t29vP7b+x1duypu4aUjik4IzvGfrv7Y+DgwPr1q3DyckJgBUrVjB//vy4PoP4KXarpsdPMs9T7GvatKlpvoASJUqoiIgIs+3H7x83zXLddXtX7UmjUamaNbV5CooXVyoqygKRi48WHq5UqVLa7ytXLqUCA802zzgxwzQR37w/55ltO3LkiNLr9QpQOp1O7dq1Ky4jF0KIL9qlJ5eUzXBrhTdqVU4rlez153Xjxo0tHZqIDZs3K2VlpX1eDx783mZbr241fW5vvbpVKaXU2rVrTd/n7O3t1aVLl+Iq6jgl8zwJi1qxYgXLli0DwMnJiRUrVmBjY2PafvvlbWqvqk1YVBjfZvuWKVWnvNlRuzJia6sN3dPrLRG++Fi2tloBCQ8PuHQJmjUD49t7nLoU78LgMtqwzQ7bOrD16lbTtq+//tpUcU8pRbNmzXj61LzEuRBCiM9PKUWHbR2IVFF8exWuXTbyEsiQIQOz3wzJFolL7dowd672eNQoeKcgxLtqZatFt+LdAGixqQUPAx9Sr149Or6+9zwsLIzGjRubqid/qSR5Ep/VrVu36NChg2l97ty5ZMqUybTuH+ZPzZU1eRrylILuBVlZZyV6K71WEaZrV63RsGGQK1dchy7+jTRpYMMGLZHatAnGjDHbPKL8CNoUaoNRGWm0oREXHl8wbevbty/VqlUD4PHjx7Rt21bGUwshRCxbdn4Zh+4ewiESRu2AqbydUsLFxcXS4YnY0qYNvBkm36mT9tkdg/GVxlPQvSDPQ5/TeENjDEYDkyZNImfOnACcPXuWoUOHxlXU8ZIkT+KziYyMpFGjRrx69QqApk2b0qhRo7fbDZHUXVuXy88uk9YpLVsbbiWpbVJtY+fO8PIlFCwIffpYInzxbxUvDj//rD0eOlQbX/2aTqdjdo3ZVMxYkaCIIL5d9S1Pgp8A2v1PixYtwu313cibNm1i0aJFcR6+EEJ8KV6EvqD37t4ADDsIG/zBHxgyZAilSpWyYGQiTgwZolUzfnO/8pEj0ZrYWduxuu5qHG0cOXT3EGOOjMHBwcFsFNGECRM4dOhQXEcfb0jyJD4bb29vTp48CUCmTJnMuv/fDBPYd3sfjjaO/N7od9I6a0UDWLdOK3ttba0N13tniJ9IIFq10krKKwWNG2t3Gb9mo7dhbb21ZEmehbsBd/lhzQ+ER4UD4O7uzoIFC0xtu3Xrxq1bt+I8fCGE+BIM2jeIpyFPyfUEWp6AaUDp0qUZNGiQpUMTcUGn06rlfvcdhIdrw/n++itas2wpspnmf/I+5M2Ru0coWLCg2XD7pk2b4u/vH5fRxxuSPInP4uDBg4x9PeePtbU1q1atMlVoARh/dDy/nv0VK50Va+quoYB7AW3Ds2da9zHAgAFQoEDcBi4+n6lT4euvITAQvLy0f19L7pCcrQ234mLnwtH7R2n3ezvTED0vLy/TfBJBQUE0bdrUVKVRCCHE53Hh8QXmn9Gqpc3ZBrMMoJydWb58OdbW1haOTsQZa2tYtUqbdsTfH6pVg/v3ozVrmr8pzfI3Mw27fx7ynF69elGuXDkA7t+/T6c339++MJI8if/s5cuXNGnSxPRleOTIkRQrVsy0/bdLvzFg3wAAplebTs1sNd/u3K0bPH0KuXODXPlK2N4UkEibFq5cgaZNzQpI5HDLwdp6a9Hr9Cz53xImHZtk2jZt2jTTvXHHjh1j/PjxcR6+EEIkZn339sWojNS7CHnvwnS0+5IzZMhg6dBEXHNwgK1btVLmDx9C1arw4kW0ZrNrzCZr8qw8CHxAqy2tsLKyYsmSJaZ741auXMnKlSvjOnqLk+RJ/Gddu3bl4cOHAFSoUIG+ffuatv315C+ab2qutSvWlc7FOr/dccsWWLlSmwR34UKws4vTuEUsSJ0aNm7UfpdbtsDIkWabq2SuwtSqUwHot7efqQKfk5MTy5Ytw+r1hMje3t74+PjEbexCCJFI7b65m503dmJjgLF7YTLwXdOmNGzY0NKhCUtJnhx27tQueF6+rA3hCw01a5LUNimr667GVm/L5qubmfPnHDw9PZnzTrW+jh07cvfu3biO3qIkeRL/yaZNm1i+fDkALi4uLFmyxPQFODA8kDpr6xASGUKlTJXeliQHrThE+/ba49694Z2eKpHAFS36tiSqt7eWRL2jc7HOtCvcDoUyq8BXqlQpBgzQeiijoqJo0qQJISEhcRm5EEIkOgajwVQkovMpcH0JWzNkYNasWRaOTFicp6eWQLm4wNGj0LAh/G3YfKE0hZhQaQIAffb04frz6zRs2JDGjRsDEBAQQLNmzTAYDHEevqVI8iT+tWfPntGuXTvT+owZM/jqq68A7WbClptbcu35NdI5p2PlD69Lkr/Rqxf4+kK2bNoXbJG4tGihVVAEaNJEG8b3mk6nY2b1mZTPUJ6giCBqr67N02Btjqdhw4ZRuHBhAK5cuUK/fv3iOnIhhEhUlvxvCReeXMA5FAYfhik6HXNWrMDZ2dnSoYn4IE8e7SKnnR1s3qx9dv9t2pAuxbtQIWMFQiJDaLG5BQajgVmzZuHp6QnA4cOHmThxoiWitwhJnsS/1qlTJ5480cpOf/vttzRt2tS0bfLxyWy4vAEbKxvW1VtHSseUb3fctQsWLdKqvixcqI29FYnPlCnwzTfw6pVW2ScgwLTJRq/9v8icLDN3/O/QYH0DDEYDNjY2LF++HIfX/ydmzZrFrl27LHUGQgiRoAVHBDN4vzZZ+bDDYAwFq65dpSy5MPfNN9ptFDodzJunTaT7DiudFQtrL8TJ1olj948x+fhkXF1dWbp0KTqdDoChQ4fyVwyV+xIjSZ7Ev7J27VrWrl0LQPLkyZk/f77pD+jQnUP039sfgGnVplH8q+JvdwwM1CZqA21S3NKl4zRuEYdsbLQy9OnSwbVrWg/UOwUkUiRJwZaGW3C0cWT/7f0MPaBNupcjRw6zK1gtW7b8YsuhCiHEfzHp2CR8g3xJ9wI6nYIlKVMyaNw4S4cl4qMffoA3QzmHDoVffjHbnN41PdOqTQNgyIEh/PXkL8qWLWu6zz0yMpIWLVp8EdVyJXkSn+zx48d07NjRtD5r1izc3d0BePTqEfV/q49BGWiSrwkdinQw37lfP60kZsaMMHp0XIYtLCFVKq2AhL29Nnnum9nNX8uVMhe/1NbeoMf8MYbfr2kT7Hbs2JFq1aoB4OvrS69eveI2biGESOB8X/ky/g+tcunkvRBogG/WrMHe3t7CkYl4q2PHt5WP27WLds9yywItqZWtFhGGCJptbEaEIQJvb29y5swJgI+PD5MmTfr7URMdSZ7EJ1FK0b59e54/fw5AnTp1aNCgAQCRhkh+XPcjj4MfkzdVXubVmmfqjQLgwIG3hQR++QUcHeM6fGEJhQvDfG1uEUaM0JKpdzTI04DORbX7o5pubMqtl7fQ6XQsWLDANCZ/4cKFMnxPCCE+weD9gwk1hFLgPtS9BKfLlaNo+fKWDkvEdyNHwk8/aSNFGjSA48dNm3Q6HfNrzSe5Q3LO+p1l9OHR2Nvbs3DhQlOxsGHDhnHp0iVLRR8nJHkSn2TlypVs2rQJgJQpUzJnzhxTgtRvbz+O3j+Ks50z639cTxKbJG93DA6G1q21x+3aQYUKcRy5sKimTbU5vQCaNYO/vbFOrjqZ4mmL4x/mT7119QiLCuOrr74yu4LVpk0bAt+ZeFcIIUTMLjy+wKJziwCYvRte6PVU+O03C0clEoQ39z3VrKmVLq9Vy6zoUxqnNPxc42cARh8ZzZ+P/qREiRL07NkTgIiICH766adEXX1Pkifx0R49ekTnzm/naZozZw4pU2qFINZdXMfUE9r8PUu8lpA1RVbznQcPhlu3tPtfJkyIs5hFPDJxIpQrB0FB4OWlzWz+mq3elnX11uGWxI0zvmfouqMrAK1bt6ZixYqANpt5//794z5uIYRIYNpvaI9CUf0ilLoPIZ06YZ8ihaXDEgmFtTWsWaNNI/PihTaJ7qNHps3189Snfm7tFo1mG5sRGhnKiBEjyJYtGwAnT55k6tSploo+1knyJD6KUoo2bdqYbtxv2LAhderUAeD2y9u02tIKgH6l++GVw8t856NHYfp07fH8+SDlUb9MNjawdq02r8T169C4MbxzZSqdi1bSXoeOBWcWsPjcYtPwPcfXQzznzJnDwYMHLXQCQggR/227uo1jT45hZYCZeyEoSRLSjRlj6bBEQuPoCNu2aVPK3LsH1aqZXfScXWM2qR1Tc/nZZYYcGIKDgwMLFy40jUYaMmQIV69etVDwsStOkqfZs2eTIUMG7O3tKV68OKdOnXpv28WLtS9M7y5/v7lRKcXQoUNJkyYNDg4OVKpUievXr8f2aXzRli1bxvbt2wFwd3dn5syZAEQZo2iysQmvIl5ROl1pRlUwL29JaCi0aqXNGdCihfbHJ75cKVO+LSCxfTsMG2a2uXLmygwvpxWV6LCtA//z+x8ZM2Zk3DvVoVq1akVwcHCchi2EEAmBURlptVq7mNniFGR+CfbDhsk9xuLfcXPTJtF1d4cLF+D77yE8HNAq5r4p+DTl+BSO3D1C6dKl6fZ6iH5YWFiiHb4X68nTmjVr6NmzJ8OGDePMmTPkz5+fqlWrmuYHiomzszO+vr6m5e7du2bbJ0yYwIwZM5g7dy4nT57E0dGRqlWrEhYWFtun80V68uQJPXr0MK3PmzePFK+7/8ccGcOx+8dwtnNm+Q/LsbayNt95+HC4ehXSpNHm/RGiUKG3JVBHj4b16802D/pmENWzVCcsKow6a+vgH+ZPx44d+frrrwG4desWgwcPjuuohRAi3pu4YyKPeYxtGEw8DJEpUmD9znB7IT5ZxoywYwc4OcHBg9o9zK+nHamVrRY/FfgJhaLVllaERoYyevRoMmfODMCxY8dMF9sTFRXLihUrpjp16mRaNxgMysPDQ40dOzbG9osWLVIuLi7vPZ7RaFTu7u5q4sSJpuf8/f2VnZ2dWrVq1UfFFBAQoAAVEBDwcSfxhWvUqJECFKDq169vev74/eNKP1yv8EYt/9/y6DueOqWUlZVSoNTmzXEYsUgQevbU/m84Oip14YLZpmfBz5TnVE+FN6rOmjrKaDSqq1evKnt7ewUonU6njh49aqHAhRAi/gmLCFP2ve0V3qhe36C9v06daumwRGKxb59SNjba/6suXZQyGpVSSvmH+iuPyR4Kb9TAvQOVUkodOnTI9L3RwcFBXb9+3ZKRf5RPyQ1itecpIiICHx8fKlWqZHrOysqKSpUqcfyd0od/FxQURPr06UmXLh3fffcdFy9eNG27ffs2fn5+Zsd0cXGhePHi7z1meHg4gYGBZov4ODt27GDlypUAJEuWjOmv7116Ff6KxhsaY1AGGuVtRON8jc13DA+Hli21qxMNG0Lt2nEduojvxo+HihW1SoxeXvDypWlTiiQp+K3eb1hbWbP+8np+OfML2bJlY+TIkYA2dPenn36S3mYhhHit1fRWhCUNwz4Ehp0AlSaNVt1WiM+hQgVYtkx7PHOmqfiXi70Ls6prk+tOODaB84/P880335gKjIWGhvLTTz9hfN1blRjEavL07NkzDAYDqVOnNns+derU+Pn5xbhP9uzZWbhwIZs3b2b58uUYjUZKlSrFgwcPAEz7fcoxx44di4uLi2lJly7dfz21L0JQUBAdOryd5Hby5Mmmn3u3nd249fIWni6ezK4xO/rOY8bAxYvaPS4zZsRVyCIhsbaG1ashQwa4eVNLst8ZG100bVHGVNBucu62sxuXn16mR48eFCtWDICrV6/i7e1tgcCFECJ+uXnnJisfaRc6e/4BThGg698fHBwsHJlIVOrXhzdV9Pr3h6VLAfg+5/f8kPMHooxRtN7SGoPRwNixY8mYMSMAR44c4Zc3w/UTgXhXba9kyZI0a9aMAgUKULZsWTZs2EDKlCmZN2/evz7mgAEDCAgIMC3379//jBEnXkOGDDHdb1ahQgVatGgBwG+XfmPRuUVY6axY/v1yXO1dzXf83/+05Alg1izthkMhYuLmphWQcHCAXbu0kvbv6FWqF5UzVSY0KpSG6xsSqSJZuHAhNjY2AEycOJGzZ89aInIhhIgXlFJ8P+J7lIsiySsYdBrw8IC2bS0dmkiMuneHPn20x61aaQUlgJnVZ+Ji58LpR6eZdWoWSZMmZcGCBabd+vbt+95OjoQmVpMnNzc39Ho9jx8/Nnv+8ePHuLu7f9QxbGxsKFiwIDdu3AAw7fcpx7Szs8PZ2dlsEf/s9OnTzHjdY2Rvb8+8efPQ6XQ8CHxA263aG3L/0v0pk76M+Y6Rkdpwvago+OEHqFcvrkMXCU2BArBwofZ43DitnPlrVjorlngtwS2JG/97/D/67elH7ty5GTJkCABGo5F27dolymo+QgjxMVauXcmFZBcAGPiHjiSRwIABWlVTIWLDuHHQpIn2Xa9uXTh9Gg8nD8ZXGg/AoP2DuOt/l4oVK9K0aVMAAgICzIqPJWSxmjzZ2tpSuHBh9u3bZ3rOaDSyb98+SpYs+VHHMBgMXLhwgTRp0gCQMWNG3N3dzY4ZGBjIyZMnP/qY4p9FRkbSunVr0/hUb29vsmTJglEZab6pOS/DXlLEowje5byj7zxxIpw9C8mSwezZ2kzVQnxIgwbQu7f2uGVLOH/etCmNUxqWeC0BYMapGWy7to1+/fqRM2dOQEv058yZE+chCyGEpb18+ZL2v7YHZ0gaAL3/VJA2LbRubenQRGJmZQW//gpVqmj3LdesCdev06ZwG8p4liE4MpgO2zqglGLy5MmmCs2rV69m5+ueqgQttqtXrF69WtnZ2anFixerS5cuqbZt2ypXV1fl5+enlFKqadOmqn///qb2w4cPV7t27VI3b95UPj4+qkGDBsre3l5dvHjR1GbcuHHK1dVVbd68WZ0/f1599913KmPGjCo0NPSjYpJqe/9szJgxpiopBQoUUBEREUoppSYenajwRiUZnURdfXY1+o4XLypla6tVYlm6NI6jFgleZKRSlStr/38yZlTq+XOzzd12dFN4o9wmuKlHgY/U4cOHTf9PnZyc1IMHDywUuBBCWEaLti0UvVF4o6YWs9beP2fPtnRY4ksRGKhU4cJvP7d9fdXlp5eV7UhbhTdq5fmVSimtkvabz+sMGTKooKAgCwce3afkBrGePCml1MyZM5Wnp6eytbVVxYoVUydOnDBtK1u2rGrevLlpvXv37qa2qVOnVjVq1FBnzpwxO57RaFRDhgxRqVOnVnZ2dqpixYrq6tUYvsy/hyRP73ft2jVlZ2enAGVlZaX+/PNPpZRSfz3+y/THsMBnQfQdo6KUKl5c+wOqWdNUwlKIT/L8ufYGDFoiFRlp2hQWGabyz8mv8EZVWlpJGYwG1bp1a9Mbcp06dSwYuBBCxK1Dhw4pvtYSJ9euqAgrlEqXTqmwMEuHJr4kfn5KZc6sfW4XLKhUYKAacXCEwhuVckJK9Sz4mTIajap8+fKmz+s+ffpYOupoPiU30CmllAU6vCwqMDAQFxcXAgIC5P6ndyilqFChAgcPHgSgV69eTJo0CYPRQOmFpTn58CQ1s9Zka8Ot6P4+HG/yZG3YlbOzVmXvq6/i/gRE4nD+PJQsCSEh2k2pr8uhAlx+epnC8wsTGhXKhEoTaJWzFTly5ODp06cAbNmyhW+//dZSkQshRJwIDw8nT5E83Kh5Axzglx32tDoZBnPmQPv2lg5PfGlu3tQ+t58+hUqViNiykUKLSnDx6UWa52/OYq/FXLt2jXz58hEeHo5er8fHx4f8+fNbOnKTT8kN4l21PWE5ixcvNiVOGTJkYPjw4QBMPzmdkw9P4mznzLxa86InTtevv62SNnmyJE7iv8mXDxYt0h5PnKiVM38tZ8qczKiuFTIZuH8gN0NvMvVN2VSgc+fOBAUFxWm4QggR18aMGcMNNy1xSv3SmhanwsDTE376ydKhiS9R5sywfTs4OsLevdi2ac8vteajQ8eS/y1h7629ZMuWjUGDBgFaPYO2bdsm2GJPkjwJAJ4/f06fN6Ungblz5+Lo6MiNFzcYtF/7zz65ymTSOqc139Fo1EpVhoVBpUraYyH+qx9/hH79tMc//aSVv3+tVcFW1M1VlyhjFI03NOa7ut+ZJs2+d++ezP0khEjULl26xJhpY+B1jaxpx+3RK2DQILC1tWhs4gtWpAisX6/N4bhiBSVmbqRzMW2i3Pa/tycsKoy+ffuSI0cOAE6dOpVgiz1J8iQAbS6s58+fA9CgQQOqVq2KURlpvaU1YVFhVMxYkVYFY0iM5syBI0e0qw0LFkh1PfH5jB4NVatCaCh4ecHr/586nY75teaT1ikt119cZ8C+AcyZMwc7OzsApk2bJnM/CSESJaUUHTt2JKpYFNhBpqCk/Hg6CNKnh9dzMQphMVWrvp16ZNIkRl9yx8PJg5svbzLx6ETs7OyYP3++qfnAgQN5+PChhYL99yR5Epw4ccI0kZmTkxOTJ08GYL7PfA7dPUQSmyQs+HZB9OF6t2+/7R0YPx4yZIjDqEWip9fDqlXacIA7d7SZzaOiAEjmkIyF32lv0LNOz+KO1R3T3E8Gg0HmfhJCJEorV67k0J+HoLi2Pu2QHiuFNnReep1EfNC0qfadEHDqPYjJjj8AMOaPMdx+eZsyZcrQ+nUp/VevXtGlSxeLhfpvSfL0hYuKiqJDhw6m9ZEjR+Lh4cG9gHv02aMN4xtbcSwZk2U031EpaNNGq+9fpgy8cwwhPptkyWDTJq1nc98+6N/ftKlK5ip0LNIRgJabW9KmSxuZ+0kIkWj5+/vTq1cvbbieDeQNd6PW6QDImBGaN7d0eEK81acPdOsGQP0uc6ngUoCwqDC67+oOwIQJE0iVKhUAGzduZPPmzZaK9F+R5OkL9/PPP3Pu3DkAChQoQKdOnVBK0e73dgRFBFEqXSnTmFUzv/6qfZm1t9ceW8l/JRFL8uSBJdokuUyeDCtXmjZNqDyBLMmz8CDwAb339Y42HODRo0dxHa0QQsSKIUOG8PjVYyimrY/eG4EOtF4nGxtLhiaEOZ0OpkyBH39EFxnFrKnXsNZZs+XqFn6/9jvJkiVj2rRpADg6OvLixQvLxvuJ5BvvF+zRo0cMflMlD5gzZw7W1tYsO7+MnTd2Yqe349fav2Kl+9t/kwcPoFcv7fHo0ZA1axxGLb5IderAwIHa41at4PU9TY62jiz1WoqVzopl55fxJMUT2rRpA2jDAXr37m2piIUQ4rM5c+YMP//8M5QAbCGvMTW1TgdCpkzaMCkh4hsrK1i6FMqXJ+e9EHqe0YaVdt3RldDIUBo0aMCIESO4dOkSLVu2tHCwn0aSpy9Yr169ePXqFQBt2rShRIkS+AX50X1ndwC8y3mTwy2H+U5KQbt2EBgIxYubumWFiHUjRkD16lplRy8vbT4JoGS6kvQrrd171+73dvQY0oMUKVIAsGrVKlP5fSGESIiMRiMdO3bEaGs09Tp57wzRep2GDpVeJxF/2dnBxo2QLx9DdoTwVbA1t/1vM/7oeHQ6HUOGDMHT09PSUX4ymST3C50kd+/evVSuXBkANzc3rly5QooUKaiztg4bLm+gUJpCnGx9Emsra/Mdly2DZs20G1PPnoVcuSwQvfhi+ftD0aJw4waULw+7d4O1NeFR4RT7pRjnH5/n22zfUutVLdq1awdArly5OHfuHDbyBUMIkQAtWLCAtm3bQlmgPOQmNeeHP8Yqcxa4fFkrDS1EfPboEZQqxW+Od6n3I9ha2bG23EXSOWaO1tTNTZuyLK7JJLniH4WHh9OpUyfT+oQJE0iRIgVbrm5hw+UNWFtZs7D2wuiJk5/f256mYcMkcRJxz9VVKyCRNCkcOACvh+XZWdux7Ptl2FjZsPXaVvRF9BQrpl2ivXTpEjNmzLBczEII8S89e/aM/v37gx3akD1g8I4grcLe0KGSOImEwcMDdu3Cyzc5lW9ChDGc7+d1pnBhReHCmC3Zs8O9e5YO+J9J8vQFmjhxIteuXQOgdOnSNG/enJDIELru6ApA75K9ye+e33wnpaBjR3j5EgoV0iqpCGEJuXNr46gBpk/XekOBfKnzMbL8SAB67OrB4ImDTeX1vb29pXiEECLB6d+/v3YzfVHAAbLjRr1Twdq9xg0bWjo8IT5e9uzcmLqNCdvtsDGAyroTskevshcWBs+eWSC+TyDJ0xfm1q1bjB49GgC9Xs/PP/+MlZUVow+P5m7AXTxdPBn8zeDoO65bp41btbbWJkCTIVDCkr7/XqswBdC2Lfj4ANC7VG9KpSvFq4hXTL09lTZtteIRQUFBUjxCCJGgHDt2jF9//RVsQFdKuxA0aFcIeul1EglUSN4SDH7+G72Oav+fXau3AJsQywb1L0jy9IXp3r07YWFhAHTr1o18+fJx9dlVJh6bCMD0atNxtHU03+npU+j8ulz5wIGQ/2+9UkJYwvDhUKuWdpnq++/hyRP0VnqWeC0hiU0SDtw5QNaGWc2KRxw4cMDCQQshxIeZzcFYBFQSRWaS0/BkiDauSXqdRAK1jVo8ODIbT3/wdw2gcJkfLB3SJ5Pk6QuyY8cOtm7dCoCHhwfe3t4opei0vRORxkhqZK3Bd9m/i75jt25aApUnDwwaFMdRC/EeVlawfDlkywb378OPP0JkJFmSZ2FMhTEADD82nD6j3g4x7dy5M5GRkZaKWAghPsrPP//M+fPnwRqsy2o9TAP2hGJtROt10ustG6AQ/8HyyA4U3aldALhQahdpnE5ZOKJPI8nTFyI8PJxu75QVnzhxIk5OTqy9uJZ9t/dhp7djRrUZpntETDZvhlWrtC+qixZpVfaEiC9cXLQCEk5OcOiQaf6xzsU6UypdKYIigtifdD9FixUFpHiEECL+e/LkCUOHDtVWCkGUfRTpcaXpiVDImRPq17dsgEJ8BuuvLKfk6fzkW+2N76tilg7nk0jy9IWYNm0a169fB6BMmTI0bNiQwPBAeuzqAcDAMgPJnPxvJSNfvoT27bXHffpAkSJxGbIQHydnTq0HCmDmTFi8GL2Vnl9r/4qd3o7dN3dTvX91KR4hhEgQBg0aREBAAOghSZUkAPTfF4atAel1EomIFce3nePPG8MsHcgnk+TpC/Dw4UNGjtSqkFlZWTFz5kx0Oh3eB73xDfIlc7LM9C3dN/qOPXtq5cmzZwdv77gNWohPUbu2Vj4ftIT/9GlyuOVgRPkRAMy4NoMmHZoAUjxCCBF//fnnn1qRCMC+pD0h1iGkVU60PBamTQ9Sr56FIxRCSPL0Bejbty/BwcEAtG/fnvz583P+8XlmnNSGL82qMQt7a3vznXbuhMWLQafTquvZ/227EPHN0KFaEhUerhWQePyYniV7UsSjCP5h/jwt/pTkKZIDWvGIgwcPWjZeIYR4h9FopEuXLiilwAocKjsA0PdgBHYGtAtE0uskEjA3tw9/nbS319rFZzqllLJ0EHHtU2YRTuiOHDnCN998A0Dy5Mm5fv06rslcKbOoDMfuH6NOzjr89uNv5jsFBmrFIe7fh+7dYerUuA9ciH8jMBCKF4crV6BMGdi7lwsvr1J4fmEijZG0TtaaX7r9AkDevHk5c+YM1lLuVwgRDyxZsoQWLVoAkKZ6GnyL+5JaOXJ7dDAOOfLA//6n3X8sRAJ2794/z+Pk5gaennEXzxufkhvIX2EiZjAY6NKli2l99OjRJE+enCXnlnDs/jEcbRyZWjWGxKhvXy1xypwZXs8JJUSC4OysFZBwdoYjR6BnT/Kmzmuau2xj2EbylcwHwIULF5g/f74FgxVCCE1gYCD9+vXTVnRgXU67qNPzSCQOUWi9TpI4iUTA0xMKFXr/YonE6VPJX2IiNm/ePP73v/8BULBgQdq0acPL0Jf03avd3zSs7DDSuaQz32n/fpg3T3v8yy+QJElchizEf5c9O6xYoQ05nT0bFi5kwNcDyJ86P89Dn+PW7O14gCFDhvDixQsLBiuEEDBixAgeP34MQLHmxbgfeh9XZU/7oxGQLx/8kPDmwhEisZLkKZF69uwZgwcPNq3PnDkTvV7PiEMjeBbyjJxuOeleorv5TsHB0Lq19rhDByhXLs7iFeKzqlVLm0QXoEMHbP48w8LvFqLX6dn/eD9l2pYB4MWLF29LAgshhAVcuXKF6dOnA2Bnb0do4VAAOp004hyO9DoJEc/IX2MiNXjwYF6+fAlAkyZNKF26NFefXWXW6VkATKs2DRu9jflOgwbB7dtan+n48XEdshCf16BB4OUFERHwww8U0nnQr7Q2LOZK5iskSa71qs6ZM4cLFy5YMFAhxJdKKUW3bt2IiooCoF7felx4fgEHZU23wxGQP7/2PiaEiDckeUqEzpw5Y7qXI2nSpEyYMAGAPnv6EGWMokbWGlTJXMV8p6NH4c3koQsWaJOOCpGQWVnB0qVaed9Hj6BuXYaW7E8Otxw8DX1Krm65AK3CVbdu3fgCa+cIISxsy5Yt7N69GwBPT0/uZ7gPQOuzOlKGoE0TIr1OQsQrcfIXOXv2bDJkyIC9vT3Fixfn1KlT7227YMECypQpQ7JkyUiWLBmVKlWK1r5FixbodDqzpVq1arF9GgnCm6tYb74IDh06lDRp0rDv1j62XtuKXqdnUuVJ5juFhsJPP4FS2r9VqsRwZCESICcnrYCEiwscPYpdr77Mr6VdWPhT/UmakmkAOHDgABs2bLBgoEKIL01YWBg9evQwrbcf2Z5D9w5hrazofSgSChaE776zYIRCiJjEevK0Zs0aevbsybBhwzhz5gz58+enatWqPHnyJMb2Bw8epGHDhhw4cIDjx4+TLl06qlSpwsOHD83aVatWDV9fX9OyatWq2D6VBGHt2rX88ccfAGTLlo1u3bphMBroubsnAB2KdCBnypzmO3l7w7Vr4OEBkyfHccRCxLKsWWHlSq2AxNy5lNl9hbaF2gJgVdsKXlcq79WrF6GhoRYMVAjxJZk8eTK3b98GoHz58pyy1S4UN75ohWcA2mezTme5AIUQMYr1eZ6KFy9O0aJFmTVLu9fGaDSSLl06unTpQv/+/T+4v8FgIFmyZMyaNYtmzZoBWs+Tv78/mzZt+qgYwsPDCQ8PN60HBgaSLl26RDfPU0hICDly5OD+fa3b//fff6dmzZos8FlA29/b4mrvyo0uN0iRJMXbnU6fhhIlwGiErVu1G+2FSIzGjNHug7KxwX/v7+Q83Ry/ID8y3svI7YXaF5gRI0YwZMgQCwcqhEjsHj58SLZs2QgJCUGv17P+8Hq89nihU3BxNuRMX1j7fJbkSYg4EW/meYqIiMDHx4dKlSq9fUErKypVqsTx48c/6hghISFERkaSPHlys+cPHjxIqlSpyJ49Ox06dOD58+fvPcbYsWNxcXExLenSpXtv24Rs0qRJpsSpatWq1KhRg8DwQAYf0KruDSs7zDxxCg+Hli21xKlxY0mcROI2YADUqQORkbjWb87M4lo1vvvp72OVWnsrHDt2rOlvSAghYsvAgQMJCQkBoEOHDmx4og0b9rquJ+czpNdJiHgsVpOnZ8+eYTAYSJ06tdnzqVOnxs/P76OO0a9fPzw8PMwSsGrVqrF06VL27dvH+PHjOXToENWrV8dgMMR4jAEDBhAQEGBaEuOXowcPHjD+dYU8vV7PlClT0Ol0jD0ylifBT8iaPCsdi3Y032n0aLh4EVKlgtdlUoVItHQ6WLwYcucGPz/q9FnIt1lqEqWiSN06NeggNDSUvn37WjpSIUQidurUKZYuXQpAsmTJaNWzFSsvrARgwEEDFC0KNWtaMkQhxD+wtnQA/2TcuHGsXr2agwcPYm9vb3q+QYMGpsd58+YlX758ZM6cmYMHD1KxYsVox7Gzs8POzi5OYraU/v37m65idezYkVy5cnHH/w5TT0wFYFKVSdjqbd/ucO4cjB2rPZ49G1KkQIhEL2lSrYBE0aLoTpxkdoGGHPBMii++OH7jSPChYFavXk3Hjh0pU6aMpaMVQiQySim6d+9uWvf29ubXy78SZYyi4h0rij4ywgJv6XUSIh6L1Z4nNzc39Hq9adbsNx4/foy7u/s/7jtp0iTGjRvH7t27yZcv3z+2zZQpE25ubty4ceM/x5wQnThxghUrVgCQPHlyvL29Aei3tx/hhnAqZKzAt9m+fbtDZKQ2XC8qCurW1RYhvhRZssCqVaDTkW7uKkbb1QDAUMEAryv0d+/eHaPRaMEghRCJ0apVq0y3LeTMmZM6zerwy9lfABhwyAjFi0P16pYMUQjxAbGaPNna2lK4cGH27dtnes5oNLJv3z5Kliz53v0mTJjAyJEj2blzJ0WKFPng6zx48IDnz5+TJk2azxJ3QvJmjpo3hg8fTvLkyTl67yhrL67FSmfF1KpT0b17FWvCBK3nKXlyeF3IQ4gvSrVqWgEJoNOADRRzzkmYCsO5gXaT6JkzZ0zDaoQQ4nMICQmhX79+pvUpU6bws8/PhEWFUfSRjgq3kXudhEgAYr1Uec+ePVmwYAFLlizh8uXLdOjQgeDgYFq2bAlAs2bNGDBggKn9+PHjGTJkCAsXLiRDhgz4+fnh5+dHUFAQAEFBQfTp04cTJ05w584d9u3bx3fffUeWLFmoWrVqbJ9OvLNixQrTPFi5c+emffv2GJWRHru0uSNaFWxFvtTv9NxdugQjRmiPZ8yAv92PJsQXo18/qFcPfUQUC355grXOmsC0gZBD2zxgwADT+44QQvxXEydO5MGDBwDUqFGDUuVLMfv0bAAGHFboSpSAL/B7jBAJTawnT/Xr12fSpEkMHTqUAgUKcO7cOXbu3GkqInHv3j18fX1N7efMmUNERAR169YlTZo0pmXSJG1iV71ez/nz56lduzbZsmWjVatWFC5cmCNHjiT6+5r+LigoyKzc+9SpU7G2tmb1X6s5/eg0TrZOjCw/8u0OBoM2XC8iQqus16iRBaIWIp7Q6WDhQsibl3yXntP7RkoA7H+wBzvw8/Nj3LhxFg5SCJEY3L9/31TUydramsmTJzP3z7kEhAeQ85mO764Cw4dLr5MQCUCsz/MUH31KLff4bPDgwYwePRqAb7/9li1bthBhiCDn7JzcenmL0RVGM7DMwLc7TJoEffqAi4tWZS9tWgtFLkQ8cusWFClC6KuX5OnvxC3rV1idtMK4w4idnR1Xr14lffr0lo5SCJGANW7cmJUrtYp63bp1Y/yk8WScnhHfIF8WbYIWSUrBH39I8iSEhcSbeZ5E7Llz546pN87GxobJkycDsMBnAbde3sI9qTvdir+9F4pr1+DN5J9TpkjiJMQbmTLB6tU4GK2YvfoVAKqYAndtgu1371EQQohPdfz4cVPilCJFCoYNG8ay88vwDfLlq0BodAHpdRIiAZHkKYHq168f4eHhAHTt2pWsWbMSFBHEyMPaML2h3wzF0dZRa2w0QqtWEBYGVapoQ/eEEG9VqQLjxlHtBvx4UYfSKay9rEEHa9as4ejRo5aOUAiRABmNRrPS5CNGjMDZxZmJxyYC0OM42Jb8GmKYZkUIET9J8pQAHT16lLVr1wKQMmVKhrzuUZp2YhqPgx+TOVlmWhdq/XaHn3/WhgMkTQrz58vVLSFi0rs3NGjA1J0KpwgdUe5RUFjbJKXLhRD/xt+LOrVt25YtV7dw7fk1XEOhjQ/S6yREAiPJUwJjNBrp0aOHaX3kyJG4uLjwLOSZ6UrWqAqjsNHbaA1u34Y3RSUmTAC5d0OImOl08MsveGTMx+i92q2g+ipW4Ah//vkny5cvt3CAQoiEJDg42Kya8NSpU9Hr9Yw/qhWO6HganEp8A+XLWypEIcS/IMlTArNy5UpOnz4NQJ48eWjVqhUA4/4YR2B4IAXcC/Bj7h+1xkpB69YQHAxly0K7dpYKW4iEwdERNm2i481kFH4EBlsjvK4cLKXLhRCfYtKkSTx8+BCAWrVqUblyZQ7fPczJhyexi4KuJ5FeJyESIEmeEpCQkBCzq1iTJ0/G2tqa+wH3mXVKm+x2bMWxWOle/1p/+QX27wcHB+2xlfy6hfigjBnRr17L3G06dArIB2SER48eMWHCBEtHJ4RIAB4+fGh6v7C2tjYVeHrT69TyLKQuWg7KlbNQhEKIf0u+TScgkydPNptgr0qVKgB4H/Qm3BBO2fRlqZr59WXy+/ehVy/t8ZgxkCWLJUIWImGqVIkiPSbSUevkxaEmoIcJEyaybds9zpyBM2fg3j2LRimEiKcGDRpESEgIAB07diR79uycf3yeHTd2YGWE3sfQep2EEAmOzPOUQOZ5evToEVmzZiUkJAS9Xs+FCxfImTMnl59eJs+cPBiVkeOtjlPiqxLacL2aNWHHDihZEo4cAb3e0qcgRIJy765ib84fGdTxN/ycwHk/BB4GaASsAMDeHq5eBU9PS0YqhIhPfHx8KFKkCADJkiXj+vXrpEiRgiYbmrDiwgp+/AvWvKgA+/ZZOFIhxBsyz1Mi9O5VrA4dOpAzZ04ABh8YjFEZ8crhpSVOAMuWaYmTnR0sXCiJkxD/wrPnOjqHLqHbLq3IStg3YJscYCWgVc8KC4NnzywWohAinlFK0bNnT9P60KFDSZEiBXf877D6r9UA9DuK9DoJkYBJ8pQAnDlzhiVLlgDg4uLCsGHDADj54CQbLm/ASmfFqPKjtMa+vtDt9eS43t6QI4cFIhYicQglCXP+OkC5mzZEWEO2Gm+29AS+uE57IcQHbNy4kcOHDwOQNWtWOnbsCMCU41MwKAOVbkKhPJXh668tGaYQ4j+Q5Cmee3MV683oyqFDh+Lm5oZSiv77tBLkzfI3I3eq3NpwvY4dwd8fChfW5q0RQvwn98hI6LZfsIuCv7LA17kBjgLrLRyZECI+CQ8Pp2/fvqb1iRMnYmtry7OQZ/ziswCAvtLrJESCJ8lTPLdp0yYOHToEQJYsWejcuTMAe27t4eCdg9jqbRle7vUb8dq1sGkT2NjAokVgbW2hqIVIXE6+aEaxP7S5WG5WhZS2AH2BcEuGJYSIR2bNmsXNmzcBKFeuHLVr19aePzWLUEMYBX2hUtYq2r3IQogES5KneCwiIoI+ffqY1idMmICtrS1KKYYeGApAxyId8XTxhKdP4XVixaBBkDevJUIWItE69scmvnphi68zlCwLcBuYaeGohBDxwbNnzxg5ciQAOp2OKVOmoNPpCI4IZtaJGQD0+wN0w0dYMkwhxGcgyVM89u5VrLJly+Ll5QXAzhs7OfnwJA7WDvT/Whu6R9eu2p3refPCO3NBCSE+D0OUMzY7tLlatpeAyikBRvLy5VOLxiWEsDxvb28CAgIAaNGiBQULFgRg4dmFPA9/SaYXUMezKhQvbskwhRCfgSRP8dTfr2JNnToVnU6HUgrvQ94AdCzakdRJU2tD9Vav1qrqLVoEtraWC1yIROz29S7kuJKNKD0E14TkBDJ/vty/IMSX7PLly8ydOxcAR0dHRo3SCjhFGiKZfESbFLf3MbD2ll4nIRIDSZ7iqREjRuDv7w9A8+bNTVexdtzYwamHp3CwdqBPqT7w4gV06KDt1LevVihCCPGfublp8zj93c2dW7CP1HEsAzTIC+vXz+Xy5ctxHp8QIn7o06cPBoMBgH79+uHh4QHA2otruRv8kJTB0MK9GhQrZskwhRCfiUySGw8nyb169Sp58uQhKiqKJEmScP36dTw8PFBKUfyX4px+dJreJXszscpEaNEClizRSpKfPRvztz0hxL9y717M8zgt/aMD01/Oxf0VFJgF+ko1+f333+M+QCGERe3Zs4cqVaoA8NVXX3H16lWSJEmCUooCM3Jy3v8qI/fD4Mmn4fXEuUKI+OdTcgMpxxYP9e3bl6ioKNPjN1extl/fzulHp0lik4Q+pftoE+EuWQI6nTYZriROQnxWnp7a8ne5801j24jV3HDy56tysG7bNvbs2UPlypXjPEYhhGUYDAZ69eplWh87dixJkiQBYNfNXZz3v4pjBHRMXlUSJyESERm2F88cOHCALVu2AODh4UHv13M1vXuvU6einUgVZQdt22o7de8upU+FiEN21nbMaqBNXL2oOPRIDb169TIN3RFCJH6LFy/mwoULABQpUoRGjRqZto3fo01m39YHkg8ZY5H4hBCxQ5KneMRoNJpdxRo9ejSOjo4AbLu+jT8f/UkSmyT0LtVbu7/pwQPInBle35wqhIg7VXPV5oeUZTFYwZ6a4H7hAgsXLrR0WEKIOBAUFMTgwYNN65MnT8bKSvtKderhKQ4+OYW1AXo4VYFChSwVphAiFkjyFI8sW7aMs2fPAlCwYEGaNWsGvO51OugNQOeinUl14gLMn6/t9Msv8HqYgBAibk1rvAwHo56jnlAtP4wfNIhXr15ZOiwhRCybMGECfn5+AHz//fd88803b7ft0JKqRhcg3aDxFolPCBF7JHmKJ4KDgxk4cKBp/d2rWL9f+x0fXx8cbRzpnb89tGmjNerYEcqVs0C0QgiAdC7pGFZWG54zrgq0f/WUCRMmWDgqIURsevDgAZMmaXO+WVtbM3782wTp2vNrbHiwB4A+DhWhQAFLhCiEiEWSPMUTkydP5tGjRwDUrl2b8uXLA+b3OnUu1pmUo6bC7dvaXezjxlkqXCHEaz3K9iOLjQdPHeFueTg1fjz379+3dFhCiFgyaNAgQkNDAejcuTNZs2Y1bZu8bTBKBzWvQZ7+UywVohAiFknyFA88evTIdOXK2tra7Mr11mtbOeN7Rut10pWGmTO1DQsWgJOTJcIVQrzDVm/L3AZLAfi5KHROEcnwvn0tHJUQIjb4+PiwdKn2954sWTKGDBli2uYX5MeSm+sB6KcvC/nyWSRGIUTsipPkafbs2WTIkAF7e3uKFy/OqVOn/rH9unXryJEjB/b29uTNm5ft27ebbVdKMXToUNKkSYODgwOVKlXi+vXrsXkKsWrIkCGEhIQA0KFDB7Jnzw6Y3+vUpVAH3Dq8Libx00/wel4JIYTlVcxUke8y1MRoBeNrQK7Vq/nzzz8tHZYQ4jNSSpkVdRo6dCjJkyc3rU/fOphwKyMl78PXvWdYIkQhRByI9eRpzZo19OzZk2HDhnHmzBny589P1apVefLkSYztjx07RsOGDWnVqhVnz57Fy8sLLy8v/vrrL1ObCRMmMGPGDObOncvJkydxdHSkatWqhIWFxfbpfHbnzp1j0aJFALi4uDB06FDTti1Xt3DW7yxJbZPSa18IXL8OHh4webKlwhVCvMdMrznYGa056gkp8sHC1q35AucgFyLR2rJlC4cOHQIgS5YsdOzY0bQtMDyQOZe1Hqm+qhQ66XUSIvFSsaxYsWKqU6dOpnWDwaA8PDzU2LFjY2z/448/qpo1a5o9V7x4cdWuXTullFJGo1G5u7uriRMnmrb7+/srOzs7tWrVqhiPGRYWpgICAkzL/fv3FaACAgL+6+n9J0ajUVWoUEEBClCTJk0y21Z4XmGFN6r/kmZKWVkpBUpt3WrBiIUQ/2TUwVEKb1Tq3qhTdqjNq1dbOiQhxGcQHh6usmbNavq83rBhg9n2iet6KLxROTqhDBfOWyhKIcS/FRAQ8NG5Qaz2PEVERODj40OlSpVMz1lZWVGpUiWOHz8e4z7Hjx83aw9QtWpVU/vbt2/j5+dn1sbFxYXixYu/95hjx47FxcXFtKRLl+6/ntpnsW3bNvbv3w9ApkyZ6Ny5s2nb3lt78fH1wcHagZ7TToDRCI0bQ61algpXCPEBvUv3xsPGncdJYWU58OvQgYiICEuHJYT4j+bOnWu6PaBMmTJ4eXmZtoVHhTP13BwA+kQWxSpPXkuEKISII7GaPD179gyDwUDq1KnNnk+dOrVpfoS/8/Pz+8f2b/79lGMOGDCAgIAA0xJfKmEVK1aMDh06oNfrGT9+PHZ2dqZtY/7QZiRvG5GXlGevQapUMH26pUIVQnwEO2s7fq2nDcOdWRyK27xkw4ABFo5KCPFfvHz5kuHDh5vWp0yZgk6nM62v2DaWRzZheARC487zLRGiECIOfRHV9uzs7HB2djZb4oNUqVLx888/c+XKFerUqWN6/tj9Yxy8cxAbnTW9Zr6+6fznnyFFCgtFKoT4WNWyVqO8e3kMVtCtBuSdNpUXvr6WDksI8S+NGjWKFy9eANCkSROKFCli2mZURiac0O5D7h5WALu8BSwRohAiDsVq8uTm5oZer+fx48dmzz9+/Bh3d/cY93F3d//H9m/+/ZRjxndZsmQxu4o19o+xADS97Uy6l0aoWxfeSa6EEPHbovqLsDbqOZQBzudSnP7+e0uHJIT4F27evMnM11OE2NvbM2bMGLPtm7ZP4ap9EK6h0K79AkuEKISIY7GaPNna2lK4cGH27dtnes5oNLJv3z5KliwZ4z4lS5Y0aw+wZ88eU/uMGTPi7u5u1iYwMJCTJ0++95gJyfnH5/n92u/o0NFv6wutt2nWLEuHJYT4BOld09O9SA8AeleBomdPcm/rVgtHJYT4VP369SMyMhKAXr16md0zrZRi3KHRAHQKzY1z3iIxHkMIkbjE+rC9nj17smDBApYsWcLly5fp0KEDwcHBtGzZEoBmzZox4J17Arp168bOnTuZPHkyV65cwdvbmz///NNUTEGn09G9e3dGjRrFli1buHDhAs2aNcPDw8PsBs6Eatwf4wCodwmyPQdmzIC/3d8lhIj/RlYfSTKVjEfOMK4sRDVtCq+/hAkh4r8jR46wfr026W3q1Knp16+f2fYDu+Zy2tEf+0jo2kp6nYT4UsR68lS/fn0mTZrE0KFDKVCgAOfOnWPnzp2mgg/37t3D9537AUqVKsXKlSuZP38++fPn57fffmPTpk3kyZPH1KZv37506dKFtm3bUrRoUYKCgti5cyf29vaxfTqx6saLG6y5uAaAAYcVfPstNGxo4aiEEP+GvbU9876fB8DUEhBuE8CdTp0sHJUQ4mMYjUazCXFHjRqFk5OTWZuxu7V5GVuHZCdVvoQ/8kUI8XF0Sn15szgGBgbi4uJCQEBAvCkeAdBuazvmn5lPjWuwbZsLXLwIadNaOiwhxH9QYHwB/hf2PyrdhN+Xg835C1i9czFICBH/rFixgiZNmgCQN29ezp49i16vN23/c88Sih5rgd4IN7z2k6FgeUuFKoT4DD4lN/giqu0lBA8DH7L4nFbieMAfwNSpkjgJkQisa7UOnUHH3sywNSc89/ICg8HSYQkh3iM0NNTsdoLJkyebJU4A437XhvA1DMkkiZMQXxhJnizg3j04c8Z86bdpMhHGSMrchcIZqkCLFpYOUwjxGWR1y0rjDI0B6FEVkty7ScTEiRaOSgjxPlOnTjXNB1m9enUqV65stv3qvjVsSKZV/O3XQAo6CfGlkWF7cTxs7949yJ4dwsLeedLhOTY9PIi0jWD9cnv637/K3mueeHrGaWhCiFgSGhlKimEpCLULZeBh8D5sjc2lS5A1q6VDE0K8w8/Pj6xZsxIUFIRer+f8+fPkypXLrE3rjl/xa+qHfBuSji3j71koUiHE5yTD9uKxZ8/+ljgBrsVHEGkbQUFf2HVjCtfDPXn2zDLxCSE+PwcbB8ZXGA/AxFJwxzmKiKZNwWi0cGRCiHcNGzaMoKAgANq0aRMtcXpwYDNL3R4CMOCHKXEenxDC8iR5sjTbQAzFfwag9pFcLKCdhQMSQsSGzhU74xnhSaQ1dK4ONidPwpw5lg5LCPHahQsX+OWXXwBwcnJi+PDh0dpMXdWVSD18E+ZOyeJ14zpEIUQ8IMmThRUv0pJXDlFkfaZj6eWNKPmVCJEo6XQ61rRYAwbYnRW2ZgdDnz5w546lQxNCAL1798b4ujd44MCBpEqVymz7i4M7mJdSG6bXv+bYOI9PCBE/yDd1C7LSRfCoyBYA0v/RgNsqm4UjEkLEphJZS1DeTqvM1b4aRESGotq0gS/v1lMh4pUdO3awe/duANKnT0/37t2jtZm1tBPBtpA/IjnVSjeP4wiFEPGFJE8WZFS2hCw8S/n95dh34VdLhyOEiAPruqxDH6zHNxmMLg26vXvh9VAhIUTci4yMNJsQd9y4cdjb25u1CT64mxkpbwPQv5I3Op0uTmMUQsQfkjxZ2POgPBw4fABlcLB0KEKIOJDCOQVdsnUBYNzXcNsVVO/e8OCBZQMT4gs1f/58Ll++DECJEiWoX79+tDa//NqJ50kgU5Qzdct2iOsQhRDxiCRPQggRxyb/NBmX5y4YbKBFNdAFBkK7djJ8T4g49vLlS4YNG2Zanzp1arRepfADe5iU8gYAfcr0w9rKOk5jFELEL5I8xTE3N/jbaIBo7O21dkKIxMnKyoq5380FAxzOAVuyANu3w/Lllg5NiC/KqFGjeP78OQANGzakRIkS0dosnd+ZBy7gYXCkRYWecR2iECKekUly43iSXNAmyv2neZzc3JAJcoX4AuTslpMrya+Q7Dn4/gx2zsng0iVwd7d0aEIketevXyd37txERkZib2/P1atX8fzbh2/U/r1k21KZ28lgavFhdK/mbZlghRCx6lNyA+l7tgBPT0mOhBDwW5ffyDM3Dy9TQM9SMPvIS+jYEdavB7khXYhY1a9fPyIjIwHo1atXtMQJpVg5txO3c0NKowNtK/a1QJRCiPhGhu0JIYSF5M6SGy9HLwDmfAM3XYGNG2HdOkuGJUSid/DgQTZu3AiAu7s7/fv3j9bGsG8PY1JfA6BX8R4ksUkSpzEKIeInSZ6EEMKClvZeiu0jW5QN1Kr6+snOneHpU4vGJURiZTAY6Nnz7b1Lo0ePJmnSpOaNlGL9z1246gbJjHZ0qNgvjqMUQsRXkjwJIYQFOTk5MbTIUDDClZzwa04bLXHq1s3SoQmRKC1dupSzZ88CUKBAAZo3jz7hrXH3Lka5a71O3Yp2xtku7u+PFkLET1IwwgIFI4QQ4l1Go5E0LdLwJPMT7J7DyzngEAVs2gTffWfp8IRINIKCgsiaNSt+fn4AHDhwgHLlypk3Uoot3+Xgu8LXcFK23OnnS3KH5HEfrBAiznxKbiA9T0IIYWFWVlYsabkEXkF4CqhX5nUtnw4d4OVLywYnRCIyfvx4U+Lk5eUVPXEC1M6dpl6nTgXbSuIkhDAjyZMQQsQD1cpXo1hAMQC2lYrCJ70L+PpCjx4WjkyIxOHevXtMmjQJABsbGyZOnBi9kVLsmdWD02nBQVnTo9KQOI5SCBHfSfIkhBDxxKoBq9Dd04ENVCsRiNLpYMkS2LnT0qEJkeD169ePsLAwALp06UKWLFmiN9qxg1GprwLQLt9PpHJMFZchCiESAEmehBAinsiUKRMtU7cEIzzLqRj59evJctu2hcBAywYnRAL2xx9/sHr1agDc3NwYMiSGHiWlODy9J0fSg63S07vS0DiOUgiREEjyJIQQ8cjU/lNJckGbT8a7gC/+X6WB+/ehn5RKFuLfMBqNdHuneuWoUaNwdXWN3nDbNlOv00+5m5DWOW0cRSiESEgkeRJCiHjE2dmZsdXGQhCoFFC5cLi2Ye5c2L/fssEJkQAtXryYM2fOAJAvXz5at24dvZFSnJzWhz2ZQa909KvsHbdBCiESDEmehBAinunUqhOeVzwB+DPPC/ZWLa5taN0agoMtGJkQCUtgYCADBw40rU+fPh29Xh+94datjEp1BYCmOeuTwTVDHEUohEhoYjV5evHiBY0bN8bZ2RlXV1datWpFUFDQP7bv0qUL2bNnx8HBAU9PT7p27UpAQIBZO51OF215M5ZZCCESOr1ez5JeS+AOYAO1U5/B+NVXcPs2DBpk6fCESDBGjx7N48ePAahTp06MpclRilPT+vB7drBSOgZUGh63QQohEpRYTZ4aN27MxYsX2bNnD7///juHDx+mbdu2723/6NEjHj16xKRJk/jrr79YvHgxO3fupFWrVtHaLlq0CF9fX9Pi5eUVi2cihBBxq1y5clSNqgoGCM0USZdKX2kbZsyAo0ctG5wQCcCNGzeYNm0aAHZ2djGXJgfYvJlhHtq8Tk1z1idbimxxFKEQIiHSKaVUbBz48uXL5MqVi9OnT1OkSBEAdu7cSY0aNXjw4AEeHh4fdZx169bRpEkTgoODsbbWJo7U6XRs3LjxoxOm8PBwwsPDTeuBgYGkS5fuo2YRFkIIS7l79y6Z22XGUNIA/vDwfm081m+BbNng3DlwcLB0iELEW15eXmzevBmAgQMHMnr06OiNjEaOVcpO6bI30Csd17rdIFOyTHEcqRDC0gIDA3Fxcfmo3CDWep6OHz+Oq6urKXECqFSpElZWVpw8efKjj/PmJN4kTm906tQJNzc3ihUrxsKFC/mnHHDs2LG4uLiYlnTp0n36CQkhRBxLnz49fYr3gQDAFSq6noc0aeDaNRguQ4uEeJ+9e/eaEqc0adIwYMCAmBtu2sTQdDcAaJm7iSROQogPirXkyc/Pj1SpzCeXs7a2Jnny5Pj5+X3UMZ49e8bIkSOjDfUbMWIEa9euZc+ePdSpU4eOHTsyc+bM9x5nwIABBAQEmJb79+9/+gkJIYQFDOk3hBSnUwBwxeMOv7X20jZMnAinT1suMCHiqaioKLp3725aHzduHEmTJo3e0Gjk0Kze7MsENsqKQZVHxF2QQogE65OTp/79+8dYsOHd5cqVK/85sMDAQGrWrEmuXLnw9vY22zZkyBBKly5NwYIF6devH3379n3/WGa0sc7Ozs5mixBCJARJkiRhVqdZcA3QQ7Mni4lqUB+MRmjZEt4ZkiyEgHnz5nHx4kUAihUrRpMmTWJsp9avZ2j62wC0ytdcKuwJIT7KJydPvXr14vLly/+4ZMqUCXd3d548eWK2b1RUFC9evMDd3f0fX+PVq1dUq1YNJycnNm7ciI2NzT+2L168OA8ePDC7r0kIIRKL+vXrU+RpEYiE0DShtMkRBSlTwsWLMGaMpcMTIt548eIFQ4cONa1PmzYNK6sYvuoYjRyY05fDGcBW6RlUSXqdhBAfx/rDTcylTJmSlClTfrBdyZIl8ff3x8fHh8KFCwOwf/9+jEYjxYsXf+9+gYGBVK1aFTs7O7Zs2YK9vf0HX+vcuXMkS5YMOzu7jz8RIYRIIHQ6HfPHz6dQ90JQAZYEbcB75FTSt++uJU8//AD581s6TCEsbsiQIbx48QLQKv6WLFkyxnZq3TqGZLwDQLsCrfjK+au4ClEIkcDFWrU9gOrVq/P48WPmzp1LZGQkLVu2pEiRIqxcuRKAhw8fUrFiRZYuXUqxYsUIDAykSpUqhISEsHHjRhwdHU3HSpkyJXq9nq1bt/L48WNKlCiBvb09e/bsoXfv3vTu3ZvhH3kD9adU1BBCiPiiVdtWLLRfCCkgV2AuLt7NCevXQ8GCcPIkfKCXXojE7H//+x+FChXCaDTi6OjIlStX+OqrGJIig4FdlTNRrew97LHmZs+7eDh9XAVgIUTiFC+q7QGsWLGCHDlyULFiRWrUqMHXX3/N/PnzTdsjIyO5evUqISEhAJw5c4aTJ09y4cIFsmTJQpo0aUzLmyIPNjY2zJ49m5IlS1KgQAHmzZvHlClTGDZsWGyeihBCWNy40eNIcjAJAJeSXmJ1g3KQPDmcPasVkBDiC6WUonPnzhiNRgAGDx4cc+IEqLVrGZr5HgAdCraVxEkI8UlitecpvpKeJyFEQjVt2jR6HO0BeSCpf1JeFJiJTYuWYGurJVG5clk6RCHi3IoVK0yFIbJmzcqFCxdiHspvMPB7lQx8+80DkmDDrV73SZ00dRxHK4SIb+JNz5MQQojPq1OnTmS+kRnCIcg1iNaB+6FWLYiIgJ9+AoPB0iEKEadevXpFnz59TOvTp09/7z3QavVqhmZ9AEDnIh0lcRJCfDJJnoQQIgGxsbHh5/E/w15tfZnvcq569wZnZ+2+p2nTLBqfEHFt5MiR+Pr6AlC7dm2qV68ec0ODgc0L+3I2DSTFlj7lB8dhlEKIxEKSJyGESGCqVKnC9+m+hweg7BTfrm8DU6ZoGwcPhuvXLRugEHHkypUrTHt9wcDOzo6pU6e+t61h5QqGZn8EQNdiXXBL4hYXIQohEhlJnoQQIgGaNnUadnvswAjX7a4z+6tQqFwZwsKgVSttEl0hEjGlFN26dSMyMhKAvn37kilTppgbR0WxfHlfLqQGF+zpVW5gHEYqhEhMJHkSQogEyNPTk6Fth8Jxbb3Xgd4EzZ4GSZPCkSPw888WjU+I2LZ582Z2794NaH8P/fv3f2/b0OWLGZL7MQADywwkuUPyOIlRCJH4SPIkhBAJVK9evch8PzP4Q7hDOPW394Hx47WN/fvD7dsWjU+I2BIaGkqPHj1M61OmTCFJkiQxN46KYubG/tx3ga9woUuZ3nEUpRAiMZLkSQghEig7OztmTZ0F27T17S+280elvPDNNxAcDG3awJc3G4X4AkyYMIE7d+4AULFiRX744Yf3tn2+ZC5jcj0HYFS18TjYOMRFiEKIREqSJyGESMCqVauGV24vuAhYQb1lP2JYMB8cHGDfPvj1V0uHKMRndefOHcaNGweAtbU1M2bMQKfTxdw4MpIxuwYTYA/5dGloUrR1HEYqhEiMJHkSQogEburUqdgdsIMw8LP2Y+ilpTB6tLaxVy948MCyAQrxGXXt2pWwsDDT41z/MDH0nUVTmZU9AIDxP/yM3kofJzEKIRIvSZ6EECKBy5AhA4O6DoJ92vp4n/E8bFEHSpSAwEBo106G74lEYcuWLWzduhWANGnSMGzYsPc3joxk8B8jiLCGivqsVM39XRxFKYRIzCR5EkKIRKBPnz5kepkJHoDB2sAPC+vBwoVgawvbt8Py5ZYOUYj/JDg4mC5dupjWp06dirOz83vbn10wkhWZgwEY32jR+4f2CSHEJ5DkSQghEgF7e3tmTp8JWwEjnAo6xYrQM+DtrTXo1g38/CwZohD/yciRI7l37x4AlStX5scffzRtu3cPzpx5u5w9GUHvsxMB8IooSErr0haJWQiR+OiU+vLGcgQGBuLi4kJAQMA/XrUSQoiE5rvvvmNL0Bb4BpIYk/Cg122Sla+ufaP8/ntYvx7kCrxIYC5evEiBAgWIiorCzs6OCxcukDVrVkBLnLJn1+aHfqN65u7saDod2yjQzbqILiwXV6+Cp6eFTkAIEa99Sm4gPU9CCJGITJ8+HftT9vAMQqxCaPlbW234nrU1bNwI69ZZOkQhPolSio4dOxIVFQVA//79TYkTwLNn5omTtS6MO5W1SaJzny5LuH8uwsK0dkII8V9J8iSEEIlIhgwZ8B7sDZsBBZvvb2a342MYNEhr0LkzPH1qyRCF+CRLly7l8OHDAGTJkoX+/fv/Y/syeTtw2T0S5zAdlw7LvX5CiM9Lhu39Q9ecwWAgMjIyDiMTCZWNjQ16vZTAFfFDZGQkhQoV4q90f0FxSGGVgrs9ruNY8hv46y9o0ABWrbJ0mEJ80IsXL8iePTvPXncb7dq1iypVqpi1OXMGChfWHnvaXMLQKR8PXQ2U2vMtx45uMbXz8YFCheIsdCFEAvIpw/as4yimBEUphZ+fH/7+/pYORSQgrq6uuLu7S0UnYXE2NjbMmzeP0uVLQ3Z47vqcHrv6MX/RIiheHFav1hKo76R0s4jfBgwYYEqc6tWrFy1xeld2rlDt6xJMdzWQJsCaP08uiaswhRBfEEmeYvAmcUqV6v/t3XdYFFcXwOHfAoIgAqIodsFewViwd0Vjj7EbsaGJvbdo7D12jZ8taKyJBWvUKGLDgiUYC4rYNSBGBEQEhL3fHxs3QVDRAKtw3ueZR2b2zswZGGHPzr3n5sTCwkLeDIu3UkoRFRVFSEgIoJt7RAhDq1atGu5u7qzcsxK6wMpLK+nh0oMqI0bArFnw9ddQqxZky2boUIVI0unTp1mxYgUAlpaWzJ8//41ty3GRldnqUav6MwBe7F9GbJzc20KIlCfJ02vi4+P1iVP27NkNHY74RJibmwMQEhJCzpw5pQuf+CjMnDmTHSV28NjvMThDuw3tuDHuEmY7dsD16zB0KHh4GDpMIRKJi4vj66+/1q9PmTKFvHnzJtnW4tIZjtCYr5qEEWMCmW7WIcy/Z1qFKoTIYKRgxGtejXGysLAwcCTiU/PqnpFxcuJjYWtrq/u0/gAQCfej7zPx5Exd9T2NBtasgf37DR2mEIksXryYixcvAuDs7Ez//v2Tbnj0KEX7NsCnWBh7iwHxmXj56/8A6TEihEgdkjy9gXTVE+9L7hnxMerUqRMNqjeAX3Xrs0/O5o/ClrpJcwHc3SEiwnABCvGaO3fuMG7cOED3e3XZsmWYmCTRUWb/fmjcmJexkfRunFm37dQQeFI8UdPMmSFHjtSMWgiRUUjyJIQQ6ZhGo+GHH37A9KYp+INWo6XT5k7ETZ4Ijo7w4AGMHGnoMIUAdGNI+/TpQ1RUFAB9+/alSpUqiRt6ekKLFhAdzezuxQiyjSZn5rwcnzae8+dJtMgEuUKIlCLJkxBCpHNFixbl27Hfwl7gBVwJu8LMC4th9Wpdg+XL4fBhg8YoBMD69ev57bffAMiXLx/Tp09PqhG0bQsvX3K70+fMKHgPgEVN51KjsiWffUaiRRInIURKkeQphd27p5tz4k3LvXuGjvDdChUqxIIFCwwdhhAiBY0aNYrieYvDPt36xCMT8SthA998o9vQqxdERhosPiFCQkIYPHiwfn3ZsmWJ51tZsQK6doX4eHBzY2izTETHRVO3UF3alW6XtgELITKkVE2eQkND6dy5M1ZWVtjY2NCzZ08i3/HHuU6dOmg0mgTLvyvuANy7d4+mTZtiYWFBzpw5GTFiBHFxcal5Kcly7x4UL66brO9NS/HiqZNAdevWDY1Gw8yZMxNs37Fjx3uPxTl79iy9e/dOyfD07ty5k+BnmzVrVkqXLk2/fv24cePGex9PEj0hksfMzIz//e9/8AfgD/HE0/GXjsRMm6z7WP72bfj2W0OHKTKwwYMHExoaCkCHDh1o1qxZwgbz5kGfPqAU9OvH/rHt2BGwExMjExY3WSzjToUQaSJVk6fOnTtz5coVDh48yJ49ezh27Fiy3pS7u7sTFBSkX2bPnq1/LT4+nqZNmxIbG8vJkydZu3Yta9as4bvvvkvNS0mWv/6C6Oi3t4mO1rVLDZkzZ2bWrFk8ffr0Px3Hzs4u1asNHjp0iKCgIC5evMj06dPx9/fHyckJLy+vVD2vEBlZnTp1cHd3hz3Ac7j29BoTz8/VfZoPsHgxnDhh0BhFxrR37142bdoE6KpELly48J8XlYLJk2HYMN36yJHEzP+eAQd0RU8GVh5I6Zyl0zpkIUQGlWrJk7+/P/v372fVqlW4uLhQo0YNFi9ezObNm/nzzz/fuq+FhQX29vb65d+P7X/77TeuXr3K+vXrcXZ2pkmTJkyZMoWlS5cSGxub5PFiYmKIiIhIsKRHDRo0wN7enhkzZry13bZt2yhdujRmZmYUKlSIuXPnJnj9309zlFJMnDiRAgUKYGZmRp48eRg4cCAAkydPpkyZMomO7+zszPjx498aQ/bs2bG3t8fR0ZGWLVty6NAhXFxc6NmzJ/Hx8QDcvHmTli1bkitXLiwtLalUqRKHDh3SH6NOnTrcvXuXIUOG6J9kATx58oSOHTuSN29eLCwsKFu2rP6PshAZ3Zw5c8hrkxd269Zn+cziVCkr6N5d9ya1Z0948cKwQYoM5dmzZ3zzqvsoMG/ePHLmzKlbUQpGjYIJE3TrU6bAzJnMOz2fwNBA7C3tmVBnggGiFkJkVKmWPJ06dQobGxsqVqyo39agQQOMjIw4c+bMW/fdsGEDOXLkoEyZMowZM0ZfdefVccuWLUuuXLn021xdXYmIiODKlStJHm/GjBlYW1vrl/z58//Hq/s4GRsbM336dBYvXsyDBw+SbHP+/HnatWtHhw4duHTpEhMnTmT8+PGsWbMmyfbbtm1j/vz5LF++nBs3brBjxw7Kli0LQI8ePfD39+fs2bP69r///jt//PEH3bt3f6/YjYyMGDRoEHfv3uX8+fMAREZG8vnnn+Pl5cXvv/9O48aNad68Off+7ve4fft28uXLx+TJk/VPKQGio6OpUKECe/fu5fLly/Tu3ZuvvvoKX1/f94pJiPTI2tqa5cuXwzXgIigUXbZ1IWrWVMiTBwIC/nmjKkQaGDt2LPfv3wegYcOGdO3aVfeCVgv9+sGcObr1efNg3Dhuh91h6vGpAHzf8HuszKySOqwQQqSKVEuegoOD//nk6G8mJibY2toSHBz8xv06derE+vXr8fb2ZsyYMaxbt44uXbokOO6/EydAv/6m444ZM4bw8HD98uqXdHrUunVrnJ2dmfCGNz/z5s2jfv36jB8/nmLFitGtWzf69+/PnFd/nF5z79497O3tadCgAQUKFKBy5cq6bj/oKiG5urri4eGhb+/h4UHt2rVxdHR879hLlCgB6MZFATg5OdGnTx/KlClD0aJFmTJlCoULF2bXrl2ArmuHsbExWbNm1T+lBMibNy/Dhw/H2dkZR0dHBgwYQOPGjfnll1/eOyYh0qOmTZvSuXNnXfGICLgVfovR52bCsmW6BnPngnzYINLAyZMnWbp0KaDrdbJ8+XJdL4K4OOjRQ3dPajS6rqVDhqCUotfuXkS9jKJ2wdp0KtvJwFcghMho3jt5Gj16dKKCDq8v165d++CAevfujaurK2XLlqVz58789NNPeHp6cvPmzQ8+ppmZGVZWVgmW9GzWrFmsXbsWf3//RK/5+/tTvXr1BNuqV6/OjRs39N3l/q1t27a8ePECR0dH3N3d8fT0TFCcw93dnU2bNhEdHU1sbCwbN26kR48eHxS3Ugr4Z7LZyMhIhg8fTsmSJbGxscHS0hJ/f3/9k6c3iY+PZ8qUKZQtWxZbW1ssLS05cODAO/cTIiNZsGABdlntYKdufbHvYg6XtYROnXSf+PfoATExhg1SpGsxMTH06tVL/7t/ypQpODg4QGwsdOwIa9eCsbGuNPnfH9qtOL+Cw7cPY25izqoWq6RIhBAizb138jRs2DD8/f3fujg6OmJvb09ISEiCfePi4ggNDdU/IUgOFxcXAAIDAwGwt7fn0aNHCdq8Wn+f46ZntWrVwtXVlTFjxvznY+XPn5/r16/zww8/YG5uTt++falVqxYvX74EoHnz5piZmeHp6cnu3bt5+fIlX3755Qed61Wy5+DgAMDw4cPx9PRk+vTpHD9+HD8/P8qWLfvGsW2vzJkzh4ULFzJq1Ci8vb3x8/PD1dX1nfsJkZHkyJGDJUuWwE3g7563btvdiPh+GuTMCVeuwLRpBo1RpG/Tpk3T/96vWLGibjztixfQujVs3Qqmprp/O+meLt0Lv8eIgyMAmF5/OkVsixgsdiFExmXyvjvY2dlhZ2f3znZVq1YlLCyM8+fPU6FCBQAOHz6MVqvVJ0TJ4efnB0Du3Ln1x502bRohISH6boEHDx7EysqKUqVKvefVpF8zZ87E2dmZ4sWLJ9hesmRJfHx8Emzz8fGhWLFiGBsbJ3ksc3NzmjdvTvPmzenXrx8lSpTg0qVLfPbZZ5iYmODm5oaHhwempqZ06NABc3Pz945Xq9WyaNEiHBwcKF++vD6ubt260bp1a0D3JOpVl75XTE1NEz0x8/HxoWXLlvrunlqtloCAALk/hHhN27Zt2bx5M557PaEwPOABQ3ynsHrpUt0kpDNmwBdfgLOzoUMV6cz58+f1E+CamJiwatUqTKKjoUUL8PYGc3Pw9ARXV0DXM8F9tzvPYp9RLX81BlQeYMjwhRAZWKqNeSpZsiSNGzfG3d0dX19ffHx86N+/Px06dCBPnjwAPHz4kBIlSugH8t+8eZMpU6Zw/vx57ty5w65du+jatSu1atWiXLlyADRq1IhSpUrx1VdfcfHiRQ4cOMC4cePo168fZmZmqXU5yZIjB2TO/PY2mTPr2qW2V90eFy1alGD7sGHD8PLyYsqUKQQEBLB27VqWLFnC8OHDkzzOmjVrWL16NZcvX+bWrVusX78ec3NzChYsqG/Tq1cvDh8+zP79+5PdZe/JkycEBwdz69Ytdu3aRYMGDfD19WX16tX6JK5o0aJs374dPz8/Ll68SKdOndBqtQmOU6hQIY4dO8bDhw/56+8a8EWLFuXgwYOcPHkSf39/+vTpk+hppRBC10V26dKl2FjYwA5AwY9+P7K9tBG0aaMbd9K9O/z9pFmIlBAdHU3Xrl31H3yNHTsWp4IFoVEjXeKUNSvs369PnAA8/Dz47eZvZDbJzI8tfsTYKOkP+4QQItWpVPTkyRPVsWNHZWlpqaysrFT37t3Vs2fP9K/fvn1bAcrb21sppdS9e/dUrVq1lK2trTIzM1NFihRRI0aMUOHh4QmOe+fOHdWkSRNlbm6ucuTIoYYNG6ZevnyZ7LjCw8MVkOi4Sin14sULdfXqVfXixYsPuua7d5U6f/7Ny927H3TYd3Jzc1MtW7ZMsO327dvK1NRUvf5j3rp1qypVqpTKlCmTKlCggJozZ06C1wsWLKjmz5+vlFLK09NTubi4KCsrK5UlSxZVpUoVdejQoUTnr1mzpipduvQ743z1M3+1WFhYqJIlS6q+ffuqGzduJGpbt25dZW5urvLnz6+WLFmiateurQYNGqRvc+rUKVWuXDllZmamv84nT56oli1bKktLS5UzZ041btw41bVr10Tfn5T2X+8dIQzFw8ND93+yAYqJKJsZNupe4HmlbG2VAqWmTjV0iCIdGTFihP5vQPny5VXsw4dKOTvr7rVs2ZTy9U3Q/kH4A2U9w1oxETX7xGwDRS2ESM/elhu8TqPU3yM1M5CIiAisra0JDw9PVDwiOjqa27dv4+DgQOZ3PUYSgK47RdGiRenbty9Dhw41dDgGI/eO+FQppWjSpAkHDh6AHkA+qFmgJt6Z3DH+qqtu7MmFC1BaJiIV/42Pjw81a9ZEKYWpqSkX9+2jRP/+4O+vG2t38CD83dMEdPdmi80t2BOwh0p5KnGy50lMjN57xIEQQrzV23KD16Vatz2RMTx+/JglS5YQHBz83nM7CSE+DhqNhuXLl5M1S1bYBsTA8XvHmZbvFjRrpqt+1qOHrhufEB/o+fPnuLm56avrLRg8mBLu7rrEKV8+OHYsQeIEsOHSBvYE7MHU2BSPlh6SOAkhDE6SJ/Gf5MyZk8mTJ7NixQqyZctm6HCEEB+oYMGCujGST4E9um2Tjk3mxMQeYG2tm/dpwQJDhig+caNHj9ZPO9LOyYmvN26EW7fA0RGOH4fXChwFRwYzcN9AAL6r9R2lc8qTTyGE4UnyJP4TpRSPHz+mUyeZqFCIT52bmxutWrWCS4AfaJWWTscG8fT7KboG48dDQIABIxSfKi8vL11pfKCSmRkbHjxA8+ABlCihe+JUqFCC9kop+u7ty9Pop5S3L8/I6iMNELUQQiQmyZMQQghA131vxYoVumkgfgWewP2I+7hbHUU1agjR0dCzp24SXSGSKTw8XF+JtSJwzNgYkydPdCXwjx2DvHkT7fPTxZ/wvOaJiZEJHi09yGScKW2DFkKIN5DkSQghhJ6dnR2rV6+GWHTjn+Jhm/82Vg2vB5aWcOIELF1q6DDFJ2To0KHcu3ePmsARY2MyR0VBlSq6suRJzBt5/a/r9P21LwATa0/Eyd4pjSMWQog3k+RJCCFEAs2aNcPd3R3+BLx02wb5Tubq9CG6ldGj4fZtg8UnPh179uzhxx9/pCGwH8gSHw916+qq6tnYJGofHRdN+63tiXoZRT2HeoyuMTqtQxZCiLeS5EkIIUQi8+bNw9HREU4BgfAi7gUdTHbwom4NiIqCXr0g4810Id5DcHAwPXv2pCWwG7AA+Pxz2LtX9xQzCSN+G8HFRxexs7BjXet1MhmuEOKjI8mTEEKIRCwtLVm3bh1GGiPYAUTCpZBL9OueC2WeGQ4fhpUrDR2m+EhptVrc3NyoHxLCVsAMUF9+CZ6eYG6e5D47ru1gyVldUYm1rdaSJ2uetAtYCCGSSZInIYQQSapWrRqjR4+GSHTjn7TgcWsbKyc21zUYPhzu3zdkiOIjNW/ePAr89hvrARPgRbt2aDZt0k24nIR74ffosVNXVGJ41eE0Kdok7YIVQoj3IMmTyBA0Gg07duwwdBhCfHImTJhA+fLl4Tb68U8DYnfi27gMPHsGvXtL9z2RwNmzZwkaNYqV6N5kPGjeHPNNm8Ak6Qlu47RxdNrWiafRT6mctzLT6k9L03iFEOJ9SPKUDmg0mrcuEydOTLNY6tSpk2QMcXFxaXL+iRMn4uzsnGh7UFAQTZrIJ5lCvC9TU1PWrVuHmZkZ+AD+EBsfS5u6fxGSzRT274effjJ0mOIjEREezrHGjZn7dzn7oy4u5Nu5E4ze/HZj0pFJ+Nz3wcrMik1tNmFqnPTTKSGE+BhI8pQOBAUF6ZcFCxZgZWWVYNvw4cP1bZVSqZ7IuLu7Jzh/UFAQJm/4xDGt2Nvb6978CSHeW+nSpVmwYIFuZQcYhRrx4EUwHQbnI84IGDwYgoIMF6D4OCjF0erVGRYaCsCKvHmpduwYaDRv3OXw7cNMO6570rSi2QocszmmSahCCPGhJHlKB+zt7fWLtbU1Go1Gv37t2jWyZs3Kvn37qFChAmZmZpw4cYJu3brRqlWrBMcZPHgwderU0a9rtVpmzJiBg4MD5ubmODk5sXXr1nfGY2FhkSAme3t7QPdUavDgwQnatmrVim7duunXCxUqxPTp0+nRowdZs2alQIECrFixIsE+Dx48oGPHjtja2pIlSxYqVqzImTNnWLNmDZMmTeLixYv6J15r1qwBEnfbu3TpEvXq1cPc3Jzs2bPTu3dvIiMj9a+/+v58//335M6dm+zZs9OvXz9evnz5zusXIj3q06cP7dq1gxjQbtJiFGeEt7rF2E65ICwMvvlGuu9lZFot1xo1ovmVKwCMNTOjwbFjZHrDGCeAkOchdNneBYXC/TN32pdpn1bRCiHEBzPs44BPSMWKFQkODk7Tc9rb23Pu3LkUOdbo0aP5/vvvcXR0JFu2bMnaZ8aMGaxfv57//e9/FC1alGPHjtGlSxfs7OyoXbt2isSVlLlz5zJlyhTGjh3L1q1b+eabb6hduzbFixcnMjKS2rVrkzdvXnbt2oW9vT0XLlxAq9XSvn17Ll++zP79+zl06BAA1tbWiY7//PlzXF1dqVq1KmfPniUkJIRevXrRv39/fbIF4O3tTe7cufH29iYwMJD27dvj7Oysm/9GiAxGo9GwcuVKzp8/z82bN9Fu10I7mFPkEZXLGvPlzp2weTN07GjoUEVai48nol07Shw6hBb4Bqjj4aErdf8GMXExtPmlDUGRQZSyK8WCxgvSKlohhPhPJHlKpuDgYB4+fGjoMD7Y5MmTadiwYbLbx8TEMH36dA4dOkTVqlUBcHR05MSJEyxfvvytydMPP/zAqlWr9Ot9+vRh7ty5yT73559/Tt++utnlR40axfz58/H29qZ48eJs3LiRx48fc/bsWWxtbQEoUqSIfl9LS0tMTEz0T7uSsnHjRqKjo/npp5/IkiULAEuWLKF58+bMmjWLXLlyAZAtWzaWLFmCsbExJUqUoGnTpnh5eUnyJDIsKysrfvnlF6pWrUrs1VjdGKjq0L2NMaWD4ik5cCA0aAB2doYOVaSV2FjiO3fGavt24gE3wLR7dzq+JYlWStF3b19O3DuBtZk129ttxyKTRZqFLIQQ/4UkT8n0tjfjn8I5K1as+F7tAwMDiYqKSpRwxcbG6ipvvUXnzp359ttv9es2Scwi/zblypXTf/2qC2JISAgAfn5+lC9fXp84fQh/f3+cnJz0iRNA9erV0Wq1XL9+XZ88lS5dGmPjfyZozJ07N5cuXfrg8wqRHnz22WfMnTuXAQMGgBeYFDAhMn8srd3M8F3yF1YDBuieQIn0Lzoa2rbFeM8eYoEOwJVixTi/aNFbd1t4ZiE/+v2IkcaIn7/8meI5iqdJuEIIkRIkeUqmlOo+Zyj/ThQAjIyMUK+NT/j3eJ5X43/27t1L3rx5E7R7V+EFa2vrBE+DknvOVzJlypRgXaPRoP27cpP5GyZXTA1vi0OIjKxfv354e3uzfft24jbHYTrAlOtZY2jXFnZv/JlM7dtD69aGDlOkpshIaNUKvLx4AbQGvE1NOb15M5aWlm/c7UDgAYb9NgyAuY3m4lrENU3CFUKIlCIFIzIoOzs7gl6rjuXn56f/ulSpUpiZmXHv3j2KFCmSYMmfP3+KnDM+Pp7Lly+/1zHKlSuHn58foX9Xc3qdqakp8fHxbz1GyZIluXjxIs+fP9dv8/HxwcjIiOLF5RNQId5Fo9GwevVqHBwc4DnE/hSLiTLhQBHo1xRU32/gDf9HRToQFgauruDlxTOgMXAA+P7779/aM+HaX9dov7U9WqWlh3MPBrkMSqOAhRAi5UjylEHVq1ePc+fO8dNPP3Hjxg0mTJiQIJHJmjUrw4cPZ8iQIaxdu5abN29y4cIFFi9ezNq1az/4nHv37mXv3r1cu3aNb775hrCwsPc6RseOHbG3t6dVq1b4+Phw69Yttm3bxqlTpwBdtb7bt2/j5+fHX3/9RUxMTKJjdO7cmcyZM+Pm5sbly5fx9vZmwIABfPXVV/oue0KIt7OxseGXX37RPaH9E+I2x6FBw8oKMLvwIxgyxNAhitTw119Qvz6cPEm4kRENgGNAly5d6N+//xt3e/riKS02tSA8JpwaBWrwQ9Mf0LylhLkQQnysJHnKoFxdXRk/fjwjR46kUqVKPHv2jK5duyZoM2XKFMaPH8+MGTMoWbIkjRs3Zu/evbpPmz9Ajx49cHNzo2vXrtSuXRtHR0fq1q37XscwNTXlt99+I2fOnHz++eeULVuWmTNn6scmtWnThsaNG1O3bl3s7OzYtGlTomNYWFhw4MABQkNDqVSpEl9++SX169dnyZIlH3RdQmRUFStWZM6cObqV62DmrevSO7oh/Hz+J/j1VwNGJ1JcUBDUrg0XLhBmakotrRZfwMnJieXLl78xGYrTxtFuaztuhN6ggHUBtrXbhpmJzLsnhPg0adTrg1AygIiICKytrQkPD8fKyirBa9HR0dy+fRsHBwcyZ85soAjFp0juHZERKaVo27Yt27ZtA8Cmgw1hJcIwi4P9u+2wWXgDbdaEUwbkyAEFChgiWvHB7t7VPXG6eZMIKysqR0RwHV1V0nPnzr21LPmgfYNY5LuILJmy4NPDByd7p7SLWwghkuFtucHr5MmTEEKID/ZqMuqyZcsCEPZzGMbX7IgxgS9dH7Priz5UqECCpXhxuHfPwIGL5LtxA2rWhJs3ibK3x/nvxEmj0bBp06a3Jk5LfJewyFdXfW9d63WSOAkhPnmSPAkhhPhPLC0t2blzp24KAQXx2x5j+dCWJxawrvPP1LDYnqB9dLRu6Iz4BFy+rEuc7t8n1tGRSlFR3P77palTp+Lq+uZqeev/WM+AfQN0betOpXVJqcAohPj0SfIkhBDiP3NwcGDLli268YcvIXJTKLZhmQnMDi86dMLaJOjdBxEfl/PndWOcHj0ivmxZGpmZcTUiAoBWrVoxevToN+6689pOuu3oBsDAygMZW3NsWkQshBCpLlWTp9DQUDp37oyVlRU2Njb07NlTP39QUu7cuYNGo0ly2bJli75dUq9vlkkZhRDCoOrVq8ewYQt0K5EQvSGerNEazheIoVrbfCw3dqMKp4AMN9T203PiBNSrB6GhKBcXvi5WjKP+/gAUL16ctWvXYmSU9FsIr1tetNvajngVj5uTG/Mbz5fKekKIdCNVk6fOnTtz5coVDh48yJ49ezh27Bi9e/d+Y/v8+fMTFBSUYJk0aRKWlpY0adIkQVsPD48E7Vq1apWalyKEECIZ2rXrB/QEIOrxS3JvtsbspYZ9xbXs//InjhlV4xJlsdu4UOaC+lgdOqSbxykiAmrXZlrt2qz6uyCIpaUlnp6ebxxQfebBGVpubklsfCytS7RmVYtVGGmkk4sQIv1Itd9o/v7+7N+/n1WrVuHi4kKNGjVYvHgxmzdv5s8//0xyH2NjY+zt7RMsnp6etGvXLtGM5TY2Ngnava26WUxMDBEREQkWIYQQKU/3hGEpUA2AgDthxGwugSYuE54loUMbY0oYXSH/3MGQJw906gTe3pDxCr9+nHbvhqZNISoKGjdmbfv2jJ89G9D9bNetW0fJkiWT3PXSo0s02dCE5y+f09CxIZvabMLEyCQtoxdCiFSXasnTqVOnsLGxoWLFivptDRo0wMjIiDNnziTrGOfPn8fPz4+ePXsmeq1fv37kyJGDypUr8+OPP/K2iuszZszA2tpav+TPn//9L0gIIUQymQHbgHy61Zv+qJ9rQXwmtpeOp1Srijwr4QQxMbBpk657WLFiMGsWPHpkyMAztp9/hi++gNhY+OILfuvbl54DBuhfnj9//ht7eQSGBtJofSOeRj+lWv5qeLb3lLmchBDpUqolT8HBweTMmTPBNhMTE2xtbQkODk7WMVavXk3JkiWpVq1agu2TJ0/ml19+4eDBg7Rp04a+ffuyePHiNx5nzJgxhIeH65f79++//wUJIYR4D/bADuDvXgE3vOCXFhBvwo1y5+g03BntWV/o0weyZoXAQBg9GvLlgzZtYP9+iI83YPwZjIeH7ilgXBx06cLFsWNp06kT8X//DAYNGsSgQYOS3PVBxAMa/NSA4MhgnHI5sbfTXrKYZknL6IUQIs28d/I0evToNxZ1eLVcu3btPwf24sULNm7cmORTp/Hjx1O9enXKly/PqFGjGDly5D+z3CfBzMwMKyurBIsQQoiUlyMH/NOLugKwDvi7WMD1bbD1K9Aas+fBWvr8uQLtsh/gzz9h9WqoUkX35n37dmjSBAoXhsmT4cEDw1xMRrF4MfToAVot9OnDg2nTaNqypb7AU+vWrZk7d26SuwaGBlLToyZ3w+9S1LYoB7ocwCazTRoGL4QQaeu9k6dhw4bh7+//1sXR0RF7e3tCQkIS7BsXF0doaCj29vbvPM/WrVuJioqia9eu72zr4uLCgwcPiImJed/LyTA0Gg07duwwdBhCiHSuQAG4fl1X5Vq3fMmoUUv0r2uuraGbVV+MNEas+n0V/X/tj8qSRffm/dQp+OMPGDAAbGzg7l2YMAEKFoRmzWDnTl1yJVLOjBkwcKDu66FDCZ85k8+bNePhw4eA7u/r+vXrdSXoX3Mx+CI1fqzBnbA7FLEtwqGuh8hlmSstoxdCiLSnUsnVq1cVoM6dO6ffduDAAaXRaNTDhw/fuX/t2rVVmzZtknWuqVOnqmzZsiU7tvDwcAWo8PDwRK+9ePFCXb16Vb148SLZx/sYuLm5qZYtW77x9aCgIBUdHZ12Ab0nQHl6eia7vYeHh7K2tk61eD7Ep3rvCJEWxo8fr9DVKFeZMmVSIzeMVJqJGsVElPsud/Uy/mXCHaKilFq/XqnatZXSlZPQLblzKzV2rFK3bhnkOtINrVb3fXz1fZ0wQcXGxKiGDRvqf06FCxdWISEhSe5+4u4JZT3DWjER5fw/ZxX8LDiNL0AIIVLO23KD16XamKeSJUvSuHFj3N3d8fX1xcfHh/79+9OhQwfy5MkDwMOHDylRogS+vr4J9g0MDOTYsWP06tUr0XF3797NqlWruHz5MoGBgSxbtozp06cz4F+DWkVi9vb2mJkZdvCuUoq4j+xT4/j4eLRaraHDECLdmzRpEu7u7gC8fPmSH/r8wHin8WjQsPLCSr74+QuiXkb9s4O5OXTuDEeO6B5ljRgBdnYQFATTp4OjIzRsCL/8oitwIJJPKRgyRPd9BJg9GzVhAn2+/pqDBw8CYGtry6+//oqdnV2i3ffd2EfDdQ0JjwmnRoEaeLt5yxMnIUSGkaqTL2zYsIESJUpQv359Pv/8c2rUqMGKFSv0r798+ZLr168TFRWVYL8ff/yRfPny0ahRo0THzJQpE0uXLqVq1ao4OzuzfPly5s2bx4QJE1LvQpSC58/TfknB0r3/7rb3ajLi7du3U7duXSwsLHBycuLUqVMJ9jlx4gQ1a9bE3Nyc/PnzM3DgQJ4/f65/fd26dVSsWJGsWbNib29Pp06dEnTVPHLkCBqNhn379lGhQgXMzMw4ceLEO2N9V3xHjhyhe/fuhIeH68fZTZw4EdCVpR8+fDh58+YlS5YsuLi4cOTIEf2x16xZg42NDbt27aJUqVKYmZlx7949unXrRqtWrZg0aRJ2dnZYWVnx9ddfEytvyoRIERqNhh9++EFfrS0yMpJlvZexuOZiMptkZnfAbuqtrcfj548T71ysGMyerRv7tGULNGoEGo1uPqL27SFvXhg+HFJgvG26Fx8P7u6wcKFufelS1PDhDBw4EA8PD0A3TnjXrl0UK1Ys0e6bLm2ixeYWvIh7wedFP5cxTkKIjCf1H4R9fN67215kZMJuI2m1REYm+5re1W2Pf3WLu337tgJUiRIl1J49e9T169fVl19+qQoWLKhevtR1nQkMDFRZsmRR8+fPVwEBAcrHx0eVL19edevWTX/M1atXq19//VXdvHlTnTp1SlWtWlU1adJE/7q3t7cCVLly5dRvv/2mAgMD1ZMnT/5zfDExMWrBggXKyspKBQUFqaCgIPXs2TOllFK9evVS1apVU8eOHVOBgYFqzpw5yszMTAUEBCildN39MmXKpKpVq6Z8fHzUtWvX1PPnz5Wbm5uytLRU7du3V5cvX1Z79uxRdnZ2auzYscn+GUi3PSHeLSoqStWsWVPfNczBwUHt/H2nyjYzm2Iiquiioupm6M13H+jWLaXGjVMqT56Evzdr1FBq7Vpdtz+RUGysUh076r5PRkZKrVmjtFqtGjRokP7nYWRkpLZs2ZLk7kt9l+q7Wnba1knFxsWm8QUIIUTqeJ9ue5I8vSYjJU+rVq3Sv37lyhUFKH9/f6WUUj179lS9e/dOcIzjx48rIyOjNyYHZ8+eVYA+kXmVPO3YseOd8b9vfEmNebp7964yNjZONKaufv36asyYMfr9AOXn55egjZubm7K1tVXPnz/Xb1u2bJmytLRU8fHx74xfKUmehEiu0NBQVaZMGf0b9jJlyqjj146rgvMLKiaics7Jqc49PPfuAyml1MuXSu3apVTz5rqE4NXvT2trpfr1U+q1/+sZ1osXSrVsqfvemJgo9csvSqvVqmHDhul/DhqNRv3000+Jdo3XxqtxXuMUE1FMRPXb20/Fa5P3e1EIIT4FH8WYp3TFwgIiI9N+sbBI1csqV66c/uvcuXMD6LvdXbx4kTVr1mBpaalfXF1d0Wq13L59G9BNYty8eXMKFChA1qxZqV27NgD37t1LcJ5/T5ScUvEl5dKlS8THx1OsWLEEcR89epSbN2/q25mamiY49itOTk5Y/Ot7XrVqVSIjI2VeMCFSWLZs2di/fz8FChQA4PLly/Ru3RvPZp445XIi5HkItdfUZn/g/ncfzMQEmjeHXbvg3j2YMgUKFYLwcFi6FJydoXJlWLkSnj1L1ev6aD1/Di1a6KoVmpnBjh2oL79kzJgxCUqQr169mq+++irBrmHRYbTY1IKpx6cCML7WeBY3WYyRRt4+CCEyJhNDB/BJ0GggS/qb8C9Tpkz6rzUa3Twsr4onREZG0qdPHwa+KmH7LwUKFOD58+e4urri6urKhg0bsLOz4969e7i6uiYaJ5TlA793b4svKZGRkRgbG3P+/PlEZXUtLS31X5ubm+uPJ4QwjLx58+Ll5UXdunV58OAB/v7+tP+8PTv372TAiQF43fai2cZmLP18Kb0r9E7e/9m8eWHcOBg7VjceauVKXcJw9qxuGToUOnTQjfmpVEn3uz29i4iApk3hxAnd37Fdu6BePb4bP55Zs2bpm61YsYLu3bsn2PVyyGVa/9yawNBAMptk5n9N/4ebs1taX4EQQnxUJHkSSfrss8+4evUqRYoUSfL1S5cu8eTJE2bOnEn+/PkBOHfuXJrFZ2pqSnx8fIJt5cuXJz4+npCQEGrWrPnex7x48SIvXrzA3NwcgNOnT2Npaam/PiFEyipSpAjHjh2jXr163Llzhxs3btCsYTP2H9zPJMtJbLi0ga/3fo3PfR+WNV1GFtNkfhBjZKQrKtGoEYSEwE8/6RKpgABYtUq3lCunS6I6d4Zs2VL3Qg3lyRNo3BjOnQNra9i3D6pWZfLkyUydOlXfbNmyZfpKiK9subKF7ju78/zlcwpaF2R7++18lvuztL4CIYT46Mhz93QkPDwcPz+/BMuHdjkbNWoUJ0+epH///vj5+XHjxg127txJ//79Ad3TJ1NTUxYvXsytW7fYtWsXU6ZMScnLeatChQoRGRmJl5cXf/31F1FRURQrVozOnTvTtWtXtm/fzu3bt/H19WXGjBns3bv3nceMjY2lZ8+eXL16lV9//ZUJEybQv39/jIzkv4kQqcXBwYGjR49SuHBhAG7dukWDug2YUG4CM+rPwEhjxLo/1lF5VWX8H/u//wly5vynEt/Ro9Cli67r2qvJePPkga5d4dixFK1wanDBwVCnji5xypEDvL2halWmTZuWoDrt4sWL+frrr/Xrcdo4Rh0cRbut7Xj+8jkNHBtwrvc5SZyEEOJv8q4wHTly5Ajly5dPsEyaNOmDjlWuXDmOHj1KQEAANWvWpHz58nz33Xf6Obrs7OxYs2YNW7ZsoVSpUsycOZPvv/8+JS/nrapVq8bXX39N+/btsbOzY/bs2QB4eHjQtWtXhg0bRvHixWnVqhVnz57Vj614m/r161O0aFFq1apF+/btadGihb4EuhAi9RQoUIBjx45RvHhxQDdusm6durS2a83hrofJbZmbq4+vUnFlRTb8seHDTqLRQK1asG6dbq6oRYugbFmIjtZtq10bSpaE77+Hx0mUS/+U3L+vu9bLlyF3bjh6FK2TE8OGDWPcuHH6ZvPnz9d/IAbwJOoJTTY0YfZJ3e/TkdVGsq/zPnJY5EjzSxBCiI+VRqn09FFb8kRERGBtbU14eDhWVlYJXouOjub27ds4ODiQOXNmA0Uo0lq3bt0ICwvTz4X1IeTeEeK/efToEfXr1+fKlSsA5MqVi8OHD5O9QHY6be/E4duHAej9WW8WNllIZpP/+P9MKfD11XXp27xZV1gBIFMmaNVK162vfn1dN8BPRWAgNGgAd+9CwYLg5UV03rx07dqVLVu26JvNnj2bESNG6Nd3X99Nnz19CIoMIkumLHi09KBt6baGuAIhhEhzb8sNXvcJ/UUQQgiRnuXKlQtvb2+cnJwAXTJVs2ZNrp69ym9dfuO7Wt+hQcOKCyuouroqgaGB/+2EGg24uOjGQAUFwfLlukISL1/+MxlvkSIwbRr8+WcKXGEqu3pV98Tp7l0oWhSOHyc0WzYaNmyoT5yMjY1Zvny5PnEKfRFKV8+utNjcgqDIIErkKMHpXqclcRJCiDeQ5EkIIcRHw87OjsOHD+unOAgNDaVRo0asXrWaSXUnsb/LfnJY5MAv2I9yy8oxx2cOL+Nf/vcTZ80KvXvrnkT9/jv07asrsnD7tq6CX4EC0LIl7NkDcXH//Xwp7cIFXeIUFARlysDx49yJj6d69eqcOHECAAsLC3bt2kXv3r0B2HltJ6V/KM26P9ZhpDFiZLWRXOh9gTI5yxjySoQQ4qMm3fak255IIXLvCJFyIiIi6NChA/v27dNvGzhwIHPnziU4Kpiunl3xvuMNgFMuJ1Y0X0HlvJVTNoioKN0TqJUrwcfnn+1580KPHtCzp65rnKGdPAmff66b26piRdi/n/N37tC0aVMePXoE6J7q7dmzh4oVK/Ik6gkD9w9k46WNAJTMURKPlh645HMx5FUIIYTBSLc9IYQQnzQrKyt2797NkCFD9NsWLVpEs2bNsNRa4tXVC4+WHtia23Lx0UWqrKrCwH0DeRaTghPhWliAm5tujqQrV2DIEMieHR4+1E3G6+CgKwW+bZuuq58hHD6s614YHg41a4KXF7+eOUOtWrX0iVPx4sU5deoUFSpU4Jcrv1Dqh1JsvLQRI40Ro6uP5kKfC5I4CSFEMknyJIQQ4qNkbGzMvHnzWLVqlX7S7AMHDlC1alVu3rxJN+duXOt3jS7luqBQLPZdTKkfSrHz2s6UD6ZUKZg3T5c4bd6sKyShFBw4AF9+CfnywahRcONGyp/7Tfbu1T1xev4cGjUifu9epi9ZQosWLYiKigKgRo0anDx5knuae1RdXZX2W9sT8jyEUnalONXzFDMazPjvhTeEECIDkeRJCCHER61nz54cOnSI7NmzA3Dt2jUqV67M4cOHsctix7rW6/ity284ZnPkQcQDWv3ciuabmuMX7JfywZiZQfv2cOiQrrLdmDFgb6+bjHf2bChWDOrWhY0bdWXQU8uWLbqKgDEx0LIlQcuX06hVK7799lv9BOJt27Zl3oZ5fLX/K+qsrcOZh2fIkikLE2pP4ELvCynfzVEIITIASZ6EEEJ89GrVqoWvry+lSpUC4OnTpzRs2JAxY8YQExNDw8INufTNJUZXH42xxpg9AXsov7w8bX5pw6VHl1InqMKFYfp0uHcPPD11T4GMjODIEejcWTcB76BBuvmWUtLatdChg65wRadOHOjVC6e/k0kAIyMjBk8YjHlHc1w8XPj1xq+YGJnQt2JfAgcGMrHORMxMzFI2JiGEyCCkYIQUjBApRO4dIVJfREQEHTt25Ndff9VvK1euHOvWraNcuXIAXPvrGpOOTuLnyz+j0P2Ja1uqLRNqT6B0ztKpG+D9++DhAatX65KqV6pU0c0b1b49ZMny4cdfuhT+ntg2vkcPxtjYMGfePP3LOYvnpObwmuwJ3kNMfAygu/Zp9aZRNHvRDz+vEEKkY+9TMEKSJ0meRAqRe0eItBEfH8/s2bOZMGECL/8u1JApUyYmTZrEiBEjMDExAeBKyBUmHZ3Elqu6OY40aGhfpj3jao5L/SQqPh4OHtRV6tu165/y5lmzQqdOukSqQoX3O+asWTB6NADh3brR6MoVfM+eBQ1QGOya2fGXzV/6hLFOoTrMajBLuucJIcQ7SPL0DpI8vdmRI0eoW7cuT58+xcbGJsk2a9asYfDgwYSFhaVpbB+7jH7vCJHWLl68yFdffcWlS/90y6tatSpr166laNF/nrL88egPJh2dxHb/7fpt1fJXo4dzD9qVbkdWs6ypG2hwsK6r3apVunFSr5Qvr0uiOnXSzSmF7mHVX3+9tr9S5F72HblXTwXA19WVhidPEvHyGTgDlQHbf5o3LtKYwS6DaVS4ERqNJjWvTAgh0gUpVZ5BBQcHM2DAABwdHTEzMyN//vw0b94cLy+vFD1P+/btCQgI+OD916xZ88bE7E3q1KnD4MGDP/icQoj0x8nJibNnzzJ69GiMjHR/zk6dOoWzszNLliwh7u+nPeVylWNbu2383ud3vij5BcYaY07eP0mv3b2wn2tP953dOX73OKn2WaK9va4S3/XrutLiHTuCqek/k/HmyQPduxO8/STFiykqVOBfi+JIxWH6xGm4iR0utw4QUfcZDAMaA7Zgk9mGIVWGENA/gH2d9+FaxFUSJyGESAWSPKUTd+7coUKFChw+fJg5c+Zw6dIl9u/fT926denXr1+Knsvc3JycOXOm6DHTSmxsrKFDEEKkIDMzM2bMmMHx48cpXLgwAFFRUQwYMIAyZcqwbds2fVLkbO/MtnbbuD/kPrMazKJ49uJEvYxijd8aaq2pRbElxZh8dDKnH5wmThuX8sEaGf1Tie/PP2H+fF0J9KgoWLMG+zbVORdThkEswJYnGBHPcvrQ1WI+a5yhcHuYO/IxdAY+AzJBmRxlWNFsBQ+GPGCe6zwZ1ySEEKlMkqdkUErxPPZ5mi/v8ylo37590Wg0+Pr60qZNG4oVK0bp0qUZOnQop0+fBnQJlkajwc/PT79fWFgYGo2GI0eOJDiej48P5cqVI3PmzFSpUoXL/6oWldSTo927d1OpUiUyZ85Mjhw5aN26dbJjnzhxIs7Ozqxbt45ChQphbW1Nhw4dePZMN9llt27dOHr0KAsXLkSj0aDRaLhz5w4Aly9fpkmTJlhaWpIrVy6++uor/vpXn5c6derQv39/Bg8eTI4cOXB1dQVAo9GwbNkymjRpgrm5OY6OjmzdujXZMQshPi7VqlXj4sWL9O3bV7/t+vXrfPnll7i4uOgr0QHkzpqbkdVH4t/PH58ePvQs3xNLU0sCQwOZcGQCVVdXJfvs7LTY1IKFpxdyOeRyyj+Vyp4dBg/WVeLz8YFu3dCamVOaq0zMPISNhezpXz0f67qvJNdw6N4KbpUETCFTlClfFviS492P80ffP3Cv4E4W0/9QhEIIIUSymRg6gE9B1MsoLGdYpvl5I8dEJusPYmhoKPv372fatGlkSaKK0/t2kQMYMWIECxcuxN7enrFjx9K8eXMCAgL0E1X+2969e2ndujXffvstP/30E7GxsQkqYSXHzZs32bFjB3v27OHp06e0a9eOmTNnMm3aNBYuXEhAQABlypRh8uTJANjZ2REWFka9evXo1asX8+fP58WLF4waNYp27doleKO0du1avvnmG3x8fBKcc/z48cycOZOFCxeybt06OnTowKVLlyhZsuR7f7+EEIaXJUsWli5dSufOnRk9ejTHjx8H4OzZs9SvX5+GDRsyY8YMKvxdqEGj0VAtfzWq5a/GgsYL2Hp1K7uu78L7jjdh0WHsDtjN7oDdAOTKkotaBWtRIkcJitgWoahtUYpmL0p28+wf3D1OKcVfUX9x0T6K8z1L4FXJlTPXfYiwfQzEAcH/NA4CrmeBayPw2TWOSpWM/8N3SgghxIeS5CkdCAwMRClFiRIlUuyYEyZMoGHDhoAu+ciXLx+enp60a9cuUdtp06bRoUMHJk2apN/m5OT0XufTarWsWbOGrFl1A7e/+uorvLy8mDZtGtbW1piammJhYYG9vb1+nyVLllC+fHmmT5+u3/bjjz+SP39+AgICKFasGABFixZl9uzZic7Ztm1bevXqBcCUKVM4ePAgixcv5ocffniv2IUQH5dq1apx9OhR9u3bx5gxY/jjjz8AOHjwIAcPHqRNmzZ8/fXX1KtXTz9WytLUkm7O3ejm3I14bTy/B/+O1y0vDt85zPG7x3n0/JG+at+/2WS2oYhtERxsHLDIZIGZsRlmJmb6f02NTTHWGBP6IpSQqBBCnidcEnUP/Lvwg+lTKBoEMXcg8LoxhA8BxgNWGEveJIQQBiPJUzJYZLIgckykQc6bHKkxyLlq1ar6r21tbSlevDj+/v5JtvXz88Pd3f0/na9QoUL6xAkgd+7chISEvHWfixcv4u3tjaVl4qeCN2/e1CdPFd5QDvjf1/hq/d9dGoUQny6NRsPnn39O48aN2bRpE+PHj+f27dsAbNu2jW3btpE/f37c3Nxwc3OjSJEi+n2NjYypmKciFfNUZFSNUcTExXD6wWl8H/oSGBrIjdAb3Ai9wYOIB4RFh3Huz3Oc+/PcB8ea2yw32odaHv3+SPeEKQhiX8AVAJoCc4Hi/+G7IYQQIqVI8pQMGo3mo+5PXrRoUTQaDdeuXXtru1efsP472Xo1R8p/YW5u/p+P8Xp3QI1Gg1arfes+kZGRNG/enFmzZiV6LXfu3Pqvk+rKKITIGIyMjOjcuTNt27ZlxYoVTJkyRf/BzP3795k6dSpTp06lRo0adOvWjXbt2iX4IAfAzMSM2oVqU7tQ7QTbX7x8wc2nN7nx5Ab3I+4THRdNTFwMMfExCf6N08Zha25LLstc5MySEysTKx5ef8il05c4uOMgt27cei1qC8AN6A+USrXvjRBCiPeXasnTtGnT2Lt3L35+fpiamiZrTiClFBMmTGDlypWEhYVRvXp1li1blmC+jtDQUAYMGMDu3bsxMjKiTZs2LFy4MMmnDxmFra0trq6uLF26lIEDByZKFsLCwrCxscHOzg6AoKAgypcvD/DGJy2nT5+mQIECADx9+pSAgIA3jgUqV64cXl5edO/ePYWuKDFTU1Pi4+MTbPvss8/Ytm0bhQoV0k+K+T5Onz5N165dE6y/+r4IIdIXU1NT+vfvj7u7O3v27MHDw4P9+/frf6+cOHGCEydO8M0331C+fHlcXFyoUqUKLi4uODo6JjmuyTyTOWVylqFMzjJvPbdWq+X333/n4MGDrD24Fh8fH2JiYhK1y5vXgYcP+wM9AJsUuGohhBApLdWSp9jYWNq2bUvVqlVZvXp1svaZPXs2ixYtYu3atTg4ODB+/HhcXV25evWqftLRzp07ExQUxMGDB3n58iXdu3end+/ebNy4MbUu5ZOwdOlSqlevTuXKlZk8eTLlypUjLi6OgwcPsmzZMvz9/TE3N6dKlSrMnDkTBwcHQkJCGDduXJLHmzx5MtmzZydXrlx8++235MiRg1atWiXZdsKECdSvX5/ChQvToUMH4uLi+PXXXxk1alSKXV+hQoU4c+YMd+7cwdLSEltbW/r168fKlSvp2LEjI0eOxNbWlsDAQDZv3syqVaswfsfAgC1btlCxYkVq1KjBhg0b8PX1Tfa9KoT4NJmZmdGmTRvatGlDUFAQGzZswMPDg6tXrwK6p/G+vr74+vqyePFiAHLkyIGLiwvly5cne/bsWFlZJVpMTU0JCgriwYMH+uXhw4c8ePCAGzduEBoammQ8Go2G+vXrM3DgQMqU+ZxSpYyJjn5z/JkzQ44cKf5tEUIIkVwqlXl4eChra+t3ttNqtcre3l7NmTNHvy0sLEyZmZmpTZs2KaWUunr1qgLU2bNn9W327dunNBqNevjw4RuPHR0drcLDw/XL/fv3FaDCw8MTtX3x4oW6evWqevHixXtc5cfhzz//VP369VMFCxZUpqamKm/evKpFixbK29tb3+bq1auqatWqytzcXDk7O6vffvtNAfo23t7eClC7d+9WpUuXVqampqpy5crq4sWL+mMk9TPdtm2bcnZ2VqampipHjhzqiy++eGOcr+8/YcIE5eTklKDN/PnzVcGCBfXr169fV1WqVFHm5uYKULdv31ZKKRUQEKBat26tbGxslLm5uSpRooQaPHiw0mq1SimlateurQYNGpQoBkAtXbpUNWzYUJmZmalChQqpn3/++Y0xJ8enfO8IkZFptVrl6+ur+vbtq4oXL66AVF0KFiyoevXqpX7++Wf1+PHjBLHcvavU+fNvXu7eNdA3SQgh0rHw8PA35gav0yiVWlOq66xZs4bBgwe/s9verVu3KFy4ML///jvOzs767bVr18bZ2ZmFCxfy448/MmzYMJ4+fap/PS4ujsyZM7Nly5Y3zi00ceLEBJXgXgkPD8fKyirBtujoaG7fvo2Dg4P+aZdIfzQaDZ6enm98mvYh5N4RIn14+vQpvr6+nDlzhtOnT3PmzJk3PjlKDnt7e6pWrUrDhg1p0KABRYoU+eDy5kIIIVJeREQE1tbWSeYGr/toCkYEB+vms8iVK1eC7bly5dK/FhwcTM6cORO8bmJigq2trb5NUsaMGcPQoUP16xEREeTPnz+lQhdCCJGOZMuWDVdXV/2k2kopAgMDCQgIICIiQr88e/ZM/3V0dDT29vbky5ePvHnzki9fPvLly0fu3LkxNTU18BUJIYRIKe+VPI0ePTrJymb/5u/vn6LzDaUEMzMzzMzMDB2GEEKIT5BGo6Fo0aIJihcJIYTImN4reRo2bBjdunV7axtHR8cPCuTV5KePHj1KUGb60aNH+m589vb2ieb+iYuLIzQ0NMHkqUK8Syr3VhVCCCGEEOnQeyVPdnZ2+nLXKc3BwQF7e3u8vLz0yVJERARnzpzhm2++AXSTmIaFhXH+/Hn9xKeHDx9Gq9Xi4uKSKnEJIYQQQgghBIBRah343r17+Pn5ce/ePeLj4/Hz88PPz4/IyEh9mxIlSuDp6QnoukUMHjyYqVOnsmvXLi5dukTXrl3JkyePflB/yZIlady4Me7u7vj6+uLj40P//v3p0KEDefLkSdH43zVBqxCvk3tGCCGEECJ9S7WCEd999x1r167Vr7+afNTb25s6deoAcP36dcLDw/VtRo4cyfPnz+nduzdhYWHUqFGD/fv3J6hctmHDBvr370/9+vX1k+QuWrQoxeI2NTXFyMiIP//8Ezs7O0xNTaUqkngrpRSxsbE8fvwYIyMjGRwuhBBCCJFOpXqp8o/Ru8oRxsbGEhQURFRUlAGiE58qCwsLqawlhBBCCPGJ+SRLlX9MTE1NKVCgAHFxccTHxxs6HPEJMDY2xsTERJ5SCiGEEEKkY5I8vYFGoyFTpkxkypTJ0KEIIYQQQgghPgKpVjBCCCGEEEIIIdITSZ6EEEIIIYQQIhkkeRJCCCGEEEKIZMiQY55eFRiMiIgwcCRCCCGEEEIIQ3qVEySnCHmGTJ6ePXsGQP78+Q0ciRBCCCGEEOJj8OzZM6ytrd/aJkPO86TVavnzzz/JmjWrwUtLR0REkD9/fu7fv//OuvJCpAS550RakvtNpDW550Rak3vu06eU4tmzZ+TJkwcjo7ePasqQT56MjIzIly+focNIwMrKSv7DiTQl95xIS3K/ibQm95xIa3LPfdre9cTpFSkYIYQQQgghhBDJIMmTEEIIIYQQQiSDJE8GZmZmxoQJEzAzMzN0KCKDkHtOpCW530Rak3tOpDW55zKWDFkwQgghhBBCCCHelzx5EkIIIYQQQohkkORJCCGEEEIIIZJBkichhBBCCCGESAZJnoQQQgghhBAiGSR5EkIIIYQQQohkkOTJwJYuXUqhQoXInDkzLi4u+Pr6GjokkU7NmDGDSpUqkTVrVnLmzEmrVq24fv26ocMSGcTMmTPRaDQMHjzY0KGIdOzhw4d06dKF7NmzY25uTtmyZTl37pyhwxLpUHx8POPHj8fBwQFzc3MKFy7MlClTkCLW6Z8kTwb0888/M3ToUCZMmMCFCxdwcnLC1dWVkJAQQ4cm0qGjR4/Sr18/Tp8+zcGDB3n58iWNGjXi+fPnhg5NpHNnz55l+fLllCtXztChiHTs6dOnVK9enUyZMrFv3z6uXr3K3LlzyZYtm6FDE+nQrFmzWLZsGUuWLMHf359Zs2Yxe/ZsFi9ebOjQRCqTeZ4MyMXFhUqVKrFkyRIAtFot+fPnZ8CAAYwePdrA0Yn07vHjx+TMmZOjR49Sq1YtQ4cj0qnIyEg+++wzfvjhB6ZOnYqzszMLFiwwdFgiHRo9ejQ+Pj4cP37c0KGIDKBZs2bkypWL1atX67e1adMGc3Nz1q9fb8DIRGqTJ08GEhsby/nz52nQoIF+m5GREQ0aNODUqVMGjExkFOHh4QDY2toaOBKRnvXr14+mTZsm+F0nRGrYtWsXFStWpG3btuTMmZPy5cuzcuVKQ4cl0qlq1arh5eVFQEAAABcvXuTEiRM0adLEwJGJ1GZi6AAyqr/++ov4+Hhy5cqVYHuuXLm4du2agaISGYVWq2Xw4MFUr16dMmXKGDockU5t3ryZCxcucPbsWUOHIjKAW7dusWzZMoYOHcrYsWM5e/YsAwcOxNTUFDc3N0OHJ9KZ0aNHExERQYkSJTA2NiY+Pp5p06bRuXNnQ4cmUpkkT0JkQP369ePy5cucOHHC0KGIdOr+/fsMGjSIgwcPkjlzZkOHIzIArVZLxYoVmT59OgDly5fn8uXL/O9//5PkSaS4X375hQ0bNrBx40ZKly6Nn58fgwcPJk+ePHK/pXOSPBlIjhw5MDY25tGjRwm2P3r0CHt7ewNFJTKC/v37s2fPHo4dO0a+fPkMHY5Ip86fP09ISAifffaZflt8fDzHjh1jyZIlxMTEYGxsbMAIRXqTO3duSpUqlWBbyZIl2bZtm4EiEunZiBEjGD16NB06dACgbNmy3L17lxkzZkjylM7JmCcDMTU1pUKFCnh5eem3abVavLy8qFq1qgEjE+mVUor+/fvj6enJ4cOHcXBwMHRIIh2rX78+ly5dws/PT79UrFiRzp074+fnJ4mTSHHVq1dPNP1CQEAABQsWNFBEIj2LiorCyCjh22hjY2O0Wq2BIhJpRZ48GdDQoUNxc3OjYsWKVK5cmQULFvD8+XO6d+9u6NBEOtSvXz82btzIzp07yZo1K8HBwQBYW1tjbm5u4OhEepM1a9ZE4+myZMlC9uzZZZydSBVDhgyhWrVqTJ8+nXbt2uHr68uKFStYsWKFoUMT6VDz5s2ZNm0aBQoUoHTp0vz+++/MmzePHj16GDo0kcqkVLmBLVmyhDlz5hAcHIyzszOLFi3CxcXF0GGJdEij0SS53cPDg27duqVtMCJDqlOnjpQqF6lqz549jBkzhhs3buDg4MDQoUNxd3c3dFgiHXr27Bnjx4/H09OTkJAQ8uTJQ8eOHfnuu+8wNTU1dHgiFUnyJIQQQgghhBDJIGOehBBCCCGEECIZJHkSQgghhBBCiGSQ5EkIIYQQQgghkkGSJyGEEEIIIYRIBkmehBBCCCGEECIZJHkSQgghhBBCiGSQ5EkIIYQQQgghkkGSJyGEEEIIIYRIBkmehBBCCCGEECIZJHkSQgghhBBCiGSQ5EkIIYQQQgghkuH/LNoTEm7BX7wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Data generation\n", + "n = np.arange(0, 10)\n", + "x = np.linspace(0, 9, 100)\n", + "\n", + "# Simulate noisy measurements\n", + "y_meas = f(n) + 0.1 * np.random.randn(len(n)) # Corrected randn()\n", + "y_real = f(x)\n", + "\n", + "# Interpolation\n", + "linear_interpolation = interp1d(n, y_meas)\n", + "y_interp1 = linear_interpolation(x)\n", + "\n", + "cubic_interpolation = interp1d(n, y_meas, kind='cubic')\n", + "y_interp2 = cubic_interpolation(x)\n", + "\n", + "# Plotting\n", + "fig, ax = plt.subplots(figsize=(10, 4))\n", + "ax.plot(n, y_meas, 'bs', label='Noisy Data')\n", + "ax.plot(x, y_real, 'k', lw=2, label='True Function')\n", + "ax.plot(x, y_interp1, 'r', label='Linear Interp')\n", + "ax.plot(x, y_interp2, 'g', label='Cubic Interp')\n", + "ax.legend(loc=3)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PgWa4DM2yGVW" + }, + "source": [ + "# **Statistics**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ydLtWYFVyDO6" + }, + "outputs": [], + "source": [ + "from scipy import stats\n", + "# create a (discrete) random variable with Poissonian distribution\n", + "\n", + "X = stats.poisson(3.5) # photon distribution for a coherent state with n=3.5 photons" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "aP9x7sKJyLvI", + "outputId": "ff9a72ad-1f96-4f37-dd3a-144bf56f88e7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAHWCAYAAADpd4R+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX+9JREFUeJzt3Xl4U1XeB/BvmtINurAMXUggIMgmmyydomVxIgUZhKcgCEhrcXAZ0NYiQhUpymBZqrTKpiiKOiiChWF4O1XoUN8KBQTsKKvIFFq6gmJDW2ghue8feROaNm2TNum9Sb6f58lT7rkn9/5yyfK799xzjkwQBAFERERE5PTcxA6AiIiIiFoHEz8iIiIiF8HEj4iIiMhFMPEjIiIichFM/IiIiIhcBBM/IiIiIhfBxI+IiIjIRTDxIyIiInIR7mIHYAs6nQ5FRUXw9fWFTCYTOxwiIiKiViUIAm7cuIGQkBC4uTV8Xc8pEr+ioiIolUqxwyAiIiISVUFBARQKRYPrnSLx8/X1BaB/sX5+fiJHQ+T49u4FFi8GioruloWEAKtXA48+Kl5cRERknkajgVKpNOZEDXGKxM/QvOvn58fEj6iF0tKAqCig7izexcX68l27gMhIcWIjIqLGNXXLGzt3EJGRVgvExtZP+oC7ZXFx+npEROR4mPgRkVF2NnDlSsPrBQEoKNDXIyIix8PEj4iMiottW4+IiKTFKe7xIyLbCA62bT0Sl1arxe3bt8UOg4hsoE2bNpDL5S3eDhM/IjIKDwcUCqCw0Px9fjKZfn14eOvHRpYTBAElJSX4/fffxQ6FiGwoICAAQUFBLRqzmIkfERnJ5UBqKjBtmj7Jq538Gb5nUlL09Ui6DElf586d4ePjw4HtiRycIAioqqpCWVkZACC4Bc0uTPyIyERkpH7Ilhde0F/5M1Ao9Ekfh3KRNq1Wa0z6OnbsKHY4RGQj3t7eAICysjJ07ty52c2+7NxBRPVERgJnztxdTk8H8vKY9DkCwz19Pj4+IkdCRLZm+Fy35N5dJn5EZFbtk8lRo9i862jYvEvkfGzxuWbiR0REZmm1QFYW8Pnn+r9iD9x96dIlyGQy5ObmihsIgOXLl2Pw4MFWPUcmk2HPnj12iceWMjMz0bdvX2jF/g93IRkZGRg8eDB0Op3d98XEj4iI6klLA1QqYOxYYNYs/V+VSl9uD08++SRkMpnx0bFjR4wfPx4//vijsY5SqURxcTHuu+8++wRhhZdeegmZmZk23WbtY+Dh4YGePXvijTfewJ07dwAAWVlZkMlkaN++PW7dumXy3O+//974XAND/bqPpUuXNhrHyy+/jKVLl9pk6JCGrFy5EiNHjoSPjw8CAgLM1snPz8fEiRPh4+ODzp07Y9GiRcZjIabmxKVSqer9P6xatcq4fvz48WjTpg3+/ve/2zt8Jn5ERGQqLU3fs7vuLC6FhfpyeyV/48ePR3FxMYqLi5GZmQl3d3f8+c9/Nq6Xy+UICgqCu7v4/RLbtWtnl84zhmNw4cIFLFy4EMuXL8fatWtN6vj6+mL37t0mZR9++CG6du1qdpvnz583Htfi4mIsWbKkwf1/9913uHjxIqZOndryF9OImpoaPPbYY3juuefMrtdqtZg4cSJqampw+PBhbNu2DR9//DGWLVtm17ia0pK43njjDZP/h+eff95k/ZNPPol33nnHXqHfJTiB8vJyAYBQXl4udihETqOiQhD0A7ro/02O4ebNm8KZM2eEmzdvNuv5d+4IgkJx9/++7kMmEwSlUl/PlqKjo4XJkyeblGVnZwsAhLKyMkEQBCEvL08AIPzwww+CIAjCwYMHBQDCgQMHhKFDhwre3t5CWFiYcO7cOZPtbNy4UejRo4fQpk0b4d577xU++eQTk/UAhM2bNwsTJ04UvL29hT59+giHDx8WLly4IIwePVrw8fERwsLChF9++cX4nMTERGHQoEHG5WPHjglqtVro2LGj4OfnJ4waNUo4ceJEvf3s3r3bqmPw8MMPC3/84x9NXu/SpUsFtVptrFNVVSX4+/sLr732mlD7Z91Q//r16w3us6758+cL06ZNMykzvNZPPvlE6Natm+Dn5yfMmDFD0Gg0Fm+3IR999JHg7+9frzw9PV1wc3MTSkpKjGWbNm0S/Pz8hOrqaou3P3r0aGH+/PnC/PnzBT8/P6Fjx47C0qVLBZ1O16x4mxtXt27dhHXr1jW67cuXLwsATN5ndTX2+bY0F+IVPyIiMpLKfM0VFRX47LPP0LNnzyavrL366qt46623cPz4cbi7u2Pu3LnGdbt370ZsbCwWLlyIU6dO4ZlnnkFMTAwOHjxoso0VK1YgKioKubm56NOnD2bNmoVnnnkGCQkJOH78OARBwIIFCxqM4caNG4iOjsZ3332HI0eOoFevXnjkkUdw48aNFh0Hb29v1NTUmJTNmTMH2dnZyM/PBwB89dVXUKlUuP/++1u0LwDIzs7GsGHD6pVfvHgRe/bswb59+7Bv3z58++23Jk2Vb775Jtq1a9fowxCvJXJycjBgwAAEBgYayyIiIqDRaHD69GmrXtO2bdvg7u6OY8eOITU1FW+//TY++OAD4/pnn322ydhtEdeqVavQsWNHDBkyBGvXrq3XPNy1a1cEBgYi284fLvGvlxMRkWSIOV/zvn37jD+ylZWVCA4Oxr59++Dm1vg1ipUrV2L06NEAgCVLlmDixIm4desWvLy8kJycjCeffBJ//etfAQDx8fE4cuQIkpOTMXbsWOM2YmJiMH36dADA4sWLERYWhtdeew0REREAgNjYWMTExDQYw0MPPWSy/P777yMgIADffvutSXO1pQRBQGZmJr7++ut6TYKdO3fGhAkTjE2MW7duNUl261IoFCbLly9fbjCZvnz5MkJCQuqV63Q6fPzxx/D19QWgTz4zMzOxcuVKAPrkyXD8GmJuuw0pKSkxSa4AGJdLSkos3g6gvzd03bp1kMlk6N27N3766SesW7cO8+bNA6Bvgn3ppZfsGtcLL7yA+++/Hx06dMDhw4eRkJCA4uJivP322yb1QkJCcPnyZWtentWY+BGJTKvVXz0pLtbPgRsezqFTGsJjZX9iztc8duxYbNq0CQBw/fp1bNy4ERMmTMCxY8fQrVu3Bp83cODAWnHpAysrK0PXrl1x9uxZPP300yb1H3jgAaSmpja4DcMP+YABA0zKbt26BY1GAz8/v3oxlJaWYunSpcjKykJZWRm0Wi2qqqqsusoF3E1+b9++DZ1Oh1mzZmH58uX16s2dOxexsbF44oknkJOTg507dzZ4pSg7O9uYsAFA+/btG9z/zZs34eXlVa9cpVKZbCM4ONg4iwQAdOjQAR06dLDkJba6P/7xjyadXsLCwvDWW29Bq9VCLpejc+fO6Ny5s11jiI+PN/574MCB8PDwwDPPPIOkpCR4enoa13l7e6OqqsqusbCpl0hErd1z0pHxWLUOw3zNDQ0XJpMBSqV95mtu27YtevbsiZ49e2L48OH44IMPUFlZiS1btjT6vDZt2tSKTx+4tcNimNuGNduNjo5Gbm4uUlNTcfjwYeTm5qJjx471mmmbMnbsWOTm5uLChQu4efMmtm3bhrZt29arN2HCBNy8eRNPPfUUJk2a1GhzePfu3Y3HtWfPno1eQe3UqROuX79er7z2sQD0x6P2sbB1U29QUBBKS0tNygzLQUFBFm/HEtY09doqrtDQUNy5cweXLl0yKf/tt9/whz/8ofkvxgK84kckEkPPydrz4QJ3e07u2sWZMgx4rFqPlOZrlslkcHNzw82bN5u9jb59++LQoUOIjo42lh06dAj9+vWzRYgm29y4cSMeeeQRAEBBQQGuXbtm9XYMyW9T3N3dERUVhTVr1uBf//qX1ftpyJAhQ3Cm9rQ9FrJ1U29YWBhWrlxpnJ4MAPbv3w8/Pz+r/++OHj1qsmy4B9MwXI01Tb22iis3Nxdubm4mVxpv3bqFixcvYsiQIRZvpznslvht2LABa9euRUlJCQYNGoR3330XI0aMMFt3y5Yt+OSTT3Dq1CkAwNChQ/Hmm282WJ/I0Wm1QGxs/UQG0JfJZEBcHDB5Mpsyeaxan1jzNVdXVxvvk7p+/TrWr1+PiooKTJo0qdnbXLRoEaZPn44hQ4ZArVbjn//8J9LS0nDgwAFbhQ0A6NWrFz799FMMGzYMGo0GixYtMs6tai8rVqzAokWLbDqsTEREBLZt22b186xt6s3Pz8dvv/2G/Px8aLVa46DcPXv2RLt27TBu3Dj069cPc+bMwZo1a1BSUoKlS5di/vz5Jk2jlu4rPj4ezzzzDE6ePIl3330Xb731lnG9NU29lsR17NgxREVFITMzE126dEFOTg6OHj2KsWPHwtfXFzk5OXjxxRfxxBNPmDS7HzlyBJ6enggLC7Pq9VnLLk29O3bsQHx8PBITE3Hy5EkMGjQIERERJvcD1JaVlYWZM2fi4MGDyMnJgVKpxLhx41BY+xuHyIlIpeekI+CxEocY8zVnZGQgODgYwcHBCA0Nxffff4+dO3dizJgxzd7mlClTkJqaiuTkZPTv3x/vvfcePvrooxZt05wPP/wQ169fx/333485c+bghRdesPt9Yx4eHujUqZNNp+ebPXs2Tp8+jfPnz9tsm+YsW7YMQ4YMQWJiIioqKjBkyBAMGTIEx48fB6Afs3Hfvn2Qy+UICwvDE088gaioKLzxxhvGbRhmcsnKymp0X1FRUbh58yZGjBiB+fPnIzY2tt59n5ayJK6qqiqcP3/eOJ+up6cnvvjiC4wePRr9+/fHypUr8eKLL+L999832fbnn3+O2bNn23+e7UYHe2mmESNGCPPnzzcua7VaISQkREhKSrLo+Xfu3BF8fX2Fbdu2WVSf4/iRo9m+veFx0mo/tm8XL0apjOPnCMdKSlo6jl9tUnkPUOt66aWXhKefflrsMJr073//WwgICBB+++23BuuMHj1aiI2Nbb2gmunq1atChw4dhP/+97+N1pPkOH41NTU4ceIE1Gq1sczNzQ1qtRo5OTkWbaOqqgq3b9+WbA8hopYSs+eko+GxEk/btndTazP9C8hJvfrqq+jWrVurzBvbEunp6XjllVca7aXsKC5duoSNGzeie/fudt+Xze/xu3btGrRardlxbs6dO2fRNhYvXoyQkBCT5LG26upqVFdXG5c1Gk3zAyYSgaHnZGGh+XvXZDL9env0nHQ0PFZErSsgIACvvPKK2GE0qe5Udo5s2LBhZgfOtgfJDeeyatUqfPHFF9i9e7fZsYQAICkpCf7+/saHUqls5SiJWsbQcxKoP2xGa/eclDoeKyJqrqysLKSkpIgdhqTYPPHr1KkT5HK52XFumhrjJjk5GatWrcI333xjMphmXQkJCSgvLzc+CgoKbBI7UWsy9JysO8KBQsHhSerisSIisg2bJ34eHh4YOnQoMjMzjWU6nQ6ZmZmNdlFes2YNVqxYgYyMjCYvd3p6esLPz8/kQeSIxOg56ah4rIiIWs4u4/jFx8cjOjoaw4YNw4gRI5CSkoLKykrjPIdRUVHo0qULkpKSAACrV6/GsmXLsH37dqhUKuM4TnVHzCZyRrWbKEeNYpNlY3isLCeYuyGSiByaLT7Xdkn8ZsyYgatXr2LZsmUoKSnB4MGDkZGRYezwkZ+fbzJlzKZNm1BTU4Np06aZbCcxMdHsHIVERGSeYWqtqqoquw8gTEStyzCPb90p9KwhE5zgtFCj0cDf3x/l5eVs9iWHU1kJGC5sV1RIZ9gMKcYlxZikqLi4GL///js6d+4MHx8fmw7wS0StTxAEVFVVoaysDAEBAQg2M36VpbkQ5+olInIyho50Dc2WRESOKSAgoMmOsk1h4kdE5GRkMhmCg4PRuXNn47RRROTY2rRpA7kNbmxm4kdE5KTkcrlNfiiIyHlIbgBnIiIiIrIPJn5ERERELoKJHxEREZGLYOJHRERE5CKY+BERERG5CCZ+RERERC6CiR8RERGRi2DiR0REROQimPgRERERuQgmfkREREQugokfERERkYtg4kdERETkIpj4EREREbkIJn5ERERELoKJHxEREZGLYOJHRERE5CKY+BERERG5CCZ+RERERC6CiR8RERGRi2DiR0REROQimPgRERERuQgmfkREREQuwl3sAIhai1YLZGcDxcVAcDAQHg7I5WJHRc6A7y0ichRM/MglpKUBsbHAlSt3yxQKIDUViIwULy5yfHxvEZEjYVMvOb20NGDaNNMfZgAoLNSXp6WJExc5Pr63iMjRMPEjp6bV6q/GCEL9dYayuDh9PSJr8L1FRI6IiR85tezs+ldjahMEoKBAX4/IGnxvEZEjYuJHTq242Lb1iAz43iIiR8TEj5xacLBt6xEZ8L1FRI6IiR85tfBwfQ9Lmcz8epkMUCr19YiswfcWETkiuyV+GzZsgEqlgpeXF0JDQ3Hs2LEG654+fRpTp06FSqWCTCZDSkqKvcIiFyOX64fVAOr/QBuWU1I45hpZj+8tInJEdkn8duzYgfj4eCQmJuLkyZMYNGgQIiIiUFZWZrZ+VVUVevTogVWrViEoKMgeIZELi4wEdu0CQkJMyxUKfTnHWqPm4nuLiByNTBDMDUbQMqGhoRg+fDjWr18PANDpdFAqlXj++eexZMmSRp+rUqkQFxeHuLg4i/en0Wjg7++P8vJy+Pn5tSR0cmIaDeDvr/93ejowbpw0rsZUVgLt2un/XVEBtG0rbjwGUoxLijEB0n1vEZHrsDQXsvkVv5qaGpw4cQJqtfruTtzcoFarkZOTY+vdEVms9g/xqFH8YSbb4XuLiByFzadsu3btGrRaLQIDA03KAwMDce7cOZvso7q6GtXV1cZljUZjk+0SEREROTOH7NWblJQEf39/40OpVIodEhEREZHk2Tzx69SpE+RyOUpLS03KS0tLbdZxIyEhAeXl5cZHQUGBTbZLRERE5Mxsnvh5eHhg6NChyMzMNJbpdDpkZmYiLCzMJvvw9PSEn5+fyYOIiIiIGmfze/wAID4+HtHR0Rg2bBhGjBiBlJQUVFZWIiYmBgAQFRWFLl26ICkpCYC+Q8iZM2eM/y4sLERubi7atWuHnj172iNEIiIiIpdjl8RvxowZuHr1KpYtW4aSkhIMHjwYGRkZxg4f+fn5cHO7e7GxqKgIQ4YMMS4nJycjOTkZo0ePRlZWlj1CJCIiInI5dhnHr7VxHD+yhFTHgGNclpNiTIB04yIi1yHaOH5EREREJE1M/IiIiIhcBBM/IiIiIhfBxI+IiIjIRTDxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEUw8SMiIiJyEUz8iIiIiFwEEz8iIiIiF8HEj4iIiMhFMPEjIiIichHuYgdAzkmrBbKzgeJiIDgYCA8H5HKxoyJyHfwMEpE5TPzI5tLSgNhY4MqVu2UKBZCaCkRGihcXkavgZ5CIGsKmXrKptDRg2jTTHxwAKCzUl6eliRMXkavgZ5CIGsPEj2xGq9VfZRCE+usMZXFx+npEZHv8DBJRU5j4kc1kZ9e/ylCbIAAFBfp6RGR7/AwSUVOY+JHNFBfbth4RWYefQSJqChM/spngYNvWIyLr8DNIRE1h4kc2Ex6u7zkok5lfL5MBSqW+HhHZHj+DRNQUJn5kM3K5frgIoP4Pj2E5JYVjiRHZCz+DRNQUJn5kU5GRwK5dQEiIablCoS/nGGJE9sXPIBE1hgM4k81FRgJqNeDvr19OTwfGjeNVBqLWws8gETWEV/zILmr/wIwaxR8cotbGzyARmcPEj4iIiMhFMPEjIiIichFM/IiIiIhcBDt3ODitVj/9UnGxflDW8HDey0NE0sXvLCJxMfFzYGlp+gnZa8/NqVDox/HikA1EJDX8ziISH5t6HVRaGjBtWv0J2QsL9eVpaeLERURkDr+ziKSBiZ8D0mr1Z82CUH+doSwuTl+PiEhs/M4ikg4mflbQaoGsLODzz/V/xfqSys6uf9ZcmyAABQX6ekREYpP6d5ZUvtuJWoPdEr8NGzZApVLBy8sLoaGhOHbsWKP1d+7ciT59+sDLywsDBgxAenq6vUJrlrQ0QKUCxo4FZs3S/1WpxGmeKC62bT0iInuS8neWlL7b65JiQirFmABpxiXFmAAAgh188cUXgoeHh7B161bh9OnTwrx584SAgAChtLTUbP1Dhw4JcrlcWLNmjXDmzBlh6dKlQps2bYSffvrJov2Vl5cLAITy8nJbvgyjr74SBJlMEPTnpXcfMpn+8dVXdtltgw4erB+LucfBg60bV20VFXfjqKgQL47apBiTIDAua0gxJkGQZlxSikmq31lS+26vG5tCYRqXQsGYHCUuMWKyNBeyS+I3YsQIYf78+cZlrVYrhISECElJSWbrT58+XZg4caJJWWhoqPDMM89YtD97Jn537tT/z6v7BaFU6uu1FkNM5r6wxIqpLin96BhIMSZBYFzWkGJMgiDNuKQUkxS/s6T43W4gxYRUijFJNS6xYrI0F7J5U29NTQ1OnDgBtVptLHNzc4NarUZOTo7Z5+Tk5JjUB4CIiIgG67cmKd6bIpfrhz8AAJnMdJ1hOSWFY2MRkTRI8TtLit/tgDQ7wkgxJkCacUkxprpsnvhdu3YNWq0WgYGBJuWBgYEoKSkx+5ySkhKr6ldXV0Oj0Zg87EWq96ZERgK7dgEhIablCoW+nGNiEZGUSO07S6rf7VJMSKUYEyDNuKQYU10OOYBzUlISXn/99VbZV3CwbevZUmQkMHmyNEfBb9vW/BmPmKQYE8C4rCHFmABpxiXFmKT0nSXV73YpJqRSjMma/fFYmbJ54tepUyfI5XKUlpaalJeWliIoKMjsc4KCgqyqn5CQgPj4eOOyRqOBUqlsYeTmhYfrz0gLC81/icpk+vXh4XbZfZPkcmDMGHH2TURkLal8Z0n1u12KCakUY7JmfzxWpmze1Ovh4YGhQ4ciMzPTWKbT6ZCZmYmwsDCzzwkLCzOpDwD79+9vsL6npyf8/PxMHvYixXtTiIioZaT63W5ISOvGZCCTAUpl6yakUoxJqnFJMaa67DKOX3x8PLZs2YJt27bh7NmzeO6551BZWYmYmBgAQFRUFBISEoz1Y2NjkZGRgbfeegvnzp3D8uXLcfz4cSxYsMAe4VnNcG9Kly6m5byfjojIcUnxu12KCakUYwKkGZcUY6pLJgj2uQtk/fr1WLt2LUpKSjB48GC88847CA0NBQCMGTMGKpUKH3/8sbH+zp07sXTpUly6dAm9evXCmjVr8Mgjj1i0r/LycgQEBKCgoMCuV/+0WuDwYaCkBAgKAkaO5JU+IiJHJ8Xv9r17gcWLgaKiu2VdugCrVgGPPsqYpB6XGDEZbnv7/fff4e/v32A9uyV+renKlSt2u8ePiIiIyFEUFBRAoVA0uN4pEj+dToeioiL4+vpC1lDDuo0YMmp7X110BjxWluOxshyPleV4rCzHY2U5HivLteaxEgQBN27cQEhICNzcGr6TzyGHc6nLzc2t0ezWHuzdqcSZ8FhZjsfKcjxWluOxshyPleV4rCzXWseqsSZeA7t07iAiIiIi6WHiR0REROQimPhZydPTE4mJifD09BQ7FMnjsbIcj5XleKwsx2NlOR4ry/FYWU6Kx8opOncQERERUdN4xY+IiIjIRTDxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEUw8SMiIiJyEUz8iIiIiFwEEz8iIiIiF8HEj4iIiMhFMPEjIiIichFM/IiIiIhcBBM/IiIiIhfBxI+IiIjIRTDxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEW4ix2ALeh0OhQVFcHX1xcymUzscIiIiIhalSAIuHHjBkJCQuDm1vB1PadI/IqKiqBUKsUOg4iIiEhUBQUFUCgUDa53isTP19cXgP7F+vn5iRwNkeX2nt+LxQcWo0hTZCwL8QvBavVqPNr7UcZFREQW0Wg0UCqVxpyoITJBEIRWisluNBoN/P39UV5ezsSPHEba2TRM+3IaBJh+BGXQ366wa/ouRPaNZFxERNQkS3Mhdu4gEoFWp0VsRmy95AqAsSwuIw5anZZxERGRzTDxIxJBdn42rmiuNLhegIACTQGy87NbMSrpxkVERLbBxI9IBMU3im1az1akGhcREdmGU3TuIHI0wb7BNq1nK1KNi8hWtFotbt++LXYYRFZr06YN5HJ5i7fDxI9IBOFdw6HwU6BQU2j2fjoZZFD4KRDeNZxxEdmAIAgoKSnB77//LnYoRM0WEBCAoKCgFo1ZzMSPSARyNzlSx6di2pfTIIPMJMky9J5NGZ8CuVvLz+6cIS6iljIkfZ07d4aPjw8H+yeHIggCqqqqUFZWBgAIDm5+qwuHcyESUdrZNLzwrxdQeKPQWKb0UyJlfIqoQ6ZINS6i5tBqtfj555/RuXNndOzYUexwiJrt119/RVlZGe699956zb6W5kK84kckosi+kVB3V8N/tT8AIH1WOsbdM070K2pSjYuoOQz39Pn4+IgcCVHLGN7Dt2/fbvb9fuzVSySy2snUqG6jJJNcSTUuouZi8y45Olu8h3nFj4iIyEJanRbZ+dkovlGMYN9ghHcN50kRORRe8SMiIrJA2tk0qFJVGLttLGalzcLYbWOhSlUh7Wya2KE16OOPP0ZAQIDYYUje+fPnERQUhBs3bgAALl26BDc3N/Tu3Ru5ubmtEsPjjz+Ot956y+77YeJHRETUBMMc1nVntinUFGLal9Pslvw9+eSTkMlkkMlk8PDwQM+ePfHGG2/gzp07Fj1/xowZ+Pnnn+0Smy0sX77c+Prc3d2hUqnw4osvoqKiAoA+AZPJZJDL5SgsLDR5bnFxMdzd3SGTyXDp0iWT+nUfTzzxRKNxJCQk4Pnnn4evry8AQKlU4pdffkFISAgWL17c4teZlZVlNq6SkhJjnaVLl2LlypUoLy9v8f4aw8SPiIioEWLPYT1+/HgUFxfjwoULWLhwIZYvX461a9da9Fxvb2907tzZLnHZSv/+/VFcXIxLly5h9erVeP/997Fw4UKTOl26dMEnn3xiUrZt2zZ06dLF7DYPHDiA4uJi42PDhg0N7j8/Px/79u3Dk08+aSyTy+Xo0aMHEhMTkZmZieJi28xWdP78eZO4av/f3Hfffbjnnnvw2Wef2WRfDWlW4rdhwwaoVCp4eXkhNDQUx44da7Du6dOnMXXqVKhUKshkMqSkpNSrUzvjNzz69OnTnNCIiIhsSuw5rD09PREUFIRu3brhueeeg1qtxt69ewEA169fR1RUFNq3bw8fHx9MmDABFy5cMD63blPvf/7zH4wdOxa+vr7w8/PD0KFDcfz4cQDA5cuXMWnSJLRv3x5t27ZF//79kZ6ebnzut99+ixEjRsDT0xPBwcFYsmSJyZXHMWPG4IUXXsDLL7+MDh06ICgoCMuXL2/y9bm7uyMoKAgKhQIzZszA7Nmzja/PIDo6Gh999JFJ2UcffYTo6Giz2+zYsSOCgoKMD39//wb3/+WXX2LQoEFmk8hhw4YBAL744osmX4clOnfubBKXm5tpGjZp0iSb7ashVid+O3bsQHx8PBITE3Hy5EkMGjQIERERxkEF66qqqkKPHj2watUqBAUFNbhdQ8ZveHz33XfWhkZERGRzUpvD2tvbGzU1NQD0TcHHjx/H3r17kZOTA0EQ8MgjjzQ4Ld3s2bOhUCjw/fff48SJE1iyZAnatGkDAJg/fz6qq6vxv//7v/jpp5+wevVqtGvXDgBQWFiIRx55BMOHD8d//vMfbNq0CR9++CH+9re/mWx/27ZtaNu2LY4ePYo1a9bgjTfewP79+5v9+gweffRRXL9+3ZgbfPfdd7h+/TomTZpk1bbNyc7ONiZ4dX366afQarVmr8L1798f7dq1a/AxYcKEes8ZPHgwgoOD8fDDD+PQoUP11o8YMQLHjh1DdXV1i19XQ6zu1fv2229j3rx5iImJAQBs3rwZ//M//4OtW7diyZIl9eoPHz4cw4cPBwCz642B/H/GT0TUEPaoJDFIZQ5rQRCQmZmJr7/+Gs8//zwuXLiAvXv34tChQxg5ciQA4O9//zuUSiX27NmDxx57rN428vPzsWjRImOrWq9evUzWTZ06FQMGDAAA9OjRw7hu48aNUCqVWL9+vbFVrqioCIsXL8ayZcuMV64GDhyIxMRE47bXr1+PzMxMPPzwwxa9xhMnTmD79u146KGHTMrbtGmDJ554Alu3bsWDDz6IrVu34oknnjAmrXWNHDnS5GpadnY2hgwZYrbu5cuXzSZ+giDgnXfeweTJk/GPf/wD586dM2mNTE9Pb3TeZ29vb+O/g4ODsXnzZgwbNgzV1dX44IMPMGbMGBw9ehT333+/sV5ISAhqampQUlKCbt26NbjtlrAq8aupqcGJEyeQkJBgLHNzc4NarUZOTk6LArlw4QJCQkLg5eWFsLAwJCUloWvXri3aJhE5j7SzaYjNiDVpclP4KZA6PpWziZBdiT2H9b59+9CuXTvcvn0bOp0Os2bNwvLly5GZmQl3d3eEhoYa63bs2BG9e/fG2bNnzW4rPj4ef/nLX/Dpp59CrVbjsccewz333AMAeOGFF/Dcc8/hm2++gVqtxtSpUzFw4EAAwNmzZxEWFmYyjtwDDzyAiooKXLlyxfh7bahvEBwc3GCLoMFPP/2Edu3aQavVoqamBhMnTsT69evr1Zs7dy5GjhyJN998Ezt37kROTk6DnVx27NiBvn37GpeVSmWD+7958ya8vLzqlWdkZOC///0vDh48iLy8PHz22WcmVzitScx69+6N3r17G5dHjhyJixcvYt26dfj000+N5YZksaqqyuJtW8uqpt5r165Bq9UiMDDQpDwwMNCkZ4q1QkND8fHHHyMjIwObNm1CXl4ewsPDjd2q66quroZGozF5EJHzEqtHJRFwdw5r4O6c1QatMYf12LFjkZubiwsXLuDmzZvG5tTmWL58OU6fPo2JEyfi3//+N/r164fdu3cDAP7yl7/gv//9L+bMmYOffvoJw4YNw7vvvmvV9utegZPJZNDpdI0+xzBkytmzZ3Hz5k3s3bu3Xp4BAAMGDECfPn0wc+ZM9O3bF/fdd1+D21QqlejZs6fx4enp2WDdTp064fr16/XKU1JSMHPmTAQFBWHOnDnYvn27yfrmNPXWNmLECPzyyy8mZb/99hsA4A9/+EOjz20JSfTqnTBhAh577DEMHDgQERERSE9Px++//44vv/zSbP2kpCT4+/sbH41l8kTk2MTuUUkE6Kcx3DV9F0J8Q0zKFX4K7Jq+y65Xndu2bYuePXuia9eucHe/21DXt29f3LlzB0ePHjWW/frrrzh//jz69evX4PbuvfdevPjii/jmm28QGRlp0mlCqVTi2WefRVpaGhYuXIgtW7YY92W4h9Dg0KFD8PX1hUKhaNHrMwxTo1Kp4OHh0WjduXPnIisrC3Pnzm3RPmsbMmQIzpw5Y1J29uxZ7N+/H/Hx8QCAWbNm4fLlyyb35aWnpyM3N7fBxwcffNDofnNzcxEcbHp7wKlTp6BQKNCpUycbvbr6rGrq7dSpE+RyOUpLS03KS0tLbXp/XkBAAO699956mbBBQkKC8T8D0E9MzOSPmsL7wxyTNT0qx6jGtF5g5HKkNod1r169MHnyZMybNw/vvfcefH19sWTJEnTp0gWTJ0+uV//mzZtYtGgRpk2bhu7du+PKlSv4/vvvMXXqVABAXFwcJkyYgHvvvRfXr1/HwYMHjc2lf/3rX5GSkoLnn38eCxYswPnz55GYmIj4+Ph6PVPtad68eXjsscdsOih1REQE/vKXv0Cr1Rrnv01JScGf/vQnY9N1SEgIHnroIfz973/HAw88AMC6pt6UlBR0794d/fv3x61bt/DBBx/g3//+N7755huTetnZ2Rg3bpyNXpl5ViV+Hh4eGDp0KDIzMzFlyhQAgE6nQ2ZmJhYsWGCzoCoqKnDx4kXMmTPH7HpPT89GL9sS1cX7wxyX1HpUkmvz8/KDkFj/6rNYPvroI8TGxuLPf/4zampqMGrUKKSnp5vt9CCXy/Hrr78iKioKpaWl6NSpEyIjI/H6668DALRaLebPn48rV67Az88P48ePx7p16wDox9FLT0/HokWLMGjQIHTo0AFPPfUUli5d2qqv193d3eZXwyZMmAB3d3ccOHAAERER+O233/DZZ59h165dJvXmzJmD+Ph4pKamNtippCE1NTVYuHAhCgsL4ePjg4EDB+LAgQMYO3assc6tW7ewZ88eZGRk2OR1NUQm1L5ua4EdO3YgOjoa7733HkaMGIGUlBR8+eWXOHfuHAIDAxEVFYUuXbogKSkJgP7FGi6hPvLII5g9ezZmz56Ndu3aoWfPngCAl156CZMmTUK3bt1QVFSExMRE5Obm4syZMxa1c2s0Gvj7+6O8vBx+fn7WHgNycob7w+o2FRruzbF3M01TKmsq0S5JP2RCRUIF2no0794dW5NKXFmXsjB229gm6x2MPsgrfmTWrVu3kJeXh+7du5u9iZ9ow4YN2Lt3L77++mvRYti0aRN2795d7ypgbY29ly3NhawezmXGjBm4evUqli1bhpKSEgwePBgZGRnGGzHz8/NNLvsWFRWZdKFOTk5GcnIyRo8ejaysLADAlStXMHPmTPz666/4wx/+gAcffBBHjhyx682N5Bqauj9MBhniMuIwufdkNvtKlNg9KonI+T3zzDP4/fffcePGDeO0ba2tTZs2VnemaQ6rr/hJEa/4UUMc4WqRVK6s1SWluAxXbQGYJH9SuWpL0sYrfuQsbHHFTxK9eonshfeHOQcxe1QSETkTq5t6iRyJVEbcp5aTWo9KIiJHxCt+5NQM94fVHXTVQAYZlH5K3h/mIGoneaO6jWLSR1ZxgjubyMXZ4j3MxI+cmtgj7hOR+AxDb9hzGiyi1mB4D1s7nExtbOolp2e4P+yFf72AwhuFxnKFnwIp41N4fxiRk5PL5QgICDDOGevj42My5yyR1AmCgKqqKpSVlSEgIMA40HRzMPEjl8D7w4hcm2F2KUPyR+SIAgICWjxTGhM/chm8P4zIdclkMgQHB6Nz5864ffu22OEQWa1NmzYtutJnwMSPiIhchlwut8mPJ5GjYucOIiIiIhfBxI+IiIjIRTDxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEUw8SMiIiJyEUz8iIiIiFwEEz8iIiIiF8GZO4iIWkir0yI7PxvFN4oR7BuM8K7hnBKQiCSJiR8RUQuknU1DbEYsrmiuGMsUfgqkjk9FZN9IESMjIqqPTb1ERM2UdjYN076cZpL0AUChphDTvpyGtLNpIkVGRGResxK/DRs2QKVSwcvLC6GhoTh27FiDdU+fPo2pU6dCpVJBJpMhJSWlxdskIhKbVqdFbEYsBAj11hnK4jLioNVpWzs0IqIGWZ347dixA/Hx8UhMTMTJkycxaNAgREREoKyszGz9qqoq9OjRA6tWrUJQUJBNtklEJLbs/Ox6V/pqEyCgQFOA7PzsVoyKiKhxVid+b7/9NubNm4eYmBj069cPmzdvho+PD7Zu3Wq2/vDhw7F27Vo8/vjj8PT0tMk2iYjEVnyj2Kb1iIhag1WJX01NDU6cOAG1Wn13A25uUKvVyMnJaVYA9tgmEZG9BfsG27QeEVFrsCrxu3btGrRaLQIDA03KAwMDUVJS0qwAmrPN6upqaDQakwcRUWsK7xoOhZ8CMsjMrpdBBqWfEuFdw1s5MiKihjlkr96kpCT4+/sbH0qlUuyQiMjFyN3kSB2fCgD1kj/Dcsr4FI7nR0SSYlXi16lTJ8jlcpSWlpqUl5aWNthxwx7bTEhIQHl5ufFRUFDQrH0TEbVEZN9I7Jq+CyG+ISblCj8Fdk3fxXH8iEhyrEr8PDw8MHToUGRmZhrLdDodMjMzERYW1qwAmrNNT09P+Pn5mTyIiMQQ2TcSZ/56xricPisdebF5TPqISJKsnrkjPj4e0dHRGDZsGEaMGIGUlBRUVlYiJiYGABAVFYUuXbogKSkJgL7zxpkzZ4z/LiwsRG5uLtq1a4eePXtatE0iIimr3Zw7qtsoNu8SkWRZnfjNmDEDV69exbJly1BSUoLBgwcjIyPD2DkjPz8fbm53LyQWFRVhyJAhxuXk5GQkJydj9OjRyMrKsmibRERERNRyzZqrd8GCBViwYIHZdYZkzkClUkEQ6o9sb802yfFw0noiIiLpaVbiR9QYTlpPREQkTQ45nAtJFyetJyIiki4mfmQznLSeiIhI2pj4kc1w0noiIiJpY+JHNsNJ64mIiKSNiR/ZDCetJyIikjYmfmQznLSeiIhI2pj4kc1w0noiIiJpY+JHNsVJ64mIiKSLAziTzUX2jYS6uxr+q/0B6CetH3fPOF7pIyIiEhkTP7ILTlpPJC5Om0hE5jDxIyJyMpw2kYgawnv8iIicCKdNJKLGMPEjInISnDaRiJrCxI+IyElw2kQiagoTPyIiJ8FpE4moKUz8iIicBKdNJKKmMPEjInISnDaRiJrCxI+IyElw2kQiagoTPyIiJ8JpE4moMc1K/DZs2ACVSgUvLy+Ehobi2LFjjdbfuXMn+vTpAy8vLwwYMADp6ekm65988knIZDKTx/jx45sTGhGRy4vsG4kzfz1jXE6flY682DwmfURkfeK3Y8cOxMfHIzExESdPnsSgQYMQERGBsrIys/UPHz6MmTNn4qmnnsIPP/yAKVOmYMqUKTh16pRJvfHjx6O4uNj4+Pzzz5v3ioiIiNMmEpFZVid+b7/9NubNm4eYmBj069cPmzdvho+PD7Zu3Wq2fmpqKsaPH49Fixahb9++WLFiBe6//36sX7/epJ6npyeCgoKMj/bt2zfvFRERERGRWVYlfjU1NThx4gTUavXdDbi5Qa1WIycnx+xzcnJyTOoDQERERL36WVlZ6Ny5M3r37o3nnnsOv/76qzWhEREREVET3K2pfO3aNWi1WgQGBpqUBwYG4ty5c2afU1JSYrZ+SUmJcXn8+PGIjIxE9+7dcfHiRbzyyiuYMGECcnJyIJfXb56orq5GdXW1cVmj0VjzMoiIiIhcklWJn708/vjjxn8PGDAAAwcOxD333IOsrCz86U9/qlc/KSkJr7/+emuGSEREROTwrGrq7dSpE+RyOUpLS03KS0tLERQUZPY5QUFBVtUHgB49eqBTp0745ZdfzK5PSEhAeXm58VFQUGDNyyAiIiJySVYlfh4eHhg6dCgyMzONZTqdDpmZmQgLCzP7nLCwMJP6ALB///4G6wPAlStX8OuvvyI42Py0Qp6envDz8zN5EBEREVHjrG7qjY+PR3R0NIYNG4YRI0YgJSUFlZWViImJAQBERUWhS5cuSEpKAgDExsZi9OjReOuttzBx4kR88cUXOH78ON5//30AQEVFBV5//XVMnToVQUFBuHjxIl5++WX07NkTERERNnypREQkNq1Oi+z8bBTfKEawbzDCu4ZzqBmiVmR14jdjxgxcvXoVy5YtQ0lJCQYPHoyMjAxjB478/Hy4ud29kDhy5Ehs374dS5cuxSuvvIJevXphz549uO+++wAAcrkcP/74I7Zt24bff/8dISEhGDduHFasWAFPT08bvUwiIhJb2tk0xGbE4ormirFM4adA6vhUDi5N1Eqa1bljwYIFWLBggdl1WVlZ9coee+wxPPbYY2bre3t74+uvv25OGASePRORY0g7m4ZpX06DAMGkvFBTiGlfTuN0ckStRBK9eql5ePZMRI5Aq9MiNiO2XtIHAAIEyCBDXEYcJveezBNXIjtr1ly9JD7D2XPtpA+4e/acdjZNpMiIiExl52fX+66qTYCAAk0BsvOzWzEqItfExM8BNXX2DABxGXHQ6rStHRoRUT3FN4ptWo+Imo+JnwPi2TMROZJgX/NDczW3HhE1HxM/B8SzZyJyJOFdw6HwU0AGmdn1Msig9FMivGt4K0dG5HqY+Dkgnj0TkSORu8mROj4VAOolf4bllPEp7NhB1AqY+Dkgnj0TkaOJ7BuJXdN3IcQ3xKRc4afgUC5ErYiJnwPi2TMROaLIvpE489czxuX0WenIi81j0kfUipj4OSiePRORI6p9Qjqq2yhJnKBqdVpkXcrC5z99jqxLWRwRgZwaB3B2YJF9I6Hurob/an8A+rPncfeMk8QXKRGRI+BA+ORqeMXPwUnx7JmIyBFwIHxyRUz8iIjI5XAgfHJVTPyIiMjlcCB8clVM/IiIyOVwIHxyVezcQURELscRBsLX6rTIzs9G8Y1iBPsGI7xrOO/jphZj4mcFfgiJiJyDYSD8Qk2h2fv8ZJBB4acQbSB89jYme2FTr4XSzqZBlarC2G1jMSttFsZuGwtVqoq9voiIHJCUB8Jnb2OyJyZ+FuCHkIjI+UhxIHyp9zbmYNeOj029TWjqQyiDDHEZcZjcezKbfYmIHIzUBsK3prfxGNWY1gsMbH52Frzi1wR2+Scicm5SGghfqr2Npd7yJcUrkVKMCWhm4rdhwwaoVCp4eXkhNDQUx44da7T+zp070adPH3h5eWHAgAFIT083WS8IApYtW4bg4GB4e3tDrVbjwoULzQnN5qT6ISQiIucjxd7GUm9+luI9+FKMycDqxG/Hjh2Ij49HYmIiTp48iUGDBiEiIgJlZWVm6x8+fBgzZ87EU089hR9++AFTpkzBlClTcOrUKWOdNWvW4J133sHmzZtx9OhRtG3bFhEREbh161bzX5mNSPFDSEREzsnQ27huhxMDGWRQ+ilbtbexlFu+pHglUoox1WZ14vf2229j3rx5iImJQb9+/bB582b4+Phg69atZuunpqZi/PjxWLRoEfr27YsVK1bg/vvvx/r16wHor/alpKRg6dKlmDx5MgYOHIhPPvkERUVF2LNnT4tenC1I8UNIRETOSYq9jaXa8iXFK5FSjKkuqxK/mpoanDhxAmq1+u4G3NygVquRk5Nj9jk5OTkm9QEgIiLCWD8vLw8lJSUmdfz9/REaGtrgNqurq6HRaEwe9iLFDyERETkvqfU2lmrLlxSvREoxprqs6tV77do1aLVaBAYGmpQHBgbi3LlzZp9TUlJitn5JSYlxvaGsoTp1JSUl4fXXX7cm9BYxfAjN9WZKGZ8iam+mth5tISTWP7MQmxTjkmJMAOOyhhRjAqQZlxRjAqQZlxRjiuwbicm9J0ti0gCpDnYtxSuRUoypLoccziUhIQHx8fHGZY1GA6VSadd9SulDSEREzk/uJm/1IVsaiiN1fCqmfTkNMshMkj8xW76keCVSijHVZVVTb6dOnSCXy1FaWmpSXlpaiqCgILPPCQoKarS+4a812/T09ISfn5/JozUYPoQzB8zEGNUYJn1EROQSDC1fXfy6mJSLOdi1FO/Bl2JMdVmV+Hl4eGDo0KHIzMw0lul0OmRmZiIsLMzsc8LCwkzqA8D+/fuN9bt3746goCCTOhqNBkePHm1wm0RERNS6IvtG4lLsJRyMPojtkdtxMPog8mLzRLvdSYr34Esxprqs7tUbHx+PLVu2YNu2bTh79iyee+45VFZWIiYmBgAQFRWFhIQEY/3Y2FhkZGTgrbfewrlz57B8+XIcP34cCxYsAADIZDLExcXhb3/7G/bu3YuffvoJUVFRCAkJwZQpU2zzKomIiKjFpNbyJcUrkVKMqTar7/GbMWMGrl69imXLlqGkpASDBw9GRkaGsXNGfn4+3Nzu5pMjR47E9u3bsXTpUrzyyivo1asX9uzZg/vuu89Y5+WXX0ZlZSWefvpp/P7773jwwQeRkZEBLy8vi2ISBP39Bvbs3UtERETSo+6ixo8xP+JwwWGUVJQgqF0QRipHQu4mFy0vECMmw3YNOVFDZEJTNRzAlStX7N65g4iIiEjqCgoKoFAoGlzvFImfTqdDUVERfH19IZOZv6HSVgw9iAsKClqtU4mj4rGyHI+V5XisLMdjZTkeK8vxWFmuNY+VIAi4ceMGQkJCTFpe63LI4VzqcnNzazS7tYfW7E3s6HisLMdjZTkeK8vxWFmOx8pyPFaWa61j5e/v32Qdqzt3EBEREZFjYuJHRERE5CKY+FnJ09MTiYmJ8PT0FDsUyeOxshyPleV4rCzHY2U5HivL8VhZTorHyik6dxARERFR03jFj4iIiMhFMPEjIiIichFM/IiIiIhcBBM/IiIiIhfBxI+IiIjIRTDxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEUw8SMiIiJyEUz8iIiIiFwEEz8iIiIiF8HEj4iIiMhFMPEjIiIichF2S/w2bNgAlUoFLy8vhIaG4tixYw3W3bJlC8LDw9G+fXu0b98earW60fpEREREZD27JH47duxAfHw8EhMTcfLkSQwaNAgREREoKyszWz8rKwszZ87EwYMHkZOTA6VSiXHjxqGwsNAe4RERERG5JJkgCIKtNxoaGorhw4dj/fr1AACdTgelUonnn38eS5YsafL5Wq0W7du3x/r16xEVFWXr8IiIiIhckrutN1hTU4MTJ04gISHBWObm5ga1Wo2cnByLtlFVVYXbt2+jQ4cOZtdXV1ejurrauKzT6fDbb7+hY8eOkMlkLXsBRERERA5GEATcuHEDISEhcHNruEHX5onftWvXoNVqERgYaFIeGBiIc+fOWbSNxYsXIyQkBGq12uz6pKQkvP766y2OlYiIiMiZFBQUQKFQNLje5olfS61atQpffPEFsrKy4OXlZbZOQkIC4uPjjcvl5eXo2rUrCgoK4Ofn11qhElFr2rsXWLwYKCq6WxYSAqxeDTz6qHhxERFJgEajgVKphK+vb6P1bJ74derUCXK5HKWlpSblpaWlCAoKavS5ycnJWLVqFQ4cOICBAwc2WM/T0xOenp71yv38/Jj4ETmjtDQgKgqoe0tycbG+fNcuIDJSnNiIiCSkqVvebN6r18PDA0OHDkVmZqaxTKfTITMzE2FhYQ0+b82aNVixYgUyMjIwbNgwW4dFRI5KqwViY+snfcDdsrg4fT0iImqUXYZziY+Px5YtW7Bt2zacPXsWzz33HCorKxETEwMAiIqKMun8sXr1arz22mvYunUrVCoVSkpKUFJSgoqKCnuER0SOJDsbuHKl4fWCABQU6OsREVGj7HKP34wZM3D16lUsW7YMJSUlGDx4MDIyMowdPvLz8016nGzatAk1NTWYNm2ayXYSExOxfPlye4RIRI6iuNi29YiIXJhdxvFrbRqNBv7+/igvL+c9fkTOJisLGDu26XoHDwJjxtg7GochCALu3LkDLZvAiZyCXC6Hu7t7g/fwWZoLSa5XLxFJhFarbz4tLgaCg4HwcEAub/04wsMBhQIoLDR/n59Mpl8fHt76sUlUTU0NiouLUVVVJXYoRGRDPj4+CA4OhoeHR7O3wcSPiOpLS9N3qKh9b51CAaSmtn7vWblcv99p0/RJXu3kz3Dmm5IiTlIqQTqdDnl5eZDL5QgJCYGHhwcHtidycIIgoKamBlevXkVeXh569erV6CDNjWHiR0Sm0tL0SVbdq2uFhfpyMYZOiYzU7/eFF/RxGCgU+qSPQ7kY1dTUGKfJ9PHxETscIrIRb29vtGnTBpcvX0ZNTU2DYx03xS69eonIQUl56JTISODMmbvL6elAXh6TvgY092oAEUmXLT7X/GYgorukPnRK7ebcUaPYvGtvWq2+c83nn+v/sqMIkcNj4kdEd3HoFDJISwNUKn2P6lmz9H9VKn25iC5dugSZTIbc3FxR4wCA5cuXY/DgwVY9RyaTYc+ePXaJx5YyMzPRt29f9gpvRZs3b8akSZPsvh8mfkR0V3CwbeuRYzLc51n36q/hPk87JX9PPvkkZDKZ8dGxY0eMHz8eP/74o7GOUqlEcXEx7rvvPrvEYI2XXnrJZJYqW6h9DDw8PNCzZ0+88cYbuHPnDgAgKysLMpkM7du3x61bt0ye+/333xufa2CoX/exdOnSRuN4+eWXsXTpUsjtdFX90qVLeOqpp9C9e3d4e3vjnnvuQWJiImpqakzq/fjjjwgPD4eXlxeUSiXWrFljl3isZW1cv/76K8aPH4+QkBB4enpCqVRiwYIF0Gg0xjpz587FyZMnkW3nFhUmfkR0l2HolIZ6gcpkgFLJoVOcmcj3eY4fPx7FxcUoLi5GZmYm3N3d8ec//9m4Xi6XIygoCO7u4vdNbNeuHTp27Gjz7RqOwYULF7Bw4UIsX74ca9euNanj6+uL3bt3m5R9+OGH6Nq1q9ltnj9/3nhci4uLsWTJkgb3/9133+HixYuYOnVqy19MA86dOwedTof33nsPp0+fxrp167B582a88sorxjoajQbjxo1Dt27dcOLECaxduxbLly/H+++/b7e4LNGcuNzc3DB58mTs3bsXP//8Mz7++GMcOHAAzz77rLGOh4cHZs2ahXfeece+L0BwAuXl5QIAoby8XOxQiBzfV18Jgkymf+h/6vUPQ9lXX4kXW0XF3XgqKsSLQ8Ju3rwpnDlzRrh582bzNnDwoOn/e0OPgwdtGbYgCIIQHR0tTJ482aQsOztbACCUlZUJgiAIeXl5AgDhhx9++P9wDwoAhAMHDghDhw4VvL29hbCwMOHcuXMm29m4caPQo0cPoU2bNsK9994rfPLJJybrAQibN28WJk6cKHh7ewt9+vQRDh8+LFy4cEEYPXq04OPjI4SFhQm//PKL8TmJiYnCoEGDjMvHjh0T1Gq10LFjR8HPz08YNWqUcOLEiXr72b17t1XH4OGHHxb++Mc/mrzepUuXCmq12linqqpK8Pf3F1577TWh9k+7of7169cb3Gdd8+fPF6ZNm2ZSZnitn3zyidCtWzfBz89PmDFjhqDRaCzeblPWrFkjdO/e3bi8ceNGoX379kJ1dbWxbPHixULv3r2t2m63bt2EN954Q3j88ccFHx8fISQkRFi/fn2z47RVXKmpqYJCoTAp+/bbbwUPDw+hqqrK7HMa+3xbmgvxih8RmTIMnRISYlquUIgzlIsjcKZOEBK6z7OiogKfffYZevbs2eSVtVdffRVvvfUWjh8/Dnd3d8ydO9e4bvfu3YiNjcXChQtx6tQpPPPMM4iJicHBgwdNtrFixQpERUUhNzcXffr0waxZs/DMM88gISEBx48fhyAIWLBgQYMx3LhxA9HR0fjuu+9w5MgR9OrVC4888ghu3LjRouPg7e1drwl0zpw5yM7ORn5+PgDgq6++gkqlwv3339+ifQFAdnY2hg0bVq/84sWL2LNnD/bt24d9+/bh22+/xapVq4zr33zzTbRr167RhyFec8rLy9GhQwfjck5ODkaNGmUyWHFERATOnz+P69evW/Wa1q5di0GDBuGHH37AkiVLEBsbi/379xvXT5gwodG4+/fvb9O4ioqKkJaWhtGjR5uUDxs2DHfu3MHRo0eten3WEP9aORFJT2QkoFYD/v765fR0YNw49qI1R0qDXduCyPd57tu3D+3atQMAVFZWIjg4GPv27WtyGIuVK1caf0SXLFmCiRMn4tatW/Dy8kJycjKefPJJ/PWvfwUAxMfH48iRI0hOTsbYWtMBxsTEYPr06QCAxYsXIywsDK+99hoiIiIAALGxsYiJiWkwhoceeshk+f3330dAQAC+/fZbk+ZqSwmCgMzMTHz99dd4/vnnTdZ17twZEyZMwMcff4xly5Zh69atJsluXQqFwmT58uXLDSbTly9fRkjdEz/oBwf/+OOP4evrC0CffGZmZmLlypUAgGeffdZ4/BpibrsA8Msvv+Ddd99FcnKysaykpATdu3c3qRcYGGhc1759+0b3VdsDDzxgbN6+9957cejQIaxbtw4PP/wwAOCDDz7AzZs3G3x+mzZtbBLXzJkz8Y9//AM3b97EpEmT8MEHH5is9/Hxgb+/Py5fvmzxa7MWEz8iMo9DpzRNioNdt5TIU+SNHTsWmzZtAgBcv34dGzduxIQJE3Ds2DF069atwecNHDjQ+O/g/09Ky8rK0LVrV5w9exZPP/20Sf0HHngAqampDW7D8EM+YMAAk7Jbt25Bo9GYnQu1tLQUS5cuRVZWFsrKyqDValFVVdXoVS5zDMnv7du3odPpMGvWLCxfvrxevblz5yI2NhZPPPEEcnJysHPnzgY7BmRnZxsTNgCNJic3b940OziwSqUy2UZwcDDKysqMyx06dDC5YmepwsJCjB8/Ho899hjmzZtn9fMtERYWVm85JSXFuNylSxe77LeudevWITExET///DMSEhIQHx+PjRs3mtTx9va263SLbOolImoOKQ923RKGKfKA+p18WmGKvLZt26Jnz57o2bMnhg8fjg8++ACVlZXYsmVLo8+rfUXG0KtVp9NZtW9z27Bmu9HR0cjNzUVqaioOHz6M3NxcdOzYsV4zbVPGjh2L3NxcXLhwATdv3sS2bdvQtm3bevUmTJiAmzdv4qmnnsKkSZMabQ7v3r278bj27Nmz0SuonTp1MttkWftYAPrjUftYNKept6ioCGPHjsXIkSPrdY4ICgpCaWmpSZlhOSgoqMH4m8Oapt6WxBUUFIQ+ffrg0UcfxXvvvYdNmzahuM5tE7/99hv+8Ic/2OiV1ccrfkREzWHNYNdjxrRaWDYhoSnyZDIZ3NzcGm2Ga0rfvn1x6NAhREdHG8sOHTqEfv362SJEk21u3LgRjzzyCACgoKAA165ds3o7huS3Ke7u7oiKisKaNWvwr3/9y+r9NGTIkCE4U3uWHAtZ29RbWFiIsWPHYujQofjoo4/qJaNhYWF49dVXcfv2bWPSuX//fvTu3duqZl4AOHLkSL3lvn37Gpetaeq1VVyGpLm6utpYdvHiRdy6dQtDhgyxeDvWYuJHRNQcEuoEYRci3edZXV2NkpISAPqm3vXr16OioqJFA9suWrQI06dPx5AhQ6BWq/HPf/4TaWlpOHDggK3CBgD06tULn376KYYNGwaNRoNFixbB29vbpvuoa8WKFVi0aJFNh5WJiIjAtm3brH6eNU29hYWFGDNmDLp164bk5GRcvXrVuM5w1WzWrFl4/fXX8dRTT2Hx4sU4deoUUlNTsW7dOqtjO3ToENasWYMpU6Zg//792LlzJ/7nf/7HuN6apl5L4tq9ezcSEhJw7tw5AEB6ejpKS0sxfPhwtGvXDqdPn8aiRYvwwAMPQKVSGZ+XnZ2NHj164J577rH6NVqKTb1ERM3hCoNdi3CfZ0ZGBoKDgxEcHIzQ0FB8//332LlzJ8a04KrplClTkJqaiuTkZPTv3x/vvfcePvrooxZt05wPP/wQ169fx/333485c+bghRdeQOfOnW26j7o8PDzQqVMnk0GbW2r27Nk4ffo0zp8/b7Nt1rV//3788ssvyMzMhEKhMP6fB9f6vPj7++Obb75BXl4ehg4dioULF2LZsmUm92saBqi+dOlSo/tbuHAhjh8/jiFDhuBvf/sb3n77bWOnHWtZEld5ebnJ8fP29saWLVvw4IMPom/fvnjxxRfx6KOPYt++fSbb/vzzz+12n6OBTBDM3aDiWDQaDfz9/VFeXm72hlsiaobKSuD/e1eiogIwc49Rq5NSTFqtfgqzpjpB5OW1aseYW7duIS8vD927dzd7gz6RJRYtWgSNRoP33ntP7FAa9dFHH+HNN9/EmTNn6t2DaKBSqRAXF4e4uLjWDc5Kp0+fxkMPPYSff/4Z/oYr7XU09vm2NBfiFT8iouYQuRMEkT29+uqr6Natm9UdZFpbeno63nzzzQaTPkdSXFyMTz75pMGkz1Z4jx8RUXNJqBMEkS0FBASYTJ8mVTt37hQ7BJtRq9Wtsh8mfkRELcHBrokkran7/1wNm3qJiFqKg10TkYNg4kdERETkIpj4ERE5IScYsIGI6rDF55qJHxGREzH0brTnXJ9EJA7D57olvZjZuYOIyInI5XIEBASgrKwMAODj42PTwX2JqPUJgoCqqiqUlZUhICAA8hbcR8zEj4jIyRimvDIkf0TkHAICAoyf7+Zi4kdE5GRkMhmCg4PRuXNn3L59W+xwiMgG2rRp06IrfQZM/IiInJRcLrfJDwUROQ8mfkRi02qB7GyguBgIDgbCwzkOHBER2QUTPyIxpaUBsbHAlSt3yxQK/RywnO6LiIhsjMO5EIklLQ2YNs006QP0c75Om6ZfT0REZENM/IjEoNXqr/SZG4zTUBYXp69HRERkI0z8iMSQnV3/Sl9tggAUFOjrERER2QgTPyIxFBfbth4REZEFmPgRiSE42Lb1iIiILMDEj0gM4eH63rsNTaUlkwFKpb4eERGRjTDxIxKDXK4fsgWon/wZllNSOJ4fERHZFBM/IrFERgK7dgEhIablCoW+nOP4UUtotUBWFvD55/q/7CFOROAAzkTiiowE1GrA31+/nJ4OjBvHK33UMhwYnIgawCt+RGKrneSNGsWkj1qGA4MTUSOY+BEROQsODE5ETWDiR0TkLDgwOBE1gYkfEZGz4MDgRNQEJn5ERM6CA4MTUROY+BEROQsODE5ETbBb4rdhwwaoVCp4eXkhNDQUx44da7Du6dOnMXXqVKhUKshkMqSkpNgrLCIi58WBwYmoCXZJ/Hbs2IH4+HgkJibi5MmTGDRoECIiIlBWVma2flVVFXr06IFVq1YhKCjIHiEREbkGDgxORI2wS+L39ttvY968eYiJiUG/fv2wefNm+Pj4YOvWrWbrDx8+HGvXrsXjjz8OT09Pe4REROQ6IiOBM2fuLqenA3l5TPqIyPaJX01NDU6cOAG1Wn13J25uUKvVyMnJsfXuiIjIHA4MTkRm2HzKtmvXrkGr1SIwMNCkPDAwEOfOnbPJPqqrq1FdXW1c1mg0NtkuERERkTNzyF69SUlJ8Pf3Nz6USqXYIRERERFJns0Tv06dOkEul6O0tNSkvLS01GYdNxISElBeXm58FBQU2GS7RERERM7M5omfh4cHhg4diszMTGOZTqdDZmYmwsLCbLIPT09P+Pn5mTyIiIiIqHE2v8cPAOLj4xEdHY1hw4ZhxIgRSElJQWVlJWJiYgAAUVFR6NKlC5KSkgDoO4Sc+f8eaDU1NSgsLERubi7atWuHnj172iNEIiIiIpdjl8RvxowZuHr1KpYtW4aSkhIMHjwYGRkZxg4f+fn5cHO7e7GxqKgIQ4YMMS4nJycjOTkZo0ePRlZWlj1CJCIiInI5MkEQBLGDaCmNRgN/f3+Ul5ez2ZccT2Ul0K6d/t8VFUDbtuLGYyDFuKQYEyDNuKQYExHZjaW5kEP26iUiIiIi6zHxIyIiInIRTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEXYZTgXIknSaoHsbKC4GAgOBsLDOXE9ERG5FCZ+5BrS0oDYWODKlbtlCgWQmgpERooXFxERUStiUy85v7Q0YNo006QPAAoL9eVpaeLERURE1MqY+JFz02r1V/rMjVNuKIuL09cjIvvTaoGsLODzz/V/+dkjalVM/Mi5ZWfXv9JXmyAABQX6ekRkX2lpgEoFjB0LzJql/6tS8ao7USti4kfOrbjYtvWIqHl4ywWRJDDxI+cWHGzbekRkPd5yQSQZTPzIuYWH63vvymTm18tkgFKpr0dE9sFbLogkg4kfOTe5XD9kC1A/+TMsp6RwPD8ie+ItF0SSwcSPnF9kJLBrFxASYlquUOjLOY4fkX3xlgsiyWDiR64hMhI4c+bucno6kJfHpI+oNfCWCyLJYOJHrqN2c+6oUWzeJWotvOWCSDKY+BERkf3xlgsiSeBcvURE1DoiIwG1GvD31y+npwPjxvFKH1Er4hU/IiJqPbzlgkhUTPyIiIiIXAQTPyIiIiIXwcSPiIiIyEUw8SMiIiJyEUz8iIiIiFwEEz8iIiIiF8HEj4iIiMhFMPEjIiIichGcuYOIiFybVgtkZwPFxUBwMBAezoGlyWkx8SMiIteVlgbExgJXrtwtUyiA1FTOH0xOiU29ZB9aLZCVBXz+uf6vVit2REREptLSgGnTTJM+ACgs1JenpYkTF5EdMfEj20tLA1QqYOxYYNYs/V+Vil+iRCQdWq3+Sp8g1F9nKIuL40krOR0mfmRbPIMmIkeQnV3/e6o2QQAKCvT1iJwIEz+yHZ5BE5GjKC62bT0iB8HEj2yHZ9BE5CiCg21bj8hBMPEj2+EZNBE5ivBwfe9dmcz8epkMUCr19YicCBM/sh2eQRORo5DL9UO2APWTP8NySgrH8yOnw8SPbIdn0ETkSCIjgV27gJAQ03KFQl/OcfzICTHxI9vhGTQROZrISODMmbvL6elAXh6TPnJaTPzItngGTUSOpvbJ6KhR0jk55UD4ZAecso1sLzISUKsBf3/9cno6MG6cdL5MiYikjlPJkZ3wip+jk+oZoVTPoImIpI4D4ZMdMfFzZJwajYjIuXAgfLIzJn6OimeERETOR+oD4Uu1lYksxsTPEfGMkIjIOUl5IHy2MjkFdu6whlarP8sqLtYPQhweLs69a9acEY4Z02phERFRC0l1IHxDK1PdCw6GViaxR22Qyu+z1GOCHa/4bdiwASqVCl5eXggNDcWxY8carb9z50706dMHXl5eGDBgANLT0+0VWvNI6UxHymeERETUfFIcCF/qrUxS+n2Wckz/zy6J344dOxAfH4/ExEScPHkSgwYNQkREBMrKyszWP3z4MGbOnImnnnoKP/zwA6ZMmYIpU6bg1KlT9gjPelK7n06qZ4RERNQyUhwIX8r3HUrt91mqMdUm2MGIESOE+fPnG5e1Wq0QEhIiJCUlma0/ffp0YeLEiSZloaGhwjPPPGPR/srLywUAQnl5efODbsidO4KgUAiC/q1d/yGTCYJSqa/XWgwxyWTSiamuioq78VRUiBdHbVKMSRAYlzWkGJMgSDMuKcYkCNKMS4oxffWVIHTpYvrdrlTqy1vb9u0N/wbWfmzf3rpxSfn3WYSYLM2FbH7Fr6amBidOnIBarTaWubm5Qa1WIycnx+xzcnJyTOoDQERERIP1q6urodFoTB52I8UzHSmeERIRke1IaSo5qbYySfH3WYox1WHzxO/atWvQarUIDAw0KQ8MDERJSYnZ55SUlFhVPykpCf7+/saHUqm0TfDmSPV+OsPUaF26mJZLZWq0tm3vnuO0bStuLAZSjAlgXNaQYkyANOOSYkyANOOSYkwA4Od3N64JE8Q7mZfifYeANH+fpRhTHQ45nEtCQgLKy8uNj4KCAvvtTKpnOoA+ubt0CTh4ENi+Xf+Xk4sTEZEtSbWVSYq/z1KMqQ6bD+fSqVMnyOVylJaWmpSXlpYiKCjI7HOCgoKsqu/p6QlPT0/bBNwUw5lOYaH5Hk0ymX59a5/pGMjlHLKFiIjsy9DKZG7+4JQUcS44SPH3WYox1WHzK34eHh4YOnQoMjMzjWU6nQ6ZmZkICwsz+5ywsDCT+gCwf//+Buu3Kqme6RAREbUmqbUySfH3WYox1WXzbiWCIHzxxReCp6en8PHHHwtnzpwRnn76aSEgIEAoKSkRBEEQ5syZIyxZssRY/9ChQ4K7u7uQnJwsnD17VkhMTBTatGkj/PTTTxbtz669eg2++qp+Tx2xelgRERGRnhR/n0WIydJcyC4zd8yYMQNXr17FsmXLUFJSgsGDByMjI8PYgSM/Px9ubncvNo4cORLbt2/H0qVL8corr6BXr17Ys2cP7rvvPov2J/z/5VS79u5Vq4EffwQOHwZKSoCgIGDkSH3Wbs/9EhERUcOk+PssQkyGHEgw18Rci0xoqoYDuHLlin179hIRERE5gIKCAigUigbXO0Xip9PpUFRUBF9fX8ga6m5uIxqNBkqlEgUFBfDz87Prvhwdj5XleKwsx2NlOR4ry/FYWY7HynKteawEQcCNGzcQEhJi0qpal12aelubm5tbo9mtPfj5+fENbyEeK8vxWFmOx8pyPFaW47GyHI+V5VrrWPn7+zdZxyHH8SMiIiIi6zHxIyIiInIRTPys5OnpicTExNYbQNqB8VhZjsfKcjxWluOxshyPleV4rCwnxWPlFJ07iIiIiKhpvOJHRERE5CKY+BERERG5CCZ+RERERC6CiZ8VNmzYAJVKBS8vL4SGhuLYsWNihyQ5SUlJGD58OHx9fdG5c2dMmTIF58+fFzssh7Bq1SrIZDLExcWJHYpkFRYW4oknnkDHjh3h7e2NAQMG4Pjx42KHJTlarRavvfYaunfvDm9vb9xzzz1YsWJFk1M5uYL//d//xaRJkxASEgKZTIY9e/aYrBcEAcuWLUNwcDC8vb2hVqtx4cIFcYIVWWPH6vbt21i8eDEGDBiAtm3bIiQkBFFRUSgqKhIvYBE19b6q7dlnn4VMJkNKSkqrxVcbEz8L7dixA/Hx8UhMTMTJkycxaNAgREREoKysTOzQJOXbb7/F/PnzceTIEezfvx+3b9/GuHHjUFlZKXZokvb999/jvffew8CBA8UORbKuX7+OBx54AG3atMG//vUvnDlzBm+99Rbat28vdmiSs3r1amzatAnr16/H2bNnsXr1aqxZswbvvvuu2KGJrrKyEoMGDcKGDRvMrl+zZg3eeecdbN68GUePHkXbtm0RERGBW7dutXKk4mvsWFVVVeHkyZN47bXXcPLkSaSlpeH8+fN49NFHRYhUfE29rwx2796NI0eOICQkpJUiM0Mgi4wYMUKYP3++cVmr1QohISFCUlKSiFFJX1lZmQBA+Pbbb8UORbJu3Lgh9OrVS9i/f78wevRoITY2VuyQJGnx4sXCgw8+KHYYDmHixInC3LlzTcoiIyOF2bNnixSRNAEQdu/ebVzW6XRCUFCQsHbtWmPZ77//Lnh6egqff/65CBFKR91jZc6xY8cEAMLly5dbJyiJauhYXblyRejSpYtw6tQpoVu3bsK6detaPTZBEARe8bNATU0NTpw4AbVabSxzc3ODWq1GTk6OiJFJX3l5OQCgQ4cOIkciXfPnz8fEiRNN3l9U3969ezFs2DA89thj6Ny5M4YMGYItW7aIHZYkjRw5EpmZmfj5558BAP/5z3/w3XffYcKECSJHJm15eXkoKSkx+Sz6+/sjNDSU3/UWKC8vh0wmQ0BAgNihSI5Op8OcOXOwaNEi9O/fX9RYnGKuXnu7du0atFotAgMDTcoDAwNx7tw5kaKSPp1Oh7i4ODzwwAO47777xA5Hkr744gucPHkS33//vdihSN5///tfbNq0CfHx8XjllVfw/fff44UXXoCHhweio6PFDk9SlixZAo1Ggz59+kAul0Or1WLlypWYPXu22KFJWklJCQCY/a43rCPzbt26hcWLF2PmzJmcv9eM1atXw93dHS+88ILYoTDxI/uZP38+Tp06he+++07sUCSpoKAAsbGx2L9/P7y8vMQOR/J0Oh2GDRuGN998EwAwZMgQnDp1Cps3b2biV8eXX36Jv//979i+fTv69++P3NxcxMXFISQkhMeKbO727duYPn06BEHApk2bxA5Hck6cOIHU1FScPHkSMplM7HDYucMSnTp1glwuR2lpqUl5aWkpgoKCRIpK2hYsWIB9+/bh4MGDUCgUYocjSSdOnEBZWRnuv/9+uLu7w93dHd9++y3eeecduLu7Q6vVih2ipAQHB6Nfv34mZX379kV+fr5IEUnXokWLsGTJEjz++OMYMGAA5syZgxdffBFJSUlihyZphu9zftdbzpD0Xb58Gfv37+fVPjOys7NRVlaGrl27Gr/rL1++jIULF0KlUrV6PEz8LODh4YGhQ4ciMzPTWKbT6ZCZmYmwsDARI5MeQRCwYMEC7N69G//+97/RvXt3sUOSrD/96U/46aefkJuba3wMGzYMs2fPRm5uLuRyudghSsoDDzxQb2ign3/+Gd26dRMpIumqqqqCm5vp17tcLodOpxMpIsfQvXt3BAUFmXzXazQaHD16lN/1ZhiSvgsXLuDAgQPo2LGj2CFJ0pw5c/Djjz+afNeHhIRg0aJF+Prrr1s9Hjb1Wig+Ph7R0dEYNmwYRowYgZSUFFRWViImJkbs0CRl/vz52L59O/7xj3/A19fXeF+Mv78/vL29RY5OWnx9fevd+9i2bVt07NiR90Sa8eKLL2LkyJF48803MX36dBw7dgzvv/8+3n//fbFDk5xJkyZh5cqV6Nq1K/r3748ffvgBb7/9NubOnSt2aKKrqKjAL7/8YlzOy8tDbm4uOnTogK5duyIuLg5/+9vf0KtXL3Tv3h2vvfYaQkJCMGXKFPGCFkljxyo4OBjTpk3DyZMnsW/fPmi1WuP3fYcOHeDh4SFW2KJo6n1VNylu06YNgoKC0Lt379YOlcO5WOPdd98VunbtKnh4eAgjRowQjhw5InZIkgPA7OOjjz4SOzSHwOFcGvfPf/5TuO+++wRPT0+hT58+wvvvvy92SJKk0WiE2NhYoWvXroKXl5fQo0cP4dVXXxWqq6vFDk10Bw8eNPsdFR0dLQiCfkiX1157TQgMDBQ8PT2FP/3pT8L58+fFDVokjR2rvLy8Br/vDx48KHbora6p91VdYg7nIhMEDuVORERE5Ap4jx8RERGRi2DiR0REROQimPgRERERuQgmfkREREQugokfERERkYtg4kdERETkIpj4EREREbkIJn5ERERELoKJHxEREZGLYOJHRERE5CKY+BERERG5CHexAyAiclRjxozBwIED4eXlhQ8++AAeHh549tlnsXz5crFDIyIyi1f8iIhaYNu2bWjbti2OHj2KNWvW4I033sD+/fvFDouIyCyZIAiC2EEQETmiMWPGQKvVIjs721g2YsQIPPTQQ1i1apWIkRERmccrfkRELTBw4ECT5eDgYJSVlYkUDRFR45j4ERG1QJs2bUyWZTIZdDqdSNEQETWOiR8RERGRi2DiR0REROQimPgRERERuQj26iUiIiJyEbziR0REROQimPgRERERuQgmfkREREQugokfERERkYtg4kdERETkIpj4EREREbkIJn5ERERELoKJHxEREZGLYOJHRERE5CKY+BERERG5CCZ+RERERC6CiR8RERGRi/g/+P/mNcFGlqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.stats import binom, poisson\n", + "\n", + "n = np.arange(0, 15)\n", + "\n", + "fig, axes = plt.subplots(3, 1, sharex=True)\n", + "\n", + "# Plot the Probability Mass Function (PMF)\n", + "axes[0].stem(n, binom.pmf(n, 10, 0.5), basefmt=\" \", linefmt='b-', markerfmt='bo', label='Binomial PMF (n=10, p=0.5)')\n", + "axes[0].legend()\n", + "\n", + "axes[1].stem(n, poisson.pmf(n, 5), basefmt=\" \", linefmt='g-', markerfmt='go', label='Poisson PMF (ฮป=5)')\n", + "axes[1].legend()\n", + "\n", + "axes[2].stem(n, binom.pmf(n, 20, 0.3), basefmt=\" \", linefmt='r-', markerfmt='ro', label='Binomial PMF (n=20, p=0.3)')\n", + "axes[2].legend()\n", + "\n", + "plt.xlabel('n')\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 431 + }, + "id": "mQOBXkBLyOHB", + "outputId": "b039ff73-a22f-478d-f0c4-dfd91bf06b68" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGeCAYAAABGlgGHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARe9JREFUeJzt3XtclGX+//HXzMAMZxBREAHxfBYLBa0tO1hW1re2ttxOmpUd1tyKbTfdrdzab1865/7UtNrKTqbWdtiytTV3s1qxFFLT8oCJoAgCCsNxgJn79wdKkSdQ4GaG9/PxuBvmmvue+8OdMG+u+7qv22IYhoGIiIiISaxmFyAiIiKdm8KIiIiImEphREREREylMCIiIiKmUhgRERERUymMiIiIiKkURkRERMRUCiMiIiJiKoURERERMZWf2QU0h8fjIT8/n9DQUCwWi9nliIiISDMYhkF5eTmxsbFYrcfp/zBOwrx584xevXoZDofDSElJMb766qtmbffWW28ZgHH55Ze3aH95eXkGoEWLFi1atGjxwiUvL++4n/Mt7hlZunQpaWlpLFy4kNTUVObMmcOECRPYtm0b3bt3P+Z2OTk53HfffZx11lkt3SWhoaEA5OXlERYW1uLtRUREpP05nU7i4+MbP8ePxWIYLbtRXmpqKqNHj2bevHlAwymU+Ph4ZsyYwcyZM4+6jdvt5uyzz+bmm2/miy++oLS0lPfff7/Z+3Q6nYSHh1NWVqYwIiIi4iWa+/ndop6R2tpaMjMzmTVrVmOb1Wpl/PjxZGRkHHO7Rx55hO7du3PLLbfwxRdfnHA/LpcLl8vV+NzpdLakTBHpwKpr3WzaU8r2/RV4PE3/FuoaYmdkfAQ9IwI1PkykE2lRGCkuLsbtdhMdHd2kPTo6mq1btx51my+//JKXXnqJDRs2NHs/6enpPPzwwy0pTUQ6qDq3h0+/K2TNzhK+yTvI9/vKcXuO3yHbPdTBaQkRnJ7QhYkjehDXJaidqhURM7Tp1TTl5eXceOONvPjii0RFRTV7u1mzZpGWltb4/PA5JxHxHiUVLt76OpfX1+6m0Olq8lp0mIPhPcNx+Nt+bDQg72AV3+U72V/u4pMthXyypZDHV2xlwtAYpp7Zm9GJXdRjIuKDWhRGoqKisNlsFBYWNmkvLCwkJibmiPV37txJTk4Ol112WWObx+Np2LGfH9u2baNv375HbOdwOHA4HC0pTUQ6iJziSp77LJv3N+RTW9/w894t1MFlI2JJ7tWF0xIiiI0IPOb21bVuNueXkbX7IJ9tKyLjhxL+ubmAf24uYGhsGNPO6sPlI2MVSkR8yEkNYE1JSWHu3LlAQ7hISEjgrrvuOmIAa01NDdnZ2U3aHnjgAcrLy/nrX//KgAEDsNvtJ9ynBrCKdHx1bg8vfP4Df121ozGEjIgLZ+qZiUwcHovd7+TmWNxWUM6iNbt4N2svrkPvm9o7kv+7cjh9u4W0Wv0i0vqa+/nd4jCydOlSpkyZwvPPP09KSgpz5sxh2bJlbN26lejoaCZPnkzPnj1JT08/6vY33XSTrqYR8THf5B5k1rvfsrWgHIBf9Ivi3gv6c3pC651WOVhZyxtrd/PcZzuprnNj97My49x+3D6u70kHHRFpW21yNQ3ApEmTKCoq4qGHHqKgoICRI0eyYsWKxkGtubm5x59lTUR8Rk2dm8f+uZVXM3IwDIgMtvPQpUPa5DRKl2A7M87vzxWn9eSB9zezensRT6/czj825vP0NUmMiIto1f2JSPtpcc+IGdQzItLxFJTVcPvr69m4pwyAq06P408TBxMZfOJTr6fKMAw+3LSPRz7cQnFFLXY/K49fNZxfnhbX5vsWkeZrs9M0ZlAYEelYvsk9yO2vZ7K/3EVEkD9zJo3knIHHnoG5rZRW1XLf25v49PuGQfW3nd2H+y8ahM2qwa0iHUFzP791PkVEWuSdzD1Men4t+8tdDIgO4R/Tf2FKEAGICLLzwo3JzDivHwAvfP4DUxeto6yqzpR6ROTkKIyISLMYhsFj/9zKfW9vpNbt4YIh0bz7mzNJ6GruhGRWq4XfXTiQededRoC/lc+3F3HFc/8l70CVqXWJSPMpjIjICRmGwcMffsfC1TsBmHFeP56/IZkQR5vOm9gil46I5Z07ziA2PIBdxZX8+oW17C6pNLssEWkGhREROS6Px+CP721m0ZocAP7vl8P53YUDsXbAcRnDeobz7m/OpE9UMHtLq7nm+Qx2FlWYXZaInIDCiIgck9tj8Ie/b+Ktr3OxWOCJX43gutQEs8s6rpjwAJbcPob+3UModLqY9PxadhSWm12WiByHwoiIHFW928Pvlm3gncw9WC3w7DUjuWaUd9wjqntoAEtuG8OgmFCKK1xMemEt3+Xr7t8iHZXCiIgcwTAMHnh/M+9vyMfPamHutadzxWk9zS6rRbqGOHhr2hiG9QzjQGUtk1/+ipxijSER6YgURkTkCM+s3M6SdXlYLTD32tOYOKKH2SWdlC7Bdt68dQxDY8Morqhl8stfs7+8xuyyRORnFEZEpIlX1+Qw998NN7j83yuGc/Fw7wwih4UH+vPK1NEkRAaRe6CKqa+so7xG85CIdCQKIyLSaPmmffz5wy0A3Dt+QIcfrNpc3UMDeO3mFKJC7GzJd3L765m46t1mlyUihyiMiAgAa3YWc+/SDRgG3DAmgd+e38/sklpVYlQwr9yUQrDdxpqdJaQt24jH0+HvhiHSKSiMiAjZ+yu4/fVMat0eLh4Ww8P/M6zV77rbEQyPC+f5G0fhb7OwfNM+nvhkm9kliQgKIyKdXmlVLbe+uo7ymnpG9erCs5NG+vSN5n7RP4onf5UEwMLVO3k3a4/JFYmIwohIJ1bn9jB9cRY5JVX0jAhk4Y3JBPjbzC6rzV1xWk+mn9sXgJl//5as3IMmVyTSuSmMiHRi//vRd/w3u4Qgu40XJ48iKsRhdknt5ncXDOSCIdHUuj3c9lom+aXVZpck0mkpjIh0Um+s3c2rGbsBeHbSSIbEhplcUfuyWi3MmTSycZbWaa+tp6q23uyyRDolhRGRTihjZwl//kfDJby/nzCQCUNjTK7IHMEOP/42ZRRdgxsu+b3v7Y0Yhq6wEWlvCiMincy+smruWpxFvcfgf5Ji+c05fc0uyVRxXYJYeGMy/jYLH39bwAuf/2B2SSKdjsKISCdSW+/hN29mUVJZy+AeYTx+1QifvIS3pUYnRvLQZUMBeHzFVtZkF5tckUjnojAi0on87/Lv+Ca3lLAAPxbecDqBdt+/cqa5bkhN4KrT4/AYMOOtb9hXpgGtIu1FYUSkk3g3aw+vHRqwOufXI+nVNdjkijoWi8XCo78cxpAeYZRU1nLnG1maMl6knSiMiHQCW/LLmPXutwDcfX5/zhsUbXJFHVOAv42FNyQTHujPhrxS/vLRd2aXJNIpKIyI+Liy6rpDf+V7OGdgN+4+v7/ZJXVoCV2DmPPrkVgs8MbaXP6eqRlaRdqawoiIDzMMgz+8s5HcA1XEdQlkzqSRWH14qvfWcu7A7o2h7YH3N7O9sNzkikR8m8KIiA976ctdfLKlELvNynPXn05EkN3skrzGb8/rz1n9o6iuc/ObN7OodGlCNJG2ojAi4qMydx/ksX9uBeDBSwczIi7C3IK8zOEZWmPCAsjeX8Ef3/tWE6KJtBGFEREfdKCytnFis0tH9OCGMb3MLskrdQ1xMPe607BZLXywIZ+3vs4zuyQRn6QwIuJjPB6DtGUb2FdWQ5+oYB7TxGanZHRiJH+YMBCAP3+4hc17y0yuSMT3KIyI+JgFq3fy2bYiHH5W5l9/OiEOP7NL8nrTzurD+MHdG2ewddbUmV2SiE9RGBHxIV/9UMLT/9oGwCOXD2Vwj851J962YrVaeOrqJHpGBJJ7oIqZf9+k8SMirUhhRMRHFFe4mPHWN3gMuPL0nlwzKt7sknxKRJCd+def3nhDvcOz2YrIqVMYEfEBbo/BvUs3sL/cRb/uIfzvFcM0TqQNjIyPYObFgwF4dPn3bNpTam5BIj5CYUTEBzz3n2y+2FFMgH/DfCJBdo0TaSs3n5nIhUOiqXV7mL44i7JqjR8ROVUKIyJebs3OYp79dDsAf7l8GAOiQ02uyLdZLBae/FUScV0CyTtQzf3vaPyIyKlSGBHxYvvLa7h7yQY8BvwqOY6rNU6kXYQH+TP/uobxIyu2FLBoTY7ZJYl4NYURES/l9hjc/dYGispd9O8ewiOXDzW7pE4lKT6CP17SMH7k/z7+nm9yD5pckYj3UhgR8VJzPt1Oxg8lBNltLLhB40TMcNMZiVw8LIY6t8Fdi7/hYGWt2SWJeCWFEREv9Nm2/cz9dzYA6VcOp193jRMxg8Vi4fFfjSCxaxB7S6tJW7YBj0fjR0Ra6qTCyPz580lMTCQgIIDU1FS+/vrrY6774osvctZZZ9GlSxe6dOnC+PHjj7u+iBxffmk19y7dAMD1qQlcPrKnuQV1cmEB/jx3fTIOPyv/2VbEgtU7zS5JxOu0OIwsXbqUtLQ0Zs+eTVZWFklJSUyYMIH9+/cfdf3PPvuMa6+9lv/85z9kZGQQHx/PhRdeyN69e0+5eJHOps7t4a7FWRysqmNYzzAevHSI2SUJMCQ2rHHMztP/2kbGzhKTKxLxLhajhdekpaamMnr0aObNmweAx+MhPj6eGTNmMHPmzBNu73a76dKlC/PmzWPy5MnN2qfT6SQ8PJyysjLCwjS9tXRef/noO176chehAX4sn3EWCV2DzC5JDjEMg/ve3sTfs/bQLdTB8hm/oHtYgNlliZiquZ/fLeoZqa2tJTMzk/Hjx//4BlYr48ePJyMjo1nvUVVVRV1dHZGRkcdcx+Vy4XQ6mywind0/Nubz0pe7AHjq6iQFkQ7GYrHwlyuGMjA6lKJyF9MXZ1Hn9phdlohXaFEYKS4uxu12Ex0d3aQ9OjqagoKCZr3H/fffT2xsbJNA83Pp6emEh4c3LvHxmjtBOrdtBeXc/84mAO48py8ThsaYXJEcTZDdj4U3JhPq8GNdzkEeXf692SWJeIV2vZrmscceY8mSJbz33nsEBBy7+3LWrFmUlZU1Lnl5ee1YpUjH4qyp4443Mqmuc/OLflHcd+FAs0uS4+gdFcwzk0YCsGhNDh9s0Pg4kRNpURiJiorCZrNRWFjYpL2wsJCYmOP/pfbUU0/x2GOP8a9//YsRI0Ycd12Hw0FYWFiTRaQz8ngM0pZuZFdxJT0jAvl/156Gzaob4HV0FwyJ5q5z+wFw/9838f0+nWoWOZ4WhRG73U5ycjKrVq1qbPN4PKxatYqxY8cec7snnniCv/zlL6xYsYJRo0adfLUincyC1Tv59PtC7DYrC244nchgu9klSTPde8EAzuofRU2dhzveyNQN9USOo8WnadLS0njxxRd59dVX+f7777nzzjuprKxk6tSpAEyePJlZs2Y1rv/444/z4IMP8vLLL5OYmEhBQQEFBQVUVFS03nch4oP+s20/T/1rGwCPXD6UEXER5hYkLWKzWvh/vz6NnhGB7C6p4p4l3+DWhGgiR9XiMDJp0iSeeuopHnroIUaOHMmGDRtYsWJF46DW3Nxc9u3b17j+ggULqK2t5Ve/+hU9evRoXJ566qnW+y5EfEz2/gp+u/gbDAOuTYnn1ykJZpckJ6FLsJ3nb/xxQrQnPtlqdkkiHVKL5xkxg+YZkc6krKqOK577L7uKKxmd2IU3bx2D3U93bvBm/9iYz2/f+gaAZ65J4srT40yuSKR9tMk8IyLSturdHu56K6txwOqCG5IVRHzA/yTFMv3cvgDMfPdb3eFX5Gf0W06kA/m/j7fyxY5iAv1tvDh5FFEhDrNLklbyuwsGcsGQaGrrPdz+eiYFZTVmlyTSYSiMiHQQS9fl8vJ/G2ZYfXZSEkNidUrSl1itFp6dNJIB0SHsL3dx2+vrqa51m12WSIegMCLSAXyxo4g/vbcZgHvHD+CiYT1MrkjaQojDj79NHk2XIH827SnjnqW6wkYEFEZETPddvpM738ii3mNw+chYfnt+P7NLkjaU0DWI528chd1m5ZMthfzlo+/wgusIRNqUwoiIifaVVXPzonVUuOoZ0yeSJ341AotFM6z6upTekTx9TRLQMGX84RsginRWCiMiJnHW1DH1lXUUOGvo3z2E528YhcPPZnZZ0k4uS4pl1sWDAHj04+/5+Nt9J9hCxHcpjIiYoLbew51vZLK1oJxuoQ5emTqa8CB/s8uSdnbb2X2YPLYXhgH3LN3A+pwDZpckYgqFEZF2Vu/2cO/SDfw3u4Qgu41XbhpNXJcgs8sSE1gsFmZfNpTxgxsu+b150Tq25JeZXZZIu1MYEWlHHo/BzHe/Zfm3+/C3WVhwQzLDeoabXZaYyGa1MPfa00ju1QVnTT2TX/qanUW6d5d0LgojIu3EMAwe+eg73snc0/gBNG5AN7PLkg4g0G7j5ZtGMzQ2jJLKWm7421fkHagyuyyRdqMwItJOnv7XdhatyQHgyV+N0Fwi0kR4oD+v3ZxCv+4h7Cur4fq/fUWhU7O0SuegMCLSDp77LJt5/8kG4C9XDNON0uSouoY4eOOWVOIjA8k9UMUNf/uKkgqX2WWJtDmFEZE2ZBgGf/10B0+s2AbAzIsHceOYXiZXJR1ZTHgAi28dQ3SYgx37K5j0wlr2q4dEfJzCiEgbMQyDx1ds49lPtwPw+wkDuWNcX5OrEm8QHxnEW9PG0CM8gOz9FVzzfAZ7S6vNLkukzSiMiLQBj8fg4Q+/Y+HqnQA8eOkQpp+rad6l+fp0C2HZ7WOJ6xJITkkV1yzMYHdJpdllibQJhRGRVub2GPzxvW8bB6s++sth3PKL3uYWJV4pPjKIt+8YS5+oYPaWVnP1wgyy95ebXZZIq1MYEWlF1bVupr+ZxZJ1eVgt8PTVSVyfqjEicvJ6hAey9PaxDIwOZX+5i6sXZrBOM7WKj1EYEWklReUufv3iWlZsKcBuszL32tO5KllXzcip6xbqYMltY0iKj+BgVR3Xv/gV/9iYb3ZZIq1GYUSkFewoLOeXz/2XjXmlRAT58+a0VCaO0Dwi0nq6BNtZMm0ME4ZGU+v28Nu3vmH+f7IxDMPs0kROmcKIyClak13MlQvWsOdgNYldg3jvN2cyOjHS7LLEBwXabTx3fTK3HhqD9OQn27j/75uorfeYXJnIqVEYETlJhmHw/Oqd3Pjy15TX1DOqVxfe/c2Z9I4KNrs08WE2q4UHLh3CXy4fitUCy9bv4dcvZJCvS3/FiymMiJyEsuo6bns9k/R/bsXtMfjlaT1549ZUIoPtZpcmncSNYxN5acpoQgP8yMotZeL/+4LV24vMLkvkpCiMiLTQ5r1lXDr3C1Z+V4jdZuXRXw7jmWuSCPC3mV2adDLnDurO8hlnMTQ2jINVddz0ytc8u3I7bo/GkYh3URgRaSaPx+ClL3dx5YI15B2oJj4ykL/feQbXp/bCYrGYXZ50Ugldg/j7nWdwbUoChgF/XbWDG1/6SjO2ilexGF4wFNvpdBIeHk5ZWRlhYWFmlyOdUE5xJb9/ZyPrcg4CMH5wNE9fnUR4kL/JlYn86N2sPfzpvc1U17kJcfjxp4mD+fXoeIVlMU1zP78VRkSOw+MxWLQmhyc+2UpNnYdgu41Zlwzm+tQE/YKXDumHogp+/84mMnc3BOez+kfx2FUj6BkRaHJl0hkpjIicoi35Zfz5H1sae0PO6NuVx68aQXxkkMmViRyf22Pwyn938eQn23DVewhx+PG7Cwdww5he+Nt0dl7aj8KIyEkqqXDx1L+2s2RdLoYBQXYbf1RviHihnUUV/P7tjWTllgLQr3sID146hHEDuplbmHQaCiMiLVRb7+G1jBz+umoH5TX1AFw6ogezLhmsLm7xWm6PwdJ1eTz1r20cqKwF4PxB3fnTxMH06RZicnXi6xRGRJrJVe9m2fo9LPxsZ+MVCMN6hvHQpUNJ6a2ZVMU3lFXX8f9W7eDVNTnUewxsVgtXjOzJ9HP7KpRIm1EYETmBmjo3S77OZeHqHyhw1gANNyT7/YUDuSo5DptVp2TE9+wsquDR5d/z7637AbBa4H+SYrnrvH706x5qcnXiaxRGRI4hv7Sat77O5a2v8yiucAEQExbAnef0ZdLoeE1eJp3ChrxS5v17B59+3xBKLJaG0zc3jOnF2f27YVUYl1agMCLyEx6PwZfZxby+djervi/k8ASVPSMCufOcvlw9Kg6Hn0KIdD6b95Yx9987+GRLYWNbr65BXJeSwNWj4nWLAzklCiPS6RmGwZZ8J//YmM9HG/PJL6tpfG1sn67cOLYXFwyJ1qWOIjScvnlj7W7eydzTOIDb32Zh3IDuXJbUg/GDowl2+JlcpXgbhRHplNweg417SvnP1v18tGkfu4orG18LdfhxVXIc16cm0D9a58ZFjqaqtp5/bMjn9bW72ZLvbGwP8Ldy/uBoJgyN4ax+UXRRj4k0g8KIdBr5pdX8N7uY1duL+GJHMWXVdY2vBfhbOX9QNJcl9eCcgd01HkSkBbYVlPPRpnw+3JhPTklVY7vFAklxEYwb0I2zB3RjeM9w7H7qYZQjKYyIT3LVu9leUEHm7gOs332QrN0Hm5x+AQgL8OOs/t24cGg05w+OJkRdyyKnxDAMNu918tG3+azeVsTWgvImrzv8rCTFRZCc2IVRvbowIi6CbqEOk6qVjqRNw8j8+fN58sknKSgoICkpiblz55KSknLM9d9++20efPBBcnJy6N+/P48//jiXXHJJs/enMNL51Lk97DlYTU5xJdsLy/l+n5Pv95Wzs6iC+p/dHt1mtTAsNoxxA7oxbmA3kuIi8NM4EJE2U1BWw+fbi/hs+37W7CyhtKruiHWiQhwM7hHKkB5hDOoRSp+oEBKjggkP1M0lO5M2CyNLly5l8uTJLFy4kNTUVObMmcPbb7/Ntm3b6N69+xHrr1mzhrPPPpv09HQuvfRSFi9ezOOPP05WVhbDhg1r1W9GvINhGFTWuikud1HgrGFfWTX5pTXkl1aTX1pNTkkVeQeqjggdh0UE+TMyPoLkhC4kJ3YhKS5CA+tETGIYBj8UV5KZc5DM3QfJzD3IzqIKjvXJEhlsJ7FrEAmRQcRGBNIjIpDY8AB6hAfSLdRBZLBdc/z4kDYLI6mpqYwePZp58+YB4PF4iI+PZ8aMGcycOfOI9SdNmkRlZSUfffRRY9uYMWMYOXIkCxcubNVvRtqWYRjUewxc9R5q6tyNS3Wth6raeipr66lwual01VNRU4+zpo6y6h+Xg1V1FJe7KKl0UVPnOeH+AvytJHYNpm+3EAb3CGVwjzCGxIYRExage8SIdGBVtfVsKyjn+30NvZrbCsvJKa5kf7nrhNtaLBAZZCcqpCGYhAf6NyxBDY+hAX4E2/0IdvgR4vAj2GEj0G4jwO/HR4e/FbvNqrlSOoDmfn636M/J2tpaMjMzmTVrVmOb1Wpl/PjxZGRkHHWbjIwM0tLSmrRNmDCB999//5j7cblcuFw//qN1Op3HXPdULPhsJ7kHqn7W2npDaH4e844W+4yf7e/wOsbP2hrXMxpeO5whjcbXG9oMAzw/efQYDe2Hv/Yc+trtOfTc0xAw3Ice690e6j0GdW4P9e6Gx1q3h9r6hsfWHGEUZLfRPdRBj/BAYiMCiY1o+OsosWsQvbsFEx0aoF8mIl4oyO7HaQldOC2hS5P2Clc9OcWV5JRUsudgNftKq9lb2tA7WlBWw4GqWgwDSiprKTl0H51T4W+zYLdZsftZ8bM1BBQ/mwU/qwV/mxWbteFr26HFavnx0Wq1YLOA1WLBYgGLxYL1Z88t/PSRJs8BsMDhZ4f/fjr82tH+nvrJlsdep9V+JR75RneO60tCV3PuSt6iMFJcXIzb7SY6OrpJe3R0NFu3bj3qNgUFBUddv6Cg4Jj7SU9P5+GHH25JaSdl5XcFjXezlJYL8LcS6G8j0N9GgN3W8FdK418sNsIO/0VzaIkIstM1xE63EAddQ+wE2XVqRaQzCXH4MaxnOMN6hh/19Xq3p6EHtcJFSUUtJZUunD/pXS2tqmvSA1vpqqfCVU9NXUNvbXWdG/dPTu/WuQ3q3G4qa93t9S16tatHxXlHGGkvs2bNatKb4nQ6iY+Pb/X9XJuSwLkDjxzn0hzNTactOZ3wY3JumqQb2pq+3uS1Q0ncejitH0ro1sMJ/ycp/si/AMDPasVms2A71OZvs+JvO/zY8JeEw6/hrwuHzdbw6KcuUBFpXX42K91CHad0JU5tvQdXvbuxN7e2vmGpO9TTW+/xUFt/uDfYg/tQz7DbY+Bu7DU2cHsO9zL/tFcZMBr6qT0e44ieafhp77ZxRE/3T1/jZ23N0ZxRFafSe90jPODkNz5FLQojUVFR2Gw2CgsLm7QXFhYSExNz1G1iYmJatD6Aw+HA4Wj7y8KuHtX6AUdERMxjP/SHk3iXFv0fs9vtJCcns2rVqsY2j8fDqlWrGDt27FG3GTt2bJP1AVauXHnM9UVERKRzafFpmrS0NKZMmcKoUaNISUlhzpw5VFZWMnXqVAAmT55Mz549SU9PB+Duu+9m3LhxPP3000ycOJElS5awfv16XnjhhWbv83DXVFsNZBUREZHWd/hz+4SnmIyTMHfuXCMhIcGw2+1GSkqKsXbt2sbXxo0bZ0yZMqXJ+suWLTMGDBhg2O12Y+jQocby5ctbtL+8vDyDQ6fltGjRokWLFi3eteTl5R33c94rpoP3eDzk5+cTGhra6eeXODyYNy8vT3OutDEd6/ah49w+dJzbh45zU4ZhUF5eTmxsLFbrsUeGdMiraX7OarUSFxdndhkdSlhYmP6htxMd6/ah49w+dJzbh47zj8LDw0+4joYci4iIiKkURkRERMRUCiNexuFwMHv27HaZh6Wz07FuHzrO7UPHuX3oOJ8crxjAKiIiIr5LPSMiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVAojIiIiYiqFERERETGVwoiIiIiYSmFERERETKUwIiIiIqZSGBERERFT+ZldQHN4PB7y8/MJDQ3FYrGYXY6IiIg0g2EYlJeXExsbi9V67P4Prwgj+fn5xMfHm12GiIiInIS8vDzi4uKO+XqLw8jnn3/Ok08+SWZmJvv27eO9997jiiuuOO42n332GWlpaWzZsoX4+HgeeOABbrrppmbvMzQ0FGj4ZsLCwlpasoiIiJjA6XQSHx/f+Dl+LC0OI5WVlSQlJXHzzTdz5ZVXnnD9Xbt2MXHiRO644w7efPNNVq1axa233kqPHj2YMGFCs/Z5+NRMWFiYwoiIiIiXOdEQixaHkYsvvpiLL7642esvXLiQ3r178/TTTwMwePBgvvzyS5599tlmhxERERHxXW0+ZiQjI4Px48c3aZswYQL33HPPMbdxuVy4XK7G506ns63KExGREzAMg5o6D+U1dVTWuql01VNV66aqtuGxps5NTZ2H6rqGr131HmoPL243tfUe6twGdW4P9W6Dek/Dc7en4euGx4bnhxeP0fBoGOA2Gp57PA21eAwwOPRoNLQZ/OQ1w2io+9B/Dr92uO3Ql4eeH2o3aOJnT4/TeBLHs7XeqJUtu30spyV0MWXfbR5GCgoKiI6ObtIWHR2N0+mkurqawMDAI7ZJT0/n4YcfbuvSREQ6JVe9m/1OF8UVLorKXRRVuCgur+Vg1eGljtKqWsqq63BW11FeU0+9p2N+gErrMfP/cIe8mmbWrFmkpaU1Pj88AEZERE7MVe9mz8FqckuqyCmpJPdAFfml1ewrqyG/tIbiCteJ3+QoLBYIsfsR5LARZPcjyG4jyG4jwP8ni58Vh78Vu82G3c+K3c+Kw8+Kv82Cv82Kn82Kv/Xw1xZsVgt+VgtWiwU/W8OjzWrBZrFgOfy1tWHMgQWwHVoXwGqxYLE01GU99HrDSxYOD1FoaPvpa2D5yes///7gx/ENzZ1IwldmnIgMtpu27zYPIzExMRQWFjZpKywsJCws7Ki9IgAOhwOHw9HWpYmIeDVXvZsdhRVsLyxne2EFOwrL2b6/nD0Hq4847fBzdpuVbqEOokIddAuxExXiIDLYTpcgOxFB/o2PoQH+hAb4ERrgR7DdD6vVRz55pUNp8zAyduxYPv744yZtK1euZOzYsW29axERn1Hv9rC1oJyNe0r5dk8Z3+4tY3thOXXuo6eOILuNhMggErsGk9A1iJ4RgfQIDyA2IpDYiEC6BPlrEknpMFocRioqKsjOzm58vmvXLjZs2EBkZCQJCQnMmjWLvXv38tprrwFwxx13MG/ePP7whz9w88038+9//5tly5axfPny1vsuRER8TE2dm29yS1mfc4Cvcw6QtfsglbXuI9YLD/RnYEwoA6JDGBAdSv/uofTtFky3UIfChniNFoeR9evXc+655zY+Pzy2Y8qUKSxatIh9+/aRm5vb+Hrv3r1Zvnw59957L3/961+Ji4vjb3/7my7rFRH5CcMw2FlUwertxXyxo4i1P5RQU+dpsk5ogB8j4yMY3jOc4T3DGdYznLgugQod4vUshnGiM4vmczqdhIeHU1ZWpknPRMRnuD0GmbsPsmJzAZ9sKWBvaXWT17uFOkjpHUlKYiSjEyMZGBOKTWM2xIs09/O7Q15NIyLiqzweg692HeDDTfn8a0thkytb7H5WUhIjOXtAFGcP6MbAaN0cVDoHhRERkXbwQ1EF72bt5b1v9jbpAQkL8GP8kGguGhrDWf27EWi3mViliDkURkRE2khNnZvlm/bx5le7ycotbWwPDfBj4vAeXDK8B2P6dMXud+xbq4t0BgojIiKtLO9AFW9+lcuy9XkcqKwFwGqBcQO6ceXpcVwwJJoAf/WAiBymMCIi0ko25JWy4LNsVn5XyOHZ02PDA7h+TC+uTo6je1iAuQWKdFAKIyIip8AwDP6bXcJzn2WzZmdJY/uZ/boyeWwi5w/qjp9Np2FEjkdhRETkJBiGwWfbinj20+1s2lMGgJ/VwuUje3L7uD4MiA41uUIR76EwIiLSQl/9UMKTn2xj/e6DAAT4W/n16ARuPas3cV2CTK5OxPsojIiINNPmvWU88ck2Pt9eBIDDz8pNZyQy7ew+RIXo5p4iJ0thRETkBPaX1/Dkim28k7UHw2g4HTNpdDwzzutPTLgGpYqcKoUREZFjcNW7WfTfHOb+O5sKVz0A/5MUS9oFA0iMCja5OhHfoTAiInIUq7cXMfuDzeSUVAEwIi6c2ZcNIblXpMmVifgehRERkZ8oKnfxl4++4x8b8wGICnFw/0UDuer0OKy6SZ1Im1AYERGh4VLdZevz+L+Pt1JWXYfVAjed0Zt7L+hPaIC/2eWJ+DSFERHp9HJLqvj9Oxv5atcBAIbGhvHYlSMYHhducmUinYPCiIh0WoZhsPjrXB5d/j1VtW4C/W2kXTCAqWcmatZUkXakMCIindK+smr+8M4mvthRDEBq70ieujqJ+EhNWibS3hRGRKTT+WDDXh54fzPlNfU4/Kz84aJBTD0jUQNURUyiMCIinUaFq56HPtjMu1l7AUiKj+Dpq5Po1z3E5MpEOjeFERHpFL7dU8Zvl3zDruJKrBa467z+/Pa8fhobItIBKIyIiE8zDIOXvtzF4yu2Uuc26BEewJxJI0nt09Xs0kTkEIUREfFZZdV13Pf2RlZ+VwjAhKHRPH7VCCKC7CZXJiI/pTAiIj5pS34Zv3kzi90lVdhtVh68dDA3jOmFxaJBqiIdjcKIiPicZevyePCDzbjqPfSMCGTBDaczIi7C7LJE5BgURkTEZ7jq3cz+YAtL1uUBcO7Abjw7aaROy4h0cAojIuITCp013PFGJt/klmKxwO8uGMBvzumnuUNEvIDCiIh4vazcg9zxeib7y12EBfgx97rTGTegm9lliUgzKYyIiFdbui6XB9/fQq3bw4DoEF64cRSJUcFmlyUiLaAwIiJeqd7t4dGPv+eV/+YAcNHQGJ66JokQh36tiXgb/dSKiNdx1tRx1+Jv+Hx7EQBpFwzgrnM1PkTEWymMiIhX2V1SyS2vrid7fwWB/jaeuSaJi4f3MLssETkFCiMi4jXW/lDCHW9kUlpVR0xYAH+bMophPcPNLktETpHCiIh4hXcy9zDr3U3UuQ2S4iN48cZkuocFmF2WiLQChRER6dA8HoNnVm5n3n+yAZg4ogdPX51EgL/N5MpEpLUojIhIh1VT5+a+tzfy0aZ9AEw/ty+/u2CgBqqK+BiFERHpkEoqXNz2eiaZuw/iZ7Xwf1cO55pR8WaXJSJtQGFERDqcH4oqmLpoHbtLqggL8GPhjcmc0TfK7LJEpI0ojIhIh7I+5wC3vrae0qo64iMDeeWmFPp1DzG7LBFpQ9aT2Wj+/PkkJiYSEBBAamoqX3/99THXXbRoERaLpckSEKAR8CJypA835nPd376itKqOpPgI3r3zTAURkU6gxWFk6dKlpKWlMXv2bLKyskhKSmLChAns37//mNuEhYWxb9++xmX37t2nVLSI+BbDMFi4eicz3vqG2noPFw6JZsm0MXQLdZhdmoi0gxaHkWeeeYZp06YxdepUhgwZwsKFCwkKCuLll18+5jYWi4WYmJjGJTo6+pSKFhHfUe/28OAHm3nsn1sBmHpmIgtuSCbQrkt3RTqLFoWR2tpaMjMzGT9+/I9vYLUyfvx4MjIyjrldRUUFvXr1Ij4+nssvv5wtW7Ycdz8ulwun09lkERHfU1Vbz+2vZ/LG2lwsFnjo0iHMvmwoNl26K9KptCiMFBcX43a7j+jZiI6OpqCg4KjbDBw4kJdffpkPPviAN954A4/HwxlnnMGePXuOuZ/09HTCw8Mbl/h4Xc4n4mv2l9cw6fm1rNq6H4eflQXXJ3PzL3qbXZaImOCkBrC2xNixY5k8eTIjR45k3LhxvPvuu3Tr1o3nn3/+mNvMmjWLsrKyxiUvL6+tyxSRdpS9v5xfzl/Dt3vLiAy289ZtY7hoWIzZZYmISVp0aW9UVBQ2m43CwsIm7YWFhcTENO8Xib+/P6eddhrZ2dnHXMfhcOBwaOCaiC/K2FnC7a+vx1lTT++oYF65aTSJUcFmlyUiJmpRz4jdbic5OZlVq1Y1tnk8HlatWsXYsWOb9R5ut5tvv/2WHj10y2+Rzua9b/Yw+eWvcNbUk9yrC3+/8wwFERFp+aRnaWlpTJkyhVGjRpGSksKcOXOorKxk6tSpAEyePJmePXuSnp4OwCOPPMKYMWPo168fpaWlPPnkk+zevZtbb721db8TEemwDMNg3r+zeXrldgAmDu/B09foZnci0qDFYWTSpEkUFRXx0EMPUVBQwMiRI1mxYkXjoNbc3Fys1h87XA4ePMi0adMoKCigS5cuJCcns2bNGoYMGdJ634WIdFh1bg9/eu9blq1vGLR++9l9uP+iQbrZnYg0shiGYZhdxIk4nU7Cw8MpKysjLCzM7HJEpJnKquu4841M1uwswWqBhy8fxo1jepldloi0k+Z+fuveNCLSJvIOVDF10Tqy91cQbLcx97rTOG+QJjwUkSMpjIhIq8vcfZDbXltPSWUtMWEBvHzTaIbEqldTRI5OYUREWtVHm/JJW7aR2noPQ2PDeGnKaGLCdXNMETk2hRERaRWGYTDn0x38ddUOAMYP7s5ff30awQ79mhGR49NvCRE5ZdW1bu57ZyPLN+0DYNpZvZl58WDdY0ZEmkVhREROSUFZDbe9vp5Ne8rwt1l49IrhXDNa95MSkeZTGBGRk7Yhr5TbX19PodNFlyB/Ft6QTGqfrmaXJSJeRmFERE7K2+vz+NP7m6mt99C/ewgvTRlNQtcgs8sSES+kMCIiLVLn9vDo8u9ZtCYHgPGDo3l2UhKhAf7mFiYiXkthRESaraTCxfTFWaz94QAAd5/fn7vP76+p3UXklCiMiEizfJN7kOlvZpFfVkOw3cYzk0YyYWiM2WWJiA9QGBGR4zIMg1fX5PDox99T5zboHRXMCzcm0z861OzSRMRHKIyIyDFVuuqZ+e63fLgxH4BLhsfw+FUjND5ERFqVwoiIHNW2gnKmL84ie38FflYLsy4ZzM1nJmKxaHyIiLQuhRERacIwDN74Kpf//eg7XPUeosMczL/udEYlRppdmoj4KIUREWlUWlXL/X/fxCdbCgEYN6AbT1+TRFSIw+TKRMSXKYyICABf/VDCPUs3sK+sBn+bhfsvGsTNZ/bWZbsi0uYURkQ6uZo6N0//axt/+3IXhgG9o4KZe+1pDOsZbnZpItJJKIyIdGKb9pSStmwj2fsrALhmVByzLxtKsEO/GkSk/eg3jkgnVFvvYd5/spn/n2zcHoNuoQ4eu3I45w+ONrs0EemEFEZEOpnM3Qf547vfsq2wHIBLR/TgL5cPo0uw3eTKRKSzUhgR6SScNXU8sWIrb36Vi2FAZLCdh/9nKJclxZpdmoh0cgojIj7OMAw+/raAhz/cwv5yFwBXJ8fxx0sGqzdERDoEhRERH/b9PiePfPgdGT+UAA1Xyjx6xTDO6BdlcmUiIj9SGBHxQQcqa3lm5TYWf5WLxwCHn5Xbz+7Db87tR4C/zezyRESaUBgR8SE1dW5ey8hh3r+zcdbUAzBxeA9mXjyI+Mggk6sTETk6hRERH1Dn9rB0XR5z/72DQmfDuJDBPcKYfdkQxvTpanJ1IiLHpzAi4sXq3R4+3JTPsyt3kHugCoCeEYHcPb4/V50eh01TuYuIF1AYEfFCNXVu3s7cwwuf7yTvQDUAUSEOZpzXj1+nxOPw07gQEfEeCiMiXsRZU8eba3N56ctdFFc0nI6JDLZzyy96M/XMRILs+pEWEe+j31wiXmBrgZPXMnbzXtZequvcQMPpmGln9WbS6AQC7eoJERHvpTAi0kHV1LlZ+V0hr6/dzde7DjS2D4gO4baz+3L5yFj8bVYTKxQRaR0KIyIdiGEYZOUe5O9Ze/loY37j5bk2q4UJQ6OZPDaR1N6RWCwamCoivkNhRMRkhmHw/b5yVmwp4MON+ewqrmx8rUd4AFcnx3Fdai9iwgNMrFJEpO0ojIiYwO0x2LinlE82F7BiSwG7S6oaXwv0t3HxsBiuSo5jbJ+uWHV5roj4OIURkXZS6Kxh9fYiPt9exJfZxZRW1TW+5vCzcvaAblw8LIYJQ2MIduhHU0Q6D/3GE2kDhmGw52A163IOsC7nAF/vOsDOosom64Q6/DhnUHcuGhrDOQO7KYCISKel334iraC4wsW3e8vYvKeMb/eWsWlPGQXOmibrWCwwIi6Ccf2jOHtAN0bGR+Cnq2FERBRGRJrLMAwOVtWxq7iSHYXlbC+sYMf+crYXljfeD+an/KwWhseFMzoxktGJkYzq1YUuwXYTKhcR6dhOKozMnz+fJ598koKCApKSkpg7dy4pKSnHXP/tt9/mwQcfJCcnh/79+/P4449zySWXnHTRIm3BMAxKq+rIL6smv7SGfYce8w5Wsbukkt3FVZS76o+6rcUCvaOCGd4zvHEZERehychERJqhxWFk6dKlpKWlsXDhQlJTU5kzZw4TJkxg27ZtdO/e/Yj116xZw7XXXkt6ejqXXnopixcv5oorriArK4thw4a1yjch8nP1bg/lNfWU19TjrKlrWKrrKa2q5WBV3aHHWkoqaimqcFFU7qK4wkWd2zjhe/cID6Bf9xD6dw9lQHQI/aMbHkMD/NvhOxMR8T0WwzBO/Nv3J1JTUxk9ejTz5s0DwOPxEB8fz4wZM5g5c+YR60+aNInKyko++uijxrYxY8YwcuRIFi5c2Kx9Op1OwsPDKSsrIywsrCXlHteeg1W46j2t9n5tpXn/h5qudLRtjvY2h9czDr3a+Nw4dlvDY0NPgtH4uoHHAI+noc1jNKznMQzcnh+/rvcYeDwG7kPtHsOg3t3wdZ3HwO32UOc2qPN4qKs3qPd4qHV7cNU1PNbWNyw1dW5qDj266txU1R5e6qmsdVN7Cv9fo0Ls9AgPpEd4ALERgcR1CaRX12ASuwYRHxlEgL96O0REmqO5n98t6hmpra0lMzOTWbNmNbZZrVbGjx9PRkbGUbfJyMggLS2tSduECRN4//33j7kfl8uFy/XjOXin09mSMpvtt299Q1ZuaZu8t3QMQXYboQF+hAb4ExrgR5cgOxFB/nQJstMlyJ+uIQ66hTjoFtqwdA2x6463IiLtrEVhpLi4GLfbTXR0dJP26Ohotm7detRtCgoKjrp+QUHBMfeTnp7Oww8/3JLSTkqww4/wQO/sWj/abODNmRrr8DTiliZtTd/h8HNLk68tWCyH235cr6Gt4TXboRWsFgsWGqYwt1gsWA+1WS0NbTarBavF0vi1n9WCzWpteLRZsNsavvb3s+JvteBvs2L3+8lisxLgbyPA30agv40AfyuB/jaCHH4E220EO/wIOvSoe7eIiHR8HfJqmlmzZjXpTXE6ncTHx7f6fl6/JbXV31NERERapkVhJCoqCpvNRmFhYZP2wsJCYmJijrpNTExMi9YHcDgcOByOlpQmIiIiXqpFfdh2u53k5GRWrVrV2ObxeFi1ahVjx4496jZjx45tsj7AypUrj7m+iIiIdC4tPk2TlpbGlClTGDVqFCkpKcyZM4fKykqmTp0KwOTJk+nZsyfp6ekA3H333YwbN46nn36aiRMnsmTJEtavX88LL7zQ7H0evuCnrQayioiISOs7/Ll9wgt3jZMwd+5cIyEhwbDb7UZKSoqxdu3axtfGjRtnTJkypcn6y5YtMwYMGGDY7XZj6NChxvLly1u0v7y8PINDV5Nq0aJFixYtWrxrycvLO+7nfIvnGTGDx+MhPz+f0NDQxis5OqvDg3nz8vJadc4VOZKOdfvQcW4fOs7tQ8e5KcMwKC8vJzY2Fqv12CNDOuTVND9ntVqJi4szu4wOJSwsTP/Q24mOdfvQcW4fOs7tQ8f5R+Hh4SdcR5MwiIiIiKkURkRERMRUCiNexuFwMHv2bM3D0g50rNuHjnP70HFuHzrOJ8crBrCKiIiI71LPiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVAojIiIiYiqFERERETGVwoiIiIiYSmFERERETKUwIiIiIqZSGBERERFTKYyIiIiIqRRGRERExFR+ZhfQHB6Ph/z8fEJDQ7FYLGaXIyIiIs1gGAbl5eXExsZitR67/8Mrwkh+fj7x8fFmlyEiIiInIS8vj7i4uGO+7hVhJDQ0FGj4ZsLCwkyuRkRERJrD6XQSHx/f+Dl+LF4RRg6fmgkLC1MYERER8TInGmKhAawiIiJiKoURERERMZVXnKYRkc4rcebyI9pyHptoQiUi0lbUMyIiIiKmUhgRERERUymMiIiIiKkURkRERMRUCiMiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVAojIiIiYiqFERERETGVn9kFiIgAJM5cbnYJImKSU+4Z+fOf/4zFYmmyDBo0qPH1mpoapk+fTteuXQkJCeGqq66isLDwVHcrItJE4szlRywi4h1a5TTN0KFD2bdvX+Py5ZdfNr5277338uGHH/L222+zevVq8vPzufLKK1tjtyIiIuIDWuU0jZ+fHzExMUe0l5WV8dJLL7F48WLOO+88AF555RUGDx7M2rVrGTNmTGvsXkRERLxYq/SM7Nixg9jYWPr06cP1119Pbm4uAJmZmdTV1TF+/PjGdQcNGkRCQgIZGRnHfD+Xy4XT6WyyiIiIiG865TCSmprKokWLWLFiBQsWLGDXrl2cddZZlJeXU1BQgN1uJyIiosk20dHRFBQUHPM909PTCQ8Pb1zi4+NPtUwRERHpoE75NM3FF1/c+PWIESNITU2lV69eLFu2jMDAwJN6z1mzZpGWltb43Ol0KpCI+BANLhWRn2r1eUYiIiIYMGAA2dnZxMTEUFtbS2lpaZN1CgsLjzrG5DCHw0FYWFiTRURERHxTq88zUlFRwc6dO7nxxhtJTk7G39+fVatWcdVVVwGwbds2cnNzGTt2bGvvWkQ6IPWCiMiJnHIYue+++7jsssvo1asX+fn5zJ49G5vNxrXXXkt4eDi33HILaWlpREZGEhYWxowZMxg7dqyupBERERGgFcLInj17uPbaaykpKaFbt2784he/YO3atXTr1g2AZ599FqvVylVXXYXL5WLChAk899xzp1y4iIiI+IZTDiNLliw57usBAQHMnz+f+fPnn+quRERExAfpRnkiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVK1+bxoRkbbWFve7Odp75jw2sdX3IyJHUhgRkVajm+KJyMnQaRoRERExlcKIiIiImEphREREREylMSMiclwa2CkibU1hREQaaQCqiJhBp2lERETEVAojIiIiYiqFERERETGVxoyIdFIaHyIiHYV6RkRERMRUCiMiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiptKlvSIm8eZ7vuiyYBFpTQojIj5OwUFEOjqdphERERFTqWdEROQYvPlUmog3Uc+IiIiImOqUe0bS09N599132bp1K4GBgZxxxhk8/vjjDBw4sHGdc845h9WrVzfZ7vbbb2fhwoWnunsRkRbTOBqRjuWUw8jq1auZPn06o0ePpr6+nj/+8Y9ceOGFfPfddwQHBzeuN23aNB555JHG50FBQae6a5FOo7mnC/QhKyLe6JTDyIoVK5o8X7RoEd27dyczM5Ozzz67sT0oKIiYmJhT3Z2IiIj4mFYfwFpWVgZAZGRkk/Y333yTN954g5iYGC677DIefPBB9Y6ISJtST5GId2jVMOLxeLjnnns488wzGTZsWGP7ddddR69evYiNjWXTpk3cf//9bNu2jXffffeo7+NyuXC5XI3PnU5na5YpIiIiHUirhpHp06ezefNmvvzyyybtt912W+PXw4cPp0ePHpx//vns3LmTvn37HvE+6enpPPzww61ZmohXaMlf8vqrX0R8hcUwDKM13uiuu+7igw8+4PPPP6d3797HXbeyspKQkBBWrFjBhAkTjnj9aD0j8fHxlJWVERYW1hrliphOYcJ3aO4RkaNzOp2Eh4ef8PP7lHtGDMNgxowZvPfee3z22WcnDCIAGzZsAKBHjx5Hfd3hcOBwOE61NBEREfECpxxGpk+fzuLFi/nggw8IDQ2loKAAgPDwcAIDA9m5cyeLFy/mkksuoWvXrmzatIl7772Xs88+mxEjRpzyNyAiIiLe7ZTDyIIFC4CGic1+6pVXXuGmm27Cbrfz6aefMmfOHCorK4mPj+eqq67igQceONVdi4iIiA9oldM0xxMfH3/E7KsiIr7kWON/NJZEpHl0bxoRERExlcKIiIiImEphREREREylMCIiIiKmavV704iIyLE19w7MIp2JwoiISBvRLLsizaPTNCIiImIq9YyIiHRAmrtEOhP1jIiIiIipFEZERETEVAojIiIiYiqFERERETGVwoiIiIiYSmFERERETKVLe0VamWbYlJbS5GjS2SmMiPyMwoSISPvSaRoRERExlXpGRNqBuuFFRI5NPSMiIiJiKoURERERMZVO04icJJ16ETM0d4C1BmKLN1HPiIiIiJhKPSMizaBeEBGRtqOeERERETGVekZERLyceu7E2ymMSKemX+LSmRzr33tzB7ZqUKy0FZ2mEREREVMpjIiIiIipFEZERETEVBozIiLSyWnslJhNPSMiIiJiqnYLI/PnzycxMZGAgABSU1P5+uuv22vXIiIi0oG1y2mapUuXkpaWxsKFC0lNTWXOnDlMmDCBbdu20b179/YoQTqolnQP6xJCERHf1C49I8888wzTpk1j6tSpDBkyhIULFxIUFMTLL7/cHrsXERGRDqzNe0Zqa2vJzMxk1qxZjW1Wq5Xx48eTkZFx1G1cLhcul6vxeVlZGQBOp7Nti5V253FVNXvdhHvfPqJt88MTjmgbNvuTo25/tHVbsn8ROdLRfi7h6D9vR3O0n9fmbisd3+HPbcMwjrtem4eR4uJi3G430dHRTdqjo6PZunXrUbdJT0/n4YcfPqI9Pj6+TWoU7xU+p23WFZFTcyo/b/pZ9T3l5eWEh4cf8/UOeWnvrFmzSEtLa3zu8Xg4cOAAXbt2xWKxmFiZ+ZxOJ/Hx8eTl5REWFmZ2OT5Nx7p96Di3Dx3n9qHj3JRhGJSXlxMbG3vc9do8jERFRWGz2SgsLGzSXlhYSExMzFG3cTgcOByOJm0RERFtVaJXCgsL0z/0dqJj3T50nNuHjnP70HH+0fF6RA5r8wGsdrud5ORkVq1a1djm8XhYtWoVY8eObevdi4iISAfXLqdp0tLSmDJlCqNGjSIlJYU5c+ZQWVnJ1KlT22P3IiIi0oG1SxiZNGkSRUVFPPTQQxQUFDBy5EhWrFhxxKBWOTGHw8Hs2bOPOI0lrU/Hun3oOLcPHef2oeN8cizGia63EREREWlDujeNiIiImEphREREREylMCIiIiKmUhgRERERUymM+AiXy8XIkSOxWCxs2LDB7HJ8Sk5ODrfccgu9e/cmMDCQvn37Mnv2bGpra80uzevNnz+fxMREAgICSE1N5euvvza7JJ+Tnp7O6NGjCQ0NpXv37lxxxRVs27bN7LJ82mOPPYbFYuGee+4xuxSvoTDiI/7whz+ccLpdOTlbt27F4/Hw/PPPs2XLFp599lkWLlzIH//4R7NL82pLly4lLS2N2bNnk5WVRVJSEhMmTGD//v1ml+ZTVq9ezfTp01m7di0rV66krq6OCy+8kMrKSrNL80nr1q3j+eefZ8SIEWaX4l0M8Xoff/yxMWjQIGPLli0GYHzzzTdml+TznnjiCaN3795ml+HVUlJSjOnTpzc+d7vdRmxsrJGenm5iVb5v//79BmCsXr3a7FJ8Tnl5udG/f39j5cqVxrhx44y7777b7JK8hnpGvFxhYSHTpk3j9ddfJygoyOxyOo2ysjIiIyPNLsNr1dbWkpmZyfjx4xvbrFYr48ePJyMjw8TKfF9ZWRmA/v22genTpzNx4sQm/66leTrkXXuleQzD4KabbuKOO+5g1KhR5OTkmF1Sp5Cdnc3cuXN56qmnzC7FaxUXF+N2u4+YhTk6OpqtW7eaVJXv83g83HPPPZx55pkMGzbM7HJ8ypIlS8jKymLdunVml+KV1DPSAc2cOROLxXLcZevWrcydO5fy8nJmzZpldsleqbnH+af27t3LRRddxNVXX820adNMqlzk5EyfPp3NmzezZMkSs0vxKXl5edx99928+eabBAQEmF2OV9J08B1QUVERJSUlx12nT58+XHPNNXz44YdYLJbGdrfbjc1m4/rrr+fVV19t61K9WnOPs91uByA/P59zzjmHMWPGsGjRIqxWZfmTVVtbS1BQEO+88w5XXHFFY/uUKVMoLS3lgw8+MK84H3XXXXfxwQcf8Pnnn9O7d2+zy/Ep77//Pr/85S+x2WyNbW63G4vFgtVqxeVyNXlNjqQw4sVyc3NxOp2Nz/Pz85kwYQLvvPMOqampxMXFmVidb9m7dy/nnnsuycnJvPHGG/rF0gpSU1NJSUlh7ty5QMMphISEBO666y5mzpxpcnW+wzAMZsyYwXvvvcdnn31G//79zS7J55SXl7N79+4mbVOnTmXQoEHcf//9OiXWDBoz4sUSEhKaPA8JCQGgb9++CiKtaO/evZxzzjn06tWLp556iqKiosbXYmJiTKzMu6WlpTFlyhRGjRpFSkoKc+bMobKykqlTp5pdmk+ZPn06ixcv5oMPPiA0NJSCggIAwsPDCQwMNLk63xAaGnpE4AgODqZr164KIs2kMCJyAitXriQ7O5vs7OwjQp46Fk/epEmTKCoq4qGHHqKgoICRI0eyYsWKIwa1yqlZsGABAOecc06T9ldeeYWbbrqp/QsSOQqdphERERFTaQSeiIiImEphREREREylMCIiIiKmUhgRERERUymMiIiIiKkURkRERMRUCiMiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiplIYEREREVP9f/l9kk5eoxqSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create a (continuous) random variable with normal distribution\n", + "Y = stats.norm()\n", + "x = linspace(-5,5,100)\n", + "\n", + "fig, axes = plt.subplots(3,1, sharex=True)\n", + "\n", + "# plot the probability distribution function (PDF)\n", + "axes[0].plot(x, Y.pdf(x))\n", + "\n", + "# plot the cumulative distribution function (CDF)\n", + "axes[1].plot(x, Y.cdf(x));\n", + "\n", + "# plot histogram of 1000 random realizations of the stochastic variable Y\n", + "axes[2].hist(Y.rvs(size=1000), bins=50);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "I5YPmHnaySf1", + "outputId": "fb783881-db16-480c-93d5-79c32a141638" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(3.5, 1.8708286933869707, 3.5)" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.mean(), X.std(), X.var() # Poisson distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RoCvSvURyY_X", + "outputId": "1b160115-7b6e-4606-9991-8024485f4f49" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 1.0, 1.0)" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y.mean(), Y.std(), Y.var() # normal distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BdfFwbAxydbr" + }, + "source": [ + "## **Statistical tests**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Q7m0UR3myaVu", + "outputId": "a9207ae7-b44a-4a33-ecce-bdf7da5319a3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "t-statistic = -1.7499858682186762\n", + "p-value = 0.080274252610358\n" + ] + } + ], + "source": [ + "t_statistic, p_value = stats.ttest_ind(X.rvs(size=1000), X.rvs(size=1000))\n", + "\n", + "print (\"t-statistic =\", t_statistic)\n", + "print (\"p-value =\", p_value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3Gb9_ykSylLM", + "outputId": "f2fd1159-5f0f-44fd-fc2a-19db725d2fa6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "TtestResult(statistic=-4.73486008056616, pvalue=2.50849499845838e-06, df=999)" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats.ttest_1samp(Y.rvs(size=1000), 0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pfTYPUP9ynUs", + "outputId": "4f00e43f-acdb-4312-b927-8080a11bc2fb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nsICwoFiysQq", + "outputId": "05d12cf2-1355-4688-c8a3-62f13efdff08" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "TtestResult(statistic=1.4357862836864024, pvalue=0.15137619808912936, df=999)" + ] + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "stats.ttest_1samp(Y.rvs(size=1000), Y.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/", + "height": 443 + }, + "id": "oAtg952-yuie", + "outputId": "e0408aa4-9fbf-45f4-cb4e-704da4271962" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting version_information\n", + " Downloading version_information-1.0.4.tar.gz (3.8 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Building wheels for collected packages: version_information\n", + " Building wheel for version_information (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for version_information: filename=version_information-1.0.4-py3-none-any.whl size=3898 sha256=d542804979d4cb94fbc36b9bab57cefa3b8c262fe723abf7093e2a254dc00687\n", + " Stored in directory: /root/.cache/pip/wheels/47/7d/72/b26285eb636e3fb76a7a4a42caa93287b89e636ec21a6afe7f\n", + "Successfully built version_information\n", + "Installing collected packages: version_information\n", + "Successfully installed version_information-1.0.4\n" + ] + } + ], + "source": [ + "%reload_ext version_information\n", + "\n", + "%version_information numpy, matplotlib, scipy" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Anusha/Module0/Seaborn.ipynb b/Anusha/Module0/Seaborn.ipynb new file mode 100644 index 0000000..7760b22 --- /dev/null +++ b/Anusha/Module0/Seaborn.ipynb @@ -0,0 +1,651 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# **seaborn: statistical data visualization**" + ], + "metadata": { + "id": "5pODuqYxvIhs" + } + }, + { + "cell_type": "markdown", + "source": [ + "Python data visualization library based on matplotlib" + ], + "metadata": { + "id": "OBrf4qFtx-ds" + } + }, + { + "cell_type": "code", + "source": [ + "# Import seaborn\n", + "import seaborn as sns\n", + "\n", + "# Apply the default theme\n", + "sns.set_theme()\n", + "\n", + "# Load an example dataset\n", + "tips = sns.load_dataset(\"tips\")\n", + "\n", + "# Create a visualization\n", + "sns.relplot(\n", + " data=tips,\n", + " x=\"total_bill\", y=\"tip\", col=\"time\",\n", + " hue=\"smoker\", style=\"smoker\", size=\"size\",\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "z-3M01LIvLXU", + "outputId": "d2fe9cda-03dd-4c29-cda3-d4e775c9897e" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 2 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEkAAAHkCAYAAADCX3HaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+nJJREFUeJzs3Xd8FHX+x/HXzPZNr3QUUECqIIJiRywgp4IF1LPceSr2+rvTuxMP7OW8omD39GyIBbuoKGI9sIGioghSBRLSsyVbZn5/RCIxCSVsslnyfj4ePiQzs7OffJPszL73Wwzbtm1ERERERERERNo5M9kFiIiIiIiIiIi0BQpJRERERERERERQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBEJKWNGjWKq6++OtlltDvPP/88ffr04auvvkp2KSIish10vazvrrvuok+fPskuQ0SkTVJIItLGff7559x1111UVlYmu5RWpSBCRER2RHu/Xm7+b+DAgRx44IGcffbZ/Pe//6W6ujrZJYqIpBRnsgsQka374osvuPvuuxk/fjyZmZn19s2ZMwfDMJJUmYiISNvR3q+Xl1xyCV27diUWi7Fp0yYWLlzITTfdxCOPPMKMGTPo27dv3bHnn38+5557bhKrFRFpuxSSiKQwt9ud7BJERETavPZwvTz44IMZOHBg3dfnnXceH3/8MZMnT+aCCy7gtddew+v1AuB0OnE62/bbgFAohM/nS3YZItIOabiNSBt21113cdtttwFw+OGH13WlXbt2LdBwjPXmLreffvopN9xwA/vttx/Dhg1jypQpRCIRKisr+eMf/8i+++7Lvvvuy2233YZt2/We07IsHnnkEY455hgGDhzIyJEjmTJlChUVFa33jW+nq6++mlGjRjXY3thY6z59+jBt2jTmzp3LuHHjGDBgAMcccwzvvfdeg8dv3LiRP//5zxx44IEMGDCAUaNGcd111xGJROodF4lEuPnmm9lvv/3Ye++9ufDCCyktLU3sNykiItuk62Xj9t9/fy644ALWrVvHSy+9VLd9Z66Tmx+7atUqrr76aoYNG8Y+++zDNddcQygUalDDiy++yIQJExg0aBDDhw/n8ssvZ/369fWOOf300xk3bhxLlizhtNNOY/Dgwdx5550JbAkRke3XtiNkkXbuiCOOYOXKlbzyyitcc8015OTkAJCbm7vVx91www3k5+dz8cUXs3jxYp5++mkyMjL44osv6NSpE5dffjnvvfceDz30EL179+b444+ve+yUKVOYPXs2EyZM4PTTT2ft2rU88cQTfPPNNzz11FO4XK4mnzcSiWz32OdtfQ8t4bPPPuPNN9/k1FNPJS0tjccee4xLLrmEefPm1bXtxo0bOfHEE6mqquLkk0+mZ8+ebNy4kTfeeINwOFzv08gbbriBzMxMLrroItatW8ejjz7KtGnT+Oc//9nq35uISHum62XTjjvuOO68804++OADTj755K0euz3Xyc0uu+wyunbtyhVXXME333zDM888Q25uLv/3f/9Xd8w999zDv/71L8aMGcOJJ55IaWkpjz/+OKeddhovvPBCvWFR5eXlnHPOORxzzDEce+yx5OXl7dT3LSLSXApJRNqwvn370q9fP1555RVGjx5N165dt+txeXl5PPDAAxiGwWmnncbq1at56KGHmDhxIlOnTgVg4sSJjBo1iueee67upu/TTz/lmWee4Y477uA3v/lN3flGjBjBH/7wB+bMmVNv+69tvjndHt999912HZdIy5cv57XXXqN79+5A7fd13HHH8eqrr/Lb3/4WgDvvvJNNmzYxa9aset2WL7300gafImZnZ/Pwww/XjXO3LIvHHnuMqqoqMjIyWum7EhERXS+b1rFjRzIyMlizZs02j92e6+Rme+21FzfddFPd1+Xl5Tz77LN1Icm6deu46667uOyyy5g8eXLdcUceeSTjx4/nySefrLe9uLiYqVOnMmnSpJ36fkVEdpZCEpFd0IknnlhvgrpBgwbxxRdfcOKJJ9ZtczgcDBgwgK+//rpu25w5c8jIyOCAAw6oN2ykf//++P1+FixYsNWbvgMPPJD//Oc/Cf5uEmfkyJF1N35Qe1Odnp5ed+NoWRZz587lsMMOqxeQbPbrSf9OPvnketuGDRvGI488wrp16+pNkCciIm1Te7le+v1+AoHANo/b1nVyS78OM4YNG8Zbb71FdXU16enpvPXWW1iWxZgxY+q1UX5+PrvtthsLFiyoF5K43W4mTJjQnG9PRCShFJKI7II6d+5c7+vNvRo6derUYPuWY6dXrVpFVVUV+++/f6PnLSkp2erzFhYWUlhY2JySW8Wvv3+ArKysuuUiS0tLqa6uZs8999yu8/26nTd3G25vy0+KiKSq9nK9DAaD2zV8ZVvXyS01dQ2sqKggPT2dlStXYts2Rx55ZKPP9euJYzt06NAuJtgVkbZPIYnILsg0G5+Tuantm1mWRV5eHnfccUej+7c1LjocDlNVVbVdNRYUFGzXcVvT1HKO8Xi80e0Oh6PR7b8eRrO9mmrP5p5PRERaV3u4Xm7YsIGqqqp6PUSasiPXyW1dAy3LwjAMHnjggUbP6/f76329eeUdEZFkU0gi0sY1FQS0hO7du/Pxxx8zdOjQZt2svPbaa606J0lmZmajn2799NNPzTpfbm4u6enpLFu2bGdLExGRVqbrZeNefPFFoHaIT2vq3r07tm3TtWtXevTo0arPLSKyMxSSiLRxPp8PYLs/cdoZY8aM4cknn2TGjBlcccUV9fbFYjGCwWC9meh/rbXHWHfv3p2qqiqWLl1aNwdIUVERb731VrPOZ5omo0eP5qWXXuKrr75qMC+JbdutehMuIiLbT9fLhj7++GNmzJhB165dOfbYY1v8+bZ05JFHcuedd3L33Xdzxx131Lt+2rZNeXl5gxVzRETaAoUkIm1c//79AfjHP/7B2LFjcblcHHbYYQ26qSbC8OHDmThxIvfddx/ffvstBxxwAC6Xi5UrVzJnzhz+8pe/cPTRRzf5+JYYY/3cc8/x/vvvN9h+xhlnMHbsWO644w4uuugiTj/9dMLhME899RQ9evSoN8Hejrjiiiv48MMPOf300zn55JPp1asXxcXFzJkzhyeffHKrN70iIpI87f16+d5777FixQri8TibNm1iwYIFfPjhh3Tu3Jl77rkHj8eT0Ofblu7du3PZZZfx97//nXXr1jF69GjS0tJYu3Ytc+fO5eSTT+bss89u1ZpERLaHQhKRNm7QoEFceumlzJw5k/fffx/Lsnj77bdb5KYPYNq0aQwYMICZM2fyj3/8A4fDQZcuXTj22GMZOnRoizzn1jz11FONbp8wYQIdO3bk7rvv5pZbbuH222+na9euXHHFFaxatarZIUmHDh2YNWsW//rXv3j55Zeprq6mQ4cOHHzwwRovLSLShrX36+W///1vAFwuF9nZ2fTu3Zs///nPTJgwgfT09FavB+Dcc89l991355FHHmH69OlA7ZLEBxxwAKNGjUpKTSIi22LYmmFQRERERERERIStT90tIiIiIiIiItJOKCQREREREREREUEhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiADgTHYBbUU8blFaGkh2GSnHNA1yc9MoLQ1gWXayy0l5as/EU5smnto0sVq7PQsKMhJyHl03m0d/P4mnNk0stWfiqU0TL1WvnZIa1JNEdoppGhiGgWkayS5ll6D2TDy1aeKpTRNL7dm+6OedeGrTxFJ7Jp7aNPHUptKSFJKIiIiIiIiIiKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEaGMhyapVq5gyZQrHHXcc/fr1Y9y4cY0e98wzz3DUUUcxcOBAjj32WObNm9fKlYqIiIiIiIjIrqZNhSTLli1j/vz57LbbbvTq1avRY1599VWuvfZaxowZwwMPPMDee+/NRRddxKJFi1q3WBEREREREWkTbMOgIhxjQ0WY6kgcTCPZJUmKcia7gC2NGjWK0aNHA3D11VezZMmSBsf8+9//5phjjuGyyy4DYL/99uP7779n+vTpPPDAA61ZroiIiIiIiCSRYUAwanP/C1+y+IdNQG0+csDgLpx6ZB88bapbgKSCNvUrY5pbL2fNmjWsXLmSMWPG1Ns+duxYPv74YyKRSEuWJyIiIiIiIm1ITdzm+v8sqAtIACwb3l+0junPLiZmJ7E4SUltKiTZlhUrVgDQo0ePett79epFNBplzZo1yShLREREREREWplhwNriABtKgo3uX7KihLKAPkiXHdOmhttsS0VFBQCZmZn1tm/+evP+5nI6UyozahMcDrPe/2XnqD0TT22aeGrTxErl9tR1c8el8s+7rVKbJpbaM/HUpom3uS2dTgdfbtGDpDFrNlbROacAWz1KZDulVEjSkkzTICcnLdllpKzMTF+yS9ilqD0TT22aeGrTxEq19tR1c+ek2s87FahNE0vtmXhq08RLT/eSle7e6jEZfjfZ2bpeyfZLqZAkKysLgKqqKgoKCuq2V1ZW1tvfHJZlU1nZeDctaZrDYZKZ6aOyMkQ8biW7nJSn9kw8tWniqU0Tq7XbM1HBhq6bzaO/n8RTmyaW2jPx1KaJt2WbDuldyGOvL230OKfDoEt+GmVlgZ16Pn0o0L6kVEjSs2dPoHZuks3/3vy1y+WiW7duO3X+WEwvWs0Vj1tqvwRSeyae2jTx1KaJlYrtmWr1tiWp+PNu69SmiaX2TDy1aeLF4xYZPicTR+/J03OXNdh//oRB+N2m2l12SEqFJN26dWP33Xdnzpw5dUsFA7z22mvsv//+uN1b72olIiIiIiIiuw4HMHpYN/r3zOPF91awsTTI7p0z+c0BPcnPdIPmIpEd1KZCklAoxPz58wFYt24d1dXVzJkzB4Dhw4eTm5vLxRdfzFVXXUX37t0ZMWIEr732Gl9++SWPP/54MksXERERERGRJHAAXXP9XDRhING4jcthYFu2AhJpljYVkpSUlHDppZfW27b56//+97+MGDGCcePGEQqFeOCBB7j//vvp0aMHd999N0OGDElGySIiIiIiItIG2JaN06j9v0hztamQpGvXrnz33XfbPO6kk07ipJNOaoWKRERERERERKS90GLdIiIiIiIiIiIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERESklaQRwG8EfrWtGr8RSlJFIvUpJBEREREREZEWl2YEKHv9bsrn3EOaEazdRjUlL9xO5bz/KCiRNkEhiYiIiIiIiLQovxmm/I17qVnzLTWrllA2ZwYZZm1AEi1aRej7hVR/OBOvUZPsUqWdU0giIiIiIiIiLaoGL1kjT8BwuGq/XrWEn+69iGjRKgAMt4+MfcYQMTzJLFNEIYmIiIiIiIi0rLgFNZm7UzjxL+Bw1ttnuH10OOU6Qr6OWFaSChT5mUISERERERERaXFxC8yMAhy+9HrbnRm54MtSQCJtgkISERERERERaXFpVLNp9m3Eq8vrbY+WrKPs9el1k7mKJJNCEhEREREREWlRfjNM2at31ZuDJGfUmfXmKKmc/xg+M5LMMkUUkoiIiIiIiEjLCuMje9SZGC5v3Rwkxl6jKJz4FwyHC9OfSebIE6hBE7dKcjm3fYiIiIiIiIhI81mWTTitC4WTpmCYZu0krVEbK3N3Cif+FcObRshdgGXZyS5V2jmFJCIiIiIiItLiLMsm5O8MgP3zJK1xC8KZu2HbBrYCEmkDFJKIiIiIiIhIq7AbyUFqV7VRQCJtg+YkERERERERERFBIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQESNGQ5O233+akk05iyJAhHHjggVx66aWsWbMm2WWJiIiIiIiISApLuZBkwYIFXHTRReyxxx5Mnz6dP//5zyxdupTf//73hMPhZJcnIiIiIiIiIinKmewCdtSrr75K586duemmmzAMA4Dc3FzOPPNMlixZwrBhw5JcoYiIiIiIiIikopTrSRKLxUhLS6sLSAAyMjIAsG07WWWJiIiIiIiISIpLuZBkwoQJLF++nCeeeIKqqirWrFnDnXfeSb9+/Rg6dGiyyxMRERERERGRFJVyw22GDRvG3XffzZVXXsm0adMA2GuvvXjwwQdxOBw7dW6nM+Uyo6RzOMx6/5edo/ZMPLVp4qlNEyuV21PXzR2Xyj/vtkptmlhqz8RTmyae2lRakmGn2BiVzz//nPPOO48TTjiBQw89lPLycmbMmIHT6eTJJ5/E6/U267y2bdcbwiMiIiJN03VTREREdkUpF5JMmDCBLl26cNddd9Vt27BhA4ceeihTp05l4sSJzTpvPG5RWRlKVJnthsNhkpnpo7IyRDxuJbuclKf2TDy1aeKpTROrtdszJyctIefRdbN59PeTeGrTxFJ7Jp7aNPFS9dopqSHlhtssX76cww8/vN62jh07kpOTw+rVq3fq3LGYXrSaKx631H4JpPZMPLVp4qlNEysV2zPV6m1LUvHn3dapTRNL7Zl4atPEU5tKS0i5QVydO3fmm2++qbdt3bp1lJWV0aVLlyRVJSIiIiIiIiKpLuVCkkmTJjF37lxuuOEGPvroI1577TUmT55MXl4eY8aMSXZ5IiIiIiIiIrIdnn/+efr06UNpaWmyS6mTcsNtzjjjDNxuN0899RTPPfccaWlp7L333vzzn/8kJycn2eWJiIiIiIiISIpKuZDEMAxOOeUUTjnllGSXIiIiIiIiIiJtUDgcbtbqtyk33EZEREREREREEmPZsmWcc845jBgxgsGDB3PUUUfxwAMPAHD11Vczbtw4PvroI37zm98waNAgfvvb37J27VrKy8u59NJLGTp0KKNHj+a1115rcO6ZM2dy1FFHMWDAAEaNGsWMGTOwrK1Ptvvcc88xYMAAnnnmGQBs2+ahhx6qO8/hhx/OI488Uu8xd911F0OGDOHLL79k4sSJDBw4kCeeeKJZ7ZFyPUlEREREREREJDEmT55Mfn4+N954I+np6axevZoNGzbU7S8uLuaWW27h/PPPx+l0csMNN3DVVVfh8/kYNmwYJ598MrNmzeL//u//GDx4cN2CKo899hg33HADp59+OoceeihffPEFd999N1VVVfzpT39qtJbHHnuMW2+9lVtvvZVjjjkGgBtvvJFnnnmGyZMnM3jwYD7//HPuuOMOPB5PvREm0WiUK6+8krPOOovLL7+c7OzsZrWHQhIRERERERGRdqi0tJS1a9fyl7/8hVGjRgGw33771TumoqKCxx9/nD333BOAoqIirr/+es455xwuvPBCAAYOHMhbb73F3LlzOfPMM4nH40yfPp1jjjmGv/71rwAceOCBRKNRHn74Yc4999wGc4red9993H333fzrX//i8MMPB2D16tU8/vjjTJ06lYkTJwIwcuRIwuEw06dPZ+LEiZhm7QCZaDTK5ZdfztixY3eqTTTcRkRERERERKQdysnJoUuXLtx5553Mnj27Xg+SzQoLC+sCEoDdd98dqA0rNsvMzCQ3N7fu8StWrKCsrIyjjz663rnGjh1LNBrlyy+/rLf9n//8J/feey/33XdfXUAC8NFHHwFw5JFHEovF6v4bOXIkxcXFrF+/vt55DjnkkGa0Qn3qSSIiIiIiItJMDtMmjQBh20PEdgHgNCz8RoiQ7cHGneQKRZpmGAYPPfQQ//jHP5g2bRrBYJD+/ftzzTXXsO+++wK1AciWXK7a3/OMjIx6291uNzU1NUBt7xOAvLy8esds/nrz/s3eeOMNevfuzT777FNve1lZGbZtN+jdstn69evrhvf4fD7S0tK27xvfCoUkIiIiIiIizeAwbdxly1n3zM3kjDoDd6+RWDhwFH3DuhfuJO+YCzC7D0l2mSJb1aNHD/79738TjUb54osvuPPOO5k8eTLvvfdes8+5eT6Q0tLSettLSkoAyMrKqrd9xowZXHzxxVx88cVMnz69LojJysrCMAyefPLJum2/rn0zwzCaXe+WNNxGRERERESkGfzxCoqeuRmsOGVz/4O1/EMcG75i0+y/g21R8srdOCvXJbtMke3icrkYPnw45557LtXV1RQVFTX7XD169CA3N5c5c+bU2/7666/jcrkYNGhQg+P/85//sHjxYq688kri8TgA+++/PwDl5eUMHDiwwX/p6enNrrEp6kkiIiIiIiLSDBHTR+Z+x1P50XMAlM19pN5+f78DIb0wCZWJbJ+lS5dy6623MnbsWLp160Z1dTX33XcfXbp0oXv37s0+r8Ph4IILLuCGG24gNzeXQw45hEWLFvHAAw9w5plnNpi0FaBPnz48/PDDnHnmmfzpT3/itttuo0ePHpx22mn88Y9/5Oyzz2bw4MFEo1FWrlzJggULmDFjxs58+41SSCIiIiIiItIMNbYHz8AjybRtKj9+vt4+/14HkH7QadSYfvxJqk9kWwoKCsjPz+e+++5j48aNZGRkMGzYMG6//XYcDsdOnfv000/H6XTyyCOP8NRTT1FQUMBFF13E5MmTm3xM//79efDBB/nd737HlClTuP766/nrX/9Kjx49ePrpp5k+fTppaWn06NGjwaSwiWLYtm23yJlTTDxuUVoaSHYZKcfpNMnJSaOsLEAsZiW7nJSn9kw8tWniqU0Tq7Xbs6AgY9sHbQddN5tHfz+JpzZNLLXnjnMaFub6xZS89K9627MPORVH38OwHB61aYKl6rVTUoPmJBEREREREWkGp2HhKPqGkpf+3WBf+fwnsZZ/hNOOJKEyEWkuhSQiIiIiIiLN4LOraidppbZzvn+vA8gYfmzd/rK5/8FR+VOSqhOR5lBIIiIiIiIi0gw1ho+cw88AwN//INIP/i2eIceQOfIEADKGjsHO6JDMEkVkB2niVhERERERkWaI2G7cexxAYV5XyOlKyPYB4Bl4JIVd+2DndCdi+khLcp0isv0UkoiIiIiIiDRTxHbjyOtDPP7LBKI1tgdHXl/icUtvuERSjIbbiIiIiIiI7IQtA5KtbRORtk8hiYiIiIiIiIgICklERERERERERACFJCIiIiIiIiIigEISERERERERkXbp9NNPZ8yYMUQikQb7LrnkEg455BACgUASKksehSQiIiIiIiIi7dDUqVNZu3YtDz74YL3t7733Hm+88QbXXnstaWntaxFrhSQiIiIiIiIi7VDPnj0577zzuPfee1mzZg0ANTU1XH/99Rx++OGMHj06yRW2PoUkIiIiIiIiIkm0oSTAf1/7htsf+5T/vvYNG0pab4jLueeeS+fOnZk6dSoA9957L5s2bWLKlCls2LCBq666ihEjRjBo0CBOO+00lixZUu/xb7/9NhMmTGDIkCEMGzaMCRMmMH/+/FarP9GcyS5AREREREREpL16+5PV/HvWIizLrtv2/LwfuPjkvTl83+4t/vxut5tp06Zx+umnM2PGDB588EGuvPJKfD4f48ePx+/3c+2115KRkcFjjz3GmWeeyZtvvkleXh6rV6/m0ksv5ZhjjuHKK6/EsiyWLl1KRUVFi9fdUhSSiIiIiIiIiCTBhpJAg4AEIG7Z3DVrEf175tExr+XnBBk+fDgTJkzgX//6F/379+f0009n+vTpVFZW8swzz5CXlwfA/vvvz1FHHcVDDz3EH//4R7755hui0SjXXnst6enpABx00EEtXm9L0nAbERERERERkSR4c8GqBgHJZnHL5s0Fq1qtlnPPPReA3/3udzgcDj788ENGjBhBVlYWsViMWCyGaZrsu+++fPXVVwD06dMHh8PBVVddxTvvvENVVVWr1dtS1JNEREREREREJAk2lgS3vr906/sTyeVy1ft/WVkZixYton///g2O7d69dhhQjx49uPfee7nvvvu46KKLME2TAw88kClTptC5c+dWqz2RFJKIiIiIiIiIJEGHPP/W9+dufX9LysrK4qCDDuLSSy9tsM/tdtf9++CDD+bggw+murqa9957j5tvvplrrrmGRx99tDXLTRiFJCIiIiIiIiJJcOSI3Xh+3g/EGxly4zANjhyxWxKqqjVy5EheeuklevXqhd+/7bAmPT2dsWPH8uWXX/LKK6+0QoUtQyGJiIiIiIiISBJ0zEvj4pP35q5Zi+oFJQ7T4JKJe7fKpK1NOeuss3j55Zf57W9/yxlnnEHnzp0pLS1l8eLFdOjQgbPOOouZM2eyaNEiDjroIAoKCli7di0vvfQSBxxwQNLq3lkKSURERERERESS5PB9u9O/Zx5vLljFxtIgHXL9HDlit6QGJAA5OTk8/fTT/POf/+SOO+6gvLycvLw8Bg8ezBFHHAHUTtw6b948br75ZsrLyykoKOCYY45pdIhOqjBs2258Kt12Jh63KC0NJLuMlON0muTkpFFWFiAWs5JdTspTeyae2jTx1KaJ1drtWVCQkZDz6LrZPPr7STy1aWKpPRNPbZp4qXrtlNSgJYBFRERERERERFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIq3C6TCa2N7KhYiIiIgkkdcRq/e1YTTcJpJMCklERFqYzwhjrvwYnxGutz3NCGKuXojXqElSZSIiIiKtJ82uIvjuf0ijGqgNSPzxcoLvPUqaEUxydSK1nMkuQERkV+YzwlS//zjBbz4gbcAhpB1wCiHbS5oRpGzODGpWLSFz/wl4Bx1F2PYku1wRERGRFpFmV1Ey+xaim9YRLVlH7vFXQTzGplk3EqssJla5iZyxFxOw/ckuVdo5hSQiIi3ES5jqD54k+M0HAASWzAcg+9DT2PRybUACUPnx82Q5Xbj7HU7EdietXhEREZGWYBgGRILEKksBiBStZNOzN2FHw8SrarfFStdjxCNgKiSR5NJwGxGRFhIz3aTtNRKMX15qA0vms2765LqABMBwuvHuNoCYoYBEREREdj22bRPydqDDpCkYbh8AsdKf6gISR1o2BZOmEHDkJLNMEUAhiYhIi4lZJrH83hSc8Md6QQm2VfdPw+mmcNK1hNO7YVmNnERERERkF2BZEE7rTP5vLm6wr+CEPxFy5WHbdhIqk7vuuos+ffpw2mmnNdh34403MmrUqCRUlTwKSUREWtDmoCTvmAsb3V940p8VkIiIiMguzzDAGy2j7K3/NNhXOuc+fFZVEqqSLX366acsWLAg2WUknUISEZEW5rFDVH/5TqP7qr+ah8cON7pPREREZFeweRWbzZO0AhgeP4ardtL6SNFKSl+4o27Vm/am9L2nKX3v6Sa/bg1+v59BgwYxY8aMVn3etkgTt4qItKA0I0DZ6zOoWf11o/s3T+a6edUbERERkV2SFcOK1n4wtHkOEqI1bJw5DTsSwqoJgB0HI8l1trLS956m/P1Z9bZt+XXuwRNbrZYLLriAyZMn8/nnnzN06NBGj1m3bh233norH374IfF4nH322Yc//vGP9OnTp9XqbGnqSSIi0kJ8Zpjytx6sF5AYTjeZI45rMJlr6NMX8ZjRZJQpIiLbYJoGMRtqLJuoBQ6HbqFFdoRtQ8hdQOEp1+Eq6EbBpCkEnXmE/J3oMGkK7sLdyD/prwTNrGSXmlTl789qEJi0psMOO4x+/foxffr0RvdXV1dz+umn88033zB16lRuv/12ysrK+O1vf8v69etbudqWo54kIiItpMb2krX/BGpWf40di9RN0hrP6kZBt70ofu42sC1MXzppg0YRwg1owjIRkbYkYtksXVnGs+8sY0NJkJxMD8cf0ouhexbgdRq0pXkmbcOgOhxjU0UIp2mSl+XF73bQpoqUdsuybELuAvJO/AtBy4dt27Xhib8TuSdcQ9Dytstf1c09RX4djmQfdHKr9iLZ7Pzzz+fiiy/myy+/ZNCgQfX2Pf/88/z000+8+uqr9OrVC4B9992Xww47jEcffZSrr7661ettCQpJRERaiGVDOL0bhROvpfj5Wyk44U+1k7RGwfnzqjclr82gcOK1hDyFWFY7vDMQEWnDojbMeP4rvvxhU9224rIQD7ywhC75afz198PxmG1jbEDUhtnv/sAbC1bVvdH0uBycO34Ag3vmqfu4tAmWZRPAy5YfClkWP2+TtuCII46gd+/eTJ8+nfvuu6/evk8//ZQ999yzLiAByM7OZuTIkXz22WetXWqL0euliEgL2hyUdPzdHfVWsdm86k3HM29VQCIi0gY5HAaLlm2qF5Bsad2mAC9/8COmmfzbadNh8O4X65jzv1X1Pomvica5a9ZiNpZrgnCRtqqxOUmgtmdJa0/eCmAYBpMnT+bdd9/l66/rz6lXWVlJfn5+g8fk5eVRUVHRWiW2uOS/qouI7OIsG6pi3gbL/MYsk6q4TwGJiEgbFI7aPPPO91s9Zu7C1VTXxFqpoqYFauK8MH95k/tnvf09ttE2eryISNOyDzqZ7INOTnYZjBkzhh49ejRY6SYrK4uSkpIGx5eUlJCVtevMJ6PhNiIiIiIivxK1LDZtowdGJGYRjsTwu9ytVFXjQjVxQlsJa1asqyAat3C3kaFBIvKLLecd+fUcJMmYkwTANE0mT57M1VdfzfDhw+u277PPPrzxxhusWLGCnj17AlBRUcFHH33ExInJqbUlqCeJiIiIiMivOAwDj9uxzeNczm0f09LcLpOt5R85GV4cCkhE2qzcgyc2CEuSFZBs9pvf/IZu3bqxYMGCum0TJkygc+fOnHfeebz66qvMnTuX3//+9zidTs4888wkVptYCklERERERH7F5zY5er/dtnrMkN4FpHuT3zE73etkv4Gdmtw/4bA9cCkkEZEd4HA4OPfcc+ttS09P57HHHqNv375ce+21XHXVVWRlZfH444/TqVPTr0GpxrDt9rjQUkPxuEVpaSDZZaQcp9MkJyeNsrIAsZi17QfIVqk9E09tmnhq08Rq7fYsKMhIyHl03Wwe/f0kXku2aTBq8ed7P6IyEGmwz+00ueXCA8n2JT8kAQjFbKY9vICNpcF62/cf2Imzxu6FazszEv2OJp7aNPFS9dopqaFtvKqLiIiIiLQx6R4HN5w3kkdf+5bPv9tYt3JM391y+MOxA8jxu2grnzf6XQbXnT2Clesr+eDLn/C6nRy2T1cKs33bHZCIiIhCEhERERGRRlmWTbrb5ILxA6gK9yUUjuJxO8j0uXEYdpsJSABsG7wOg726ZTOoZy62DdFoPNlliYikHIUkIiIiIiJbYdg2mR4HmZ7Nk7TatKF8pB7btolEFI6IiDSXJm4VEREREREREUEhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiItKIq6++mnHjxiW7jFblTHYBzTV79mweffRRli9fjt/vZ+DAgdx99914vd5klyYiIiIi0q65jRguIgRsf902jxHBYccI4t/KI0WkLbngggsIBoPJLqNVpWRIcs899/DAAw8wefJk9t57b8rKyvj444+Jx+PJLk1EREREpF1zGzHslQsp/fIdco+9jICdjseIEF06n+pVX5F11GSCtoISkVTQvXv3ZJfQ6lIuJFmxYgV33303M2bM4JBDDqnbftRRRyWxKhERERERcRkxWP0ZpW/cD0DpS/8kf/xVBL5+n4r5T9Qe9Ma9ZB05WT1KRNqIZcuWcdttt/Hll18SDofp2LEjJ554Iueccw5XX301S5Ys4ZVXXgFg1KhRrFu3rsE5xo8fzy233ALAhg0buOOOO3j//fcJhUIMHDiQa665hgEDBrTq99VcKReSPP/883Tt2rVeQCIiIiIiIjvGMMC2E3vOuOHEm98Nw+XBjtYQWf8D6++/BDsWqTvGs9tA4oYTEvzcItI8kydPJj8/nxtvvJH09HRWr17Nhg0bGj327rvvJhL55e/5u+++47rrrqNHjx4AVFRUcOqpp+L3+7n22mvJyMjgscce48wzz+TNN98kLy+vVb6nnZFyIcnixYvp3bs3M2bM4LHHHqOqqooBAwZwzTXXMHjw4J06t9OpeWx3lMNh1vu/7By1Z+KpTRNPbZpYqdyeum7uuFT+ebdVatPt442Wg2kSdmQC4LZDOKJBajy5WLZRd1wi2jOa2YUOp1zHxqemYkdr6gUk2YeehnuvQ4kantR7I9JM+h1NPLVp4pSWlrJ27Vr+8pe/MGrUKAD222+/Jo/v169fvcdeccUVHHDAAZxzzjkAPProo1RWVvLMM8/UBSL7778/Rx11FA899BB//OMfW/C7SYyUe20qLi5myZIlfP/991x33XX4fD7uvfdefv/73+9UMmWaBjk5aQmutv3IzPQlu4Rditoz8dSmiac2TaxUa09dN3dOqv28U4HatGmR0vVsmHUDhttLx5OvxnD7KP/wZSo/nUPHSX/G170/hqP+24Kdbc+4tyv+PYYS+Pbjum2G003mwENwZubu1LlTlX5HE09tuvNycnLo0qULd955JxUVFey///507Nhxm4+LRqNceumlOBwO7rzzTkyzNrD68MMPGTFiBFlZWcRiMQBM02Tfffflq6++atHvJVFSLiSxbZtgMMi//vUv+vbtC8DgwYMZNWoUjz/+OJdeemmzzmtZNpWV7WvW3kRwOEwyM31UVoaIx61kl5Py1J6JpzZNPLVpYrV2eyYq2NB1s3n095N4atOtcxpxYt8tJFZRBMCGWTfj7tCTwJL5AJS++xR5x11J2KidHyQR7emya4h8+269gATAjkXY8Oxt5B17OWFHxk58V6lFv6OJl6rXzrbIMAweeugh/vGPfzBt2jSCwSD9+/fnmmuuYd99923ycTfeeCNLlixh1qxZZGVl1W0vKytj0aJF9O/fv8FjUmUS2JQLSTIzM8nOzq4LSACys7Pp168fP/zww06dOxbTi1ZzxeOW2i+B2lp7mqaBzwgTtDzYNriMOA47QpjUSe/bWpvuCtSmiZWK7Zlq9bYlqfjzbuvUpo2LYeDd8wAyg1VU/m820eI1RIvXAODu0JPccZdSHfcC9duuue3pMmJEf/iQ8nefqNvm77s/oeWf181RUvLSP8g99op6ywO3B/odTTy1aWL06NGDf//730SjUb744gvuvPNOJk+ezHvvvdfo8TNnzmTmzJn8+9//Zs8996y3Lysri4MOOqjRzgtut7tF6k+0lBvEtcceezS5r6amphUrEWkfTNPAV1NE6exb8VsVuB0W5oYlBD54Ar8RSnZ5IiIisg1h20P6PmNxZNQf5pJ/7CUEjfSEPlfccOHp1g/TW/vJe9Yhp5E+6mwKJ12H4fIAkD5oFFFS482SSHvicrkYPnw45557LtXV1RQVFTU45tNPP+WGG25g8uTJHHnkkQ32jxw5kuXLl9OrVy8GDhxY778+ffq0xrex01KuJ8lhhx3G888/z7fffstee+0F1Hbp+frrrznrrLOSW5zILshLmPJ5jxHZsIJNs24kfeiRlM97ArDJGHQYjpw9iMc1Pb2IiEhb5TVqqFr4MvGq0nrbi1/4O3nj/0iAxA19sSybkLcDhZOuo2bNNzj2GEko5sRM60zhpOuIbVoD3fchYqfc2xCRXdLSpUu59dZbGTt2LN26daO6upr77ruPLl26NBgeU11dzcUXX8xuu+3GIYccwqJFi+r25ebm0r17d8466yxefvllfvvb33LGGWfQuXNnSktLWbx4MR06dEiJ9+wp9+o0evRoBg4cyCWXXMLll1+Ox+Ph/vvvx+12c+qppya7PJFdTtDykH3kuZS+9A8iG5ZTPu9xAHKPOodoVncFJCIiIm2Y22ERW/o+VZ+8Uvt1YQ/cnXtRvWgu0eI1lL70D3KP/yMBy5uw59wclDj2yKXm5zDEsiCc1hmHv5CoAhKRNqOgoID8/Hzuu+8+Nm7cSEZGBsOGDeP222/H4XDUO7a8vJzS0lJKS0uZNGlSvX3jx4/nlltuIScnh6effpp//vOf3HHHHZSXl5OXl8fgwYM54ogjWvNba7aUe4UyTZP777+fm2++mSlTphCNRhk2bBhPPPEEBQUFyS5PZJcUMX2kDTyUyIbltRscTry7D6IaV3ILExERka2KWib+PYfjXPQ2pttH7nFXEDfdmN4MKj95mZxRZxAmcQHJZpZlY/3qrYZl0WCbiCRXXl4et99+e5P7b7nllrp/d+3ale+++26b5ywoKODGG29MSH3JkJKvUrm5uVv9QYpI4riMOOb6JWx662EADI8fuyZI0czryT/5LwTNLGx1JhEREWmTbBuCRib5J10DmARIBwu8g4+m86BDCZpZaMEVEZFfpNzErSLSukw7SmTDCsAm96hz6PT7v+Pu2It4sAK7JohhGMkuUURERLbCtiFAZm1A8rOw7aEKBSQiIr+Wkj1JRKT11ODFu/dYOvYZTsRXSFXcRe6xl0MkQMjbActSNxIREREREdk1KCQRkW0K2x5Mf9e6QCRAOoYnA1sBiYiItBOmCaGoTXl1BNOErDQ3HoeJrTGnIiK7FIUkIrJdft1jRDeFIiLSXpimwZqSILc//hmVgQgAHXL9XH3GMLJ9rl3umhgLVOCLVRMwM7F+Ho7jM0I4rAhBR7Z6kYrILm2nQpJ58+Yxf/581q1bB0CXLl045JBDOOywwxJSnIiIiIhIslXVxLn+oQVEYr9M4LGxNMiNjyzk+nP3x2PuOvNzua0Q5R+8QNXieRROupZwWhc8dojqD54kvPwLCidN0XBbEdmlNSskqays5MILL+TTTz/F4XDULb378ccf8/TTTzNs2DCmT59OZmZmQosVEREREWlNhgFrNlbVC0g221Qeprw6QodMTxIqSzyXwyby/UdUfvo6AEUzr6fw5D9Ttegtgl+/X7vt6evpeNZtVOFLZqkiIi2mWavb3HjjjXz22WdcddVVLFy4kHnz5jFv3jwWLlzIlVdeyWeffZbS6yKLiIiIiNQyqInGm9wb34WWh4nGDbx7DMfdqRcAdjTMxiem1AUkYJB79HmErF0jFBIRaUyzQpK5c+dy6qmncvbZZ+P3++u2+/1+/vCHP3DKKacwd+7chBUpIiIiIpIMtm2ze6fGe0d73Q5yMrytXFHLCjsy6HDCVbg79mywL3/8lcQL+xGzm/UWQkQkJTTrFc7pdNKjR48m9/fs2ROnU3PCioiIiEjqy/A6Ofs3/ettM02DK04dit+968xHspnhcOHIyGuw3ZGRi2UoIBHZ1axatYopU6Zw3HHH0a9fP8aNG5fskpKqWUnGUUcdxZw5c5g0aRIOh6Pevlgsxuuvv87RRx+dkAJFRERERJLJBPbv34H+PfP4fnUZLqeDPbpmkeF1YO86o20A8FhBSuY+QWjZJw32FT01jcJJUwinda5b9UZEUt+yZcuYP38+gwcPxrKsXW7Frh3VrJDk2GOPZdq0aUyaNImTTz6Z3XbbDahNoJ5++mmi0Si/+c1v+Prrr+s9rn///o2dTkRERESkTTOBbJ+T/fYqxLZrh+Gwi72PcDlsapZ+QKDeHCTnUr1oLpENy7GjYYqfuZGOv7+DKksTt4rsKkaNGsXo0aMBuPrqq1myZEmSK0quZoUkv/3tb+v+/dVXX2EYtd0Mt0ycTj/99Lp/27aNYRh8++23za1TRERERCTpduWlb6Nxg/Q+I/GuWEx41RLyx1+J1aEfubsNpPTFfxApWkn+cZcTtHateVhE2jvT1DC6LTUrJLn55psTXYeIiIiIiCRZ2Eyn4NiLiZSuJ5LejZhlEiWd3OMuxw6UUZPelbi1683DItIWLFq0iKVLl9K3b1/23nvvZJfTbjUrJBk/fnyi6xARERERkTbAlZlH0PYRi/yy9HHATsdMz9ile9KIJNPf/vY3Xnnllbqvx40bx9/+9rfkFdSOqV+NiIiIiIjU01gYooBEpGUsWrSoXkAC8Morr7Bo0aLkFNTObVdPkmuuuQbDMLj++utxOBxcc80123yMYRjcdNNNO12giIiIiIiIyK5q6dKlTW7XsJvWt10hyYIFCzAMA8uycDgcLFiwYJuP2TyZq4iIiIiIiIg0rm/fvju0XVrWdoUk77zzTr2vH3vsMXJzc/H5Gl/6KxQKUVZWtvPViYiIiIiIiOzC9t57b8aNG9dgThL1IkmOZk3cOnr0aG6//XbGjRvX6P558+Zx5ZVXaslfERERERFJCIfDIB63t7lNJBX97W9/4/jjj0/K6jahUIj58+cDsG7dOqqrq5kzZw4Aw4cPJzc3t9VqaQuaFZLYto1tN/1iFI1GtdayiMg2GAb8+qW0sW0iIiLtnceogfVL8XToTdCu7c3uNcLYPy3F3bEPIbvxHu4iqWTvvfdOSu+RkpISLr300nrbNn/93//+lxEjRrR6Tcm03SFJdXU1lZWVdV+Xl5fz008/NTiusrKS1157jYKCgsRUKCKyC3IbUTyxSsLOLKJ27Uux16jBGasm7MwhZitoFhFpDwzToDocJxSJ4XE5SPc6MVo5LXc7LCLx+tcdBzEs09EmVrTxGDVEl8yl4sNn8O25L5mjfo+FQfiTF6n6/HXSBh5K2siJCkpEmqlr16589913yS6jzdjukOSRRx5h+vTpwC8r1zS1eo1t21x22WUJKVBEZFfjNqLEv3+Pn+Y9Rt4xF+LqOgQHcWq+fIPij2eTP/5KKOynoEQkSZxOE9uGeNxKdimyCzMMCEZtnnv3e+Z/vo64ZWMYMKR3AaeP2Ytsvwu7FQKKNKoIL/kAX7/DCNleAKxwEOvHhfg67kHIU5D0oMRthdj00XMAhJZ9gm1ZONKyCHxZO29i4Kt3SR98OGZ696TXKiKpb7tDkgMOOAC/349t29x+++0cc8wx9O/fv94xhmHg8/no378/AwcOTHixIiKpzjQNnBVrKZn3GAAlr04n96hzqakopvJ/swHY9MKddDn3n1SSmcxSRdqdmA0llWE+/74Yv8fJ3r0LyPQ5MfSeS1pAMGoz5YGPKakI122zbfj8u2K+/rGUWy44gCxvs0bGb7c0qiiZfRvR4jWkV27Cv99J2LaLqq8+pPTNhzF9GRROui7pQUnQkUXBSVdT/MwtYFuEl39Wb3/eMRcSTeukgEREEmK7X3mHDBnCkCFDgNqJXY488kh69+7dYoWJiOyKLMvGyuxExtAxVH3+OgClb9xf75ic0b8jjLoMi7SmuA0vvr+CVz9aWbftsde/5Y+nD6Nv1yy9+ZKEMk2T9xatrheQbKkmEuex17/lwgmDWmzojdcRo2r+00SL1wBQvfhtbNvGlduZ8ncfB8AKVVHy0j/IP/laqvG2SB3bI24ZkLsn+eOvZNPzt9fbl3PE77G7DqkbuioisrOa1Zf7oosuUkAiItJMYduLd9/jSB9yZIN9OaN/h9lzPyK2KwmVibRfpdWRegEJgGXDXbMWEYzGk1OU7LLCsTivfLBiq8d88X0x1eFYy9UQd5Jx4ERchbvXbQt8+U5dQAJg+jPJP/6KuolSk8ll11CzckmD7eGVX+EimoSKRGRXpQHvItKqTNPAYTYc52+aYBrtafy/geF0N9zqdGNjJKEekfbLNA2WriptdF8gHKO8OtLKFcmuLm7V/m5tjW1DpIUDugAZFB5/Oe7C3RrsM/2Z5B99LlY4iEFyr89eI1w3SeuvhZZ9QuU7D+M3QkmoTHbEVu8BG9kukiwKSUSk1Zimga+mGNfGb3AZ8S22gzewDk/FShzmrt+l3WvUULN4DlWfvNJgX+mc+zDWfIHLaLlPD1uSnyB+AvW2OQ2LTGeIHVkZ3nQYRC2IWjamqdBIWpZtQ2Zaw9ByM7fT0YrVyM5IoxqvUX8Ii9uIkmEG29RridNhkJu59eErDtPA627ZISQuJ0TL1uPttleDfe78bsQqN1H0zI2kmY0PC2otLitM9eK5dV/njj2fghP+BEbthSW07FMIbMI0DVyOXf8+IhWZpoEvUoxz49eN3wOWr8ShCaCkjVBIIiKtYnNAUjRzKsWz/465YQkuI153cSyaOY2iWTfhLv8xJYIS0zRwux04nTv2MmqaBmblT3WTtAJkH3Y6GUOPrvu65LUZ+Ei9T8T8RpDKtx+i4o178RtBoDYgcZZ8z08PXI63ajXbeo9imAaV4RjPzV/BXx/4mGsf+B8vfrSSqpr45nthkYSzbZs9umThbuTvuVeXLDL9Gv6WCrzxSkpm30Zo4fN1QYnbiGKt+B8b/ns1vsimJoOSX29vyUDF4TDJ8Dk5adSeWz3ukKFdSG/hiVuNeJRY2UYqP5vTYF949dfUrPueTqddT8CqP9zGT6BeGOUyYqSbQYwWaragI4vCiX/FcLjIG3shdNsHZ353Co+/DEwn+eOvJJLWBV+8Avu7eXiNmpYpRJplc0BSNHMam2bfibH+q8bvASt+VFAibYJuOUWkVaTZVRTNnIoVqgJsNr34T4z1X9VdHO1oDVgximbdhDewvk194vdrNZbNkpVlTH9+CbPf/5GKcGy7bwwtyyae2ZmsA04CIPfIP+DofTDefY8nY58xAOT95mJCRvLHf+8IH0Eq5z5EaPlnhFd9RcWce0h3hHGWfE/xc7dhR8MUPX0D3uqmgxLDhJUbq7nqrvd5+YMfKS4LUVQWYva7y7nqrvdZsymE0YZ/LyS1ZXidXPeH/cjP/uXT/b675XDFKUNx6teuzYuWF7Hp+duIFq+m+os3CS18nnRXBGvF/yh76yGsYCVFM6fii2zC+NULttOw8FavJs2o7QXnNWrwVqzAYyR2mJVpQiBq8dZna/n3s1+ye+dM+nTPafTY/GwvJxy6J7bVckMQXNS2T+nc//xSoy8DZ1Zh3deBbz+i8vM5uKxfgnu/EaTizfsIfzIbrxHGZcQw1n5B0ZNT8MfLWyQoiVsGNZnd6Xzuv7C7DcFthyl54e9ULHyVLr+/FWeHPfBY1ZQ8dwtl7/yX8OcvKyhpQ2rvAadhBSsBm5KX/tX0PWDwpzZ9Dyjtg6aBFpFWEcVJ2l4jqfr8jZ+32JS89M8Gx3m67An+truSRMSyufOpL1i2prxu24vvr2DK70ewe2HadtVdY3vwDBhNxz2GEvXm/zxJqwvvsONIH3AINb58olZqvTwbgM0v33t41VcUP3ktscoSsH++ybft2v+aEKixuPnRT4jFGx4TjdXuu+Pig/DpHau0AMuy6ZLr44ZzR1IZjOD6+dN+fZqUKuyf/6tV/cWbhH9cTKx8YyPH/cI0wFW+go2zbsLTtQ/5x15G1WevU/m/F8g6+FTcfQ8lQtNDsXZEWTDGn+/5iFBN7XDKT78t4vwTBnLI0K48N28ZJRVh0rxOfnNQTw4a3AW/y9jaS+ZOswwnrqyC2oTatn6eg+QciMcp++h5osWrAXDldcYyHGCDxxEn+OlrhFd+SXjll9iAu2A3Sn5epa301bvIPf6PBOKehNcbtwwq8WOaBlbZj0Q2/gjYrHvwSnx77Eu0ZC2xsvUABL56l4yhRxMm8XXIjoviJK3vAVvMKbO1e8DsNnsPKO2Hrv0i0ipqV3QZT8bQo5o8xtNtL3LGXkTATmvFyrafYRgsX1dZLyCB2jdXM55bTE0jb+6bUmN7CPk611vFJmx7Cfo6pVxAAhDET9boc/D2Glq3LVZRXBeQGA4XhRP/SjhzNxq79zFNgx/WVRCJNf2paagmxqoNlS3WnVvEsmzcJuSnu8lSQJJSXNkdyJ/wJ1wF3eq2bRmQmP5MCidNIeQuwN4iebABMyMPR3o2NWu+5af7Lqbyfy+Aw4mny57EzcQMtbINg8deX1oXkADE4hZ3zVqMZVncfP5Ipl91GH+/5CCOHt4dn7NlAxKAuG0Sy+tN4Qn/hyM9m/yjz6HkzYcofnUG2fsfj6ugO1n7j8fTpQ+WUXtdqok7SBt6NO5OewBQ/fkbdcvYm/5McsdcQNBq2aWCLcsmltuT/OMug58nOg/98EldQGJ60yk85ToCRkaL1iHbb/OqfhlDxzR5TFu/B5T2Rdd/EWk1YduLf8SJeHcb0GCfIz2b3HGXtumLo9Np8vGS9Y3uKyoLbXOlgl9r7JOSVP70JGj7yDnyPJw5HRvsK5jwf9Rk7kZTPcdN0+S7JlYX2dLydRU4HLp0iUhDYUcmBSdeg+Fq2Hugw88Bya9fY20bgo5cOpxyXe3XsdohNgXHXU4ka3fiVmJS2UjMYtGy4kb3vblwNYYNPqeB2zSw4q23yodhmljRGvLHnk/Jmw8RD1VTMP4qgsu/IHvEscQD5WycdRN+85ehKwE7nfzjr8T0pdc7V4dTriPoyq8XQrWUqOXA7jyQnMPPbLCvcNK1hDyFKX093RXV3gNOaPweMC2b3HGXtOl7wF3Z66+/zvnnn8/BBx/M3nvvzXHHHcezzz7bKn/LbZXuNEWk1ZgmUF1EzU/LGuyLV1cQ/em7ejOetzW2bdMpv/ELuNNhNjrpY3viNCxixT8SKy9qsK9y4ct47GCTj7Vte6uri2yW4Xe364u2iDTNSYTQD5/Vzm/wK1VfvInbbnxCbA9hqr+cV29b5Sev4N3Ka9aOMk3IzWx86Ed+lg+nIzld5KJxMDv2JfD9J8RD1XSY+FfihX3IO/wMAj98RuDbjyk8+a9UbzFxq8uIUbN6CVaout65qr94E08rTjruilVT/cWbDbZXffb6Vq83khy194DFjd8DBiqIrGvb94C7skceeQSfz8fVV1/NPffcw8EHH8y1117L9OnTk11a0rTvO3oRaTVbzmDe2A3s5slcN6960xbFYhYjB3bC0ciEYkeO6E6ap/0uE7p5FZvi5277ZQ6SLWyezHXzqje/Fo9bDNurwzafZ9Ae+cR3YFiTiLQPVjhI7IePKXvroUb3b57M9dfLAzsdBvZPS+qG2OSNOR9HRi41a76l6oOn8DqiCanP6zSZNLpPo/smHNoLO4m9HkI/9/Ls9LvbqMncHcs2cGbkknnYmXQ84ybCaZ3regE6jRjGusWUvFr75sn0Z+LK6wxA1edv1E7mSssvF5xmV1Ly3C1ES3+q3bDF8meBr94l8NHT+IzUWyVuV1V7D/gTRTOnNnkPuHky17Z6D9haysvLWbJkCeXl5a32nPfccw933nknY8eOZf/99+fKK6/kxBNP5D//+Q9WC04e3ZYpJBGRVpFOoEFA4unal7QBh25xVG1Q4gq03ZnNs/0u/vaH/ep6lLicJuMO7MFxB/ZM6k1usvkdNWx6+d/15yA5+S/4eu1Td0x41VdEfliIq4kpV7L9bg4c3KnJ5zh8WDcyfKk3X4uItLx4sIKyt7ZYpcWfScffXl9vjpLqL97ErPgJxxa9NmJxG0fnvfD12Y/Ck/+C1WMEBROvxdO1DxkjT6LGSsycJPG4zaBeeZx1TD98ntrXsewMD1eeOpSOOclfzSxkewk4ctlypE+N4SfgzK03TNLCiTOrAMPp/nmel+vIO/EvdXOUuDr0JG607AcGpmlgVW0iWrah9mtvOh1/dxv5x13B5jlKwj8uwmHv2BBYaTnpRqBBQOLp2qfBPWDJS/9q0/eALSkcDjNt2jSOPvpozjrrLI4++mimTZtGTU3Lr9KUm5vbYNtee+1FdXU1wWD77JVl2Oq3DNR+illaGkh2GSnH6TTJyUmjrCxAbCsTLsr22ZXb02NEiC6dT8X8J2q//nmCrjhOwp88X7fqjb/v/mQccgZBOzE3jS3RpqZpUBOzCUZiuBwmaR5HuwpIGmvTLXsKYVkUTvwrNZm74bFDVMx9gPDyz0kfNAr//icTspue1C9qw+sfr+TVj1YS/fncHpeD3xzckyOGdcO1C943tfbffUFBYiYz1HWzeXbl1/lkcTpNsjJcBH5YRPHzt2P60imcdB0hdz4+q5KS2bcRLV5D9mGn4+h9EBG74dA+nxEmYniIWwaGYeAzw4QsT8InT3U4TKpr4kSicbxuB363g3grzkGyPbb1O2qa4K1ag+Hx181BkmZUE9+0Giu/NxG75cNsh2njKl1GySt3Uzixdg4SBzHM9V9T9s4jFJz8V4LOvDYzPLO9/927jQjx7+ZT/u6v7wEdhD95sW7Vmx25B0zVa2dTpk2bxksvvdRg+3HHHce1117bos/dmCuvvJJPPvmE9957r9Wfuy1QSPIz3ew1T3t/0U+0Xb09Nwcl4RWf15vB3GuECX8ym3iwMqEBCez6bZoMTbXp5qCEeKx2FZufd/mNENEfP8XZY9+tBiR153EYVIfjlFXXYFD7aWu6x4G1iw6zSdUbPV03m0evSYm3uU0ryyoxir7HkZlPyJ1fN3FnGlVE1y2FroMbDUikvu35HTUMGzDrhRAOB8RbcaSEw7TxG2ECtr/uZ+0y43iNCNWWv80EJKC/e/glKAktb+we8EXiwfIdugdM1WtnY8rLyzn66KOJxRr2fnK5XLz++utkZ2e32PP/2qeffsrpp5/On/70J84666xWe962RP2WRaTV1NhuPH0PwdtnZL0ZzMO2F++w8RhYCQ1IpHVZFoTTuoBNve7ZQduHa4+DCG1nz2crbuN3mfi36IK+qwYkIpI4cRzY+b2JYNZb2SRABs7u+xJr31MdJJRtG9QuoPyL1gxIAOKWQRW+enVELQfRX21LNsOAqGXz408VBENRvB4nGV4nRhsKcVpDxHbj7nMI2b0buwc8rl3fA65du7bRgAQgGo2ybt26VgtJNmzYwOWXX86IESM444wzWuU52yKFJCLSqmpsN9Dwk7ww2+5hIG1fU/N7RTU0XERaQe2SvQ3ffLaFgCTNCIBtE+CXpXPTqAbD0NKnuyoDiqsi3P/CV/ywtqJ2kwFD+xRy1jH9SHc72lSPl5YWsd1EdA/YQNeuXXE6nU32JOnSpUur1FFZWck555xDdnY2d911F6bZfqcvbb/fuYiIiIhIK0gzApS9PoOSF+4gjWoMozYgKX3xTspeu7s2QJFdimFAaXWUP9/zUV1AAmDb8NnSIv5630cEo20gvZOky87OZuzYsY3uGzt2bKv0IgmHw5x33nlUVVXx4IMPkpHRsnOwtHUKSUREREREWojPrKHi7f9Qs/prokUrKXnhDtLtCkpfvJPIxhXUrPmWircexGe2/CoWuzrThAxnmC0XR/ETwGu0ftvGMXj4lW+INTExb0V1hHmfr8V07IIzkssO+9Of/sRxxx2Hy1W7opbL5eK4447jj3/8Y4s/dywW47LLLmPFihU8+OCDdOjQocWfs63TcBsRERERkRZSg4eskScQXv01diREtGglP91/ad1+w+0l68CTCOGlLc2lkWpME7zVa9jw3K0UnPAnatK74bUClL36bzzd9sI7eAxh29Nq9VSHonzzY8lWj3n1w5UcPqwbnna45K3U5/F4uPbaa7n44otZt24dXbp0abV5SKZOncq8efO4+uqrqa6uZtGiRXX7+vXrh9vd/ia8VkgiIiIiItJCLAtC/k50mDSFjTOnYkfCdfsMl5cOk6YQ8nepN9ms7Lh0M8T6Z27GqglSNPN6CsZfRdlHz1Gz7jtq1n1HQZfeOAoHtNqSy5HtWHElVBPDtlDffqmTnZ3dqivZAHz44YcA3HLLLQ32vf3223Tt2rVV62kLFJKIiIiIiLQgywJ8mTh8GcS2CElMbxqGL0sBSQIELC/546+iaNZN2LEIRc/cVLcvfe/RGPk9Wy0gAfB5nDgdZpPDbQA65PpxariNJNk777yT7BLaHOWWIiIiIiItKI1qSl/4O7GK4nrb41UlbJp9e+0qN7JT4pZBJKcH+cddWm+7p2tf0kZOJGS37goq6R4Ho4Zt/RP4iaN741ZIItLmKCQREREREWkhPkcN5W89QGTjCqB2DpLco87FcPsAiBatpPyNe/Fr4tad5o0HqVr4Sr1tkQ0roHIDrT3th23ZHH9wLzrnNb6889A+BfTvkateRCJtkEISEREREZEWUmN7yT7sdExfBoa7dg4S9jiQDpOmYLh9mL50skedSZjW7emQKKYBaY5wvW0O08Zvhpt4RMtIo5qyV/9NzbrvAPB03gNMZ+3Qm5nX4w2sxWzlpMTnNPjr74dz7vEDKMzx4Xaa7NYxg6tOHcp5xw/EpU4kIm2S5iQREREREWkhlmUTchdQeMp1EIvUTtIatYj7O9HhlOvAdBDyFKZkjwLTAG9gDaVvPkTucVcQMDJxmDbusuWUvz+LnHGXECC9VWqJG05chbtRs+470vceTfrIk7FK11I06yZMXzqGNx3bbt02tm3wOgwOHtSJAwd3IRSOYgIuh5GSP2+R9kIhiYiIiIhIC7Ism6CrAFw29s9vji0Lgt6OgFG3LZUYho03sJaimddjxyKUPHcL+Sf9mXjZBoqeuRmsOKUv3lkbnrRCUBK2vfiGT8DbvT9mxz4EYm4c2T3oMOmvGP5sgo5sWjkjqWNZNjk5XojHicUsBSQibZxCEhERERGRFtZYL4baTan5htkwTAyXF8Ppxo5FiJb+xMb/Xo1VEwIrDoCZno1tmK32LYZtL47OQ+pWsYlbBuHMHti2nbSARERSj+YkERERERGRHWJZNiFPIYWnXIfpre0pYoWq6wISb6+hZI3+A0Hb36p1/XqZX8tSQCIiO0YhiYiIiIiI7DDLson6CskaOaHBvtzRvyNE6wYkIiKJoJBERERERKSVGAa4HFbDbabVxCPaLodp4yhZRtm7TzTYV/zMzfityiRUJSKycxSSiIiIiIi0AsMAv1WJvXQeXqPml22xMuzlH+AxIkmucPuZJrjLf6ybpBXA3aFn3dCbaOlPlDx3C+lGdTLLFBHZYZq4VURERESkhW0OSDY9ezOxsvVkVJfhG3YsZiRA8azriVeVknVwCM9eh1Fju5Nd7jbZtoGZlo3Dn0G8uhxvr6FkH3Eu1FRR9NRUrHA1rk69iONIdqkisg3z58/ngQce4IcffqC6upoOHTowevRoLrroIjIyMpJdXqtTSCIiIiIizeJwGISiFqFIHLfTJM3jwIq37VkyTRM8dpiQ7QXATW3vjQgtG0yYJsQ3rcVZsBvO7A5UfTaHeHUpNWuXEq8qBaD68zkU9jswRUISm6Azj4KJU6ha+DLpI08iYHkxPT4KT7mO6sVz8e97PCHbl+xSRWQbysvLGTRoEKeffjrZ2dksW7aMu+66i2XLlvHwww8nu7xWp5BERERERHaYDXy7poIHXlxCSUUYn8fJiaP24MBBnXEZya6ucaYJ3qrVVH7yCpmHnUUMF9ayD8Awce8xkkgLhhOhqM1Xwc7MKz+QTK/BEUdPwPHDm3UBiSM9h4KJUwjY6aTKssCbgxL/AacStFzAL6veeIefQMhq+2GPSFtg2zZvvfUWL7zwAuvXr6dTp04cf/zxHHHEERhGy7+gHnfccfW+HjFiBG63m2uvvZaNGzfSoUOHFq+hLVFIIiK7DIdp4zfCBGw/lvXLDWY8EsZnB6g2/NhaB1BEJCGKKmu45b+f1n0dqonx2OtL8XmcjOzXod7rcFvhN8IUvfQv4lUl2LEI7s57UvnBM2CYdO41tMV6k0QtmPH8V3z5w6a6bfMWbeTi34ymb+UGYht+oPCU6wiYOSl3nbJtm7DtqrfNsmxqWrhnjsiuwrZtpkyZwuuvv163bc2aNSxcuJD333+fadOmtUpQ8mvZ2dkARKPRVn/uZNPErSKyS3CYNq7SZWx45P/whTZgmrUXEwdRgt8tYOPjf8EfK03KRUZEZFdjOkxefG9Fo/uenvs94VjbXKklaPsoOOnPmP5MwisW1QUkBeOvImSmt9jzri8N1gtINnvwzdXEB9V+glu9aC4ewi1Wg4i0TW+99Va9gGRLr7/+OnPnzm21WuLxODU1NXz99ddMnz6dUaNG0bVr11Z7/rZCIYlIG2CaRu2MbnoD3yybA5LiZ27BClWzceZUfKENeJ0W9upFFL/0b+JVpRQ/PU1BiYhIAsQsi03loUb3VVRHsNpmRoJl2cQ92fh7D6/b5szMx9mhJzGrZW6LHQ6Tb34sbXRfqCZG9c9zo1R98grhz1+uW/VGRNqHF154Yav7Z8+e3TqFAIcddhiDBg1iwoQJFBQU8Pe//73VnrstUUgikmQ1ls2C74q59cnP+fezi1m8rJhoG+yi3JZ5CFP5wbNg196V2zVBNs6cSviT5yh55a664+LVZYR/WIjLiCWrVBGRXYLLNNhvQMdG9/XvmYfb1TZvMd1GhNh386leNBcwwHQSqyii7I378BvBFnlO27bpmOdvcn9aXmHdv0PLPsVJ++vaLtKerV+/fqv7N2zY0EqVwP3338/MmTO54YYbWLFiBZMnTyYej7fa87cVbfMKJtJORCybf8z8gnue+5LvVpXx6bdF/PXej/j46411w0Vk24KWj5xxl+Du2Ktum10TpOqTV+sdlzH8WFx9DyViaTlCEZGdEY/bjBzYicKc+iuXeFwOfjeuH442OvGokxjBHz6rHWIz4f/o9LtbMf2ZRDYsx7QiLfKclmXTu1s2fm/DqQBHDuxEdnYGuWMm48zuSP5J1xCg5Yb9iEjb06lTp63u79ix8UC6JfTt25chQ4Zw0kknMWPGDBYsWMBbb73Vas/fVmjiVpEkMQxYXxLk+9XlDfY99tq37L1nPn6ncsztFSCd3GMvp/SlfxDZsLzB/ozhx+Idcgxh25OE6kREdj0+p8F1Z+/H1z+W8NnSInp2zmT/gZ3I8Dqx22iPyKDtJ2fMBdjVm4hkdCOCg8JJ19Xuc+RAC9Wd7nFw/Xn7c9/sr/h+dTlOh8nofbtx/MG9iFvg6D6Mgt0GEbD9pNi8rSKyk44//ngWLlzY5P7x48e3YjW/6NOnDy6Xi9WrVyfl+ZNJIYlIkpimyXeryxrdVxONUx2M4s/UG/odETW9pPU7sNGQJG2v/QkZXnT3KSKSGLZdG5QM71PAyP61q9nEYlabDUg2C9hpmBnpP6++YxN05QN2i9ZtWTa5fhf/d+pQQjVxHA4Dv9tR95wR20nE1m25SHt0xBFH8P777zc6eeuYMWMYPXp0EqqCxYsXE41G2+XErXo1FkkSy7LpnJ/W6D7DAJ9Hf547wmXEYO1iyt55tNH9G2deT4dJ1xHydWyTy1KKiKQqy7KJRLZ/zLrHiOA2ogSoDSrSjADYEKDxa+KOcrkcGAZ441WELScR243biOE1I1TbfiyLeteB1lpy17bBQW2vEqDNh0ki0joMw2DatGkcfPDBzJ49mw0bNtCxY0fGjx/P6NGjW2XBgYsuuogBAwbQp08fvF4vS5cu5aGHHqJPnz5JC2mSKeXfhQUCAcaMGcPGjRt59tlnGThwYLJLEtkutm3Tq0sWmWluKgP1x0EfMqQrGV4n2DamaWDbrXcTl4pcRgxj3eJ6k7QCYDrAqr1x3zyZq4ISEZHk8RgRol+/Temnr9QOc/FmUPbq3djxGLnjLtupoKQmbrNuU5D3F63D73FwYC8Xhc5q0jrvSeTHz/jprYconPhXwundW2pUjYhIsxiGwRFHHMERRxyRlOcfNGgQr732Gvfffz+2bdOlSxdOOukkzj77bNxud1JqSqaUD0lmzJjRLmfcldRgGAYx2yZu2ThMA5dp1HtznuauHaP82OtL+WzpRrxuJ785qCdHDOtKzLIpC0RYtb4S0zTo2TmTTJ9rl5ht2TAgza7EMpwEbf/P2wzS7Aosw0XQ9m3jDPU5iVD17Uf1tmWOOJaMfcZS/PxtRDasAGqDksj6H3D0yMNK/Zc/EZGUY9oxIkUrscIBimZOxZGeTXTTOhwZuRh2FJr5gWlloIaZc7/n7U/W1G17+UO44Jge7P3j04QW1048GKsswUzrvMPXANNhEorGMWzwuk2s+M6nLC4jRtxw1i2XbJoGTjuqYTdtiMcRpyb+y2TvLiNGDKdG7sou59xzz+Xcc89NdhltRkq/Ci9fvpwnn3ySP/3pT1x33XXJLkd2IbYBVeE41cEI6X4XGV4nxnZcEL2EMLAJ4Sduw6oNFTz11jJ+2hSgQ66fkw/fkz26ZOH8+SbQsmwy3A7OP34ANdG9MB0mHfPSWFdczZ1Pfs7ydRX1zj+8Xwd+P64/7hROSgwD/FYFxbNuwJnTmayjziNspOGLllA0cxqebnuRccgZOxSUhGw/maPPxsYmvPxzMkcci2fvY6iMecg77gpKXryTyIYV5Bz+O4wew3UDKiKtwzAIRuJUBCK4XQ6y0lxt68bLMKiuiVEZiJDmdZHhd2Hu5Ls/w4RgxKK8OoLLaZKV5sZt/jIdVAg/mYedhR2PEl7+OVY4gOlLp2DitQTMnGbPG7V+U7BeQLLZg2+s4vaTh8Dit8gdez52l4HErO3/KRgGVEcsXpu/gvcXrcM0DQ4Z0oWjRuxGusfR7F6JbiMGaz7Dm9uVcHoXwMAX2UR4xed4+hxMzVYmGY8DlcEooZoYWeke0twOzbfVAtKoJvDpHPxDxxK0/biNCPaKBfg77/lzj9RkVygiLaVNXat31A033MCkSZPo0aNHskuRXUjUtnlu3nLeWrga2669QRq9b3dOPGwPXFv5hMtnhAn+7zmsSBDPQb/jjc828PTcZXX7V66v5LbHP2PsyN0Zf3BPtlyE1rBtvE4Tp9OkrKqGm/6zkHWbAg2eY+E3G4lbNpOPH0CqLmKbZobZ9MwtxCqKiVUUwxv3kXPYbymadSPxQDnBpR/jSM/Bs+8EauLb/xIVtP1kjf4DaX2/xuw6qG4Vm7Ajkw4n/B+htd9hd+xPxHa11LcmIlLHNmDRD5u4b/ZXRGK176Z6dc3iylOHkpPk2gBiNsz9ZDXPzvuh7o3+8H4d+P1v+uNu7vB3A75fW8k/n15EqCYGQJeCdK4+YxjpbrPufbyBhR3+5Rpnx+MQi2I4m/de3zAMfljb+ETokZhFRdxLFmAFq3DYO/bOtiIc58/3fEgwHKvb9vIHP/Lu52u56fwDSHPt+KcWLiOKvfozSl+/F8PloXDiFAy3l6KZU7GClWRGQngGHEUNDYOSiAX3zP6Sxcs2AeB0GJx6VF8OGtgJR8tPW9BupFFN6Yt3Etm4gmjxGnKPuYDQtx9S9s5/Mdw+OpzyN4LejhoKLbKLStnPo+fMmcP333/PhRdemOxSZBficBgs/qGENxesrrtRs214a+FqPv++GMdW7kCcdoTg0o8IfvsRJZtK6gUkW3rto5VUBqNNnmfNxqpGA5LNPltatNXHt3Uh20POkeeAWRuAhFcuZv1//o94oBwAZ2YBaXsfSWQHPunbLGj7sboPb7DMryu7ELoNVUAiIq2mtDrCXc8srgtIAJavreCBF5YQCCf3NdwwYNXGKma9vaxeT4iF32zkzQWrMc3mvduuDMW59bFP6wISgHXF1dzxxGdEf24GvxGk7LW7qVn3HY6MXDzd+mFHQhTNnIo/VtrM78gmJ8Pb5F5fmh8Mk/J3H8desaB2ou/tYRrMfOu7egHJZlXBKLPnL8doRltZOHFm5oPpwI7WUPTU39j42F+wgpUAuHK7YBkNPwoxTIPn5y+vC0gAYnGb/772LT+VBne4DmmaZThw5nYEau9TNjx8JWXv/BcAhy8d3F5AAYnIriole5KEQiFuueUWLr/8ctLT0xN2XqczZTOjpHE4zHr/T3WRuM2L761odN9L761gWN8CPE38ntSYORSech2bXvwnX//UdMgBsPiHTRw5rGuDbrput5N3v1i7zTq/W13GQQM7pewnGPHcnnSY+Bc2Pn1D3cSqAI6MPAom/oUady6OnfjWnM5fblrrfjcNE2dKvuK1Pbva332ypXJ76rrZOIfD5IOPVjW674vviymtCJPlS94Lkg289H7j17rXPvqRI0d0x7+DPSRM0+CbpUWNToi6akMVVaEoBZkeLDyk9T+IWPlGCidOAZeX8nf+A/E4ttOL09zx3ynTNOnROYs0r5PArwKN3t2zye/YEc+Eqyh5dQaeLn3AaWHbtc/jssLYhkHMaNhro6omzsKvNzT5vO99sZaTR+2JvxljYOP5e1J40jUUzboJOx6FeG1wljfuYszuQ4jhbHCTHqiJ886nDYcUAbz+0UouPGEQdgLGgKTya1KiREkj85AzwIbg0o+wQtUAODLzKTj5r9S4c3boPkVtmnhqU2lJKfmW4Z577iEvL48TTjghYec0TYOcnMQsPdceZWbu2ESbbVVpZZhItPGJgGuicdwuFzlZTX9aFbUzML1+orGt36REYxZZWf5G90Ui277BiVuQnd3441NFJJaD4XBi1wtJcnF5/fgyE/+3uKv8jrYlatPESrX21HVz67bsTfFrcctK6s87EI4SbmLJ3kjMwuV0kJOz49eYps4JgPHL74s14GDS9hiKK6sAANdRfwDbxpmZR3OvbJnAjecfwL+e/oIff6rEMGBon0LOO34A+XkZWFlD8P7hDmKVmyifcy8FYydjuNxUfPo2ptND5t6H1/YQ2EKwuHqrq+DE4jZOp9nsv4NINA/DdGDHf7nue/I64cnOwDAavvELbaomFm/8HiEUieP3u3G7EjcYN9VekxItHgZPh90ILv1lYnhneg4unx9fRvN+5u29TVuC2lRaQsqFJOvWrePhhx9m+vTpVFVVARAMBuv+HwgESEvb8Rcuy7KprFRXxR3lcJhkZvqorAwRb+LCnUocpsFhw7oyq5GhMqOGdcXEoqys8V4i3nglm567mWjJevbYZ+sv2AN75TV6HqfTZP+BHflg8bqtPr5Xl8wm62jrDAM84U0UzZyGHa2pty/y0zKKXr6b7KMnU2MmppfYrvY72haoTROrtdszUcGGrptbd+DgTry5oGFvku4dM8jJ8Cb178c0DY4c0Z1la8ob7DtwUGecht2sa8zAXnmNbs/N9JLudf7qnH6o+/rnXhzNvK5t/hsqzPLwlzP3pTocxTQMMnwuHAZ1z+sDimb/g3hVCUUv34WrcDeqFr4CpgPfnvtSGa4/dMZlwp7ds1m2urzR5927d369828vwzDwhIvY+NTU2l4kW1j/5FQ6TJpCJLNbg/lZPKbBkD4FfPFdcYNzHjmiO8FADYEE9DDVazy4iBBd+j5l85+qt71m833KUZOpMbf/tVRtmnipeu2U1JByIcnatWuJRqONLlF0xhlnMHjwYGbNmtWsc8e28em/NC0et3aZ9jtsaDcWfr2Rlesr67Z175jB4ft0I7qVT8lsAwynF1deZ7I6FzKsbxmfLm14I7PX7jnkZXqbbK/e3XIa7TK8WZeC9K0+vq1Ld4Qpfu7WenOQZB14EiVz7gcrRnjllwQWvIBnv4n1lt3bWbvS72hboTZNrFRsz1SrtzV1yPFx5IjuvLlgdd22NK+TS0/em6x0D2VlgaS238Ce+Qzslc9Xy3+Z36Ig28fJo/ck3sy6sv1uJo7es96cXG6nyRWnDsXjMFr8+43FLEzbJtNTe3trxy22vJJWGz4KTvozxU9PI7zyK8IrvwLTQeFJ1xAw0hp836YBvzumH3+596MGgYVpGpx21F4NnmN7eMwogSXz6+YgyTvmIsy0TIqfvRU7WkPFghfJGHU2IavhEKDfHdOflT99TFnVLx8y7LtXB3p1ySTaRE/Y5krF16RE8Zk1bPrfbACcWQUUTryW8vdnEvz2I8I/foldVYSVsfsOr27Untu0pahNpSUYdopNalBZWcm3335bb9u3337LzTffzNSpUxk4cCD9+/ff4fPG4xalpan5yXwybe5mmuybvUSLWLCxLMi64mo656fTMdeHezsmZ0szqsG2CZBB1IY5/1vJax+voiYSx+U0OWLf7hx7UM8ml/Dd3J5LV5Zw3QP/azBZXEG2jylnj6i3SkCqMU3wBtZRNHMaDl8m+Sf/lRp3Fq7SFRTNuglXbgfyxl9NwMhIyPPtqr+jyaQ2TazWbs+CgsT8bem6uW1xG8oDEX5YW0F2hofuHdLJ8rvIyvK3ib+fqGWzqSLMqo1VdMj10zkvDa/T2KnrS9yGylCUH9ZW4Pc62b1TJuluR4vOobUjf0NeR5Tg+48RWPJe7WOzO1BwylSq400NpTVYWxrkwReXsHpjbQ/mHp0yOef4AXTM9jV76d3aFfGerZ24tusgLBy4y5ZT9dnrZB5+NkG78YFHhmEQilmsK66muDxEj06Z5GV6cSZwZRu9xteGYL5IMaWv30PuuEsImln4CFH1/uP4++xPvLAfMXv758JQmyZeql47JTWkXEjSmAULFnDGGWfw7LPPMnDgwGadQzd7zbOrv+ibprHDnxLUe7zDIFATpyYSx+1ykO5xbPV8m9uzoiJIeTDKsjXlfPTlepwOk0OHdqF7xwy8jp27gW0LTBO8wZ8w3GkEHVnYNjhMG0/VWgx/dsICEtj1f0eTQW2aWKl6o6fr5vYzTQPbtrHttvn3s7PXuqbOufl73hbDNAhFLeKWjdth4nHuWD3b26Yeo4bo129T8cEsMMzaebFiEby7DyLrqMlbDSaill3bw9OAdK8Tp2Fsd/DTWPuapoHbChE3nETt2p4vDtPGbdcQspue++yXmmrrSvTPDdrm72gymKZRG2ZZnrrfY68RIoZnhwISUJu2hFS9dkpqSLnhNiKtaWdvPqy4jc9p4vt5BYjtPZ9l2fidJkN65TGsd+3EdrGYtd03nG2dZUHY36Xe9xO3DMIZ3Vvkhk9EJJna+utaS9S3Pec0TYNgJMo7n63lhfd+JBa3OWxIJwb37sBeu+fiSmDvCACHHaN67dK6ITaO9FyKZk4lWrIW04pCE89n2zZOg3orEm1vQOI2YrgCG4j78wn/HH54jAjO6o3E0grrAhKovQ6G2HZAUvv821+DNI9l2QSoP+QpbGuSUNn1BQIBxowZw8aNG3eqE0Iq2yVCkhEjRvDdd98luwyRhLMsG8tK7BjjtqKxG+i2/kZCREQSwzCgKhTBLFnBod0MPinwM6h7BuO6lVDmyeCJN4o49cg+2zXUdXsFSSPrqMlkB8sIp3XCsh0UTLoODJOAmVW7NnICuY0Y9qpP2DDnPjKGHoV33/HYmMS+m8+md58gc+SJeAYeQY3dcO4REZFkmTFjBvH4rvn+Y3tpYWkRERER2WF+I0S6XYH5c5DhNCwyjSrcxranMo3b4I+WEX/9Dqw5d/B/R2RxVN4qwvMeJP2jezhiYBZriwMYCe5NErT9hNK6ErdMbNsm6Mwl6MhukV6aHjtA6Zz7AKj6/A1CC58n+vXblL/7BACVHz2LM1BU136yHUyDiGUTs8HhULvJriUajfLuu+/yzDPP8O677xKNRrf9oARbvnw5Tz75JBdffHGrP3dbskv0JBERERGR1uM3QlTO+w81a5dSOOk6ot48jJ++Zt0Ld5I75jzc3YcRsZu+zSwPRPlmaQVD9zqU+JK3iL96S+0Ow8QYdhLPfrieqL2RKycNwUhwF48tey225IiVsJFG3riLKHnlbgCqv3iz3v6sQ04lltZBvSi3Q8yGjWUhXnhvOSvWVZDmc3HMAT0Y1CsPvyt1J7MX2Wz27NnMmDGDsrKyum25ubmcf/75jB8/vtXquOGGG5g0aRI9evRotedsi9STRERERES2m2kaULWR0PcLsYKVFM2cSuyr19n0wp2ATfm8x/CYka2eI1gT4+G5a6joeSTOrMK67e7BR/Paj34WryhnY2mQaDx1J7mM2k7sLnuTe/R5DfZlHnASrr6HUmO7k1BZaonZ8Pr/VnHt/R/z2dIiyqpqWFtUzX2zv+JvDy4gGE3d3xERqA1IbrzxxnoBCUBpaSk33ngjs2fPbpU65syZw/fff8+FF17YKs/XlikkEREREZHtZlk20Yyu5I2r7Y5tBSupeP9pwMb0plE46ToCdtpWz+FxOfjN8I5kbfyMWEVR3fbokrmM6QO7dUwjN9OLMwWHoriMGB5CAJhYxEOVDY6xghUY6M399thQFmL2/OWN7isuD/HwK99gJ3pclkgriUajzJgxY6vH3HPPPS0+9CYUCnHLLbdw+eWXk56e3qLPlQoUkoiIiIjIDonaThy7DcHfZ3i97blHT6bG33GbQ0hy0t2M36+A+MLa5Xgdoy7AMeAI7FgE4/0HOH/M7hx/SC8cKfDm10sIN7U9Z1xmDEfpDzgq1pJmBoh9N5+K+U81eEz1F28S/mQ2XiPc2uWmFtPghfk/bPWQz78roirU+nM3iCTChx9+2KAHya+Vlpby4Ycftmgd99xzD3l5eZxwwgkt+jypQiGJiIiIiOwQp2Fh/fQNwe8+qbe99M0H8ISLtzkZqdthUEkGziMuwnnEJTzwuZPP3cNxDzueyKEX8+zHxfTqnNnml7n1GWFCC57FWvExPiOMo+QHCFVS8fELOGJhyrcISDL3PYbcw8+s+7rq8zdwBLbdVu1ZJGax4qeGPXG2ZNsoJJGUVVxcvF3Hbdq0qcVqWLduHQ8//DCXXHIJVVVVVFZWEgwGAQgGgwQCgRZ77rZKE7eKiIiIyHYzTQN31Ro2zv47m4fYpA88jMpPXqmbo6TjGbdQhb/Jc1iWTWaaj0DH/ryxYDWLV6xh8YpyivfrS7bDyR+OHYC7jX+U5zHj1Cx+k+rFbwOQY9u4svIpeu0+sOJUfv4WBcdeTPFLd5E1/BisSBjDk0b+MRey6dXp5B51LpG0bfe6ac9MwyDN66K8qmarx7mcbfyXRaQJBQUF23Vcfn5+i9Wwdu1aotEo5557boN9Z5xxBoMHD2bWrFkt9vxtkUISEREREdlulmVDegHe3QcR2fADhZOuI+bPJ69DD0peuYus/cdTs5WVberYNuk+D8cf0psj9utJNG7hcztI9ziJt8CEraZZ2+tgy84ppmGDYTYrqIjYDvz9D6b66/eIV26i7O1H6vYZTjfebn0ILv+CTqdOofqbDzG8GZjdBhPHQedz/knYTCNquxLwne26PE6DcQfszn0vLGnymLwsL9lpnlasSiRxDjjgAHJycrY65CY3N5cDDjigxWrYa6+9+O9//1tv27fffsvNN9/M1KlTGThwYIs9d1ulkESkGQzjl5usLf8tIiLSHgRtP1lHnYcZCxN05WHFbFxd96bzH/6B5XAR22LZXqfDwmvXUG356l0zTdMgHLOoDEZ+7lnixu82mwxIvI4YNZYT2659rIsINVbjIYNhgIFFeTBGKGqT7nORa5TjioUJpXUhHrdxmDbu8hWYvixCnoJGgxLDMJoc8mPbEHRkUzjxWjY8ejV2JFS3r+DYSyib/xTRknUEv1uI6fbS4azbqIrWrmYTNbJJ8MrGu6R43GbwngXkZ3vZVN74/C3nHj8Ar9NQj5wEMQyDqG1TGYgSjVtk+Fykex1YcbVvS3C5XFxwwQXceOONTR5z/vnn43K1XKCamZnJiBEjGt3Xv39/+vfv32LP3VYpJJGUYjoMonEbh2lg2HZSwok0IwDRICF3AWDgi24Ch4cAmglaRETaj6DtB4cffn5zGrUcuBxeqt57DFduFzwDRuMiihGspHT+U+QcdT52NAhOHwEjjZVFAaY/t5jistpwId3n4sxj+rF3rzwcv5qmI80IUP3Bs6TvN56wMwtvTTGBL9/Bt8+xRH81rMcwDAKRGNOfW8y3K8sBcJgGo4d04NjeUQoKLaKZ3TA3/UDRMzdjenwUTvobYW8h3mgpMYePoO3B6wRPaCNxdyYh29toG5iGTbyyGDtWO3Gr6c+kYNyFYIOnUy+iJevIHnk87sLdqVr4Et6h4wg3cS5pXLrHwZWn7sPMt75n8bJf5m/Iy/Jy+pi92KNzlgKSBDFNg+KqCHc9s4jVG6qA2pWoxh/ai8OGdsWl6XNaxPjx44HayVNLS0vrtufm5nL++efX7ZfWo5BEUoJhQChm89GidXyweD3Z6R7GH9qLzrn+BjdSLclPgLLXpxPZsIIOk64Dp4uip6biyMgj7/irFJSIiEi75XFYhL54g+C3HwHQcfcBlLz9KLHyIvLHnIdVuoril+7C1aEH1QddwrSH/seW722rQ1GmP7uYK08ZyqCeOcR//uTa44gT+N+LVH81j/DapeSNOY+i2X/HClXhyu6Is++h9eoIxSyuvf9/lG0xj0Xcsnnjsw1Uh/M5tdNC0tOXUP7BM2DFsULVVC18ifQDJ/Lt2mpe+GQV5dVRDhrUgeEFAfw/zcU3fDxhfPWex2HYuMuWU/TMzWDFcWTkkX/k79n02j14u/cnfcDBpO01kuqv5lP5+ZvkHfE7Qp+/gnfIMQ3OJU0LRS1mPLeYPrvlctmkIURjFg6HQWUgwssfrKBP92w8mvw2ISrDca697yPCkXjdtpponJlvfY9lw9jh3RRItZDx48czbtw4PvzwQzZt2kR+fj4HHHBAi/Yg2ZoRI0bw3XffJeW52wKFJJISQjGbGx5eyE8lv8yuvGhZMReeOJh9++S3WhdA2zBxZhZQs/obNj55HRgmdjSMu/Oe2IaprrMiItJu1cRN0gYdTmjZJ0RL1hHZ+CMOfyaRDSsofuVuAOxoDc4992fWOz/Q1HutR1//hhvOHVk3cWtN3EHavscSXvc90aKVbHzybwB4ew3F1WtfIluMzjFNg2WryuoFJFv68OtNTBg6hNirU+u2eXsNJeOgU3jvu2qmP/d93faV6yt5O9/PtSeNxtvINd7AwqoJgWVhON10mPgXyt+bSby6nMA3H24uiMDSjwGo/voDMoYcQcxwbPf9gtNp1g35icUSP09LKnAY4HY5mLtwNXMXrq63r0OuX0t1Johpmnz45dp6AcmWZr/7AwcP7ozfpRZvKS6Xi0MPPTTZZQhaAlhSgGka/LC2vF5Astkjr35DINIyNw1bLslnGD/3ZrF9pB90Kt7dBmDHItjRMK7C3cg+8tzabsciIiLtWIAM8k+8BtObRuncR0nrux/ujj2xozXY0Ro8Xftg99yfL5c1vZzlpvIwwXD9JV1DZgZ5R55db1vu4WcR+lWPDKfTZMGSDVutcVPIAKP2FnjzNXxTxMN/Xv22wbE/bQqyvMJNhIZDZGK2A6tjP/KPv4LCSVMIOHPJOuwMPF1617bFNx8SWPI+AJ6ufcnadxyxrN2I2O6t1geAAZXhGK98vIp/PrOYlz9eRUU4Vnsz0s44TYMTDt2j0X0TDu2FV2/aEyJmWXzy7cYm90djFhWBSCtWJJI8elWRNs/hMFmyorTRfYFQlNCvbqQSwW+E8FavxmXGMQzwx8vxRzbhcJgYNVVEilbVHRsr3wiBMkz9NYmISIL5COChtleEYRikO0I4jLbbbdFpWsQ2rcaqCeHMysf0+ImV/RJaRDetw4hH8Hub7kJuGLVhx2amaeCLFFP03G31jit65mb8VmW9bbYNGWlbDyE8ThPs2g9YNl/DY7E4wXCs0eOXrKi9/jcmajmIdehHOL0rlgXVdjoF46+sC2FqvyGTguMup8ZfSGR7VrMxDL5fW8kV/3qPWW8v47OlRTzz9jKu/Nd7LF1TDu0sJ7Esmz26ZHHqkX1w/vxzcJgGxx3ck733LKgbliU7xzQN/J6tDzLQUsvSXug3Xdq8eNyiZ+fMRve5nCZed2JHjfkIUjnvETY+PgVzwzek2ZUUz7qBopl/I92uoGjmNKxQFd4ee+PbayR2JMzGmVNJN4IJrUNERNo3vxGk8u2HiH7zNl5HFH+slOInpuCu+LFNBiUOw8JZvJTi5+8A26LgNxex6bV7sWqC+Hrujbfn3ljhamJv3c0xI3dr8jxDeheStsWbNScRQkv/V3vt7TWULudPx1W4O7Gy9UTXf1+vLZyxAIcN6dzkuX0eJ7lGRd3Xm6/hhXYx3To0Pq/Y7rkOvEao0X0AcduB9XOnVp8Rpmz+zLoQpvZJLMo/eAbndv7MApE4dzz5WYPhSJYNf3/yc6prGh8OsStzGnDEsK7847KDueWCA/jHZQdz3IE9NJFoAhk2jDugR5P7O+T6yd5GACmyq9CcJNLmWZbNgJ55pPlcBEL1e40cd0gv0j2OhE4iFTdceHcbQOj7BWx64U4Mpws7FsHTpQ9xTHJGnUXw2w/JHP0HbAxMhwt3x56Em1iGUEREZEeZpoERrCD842LCyz8nraKI8I+LiVeXUbngBbKOvIBgI0NAks7hAsPAcPsxPOnkHHoqoRWL8Hbrh7tjDyqdHry99uGALp2Y9/k61hZV13t4us/FmWP3wthi+bqI5cI7cDR52QU4uw2iMu4j7/iriG1Yht1pAHG79p2y2woS+N8zZOftwdEjujNnQf35KwwDLh63O76i98k9fzpFz/+dyMYV2JEwwa/mcc7RRzLl0a8a1DOod0dC8W1f471GDaGFswl8Na+2ns57gmUR2bCc6sVzMVxuPPscR43tafIchmGw4qcKYk30johbNj+srWBIr7wmlybeVdmWTZrLJM31c/tpAtGEsm2b3TtlMrR3AZ9/X1xvn8tpcunEvXE7tNSytA+G3d5eYZsQj1uUljac80K2zuk0yclJo6ws0KITipmmQXkoxpNvLOXTpUVkprk5adSeDOtb2CKfIngccSKfvUjlwpcAcKRlU3jGzVTHfbjMGE47SsiuHQftJYRlOLZvjPE2tFZ7tidq08RTmyZWa7dnQUFGQs6j62bz7MjP22FauMtWUDTrprqeCZ5ue5Ez9iICdlprlLvDHKaNu3Q5pi+doLcjTqJ47SA1a5ZidB+CaceIGS6itotw3GbJihLm/G8V0ZjFQYM7M3JgpyY//HA6jHrhgdMBsXhtm2Znean88l1KXp0BgOeIi/jJ25Pn319FWVWU3t0yGTskh6yfFpCz92FU2RmkUU3pi3fizO9C+oGnUmn5+OTbjTw77wcqAxGG7dWB04/ck+w0F9FfjcRxGVEM2yZC7bXfZ4SJOby4KtdQNPN63J16kTP2IgDKXvk3kaKVFE66jnBa57peJ422n8Pg7S9+4r+vNZwfZbPTjurDkcO6EY+3zOuFXuMTL5XaNGLZLP+pkpfeW0EgHGXvPQsYPbw7WT5HvQ5SyZaq105JDepJIinBsmwyPQ4mHz+AmpiFYYDP6WiRGwTDAGe0irKlH9VtiwcqiK7/AVfHfkQtJ9Et/nTC+LSqjYiIJJxlO3Bk5NX2aIzWzkvi7tiLGG2352LcMojk9MLCwLYhiosoWTh3H04sbgDuumum12EwvE8BQ/bMBxtcTgMrbjf5SfWve1fEthh1YpgOXN0H4e93IMFvPqDmrbsp8Pi5sPeBxP255PbfE4fLDR1GU2XVTrQeIJ3c467AMhyEbB8uAw4c0JFhfQux7c1zl9gNAhK3EcVa/hHxaA2evofiIEblvEfJ2Odoojk96PDb68GTXhdk5Yy7BGoChLyFWw1IAOJxmx6dGh9ivFnPLllY2zqRSDO5TYN+3bLpe9pQ4paN++e/y7YUkIi0NM1JIqnFsvGYBm7DaLFPUNLMMOVv3o8zIw9/3/3JOmgiYLPphTvxRMu3OrG8aRr19jscGiwrIiI7zjDAHyulaOa02mVzswrAdFD1yStEv56Lx2h8idu2IG7XBiRbqg1IIM0IkGaVYxhG7USRsVIyjBAOA6ydnICzxvCTeegZuAq6A2DVBIl89SZ5PXoTcecQsNMIWPVXoguQXtczFGo/lHGbBl6nwRaL3GGavyws4zXClL39KBXznyTy5etUzH2Q0PcLKHnlLrx2iKCnY72ePgE7jaCnwzYDks065fkpyPY1ui8vy0vnvLQG7SuSSLZtY9g2zgT8XYqkIoUkIlswTYOiGjff9v4dL/kn8Enh8VT2OoLsY68kc+QEos70Jm9MHKaNp2IF/nhtkOIxanCt/xL/ViZ7ExERadLP6897uvej4NRpFJ50DZgOMB0t8ibZbcYwt0gGPI7EThCaZgQoe/UuimdOxR8rxVdTxMYnrqVi7gP42fnJz03DwipZTbRkXb3tlf97Aa+9/ec3DPBbFXgqVuAwLRymjbdyVd31PWinUXDin8Awqfx4NuHln2P6Mig46c8EbH+jc4XsyOh2j8Pg2t+PoGth/Ylkuxamc93ZI/BqhRERkRal4TYiPzMM2FAeZupDCwjVbO5buw7TNPjjb4fSf2BfappYus80DTzVa9n49I040rPpcMp1BJa8R8WHz+Df6wDSDz6dkN0GJ9gTEZE2ybYh6MimcNJ12KaT6rjv/9m77zCpqvOB499z7/TZ2V7ovXdRxI5ix16xG1s0UaPml6LGHo0xiVFj7MYYu6AoFuwFO4oIUqV3trfp5d7z+2NgYd0FFtgK7+d5fB733Jm5d84M89773nPeg5nThy6X3kdCubdZ/HNneFSMxJz38A4+iKgrH69dS+ibN8nY92TC2rf9F2gqw8AKVVH6ws1o20bHIyjD3OVZq5FonKqaMJEqG9/Bl2DOexvl8pLYsJTYyh/hvUfJOupyImy/loufMGWT7iQVrKTg9OtRhoOSyXdh+jIpPOcOQjoDT0EvHNmFdcsbe/uOxnJnN8tdd60h4Da45aJ9qQolCEeT+L1OsjNcuIwdS7gIIYTYcZIkEWKjaEpz19PfbpEgSbNtzd+em8V91xxCYCvnpLatUb4cXJ16k1i/hPWPXZ3eYJhkjDiMhHJL3RIhhBA7RGsIqay6+GHZBkEymz2eOBxgLZtFzdevEZzzEYWn/p6K9x4nWbYGtI1n/7OIW7t+yhjWfnImXE3FK3eRLF8LgLvbQDIPv4SI3fQbCUop3EaS2MZjiiQt/v3aPL6dn05Y5Gd7uOb06+nXyUPok6eJLPwSV5f+WE087U3iwD/8MGq+mETZpLvq2v1DDyGFE5+KUP3ef9IJEtMBtk143nQceV1xDzqUeDMUctc6vextQcBFQcBVr709M0xFNGGDAo/DQMtKKEK0e1OmTOGGG25o0H7ZZZfxu9/9rg2OqO1JkkSIjUqrIgQjyUa32Xa6Av+BQ4u2WlAujJ+CU/6P9Y/9Bp1KAJB71KWkcvthNe+IZSGEEKLZpFLg6zUKT59RxJbPpvi5mwFw5nYlY8yJhLdIkGilCMZSxBMpAj4XPqfR5CVBDUNBPIQVqt687+pSVDKKcnibNEJCKYXPqiT0zdsE9jsZpeChd9fy7fxi+nTO4IYz+/Py9LXc/t+Z3PubQyg65Dz8g/ZDFw5o8uibuHbjG3EU8XU/EVsxBwB39yF4Rx9HJOUkQ9eQKFmG4Q1QePatWMEKyl65h9jyH/AMPBDY9STJlpwOGq6u00hbW4vbmjc/W86H365GA4ft3Y1TxvXFbUh9NiG2p7Kyktdff513332XyspKcnNzOeaYYzj55JPJzc1tlWN48sknCQQ2r+JTVFTUKvttjyRJIgTpk67K2m0XwVtbGsQY3hnbbjzj4VZxQrM/qkuQANR89SoF3QaTMrPb/d0fIYQQe66I9pF31KWse/SqurbcYy8nambBxiRIwoZn3l3A13M3oDX4vU5+depwBnfPpimXwX5CFL90O3YshKfPKHQiSnztT5S9fAeF591FqAnTenxGlMrX7sfbdy9C304lvOgbTj7q9wTD+Vy0r5voC3/glP3PBfKZvaSMQ0d2hk4jsHZgGoxpaHTlGmKr59e1xdf9hK5YhZnTh7DOpmDiLaBtoq4CjNxcis69HeXPa96pSYBPRYmuX0koqx8bKqJ4PU46ZTlxrvkeb4+RLTqV17Gx9klTlldNabjvxR9YvKa6ru39GatZsqaG68/fG6fkSYTYqnnz5nHNNddQU1NT11ZdXc3DDz/M888/zwMPPMCwYcNa/DiGDh3aagmZ9k4qPwlBen5vYU7jleQ36dcte6tL7hmGwgxuoObLyWCY5J90XXpob205Ve88gtdINPo8IYQQoj3wE6T01XvqtZW99g+8ifL0ym2GwSufLuWrHzfUJf3D0ST/eH4WleHGR2H+XEI7CexzPN7+Y8g68nJyjvsN7h5DyDrgNBJbqfn1c1HtJfeEa/H2GErwhw+wo0HM9//OpUOqsN/9B9pKkvr6OSYe0o3K2jhKqR1KkEB6lbuyV+8BK0Vg3xPJ3P9UsC3KXv0bfiOO1pqII5eIswDb1qS0QSyjR4skSGoWz+SjFQ6uuf9z7n5mJrc8/jW/f+QbSp1diX7/Fl4Va9Z92kBVOMkrHy3h0dfn8/aM1VRHU2xvQGxVKFEvQbLJivU1VAY334QyDEXc0pQF41SGk6Q021w1UIjdXWVlZYMEyZZqamq45pprqKysbOUj27PJSBIhNsrP8lCY46W0quFqNG6XyYAeOVsdUmzbGivQmawDz8DdbSDJnL7kHt+P2unPknnwRCJ28w69FUIIIZqLw4TUmsUky9bgzO1KwRnXU/nBf4gtn01k3nRco0+gKm7yycw1jT7/o+9Wc+6RA0gmLQxD4VcRItqDZaevfr1E0EoR017cQw7DPfgQYoaPcNxGHX4dlstEN/G+nW1rku4cVPlqcg+/kMqP/ocdDZKY/t/0A0wH5jG/46+vLuXC44Y2aRTEz4UtDwWn/YHY6vm4hx+FBrIcLlyd+hC20lN20omizecETZ1y1FSGoVCRKio9PXjuk2X1ttWEEtz/zgau3zeHjFQE5fA0y2hVC/hqXjH/fWtBvfaXP1jMqYf245j9emz1wiEc3XqiLBhOUJTpxjAUayuj3Pv891RtTJz07BTg/87Zm4DbkBG3Yo/0+uuvbzVBsklNTQ1Tp07loosuatFjOf7446mqqqJLly6ceeaZXHrppZim2aL7bK9kJIkQG7lNg5su2peCn40o8Xud3HbJfmS4t/0jEdduHEOPIJHTl5StCOMnY/wlRMwcCfxCCCHanFKKDDOGaaSDkkPZZJhRLBt01+HkHXcleaf9kRABso78JblHXoJnrwnEbScpW2NtJRGw6YLXMFR6Wd9nrsdVtRzT0PhUlOAn/yX6zat4VYy4dlNj+5j0yTKuvX86v773c+6dNJfqaP3lh7fGNGyM8iWUv/kvrGAFGcMOqbfddcC5/O+7JIW5GRTl7NzIDksrElm9cQ47iphOryTkGHwYydx+WLp1Tp1tW5PK6ML36xpP8qwpCZLoMZaoM7fBOYZhKBwOA9Ns+rEqBWvKwg0SJJtM+XQpC1ZWbfUzyt5aZXsgLys9JSgYt7jjyW/qvi8Aq4qD3PPsTBJSu03sod59990mPe6dd95psWMoKCjg6quv5p577uGJJ55g3Lhx3H///dx1113bf/JuSkaSCLGR1pqA28Gdv9yP0uoYJZUR8jI9FOX68DlVk+4SJXCnx6puFLWaNnxYCCGEaElKKXypCkon/4W8Cb9G5/WBksWUffhf8k+/gYiZjdl9DFEU2tZE8OHqfwjRVDr2+d0mvTtnUhtJ4HU7KKuOEt94ZTtur66kUjYZRpSSV+7GCtdQ9vq95B93JbVzPyW65DtQBq4u/VC99uPptxbwzbziumObu6yCWx7/mr/++kC8G+tguIlhKwdJXf9U1a3jVM94HVd+Nzw9h1E65V4AvP1G48gsIDxzCteeeQsRdyEelUBpOx2bd5ClFdYWz0vQ+qvUWRgY5jZO1R0erC1zKEoRTlgsWlXFivU1ZHid7D2oiNyAi+3dC05peP7dRdt8zPPvLWLQZfvjaiT3kul1cPg+3fnoZ6ONDh7VlUyfE6Vg5YZaEo2M7FlXFqI6HKdgG4mWtqBU+nsQSaSwbY3H5cDjSJ8PaqWIxFOkbI3HaeJzmVjWjo9aEqKp02iqqqpa7BgOPvhgDj744Lq/DzroINxuN//73/+44oorKCwsbLF9t1eSJBF7NK+KYloxIo4cbBtMLHKpJSPXS7fc/LpK+1spRbJLlKGIJ21MU+E0mpaEAXCZNgkrfYZiGGBoi5Te9umPqSw05qbae7hMm6QtQ1uFEGJP4VRJYstnoUwntV+/hrOgO8Hv38XbaxipkuU4uo7CZYXQsSCJjK4o28IRLMbpCRB3BACT684eTVlNhNUbgmT4XMQTFj8uK6NPlyy01oS1h/yTrqPi3cfJP/x8EuVr6xIkhaf9HnJ7UhWzKczxkZ3hpjq0eURBMJJkxfoahvXKxWfECM/5EGdWIa4eewOKhJ2Oewlc5Ey4GhUqp/iF29FWEt+AffH2HkGidBWBEYdSOekOOl14N9Gl32OnEjgHjiOccuJ2dqwlaVMpm7FDCpn00ZIG2/p0ySTbuzlvY2mYsSA9VWbLET+TPlrCwB45XDNxFB5TgVIkUjYO08BU1J3nxJI2y9Zte8h/WVWUSCyJy9fwBpABnHl4f0YNKGDaVyuxtWbCAb0Y1D0Hk3SSLhLb+nI8qR2sG9PSNFBcHeOZaYtYtCp9EVuY4+WSE4eRm+nhhfcW8cPiMiA9iuaM8f3ZZ1Bh0wvUGopE0sZhqo2fQ8u8D9H+5ebmUl1dvd3H5eTktPzBbOHYY4/lqaeeYuHChZIkEWJP4lVRQp+/QHTJdxSedQtWoAuqdDHrX/0bWQechmvYEcR34u7T9hiGojaWYsqny5j1Uym5mR7OPmogfToHtvsP0k+Q6I/T8Q47nLjy4QmvI1VdjLPLiAZ32zZxKBuzdCGmN0AssycuHSM57xN8gw4kYmRKYBZCiD1AwnbgHTSOvMKeJCvWEVs1D/+g/fD0GIIztwuKOGWv/hWcbvIOvwArXE1o5QIig48jTIJvFxQzfdY6nA6DcaO7YZoppn25gj9dtG/dyALbhnigBwXHXEbxpL/g7TGU3MMvwMwqooQ8Xn17GXOW15Cf7eWcoweycGUVn3y/eeRBcXmQ/XqahGZ9hK/nMMreeojC07sRW7UAz8CDsZQDo3gB2p+NCuTh7jEEZTrw9d+b8rcfASCw15EUnf4HYku/p+rDdJ0SVyzFRzW9KY8anHpoXzI9jmavIdIS/CpCYsVnXHZ0f/7zweq6Yy7I9nL10UWkvnqOwIETiSkfPywt58k35jf6Oj+truKeZ7/nd+eO5sUPfmLesgoKc7yce/QguhX400mMJh6T2kaVVaeC4b1yGNorBw2YbK7VYtuaft2yGn2e1+0gJ6P91G4zDMXCNTX87bmZ9c6RNBCNp7j+oS/qJaKqg3GemDqPOUs7cclxQ3Bua5aTgppYikkfLmb+ikqKcn3pzyHfJzUQ9lDHHHMMDz/88HYfd+yxx7bC0YhNJEki9khKKcx4LZGFX4K2KX3pDjLHTKDm69dB29R+9yadh48jrps/SRKKW9zwyFd1Rc5qwwnu/t93XHn6SPYfsvVMrc+MUfXmQ8TXLsJXXUJg1FGUTroLnYxRdN6fsTJ6NDjpU0rhSZSz4bV7UaaDgjNuILJ4BqFZ7+Fc9A15p99A2Kq/fKDbtIhb5nbbhBBCdCxOkqyfci86GSNn3NloK0XFe09iuH10vvjveHqPJDD0QDa8cAc6lcQ4+35+WBXl01lLWbG+tu51Jn24mP2GdWJE/wIenDyb358zum46h0+HqJ7xBjoRI7L0e3QqSWz0Wdz4zKK6kQS14QQPv/ojF58wlKVrA6wpCQKwf18ftd+9TXDWe0RXzqPghKsonXIvVrCCXI8PT/chrH/9nyiHk8IzbiBrzHEYTjexDZtHWgR/+IDY6gUkK9bVtVnxKLa2+XTWer5bWMI9vz4Q3zavZNueYSiI1hCf8Qqjug/n3nOPp9aZj8uhyKhcBB/8nWgyQdbYE4ni4X9vL9zm660qrmXhykpmLy4jEktRG05w+39m8Ifz9mZIj2y8LpPhffOYu6xiq6/RrTADv3fblw6bzkMU9WYfA5DpczLxiP68/OHmz8tQcO3EUXhdBrqdzFYJJ2wenDy7wU2kCQf05vn3Fm21Ns+384uZsH9Pehb4t3oDqjqc5PqHv6ybqlYbTnDbk99w44VjGNA1s0Mk70TzOvnkk3n++ee3Wbw1KyuLk046qRWPCqZNm4ZpmgwZMqRV99tetO8IIUQL0VoT9RRScMYNoAx0MkbNV1NA2yiXh6KzbiVMRrPv1zQNvltY0mgV+GffWUhoG0NRY9pDzuG/QLm8ROZ/TsnzN6OTMfzDD0X7CxoNrFprUq5MAvtMQFtJSl+6g9Cs91AOF7lHX0pU10+Q+FWY+Dcv41fhzW0EiX87GZ+K7MI7F0II0ZZMZZMKVpBz0OkAVE1/keovJgOK3KMuIYYL39hTiSybTfYBp+Dq0p/pc4rJz/bWS5Bs8s28Yob2yWPx6mpqIumY5iVC1cf/w9d3NJ4eQwGwYiG+WhxsdKrFa58u5Ygx3QEY2ScbZzJIxuADcGQVkCheRvFLd2IFK3B3HYir50iShofA6GPQqQQlL95OyeS/UvrWv/H2HEn+sZfXve6WCRJzrxP5PDGEKV+la6CEo0m+W1iyQ0VN24Jta2LeThSe+Ses9YvolGnSq1MWXfMzyMvNRFspCs+6hYgzj8pgnNpwYruv+dXcDYwZ0qle23/fXkAsZWOgOfuogdt8/oUTBuNqQnHdrTGBI/buzt+vPpjzjx3EL08ezj+vPYT+XTPbTYIEoLQq0uj3NSfgpqyRFRC39OYXK0A1/t2yLJv3v11dlyDZ0lNvzSfezqYcidaRm5vLAw88QFZW4yOtsrKyeOCBB8jNzW2xY7jkkkt4/PHHmT59OtOnT+eWW27h6aef5rzzzqOgoKDF9tuete8IIUQLsmwFBf3IGHVEvfbsQ88lkdG1ReqQGIZiwYrGCzTVhhPEk1vfqW1DIqMLOYedX9emnB6yx53TINmxpZj2EBh7MoYvs64t68DTSWX1qPce/SpM5Zv3E/zhfSrfvB+/CuMnSMWUewh+/y417z8miRIhhOjA7EQMZTrrEhgA3r6jcHfqg60dUFtMzYw3MH1ZOHuNYk2VRWVtbKuvl0imL/Y2XVDaysSZ143y958i78j0UpVGdicWFTd+AV8VjFOQ4+O6k3rxyzGKTDNG+btPUHDCVfUel3fC1YS1Px3PDjgVw7vxJoa2CYw+hmRGEf7B++PuOqDe8xyZBdT2OJiXP19fr33BisomraTT1ixbkcjqRZdL7yOR1QvLhpRtkMofQJdL7iXm74pta6Lxrd9g2VJ1ME6Gt349kbKqKClLozUUZXv4v3NG43LUvzxwmIrLTx5O706BXR7pYCrI8zs5YnQ3DhhSSKbb0eoFcbdFKbXV73yyCctJl1ZFSW6lgGs8abF4dXWj24orIqSk8Osea9iwYUyePJkrr7ySPn36kJOTQ58+fbjyyiuZPHkyw4YNa9H99+7dm1dffZXf/OY3XHXVVfzwww/ceOON3HDDDS263/ZMptuIPZZD2VCymNDsD+u1V3/yPIVFfbH8XZo9UWLbmqF98/huYUmDbVkZLtzOrU9pMQyFs3YtpR8/U9emkzGqPn6WjIPPIaq9jT7Po2LUfv0admTzncCaLyZT2HUgqcye2PbGOcbxEMmy1QAk1i+h4rW/o1NxUpUb6tqMVAzMnVtSUQghRNuxtIEjrxfUlBJbvbl2RXTZD8QGH4Svx2DWv3wX/kH7YcVCJFf8QI/cfuRmbj0Jvylm+T3p08m4duMZcTSdB46h/MOnAbCrNzC4i5vZixs+PzfTQy+zFHv2w6SClUTHTCD/mMsonfqveo8rn3o/uSdei42D2i9ewY6G6rbVfP4ynXoPJ7R2EfF19XeSqi0jc+WnnHvoCJ7/dPPokqF98+pd7BuGIpK0CUeTuF0mGW5Hu6mkadmKWrv+Z5CyDWptL5uyC153007ncwJugpH6CauiXB9ORzphpDQM65XDfdeOY3VJkHWlQQpyfPTpkoXfZdKc2Yz2uhKM1prcrMa/807H9u8tF+Z4cZgKGkkmuZ0mg3rmsHh1w1VKOuf7cbTz0U2iZeXm5nLRRRdx0UUXtfq+b7rpplbfZ3sn/xrFHkkphSdeRtmrf6ubYpN10Jl1U29KX7qDDMLbf6EdZFk2+wwqJNBIZfgLJgwmw7P1JImHGNWfPLtxis1hdDr/rvTUmwWfo8Lljd4VU0rhSNQS+uEDlMNF0Tm3EdjnOLSVpOrD/+IlfbckPf2oiMKJt6Cc6TosydKVdQkSw+2j8OzbiDjzmqMbhBBCtAE3SSo/eQ5Q5B1/NbnHpKeoVH34X9CQf8JvyBp7AtVfvkpiw1LGjepMWXW00YKbB4zozI/LyhnUM4fMLWKaUlD95RTiq+YBYGYWsn//AH5vw7h34fgu+GuWkTvuLDAdaMsivOjrjVNsBtDpnFvTU282LCW5ah4OO0Zozscop5uic+8gMPpYfH1HE1v6PRXvP1X3us6CHnX/b815m/3Vj5x5UGcAAj4n+wwsrLtI1woWrK7m+oe/5Pf//oJr7/+M5z9cTKJ95EiaJDfgJqsJhU8PGNGF7xbUv0lz8fFDcG9xca5tTcBjctCorhwztgcjeufidxm0q+EeLawox1uX+NtSZW2MwpzGb0htcuLBfRpNkEB6yvWR+/bA42p4rnfJCUNxm+1/dJMQewqldTtJlbcxy7KprGz+i+LdncNhkJPjp6oqTKoJwxDbE6+KEv7yZSKLv6HorFtJZnTGKF9M2eS/knXwRJyDD22Rwq2GoQjGLd74fDnfLyolL9PDxKMG0LMwA7fDIOBIEE1CzHKgFPiNGBHtwbbBT4jYoi9wDT6UuPLgjRaTqi7B7jSM5FaWAXYYNo6yRRjeALGM7unVbX76Ak//fQmrzHqPNU1wli6k7NV76rUXnXsH8cyeWB1wvmxH/o62V9Knzau1+7OgINAsryNxc+e05b8fwwBvZAOp2jLsoqGARq2bgzO/O1FPEQYWDpIY4XLscDWqsB9lMZNwLMWsn8qYPmstTofJuNFdcTpMPpyxiht/sS9ex+aLO6XAFyum5KU78Pbbm4yDzsUwoLislqnfljF7eQ35WR7OOWoAPVhHIDeX6Kp5uHI6o20LZ15Xwgu+wN25P2VvP0TRGTcQX/cTRt/9sZQTR+lCDH82MX9XXDqGXjcPZRiUvfEgoMk84DT8o44hvuxbKt97AgDXgefyYWUPgkmTEw7uQ8Bt1o0kqQgn+P2DXzToq+MP6s3p4/pgd4C4ZxiK2csruf+lH7b6mN5dsvi/c/Zi8kdLmLusgsJcL2cfOZCueQ1XVdnTf+OVoViyrpa7n/mu3oCi/GwP5x87hAcn/dDoksUHjOjMhccMwtnITau6Pq0OUxlK8uonS5m/vIKiXC/nHDWIzrleuXO9gzpq7BQdgyRJNpKTvZ3T0QOpV0Ux7TgRMxvbBtPQ+OxaEsrTIgmSLSlDEU/ZOAyFqRRaa/xGjNqP/4un13CMvvvhSIaoeO3v5E749ca5x+AyNQlr49BYBSYWqa0kSDYxlY1WRt30oS1fY0ubapAky9fWa3d16U/uCdcS1v7mefOtqKN/R9sj6dPm1VFP9CRu7py2/vfz87jhUDa2Mn82/QSUtrF0+rLNNDUpDKJxi5pQgg3lIQpz/RTleHEZDWemGIbCZ1VhGe66qaA+FUEDtbYP01A4lMZEo3QKs2IpViyK0W0YCdz4zASRHz/GkVUA3UeitUHSTsesxuKZoTRq/VziZWtwDjuSuHbjVElY+S06lUD1O5Cw5cTtMNBbvE+Hw+DZ9xfzwberG/ST02Fw/7WH4G3CFIv2wAK+X1zGf96Y36B2xtA+eVx12gjcpkIZikRKYxoKU+lGZxW19Xe0XVCK0poYz7+3qG7Fn855fi45cQjZAQ+TPlzMdwtL0BrysjycecQA9uqXj2Mrg0Ea9KmhSKY0pqkwafxzENvWUWOn6BgkSbKRnOztHAmkzccwFN7QaoqfuwXQZI49kfCCL7GCFXh6jSDrmCuJ2C2XuPl5gkQ5XGhtg5UuCNdREyXyHW1+0qfNq6Oe6Enc3Dkd/d+PUgqlaNalSp2k62Qk2TxlxEUcrUySevv1NhwOgyy/g0gwRNTe/BpOlQRtk6Tx2OlwGtw/6Udm/VTa6PZ/XTeODPe2b0K0J8qAcNxm6boaVqyvIeB1MXJAPtl+FzvyLjr6d7Q52UoRTVhoW+N2mbhNlf7uK0UkYWHZNm6niddpbHO0rfRp8+uosVN0DB0jPS72aB4jjrHxm6oUeM3tL3PXEdm2JpXVjcJTfgsoame8Ubf0YfbRl7dogkQpIBnDCqZX3jHcPorOu5Ois2+vq1Fi1ZSCtXv2vRBCiKbRWjc5QeJQNgEzWlczSynIMCK4VP3VWJK46iVIABK4m5QgSb+uwk7FSRqejftN4SJBUju3miABsC3NuNFdG93Wt2sW3g6UIAHQNvicBqP65HLaIX04cp9u5O1ggkTUZ2iN32mQ4TZxbpkc1Bqf0yDgduAyVIecjiyE2DpJkoh2zaeiRD5/Dm9kA6aZHr4b/OBx/IS2/+QOyMbE1akXyrG5wJ2nz14k1fYLsu0KrSHqLqTw7NtwZBVQePZtRD1FxDK6UjjxFhxZhRRMvIWI2XJrtAshhGg+htKYavOFm9Ow0wnxVuJQNo6KxZQ8ewPeRHk6htu1lL38Z/TqmQ0SJTvLMBSuSDEV7zyOxw7hVBZm8XysJZ/hUttO7Nu2ZkD3bAb1zKnX7naZXH7K8K1OnWjvbFuTStntdgUZIYRo72QJYNFuOU1ILp1JeP7nRJbMJP/4qyj74D9YwUrMQA6e/c4ibrXe/RFDgV+FSGgXce3CpRJ4VIIwGTTHeYhS4E5UsuGlP6NTCUx/Fla4lprPXyLXm4Gz174N7rQ1J9tOr3BTcM4dRLSv7m5JLKMrBefcQdj2IrPzhBCi/TMNjbt2NXYqAbl9MXUKveI7fN2GEHHktEr9A58RY93GFeRKX7qdgpP/j/J3HiVVtYHKdx6l80V/I+kq2uW44lNRyt+4n2TFOqxYGN+g/Sh/9wlA07nXSJKuwm3uw20orp24F2tKg8xeUk6XfD/D++YR8Djq1S8RQgix55CRJKLdSlrg6LMPvqGHoBNRyqb8HStYibvbIDL2PbnVEySe0Bo2PPlbkos+JcOZxF76JeueuBZXzQoMozlOpBRYKXQqjrvrQAov+Cv5J10LKFKhaoxWWH7PtjUhy1tvKLVtQ8jySIJECCE6CJ8dpPTlOyl75a84y34i9dN0Kt97gvLJf8FvRFvlGKLaRd5xVwJgR2opeeFWUlXpZeWzDj6LpCu7WeJK2PaSf/L/Yfqzia38kcp3Hwc0uUdfRryJ+3AZ0K9zgImH9eWgYUVkuExJkAghxB5MRpKIdi2Gl+wDTiUy/7O6tuxDziKqMhqW029BChs7EUFbKWqmv0BkwRcky1aDMtDxKErbsIuzfrXWxL1FdDn/z1iGm5DlxdlpGJ0v+TtJR6DFV9sRQgixe0goN5n7nUzNl5M3L+muDHKOvJhYK8WSpO3A1X0vssedS/X05+va/cMOwTXsCBK2g0xHlLDtwbJ3fl6L1hrLm0tg76Op/uxlAAxfJp6++xBMObfz7C1fBymoKYQQApCRJKIdUwp8VhUlL92xqQWA0lfuwRtZX1fMtTVY2iCV25/8U34HkE6QAPknXkOqcBDWdpbgbSqtNa6CHsSMjPR+tEnYkS8JEiGEEE0W1258o47Cmbe5KGnGqCOgaBApu3WCp1LgTIUI/fhxvfbo8tk44jV4oxtY/+R1OCuXYu7CaEynsrDXzKH6s0mb9owdqaVy2kP4VGQX3oEQQog9lSRJRLtlKE2qfE3dFJtuVz5aN/Umtnoepk627vGQwqourteWrCrG1M1TfG5rZJaLEELsXlKhKgzSoxYMQ+E3481aVNWlEkTnTydZsa6uLTTnI4zyJfjMWPPtaBt8Okj5K3fXTbFxd+kHbJx689Lt6HAloCif8nf8xs4fk5PExkRMeopN50vvw/RnE1/3E0Yy0qrFaoUQYlfEYjGmT5/Om2++yfTp04nFWuf3epPXXnuNk08+meHDhzN27FguvfTSVj+G9kKm24h2y7IVRtEQCs+4ESO3KzVJNxkHnY1/0H7o/L7EddOH0e4qp2GjV35P1cfPgDLIGHEooR8/peazF8lxeXH2O5CkLYvstTTTNAAtS+0JITosjx2ibOqjZO53Mjq3L65YGZXTHiL3+GuImNnNkhh3E2f9Zy+BMsg76hKsUBXVX75C+TuPUnTq7/C4c4nh2fUdbYNWJo6sQlJVG8g+ZCKeHkNJrF9K5cfPYPqy0kVlNRScfj1he+ePJaK9ZB99BbpyNXZeP8K2g4KzbkEnYkRc+WiZQSOEaOdisRiPPfYYU6dOpba2tq49MzOTk046icsvvxyPp2V/sx955BGeeOIJrrjiCkaNGkVVVRVff/01lmW16H7bK6WlGiMAlmVTWRlu68PocBwOg5wcP1VV4Raby2sYql4hUdNs/fXolVL4UhWUTbqT3CMvhc6DoXQxle88QsGZNxN15dc7xp3VGv3ZEaU0VNTGmb2kFL/XyYi+BWR5zSZdTEifNj/p0+bV2v1ZUBBolteRuLnjHKbCWPUNFdMeAcNBzvgLqPlyMnY0SMaoI/HsP5G4tev3r0ylcVcvxQpWEpo7HXe3ASjTgauwJ/GyNTgHjyfewkkSAJ+KYG1YDJ2H4HAYROe8hzMzD+V0U/72I+QeewV2t9GkdvEc3OEwyM72UV0dIZWyUUoBulVGYpqGxk2MiO0F0gkqsInjbfmdtxD5jW9+0qfNr6PGzp+LxWJcddVVzJ49e6uPGTVqFA899BBud8tMv1++fDknnHACDz/8MOPGjWuRfXQ0MpJEtBtOlURjkNpY38NtJEniapB8aItRBFprIo48is67i6h2k0oqHLn9KTr/bsJbLJcrml9Kw+ufL2faVyvr2gxDccMF+9CvS6asQCCE6DBSlsbbcy+yDziV6q+mUPXhUwB4++6Nf+wpRJohQQJgaUUipx/e7BCJT54jtmYBvoH7YsWiePY5iZjdcsvJbymifZhd98Kjo1CxmtpvpuLM70qyfB06laD2q1cpOK0fGA7C+OtiqVvFcZEiREaTV8BRW8yraa37f6ahcVWvoPqzl8g5/jekDBfJ+R9jx8J4Rp/QakVyhdgRSilsNClL43IYch7Vxh577LFtJkgAZs+ezaOPPso111zTIscwZcoUunXrJgmSLUhNEtEuuFQKVv+Ao+wnHIaNT0WJzZiMN1GOYWx/QrFbxfGwec6cz4jiMHYsq2wYioQNZcEE5aEE4aSNxeYTL601QctbV/QupQ2CP1suVzS/qlC8XoIE0ksVP/DybKJJuRsjhOhYUoaXjKEH1WvLGHUEcVV/5IEyFJGkTVkwTihhobYSC30qit8I41QWhqHIcCTIMGOYDpOqmEHo4GtIHvsnkv5OxNb9hGkn8BtRHGpTTRTIMGP1kgzNya3i6IpVlLzyN3QqQaJ0De6uAwBIVqyj7JV7SJUuwxsrwTAUbhUnOe9DSp67EV+yvMWOqzl4VYyqD/5DfP1iKqf+k/jMqdR8/jLBmdNwpMJSD0W0O0kNi9fX8vcXfuCWJ2fw1LRFVIQTaPmutolYLMbUqVOb9NipU6e2WH2QOXPmMGDAAB5++GH2339/hg0bxllnncWcOXNaZH8dgYwkEW1OKXCnalj/zsPp+dPHX01wybdEFn1NfNVc8ifeSmgbw4I9Kk58zjvoZALvmJMwdJLKNx4ga79ToLBplfyVUqyvivLPF2dRXp3+AerXLZuzjhxAQbaHLK9TkiFtwDQV81dUNrotFE1SE07gyZQ7dUKIjsEwFO5oCetfvB0A5fKiE1HKXruXwjNvJJHdG8tWWBq+mL2eF9//iUTKxjQUEw7sxfEH9Ma5xcWMX4Wxy1ZQ/d3bBEYfg6dTb6zSdVTN/ZziwWfxwKS5VIfiAAzr05srDh5B5Vv/Inu/E3CYLozCgTiDGyh/61/knfJ7Io68nRqF4SKOZbjqlvL1mklithOtIW478QVycWQVkKwqoWDC5ViRIK7CXtR+9xbuzn1IlK6m9u1HKDz7VqJLZlLz5WQAyl6+g6Lz/0JQ+5t8LD4VxdApwipQN93GpyIobRMmY4ff27aEbS95p/6B8sl/IVGynETJclAGBWdcT9SZI/VQRLuS0vDyh4v5+Pu1dW0llRG+mLOO35+7N4N7ZMl3tpXNmDGjXg2SbamtrWXGjBktMtqjrKyMefPmsXjxYm699Va8Xi+PPvooF198Me+//z55eXnNvs/2TkaSiDanNcQdAXLGXwDapuLNB4gs+hrD7SPvxGuJ6G3P63XqOMGZ0wh+P43wFy9S+cZ9JNYvoerj/+Eh3qRjCCUsbn9yRl2CBGDp2mqeeWch3/9URlTmj7YJrSHTv/Vh4U5TfsKEEB2ItrHC1enpGH1H0+WyB8jc7xSwUyQr1mHYKZRSrCgO8r9pC0lsjD2WrXnz8xXMXFS6sYB1OolsVxdjx8PE1yykfOr9hL5/j7K3Hyba/yjufPr7ugQJwLzlVTz+RQjfYRdT8+3b6REcc6ZR8tLtJCs3EJ77MS6146vGeVSc1PwPcVWvwDQ1fhUm9MlT+KxqlEoXYY95Csg/7koKT7yampnvUPX5JAL7TKDojOtxde5L9ReTseMRip/+Y12CBCBzv5N3qEi7W0cITn+Gssl/wWfXolQ6QVLz3qNUvv4P/IR2+P1ti9ZgmT48vUfWtZm+TBy53eoSRkK0F2U1sXoJkk20hgcnzyGSkHPd1tbUBMkmwWCwRY5Da00kEuGBBx7gmGOOYdy4cTzyyCNorXnuuedaZJ/tnVxhiHYhoV14Bx+EmZFd1xbYZwIpX9F2R3CEjUwKJ96EcrgIz/uUxIZlOLIKyD/jRsLbSbBAehTJivU1xJMNK8etLg6SE/BQWdu0ZItoXratGdA9G6ej4U9Vv25ZZPlbb4UjIYTYVbZW2Pn96HLhX8g+8jJqky7cI4+h0/l3YvTZjyRObGDKp0sbff6UT5cS3RirLEtjZfdAeQLkHDIR0NTOfBvTG+DHYo3VSOz8cVklNY48PH32Am1T88UkdCKGb9g4vHsdT9zesQHGpqkwatZR8+VkSif9BceGeVS+eT+RRV9T/d5jeI04SilcsQrKpt5H5SfPkyhejk7GCM7+EAr64eqzN878rg1eO+fwCzH6HUhCN61+ihUNEf76VSKLviZVtYHyV+4mQ9dQ896jxFb+SKJ0JZVv3r9Lyw3/nFvFScz/iNAP74MyMNw+rHA1Fa81f0JGiF3hdJp8MqthgmSTaDxFhZzrtrrMzMwdenwg0DLFYzMzM8nOzmbQoEF1bdnZ2QwZMoSlSxuPR7s7SZKIdsGnolR/9F+sUHVdW81XU1DFC7ZbW8S2wQjkY/g2/9C4OvfHNr1NqmyvFAQjW797lrJsEo0kUETrCHhMbr1kLLmZm6dcDeyZw3VnjUYWXRZCdDSWNvB07U/cSE8hiWk3UX93EhtHTFi2JhRtPCaFosl6cS2lXDhyOuMq6l3XplweamNbD37xlMbTa3i9Nl//MSTZ8WKulqWxs7qSuf+pYKcof/1eEuuX4MgsIPvoy4nabnxGjKp3HiZVU4YjpxMFp/4BDAe1X09B1W7Adnhxdx/a4LXd3YeSUk2fTml6M8gYfTSGN30RkarawPrHryG28seND3CQPe5cYjTfFE1DWyQr1tZNsSm68K84souwwlVg7/ioHCFailIQiiS2+Rg51219Y8eObXKiJCsri7Fjx7bIcfTr12+r2+LxPTN5JkkS0eaUAiMZIbr0ewy3j06/uKdu6k3NN6/h2s6UGb8KUTH1n1i15RieDJTpJLLoK6LfvY5Hbf+OkW1rBvTIbnSb1+1Ao8nLavmlEkXjtA3d8nz85Yr9+dtVB/HPaw7m92fvhdchQ5mFELuHLUdMuhyKQ/ZqOLIC4IDhnfE406duhqHwJiuwqtZT9tZDAJgZ2STL1zKqS+Mp5NxMD9kui9KX7qh7PED56//EUbkEU+34cPuYdhMYfRTK3DyyL+ug04m7stEaIrabnOOuxj/8ULKOvgKjsB+FZ95I9vgL0f484nPeS4/E+JnSF2+rK+baVHFvEYVn31qXKKljOCg8408ksns16zSYKD4yDj6PzhfeTTK3P2GVSf4ZN1Jw1i1EzNxm248QuyqVstlvWOdtPiZfznVbncfj4aSTTmrSY0888UQ8npb5jA477DCqq6tZuHBhXVtVVRXz589n6NCGSew9gSRJRJvTGiKuPAon3pQu2ubphNH/IPJPvIbcE64hYm9nyoxtY8fCOLIKKDr/LgrPuhnlcGGFq1BNrECV7Xdx0rg+9doMBRceNwSfx4HfLWMW2pJta1yGIj/DRbbXKT9cQojdlm1pDhrRhW6F9YuM5gTcnHZov7rlOrW20ckEWCl0KoG33950Outmsg84hdzq+Ry6V/0LIoepuGbiKAKpSrSVwj9sHEUX/o2sQ84GnY6jih1PkvhVmLLX7kVbm0dOVLz7BM7K5ZiGTsd4MxvfgecCUPvJUyiXG9eAA0mtmfuzGiQn1U29seMRSl+6Hb8KN/lYtNbg8mMG6hcZNNwezMx87BZYwiOqPYTdnbBshdYQVllEzJxWW4ZYiKbYNH15y1G5Wzp0724EvDKFuS1cfvnljBo1apuPGTVqFFdccUWLHcMRRxzB8OHD+c1vfsO0adP46KOPuOKKK3C5XJxzzjkttt/2TGn5FQfAsmwqK5seiEWaw2GQk+OnqipMqonFTQ1D1d0123SHyLY1hgLU5m2mqbCs7X89lQKfXQtoIkZW+u9EBbbTt92ir1uyNFSE4sxaVIrTaTKoZy5Zfic+l9lqF+U7059i26RPm5/0afNq7f4sKGieOc0SN3dOUz/vuK1ZXRJk8epqenXKpG/XLLxOo97Ft2GQLpBqp7AcPlI4cdshsG1qjGxKapLMXlJGdoabYX3zyHQ7MJSNN1GB5cwgqj24VQJXKkjMmUVyB2uSGIbCE1xFyYu348jIpfDsWwj9+Am1X0/BN/gg/IecR0ynL8p8RKj9+CmiS2eC6aDwzJtwZuZSNvV+EsXLyT7wNHxDDsZwuqj48L9EF39H3nFX4+o6gJRyEdNbnyazqU+jFaVUvfvI5ik2Wz4mpzP5p99AxMhs0lTcPZn8xje/9tCnSilCCYvHX5/L3GUVADgdBsfu34vjDuhVb+WsjqCjxs7GxGIxHnvsMaZOnVqvmGtmZiYnnXQSV1xxBW53y67mWFlZyd13380nn3xCMplkn3324YYbbtjmVJzdmSRJNpKTvZ2zoz9QfhXGrlpPKqcPlnLgjZUAEPVsv0DrjlCKnToJchg2PkeKuPKRStk4rQgGFhGavvzgrmgPQXR3I33a/KRPm1dHPdGTuLlzduTzVgpM08Cy9FZHJqiNFzabNv/8b9NMJ1a2jLE/j5E7GzMBTEPjql6BkZFLxMzGTRxdvAiz04B6Nyp8hKl5/7F6NUIcmQXkHHgadjJGKhLE07kPpa/fR9Hpf0TrdL2x8tf+hqfXSDyjT9hqosThMMj0aMo/eIrw3Ol1r58z/gJqvpiMHU2vCOEq7EXuadcTtmRawbbIb3zza099aqMIxpLEkxZ+j5OAx8Ruwk3J9qajxs5ticVizJgxg2AwSCAQYOzYsS02xUZsm4xaF63GryJUvnkfpZP+gtowF2+8lNKXbqf0pdvxWVXNuq+dTZA4Shey4anf4QhtwEWM2MypVE97cIeG+wohhBDNQet0LYFt3c/Sun7M+/nflmU3uAnx85fbmZi5KRlj2Yp4dh+ijhy0TtcoSXUZ1WAkZwQ/WUdfgafXiI1PTJGq2kDZtEcJLfiKwNCDKH3tPnQiRsnLf8GKBil/7W8ky9YQ/O4tVNWquuWPG2N6M8jc7xTMQG56pMoZf0L1H1dXo0Q53eQcfRlRLRccYs9moMnyOCgMuPE7jQ6ZINldeTwexo0bx/HHH8+4ceMkQdKGdmxcpRC7IImLjOHjqVy/lIo37gcUoPEO3B/bcEMb/0Y7dZzgvOnYkVpKX7odd+cBRJfPQjlcEAuiPBkyx1gIIUS7pZSqm6raUvGqboprKknUlZ+uGaXjOOJVxN35JLVjq1NlI9pH3oRfse7hX21utFN4eg4j7ghQeMb1lL58F9pKUv76P+seknnAqdg5PbGsbd8tjrtyKZh4CzoWwg4UkUxpLFcBRefegU4lNo5abZZuEEIIsRuTkSSi1SS0A6PvfmSMPnpji8aRXUT24b/YodohLSWqvWQedhGevntjR0NEl89KV8SfeDNRTydJkAghhGiXlIKYpVmwuprXv1zJwjXVxCxdN9qjufhVmIBdRfkrd1P28h34EyUEzCjxOe+w4enrYc0snCq1zeeXv/mvBu01X09BVawgld2TvBOurrfN03sE3lETiG+jJskmWkPUkYPh9hGbORWvimFoi1R1CcmKdZhs/diEEEKITWQkiWg1hqFwRMqJLPiirk2jqKiNURa1SFmaghwvfpfRZqNKbBSmP6vub2UYKJdn1yZstwMulcDUKaL4gI3F/lSUiPY1ay0YIYQQrS+S1Nz2n28oq4rWtRXl+rjl4rFNXi7dpRK4VZIwGdi2xkd6mummmlx+QgS/mIS3x2BSVRsAKHn5LtxdBxJZ/C0Awe/eJK/HMJK64emljzBV0/5NfE16iUnlcOHIzCNZuQGsFGVT/k7n8+6gbIvVbgDiqxdC9TrMzB5NWr7Xp6KUTfk7qaoNWNEgvn57Uzb1ftA2XS65l5QjryOHcyGEEK1ARpKIVuNTEcpe/St2LIx3wFhyj7mc4EFX87vH53DLE99wx1MzuPa+6cxdUbUTixDuOg9RYt9NJfzjxyiHC2dBD3QqQelLt+NNlDX7HbnW4lYJUoumU/vRk/hUBMNQeCMbKH3uJrzR4roVhoQQQnQ8hmHw9lcr6iVIAEoqI3zw7WoMc/u/8S6VwF76JcXP3IA3UYbfiFLz4RNUv/twXU0urQyscA2RZT+Qe9j5AOm/NyZInAXdyTvlD4RtX+M7UQaGLzv9vw4XhRNvIn/irXU1SvKPvZyyNx4gWbYGAE+vESjTibaSlL58J+7QuibFq4j2kH/Cb1AuD5F509PTdrRN1rhzSTgCkiARQgixXZIkEa0mor3kn/x/+IeNI/OwXxDpNpa/vbaScGzz8FfL1tz/8g+E4larH5+lHDjzu248ebuZvNP/hLf/GAxPAByuDnliZZoKVbaEmunPE1s2i5oPn8QTWk3JS3dgBSsonfRn/CrS1ocphBBiJ8VSFl/9uKHRbV/8uI54cvu3HUydIrrix3RNrhdvp/K1vxNbPptk+RpUKgGk64lkH/srklUbMP0BXEW96r1G3jFXEDUyt7qPiPaSeegF+IceQuHEm4gFehCyPGQdfQXeAWNx5nXD03M4AJn7n0rWhN9QOPFPKNOJI6sA5c1s0shH24ZUoDOZY07Y/P4ycvAPG0dcu7b7fCGEEEKm24hWY9sQ83fFd+A5RLSbylCcqmC8weO0hqVrq9mnf36rTgVJaieu3mPpctloQrYP24LM8Rdj6BRhFWjzwrI7w7I07oI+eAeMJbp4BrFls4gtm5XeqAzyJlxJtAnzvIUQQrRPhlL4vU6qQw3jaYbX1aTRF1F8ZB15GfrdR4ivmksiGsRw+yg861YizlywN9Y3iVTj67c3sfVLSZSsrPcaZVP+RsHEW4g487dawyuivfgOOoeY8tQVUI1oH4HxFxPGjWfvE/H2GYXO6Ukk5cDM7EXh2beivJmE1dYTMFtyKBtVspiar16ta7NCVdRMfx7/gWfL6jZCCCG2S0aSiFZl2+nlAdurhHZSa/nYlJuJaC8hOvbw3Ij2knX4xbg696vXnnf8VaQKBpKy5WdACCE6KpepOO2wfo1uO/XQfjh3YUqlrTVxW2OaBhlGmOrPX8b0ZxOc9T4AzvxuZO13EpCeelM2+S4yjOi2XpKY9jRYYSZquzeeH3hI5A2qO0+wbIhldG9yggTAreLUfD6pbopN0QV/Qbk8hBd+iZkMd9ips0IIIVqPXB2JNpPtd5ETaJgwUQr6dcuWgqLNxDCASBXJinX12sMLvsClY21zUEIIIZqFbWuG9s7ljMP74zDTp3VOh8FZRw5gUI+sJsVSLxFqPniC+Kq5GL5MnJ36YMcjlL98B8mK9cxeXkHQ8uDpORxnTifcPYfhLOhO7vgLcPcaQd6EX4PhIO+4q4jYu3Yj5OfL/O7ouUDY9pJ70m/JO+7XOAeNI+brQtFZt1I08Sairj2raKubWL3VhkwDfIbEfSGE2J4ON93mnXfe4Y033mD+/PnU1tbSs2dPzj//fE477TSU3B7oULxOg+sv2Ic7nvqWcDQJgGkorpk4ioDHbLXpLaZp1DspM02FZe0eZ1GGofBGN1Dy4u3oRBSUgTOniGTlho3Tbp4k8/BLiG5cvUAIIUTH41QwYWwPDhnZlUg8ic/jJMNtopuYYLCUA2/vkSSKl5F7xs3MXx+ni3sypJJsqEnxwOQfuP6CMQwdeDDaTpFzzK9B22hlkMKFkduHrlcMJ2x5sHT6XOznsbU5be+1w2Tg6LEvKQvQEPF2RqEbjGBpTg6HgdZgmApDKWzbJpnc8tyi5fqjMR4VIzbzDVxFvXF23wtbOXDXrqTmm6lkHXkZEb2VArtbMAxF0obaaALL0vi9TvxuE+QmlhBiN9fhkiRPP/00Xbt25frrrycnJ4evvvqKm2++meLiYq666qq2Prw9mmEotNZNvktj25qiLDd/u/IgKmpjpCybguz0EsCGoYgnNRqNz51OmKRSm08udnRfmygFCRuqQwkSKYu8gIvsyDpc/jziyouHCFRtIJnVk6Q2d+zF2yGtAcOBMk20Mig49Xc4ivpS/eFTRBfPwHB5AUkuCiFEW1IKlFK7NIJS2xq/y8Dvctf93dR9JbQL94CD6DRwLP94bTnfLSjh/045Baep+Osry7A1vPD+T/zpwn0wcYJOv4bfiOEmSap0Kcm8njh1DI8BNgpduhxnfh9i26gBsqleyo68b5+KoMvXYuX2IbFxqWGvHSSyfAmOnN6kMHA7bOKpzYOltQa9E7GuKZ+LBmpjKb6eu4FFq6vI9LnYf3hnbFuTl+WlMMuN20jhqFyBkd2FsG6emxKGsfXjchkWibkfEfx+GgC5E36NKzOf0sl3o60k6oMnCBx1OVG74WdjGIpo0qZ8dRWxhMW8ZeVM/Xw54WgS01AcOLILZ4zvT8BtyohfIcRuS+mtVddqpyorK8nNza3XdvPNNzNt2jS+++47DGPnZhBZlk1lZbg5DrFdUQr8dg3acBDWfkxD47ODJJRnl6u8J20orY6yfH0NhTk+Mv0uQtEEPQu8ZLhNElb6s9i8Tzdx7catErh0jIgRwLIVfhVG2SnCRhZKKVKpBNN/LGXWT2Ucc0AvojGLSDzJgO7Z5AZcFFdGWVUcpGtBBl0L/OQ6oigrRdjIxGskcKRCpEwvUe3FZ9eCYRLWfpSCcMLmr8/OZG1pCAC30+TXpw2nS7aThWvDdM5x0SPXJBAvIZnTv+6OWGtxOAxycvxUVYXrJYV2hWEovPEyrGAFqfz+pGwDn4qSXD4TZ599iGhvs+ynvWqJPt3TSZ82r9buz4KCQLO8zu4aN3eEUgq/XY1tOIloHw5l4yVEHC8J7Wz0OVt+3pZlE7M068rCrCsL0bNTgM55ftwOA6XAauL3wU8IsImoTJSCDKsKbbrQVgptujB1ipTpwrQSrKyGBWvCHDgwg0xHipCRQ20sxeLVVVi2JjvDzSez1vLt/OL6+/A6uffqg3AZKv2+U+VUvPkv8o68iJLX/kneUZcSWfIdnu6DQWsq3nuCwOij8Yw5pUGixAZqIkkWrarC43LQv3sWGW4H27vz4VMRat5/jNiKOeQeczmq1xjcOkb5G/eT2LCMgpOvw+zUn8js9/CNPIKwzmhS//2cYSjCCZvVJUFKqyL065pFfrYX589OCbSCWYsreOjVOQ1eY0jvXA7buzuWZXNgYQ2Vk+/E3X0wOROu2qVEScLWrC+PsLokSI9OAbrk+XD9rO6MUgpfspyyl+/ACtfU32Y6KZx4E/HMHlh2/edZwOK1NTz15nwqatLTcvp3z+bkcX156YPFrCkJAhDwObnz8gMIuDv+zaTWInGz+XXU2Ck6hg43kuTnCRKAwYMHM2nSJCKRCBkZOxcQd0dKgc+qpvTlP+PIKSL3uKuxKtezfvLdZB14Oq7Bh5Fg5+YOx23NAy/PZtGqqrq2vCwPl544jD88MoPbfzGKgiwfKRSu6hWsn/QXsvY/hYxRRxH58WPKv3yFwjNuwMzuROW0f5OqKaPwzJuJaBcPTVnEqrIoF58wlAcnzyae2Lwc8GGjuxHwu3jj8+UAdMnz86dTu8EHD1A48Qasmgo2TL0fT49hZI87m9LJf8HwBcg94TpqtZ8HJs2uS5AAxJMW9700m/87dzRPvbWg7n3ceekYPBh0yCVtfsa2NVF3AcqVV3dCFNFenP0OJtL6Ky0LIcRuQSnwpSooffkOnAU9yTnmV6TKV7H+lXvIOfRcXAMOJrGdmxHRlObOp75lfcXmZFOvzgHOOXoQX8/dwLH79yIvw1U3BsKhbLxGnLD2Ydsaj4rh1HHK33gQOx4m/8ybUJFq1r90J75+e5M19gQSK2dTs3QWvsEHUDLtUXyHXkrv3P7EvnqZeKyWVUMu5B8vzK43g+LcowdhWTbfLyqtaxvZPx+XaYDWZKhwein5cA2lU++n8MSrqf3hAyI/fUt4/ucUnHA1zvzuBGe9h3/owRj+7nWjDizgsznrefadRXWvbRqKG38xhj6dAlsdAeMwFalVc4mtSCckKt99jOxxQcqXfEtiw1IAyt9+mM7n3U7tN6+TLFlJ4JhfEbV2/DynJpri5se/pjacqGsbPbCAX540HNcW9+LKaxONJkgAFqyopHN+BsFwnMHe9JPiaxYSX/odzoGHkkw1+rRtiluau/73Xb3zmG6FGfzpwjG4zc0JD601EWc+BWfdSskzN6CTm1c+KjjzxkYTJKapWLCyin88P6te+5I11fzr5dlce/Ze/P3ZmdgagpEkT705n9+cMRLVse61CiFEk+wWhVu///57ioqKJEHSGK1B28RXL6DshVsonXw32Cm0lULtZALANBWzl5TXS5AAVNTE+Gz2Oob1zePhNxYT16A0oG1AU/PlZMpeuIWaz19Kz2XW6cnC2kph1ZZT8sLNlBSX8cOyKiYc0Itn31lYL0EC8MmstfTqkonTkf7qrq8I886PIYzczhQ/fytlr/0TOxpCJ6LEV/1IqrokXR5fa4LRFEvWVDf6npauqaFHp0Dd+3j+w2W71SwU29YNRsUkJUEihBC7Rmu0bRNbMYeyF2+l7JV7QNvYtrXdUREoxVtfrqiXIAFYuSHI/OWVrC0N8Yd/f8GitTUYhsKhbMyS+RT/7494E2V4zQTRb6dQ8c6jZO13AqmaUiqm3osVrACtCS/4gtLX76fig/+CYaCtFKBJffoEeV/eh/XT56SGTuC+l39sUGLihfcXMW50t7q/vW4HZ43vV3feENcusg85CwArVE3xS3cR+elbANzdBqFTCZIV68g95nKSvk71pmUEo8l6CRIAy9b884VZRLcRmFKWxug+ksC+J9a1VU9/gcT6dIJEOd0UTLiCsjf+heHNIOvQ84jvxHK/WsFTb86vlyABmPVTGUvX1WxeUlkppn6+bJuv9dkPaxk7rDO1VjpZljHqSBz99tupBIlhKj6cuaZeggRgbWmIj75fg2HWj/GG0uhoLdqq36epmlIM3bCfI0mbp95c0Oi+40mLGfOKGT2oqK5tztJyajfWkxNCiN1NhxtJ8nMzZ85k2rRp/PGPf9zl13I4doucUT0JRx6FZ99K8dPXk6opAyCwzwQ8I48mqdwNvgCmaaC13uY805SGj75b0+i2b+cX88uTh/PIlB8JxzXZPgdWfn8KTv0DZa/cTapqAwAFp/4OXTCAmDbIO/E6yiffSbJiPcF4er/ZATcllZFG97FoZSV9umTx0+p0kmb63FKOPWEc9sr03Rx31wH4Boyh4r3/4MgqJO+U3xEzMtA63ujrASRTFk5z8+f/1dwNnHv0QPyu1h1Kam48BtPc/b6LbUX6tPlJnzavjtyfu2Pc3BEJRyFFZ99G8dN/TCflgcz9TsE95LBGYyxs/pxjSYvPZ69r5BHpWHrgyC4sWVPN46/P5Z5fH0iOI07NvOnYkVpKX7wdV5d+xJb9gHK4cGYX4czvRrJ4OVXTX6Tw5GspmfzXupjr6T2Kz6s7M/zAC7C/fKauvcrVmWSq4TFoDVbKYu/BhfQp9HJgLxPPl4/iP/qXxPBi48LRe19yj0hQ+eF/657nLOhBYOR4yqc9Ss74CzD7jCGFq64flFIsXVLe6HsOx1JUhxJ0y9t6QdEUPnx7H4+ORwjN+bDetoIJv6Lqi8kkK9aRf+K1pDI6YVj25qRGEwVjKeYsbfwYP/xuNSP75mLYmmjSZu5WHrdJMmWnR/y4wTf4ADL2P5248u7UyXcsZfPJ92sb3fbJ92s5at8eeDb+ezSUxlG1ktKX7wI7tbE2mQOdjFE57RHyjrsSd4/RWGrzlLCq2jiVtVtf+Wb24jKOO6g3MxeW1LXVhhPkZeza1O09RUf+nW+vpE9FS+rQSZLi4mKuu+46xo4dywUXXLBLr2UYipyc3W+FD22liK6uRFubs/3JkpXkOGwyMje/33jCYk1JkG/mbSAvy8OoAYV0zm+8P6LxFJ6tzEP1uEySlo2hwO1ykJPjx4qGqC1dUe9xyZIVZPUcgun1Ey8tx4rUApDpSidJtnVS43E5iG9xt8njdkBic0IlFazE9GVheHzYsRBGMkJOpyK0adIpz0dxRcPky4AeObz3zaq6v91OE7fLbLPvRGbm7l0npC1InzY/6dPm1dH6c3eNmzvCTiWJlZej7c0xKVm6nGyHrhdjG+N2O/G4HAQjDe/Ge9xmXZyrCSWIpWx8RYW4JlxO2ds20WWziC37AUwHnc65FeV0kapOT41x5ncnWbG+3uslNixj+NAhMHt5vXYHWx+5ETBiXJb/Hbp8Pcmf1pJ73u24svPwblxJMBWqonLjNJe6/ojUYLi8GN4MEsVLCQw7CEdG/X7weRqv1QKbzxu2JVkToapsVcP26mJcBT1IVqyj8r3H6XxuV9yd+2zztRoTrwjjMA1SjaxE4/c4CWR4ME0DuyZat+TytnjdJr7SeSTL1+I0bHzZO/dvpjoYx+tu/LTd63bg9bjIDqSnFtmJKOHV5ekiraaTTufcgukNsOH5W7HCNSTLVpHTf29M/+ZjqYlte3ipy2k0qPuwqSaEaLqO9jvfEUifipbQYZMktbW1XHbZZWRnZ/Pggw/udMHWTWxbU1vb+MiFjkophSu0juKX/gK2hX/YOGIrfyS2ZgGlb/6b7GOvJK58KAWryyLc9NhXdaODC7K93PHL/RodSaEUnHRwH+Ytq2iwbfyYHnwxZx0HDO9EhmkRrK7FWvw5VZ+9BMogsPcxBGe9R/UXk1FuH74BY9jw3K3Y0RDuniNwR9ay78Bclq6tYUjvXBasqGyw7/49sutqkgCctG8hav7TeHqPwI7UkihZSeVHz1B46u8ofuF2Njx/K51/cQ+GmcVvzx7NrU98QzS+eazrMfv1ZOHKSqwtRs+ccFAvXKaiqqp1ixKapkFmppfa2mirLhW4O5M+bX7Sp82rtfuzuS5qdse4uSMMQ+GsWUXxpL+CtskYMZ7I0plEl8+h7J3HyDryl8RVw5P3TZ+3y4CTxvXlyanzGjzm0NHdePOLdJxzmAqHkY5HLm1j+DLrHqcME+VwUvLqP9CJKBn7HIenqCflbz8MQGCvIwnN+xzT68e3+D1Ci79AuTw4BhxEct6HZAWXkR1wUx2sP9LS63ZQ6AgRnz8dgJzDzifh70SkOv15u+0Iwc+fJzz/8/R78mdhhWuwwjVUvP8f8o+5jPJ3HqPig6cJjDuPuNo8OqRnp0CjSYjOeX4CXuc2467HDlLxxv0k1i9psK1q+kvkHXMZrs79qPrkWSo/e4msoy4nzo5NuXGbiiPGdOfdbxomYo7dvye1tdH0ezYUh+7djdc+3fqUm0y/i545Bqn33gQ7RfHkv5J/yu+JmZlbfc7WGIbi5HF9eOiVHxtsO/mQvijbqtd3jm6jyDv+KhxZBSQye6BRFJ51K5GfvsEz/HBqEw5IbH68z2nQt2sWy9bVNHh9gINGdeXbBZuL+TpMgyy/q9XPkzoqiZvNr6PGTtExdMgkSSwW4/LLLycYDPLyyy8TCDRPteHdsdq005OFp/cIXEV98Iw8msDYEOWT/0Lm2JOIaXf6R8VQvPThT/WmT5dVR9lQHqFXYeM/CD2LApx91AAmfbikLrmw37BOdMn3s3JdFRcc1Y+EbYANvp7DcWQVkHP0ZVAwAG/f0VS+8xjuXqNI2C4y9jqSZOlqMg+/GKU1v/Cv5scaF6P69yWetFi2Nh2wvW4Hl5w4lI9npqf6KAVHjunBmJ4uVHUnsg//BURrqHjvSQIjDkNlFuEduD+OzDwS2kkyaVGY6ebvVx3E2rIQoUiC3p0z2FAW4v7Jc+ve20HDizhyn64k4m1XtMOy7N3y+9iWpE+bn/Rp8+qI/dnRjre5OXy5eHoMxd1rOK4h48nY5zjKJv+FwJjjN8fYrUgmLcYMKmT1hh588N1qtE5fCB+5bw/C0RTl1empD0ft2xO/y8RMhQnPfJ3w3E9RDheOnE4ky1ZT/OKfKTzltwTnf4F/nxNw2DGcBd3J2mcCyu3FP3h/Kj99kbwjLiS69Hv0+Kv5cKnF4Yf2xrHsM2696Er+8uwsyqrSF//ZATd/OGMgxvR/1o0zqfrsRQo79UFn9caywYVFKpi+UeLuNojsA04hUbqKqk9fwE7GQGuUw0V4wZcE9j4Ge4vCrX6Xwc0X78u9L8yqq/vRJd/PH8/fB6fa+nfKYUJy7aK6BIlyuik8809El8yk9ts30sf5yfN0ufjvaCuJZ/DBhFMu0mvp7JiTDulDWXW0rnCt02FwwYTBFGV76x3fYaO7Me2rlQ3qp21y/lF9KXQnKHE40YkUydJVxFfMRvU9aKfqgo3om8+EA3rx7tcrsTUYCo7ZvxfD++aR+NkxpDBxdB1FTJnYSQ1oUo48nMOOImI5+Hm/GAouP2U4Nz36FYmffQad8nx0Lwww5ZPNI4eOGNMdv8vc438DdlRH/J1v76RPRUvocEsAp1IprrrqKn744Qeef/55+vXr1yyvuzsvZegljK0cxLU7vWyfESGqPZsrmxuKe1/8gfk/G7Vx00X70qdo68VwTWURTEAwksDtcqBUeh5zvl9haUdd0kUp8BvRun2ahsarYoRtH1pr3MQxsIgbfmxb41MRbNNNJOXA0jY14SSxhEVOwE2uT1ERtglGkvi9TgIeBx5iGDpFFD8ulcJDlBgeEtqJlwhaGQ2WH0yPFlaYysKhLCqiBrWRJBkeg2yvwtrK0o0tTZaIa37Sp81P+rR5ddRlDHfnuLkjfISxlJO4dm2MsZviXeOP//nnrZUiGEsRjibxuB18Pnsdr09fhsdlcvxBvTlyTA+cClwqib3sK6o/fZ7Cs25GBQqoef8JUlXFFJz2B1LKSZT0iI1MI0SCjUv/Gm5cJIkZPrw6THHURU04SVGmScCRJIqfWMqmJpxAa8jzaRJTbsWK1FJ01s1EfppB7YypuLsMIPvE64jY6dExfhUmOud9/IMPYP0zN1Nwym/RsSCOrALsVJLSSXeTf+K12J2GktT1R6UahiKatKkKxetGJLgMxfZOSd0qQXLRp9R+9SqFE28hltEVl44R/2EaoTkfUnj2bUQ9RTgMm0Rq16qv20BtNEU0niLL78LvNhusvKMMRWlNjHue/b5ePQ+HaXDuEb04dK9uKMOBN1pMyYu3E9j7WNwjjiamd25lQQCtFKFYilA0ScbG86DtFgluIsNQVEdTvPXlCr6dX4zbaXLQqK707BTg8dfnEomlR+EO7JHDdWfvhWs3KnDf0iRuNr+OGjtFx9DhkiQ333wzkyZN4vrrr2evvfaqt23IkCG4XDtXQGpPPtlTSrGqLMxtT35T15YdcPOXyw/A42g8ArpUEnv515jeTPz9RlHz/fs4C7qTyhtISu/41CeXSuCMlJHy5RPXbnwqgopWE/N1brBM3e5Mgmjzkz5tftKnzaujnujtyXFzV2zr81YKLA3RhIVpGvhcBra1+TTNpZJ4jCQh7cO2waciGNiEdPOt7udQNo7KpZi+TKLeTrh0HGv5t7h670WY+vtxO2wUGpeOE7Nd2IBpGNgavCpG1HY3SJDsKrdK4FYJQmRgb+w+n5nApVJEjECDERUtzTAUsZRNeU2M4soIAZ+L7vkeMt2QsJ0bHwN+QiS1c5cSJK3F4TRJaohEk3y7oJhXPl5KPGnRrTCDMw8fQL+umbh2sCDunk7iZvPrqLFTdAwdLkkyfvx41q1rvBr8Rx99RLdu3Rrdtj17+smeBkpr43w6ay0F2V72G9YJv9Pc6l0dD1EiX71EeN5nuLsNJL52EdnjzsUcOI4EO5aocpJAL/uKqo+eJvOA0wnsdRQV0x4itmoehWfeSDyrb4PlCXdXEkSbn/Rp85M+bV4d9URvT4+bO6spn7dhKOKWJp5Mr7zm/VmypKWZSmOj6gYoOM3mXTbeMFS9VfR+/veOai+/SUptfzRMR7Blf9obV/IBME2Fczd5j62tvXxHdycdNXaKjqHD1ST5+OOP2/oQdksKKMp0c96RA7BtjWXZjQZBwwBDW8S0l6xx56KTMeLrl+LuNgj30MOIpHb8K2UrJ6787mA4qP3qFYIz30Ynohi+TAxfNhpFOo0jhBBC7O4UK0vDPPb6XDaUh8nwOpl45AD2HVyIU7XO3XtL199PcyZIPCqGUVtMKtCFhHbhJwSRWqK+LnUjQzqq3TF5YNsat7n5+7A7vkchhPg5WVha1JNMWlstNGcYCm9kA2bJfLwqRnzNfDzdBpJ31MWkaitIrZ2HQ6Uafe62WFqRyOlDwcnXAaAT6eJxRWffRtSVLwFZCCHEbiUVrmFTvsMwwKs2ry5TEU5w+3++YUN5epROKJrkP2/MZ9bicowOPsXBTYzY929S8sJt2Eu+IGBGqHj975Q8fyue0NoO//6EEELsHiRJIposQ4Upeel2yl+/D3vdPHSoksqPnqF82iMUnfp/6FgIpXfuNpBbRwn+8H69tvDCr3DqLQqhKYstV3p2mR38lpMQQog9jidVQ3TFHDzJKhwOhSe0lsSiTwmoIIZp8PaXKxqtw/nSBz8R6+DD9C3DhafHUFAGVR8/w4YnriVZugozMx/lzdylKTdCCCFEc5EkiWiyqO0k57ALAE35W/+m8uNnAcg76lJsTxb0HktyB+uRAHiMJOGvJxNbMQfDl0nOkRfXTb1h3VwcpsKpLIwNP+IJrtl41y1Kas7b+HVtM79LIYQQomW4TQu7ppjgrA9IrF+Mo3QhoVnvoJSi5svJOEjUjSD5uZpQAquDJxFStoFVNIjcoy8FQKcSYDgonHgTESOzjY9OCCGESOtwNUlE20lqJ/6+++Lp8QWx1QsA8PYfg7//3tRE9A4VTXKpFCnlxLY1ce0k84DTSZSvJfeYK0h48inM7Urtt29gdh1CUoMvVsqGNx5AOVwUnnEDobnTCc/7lOjyH8g9+Q+Ebc/2dyqEEEK0IYdOUjNzGrE1C4it+4n8oy7BVdCdqk9fAMBV2It9hw7ip9VVDZ7bv3s2Lkfr39uygdpIktpIkky/k0yvC2MX6oS5rDAVs97bYgcpoj99g3PAwTtc+F0IIYRoCZIkEU3mUikSK2bWJUgAoktmElk6C0eX4aSaODDJrRKkFn+Ot+dwop4ivDpMcOZbFJzwG0IqEzulsXP6kHX0r4jYHtCalCeHjNFHE5r1HiUv3g6AcnnIOepSoniRwq5CCCHauyQmWWNPJLZ6AToZp+KD/+IYdgTWMTdgKQdWpyIOcvh55+uVlFdvMd3UNLjkhKE4FI1OxWkpCVvzv3cW8fXcDXVtB4/qwnlHDcK5E/kan5Gg+t3HSZauwpHTmcwxx1H5wVNUffIshYU9MHMHbrUumhBCCNFaJEkimsxjJFn/4dMA5E74NTqZoOqDJyl/93E6X/wPYni3+xqmqVAlS6j+5FkMt4+CM26gavoLxNcsxKotJ+Pwy4jiwrIVETaPDolpD1kHnEZCm6TyB6ASYbIDbpKBrthJSZAIIYRo/1I4cbq8FBz3a8reegh17B954qsgP3yyDoAu+eVce9Ze3PnLA/huYQkzF5XSo1MGh+/dg0yv2aoJEsNQzJhXXC9BAvD57PUM6Z3HAUOKdjihEcNN9vhfUPX+E+RM+DUJM4OCjFwiS7+D7G6SIBFCCNEuKC1LhwBgWTaVlY3PAxZphgGe8DpSNaXoLsNBa9SaWXg69yHm7UQi0bQ1An0qSnD6M0QWfV3XZgZyKZh4MxEzt9HVbHxmnJKKMM9/soaZSyrJ9Ls4/YBO7D+sCNOd0eGXDdyktdd83xNInzY/6dPm1dr9WVAQaJbXkbi5Y3wqiq0MKPkJK1RFqnAQf526jp9WV9d7nMdl8o+rDybgcYACBW3y7yxpa25+4htKq6INtnXJ93PbJWNx7MRiNEopvEaMqO1Ga3AYNg47QYydnzYrv0nNS/qz+UmfNr+OGjtFxyCFW0WT2TbE/F2xO48gaTtIaieq1xjcnfrsUEX6iPaSe8RF9dpyj7qMuCuv0QSJYSgqI5ob/zefb3+qwLY11cE4T763ine+K8Zl7Piyw0IIIURr8asI1e/8G0qXYrh9OAK5lNckGiRIAGIJi+Xra7BtjZWy2+yCSgMpq/HYbtkah07s3OtqTcRy142KSdnGLiVIhBBCiOYmSZI9nGGAscWdIIcBaht3hmwbUtqs+9v62Ywt5+ZNKKVwmjbGFjtwmumTxbKp99V7XsVbD+KOFNd77JZ+XBkkHE02aJ/61Voqox3ja2waul7fbtlXQgghdk+mqUiVLCW+ej5lr91LbM0Cyt95nHh860mGqmC8XrwwTEVKgzJUut1I/+1wGBjG5kRGOs7sxPCORnidJkfu271+m9vB+H26c+nxg/B7JIi1FMNQmGqLz1U13+cqhBBi+zrG1aVoEYYBntAaPKHV+BwpXCqJsXYmfl2L29jxO0Q+FYEln+FVUZRS+HUNZvE8fIkyDEPhUTGMdT9gV6wivmYhZiCXzpfeh2/Q/tjxCMFv38BFvMHrmqbB8vWNL/WbTNnEEu1/JIlTpXAUz8VnVaEUeFUMlnyGTzUcxiyEEGL3YVkaXTSInPEXgrap+XIKdjRItt+B152+0ZATcGNucZNgWJ88bFtjGBBKWLz44VLu+O+3PPbGfIpr4kz9YgX/fvVHUhVrcFYsxWFqnEYKR/E8fKnKZrmgtiybQ0d3Z0D3bAAOGtmFy08ZTnl1lP+9u5hJn68jmrLl4r2ZGYbCGy/DWfETDsPGaVg4yxbiS5ZLXwshRCuRwq17ML9dw4aX/gxAwQlXo4MVVH74NM7czuQfdyXKV0BMu5v0Wi5iBD9/gciCL/BtWErOQWeQrFhL2ev3Y3j8FJ19K6HZHxGc9Q5ZB51B/gm/wVHUm7CZS2DcBbi7DsDVbywRu+Hyf5ZlM6xPLu/PWNXwPXideD3OXeuIFmYYCkfFMkpf/ydmIJeis26h+stXiCz4Av+GpfgOPpeY3bR+FkII0fo2XZvuaBU3pwlJC1LKja/3iHrbcswYvz5tOK9/upTfHZPPhoiDuyYt5dpTB9JNlZBSBVTEnPzxoS+JxtM3A9aWhvh2fjHXnj2aY0dkEn71JoKJGPmn/gEdC1H+9r8xM3IoOu8ugtq3y+/b61Bcf9ZgKiqDrK41uP+lH+q2rS1dyiffr+XPv9wPbxssTby78hOi+KXbsGMR8k/+LdgWZVPvx/AF6HTB3QS1v60PUQghdnsS1fYAbpUg0wjXTWXxqzB+QiSVm8Cow9GpBKWv3Uvlh08Diswxx1H1+cuoqlWYZtO+IknlIXOf41AuL5H5n7Husd9ghSrx9BqGHQ2y4anfEZz1DsrhwtNzBHa3veqKtEa0FzXwMCJbOaGzbU2/btl0yWt4YvCL44bgd7Xvr7Fta4zcbri7DcIKVrL+iWuJLPgC5fYR2GcC8SYmooQQQrQylR7JsWBNDfNX1xBKWOgm3sz3qQh64Yf4jTjeRBklL9wGgOHLBKB8yj2Myo/z51MLSb75FzrNf57n/rgfI6z5FD97E8kFn7BmTXFdgmQTW8PUz5axotJGDT8WtE35q3+l4u1/A5B18FnEdcMbDjvDr8KEn/89npqVPPvOTw22V9bGmLusYqtTZcWOi2sXWfudkv5cX/sH5VPvAzRZB57RbJ+rEEKIbWvfV5dil7lJkFz4Cev/8394wuvwG1Gq3nmYitfuwdRJ/GNPxZHTqe7xgVHjSZavwdWpLzqnZ5OX49MaYv4u5B135aYWKt57ioLjr0Q5Ngf1nCMuIpnVk6Sl6hVpTW5nxozXobjp4n0575iB9Oqcyaj+Bdx+2X6M6puHvZXCcu1JWPspOOm6em35x11FzNe5VZd0FEII0TRKKRavq+Xa+z/j7899zz+e/55r75vOojU16SVntsFrxAl++ixVnz5H6NvXIB5CJ+N4eg2ny/l3kntEeuoN5Stw+AIYvgDJdYso++91VE9/HpSBq6gXPyxvfKrp8nU1hBKKFZmjcXbuV9fuG7Q/jt77kNDNM1A4ZjvJHnc2yUAXqkMNp8MCzFlSjkNGkjSbhHbiGjIOT89hdW3evqNx9d+fhG7fI2eFEGJ3IVFtN6ewsKpL0MkYpS/dQcWkO4mvno8dDWLYSWJLZpCqKq57fGje57i7DiKw94QmT7WB9FBkT7KSqg+fqmvLPvAUqj6bhE5trm9SPf0FXNHSHb7rpDV4TMWRe3fjTxfuwzVnjKBHvg+zHd+8cqlk3fv0qhg1M9/G22903fbKD57Ek6zcZqFcIYQQbSOcsLj3hVn1Vm+zNfzzhVmEE9u+gRDHQ+b+J2O4fYRmvUvF+09ReMpvyRx1BJZyEBh5OJ0v+huq5z6EzVyKzr4NAJ2IAZB33JVYhQNJ2o2fpnXJz8ChNH30apIblta1R36agS5fhmk0T/Y9qZ3Qa198eZ3weRpPvPTvno3VAW5WdBROw8Jat5DYqvl1bdHls7FLFuMwZOlYIYRoDZIk2c3F8OLb/0x8gw9EJ2MkK9eh3D4KJt4KpouqD54CFLnjLyBj+KHoVILKT57DqlyLn1CT9+PScWo+eRYrWIm7+2A6XXAXrqLehOZ8hHK4KJx4E56+o7GjQareexyPiu3U+7EsjQloW7frERgeFSe14EO88dL0HbaadXiKeuHpNpDOv7inbupNzafP41E7t4yiEEKIllNeEyPZyPK7lq0prYps87m2rYn7OpM74dcAJMtWU/b2I7i6DSZmZGB6/MR9ndKjBkgQWTyj3vNDcz7EZUU48ZDe9Qq6bnLiIX0Y0d1N6rP/AJB95KVkHXgGaJuKNx7AZ+xcjG1MUjvxul2cefiABtu8bgdjhhQ1edSp2D6vkaDirQcBTc7hvyB73LnpqTdv/guf0fhoHiGEEM1LCrfuAQwsrFDl5gYrhU5EibmyKTjl/9DxEKH5XxAYfQxmZh6ezv0oe+sh8k+4GiMzUO8u2tbEcZN1+MWYmflk7HsSUZWBz+Emd/wFuDr3IxroQdYRl+HMeh3/3scR2Y0LlbqJEZ/9DrUzphKc+TaFZ92GNh2UTXsUnUqQe3SA3OOuIvjtG2SMOZFwI8VqhRBCtK1tjXg0jW3fY1JK4Y6XU/b+k7g69SFRvBw7UkPlR/8j87ALAT9ap5cHViVLqP40PcUm5/ALqZ0xlfiahdROf5Yuh13CX351AP97eyGL11TRKc/POUcPYt6ycj75rpLfHvd7PMkajJ6jUdom2+nG3WMoYdvbrH1hWTYHDOtEpt/FSx/8RGVtnL0GFnDu0QMJuA1syZE0m5DtpfDMP5EsX4vqvS8AOQ4nrs79CTXz5yqEEKJxkiTZzflUlKp3H0kvuZuRjbOwF7Hlsyl96Q46nX8n8cLBuHScgNMLBf1wFg7A0DHyjruSRKBHkxIkm4TJwLPfRMKWCVoTceXj6n8AUTzYNkTw4h57JhHbbNejQHaVrZw4i3oDCjsaouTZG9G2DXYKTAeOnM5ElX9zXwkhhGh38jLd+DwOIrH6RbM8LpOCbM82n+sx4tRMfx7/4P1xd+qLq6g3G164DX/fkeiSJVj+dCFyy9K4C/rgHTCWjBGHYRUMpKDXSCrf+heZB55JxHZRmKn57VmjSNoaUyncDoO+XTLRujcuh0LZSRJ2+nTOOXAcMeVskaSFQ8He/fMY2nt/bK1xmwZoLQmSZmbbEMvsiZnRpa4GibPfgS32uQohhGhIptvs5pK4yBh5BGZGDgUTbyHrqF/jH34Y7u6DsZ0+krZBWHtJdh5JTLuJ207CBIhn9yWld/zrEd/iot+2IaY9bJlniVu7d4IEIKlNdOfh5J14DUC6JoudAmVQeMafSGT3wrJVvb4SQgjRvvhdJjdfNJaAb3OxTL/XyU0X74vPue3f76jlIufwizA8fsre+jdVX79G14vvoXbWh5S8+neiS7/HVOlgGNFeAof9glTeAJKWImJmk3vKH4k48tA6PbXUANyGwqHSozqcClyGwrYhyebjS+qWvZC2LI1TpY9ltw/mbai1P1chhBD1yUiS3VxSmzg7D6fo/LsI2X60rfEfMBG0VbfkrlLgIIm18etgoDHsJDZSRX1nWcrEk5FTr00ZJoY3A40ByMmlEEK0Z7at6Zzj5p5fH0RVKI7WmtxMDz6n0aRRliEy8Pfdh5rvphFZ8AWRBV/gGzgWd6/huIp6EUHhd8SJ2i6itjc9RcdIpG9WWG4kTgghhBBtQ0aS7AGS2iRo+eqW3I1qD1HSQ32VAp9VTeybSfhUFNPQuKqXw+rvcKpkWx52h2UY4AmupnTSXfXatZWk9KXb8cbLdnh1HyGEEK3PtsHjUHTO9tAlx4vHVE2ehqo1RLydKTztjwAERo7Hld+NnANOw5nTCU+qhtAXL5JhVWGaCl+qgvjM1/GqaEu+JSGEEEJsh4wk2cP5jBiVr91HonQVVriajGGHUvr6P8FO0enC3ljeLjtUl0SAW8cIzpyWnmZjOig840asSC0VbzyAHQ0RWfQlzhETSMhIHSGE2K15dYiq6S/gyC7C23cvSqfci/rmDQpP+x01M94ktmoeyfK15B/3a4pfugMrXI0jMw/nwMNIWpJMF0IIIdqCJEn2cFHtJfe4qyh98Xaii78luvhbADIPOJ2UJ1cSJDshqj0EDr0QrW0Co48lkd0LI8sm78RrSKxdhHvE0cS0JEiEEGJ35jYtQt+8TnzdT5iBPIyMPAIjDyc45yNKJt0NgOHLJGvsiRS/cDtWuBpPrxG4+u9HRBIkYjelFGilSFka1w6MzBJCiNYkSZI9nG1rEt5Csg44laqPnwHA8PgJ7HUUtUlZmnZnpQvxXUxCubFshUW6Noyn0yBieturIgghhOj44pZJxpiTsEPVZI47l5gzh+wDTyM0//P0SEMg55CJBGd/gBWuBiD3qEsI4WvDoxai5dhAcWWUVz9dSllVlH0GFXHEvt3xO826KeFCCNEeSE2SPZxpaBwVS6n69IW6NjsWpvKDJ/HJvOhdEtUeLHvz3cCkNokhCRIhhNhThMkg44jLiJjZuO0wZe88VpcgAaj84Gkyho3DVdgTgNJJd+Oza1AykETsZkxTsXhtDTc99jU//FTG2tIQr3+2jJse+5pI0mrrwxNCiHokSbKHcxOn5qspYKfIPOB0Ol/0dwxPBtGl36NiNSg5UxNCCCF2WtRypWNpuILYyrmY/iy6XnYfgdFHo60koXmfUXDq73EV9iJVXUxizYK65YF3lGEokhpCcYuYZWOacpon2odo0ubJN+Y3aK8Oxpn1U5l8V4UQ7YpMt9nDRWwPORN+TXLNPFT3UUSUh8Kzb8WO1BLzFqFlrqgQQgixS2xbk8joSsHpf8SRWYC7sAcZ+56Eq6A77l4jqbUzyD35dyTXLYJuI0jaO3GDQsGa8giPvjaXdWUhvG4Hpx3Wj4NHdsEp9ztEG4snbSprY41um72kjENHdcGSASVCiHZCkiSCsPbj6DmWlAVoTdRdCK587J05SRNCCCFEAynbQOcNwDJNvEDMyMDsfxDBjbNvwmTg6LFPOhbvhOpIiluf/KauEGY0nuK5dxehFBwxuhuWZTfPGxFiJzgdBhleJ6FossG2ft2zpSaJEKJdkbFtAqDeSZlta2wtCRIhhBCiOVm2YstrwXii/vadTZCYDoMPv13d6Eohr36ylHBCbtGLtuVzGZxz9MAG7R6XyUHDu5BKSRJPCNF+yEgSIYQQQuyeDEUoliJlaTI8DpyG2i3vWGsNIwYU0KdbFqWVUd79ZiW14XQGJhJLkbJsMM1WOx6XSuDWMaJGBinbwKciGFaCsJmzW/a/2D7b0uwzsBD/2Xvxwns/UVETY2T/fM49ehABjylLAQsh2hVJkgghhBCizdhAKJ6iOhgnO+Amw+1olmGucVvz3DsL+frHDdgauhZkcPUZIynK9my13pbDsPGqOGHtwySJRyUIa3+7voCL25qn35zHtwuK0Rp6FAW4/JThPPfOIjZUhOlWmIHH2YoJEhLYS75g/SfPUXDq7/AU9qHq3cdIlq6kYOItRJx5SJ5kz+RQMLJ3LoMu2w9ba1ymgdK6Xf/7EkLsmWS6jRBCCCHahDIUc1dUct39n3HbkzO47v7PmLuiEsPYtSmftlI8+cYCvpyTTpAArCsLcesT3xCKNT71xDAUzqrlFP/393hjJah1P1L8v+vx2bW7dCwtyQb+/cqPzJhfXJd4WF0S5N+T53DmEQMwDcUVpwzHZbbiFFpFerSItimb8g/KXriF2Io5MoJEAOkp3U4FbkOh5DshhGinJEkihBBCiDYRSVg89trcugt8reHx1+ftcg2NUDTJ94tKGrTHkxYLVjWehLFtjZFZhJmRRfHTf6DizX/h6z8GSzl36VhaUk0kyfzlFQ3ao/EUiZTFP689hC65vla9U5/QLhwDDyHzgNNB26RqSsF0UHT2bURd+TKKRAghRLsnSRIhhBBCtIlkyib2s4RINJ4iuYtFHOPJrSdZKqqjKNX4yIqkw4d/+Pi6vzNGHkFceXfpWFrStt5nNJYky+OgLbISpk6S2LBkc4NlkaouxkAKyAohhGj/JEkihBBCiDbh9zjo3z27Xlv/Htn4PbtWMi3gc+H3Nj4CZHjf/EaXwzUMhVm+lOpPnsU7YCzOvK6UvPxn/Lr9TrfJ9LvwuBqvNzKwR26b1Hrwqhi1H/+X2Io5GL5M/COPADRlU/6BK7h2l6dSCSGEEC1NCrcKIYQQok2YwHVn7cWkj5cwd2k5w/vlc+b4/uxqmVGf0+DK00fy9+dm1htIse+QThTmND4yxLY1Rk5Xssedg2vwOAwrQXzZdyRx7eLRtBy/y+SKU0dw/0s/1Gs/eFRX8jLdbXJMceUhc8zxJEpWUHD6DViebJy5nYku/wEy8qVIpxBCiHZPaamkBYBl2VRWhtv6MDoch8MgJ8dPVVVY1rhvBtKfzU/6tPlJnzav1u7PgoJAs7xOc8ZNZSjiKRu3w9jqyjM7SiuoDif5fM56qoNxDhrZhe4FGTi3M4bW5dAkUunRDk5Tk7Sad+RDc3/eGqgMJ/h89npC0QQHj+xKl3w/zjYcsGEY4FMxItqLbWtcKolDJ4jgb5H9yW9S85L+bH7Sp82vo8ZO0THISBIhhBBCtClta1yGarYECYDSkONzcurBvVFKkUpZTSrPsSlBAjR7gqQlKCDP7+L0cX126H22JNuGEB7SKRxIaCcJ2m8BXCGEEGJLkiQRQgghxG5rT7lru6e8TyGEEKKlSeFWIYQQQgghhBBCCCRJIoQQQgghhBBCCAFIkkQIIYQQQgghhBACkCSJEEIIIYQQQgghBCBJEiGEEEIIIYQQQghAkiRCCCGEEEIIIYQQgCRJhBBCCCGEEEIIIQBJkgghhBBCCCGEEEIAkiQRQgghhBBCCCGEACRJIoQQQgghhBBCCAFIkkQIIYQQQgghhBACAKW11m19EO2B1hrblq7YGaZpYFl2Wx/GbkP6s/lJnzY/6dPm1Zr9aZrNc39E4ubOk38/zU/6tHlJfzY/6dPm1xFjp+gYJEkihBBCCCGEEEIIgUy3EUIIIYQQQgghhAAkSSKEEEIIIYQQQggBSJJECCGEEEIIIYQQApAkiRBCCCGEEEIIIQQgSRIhhBBCCCGEEEIIQJIkQgghhBBCCCGEEIAkSYQQQgghhBBCCCEASZIIIYQQQgghhBBCAJIkEUIIIYQQQgghhAAkSSKEEEIIIYQQQggBSJJECCGEEEIIIYQQApAkiRBCCCGEEEIIIQQgSRLRBKtWreKWW27hpJNOYsiQIRx//PGNPm7y5MkcffTRDB8+nBNPPJFPPvmklY+0Y3jnnXf41a9+xSGHHMKoUaM46aSTeOWVV9Ba13uc9GfTTZ8+nfPOO4/99tuPYcOGcfjhh3P33XcTDAbrPe7jjz/mxBNPZPjw4Rx99NG8+uqrbXTEHUs4HOaQQw5h4MCBzJ07t942+Z42zZQpUxg4cGCD//7xj3/Ue5z05+5B4mbzkrjZ/CRutiyJm7tO4qZoS462PgDR/i1ZsoTp06czcuRIbNtucFIC8Pbbb3PzzTdzxRVXsN9++zFt2jSuuuoqnn/+eUaNGtX6B92OPf3003Tt2pXrr7+enJwcvvrqK26++WaKi4u56qqrAOnPHVVdXc2IESM4//zzyc7OZsmSJTz44IMsWbKEp556CoCZM2dy1VVXcfrpp3PjjTfyzTff8Kc//Qm/388xxxzTxu+gfXv44YexLKtBu3xPd9yTTz5JIBCo+7uoqKju/6U/dx8SN5uXxM3mJ3GzZUncbD4SN0Wb0EJsh2VZdf//xz/+UR933HENHnPUUUfp3/72t/XaJk6cqC+99NIWP76OpqKiokHbTTfdpEePHl3X19Kfu+7ll1/WAwYM0MXFxVprrS+++GI9ceLEeo/57W9/q4899ti2OLwOY+nSpXrUqFH6xRdf1AMGDNA//vhj3Tb5njbdq6++qgcMGNDov/9NpD93HxI3m5fEzdYhcbN5SNxsHhI3RVuS6TZiuwxj21+TNWvWsHLlSo499th67RMmTODrr78mkUi05OF1OLm5uQ3aBg8eTCgUIhKJSH82k+zsbACSySSJRIIZM2Y0uPM1YcIEli1bxtq1a9vgCDuGO++8k7POOovevXvXa5fvafOS/ty9SNxsXhI3W4fEzeYhcbN1SH+KliRJErHLli9fDtAgGPTt25dkMsmaNWva4rA6lO+//56ioiIyMjKkP3eBZVnE43Hmz5/PQw89xPjx4+nWrRurV68mmUzSp0+feo/v27cvsPk7LOp79913Wbx4MVdeeWWDbfI93TnHH388gwcP5vDDD+exxx6rG44t/blnkc9710ncbB4SN5uXxM3mJ3FTtAWpSSJ2WU1NDQCZmZn12jf9vWm7aNzMmTOZNm0af/zjHwHpz11x2GGHUVJSAsDBBx/MvffeC0if7oxoNMpf//pXrrvuOjIyMhpslz7dMQUFBVx99dWMHDkSpRQff/wx999/PyUlJdxyyy3Sn3sY+bx3jcTN5iNxs/lI3GxeEjdFW5IkiRBtqLi4mOuuu46xY8dywQUXtPXhdHiPP/440WiUpUuX8sgjj3DFFVfw3//+t60Pq0N65JFHyMvL47TTTmvrQ9ktHHzwwRx88MF1fx900EG43W7+97//ccUVV7ThkQnRsUjcbF4SN5uPxM3mJXFTtCWZbiN2WVZWFkCDZeNqa2vrbRf11dbWctlll5Gdnc2DDz5YN4dd+nPnDRo0iL322oszzjiDhx9+mBkzZvDBBx9In+6gdevW8dRTT/Gb3/yGYDBIbW0tkUgEgEgkQjgclj5tBsceeyyWZbFw4ULpzz2MfN47R+Jm85O42TwkbrYOiZuitUiSROyyTfNVfz4/dfny5TidTrp3794Wh9WuxWIxLr/8coLBYIOlzaQ/m8fAgQNxOp2sXr2aHj164HQ6G+1ToMGc6z3d2rVrSSaT/PKXv2TMmDGMGTOm7q7NBRdcwEUXXSTf02Ym/blnkc97x0ncbHkSN3eexM3WJ/0pWpIkScQu6969O7169eLdd9+t1z5t2jT2339/XC5XGx1Z+5RKpbj22mtZvnw5Tz75ZL313kH6s7nMmTOHZDJJt27dcLlcjB07lvfee6/eY6ZNm0bfvn3p1q1bGx1l+zR48GCeeeaZev/dcMMNANx+++3ceuut8j1tBtOmTcM0TYYMGSL9uYeRz3vHSNxsHRI3d57EzdYhcVO0FqlJIrYrGo0yffp0ID2cMBQK1f0g7bvvvuTm5nL11Vfzu9/9jh49ejB27FimTZvGjz/+yHPPPdeWh94u3X777XzyySdcf/31hEIhZs+eXbdtyJAhuFwu6c8ddNVVVzFs2DAGDhyIx+Nh0aJF/Oc//2HgwIEcccQRAPzqV7/iggsu4LbbbuPYY49lxowZvPXWW9x3331tfPTtT2ZmJmPHjm1029ChQxk6dCiAfE93wCWXXMLYsWMZOHAgAB999BGTJk3iggsuoKCgAJD+3J1I3GxeEjebn8TN5iVxs/lJ3BRtSWmtdVsfhGjf1q5dy+GHH97otmeeeaYuKEyePJknnniC9evX07t3b377299y2GGHteahdgjjx49n3bp1jW776KOP6u7OSH823eOPP860adNYvXo1Wmu6du3KkUceySWXXFKvwvxHH33E/fffz4oVK+jSpQu//OUvOf3009vwyDuOGTNmcMEFF/DKK68wfPjwunb5njbNnXfeyeeff05xcTG2bdOrVy/OOOMMzj//fJRSdY+T/tw9SNxsXhI3m5/EzZYncXPXSNwUbUmSJEIIIYQQQgghhBBITRIhhBBCCCGEEEIIQJIkQgghhBBCCCGEEIAkSYQQQgghhBBCCCEASZIIIYQQQgghhBBCAJIkEUIIIYQQQgghhAAkSSKEEEIIIYQQQggBSJJECCGEEEIIIYQQApAkiRBCCCGEEEIIIQQgSRIhRBtYu3YtAwcOZMqUKU1+zowZMxg4cCDvvvvudh97/fXXM378+HptAwcO5MEHH6z7e8qUKQwcOJC1a9c2/cCFEEKINiKxUwghWockSYTYA82aNYsHH3yQ2tranXr+888/v0MnaUIIIURHJ7FTCCH2DJIkEWIP9MMPP/Dvf/97p0/0XnzxRV577bVmPqrm8+c//7lJd82EEEKIppLYKYQQewZHWx+AEEI0N6fT2daHIIQQQnQoEjuFECJNRpIIsYd58MEH+dvf/gbA4YcfzsCBA+vmF6dSKR566CGOOOIIhg0bxvjx4/nnP/9JIpGoe/748eNZsmQJ3377bd1zzz//fACqq6u55557OOGEE9hrr70YPXo0l156KYsWLWq247dtm3/+858ceOCBjBo1iiuuuIINGzbUe0xj86qFEEKInSWxUwgh9hwykkSIPcyRRx7JypUreeutt7jhhhvIyckBIDc3l5tuuonXXnuNo48+mosuuogff/yRxx57jGXLlvHQQw8BcOONN/LnP/8Zn8/HFVdcAUB+fj4Aa9as4cP/b+9+QqLqwgCMPzORaFiaZC2cGsLAGCFoUTmbSpiFtbGMWlhIBZJgYFtXbcRWUS20P0ShC8sIprAsQRfixl0LKardQAqRITMlgeBMq28+xsIvPseS5vnt7rnnnPvu3sN7zz13dJSGhgZCoRCzs7MMDg5y5swZnj9/zrZt21Yc/82bNwkEArS2tvL582f6+vo4e/YsT58+pbi4eMXzS5K0lLlTkgqHRRKpwOzevZtIJMKzZ8+IxWKEQiEA3r59Szwe5+TJk3R1dQFw+vRpKioquHfvHpOTk9TV1RGLxbh+/TqbN2+msbExZ+6amhpGRkYIBv/dpNbY2MiRI0d4/Pgx7e3tK44/mUwyPDxMaWkpAJFIhEuXLvHo0SNaWlpWPL8kSUuZOyWpcPi5jSQAxsfHATh37lxO+/nz53PuL6eoqCi7yFtcXGRubo4NGzawc+dO3rx5k5c4jx07ll3kATQ0NFBZWflL8UmSlE/mTkn6+7iTRBIA09PTBINBduzYkdNeWVnJpk2bmJ6e/s850uk0/f39DAwM8OHDBxYXF7P3ysvL8xJnOBzOuQ4EAoTD4V+KT5KkfDJ3StLfxyKJpByBQOB/j7116xY3btzgxIkTdHR0UFZWRjAYpLu7m0wmk8coJUlaO8ydkvT3sEgiFaCfLeaqqqpIp9MkEgmqq6uz7bOzs6RSKaqqqpYdDzAyMsKBAwfo7u7OaU+lUtlD7lYqkUjkXGcyGRKJBDU1NXmZX5KknzF3SlJh8EwSqQCVlJQA8OXLl2zboUOHAOjr68vpe//+/Zz7/4xPpVI/zLtu3bof3nq9ePGCjx8/5idw4MmTJ3z9+jV7/fLlSz59+sTBgwfz9gxJkpYyd0pSYXAniVSAamtrAbh27RpHjx5l/fr11NfXc/z4cQYHB0mlUuzbt4+pqSni8TixWIy6urqc8Q8ePKC3t5dwOExFRQXRaJTDhw/T09NDZ2cne/fu5f379wwNDbF9+/a8xV5WVkZzczNNTU3Z3xiGw2FOnTqVt2dIkrSUuVOSCoNFEqkA7dmzh46ODh4+fMjExATpdJqxsTG6uroIhULE43FGR0fZsmULFy5c4OLFiznj29vbmZmZ4e7du8zPz7N//36i0ShtbW18+/aNoaEhhoeHiUQi3L59m6tXr+Yt9ra2Nt69e8edO3eYn58nGo1y+fLl7Bs+SZJWg7lTkgpDIOOJUJIkSZIkSZ5JIkmSJEmSBH5uI+kPW1hYIJlMLttn48aNFBcX/6aIJEla28ydkrR6LJJI+qNevXpFS0vLsn2uXLlCU1PTb4pIkqS1zdwpSavHM0kk/VHJZJLXr18v22fXrl1s3br1N0UkSdLaZu6UpNVjkUSSJEmSJAkPbpUkSZIkSQIskkiSJEmSJAEWSSRJkiRJkgCLJJIkSZIkSYBFEkmSJEmSJMAiiSRJkiRJEmCRRJIkSZIkCbBIIkmSJEmSBMB30PHnoe1v3AsAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **A high-level API for statistical graphics**" + ], + "metadata": { + "id": "mHE1hZp06HM0" + } + }, + { + "cell_type": "code", + "source": [ + "dots = sns.load_dataset(\"dots\")\n", + "sns.relplot(\n", + " data=dots, kind=\"line\",\n", + " x=\"time\", y=\"firing_rate\", col=\"align\",\n", + " hue=\"choice\", size=\"coherence\", style=\"choice\",\n", + " facet_kws=dict(sharex=False),\n", + ")" + ], + "metadata": { + "id": "ktMIUuVWyPmm", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "outputId": "c78a4a94-7053-4b5f-ecad-b5a51503d9e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 3 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABF8AAAHjCAYAAAD16rDNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8VFX6+PHPzGTSe++9kR56BynSURFUFLuuuquubrPsruvqlu/uur+1944dpUuR3ntPCIT03nufcn9/BCJDAoSQRnjerxcvmDvn3jnnJtw788w5z6NSFEVBCCGEEEIIIYQQQvQIdV93QAghhBBCCCGEEGIgk+CLEEIIIYQQQgghRA+S4IsQQgghhBBCCCFED5LgixBCCCGEEEIIIUQPkuCLEEIIIYQQQgghRA+S4IsQQgghhBBCCCFED5LgixBCCCGEEEIIIUQPkuCLEEIIIYQQQgghRA+S4IsQQgghhBBCCCFED5LgixAD2L59+4iIiGDfvn1t25599lkmTZrUh73qWXfffTd33313X3dDCCHENeh6vG8KIYToHRJ8EUIIoLGxkTfeeMPkDbcQQgghhBBCdAezvu6AEKJ3vfzyyyiK0tfd6HcaGxt58803efzxxxkxYkRfd0cIIUQ/IfdNIYQQ3UGCL0JcZ7RabV93QQghhLhmyH1TCCFEd5BlR0Jcg/Lz83nxxReZNm0acXFxjBgxgieffJK8vLzL7tvR2vXKykp+//vfM3jwYIYOHcozzzzDqVOniIiIYOnSpSb7JiYmUlxczC9/+UsSExMZOXIk//rXvzAYDN0+zsv59ttvmTJlCnFxccyfP5+DBw922K68vJznn3+e0aNHExsby9y5c1m2bFnb83l5eYwaNQqAN998k4iICCIiInjjjTcAKC0t5bnnnmP8+PHExMQwduxYHnvssU6dbyGEEH1P7puQlZXFE088wZgxY4iNjWX8+PE8/fTT1NbWtrX54YcfuOeeexg1ahQxMTHMnDmTr776qsPjbdu2jUWLFpGYmMjgwYO59dZbWbVqlUmbY8eO8fDDDzNs2DASEhKYM2cOn332WY+OUwgh+iuZ+SLENejEiRMcOXKEWbNm4enpSX5+Pl9//TX33HMPP/74I1ZWVp0+ltFo5LHHHuP48eMsXLiQ4OBgNm3axDPPPNNhe4PBwIMPPkhcXBx/+MMf2LNnDx9//DF+fn7ceeedl3yt+vp6mpubL9snrVaLnZ3dJdssWbKEF154gcTERO69915yc3N57LHHcHBwwMvLq61dU1MTd999Nzk5Odx11134+vqybt06nn32WWpqarj33ntxdnbmxRdf5MUXX2Tq1KlMnToVgIiICACeeOIJ0tLSWLRoET4+PlRUVLBr1y4KCwvx9fW97HiEEEL0rev9vtnS0sKDDz5IS0sLixYtwtXVleLiYrZu3UpNTU3bvl9//TVhYWFMmjQJMzMztmzZwl//+lcUReGuu+5qO97SpUt5/vnnCQsL45FHHsHOzo6UlBR27NjBnDlzANi1axePPPII7u7u3HPPPbi6upKens7WrVu59957LzsmIYQYaCT4IsQ1aOLEiUyfPt1k2w033MDtt9/O+vXrufnmmzt9rI0bN3LkyBGef/75tjdDCxcu5P777++wfXNzMzNmzOBXv/pVW9tbbrmF77///rJvIl9++WWTGScXM3z4cBYvXnzR53U6Hf/73/8YNGgQn3/+Oebm5gCEhoby5z//2ST48u2335Kens5//vMf5s6dC8Add9zB3Xffzauvvsqtt96Kra0t06ZN48UXXyQiIoKbbrqpbf+amhqOHDnCH/7wBx588MG27Y888shlxyGEEKJ/uN7vm+np6eTl5fHaa6+ZnIfHH3/cpN0XX3yBpaVl2+NFixbx4IMP8sknn7QFX2pra/nb3/5GXFwcixcvxsLCoq39udw4BoOBF154AXd3d5YvX469vX27NkIIcb2R4IsQ16Dz3xjpdDrq6urw9/fH3t6ekydPXtGbyB07dqDVarntttvatqnVau666y727t3b4T4LFy40eTxkyBBWrlx52dd66KGH2gIgl3L+m7SOJCUlUV5ezpNPPtkWeAG45ZZb+Pe//23Sdvv27bi5uTF79uy2bVqtlrvvvpvf/OY3HDhwgBtuuOGir2VpaYlWq2X//v3Mnz8fBweHy/ZfCCFE/3K93zdtbW0B2LlzJxMmTLjoTJ/zz1NtbS06nY7hw4ezc+dOamtrsbOzY9euXdTX1/OLX/zCJPACoFKpADh58iR5eXk899xz7fp2ro0QQlxvJPgixDWoqamJ9957j6VLl1JcXGzyLdL5a7c7o6CgADc3t3ZvxPz9/Ttsb2FhgbOzs8k2BwcHqqurL/taoaGhhIaGXlH/OlJQUABAQECAyXatVoufn5/Jtvz8fAICAlCrTVNchYSEmBzrYszNzfnd737Hv/71L8aMGUN8fDwTJ07k5ptvxs3N7WqHIoQQohdc7/dNPz8/7r//fj755BNWrVrF0KFDmTRpEnPnzjVZrnTo0CHeeOMNjh49SmNjo8kxzgVfcnJyAAgLC7vo6+Xm5gIQHh5+1X0XQoiBQoIvQlyDXn75ZZYuXcq9995LQkICdnZ2qFQqnn766R6fzqvRaLq8b21tLU1NTZdtp9VqcXR07PLrdLf77ruPSZMmsXHjRnbu3Mlrr73G+++/z2effUZUVFRfd08IIcRlyH2zNfnvLbfcwqZNm9i1axd/+9vfeO+99/juu+/w9PQkJyeH++67j+DgYJ599lm8vLzQarVs27aNTz/9FKPR2OVxCCGEkOCLENekc+vTn3322bZtzc3NV/ztHYC3tzf79u2jsbHR5Fu8c99sdae///3v3bJ23dvbG4Ds7Oy2KkXQOpU8Ly+PyMjItm0+Pj6cPn0ao9FoMvslIyPD5FiXmwbt7+/PAw88wAMPPEBWVhY333wzH3/8Ma+88splxyOEEKJvXe/3zXPOVfP75S9/yeHDh1m4cCFff/01Tz/9NJs3b6alpYV33nmn7d4IsG/fPpNjnJvhc+bMmXYzUM85Nws1NTWV0aNHX7ZfQghxPZDgixDXoI6+RVu8eHGXylaOHTuW7777ju+++64tcaDRaOTLL7+86n5eqLvWrsfExODs7Mw333zDvHnz2vK+LFu2jJqaGpO248ePZ+fOnaxZs6Yt74ter2fx4sVYW1szbNgwgLY30Bfu39jYiFqtNlnX7u/vj42NDS0tLZcdixBCiL53vd836+rqsLS0xMzs57f+4eHhqNXqtnvZuXN04ZKsH374weRYY8eOxcbGhvfee49x48a1S7irUqmIjo7G19eXzz//nHnz5rVLuCt5X4QQ1yMJvghxDZo4cSIrVqzA1taW0NBQjh49yu7du7u0VGfKlCnExcXxr3/9i5ycHIKDg9m8eXPbWvTufIPUXWvXtVotTz31FC+88AL33nsvM2fOJC8vj6VLl7bL+XL77bfz7bff8uyzz5KcnIyPjw/r16/n8OHDPP/8821JCC0tLQkNDWXt2rUEBgbi6OhIWFgYBoOB++67j+nTpxMaGopGo2Hjxo2UlZUxa9asqx6LEEKInne93zf37t3LSy+9xPTp0wkMDMRgMLBixQo0Gg3Tpk0DYMyYMWi1Wh599FHuuOMO6uvrWbJkCS4uLpSWlrYdy9bWlueee44//elPzJ8/n9mzZ2Nvb8+pU6doamriX//6F2q1mhdffJHHHnuMm2++mXnz5uHm5kZGRgZpaWl89NFHVz0mIYS41kjwRYhr0B//+EfUajWrVq2iubmZwYMH88knn/DQQw9d8bE0Gg3vvfde29RmtVrN1KlT+dWvfsXChQvbVTLoL26//XYMBgMfffQR//73vwkPD+edd97htddeM2lnaWnJ4sWLeeWVV1i2bBl1dXUEBQXxz3/+k3nz5pm0/dvf/sbLL7/MP//5T3Q6HY8//jiLFi1i1qxZ7Nmzh5UrV6LRaAgODubVV19te8MqhBCif7ve75sRERGMHTuWLVu2UFxcjJWVFREREXzwwQckJCQAEBwczOuvv86rr77Kv/71L1xdXVm4cCHOzs48//zzJsdbsGABLi4uvP/++7z99tuYmZkRHBzMfffd19Zm3LhxfPbZZ7z11lt8/PHHKIqCn5+fSZUoIYS4nqiUns4yJoS4Jm3cuJFf/epXfPXVVwwZMqSvuyOEEEL0a3LfFEIIcSnqyzcRQgx0F1ZSMBgMLF68GFtbW6Kjo/uoV0IIIUT/JPdNIYQQV0qWHQkhePnll2lqaiIxMZGWlhZ++uknjhw5wm9+8xssLS37untCCCFEvyL3TSGEEFdKlh0JIVi1ahWffPIJ2dnZNDc3ExAQwMKFC1m0aFFfd00IIYTod+S+KYQQ4kpJ8EUIIYQQQgghhBCiB0nOFyGEEEIIIYQQQogeJMEXIYQQQgghhBBCiB4kCXfPMhiMVFTUX7KNWq3C2dmGiop6jMZre7XWQBmLjKP/GShjkXH0PwNlLH05Djc3u247Vmfum501UH62/Z2c554n57h3yHnueXKOW3XnfVMImflyBdRqFSqVCrVa1ddduWoDZSwyjv5noIxFxtH/DJSxDJRxdCc5J71DznPPk3PcO+Q89zw5x0J0Pwm+CCGEEEIIIYQQQvQgCb4IIYQQQgghhBBC9CAJvgghhBBCCCGEEEL0IAm+CCGEEEIIIYQQQvQgCb4IIYQQQgghhBBC9CAJvgghhBBCCCGEEEL0IAm+CCGEEEIIIYQQQvQgCb4IIYQQQgghhBBC9CAJvgghhBBCCCGEEEL0IAm+CCGEEEIIIYQQQvQgCb4IIYQQQgghhBBC9KB+FXy5++67iYiI6PDPjz/+2NZuyZIlTJs2jdjYWObOncuWLVv6sNdCCCGEEEIIIYQQF2fW1x0431/+8hfq6upMtn322Wf89NNPjBo1CoAff/yRP//5zzz66KOMHDmSNWvW8Pjjj/Pll1+SkJDQB70WQgghhBBCCCGEuLh+FXwJDQ1tt+23v/0tY8aMwdnZGYDXX3+dWbNm8dRTTwEwcuRIUlNTeeutt/jggw96s7tCCCGEEEIIIYQQl9Wvlh1d6PDhw+Tl5TFnzhwAcnNzycrKYsaMGSbtZs6cyZ49e2hpaemLbgohhBBCCCGEEEJcVL+a+XKh1atXY21tzeTJkwHIyMgAICgoyKRdSEgIOp2O3NxcQkJCuvx6ZmaXjkVpNGqTv69lA2UsMo7+Z6CMRcbR/wyUsQyUccDl75udNZDOSX8m57nnyTnueQ1NepbtyODWyeFo5Tz3GPldFqL79dvgi16vZ+3atUyaNAlra2sAqqurAbC3tzdpe+7xuee7Qq1W4eRk06m29vZWXX6d/magjEXG0f8MlLHIOPqfgTKWa30cV3Lf7Kxr/ZxcK+Q89zw5x11T36hjyaZURsd5E+7v1O75Fp2B/3y9lxPpZdQ06PndoiF90Mvri/wuC9F9+m3wZdeuXVRUVDB79uxeeT2jUaGmpuGSbTQaNfb2VtTUNGIwGHulXz1loIxFxtH/DJSxyDj6n4Eylr4cR3cGSzpz3+ysgfKz7e/kPPc8OcddpygKby09wf6UEn7clckzdw0mxMeh7fmGJh2vLTnOqZxKvFxt2HYkj+kj/PBx7d4gsGglv8utuvtLBnF967fBl9WrV+Po6MjYsWPbtjk4tF6Aa2trcXNza9teU1Nj8nxX6fWdu7AYDMZOt+3vBspYZBz9z0AZi4yj/xkoYxkI4+ju/g+Ec3ItkPPc8+QcX7mtR/PZn1KCuZmaphYD//j8IGNivaht0JFbUkdJVWNb28KyelQq+GZDKr9eEN+HvR745HdZiO7TLxfxNTU1sXHjRqZPn45Wq23bHhwcDPyc++WcjIwMtFotfn5+vdpPIYQQQgghxNXJK6njqw2pALSc/aCvMyhsPVrAodRSk8DLOYoCx9LLScvretoBIYToTf0y+LJ582YaGhraqhyd4+fnR2BgIOvWrTPZvmbNGkaNGoW5uXlvdlMIIYQQQghxFZpbDLy9/AR6g3LJdr5uNtw5JYzf3p6AtWXr5H21SsX3W9NQlEvvK4QQ/UG/XHa0atUqvL29GTKkfRKtJ554gt/97nf4+/szYsQI1qxZw/Hjx/niiy/6oKdCCCGEEEKIrvpqYypFFe1ntpxPq1Hx+LxY3J1ai3DcOMyP5TsyMSoKqXnVJGdWEBPs0hvdFUKILut3M1+qq6vZsWMHM2fORKVStXt+9uzZvPzyy6xevZoHH3yQw4cP8+abb5KYmNgHvRVCCCGEEEJ0xd6TRew4XnjZdjqDwt8XH6K8ugmAqcP8sLLQAKBRq/h+a7rMfhFC9Hv9buaLg4MDSUlJl2yzYMECFixY0Es9EkIIIYQQQnSn4soGPlt7qsPnbK201DXqTLbVNuh46dMDvPjAcNycrJg5OogftqRhMCrklNRx6HQpQyPde6PrQgjRJf1u5osQQgghhBBi4NLpjby9PIlmXfsqOjFBzqACrVn7jym1jTpe+GgfVXXN3DQhpK2N1kzND9vSMRilKo8Qov+S4IsQQgghhBCi13y3JY3c4rp22800KpIyK2ho0jN9uB+Dw13btalv0vPMO3swGhUmJvoArcGc4spGdp8o6vG+CyFEV0nwRQghhBBCCNErjqSWsulQXofP6Q0K7o5WLJoaTmZhLSlZlQR52rVr19is5zevbmNcnBcadWuOSEtzDct3ZqDTG3q0/0II0VX9LueLEEIIIYQQYuDJLanj7eUd53a0tdJiZ63lrw8Mx0yjZmKiDwVl9Ww6lEduaV27UtQVNc28+cMJBoe7ceBUCU0tBppaDGw9UsDUYX69MRwhhLgiMvNFCCGEEEII0aOyCmt48eP9GIztqxKpaF069MjcaMw0P3888Xa14e5pEfzvibFMiPfmwjqoJVWNJGdVtG23sTRj1e5MGpv1PTYOIYToKgm+CCGEEEIIIXpMZW0z//rqMBcrBm1nY86MEf74e7RfYgRgY6nl3hmRvPjAcOystSbPNTTpORd9qW/SU9+oZ8PB3G7svRBCdA8JvgghhBBCCCF6RGOznv9+c6TDykYAFlo19tbmzBwVcNlj+bnb8tcHhmNvYxqAUc6L6tjbmrN+f067UtVCCNHXJPgihBBCCCGE6HYGo5F3VyRTWN5w0TZGBX4xN8pkudGlONpa8NcHRlz0+eq6FppbDKzZk33F/RVCiJ4kwRchhBBCCCFEt1IUhS83nOFERvlFlxtZmmuYMzoAXzfbKzq2i4Ml3q42F33ezEzNxkO5VNU1X9FxhRCiJ0nwRQghhBBCCNGt1u/PZeuRfMw0F6bJbaUCXOwtmTEyAEVRKCyvZ+fxQr7akMqGA7lkFdVgMHa8VAlgxuhAAAI7KEXdojOiNygcTi3tjqEIIUS3kFLTQgghhBBCiG5z8FQJ321Jw93RipKqxg7bqNQQGeDE69+fIKOgmvomPY625vh72JGcVcHXm85godUQ7G1PmK8DYX6OhHjbY2ne+vHlxhEBfLQymbLqJu6fGcnn6063q6S0bHsGwwd5YGul7agLQgjRqyT4IoQQQgghhOgW6fnVfLD6JAEetmQX1wGgUavaBUYUI2QW1hDi7cCYWE9CvB1wtrdApWqdKVPb0EJafjVn8qpJzqrgxz3ZKAr4edgSGeDE3TOj8HGzIb+0nhBve369II63lyXR1GJoe436Jj1Lt2dwz7SI3jsBQghxERJ8EUIIIYQQQly1ksoGXv/hOO5OVpTX/Jxv5cLAi4ONOf/3yEgszC/+UcTO2pzEMDcSw9wAaNEZyCqq5UxeFftOFvP7N3aQEOpCfmk9W48UcOfUcJ69azCvfHOEukZ923F2Hi/kprFBONiYd/NohRDiykjOFyGEEEIIIcRVqWvU8b8lx9GaqXG1t2wr9WzXwZKfpxbEXzLw0hFzrYZwP0dmjQrkL/cPx9fdlm1HCwDYf6oEAH8PO/50z1CT/fQGI5sO5XVlSEII0a0k+CKEEEIIIYToMoPRyFtLT1BT38yUwb4cSy8/7znTWS9hvg4EdJAk90pYmGv4433DGTHIHYCa+hZKKlvLWbs7WRPu52DSfsvhPJrPW44khBB9QYIvQgghhBBCiC5btSuL07lV3H1jBGv25bRt93O3paFZb9L27m7Kv6LRqLlv5iCCve0BeHd5Uttzd0wKM2lb36Rnx/GCbnldIYToKgm+CCGEEEIIIbokNbeKVbuzuHGYL4dSS9uWGwHo9KalosP9HPB1s+2211apVMwdEwhAVnEd32xKxagoBHrZ42JvYdL2pwO5lyxdLYQQPU2CL0IIIYQQQogr1tCk44NVJ/Fzs8Xfw45Dp0vbnosJdKKoosGk/ZQhft3ehwh/J7RmatQq2HIkn/dWJKPTG5g9OtCkXVl1k0n/hBCit0nwRQghhBBCCHFFFEXh8/WnqW1o4a6p4Xy98YzJ81X1LSaPnewsSAx37fZ+WGg1RPo7YVTA3dGa9IJqXvnmKIPD3dCoVSZt1+7NQVGUixxJCCF6lgRfhBBCCCGEEFdkd1IR+1NKuGNKGIdSS6lv+jm3S3SQM3ml9SbtJyR4o1H3zEePuBAXAEoqG3loVhTNLQb+78vDRAc6m7TLLq7lVHZlj/RBCCEuR4IvQgghhBBCiE4rqWzgiw2pDA53Y0yMJ3uSiwBQq1SogNziOpP2GrWKCfHePdaf2LPBF2tLMw6dLuWZuwZT16gjItCxXdu1+3PabRNCiN4gwRchhBBCCCFEp+gNRt5beRIrcw33zYgkObOS2obWJLtGRcHXzYaaBtMlR0Mi3HCwtejocN3C3dEKLxdrahpa2JXUWtVoSLgbp7Kq0JqZftxJyqggr6Suo8MIIUSPkuCLEEIIIYQQolNW7sokq7CGh2ZHYWulZecJ0xLOuRcsNwKYNNi3x/sVF+KCooCrgxV7kosYGunOyawKgrzs27VdJ7NfhBB9QIIvQgghhBBCiMs6nVPJj7uzmT7CHy8XG5ZsSeNwalnb81YWZu328XWzIczXocf7FhfcuvTIxkrLpkN5hPs5YGVhhqOttl3bfSeLqahp6vE+CSHE+ST4IoQQQgghhLik+iYd761Mxs3JiqKKBn7/9m7W7vt5BomPqzWNzfp2+00a7ItKpWq3vbuF+Tliaa4hv7SeFp2BM3k1DIlwo6yquV1bg1Fhw8HcHu+TEEKcT4IvQgghhBBCiIuqqW/m/748TFVdCyWVjRw5U4aVhcYkn0pRRSMu9pYm+1lZaBgZ7dErfTTTqIkOdKauUUd8qCubD+cxNNKdrKKaDttvO1pAQ1P7YJEQQvQUCb4IIYQQQggh2lEUha1H8/ntW7vJP5vLRaNuncVibqZGpzcC4GJvSaCnLU0602DGmBgvLM3bL0XqKeeqHmnN1CRlVuDqYIm1pRZ7ay32NuYmbZtaDGw7mt9rfRNCCAm+CCGEEEIIIUxU1jbzn6+P8Pm60xiMChq1ihFR7jw4exD//dUYRsV4tbU1KgqjYryobzQNvtww2KdX+xx7Nu/LqewqRkd7sulQHkMi3FCpVJhr23/s2XAwF73B2Kt9FEJcvyT4IoQQQgghhGiz60Qhz767h1M5VQBE+jvy9m/G88jcGEZGeeJgY86e5CIAVCr4/Z2J7DpRZHKMQQFOeLnY9Gq/news8PewJbu4lpHRHuw8XkhMkDM1DS1U1jRhbaExaV9V18Le5OJe7aMQ4vrVe/MAhRBCCCGEEP1WTUMLr39/nIyC1jwpahU8ODuKUdGeJu1SsiuprG1NZDsm1ovGJj2Zhaa5VXqjvHRH4kJcyCmuo6iigZhgF/JK67DQamhqMRAf6tYWNDpn/f4cRsd6ou6FpMBCiOubzHwRQgghhBDiOrdmTza/eXNXW+DF09mafzwyql3gBWDjoZ8rBc0aFcDmw3kmzzvbW5AQ5tKzHb6IuGBXAI6nlzNjhD+bD+e3laH2crFu1z6/rJ6kjIpe7aMQ4vokwRchhBBCCCGuU7kltfz+7d18vy0do1EBYPIQH156cDjujlbt2pdUNnAsrRyAEB97UnOq2HfSdOnOhAQfNOq++ZgR7G2PjaUZyZkV+Lnb4uNqg71ta7Ldytomgr3s2u1zNK2st7sphLgOSfBFCCGEEEKI61BeaR0vfXqQ8pomVIClVs2Tt8Zx19QIzDTtPya06Ay88s3RtsfNLQY+WXsKvUFp26ZRqxgf790Lve+YWq0iNtiFphYDaXnVzBwZwLEzZWjUKlKyqxif0D4JcH5pXR/0VAhxvZHgixBCCCGEENeZExnl/O2zgxjOznYJ9Lbnbw+PJCHMtcP2RqPCB6tO0tj8c0WjvLPlp883IcEbhwvKOve2+NDWMexKKiQ6yBkLczMcbS0oqWpkaIRbu8BSfmk9iqJ0dCghhOg2EnwRQgghhBDiOqEoChsO5PLqkmO06FvLLI+L8+T5RYNxtre86H7fbUmjoKye+ib9RduMjfXi9klh3d7nKzU43A17G3P2nSympr6FGSP90RmMGI0KZdWNJISa5qNpaNa3JRAWQoieIsEXIYQQQgghrgN6g5HP1p3i601nMDdrLbusNVOz4IawS+Zo2XI4j73JRVRcJEBhb2POk7fG8cCsQWjN+v7jhdZMzaTBPugNCluO5DMs0h0VrTNbth8rZOpQv3b75Je1n8UjhBDdqe+vjkIIIYQQQogeVdvQwivfHGX7sULcHC2J9HdEpYKJCT7YWmkvul9+aR1fbTxDTYOOZp2h3fNDI9x4+cHhF12u1FcmJvqgNVOz+XA+RqPCjBEBACRlVhDq69AuSJTfwRIqIYToThJ8EUIIIYQQYgDLL63j5c8OkppbRaS/I08tiOfE2fLKU4f5XnQ/nd7AP7843JYX5nzWFmb8Yk4Uj90cg5113+Z46Yi9tTmjYzypa9SxJ7mICQk+qFRQUtlIY7MeZzsLk/aSdFcI0dMk+CKEEEIIIcQAdSytjL8vPkRZdRMTErz5ze0J7EspBhSGD/LA1aF9OelzPlydQkNz+xwvoT4OvPzQCEZGe6JSqXqw91fn3PKinw7kYq5VE+DRWmb6yJkyvFxtTNrmybIjIUQPk+CLEEIIIYQQA9BPB3J5/fvjNOsMLJwSxj3TIgDYcCAXowIzRvhfdN+MwhoOnCppt93Z3oLnFg3G6YKZI/2Rt6sNscEuFJY3kJRZwahoTwC2HcsnxNvepG1hWT3GDmb4CCFEd5HgixBCCCGEEAPMkTOlfLPpDJYWZjx9WzxTh/qhUqnYn1JMU4uBQQFO+J+dCXIho1HhzR+Od/jc9OH+/Xq2y4VuHH529sv+HCL8HQFIy6shzNfBpF2L3khpVWNvd08IcR2R4IsQQgghhBADSEVNEx//mIJKBU/MiyUmqLW0sqIorNiZiaLArFEBF91/+c4Mqupa2m3XqFWMiPLosX73hKgAJ3zdbEjOqsSoKGjUrYGj3JL2OV7yJOmuEKIHSfBFCCGEEEKIAcJgNPLuymTqm/TMHRNEZIBT23Nn8qoorWrC29WGQedtP195dSNr9mR3+Fx8qGu/TK57KSqViqnDWme/bD6Uj4+bDeZaNZsO5WFloTFpm18mSXeFED2nXwZfli1bxs0330xsbCwjRozgoYceoqmpqe35zZs3M3fuXGJjY5k2bRo//PBDH/ZWCCGEEEKI/mH5jkzS8qqJ9HdkzuhAk+eWbc8EYM7owA6XDimKwpvLkrhY6pMxMZ7d3d1eMTLKE3sbc/aeLMLT2RoLrYaiikYcbS+seCQzX4QQPcesrztwoXfeeYcPPviARx99lISEBCorK9mzZw8GgwGAgwcP8vjjjzN//nyef/559u7dyx//+EdsbGyYPn16H/deCCGEEEKIvpGcWcGaPdnYWWt5eE40avXPAZay6kZO51bhYGPO0Ei3DvffnVREdlFth88FeNoRG+LSI/3uaVozNZMG+7B8RyaNzXrqGnSoVaDTG03a5UvFIyFED+pXwZeMjAzefPNN3n77bSZMmNC2fdq0aW3/fuedd4iLi+Oll14CYOTIkeTm5vL6669L8EUIIYQQQlyXquua+WBVMgrw0OyodtWIVu7MAlpzvWjU7Se/1zfpWPzT6Q6PPSTCjQdmDsJM0y8nzXfKxEQfftyTTVp+DQoQ6GlHTrFpoKmovAGd3ojW7NodpxCi/+pXV5alS5fi6+trEng5X0tLC/v27WsXZJk5cybp6enk5eX1RjeFEEIIIYToN4xGhfdXnaSmQceMkf7EBpvOUGlq0bMnuQgLrYZxcd4dHuPTNado0RnbbZ8/MYRf3hyDlUW/+s72itlbmzMq2pPGZj3QGnwxXDBco6JQVNHQB70TQlwP+tVV9NixY4SHh/P222+zePFiamtriYmJ4bnnniM+Pp6cnBx0Oh3BwcEm+4WEhACtM2d8fX27/Ppml4lya85G+zXXcNT/nIEyFhlH/zNQxiLj6H8GylgGyjjg8vfNzhpI56Q/k/Pc8/rqHK/cmUlKdiWhvg4suCEUM40ag9HI4dOlqNUqsgprMBgVZo70w8Za227/lOwKDqWWmmzTqFX85vZ4YkNce2sYndbV8zxjpD/bjxWgUas6DDQBFFY0EORtf9V9vNbJ9UKI7tevgi+lpaUkJSWRmprKX/7yF6ysrHj33Xd54IEH+Omnn6iurgbA3t70gnju8bnnu0KtVuHkZNOptvb2Vl1+nf5moIxFxtH/DJSxyDj6n4Eylmt9HFdy3+ysa/2cXCvkPPe83jzHyRnlLN2Wjo2VlufuHY6bszVNzXpeeH8PKVkVJm2D/ZywsbXEXPtzlZ8WnYHXlxw3aadSwT9+OYaooP6d4+VKz7OTkw1DIt05dKqEjKIaHGzMqWvUYTgvw3B5bXO3X9uuZXK9EKL79Kvgi6IoNDQ08NprrxEZGQlAfHw8kyZN4osvvmDs2LE99tpGo0JNzaWnGWo0auztraipacRw4TzFa8xAGYuMo/8ZKGORcfQ/A2UsfTmO7vxA0Zn7ZmcNlJ9tfyfnuef19jmubWjhX58fwKjAQ7MHoVUplJfX8dr3x9oFXgBe+/YI7/xwjABPO/w97HB1tGTXiULqm/Qm7W6fFIqXoyWVlf0zAe3VnOfJg304dKqEorIGIvwdOZ1bZfJ8Wk5lvx13b5LrRSsJxInu1K+CL/b29jg6OrYFXgAcHR2JiooiLS2NWbNmAVBba5ocq6amBgAHB4eren29vnMXFoPB2Om2/d1AGYuMo/8ZKGORcfQ/A2UsA2Ec3d3/gXBOrgVynnteb5xjRVF4f0UylbXNTBniS3yIK3q9kcXrT3Mkteyi+7XojZzJq+ZMXsczxoO87JgyxO+a+B3pynmO8HPE1cGSsuombKy0KBeU1c4tqbsmxt5b5HohRPfpV4v4QkNDL/pcc3Mz/v7+aLVaMjIyTJ479/jCXDBCCCGEEEIMROv25XAsvZwADzsW3BBKZmENf//8IFuO5Hf5mGqVinunR5qUqB5oVCoVU4b6AVDQQWnpsuqmtqS8QgjRnfpV8OWGG26gqqqKlJSUtm2VlZUkJycTHR2Nubk5I0aMYP369Sb7rVmzhpCQkKtKtiuEEEIIIUR/V9PQwjvLk1iyNR0LrZrBEa7844tDvPzZQdILajrcZ1ikG37utpc99vQR/vh72HV3l/udGxJ9UKm4aGWjgnJZdiSE6H79atnRlClTiI2N5cknn+Tpp5/GwsKC999/H3Nzc+68804AHnvsMe655x5efPFFZsyYwb59+1i9ejX/+9//+rj3QojridGokFlUw8msSqzMNUwe4otKNXC/KRRCCNF3mlsMlFU3svdkMRsP5tGsM2BprsGoKCzbnnnJff3cbXns5ljKqhv5fN1p0vKrsbXSUlbdZNLO3cmKuWMCe3AU/YfWTI27oxXFlY1o1CqThLsA+aX1hHhfXToDIYS4UL8KvqjVat5//33++c9/8sILL6DT6Rg6dChffvklbm5uAAwdOpQ33niDV199le+//x5vb2/+9re/MWPGjD7uvRBioKuqayYpo4KkzHKSMytMEhR6udgQHeTch70TQggxEBgVhW1HC0jKKKe8pomKmmbqGnXt2jW1GC55HDNNa1Dh/hkRrNqVybr9uUxI8Oaxm2OwsjCjoKyefSeLOZNXhY2lljunhptUQRrowvwcKK5sxEKroeGCZUb5pTLzRQjR/fpV8AXA2dmZ//znP5dsM3nyZCZPntxLPRJCXK90eiMnsyo4dqaMpMwKckvqOmzn6WyNt6tkw+9LiqJgMCro9EYURcHaUtvXXRJCiC5Zui2DNXuzL9tOrVLh7WpNXaOOqroWk+ec7S2oqGlmfLwX7644iYuDJX+8e4jJvcrb1YZbxl+/+RJjAl3YebyIFr0BFXD+3Jf8so7v90IIcTX6XfBFCCH6glFRKKlsJKe4ltySOnKK6ziTV9XhN4sqFYR4OxAT5ExMsAuBnnYDOjlhf9DcYuCdFUmUVzfT2KxDpzei0xvRG4xt/z7/jfPTt8UTG+zSZ/0VQoiu2HY0vy3wYqZRYaZRt92HIv2dGBPriYeTNc72FthZa3njhxPkXTBLw9fdhrySelzsLTh4qoR7pkcyLNJdlsZeINS3dVmR3qCgVmFS9ejCcyqEEN1Bgi9CiOuOTm8gr7SenOJackrqyC2uI7ekjmbdxadwO9lZEB3kTGywC1GBTtjIzIpetXJ3JodPlzI+0QcUBY1KhdZM3fbHTHP23xo1FuYaIv2d+rrLQghxRZIyy1m8PhUAjVqFRt0aePFzt+WBmYMI8Pw5Ea6iKCxef5qkzAqTY3g4W1FS0Yha1Voi+Nm7huDbiUS71yNne0usLcxoaNZzQcoXaupbqGlowd7avG86J4QYkCT4IoQYsIyKQnl1E3mldeSV1pN/9u+i8gaMinLJfa0tzAj3dyLS35GoQCd8XG2uyW8NG5v1NJfXY9GvattdmYKyen7an8uNw/355YIEKivr0euNfd0tIYToNrkldby9LKnt3tSaANbITWODmDUqADON6UX8pwO5bD1aYLLNzlqLvZWW4opG3BwteX7REBxsLXprCNekEG97TlwQwDqnoLQe+wAJvgghuo8EX4QQA0Jjs56solrySuvagiz5ZfU0XyYhIbSujfd3t8PfwxY/dzsCPGzxcLHG2dn2mvygX1bdyLG0co6mlXEquxKDUWFElAcLp4Rdc9/iKYrCFz+dxt7GnFvGB/V1d4QQottV1jbz6pJjJstcfd1seGh2VIdln0uqGvl+a7rJNq2ZmrGxnqzdl4udtZaXHhyBxXWUPLerEsNdOZFZgVpFu9kv+WX1RAbILEohRPeR4IsQ4pqXkl3JW0tPtKtWcCGNWoWXiw2+7jb4nw2y+HnYYWvVfglRX8xyqaprZun2DNLzq/FwssbHzQZvVxt8XG3wcrFGa9bxG2mjopBZWMOxtDKOniknr/TnRIHO9haYazXsO1lMcmYFd04JY0SUxzUzi2dfSjGncqp47OYYLM3lliWEGFiaWvT877tjVNY2t22bPsKPW8aFoDXreMri0m3p7Uojzxzhz4pdWWjUKv716CgJvHRSVGBrlUKj0prP7fxJsfmlknRXCNG95J2sEOKaVlhe32HgxdXBEl83W3zdbfBxtcXXzQYPZ+t2U7f7A53eyIaDuazandU2U6ewvIGjaWVtbVQqcHeyxsf154CMmUbF8fRyjqWXU1P/c6WLIC87EkJdiQ91JcjbHls7Kz5dmcSPe7J5f9VJ9p0s5u5pETjbW/bIeJp1BnYeL+RYWhkLp4Th5dK1SlCNzXq+3ZxGdKATQyPcurmXQgjRtwxGI698c7QtYG5upubp2+KJuETOqoyCGvanlJhsSwh1YdXuLAB+NS9WAtVXwM3RCgutmmadEbVKheG86EtemSTdFUJ0L7k6CyGuWbUNLby65Fhb4GXKUF9GDPLA29UGK4v+f3lTFIWjaWV8uymNkqpGzLVqbhkXxJShflTWNlNQVk9eaR0FZa1LqIorGimuaOBwaqnJcczN1CSEupIQ5kpciAuO563xV6lUmGs1LJgUyuBwNz5Zk8Kx9HJSP9rHbTeEMj7eu9tmwdQ36dh8KI8NB/Ooa9ShUkFtgw6vLhYdWr4jk/pGHXfdGHHNzNQRQlzf0vKqyTiYx9Bw10su82xu0fP3xYfaqurYWJrx0oPDcbK7eFBcURS+23zGZJvWTE1yZgVGBeJCXEgIde2egVwnVCoVgV72nM6pajebKL+0HkVR5P4jhOg2/f/TiRBCdECnN/Lm0hOUVjUBMDrGk4WTw66ZN0kFZfV8vekMyWcT/Y2I8mDBxJC22ShWFmZ4u9owNNK9bR+9wUhRRQP5Z/PZNDXriQpyZlCAU6emmAd42vGne4eydl8Oq3Zl8tm60+w7Wcx9MyJxd7Lu8lgqa5vZcCCXLUfzaW4xYKZRMTHBm2kj/PHo4nFzS+rYdCiPmaMC8HTuet+6m1FRaGrWU9+kp6FJT0OTrvXfza2PB0e44e5o1dfdFEL0Ab3ByHsrkiiubOSr9SqGRroxZagfId72JvemzMIaXl1yjNoGHdAaePnrA5cOvAAcPVNGal61yTaNWkWzzoiFVsNjN0V3/6CuA4lhbpzOqWq3vbFZT2Vtc4/NEhVCXH8k+CKEuCxFUVDOrofuD8ENRVH4dG0KZ86+CQ33deDe6ZH9om+X09CkY/nOTDYfyseoKAR42LFwShjhfo6X3ddMo25dSuXW9bKhZho1c0YHMjjcjU/XpHAqp4oXPtrPvPHBTBnqh1rd+XNYVNHAun3Z7E4qQm9QsDTXMGOkP1OH+pnMvrlSRkVh8U+ncba3YNaogC4fp7t8tSGVo2llNJ4NsJz/3ahapcLa0gwbSzOsLbUEeNpJ8EWI69S2owUUVzbyl4dGcjK9lI0H89ifUkKQlx1ThvoxJMKNjQfzWLotvS25q7lWze/uSLzsB3yD0ciSC5LsqlVgbWlGU4uBh+dGYSHLjbokJsj5os/lldZL8EUI0W3kKi2E6JDRqJBeUM2R1DIOnymlpLIRb1cbnrw19qpmSXSH1buz2JNcDIC7oxW/mhd70cSE/YXRqLD9eAFLt2VQ16jDzlrLrRNCGBvrdUUBj+7i42rDc4uGsOlQHj9sT+ebzWnsTirC38MOKwszrCw0WFtqW/+2MDu7zQxrCzPqGnWs35/DodOlKIC9tZapw/y4IdEHa8v2yYuv1O4TRaTlVfPkrXF9njTyZFYFmw7nceeUcJzsLLCxbD0PNpZarC3NsDTXXBNBPyFEz2ps1rNiZybDozwYOsiDEE9bpg7143BqKRsO5vLBqpN8/KPKZGmLSgWP3RSDq6Ml+WX11NQ1U1XfQnVdC9X1zTQ26zEYFAxGhYLyBooqGkxe09ZKS0VNM3HBzgwOk7xYXdWa0F6NroPKhvlldcSFdHHtrBBCXECCL0KINjq9geSsSo6klnIsrYyas1Oizykoq+enA7ksujGij3oI+04Ws2xHJgDWFmb8ekEcdv28fLLRqPD6D8c5nl6ORq3ixmF+zB0ThLVl316C1WoVU4f5ER/mymdrT5GSXUlOSeerO7g6WDJjhD9jYr0w76YgSV2jju+2pLXlsOlLRqPCt5vTGBfnzeQhvn3aFyFE1+gNRnaeKCS7qJa7pob3WNL1tfuyaWzWs2BiSNs2M42a4YM8MDfT8MHqkzRekBje2sKMt5YloTeYfuhXq1Q42JpjbWGGRq1CpWrNP3I+C60GWystzTojD86O6pExXS9UKhX+7rakF9S0Kzl94XkXQoirIcEXIa5z9U06jqeVc/hMKUkZFTTrDJdsr1H33QyTtPxqPvox5Ww/VPxqXmyXK+n0pu+3pXM8vZwADzt+MTeqW/qcV1LHtmMFqFSg1agx06gx06gwM1Njpla3/q1RYaHV4OVuj5/rxZfCuDta8bs7EiitaqSuUd+6vKZZ37bMprH55z8NzXqMRoUR0R4Mi3Tv9t+HpdszaNYZWDglrFuP2xW7kgopqWzkN7fF93VXhBBXyGA0sje5mBU7Mymrbs0N5u5oxYyR3b+UsbK2mZ/25zIx0QeP83JUtegMLNmSzqbDeahUEB3oRHJWJQCOtuYMDnfDyc4CBxsLHGzNcbAxx9HWAltrLerzZtQt255BdrFpYPz+mZF8vCaFRVMj+v0XENeC+FBX0gtquCDnblslKiGE6A4SfBHiOmUwGvl83Wl2nSjCqCiX3wEI9rZn2nC/Hu5Zx0qrGnnjh+Nt3xDeMy2CQQEXL8fZX+w9WcS6fTk42Jjz5Pw4nOy6ngvlnIyCGv7ft0dRqcDS3Ay9wXj2j4LeYGxXsQHAzlrLqGhPxsZ64evePmeMSqXC3cka9z48pZmFNWw7ks/N44Jw6+O8Kc0tBpZuz2DGSH8criJ/jRCidxkVhf0pxazYmUVxRQPRgU48Mjea7ccKWLkrixFRHt2ew2P5jgzUahVzxgS2bcsrreOtpSfIL63Hyc6CBRND+HTtKaA1we4L9w3rVG6sytpm1h/IMdkWH+LC0TNl+LjaMjrWs1vHcr2KC3Fh6faMdtsLyhowGpU+WR4shBh4JPgixHVq/f5cdhwvvGw7HzcbEsPcGBzuSoCHXZ/kt2ho0vPa98fbKkPMGOnPuHjvXu/HlcouquXTNacw07TO0umOwMuZvCr+990x3B2t+O0dCR1+42lUFAwGIzq9Aipo0Cms3ZXB9mMF/HQgl0BPO8bGeTEiygObbsjR0h2MRoXF60/j7mTF9BF9n2R33f4c1CoV04b793VXhBCdoCgKh1PLWL4zg/zSesJ9HbhveiIR/q0RZTcnKw6nlvLN5jR+eXNMh8fQ6Q3o9EZ0BgW9vjWorTsX3NYr6AxGFEXB3EyDuVaN1kxNeU0TO44XMndMILZWWhRFYc3uTD5ckYROb2RIuBt3T4/g7WVJtJzNKZIQ5srn604zdagvkQFOl7yvLt+RQYvu52VJKhUMH+TOh6tT+OM9Q01myIiu83WzRaNWtfvyQm8wUlLV2K+q7gkhrl0SfBHiOlRd38Lq3VkdPqcCwnwdSAx3IzHMtc+T6xqMRt5ZkURBWeu66yHhbtw6IeQye/W9moYW3lx6nBa9kftmRBLq43DVx0zJruT174/j7WrN07clYGvVceBErVKhNtOgNQMzMzUBTjZ4Olpw26RQDp8uZcfxAr74KZVvNqUxJMKNsbFeDAp06tM38duOFZBVVMtvbo/v8+TJlbXNrN2Xzd03RvR5wl8hxKUpisKJjHKWbc8ku7iWYG97fnt7AlGBpkENe2tz5k0IYfH60yRnVhB9XoUbRWnN77ThQC6dmwfa3spdWazcldX2Ad7cTM090yOYEO/N5sP5pOZWARDsZc+R1FJuHO7Px2tOYWulZfoIf4ZGurVbxplXWsfOE6ZfkoyL82b9gVzGxHoR7G3fxd6KC6nVKnxcbTrMe5ZfWifBFyFEt5DgixDXoWXbM2hqMc3tkhDqSmKYK/Ghrtjb9I/144qi8OWGMyRnVgAQ6GnHQ3Oi+v03fXqDkXeXJ1Fe08wNg30Y3w2zdJIyynlj6QkCPOx4akF8l5L1Wmg1jIrxZFSMJ6VVjew6UciuE4XsO1mMi70F4xN8mDUyoNenV9c0tLB0WzpDI9yICer7qhLLd2Tg6WzNqBiZzi9Ef7d0ewY/7snG38OWJ+fHER/ictGZJBPivdl+rIAvNqTy0gPD2wK9Gw7k8tOBXOystXg6W5/NodWaN0trpm57rNWoUamgRW9EpzdQVt3EmbxqPJ2tsLLQ0nJ25oyHsw13TgnFw8ma0qpGvj9bItrCXENxZQMPzY4mIcyVWaMCOHiqlHX7cvh+azo3DvNjXLwXlmdLRi/Zksb5q4IttBo8nK04cKqYp29L6NHzej2KC3G9SPClniF9V2dACDGASPBFiOtMbkkdO44XmGwbE+PZ76ol1Da08MVPqRw4VQKAk50FT87v+9LDnfHd5jRO5VQR7uvAwslXnzj2aFoZby87QaiPA0/Oj2t7Y3413BytuHlcMHPHBpGSXcmOYwUs256BrZWWGxJ9rvr4V+L7LenoDQp3dMO5ulq5Ja3fNP/ujsR+H+QT4nq3dl82P+7JZvboQG4eF3TZ/7NqtYq7b4zg758f5KcDOcwaFcixtDK+3ZKGlYWGZ+4cjLdr5xKiGxWFv312EB9XG/76wPC2oLWZmRonJxsqK+vR6Qx8uvZUWyJ7a3MzJiZ6t1Vy06jVjIjyYPggd07lVLFuXw4rd2UyMdEHfw9bTmRUmLzmpCE+rN2bw5zRQTj0ky9JBpKEMFdW78lqtz2vTCoeCSG6hwRfhLiOKIrCN5vOmHyTZq5VM6+fLeM5dLqExetPt5W6tjDX8Ov5cZ1KTtjXdhwvYOOhPJzsLPjlLbFXXdb04KkS3luZTKS/I4/f2v3BJ7VKRXSgM9GBzhiVJH7Yms7gcLdee2OfdzbYseCGkG5PgnmlFEXhu81niA9xvSaSOQtxPdt2NJ8lW9KZPMSXW8YFdTofWbC3PePivVm1O4tADzveW5kMwGM3xXQ68AJwIKWErKJanloQd9HZgtuOFZCS3VrdyN7GnCBvO2aPDmzXTqVSMSjAiUEBTuSV1rFuXzZr9mSbtHGwMaehSY+tlZYpQ3073U/Ref4etqhUcGENgnypeCSE6CZ9u7BeCNGrjqWVt70RPGfmiIBuSQTbHeoadby3Mpm3liW1BV4CPO34091D8Pew6+PeXV56QTWL159Ga6bmiVtjr3r51t6TRby7IpnoIOdemfWzcHIYBkVhyZa0Hn2d8/10MBdbKy2TB/f9h4kTGRWkZFex4Ib+FYwUQpg6cKqEz9edZlS0JwunhF008FJd38LGg7n8/fODPPnaDlbtzkJvMHLrhGDM1CreWHaCphYDCyeHERPc+SWPOr2RH7alE+nvSOxF9iuvbuK7za3XUjONCmsLDQ/NjrpskMjXzZboQJd2uWcmJHiz41ghC6eEXXVQX3TMTKPGzaF9pb3iikZ0ekMHewghxJWRmS9CXCf0BiPfbj5jss3JzoJpI/pHNZcjqaV8tv40NfUtAGjUKm4aG8SMkf7tkhD2R9V1zby19AR6g8LDswcR6Hl1iRB3Hi/kkzUpJIa78ehN0b3yZtvJzoJbxgbxzeY0xsV5tVUJ6Sk19S3sTS5m+gh/zPt4OZnBaOS7LWlMTPTGy6Xz334LIXpXUmY5769MJj7UlftnRrZbatTQpOdQagn7TxZzMrvSZBbDsu0Z7E0u4q6p4dhYmVNa1Uh8iAuTh1xZ8HfrkXzKqpt47OaYDoMpiqLwyZqUttxqGrWKp29L6PSS0XX7TUtLe7lYk5pbRVyIy0WDPaJ7xIW6sPFgnsk2o6JQWN5wTXwJJITo3/r/JxohRLfYfDif4spGk23zJ4b0eQ6VukYd769K5o2lJ9oCLwEedvzlvmHMHh14TQRedHojby1LoqquhRuH+V11otatR/P5eE0Kwwa591rg5ZzJQ33xdbNl8U+p6A3Gy+9wFbYeyUdRFCYN7t0cMx3ZcayQytom5o4N6uuuCCHOYzwvepKWX82bS08Q5uvAYzf/fG1s0Rk4eKqEN5ee4Kk3dvLJmlMkZ/0ceLEw17RVhyssb+CVb45SWtWIhVZNYXk9ekPnaxw1NOlYtTuLEVEeBHl1HGTfdCCX4+nlQGuemcfnxeLm+POMCkVRTMZ1PkVRKK0yvVcnhrmSll/NHZNDO91P0TVDwt063J4veV/EdSovL4+IiAjWrVvXr451rZKZL0JcB+oadazcmWmyLcjLnhFRHn3Uo1ZHz5Tx2bpTVJ8322XumEBmjAy4pqZVf7UxlbT8aqICna56ycrGg7l8tfEMY2I8uX/moF6vPKRRq7lnWgT/+OIQGw7kMmNkQI+8jk5vZPORfIYP8ujzXD6NzXqW78hg9qhA7K0liaUQ/UGzzsB3m9PYnVzEreODCfdz5NXvjuHpbM1dU8M5nl5BdnEt2UW1nMmralfBz0yjIjbYhZHRnsSFuGAwGPl+WwZbj+S3tVGrVZRUNbFuXzZzxnQu8Lpmbw6NzXrmjQ/u8PnK2mY+XJnU9njWyACiz6viZjQqvL8qmTN51cwZE8jYWC+T+51KpWLKUF9W727N+TI6xpO9yUVMG+6Pu5OUO+5pwd4OHW7PL5XgixBXy93dnW+//ZbAwMC+7kqfkeCLENeBFTszaWjWm2xbODms16u5NDTpKapooLC8nqTMCvadLG57zt/dlgdnR+HnbturfbpaW47ks+1oAa4Oljx6U8xVzdRZty+H77akMT7em3umR/RZtZ1QXwfGxXmxYlcmwwa549rBGvirtT+lmJr61plCfW3N3my0ZhpJYilEP5FdVMt7K5MpqmgA4KuNZ1CrWnNylFc38eeP9ne4n0oFgwKcGDHIgyERblhban9+UqshOtCZrUfy25KqNja3BmyW78wk1NeBQQHOl+xXcWUDGw7mMnmIr8lMlnPqGnV8sCqZ+sbWnGVBXnbcPO7noI6iKHy1MZXkzAomJPiwZEs66/bmcNPYIEZEebQF2+eNDyExzA2jonAivRyjArNG9UwgXJjSmqmxtdJSd/ZneE6eJN0V4qqZm5uTkJDQ193oUxJ8EWKAKyyvZ8vhfJNtwwe5E+rb8bc7V8toVCgsq+d0Zhl5JXUUVTRQVN5AYUVD27Ki82nUKmaPDmTWqGtrtgvAsbQyvvwpFXOtmidujWub1t4Vq3ZnsWx7BpMH+3Ln1IsnkOwtC24I5ciZMr7eeIYnbo3r1mMrisJPB3IJ93MkwLNv19BX1DTx04FcHpg5CK1Z/y9jLsRAZlQU1u/PYem2DAxGBR9Xm7blHkYFWvRGWvSmyyGtLDQEeNiRGO7G8Eh3HC4yky67qJYPViejUav49fw4ckvqWLEzkxa9EUWBV745ypzRgdw4zK8taNOsM3Amt4qTWZWczKogp6QOG0uzdhWLdHoDGw/l8ePu7LYvOizNNfzhzkSTa/nq3VnsPN5ayj7U14EZI/1Zty+Hz9efZs3ebG4eF8TgcDdUKhVBXvaUVTeydl8O98+I7HS+GHH1gr3t25aNnSMzX8RAd+TIEd544w2OHj2KoiiEhoby1FNPERDQGvhtbm7mpZdeYtWqVVhYWDBnzhx++9vfYmb287XpwIED/Pe//+XkyZNYWVkxadIknnnmGRwdHYHWZUeTJ0/mtddeY/r06W37LV++nE8//ZT09HSsra2Ji4vjxRdfxMendVl6UVERr7zyCjt27KCxsZHY2Fiee+45YmJieu8EdRO5kgsxwH27Oc1kbbnWTM38id1bzaWhSc/x9DIOnS7lRGY5LbrO5QoJ8LDj/pmR12QSu4yCGt5Z0Tq1/LGbYro8Y0dRFFbszGTlriymDffjthtC+zzwAmBrpWX+xBA+XXuKo2llJIS6dtuxT+dUkVtSx69uie22Y3bVD9vS8XO3Zfgg977uihDXtYqaJj76MYWU7EqsLDQsujGi3RcHAFqNmhFR7kQHuRDoaYebk9VlZwmWVTXy+g/HadEZuWdaBDHBLsQEuzA00p0vN6RyPL0cRYGVu7JYszcHH9fW5T15pXUYjGBtYcagACcmJHgTH+raFmg3Kgp7k4tYtj2D8prmttdTq1T8fmEiFtqf32ZvPZrPip1ZPH5rbNuXHzaWWm6dEMLUoX78uCeb91aexMfNhnnjg4kJcua7LekEeNr1+RLh682YWM92wZfymiYam/VYWchHJzHwHDp0iHvvvZeEhAT+9re/YW9vT1JSEgUFBW3Bl1dffZXJkyfz6quvtgVq/P39WbhwIQBJSUncf//9jBgxgtdee42ysjL++9//kpaWxjfffING0/EXXB9++CH/+c9/mD9/Pk8//TQ6nY69e/dSUVGBj48P1dXV3HnnnVhbW/PnP/8ZOzs7Fi9ezL333stPP/2Ei8u1lYRcriBCDGBJmeXt3kDcOMyvW5aR1DXqOJJayqHUUk5mVVwyYaGzvQWeztZ4Odvg6WKNp3PrH2d7i34RaLhSxZUNvLrkGC06I/fNiCS+i4EJRVH4fls6a/fmMGtUAPPGB/er8zE2zosdxwv4akMqgwKcrig5s05vZNXuTOJDXAnxMZ1l9dOBXFwdLEkM676ATldkFtawN7mY5xYN6VfnXYjrzcFTJXy27hT1TXpCfR24f3okh1JLyS6qwVyrZu6YIBJCXVm/P4cdxws5cLqUwRHueDhfPAeKoiicyq5k85F8jqSWYVQUpgz1ZWLizwm+3Ryt+PX8OA6cKuGDVScxGBX0BiPZxa1LTOxtzBkd7cnMkf7YXpAPKimznCVb0skt+Xk5ip21FnOthjunRRLm54j+7CydQ6dL+WJ9KvfNiOwwkG1vY87CKWFMG+7Hqt1ZvP79cXzdbMkpqeWFe4fJ9amXxYV0fG8qKKtvdz8TYiD4z3/+Q0BAAJ999llbkGTs2LFA62wVgLi4OP70pz8BMGbMGPbt28f69evbgi/vvvsubm5uvPvuu2i1rQFqLy8vHnzwQbZt28akSZPavW5tbS1vvvkmt99+Oy+99FLb9ilTprT9+7PPPqOmpoYlS5a0BVpGjRrFtGnT+Oijj/jDH/7Q3aejR0nwRYgBymA08u2mNJNtDjbmzLyKBKpVdc0cTi3l0OlSTudUtavWcG69fXy4O042WtwcrPB0tsbCfOAs56iub+H/fXuUukYdN40NYny8d5eOoygK32xKY8PBXG4aG8TcMYH97g22WqXinmmR/PWTA6zencWtEzo/Y+rbzWdIy6tm+7FCPJ2tmTnSn9hgF0qqGjmWVsbtk8N6PZnwhb7fms6QCLceW4InhLi0xmY9X288w84ThahVKm4eF0Sgpx2v/3CckspGxid4c+uEkLaZJvfNiMTP3ZZvNqXxxvfHmX9DCNOH+5tcOxua9OxKKmTrkXwKy1tzxrjYWzJpiE+HOaZUKhXDB3ng7mTF8h2ZFFc0tFUGrKlvYd3+HDYfzmPYIHcmJPig1ahZsjWNk1mVbccw16q5cZg/oT72fLbuNDcM8aOutvUYp3MqeW9lMvMmBDM2zuuS58PZ3pJ7p0cyY4Q/q3ZlER/q0udLM69HFloNWo0a3QUV//Il+CIGoMbGRo4dO8ZvfvObi85OgZ+DMeeEhISwd+/etscHDx5k9uzZbYGXc/vY29tz6NChDoMvR44cobGxkfnz51/0dXft2sWIESNwcHBAr29d1qlWqxk2bBgnTpzo9Dj7Cwm+CDFAbT9W2K404rzxwV2aMptTXMtXG89wJreKC+e3aNQqogKdGRLhRmKYK072ljg52VBZWd/2rd9A0dSi57UlxyitamJ8vDdzxwR26ThGReHLDalsOZzPrROCmTWqa8fpDX7utkwZ6su6fTmMjvHEy8XmsvvsTynmyJky/nL/MKzMNexKKuKrjWcwN0vHwcYCC3MN4y7zIaSnZRXVkJJdycsPjejTfghxvdHpDWQW1pKaW8WO4wWUVjXh7mjF7ZNC2Z1cxPIdmQR62vHHe4YS7G1ayrm1EpAfXi42vLM8iSVb0skrqee+GREUljew5Ug+e5KL2pa+xgQ7MynRl7gQl8sGewM97XlqQTzQmh9m27EC9iYX0dRioEVvZNeJInadKLqgPzAuzpubxgbhZGfBa0uOMX2EP1qz1vxlOcW1vP7DcSYN9mHGCP9OnyN3J2senB3V6fai+7k5WVJQ1mCy7fxZTkIMFDU1NRiNRtzdL7382s7ONBCs1Wppafk5l2NNTU2HS4BcXFyorq7u8JhVVVUAl3ztyspKjh49SnR0dLvn/P07f13tLyT4IsQA1NDUWjr3fP7utoyJvfIPvHmldfzn6yPUN/1cLUlrpiYmyJmhEe7Eh7qYVpQYoPQGI28vTyKrqJb4EBfunhbepZkqRkXh83Wn2H6skNsnhTJteP+/cdw0Noj9KcUsXn+a3y9MvOS4iyoaWLz+NE/Oj2sr2zwxwYfxcd7sSSri47UpWGg17DxeyPh47z6bFbXhQC4xwc74uF4+mCSE+Fldo46tR/LRaFQ421nibG+Bi70lDrbmHVZ7a2rRk55fw+ncKlJzq8goqEF/3oyC0TGeuDpY8t6qZLQaNfdMj2B8nPclgyXRQc786d6hvPb9cfYkF5GUWU5tQ2t1GhtLM25I9GFiog8eXSzNHOBpxz2eEdx2Qwj7U0rYdrSAzMIakzYJoa7cOjGk7RqSX1rHmbxqfjmvNZdVaWUj//vuGPGhrtw2qX/k8hKdFxPo3C74ki8Vj8QAZGdnh1qtpqSk5KqO4+DgQHl5ebvt5eXlODh0PGPsXCLekpISPD09L3rccePG8etf/7rdc+bm5h3s0b9J8EWIAWj1nqy2N6Ln3NGFZR7FFQ3895ujbYGX+BAXRsd6ERvsfF1VXlAUhc/WnSIpo4Jgb/sul5Q2GhU+XpPC7qQi7poazuQh10ZpYysLMxZOCeed5UnsO1nMyOiOb5AtOgNvLzvBrFGBhPk6mjynVquoPVu68+5pEexJKmLV7iwmDfZh8hBf7Kx77wZaWdvM/pQSfr2ge6s4CTHQpRdU887yJCrOSy57jlqlwtHOvC0gY2OpJauoluyiWpMlqs72FoT7ORLu54hGrWLt3hz2JBUxLt6bWycEd/pa4OlszZ/uGcK7K5JJzqwgwNOOSYN9GDHIA/MryE91KZbmZoyP92Z8vDc5xbVsP1ZAZW0zNw7zI8LfyaTtuv05TEj0xsrCjKraZv799RH83G15YOagyyYEFv3P0EEe/HQwz2RbbkkdiqJIIE0MKNbW1iQkJLBixQoeeOCBSy49upQhQ4awadMmnn322bYKSLt27aKmpoYhQ4Z0uE9iYiJWVlb88MMPxMV1/J5s9OjRrFy5kpCQEKytuxZQ70+un09PQlwnSqoa2Xgw12RbYpgrkQFOF9mjY+XVTbzyzRGqz5aHHh/vzb3TI67LNx3LdmSy60QRHk5WPDk/rkuzNfQGIx+uPsmBlBLumR7BxASfy+/UjwyNcCM6yJlvNqcRF9LxbKcvN6Ti6mDFtOHt8yoYjEY2HcojMcyNUdGejIr2JKe4lrX7cnjm3T1MTPRh5siAqyrX3VmbD+fh4WxNdKBzj7+WEAOBoihsPpzPN5vOYDAqTEz0IcjLjsqaZsprmqiobaaipomKmmYqaqrhvCJFHs7WRPg5tAVcXOwtScmuZPXuLE7lVBHgacfz9wwhxPvKc2nYWGp5+rZ4KmuacXGw7MYRt+fvYceiGyM6fK6ytpmDp0v5x8MjaWzW85/PDmJjacYvb4nBTHPlgXrR9wI7yLVT36SnsrYZZ/ue/V0Torf99re/5b777uO+++7jzjvvxMHBgeTkZJycnBg5cmSnjvHoo49yxx138Mgjj3D33Xe3VTuKi4tjwoQJHe5jZ2fHr371K1555RUURWHy5MkYjUb27dvHrFmziI2N5b777mPVqlUsWrSIe+65B29vbyoqKjh27BgeHh7cd9993Xgmep4EX4QYYJZuSzepPKRRq7htUugVHaO6rplXvjnSVjpzZJQH90y7PgMvmw/lsXp3FvY25jx9e0LbUporoTcYeX9lModOl3L/zEGXTbrYH6lUKhbdGM6fP9zPsu2Z3HVjuMnzu04UkpJdyV/u77gyx5HUMsprmnho9qC2bf4edjwyN5riygZW7szk2Xf3MGWoLzcO88fasmduT806A1uP5DN/Ysh1+fssxJVqbNbz2bpT7E8pwUKr4cHZEYyM6nj2m6Io1DfpqahporZBh6+bDQ62FkDrkstjaWW8szyZzMIaPJ2teXDWIEZFe15V8m21StXjgZfL2XAwl+GR7mg0Kv791WGaWow8t2jwdTVDdKAx06gxN1PRojfNdJdXWifBFzHgDB06lM8//5xXX32V5557DrVaTVhYGE899VSnjxETE8PHH3/M//t//48nnngCa2trJk2axDPPPHPJ2TQPP/wwzs7OfPrppyxduhQbGxsSExPb8sc4OTnx7bff8uqrr/LKK69QVVWFi4sL8fHxTJ069WqH3utUiqJcvD7sdcRgMFJRUX/JNmZm6gGTSHSgjEXGYSqrqIaXPj1osm3acD9unxTW6WPUNer491eHyStt/f+QGObKYzd3/tu7gfQzOZ1fwz8+3Y+5VsOzdw7uUtUJvcHIeyuSOXymlIdmRzHqIkt2ekp3/zyW78hg1a4s7roxnBsSfVCpVOSV1vF/Xxzmt3ckEORl3+F+//jiEDqdkRfuG3rRoEd+aR3Ld2ZyKruS6SP8mTLEz2SWUXeMZevRfJZuy+CVX47utqUJ0FoF6/N1p8gsrGlNSq1w9m8FpfUvWh8qoFIxbJAHCyeHou3lb8Xd3Lqvckpn7pudNVCuG/2Zoiik5lUzJNqLpobmTp3n/NI63l6eRGF5A14u1vzqlli8rzBPktGosP9UMT/uySa/tB5/D1tmjwpkcLhbr1U8W78/hy1H8vFytkar1WCmUWGmVmOmUaHRtP5tplHj5mjF2FivK+pXQ5Oe37+zm8dujuaLn1KxsdTy0iOjUfR6+V3uQb1xzfi/Lw6RmmeaKLS/J8nvTnJdbtWd900hJCQvxADy/dZ0k8fWFmbMHh3Y6f0bm/X877ujbYGXqEAnHr0p+rqbNq0oCkkZ5bz63THUKhW/uiWmy4GXd1ckc+RMKQ/PjrporpRryaxRgZRVN/HFT6mk5VVz++RQ3l6WxC3jgy8aeMksrCEtr5qHZg+65GwTHzdbfnVLLNlFtSzbkcGGg3nMGhnAxERvtGZXHyhRFIUNB3KZmOjdrYGXExnlfPRjCsMj3dtm1KgAVJz9u/Vx2zaVipW7s3nx4/08dnMMvm623dYXITqiKApLtqazbl8Oc8YFs2BC8GX32ZNcxGfrTtGiM7bOfpwecUUzOfQGI7uTilizN5uSykZCfR14akE8scHOvTbrrLC8no9/TCGjoAZbay2ZhTXEhbii0ajQG4w0tRjRG3ToDQp6o5Eth/PZeaKQh2dH4eZo1anX2HY0Hz83Gz5YdZIgL3ueuDUORzsLKiv1l99Z9GuDAp3bBV/OvT8SQoiukOCLEANEcmYFJ7MqTbbNGhWATScrETXrDLz+/XEyC2sBCPV14Il5cd3yofdaUFbVyMnsSlLO/qk5m+vmF3OjiAlqXzrvcvQGI+8sT+JoWhkPz4m66DT9a43WTM2DswYR6uvAVxtSOZZeRrC3A5MGXzyHzYYDuTjYmDN8kEenXiPA046nFsRzJq+KZdszWLc/hzljApmYeHV5cpIyKyipbGTS4O5JdKzTG/lhWzp7k4u4f+Yg4kNdO7WfmZma3y8awvcbT/N/Xxxm4ZSwLlUiE6IzjIrCFz+lsvVIPl4u1mzcn8Pskf4XnXWl0xv5etMZth7Jx0yj4u4bw5l4dpZbZxVXNvDK161LV2OCnLl/RmS7BLU9qbFZz6rdWWw5nIfBqDAu3ptF08JZtj2DfSeL+fX8ePzc2wc9K2qa+OjHFF74eD93TgljbKzXJcet0xtZszebFp2RUTEe3D0tos8quInuF+rTPg9RnpSbFkJcBQm+CDEAGBWl3awXJzuLTlfT0RuMvL0sidO5VQAEeNjx1Pz4Af0msqa+pS3QkpJdQWlVU9tzFloNcSEuTB8dREyA4xVPtz0/8PKLOdGMiOpc0OFaoVKpmJjgQ3lVE2v355CWV82BUyUdBlcqa5s5cKqEuWMCr3gGVZivI3+4czApWRUs3Z7Bmj3ZhPk7Ya5RYW1phq2VFltLLbZWWmysWv9u/bdZh9WoNhzIZfggDxzP5qC4GoXl9by3Ihk7ay0vPjD8io+pUqmYMtQPf3c73ll+gjN5Vdw5JbxbZ+SI68vpnEpa9EacbC1wsrfA2sIMg1Hh4x9T2HuymDsmhzEkwo0/vLObbUcLmDLEF0VRqKprobiigeLKBoorGknKLCevtB4Xewt+eUvsRWe0XYxOb+CdZUkYFfjzvUOveP+rYVQU9iQV8f3WdLxcbQAV4+K8uOvGcNQqFQsmhuLuaMW/vzrMI3OjiQk2Daw721vy2zsS2HQwj8XrUzmWVs690yMuWoHp8/WnqG/Sc9PYIOaOCZQ8UgOMbwcBusLyBnR6I1qz62tGsBCie0jwRYgB4OCpErKLa0223TQ2qFMf5AxGI++tTOZERjkA3q42/Ob2+B5LeNqX9AYja/flcCCl2GTqsEatIszXgUEBTkQFOhPsbY+lhVnbWucrfY13lidxLK2cR+ZGd3q2x7Umu6iWzUfy+d0dCazbl8O7K5JJy6/mthtCTYIsmw/noVarmHAVs1YGBTrzfIATGYU11LcYKS6ro6a+hdLKRjIba6hr1FHXqKe+SUddow693oifhy1Rgc5EBToR5utIWXUTSZkV/OW+YVc1bkVR2HG8kO82pzF7dCA3Dve7qjKywd72/OX+4Xy4+iT/WHyIx26JwcPp2i+lKHrXkdRS3lh6wmSbuZkalQqadUaCve2pqW/haFoZXi42/LA1jR3HCiipbKRZZ2h3vLgQFx6aHdWl6mNfbzxDflk9z9w5uFcDL5mFNXy5IZVmnYFZowJYuj2D0TGeLLox3CQoMiHBB1cHK95dkcStE0LazahTq1RMHeZHVKATH6w6yZ8/2s8DMyOJC/l5ZpuiKCzf2VoFb9JgH24aG9Rr4xS9x8HGHK0adOd9/2JUFArL6/H3kDwgQogrN/A+XQlxndEbjCzdlmGyzcvFmjGxl1/mYlQUPllzikOnSwFwd7Tit7cnXPRbvmtZYXk976882Rak8ne3ZVCgE4MCnAn3c+iWqhTnZhAdTy/nF3OjBmzgpaFJz9vLT3D7pFAi/Z0I93Pkxz3ZLN+RQWZhDY/dFIOzvWVbZaFR0R5dqhJ1PpVKRYS/U6eS/zU260nPr+ZkdiXfb02nsLwBawszXOwt0RuMGIzGDmfGXE59k47P1p4it6SO3y1MINCzez5Y2lppeXJ+HGv3ZvO3zw5y34xIhkS4d8uxxcBX09DCZ+tOoQImJPpQ36ijvKaJ3OI6Ws7+P8koqCGjoMZkv9ySOpzsLAjyssPT2Rp3J2s8nK3wdLbG09m6S7M49iQXsfVoAbdPCiXU99Klo6vrW1i/r3VJoZVF16+/Or2BxT+lcvRMGTeNDcLX3YZXlxxvDbxMDe9wHNFBzjxz12BeW3KMkspG5t8Q0i6I6uNmy5/uHcryHZm89v1xJib4cNsNoWg0KhavP82e5CKcbC24c2p4u+OLgcPf0570Dv7vSPBFCNEVEnwR4hq37WgBJVWNJttunRDSqQ+XK3dmsjupCGhdpvS7OxJwsrv6JRn9iaIobD2Sz7eb02jRG4kLceHe6ZHdPk6dvnXGy/H0ch65KZphkQPzw3NrwC6FUB9Hxp0tma1WqZgzOpAQb3veW5nMXz89wCNzoympbKS+Sc/UoX692kcrCzNigl3alhQUltfzwkf7ifR35INVJ6ltbCHCz4lBgU54OFljY2WGrWXr0iVrC7MOK52k5lbxwapkBgU485f7h3V7CVm1SsWsUYGEeDvw3spkzuRVM39iyHWX7FpcGUVRWLz+NDUNOqaP8Oe2G0JpaNLxvyXHQAVP3hpLkLcDlbVNVNY2U9ugw9PNlo9XJeNka8Ezdw3utr4UlNXz+brTJIa5cuOwS/+fr2/S8d9vjpJXWkdtYwsPzorq8uuu2p1FaWUjf394BEUVDfy/744xJsaTuy4SeDnH182WP94zlNe/P847y5J4aE4UFhfMFjXTqJk/MYS4EBc+WHWSk9mVuNhbkFtSh7eLNZOGXN3MN9H/hfg4tAu+5JVK3hchRNdI8EWIa1hTi55VuzJNtoX42JMYdvnEn5W1zazdlwOAnbWW392RgGsnqztcK6rrW/hkTQrH08vRmqlZdF555O6k0xt5e9kJTmRUDOjAi95g5OMfUyiraeLZOwe3O49Rgc785b5hvLMiif9+exRrCzOiA53w6eNqPgdPl+Jsb8HTtyWgVqvakiufyq7k0KkS6pv01DXpqG/UYTAoWFuaYWPZmjvGxlKL1kxNam4Vi26M6PH8PZEBTrx4/zDeW5nMv746zC9vjh1wAVHRffalFHPodCnerjbcMi6ImvoW/vvtUUqqGnl6QTyRAa1Jbh1szAn0/Ll0bMnZKkB5JXUd5rW4Us0tBt5ZnoSdtZYHZl26qllrVb1jqFTwm9vjefW748SHuDK0C9fN/NI6Nh3K58X7h7UFXsbGeHHn1LBOXecdbS145s7BvL8qmX9/dZgnb43DoYP8TeF+jrz04HC+2phKVlEti26M4KsNqYyKHpizG8XPOkrMnCtJd4UQXSTBFyGuYT/tz6WmQWeybcHE0E696Vy1Owvd2Snpd0wOw8vFpkf62FeOninjk7Up1DboCPCw4+E5UXi7dv8YdXojby07QVJGBY/eFN2lDxDXgqYWPW8vS8JgVPjDwsSLJmN2trfkmTsH892WNDYdzGP6iIBe7qkpvcHI5sN5zBwZ0DajxdXRivGOVoyP9zZpqygKLTpjW+6Y+iY99Y06Gpr1LJwShqtD7wQnHWwt+O0dCazenU1GQbUsQRIdqqxt5sufUlGrVDw0exC1DTr+881R6hpa+P0diQR7X3xZ3OgYT77bnMaGg7ncP3PQZV/LaFQormwgu7iWnOI6SiobGRvnRXyICyqVii82nKa4soHnFg25ZIU9nd7AGz8cp75Jz7N3DcbBxpy5YwL5bN0pQnwcrijQaFQUPl9/mlmjAqisbeZ/S64s8HKOhbmGX90Sy5Ktafz5o/2MjfNiQoJ3u9xLVhZmbTN03lx6gilDfa+baoDXs46CL1LxSAjRVRJ8EeIaVVPfwtr9OSbb4kNcCPdzvOy+JZUN7DhWAICvm023fZuvKAppedU41LbgYKnpk+nYzS0Gvt18hq1HC1DRWm77prFBPbJ8w6gofLAqmeTMgR14qW1o4dUlx3FxsOTh2VGXrfJgplFz55Rwbh4bhHUnSp3nl9ZhZ2N+1XlhOrI/pZgWnYGxnSjlrFKpsDDXYGGuwdnestv7ciU0arUk8bwO1DS08NHqFCL8HZk5svOBSkVR+HRta6WduWMCcXe04q+fHqBZZ+SZOwdfdjaLuVbDhARvfjqQy/yJISZ5vvQGI/ml9WcDLa3BltySOiy0avw97PD3sCPCz5EvfzrNZhcbwvwc2XWiiLumhl8ywe65nFilVY08t2gIDjatrzlrdAAnMsr5ZE0KT98W3+nAyc7jhTQ06wnysmsNvMR6ceeUKwu8nKNWq7h9UhijY7zYeiSflz49QLCXPRMTfUkIczFZxltU0UBKdgUPzIy84tcR156OvrSpadBRXd/S9jsshBCd1a+CL0uXLuW5555rt/3hhx/md7/7XdvjJUuW8OGHH1JQUEBQUBBPP/00N9xwQ292VYg+t3p3Fs0tP1epUAG3Tgzp1L7Ld2RiMCoAzBvfPtFgV+j0Bj5ff5pdJ1pzyKhU4Ols3fpm3d0WPw9b/NztevTNSmZhDe+vOklxRQMu9hY8NDuKCH+nHnu91buyOHi6lAdnDRqwgZey6kb+37fHGBToxF1TwjvMh3IxnQm87DtZzHsrk4HWHAyDApwYFNCaxPdqK24pisJPB3IZF+d9VQk9hegJheX1vLrkWGslroxygjztGBTo3Kl9dxwv5ERGOQEedswaFcCHq1Oorm/hz/cOw6eTM/wmDfZl3b4cth0tYPboQKB1Ns3fPj+IRq0iwMMOfw9bZo0KwN/DDkdb8wuqBnnz3ZY0lm3PwMPJihFRF78GGo0KH64+SVZRLc8uGmwS3NSo1Tw0J4oXPz7A5sP5TB7ie9m+19S38P3WdG4eF8Tr359gXJwXC7sYeDmfn7std0+LYP7EEPadLGblrky+3HCa8fHejI/3xtnekvX7cxgX592p65u49plp1Hi5WFFYbppbL6+kDoegzv1/FaK/ioiIuGybf/7zn8ybN4+33nqLgwcPcuLECWpra/n++++JjY3thV4OLP3y3eiHH36Ind3PWcQ9PH7+Vv7HH3/kz3/+M48++igjR45kzZo1PP7443z55ZckJCT0QW+F6H0lVY1sOZJvsm10jCe+ncitkVtSx76TxUBrfpj4UJer7k9lbTNvLTtBRkEN7k5WRAY4k5ZXRWF5PYXlDW2vB625B1oDMbbEBbfO1LnaN8zV9S1sPpTHmr3ZGIwKo6I9uGtqRI+Wyz6cWsrynZlMG+7HmE7MqrgW5ZXW8b/vjjEh3ps5YwK7PVdObkkdn6xNYcHEECIDnDiVXcnJ7Eq2Hc1HZzAS6GnfGowJdCLUxwGzy8y4uVBqbhW5JXU8fou8ORD9y+mcSt5cegIrCzP++sBwPl17ivdXn+SlB4ZfttpcWVUjX286g5mmdbnRvpMlHDhVwn0zIjsdeIHWJOtDItzYfDiP6SP8AXhneRIjoz1YMDH0svsbjArJWZW4Olji72HL8+/v4+ZxQUxI8DaZKaIoCp+vP0VyZgXP3Dm4w1LqHk7WLJwSxpcbUokMcLrsOL7dfIZQXweWbElnXLwXCydffeDlfFYWZkxM9GFCgjcZBTVsOZLPHz/Yx6AAJ1JyKvn7QyO67bVE/xfu69Qu+JJbUke0BF/ENe7bb781eXz77bdz9913M3v27LZt/v7+bW39/f0ZPXo069ev79V+DiT9MvgSHR2Ns3PHF7TXX3+dWbNm8dRTTwEwcuRIUlNTeeutt/jggw96sZdC9J3lOzLaZq5A6zczN48L7tS+y7ZncG7PW8eHXPUb1vT8at5cdoLquhaig5x5fF4svt6OVFbWU9+oI7+0ntySWnJK6sgtriO3tI6kjAqSMipYuzcHdycrxsV5MTrG64rX+5/MqmDb0QKOninDYFQw06gYGeVBXIgreaV1ONtZ4Ghn0e1LjvJK6/hg9Umig5w79SHlWnQmr4o3fjjBvPHBTEz06fbj1zXqeHPpcRJCXZk+wh+VSkWQlz0zRgagNxjJKKghJbuSlOxK1u/PQaWCUB8HZo4NJjbQsVOv8dOBXAaHuw24RNLi2rY3uYiP16Tg72HHk7fGYW9jzi/mRvPix/v5ZM0pnrg19qLXZaOi8PGaFJpbDCy4obUa1pcbUhkS4dZWfexKTB3mx/6UEg6eLiEjvwYzjYp54y9/L1EUhc/WnaKipok/3j0Efw870vOr+WrjGbYcyWfh5DCiAp1RFIVvN6exL6WE39+ReMnlUOPivDh6powPViXzp3uGXvS6nZxVwfH0cnQGIxPifbhjcufynHWFSqUixMeBEB8H7pisY/eJQiL8Hft8WaLoXZEBjmw7u1T7HKl4JAaCjiYueHl5dbh969atqNVq9u3bJ8GXq9Avgy8Xk5ubS1ZWFr///e9Nts+cOZN///vftLS0YG4u6y/FwJZdVMve5GKTbZMG++DicPk3g2l51RxNKwMgOsi5rRJGV+04XsDi9afRGxSmj/Bn/oQQzM9LxGqh1RDsbW+S+NGoKJRWNZJZUMOe5GKSMsv5YVsGy7ZnEhfiwrg4L2JDXC76xruytpmdJwrZcayAsuomoLVaU22DDnOthv0pJew9aXp+7K21ONlZ4mRngZOdBYnhrsQEdW3GT12jjjd+OI6DjTmP3hR9RctwulNFTROlVY14udhg381LuY6mlfHhqpPcPzOyR5K9Go0K769KxkKr4f4Z7SujmGnUhPs5Eu7nyE1jg2jWGUjLq+ZERjnv/HAMG0st00f4MzbWC3NtxwkvSyobOHqmjGcXdV8pXSGuhqIorN6dxbIdmQwJdzMpbezuaMU90yJ4f9XJSy692XQwj1M5VYT6OjB5sC//9+VhrC3NuHd6ZJcCECHeDgR727N8RyY6vZG/3DfMZNZKR6rrW3hr6XHS8msYFe1Bi85IQ5OeEB8H/njPEPYkFfHB6pMEe9njbG/B9mOFPL0g/pIJgKE10HHfjEhe+GgfK3ZmcuuE9stoW3QGPlp9kmadgUmDfbl9Us8FXi5ka6XlxuH+vfJaon8J8XFot02S7orrjfoy9wbROf0y+DJ79mwqKyvx9vbmtttu46GHHkKj0ZCRkQFAUJBpEsKQkBB0Oh25ubmEhHQu50VHLjelXXP2w6CmBxJ39raBMpbrcRxLt2eYPLay0HDTuKDL/v4qisLS7eltj2+bFHrFyzjO0RuMfL3xDBsO5KI1U/PoTVGMPrv0pjNj8XGzxcfNlrHx3lTUNLHjWEHrDJa0Mo6mleFga87YOC/Gx3vj5WKD0ahwIqOcLYfzOXqmDKOioFapGBzuxtg4L77ddAZHWwv++uBw1CoV1fUtVNQ0UVnbTEVtE5U1za3/rmniWFotW47kM3dMIPMmhFw0eNLROAxGI++tTKa2Qcdf7h/WYUnSnlJW1cipnNaZIKezqyip+nkKtL2NOb5utvi52+DrbouvW+sfC3PNFf8f2XGsgK82nuHJBXFEdTL/xJVasiWNjIIa/vrAcGysL583wcxMTXyYK4Mj3blvbgxLN6WyfEcmq3ZlceNwfyYP8W23xGzzkXyCvO2JDHDqtQ9nnTVQrltw+ftmZ12L5+RUdiWZhTVEBTrj52F7ydxZeoORz9aeZvuxAmaM9Of2yWHt2o+N9yY5q5LvNqcRFeTcrspKYXk9329Lx1yr5pG50azanUV2US3P3T0Ex07OGuzoPA8b5M63m9J4YFYkzpcJ4ueV1vGPzw9R16jDyc6CtLxq9pz9MsDZzgIfN1t83W24eVwQe5OLOXKojLgQF3zdbTv1u+LsYMlDc6L533dHSQhzbZez68PVJ6mub2HacP9uyfHSE67F3+VrUW+eZw9nazQqMPw84ZiC8npQ0SPJ/PsL+V2+coqimORj7G0W5pp+eV0UP+tXwRc3NzeeeOIJ4uNbs91v3ryZV199leLiYl544QWqq6sBsLc3/fbk3ONzz3eFWq3Cyalza6Xt7QfOFPaBMpbrZRzHzpRyIqPcZNv8SeH4+1x+Bsvh0yWcyqkCYHScF4OjupanpLqumVe/OcjxtDJcHSz54/0jCO2gwlJnfyZOTjaEBLhwz+wYTqSV8dP+bPacKOTH3dn8uDubQYHOlFY1UnY22ODuZMWNIwKYMtwfFwcrPl2dTGl1E/99cjxurq25olxc4GIT5w1GhS/XpbBk0xlyS+v53aKhl5w5cv44PlyRxMmsCv50/whiwrunQtTFFFc0cCKtjBPpZSRllFNS0YCjnQWxIa7cOjmM2BBXPF2sW6uSFNaQXVRDVmENR85kUVLZeDbhsQ0BXnYEezsQF+ZGRIDTRd8oKorC0i1prNiezt8fHU2Ir2OPjGv38QJ+3J3FCw+NJDLErUvHuHdODLffGMlP+7NZtjWdH/dkMXN0EHPHB+NkZ0l9o44dxwr41fwEnJ0vnwepr1zr160ruW921rV0TgqOFPDd5jQMRgVHWwviw9xICHcjMcINl/PKktc36vh/nx3geFopj94Sy6yxF1/W8+QdiTz1v228tzKZ//fUhLaZMQaDkb9/fgid3sij8+JoMij8uCeb26eEMyrh8glqL3TuPDc0tf5fsbY0I62gllsmXfzneSClmH98sg+9QWF4tCe/XzQES3Mzmpr1rUtLi2rJLqolp6iGg6dLqa5t5pfz48nIr+bZ9/YwZ2ww824IvWyi2huG25CSU8UHq07yxu9uaGu/cX82u5OKuHGEP79ckNDvP2BcS7/L17LeOs8eLjYUlNW3PdYbFBr0CgFXkGfpWiW/y52jKArPvLmTlKyKPuvDoEBn/vX42H5/fbye9avgy7hx4xg3blzb47Fjx2JhYcFnn33Go48+2qOvbTQq1NQ0XLKNRqPG3t6KmppGDAZjj/anpw2UsVxP41AUhY9XJplsc7Q1Z3ysJ5WV9R3uc/6+n6xq3VelgjmjAy+7T0dyimt59bvW6hzhfo48cWssDrZak2Ndzc/E382ah2YN4o5JoexOKmT70QJSsirQqFUMi3RnQqIPMcHOrd8YG40cSi5g6dY0Zo8KxOWCflzKnFEBeDtb8f7KZH793y08MT+uXYnUC8ex41gBK7anM39iCGHedl06f52xP6WYbzaeoay6CQdbcwb5OzFzhD+RAU54uVib3FDraptwsNQQF+REXNDPAbjGZj15pXXkldSRX9bAoVMlfL3hNJbmGqICnYkJdiE22Bn3s4kvW3QGPlt7itTcKp6/ewjONp0/l1civ7SO/319mHkTQgj2sL3i17jwZzIuxpNRg9zZk1TE6t1ZrNiezvh4byzMNViamxHl79BjP6er0ZfXre4MlnTmvtlZ1+K1fFKiN6Oi3DmVXUlSZgVJGeVsO5IHtJanjQlyJtzPkWU7MiirauLXt8WTGOZ22d/JR+ZG8fKnB3l7yVHum9FaznjlzkxO51QSHeRMdIADf/5gHyE+Dkwb5ntFv+Pnn2e93sDr3x8n0NMeLxdrlu/IZN648g7zmazdk83Xm84AcMv4YG4aF0RjfTON9c0AuNqa4xrqwuDzErifm6E4MtKNGxK8WLIljYf+voGbxgYxaYjvJWcMzBsXxOHTJbzx7RF+MTeapMxyXv/uKOF+jtw1JYyqqu75vesJ1+Lv8rWot89zoKedSfAFIPlMKfYWHS99HQjkd7lVd3/JIK5v/Sr40pEZM2bw8ccfk5KSgoND65rL2tpa3Nx+/sa0pqYGoO35rtLrO3dhMRiMnW7b3w2UsVwP4zh0uoSMghqTbXPHBqFRqy479oOnSsgqrAVgTIwXHo5WV3y+Dpwq4aMfT9KiMzIx0Yc7p4RhplFf9DhX8zOx1GqYlOjLDQk+FFU0YG2pbStRbTQoGFHQ6Y18sPIkns7WzB4dcMWvFR/iyp/vHcabS0/w8qcHWXRjOOPjvTscx+mcSj5Zc4qhke7MGOHfY79rh06X8O6KZGaMDGB0jCceTlYmwRaDQQGUix/gLK1GTZCnPUGe9piZqXFysiGvoIoT6eUkZVawelcmn609hbujFSHe9qTlV+PhbMWf7x2KtaW2R8bX0KTn1SXHiQ50vupzeOHv1qhoT0ZEeXAktYw1e7PILKzl1gnBoHT+ut4XBsJ1q7v7f62dE61GTWywC7HBLjA5jIqaJpKzKjiZVcme5CJ+OpCLg605z941mABPu06Nzd/djnnjg1myNZ2oACfiQlxYviMTKwsN902P4KNVKTS1GHh4TlSXf8cNBiOrd2VRXNHAH+8ZSrPOwMpdWWw4kGuSa8VoVPjox5PsSS4+u8Q0msQwt7br8OWca+PmYMUvb44lPb+aJVvSWL8/h3njQxg2yL3D5VoatYpfzIniH4sPYWulZcOBXGwstfz29vhOXwf72rX2u3yt6q3zHOHvyO6kIpNtWUU1DIvs/rxo/Y38LneOSqXiX4+PlWVH4pL6ffDlfMHBrVN1MzIy2v597rFWq8XPz6+vuiZEj7sw076Hs3WnqlsYjEaW7WjNE2OmUTF3bOAVv3ZKVgXvLE9Co1Zxz7SIHql+0xGVSoWXS8ffOKzenUVBWT3P3z0ErVnXvnnydLbmT/cM4dO1p/h07SkyCmq4a2o42vNyE1TWNvPm0hN4u1jz4Mz2yWG7y9G0Mt5dkcy8CcHMGBHQ7ce3sdIyNNKdoZHuKIpCcWUjGw7ksP1YIQDlNc28tSyJRTeGX/Scd5VRUfhw9UnUKnhgVs+cQ7VKxZAINwaHu5JTXIePm3xTJXqfs70l4+K8GRfnjVFRKCirx8nOApvLLLW50LQR/iRnVfDJmhT++sBwFkwMwd/DluPp5RxNK+PhOVG4X0UVr5OZFazZm82f7hmKhVaDhVbDyCgPth0tYM7oQMy1GppbDPz7q8NkFtXiZGfBb29PwPsql1iE+DjwzF2DOZZezg9nlwxG+jvh626Ln7st3q42bUutgrzsmTMmkOU7MtGaqXliXmyXr/VCXK2EENd22/JK+t/MStG3VCoVlhbX1Mdr0cv6/W/HmjVr0Gg0REVF4ebmRmBgIOvWrWPKlCkmbUaNGiWVjsSAVdeoIyWr0mTbnNEBl61KAbA7qYjC8tYp2hMTfHB1uLI37Iqi8P221kS9v7w5hsTwruXp6E45xbWs2ZvN1GF+HVYhuBKW5mY8MjeaYG8HvtucRm5JLb+8ORYPF2tadAZe//4YBoPC47fGYmHeM2/8kzLLeXvZCeaOCeyRwMuFFFpnQx04VcoTt8YSFehMen416/bl8NLZWUCjYzy7LUiyelcWp3Mr+dM9Q7Hq4TclKpWKAE+7Hn0NITpDrVLh69a1nENqlYqHZkfxwkf7+XD1SX53RyKF5fV8szmNUdEejIr27HK/yqoaeXt5Eg/MHISHs3Xb9qlD/dhxvJC9J4uJDnLm5c8OUlPfQrifI0/eGnvZXC2dpVKpSAh1JS7YhRMZ5WQX15KUUc7afTmUVTXi6mDZGoxxs8XL1YZIf0c8nKwI6yC3mBC9xc7GHJUKlPMmXUm5aSHElepXwZcHH3yQESNGEBERAcCmTZv47rvvuOeee9qWGT3xxBP87ne/w9/fnxEjRrBmzRqOHz/OF1980ZddF6JHHUktxWD8+Y6vNVOTGHb5IIhOb2Tlzkygtezz7NGBV/zah1NLySysJdLfkYSw9t/89Da9wcjHa1JwsbfklvEXT1x5JVQqFTcO8yPAw5Z3ViTz108P8MtbYjiYWkZWYS2/uyPhioNWnZWSXckbP5xg+ogA5owJuvwOV6mhSc9HP56krLqJP90zpC3vS4S/E+F+jmw8lMdn605xMquCRTdGXHWw5GhaGSt2ZfL4vNhun1EjxEDmaGvBA7MG8fr3x1mxM5MjZ0pxsDFn0Y0R7doqisKh06WE+DjgdInKR3qDkX99dYgJ8d7tAum+7rZE+jvy455svvwpFZ3ByNShvtw+KeyiVeGuhlqtIj7UlfjQn+8rzToDBWX15JbUkVdax5bDebTojcy/IbTbX1+IK2VnpaWmQdf2uLK2mbpGHbZW3ROYFKI/279/PxUVFaSlpQGwd+9e8vPz8fHxITY2to97d+3oV8GXoKAgfvjhB4qKijAajQQGBvL8889z9913t7WZPXs2jY2NfPDBB7z//vsEBQXx5ptvkpiY2Ic9F6JnHThdYvI4NtilUx+Ktx7Jp7ymNSHi1GF+l6zq0xGjUWkrbX3rhJB+sY503b4ccorreObOxLbp6d0lwt+Jv9w3jLeXn+DfXx0B4N4Zke3KnXaX1NwqXvv+GJOH+HLLuJ4PvOSX1fPm0hMEe9nx/N1D2p0/lUrF1KF+hPs68u6KJP766QEevSmaQE/7ixzx0oorGvhg1UnmjA7sVLBQCGEqIdSVyUN8WbU7C7VKxXOLBre79usNRr7ckMq2owV4uVjz/N1DLrrM6ZtNZ7AyN+PWiSEYje3zpsSHuvLt5jTUKvjFnChGXsUMm66w0GoI8rJvlwBdiP7Az92W5AtmIeeV1BEZ0DPvEYToT9544w3279/f9viVV14B4JZbbuH//u//+qpb15x+FXz505/+1Kl2CxYsYMGCBT3cGyH6h46WHA2NvPwH2aYWPav3ZAFgY2nG9OFXnhNpT3LrkqWEUNerXt7THfLL6lm5K5MbBvv0WEDEyc6CZ+4czIpdmdjZWDJpsM/ZBI/dK72gmleXHGN8nDcLJvZ8YGv/yWI+WZPCzeOCmTTY55KvF+Bpxwv3DePLDan8/fNDLLghlKlDfTvdx6YWPScyKli+I4NwXwfmju35wJIQA9VtN4RQWtVIbLBLu+twQ5OOt5cnkVdSx29uj2fJlnTe+P44v70joV1+lMLyenYeK+Td5yaD3tAu+FJYXs/q3VkEeNhx/8xI/D1k+Z4Q5wvzdWwXfMktleCLGDhOnz590ecWL17ciz0ZuPpV8EUI0d6RM6ZLjsw0auI7SPx2oQ0Hcqk9Oz125siAK16vr9MbWb4jExUwr5uW91wNo1HhkzUpONhYMP+8ahw9wUyj5vZJYTg52Zwt49q9wZesohr+37fHGBnlwcIpYT0aeNEbjHy8KpktB3N4cn4cYb6OndrPysKMh2ZHMSjAiS9+SiUlq4IHZg3Czrrj2VP1TTqOpZVx6HQpSZmt5cETw1y5a2p4h9VMhBCdozXT8NSC+HbbS6saeXXJMdQqFX+6Zyiujlb4uNryj8UH+WDVSR69Ocbk/96q3VlMGuKLk51lu/LUFTVN/Pfb1lLOv7wlplP5xIS43gwKdGL52aXc5+SVSN4XIUTnSfBFiH7u4KlSk8exwc6XXXJU16hj3f4cABxszZk0xPeKX3f7sQLKa5oYGe2Br3vXkkZ2pw0Hc8koqOG3tyf0eNLWnpRbUsd/vznKkHA3Fk2L6LHAi6IoHDxdyg9b0/F0teGlB0d0aV36mFgvQnwceHd5En/5eD+PzI1um3VU09DCkdRSDp0uJSW7EktzDYlhbvzy5hiiAp1NqkYJIbpPWl41byw9jr+HHY/dFIO1Zes10cnOgqdvS+CfXxzim41n2oK7BWX1HEsr55VfjW53rJqGFv777VE8nKx59KZoCbwIcREdJdCWpLtCiCtx7X6CEeI6UN+k42RWhcm2YZHul9xHbzDy1cZUGpsNAMwdHXjFuVGaWwys2p2FRq3i5n6wZKS4ooGl2zMYF+dFdJBzX3eny/LL6nnlmyPEhrhw34zIHpsRkpZXzbdbzlDfqOfOG8OZNDyAqqoG9Hpjl47n6WzNH+8ZypItafz76yOMj/emqLyB1Lwq7K3NGRzuxvQR/oT7OWKmkQ9uQpyzdl82VhZmTEzw6bZj7jtZzEc/pjAuzos7p4a1C5Z4u9rwxK1xvPLNUZztLZk+wp+VuzKZPMSn3cy1xmY9//vuGBZaDY9LKWchLsnKwgwztQr9ebOR80vrMRqVHklKLYQYeCT4IkQ/dji1gyVHoRdfclRR08Tby5PIKKgBwM3RknHx3lf8uhsO5lJT38INiT5t1XAuprnFQF5pHTkldeSW1FFc0cCwaE/Gx3mi5urfjBiV1uVGNpZm3D7p4hUvCsvrsbYww8H24pU++opOb+RUTiUf/5hChL8TD84aZPJGralFT3p+DWfyqjiTV019o464UFeGhLvh72Hb6dkxxZUNfL81ndTcKm4eG8S4eG8sLcy6ZXaN1kzNnVPDGRToxJq92YR4OzBvQjAhPg6yrEiIDuSXteZQ0WrUWGo1V528VlEUVu3OYsXOTG6fFHbJPEzhfo78Yk4U765IRlEUkjIq+L9HR5m00ekNvPHDcVp0Bp69q30iXyFEe66OVhRVNLQ9btEbKalqxNP50u+VhBACJPgiRL92JUuOkjLLeX/lSeoaW/O8uNhb8KtbYq94JkJdo461+3IwN1OblKZWFIWquhZyS+rILaklp7g14FJS0dCWEcXF3hK1GhavSWHNrkxunRDC8EHuXf7wrygKGw/kkppXzZPz4y6at6aoooG/fX4IG0sznrlzMC4Oll16ve5UUdPE8YxyTqSXczKrEr3ByMgoD+6dEUldg44zedWkng225JfW4eNqS5ivAxMTfbA013D0TBmvfn8MM7WaweFuDA53JczXscNv1+oadazclcmuE4VMGuzLAzMH9dgHqcQwN6lcJMRlKIrCNxtTmT7cn5hgF/7ft0extdISE+zSpePp9EY+XZvC4dQynpgXR0LY5fN+DY105466Zr7eeIaR0R4myw4NRiPvrkimpKqR5xcNuWguJyGEqSAvO5PgC7QuJ5bgixCiMyT4IkQ/1dklR0ZFYdWuLFbuzGwLgsQGu/DwnKgu5fhYty+HxmY9M0b442TXOosku6iWt5adoKy6CQAzjaotWDB5sA+eLtak5VWz8WAeRkXBytIMWyst761MZuPBXG6fHEboFVRLam4xsPdkEVsO55NTUseoaE8SLjLjp7FZzxs/HCfc1wGdwci/vz7MM3cOxtm+dwMwBqOR9PwajqeXczy9jLzSepzsLIgLceEXc6JwdrBk48Fc/vThPqrqmgn2sifM15FbJwQT4u3QLlgSG+zCXTeGk1FQw+HUUj5Ze4rGZj0Joa4MiXBjUIAzoLDpUD4/7skiPtSVlx8c0evjFkK0d/RMGcWVjTw5Pw6tmYZHb4rh3RVJPHVbPCHenb8WVtQ0ceBUCTtPFNLQpOe5RYOvqApRZIATZhoVR86UkVtSR5C3PUajwserU0jLr+bZu3r/WinEtSzIy549ycUm23JL6i67JFwIIUCCL0L0W0dSyy675Ki2oYUPVp0kKbM1SKMCbh4XxKzRgV1aClJV18zGg7lYWZgxY2QAAMlZFby59ASuDpY8PDsKPw9bPJ2tMdOoMRiN7DxeyMc/pqAoMH9iCOMTvVmyNYPNB3OYOyaQfSkl/GPxIYZFujN/YghujlYXff38snq2Hs5nd3Ihjc0GIv0defSmaAaHdzzTwqgofLj6JAC/mBuNWq3itSXH+M/XR/jDnYPbgkc9KauohnX7ckjKqKCpxUCojz0jojx4OMQVXzcbVCoVjc16XvrsIPEhLvxiTjT+HradmpGkVqkI9XEg1MeBBRNDyC+r5/DpUpZuy6CkKhlLcw1eLjb87o5EAjylLKwQ/YFOb+DrTWe4Y3JYWw6V6CBnFt0YwevfH+fZuwbj5WJz0f2r65o5eLqU/SnFnMmrxs3RkuGDPJg8xBfHK1xWuXJnJtNH+FNS1cT/vjvKC/cPZ+mOTA6cKuGZOy/dDyFEe16u7f/PSMUjIURnSfBFiH7q4OkSk8cXLjlKL6jmneVJVNQ0A2BrpeWRm6KJDux6QtpVu7No0Ru5ZXQgtlZa9p4s4qPVKYT4OPDkrbFty34UReHQ6VJ+2Pb/2Tvv8CrKtA/fU05Pb6RCCC2EQELvvQsogoq9rX11V9eylrXrp+66dt1V195AFEQR6b333ltICKSQntNn5vvjwIFDEkhCgKBzXxeX5p32zpxzZt75vc/ze/ZRWuliRPdmDOuShMkoIcsif74qA4tB5JdlB7l5eBvcXpVpSw/w1McrGdIlidE9k/3VObyKyvrdBSxYf5hd2SVYTBK90uMY0DGBhGoGOQH9XXaQnYeK+cfNXfzX5q9XZfDm9xv513cb+Pv1Hc+rB8zhggpe/24jLRNDuXlEG9o1j8B2WmqUpml8OmMHzWODmTCoZb1TsARBIDE6iMToIC7v05yCEgelFW5aJISc11LVOjo6dWPm6myahFvoeFpqUPe0JpQfryz05I2dAyJOyu1u1u0uYM2OfHYeKiY82ETX1BiuHdyK5Njgev3Gs/Mr2JFVzK0jUzHIEm9N3sQz/1uFy6Pw6HW6YKujUx/iqkkv0ise6ejo1BZdfNHRaYTYnR62HQhMOepyPKRV0zTmrz/MxHl7/JExLRJCuPeK9HMKH88vcbB4Yy4hVgNDuyQye/UhJs7fS+fW0dx1eZp/BnfXoWJ+WLiPrLxyBnVKZFTPZlX8AgRBYFz/FgRbjXwxcxfj+qfwyl3d+XXFIeasyWbp5iOM6ZVMucPN4k1HKKt007RJELeOTKV72yaYjGevuLF+dwE/LzvAX8Z3CJi9NRkl/np1Bm9+v4l/TdzIY9d1JMTW8H4GRWVO3vh+E+2aR3D3Fe1qjDSavSabo8fs/OPmLg0qkkSHWc4YRaSjo3PhKSpzMnPVIZ66qXO1v/chXZIos3t44/tNPH5DJwySyJezdrF6Rx5BFgNdUmMY27d5gxhZ/7z0AEO7JPlF8z9f2Z5PZ+xgVN8UWsUF17v6mY7OH5nwYBOyJOBVTkYmF5Y6sTu9/kklHR0dnZrQ7xI6Oo2QDXuqphxltozC6fby+W87Wb3jZFTMkC6JXDOw5TmX+J225ACKqnFZz2R+XnaQmasOMaBjAjcObY2GxoEjZUxbeoAt+47RMz2Wu69oR1TomV/+B3ZMIMRq5MOft1FS4eLawa0Y0DGeHxbu47t5ezDIIt1SYxjQKYGUuNpHcBwurOTj6dsZ2zel2upPFpPMQ9dk8PrEjbw+cQOPXtfRLxA5XF4EAczG+t/+Kp2+l6cm4RbuGJ1W40vS7uwSpi8/yJM3da6VoKSjo3Np8/2CvfTtEEf8GaL2ruzb3BcBM3Ejiqri9qg8dE0GqU3DG6xc7aG8cnYeKua2y9r626xmmQevySA83EZxcWWDHEdH54+GIAjERVrJzg/8DR0urKBVYtjF6ZSOjs4lgy6+6Og0QtbsDEw5Sm/uSzl6a/ImNu87BvgiPG4bmUq3tk3O+Xg5BRWs3HaUiGATWw8cY+v+IlonhVFW6eKZT1eTV2RHUTU6tIjk+du7kRgTVOt9d24TzSPXZvLOD5spq3Tzp1Fp3Hdle44W2QmyGOpsCmx3enj3x820bx7B6J7NalzPYpJ5eEIG/5q4kX9P3Mgj13XEapZ5c/Imisuc3HV5u3oNlNwehXd+2IwkCtw/rgMGuXrRq7TCxX+mbeWWEam6r4KOzh+AXYeK2ZlVzP/d1fOM6wmCQK92sSzbcgSzUeLFP3Vv8PTIaUsPMKxrkj4Tr6NzHkiMDqoivuTk6+KLzqVHmzZtzrrOK6+8QmZmJl9//TUrV67k8OHDREZG0rdvX/76178SEVF/u4M/IvpTWUenkVFdylHXtjFsP1jkF17iIq3cP679Ob/UHyt1Mn9DDks3H0EDispdFJW7sBglRAFCbSZSm4YTF2UjPtJWbwPb1klhPH5jJ978fhNvTd7E/ePa16sso6pqfPjzdgyyyO2j2p41UsZqNvDwhExe/24D/560kV7tmuB0eRnXrwXv/LCZoV2SGN0rudazzb7jb6OozMVTN3eu8cVGUVX+M20b3ds28aeL6ejo/H5RVJVv5uxhfP8WZxU8lm89wue/7aR3ehxHjlUyeeE+bh/V9pzTjE6QdbSc3dkl3DE6rUH2p6OjE0hsNWOv7AI9mkzn0mPSpEkBf0+YMIGbbrqJ0aNH+9uaNm3KjBkzWLt2LRMmTCA1NZXc3FzeeecdVq9ezbRp0zAaGz69//eKLr7o6DQyqks5ymgRyRvfbwJ8FY3uG5t+TsJLcbmL6SsOsnhjLtFhFsrtHiRRADT+NCqNHu1iz/EsqpIYHcSTN3bmje838tq363no6ow6z/ZOXbKf/bmlPH1Ll1qnDQVZDDxyXUde+Xodk+bv48FrMkhvHkHLxFA++nkb27OKfaWgz+KXo2kaX8/exZ6cUp64sdMZq478uGg/mqZx1YAWdTo/HR2dS5PFG3ORJYHeHeJqXEdVNX5cvI9Zq7K5fmgrBnVKxO708uo365m7Jpth3Zo2SF+mLT3A8G5Nq5Sv19HRaRjiI6sx3dUrHulcgmRmZlZpi4uLq9I+atQobrjhhoBJz2bNmnHdddexYMEChg8ffp57+vvh3EwidHR0GpzqUo52ZZewP7cMgIyWUdWWOjwVzVmBe+ciNK87oL20wsW3c3fz9/+uYF9OKX++sj2247O0kijw2PWdzovwcoLIUDNP3NgZgyzy8lfrWLsznwqHp1bbrt6Rx28rD3H3Fe2ICa9b1EyQxUB8lA2zSWLa0v04XF6iwyz8/YZOtEoM5bnP1rDutOpSp/PL8oMs33aUv17d4YzC17pd+azYepR7rkg/Zx8eHR2dxk+Fw8PUJQe4YWjrGqNXHC4v703ZwqINuTw0IYNBnRIBnw/L7aNS+WX5wVrfC8/EgSNl7D1cyuDOiee8Lx0dneqpPvKlAlXTqllbR+fSJzw8vEq0eVqaL7oyP//M42edQPRpER2dRkRlNSlHnVOjmbJ4P+CLetm4t5AnP1zJgI4J9OkQ5/dM0TxOlPz9yAlpIAi4Fn+GWpyLued1lNndzFx1iPnrcogOt3Dn6LaU2t1MnL+H/GIHkijwj5s7kxhz/kuPBlkMPHJtR76Zs5vPftuJ0+UlqUkQackRpDULp1ViWBVz2kN55Xw6YwdXDWhBevPIOh9z28Ei9uaU8o+bOvPulC08/uEKeqTF0rt9LOP7tyCtWTgfT9/OtgNFTBjcCpMh8PiLN+Xyy7KD3D+uPS3iQ2s8ztEiO5//tpP7x7Wvd4qWjo5O48bu9JJbWElOYQWqqrFp3zFaJoTUaLJbWOLg7R83oyga/7ilS5WUy+TYEDq0iOLnpQe4fmjrc+qbL+olSY960dE5j8SEWfDFCp/E5VYoLHUSo1ch/MOjup1nXC7IBgTRN87UFA+aopxhZQHR4BtPapqG5nGdcd+isf5VT+vKunXrAGjRQo/yrgv601lHpxGxYXfBaSlHAopX5fDxXGINn3hRUOLg+wV7mbpkH5eluOll2Y/5yEZQvQTd9A6CyYYx4zLcm35jWUkcP2wXiAgxMapXM3ZmlfDRL9v9xzEZJO4d2+6CCC8nMBkkbr+sLbeMaMPBo+XsOFjMjqxi5q7NQdM0WiSEkpYcTlqzCKLDzLw3ZQudWkUzvFtSnY/l9ih8NWsX1w5uRWykjX/c3IU1O/NZtuUIc9Zm0zQmiN7t43j0uo5MXrCPF79Yy92Xt6N5fAjgK2n95cxd3DKyTbWVlU7gciu8P3ULl/VsRpum4fW+Njo6Oo0Dt0fhyDE7OQUVHC6s5HBBJYcLKygqcyHgK/euahqFpb6B9p/fXIzNLBMZaiYyxExkqJlQm5FZq7NpFhvMvVe085d9Pp3x/VN4+pNVDOqcWC8/LID9uWXszy3jniva1feUdXR0aoFBFokOM5NfEviSnZNfoYsvOhz81w1nXB4z7mGC2vYCoGjht5Su/LnGdU1xLUi4/Z8AqPYyst66/Yz7Tnnqxzr2tn64XC5ee+010tLS6NnzzCbzOoHo4ouOTiPi1BLSAGnJEfy68pD/7+gwX9qO16uyc+lcEnLmEFVYRqlqYavclvDWnUjNOwiVhWw76iVYCaPFoSm0jruR/flOpi4+APgiaFLiQhjVqxkZLaMazOixrkiiSIv4UFrEhzK6VzJuj8Kew6XsOFjMpr2FTFvi629SkyBuGZla61LUpzJ9RRYxYRa6tfUZ31pMMv0y4umXEU9ekZ1lW48wc/Uhvl+wl4yWkbRKCOWVr9dx9cCWpLeK5v0pWxjbtzl9O8TXeAxN0/hy1k5iwiyMaCDfBh0dnQuPqmo43V6+nLmLNTvz0YDwYBMJ0TYSo4Lo1jaGhGgbcZE2jLLIa99uYODxKMRjZU6Olfr+FR7/7+7sEvq0j2P8gBQkseY0xIgQM4M7JzJ5wV4eGN+h7v3WNH5YuJeR3ZvW2g9LR0en/sRHBVUrvnRqHX2ReqSjc+F49tlnycnJYeLEifUam/+R0Z/QOjqNhAqHh637jwW0BVsMbC5xAD5vgCfGt8R6cDGC0UJnSw7eYAOlpnS+svenybE1dNn5Kc4dAqUEkYCblWoaA8SNtCxcwBZnV4IsBgZ2TGBw50RCbI3PmdxokGiXHEG75AigBZVOD/sOl5ESH1IlFag25BZWMm9dDs/e1rXah0OTCCvj+rVgbJ8UdhwqZtmWIyzfdhSjLDJl0T6+nr2L8GATxeVOZq/JJibcQkyYhegwMwb5ZH8WbsxlX24Zz9xS/XF0dHTqjtPt9YkZZS6/sBEbYaXPGUxta8OC9TlMW3YQRVFRNQ1F0VBUDVXVON2xQRLBq6jkFzsor/Rw8GgZFpOMxSTjVVRKK90M7ZqELIkEW40kx4bUu18juzfjiY9WsutQcZ2j535dkYXDpTCki+71oqNzIYiLtLJxb2BbdoFuuqsDyY9+c8blgnwyAjJiwPWE951whpVPjilFa8hZ930hePPNN/nll1/473//S+vW55Yq+0dEF190dBoJq7cdwasEphyt3pEH+CJV/n5tBoYlb+AqzAJrBFJoNHJCKjHRKTzRrivZ2UlMWtaelQddqIjYBCeVmgm7GSIjw3jk8kxSm4XXO8olv9hOqM1UxY/lfGIzG+jQou4eL3AiGmUXl/VoetYwYFEU/KKPfaiXtbt8aUmhwWa6pkaTd8xOTn4F63cXkF9sp7TSTUSwiZhwK5GhZtbvKuDvN3Q6a4lZHR2d6ql0epjy81ayj5ZRUOLgWKkTu8tLWJCJyFAzUSFmIkLMfL9gL9Fh5hrFCfeWWXj2rcLc+2ak6OQqy3MLK/lh0X7+elUHIkPMiKKAJAlIokBphYsPpm5FEAUeujqDEJsRp1vB7vLidHlxuLw4XAoOlxf78b9H90xuMGNti0nmyr7NmTh/L0/f0qXW9+odWcXMXn2Ip2/tGiAK6+jonD9iq6l4lK1XPNKhbr4rgmRAkKpPR62yriAgXEBPl+r46quv+PDDD3n11Vfp27fvRe3LpUqDvCnk5+dTVFRE06ZNsVrrl6uso/NHZ+mm3IC/jbKI3eUz4RraNYmYQ3NwF2bxtXMAWyqa0yM6liHpicRH2TiUV86kpUfYkeUBRJrGBGEwhNCpRSi9jy7D2n0ockIEmqoGqOi1ZeHGw0ya55viSU+JoGtqDBktoi6oEFNXlm45QoXDw/A6pgFZzb60pEGdEwkPt1FcXInXqwas43IrFJQ4yC9xkF/soOeVTUiKCWrI7uvo/OEICzIR0yaaMJtPcAkPNlURNhJjbHzy6w6ev71bFVNZJW8vrpWTkJt1RDDZ0DQV5fAOpIQ0BEFAVTU+nbGDUT2b0TopLGDbnPwK3py8iSbhFu4f18EvpAZZRL+peX3RjldAqU1UXN8O8cxdl8OqbXn0TD975bnSChcf/byNW0e21b0mdHQuINVVPcwvduByK416bKSjU1+mT5/Oyy+/zN/+9jfGjh17sbtzyXJO4svcuXN5/fXXycrKAuDTTz+lZ8+eFBUVcfvtt3P//fczZMiQBumojs7vGbvTy4ZdBYFtx4UXq1lmTHIF7nnT2SW2pMPA4VyVFMbctdm88PkaZEnE7vIC0DopjLvGpBERclIZd65sjWPOe0hxbRCDozD3OrMR2KlomsaMlVnMW5fDUzd1xmYxsHZXPnPX5fDZjJ1+IaZDi8hG5TNQZnczecE+7h/X/ryUezYZJRJjgkjUBRcdnQbBZjYwflCrasXOU+netgnrdxcyaf5ebh2Z6m/XXJU45v0HQ5u+mPvdBoBy7BCOmW8gRjbF1Hkscw6HomlUMe7emVXMu1O20D4lgj+NSsMgN8w9w719PoI5GM+OhcgpXTG2HXDWbURRYMLAlnw+cyed20RjPEO6papqfPjzNrqnNaFzG91nQkfnQhJXTeQLwOHCSlLi659+qKPTGFm9ejWPP/44PXr0oFu3bmzcuNG/LDY2ltjYs08W6Pio9whj/vz5PPDAA4SHh/PnP//ZP7MDEBERQZMmTfjxxwvjuKyjc6mzYXcBXqX6F45xncNRl3yMBmzxJNE+JYJ1uwrYsKcQt1f1bxdqM9CtbUyV1BdTt2uQYlJQ8/fh2ToX75FdteqTqmlMmr+XJZuO8MSNnUmMCSI82MTQLkk8eWNn/u+uHrROCmPeuhweencZ70/dwuodeTjd3nO6Fg3B5Pl76dQ6usrsto6OzqWNIAjcNKw1m/YWsnlfob9dKcxCsISgdbmGA0fK8CoqUmRTbNf+EymyGfZZb9N04/vc2dMSYHy7ekceb3y/kX4Zcdx1ebsGE17UsgJcK75Dyd2JYLTgWjUJtbK4Vtump0QSH2lj9prsM643bekBPF6VqwboZT51dC40NrOhWu+8Q/nlF6E3Ojrnl1WrVuHxeFixYgUTJkwI+Dd58uSL3b1LinpPVb///vt06dKFr776iuLiYt57772A5ZmZmUyaNOmcO6ij80fghLfL6YQFGendLhr3AZGjYhzRkTEc++oR9tkziE/siskoUWF389gNnSivdDN3bTZTF++nb4d4BnVOICrUgiCKWAbfS8WU58Ck4Fz4P2xXvYRgMNXYH6+i8vlvO8nOr+CJmzoTWs0A44QQM7RLEsXlLtbuymfe8YiYJ27tSkqTixMVsiOrmC37j/HSnT0uyvF1dHTOL8FWI7eMTOWz33by4p+6YzOCnJCGNPZptuwv4u3JmzEaJdokhZHaNJw2ra5k2r4kRoVvIzrUd99TS/OYt9vNpPl7uWZgC4Y1cJUy5/JvEAxmTF3HoSkevN8/iWvZ11iGPVCr7a8Z1JJXv15P34z4au+/W/cfY8GGwzx7a9fzEt2no6NzduIirJRVugPa9h8uY0BmwkXqkY7OubFrV/UTtA888AAPPFC755fOman3E3vPnj2MHDmyxuVRUVEcO3asxuU6Ojo+7E4vW/ZX/1u5omciUvlRNJedBZWt6FowlX3WDCbE7qOksACjLPLMrd1IiQsho2UUD1/bkcdv6ITD7eWZT1bzya/byS+2I5hsWEc8iLnvrWiVRbhW16xSuz0KH0zdSmGpk79f36nagf/pnBBinrixM/ePb8+b363nWKnzrNs1NB6vypezdjFhcKtz9mnQ0dFpvGS2jKJ9SiQ/z1hO5XePopblIwgiHVpE8c6DfblzdBrRoRaWbjnCi1+sY2uByGxpIItzLeTv28WxH15k2sId3HV5WoMLL96sDSiHNmLqfg2CyYZoDcPUYwLeg+vwHFhbq30kRgfRJTWGaUv2V1lWVObk4+nb+dOotkSGXlzzRR2dPzLVpR7tySm58B3R0dG5ZKi3+GKxWHA4HDUuz87OJiwsrL6719H5w7Bpb2FAlaMT9AzLo9OOt/EcXM862rPZGcfS8CsI6z6Gp48MJza+CX9rupHg0sBahwnRQdwyIpVX7u5JkMXAc5+t4dNfd3BMiMCQ0hW5eRc82+ehluVXOabd6eGNSRsB+Ns1GfWq3pPRMoph3Zvx/tQtNaZSnS9mrMwiMsREj7QmF/S4Ojo654amqpStn42m1D5t8doByXQtnEaZJR4h+KTnic1soFPraG4Y1pp7x6ZjNkpc1T8Fi0lmxoosvpy6EsXr4YlOhXRrW/29QnNV4lj4CZqzbtVLNK8b5/JvEZu0RG7d299uaNMPKb4trhXfoam1O8cr+zZn1Y58Dp9SvtarqHz48zb6dogno2VUnfqmc+5oXjfOZV+hue0Xuys6jYDqTHfzih1VomF0dHR0TlBv8aV79+789NNPeL1VBxEFBQV8//339OnT55w6p6PzR2Dj3sIqbeFiBVcZlyCFxbKkvBkR7sOktYijJKg5//lpGyN7NOPuK9IxJnfCOf+/OJd/g+YNfNiH2oxMGNSKV+7qgdUs89ynq/l0xg4cpggQDVVeckorXLz27Qaiwyz8eVx6gNGjN2crlVNfwLXxVzTFc9ZzumF4KrIo8OOiffW8KnXnyLFKZq85xE3D2tSqqoiOjk5jQqNi62Icq36o9Rbihh+Isqi8ndOR0mpedhRV5dNft3N57+aM6N6M2y9ry2s3pHBX5Eos7QYScnABzuXfVvsirVYW4T2wFvust9A8rtqfhqogJ7XH3PsmBOHkEEsQBMz9bsMy4kEEsXaidmiQiRHdkvh+wcn76NTF+xGAK/s1r32fdBoEteQo6rFDaC47zoX/C/A61PljUpPp7t7DpRe4Jzo6OpcK9RZfHnzwQY4ePcpVV13FpEmTEASBpUuX8uabbzJmzBg0TePPf/5zQ/ZVR+d3yekPaRGVO8OWIcsixceK6JAzkVVksjWrhOy8Ch67riOX926OIAgYmnfGetWLqKV5OGa9Xe3+Q4NMXDv4uAhjknl6dRMOG5pRMeNNPHuWA5Bf4uCVr9fTtlk4t41qiyiA9/B2HHM/QC3LRwyOwth+GErOViq/fxLv0d1nPCdJErnvyvas2JbHht0FZ1y3IXB5FP43fTsjujWlSYRe7l5H51JDECVirvwb7l3L8B7ccNb1vdmb8WyfT/CQe8ho14zPf9tZ5WV45qpDiKLAsK6+6kaax4Vj9nuYOo4hpPc1iCExeA+up+K7R3FtmI7mOZkqKUUkYRn+F9TCgzjmvl+raBVN0xCMFsx9bkaKalZluRgSgxSRhOZ2oBTnnnV/AMO6NSWnoIKtB46xcW8hy7Yc4e4r0gNMg3XOP5qq4lj0P7y5OzH3uxW1rAD3phkXu1s6F5nY4+KLLAVO+OipRzo6OjVR76d3SkoK3377LWFhYbz99ttomsYnn3zChx9+SOvWrfn2229JTExsyL7q6PzuKKt0U1weOKs6xrKeePIpVWzYnPlMquzJZncSEwa34plbu9KmaXjA+qI1DMuIhzD3vx1N8eLesRBNrZruc0KEefmunmyOvYLy8gqcCz5i95oVvPL1OvpmxDFhUEu8OxZQOekJnEs+R4xqhmC0IobGYmjZA8uoxzD1vA7RHIxaWYxSmFXjuYUFm7hrTBqf/baTgpKaUxTPFVXV+PiX7YQHmxnVM/m8HUdHR+f8IgdHYBt6D84ln5812kSKbYN56API8alc1b8F+cUOlmw+4l+eU1DBjJWHuP2ytoii78XIs2MhYmgTjBkjEQQRU99bMHUZi3XUYyh5e3Bv+g3AHxUox7fFPOhelJwtOBd+gqbVnEapaRrOOe/h3jzzrOfpmP8hjtlvV4lWrA6TQWJcvxS+nbOHT3/dwZ1j2hEeXLNZus75wbNlFqiK77sjm7AMvR/v7qVo7vP3bNNp/ESEmDEaRMTTom335uiRLzo6OtVzTlMnrVq14vPPP2flypV8//33TJo0ieXLl/Pll1/SooVe+lBH52wcOFIW8LcJD50t2ew3tSXYncdP9s4cC2vHa/f2YkBmgv8l4nQEQUAMikRzVeDZuRjHL6+gllUfcRIWZOKaYekEjXkcl2jFvO4bbmlbyRDDegRBQJBNmPvegm3Cq5gyRyGYgwKOY0juhBgWh3osC/v013Au/hTVXv1AIy05giGdE/nPT1vxeM+P/8v3C/ZSXO7kzjFpNV4fHZ3GguZ24FgzlYqdKy52VxolhsR2WMc/j2AwVSt2aKqKe9tcECUMyZ0AMBok7hidxuQFeykscRxPN9rBmF7Jfk8Gze3A0H4o5kF3+9MS5djWGFr3QQyKxDriIYydr0Apyqbyu0dwb52L5nFhaN4ZU99b8R5Yg1qUU2O/vVkb8B5ch2AOPus5mrqMRSsrwL1+Wq2uSc/0WGxmmSGdE2nXPKJW25xPNGcFqvOPU05XLc3DteFnzAPuQBB96bhiaBOsV70MsgHVUXaWPej8XhEFgdgIK+7TxjcHj5bj9igXqVc6OjqNmXqLL++99x67d/tSD0JDQ+nQoQMZGRlERPgGBnv27KlSflpHRyeQ01OOXBiY5u1DgnMX60ljpZrOA+M7YDPXrnKPaA3DesWTSIntqJz8JM6VEwGonPo8FV8+QMVXf6Hi6wfx5mwlJDQIk9lIuFhBi30TUYtyUBUvhta9kRPSAvwKqkNumontmlcAgcrvn8Cbs7Xa9Ub3SsZmlvl+/t5ql58L89fnsG5XAX8Z3wHTKR41OjqNDU1VcG+fT+Wkv+M9ugdjZCKa21Eng9k/CqI1DPe2ebiWfV1lmXvjdFxrpqA5Au+dKfEhDOyUyCe/7mDGiixkSfSnG3mP7KLyh3+A4kWQA6u3aa5KKr57FG/OVgRBRIpIwjz4XrwH1lDx2T3Yf3sDY2p/DO2G4dk6F+eaKbh3LEQpOZk2pHlduJZ/gxTbGrlVr7OenxSVjLHDCNybfjtj9KD/eggCT9zUmcv7nH+fF01TcW+ZDYBr9Q9UTHqciq8fpPyze3Gt+RGAyh+fofKbh1DyGv6e3hgRgqOwjnwYKTywfLAginh2LcUx881aRTHp/D6pznRXUbUqk2s6Ojo6AHUvZXKc9957j2bNmtG6detql+/Zs4f333+f+++/v96d09H5vbN1fxEAEgrX2lawxZ3IeHElLmMEZc1G0qlSJDrMUqd9CqKMqfNYjOlD4fgMr2XYX0DxAhpoKoI1DEQZ62WP4N6xAO+OhXgPbcZkL4ZTqoacDdEairnfbRjSBiHYwlGOHUKtPIbWqe/JdUSBO8e047nPVtO6aRhdU2PqdD41sXlfIVMX7+fxGzoRGqSH4es0TjTN95tTju7Bs2sp5qH3Y05MxRhuwznrKzzZ2zAPvR/RGnqxu3rRKVk+hcrcg6iqBooH76FNCKGxmNoPw7n4czSPE+/+1ZiH3IcYFFll+8t7J/PSl2v5dUUWz93eDVEUUO0lOOd+gKn3jVWEFwDBZMPQsjuulZOQxqUhiCJyXBvkMU/4hLHjPjByUjpKwUE8OxcimGy+iEBNw7NlDliC0SqLMQ1/sNZm38bOV+A5sBbn4s+wjn3aH1FRE6enNZwvPLuW4Nm7AkP6EAxt+iCndEWQTWAwIZh8/hZBN7yBa+N03Jt+wzLsgQvSr4uFe/t8xJAmyIntql1uaNMP74G1uJZ/i7nfrRe2czqNgrjjPnMWk4TDdTLaZe/h0ipp4jo6OjrnzbGtpKQEg6F2s/U6On9ENE0jt7ASgB6mvXQz7ec62wrsCV0J7ziYuZuLuaxHVdPG2iKYbAhG36BAtIUjhkQjhsQghsYiGMwIkowUkYi55/WIUc0QY1IQgiLRnBU4l36Jai+p9bGkqGaIlhA0lx37ki+p2LYkYHmIzcg9V6Tz5cyd5BWde4nOQ3nlfPzLdu4dm05CdNDZN9DROQ3Nbcf+2xt4s85u7lpflGOHcMz4F+7Ns5DjU7GOfRo59uSEhbnLFYjRzbFPfR6l8OB568clgyiBKCNIMoLRghSfhnvdVF+UiWxAMJgw9b4RQ/Mu1W4uSyL3jU3nz+PaExthRVO9OOe8j9yqJ4aUrjUe1th5LGp5Ad49ywLaBUn2p13KCWkYM0YgNWmJevyz0lx2PNmb8Gz8FUO7IUiRSbU+VV96561ojlK08jObkmuqinvrHDTFg3vzLNSy/Fofpy6ojjLcqyZj7nk9giAihsb67u1hsYi2cJ8Icxxj24GoZfl1qwR1iaEU5+JaPRnBVvMLtCCKWAbdgzdnC56diy9g73QaCydMdyNDzAHte3TfFx0dnWqoU+TLmjVrWLVqlf/vOXPmkJVVNWS2vLycGTNm1BgVo6OjAwUlDjyKCmj0Mu3moCeSeKuL6CPLUI6I9G5yDYkXQFgQRAnLoHuo/PEZPNvmIYYn4NmzHM+e5Zg6j8WQPqTWpVHl+FRsg+6kaN7/CL6uHQgnZ5pbJ4UxskczPvhpK0/d1DmglHVdKCpz8vYPm7lmYEvSki++/0FD4z2yC++eFRg7X4F4hkG/Tv3RvG4cM99CObobsdf1Db5/1V6Ca/WPeA+uw5g5CmP6EIAqURGCKGHudT2eyCQc8/6L7aqXEKR6B6Re8oT1uAKtuBLvKf4J7m1z0UryMPe6oVb7iAm3EhN+vOKZqiI1y8TYYcQZtxGtYRgzRuJaOwW5RbcAkeFUBEHE3P92HM4KnHM/8DVqKggiUkr1gtCZkBPSsE14rdqInFPx7l2OZ9cSDG36oZYcpvLHn5CikzGk9vdFppwlaqa2uFZ9j9y8M1Jsq7OuK5hsWMe/UOtIn0sNTVVwLvwfxswxSOHxZ1xXMAf5oktV3ePjj0j88bQjoxw4n703pxRV0y5Y1JqOjs6lQZ1GeatWrfL7uAiCwOzZs5k9e3a167Zs2ZKnn3763Huoo/M7ZdV23+xlM6mQRLmYMtWM8XiIu4DKCO9sNFdfBJPvwa6WF+I9sAalKBdjh+FIEQ1XTUwMicHc6wacKycSdN3r2Ca8imvVZFwrJ+LZuRhT7xuRE9ICttE8TtTSPNTSPKTIJMSwONzb5uLeMB3JZMa1Yyly2qCAbUZ0b8ru7BK+nbuHW0em1rmfDpeXt3/YTK/0WPpmnHlAfCmiFOfinP0uUkIaavFh32cviH/oF/KGRlO9OOa+j1pZhO2GNxEsoajlhYjBUee+b48LFA+asxJBNmCb8CqiJeSs2xna9EVu0R0EcO9YiCG131k9l/4oGNsNQdM0vNmbkRLb1/pl33NgHWJQJKbMUbU7TvsRUAuRWRBlpKQOKNmbATD1uw3v/rUoe1ciRzZFMJjPsofT9icbUYpz8Wyfj6nX9VU+d83rxrVmCub+tyMYTJj73Y6p5/V4963Ge3AdcotueA9vRzAHIUU2rdOxT8eYNggxpA5poZpK5bSXsQz7C6I17JyO3djwHlwPAmcV7k4gRTXzCTYrJ2LtMgao6gOi8/ukSYQFAbA7A/277C4vRwor9ehcnT8MN910E1arlQ8//PBid6VRU6cR/R133MENN9yApmn06tWL559/nmHDhgWsIwgCFosFk0n3YNDRORNHdm/lrqAVGAUvqgYGMdAtX3IU4Zj/IVJ8W1+ljfz9/mXK0V3Yrv6/Bn0pl1v3wZaQhmC0IBgtWAbeidJ2AM5lX+Nc8jm2a/4P9Vg2rpWTUEuPop2SlmTqcS3GsDjE8AQMSe1w71qOtmc5YtOMAG8GURC4Y3Qaz3+2mhVbj9IzPbbW/VNUlQ9/3kZcpJUr+6U02Hk3FjRNxTnvPxg7X+Hz6wHcOxfh3vQb5l7XIyd1uMg9/H3g3b8GteAg1iueQrSF4970G+6dC32/p3OIIFAdZTim/xNDal+M7Ycj9bm5TtsLshHVUYZn5yK8WRuwDLoHwVg3v6ffLR4nzqVfYew4GmNq/7OurhzLxrnoE6wj/1brQwgGE6bMUWgeF5qr0i96n4rqKEMw2TC27o0UHo9r5XdolcVYRv4NTVOx//gMYlQzTD2vQ6xF1aMTaKV5eLbN9ZXBPv7bP4Fn+3zEsFikhJOeI4LBjCG1H4bUfr5+HcvGvXE6QnAU5r63IkXVLV1VU7y4N07HmHFZtVE4mqaC24FgsuHZsxz3trmoxbmIIdE+cWj1j1gG/AlN034XkTCapiE374KcmI4g1l4EFUQJ3A4q5/yXiBv1ycc/CgZZIirMTGGZE5tZpvIUEWZPTqkuvujo6ARQpzc3s9mM2eyb1Zk3bx4RERFYLPrgUEenPjSr3EI742EANA1MgoIY0wI1b59/HSV7s3+G9VS0snw8Oxb60xkaAkEQEIIi8R7aiJJ/AFOXK5FiW2G98lm0yiJf6pFsBIMJuUV3xNAmiKGxPg8ZWxgAcnxbzE3bEdF5MHk//pvKSX/HMvR+5KaZ/uMEWQzcMzadNydtorjCRYv4EJLjQs5YrUjTNL6duwe7y8ufr0z/3YXxaooHRAnLyL8FpBoZ2vRDMJhxLv4cKaoZpl43NEiExoVA87pRCg4gxbZqFFEcmuYzcZVb9ECKT/Mb3Bra9MW1fhrevSsxtO5dr32r9lIcv76GlNAOQ/qws29QA6IlBOuYJ3Au/gz7Ty9iGf4XxNDaC5S/VwSjBcvQP2Of/k+fD0lsK/C40OwlaKriS/eQDEjh8ShF2TjmvIup21VITVrW+ViOOe8iBkdj7ntLQLuSvw/H7HePp5ENRU5IQ7ryeeCE4CCgeZwoR3Zh//5JTL2uR27Ro1ZihJzcEbl1H1/aT2I6Ylicf5mU2A4p6cwRP8YOwzG0G4xnx0Icv/0b2zWvVCse1YR7yyyU3B3Q6QrAV5bbm7MVteAASsEBlIKDyPGpWIb/FcEUhNw0AzFjFFpZPt7D2/AeWIPW63rsM/6FIMqIMSlIMSlIMS0Rgy6t1FBNVXD8+k9MPa5Fiq57dSlT7xtx/PIKxUt/QGg/+jz0UKcxEhdpo6DESdtmIWw5XkgBfOLLgI4JZ9hSR0enNmiahsfjwWg8c5rupUC9R8QJCQm68KKjU09y80rIlA/4/xYE8ESksKvZNTioJmpMNiG36oV5yH1wfDbctXYKnkMb8WZvxnNwHZ69K/GeItR4j+zCtXH6af9+xbXxVzy7l/rXUwqz0JwVJ48lGXFv+NlfOloQRf8LvxSegHXEQ5h7XocxbRByQhpiUESVl2tr8wyCxz0Dmob3lIidE7SID+Wese3IL7bz9ezdPPDWYp7/bA1fz97Fim1HyS+2+16WjzNnTTbbDhTxwLj2GOTfV0lpTVNxzv8Qz5bZVTxeBEHA0KI7tmteQQxP8M/Ka97Ga3J5wqjZvek3nHPewznnPbTj6XQXE/e6qTh++zdAQGUhwRyEMX0orvU/+17k64imaTjnfYCU2B5Tz+vPeeZfkI2YB96FoU1fNPfFv26NBSkqGXOPa3HMegs8LryHNmH/9Z84Zr2FY94HuNf9BIB37yoMzbtgaDuwXscxdhiBZ+cilOKTpaQ9Oxdj//kV5KYZGNoO8LcLouiPlhIEEXO/29A8LuQ2fXEu/AT32im1Pq651/UI5mAcC//n/x56Dq5DMAdXKXFcHYIkY0wfgmXM4wgmW61LH6vlBbg3TsfU+2af+a+modqLcS7+DKUwCymmBeYBd2A6HsklN+2AqdMVGJp3xpgxEutljyDFtcGzfzWmTlcgxbVBLcrBuegzKic9jlpZXOtr0Bhwb/4NTfEiRtbP7F6QDNiG30/F5oWopz5XdX7XnPB9CT+t8uKenJKL0BsdnfqxYcMGbr/9djp16kTHjh25+uqrWbbMZ0RfUlLCE088Qffu3enQoQPXXnsta9asqXY/M2fOZPjw4XTs2JGbb76ZQ4cOBSx3u9288cYbDBw4kPT0dEaOHMkvv/wSsM7jjz/O6NGjWbRoEZdffjnt27dn/vz5/n7efPPNZGZm0rlzZx5++GGOHTvm3zYnJ4c2bdowbdo0XnjhBbp27UqfPn147bXX8HoD0wP37dvH/fffT7du3cjIyODyyy9n+vTp/uWapvHJJ58wfPhw0tPTGTx4MJ9//nm9rzGcQ6lpgJ07d/L111+zfft2ysvLUdXAtAlBEJg7d+45dVBH5/fInlWL6SQGDo6Dm7fjp3UlXJ92LQnbvwhYJhgtmPveiiAb8Wybj3JkJ7jtOGe+FbCe2KSlPz1Fyd2Je93Uao8vRiVjaN3H56WQswW14CCWob6y8HJCGob2w3Eu/B/Wq16sU/j8qUjhcRh73Yh350LUTpfjXv0jxnaD/UJOevNI0pv7UpLsTi/7j5Sy/3AZK7Yd5ZvZu5EkgRbxoUSHWVix7ShP3dSZYOulr3ifjnv1D6jlBZgH3FnjOoLBhKnbVb71N8/CvXU2ph7XIjfv0ijC/DVNQzm6G8/WOXhztmK76iWMHcdgzBiBc8HH2H9+GeuYJy9aGo178yzcG3/FUkMpYGP74bi3zsW7dwWG1n1qvV/VUYZgtGIedA+CNazBPgtBEDBmjGyQff2eODXVxtCyB4aWPaqsc+J3Ul/kxHSkhDRcq77HOuJBnCu+w7NtLqZeN2JMO7OgIyemY2jTB7XwINbxzyNIBv9vQ45rc8ZtBaMVc/8/Ha+ONRNDq144F/wP27hn69R/KSwepeAgjnn/wTrm8bOadrtWfY+hdW88Oxfh2T4fy8i/IcW3JeiW92odsWbueytqeSFqYRZqZTFaZQl4XZhHPIRoC0dT1Tql71wsPPtW4d746/HS3/XvrxQcRdK971Bc6kJzuc5qqKxz6dMqKZSZq8HhDhTwC0udlFS4CAvSrRh0Gjfr1q3jlltuITMzk5deeomQkBC2bt1Kbm4uiqJw5513kp2dzSOPPEJUVBRfffUVt912GxMnTiQ9Pd2/nx07dlBUVMQjjzyCoii8+uqrPProo0yaNMm/zl//+lfWr1/Pn//8Z1q0aMGiRYt49NFHCQkJoX//k6nF+fn5vPTSS9x7773ExcURHx/Phg0buOmmm+jfvz9vvvkmDoeDt956i/vuuy/gGABvvfUWgwcP5q233mLDhg28++67NG3alOuuuw6AgwcPMmHCBOLi4njqqaeIjo5m9+7d5OaenHx5+eWXmTx5Mvfccw8ZGRmsX7+e119/HZPJ5N9PXam3+LJq1SruuOMOQkNDSU9PZ/v27fTo0QOXy8XGjRtp2bJlwIeho6NzkpAja+C09zT7nrX0VGJo6jKiGK3gPlmSWbOX4Fo5EXOfm5FT+6O5HYiRST5zR8mAIBtAMgT4q8jNuyCGxvhymk7DH5KuKSg521Byd+DN2Yqc6PvNmrqORzm8HdfizzEPvb/eL5XG1P54dyzwmUPuWY5n5yLMA+7AkNwpYD2rWQ4QY1RNI6/Izt7DpRzOLeSv49NpEmGtVx8aM+4dC/HsXYn1ymcQDLUbnBk7DEcMbYJzxbd4D6zFMvje89zLmjnh8eCY9RZqUQ6GtMEE9b3VX54X0YR5yH0oWZvAYK7RS6Oh8RxYCy47cuteePaswLVqEuZB9yAnta92fcEchLnvLYhnqWpyKmplMY7pr2HsOKbe6UpnQtM03KsnI7fuc9ZqKzoNi6n7BOxTnsGbuwMpsiny6L8HlAg/47Zdx+Ne/zNicLTPTLckF8ev/8LQpg+mXjee0adLTmyHqdcNyE0zcK+bhqFVzzqlnSnFhxGMVl8lpJQuOGb8C8uYJ2oU0DW3HcEaimfnEsTgSMyD70WKb+tPo6oJTVPx7lqKGB6P1KQl3r0rca3yDXrFsDifuJ/aFykiEW/uThxz3sV65XNIIdG1PpcLhaapKHl7kWNbo9lLsQy5Hyns3H9vgmTAtfEnPAVZWAbd3QA9rYqmqqglR5Ai9LSWi01q03BEQeDg0TKMsoj7lIpte3NK6ZJaByNrHZ2LwL/+9S+aNWvGF198gST5Ijr79PFNRs2bN4/Nmzfzv//9j759+/qXDRs2jA8//JB3333Xv5/y8nJ++uknIiJ8Kad2u50nnniCo0ePEhsby8qVK5k/fz6ffPKJf/+9e/emoKCAd999N0B8KS0t5eOPPyYjI8Pf9tRTT5Gens57773nfzdp3bq1P0rm1O07dOjAP/7xD/8xVq1axaxZs/yiybvvvovBYOC7774jKMg3bu3Vq5d/+0OHDvH111/z/PPPM2HCBP9yp9PJ+++/z4QJExDrIdTXW3x55513SEpK4vvvv8ftdtOrVy/uvvtuevbsyaZNm7jzzjt55JFH6rt7HZ3fLeWF+aSQU6VdLs2hDzkoJyxfJBmUk+Fxnu3zkRLaYWzVE2Ornmc9jhSRcNZBmSDKGDuOwZG7A9eyr5GOl7oVJAPmQXfj2TLnuJ9C/W4VgihivfwpBIMJOaEdzgUf4Zz9Dkr74Zi6XR3wIqK5KlGKD6MWHUYtPkx0i27EdWiNy70K75qpqEF3I4b9vvwvxOAoLCMfqnOlELlZJraEtjjm/gfN7bjgESVqxTE82+ah5O/DMvpxzD2vQwiOrtawVhBE5OSOaK5KKr9/AlPP66uNWGgolIIDOBd/5otgaN4Z17KvwGzDu3+170UlPrXaKIQTfdKcFSfFoxpQK4uxT38VQ3Jn5Fa9zrhuffHuW4V7y2zk8yDs6JwZKTIJc7/bfZ5W8W3rtK0gGXzidWGWb19RzbCOeRzHnPdQinKwDL3/jL93Y/pQlJJcnyh79Uu1OqamqbjXTcO9fhoIAnKLHpgH3oXmduCY8W+slz8ZEH2hKV40jxPH3P+ilhzG3Ocm5Ja9ahXtoWkqzkWf4d29BGOXcUhNWiK36IamevDsWY716pcDImaUggPgqsT+49O+6l+NpCqSpmkohzbhWjsFFC/S2Kcxtq+/X1N1GNP645z0Dzx7VzboPU/TVLz71+Be9xOCNQzLZY+glRX87p6PlxIWk0xKQgh7c0ppmRDC3sNl/mW7c0p08UWnUeNwONi0aRN/+9vf/MLLqaxdu5agoCC/8AJgMBgYOnRoQIoOQGpqql94AV/1Y8AvvixbtoywsDB69OgRkALUq1cvnnvuORRF8fchLCwsQHhxOBysX7+exx57DEU5GWWWnJxMXFwcW7ZsCRBfTog7J2jRogUrV670/71y5UqGDx/uF15OZ/ny5QAMGzasSl8//vhjjhw5QkJC3cXveosv27dv54EHHiAoKIjS0lIAf9pRRkYGEyZM4O233w64CDo6OpC7bgHxwsloFE3zeb4UaqHE970cOSoZMSIRtfwY9inPgXIyPcm5+FOk6OSACBfwGbYKkqFe/ZET0pBTuvoGc1tmY8q8DPD5u0j9bkVTvKj2knoPmgWDCc+e5ailR7GMfBj3xl9wr/sJteAAltGPo+TtwTnvPwHVkwRbBFJMCsS2Rm6agWfXEiqnPON7cU/t3yhSbeCEUa6MZ+citLJ8DKn9EUObnHU75Vg23gNrMHUZV+9jC7IJ64gHa+3t0BD4Kpv8gGfXYgwtumPqfaPPqLkWs/OCyYZl+IM4Zr+DWnwYY5crG9yIV9NUnEu/xNR57HGzYhO2q/8PzVGGUpSNWpSDWpgFcW2o/OkFAOSkDhha9kQMbYJn1xJc63/GNuEVn8F0DcdwzHwLQ/OuGLuOP2/fRSkhDfOQ+2rl96HT8Bja9D37SmdAKTyIe9MMbOOeR2rSEuu453DMeQ/7lOewXf3yWSLARBBFvDsXIXUd72/VVKWKwKm5HTgXfIQ3awOGDiMQraFoqi8izdB+OOrKiahl+YjhCQiCgGvnUg6t+RExro2vHPq1r9X4XT+dU4UXU5+bMaYN8vU2KBJj5mg8u5ejHNqM3CzTv40huRPaoHtwzf8vld8/ifXql5HOkgp1Kt7cHSjZWzB2Htug6TuOWW+hlhzB1Hmszxj5PKRFiSYb5oF34Zz9LlJsqyrP7fqgeV3Yf3oRAGPX8cjJnVDy9uGc9TaWMX9Hikg652Po1I92yRHszSkl6LT06L05pRepRzo6taOsrAxVVYmJqV4kLCsrIzKy6v0rKirKrwGcICQkJOBvg8H3buJy+bwKi4uLKSkpoV27dlRHQUEBsbGx/v2f3g9FUXjllVd45ZVXqmx75MiRgL+DgwOjPg0GA273yTFzSUlJjed8oq+aptGjR/Xi+QUXXyRJwmbzDR5CQkKQZTnA7CYpKYl9+/bVtLmOzh8STdMwZ68KaDvx7uZp0Rdbh6F4j4erSuHxmHrfgGvxZydXdlXinP8hltF/RxAllKIcXKsnI8gmLEPuq3e/TD2uxXtoE+710zC07BFQocK1ejLK0d1Yr3iq1oP005GatMS59CsMrfv4TBlj26CW5fnMfIMikVO6IUYkIIUnIIbHIxhPphhJMSnYrnoR55IvcC35HOXQJkz9b6+3F01DoTkrsM96C2P6UKQmLfAUZlE55Tmk6GRMXcfXWGlFrSzGMfNNjJ0uP/c+aBr2aS9i6nkDcnzqOe+v5uOoaKX5CKExfkGjPlVMpJgUrGOfwTHrbcSQGORWvVHz9yHGNMe7dxVyq17nJmZ43b5qMVHJVH73CJYxj/vEi+Aon5h3CpahD6Aey8J7YD2VU5/DevmTSHFt0JwVeHYvq7akseos94lIQ+9HCI46L8KLpml4szYgN8uskp6nc+lgaNMPJXsLzmXfYBnwJ0RrGNbRj+PN3uQzxHXbA+5zJ1CKsgEwth2Ae+N05GaZSDEtfNFWU57z+d60G+I3jVaLcvDm7sQ86J4q0RVq8WGU3B3Yf/gHGK1I8akoWRsJ6TScss0LsV390jkLLycQBBFjxkjcm2YEiC8AxpY9QAPXgv/6ImDGPoMYcuZIAOXoHlxrp/iqMAFCaBP/b1KtKEI5shPl2CHUwizE0FjMfW/B/ssrvokCWwRCUATGtMGIkU1RDm9DsEWguSrw7l+DqfdNmLpdhRgWV+9nWm2R49pgzByFVlkM9RRfNE3De3A9Wnk+xg4jMfW5GalJS794Lce2wtjtKn+U09murc75oV1yBNOWHsDuDDT0PJRXjtPtxWw8v981HZ36EhwcjCiK5OfnV7s8NDQ04B3/BIWFhYSGhlazRc2EhoYSERHBRx99VO3yU6NmTh9jBQcHIwgCd999N0OGVK32Gh5ee2EffJE1NZ3zib4KgsC3337rF5FOpXnzulfEg3OodtS0aVMOHjwI+C5OSkpKgLnuwoULqyhWOjp/dNx5+4lQi6q0axpkjryiSruhTT/klK4BbcrR3bg3+FzBXcu+Rjm0Ce/+1SjVVBWqLWJQJMaOl4PXhWvlxIBlxozL0MoLca+bVv/9h8RgbDcI10qfL4Acn+ofSIvBUZh7XY8xtb9vQFnNC4lgsmEefC/mAXfizd2B98C6evelIVDLC7H//DJSRCJy865IEUmY+95C0I1vIrfsAZIBtbIY58qJqCUnlXjN4/RFTbTsgfGUqin1RRAEDG36+Su9nA+U/H3Yf3oR57IvEQQRU9fx51Q+VgyK8AkdLXrg+O0N7LPeRi3Mwrnkczxb59R7v5qzArX8GHKrnjhnvY2c3BHxDN4Noi0cuWkm5v63E3Tj24jhib4UCa8L17JvcO9eFlBVSq04hn3qCyiHNiGGRJ+3iBfvvpU4536AVlbzgECn8SMIAuZ+t6Ec3ob38HZfmyRjSO6MpqnYf3kF5+LPfNFzx9E0zXdPP7wDY+exiGHxOBd87Cvbnr8fzW3HveEXKr97GPvMt1COHUKKbUXQ9a9Xm9ZiSO5E0I1vY+p3GygelIPrQRBxF2Zj6Tq2TpEYmqMM5fC2aoUX//Fa9cLU49pqlxlb9cA8+F6f8OQoq3adEzjm/Qf7zy+jlhdi7HY1hozLUPL3UzntJd+1OLobz96VCJIBQ9ogjJmjADAP+TOWQfdiSB+CFJXs85ly23Fv/BXHrLdwLvyf756gaUgRSeddeDmBMWMkYlQy3uNCUm05IcTapzyHe/VkhOOflxzbukrUoLHtAAzpw3DMegvttOIXOheG5vHBWEwSOfnliKc8HlQNDuSe+Tuvo3MxsVqtZGZmMm3atIB0nhN07tyZiooKli49WSnV6/Uyd+5cOnfuXKdj9erVi6KiIgwGA+3bt6/y70ylpE/0c//+/dVum5iYWKe+9OzZk1mzZlFRUX1lup49fRYPJSUl1R6vpnSls1HvJ0///v358ccfefjhh5Flmdtuu40nnniCYcN8ObOHDh3ib3/7W313D0BlZSUjR44kLy+PH374gfbtT5olTp48mf/973/k5ubSvHlzHnroIQYOrF9pSR2dC0Xu6rmcKkmeSDkqDUqmRVgE7uLKgPUFQcDc91Yq8/ejVZxUnd3rpyEnpmPqdhX2aT5fANeq730RMfU1x+0wHO/e5Qi2cDRN9Q/uRGso5gF/wjHrbbzZmzH3uQUpJgXX+p9BEBAsIQjmYERzMGJMCjVpusbM0VT+8A/UsgLEehgvCoKAoXVvpIQ0BGuYb2C6eylyi+4XtJqE5nFh//n/MLTtj7Hj5QHXWzCYT87OVhaD10PlTy8iRSZhaDcEwWhFDI/HeI4VWU7FkNof96YZeHN3INfRn+JMaKoX5+LPUbI2YuxyZUCJ3XNGlHDN/y9K3h6QjYDvRdW58H+IkUn1Og/X6sloHgdK3j6kuNaY+txa69/Cie+PoUV3pOjmVE5+Cvf6n1ELD2LudQPenK04l3yBoXVv5GYd69y32qLaS3Au+9r34l0Ho1WdxolgsmG57BHE4Ei8R3aBx4ncNMNXlrrPLT4fmOLDWIb8GdEWjpK9GbXiGIa0gT7frQF3Yv/pRVxrfsTc8zqk6/+NZ9s83Jt/Qzm0EfuhjcjNOmLMHFVjpJ1gMPmicHK24c3bh2QLJWbcI5RWKrhzdyLFtTnj70TTVHDZEa1h2K75P5/Je03nKxl86Xu7l1ZbNczQojtScifcq39AU7wIstEfkaYcy0YwB/mMxw1mjJljMHQYjv37J5BiWyNEJ2OIbAqCWGOlK9ESApYQpOjkgHbr5U/W2OcLhVZxDMfsd7GOfswnDJ1tfdWL5ijHtfpHjBkjkVv2qNZT61RMmZdhSOkCgoDmcdXaxF2nYZBEkdSm4WzYU0hshJWjRSeLJuw5XErb5PpPWujonG8efvhhbr31Vm699Vauv/56QkND2bZtG+Hh4Vx55ZV06NCBRx99lIcffthf7Sg/P5933nmnTsfp3bs3AwcO5I477uCOO+6gTZs2OBwO9u7dS1ZWFi+//PIZt3/ssce45ZZbePDBBxk1ahQhISEcPXqU5cuXM27cOLp3717rvtx///0sXLiQ66+/njvuuIPo6Gj27duHw+HgzjvvpHnz5txwww089thj/OlPfyIjIwOPx8PBgwdZtWoVH3zwQZ3O/QT1Fl/uu+8+br75Zr8pzpVXXokoisyePRtJkrjnnnsYN67+fgYAH3zwQbUK3K+//srTTz/NPffcQ48ePZgxYwb3338/33zzDZmZmed0TB2d84WmeLAdXR/QdmLMG9Wz5hQUwWTDMvhe7D//H2jHZ7Q0Defyb7GOfRo5uTPeg+t8Ydg5W/ylpuuKIBmwjnuh2mocctNMLCMfRi06jHDc+0UtOYJaXoDmKEdzloHbQdDtH6GWl1F2cAUkB5oCC0YLtmteQZCN/io59eFE6VSlKBvn4s8QN8/CPPhuNGclYlDEeQ25ViuOIQZFYrnskbNWoBFt4Zj73ISpxzV4969BqyjE0GEkcmL1ea71RZCNGDNHoRze3iDii6Z6UfMPIMW2QoppganHhAZN8dIUD4457/vK8V75DGphFvYZr2MZ9gCG9KE457yPddyziMG1F+iU/H14DqxFbtYRMSjSV/q5nh4OYkgM5j43IwRFIsWlonlduFZPxpDaH1PH0fXaZ23QNA3X0i99UWJ6menfDf77hNeFc8kXiBGJmHte7/eBcc55H/vU5zEP+wuu1ZMxdRnn9++SopMxdhqDd+9KtK7jEGSTL5LO60aMT0WrKMKbtQEhOKpG8cV7eDtSbGvMg+8Ftx3P5hlIJjPKnrU4pr+OlNQBc+8bq71vapqKa/FnKHl7sY57/ozCy6k4l3+DGJNSbdUgQZTB48Ax8w1QVUw9r0c5sgPv/jU+Ud1ViRTdHCkjE9EchO2mtxEEEffORbiWfIEUn3pJ+iCJoU0wdb8G57z/+sqQy9ULI2p5Aa5Vk0EyYBl4J9arXqzTs1IMicGzdyXurXOwjnpMF2AuMGnJEWzYU0iQJXActSe75OJ0SEenlnTp0oUvv/ySt956iyeeeAJRFGnVqhUPPvggkiTx0Ucf8c9//pN//etf2O122rVrx6efflqvysbvvPMOH330Ed999x2HDx8mODiYVq1a1Uo36NSpE99++y3vvvsuTzzxBB6Ph9jYWHr06EGzZs3q1I/k5GQmTpzIv//9b55//nkURSE5OZm77rrLv84//vEPmjdvzqRJk3j//fex2Ww0b96cESNG1Pm8TyBoWjV1aM+Cx+Nh3759hIWF+U1xGpp9+/Zx1VVX8fe//51nn302IPJl+PDhpKen8+9//9u//rXXXktwcDAff/xxvY6nKCpFRZVnXEeWRcLDbRQXV/p9OS5VGvpcXKt/QIxqiiGlWwP0rvZcSp9J2c4VCIs/rNJuF6zE3/0+EZEhZzwP1/qfca+dAoAY3dw3gI9thVpyhMrJT4GmIkYk+QbJ52geqCle1GOHqvhknG0bQZLRcjZT8dtbWAfcjtSq6uyna+1UBFt4g6TdKPn7cMz7L1pFIWgaQlgCtqtebBDzxNO/W579a3Au+Rzb+BcaxDixITkhZlUnatXlN+LN2Ypr+bcINl8FjYY2xAWfaahr5USM7Qb7ozu8WRvwZm3E1OdmHLPfwdh2QLURJtWdi6aqVE59HkObvhjb9gfFU23qWr366nWfl6iq6s5DKcrB/tMLWMc+gxRRt9DZuhAd3XBCWm2em7XlUrqX1xfN68K9cQbuLbOxjnoUKSYFTfHiWvMDhtQBeHO2YGjbH1E6pTKR6gVFQXOU+cyqS45g7nsLhjZ90VQV76ENSJHNEIOj0FQFz64lPrNpUcSzdyXOBR9hGf4X5KaZwMnrXFRUgXPHUlyrJqG57RgzR2PMuMz/fT8hvHh2LcHU+0aM7arm19eEc+VEcNsx97u92uWq14196vNoJUdBUxDMIcgpXRBj22Bo2r7a36/mcVE56e+IUc2wjnioDlf9wlPTd1nTNJyz30EIisDc+6aAbTS3A/eGX3BvX4ChbX9MHcecxZS5ZjRVxTn/P2guO5YRD9bbjL+x0xjvGUeL7Dz50Urio6zkFp6MfDEZJN5/qB+i2DiKBdSWxniNLwYN+dzU0anXyFoURcaPH8/s2bMbuj9+XnrpJa699toqZjbZ2dkcPHiQkSMDZwYvu+wyVqxYEeBirHPh0Nx2nHM/QD2lYo1OIEdWz6223Z3U/azhxADGzMuQ4lIx9/8T1rFPI8W2AkAMi8PQph8AalE23r0rzqmfmqpi/+lF7L/+s06f54mIGUNyJlEj78a+8FO8WRuqrCcltsO95kc0VwO8tMlmEEU4/rIi2sLgPIxt3Fvn4lr6JdbhDzY64QV8KVneo3tw/PZv6qGnA+DZsxzn/A8xdhyN5bJHG74SkceJa+1U0DTMvW4ISKuRm3XE3O821OJcn3lws46o9pJanYumeBE0Fa28EEEyNJjw4jm4jsrJT6Ep3rOv3ABIEYnYrv/3eRVedC4ugmzC1OVKbFe/hBidjGfvSrx7V2DqMg6tohDBaMUx7WWU4tyT24gygsGEWnoUVAXr5U/4KzEJooghuTNisC+Z1bV6Mq4ln+NaNQnPgbU4F3yMqed1fuEloC/H0zht17ziS11cPw37lGd9ZahrIbyc6od0Osb2w/HsWx3w/NA0Dc3rRvM4sU96HM3jBtmIGJWM7bp/Ye5zM8aW3Wv8/QoGE6Yu43weZ8c9dC41BEHA1O82//MafGK0WlkMaGjOcmzjn8fc49p6Cy/g+16YB94FguDzDKrnM0Gn7jQJtxAZYuLoMXtAu8ujkFNQva+Ejo7OH4t6pR1JkkR8fPx5EzpmzpzJ7t27effdd9m2bVvAsv37faaip4syLVq0wOPxkJ2dTYsWLep1XFk+88uGJIkB/72UaahzcW1fgBTdHFu/mygv2I9n1ffYht7TEF2sFZfKZ2IvOUYTx/4AYcCuGihWg2jZfWgtz8OI4crqc9et3cdRunc5eN24107B3PpcfFBEjC0641w9Bc/q77ENqdvnKUkiIR2HYC8qxD73A4Ivfxw5rpV/uZyYijcxDc/GX7D2vr5ePdQ0FRAQLBYM8alYel2LZ+9qVGcFFOwHSUJuUr/7wKnnAaAW7Mez+TeCxz6JFHFu4e6aqp6XkqYAUlwKzpJcyNuFnJh2sr2WvxGvx07QqIeRm9Q+2qm2aC475b/9G81RhqXDYERTWPV9yN2Ka/tCgq54HPvUFzF3GIa542X+5aefi2Ivxb3wU7TKIizt+iOd5R5eF6SkdrgWVaLuXYqpXfUGo/Xe9ynnoWkajqXfYGzZHeMpv5NLhbM9N2vLpXIvbxDCjqfUhUTiWPwlrjU/IoXFYR12H2rWOuxTnsXS6zpM6YP9kWxCSCTGK59CtNQ8A2vNHEHZvlV4tszCs3U2lh7XYM4cHrBOlessB2PofwvetP4oefsxmIy4di7Fs2sJlr43Y27vE16U0jzcu5ahFGbhLTiIVlmMudMYLD2urtqR0Ei0vjcjSwJaZQHuPStx71mBoWkG1t7XETzmEcTwBNTiXLxH92CwWAJ8xmpCSuuHZ+sc3KsmYbr6+fMSmdcQnPG7HByGFhSCY+nXyLGtcKydhhzbCtvAP2EYfGfDdUI2IY/8K94juzAYzj65cynSWO8Z6SmRLNqYS4jNSFnlyfek/UfKSEmoW2WYi01jvcY6Opcy9fZ8ufHGG/nmm2+46qqrCAsLa7AOORwOXn31VR566KFqXYRP1BM/vY74ib9PrzdeW0RRIDy8djMNISGWeh2jMXIu51KxbSnFi74gZuyDBEW2wzr6XnI/f4LIbsOwJLc/+w4akMb+mWydMYkE4eTsk6oJfFg+BCUqhQ9at/G31/s8wm0I3cdQsuxHny/J/iWEda9/KePQgVeTs3sZ7t3Liew+EkvTtLNvdBpNBk2gxCQTFBuD4bTfVvCI28j9+hlCh9+MWMecdG/ZMfJ/eZfg9v0J7jAQmv7FtyDW58dRMOND7PvWk3T324jG2nkUVIemeHEc2kZk6/aEN3sL0XRuERVFC7+lZPlU5OAI5NBo5LAYQjoOw5yUijs/C8FgQg6JPKcQcbnPVVRsmEZ0epcq6Uc1fbe85cU4c3YQ3v/Keh/3TCiOco5O/Rei10XcLS8jB9dcClAbeDXHPGW45rxP1KDrKZj+AaHJrbGmZASsd+JccqY8iycvi/ibX8Sc2LqBe25D6HEFZRum06THCAS54UP3Q0IsVGxbSsm2+UT3GIGxls+gxkJdnpu1pbHfyxuU8E5obTOo2LIIU0JrjFHxaNc9SfnGeRyb8xnkbiH2mid8kZHhbWqxPxtBE57k8BdPguIltHkbrDV8PlWuc3g7aN0OTVPJz9uJpXkHyN1CWJ/RCKKEo9xB2dqfAJ/PlGC04Fz/C9bQUMJ6VXPv6Dmcsg1zOTbvC2xtuhE24k9YktsHnktEa2jRGm9FCUe+fY7IwbdgbXFmQ2vz8Fs5Oun/sDqOYk5o3GLlmb7LhRYz9lWTiRp0I7a03udJSLJBTE/KNsylaOE3iCYrgmzAnNSW6JF3U7TwW1xH9/s+T9lAcPsBZ73+jZHGds/onh7Poo25hJ4mvhzMq2jw++WForFdYx2dS5l6iy+qqmI0Ghk6dCjDhw8nISEBsznwRUcQBG699dY67fc///kPkZGRjB8/vr5dqxeqqlFWZj/jOpIkEhJioazMgaJc2rmP53ounpxtVEx/B0uv6/DEZVJcXAmWOMydRlNWVIIztGF8AM7GpfCZuL0KJfu2knDK5NMWTyIHlWgGxvt8XhrkPNoOQ1g3C81ZQfGSH1Ca9UA8h9BlU6/r8c54k/wZHxF89Qu1So2Ck59JebkT2o2kAnCvWYDcpAVi8ImUHStBE16lpNSJkr8dOa52L87uvauxL/oMKSIBV2hzvMVVv2dKaCJK2WwO//A6QSPr5w2gaSr2Of9B9Npxj05GVQF73b/Tankhrl3LMHe+HDWlN0HhKaj2UtTyQtzlBZSVVuIIqqRs2nu+UuGCgGANR45tibX/rYjmupWx05r1wL38J44d2Os3+jzTd0tTPJT/9CpybEs8sRnV7fKc0DSV8h9fANVL0JjHKfcaoZrP7FTELhNQiz+g/HAWpsyR5E35N8FXPY8UGhNwLvYdS3EfPYB18D04bEk4zrLfevW/1QDUlT+Tt2ImpvSGi345cR4lR49SPPNjzF3GUmmIovI8nMPpNOTgvzbPzdpyKdzLzxtNu+OFk59/ck+Cr0nBc2gzJaVONLcDwVjzy4+maWiuSrxH9yAFR2Ebdh+Vv71D3g+vEzzu6YCIvTNdZ9VZTuXcD/Ee2uxvO3ZgL1JEIpo5FuuQe5CjmiGGxaEW51L+08sULfgalzkKY/NOVfsVn0noLZ0RZCMuwFXqrL7/qoiUmMHRSS9j7jgac7dxNT9vwlsResPrOKyR5+U33xDU5rssdr6aoM5X4RFESkoc57U/WmJngq5I9pU1VzwIspHi4kqUJmmItlhfqpnHSaVixJF7BPe+1ZhS+13QKoL1obHeM5rFWBGAcntgdsDmPQW+sfIlRGO9xheaS1U002mc1Ft8ee211/z//8MPP1S7Tl3Fl8OHD/Ppp5/y/vvvU15eDoDdbvf/t7KyktBQX8heeXk50dEnq2GUlZUB+JfXh9qaSSmK+rsxnqrPuSjHDmH/7W2M7YcjtxsasL2hs8+p2uNwXFCX/cb8mSzakMt35f0Ya1pBb/NevEgscaYC0Cw2OKDf9TkPTdNQDm0Ckw1jx8txr/8ZY6cxKMio53BNxMQMpKYZKIc24dg8D2N67Q0X4eS5aJqKc9t8tNVTsF7+JIJfUBBRirKxz3gTU5crz2joqGkqzkWf4d2zDGPnsRgzR6OJYrXXSmzRE3HzbDwHNmDfuhBjar9q9nhmnMu/RS3NI/7WlyitrMdn4nbg3vgr7i2zECObIrcdhGCJQLBEIAGnvlZ4vSqWy/+BZi9GrTiGVlaAN2criibV4/MTsV79MppkOGlI63XjystDMUZXMX90Lf4CDGYMXa8+b78fY5fxSNHJqAZbrc/HNOBO0DRUZyViQRb2Fd9jGXKff7nH5cK5YQbGrlchtehx/n77ogljt6tRZXODH0PTNMoXfIYQFIncYUSjvX+djYbud2O+l19QbNHIbQfj8XixT3kJMSoZOak9WmUxoGLsMBLvkV04F33ia1M8ABg7X4mp8xWYul+Da9Ukyn99A9uVz55y3/Vx+nVW8vbimPsBWmURYnRzjBmXIUUlowZHoXlVEIxIKT3QAEUFQuOxjHgI97a5CHFp1X9m4vExwFk/TwFD16sQmrTGueAjPEd2Yx58L+LxynpVsISj2Cvx5mxDK8/Hs3splpGPIByvhFffSnoNTe2+yxfiuy5DcBP/XxrHf7dRLRCjAtNzvSVHce9ZjXPtzxg7jMSQNqDGykyNhcZ2z7AYZZo2CSYrrzygvaTCTd4xO5Gh9Y/IvVg0tmuso3MpU2/xZd68eQ3ZDwBycnLweDwBJZ5OcPPNN5ORkeGvcLR//35SUk56E+zfvx+DwUBSUlKD90snEMEWjjFzFMbM6suuKiW52Ke9jG3sM4ihTapd54+Coqr8tjILSRJpbzyMKIARhcssG5juEEmO7Xpu+y/OxbXiW5ScrYjhiVjG/gNDmz4NZjpq7nUDlYe34Vo7BUPr3mecfa0JQRCxDH0A+y+vYJ/1FtZRj/oHc1JEEtbLn8Qx803U0nxMPa4N8ETRNA3NUYpoDUMMi8V6xT/OWoFJkAxYRz9OxcTHcC3/Brlph5oH8dXgzdmGN2sDIeOfQTRaoLJuM1Weg+txLfkcZCPmAXcip3Q968uAIIoIQZE+M9/Y1hha9wZ8VUPE0FgMqf1r/UIhSAacKyciJ6YjJ6bj2jybkpXfYxt+P2KzLv71lCM78R7Zhe3KZ2od1VRbNE3FteRzDG0H1au09onUK9fS9xFCm2DudvXx/Wo4c3ZSPu1dDB1GYmjdt0H7XR0nqnIpxYcRw+IaLD1AUzyAgLn/Hb7yuzo61SAIIuZ+t+Jc9Cmu7E0I1jDE46WWxeBojJmjEG3hCLZwRGu4X2QxdBiBWnoEEOEs6Zee3ctwLvoUNAVDuyGYekyoVfqj1KQlllNKXKv2UkRr/SfA5KYdsI5/Hteq7894fO/R3TgX/A+tPB9skRjb9keQjXh2LEA5sgtzv9tqXRZbJxAxLBbrmMfxHtmFe8MvqGV5mPvc7K9mqFM70pqHk5VXjlEWcZ8iWuw5XEJk6PmpEqujo3NpUO87aUJC3Ywn7XY7n376KWPHjiUxsfpqDm3btuXLL78MaNuxYwevvPIKzz//PO3btycpKYnk5GRmzpzJkCEnZ8pnzJhBz549MRobd5jkpYzqKMO7fzWGtMGYOo6pcT0xNA4pqhnOZV9hGflwo5mFuhhs2nuMskonD1mnESY50DQQBEgxFCK7BRKi6x/KqBzdg/2XV0DzPdjV4hy8u5dhbDfYv46meNAc5YhBEfU6hhgSg6nnDYhhsfUSXk4gGC1YRv4N+7SXccz9AMuwB/wvnFJ4AtYrnsY5/79oZXkQGuszud23Gu+BtQgmK7bxL2LKHFX745mDsF7xFPafX8Ex8y2slz9Rq9k7zVWJlJCG7cpnEa0hZ13/VJSibKSIJARzMIb2IzCmDznnsG0xNBbXsq9R8vZi7nNzrfcnhDTBueI7bFe9hCljOO7t86mc9zHWsbG+FAKPCzm+rU94OYfUtJpwr/8Zz/41GDNq/5lVh7nfbdinvYwnKArNbUfw2CnbsxIxqpmvnO4FurdoXjeOX/+F1KQl5oF3nvNMsOZxIUgWgkY8oM8m6pwVKaYFtqtfrtIuBkVgTO1f7TaCIGDqc6svlfEsvxMxIhHBZMXU+yYMLbrVq4/urXNwrfkR62WPIJ0iyNQVMSgSy+B7AXCtnwaKF2PnK9Eqj6EWH0ZumolalIMYkYBiL0Zu2gFTJ5+/mdSkFe7Ns7BPfQHzsPuRwuLr3Y8/OnJcG+S4NmiKF9Vegv3HZzC0G4Kx/TBd2KoF7ZIj+G3lIWxmA+6Kk5XB9uaU0iNNF190dP7IXDD7arvdzvvvv092dnaN64SEhNC9e/eAf23btgWgXbt2tGvnm0F94IEHmD59Ou+88w6rVq3i2WefZfPmzdx333017lvn3NA8Thwz38Sze5k/vLkmBEHA3PtmlNydeA+suUA9bJxs3FtIl6CjxMs+I2jl+E+uQAlGiWqJdA6Vb8SYFoinVd9xr52K5jxZztC94RcqJz+Je/v84xWC6o4xbSByvO93qDrK6t9faxjWUY8ihsVxej1owRKCeeQjEBRJxRd/xv7TS6gFBzB2GIll5MP1Op4UnoBl2ANobjvenG1nXd+bu4PK758Ej7NKiP6ZUEpysf/2BvYfn0OtOIYc2wpT5mUNki9vbDsA6+VPouTuwD7tJdSy/LNuozrKUA6uRys+jGfHQgTJQOKdbyDawnDMfgelMIvKSX9HrTh2XoQX76FNuNdPwzLw7nOOfBOtYVgvewT35t/QFC+urfMQzFaEkJgLKuoKshHLZY+iFB7E/surdSrBfjpqyVHKf36VY7M/bbgO6uhUgyCKCILgi0Rb8yOu9T/7l3kLDqIUZgEgRTXDdv3r9RZeAJCN4HFi/+0NlKKax3l1QYpq5hOOJz5K5XeP4d70G5qmYUwbhHX4XzFmjsK7c5G/NLcUmYRt3LOIYbHYp76AZ//qBunHHxlBkhGtYVhGPoyStxf7Ty+glOSefcM/OK0SQzHIIna3N6B9Z1bxReqRjo5OY+GC1g7TNO3sK9WC0aNH8+KLLzJ9+nT+9Kc/sX79et577z06drz0XNovBTTVi2Pu+2guO5YRD9XqpVIMi8WYOQrX8m/R3OfXTK6xomoaW/YdY4C2CgBNA1nwCSCrXC1pHnduJQcFUcTUM7BUs+aq8M0W4nvJc2/4FTxOXEu/xPHzK+c0aFLtJVRO/DuOBR/V++VTDInB3ONaUBU8e5aj5O/HuXIild89gnJoI4Ik+4QeSyim3jdiTB9y1pQhzVmB58BaNFVFczvQ1JMikxzXBkNKN1xLvsCbu7PGfShFOTjnvI+53621jvDRvG5ca37E/sPToKlYx7/gSxtqYKSYFKzjnkOwhKAc3XPGdb3Zm7H/8A+U/L3Iqf3xHlgLgKfoCMY2vdEqirD/9CJCaKxfpHNtnI5jwUc45ryHY+En5ySwqWX5OOZ/iLHjGORmmfXez6mIoU2wjHoUU8fRWAfcjup2Yu15TYPsuy5IEQlYxz4DooR96gu1EsJORVMVXBtnUPnjPxBMNsJ6np/qUjo6p6PZS/FsX4B77RTce1ZStn425VNexDHnXTSPb1b+XKO5jKn9MXW/Btx2HL++XuffR3XITTOxjX8BQ5t+WMc+jWX04wGiq7HDSARLCK5V3/vbBKMV89AHMHa8HPVYw4hAlzLe3B1omop76xzcW2bVez9SVDMsIx7CkNof78H1DdjD3ycGWaJ1UhgutxLQfuSYHYfLW8NWOjo6fwQafeH27t27s2vXLtq3DyxdfPXVVzN79my2bt3KL7/8wsCBAy9SD3/feBUF56JPUQuzsF72MKKl9qkYxsxRGDsMhwb2k7hUyMnOo61nKzFiKZrmi3YBX5np1a4UmscFn/Mx5Pi2yM27BLR5ts1DKT6MEBqDqc9NYPCJCUreHuw/PINr/TQ0pe4Pf62yGMEchHfPcionPYF7yyw0tX6DCPXYIZyLPsH+0wuo+fsxdhiB1KSlzx9m2AOYul6JffpreA9tqr4vqm8mt3Lq81R88yCeLbPRnGW4N/6K/afnUfL2+tc1dr4CZCOO6a/i3jq3al/spTh+ewNj1/HIzWov4HqzNuLZtQTzoHuwjHw4oKJIfdEUL97cnXj2rkAty/cL1qI5GMvIv2Fo3Ru1rADXhl8CRCZNU3Gu+A7Hb28gWEIxthuM5ihDjPR5YNn3rsO9axkIIkgS4PPS8V0ABUGUEayhqMeycPzyar2+HwAYzBjTh2DsNPYcrkJVpIgkMJixL/yUyIE31rkKVEMhWkKwjnrM58FjDavThIJj9ju4N/2Kue9tBI16GDmk4YU6HZ3qEG3hmIc9AKJE5Zz/UPjbhyAImDqPbVBjfGPGZRgzR6E5SrH/+i/UynOf5ReDIjF1vgIpJqVKtJtgMGHqMg712CFU50lzU0EQMGVehqnreDS3HceCj88pWu1SxbN3JY7pr+Hdsxy1OBfXiu9w71hY7/0JgoCx/XBMmaPxZm3EueK7KmMAtTTvuJ+VTrtkX7q3eMrXVgP25ZZenA7p6JyBffv2cdttt5GZmUnv3r355z//idvtPut2mqbx0UcfMWDAADp06MCECRPYuHHj+e/wJYzunqVTIw6Xl5e/XMvYCDMdRz6MGBJTp+0F2Yixw0g0twO1rAAxJPrsG/2OKNy4gOuCVqJpUKRYiZR8g8OdnjhKNRvN4+rmKVITph4T8B7aCCdemDUV1/JvsVz2CMa2A5CbZuBa+iXerA2genGvnYp332rM/W6rU26+FN0c29Uv4970G+6N03Gt+A7PziWYet/gT0uq9b6atMR29f+BbEQ8XqHiVIyp/RGDokBV0DQNtSQXJWcb3sPbkKKSMXW5EiQZU6crkOLa+KNVjF3GIQRF4pj5FlKzTEw9JiCagzEP+TOOqc/jWv4NYnBUQFSGYA7G3OemWgkvqr0E16rJmLpciZzSFblph3POfz8xQyyGxODZNhfXyokn+2YJRYpthanr+OPpWqBWFOLeNAPl6G7MfW9FqyxGatIStTQPRAm1KBuvpiHFtkKMbIp9yVfEj7kb0i/DsXEWhtQBvvWOHQLA1OkK//E0jwslbw+CJNfJYNFXcWsjUtNMTF3GndP1qAlBlAi9+S2CExMpKWmY8sb16odsxNTZd82cSz5HDE/A0G5ItWlQmupFLTiI1KSlzxg1JAbRGvaH9sHSuTjIcW0w97sd58KPMUTGYxlyP1pow3uiGLteheasxLNzIY4Zr2O98tnzWrJYbt0HuWWPGo+hed2oZXnYf3wG85A/I8e1OW99aUx4j+7Bueh/yM06IrfshdyqF5rXhWvJFwiyEUOrXnXep2ovRTDbEEQZMToZddMMHNP/iXnIfYjWMDy7luBc/CmG1AGY+95yHs7q0qJd8whYAGajjP2UaJc92SWkN9fFd53GQ2lpKbfccgvJycm8++675OXl8eqrr+J0OnnmmWfOuO3HH3/MO++8wyOPPEKbNm345ptvuP3225k2bZpeBKcGdPFFp1pUTePXKTNIDm/CN0dSUAvMdIuq375cqyejFBzAfPk/mLUmh/AgIz3T4xq2w42Q0Lx1gM9gN1I++bK4ytUSq0kmJrz+BranIgZHY+wwEveGX/xtyuFtKIc2IjfreHzW8y94D6zFtexrNEcpavFh7NNexpA+BFPX8X4BQVNVX8nj8kK08kJf6eOKQtTyY2iOUuSUbhg7XY6hVS9cK7/De3A9jumvYep1Y51LUZ/ND+RElRzX+p/xbJmNlJSOoXkXpMR0IFA0OIEgihjTBmJI6Xoy/cpeghSZhLHXDXh3L8Ux7wOsox5DjGqGc95/MXYZd1bhRVNVPDsW4Fr9A2JYLJrXjSgIUA/hRfO4UHJ34M3ZgjdnK1ppHobU/pj73YbcojtiVDJicBRK/n6Uo7t9qUbHK384FnyMZi/G0Ko33kObqPz2YRBEgm55H/Oge1CP7EBq0srvWaOpXuzrpnJs7ueoMakY2w/3XdPVP+DeOhvrFU8jRZ58OAoGE3JiOqqzHPvUFzD1vBZDcueznpNn+3xcKydiu8qX0nS+EIMiGpVwIcW1wbnwE9SSI5h63RBQNUopPOgrA+yyY5vwKnJs64vYUx0dMLTujTGhNREJCZRWeM+L2bPP6PdmNLcdtfiw/96llhWAbKhT5TlN9aIWHkItL0BOal9tFT9BFEE0ohRl4z24wW++ewLRGoZ1zOO4VkzEMeNfWK98vkGiFM8XqrMcJWcrSsFB1IIDiFHJmHpeW6cqa2ppHs5ZbyNGJGEedI+/gqC5/59wet04F/4PZCOG06Jmz4Rr43Tca35EbtkTy8C7fD4wox/DtWoy9inPYb3yWcTIpohhCXh2LcbYcfR5ScO9lEiMthFiM1LhCIwe2J5VjJ50qtOYmDhxIpWVlbz33nuEhYUBoCgKzz//PHfffTdNmlQ/Xne5XHz44Yfcfvvt3HrrrQB07tyZESNG8Mknn/Dcc89dmBO4xNDFF51qmT9nOYPLp2HudQM5PTrx9uTNxEfZSIyue7i/seMYKiY9wbIPXyFNOIIXid/2jKBdr74kxgT5XmJ/Z5Tl7CNGK6zSXqka2eJJIjU5uEFfIo2Zo/DsWoJ2Smi1c8VEbIntESQZQRAwpHRFTkjDtXISnl2LAQ3P1jmgKpj73AyAeiwL+9TnazyOuygHvC6MXa/CMuwveLM341r9A3JyJ+B4aej6pqzUeG6jMXYcXafBp2AOwtzrBgCcS79EObrH5yEz+jEqp76AfdpLiHGpCLIBMezMIpBafgz7zHdRS3Ixdb0KQ9qggHLYdUFzO6j46i+geBAsIUgJ7ZA7XeEXlERbuD8SSAyOqmKAKUU2xVtZ5Pv8vL4BndyiOxjMiIKAeJqIJIgy5s6XU7boc4LGdPC3GzMvw3NgLY7Z72C78tkqBsOCKQhD2/4457yP1vP6MwprSt5eXCu+xdz3VsQ/WAlNQ8ueiEFROGa/g1qWj2XIfSDKuNf/jHvTDOSUbph6XV+rsr06OhcCKbQJosEEnD/fCUEUMQ+6C7U41/+cc637Ce/e5UgJ7TC06oWc3KlK1KCmeFEK9qPk7jwpPHuPV4oxmLFd80q1kZIASvZW3GunIJiDMKYNOq0/MqZeN6BVFuNa9iXWMU/U67w0xYNaehQEESm8egFH87hQXU4It+FY8xPe0jwEcwiiNQTBHILUtAOiOdjnreV2oBQeRCk4gGYvwTLoHtSiHFzLv0WMbo4U2wr3tvlIca1rLZRoHif2mW+AwYRl+F8D0soEUcI86B4cc97Fe2DtGfeped2+9NeiHMy9bkBObI9oCcW55HM8iekYWvXyXdcu43zjDtkIooxl9N+pnPgo7o0zMPe5qU7X9/eGIAikJYezclteQHvW0XK8ioosNXrnB50/CIsXL6Znz55+4QVg5MiRPPvssyxbtoxx46qPaF6/fj0VFRWMHDnS32Y0Ghk6dChz5sw5392+ZNHFlz8gmsdJ5bLvEeOboTXvzelfg41b9tPmwLeIzbtibjeQVoLAuP4pvDdlC8/c0gWrOfBFQjm6B/fmmSAbMbYbHJDK4lVUpqw+RpI9ko7Gkz4cEfk/8M6XFRTKsbRKDKV10zBaJ4XRrEnw7+KBVLhhPtUlWa11p6AgkdxAKUcnEAxmTN2vwbngI3+bVpaHZ+scjBknb4qCyYa5/+3ILXvgXPI5mrMC4ykzhUJw9eFNgjUMzW0Hrxv3xl9BlDB1GYec1AEpsb1/gO3dtxL7+p+xjXsIzA3zIl5foeMEpt434t21FOec9xDj2qBVHANLCGpRDoa2/XHM/Y9PXDAHo5XmIRhMvpcCoxHV1gLBEowUk4Jl2AM1DvzPhOZx4d7wC8bMUQhGC6beNyJFJSNGJtVJUAIwdhiOscNw34zwsWw0j8uXdnUGIc+Y2peINplUiqH+mW7BaMUy7C/Yf3oBx/z/Yhnxt4Dr7PNMGI1oi8C56BPUikJM3a+p0l/VXopjznsY2vTD0KZvnc7lYqNpKmrxkXOeBZdiW2Ed+wyOWW+hHNmFWlaAZ/dSzEPvx3BclNTR+aMhiDJSZFP/31JEIkpwjC+qI2cryEbk5M7IienIKV0RZCNq6VEcP//fyX1YQpCS2iNYQlArivz3X6Uk15f6ckoqtKHDCJSiHFzLvkYMaeKPnPTvSxAw9bsVPC7OhuZ1o5bmoRYf9j0j04egqV4qPr/Xn94rt+iBqfvVAdEd3kObcC79EkNcG7jmYURLMJQW+NJmj+xEc5RhiUwCczCVEx/zVdYzBSFGJyNFJaNpKlJcG2w3veO/pxvaDkQIikRTvQhiLYbssglj2mCkhLRqo4wEScYy5M9+Lz7NbQ+IKFIrjuHZPt/vDWNsOxBN05CimiFFNUNzVuBc+iVSbCuQDDhmvoVanIPcui/uNZMRQ2KQ4tvi2bEAY8fRaPZSlCM7fJMyihcxJBpD6z5nP4/fCe2SI6qIL15FIzu/osFSz3V0zpX9+/czfvz4gLaQkBCio6PZv3//GbcDSElJCWhv0aIFX3zxBU6nE7NZL01/Orr48kdEMqAUHOTYtvkI1ikYMy7zPeBlIzlHSxGXfoQ1IpKQQbf7BwADOyZwILeMj3/ZzgNXdUAUBFR7Kc7Fn6KcYorq3bsCMToFQ/oQdgot+XTGLsrsHjoZm9POcJgT74gGQeWO4AX8u/QyNu3zsmnfMQBMBomWCSG0TgojPSXyknw4aYqX0KNrA9oqVSM20c0ql0+YOh/nJbfsgbhtHmr+Pn+ba/00BEswckq3gJx4OSEN21UvoRblBAzQBFMQxk5XIARFIAZFIQZHIQRFIEgGX5nJGa+Dx+l78VcVBFEKePFXju5FLTnC0UkvEzT+eTCf3PfFQhBEDKn9kJt3xr1lFobmnXGtm+ZL7cnbi1qUg+PgOt8A11nhG1xrvgoFcr8JCOmjMPe+sV7HVgqzcM77D2p5AVJca+SkDhhT+5/7OYkyUnTz2q0riBgj4qksrgxol8LjMQ+8C+fsd3Cv+cFXqeQ0DK16IdjCca2aDB4nnBb2r+TuQAiOwtTr+irbNnY8m2fiWv0jtgmv1NnP6nTEkGis4573e+UYWvc+L2W8dXQuVYwZIzF0GIGavw/PnhV4963Cu3cF3r0rsNjCkRPSEMPjMbTphxiTghTXGjE0zv98OdXc2rVyEkr2Zl8abMZlSFHNEAQBc79bcZTl45j7PraxzyCGBU4AiOZgMAfj2bUEITgaOT41YLl7x0Lcm2eileX5yhPiE4AM7Qb5ogh734xgC0ctPeqL5Dm4DvOAO5FiW+Fa8S3eA+swtB+GtbtvltiUPhgptfpiELYrnwNJQgiKOqN4LgZHoWkqjl9eQ27Vs0pUzwk0TUPJ3oyU1AFj+2Fn/CxOjAW8h7fjmPs+1uEP+sQUfMbgqAqm7tdgaNmzipeOocNwkI2ozgqcc94DjwvLqL8jx7ZCjm2Ja9X3qCVHEcMTEEw21KIcnx+ZZIDj4pFacQzXiu8wD7zrvPoBNQbSjpvuypKAVzn5Hd6dXXJJjm91aoeiKA1W4beuCIKAJNWt0ElZWRkhIVW/j6GhoZSW1mwQXVZWhtFoxGQKNG4PCQlB0zRKS0t18aUaLpj4EhERwbx584iO/mOZrjYmvDnbQPUgN80kePyzBHmPkTd/os8Bf+OvaL1u56s5R7ktWCR81IMBD0VBELhpeBte+Xo9vyw9wBV9U/wPVjE8EWOXK0FVcG+djZq3l8OLpvBW4UhAADTWu1PobDxAuvGwf5+hooM7ghfyTtlwPMe/ii6PwraDxWw7WMzUJQcY0DGBG4e1vqRSk9xZmzBqgbNrb5aNxCJ4OKz4HsTn46ErCCLmXjdg/+mFk40eJ86F/0NYOQlD2wEY2w/3p5gIshEpJuW0fQg+M9tqkJq0xDLyYTw7FmDud3uAv8UJzH1uQjJZcG6YTsWsd32lQRtJyoVgsvnNYA0te/rbNVXFe2At7o2/oFUcQ4xIwtTreowxzQiLiaSk7OwzpaejaSqezbNwrfkBMTga69hnkKKaNdi5NBSG5E6oXcefMTdfjm+LNPZpBEHAs3sZctMMBHMQmteFoWUP36z1JVbRTCk4gGv1jxhS+52z8HKCE+bEgiRDLY2KdXT+SAiCgNSkJVKTlmg9r0PJ2YL3yC4Ek/X4chFz/9tr3BZ8IoOc1B61KMcn4OxbhZTUHmPmaJ+p8LAHsP/0As4ln9WYXqQUHsS77ids418IEEnV4sOIoU2Q0wYihif4BIRTDLINqf1QK4sRzMHYrnkV94afkaKb45z7AarbgWXs08jRzRHks0c0ni4Mnfm6iRjaDsC56BNfSuhp6agA7nU/4V4/DevlT/mFlLMhRScjhsRgn/E6crNMzIPuxjLyYQRzzWnRgiAihsbimP4agsGCdezTfv82wWD2pzD7j5GYjpwUWK1UU1U0xYNz8Wc+AeYSGt/VlfBgE/FRNnILAyc/th8sYni3pjVspXOpc/XVV3Po0KGLcuymTZsyZcqUi3JsndpR7xHie++9d8blgiBgMpmIjY2la9euNGnShISExmty9ntG0zRfFZUV3+GMSmX9kXByi+w0jQulb/97sHa8HNf6n5m8Ipf45BSiOrZCMFedtZWdRfw1YT1Lt1SyMe5mMltGYR39OEJQJIIoUmZ3M21vKPvKNmHAi094gWutKxAE+M2RGSC+ADSVj3GDbRmfV/bzr38qCzccxmaWGd+/xfm4NOeFsk3zOFXnzRViKVBD/X+HBRkJD2648p6nIsWkILfqjXfPsoB2zVmOe/NMv+FqffHNbgUO7DRVDUhZMXe/CqE0G8f+TbiWfYO5363ndMy6oLkdePat8kUe1FL0EUQRQ4tuyCldUbI3494wHcFoRTQH4Ty8G5UgsNQt3ci54GO8e1dgSB2Aqed1DVrOtaExdRwD+AQjzV5abWqVIAhoXjfuLbNwb/gFQ9v+uLfNx3b1y5fczKXmceGY/1/EsCaYel57sbujo/OHRJBkXyWeWlSZC9hOEDC2G4Kh7QC8+1bj3vgrSvYWHNlbMLTph6nXDb40yjOYoZu6X4NyeAfOZV9j6nIl3twdGFP7Y+pxHQhCtWKAWlmMe8MveHYuAlVBjGmB3LwLYkg0pv63Y5/2Eq6lXyL0vB45seErKhla90ZzVeJc8CGC0RIgaHh2L8W9fhrGzNG1Fl7Al35q6nEtjumv4j24zieux6ciCCG+EtKCVL0wIgiIITG+Et/2kmrN8zVNw7nwYwRLCOYegfdZQRSxDLob+9QX8GyZhbHDiNpfiEuQtOTwKuLLruwSFFVFOse0ap3GyeTJky9q5EtdCQkJoby8vEp7aWkpoaGh1Wxxcju3243L5QqIfikrK0MQhDNu+0fmnMSX6sJBgSrtkiRx9dVX88wzzyDqN5oLgqpp5BXZOZBTRPC2H0iu2MRKVyu+39URZdfxtJRNR5ix7AA3DWvDUVcaY+xfY8t8EuesN0EQMGaMwpA2AM3twL3+Fzw7FyKpCr1Conl++laevKUbTcKjUTWNOasPMW3ZQRwuL3DSN0RGoa3xMGGigx6mvZRZ4wmx5wb0taMpiwrTDn4oSqv2XH5dkUV0mIV+GQ1fFrOhUR1lmAp2BLTlhmbAsZN/n+9QU3Ov63GUF6Ac3R3QbmjZo4qx6rmieV04Zr3jS6fp4BN2BFEkZuxDZP/vUTw7FyLGNG+QVJsz9kPTEAQB97Z5uNf84BuIZozCkNqv1uKAIAjITTOQm2b491nwy3t4S/IQo5ohN+uEnNwJMSKxxoeb5nX7yni27oPcvAuG5mevFNRYcK2YiDdrPZYRf0MKr/pbE2Qj1jFP4JjzHq6Vk3weMJeY8AIc96YaghSXiiA3XlFMR+ePgOZ24NmxEEP6kDpFSQqi7DPubdkD5dAmnMu/xZu9GaNytf/+pZYX4tm70ue3dco9W5BNmAfdhX3qC3gPrkMwB2No0b1awUa1l+De+CueHQtA8SKYg0EUUfP3oQZFoqmqr/LPwLtxrfwO+88v42nZg6ARtwANm3pobD8MzVmOc9En2K79J6gK3oPrcS7+zJeC1bV6U8yaUMvycc79AKlpR7SyPFyLPkEYcAdicDTuTTNxr5uKYAlFsIYiWEIQraGYet2InJCGNO55XMu+wrngoyoRROB7ngqmIDzb52PMuAzREjjuEYxWLMMfxLVqElr6sHP2dmvMtEuOYO7anIA2t0fl4NFyWsTrL6e/R+qa9nOxSUlJqeLtUl5eTkFBQRU/l9O3Azhw4ACpqSfTOPfv3098fLyeclQD9RZfFi1axN13303btm256aabaNrUFz6XlZXF119/za5du3jzzTex2+188cUXTJo0iZiYGO67774G67xOICUVLhZvzGXv4VIOHCkDVwV3BC0gSS7kB3tXlrhSOT26pLjcxedTVvJI6K9oKd0xxaYgj/477vU/41r5Ha61P4KqgKogmIMxdhxNUNuBDF97hPembOGpmzrz89KDzFztC6+LFMu53LqObyt64cKIF4kXS8bRw5rF5VH7CanIrabn0Je19LmiE3vEVuw8VMyC9YdRTxH1vpy5i8gQM+2aR5y369cQePeuROBkvzWgqMKLiIqKb3DR0Ga7pyOYbFhGP4730AY8W+ei5PrEIEO76ivWaK5K3JtmYEjtX6cUDE3TcMx531fW+vA2EEWM6UMBkCzB2Eb8lfIfX8CzeZYvEqU2ZoH1QDmWjXPhx5h634QhpQtq6VG8e5bjWv417o3TfV4DbQfU+UVbEATib/k/Cjctx7Xfl5bkXjcVqWkG1hEPoWkqaBqCKKF5XbhWTEQpPIj1iqeqmD02RjRNA7fdVzbbFo4xbSDerPXYpzyHqfcNGNr0qyIyCUYLlpEPoeTuREpo/Od4Omp5IUJQpP97qqOjc3FxrZ2CZ+scPDsXYepzM3JC9ZMwNSEIInKzjtji2qCWF/p8XQCl+DDewztwr/kBwWAK+M37Uk3XgaYiWEKwjn2meuGloojKSY+D4kYwBSG16ow3ZytoGuZhf8GQ3AnN66Jy8pNIsW0wD70f5fB23Ot+IvuD+wka/ShCbGqV/dYVTVVRS4+iHjvk85RqOwBBNuI9shPnwo+RYltjHnBHnQzcNa8b+4zXEaOaHq/SJqI5K/wCmJyQBoKI5ihFs5eiOUpR8vaj5GxDTu7oi27vcS3KkZ04l3yBefC9VZ4XxoyReHbMx7N5ZrWeYmJYLJbhf0WtOIamKg2WAtrYaNM0DEkU0DQN9ZS56p1Zxbr4otMo6NevH//9738DvF9mzpyJKIr07t27xu06depEUFAQv/32m1988Xg8zJ49m379+l2Qvl+KCFo946Luu+8+zGYzb7zxRrXLH3roIRRF4Z133gHgzjvv5NChQ8yaNav+vT2PKIpKUVHlGdeRZZHwcBvFxZX+qiE17q8wC9CQopIbrpNnYEdWMe/+uBmnW/G3GfByR/AC5jnasdtbfdSIhMIDIbPQNIHPvaO4ZkgqPdKagMdJxTcP+Uw2AalZJpZB9/gHKJqm8cFPW8kvspNd4LtuCVIR9wTPJUR0stsTy4flg/EiERVq5q9XdSA+yoaSuwPXim9Ri3Kq9EUVDQRd8RRSdDKLNh7mi5m7ApZbTBJP3Ng5oNx1XT6TC0Hp9/9ALKl6bm+WjeSg1+d39PCEzCoi0vk8D6UoByV7M8aMy6pd7t78G66VkwBffrah7UDkZhm1Eku82ZtxzHoHVF8FCFOfm7F2GOI/F2fWVqTIpg0ecXMCTdNw/PIKytHdmAfehaFVL8A3o+feMB3P7mWgKb7Q5763ISfXPsT99M9E8zh9A28EDM07483diWPOu8hNM1ALDqKW5mHsOh5jxog6VzE6n8iyiLk8i+Ida/GWFaFV+v6plcXgcSLFt8U6+u9obgeuNT+i5O70Va9I6Yq57631Mo7VNA33up/w7FqM1KQVhjZ9kBLSz3l281x+J2p5AZU/PIOp8xUXPcz9Yt63oqODG2xftXlu1pbGdi//vdKYrrPmcVL5/RNolcX+NrllDySHxhYAALUESURBVEw9rq22Uk9tUUuOUDnlOV8lOJMN776VWIY/hNy0gz9aUzm8DWPmaIxdxvmeX5KMIIioznJwO/xCgGP+fxFD4zC2H4b34HqUwixMXcf7U0mVosM4Zr2FVl4AgoShbX/MHYZiyN+O2rI/CjLOlRORopohN+/q94Y643VRvH7zbvsvr6AeywbF7VtosmFo1QtDq17Y5/4HS9+bkOLb1eve6s3agJSQdk4RgMqxbBwz/uXzfgmu6unoXPYVnt3LCLru9RrHAe4ts/HsXIj1iqcRjJZaH7sxfZfPxqvfrGd3dklAW1pyOI9cW7e0uwvNpXSNzycN+dxsjJSWljJq1CiaN2/O3XffTV5eHq+++ipjxozhmWee8a93yy23kJubG1BG+qOPPuLdd9/lkUceoXXr1nz33XcsXbqUadOmkZSUdDFOp9FT76nolStX8uijj9a4vGvXrvz73//2/92/f39ee+21+h7uksNn4DkdQ9og34P6tCohdUHTNPKLHUSHWRDFqukO63bl8+HP2/xO6pmGg5RqVg54Y/hP+RBOj3YRBGgSbuFokS8VKFys5PXS0YhUMHPGYlZua83Nw1OxHY8WkOJSkWJbIkgGXGt+xB2WzPqKJuQV2ck5Lry0lI9yR9ACLKIHgNaGo9wUtIRloWO4b3wGIVZfeoIvXPUFnPM+wJu1CVSPv1+i6qFy5lsEjX+Ojq2jycmvZN76k0KGw6Xw9uRNPHVzF8KCGl+6gFKYVa3wctAbxUHvyVSs5LgLexOXIhKRIhKrXaapKu5t8/1/nygDKljDMKT280XDnMmMNakDlmH345j9LqgK/8/eeYdHcZ1v+56ys00dFVQQIAEC0XsH05tt3HDvjrsTx4nzxSV2bMexkzj52UncguNe4m5j44Kx6b33KkSTAAmhrq1Tvj9WCBZJIIEAgc99Xb7knTlz5pzZZXfmPe/7PP4F76CoCgy+MLT/qFVMo3gvckxyk2bA6DmLMQ5sQ2nZAfUoEV05KhHH8FvRel0UShnfugApIhTwsiwLsyQP9CCW7oegv+YvklRjmawX7KBi7yGstL5ASEzQ1rbPkXO4orG1H4S+ezWS6sB1yWMoCW1OeU5m+UHMyiLUlE6n3NdhfLs34Fsx7cgGSUJyxSLFpSHHhX4cLd1PcNuCGqcL/8ppGAe2o7bu0eDzWKYeygZSbFieUpSk9hgHc9FzlyG5YtC6jguzPj9TWKaBd9Z/kFQbanWATiAQnF0kmwP3FU/jX/45wU2zAAs9Zwn67rXY+16OLXvkyQVsZQU5Jhlj77pQuUxsGt6fXsY1+THk2JSQ3XHnUOaKaRh4vngSJToJVA199xqUxExck0L3t2qb3viXfYItawi2DoOxdQhfBVbiUnFf+SzBLXMJrJpGcNMsgtsWEDNgMsgqViCAcWA7wXXfI7k+wpY9ElunC8LKcCxTxyzciZ6/CSN/I2bpftzX/xNJUVHiWqG26oYSn47cIh3JHRfS4DJ0lOhEfAvew3Xxw0gNDFZZQT+++W9i73N5o/V26kJp0Qr3NX9HUrWa8t+j0bpPIrh5LoH1M7D3vbzOPmxdxmAU5uKbPRXH2F82q8WLpqJzm9hawZfteWUEdRNbAwSaBYLTSXR0NG+//TZ/+tOfuPfee3G73VxxxRU88MADYe1M08QwjLBtt99+O5Zl8cYbb1BcXEynTp14/fXXReDlOJx05suAAQMYMWIEzz77bJ37f//73zN37lyWLFkCwFtvvcUrr7zC0qVLT360p5GmznwB0PM24Fv4LgS82Adeg5o5oFFCSIZpsnLrQWYs28PO/RX0aBfPPZd2QVWOfFHPXZPPOzO2YlkgY3CdeyF97LtY6W/NO1XDiY7QyEwJ/civySkiKdbFLy/vRlKck8f+u4yDJR5SKKSvPZeB9u0cNCL5a/nFKIrMpUMzGNc/HVmSqPIFWb15H8krXyLRLCQnmMRXnl7sNhLoZtvNTRHzUaXwa1JiS6TllX9Ac9cus7H0AEZ5IXp1unHYvGNb87eiUbhcTuKiHKzYejBsf5uWkfz+2l7YNaVZReW9c19H3zq/1vY3K4exJtAGgMRYJ3+5c2CtNmdrHvqu1Xh/+Gf9DSQpZF3ZaQRKq2713gjru1bjnflijUVzwoX3oqf3r5mLvmcd3pn/wtZpBI5B1zXJ2K2Al6qPHsLyleO67EmUFvU7B1i+yppVNz1vI95vn6uznWSPIOKmkJi4uXMZVTNfxpbZD/uwW48r4NgUWJZJcONPIVtnI4Bj1N3YMvufcr+qKuPWD1GyaweWMyZ08+6KrtOhKLD2O/xLP0LN6It98A3IzqhQiv62BagdhtT7/luWhb5rVeghpf0g7L0urrkRtywTY/9WgtsWIEclYu81GaN0H8a+LSGdhXoyayxfJUZxXsiqtCQPZIWI4TcRG+um+GAJRiPWDvwrviCwahrOiQ+ipnVp8HGnC5H5Upvm9F1+PtNcr7NxcBe+BW9jHtxZs02Ob4NjyI21XPkagmXo+Jd/RnDdd6ENmgulVVdco+4GQN+3hcCa6RgFOyDoPXKgzYHWZQxqpxEEFr2PvmdNKEOm54Un1KSxgn4CG34gsPbb0H1ft7FoA64Nza9wB4ENM9F3LAdZwj7wWrTskfhXfklg3fehLGPFhpKchZqaja3zqBNmpFhBP55vn8M8tBdbZn/sw24+buDCMnS8M17ALC/EdfEjp5RddCx63gYCq6fjnPhgreyewIYfQ7ppxxEDtnQ/nmnPYGs/qEY/7kQ0189yXezYV8af31lZa/vvr+1JVnrjBP3PJOfSNT6dnO+ZL4Izy0kvQV944YW8//77xMTEcM0115CWFlpZz8vL44MPPuCrr77iuuuOPGQtXbqUdu3anfqIzyHUtC64r3iawNrvCG5fjJo5oM6VgWPxBXTmr9vPzOV7KSoLlf247Cprcop489st3HZhJyTg2yW7+WxuSCApUvJyY8Q8OtgKAOht302vqC+QY1PZVuFmZaGNUe06c9mFffEGdL74dAbXywtI6dUGc8ciFEwqTTvLA5nImOiGxCdzdvD9sj1EuzXyD1ZhARLjGKBtZ4JrLb+J/o7twSTaqQUcO6UydxvSrvgdcj0PVpKqocSmYrXugVG0G7NoV80+pWQ3v4heyFueEXRqE0tJpZ8d+eU1+3cdqGDq1xu599KudfR8drAMHT1nSa3tVUoU6wJHggKnW2y3schxqdi6jAmV5wQ8tRtYFsaetXj3rEVyx6F1HYOty9haD+5qm544Rt+N78eXwTI5+O1/iLwiGWJC3wtyQhskRxTBDTNREtrWlAedCv5V07C8Zdg6jzpu4AUIS3e2Kg+hZvQD1Y5k00I3uDZ76O9RKc9KQmtsCa0I7liGUZyPc8wvG2UP2hjMiiJ8c18P6fMoGkgKgTXTQzbOJ7kKaJTkE1w/A/fga9FapqOpLU5482TrMobAlrnoucuxZY9CdkZh5G/EN+8NlO0LcYy4EzkivGTOKMjBv/RjjAPbkJPa1WTsHP6ekyQZNaVTWCaPkbcR/6L38S/+ICRk3K4/BP2o7QYiSRJVXzwZ9hAmRSagJIccRDw7VlP29UvYB16L2rbPCb9P9f1bCaz+Clu38c0i8CIQCGqjJLTBNfkxglvm4F/2CQS8mEW78Hz5p1AG8eDrG7V4JSkqjgFXoaZ1xjd7Kpa3HGPPmiP3YKYeyvK0RyC37oFVcQgr6MV12ZNYZQV4Pv0DcnQSrsueQIlr2AquZLNj73kRzuxh+GdPRcseUaMApyRm4hyZidn/KoKbZtX8ZsnRSWidR6GkdkZJatcoEXPJZsd14UPou1djFu9FkmT0/VsxC3egth+M7DqiJ2KZJr7ZUzGL83Bd/GiTBl4A5BbpmKX7CKz8Anu/KWH7tC51682FzUW14xz/63ozaM512raMwmVX8fp1jl7x3ry7pFkHXwQCQdNz0pkvfr+f3//+93z//fdIklTjYmSaJpZlMXbsWJ577jnsdjt+v5/XXnuNXr16MWhQ80z5Ph2ZL0dz+MfE++NLyFFJaL0uqrWqUVbp58eVecxZnU+VT0eSoHdWIuP6tSIhxslf3lvFgWIPo3qnIksSM6vV0zOUAm6OnIcNg+1xQ+idGMQqO4BenId01IqO0XkS31R1xdo6mwvty1GwAAvJGUVh8lBe3RxPUVX4x8GGTqpazC49kZ7aTi52rsIt+9mrx1JhOumu7UWWwo/xRrclIjoKSXMhac5QxoDmRLI5Q6+jEmtWsqo+eRQlNZvgnnVIlUVh/fjiO/HnvEE8dH0vnv94LQdLfWH7x/RpxQ3js5pFVD64Yxm+n16utX2WNJhph47YZF89qj1j+9a+kTvbqwuWHkDPXUZg8xzMgpzjtlUz+uIYeWed5UPB7YvwzZ4KhNKRnZf8sWYVzCjMxfP1M4CEa/IfUOJbn/R4jZJ8PJ8+jmR34b7qLyelS3IiVFUm2i2T//m/CO5YBjYnzhF3NEo3piEEdyzDN+8NCPqQk9rhvOAXmKX7UVp2OOl5WYaO58s/YR7ajWvk7bQcOL7hGXt71uL9/nnkFq1wXfokkiyj71mLb85/sSwTx/BbsbUJuTj5FrxLcNNPSFFJ2Ptd0aBgyGHM8kKC2xYS3L4QqyL0b999/QvIrhgCm2aBrKDEtUKOTanJOlJVGbdZxoGvX0HP34TSqhuOwTcgR9XWGjhMYO13BHOX4br40QbpLZwJROZLbc72d+DPhXPhOpueMvxLP0LfvggAW6cLcAy9+eT785aHgtt71uK+6q/I0UlYegCr8hBSdMtQhp6/iqpP/4C9z2Womf0JbluIrePwkyp7UlWZmBgXpaUedN3ELD2AFBF7RtzVgrnL8S/9GKuyGLV1D2wdh6KkdSWw8ksCm2bhuujhesuQTxV97zq83z+Pvf+V2LJHhQWSjAPb8S35H66JDx63DN8yDbxf/wX70BtPGPQ6Fz7LR/PS5+tZuS08k7t9WjQPX998XRHPtWt8uhCZL4Km5KSDL4fZtGkT8+fPJz8/H4DU1FSGDBlC587nlhPG6Q6+HCa4cwX+RR+AJOEYfD1q657sK6pixrI9LN54AN2w0GwyQ7umMKZfKxJjjqzEHyrz8ed3V1BaGajZ1kvbyVXuJewNxnGg45VMGNULSZJYk1PEf7/eSILm46peLkrzctmyz8voiG24jTKwLIIo5MQOwdN6MPvLDPYUVLD7QEWNdky05OGXUTPQLZnnyyfglgM4pQD7jRhMJG6LmEM3bW/Y/LyWDV9UW2Irwm2Oa2F3h+qYk7PwL3oP3+B7YO4rOKSQBoxlhbRpZsddQUV0B0b2SuWZd1dS5dPDurlhXBZXju141n8Yqj7/I2bR7vCNNicPFV6C1zqSqvzw9b1onxZT6/jm9ANnHNpLcPNsgtsX1QguH4vatg+OUXfVGYDxz5lKYFvoplnrdTH2PkfsL4Nb5uGb9wZSRAtclz1R40zR6DEW7sA3+zW07hOxdTw9iuqH35Pi4kq8q7/Fv/RjsCy0Xhej9b60yVbm9LwNeGe8gNb7MrRu42vd7JtVJcjuxq2M+Zd/RmD11yjp3Ymc9Bvi4iIa9dnyfPd/GHvXYR9yI1r2yNA4PKX4Zr+Gkb8Rx/DbsGUNJbhtIVbAiy37gpPW8rEsE7M4v8bK9Hgc/Z74tizEv+RDrIAXrfdktO6T6n1PDgtYNhdE8KU2zek78HzmXLrO+r7NBFZ+iXPsr5okwH6i7wF9/9ZQNmVGv1M6z9HXOFB8AM+0p5GjW+Ic/0CjBGVPFssyMfZtIbhlHvquFTgn/g45ogWWt/ykSrgaQ2DzHALLP0PreSFa13E1C49meSFVHz2E1vsS7L0uPn4fm2YTWPstrgm/QY5JrrfdufRZBvhpZR7vzwy/N1ZkiRd/PQy71jytic+1a3y6EMEXQVNyynej2dnZZGc3zhrw54ytbR/UtC74V07D+8OLbLF14tUDPWmlHKK7U6dzx9b07p5JRGxcrfTTCJeNpFgXpZUBoqUqfhU1g3ilEt2SkdoNZuLo3hiGwbSFu5i+aDeZKVEkxSXw4uIC+nTqz6SIF3EYlaHOJFAxUQq38nFuCjqhL363Q6VlrB1/RTF3OGawOtCGb7w9AAm/eWQ8IxwbawVepKgkVFcSUfvXH6vxWxt/FfrOFdiH3oRnwyw2zpmBM2MKnXZ9gM+08aO3C0MjchnSM4PHvzrA0G7J3HdZV/7+4RqMo7z63vthK23SYmh/hkVsjyXg9aBUD+vw819l2gC8BUcCL7IkkZ7U/L/AlRatUIbciL3/lQR3LCW4aXZYWRiEBKV9P71aZwDGOeQGjH1bwBWD2m5A2D5bx2EYB3cS3Dwb30+v4pzwmzq1R044xsRMXFc8DafontMQJElC6zYBuUVrfD+9ghX0n3LgJbhjGUqLdOSYlqHyxGv+XmcaeHD7Inzz3gjpv7Rp2OqYcWA7gTXTkewROIbdclJjdQy8lqp9W7A8ZTXbZFcMzom/JbD2e/T927BlDa0lPnkySJKM0qJxwmySJGFrPwg1vTv+ZZ9glRdV68scSVcPbpmHUboPe78rm1XgRSAQNIxjyxVPlRN9D6jVpY1NSUjwNxVj32Y83/wN14Tfnjb3v5pzSjJqajZqajaWvwo0V+h7MTL+xAefIlqnC7C1GwiShBXw4vn6WWydLsCWNRS1/SAC62egdRlz3CCUlj0ipOn25VM4htyE7Zj7iHOVjukxtbYZpsX2vFK6ZNRvbCAQCM4vmuSOtKqqivLycupKoklJqdvi+OeMZHOg9ZhI7rYcOvo28FTcTszY1sRU7IBcP+RCJeAYfS+2jL5457yG7q1iwX43xUUJdLcVc2PEAlQppNNS0P02Mrt1I/fr13HvX8E3xVfQKjGSvIOV9IguY3L893yxqzc7jSg6aZVhY8nW9vGLyFm8XjGCFnFRTBmRSY928fh2b2DLiu7M3tueKJdMhEtjX1FohTNDLeRiZ7hwmCHb2J39C/Z5NQoYSeyeWQyzbWCNP53Pvf3IUArpZd/Jbj0eu6QzNP4QMfHxFJQbfFbYmRttM3C2H4tvFwRkOxGKjzdKBzK8PJoLB0Xw/sxtPHRdL26Z2JH/Tt9cc17LgufeXcEjN4RbUJ9pZlR0ZJJ8EJ+p4JAMQGKrsydwpJQqJd6N3dY8VzfqQrI50DoOR+s4vFow98UjdpdUB2Bm/xfnqLvCjpMdblJueJIKKwLDrP3gbx90HUbxXszS/VhVxUh12FPWhxX0YVYeQolNPeMP1GpqNq7Ln0KqdqmwTAOzvAAlpuHfcZavEt+Cd9Bzl6G07IDzoodDZZv11N9LkfFgmvjmvI5yeWvkE9w8W0Ef3jmvgWVhH3bzSdf1yzEtcV/3j1qZSZIkY+9Rt2X52UCyu3EMvRnLCq3IBVZ/jVleiK3jcHyL3kNN73EkGioQCM5pLN1PYOU0tO4TT3sAo6mQbA6c4x/A++NLGHvW4vn6LzgnPdjkmiv1nv80lOSe8JzVNtyW7kfN7FediTkdteNwCHgIbJqFvcek4/Zh7zERW0ZfUFTMsgKM4r2obXqf01owKfFuIpw2Kr3BsO2bd5eI4ItA8DPipJ9e/H4/L774Ip9++imlpaX1ttu8eXO9+85XTMvCHzBwaEqtHwrLMtG3LsCz+CMSA37mWb24IMuNs+dE5JhkfEs+xKosRknMRE4KaYX4o1qzdvs62uvrGBJTUVOSkxuM583KC4jYYNJ92cuMd64DIN7mJTs1kbtT1uHcs5ClvkzWeqNJdkbTiX21xtvJtp/bI2fzWvEI3vx8GeMTD9BhzOX0vKIrLwKrtx/kxc/WAxCn+flVzGyko6p/LAv+Uzqcrd8enQnTg3W2NK53zSMjLpo+UUE6Fy2nl76bXUYif8obycQ27Zn1v9VM7D8Id5t+6DtDAZ1oKhnh2MwIx2amLzjERZdPZM/aXSzZmMqgLskUlnj5auGumjP5Agb/+HAND13Xi6S4k7f0Plm27iyknbEdZDCRAQM1sx8bC8Pf+4yU5p/1Uh9qejec43+N9/sXjgRgZKXeFSlbXApSSRWYtdNUJUXFOeY+kOQau02zvBA5KvGE4wis/prA2u9xjLordGN2hjm6/Me/7BOCG2fhGHZzLQHhGqcf3Y+etwHLU47lKSW4eQ6Wtww5Jhn7gKtPeCOptuyA1udSAss/w/vTKyFL0eOU9/iXfIhVXojaYXCYLfZJzbU68GKZOpbfE2aN2tw4LEosaS703OXo2xYgRbTAMfSmc/pmXSAQhDAri/F+9w/MknzM0v04xv7qnPm3LakazrG/xDdrKnruMjxfPYvrwv+HHHF+P3BLqh17jwvRskcR2DCTwLrvkWNSCK77HluHIScsMz2s5WUU5OBf8hHBzXNwDLr+tAnfn24kSSIrPYaVxzh4bt5dcpZGJBAIzgYnHXx54okn+PLLLxk9ejS9e/cmOvr4X6I/Fyq9Qf72v9XkFVbicqiM6JnK0G7JJMZWBwVME//a79gRTOT9sp4M7JvNtrRoWvgdxPt0FNWOfmAbeu4yrBVfkG/PZHlxFJlSGTYlFPGQJJjny8It+Xgs5gvKdCcJziMZLQ+OisBa9RpVfos3q0azXQ/VzB4wotElDVuLVKzyAxA4IsabZdvP3VE/4sLP1ooUnnlvJb07JNI/O4n/frMJC1AlnUfjvkMK+MPm7Os4niy5HxmGSVKsi6RYJ4mxLmIiNFZtGcrOGdsYlqQRfeM/MfPW0fqnV7kn6ideXgC9u7RidJ+00AP9oT2gqGABZmiuF9qXY0xfwZU2N3+bHU2P9vFMHtKWg6U+Fm88UDOGsqoAz324moev602L6NNrCXw0hqec2Jl/oKUawG+pLPVnkp2kEtt+LKv/tyesbUbKuf1vRE3NxjnhAbzfPQ+WgXPML1Fb9zjhcZYRJLByGkqrrjVp3Uev+hkHqx0tOgzGPvDqesX4zNL9IUtOzdGkqegnixyTDFbIQSK4ZR6WEcTylmN5y3Bd8jhKXBpWwIfvh38fdZSEres47H0vb7CrhdZjEsa+LRj5Gwks/xx7/yvrbGdZFlJEC6SopCaz8zarSvB+8xySOwbnxN81+4cdrcto1DY9Caz5FlvWkLOy6isQCJoeyRkF1d+Z+u7VBDf9hNb5xC46zQVJVnGMvAufakffNh/vt3/HdcXTJ1V2e64haU7svS5G6zIas2QfwZ0rqPriCTB0lLg05Or/bO0H1WnnrSS1wz3lzwTWfkvVF0/iHHU3anq3Mz+RJiCrVe3gy+6CCjy+IC7H8a3MBQLB+cFJB19mzpzJlClTeOqpp5pyPOc8izceIK+wkix1HwlWOd8s1pm5OIdrW24jNqsvHfv2ZVnrW3hvTh5tk6P4btke7KtlfIFQhoBNjcVhu4yW5gE6ybvp7t/NaJvOIn97NgTSyFQL2GUkQGIW/c0VlFRGkCiXhY1BWfoOmwLJfFA1BB+h9M+EGCcjL7ySmNQ7Qw9Qh3ZR9c1zmL4jYomZaiFVcgTflHcHJFZuO1ijzK4R5KmkGaiB8vBzpXYmYeiVXFKP9kbvTskkR8n4v/kL6wq2kD3lPjyD7iZl3ktMdq/iUM52Dr3/DhFtOmN5y5ET2uK66BF8O1fjmfkymqQjY0Gwkpvc85i2oDVXj2rPzRM6UlzuY+ve0ppzFZf7qwMwvYiOOP2uAgDb535LSyvAcn8GhWY0P/q60n/cAGasyMM8qgxPs8n06tDw8prmiprSCeeEByDoa1jgRQ/gmfY05qE9SDuW4r7iTzXONTUYQaSIWIJb56HnbcAx7BbUVuE24pZl4Vv0PphGKHDRDFLOtY7DUeJa4Z35Isb+LaGNiorkjAY9lB0kOSLRelyI5IwK1f7HtUKJS23UeSRJxjHiDjyfPUZg7bcoyVmo6d3raCdh73lRSLS3jhvYk0FyRYPNjpG/CX33qgbrzpxN5IgWOIbccLaHIRAImhBJUXGOupuqz/4IQS/+xR+iJLU/Jde8M40kyziG34Lf7kJN6/yzCLwcjaS5UJLaoSS1w9ZhMIGV0zDLCzFL92PkbcTWYShm2QE83zyH0iId+8Bra7JfJFXD3vuSUIDGEYlRkIPpL4few8/yrBpHxzpspS0Ltu4tpWf7c/8eUSAQnJiTVquUJEkI7daB3aYgY3JjxHymuJdxb8QMHor+im7+VaxYspIHXlzI/+blI0uw71AlsiTVBF4AgrpJhVcn1x+LjMUXVb3xWjb2BuNYGmjPN9JI1I4j6Fi2gDbeTSQpZbUkDWySSXd7Ps/GfsQvI2cwaWBrnv5FfzLT4mpWrtWkDJKv/WOtlWG3Wckz7VfQpdWR7AO35OPxxBk4A8VhbSVXTLXl8PE/RimpSSRe9Uci/YVseufP/GNmKQWtRjPQuZNW6iHeOdiZHckTsPe9HLNgB0b+JpwZvdibdQ1Hywil6HsIbPyR/IOV2FSZX17ejTbHCO0Wlnj5+0dratXUng6qPAFcuxewU0+iwIxhp55A38gDuOwq89aGl3cN65ZChPP8WNVQUzqhtm6Y3bKkaijV2S5WxcGQY9AxKC3b477iaWzZI7GqQqnlvrlvYAU8NW30Xasw8jYgx7fG1vGCJplHU6AkZuC++q+4r/oLETe/TMStrxFx7T9qHCUkWcbe7wq0rmOxtRvQ6MDLYWRXNI6RdwES/uWfhelrWZZFYPMcrGAoI62pAi9QHfipzqLxL/4QSw+c4AiBQCA4PchRiTiG3Rx6YerVAuh1O/I1VyRJxjHwGpSUbCzLwgr6fpbfq0pcK5SkTMyyAxiFO7B1HA6WiWSPwN5rcsgefM5rNXpeh5GjEpE0J5YRxDP/XcpX/XCWZnBypCS467wXFKVHAsHPh5MOvowaNYpFixY15VjOC/pnJ9GnU0s+qhqAaUl00AqIlLy8VD6G+f5OeHw6hmlhWuAPmLRuGUnLY3RKEuQyHo6eRj97Dr+InEuiUsEk9xpkWcLjD2JaFh3bn/ghTpagdZKbS3tFIx/KBcAo2oV/+WcE925A0pw4h91Uk8p7GNuhHO6MnMVvLsuiW2YLLs+GSD088IIk4xh9z3F1ILx+ndx95SxYt59vVhXxXeTleIPQPd5Pp9GTibrhBeJ6j2WYtonXvlhNToUTW9YQ/Ms/xbIsug69gDIpPMPhEsdSPp+xBsuycDlUfndNT1od4yCUf7CK//toDV5/uC11U7P1m7eJlSuJkKoYaN/Gxc6VDIk5wE8r8wgcZcmnyBJj+zXOzeVcxfRV4Fn0IZZxJPhl73cFUnQSAMFNs9DzNtY6TrI5cAy5Eeek/4cUGU9w6zyqPvkDxqG9WLof/+IPAHAMvuGEwb4zjaTYkKNbIh12lDhNqKnZOEbeiWvS/ws7j759If75b+GbPfW0nFdJaofafhBWxUEC62eclnMIBAJBQ7Bl9seWNQwAs+wAvoXvneUR1cayTLy7NxDYvpjAuhn4lnyEd9Z/8HzzHFWfPErl2/dR+fovqHznl1R+8CDe2a/VaVhxvqN1m4D7qr+itu6Jf8n/8Hz6B4xDe7B1HIZz9D0Yh/YS3DCzzmPVlE5EXvggxbPfJ5i/6ZTHElg3A8/Xz+L98WV8i97Hv2Y6RnE+AGZFUdhi0KkgSxIdWsXU2r5FBF8Egp8NJ112dM899/DrX/+axx57jKuuuoqUlBTkOh6KYmJiTmV85xx2m8Jdk7tw6Lt5BPfakCwDTTZoZyug3HJRbLoxOJJqmrvvSBlPqlLMSMdGems7a2WzmChgWdw0rhODuibjmfkTxjHn3qPH8VL5GFJsFVzUPkA7tZCIVp1DNyiz/oOS1A7cseibZhFY/TWV1I95YBsZ1lvcP/k3SFp3AhtsBHNXoMSlEtw0C3u/KagtO9S0P1DsYdveUvYVVbHvUBX7i6o4VB5aiY+LspPSwk1KfDRl6bcwd14urbeUMLRbCh3btKBy4yFulX7g1U8k7r9kFHHb/4SxZy1q6x7YEjOgcF3NeSRgVNXXLN/cjn7ZLYl0aTx91yB+9695FJYc0bDZdaCCFz5Zy2+u7IFda/rU3vyDlbQ8tBJkaKmGrmSCUklpTBY/rcwLa9uvUxLx0fXbKp4vmL4KvNP/hlm8lwMV+1E6joQWbZEcETgvuB3PV38Gy8I393XcU56uU9tFTc3GfcXT+Jd+jL53PXJUAoH1P2BVHkLtMDT0Gf4Zc7TAseWrxAr6Qg8fsoLWe/JpO6+93xT0nSsJrJ4eEkp0106dFggEgjOBfdB1obKT0n3o2xYQTM2uJXp+ttn/wVNgHnuXdgz+0L2DsXM5vtlTcY688wyMrHkhu2NxjrgDI3skvkUfYFWEHCIldyyOwddjHaVNeCxKi1YkXHQfJRsWY0/qeFLn9y/9GKV1D+T41ii6D8tThlVZjFGYixKbCnGpeH98CbM4j4jrX2gSHbGs9BhWbQvXfck7WEV5VYAod8O04ASCpmTu3Lm89tpr5OTkUFlZSVJSEqNHj+a+++4jMrJus5DKykrefPNN5s6dy65du9A0jW7duvHAAw+QlZV1hmdwbiFZJxlu79jxyBfd8VZ7zxW3I8MwKS6uOm4bVZWJjXVTUlKFrtd2cTmMx6fzf+/Mp6DESwu1irsifsQt+dmrx6JJOp9UDagRwXVJPvpoO+lvzyFNrR359tui+KKqN6MvuZD5G4vYfaCC3/evwj/vzbB2paaTf5RNomuXDCYNbFMrm8YKeAms+57A6q/Bqn/sxyIntcM14behNE/TQJIV9APbUJLaI0kSeYWVfL1oFyu2FNIi2kFKvDv0X4vQ3+QWLpz28BjfrFV5fPhTDo/c0Is2LaPQ92+l8pu/sycQzTuB8fx2YjIt23VCkmVMbzll7z6AelSoyZJkng9cxe9vH0WESyM21s32nUU8/c4KisvDxYA7t4nlV1d0x6Y2XbaE16/zj7fn8yveQeLo8g9Y1uV3fDC/IKz9U7f1O6ENdkM/W80V01eB95u/YR7aW2ufHJMSSi+uKsXIC7lmqR2G4rzgtuP2aQW8oc9dwBN66O82/ow67jTn9ySYswTf/LeQ3XGYpfvQ+k2p17qzqebhXz2dwPJPUdsNPGsPCc35PWkMZ3MeCQlN57rWkN/NhnK+vLfNnfPlOhvFe/F88SQYOtgcuC97Ajm6ebjgqKpM+bsPYFQcatRxckIGzjH3nvcuSPVxpMRIwjvjn6hpXdC6jMbyVYLmqpX1evizXFxcSaAoH9kV3ajgiFGQg2fan3Fd+jhKQtt625m+CqrefwDnuF+jpnU5mamFsaeggifeXF5r+12TO9OvU9Ip99+UnC/fF6dKU/5uNkemTZvG1q1b6d69OzExMWzfvp1///vfdO7cmTfeeKPOY7Zt28att97K5ZdfTt++ffH7/bzxxhts3LiRzz77jMzMzDM8i3OHk858uffee5u988XZwq7JdO/chtSECDq3iUOtHMChz5+lpVLGdE9PboyYT06wJVWWRk9tFxFyeL2vhYSERX5sH14r7MFvru5JarybiAgXr/73K3zzf+DoKx+0ZF6vGEH3rpncPKFjne+LpDmx97kUNXsEVvlBjJxFcGgXcnoPTF0PObVUlaLvWglHlYyYBTnoe9ZiazegRhxObdmBPQUVfL1wFyu3HaRL2zgevr437dIa5uYzomcqufvKeenzDfzxlr5EJGcRMelB0qf/nRv5nhdmTOS37lhivbtR2/Yl0O0y1HWfHJmLZTI0Op+lP8zggmG9ILYD8TFOHry6J395fxXlVUeu58ZdJbw6bQN3X9IFVTn1AIxlWXz4zUqGuXORqsLjluVSNDPWloZt657Z4oSBl/MBq7wQs6ywzn1m6T7M0nANHH3bfLymjmPQdfWK50qas/qvq16Hn58rkuaCoA+zdB9Kyw5o3Sac9nNqXcdiFu7AljX0tJ9LIBAIjocS1wr7wGvxL3gHgj78Sz/BOfaXZ3tYNagRsY0OvpgHc6n66GHs/S7H1nn0z0+QVwrdo1mmgeSIxL/oPcyKgwR3r8GefUG9v3OSJBHc+CNmeSHO8Q806LpZloV/6ceomf2PG3gBkB2RyPFtMAp2NEnwJS0xApddweMPz4zasruk2QVfBD8PJk8Oz5zu378/mqbx2GOPUVBQQFJS7c9lWloaM2fOxOk8ktk/YMAARo4cyQcffMBjjz122sd9rnLSwZdf/rL5/Mg1NxRZ5qLBR77My7REXq4ch9usINdqRVFVJNe5F+E6JuiCzYnaugf6zlVsjRnEpwfb89B1PUmICX2wW9h83BkzD+mYVNaPqgZiS8rg+rFZJwyIKa4YcMWgxacS1zKB0lJvWDTbKM7DO/2vWL4KAOwDrg4rddh1oJyvFuxiTU4R3TJb8OiNvclspIWyJEncOC6LZ95dyX+mbeCBK3ugJmcRceGDxM58F89+HzO+msFk+1LkxR8S3ekCymU3TvPICmtv32Ks/CBln39LxLWPgSuFlnEuHryqB3/9YBVVviN6L6u3F/HGN5v5xYXZyPKpBQznLdrAyKL3ibOFC/qaFqyNG82hHeGZNxMGnDtODKeCkpiJc8Jv8H7/PDRQAFHPWYzV57Jm4Vx0rqGmd0PrNwU9ZwmOC24/Izo4kqrhHHc/ECp5Mj1loZtcWQFZBllBktXQX+38L7MTCARnF1unERj5m0IadIeFeJsJthYpBL1VSM5oJFcMkis6lJnhigk54qkagZVfYuQfo4FmBPAv/h9W0Ie91+krJW3OSLKCY/itBKISCKz4HDmhLf5ln6Gkd0eJSanzGPuAq/F88zf8Sz7CMejaE55D370ao3AH7itvb9CYlIQMjMIdjZpHfciSRFZ6LKu3F4VtF6K7gubEYdmQYLBuAxOXq7Z0gNvtJj09ncLCuhdjBSFOOvgiaDifzNnBHl8kF/XrQLfNXzHIVk8pVtCLnrOYFbHjmVXaloeu70FMtWWypQfw/vDvsAAEwGxfJ7bZOvH4pV0bVVojOyJqVhmORolLw3nhQ3i/+Statwlo3cYDIW2arxbuZN2OQ/RoF8/jN/ehTcuTLwHRbAr3XtaVp95azhfzc7l8eCZqchap1z/FwJ9yWLs6wE4u467sIK4d83GY4XW/shkMCcAEqtj//hNEXPIIxKaTlhjBb67qwXP/W40vcCRItWRTAZpN4abxJw5Q1Ufulq1krH+VKIcEx9Qhbw0ms6A4HjiyvV1qdJ3CaucranIW7inPYGyeBUU78O3LCcuiqovAmm+a3U3zuYK9x6R6S41ON8EdS/DXI3QpRbQg4tp/nOERCQSCnxuSJOEYeSfIarPLxE6cfP8JSzWUiQ+i71iCf9EHNQteANicaNmjzsAomy+SJGHvdTFyRAt8c98AzYF39mu4Jz9W52KDpGo4x/wSz5dPEWzZHltG3+P2b+zbjK3z6Bor6xOhdRt3UvOoj7qCLwUlXorLfcRFOZr0XIIzT2lpKT7f2XFiczgcJ623ahgGuq6Tk5PDSy+9xMiRI0lLS2vw8eXl5Wzfvp1Bg5qXBldzo8HBlxdffBFJkrj77ruRZZkXX3zxhMdIksS99957SgM819m2t5RFGw7QI7qUgbu/xm07fmS7So5kkSeD31/bs8aOzrIsfAvexjyYG9Z2azCZb3x9+N11XYmNtDfZmJW4VNxTnkFyRLBjXxnT5u9kw85iendI4I8396V1y6apfUyIcXLHxZ154ZO1ZCRH0bNDArIsc9XItozY+zIHvBpPLRzPrRc+QDdXAYWz3iPSXzuaagV9VM14EddlTyBpLtomR3H/Fd14/uO1Ya5D89buw6EpXDWyXaNv1Mr25uCc+zya04ma1AZzz+qw/YoqU1ASHpCZ+DPJejkaOSIObeCVoTrsojICBbswCrZjFOzAKMjBqjrimiVFxKP1vewsjlZwsshRiagZ/cA0sEwDLCMkLmkaoVVdgUAgOANISrhtr2WZWN5yZFfM2RlQI5AkCVu7gahpXfEv+5jglnkAOIbeKDJCq7F1GIzkjsUo2k1gzXSCG39E6zq2zrayKzrkBuiOxbKs497nOQZdh2U2Qv8wogWWoWPpAST11EVxO6bH1Ll98+4SBndNPuX+BWePYDDIRRddhNdbv1j06cTpdDJr1ixsttqW5idixIgRFBSEdCuHDh3KP/7RuIW05557DkmSuOaaaxp97p8TjQ6+3H777WiaJoIvDcAwTf43YzMXOVcyStmEFKytbeyzVBzSkRKZRYGO3Dmla03gBQjVshbngayCGWpbZETwVuUwrhvfiXapTf+wU2XZ+fS7zcxfu5/eWQk8eWs/WiU2/c1A14wWTB7Slv9+s4nH4vvSMs6FotiIH/ML3N/9H5PNxbz4hcUlQzIYOf5X6F8+hiLVvo5meSG+uW/gGB3SIspKj+W+y7ryr8/WoRtH2v+wfC+RLhuTBrZp8Bh1vxff9//A1CJwd+xPcO034fstiT1m+I9lSrybbu1+nqJ5h5EUFSUxAyUxA7qGtpmVh0KBmH2bUdK7n1EBXUHTobbqhtqq29kehkAgENRg+Srxzp6KWV6I+9I/njPlj5IjAsewW1HbD0bfsRQ1cwCWHsA4sB01rXNNO6N4L8GNP6F1n4gclXgWR3xmUVOzUVOzkRMzMHYsDTkRJWbU2VaOTsIK+vB88QTO0ffWuk5W0Idv7hvYB17TaNe+qo9+j73v5U3irJWWEIFDU8IytCGk+9KUwZfg1vkYB7YjRbRAjmwR+hsRjxQRGyoTFjQ5NpuNr7/++qxmvpxM4AVg6tSpeL1ecnJyeOWVV7jrrrt48803UZQT6yh99tlnfPzxx/zlL3+hZcvmIX7eXGnwv7wtW7Yc97UgnOmLdlGRl8PVgemkOEtrN5BV0Jw4fBX4sfN1VXcybQXMqmrL7DeXc/nwTIZ1T0GWJWxZQ1FSsvF8+igQCti8VjmSyJgYhnWvu/71ZLEsi0UbDvDRrByi3Bq/v67XaS+duXBQG3btr+Clz9fz6I29cWgqtlZdsAZdw4BF71MkxfHlAom9BxMYnH4RmXu/qrMffeeK0KpIlzEAdMlowZ0Xd+GVLzdgHmXq9dncXKJcGkMbeO2+XLwPr20sU3pHEFz8fq39qmSxrDK8rwn905GbWRp0c0COaIEc0QJbZr+w7ZZlgWWImwGBQCAQnBT+NdMx9q4DwDf39ZrFmHMFNTkLNTkLy7Lwfv88xv6tOMbch5qajWRzEFjzLXrOYoJb5qJm9EPrPhElvnaGraUHMMsLUeJC5QL6nrXo+7Zg73s5knLu/saqLVoRWPQewS1zcYy6G7V9vzrbSTYHakZfvDNewDX5sbAgXGDd9xgFOSdlGa20SMco2NEkwRdZlshqFcPaHeGizJv3lJwwa6cx6Pmb0HMW194hSUiuWOSYZLSeF6GmnJxVd3PD8lUSWD8DreeFSGrTVQQ0lpMt+znbHHYy7tmzJ127dmXy5MnMnDmT8ePHH/e4uXPn8vjjj3PPPfdw6aWXnomhntOc1LdwIBBg/vz5pKamhllOC0JYpkGbormklcxBUevIdnEm4R90B4kJcfjW/8AHW6MJJiexo9KPp9IDPp13Zmxl7pp9XDe2A+1SowlunFlz/HuVQ1DjUsk7WEVhiYfE2NqiRyfDvqIq3p2xlZ37y7l4SFvG9m3VJA5BJ0KWJH5xYSeeensFb323hTsv7hxKx+08GrM4j0lb5+F1JLBgKxTEteTXloJNOsp6uvqvBPgW/w8lMbNmVaR3VgK3TerEa9M3hZ3zre+3EOGy0bN9/fW+wdzlHFy3kEV7e/H42HQC817i2J9Dj2mjyrJTYB7JPoqLstM/WyjWNxTLX4Vv3ptIdheOYbee7eEIBAKB4BzE3udSjLyNmMV7Q4sx62fU6NadSxy+/zH2bcb3w79CGzXnEa05y0LfsRR9x1LkxEzUNr3ANELOgof2YpbuByDilldDJTKySnDdd5hFu3COue+kAg/NAUlz4Rh9H56PH8E380Uk3w0w7JI622rdJ2EW5+Od8U+cE3+LFfBilu4nsPZb7INvPKnSITkxA33XqlOcxRE6to6tFXwpLvdTWOolqQH39ZZlYezfglG4A3uPC+tuU1mP45ZlYVUVY1QV492/Fee4+1FbdW30HJob/pVfYuRtQPuZilU3JVlZWdhsNvbs2XPcdmvWrOH+++/nkksu4f777z9Dozu3Oakna5vNxv3338/q1atP3PhnSHDTLFofmF2rPMYC9sT04X/2q/nnjALufXUNDy9rSXyrDB64qgdP3NKPq0e1x2kPpXftLqjgmXdX8s7Xq/BtXQjAdE8P8hzt+c2V3WmXGs13S4//j6Ih+IMGn83dwR/fWIZdU3j6F/2ZOKD1GQm8HMblsHHfpV1Zk1PEzOV7gWrBtcE3oHUYwjWXDKRXhwTyin0sD7bnqEQWpOr/IGRDXfnNc5ieMgDKPQFMyyL9mJIpy4JXp21k297SOscT3Dof748vk7f/EPcMcaMsnIpkhdcH5wQTyQkmsTbQ+qgRwNi+6Wf02p3reH96JXSjvGUewbpWaAQCgUAgOAGSasc55r5QoALwL/0Yff/Wszyqk8PWtncou6NtH+SEtmDodbYzC3cQWPYJgRWfo+cswSzJR9JcyImZGMX5WJaFEt8aJTkLY99mPF/+CbP83HUiUaKTsA+/FZDwzn+X8lU/1NlOkiQcw25BbtEKJBkjfyPe7/4BegD/vDfxzgxJJ/hXf41v0ftYur/OfsLOnZiJWbQHSw+csG1D6Jhed9nTiVyPrICXwKZZeD79A97pfyWw7LN631OzoqjO7eGNdLw//As9f9OJ2zZjjJJ8gptmYR947Tmd4dVcWLt2LcFg8LiCuzk5Odx5550MGDCAJ5988gyO7tzmpD6dkiTRpk0bSkqELVpd7I/tjU//hhS1tGabhYRz1F10zuzP4Qpej0+npMJHSrwbSZKQFYmxfVvRv1Min87ZwcINBwBYuzkPSevGPj2WHVYaD1/VlZhIB5MGtualL9Zz8eC2Jy24uzaniLe/24JhWtw1uQu9OsSftTTdtMQIbp7Qkf9+vZnWLSPJSo9FUlQcw28D4O5xbr6LU/hiSU/6xG5HI7xWNl+PIVUtRQ56Ofi/R/lcuYgVB2zUzj0KEdRN/vXpOh66rhdpRwVnAut/wL/4AzZL7anqOJbsDW/X+mGe7e3ELGkg5R4djjqD26EyrLsQS2sM9n5T8OzfAoaOb/7bKAltkaNFvahAIBAIGoccnYTjgttDGSOWie/Hl3Fd/mSzE+C1Ah5MTymSzRkqi1Htte69bJn9sWX2B8CsKiGw9juCW+bACR7+LX8lVsF2vF8+CZoTJa4VcmImOKMwcpfj+eIpHON+hdqyw+ma3mnF1n4Q+s6VmAe2olcU18pIPoykajgGXQeAmtEXef0PaH0uQ01oi1XtxKgkZhJY9x2+2a/hGH1PnS6gh1ES2iJFxmNVFSM1wT1Kq8QIbKpM8BhHrC27SxjePRmrshiz7ABm6YHQ37IDmKX7sSqLIezO1iKwaRaOAVfXOofWZTRm+UHMykNYlYcwKw9BsA4tEiOI9/sXcE74zTlZgmRZFv5FH6CkdUFNF3p0jeW+++6jS5cuZGVl4XA42LJlC6+//jpZWVmMHj0agEceeYQvv/ySTZtCQbpDhw5x2223Ybfbuemmm9iwYUNNfxEREbRr1+6szOVcQLIsq75n0+Py9ddf85e//IV3332XjIy6ha/OJQzDpLi46rhtVFUmNtZ9QvvAvQXlHJj2f3RkFwA6CpGXPoqa0LjrlJNXxnszt7KnoLJm260TOzGkW+jh3rIs/vjGcrLbxHL1qPaN6rvcE+DjOTtYsv4AY/qmMXlIWxxa84gUf/DjNpZtKuCPt/SrCSpZponns8eQIuLY1OY6cn/4kFGO9WhHlR+VKnEU+VWW+zJIVw/xvbc7EXHx9MyIonO7ZOatzWfJptqrAzERGo/c0Jv4aCf+FZ8TWPUVOa4erLD14xrrS6xjVhQ2BVKYWjmKrlFlGN5KNgaPRIUvHtyGS4Y2/t9DQz9b5wInM5fApln4F7wDgNwiHdfkPzSJo8CpcL68J+fLPOD8mcvZnEdCQtO41UHDfjcbyvny3jZ3fi7X2b/sEwJrQuL4SssOOC/8f2dMU6y+a2yZBkbeeoJbF6DvXlNjoACAJIHNQcQN/6pxcLKCfgKrpqH1ufTINn8VgY0/EdwwM9yeugHILdJR0nsQXP0VyCqOC27D1m7gKc/3bGB6yvB88STJVzyI151GwBdAVo///lqWWWdwxQr68Xz9LGp6d+x9zqxexV/fX8nWvaFMbY0gE5xrybbvp6WtEqoDRA1CcxFx/fMn1DmxLAv8VehFuwhumoVxbBmVasc58UHUlqFninPl+8KsOIjni6dwXfwIckzTL4A25e9mc2Tq1Kl8++237NmzB8uySE1NZcyYMdx2221ERIQWpx966CG++OILtm4NZRMuXbqUG2+8sc7++vXrx7vvvnvGxn+ucdLBl6effprFixeza9cu+vXrR2pqKg5HbW/6P/zhD6c8yDNBUwZfzNL9VH3xJAR9VJkagRG/IT3r5CLJpmkxd00+CzccoG/HRMb1Sw/bv2xzAW98u5nn7h5EpOvED6uWZbF44wHen7mN9JZR3DC2Ayktmlf9r26Y/P3DNewrqmJkr1RG9kojyq0R3LUS3w//xtZ1HIVtJ/L5h19xs3MWimSxU49nasVIetr30jbCyydlPfAHTa5odYAhrMQ17CaUtK58MmcH39dRqpUU5+Lh63vh2DmPXTvzeD2vPY9dmID1w/+BfmSVIGjJ/L7kauJjIxkXmIGFxLtVQwHQVJnn7mnY+3As58oPXEM4mblYloXvx5fQd64AwJY9CseQG07nME/I+fKenC/zgPNnLiL4Upvz5b1t7vxcrrNlGni//TvGvs0A2LqNrzMz4HRw7DU2ywsJbJqFvn0xlres/gNlhYjb/luTAWNWFlP1wW/QelyIvd8VYU0t3U9wy3yCm+dgluRDvTm+R7B1Ho19wNXoO1fgm/tftJ4XY+918alM9ayiSAZx8THkffo8gR3LsQ+9GVu7/rUCLPqBbQS3zMcx/JZ6M1vMqhKsgBcl9vhGDGbpfszSA6htejbJHL5dsptP5+wA4Dr3AvrZcxvdhxSdhJY9Clun4Q0SmbUsE+83z4E7FjN/I5bnmM+kzYFr0u9QEjPPqe+LprIBr4vzPfgiOLOc9DLAe++9V/P/ixfXrdMgSdI5E3xpSuSYZJzjH+DA9JeZ0+JSrj/JwAuEFNFH9EpjRK+6a+76ZCXy+bxcflyRx6XDjp9xUekN8s6MrazZfpApI9px9bhOlJV5mt0XqqrI/ObK7izccIAflu3h2yV7GNy1JWP7diSuz2UEVnxOclwal4/rzv7ZqygzXbzrGc41ozvQfcuPUFXM4CvH8d/lOnNzSpGd8Qz67nmU9oOZMuwmYiI0Pvwpp+Z8kZKXLp4N/OU9i14d2jBnu8b/u7YbDqmISt3PYYM1C3i5fBQGKu2SI+i0L5+PPEdWjYZ2SzmpwIuguj57+K1UFe3GqjhIcNNPKCkdsWX0PdtDEwgEAsE5hiQrOEbdjefzP2JVlRBc9z1KUjtsbfuc8bGYpfsJrvs+bJuS0gkltTMYQayAByvgA8yawItlWRh5oTT+wNpvUNv0CrNXllQ7WpfRaF1GYwX9mCX5GIf2YBbvxSzOwzi054hAr6LhGHZzjUuPrd0AlPjWNaUzlhEqnz6cXXOucHi8SkJb2LoA/5z/Elz3Lfa+V6C06oYkSaFylCUfIkcnH7ekSHbHgjsW75zXsLUfjJqaXWc7ff9WAqu/JqKJgi+dWod0X1KV4sYFXiQZpVVXtC5jUFKzjzu3Ywlumo1xcCfu4bdidh2H9/M/HtPAh+fbv+Oa9HvU5OZf2RDYNAtJtWPrMPhsD0UgaBAnHXwRVtPHZ5s/geeLL+LJS0/vw6MsS0wc0JqPZ+Uwvn86Tnvdb+nGncW8/s0mIpw2HrupL21TopDl5mvBqNkURvRMZXiPFNZuL+L7ZXt49LWl9MhszVUte8L8t0me+FvKXCbTijriNVUWbCmm35Cb8M94nuCit7ij35VUlMxku68FL5SN49Zt8yjet5eBlzyMw6by1vdbSFZKuD1iFg4pyKrSNizZaHLvpV1IlYuo/PJplOrVJAt4r2IQuUYydpuCuWMRmstgSzC0SiJLEuP6tTqLV+zcR9JcOEfdjeerP4Np4Jv3Bkp8a+SoxLM9NIFAIBCcY8jOKJyj78Xz1bPI8eko8W1q9um714Cihux23TGguU5Z786sKkHfuw7/gW3EXH7E9UNJ64LkigHFhi1rCLb2g5Aj63dahNCChOSuFmS1LHxz/4vrsifrDJBINjtKYkZYcMaqdrPRd65EbpFeS8fjcGmGZVn45r2JVXEQ+9CbkV3RoDkb9TB/tnF0G0OwMBc9ZwlyVBLeGf/COeEB1LQu6DtXYB7ag3P0vQ3qy5bRF9+PL+O8+JE6s2CUpMyQdoqntEl0hNKTIlBkiUnOegxMbA7k6JbIMS2Ro5ORo5OQY0J/JVvtaoMTYZYX4l/6EfYB1yBHJiBHgtphCPqulUeCdQBBP2bFQWjmwRfTU4Z/6cfYz1BWm0DQFDQPkY/zDMuy+GxuLgO7ppISf/pLegZ1acm0BTuZszqfCQNah+0LBA0+mbODWavyGNc3nUuHtcWmKvX01PyQJYmeHRLo2SGBHfvKmLFsL3/c3Im7WpQi53noNHgKN879hGcPtWDb3lJ+2p/JBe0GoOcswb/wXWyGl2xbHntcyXzmvAp7wTaWv7gIsOgdUciVtlmUmU6eLx9DiRkBFX5WrN5Kaum7yFZIT8Z0tWBuRWtWBEPiUQ69gktjlvO1txc+K5Tp0i87kfgY59m6TOcNSmIG9v5X4l/8Pwh48f70Cq6LHxXK9QKBQCBoNEpSO5yTHkRJahcWuPAteBur6ijTiMOBmIg45JgU5Lg05Lg0lLi0eq2ZLdPAKNyBsWcd+t61mIf21uzz7hgO8aGAhyQrIR2ziBaNCvCorbpiyxpGcOs8zJJ9BFZOq1V+VB+SJCFFtEDrOvb4DY1AyHL4wDY8nzxy+GAkzQ0ON86Rd6MktMEyjVAGSVwaamr2CYNHZxrH4BvxHNyJUbQb12VPIMelYlYcxPfjS2jdJyJHtKjzOMuywt4TNb0HWu/JeL9/HtcljyE7o8LayzGpYHNgFOYit+l1yuNWZJnkFi6WlLYnQSknUTmi46N2Gol98PXIctMFwnyLPkBJao+t0wU12+x9Lw+JP5smxr5NICs4Rt2DrW3vJjvv6SKw/DPkqERsWcPO9lAEggYjnmhOA5YFDk1h8uC2Z+R8qiIzvn863yzezajeaWi2aqvqAxVM/Xoj/qDB767uScfWddvanStkpkRzzyXRFJZmMnN5GxbM308Ll8nNie3o5d3P/Kq2fD4vly5XX0zs3g3VdawSYDHOtpKPjVbIWUPo7y1nfNE7REtV5Esp/Kd8MG3Vg1zuWsbmYDKjCjYgySF3o+3BJP6bPwKfpREnVxIte9ipJ/Kn0kupsI4EWyb0b133oAWNxtZlLMa+Lei7V4dSsn0VR1YABQKBQCBoBGpKp7DXlmXW1rkwdKyKgxgVBzGOsqfWekzC3m/KkWZFuzGKdmHkb0LP2wD+OjSPZAX/gdya4AuAHBl/UmO3D7waPW8DVlUxgbXforbtHSqzaQIsywLFhnPibwms/gazaBeWvwrLVxlyTKooAjl0P2kFPAQ3zATAD0hRiaip2SipnVFTOiE5Io5zptOPZLPjGH0vni+exCjIQWnRCsuysHUbj9ZjUp3H6Pu34l/yIfaB16C27IBRtBs5KhGtyxgsb3lo/scEXyRZRkloi1m4A5og+ALQqU0sM5ens74sjbGO9Ux0rQ2Nb/MsZFcU9t6XNMl5gGotPSks4CS7Y3FPfBBLD+Cd+RJa9gjU1j2a7JynC+PgLoJb5+O86CGkJgxQCQSnmwYHXzp27Igsy6xZswZN0+jYseMJI/iSJNVYUv2ckGWJ313TNPWgDWVY9xS+XriL+ev2M6JnKt8t3c2X83fSt1Mi14/pgMtxbtXyHo/EGCfXjenAxYNaU/H5k1QdCuA00uivbWdFoC3/mbGHR9r3xNg2v+YYCZOr5BnIvpVYuhdL8WJZYGHwYPR0YuRQumUH2z6U6o91qeHkw6qB+CyNLra9XOdeyOZgCjv1xLDAS9eMFrRKPLs3HucTIf2X2wis+w6t1+QaAbVjV6gEAoFAIGg0Fjgn/Q7LU4rlKcWsKj3y/+UHsaqKa5rKceF6e4FV09CPdYgBJFcMaqtuKOndcLTuSmxSPCUlpy5GLWkuHENvxvv9/4Wss+f8F9dlT5yyPoulB/AteBvZGY29/5XYe0+u3eYoPw7J5sA54behTJ/8TRgFOwhunkNw8xxAwn3Nc8iR8VimDshn5WFYiU3FPeXPNVk5clRinSLLZlkB/qUfo+9aiVxdWmRZJt6ZL2L5KrF1Go7WeTSSO5bg1vmoHYaE3XvYOo9qUn2cvh0Tmbk8DwuZGb7ubAmmcE/UTBySTmDll6Bo2HtMPKVzmGUF6Pu3YMsaVu99lH/heyipnc5K4MUsL0Tfsw4r4KnOOGuFFBl/3Hs+ozAHtV1/1OSsMzhSgeDUaXDwZdSoUaSkpKBWW7ndd999p21QgsZjtymM7duK75buZunmAvYdrOL2i7Lp1ynpbA/ttBHpthMx4mr0DTNIytuAZOpcZS1hZyARY1tB7QP8VZhHrVJJQDoFcNQ9wuGv+WLDRZziobe2E7sUZIRjMzO83Zjh6xrWpQRMGiiyXpoayRERttoI4P3+eczygur65+TquufQ/0uOSBGYEQgEAsEJkWS5VjbM0Vj+KoySfZjFe1FadgjbZxTnVXciISdmorbqhpreHblFes1vkKQ2beBBTe+G2mEo+rb5mCX5BFZ9hb3v5Sfdn1leiHfmi5iHQs6PckLbOsXtj/5NlRQbaquuqK26Qu9LsAJejANb0fM2YpbsQ6ou6zHyNhLYNAvnuPvPim6MHJmAZZkhgeXkjsfo4Jj4l3xEcOOPSJoL+5AbsXUcjlSd3eOa8FsCG34guGkWwfU/oLbugVGch1lRFGZB3dSizW2To5AkC8sKXe/dRgJTK0Zxd9RP2NAJLPsYSbWhdRlzUv1blolv7uugasctz5FbpONf+QVa1tA6S+30vA0Ety/GMfh6JK1pyuzNiiICq78iuHUBWMeYf9gcKHGtkFu0CgVkWqQjx6aCYsPylmPrMARb9qhafVr+qnpLBQWC5kCDgy+zZs3ib3/7W03t4bJly7j77rsZOHDgCY4UnClG9kplxrI92BSZp27rR1xU48W4zjVsbXqQ2HMwxUWllG9cRGD+Wxw0IoiQfbRUjmPpWA+yBKv96fS07yFPj0WRDPrZc3mlYhTb9BRsqoxNkbGpMlFujdF90ujQKqbpJyaohVmcF6pNLyvA2LM2fKfmQo5JRolvjdq2T71OBQKBQCAQHA/J7kZt2R5atq+1zzHkRqygHzU564yW2jgGXk1V/gasqhICa75BbdMbJaFNo/uxgn48057G8pbXbPPNfR05LhUl5vg2y0cjaU7U9B6o6T3Ctut5GzD2rCWw+mvsvWpn05wRDJ3g9kUENv6E+7InQQvdC0uyiuWvROs6Dq3nhUiaK+wwOaYljiE3Yu9zGYEtcwlu/BG1bV8Cm+dgBX3YB1yFJMlYRhDvD//GPuDqE1pTNwTJW8bDMdOZ52nPSn9bImUfO/QkXqu4gHui54Cp41/0Pig2tKO0WhpKcMNMjEN7cU95+riLVLZOFxDYMJPAmm+w978ybJ/pLcc3+zUsbxlVBdtxjrwrLLDVWExPKYFVXxHcMhdMo56B+zAKtmMUbK9ztzbgauzdxtfabpkGYilO0JxpcPDF4XDg8/lqXi9btowpU6Yc5wjBmcblsPG3uwdh1xTkn1kWgKTYcGcP5aDPRrdlb/BK+SjuiJ5LlORpeB9RSZDRnx4bfsAyZJbFjGd5nsUCX0cCtkj+ff8g3M7zp3zrXMKyTJTUTpgl+zFL90PQG94g4MEs3BGqw1ZsYcEX01OKZHefczaaAoFAIGheqGldzsp5Jbu7uvzoebBM9N2rTir4ItnsaL0vwb/gnSMbgz58P7yI65LHTjmjQes6LhT4WPElSmLmWblekqrhHH0vVZ8/gfeHf2F6y9E6jUDrNg7H8F+cWDLBEYG9xyS0buPAMJAckQRWfIYV9OEcdguSYgtZexdsP+ngi2XqmMV5KPFtCG6aRZJUwhT3MlqrB+mj7eQbb09+9HVhT6cbSN/8DpgG/vlvI6lajWV4QzBLD+Bf9imOwTfUKzpcM29Fxd7vCnyz/4Ot86ia9pZl4ZkVCrwAWOWFeKb9Ga3vpWjdJ55UhpPlqyK4aTZgnbBt/Z2cwrECwVmkwcGXrKws3nzzTWRZJjIyEoD169djt9uPe9zYsSdQWj+KuXPn8tprr5GTk0NlZSVJSUmMHj2a++67r+acEMrCeeGFF9i5cycpKSnccccdXH75yadgnk/UZzX9c6FNrwH8UKizd42fF8tG89vYH7BbvvoPkCTkmBS0Adfg+/4fsOaraoleOLDvIB4zBdC4sE8rEXg5i0iSjPOC24FqC01vGWbpAcyyA5il+2v+syoOoqZ2DjvWv/A99D3rUJI7oKZ1RkntjByXdk5ZaQoEAoHg542a3h1bt/EoLdtja3PyTjS2TiMwCnegb1tYs80s3Ydv3hs4Rt1zSiW8cmQ8zpF34v3ueXw/vYrr8idP+NB/OpBjknEMuxnfrP8gJ2agJGUCNGpukqyCrKJm9iOw4jP0rfMxB16LbLOjJGaGFns6Dj+p8QW3LsA//y2UNr0w9m0BoNhwk64eYnMwlRZyJQBLShLoMOoefD++BKqG1AiXKcuyCOatR0nNRs0aWsd+EywzNM9q1LZ9UHevDglSV79vweL9BPdvO+Zgg8CyTzHyNuIYcQdyI00RlLhU1Hb90XOWHLXRhhLfBqN0X91C1sfSkDYCQTOkwU/qjz76KPfffz+PPvooEPoCe+edd3jnnXfqPUaSJDZv3tzgwZSWltKtWzduuOEGYmJi2L59O//+97/Zvn07b7zxBgArVqzgvvvu44orruCRRx5hyZIlPProo7jdbsaPr51+Jvj5MXLMIHLzv6GHdyUvl17A/bE/Ipt6nW2LbCnYh/+e5Hg3kisWK+gDI8hHgRHsVdJA19FsMmP6pNV5vODMI0kSkisG2RUDKR3D9pmVh5AcRwK1lmmi79sMRgAjbwNG3gYA5BatcU74DbIr+kwOXSAQCASCk6YuAdnGIkkSjiE34Tm0t0b3BUDPXU4w6Qe0ruNOqX+1VTe0XhcTWDUN748v4broESTlzC8M2toNRElq32iL78OY5QeRHBEo0UnICW0xD+4ksPh/OIbdjJKYSXDr/BN3UgeWHiCwahoAxlHizRsCaQxxbOXVitGUmBEoGKTvnY40/FYcI+9CjoxvUKmPFfAiaU70XavQty7APui6sPkbxfkEt8whuH0RBHwoKR1RW/dAbd0DOTIB54g7Qv1YJiCjtUgh6sqnqZz5CmZBTti5jH2b8Xz6GPaBV4NqD7lEecuxPGWhRTJvOUpiBo5B19Uap73XJeg7loKkYMsegdZjErIrJrTAVlWCWbwX49BezOLq/0oPhOnCWL7yWn1CSBxacHJ88cUXvP322+zYsQOXy0XXrl158cUXcThOfE1//PFH7r33Xtq3b8/06dPPwGjPXRr8bdi1a1d++OEH9uzZw6FDh7jhhhu46667GDSo4elvJ2Ly5PD60P79+6NpGo899hgFBQUkJSXxyiuv0K1bN5566ikABgwYwN69e/nXv/4lgi8CIGS9fdFFwyn8dCH97LlMrRrDnbELkQJVSO44lJYd0CuK8FR5+So4irVvrKBz2zhG93+ELhlxTJu7nXVrC/D4QwGbC3qkEunSzvKsBA2h1gqbqWPveRF6/iaM/VtAD4Q2H9qNb94bOMf9Wgj1CgQCgeCcxPSWI2muRgc3JFXDOeY+qr54MiyDwL/sM9S2fU45W0XrNTnkjJS3Af/Sj3EMuvaU+jtZTtbi29L9eGe8gGXouCY/ipo1jMDBnQS3zkcbeC1KYgb+JR/WBDoaQ3DTT1hVJccMVGWB0Y3NlamUmCEtIU0yaGEeourzJ4kY9yuUxIzQglLuMvR9mzH2bUGJS0VO7ojWZQySJBHcuRLf3P9i6z6J4Ja5SJKM9+tnsGUNxdbjQnxzXqsdQMnfiJG/Ef+i95HjWoXcjlQNoyAH24W/BUCJSsB10cMEVk0jsPrrsJIfy1+Jb85/651vfZ9NOaYljuG/QEnpGPZ5kyQJKSIOOSIONb17zXYz4Mc385+o7QehpnevV1T3sEOmoHG88sorvPbaa9x111306NGDkpISFi9ejGHUo8lzFD6fj2eeeYb4+JP79/Zzo1Hf1qqqkpGRQUZGBpdeeikjRoyge/fuJz7wFIiJiQEgGAwSCARYunQpDz74YFibiRMnMn36dPLy8khLExkKAkhNjGJbz1vosOZF9vuieVW9mQdv6IlkBLGCPhyKSoSicb+isutAOT+tyOOlL9YTF+WgqNRLbKSdKp+OqkiM65d+tqcjOEkkVUPrNh6t23gsI4hRsAP/0o8xD+Zi7FlLcPMctOwRZ3uYAoFAIBA0imDuMvwL3sWWPTLMjaehyFGJOEfcGdKROay9YQTwL/0E56i7TmlskizjGHknvpkvNkqjpLngX/w/zJJ81Iy+mCX7oVrvBMvAv/h9HINvwH31X6GRWRZWwEtg9Te1tqvtBxGZG82mgiOBHK+l8XLFGB5M3ELq139BbT8Io2AbVtkRN0+9vAB2rSK4fgZSZALm/lAJU3D5p6Da0UbeDWX78K+cRnDXqrCsECm6JXJ0EkZ+KDsYwCzeS6B4L9rg6zH2rie4Zz3EDgi1lxXsfS5DSe2Mb9Z/wizZjztnb90ZKgC2DoMb1AeArNlxTfp/DW4vaDi5ubm8+OKLvPzyywwffqSUbty4hmXB/ec//yElJYW0tDQ2bNhwuoZ53nDSeYDPPvtsU44jDMMw0HWdnJwcXnrpJUaOHElaWho5OTkEg0EyMsLT7jIzQ7Wcubm5pxR8UU9gD6goctjfc5nzZS7Hm8eoIR15beeltAisZP6eUmav2MWgQ1+gRCfiGnpjTbt2aTG0S4vh6tHtmb0qnz0FFazYehCAYd1TSIhtGku9k53HuUaznYtqx5aejS36Hso//gMEffiX/A97q2yU2ORazZt6HlbQd1bSYZvt+3ESnC9zOV/mASf+3Wwo59M1ac6I63z6ORPX2Ar6qFz0AZavgsDqr1Hc0di7jGp0Jqea0QOj8wgCG2fVbNN3LIFuo1CTs05tkBHRaJc+emp9HIfTdZ0DOcsIbp6DHBmPLa0z3unhzzvGrlWow2+EmAQsvwfZGVlPT7XxrpqB5a+std0W25LbzY94iMlYHJmPiczn/oH8tlMkgU2zQ23b9ga7i+C2RTVOQVblIazKQ0c6VDXQ/fh/eAF7jwlEXfVnvEs+xvJXIadkoXUajuSORTINJHcsgc1z0Yt2o+dtxPJ7cGUPh5J8vEs+wurWD1k+8l2vtuqEdtXTeOa8QTB3xQnnbHnLUVUZyzTQ923F0v0Q9GPpASzdjxzRAq1tL8yqUkxPKWodQtJWwEvVj6/iGnYTckRcg6+3oGF8/vnnpKWlhQVeGsqePXt48803+fDDD3nrrbeafnDnIc1SnXXEiBEUFIQiu0OHDuUf//gHAGVlochzVFRUWPvDrw/vPxlkWSI2tmG+8FFRp/9h/ExxvsylvnncfvNY7nvORoaaR8zymex2OdifdDkdDlbRvlVsmIhubKybm9NiefBf84DQZ+Ka8Z0a/LloCs6X9wOa8Vxi22IfdxsHp78EegD/nKmk3PRMvamxTTGP0sVfUrn2J5KveRw1uuGCeU1Js30/ToLzZS7n+jwa87vZUM71a3KuIK7z6ef0XmM39gvvpuDjZ8Ey8c5/B7loOwmT7kG2u058+FFEjb2BvTuWYvqOKj9a/D/ib/kLkqw0yWj9B3IpmfshiZc+gHyKjkrH0pTXOVhaSP7cN0CSaXnZb9AS0inIW4s3dzUAkmrDldmTaLdCyfyP0UsP0vLKhxrUt1FVRum672ttd7bpCgVbUNr0wDpYHeDAYIB9O5uCaeTmQ9Ttv8BvV4nqPR5LDyDJCpXRcVSsnYWp+2tKqms4/FpW8K/5Dmv/Flpe/iBqdAKSrFA0800q1vxEwqS7scfHcGDLXPTyIizLQo2MJbZFFFp2Xwq3zKfgi+cJFu2lxZhbkWQFWXMgaQ6iJt2BN6cXJQs/x/RVorhjUNzRYX8lWUYvLyY21o0Z9LPr1b/Umr+rQ19iew3FW5ZL4bfPk3b78yjucD2+0qWzMIt2E5fSUjhXngbWrl1Lhw4dePnll3n33XepqKigS5cuPPzwwyescPnzn//M5MmT6dix43HbCY7QLIMvU6dOxev1kpOTwyuvvMJdd93Fm2++eVrPaZoW5eXHtyVWFJmoKCfl5V4Mwzxu2+bO+TKXE81DBm6a0JE132zAa9qYemAgwQM7gB1IQEq8m4zUKNqlRpOZGk1ppZ9te0oBGNSlJXYZSkpOv6L6+fJ+wLkxF6tVP2wZywjuXIGU2pWSUk+tm8ymmod/0xw8c94FIO/9p4i66hkk+cytOp8L70dDOV/mcjbn0ZTBkob8bjaU8+W9be6I63z6OWPXOL4T7jH3UDXnDQj6qNq8GO++XNzj7kONb92IjhTsfS7Fu+C9mi2BA7kULJ6BPfvk3HyOpWrBlwRyVpL/5Yu4R9/dJFprTX2dLUOn4st/YPo9OPpPwetOw1NSiZI9CqW8GKNoN5YeJFBZxr6vXkVN74pvwwKKiysbNB/Pgg+xArXdN6U2/fDMeYOIix/FtjyXwfZtjHRuJFr2stBXyseeASxck8+AgTdQZVlUfvcX9PzNKPGtsfe9BFvrHgQ2zUHLHo6+bxv63g0E89Zj6UFsrbtjBTwED+6i3GMg48MyTSq3rcQK+in8+kW0dgNwjLgdOaEt+CowK4spLfejGzbk6EQ8mxcBUDDtX1hVpRxtDx0x+SGirv8/yt7/HYbPg2mY6F4v1qEDqHGpBLYvAUnC7/OhZY8g6qpnQq5NNg1JtYf+X1YoKanCkKMwAn72TXsJ9/hf1VxTyzQpXzodrfMoSssDQKDWNTzdNPZ3c/fu3VRUVJym0RyfyMhIWrduzL9/OHjwIBs2bGDbtm388Y9/xOl08uqrr3Lrrbfyww8/0KJF3RpQs2bNYvXq1Xz/fe2goqB+mmXw5XD0rGfPnnTt2pXJkyczc+ZM2rVrB1DrA11eHqonjI4+NecSXW/Yl7dhmA1u29w5X+ZyvHn07pCAz38J89ftR/KXQzDUzgLyi6rIL6pi/tr9YcdIwIT+6Wf82pwv7wc0/7nYh9yEres4lKR2GCZg1j3WU5lHMHc5vrnVgWNZxT7wuuOe63TS3N+PxnC+zOV8mEdTj/98uCbnAuI6n37OxDWW2/bDHZuO98eXQo4wZQVUfPYk9oHXYet0QYODHErHC5A3zMIs3Vezzbv0E+Q2vZG0xmXS1IU26Ab0glyC25fgTWyH1nn0Kfd5mKa6zvq+rRiFuSFr5m4T0HUTS9bwrvoGo2h3Tbvg7rUASJEJWN5ygqWFyCewgDYrivBvmFVruxSVSLCiGDmmJWpCG+6JeZMMOR/Dkljib8csXzYAq7cV0ScrEQDHuAewqkrQ921GSmiD5WqBrc/lWIDSLh6l3SA0yzoSvLAsrMoiTC0KUzfxzn0DS7HhuvJZ9K3zCG6dT2DLPNR2A3GOvBPiIkPXM6E9UVf9mfJ3fo3pKcOqKsE+8m5sbXpgBf0Q9IErGl03sQ+5CctfhVlWgJ67HLNoN4GKIrRuEzAqD6EX7yM440XcVz6DpNqPhG+Ovh9yxuEYdB2+ua/j2zwfW4choeuduxzTU46aNfyc+M4qKiriiiuuwDpKlPhMIkkS3333XaPEby3LwuPx8M9//rPmGbx79+6MHDmS9957j/vvv7/WMX6/n2eeeYZf/vKXxMWJUrDG0CyDL0eTlZWFzWZjz549jBw5EpvNRm5uLkOHHvGsz83NBailBSMQHGZw12QGd03GME3yD1aRu6889N/+cvYV1c5s6d0xkeQWZ67cSHDmkRwRKI52p/kckaDaQffjGHknalrn03o+gUAgEPy8kGNa4rrkMfyL3ie4ZS4YOv4Fb2Mc2Ipj6M0N0hqTZBX7oGvxfvv3mm2Wtxz/qq+axt7a5sAx5j48XzyFf/H/wDSQEzJQ4tNDGRDNADWlE66LHkaKSkCSQtmpZnEeSHVnqgZWTwebE6Mw97jBF0v345s9FUz9yEZZwTHqXiTVhlm6H7nrOAJLPyZDzmdnMIF3qoZSXO16BLBh5yFMy0KWJCRVI7h7Nf4lH2LrMhYlvk2tcx4ddJMkCal6fGZFEXruslAApKoYe78paL0vRd+9quZ90PM2oO9Yhq3TBSjJmbS85g/se+MhsAwCC99FTemI7IoG5xEJCCW+NZLdjX5gG8ENP2Dvf1Uo+FddYmYFfVR9/DCBNd8eVxxa7TAEdfdqfAvfQ0nuiBwZj5G3HluHwUiOiHqPa07Ex8fz6aefntXMl8a6DkVFRRETExNWOhQTE0N2djY5OTl1HvP2228jyzKTJk2qSYIIBoOYpkl5eTkOhwNNE85TddHsgy9r164lGAySlpaGpmn079+fGTNmcNNNN9W0+fbbb8nMzBROR4ITosgy6UmRpCdFckHPVAA8Pp2dB6qDMfllWMDVI0/vQ7mg+WEU56PvWom918VN1qea0hHXRQ9hFudjy+jbZP0KBAKBQHAYSdVwDLsFJTkL3/y3Qfej71iO2WUsSmLDFibVtC6orXui715dsy24fiZax+HIMbVF6RuLEpuKY9gt+Ga9GgrAAM6JD6KmdcGyTAKrpyPHpaLEpSNFxjdJaVJDsHyVoNoACSvgRXHFAOBf8QWBVdOOdySSM6q23srRLYwg3h/+jXFgW9h2W6cR2Nr2Cr1o1ZXgtoUEN/yAYY/m9ZILqLDCdWwqPEF2H6igtbMK/+qv0bcvCrlcDWx4YMwo3Yd/8UfYOgwmuPEnvNP/hq3L6NBYMvodGbOnDH33aoJb5+GPb42V0RUlsQ1GwQ4sfyWeaU8jueNCDkl6ACvoA1nFfeUzqC074L72H7V0WSSbA/vAazFL9h07rPB2koR96M0Yn/4Bfc9atM6jsA+9BYxgg+fZHGhs2c/Zpl27duzZs6fOfX6/v87tubm57N69m4EDB9ba17dvX5544gmuueaaJh3n+UKzCr7cd999dOnShaysLBwOB1u2bOH1118nKyuL0aNDKYp33303N954I0888QQTJkxg6dKlTJ8+neeff/4sj15wruJyqHRuE0fnNiJt7udKMGcJvrmvgxFEjkk+pUCJZQTDbjyU+DZ1rkwJBAKBQNCU2NoPQk5og2/mS9iyhoQFXvQD25E0J3JkfL3ZMPYBV6PvXRdy0ZEUbJ1HhQIMTTW+dgNC9sb7t2IU70VukQ6AVVFEYMXnRxpqTrQuY9B6XYwkn75HFcsy8c6eillxEDkilGWh9ZuC1n1ig4JWVnkhSma/uveZBr6fXsXIC7felZzRaNWLPP7lnyHHpYHNgeSIxDn2V3je2QN1lKwcWD2P+LzPwO4KZZZ0G9/gAJUV8OKb8S9s2SPQuo5DbdUN39zXCW6YSXDDTOT41tiyR6J1HI6tw2DUzH7ou1ahb5lL5eZFmLINKTIeq6IIq+Igkt2NHNMSSdVAtaMcpTFUnyDu4fuqY++RLEPHLN0XsqSWFSRnFK4pf0Z2hBye1JROyDEtGzRPwckxYsQIPv/8czZv3kynTp0AKCkpYePGjdx88811HnP77bdz6aXhWUxTp05l586dPPvss7Rp0+Y0j/rcpVkFX7p168a3337L1KlTsSyL1NRUpkyZwm233VaTutSnTx/+/e9/88ILL/Dpp5+SkpLC008/zYQJE87y6AUCwbmKHJtSc7Pjm/8WSlI7iK5bYOx4mBUH8Uz/G/b+U8JWkgQCgUAgOBMoMSm4Lv0jHPMQ7PvpZayqEgAkewRSZHwoEFP9V03tjByTjNZ1HMahPdgHXosSm9L040toi5LQNmybZHfjGHEHxqE9mIf2YhTuILDqK/S963GOuPO0PXwHN8/B2LsO7BEYpSHtv8CyT7AqDqINuh5b51GobfvgX/huPVkbFt6ZL+Ea+6swx0TLMvHN+S/6rpXhzRUbasdhobKfoI/A+h9wXPALbG17o6Z1RrI5yEgpZXteyL21tXKQNLWYhf4sFh6MofeA6nKeBpSShY/lNeSENti6jAVATe+Oe8ozBHcsIbh9MWbhDsxDe2uOMUv2obbqhjNrILGxbkpKqvAX5eH55FGwLMyKgzjH/xq5OkvohGMIeJE0J94F76BvnV+TMeQYfhtSbAqeb/8BlokkK1hIRFz7d3wrpxFc+QV+dxxKXBpKcgfsPS5E378VSbEhx6U2m5K1c53Ro0fTtWtXfvWrX/HAAw9gt9uZOnUqmqZx7bXXAvDII4/w5ZdfsmnTJgAyMzPJzMwM6+eLL76goKCA/v37n/E5nEs0q+DLHXfcwR133HHCdqNGjWLUqFFnYEQCgeDngNIiHXvfy/Ev/Qj8Vfjm/Bfbxb9rVB+mpwzPN3/HqjiI78dXkC6MRE3pdJpGLBAIBAJB3UhquNaCZQSrnWqqX/srsfyVmEW7arb5JQX7kBvQ+l4OknzGyn4gFHyxtR+Erf0gAExPKb45/8XI24B3zlRckx9r8vGYvgr8yz4NvfBXhu0L7liK1n0ijsE3hDb0uxLvjBfq7mfvOvTCndiS29ds8y/9GD1ncXjDav234OqvsUr3o6R1ActArs6wORxQ6ZHZAuvAVsY615Nl20+hEckSfzs27w/gnzISzdY4HQ3LUwaWhWPYLeFaMI4ItM6j0TqPxiwrgGrHR8sy8c74J5avElvbXjgGToTINigxKWi9LyOw4jPwV+Ff8A6OMb887vtiBbz4Fr2P5SnFNfFB1JROWJXFmEW7cYx/AKMgB33pR+ANBZssQOt7eSgI4ykFSQlttdnRd64kuPZ7rEDVkcwgzYlz5F0oaV3wTv8rRuEO5MRM3Bc/0qhr9HNHlmWmTp3Ks88+y+OPP04wGKRPnz68//77JCRU6wWZJoZhnOWRnh9I1tmSY25mGIZJcfHxLYVVVa6JAJ8LitvH43yZi5hH8+NcnYtlmXi/eQ5j32YAnIOvJfmCyxs0D8tfhWf6X2pWjtS2fXCMuueMWkrXx7n6ftTF+TKXszmPhITIJuurIb+bDeV8eW+bO+I6n36a4zW2jCD67jVYFQcxK4owK4pCDjjlRSHtjqOwD7sFrWPTWEyfCpZlEdz4E0pyFkqLVqFteqAmsHSq19k3/y2Cm+fU3iErIS2aoxZPLMvCO/0vGPu31tmXFJVExNV/rXltFO3C++0/sHzVoquKhpLeDWPnCgCcE36Lb+5/sTxlqO0H4RwRWngObPwJz6rpKN4SCo1IfvR2ZXkgA5PQvcQdF2UzoHPDs4CMol3IMcmNyhCxgj78yz5F37G0ZvyOPpNRe0wGwPPV05iFuSBJuC57EqW6dOxY9H1b8M15DSWpHY7BN9QI5loBD5Xv/xbMIBh6HUdK2HpeRHDjTLTskQTWfHNkl+ZEdoacbS0slJYdsPe5DGQFz2d/xPKUIjkiiLjx3w2eb0Noyt9NgaBZZb4IBALB2UKSZBwX/IKqTx+DgAfvkk8IZPcB2/FV4y3dj3fGP2sCL0pqZxwj72wWgReBQCAQCCTFVqeWmWVZWL4KjL3r8c1/Gzkq8aRKZi3dj1mcj1legKS5kBPaIh+jFWNZFvrOFQS3zsNxwe219tcasyShdTliSW0c2I73x5dwDL0JtXXPRo/xaIyiXXUHXgDH8NtqZa1KkoS9/1V4vnyqzmOs8gKM8kKUqJAdtBLfBudFD+H95jksXwX2/leGMmsBObol+qE9WJ4yJFcMjoGhsg5L9+NfOQ1Flpnu70OkVcGaQHpN4AVgfe6hBgdfzPJCvN/8HceYexuVhSvZHDgGX4818GqsvWvxzn8b34ppKAW5OEfcifOC2/HM+CeWHqjX5SkkoPw19n5TsLUbEN6/5kLrNoHAymqNH5sDNb07xoHtWFXFgEVwzddgd6P1vgSz/CB67jIcF9yO2n5gjRPVsURc/3zI3jngafBcBYKzgQi+CAQCQTVyRAscQ2/C99MrYATZ/9EzSDEp2LpPQk3OqmnnW/R+dbDFwvSUYZUdCB2fkIFz7C/rFZwTCAQCgaC5IEkSkjMKucNg5NiUkBaM5qyzrRXwoudtQEnMCOmyHNqDWZyHeWgPZnlBLZFYKTIhpO+SmIEUk0Jw/fcY+ZuQ3HFIjiOZBKanFP+iD1BSOqKkdESOTq6zlMUozMXylOGd8U9snS7APeQ6wN3oOVuWhW/he3Xu0/pcVlP6dCxKYgZqRr+QjotlgRWebeP9/gXcU/5cM3YlNhXXxY+gH9hOYPmnNY49SmY/gss/B1XDMf43mFXFBJd9gmVzoCZlYh99L54vVpCy/zseifmKT6v6sT4Yyi5Zn1tcYzl93DkGPHh/+De2buNOuvxZklVsmX1p0aEL+R/9tTpA9xbOMffhmvIM/lmv4lvwDo4Rd9TM2SjajX/ZJziG34bWezLmwZ14f3oFszgP1+Q/1Hy2tF4Xou9cjpLRF0mSCKz8MiTy7IoBTylYFkpsGpJiwzHidjyl+/Gv/BI1o0+ofKu+MUsS2Bv/mRAIziQi+CIQCARHYcvsj757DXrOYozyIigvQu0wJKyNeXAXRsH2sG1ybAquCb9plBCeQCAQCATNgWNFcC3TxDf3ddQOg6HyUMgRsBFYFQfRK0JZCyARUvQAOSohFIioLh8y9m1Bz11W3Q4kVwxKcke07hPCXHS0buNCTk6zpxLcPIfyfZuJuOohUBsnji9JEkp6D8yCnLDttqyhaD0vOu6x9gFXYe83heCWuRiHdmPsXX9kvqX78M58EcfQm2qyeiRXDMFNs2qEjtWsoeib5oBlYB9yK8betQRWfonkjsUKeHFf/idkRSUjsxVv5wwn25bHFNdS7F6dFYEMKr1Bdu2vICOldtaQFfBiVhahxLXC8/VfkePT0Xpc2KhrUxdqVDyRlz5K1eJP0LqMAUIaIY5hN1P12R8Jbp2P3CKdwJrpGLtXIzmjqfrgQbDC9UGC2xbWZDJJkoxr8h/w/vAvjPyNYHPgGHYrSuYAvF/9GYI+HMNuDrVVbDhG3oFRmAtK4/RuBILmiAi+CAQCwTE4htyAz1+JVZKHadW2TpTcsUiRCSDJIIES1wr7oOtqapoFAoFAIDiX8S/7GH37QvTtC5ugt1DgRUnvjmPgtTW6LVbAi1GSHxJWrX5Ytzyl6DuWoO9Zg/vyp5CrS3kA1OQs3Ff8Cd/C99C3L2L/+0/ivuRRcNdd/lIfteYkq2j9rzyhqK8cEQr02PtdgeWrpOrTP4SEYasxdq2katdKJHsEOKNA92NVHgrNPSUbo2gPlq8cgOCGHzCLdmPLHoW9/5VgGUiaC4Ds1rEAbAqm8WxZEiYyHdT9JCplrN/Ruib4YgW86LtXo+cuR8/fiC2zP8rw23BNfrSW6PKpICk2HAOurnmt71mLvms19gt+QXD9Dxjz3qjZFyodCjsYuUVarUwhVA3TUwKKDdcljx9x1pJl5MQM5Ogj5VVKXCuUuFZYpol/+aeYR4lHA6itumJrNwCjaBf6nrXYe01uknkLBKcDEXwRCASCY5A0F5EX/a5eMT/n6HvO0sgEAoFAIDi9WJaFZKu7/Kh+JKTI+FAworrEpoaIeJyDr0dt3SNsc3DzbILrZqB2GISSmIFVfhA9fyNm0W4I+vDNfg3nRQ+HaahJmgvniDsIRrbAt+prqn6aivOiRxrkhhTYPAdL0bCqbaUPo7bphexouKiqWVWC94d/ofW5DH914EFyxyLFpoK/CrO8EEqPWFNL7jico+9B37MW//JPsTxlWN4KnBN/h1G0m+CmWWjdJ9S0T4x1EhOhUVoZIEBo8afKsjPAnoO6ZTeBFuNR07thVZUQ3DofNaMv9qE31Vg/N2Xg5Vgsy8K/4nPMot3o+RuxKg6G7ZciE1ASM1ASMlASM5DjWx8JtukBgjmLsWUNQ5IkXOMeoOrzJzD2rkWJTcEo2oVZkINj6C3h5zSCSIotFJTbu6H2mKpFf62AL3TtBYJmjAi+CAQCgUAgEAgEAqBaYLb3ZOSYZHyzp4J5jCuNJIPNXiOeqiRmIMelEtw0B/+S/4W1k1uk47r4kdr216ZBYMOPYATQt85H3zofpVVXtL5XENgwE3PvOoyC7QTWfoO9jnIgR/8rcLidmOl9sRoQeDFK9uFf8G6oAuoYbI11d7I5MIvz8C94G7llByRnNAS9uCY+CIAZ9OP5+KGaciOrqhjP9L/gGHYrlrcCrefFaN3GYnkr8P74Iq7JfwjrXpIkurRtwYL1R4JE+UYc/1c+keGOLbTMXYk7MQMlqR2uC3/fuLGfIpIk4Zr4O7yzp2LsXQeqHSW5I0pSJkpKR9SWHeo8zji0F9+sVzFL8kN6Mh0GI0clYO8/Bf+SD1HbDSSwbgZKWheUuFSg+jOy/DP0fZtxXfxImB15XagpHVFTOp6WeQsETYUIvggEAoFAIBAIBIIwbJn9kCPj8cz4J3jLjuywTAh4sQJebJ2G15TmKkmZNU3Utn2wD7gaObJux0B958paJSrG3vUYe9cjRbcE1QG6j8CKL1HTuqIktAlrK0kSscOuqslONUv3h7JP6tBdsywL/6L3wTKQEzIxC3cc6ScyASW1caK0kqwAEpgGZtEu7AOvxb/4A/xLP0ZJ715dHvU03lmvhgI7hk5w+yL8K75AsrvQel0IkoLvh3+jdR2PEpta6xyd2sSGBV8ATGRm+7Jp1yabgfENt5xuaiRHBM7xvyaw6isCK6dh7F2LsXctUmQCEdc8B0AwdxmBdTNC2TiaE33HEjB01LZ9wjKgbFnDCG6eg2/2VIx9W3GO/3XNvsCqaQTWfguAf/H/cAy58bjjCuYuwywrxN7z1LVuBILThQi+CAQCgUAgEAgEglooiRm4L3uCwMppmOUFWLof9ABW0B8qL5KPPEooSe3Qek1GadkeNa3Lcfs1yw6Eab0czWEHwdALC+PQ7lrBl6MxivPwfP1syOJ5/K9r6bTpu1Zh5G9Eim+NWZIXts+WNbRe++L6kFQNNaNvSDtGD2AczEXrcSHGvs1ASJsmuGNpSBvOMlFSOoY0SUr2YZYdQJJVzNL9WEYQrcekOs/RqVr3pS7W5x5iYJezF3yBkGiuvfclqKmd0fdvxfKUhgW+zLICzMId1BRtq3Ycw25EzRoaViImyTKOYbdgBTyYbfugHPW50bqOI7h9EVZFEcFNs1BadqixrrZ0P0bhzrBMFzkujcDyz9F6TGpQGZpAcDYQwReBQCAQCAQCgUBQJ7I7tsZ95kTY+1zasHa9LsaWNZTgxp8IbJ4N/qo620nuGJTEjOOPLyoBJSYFI38jvp9exTH6nurslNBDun/xBwDYWnUjULT7qM4lbFlDGzTeWuPvf1UouFB2AH3rfFyX/wk5Mh61OjggaS6sykP45r0JAS9SdBLOkXdha9MLS/cjRbfEdfGj9QYJYiLsJMY6KSzx1tq3YWcxpmkhy2c/wKC0bI/Ssn2t7VqPC9E6j8L0lGJ5ypBjkms0aWr1cdjV6hhbbMnuxjn6PjzTngZTxzfvTaygDyN/E/qeNWDouG/4Z41ejxKTgtKyAwS9UC1eLBA0NxoX6hUIBAKBQCAQCASCU0R2x2LvdwUR1/0f9qE3I8ek1GpjVRXj+eJPBLcvqrcfSbXjHP9r5Bat0HetxD//LSwr5LAUWPMtVuUh5MRM9D1rw45TWnVDdtefYXLcsbuisHUeXT1IC8/Xz+KbPRXfjy9jBf3Y2g3ANf4BIm58CdflT6F1HoNU7Zbkm/Nfght/PGF2RteMum20K71Bdu4vP6lxnykkSULSXCgxKagpneoNvJwIJaEN9kHXhl7ofvzz3wrZkusBsEz0nSvD2juG31rjGiUQNEdE8EUgEAgEAoFAIBCcFSTVjtbpAlxT/oxj7K+QjnUeMgL4Zk/F+9MrtWyGa/qwu3FOeBApKong1vn4l36EZeoEc5aAag9lqRzaExILrqbRQrvHoBfmIkUnhV5UZ+4YBTlYAc+RcckySot0tC6jkZ1RBHetwijYga3DkBP2n93m+KVHPxdsnUagtht41BYJJTkL++DrUVv3PGvjOp/YvXs3jz/+OJMnTyY7O5sLLwzXzamsrOTf//43V1xxBX369GHQoEHcddddbN26tUH9r1ixghtuuIG+ffvSv39/fvGLX7B58+bTMZVmjwi+CAQCgUAgEAgEgrOKJEnY2vTCddkTyAm1S430HUup+vRRjMri2gcDsisa16QHkVwxBNd9T2DdDNyXPxlWFuMYdQ/2QdehpHZGTe92SuO1pXVGckQd2aCoOMf+qt5sGivgwb/wXRxDbkTSTmzlndUqlvqSY35OwRdJknAMuwV7/6uwD74e93X/h+uih9E6j0Z2RZ/t4Z0XbN++nblz59K6dWsyMzNr7d+3bx8fffQRgwcP5oUXXuBPf/oTFRUVXHXVVezYsaOOHo+Qm5vLbbfdhsvl4h//+Ad//vOfKSsr4+abb+bgwYPHPfZ8RGi+CAQCgUAgEAgEgmaBHNEC18UP41/0AcHNs8N3+qvwfPIo6pQnILZd7WMjE3BO+h3e719ASczA8pRh5G8M7UvMRG3bG0mS0LqMOeVxKikdMRe+i9b7EoI5i7H3u/K4+jRm+UHUtn3D3H6Oh8uhkhLvJv9gbT2cnfsrKK8KEOXW6jjy/ENSNbTuE872MM5bRo4cyejRoTK6hx56iA0bNoTtT0tLY+bMmTidR4KGAwYMYOTIkXzwwQc89thj9fb9448/YlkW//znP3E4QqLMWVlZjB49moULF3LJJZc0/YSaMSLzRSAQCAQCgUAgEDQbJMWGY+hNOIbfBse4F6H7sY7jUKTEpuK+6lnUlE4E1kyHav0Xe6+Lm9QFR45ogZrSCVuHIURc9VdsbXvX2c6yTILbFiLHpeI4rF/SQHq0q9uqG2BNTlGj+hII6kOWjx8ScLlcYYEXALfbTXp6OoWFhcc9NhgMomkadru9ZltkZORxjji/EcEXgUAgEAgEAoFA0OywZQ3FNfkPIdvmw1gm3tn/xTJr21QfRpJVzIqDBLeFhHrl+DYorU6tzKgunOPuR46sP0Biesrwfv88gXXfYXkrGt1/5zZx9e5bvuX4D70CwemkvLyc7du3k5FxfDeySZMmYRgGL7zwAiUlJRQUFPDss8+SnJzMqFGjztBomw+i7EggEAgEAoFAIBA0S5T41rgvewLvnNexvKWYhbno+7ZS8OlzWIntIbYVSlwrJEdE2HGBNd+AFQrQaE2c9XIYo2g3wU2zcAy7pdY+fd9mfD+9gprRD/uYXyKpjS8RykyNRpElDNOqtW/zrhIqvUEinLY6jhScDZ599llmz5594oaniREjRvDwww+fkXM999xzSJLENddcc9x2bdq04a233uKee+7h1VdfBSA1NZU333zzZ5kBIzJfBAKBQCAQCAQCQbNFsrtxjfsVzrG/QrKHgiye7cvxLvwA7/S/4lv0Xlh7ff9WgpvnhI51xaAktT+2y6YZlyuG4PZFWHqgZptlBLGCfiTNiWPYrTgGX39SgRcAmyrTKjGizn2mZbFq289PsFRw9vnss8/4+OOPefzxx2nZsuVx2+7cuZNf/vKXDB48mDfffJNXX32V1NRUbr/9doqKfn6lcyLzRSAQCAQCgUAgEDR7ZFcMjnG/IrDwXYxDeUB1Roii4V/zLfYeEwEILP+s5hjLU0rVBw+gtumD1utilNiUJhxPNHJUEkbhDtSUThil+/D99Cq2dgNDArH1VyQ1mJ7t49l1oO6SpeVbChnWvenmIzg1Hn744TOWeXK2mDt3Lo8//jj33HMPl1566QnbP//888THx/O3v/2tZlu/fv0YMWIE77zzDr/5zW9O53CbHSL4IhAIBAKBQCAQCM4J1JYdcFz1Z6LdCodyt+Hbuojgptlg6kgSaN0nUsuj2dDRdyxB6zGpycejpHbCyN+EWV6If8lH2HteiK3buCbrv2tmC76Yv7POfaL0SHAmWbNmDffffz+XXHIJ999/f4OOycnJoUePHmHbDov17tmz5zSMsnkjyo4EAoFAIBAIBALBOYWsOTC95TWBFwD/0o8JrJ+B1mMSclyr8PYJbVFatKqrq1NCyx6JkpxFcNNsXJN+h9Z9ItJx3JgaS3piJDa17v5E6ZHgTJGTk8Odd97JgAEDePLJJxt8XEpKCps3b8ayjugWVVZWsnv3blJTU0/HUJs1IvNFIBAIBAKBQCAQnHOYFYdqAi+H8S/+H1rvSzBL8sO227KGnZYxyDHJyDHJKKmdT4uoryxLpCdFsiO/rM79K0TpkeAU8Xq9zJ07F4D8/HwqKyv5/vvvgVCJkGVZ3Hbbbdjtdm666SY2bNhQc2xERATt2rWrOXbMmDHcc8893HfffQBcffXV3HvvvTz44INMnjyZQCDAG2+8QSAQYMqUKWd4pmcfEXwRCAQCgUAgEAgE5xyOrqMxg0H8S/4Xtj2w8svwhqqGrd2A0zqW0xF4OUzvDvH1Bl827xalR4JT49ChQ7XKiA6/fueddwA4cOAAADfffHNYu379+vHuu+8CYFkWhmGEZbmMHj2aF154gddff50HHngAm81GdnY277zzDm3atDlNM2q+iOCLQCAQCAQCgUAgOCfRuo3DMnUCyz6pt42a0Q9Jc57BUTUtPdsn8PHsHXXuM8xQ6ZHIfhGcLGlpaWzduvW4bU60/3j9TJgwgQkTJpz0+M4nhOaLQCAQCAQCgUAgOGex95iE1qd+5xVbx+FncDRNT2KsE7tNqXf/ii2FZ3A0AoHgZBHBF4FAIBAIBAKBQHBOY+81Ga3nRbW2yzHJKEntzsKImg5JkmjdMrLe/YdLjwQCQfNGBF8EAoFAIBAIBALBOY/W57KQ1fTR23pMOq16LGeKPlkJYa+PnpFhWqwWrkcCQbNHBF8EAoFAIBAIBALBOY8kSWj9puAYfS9qu4HYh92CrcOQsz2sJqFvx8Sw19Yx+5eL0iOBoNkjBHcFAoFAIBAIBALBeYEkSdgy+mLL6Hu2h9KkREfYiXDaqPQGkagdfBGuRwJB80dkvggEAoFAIBAIBAJBMye7TSxwJPBydDWVKD0SCJo/IvgiEAgEAoFAIBAIBM2cS4dmhL22jkl/Wb5VlB4JBM0ZEXwRCAQCgUAgEAgEgmZOUpyLxFhnvfs37xKuRwJBc0YEXwQCgUAgEAgEAoHgHGBY9+Sw16L0SCA4dxDBF4FAIBAIBAKBQCA4B+iTFe56dKzyrig9EgiaL8LtSCAQCAQCgUAgEAjOARJjXaQnRbCnoBKow/Vol3A9EjSc7777jq+++oqNGzdSXl5O69atueGGG7j88suRqtOqbrjhBpYtW1br2G+//ZbMzMwTnmPOnDm8+uqrbNmyBZvNRseOHXnuuedo2bJlk8+nuSOCLwKBQCAQCAQCgUBwjtC3Y2JN8AVCpUeHxXcN02L19oMM7ZZylkYnOJd46623SE1N5aGHHiI2NpZFixbx2GOPceDAAe67776adr169eL3v/992LFpaWkn7H/atGk8+uij3Hrrrfz617+mqqqKFStW4Pf7m3wu5wIi+CIQCAQCgUAgEAgE5wi9sxL5bG5uzWuJ8AyYFVtE8EXQMF555RXi4uJqXg8cOJDS0lLefPNN7vn/7d15eBRVusfxXyckIQFCWAIGEmUzIQkJCQQCAmEfBCLoKOK4jeIyjhIVRx1xQC9efUa5MrKIyuY6jiiIzsgSlR3ZBIGggGxhCSA72SBr97l/MGlpEmRLd7o738/z5IE6dbr6fU91U5WXqlOPPiofn7OzlAQHByshIeGytp2dna2XXnpJzz//vO688057e+/evSsldk/EnC8AAAAA4CGuqR+k8NDa9mXbefcebd17kqce4ZKcW3gpEx0drfz8fJ05c+aqtr1gwQLZbDbddtttV7Udb8KVLwAAAADgQZJah+rAsXNuPdKvV79w61HVWL9+vaZOnXrVRYsrFRQUpIcfflhJSUlXtZ0ffvhBjRs3Vu3avxb4vv/+eyUkJMhqtapt27Z64okn1KFDh9/cTkZGhpo3b64vv/xSb7/9to4cOaLrr79eTz31lLp3735VMXoqii8AAAAA4EE6tG6kL1fs+bXhvHuPuPXI9T7++GNt2LChymO4muLL+vXrNX/+fIf5XTp06KDBgwerWbNmOnr0qGbMmKH7779fH330kRITEy+4rWPHjmnPnj2aMGGCnnnmGYWGhurjjz/Wo48+qi+//FLXX3/9FcfpqSi+AAAAAIAHCWtQS00b1tLB46cl/TrhbpmyW4946pHr3HXXXTp9+nSVXvly1113XfHrDx8+rBEjRig5OVn33nuvvf3xxx936NejRw+lpqbqrbfe0rRp0y64PWOMzpw5o9dff90+z0vHjh3Vr18/TZs2TWPHjr3iWD0VxRcAAAAA8DDto0LtxZfzWW1Ga7ceUe/2F38iDSpHUlLSVd/yU1Vyc3P10EMPKSQkRJMmTbJPtFuRoKAgde/eXV9//fVvbjM4OFiS1KlTJ3ubn5+fOnTooJ07d1ZO4B7GrSbcXbBggf785z8rJSVFCQkJGjx4sGbPni1zXil31qxZ6tevn+Li4jRo0CAtWbKkiiIGAAAAANdLat3oN9evyDjkokjgyQoLC/WnP/1JeXl5mj59uurUqVMp223VqtUF11XXR027VfHl/fffV2BgoJ577jm9/fbbSklJ0ejRozV58mR7n3nz5mn06NHq37+/pk2bpoSEBA0fPlybNm2qusABAAAAwIWaNqyla+oHXXD9/qP52nc4z4URwdOUlpbqySefVGZmpqZPn67GjRtf9DVnzpzR0qVLFRcX95v9evbsKUlavXq1va24uFjr1q1TbGzs1QXuodzqtqNLec74xIkTNXDgQD355JOSzl7GtGPHDk2ePPk37zkDAAAAAG9hsViU1LqR5q7ae8E+yzcf0j3XRLkuKHiUMWPGaMmSJXruueeUn5/vcEFDTEyMNm/erOnTp6tv375q2rSpjh49qvfee0/Hjh3ThAkT7H0PHjyovn376tFHH9Xw4cMlSbGxserXr59Gjx6t7OxshYaG6l//+peOHz+uBx54wNWpugW3Kr5c6Dnjn332mc6cOaNTp05p7969euaZZxz6DBgwQGPHjlVxcbH8/f1dFS4AAAAAVJmkqFCH4ouvj0VW269TNqzZckRDe7aSv59vFUQHd7dy5UpJ0quvvlpu3aJFixQaGqqSkhK98cYbys7OVmBgoBITEzVmzBjFx8fb+xpjZLVay00X8uqrr+of//iHxo0bp/z8fMXGxuq9995TVFT1LAi6VfGlIuc+Z/yHH36QJDVv3tyhT8uWLVVSUqKsrCy1bNnyit+rRo3fvgvL19fH4U9P5i25kIf78ZZcyMP9eEsu3pKHdPHj5qXypjFxZ4yz8zHGrsE4/6p5k2A1rheoI6cKJMmh8CJJBUWl2rjruLrEhV3Wdhnj6mHx4sUX7TNjxoyL9gkPD9f27dvLtQcFBWnUqFEaNWrUFcXnbdy6+HL+c8ZzcnIk/Tpzcpmy5bL1V8LHx6J69WpdUt/g4MArfh934y25kIf78ZZcyMP9eEsunp7H5Rw3L5Wnj4mnYJydjzF2Dcb5rG6J4Zq9+Nenx1gsjo+eXvXTEaWmXHjy09/CGAOVx22LLxd6zriz2GxGubm//Ux2X18fBQcHKje3QFarzekxOZO35EIe7sdbciEP9+MtuVRlHpVZLLmU4+al8pZ96+4YZ+djjF2DcXYU37yeZp+z7F/DR0Ulv47Lj7uP6+fdx9T4NybnPR9jfFZl/ycDqje3LL5c6DnjdevWlSTl5eUpNDTUof+5669Uaeml/cNitdouua+785ZcyMP9eEsu5OF+vCUXb8ijsuP3hjHxBIyz8zHGrsE4n9W0YS01rFtTx3MKJcmh8FJm6caDurX75U/PwBgDlcftbuL7reeMt2jRQpKUmZnp8JrMzEz5+fkpIiLCpbECAAAAQFUqe+rRb/nux19ktVFEAaqSWxVfLvac8YiICDVr1kzp6ekO7fPnz1fnzp150hEAAACAaicpyrH4UsPX4rCck1+sHzNPujIkAOdxq9uOLvaccX9/f6Wlpenpp5/Wtddeq+TkZM2fP1+bN2/WP//5z6oLHAAAAACqSPOwOmoQHKATuUWSpFKrkUXSuc8+WpFxSAmtGlZJfADcrPhyseeMh4eHKzU1VQUFBZo2bZqmTp2q5s2b680331RiYqKrwwUAAACAKmexWNQ+qpG+WZdlbzPn9dm8+4Ry8otUt3aAa4MDIMnNii+X8pxxSRoyZIiGDBni5GgAAAAAwDMktXYsvpzPajNa9dNh9e90nQujAlDGreZ8AQAAAABcvpZNghUaUlOS5PPfKV8sjlO/aPnmX2TM+dfEAHAFii8AAAAA4OEsFou6xoVJkmz/ra+cX2c5cvKMdh7IcXFkcFdz5sxRVFRUuZ/XX3/d3mf+/PlKS0tTSkqKoqKiNGPGjEva9qpVqzRixAj16tVLbdu21YABAzR9+nSVlJQ4Kx2351a3HQEAAAAArkyXuDB9uWJPuflezrUi45AiI0JcFRI8wPTp01WnTh378rlPHU5PT1dWVpZ69OihTz/99JK3OXPmTBUWFurxxx9XWFiYMjIyNGnSJO3evVt///vfKzV+T0HxBQAAAAC8QP3gmoptXl8/7bnwY6XXbT+qO/tGKjCAXwVxVmxsrOrXr1/huvHjx8vH5+wNM5dTfPmf//kfh20mJyfLZrNp/PjxeuaZZy74ft6MbxwAAAAAeImu8WEOxZea/j4qLLbZl4tLbFq77Yh6JDStivC8ltVqVW5ubpW9f3BwsHx9fSt9u2WFl8tVUXElOjpaxhgdO3aM4gsAAAAAwHMlXh+qWjVr6HRhqaSzxZbzrcj4heJLJVq4cKHGjh2rkycvfMWRs9WvX1/PPvus+vTpc9mvTU1N1alTp9SkSRPdfvvtevDBB51SyNmwYYP8/f0VHh5e6dv2BEy4CwAAAABewq+GjzrFXmNfthmpUUigQ589v+TqwNF8V4fmtV5++eUqLbxI0smTJ/Xyyy9f1mtCQ0OVlpam1157TdOmTVP37t01fvx4vfLKK5Ue3969e/Xhhx/qjjvuUK1atSp9+56AK18AAAAAwIt0iw/Toh8O2JfrB/vraHaBQ5/lmw/pzj6Rrg4NbqRbt27q1q2bfblr164KCAjQBx98oEceeUSNGjWqlPfJz89XWlqawsPDNWLEiErZpifiyhcAAAAA8CLXNq6jaxvXti/v+SVPdWv5OfRZ/dNhlZRaXR2aVxo1alSVz2FSv359jRo16qq3079/f1mtVm3btq0SopKKi4v12GOPKScnR1OnTlVQUFClbNcTceULAAAAAHiZbvFN9PG3OyRJRSU29Wkfrnlr9tvXny4s1eotR5TStklVheg1+vTpo549e3rlhLtXw2az6emnn9aWLVv08ccfKywsrKpDqlIUXwAAAADAyyTHNNani3eq1GokSSdyi+TjY5HNZux9vv5+v7rGh8nHYqmqML2Gr6+v6tWrV9VhXLX58+fL19dXMTExV72tMWPGaMmSJZoxY4aioqIqITrPRvEFAAAAALxM7UA/JV4fqnU/H5Ukbdx1TAmtGmjDjuP2Pr+cOKOfMk8ovmXDqgoTVeiBBx5QcnKyvTCyaNEiffbZZ7r33nsVGhoqSdq1a5d27dplf82OHTuUnp6uwMBAde/eXZJ08OBB9e3bV48++qiGDx8uSXrnnXc0c+ZMPfDAA/L399emTZvs22jVqpVq1/71trjqguILAAAAAHihbvFh9uJLUbFN7SNDHYovkpS+dj/Fl2qqefPm+vzzz3X48GHZbDY1a9ZMzz//vO655x57nwULFujNN9+0L3/55Zf68ssv1bRpUy1evFiSZIyR1WqVMb9eVbVy5UpJ0owZMzRjxgyH9/3www+VnJzszNTcEsUXAAAAAPBCMc3qq16dAJ3KK5Ik7cjKVmhITR3LLrT3+Xl/tvYdztN119SpqjBRRS5lgt60tDSlpaX9Zp/w8HBt377doe2jjz66qti8EU87AgAAAAAv5ONjUZe4Xyc5XbP1iG7seG25fl9/v79cG4DKRfEFAAAAALxU17hr7H8vKrEptF6gAgMcb4D4fttRncgpPP+lACoRxRcAAAAA8FKN6gWp9bUh9uU1W47ophuaOfSxGaOFP2S5NjCgmqH4AgAAAABerGv8r7cerfv5qHokNJG/n+Ovgss2HdKZwlJXhwZUGxRfAAAAAMCLtY9qpJr+vpKkklKbdhzIUb8OEQ59CoutWp5xqCrCA6oFii8AAAAA4MUC/HyVHNPYvrx4wwEN7NxMNXwtDv2+XZ+lUqvN1eEB1QLFFwAAAADwcufeerRlz0kVFJWqe0JThz6n8oq07uejrg4NqBYovgAAAACAl2sRFqwmDYIkSVab0fsLftatKS3k43jxi75eu1/GmCqIEPBuFF8AAAAAwMtZLBZ1jW9iX87YfUIZu0+o4zm3I0nS/qP52rb3lKvDA7wexRcAAAAAqAZuaHONfM+51OWf32zXTZ2b6byLXzR/zT7XBgZUAxRfAAAAAKAaCK7lr27nzP1yurBUny/PVFzL+g79Nu8+oX2Hc10dHuDVKL4AAAAAQDXRv9N19itd/Gr4aMOOY2rbsmG5fv9ettu1gQFejuILAAAAAFQToSGBahcZKkkqKbXJIumLFXvUIizYod+SHw4oO7+oCiIEvBPFFwAAAACoRm5OaWH/e4O6NZVfUKKa/r4OfUqtNi1cl+Xq0ACvRfEFAAAAAKqRpg1rqWWTs1e6HM8pVGjdmtq675TqBwc49PtmXZYOHsuvihABr0PxBQAAAACqmTt6X2//e/3gmvKxWFRQWOrQp7DYqvGzMpTD7UfAVaP4AgAAAADVTMumddUopKYkaXtWtrrGX6OCYmu5249O5BZp/OzNKiq2VkWYgNeg+AIAAAAA1dCtPVrZ/15UYlOThrVUWEGRZd/hPE35zxbZbMaV4QFeheILAAAAAFRDSVGhqlWzhiRp3baj+n1KC1ksUg1fS7m+m3Yd1ycLd8oYCjDAlaD4AgAAAADVkMViUd8OEZIkmzH6ac9J9U++TqVWI78KCjCLNhzQt+sPuDpMwCtQfAEAAACAampg5+vk63O20PLd5kPqkdBETRvWUom14itcPl20Uz9sP+bKEAGvQPEFAAAAAKopXx8fJbVuJEkqtRot3nBQDw2KlY+PxV6UOZeRNO2rLco8lOviSAHPRvEFAAAAAKqxoT1bqazMsmTjQTWqF6jbe0fK+t8Jdn3P+62xuNSmibMzdCy7wLWBAh6M4gsAAAAAVGMhdQLULKyOJKmoxKpv12Xp9j6Ruu6as23GJtUJ8nN4Te6ZEo2flaHThSUujxfwRBRfAAAAAKCau6VbC5XdZfTN9/tVUmrVw4Ni5etjkU1SUUmpGgTXdHjNLyfOaPKcH1Vqtbk+YMDDUHwBAAAAgGoutnl91Qo8e3XL6cJSfb1mnyIa1dbN3ZpLknwsPjqRW6j6wQEOr/t5f7Y+W7LL5fECnobiCwAAAABUcxaLRb/rEKEa/33E9BdLd+lETqH6J1+nBnVrqrDYqqiIEJ0uLCl3C9LC9Qe08sdfqiJswGNQfAEAAAAAqHtCU5n/PmH6VF6Rnp68UjPmbdVt3VtKknYezNF1jYIVGFDDXqQp80H6du35hScgARdC8QUAAAAAoNqBfmoX2VD16py9tchqM1q95Yim/GeLggJqyGYzKiguUWmpVS3Cgh1eW2q16c05PyrndHFVhA64Pbcrvuzbt08vvPCCBg8erJiYGKWmplbYb9asWerXr5/i4uI0aNAgLVmyxMWRAgAAAIB36d0+QpLRc/d2UKvwuvb2M0WlkqSso6d1TYNa2nUwRzHX1XN47am8Ir31BRPwAhVxu+LLzp07tWzZMl133XVq2bJlhX3mzZun0aNHq3///po2bZoSEhI0fPhwbdq0ybXBAgAAAIAXuT68roJq+snPz0cv3NdBI+9up8TrG+rcm4y27j0lfz9f/Zx1SuGhtRxev/NAjj5ZtNO1QQMewO2KL7169dKyZcs0ceJExcbGVthn4sSJGjhwoJ588kl16tRJL730kuLi4jR58mQXRwsAAAAA3sNisWhAp+s07csflZ1XpOvDQ5R2a7xefihZsc3r2/sVFltls0kHjp2WxXH6Fy3ZcFDLMw65OHLAvbld8cXH57dDysrK0t69e9W/f3+H9gEDBmj16tUqLuYeQwAAAAC4Ut3aNlGX+Cb6v0826nRhiSQprEEtjRjSVvVq+8vfz/F3trJJes/1QfrP+nZ9lkpKuQUJkKQaVR3A5crMzJQkNW/e3KG9ZcuWKikpUVZW1gVvV7qYGjV+u/Dj6+vj8Kcn85ZcyMP9eEsu5OF+vCUXb8lDuvhx81J505i4M8bZ+Rhj12Ccnc/X10d/HBijE9kFmjh7s569s50C/H0lSf2Sr9PMRTsVGOCrgiKrmjSspV+On9b59RdjpE8W7tTXa/dr5D3t1bh+kOsTAdyIxxVfcnJyJEnBwY6za5ctl62/XD4+FtWrV+viHSUFBwde0Xu4I2/JhTzcj7fkQh7ux1ty8fQ8Lue4eak8fUw8BePsfIyxazDOzvfkH9rptY/W6+3/bNGo+5PlV8NHg3q00pzlmerUJkxrtxzWoeOnFd6otgIDaii4lr9++PmowzZO5hVp3MxN+r/HUxTy36coAdWRxxVfnMVmM8rNPfObfXx9fRQcHKjc3AJZPXwGb2/JhTzcj7fkQh7ux1tyqco8KrNYcinHzUvlLfvW3THOzscYuwbj7HxlY3z6dJEeGNha/5i5SWM//F6P3NxGPhaLOsc21rqtR/TkkHi98VmGDhzNl5+vj25JaaGCwlJt3XvSYXuHT57R6HdW6m/3JtmvoPEElf2fDKjePK74Urfu2ced5eXlKTQ01N6em5vrsP5KlF7i/YhWq+2S+7o7b8mFPNyPt+RCHu7HW3LxhjwqO35vGBNPwDg7H2PsGoyz81mtNvnIosduidP/fbJRHy74WXf1jVSvduFatumQDp8o0F+GJmrcp5tUUFSq2Ut36693JeroqTM6nlPosK29h/M09l8b9OydifK9yDyfgDfyuE99ixYtJP0690uZzMxM+fn5KSIioirCAgAAAACvFBhQQyNub6ute0/p39/tUUSj2mp9bYjmLN+tenUC9PQdCQoKqCGbMXrny5/06C1tyk3KK519DPXYf22UzUbRDNWPxxVfIiIi1KxZM6Wnpzu0z58/X507d5a/v38VRQYAAAAA3qlOkL+eviNB3/34ixauz9KwAdGy2YwmzM5Qkwa19MwfEhUUUEOn8os1e+luPX5rvGrVLH+jxc4DOfqf99apsLi0CrIAqo7bFV8KCgqUnp6u9PR0HTx4UPn5+fblkyfP3juYlpamuXPnauLEiVq7dq1efPFFbd68WY8++mgVRw8AAAAA3ql+cE39ZWiC5q7aq50HczT81ngdOn5GU7/aoohGtfX0HxIU4OejrXtPaeEPBzS4a3NFNKpdbjsHjp3WyClrdPD46SrIAqgabjfny4kTJ/TEE084tJUtf/jhh0pOTlZqaqoKCgo0bdo0TZ06Vc2bN9ebb76pxMTEqggZAAAAAKqFsAa19MSQtvrHp5vUtlVDNW1YSxt3Htfw8ctVUmqTMWcfOr1p53EdPJav/DMliooI0fasbIft5Jwu1pj3vtd9/VvrhjZhVZAJ4FpuV3wJDw/X9u3bL9pvyJAhGjJkiAsiAgAAAACUaR4WrKeGJmhnVrbatKivLXtOaeWPv+iO3q3UNylC27Oy9X//2qhj2YXqHNtYWUfy1bRhkE7kFqmw2GrfTqnVaPrcbdqy55Rim9dTg+CaalC3purVCWBSXngdtyu+AAAAAADcW/OwYDUPC5YkJUc3ls1m06wluxUeWlsxzerrjj7X65OFO7V6yxHVCfJTs8Z1dCK3UPWDA3Qyt8hhW6u3HNbqLYftyz4Wi+rV8bcXYxrUramwBrUUFRGi+sE1XZonUFkovgAAAAAArpjFYtF9/aN1LKdQk7/4SX+7p736JkVo3y+5WrvtqE4XlOjHPSdVv06ArFab6tcJ0Mm8ogtuz2aMTuQW6URukXQgx2Fdw7o1FRkRosiIEEVFhKhRvUBZLBZnpwhcNYovAAAAAICr4lfDR8N/H6dXPlyvCbMzNOreJA1LjVFw7QB98/1+tQgLVuYvuZKkurX85edrUanN6L9TxFyy4zmFOp5zWKt+OnulTN3a/or6bzEmoVVDroyB2+JGOgAAAADAVQsO8teTQ9oqv6BUk+b8KKvV6PaerfSHPpHaezhPPRKbKOraEOWcLlaJ1cjHIgUG1JCv75VfuZKTX6zvtx3VP7/ZoeenrtGmnccrMSOg8lB8AQAAAABUirAGtfToLW2UeTBX7y/YJmOMercP12O3tNGqHw+rUUigHr81Tk0b1pLVJhUUlaqGj0W392ypuBb1K9xm7UA/Bfj5XvS9i0ttSv9+f2WnBFQKbjsCAAAAAFSa2Gb1dU+/SH2Qvl1HThWodqCf/P181fq6elqz9Yi27TulpKhQXdMgSFv3nlRBkVWzlu7WrSktdFffSK3ZckQrNh86O+eLpPyCEklSRKPair6unk7lFWl7VrZyTxeXe+8GwQEuzRW4VBRfAAAAAACVqntCU5VajbbsOamiEqtOF5aouMSmurX8dTKvSN+sy5KPj49KrTZJkjHS7GWZmr0sU3Vr+atOUA2F1q2pnNPFKi492yfraL6yjuarfWSo/npnoiwWi3ZkZWv7/mwdOnFajUICdUfv66sybeCCKL4AAAAAACpd7/bh6t0+vFx7fkGJJs7erFN5hXp8SFsF+fvqg/Tt+mnPSUlS7uli5ZwuVg1fi3x8ys8H88OOY/phxzHVreWvlk3rqnH9QLVqGqxOsdcoMIBfceGe+GQCAAAAAFymdqCfnr4jQdPnbtWr/9ygiNBa2nUwR74+FlltRkZSUEAN/fXOBEU0Dlap1aac/GJl7D6ur1btVU7+2duNck4Xa+OOY/Lz81FxiU11gvyV1LpR1SYHXADFFwAAAACAS/n7+eqRm9vo67X7lV9YosHdWqhV07rasvekpv5ni84Ulep/P/xBD6bGqGN0YzWoW1O92oWrZ2JTZew+oU8W7tCx7EIZScUlNgX4+0qWy3xuNeBCPO0IAAAAAOByPhaL+ne6TkN6tFL0dfXkV8NHCa0a6m/3tFfDujVVajWa9tVWzVy0U0dOntGeX3K1dd8plZba1D/5OiVFhSrA7+yvtEXFVk37z9mnKwHuiCtfAAAAAABuo2lobY3+Y5Imf/GTdmRla/GGg1qecUg1fH3k42NR2TQwxkh+NXxks0klVpuaNKwli6X8HDGAO+DKFwAAAACAW6kT5K+n70hQt/gwlVptKiy2Kr+gRLmni5Wdf/Yn53Sx8gtK5eNrUYPgAPXtUH5yX8BdcOULAAAAAMDt1PD10X39W6tdZKhO5RepVk0/BQXUUFDNsz+1avopMMBXvj5cUwD3R/EFAAAAAOCWLBaL2rZqWNVhAFeNEiEAAAAAAIATUXwBAAAAAABwIoovAAAAAAAATkTxBQAAAAAAwIkovgAAAAAAADgRxRcAAAAAAAAnovgCAAAAAADgRBRfAAAAAAAAnIjiCwAAAAAAgBNRfAEAAAAAAHAiii8AAAAAAABORPEFAAAAAADAiSi+AAAAAAAAOBHFFwAAAAAAACeyGGNMVQfhDowxstkuPhS+vj6yWm0uiMj5vCUX8nA/3pILebgfb8mlqvLw9a28/3O51OPmpfKWfevuGGfnY4xdg3F2Psa4co+bAMUXAAAAAAAAJ6KUBwAAAAAA4EQUXwAAAAAAAJyI4gsAAAAAAIATUXwBAAAAAABwIoovAAAAAAAATkTxBQAAAAAAwIkovgAAAAAAADgRxRcAAAAAAAAnovgCAAAAAADgRBRfAAAAAAAAnIjiCwAAAAAAgBNRfAEAAAAAAHAiii8AAAAAAABORPGlAitXrtRf/vIX9enTR1FRUXrppZcq7FdcXKzXXntNXbp0UUJCgu6//35lZmaW67d7927df//9SkhIUJcuXTR27FgVFxc7O40KuVMsFdm3b59eeOEFDR48WDExMUpNTa2w36xZs9SvXz/FxcVp0KBBWrJkSbk+eXl5ev7559WxY0clJibq8ccf19GjR52dgiRpwYIF+vOf/6yUlBQlJCRo8ODBmj17towxHpXHsmXLdPfdd6tTp05q06aNevfurb///e/Ky8tz6Ld48WINGjRIcXFx6tevnz7//PNy27rU74srnD59WikpKYqKitKPP/7osM7d98mcOXMUFRVV7uf111/3qDzKfPHFF7r55psVFxen5ORkPfjggyosLLSv94TP1j333FPhPomKitK8efPs/TxlnzhbUVGRJkyYoF69eqlNmzbq0aOHXnvtNYc+xhhNnTpVPXr0UHx8vIYOHapNmzaV29aRI0eUlpamxMREdezYUX/729+Un5/vokw8w08//aTo6GglJiaWW+eJ5zHuwGq1atq0abrrrruUnJysjh076p577tH69evL9WWMKxfjdOW85dwU8GgG5fz97383AwYMMM8995xJSkoyY8aMqbDf6NGjTfv27c2sWbPM8uXLzZ133mm6detmcnNz7X2ys7NNly5dzF133WWWL19uZs2aZdq3b3/BbTqTO8VyId9++61JSUkxaWlpJjU11QwcOLBcn7lz55qoqCjzxhtvmNWrV5vRo0ebmJgYs3HjRod+w4YNMykpKWbevHlm4cKFJjU11QwaNMiUlJQ4PY/bb7/djBgxwsybN8+sWrXKvP7666Z169Zm0qRJHpXHl19+aV577TWTnp5u1qxZYz766CPTsWNHc//999v7rFu3zkRHR5vRo0eb1atXmzfeeMNERUWZBQsWOGzrUr4vrjJ27Fhzww03mMjISLN582Z7uyfsk88//9xERkaa5cuXm40bN9p/Dh065FF5GGPMW2+9ZRITE82UKVPM2rVrTXp6unnxxRdNfn6+McZzPls7d+502BcbN240Tz75pImJiTEnTpwwxnjOPnE2q9Vqhg0bZvr27Ws+//xzs3btWvPFF1+Yf/zjHw79pkyZYmJjY817771nVq1aZR577DGTmJho9u/fb+9TXFxsUlNTTWpqqlm0aJGZN2+eSUlJMQ8//LCr03JbNpvN3H777eaGG24wCQkJ5dZ72nmMu8jPzzdJSUnmlVdeMUuWLDHLli0zjz32mImOjjarVq1y6MsYVx7G6ep4y7kp4MkovlTAarXa/96zZ88K/1H/5ZdfTHR0tJk5c6a97dSpUyYhIcFMnTrV3vbOO++YhIQEc+rUKXvbzJkzTXR0tDl8+LBzErgAd4rlQs4d+7/+9a8VFl9+97vfmaeeesqhbejQoebBBx+0L2/YsMFERkaaFStW2Nt2795toqKizLx585wQuaOyX7jONWrUKNOuXTt7jp6QR0U+/fRTExkZaf/MDBs2zAwdOtShz1NPPWX69+9vX77U74sr7Nq1yyQkJJhPPvmkXPHFE/ZJWfGlos9YGU/IY/fu3SYmJsYsXbr0gn087bN1rl69epmHHnrIvuwJ+8QVPvvsM9O+fXtz5MiRC/YpLCw07dq1M+PGjbO3FRUVmZ49e5oXX3zR3vbVV1+ZqKgos3v3bnvbihUrTGRkpMnIyHBK/J5m1qxZpm/fvmbcuHHlii+eeB7jLkpLS012dna5thtvvNH86U9/srcxxpWLcbo63nxuCngKbjuqgI/PxYflu+++k81m04033mhvCwkJUZcuXbR8+XJ72/Lly9W5c2eFhITY2/r37y+bzaaVK1dWatwX406xXMjFxj4rK0t79+5V//79HdoHDBig1atX2y89Xb58uYKDg9WlSxd7nxYtWig6Otph/zhL/fr1y7VFR0crPz9fZ86c8Zg8KlL2+SkpKVFxcbHWrl3r8D2Qzuaxe/duHThwQNKlf19c4eWXX9Ydd9yh5s2bO7R78j45l6fkMWfOHIWHh6t79+4VrvfEz1aZDRs26MCBA7rpppskec4+cYVZs2bpxhtvVKNGjS7YZ8OGDcrPz3cYL39/f/Xt27fc8TUqKkotWrSwt3Xp0kUhISFatmyZcxLwILm5uRo3bpxGjhwpPz+/cus98TzGXfj6+qpu3brl2qKiohxuvWCMKxfjdHW8+dwU8BQUX65QZmamGjRoUO7g27JlS4d7eTMzMx1ODCUpODhYoaGhLp/vwp1iuVJlcZ7/i3PLli1VUlKirKwse7/mzZvLYrE49GvRokWV5frDDz+ocePGql27tsflYbVaVVRUpC1btmjy5Mnq1auXwsPDtX//fpWUlJT7XLVs2dIef9mfl/J9cbb09HTt2LFDjz32WLl1nrZPUlNTFR0drd69e2vKlCmyWq32+CT3zyMjI0ORkZF666231LlzZ7Vp00Z33HGHMjIyJMnjPlvnmjt3roKCgtS7d29JnrNPnK2kpERbt25VkyZN9OyzzyohIUGJiYl64okndOzYMXu/slwr2veHDh2yzwlU0THNYrGoefPmXjFeV2v8+PGKjY1Vz549K1zviecx7qy0tFQZGRkOY8UYVy7GqfJ58rkp4Ikovlyh3Nxc1alTp1x7cHCwcnJyHPoFBweX61e3bl2Hfq7gTrFcqbI4z8+jbLls/YX2T1Xlun79es2fP1/Dhg2T5Hl59OzZU/Hx8fr973+v0NBQjRs3ziHOK83j/O+LMxUUFOjVV1/ViBEjVLt27XLrPWWfhIaGKi0tTa+99pqmTZum7t27a/z48XrllVcc4nT3PI4dO6bvvvtO//73v/Xiiy9q8uTJslgsGjZsmE6cOOFRn61zlZaWasGCBerVq5eCgoIkec4+cbbs7GyVlJRo2rRpys7O1ptvvqkxY8Zow4YNSktLs/fLzc2Vv7+/AgICHF4fHBwsY0y1Ga+rsW3bNs2ePVsjR468YB9PPI9xZ9OnT9eRI0d033332dsY48rFOFUuTz83BTxRjaoOwBXy8vIuaQbuiIgI+fv7uyAiVCeHDx/WiBEjlJycrHvvvbeqw7kiU6dOVUFBgXbt2qW3335bjzzyiN57772qDuuyvP3222rQoIFuvfXWqg7lqnTr1k3dunWzL3ft2lUBAQH64IMP9Mgjj1RhZJfHGKMzZ85owoQJat26tSSpbdu26tWrl/75z3+qa9euVRzhlVm5cqVOnjx5wSe1eZvLOb7abDZJUq1atfTmm2/aj7cNGzbU/fffr9WrV6tz585OjddTXc44+/n5acyYMbrzzjvtV4rh4q7mXHHlypWaNGmSHn30UbVp08ZZIQKVxhvOTQFPVC2KL+np6Ro1atRF+82fP/+ST1SCg4MrfJxlbm6uw+WlwcHB5R7LK52tHp9/GaqzuVMsV6oszry8PIWGhtrbc3NzHdYHBwfr8OHD5V7v6lxzc3P10EMPKSQkRJMmTbLPaeNpeZT9cpyYmKi4uDgNHjxY3377rVq1aiVJ5T5XFeVxKd8XZzl48KDeffddTZ482R7rmTNn7H+ePn3a4/bJufr37693331X27Zt85g8goODFRISYv9sSWfnQoiJidGuXbs0cOBASe7/2Trf3LlzFRIS4lA88pR9ciUu5/japEkTWSwWtWvXzuGX144dO8rX11e7du1S586dFRwcrOLiYhUVFTlc/ZKbmyuLxXLRfZ+Tk6OwsLBKyM59XM44//zzz8rMzNS4cePsn7GioiJJZ8cwICBAAQEBHnke40xXeq64ZcsWpaWlKTU1VcOHD3foyxhXLsapcnjLuSngiapF8WXIkCEaMmRIpW6zRYsWOn78eLl/aM6/H7Wi+x/z8vJ07NixcvetOps7xXKlyuI8f5wzMzPl5+eniIgIe7/Vq1fLGONwT+qePXsUGRnpklgLCwv1pz/9SXl5efr0008dLtH0pDzOFxUVJT8/P+3fv1+9evWSn5+fMjMzHa7GOH/Ohkv9vjjLgQMHVFJSoocffrjcunvvvVdt27a130rlifvkXJ7y2WrVqpX2799f4bqioiJde+21HvHZOldhYaEWLlyoQYMGOUxw6in75Epc7vG1adOmF1xXViAoG6M9e/Y4FOcyMzPVpEkT1axZ095vx44dDtswxmjPnj0OE0F6g8sZ5/nz5ysnJ0e9evUqt65Dhw566KGH9PTTT3vkeYwzXcm54r59+/TQQw8pMTFRL7/8crn1jHHlYpyunreemwKegjlfrlDXrl3l4+Ojb775xt6Wk5Oj7777TikpKfa2lJQUrVq1yl41ls7+74qPj4/LTw7dKZYrFRERoWbNmik9Pd2hff78+ercubP9f1NTUlKUk5Oj1atX2/vs2bNHW7duddg/zlJaWqonn3xSmZmZmj59uho3buyReVQkIyNDJSUlCg8Pl7+/v5KTk/X111879Cn7n8Hw8HBJl/59cZbo6Gh9+OGHDj9lcyGMGTNGL774okfvk/nz58vX11cxMTEek0fPnj2VnZ2tbdu22dtOnTqlLVu2KDY21mM+W+davHixzpw5Y3/KURlP2Seu0LNnT23YsMFeaJGkNWvWyGq1KjY2VpLUrl071a5dWwsWLLD3KSkp0TfffFPu+Przzz9r79699rbVq1crOzv7gk/Rqg5uueWWcv/e3XLLLQoICNCHH36ooUOHSvLM8xh3cvToUQ0bNkxhYWGaOHFihU+UYowrF+N0dbz53BTwGFX2kGs3duDAAbNgwQKzYMEC06lTJ/PAAw/Yl881evRok5SUZGbPnm1WrFhh7r77btOtWzeTm5tr75OdnW26dOli7r77brNixQoze/Zsk5SUZMaMGePqtNwqlgs5c+aMfazvvvtu0717d/vyiRMnjDHGfPXVVyYqKspMmDDBrFmzxrzwwgsmJibGbNiwwWFbw4YNM927dzfz5883ixYtMqmpqWbQoEGmpKTE6XmMGjXKREZGmnfffdds3LjR4aeoqMhj8njsscfM22+/bRYvXmxWrVpl3n33XdOlSxdz00032fNYt26diY6ONi+++KJZs2aNmTBhgomKijLz58932NalfF9cac2aNSYyMtJs3rzZ3uYJ+2TYsGFmypQpZunSpWbp0qVm9OjRJioqyrzyyiselYfVajW33nqr6dOnj5k3b55ZuHChuf32203Hjh3N0aNHjTGe99l65JFHTI8ePYzNZiu3zhP2iSscOnTIJCUlmWHDhpmlS5eaOXPmmC5dupg//OEPDuM2ZcoU06ZNG/P++++bVatWmbS0NJOYmGj2799v71NcXGxSU1NNamqqWbx4sZk3b57p3r27efjhh6siNbc2ceJEk5CQUK7d085j3EVBQYEZNGiQSUxMNIsWLXI4xm/ZssWhL2NceRinq+Mt56aAJ6P4UoHPP//cREZGVvhzrqKiIvPqq6+azp07m/j4eHPfffeZXbt2ldverl27zB//+EcTHx9vOnfubF599VX7P3Ku5k6xVCQrK+uCY79mzRp7v88++8z07dvXxMbG2k+8z5ebm2tGjhxpkpKSTEJCghk+fLg5fPiwS/Lo2bPnBfPIysrymDymTJliBg8ebBITE01CQoIZOHCgGT9+vMnLy3Pot3DhQpOammpiY2NN3759zaxZs8pt61K/L65SUfHFGPffJ//7v/9rfve735n4+HjTpk0bk5qaaj744INyv/C7ex7GGHPixAnz9NNPm/bt25v4+HgzbNgws3PnToc+nvLZys7ONrGxsWbs2LEX7OMJ+8QVtm7dau6++24TFxdnOnbsaEaOHGlycnIc+thsNvPOO++YlJQU06ZNGzNkyJByJ//GGHP48GEzfPhwk5CQYJKSkszIkSPL/fuECxdfPPE8xh381rlKz549HfoyxpWLcbpy3nJuCngyizHGVPXVNwAAAAAAAN6KOV8AAAAAAACciOILAAAAAACAE1F8AQAAAAAAcCKKLwAAAAAAAE5E8QUAAAAAAMCJKL4AAAAAAAA4EcUXAAAAAAAAJ6L4AgAAAAAA4EQUXwBUml69eum5556r6jAAAPAIHDcBoPqg+ALgsm3YsEGTJk1Sbm5uVYcCAIDb47gJALAYY0xVBwHAs8yYMUNjx47VokWLFB4ebm8vLi6WxWKRn59fFUYHAIB74bgJAKhR1QEA8B7+/v5VHQIAAB6D4yYAVB/cdgTgskyaNEljx46VJPXu3VtRUVGKiorSgQMHyt27PmfOHEVFRWn9+vV6+eWX1alTJyUlJemFF15QcXGxcnNz9eyzz6pDhw7q0KGDxo4dq/MvxrPZbHr//fc1cOBAxcXF6YYbbtALL7ygnJwcl+YNAMCV4LgJAJC48gXAZerbt6/27t2ruXPnauTIkapXr54kqX79+hd8zcsvv6yGDRsqLS1NGRkZ+vTTT1WnTh1t3LhRYWFhGjFihJYvX64ZM2YoMjJSN998s/21L7zwgr744gv9/ve/1z333KMDBw7o448/1tatW/XJJ59wqTYAwK1x3AQASBRfAFym1q1bKyYmRnPnzlWfPn0c7l2/kAYNGmjatGmyWCy66667tH//fs2YMUNDhw7VmDFjJElDhw5Vr1699Pnnn9tPItevX69Zs2bp9ddf10033WTfXnJysh588EGlp6c7tAMA4G44bgIAJG47AuACt912mywWi305Pj5exhjddttt9jZfX1+1adNGWVlZ9rb09HTVqVNHXbp00cmTJ+0/sbGxCgoK0tq1a12aBwAArsBxEwC8D1e+AHC6Jk2aOCzXqVNHkhQWFlau/dx70vft26e8vDx17ty5wu2eOHGikiMFAKDqcdwEAO9D8QWA0/n4VHyR3YXay9hsNjVo0ECvv/56het/6355AAA8FcdNAPA+FF8AXLZzL4V2pmuvvVarV69Wu3btVLNmTZe8JwAAlY3jJgCAOV8AXLbAwEBJUl5enlPfp3///rJarXrrrbfKrSstLVVubq5T3x8AgMrAcRMAwJUvAC5bbGysJOmNN97QgAED5Ofnp549e1b6+3Ts2FFDhw7VlClTtG3bNnXp0kV+fn7au3ev0tPT9be//U033nhjpb8vAACVieMmAIDiC4DLFh8fryeeeEIzZ87UihUrZLPZtGjRIqe810svvaQ2bdpo5syZeuONN+Tr66umTZtq0KBBateunVPeEwCAysRxEwBgMcaYqg4CAAAAAADAWzHnCwAAAAAAgBNRfAEAAAAAAHAiii8AAAAAAABORPEFAAAAAADAiSi+AAAAAAAAOBHFFwAAAAAAACei+AIAAAAAAOBEFF8AAAAAAACciOILAAAAAACAE1F8AQAAAAAAcCKKLwAAAAAAAE5E8QUAAAAAAMCJ/h+e+n0A5UkGigAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Statistical estimation" + ], + "metadata": { + "id": "S5jc1_Qw6cwB" + } + }, + { + "cell_type": "code", + "source": [ + "fmri = sns.load_dataset(\"fmri\")\n", + "sns.relplot(\n", + " data=fmri, kind=\"line\",\n", + " x=\"timepoint\", y=\"signal\", col=\"region\",\n", + " hue=\"event\", style=\"event\",\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "id": "g7uvGujf6RwU", + "outputId": "584b0819-1687-4ae5-e31a-cea5ec7a63c6" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 4 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDIAAAHjCAYAAADR8z8NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmUXHWdP/4/7157dXfSWci+E8Iqi0AQFAUFFAdEQZEP7jLiijqG0a8zKo6II/4EZtQZFxAZwRXHBRRkZFNRFJIAgYTs6U56r73u/v79UV1NOr3dqq7urqp+Ps7hQCr33nrfbrrvrdd9LZIQQoCIiIiIiIiIqAHIM70AIiIiIiIiIqKgGMggIiIiIiIioobBQAYRERERERERNQwGMoiIiIiIiIioYTCQQUREREREREQNg4EMIiIiIiIiImoYDGQQERERERERUcNgIIOIiIiIiIiIGgYDGURERERERETUMBjIICIAwIEDB7Bu3Tr87Gc/m+mlNJR169bh1ltvnZH3vvXWW7Fu3boZeW8iotmoma6VjzzyCN74xjfiuOOOw7p165DJZGZ6SRU799xzsWnTppleBhHNAAYyiIhmQFdXF2699VZs27ZtppdCRESzzMDAAD760Y8iFArhs5/9LG666SaEw+FpXcPDDz88Yw8CiKjxqTO9ACKqD4sWLcKWLVugqvy1UIktW7ZAUZSK9+vu7sZtt92GRYsWYf369VOwMiIiqrVmuVZu3boV+XweH/nIR3DmmWfOyBoefvhh3HXXXfjQhz40I+9PRI2NGRlEDaZQKEzJcSVJgmEYVX0on21834dlWQAAwzAa/oaWiKjZ8Fo5vv7+fgBAPB6fcNtisTjVyyEiqhgDGUR1rNwD4cUXX8THP/5xnHrqqXjb29429Pe/+MUvcOmll+L444/Haaedho997GM4ePDgiOPcddddePWrX43jjz8el112GZ588klcddVVuOqqq4a2Gavu909/+hPe9ra34cQTT8Qpp5yCf/zHf8TOnTtHXefevXuxadMmnHLKKTj55JNx/fXXT/sN0KZNm3DSSSdh//79ePe7340TTzwRZ511Fm677TYIIYZt+53vfAdXXHEFXv7yl+P444/HpZdeivvvv3/EMdetW4fPf/7z+N///V9cdNFFOO644/Doo48O/d2RqbFdXV24/vrrceaZZ+LYY4/FRRddhJ/85CdDf//EE0/gsssuAwBcf/31WLdu3bCv/ZNPPokPf/jDeOUrX4ljjz0W55xzDv7t3/4NpmnW9GtFRNQMeK2szFVXXYVPfepTAIDLLrsM69atG+ozcdVVV+H1r389nnnmGVx55ZU44YQTcPPNNwMA+vr68M///M8488wzcdxxx+Hiiy/Gz3/+82HHLn99vvOd7+Cee+7Ba17zGhx77LF405vehC1btgxtt2nTJtx1110AMHQNPLznU9DrMxHNXnyMSNQAPvKRj2DZsmX42Mc+NvRh/Bvf+Aa+/vWv44ILLsBll12G/v5+/OAHP8CVV16Je++9F4lEAgDwP//zP/j85z+PU045Be94xzvQ0dGBa6+9FolEAgsWLBj3ff/4xz/ive99LxYvXowPfvCDME0TP/jBD/DWt74VP/vZz7B48eJh23/0ox/F4sWLcd111+G5557Dj3/8Y7S1teGTn/zkuO9TLBYD3cQpioJkMjnhdp7n4T3veQ9OOOEEfPKTn8Sjjz6KW2+9FZ7n4SMf+cjQdt///vdx7rnn4g1veAMcx8Gvf/1rfOQjH8G3vvUtvPKVrxx2zD//+c+47777cOWVV6K1tRWLFi0a9b17e3vxlre8BZIk4corr0RbWxseeeQRfPrTn0Yul8M73vEOrFq1Ch/+8Idxyy234PLLL8fJJ58MAHjZy14GALj//vthmibe+ta3oqWlBVu2bMEPfvADHDp0CLfccsuE509ENBvxWlky0bXymmuuwYoVK3DPPffgwx/+MBYvXoylS5cO/X0qlcJ73/teXHTRRbj44osxZ84cmKaJq666Cvv27cOVV16JxYsX4/7778emTZuQyWRw9dVXD3uPX/3qV8jn87j88sshSRK+/e1v40Mf+hAefPBBaJqGyy+/HN3d3Xj88cdx0003jVhjJddnIpqlBBHVrVtuuUWsXbtWXHfddcNeP3DggFi/fr34xje+Mez1F154QRxzzDFDr1uWJU477TTxpje9STiOM7Tdz372M7F27Vrx9re/fei1/fv3i7Vr14qf/vSnQ6+98Y1vFGeccYYYGBgYem3btm3i6KOPFv/0T/80Yp3XX3/9sPVce+214rTTTgt8nhP986pXvWrCY33qU58Sa9euFV/4wheGXvN9X7zvfe8TGzZsEH19fUOvF4vFYfvati1e//rXi//3//7fsNfXrl0rjj76aLFjx44R77d27Vpxyy23DP35n//5n8XGjRtFf3//sO0+9rGPiZNPPnnoPbds2TLi6z3WuoQQ4lvf+pZYt26d6OjoGHqt/HUjIprNeK2s/Fr505/+VKxdu1Zs2bJl2Otvf/vbxdq1a8UPf/jDYa/ffvvtYu3ateIXv/jF0Gu2bYvLL79cnHjiiSKbzQ77+px22mkilUoNbfvggw+KtWvXioceemjotc997nNjXsOCXp9f9apXiU996lMTni8RNR9mZBA1gCuuuGLYnx944AH4vo8LLrhgqM4VAObOnYtly5bhiSeewDXXXINnnnkGqVQKH//4x4f1cXjDG96AL33pS+O+Z3d3N7Zt24b3vOc9aGlpGXr96KOPxplnnomHH354wnWecsopeOCBB5DL5RCLxcZ8r3/4h38YykoYj2EYE25TduWVVw79dzk74g9/+AP+9Kc/4aKLLgIAhEKhoW3S6TQ8z8PJJ5+MX//61yOOd+qpp2L16tXjvqcQAr/73e9wwQUXQAgx7Htz1lln4de//jWeffbZCc/18HUVCgWYpomTTjoJQgg899xzOOqoo8Y/eSKiWYjXypJKrpWj0XUdl1566bDXHnnkEbS3t+P1r3/90GuapuGqq67Cddddh7/+9a941ateNfR3F1544bCskFNOOQUAsH///kBrqOT6TESzEwMZRA3gyLTUPXv2QAiB888/f9TtyzdinZ2dADAsZbT892OVRpSV912xYsWIv1u1ahUee+wxFAoFRCKRodeP/IBdTtlNp9Pj3pwtWbIES5YsGXc9lZBlecTxyufR0dEx9Nr//d//4Rvf+Aa2bdsG27aHXpckacQxj/wejKa/vx+ZTAb33HMP7rnnnjG3mUhnZyduueUWPPTQQ0in08P+LpfLTbg/EdFsxGtlbcyfPx+6rg97raOjA8uWLYMsD2+vt2rVKgAvfR3KFi5cOOzP5aBGJpMJtIZKrs9ENDsxkEHUAI58uuL7PiRJwn//93+P2jn98Bum6XTkDU6ZOKLJ5pHy+XygDvOKoqCtra2qtR3pySefxD/+4z/i1FNPxb/8y7+gvb0dmqbhpz/9KX71q1+N2P7wp0Nj8X0fAHDxxRfjkksuGXWbw5uZjcbzPLzzne9EOp3Ge97zHqxcuRKRSARdXV3YtGnT0HsQEdFwvFaWTPZaGeR6F2QNo5noHIHKr89ENDsxkEHUgJYuXQohBBYvXjzqU6Cy8lOfffv24fTTTx963XVddHR0jPuhurzv7t27R/zdrl270NraWrObwO9+97u47bbbJtxu0aJFeOihhybczvd97N+/f9jXpnwe5adrv/3tb2EYBr7zne8Me/L005/+tNLlD2lra0M0GoXv+zjzzDPH3Xasp0rbt2/Hnj178OUvfxn/8A//MPT6448/XvW6iIhmI14ra2fRokV44YUX4Pv+sEDMrl27AIzMMglirOvgVFyfiaj5MJBB1IDOP/983Hzzzbjtttvw7//+78NuBoQQSKVSaG1txbHHHouWlhb86Ec/wqWXXjqURvvLX/5yRMnCkebNm4f169fj3nvvxfvf//6h1Nft27fj8ccfx8UXX1yz85mKut+77roLn/nMZwCUviZ33XUXNE3DGWecAaD0tEiSJHieN7TPgQMH8Pvf/77C1b9EURS89rWvxS9/+Uu8//3vx9q1a4f9fX9//9BTsnA4DGBkmm35BvHwp1ZCCHz/+9+vel1ERLMRr5W1c/bZZ+Oxxx7Db37zm6E+Ga7r4s4770QkEsGpp55a8TEPvw6Wv27A1Fyfiaj5MJBB1ICWLl2Kj370o/jqV7+Kjo4OvOY1r0E0GsWBAwfw4IMP4i1veQve/e53Q9d1fOhDH8IXvvAFXH311bjgggvQ0dGBn/3sZyNqgUfzT//0T3jve9+Lyy+/HJdddtnQSLl4PI4PfvCDNTufWtf9GoaBRx99FJ/61Kdw/PHH49FHH8Uf/vAHXHPNNUOBhHPOOQff+9738J73vAevf/3r0dfXh//5n//B0qVL8cILL1T93h//+MfxxBNP4C1veQve/OY3Y/Xq1Uin03j22Wfxpz/9CX/5y18AlL6HiUQCd999N6LRKCKRCI4//nisXLkSS5cuxZe//GV0dXUhFovht7/9beC6YiIiKuG1snYuv/xy3HPPPdi0aROeffZZLFq0CL/97W/x97//Hf/8z/88bm+PsWzYsAEAcMMNN+Css86Coii46KKLpuz6TETNZfQiPSKqe+973/tw6623QpZl/Md//AduuukmPPTQQ9i4cSPOPffcoe3e/va34zOf+QwOHjyIL3/5y3jyySfxjW98A/F4fMKnNmeeeSa+/e1vo6WlBbfccgu++93v4oQTTsAPf/jDGbuZCkJRFHz7299Gb28vvvKVr2Dr1q344Ac/iI985CND25xxxhn44he/iN7eXvzbv/0bfv3rX+MTn/gEzjvvvEm999y5c/HjH/8Yl156KR544AF84QtfwPe//32k02l84hOfGNpO0zTceOONUBQF//qv/zrU9V3TNHzzm9/E+vXr8a1vfQu33XYbli9fji9/+cuTWhcR0WzEa2VthEIh3HnnnXjDG96An//857jxxhuRSqXwpS99CVdffXVVxzz//PNx1VVX4dFHH8U//dM/4brrrgMwdddnImoukgjSdYeImorv+zjjjDNw3nnn4YYbbpjp5dTUpk2b8Nvf/hZPPfXUTC+FiIgaWDNfK4mIGh0zMoianGVZI7qE33vvvUilUjjttNNmaFVERET1g9dKIqLGwh4ZRE3u6aefxpe+9CW87nWvQ0tLC5577jn85Cc/wdq1a/G6171uppdHREQ043itJCJqLAxkEDW5RYsWYcGCBbjzzjuRTqeRTCbxxje+EZ/4xCeGjTUjIiKarXitJCJqLOyRQUREREREREQNgz0yiIiIiIiIiKhhMJBBRERERERERA2DPTJqzPN89PfnJ30cWZbQ1hZFf38evt9c1T88t8bEc2tczXx+PLep0d4er8lxanVNBPi9blQ8t8bEc2tMPLepU6vrItUOMzLqlCxLkCQJsizN9FJqjufWmHhujauZz4/nNns089eD59aYeG6NiefWmJr53Kg6DGQQERERERERUcNgIIOIiIiIiIiIGgYDGURERERERETUMBjIICIiIiIiIqKGwUAGERERERERETUMBjKIiIiIiIiIqGEwkEFEREREREREDYOBDCIiIiIiIiJqGAxkEBEREREREVHDYCCDiIiIiIiIiBoGAxlERERERERE1DAYyCAiIiIiIiKihsFABhERERERERE1DAYyiIiIiIiIiKhhMJBBRERERERERA2DgQyiBiGEgBBippdBREREREQ0oxjIIGoARcvFnkMZHBoozPRSiIiIiIiIZpQ60wsgorH5QiCVtXCwr4Ci5cLQXbREDYQN/ugSEREREdHsxIwMojplOR4OdOew91AWkATmtoTguB5600WWmBARERER0azFx7pEdUYIgXTexqH+AvJFB8moDlUtxRxjYQ39GQut8RBiYW2GV0pERERERDT9mJFBVEcc10dnbx67D2bguB7aEsZQEAMAdE2BEAI9qQJ8ZmUQEREREdEsxIwMojqRLdg42FdAtmAjHtGga8qo28UiGlJZG61xGy0xY5pXSURERERENLMYyCCaYa7nozddRHd/ET4E2hIGJEkac3tVkSErEnpSRcQjGhSZiVVERERERDR78BMQ0QwqmA72HcriQE8eui6jJTZ+EKMsHtaQKdhIZe1pWCUREREREVH9YEYG0QzwfYH+jIlD/QU4ro+2uAFZnjiAUSbLEgxNQU+6iERUg6aOXoZCRERERETUbJiRQTTNTNvF/u4s9nZlIctAa6KyIEZZNKQiX3TQn7GmYJVERERERET1iRkZRNNECIFUzsbBvjxM20UypkNVqo8lSpKESEhFb9pEMqYjpPPHmYiIiIiImh8zMoimge146OjNYc/BDHxfoDVuTCqIURY2VJi2i760WYNVEhERERER1T8+wiWaYum8jUN9eeSKzpT0s4hFNPRlLLTEDURDWk2PTUREREREVG8YyCCaIq7noztVRM9AEZAw4VjVahmagkLRRW+qiMh8dUreg4iIiIiIqF6wtIRoCuSKDvYczOJgbx4hQ0Eyqk9pgCEW0dCftZAtOFP2HkRERERERPWAgQyiGutLF7GrI41c0UFr3IChTf1oVE2VIUlAT6oI3xdT/n5EREREREQzhYEMohoSQqC7vwAfQEtcr2qsarXiEQ3pvI103p629yQiIiIiIppuDGQQ1VDR8pA3XUSM6W8/o8gyNFVC90ABrudP+/sTERERERFNBwYyiGqoYDpwHA+aOjM/WrGwhlzRRX+G41iJiIiIiKg5MZBBVCNCCKTzds3Hq1ZCkiSEDBm9aROW483YOoiIiIiIiKYKAxlENWI5HvJFB+EZKCs5XMRQUbRc9DErg4iIiIiImhADGUQ1UjBd2K4HQ5+5jAyglJURDavoS5somO6MroWIiIiIiKjWGMggqpFM3oai1MePVEhX4Tg+etNFCMFxrERERERE1Dzq41MXUYOzHQ8500VIn9myksPFIioGshZyRWeml0JERERERFQzDGQQ1UDBcmE5Lgytfn6kdE2BEEBvugifWRlERERERNQk6udTV5V27tyJd77znTjxxBOxceNG3HTTTbBte8L9PvGJT+D888/HiSeeiFNPPRVXXnklHnvssWlYMTWjbMGGLEmQJGmmlzJMLKIilbWRyU/8M0FERERERNQI6icPvgrpdBpXX301li9fjltvvRVdXV248cYbYZomPvvZz467r+M4eMc73oHly5fDsiz85Cc/wfve9z58//vfxymnnDJNZ0DNwHF9ZAsOQjPc5HM0qiJDUST0pIqIhTWoddLDg4iIiIiIqFoNHci4++67kc/ncdttt6GlpQUA4HkePve5z+H9738/5s+fP+a+X//614f9+eyzz8arX/1q/OIXv2AggypSsFyYtofWuD7TSxlVLKxhIGchnbMxJxma6eUQERERERFNSkM/nn3kkUdwxhlnDAUxAOCCCy6A7/t4/PHHKzqWoiiIx+NwHDZGpMrkCw4koO7KSspkWYKhKehOFeG43kwvh4iIiIiIaFIaOiNj165deNOb3jTstUQigfb2duzatWvC/YUQ8DwP2WwWP/vZz7B37158/vOfn/S6VHXy8aHyGM96GedZS810bp7vI2c5CIdVKIoMRR48N7m+zi0R1dGfsZAu2FjQFq3qGM30fTtSM58b0Nznx3Orf7W4JgLN8/UYDc+tMfHcGhPPrTE187lRdRo6kJHJZJBIJEa8nkwmkU6nJ9z/Jz/5CT7zmc8AACKRCL72ta/hpJNOmtSaZFlCa2t1HxRHk0iEa3asetMM55bOWVA1FS3xEBT5pYyMaNSYwVWNTtU1FF0foYiBsFH9j34zfN/G0sznBjT3+fHc6lOtr4lAY389JsJza0w8t8bEc2tMzXxuVJmGDmRM1qtf/WocffTRGBgYwP3334+PfvSjuO2223DOOedUfUzfF8hkCpNem6LISCTCyGSK8Dx/0serJ810bof68shkTZSnriqyjGjUQD5vwfPr79x6UyZeBLB4XqzifZvp+3akZj43oLnPj+c2NWoVfKjVNRHg97pR8dwaE8+tMfHcpk6tg/I0eQ0dyEgkEshmsyNeT6fTSCaTE+7f1taGtrY2AKVmn+l0Gl/5ylcmFcgAANet3Q+X5/k1PV49afRz832BvrQJTZFG/EL1fL8uLyCRkILu/gJiYQ2xsFbVMRr9+zaeZj43oLnPj+dWv2q99kb/eoyH59aYeG6NiefWmJr53KgyDV1ktHLlyhG9MLLZLHp6erBy5cqKj7dhwwbs3bu3VsujJle0XRRtty7Hro7F0BR4vkBvugghxEwvh4iIiIiIqGINHcg4++yz8cc//hGZTGbotfvvvx+yLGPjxo0VH+9vf/sblixZUsslUhPLmy48TzRc06F4RMNA1kKmwAk9RERERETUeBq6tOSKK67AnXfeiWuvvRbvf//70dXVhZtuuglXXHEF5s+fP7Td1Vdfjc7OTjzwwAMAgD/84Q+499578cpXvhILFy5EOp3Gr371Kzz22GO4+eabZ+p0qIEIIZDOWdC1xgpiAKUJApIE9KSKiIc1yHJ9jo0lIiIiIiIaTUMHMpLJJO644w584QtfwLXXXotoNIrLLrsMH/vYx4Zt5/s+PM8b+vOSJUtg2za++tWvYmBgAK2trVi3bh3uvPNOnHbaadN9GtSAipaHoukiHGrMH6F4REM6ZyOVs9CWCM30coiIiIiIiAJrzE9hh1m1ahVuv/32cbe58847R+zzn//5n1O4Kmp2BcuB4/lIqI2XkQGUpqtoqlTKyojo0Br0PIiIiIiIaPbhpxeiCpXKSuyG//AfC2vIFR0MZM2ZXgoREREREVFgjf1JjGgGWI6HvNlY00pGI0kSwoaC3rQJy/Em3oGIiIiIiKgOMJBBVKGC6cJxfehaYwcyACBsqChaLlJZa6aXQkREREREFAgDGUQVyuRtqI0fwwBQysrQNRmZgg0hxEwvh4iIiIiIaEIN3+yTaDrZjoec6SKkT9+PTiZv45HNndjZkcEbNi7HyqMSNT1+SFdQtDyYtoewwV8JRERERERU35iRQVSBguXCclzo2tT/6BQtFw8+eQC3/Wwr/r69F+m8jd/9ZX/NMyc0VYHjlgIZRERERERE9Y6PX4kqkMnbkCUJkiRN2XvYjoe/bOvG41sPDTXhXDIvhu6BIrpTRWzfn8K6pa01fU9FlpAt2GiNGzU9LhERERERUa0xkEEUkOP6yBWdKZtW4vk+ntrei0c2H0Su6AAA5rWGce7LFmHN4iQe+nsHHt96CI9uPoi1S1pqGkwxdAW5ogPX86EqTNQiIiIiIqL6xUAGUUAFy4Vpe2iN6zU9rhACz+4ewP891YGBwekhLTEdrzxpEY5d0QZZLgUsTt8wH088143OvgJ2dWawalGyZmswNAWpvA3T9hALM5BBRERERET1i4EMooDyBQcSULNMCCEEdnZk8NDfD+BQfxEAEA2peMUJR+HktXOhHJEZEQ1pOHndXDzxXDce3XKwpoEMWZYgfIGC6SAW1mp2XCIiIiIiolpjIIMoAM/3kcpbMPTaZCvs787hob8dwN6uHABA12SceewCnH7MfOja2KUrZ2xYgCef78G+rhz2dmWxbH68JuspryGTd9DeIqa0BwgREREREdFkMJBBFEDBdGE6Hlqikysr6R4o4v/+3oEX9qcAlJpsnrp+Hs46bgEioYkzIRJRHSesnoO/b+/FY5sPYtn5tQtkGJoyOJXFm9bxskRERERERJXgpxWiAPKmAwgx1K+iUqmchYef7sSWnX0QApAk4ITVc3HOCQuRjFU2KWTjcQvx1I5e7OzMoLM3j6PmRqta05E0VUa26KBoMZBBRERERET1i59WiCbg+wLpnA1jnJKPseRNB49tOYgnn++B5wsAwNHLWvCqkxahvSVc1Xpa4waOWzkHW3b24bEtB/GWc1dXdZwjSZIEWZKQNzmGlYiIiIiI6hcDGUQTKNouiraLeAVNMC3bw+NbD+JPzxyC7foAgOUL4jj35EVY3B6b9Jo2HrcAW3b24fl9KXQPFDGvtbqgyJEMTUEm78Cb40OROb2EiIiIiIjqDwMZRBPImy48T4yYIjIazxd45KkD+N0Te5E3XQDAwjkRnHvyIqxcmKhZE832ljDWL2vFtr0DeGzrQVx69sqaHNfQZWTzpfISjmElIiIiIqJ6xEAG0TiEEEjnLOhasA/1jzzdiT881QEAaEsYeNVJi3DM8tYpmQJy1vELsW3vAJ7d3Y9XnngU2hKhSR9TkWV4vkDRcjmGlYiIiIiI6hIfuRKNo2h5KJpuoOaXQgg8vaMHAPCqly3CP/7DBmxY0TZlo0wXzolg9eIkhAAe33qoZsfVVBmZvF2z4xEREREREdUSAxlE4yhYDhzPh6ZO/KPS2VdAKmdD12RsPG7htPSYeMXxCwEAm3f2IV2j4ENIf2kMKxERERERUb1hIINoDKWyEjtQEAMAtu0ZAAAcs3xO4H0ma8m8GJYviMP3Bf70TG2yMjRVhu16KFpuTY5HRERERERUSwxkEI3BcjzkTRchfeKxq0IIbNtbCmScsKZ9qpc2zFmDWRl/396DXNGZ9PEkSYIMCYUiAxlERERERFR/GMggGkPBdOG4PnRt4kDGof4iBrIWNEXG+hVt07C6l6xYGMeiuVG4nsCfn+2qyTENXUa6YMH3RU2OR0REREREVCsMZBCNIZO3oU4cwwAAPLenHwCwZkkSRoDARy1JkoSzTihlZTz5fHdNSkIMTYHleCjazMogIiIiIqL6wkAG0Shsx0OugmklL/XHmN5sjLK1i5OY3xqG7fr4y7buSR9PUWR4HlA0GcggIiIiIqL6wkAG0ShKUztc6NrEPyLdA0X0Zy0osoS1S1qmfnGjkCRpqFfGE8911WTiiKZKyBQ4hpWIiIiIiOoLAxlEo8jkbciSBEmSJtz2ucEmn6sXJ2EEaAw6VdYva8WcRAim7eFvL/RM+niGrqBgurA5hpWIiIiIiOoIAxlER3BcH7miE3xaSbmsZFnrVC9tXLIsYeNxCwAAf3rmEBzXn9TxdFWG7focw0pERERERHWFgQyiIxQsF6btBQpk9KRM9KZNKLKENUuS07C68R23qg3JqI686eKpHb2TOpYkSZAA5BnIICIiIiKiOsJABtER8gUHEhCorGTbYFnJyqMSgRqDTjVFloeyMv74zCF43iSzMnQZ2bzNMaxERERERFQ3GMggOozn+0jlLRh6sB+Nl6aVzGxZyeFOXD0XsbCGTN7Glp19kzqWoSkwbQ8mx7ASEREREVGdYCCD6DAF04XpeIGyK3pTRXSnipBncFrJaFRVxhkb5gMAHt96aFLZFKoiw/V8FC02/CQiIiIiovrAQAbRYfKmAwgBWQ4+rWTlwjjCxsyXlRzu5HXtCBsq+rMWntvTP6ljqaqMbMGq0cqIiIiIiIgmh4EMokG+L5DO2TC0YCNUy2Ul65e3TeWyqqJrCl5+zDwAwGNbDkGI6rMyDE1G3vRgu8zKICIiIiKimcdABtGgou2iaLuBppX0ZUx0DRQhSxKOXtoy9YurwmlHz4OhKehOFfHCvlTVxzE0BZbjoWiyTwYREREREc08BjKIBuWLDjxPQFEm/rEoZ2Msr8OykrKQoeKUo9sBAI9tOVh1VkZ5egvHsBIRERERUT1gIIMIgBAC6bwNXQs4rWRv/U0rGc3pG+ZDVWR09hWwqzNT9XEMTUYmxzGsREREREQ08xjIIAJQtEqlE0GmlQxkLRzsK0CSgHV1WlZSFg1pOHndXADAo1sOVn2c8hjWIrMyiIiIiIhohjGQQQSgYDlwPB+aGqCsZDAbY/mCOKIhbaqXNmlnbFgARZawryuHvV3Zqo6hqqUxrAX2ySAiIiIiohnGQAbNekKUppUECWIAGBpnun5ZfZeVlCWiOk5cXcrKeGxz9VkZiiIhnTdrtSwiIiIiIqKq1GeXQqJpZDke8mawaSWpnIXO3gIA4OgGCWQAwJnHLcDfd/RgZ2cGnb15HDU3WvExDE1BruAgYaiQpmCNRERER/J8H64n4HqD/3Z9OK4Hy/Hhej6Omhut26bbREQ0dfibn2a9gunCcX0kohOXiZTLSpbNjyEWrv+ykrLWuIHjVs7Blp19eGzLQbzl3NUVH6PUJ8NF0XIR4U0jERHVgO+XgxSHByx8mLYHy/HguD48X8DzfHhCQBISJAmQFQmO4yMaVhnIICKahfibn2a9TN6GOnEyBoCXxq4es7xtClc0NTYetwBbdvbh+X0pdA8UMa81XNH+sixBeAIF02Egg4iIAnM9H0WrFAh3XR+uL2DZLmzHh+V4pWCG70P4gICABAmyDCiKDEWWENJlKLIKWR6eD5g3HaRyNuYmw1ADjE4nIqLmwU8jNKvZjodcwGkl6byNAz15AMDRy1qmeGW1194Sxvplrdi2dwCPbT2IS89eWfExDE1FOm+jLRGCLLHAhIiIxud6PnbsG8DBnhwcxwOEACBBVgBFlqAqMnRNRlhRoMiVBSPCuopUzkbedJGM6lNzAkREVJcYvqZZrWC5sBwXujbxj8Lzg2UlS+bFEI805g3TWccvBAA8u7sf/ZnKG3eGjNIYVsv2ar00IiJqQrlCKWsiGlLRGtfRlgyhLWmgJWYgHtERNlToWuVBDKCUKShLQLZgTcHKiYionjGQQbNaJm9DliRIAbILnhsqK5m+Jp9CCFiOh3TOQl/aRDo3uZu1hXMiWL04CSGAx7ceqnh/XVXguB6KFsewEhHR+IQQ6M+aUGQJmioHutZWKmQoSOcc2A4D7EREswkDGTRrOa6PXNEJNK0kW7CxvzsHYOrHrgohYFouUlkLA1kLjuMjGdWxqD0Gzy81RpuMVwxmZWze2Yd03q54f0WWkSs6k1oDERE1v6LlIVtwprQ5drkRNa9LRESzCwMZNGsVLBem7QUKZDy/NwUAWNweRWIK6nB9X6A4FLyw4QmgLRHCioVJrFnSguULk2hvCSEa0lAwJ5cNsWReDMsXxOH7An96pvKsDENXkCs6cD1/UusgIqLmli5YcFwfuhawo3YVJEmCqspI5SwIMblAPxERNQ4GMmjWypsOJCBgWUk/AGB9DctKPN9H3nTQn7GQztkQApjbEsKqoxJYuziJpfPjaI0bMAZvABVZxpyEAcvxJn2zVu6V8fftPRU/xTI0BZbN8hIiIhqb6/kYyFgIGVMXxCiLGApyBQdFi+UlRESzBQMZNCsJIZArONACNPnMFR3s7apNWYnrlcpZ+jMmMnkHiixjwZwIVi1KYu2SFixujyMZM6CNMQ82HtFh6CqsSdYCr1gYx6K5UbiewJ+f7apoX1mWICAmnRlCRETNK1twULRdhKdhXLemKnA8gVyx8nJJIiJqTAxk0KxkOz5M24OuBp9WctTcKFpiRsXv5bg+sgUbfWkL+aILTZGxaG4Maxa3YM3iJI6aUypXUZWJ12LoClpiGgrm5AIZkiThrBNKWRlPPt9dcXaFpsrIFGym8RIR0QhCCAxkTaiKPG2jug1dxkDWmnQfKSIiagwMZNCsZDoeXM+HFiCQsW1v5dNKLMdDJm+jL22iaLoI6SqWzo9h9eJSz4v5bRHEwlpV4+ZaYiHIEibdo2Lt4iTmt4Zhuz7+vr2non1DuoKi5cHkGFYiIjpCwXKRLTiITEM2RlnYUFCwXORMNv0kIpoNGMigWcm0XEBM3B8jbzrYcygLIHhZSV+mCNv2EAtrWLYgjjVLWrB6URLtLWFEQ9qkn05FQipiYX3SpR2SJOHkde0AgO370xXtqw2OYWUgg4iIjpTO2/D8YA8LakWRZUAA2SqmcRERUeNhIINmpVzRgaZNHFB4YV8KQgAL50TQGp+4rMT3BYQAls6PY8XCBOYmwwgbaqCGokHJkoS2hAHH9Sdd2rFmcRIAcKAnV3F5iSJLyBZ4w0hERC9xXA+prDUtvTGOFDIUpPI2HJdBdiKiZsdABs065UwCfYyGmod7bk+prCRoNoY52NgsFtFqGrw4UjyiI2yok+7QnowZmNcShhDAzo5MRftyDCsRER0pW3BQtNxAo81rLaQrMG0XuSKbURMRNTsGMmjWMW0PlutNmPJaMF3sPlj6cB907Kppe2iNhwI17pwMTZXRGjdqMgJ19WBWxosdlZWXGJoC02F5CRERlfhCYCBrQVPlKQ3mj0WSJKiyhHTOnPb3JiKi6cVABs06luNB+KUxouN5YX+prGR+axhzEqEJj1vulB6PajVZ50SSUQOaIsOe5CjWwwMZlZSqyLIE4QsUahBMISKixlcwXWSLNiKh6S8rKQsbKjIFtyaBfiIiql8MZNCsky+6CFBVgm17+gEEz8awHA8hXUEsrE9meYGFDQWJ6OSbfi6ZF4WhKSiYLjr7ChXtq2syMjmOYSUiIiCTs+H7mPKsxPHoWqkZdb7I6SVERM2MgQyaVTzfR950oGvjRzKKlotdB0vTSo4J2h/D8pCM6tPWpV2SJLTGDQjxUjZINRRZxsqjEgCAFw9UXl5SsFzYDvtkEBHNZrbjYSBnIWxMf2+MI+majP6sNalrIxER1TcGMmhWsWwPtutBnyDYsH1/Cr4vMK8ljLkt4QmPW85IiEWmJxujLBbREAmpky7vKJeX7KgwkKGpMhzPY3kJEdEsly04MG1vRpp8HiliqCiYDq9NRERNjIEMmlVM24PnCSgTpL0OTSupoMmnriuIhqanP0aZIstoS4RgTbLh5upFpYyMzt58Rem4kiRBliTkTY5hJSKarXwh0J81oWvSjDT5PJKiyPB9IMMR4URETYuBDJpVCpYzYZNP03axq3NwWkngsaseklFt2spKDhePaDA0ZVLBjHhEx4K2CABgZ2eFY1g1BZm8A89neQkR0WyULzrIFR1EjJlr8nmkkKEglbU4IpyIqEkxkEGzhi8E8kUXujb+//Y79qfh+QJzkyG0t0w8rUQIASEwbU0+jxTSVSRjk2/6WW15iaGXJqcULY5hJSKajdJ5CxCYMNtxOoUNBabtIcemn0RETal+rjhV2rlzJ975znfixBNPxMaNG3HTTTfBtsdPJezu7sZNN92EN77xjTjppJNw9tln4+Mf/zg6OjqmadU0Eyzbg+X40CcYWfLc3pfKSoKkyFq2B0NTEJ3BcXMtMQOQAG8ST57WDAYydnakK2qQpsgyPF9w1B0R0Sxk2R5SOQfh0Mz3xjhcqfQRSOesmV4KERFNgYYOZKTTaVx99dVwHAe33norPvaxj+FHP/oRbrzxxnH3e/bZZ/HAAw/gggsuwH/+539i06ZN2L59O9785jejv79/mlZP081yPDieB1UZOzhhOd7Q5I7A00psD/GIBi3ITNcpEg1riIU15CeRlbFobnToCdaBnlxF+2qqjEyetchERLNNtmDDsl0YE0wDmwnhkIpMwYFpM9BORNRs6qeYsQp333038vk8brvtNrS0tAAAPM/D5z73Obz//e/H/PnzR93v5JNPxn333QdVfen0X/ayl+GVr3wl7r33XrzrXe+ajuXTNCtaLmSM34isXFbSljAwrzXYtBJPCMSneVrJkWRJwpxECLsOZiCEqKrZmixLWHVUEs/s7seLHWksnR8PvG9IL41htRyvLm9miYio9nxfoD9rQdfkumjyeSRDU5ArlPp3hPSGvuUlIqIjNHRGxiOPPIIzzjhjKIgBABdccAF838fjjz8+5n6JRGJYEAMAFixYgLa2NnR3d0/VcmkGCSGQKzpQ1fFvtLaVy0qWBSwrcTwYmjqjZSVl8YiGsKHCnETTz3KfjBerGMNqux7LS4iIZpFc0UG+6CBSB9fAseiajIGsBV8EL5kkIqL6V79XngB27dqFN73pTcNeSyQSaG9vx65duyo61u7du9HX14dVq1ZNel1qDSZXlBtm1VPjrFqZiXOzHQ+O5yNsaGO+r31YWclxK+cEWp/jCrQmDETCpbGrM/l9U1UZ7S1hdPbmEYtU9/5rl7RAAnCov4i86SIRfSnTRJHlYf8+kqbIsByvJv//T7dm/nkDmvv8eG71r1a/E5rl6zGaRj23bNGGokjQtbFvJye6dky1WERHruDAdn3EwrUdkd6o37cgeG6NiedGs0lDBzIymQwSicSI15PJJNLp4E+UhRC44YYbMG/ePFx00UWTWpMsS2htjU7qGIdLJCYub2hU03lu6ZwFI6ShLRGGPEamxdPbe+B4PuYkQ1i7fM6EGRlCCFiewNKjWtCaHH4uM/V90wwNBUcgFFYnbGo6mkQ8jKUL4th7KIsDvQWcviA5Ypto1Bh1X1lV4UtAIhmBMsGI23rVzD9vQHOfH8+tPtX6mgg09tdjIo10bkXLhSfJmN8eD1S2Mda1Yzp4KEJSlJr/v1jWSN+3SvHcGhPPjWaDhg5k1Mqtt96KP//5z/j2t7+NSCQyqWP5vkAmU5j0mhRFRiIRRiZTnNQkino0E+fWM1BENmtBH+cD9pPbDgEAjl7aimzOnPCYpu3BcT04loOBgdJ5zPT3TQgBSXg41FMsTTKpwsqjEth7KIstL/bgmGUtQ68rsoxo1EA+b8HzR56b6/nIFRwcjGqI1vip11Sb6e/bVGvm8+O5TY1afeCr1TUR4Pe63nQPFNA/UMCcZAi2NfaI04muHdPBdRzs7UzBUAC1hk9zG/H7FhTPrTHx3KbOVAVCqXoNHchIJBLIZrMjXk+n00gmRz5JHs2PfvQj/Md//Ae++MUv4owzzqjJuly3dj9cnufX9Hj1ZDrPLZU1IY8zntRxPWzfnwIAHL2sJdAvyELRRjJqQJGkEecxk9+3ZERHX8qE43iQq8iMWHVUAv/39w7s7EjDtt0RKXye74/69ZEA2I6PbMFu2IafzfzzBjT3+fHc6let197oX4/xNMq5eb6PnoEiVEUK/IFirGvHdNAVGamcjXTORjJa++bcjfJ9qwbPrTHx3Gg2aOgio5UrV47ohZHNZtHT04OVK1dOuP8DDzyAf/3Xf8WHP/xhXHbZZVO1TJphruejYHvQx6nT3tmRgeP6SEZ1HDVn4qwcIQQcTwzrIVEvYmENkZBadePNhXMiiIZU2I6Pfd2VjmGVOIaViKjJ5QoO8qaLiNEYz8NkWYIslcpMiYioOTR0IOPss8/GH//4R2QymaHX7r//fsiyjI0bN4677xNPPIHrrrsOb37zm3HttddO9VJpBpm2B9vxoI+TJfDcnsFpJcuDTSuxXR+GpiAaqr8SClWR0RY3qp5eIkkSVi+qbnqJoSkoWKWvNxERNadUzoIsoaqsv5kSMhRkCg4sXp+IiJpCQwcyrrjiCkSjUVx77bV47LHH8NOf/hQ33XQTrrjiCsyfP39ou6uvvhrnnXfe0J937tyJa6+9FsuXL8cb3/hGPP3000P/7Nu3byZOhaaQZXsQvhjzhst1/aGykmOWtQY6pml7iIdVGHp9llDEIzp0Tan6hm1oDGtHZYEMXZNhOxzDSkTUrIqWi3S+vkeujsbQFFi2h3xx7H4eRETUOBrrKnSEZDKJO+64A1/4whdw7bXXIhqN4rLLLsPHPvaxYdv5vg/Pe+kD3ebNm5HNZpHNZvHWt7512LaXXHIJbrzxxmlZP02PvOlAVsZ+arSzMwPb9ZGIaFjUHqyRj+v6SMxgB/aJhA0VyaiO/oxZVb+KlUclIElAT8pEKmcFbhwqSRIkAHnLRbLKZqNERFS/MnkbjusjEa2/jMTxSJIETZUwkLXQGjcCZV8SEVH9auhABgCsWrUKt99++7jb3HnnncP+fOmll+LSSy+dwlVRvfB9gbzpjDuKdNveCstKHA+aqtT906iWmIG+jAnP96HIlSVfhQ0VS+bFsK8rhxcPpHHK0fMC76vrMrJ5G35rpKHSjomIaHyu52MgZyFkNGZCb9hQkS86KFouInVYGkpERME15pWIKCDL8eA4PnRt9P/VXc/HC/tSAID1FZSVxMJq3U/miIU1REMaCmZ1ZR5DfTIqLC8xNAWm7cG0WV5CRNRMckUHBdNFWK/vQP5YNFWG4/nIFlheQkTU6BjIoKZm2h4czx9zbvyuzgwsx0MsrGHJvFigY5amm9R/WqosS5iTCMF2fAghKt5/zWCfjN0HsxWNuVIVGa7no2ixoRoRUbMQQpRGmcuN1eTzSCFdQSpnwfM5vpGIqJExkEFNrWi7kMcJOAyVlSwLVlbiuI1RVlIWj2gI6WpVE0zmtYYRj2hwXB97u7IV7auqMrIFjrkjImoWRctFJu8g2iDXv7GEDRUF00W+yKxBIqJGxkAGNS0hBHIFB9oYZSXeYWUlxywPVlZStDxEQypCdTqt5Ei6pqA1ZqBoVh7IkCRpKCuj8jGsMvKmB8dlVgYRUTNIF2w4ng9tnJ5TjaCcTZJhsJ2IqKExkEFNy3Z8mLYHXR39f/Pdh7Iw7VJgoqKykphe92Ulh0vEdCiKVFF5SFm5T8aOKvpkWI6HAstLiIganuP6GMhYCBuNHcQoCxsK0jkHdpUjyomIaOYxkEFNy3Q8uJ4PbYxAxrY9L5WVBKn3dVwfmiIj2mCdzqMhFfGwhrxVeRrtioUJyLKE/oyFvrQZeL9yoKdgsqEaEVGjyxUdFG0XYaOxy0rKDF2BabvIFXmNIiJqVAxkUNMyLRcQGDV7wvN9PL/vpbGrgY5nl8a1NUpZSZkkSWhNhOB6lTf9NHQFS+eXslV2HEhVtK+uysgWnKoajRIRUX0QQmAgY0JV5IbKRhyPJElQVRnpvMVrFBFRg2Igg5pWruhA00a/6dp7KIei5SESUrFsfjzQ8RzHR0uDlZWUxSMawrqKQhVZGWvK5SX7Kysv0TUZpu3BYuouEVHDKlguskUHkSbJxiiLGAqyBbeqZthERDTzGMigpuS43mB/jNGzJ8rZGEcvbQlUVuK6pRGukQYrKylTFRlzEiGYVhV9MgYbfu45lKkoKKGpMhzP400iEVEDS+dteP7YZZqNSlMVOK6HbMGe6aUQEVEVmuuqRDTItD1Yrjfmjdeeg6VxouWpHBMp2i7CIRWhBm50lojq0FS54uZmc5MhtMR0uJ7Ai/tTgfeTJAkypKqyQIiIaOY5rodU1mqa3hhHMjQFqZwN32d5CRFRo2Egg5qSZXsQPkbNtsgWbPQONq5cGrCsxHYEWmIG5AYsKykLGyqSUQ2FCkexSpI0lJWxbU9/Rfvqmoxs3obPGmQiooaTLTgoWu6kekP5QiCbt1G0XLhu5b2aplI4pCBvOsizMTURUcNpzhA7zXp508VYo+73HCplYyycEwn0lMn1fKiKhGio8X9cWuIh9GcseL4PRQ4ex1y9KIknn+/Bc7v7cN4piwLvp2sKiqYLy/aa9okeEVEz8oVAf8aCplbf5FMIgR/cvx27OjPDXldkCaoiQ1XK/y79tzLKa6NtV/53WyKEtUtaqj5HRZYhBJDNO4hH9KqPQ0RE04+fLKjpeL6PvOlA10aPZJTLSpYvCJaNYVqlD+GhJvggHg9riIY1FE0PsUjwQMaKhXGoioSBrIWelIk5CSPQfpoqI+P5MBnIICJqKAXTRa5oIxapvjfUix2ZEUEMAPB8Ac/3YNUgEeKq167FioWJqvcPGwpSeQvtreGm6wNCRNTM+MmCmo5le7BdD/Hw6Ddf5YyM5QuDBTIsx8O81nBDl5WUybKEtoSBvYeyiAo18FM2TVWwfGECLx5IY8eBFOYcMz/weyqyhKLpojUeLPhBREQzL52z4ItSs+hqCCHwyNOdAIBzTlqEs09YCNv24Hr+4D9i+H/7pX97o/3diP8W6B4ooLO3gEc3H5xUICOkK+jPWsgVHV6niIgaCAMZ1HRM24PnCSij3HylchYGshYkKVh/DM/zoSgSomMERRpRPKLD0FVYtldRlsmaxclSIGN/CqdXEMjQNBnZog1fRJoiGERE1Oxsx0MqZyMyiQbXOzsy6OjNQ1UknHvKUsD3IOmAgdo0zU7nLNz602ew51AW+7tzWDIvVtVxJEmCIktI5ywGMoiIGghz6KjpFCxnzJGq5bKSo+ZGYYxRenK4ou0hrKsI680T8zM0Ba0xHQWrsqafawbrkPceysGqYKSqoSqwbK+ifYiIaOZkCw5M24VRZZNPIQQe3lzKxjj16HlIRGvffyIZM3D86jkAgMe2HJzUsSKGisxgY1MiImoMDGRQU/GFQL7oQtfGGLs6WFayImhZie2VppWMERhpVMmYAVkqNTINak4ihPbWMHwhsOvgyJrnsaiqDMcTMBnIICKqe74v0J81oWvVN/nc1ZlBR08pG2Pj8QtrvMKXbDxuASQJ2HEgjUP9haqPo2sKHNdDvsjpJUREjYKBDGoqlu3Bcnzoo4wsEUJgz+AH8OULJq6n9TwfitxcZSVlkZCKeERHwazs6dP65W0AgBcPpCvaT5aBvGlXtA8REU2/vOkgV3QQqbJB8+HZGCevbZ/SaSBzEiEcM3hdmmxWhq7J6M9aHBdORNQgGMigpmI5HhzPg6qMfIrUn7WQKThQZAlL5kUnPFZ50ka1N3P1TJYktMYNOJ4PUcFNW/mG8cWOdEX7GZqMbMGB7/MGkYionqXzFiAwap+pIHYfzOJAdx6KLOHM4xbUeHUjnTX4Hs/tGUBv2qz6OBFDRcF0Kg7wExHRzGAgg5qKabmQIY2aDlvuj7GoPQptlIyNI1mOh2RMb7qykrJ4REdYV1GsoFfGqkUt0NRSUKJroBh4P11TYDs+TJs3iERE9cqyPaSyNsKhSfTGGJxUcvK6qc3GKJvfFsHaJUkAwONbq8/KUBQZvgCyBWYPEhE1AgYyqGkIIZAtOlDVsRp9lspKgoxp83wfkiQhGmq+spIyTZXRmjAqam6mqjJWHlX6+lVSXqIqMlzPZ58MIqI6li3YsBwvUDPs0ew+WJogosgSNk5DNkbZWYN9OLbu7EcqZ1V9nJCuYCBrVdQ/ioiIZgYDGdQ0HNeHZXvQR7kBE0IMNfpcvmDiRp+m7SFiqIiEmq+s5HDJiAFNkWE7wQMM5eklOyrsk6HIEnJspEZEVJdKTT4tGJpSVZNPIQQeGeyN8bIp7o1xpMXtMaxYGIcvBP70zKGqjxPSS1O22PSTiKj+MZBBTcN0PNiuD10d+b91b9pE3nShKjIWtU/cH8OyfCSiOhS5uX9EwoaCRFRHoYKsjDWLSym8B3pyFWVzGLqCXNGB5/NJFxFRvSnaLgqWg7BRXTbGnkNZ7Oua/myMsnJWxt+39yJXqC4QIcsSIAHpPMtLiIjqXXN/SqNZxbI9CCFGfZK0e7A/xpJ5UagTNDDzfQFJRlNOKzmSJElIxgx4XvAmnC0xA/NawhCiNGIvKF2TYbsey0uIiOpQwXThedU3+Sz3xnjZ2rlIRKcvG6Ns+YI4FrdH4fkCf3qu+qyMiKEik7dh8VpFRFTXGMigppEr2NBGycYAgD2HgvfHMG0XIV1pymklowkbCjRVqai8ZPVgVkYl5SWKLMP3BMwKmosSEdHUE0IgnbOha9U1t95zMHNYNsbCGq8uGEmShrIy/vZ8T0UZg4fTNRmW4yFvsryEiKieMZBBTcH1fBRsb9SyEiEE9lbUH8NHMmZMmLnRLAxNQTSkwqoikFHpGFZFkXhzSERUZ0zbQ8EqBfGr8fDm0rSQk9bMTDZG2ZrFScxvDcN2fTzxXFdVx5AkCZoqI5WzKrq+ERHR9Jodn9So6Zm2B9sZvdFnV38RRasU5Fg4NzLucXxfQAIQa+JpJUeSJAmJqA7HDX7DtmReFIamoGC66OwrBN5P10p9MtgRnoiofhQtF47rBRpNfqQ9h7LYeygLeYZ6Yxzu8KyMv2zrrihAf7iwoSBXdFkKSURUxxjIoKZQ7o8hy6P0xxgsK1m6ID5h807T9mDoStNPKzlS2FAhS4AXMMCgyNWNYTU0BZbDPhlERPUkk7egjlGaOZFHBntjnLRmLpIxo5bLqsr6Za2YkwjBtD387YWeqo6hqQocl9NLiIjqGQMZ1BTypjNqEAMA9hwMXlZi2R5aorOnrKQsYqgIG9WVl1TSJ0OWJfh+qQ8JERHNPMvxkCu6CI2S0TiRvV1Z7BnMxjhrhrMxyg7PDPnTM4fguNVlAOqajAGWlxAR1a3Z9WmNmpLvC+RNB/ooKbG+L7C3qxTIWLFw/ECG7wsIANHI7CkrKZNlCfGwDssOfsO3elEpI6OzN1/RUytVlaoejUdERLVVMF1Yrgddq/yWsJyNceLqOXWRjVF23Ko2JKM68qaLp3f0VnWMsK6iYLpVNw0lIqKpxUAGNTzL8eA4/qg3YQf78rAdHyFdwfzW8ftjWI6HkF5qfDkblQM4QZ8+xSM6FrSVvqY7KxjDaqgy8pbLPhlERHUgW7AhS9Koo8vHs68ri90Hs5AlCWfN0KSSsSiyjDOPLWVl/PGZQ/D8yq83qirD9XzkWF5CRFSXGMighmfaHhzPH7UcZPdgWcmyBfExS0+GjmN5SES1WVdWUhYxFOiDPSyCqqa8RGefDCKiulD+oF7NtJKHy9kYa+agJV4/2RhlJ66Zi2hIRTpvY+vO/qqOYWgKUjkbvs/yEiKiejM7P7FRUynaLuQxniTtCTh2tZyFEA/P3Ni4maapg2NYKwgwrBkMZOzsSAe+0ZNlCcIXTNclIpphBbM0mcOosD/G/u5c3WZjlGmqjDMGszIe33qwqmBE2FBQMB0UeL0iIqo7DGRQQxNCIFdwoI1SVuJ5PvZ35wAAKxYmxj2OaXvQdQWRWTR2dTSJqA7XC36zt2huFGFDgWl7ONCTC7yfpsrIFuxqlkhERDWSM0tlExNlLB6pnI1xwur6zMYoO3ldO0K6gr6MhW17ByreX1Fk+EIgW+T1ioio3jCQQQ3NdvxSEGKUsXEdvXk4ro9ISEV7S2jc45i2h2RUg1bl+LlmETZUaIocuMu7LEtYdVQpK+PFjkrKS2QULQ+Oy/ISIqKZ4Pk+snkbhl7Zde9Adw67OjOQJOCs4+szG6PM0BS8/Jj5AIDHthysagKJoSvI5Oyq+mwQEdHUmd2f2qjhmY4H1/NHDUAcXlYyXhMzIQSEAGKzuKykLKQrCBmVlZeU+2S8WEmfDFWB7Xgosk8GEdGMKFoeipZbcX+MhzeXszHmorWOszHKTls/D7oqo2ugWFE/p7KwrqJgucibLC8hIqonDGRQQzMtFxAYNVBRbvQ5UX8Ma7A+eLZOKzmcJElIRnXYFWRKrBocw3qovxi4XESWJQgINvwkIpohBdOB5wsocvBbwQM9OezsKGVjvKLOszHKwoaKk49uBwA8WkVWhixLEALI5Tm9hIionjCQQQ0tV3SgaSODGI7r40AF/THiEQ2aWnnX9mYUCamAJAVujBYNaVg0NwoAeLEj+BhWTZWRzbPumIhouvlCIJWzK27y+chgb4zjV81piGyMsjOOWQBFltDRkx/K1qxESFeQylscG05EVEcYyKCG5bjeYH+MkTdiB3py8HyBeERDW2Lsmy0hBDwhEI+wrKQsbKgIVTmGtaLyEk1B0fZgV/A+REQ0eablwaywrKSjJ4cXGywboywW0fCytXMBlHplVCqkK7Bsj+UlRER1hIEMalim7cFyvdH7YxwM1h/DcjwYmsqyksOoioxEVKuo7GNoDGtnOnBDNF2VYTsey0uIiKZZwXLgeD7UChpcP7K5FAA4fuUctCXGb6Bdj844dgFkScLug9mKpmwBpfISSQKyBWuKVkdERJViIIMalmV7EP7oY+N2HyqVOCwPUlYSVqFXmF7b7GJhHb4QgWuJF86JIBpSYTs+9ncFu0GUJAkQQNHiEy4ioumUydsVTenq6M1jx4F0aVLJCY2VjVHWEjNw3Ko2ANVnZaTzDqdtERHVCQYyqGHlTRejtbWwHQ+dPQUA4zf6FELA9wUS0cap850uYUOFoSqwA45hlSQJqxeVsjJ2VDCGVdMkZAp2VSPxiIiocuUSiUrKSsq9MY5bOQdzGjAbo2zjcaUgzPb9aXT1Fyra19AVmLaLXJHBdyKiesBABjUkz/eRN51RMyn2deXgC4GWmD5uMzLb8aGrSqm5JQ1jaKWvy1SPYTU0BabtBQ6YEBHR5BQsF7YzelnmaDoPy8ZotN4YR5qbDOGY5a0AKs/KkCQJiiQFns5FRERTi4EMakiW7cF2Peij9cc4FGzsqmm7iIW1iru2zxaJqA63ggDDyqMSkCSgJ2UilQtWR6ypMhzXZ58MIqJpki3YUBRp3P5Rhyv3xjh2RRvmJBs3G6PsrMFgzLN7BtCXNivaN2yoyBScipphExHR1Aj8KPr666+v+OCSJOHf/u3fKt6PaCKm7cHzBBRltEafwfpjuJ5AIsppJWOJGCoURYbr+VBH+TofKWyoWDIvhn1dObx4II1Tjp434T7lG+mi6SDJ7wUR0ZRyXA/ZgoNQwAD+wb48tu9PlbIxTjhqilc3PRa0RbBmcRI7DqTx+DOHcPHG5YH31TUZuaKFfNHhQxAiohkWOJDxxBNPVHzwoNF+okoVLGfUJp+m5eJg/8T9MVzXh6bICOksKxlLyFCHRs6p4WDJW6sXJUuBjI5ggQygNL0kU3Awv03wdwYR0RQqmC4sx0NrPFjg+JGnS9kYG1a0YW4TZGOUnXX8Quw4kMaWF/twzgkLkYwF65UlSRJURUImbzXk5BYiomYS+FPcQw89NJXrIArMFwL5ogtdG/nhem9XDkIAcxLGuNkWluPB0BWEDD5RGYssSUhEdRzsKyAaDrbPmsVJPPT3Duw+mIXrBhvtp2tyaZSu4zGwREQ0hXJFBxKCPWg61FfAC/tTABq/N8aRlsyLYfmCOPYcyuKPz3ThgtOXBt63VF7ilspTVWYSEhHNFPbIoIZj2R6swUadR9pTHru6YPyyEtvxEY/qkJkBMK5oSAMA+H6wqSLzWsOIRzQ4ro+9XdlA+2iqDMfz2CeDiGgKuZ6PdN6GEXBaySObS5NKjl3RhvaWgNHsBlLulfHUjh7kik7g/XRNgeN6yHN6CRHRjGIggxqO5XhwPA+qMjIIsefgYKPPheOPXRUAogaf/k8kPFheYgdsbHb4GNag00skSYIMCQWLN4VERFOlaLkwHS/Q2NVD/QU8vy8FAHjFCc2VjVG2YmEci+ZG4XoCf362q6J9NVVGKmdxdDgR0QyaVCDj4Ycfxjvf+U68/OUvxzHHHIP169eP+Ieo1kzLhYSRHdcLpoOugSKA8ftjOK4PXZURYiBjQpoqIxbWKsqWWDM4hnVHR/AxrLomI5u34fOmkIhoSuRNBxBi1P5SRypnY2xY3tqU2RhAKYh+1mCQ5snnu1GsIJgeNlTkiw6KFjMJiWh2evjhh3HrrbfO6BqqDmT89re/xTXXXIPe3l5ceOGF8H0fF110ES688EKEQiGsW7cO1157bS3XSgQhBLJFB5o68kZs76EcAGBeSxjRsDbmMSzHQ9hQ2XE8oHhEhxewtAQAVixMQJYl9Gcs9GWCjbbTNQWW48NieQkRUc35QiCds6EHuO519Rfw/N4UgOaZVDKWtYuTmN8ahu36+Mu27sD7lUoifeQrKEkhImomDz/8MG677bYZXUPVgYxvfetbOP7443HvvffiQx/6EADgTW96E7761a/il7/8JXp6erB48eKaLZQIKGVTWLY36s3Y7nJ/jHHKSoCX+mNQMGFDgaYGLy8xdAVL58cABC8v0VQZjss+GUREU6FouTDtYGUlj2wuTSo5Znkr5rXWJhsjV3SQLdjIm87gWlzYjgfH9eH5/oyVaEiShI3HlbIy/rKtK/B1DihlEvZnzcA9pIiIqLaqDmTs3LkTF154IRRFgaqWUvRdt5SWt3jxYrz1rW/Ff//3f9dmlUSDTMeDPVgacqSh/hjjlJX4voAkSwgHbHZGgKEpiBhqdeUlAQMZAKDIEoom+2QQEdVa0XThegKqMv5tX/dAEdv2DgAAzq5RNkbRcuF5PiKGBlWWIQTg+aWHCkXLQ67gIpWz0Z+x0J8x0Z82S/+dLv05lbWQztulQEjRQcF0YVqlMbKO6096fccsb0VbwkDR8vDkCz2B9wsbKgqmi4LJrAwimhpdXV24/vrrceaZZ+LYY4/FRRddhJ/85CcAgN7eXhxzzDGjZkXs2rUL69atww9+8IOh1zKZDL74xS/inHPOwbHHHovzzjsP//Vf/wXff+n36IEDB7Bu3Tp85zvfwT333IPXvOY1OPbYY/GmN70JW7ZsGdpu06ZNuOuuuwAA69atG/pnulXdJCAUCkHTSun7iUQCuq6jp+elC8DcuXNx4MCBya+Q6DCW7UEIMaI/RrZgozddKmNYNk4gw3I8hDQFYfbHCEySJCRjOjp684H3Wbu4BQ/89QD2HsqWRt0GSGfWNBnZog1fRDhNhoioRoQQSOVs6Frw3hjrl9UmG0MIgYLpYvniFkRUGa7rwxcCvi8ghIDnC/h+qfTFFwLCF/BF6aGDLwQ834fr+fA8wPV9eJ6A7/ulbVwB13OhKfK45aQTkeVSVsYvH9+DPz/bhdOOnhdodLiqyPCFi0zeRniUclciosno7e3FW97yFkiShCuvvBJtbW145JFH8OlPfxq5XA7veMc7cOqpp+K+++7DBz/4wWH7/uY3v4GiKHjd614HACgWi3j729+Orq4uXHHFFVi4cCGeeuop3Hzzzejp6cGnP/3pYfv/6le/Qj6fx+WXXw5JkvDtb38bH/rQh/Dggw9C0zRcfvnl6O7uxuOPP46bbrpp2r4mR6r609yKFSuwc+fOoT+vX78ev/jFL3DxxRfD8zz86le/wsKFzdnpmmZOrmBDG+UGY++hUjbGgrbIuEEKy/HQFg9N+FSKhgsbKmRZgucFe/o1JxlCW8JAf8bCrs4M1i9rnXAfQ1VQMF1YtsdAExFRjZi2h4LlImyMH1DuHijiuT2D2Rgn1ub+LVd0EA2rmNcaQS5betggSxLkwalj1YQfxGDQw/eBVM7C3q4sIiF1xAOOShy/sg0PP92JTN7GUy/24tSj5wXaT9cU9GdMLGwJVf3eRESj+drXvgbP8/DLX/4Sra2l++i3vvWtuO6663DbbbfhiiuuwIUXXojPfvaz2L59O9auXTu073333YdTTz0Vc+fOBQB873vfw/79+/Hzn/8cy5cvBwBcccUVmDdvHr7zne/gXe9617DP7Z2dnfjd736HZLKUYb1ixQp84AMfwGOPPYZXvepVOOmkk7B8+XI8/vjjeOMb3zhNX5GRqv40d9555+H3v/89bNsGAFxzzTX4y1/+glNPPRWnn346nnzySbzvfe+r2UKJXM9HwfZGLSvZHWDsKgB4nkBsEk9uZquwoSCkKyhWVF7SAgDYsT8VaHtVleF4gn0yiIhqqGi5cFwPmjp+IOPRLaXeGEcva8H81sik39fzfLiuwPzWyITvXQlJkqDIMjRVRmvcQDysIV+cXFmiosg489gFAIA/bj0Ezw8WtA8bCvJFpzQRhoioRoQQ+N3vfodzzz0XQgj09/cP/XPWWWchm83i2WefxXnnnQdVVfGb3/xmaN/t27fjxRdfxIUXXjj02v3334+TTz4ZiURi2LHOPPNMeJ6Hv/71r8Pe/8ILLxwKYgDAKaecAgDYv3//FJ95Zap+7Pnud78b7373u4f+/KpXvQp33nknfve730FRFJxzzjk4/fTTa7JIIqD0VMlxPIRHadS559DE/TFcz4emyAjpfNpfKUWWkYzqyNku9IDhz7VLknjiuS7sOJAetRxoNLIM5E0brXFjkismIiIAyORtqMr4v39zBQfP7ekHAJx9fG16Y2QLLpIxHS2xqft9rioy5ibD2HMog4ivBhotO5aT1szFo5s7kc7beGZXP05YPXfCfRRZhuuVpqmFeW9BRDXS39+PTCaDe+65B/fcc8+Y25x88sk4/fTTcd999+GjH/0ogFJZiaqqOO+884a23bt3L1544QWcccYZYx7rcEdWVZSDGplMptpTmhI1/a17yimnDEVsiGrNsj34Qoy4UUnnLAxkLUgSsGz++P0xDF0J1LWdRoqGNWQtC37A7vJL58VgaArypovO3jwWtccm3MfQZGQLDnx/5PeZiIgqYzsecqY7YQB/885eCAEsao9iwZzJZ2PYjgdZAua1Rqb8d3kypiMW1pE3HcQj1U8k01QZp2+Yj9//rQOPbTmE41bOCbT2sKEhlTXRFjNYtkpENVFuwHnxxRfjkksuGXWbcnPNiy66CNdffz22bduG9evX47777sPpp5+Otra2YcfbuHEj3vOe94x6rHK5SZmijP5ZaaYmTI2F4WNqGHnTGfWmopyNcdScKIxxghS27aO1NcQPyFWKGCoM3YFZdKBN8HQPKKXqrlqUwHN7BrD9QDpQIEPXFOSLpTGBkRB/PRERTUbBcmE5LqKhsbMihBB4ekcvgFJWwmQJIZAtOJjfFpmWUk5VkdHeEsLuQ5lJB8FPWTcPj289hL6MiV0HM1i9KDnhPmFDRW+/i4LpIsHR7kRUA21tbYhGo/B9H2eeeea4277mNa/BZz/72aHykj179uD973//sG2WLl2KQqEw4bEqMZm+RLVSdehYCIG7774bl112GV7+8pdj/fr1I/455phjarlWmsV8XyBvOtBHqbMN0h9DCAEfApEwPxxXS9cUJCI6TDt4LfLQGNb9wcawqooM1/Mreg8iIhpdrmhDlqRxbzj3d+fQl7GgqTI2rGgbc7ugipaLkKGiPTn5qSdBJWM64mEdueLkelUYuoJjB78Gz+7qn2DrEmUwcJIt2JN6byKiMkVR8NrXvha//e1vsX379hF/f3gpSCKRwFlnnYX77rsPv/71r6FpGl7zmtcM2/6CCy7AU089hUcffXTEsTKZDFy38vvucDg8tP9MqfpT3U033YTbb78d69evx8UXXzysIQhRrVmOB8fxRwQihBAv9ccYJ5DhuD50VWEN6yQlYyF4Xirw9qsHAxmH+gvI5O1AT6sUWUKu6KAtwS7wRETVcj0fmbwzYTnlU4PZGBuWtwYalT0e3xcoWF6ptHAayzgVWUZ7Sxi7D04+K+PYlW148oUePL8vhYtcP9Ao1pChIp23Ma/VH3WyGhFRpT7+8Y/jiSeewFve8ha8+c1vxurVq5FOp/Hss8/iT3/6E/7yl78MbXvhhRfik5/8JP7nf/4HZ511FhKJxLBjvfvd78ZDDz2Ea665Bpdccgk2bNiAYrGI7du347e//S1+//vfDytFCWLDhg0AgBtuuAFnnXUWFEXBRRddNPkTr0DVn+ruvfdenH/++fj6179ey/VUbOfOnbjhhhvw1FNPIRqN4o1vfCM++tGPQtfH/8B011134ZFHHsHmzZsxMDCAr3/960Ozdqn+mLYHx/NH1J8OZC1k8jZkWcLSeWOXLliOh7CuQdd4gzEZ0bAKTZXhuMFu1qIhDYvbozjQk8eOA2mcvK59wn10TUGu6MDzfSgyv19ERNUomKUyvZbY2PdDlu0NjVw9sQZlJbmig0REn5FAdCKqIR7RSmuYRInHknkxJKI6MnkbOzrSgcaHh3QFfQUHBdNBcgqbmxLR7DF37lz8+Mc/xn/8x3/ggQcewA9/+EO0tLRg9erV+MQnPjFs23PPPRehUAj5fH7YtJKycDiMO++8E9/61rdw//33495770UsFsPy5cvxoQ99CPH4+FMfR3P++efjqquuwq9//Wv87//+L4QQjRPIME2zpnU21Uin07j66quxfPly3Hrrrejq6sKNN94I0zTx2c9+dtx9f/GLXwAAzjnnHNx7773TsFqajKLtQh4lNbacjbG4PTrueDfb8TG/VauLeq5GFtLV0hhW0w381GnNkpbBQEYqUCDD0GRkiw5M20M0xEAGEVE1coMjQcfLTnh2Tz8c18ecRAhLxnkYEITr+vA8gXmt4RlpeqnIgxNMDmYmFQiXJAkbVrTiT8904Zld/YECGaXyHSCdtxnIIKKamTNnDj772c9O+Lk2Foth8+bN424TjUZx3XXX4brrrhtzm8WLF+OFF14Y9e+OfF1RFHzmM5/BZz7zmXHfdypVfaU544wzsHXr1lqupWJ333038vk8brvtNrziFa/AZZddhk9+8pO4++670dXVNeG+P/rRj/ChD31omlZL1RJCIFdwoI2STbHn4MRjV31fQJYkhI2pLSsRwoewCnDTPfDN7JS+10yRZQnJmA7b9QLvs3ZJqbxkV2cWjutPuL2iyPB9AdMK/h5ERPQS3xfI5m0YE8zLfmr7YJPPtXMnHejPFhy0xo0ZbXiZjOqIR3XkCpPrlXHsijkAgO37U7DsYNeisKEgW3BgO7x2ERFNh6oDGf/yL/+CzZs345vf/CYGBgZquabAHnnkEZxxxhloaWkZeu2CCy6A7/t4/PHHx91XZsp6w7AdH6btQT8iA0AIgd0HSw1mli9MjLbr4P4edF2ZcPxcNYTnwC9m4KUOwju0A+7B7TA7X4TXuw/CLtT8/epBNKQBkgTfDzaCaV5LGMmoDtfzsedQsIZAiiwhb07uRpSIaLYqWG6p6eY4fSq6B4ro6M1DliQcv2rOpN7PtF0oioz21vCo2ZPTRZYltCdD8H3A8yYOnI9lQVsYcxIheL7A8/uC3eMamgLTcZE32ayaiGg6VP3J7nWvex2EEPj617+Or3/96zAMY0RwQJIk/O1vf5v0Iseya9cuvOlNbxr2WiKRQHt7O3bt2jVl7zuRII2hJqIMpmUqTTiTvNJzy5sOfCEQMtRhT4x6UkXkTReqImHZgviYx3N8gZaYgXANxnkKIQDHhLCL8ItZwMwCrgVJCEiqASUSg5aIQeo6CJE5CGXuMkhqc4xjK399YxEd0ZAKxxeIBGwMt3ZpC/66rRs7DmRw9LKJmwmFQxqKtgtImJYU5Wb+eQOa+/x4bvWvFtdEoHm+HqOp9blZjgdIEnRt7Ove5hdL2Rhrl7ZMqhxCCIGi5WFRe2zU40z39601GUJb3kYmb6MlXv11//jVc/B/f+/As3sG8LJ180bdply+osgyoAK6qiBnOmhvnb6JLVOFP2+NiedGs0nVv+Ff+9rXzni/gUwmM6IrKwAkk0mk08HGPdaaLEtobY3W7HiJRONfDMcS9NyKrkAsZiCZiAx7fcvgaLQVRyXR1jL219xyBRYvTKK1NTLmNuMRvgffLMC38nDzKQirAN91IMky5EQEktYG6YggXrx9PtxsHzRvAPqcZZDk6evePtXaWqNYXHTR1V9AIh7se3jS2nn467ZuvHggjXgsNOHvjmhUIJU1EYoYiEemLxDUzD9vQHOfH8+tPtX6mgg09tdjIrU4NyEEOgeKaGuNIBEdPUDhev7QNfSsExYF/l0+mmzexvz2OFYvbxt36sl0ft9kTcX2fQOIhI2qA2lnHHcU/u/vHdjVkYasKIiNcy2KDn6ddUMrNRePGAhNcTnrdOHPW2PiudFsUPVv2RtvvLGW62gavi+QyUy+pEBRZCQSYWQyxUmlR9ajSs7NFwL7OlOwHQ+ZbHHY323b3QcAWDovNuLvylzPR9F0YZs2BgaClUIAgHCsUtaFmYMoZiAcE0IISIoGSTMgqVFAALAAWNawc4tGDRSKDlwRgjiwH3LBg9KycMYDf5N1+PfNdz1ksiZUSQQ6r3ktIWiqjFTOwo69/VgwZ+KgUiZbxKGuDNyWqb9gNfPPG9Dc58dzmxq1Cj7U6poI8HsdVMF00dOXR9hQkfFHP9azu/uRLzqIRzQcNSc85jV0Ip4vkMpaWL4wgULOxGjf6Zn4vvlCQIFAZ3cGLfHqsk0MVcJRcyPo7C3gz1s7cdox80dso8ila34+b8HzfQgh0J8xcSCkYk6ysUeI8+etMfHcpk6tg/I0eQ0dLk4kEshmRzZVTKfTSCaTM7CiEjdAQ8OgPM+v6fHqSZBzK5gu8gUH4ZA67JfW4f0xls6PjfkLrWA60BUZmiyP+17C9wGnOFgykoGw8oBrA7IESQkBehySrECgFL+AN1ZQxB86N18oEHoUXl8nfKiQ45MfbVcPPM+HrshQZAlFyx33CVyZLAErFiawfX8Kz+/tR3vLxDd4kiQhlbXQMo0d4Jv55w1o7vPjudWvWq+90b8e46nFuWXyFkzLRfSI6+bh/vZCNwCUemMIAW/Ma9r4UjkLsZCOeFidcN3T/X1rjRkYSJuwLLfqrIwNy9vQ2VvAlp19407d8nx/6GstSRL60kUkIs0xKY0/b42J50azQdWBjCAjSw3DwIIFC7Bhwwboeu3Tw1euXDmiF0Y2m0VPTw9WrlxZ8/ej6VewHDiej8QRNyFdA0UULQ+aKuOouWM/3XccH60toVHHzwnfhTDzEFYewixlXcBzAUWDpIYAIzbpmxBJNQDPgzfQCag65PDYTUkbiaEriIZU5IpOoEAGUJpesn1/CtsPpPGKE46a+D1UGXnLhev5MzLKj4ioEWXy9rjjsdN5Gzs7Sg8CTlpTfYDdcT1AAPNaw1WPOp1K8bCGlpiBVM6qOitjw4o2PPDkAezvziGdswL1EgnrCnJFF6btTfm0NCKi2azq37CbNm0a+pAnxPBI/uGvS5KEWCyG973vfXjve987iaWOdPbZZ+Ob3/zmsF4Z999/P2RZxsaNG2v6XjQzxroh2zOYjbFsfmzMGyghBDwhEAmP/N9cCB9eXwdErg+QAEnVIekxSErtbzokIwJRTMPvPwCpfQUkvTlq+xJRHamsNfGGg1YvKmVJdfTkkS86iIa1cbfXNQWpvA3T9hAL199NMhFRvbFsD3lz/Gkl5Safy+bH0JaovvwhW3AwNxlGPDL+7/KZIkkS5iRDSOUtOK4/bnBnLImojqXzY9jXlcOzewZw5rELJtxH10pjWPOmw0AGEdEUmlRGxqZNm9DS0oIrr7wSS5cuBQDs3bsXd911F7LZLP6//+//Q19fH+68807cfPPNiEajeNvb3lazxV9xxRW48847ce211+L9738/urq6cNNNN+GKK67A/Pkv1TJeffXV6OzsxAMPPDD02tatW9HR0YH+/lKzq82bNwMA2tracNppp9VsjVS98g2ZMcoN2Z5DpZKi8cauOq4PTVFGvaET+RRErg9SOA5JmfqbMCmUgCgMwOvvgDJ3aVNMMokYKhRFDpwxkYjqWDgngoN9BbzYkcYJq8d/EijLEoQvYFouYhMEPYiIqDR21XY8xEYJ4AOlAP/TO0qBjJPWjl0qMZGi5UJXFbS3hOu6fCIW1tAaM9CfsdCaqC4r47iVc7CvK4dndvUHCmQAgK7JSGVtzElM3NyaiIiqU/VjzjvuuANz5szB7bffjvPOOw/r1q3DunXrcP755+P2229Ha2srfvKTn+A1r3kNvve97+GEE07AD3/4w1quHclkEnfccQcURcG1116Lr371q7jsssuwadOmYdv5vg/P84a9dtddd+EjH/kIPve5zwEAvvvd7+IjH/kIbr311pqukapXsFw4rgf9iKcovi+w91AOALB8QXzM/S3HQ9hQRpQ+CNeCn+6CpGrTEsQASk+GpEgLRDEFb+AghO9NvFOdC+kqQroCyw5+LmsWl7Iytu8PNlVIU2VkCnZV6yMimm2yBRuKLI354Xn3wSxSORuGpmD9spaq3kMIgYLpor0lXPcZB6WsjDBkWYLtVHfdXb+sFbIk4VB/Ab2pYE1Rw7qKgumgaLlVvScREU2s6kDGgw8+iFe/+tWj/p0kSTj33HOHMiBkWcZrX/ta7N27t9q3G9OqVatw++23Y/PmzfjjH/+IT33qUyP6cdx555146KGHhr1244034oUXXhjxz5133lnzNVJ1sgUbsjTyhuxgfwGW4yGkK1jQNk5/DNdHIqIP218IAT/dDWHnASM2ZWsfjSTJkMItELle+OmuESVZjUaWJSSiOiwneMOlNUtaAAA7O9OBOk7rmoyi5ZVqsYmIaEyO6yFbdMYtKylnYxy7sg2aWt1Y8FzRQSysTaosZTpFQypa4wZyxeqCCpGQipWLStmfz+zuD7SPqspwPIFc0anqPYmIaGJVBzJ838fu3bvH/Pvdu3fDP2zsl67rMIzpmz5Ajc1x/TFvyF7qjxEftYknUMrakCAhHBr+tEgUM/BzvZBCiRlJ95QUFZIRg58+BJEPdkNUz6KhUkaL7wcLyhw1J4JoSIXt+NjblZtwe11VYDseihVkfRARzUYFy4Nte6OWYwKlcpBtewcAVN/kszQtQGBea6SqnhMzodwrQ51EVsaxK9oAlAIZQR9CGJqMVM6G3+APLYiIHnzwQdx1110jXt+0aRNe//rXz8CKSqq+Cp177rn44Q9/iB/84AewrJca/lmWhTvvvBN33303XvWqVw29/tRTTw310SCaSMFyYY1xQ7bnYLk/xthlJbbrQdcVhPWXAhnCc+GnuwDIM9qjQtIMSKoBr78DfjEzY+uohbChwtCVwDeHkiQNZWXsOJCacHtZluALAZOBDCKiceULpaf/YwXpt+7qh+cLzG8NY+GcsbMZx5MtOGiJ60hGG6vPUzSkoTVhIFeoLitj3dIWqIqE/oyFg32FQPuEDQUF00HBZHkJETW2Bx98cNQWER/4wAfw7//+7zOwopKqixs//elPY//+/bjhhhvw5S9/Ge3tpaZRPT09cBwHxx9/PD796U8DKAU3QqEQ3vnOd9Zm1dT08gUHEkbekHmej33dg/0xxglkWI6PZEQf9sTIz/ZAFDOQYm1TsuZKSEYUopCGP9ABSdEadpKJpsqIhzX0Z02EAtZKr12cxNM7erF9fxrnnyomzIzRNRnZvI15LY35NSIimmqu5yOVt8bMxgCAp3f0AABOXDO3qoxE2/EgSxLaWyJjZkPWszmJEAayNizHCzw2vMzQFKxd0oLn9gzgmd39OGpudMJ9FEWGLwRyRZsNq4moKc10kkLVGRktLS344Q9/iFtuuQWXXHIJVqxYgRUrVuCSSy7BLbfcgrvvvhstLS0AAMMwcMMNN8xo6gk1Ds/3kS5YMPSR/3t29ObhuD4ihjruB1vP9RE7bCScMHPwMz2QjCgkqT7SYaVwAsIuwhvogPAat442FtbgVZAwseKoBBRZwkDWQl/anHB7XVNQtL2qU4KJiJpd0XJhDvaOGs3BvjwO9RehyBKOWzmn4uMLIZAtOJiTDDXsh/JISMOchIFcobrrbbm85NmKyksUpHM2PD94LykiopmwY8cOvPe978XLX/5ynHDCCXjta1+L//7v/8amTZvw85//HDt27Bga7lEerHFkacnPfvYzrFu3Dlu3bsW73vWuoeP88Y9/hO/7+NrXvoYzzzwTZ555Jr761a8Oa0NRjUm1m5YkCeeffz7OP//8SS2C6HBFy4Npe0hER94svTR2NT7mEyXP8yEr0lA3deF78NJdgHAh6WOPa51ukiQBkRaIfD+8lAaldQkkuT6CLJUIGyo0VYbteNADPOUyNAXLFsSxqzOD7QfSmDtBpoWuysgXbZh2sOMTEc02edMBhBgzU+KpwSafRy9tQSRU+a1f0XIRMlTMTTZ2ZlxbIoT+rAXTdhHSK/s6rF6chKEpyBYc7O3KjTs1rSxkKMjkHeRNF4lIY5XjEFH1hBAVTfWrJUNXqsq6u+aaazB37lx88YtfRCwWw759+3Do0CF84AMfQH9/P3bt2jVURtLWNn52+6c+9SlcccUVeOc734n/+q//wgc/+EFccsklyOVy+PKXv4zNmzfj1ltvxdq1a/GGN7yhqvMEJhnIIJoK+aID3xdQRvlQP9QfY4Kxq4b2Un8MkR+AKAxAirROzYInQZJkINwCkemBr+iQkwsabuZ8SFcQMVQUbSdwoGHtkhbs6sxgx/4Uzjx2wbjbSpIEiNKNdKLB6rKJiKaaLwQy+bF//zquj607S82lT1xbeZNP3xcoWB6WzouNW7rSCMKGijnxEA725ysOZKiKjPXLWvD0i314dld/oECGIssQAsgVHAYyiGYJIQQ+ddtj2LZnZpr6r1/ehi9/8KyKPk/09/fjwIED+PSnP41zzz0XAHD66acP/X1bWxs6Oztx4oknBjre29/+drztbW8DAMyfPx9veMMb8Mwzz+Cee+4BALziFa/AQw89hPvvv396AhnnnnsuZFnGfffdB03TcO655074BZIkCQ8++GDVi6PZxxcC6bw9av2q6/rYP9QfY+zMCsvx0d4SgixLpdKN9CFIWhiSXJ83YJKiAkYcfuogJFWHFKs87XcmSZKEZExHusuaeONBaxYncf8TwL7uHIqWO5Q9MxZNk5Ap2JjXGm64QA8R0VQyLRdFy0U0PPrv0ef3DsByPCSjOlaOc+0cS65Y+hDeKONWJ9KaMNCfNWEOZplUYsPKNjz9Yh+e2zuA152+BIoycRZlSFeQylmY1xqGGmB7IqLp1traikWLFuHmm29GOp3GGWecgQULxn/QOJ6NGzcO/ffy5csBDA+MAMCKFSvGnYAaRODf4KeddhokSYI8+JS8/GeiWjItD6bljpr6ur8nB88XiIVLda6jEUJACIFoSIcQPrx0N+BYdR8ckDQD8F14A52AqkMOTfykp56EDRWKLMHz/VEzaY7UGjfQ3hJCT8rEzo4Mjl05foqaoSkwbQ+261fcpI2IqJkVTBeu54/5IblcVlJNk0/X9eF5pUknzfIhPGyoaEuGcLC3UHEgY8WCBKIhFXnTxa7ODI5eNnHz8FIgw0bedBtu2gsRVU6SJHz5g2c1VGmJJEn4zne+g6997Wv4/Oc/j0KhgA0bNuD666/HqaeeWvEa4vGXPsfoeun3XiIxPJCuaRps26742IcL/Bv8xhtvHPfPRLVQsBw4ng91lPn0QfpjlG7mFIQNBaKQhsj3QQrXT1+M8ZQmmaTg9x+ANHd5Q00yCRsKDF2BZXuIhILd7K5Z3IKe1CHsOJCaMJChqTJyRRemXXm3eSKiZiUGsxi1Ua6ZANCfMYeunSeurjygny04aEsYiDfZB/A58RAGMlagjMDDybKEDSva8Jdt3XhmV3+gQIYsS5AAZAsWAxlEs4QkSRUHSmfaihUrcMstt8BxHDz11FO4+eabcc011+CRRx6Z6aWNqerw+rZt2/CrX/1q2GuPPvoorrzySrz5zW/GHXfcMenF0eyTyY19Q1buj7FivP4Yto+QrkCXPPjpQ4CsQlIap8O6FE5CWIWGm2SiyDKSEQOWHbz78NolSQDAix1p+P74HeDLgaui1ThfEyKiqWbaHvKmO+a0kqdf7AMArDwqgWRs9EzGsY/tQlFktLeEITdZBq6hK2hLGiiYbuAJJGUbBqeXPL8vBdsN9sQ1ZChI5x04AbcnIpopmqbhtNNOw/ve9z7kcjl0d3dD0zRYVvAS8ulSdSDjK1/5Cn7zm98M/Xn//v344Ac/iAMHDgAoZWyUG3oQBWHZHvLW6DdktuOhoycPYPz+GLbjIxHVILK9EFYeUoOVaEiSBCnaClFIwUt1QjTQyLZoWIUAAt8ULm6PIWwoKFoeDvTkJtxeV2Vk8k7FN51ERM2qaLlwXH/URp++L7D5xVJZyUlrKmvyKYRAruhibksIkVDjPAyoRFs8hJChomhVFlxY3B5FS0yH4/rYvi8VaJ+QrsC0XeRNt4qVEhFNreeffx7vfOc78eMf/xh//vOf8eCDD+Ib3/gGFi1ahKVLl2LVqlXo6OjAr371K2zdunXo8/5MqzqQ8fzzz+Pkk08e+vMvfvELyLKMn//85/jxj3+M1772tbj77rtrskiaHQqWC9vxRs3I2Nedgy8EklEdLbHRUzOFEIAERIQJP9cDKTR2CUo9kyS5lJmR6YGf6W6YD+5hQ4WuKbCdYMEXWZawelEpK2P7/vSE2+uaXOqTEfD4RETNLpO3oY5RbbezM41swUHYULFuaUtFx82bLiKGirkBGnwKISB8F8K1IRwTwsrDN7PwC2n4+QF42V44qW4Id3K10LVmaArmJkIoWpVlZUiSNJSVsXVXsKkEkiRBkSRk8vX1NSAiAoD29nbMnTsX3/rWt/De974Xn/3sZ7Fw4UJ897vfhaIouOyyy/C6170OX/jCF3DZZZfhtttum+klA5jE+NVsNouWlpahPz/88MPYuHHj0FzZjRs31nVNDdWfbMGGIkujBh+Gxq6O0x/DcjwYioBu9gACkNTK0mjriaRogBE7bJLJxHW4M03XFMRCCtIFJ/CIvjWLW7B1Vz92HEjhNacsHndbTZWRLToo2m7DjwAkIpos2/GQM90xx4g+vaNUVnL8yrbgjTqFD891YBdNLGuPQfOK8B0PEH7pH9+D8FzAd0v/9lxAeBDCB/zBbYR46d+SBCEDVk6Dp7ZAJBdBCtAQerq0xg30ZUwULbeizJNjV7Th8a2HsGN/CsWAWRZhQ0Wm4AyNiCciqhdz5szBV77ylTH/PhaL4eabbx7x+pE9My+99FJceumlI7Z74YUXJty3GlUHMtrb27Fz504AQHd3N5599tlhC8/n80MTTogm4rgeskVnzDrfcrOyFROMXW31M1CsPKRY65SsczxCCPjZfhRTaYj4UgCTu1GRtNDgJJOOUjAjFKvNQqdQPGKgLxO8hm7VogQkCehJmRjIWmiNjx18kiQJMiQULBctFdZ6ExE1m4LlwnJcREMjfx/mTQcv7E8BAE5cG7CsxDWhpDth5XKYqyuI5Qy4eQACgCQG/z34IEGSAUmGVP63rACqOvR66e9K2yqKBDWiwu/qgpANKMl5kz73WtE1BXOTIezvziFsqIGzOOe1hocmb23Z2Yv1S5MB3ktGtmghX3QYyCAiqoGqAxmvfvWr8YMf/AC2bWPz5s3QdR3nnXfe0N+/8MILWLJkSU0WSc2vYHmwbQ8t8ZFlI6bt4mDfYH+McRp9CjOPqJKCFImWbq6miV9IwXnhEfjdOyEKaeQBKPNXQ3/55ZNuNCoZsVK/jP79UNpXlIIbdSxsqNAUGY7rj9m09cjtl86LYW9XDjsOpHDa+vnjbq9rMnIFB36baLrmc0RElcgVbSjS6FmMW3b2wfcFjpobwfzWyMQHcy0o6U74xQx82UBLSwJKRB8WkJgMSdUgGWF46UOQjHBdjRhvjRvoTZsomC6i4WDXbEmScOyKNvzfU534+wtdgQIZkiRBV2UMZC20xA1ew4iIJqnqT3sf/ehHcd555+EXv/gF+vr68KUvfQlz55ai/rlcDvfffz82btxYs4VSc8sXStMoRrth2teVgxBAW8JAYozRZZ7nwij2Qpf9KR1bKnwXXu8euPu3DL0mKSq8PX+HKKQBSQEUFV7Xi7CeuKcmk0eGJpn0d5RSeetYyFAQMtSKZmevWdICIGifDAWm7c3YbG4ionrgej4y+dHL+IQQeHpHucln+8QH82womU7IdhY5RJFIxBCJhiDJSk37TEl6BBA+/IHOuuqXoakK5rWEYdpeRb0yyn0yduxPIVsIdj4RQ0W2aKPApp9ERJNWdUZGNBrFV7/61VH/LhKJ4JFHHkEoVN9Pj6k+eL6PVN6CoY8eV9td7o8xTjaGmxmA4WVhJBbVdG1CCIhsL7zunfC6d8Lv3QN4DqAaUBZtKN3oGTFoG14DOTEP2vzlCFl96P3dd+EPBjOMl18BSal+lrQkSUCkBaIwAD8dgtJW23OsJVmSkIhq6Oy1AQR7srV2cRIPPnkAew9lJ6wd1lQZ2YIN0/YQbrD53EREtVKwXFi2h+Qoza87evLoSZlQFRkbVkxQZuk5pSCGmYGpxqBKElrjxpQ1ypbCCYh8P7yBg1DmLKmbfhnJmIFoxkTedBELmJXRlghhUXsUHT15PLu7H6cePXHJjKrK8H2BTMEO/D5ERDS6KbmCyLKMeDwOTeMvaZpYwXRhOd6YDcv2HsoAGKc/hmvBz3QhHI1AmWQpR5mf64P1t3th3n8zzN//B5yt98Pv2lEKYhhRKAvWAs5LvSC0tWdBWbAWkmrAWLgK4Y1XAooKv3sX/IGOSa+nHDDxc30QVn7Sx5tK0ZAGSBJ8P9iTrTnJEFrjBjxfYHdnZsLtZUlC3qyfp3lERNMtX3QgUJr+dKSnBrMxjlneOuZ1FQDgu1AyByEXU/DDSRRtgUREh6FNXZC4NJWrBSLXCz/bO2XvUylNldGeDMOyvcDXLgA4buUcAMAzAaeXAEBIV5HKWnBcTuAiIpoMPtKkGVcwS6PPRrshK5guDvUXAQDLRsvIEAJKvgeSayIUqy5TQXgO/L59EHYR6uJjh1739j1d+g9ZgTx3GZT2VVDmrYSUnD9hDw513goYZ1wJ4VhQ5i6ral1HkrQQhJ2Hl+mFMjc8rX1AKhE2VIQ0BZYTLGtCkiSsXZzEE9u6sf1AGkcvG/8JYkhXkM47mN/qQRtr7iARUZMqlZXYMLSR1wDb8fDs7tKH6hPXjNPk0/cGgxgD8ENJOB6gKvKY5Zu1JCkqoEfgpw9B0kOQw2M38Z5OyZiOWFhD3nQQjwT7OmxY0YbfPrEP+7tzSA32vphI2FDQn7WQKzrjNrgmIqLxMZBBM8oXAum8DX2McoK9XaWykvaW0KhpmJKVgcj1AqFERSM5hWvB3f23wXKRvYDvQgrFS+UikgQp2gZt/asgty2GPGdpVU07lfYVw/7s9e2D3HoUJHkSZSahBES+DyKahBRpqfo4U6l0M6yhJ2UGLv9Ys6QFT2zrxo79KQghxk1rNvTyTaCL1jgDGUQ0u6RyY38Ifm7PAGzXR1vcwLL5Y0y68j0o2YOQC33wQ0lAVlAsOGhN6ONncNSQpIchChb8VCckzaiLcemqIqO9JYzdhzLw/dEfrhwpEdWxekkLduxP4Znd/Tjr+IUT7iNJElRZQipnoiWmT1kZDxFRs6vPR7o0a5iWi6LlIjRGIGNnR6kB5PIFozyx8RwouR7YngzdMKAHfDovhA/rz3fDeeZ38Lt3DgUx5HkrAa9UsiBJErSjz4Eyb9WkJ48AgNvxHKxHb4f9lx9D+NU3+ZIUDZAU+JkeCL9+G15GQzp8IQI3Tls2PwZdk5E3XXT2FcbdVpIkKJIUuLkaEVGzcFwP3QNFGLoyblnJiWvmjv4BWfhQsl2QC73wQwlAVuC4PhRZQiI6vcEEKZyAMPPwBg5B+PVRZpGI6oiHdeTN4I26X7au1Bvjmd3By0siIRXZvIOiVb/XcSKiesdABs2ogunC83yoo4zqdD0fz+0ZAACsW9oy4u/lQi8kOw9LjiAWDj7/3Xn+Yfg9uwFFg3bcaxF69QcQet11ME6+ZMqeCkmqDkgSvIMvwP7LTyYVhJBCMYhiGqKQqt0CayxiqNBVJXANsKLIWHVUaXzdjv2pCbcPGyoyBQeWw5tAIpo9+jMWipaLaGhk5kRvqoj93TlIEnDC6jkjdxY+5FwX5HwPfD0ODGYHmpaHeFRDeJqyMcpK/TKSg/0yeqb1vceiKjLmJkOwHT9wr4zjV8+FIkvoHiiie6AYaB9NVWB7PgPyRESTwEAGzRgxWFYyWhADAF48kIZpe4hHtBETSyQrB6XQD0+LApKEUMDmZF73LrjPPwwA0E98PbTVZ0BOzJvy1E5l/moYp78VkBV4B58fzMyo7kO4JCuQtBD8dFddjbA7nKEriBgqzArGpK5dMhjIOBBkDKsMy3aRL05+vC0RUSOwbA+9mVLJ3mjXrKdeLGVjrF6UHNnjQfiQcz1Qct3wjSgwmGnoej4kafqzMcokRYU02C/DL07c7Hk6JGM64pHgWRmRkIbVi0vXr0qyMsK6glTOguvVRzYKEVGjYSCDZozleMibLkJj9LbYvLMPQKkr+LAUWt+DnO8GhA8XKjRVhj5K07PRSKE4pHg7lGUvg7r0hEmfQyVKwYwrXgpm/HUSmRl6FMIuwM/11XaRNZSM6RV1ZV+9qHQjeLCvgEx+/ACNJElQFQmZvDXudkREzaIva8K0PISNkddMz/ex5cXS9eCkI5t8CgE53wcl1wVfiwLKS0GOoukhHlERrqDHVK1JehgQAn6qE8Kd+d/piiyjLWHAdvzA5ZHl6SXP7u4PvE/YUJE3XeTN6stNiYhmMwYyaMYUTBeO64/a6LNgukNP5o9fNTxFVi70Q7Yy8I04bNdHSFMCT6+QE+0IvfK90E+4YPInUAVl/hoYLx8MZnRug/3Xn1YVzJAkCZIehZ/thbDH7ykxU6IhrZQ+G7D8IxrWsKg9CgB4sWPirIxSeYkL0+ZNIBE1t4Lpoi9tIhpWRs3G2LE/jbxZKjlZM5jdBqAUxCj0QckehK+FAfWlIIbrCUACklFjxhtOSuFkXfXLSERKjU+DZhWuW9oCTZUxkLXQ2RtsRLosS5AkIJ2b+eANEVEjYiCDZkymYEMZI/7w3J5++L7AgrYI5rWGh16XnCLkQi+EGgYkGa4nRq0VPpLXuwdClG6OJFWvSQPPaikL1sB4+eWDwYzn4B18vqrjSHoYcG142Z7AT4CmU9hQEY+oKFrBAw1rB9Nzt+8PUl6iwHE95IsMZBBRc+vLFOG43phTRcpNPo9fPQeK/NKtnVwcgJI9CKGGgCN6QBUtD/GwFni61FSSJGmwX0ZPXfTL0DUFrTEDRTNYIEPXFKxb0gIAeGZXZU0/03mbAXkioiowkEEzwnY85ArOhGUlx69qe+nFwRpfyXMgtPDgeDRAn6BBmdf1IqxHb4f1x7sgvPq4WVAWrIVx2lugHXMu1EUbqj6OFIpD5PohzGwNV1c7yagB1ws+vWTN4I3grs5MoLIUTZWRyll1GcghIqqFXNHBQMYadQQ5AGQL9lAW20mrXyorkYsDUDKdEIoOoYWG7eN5AoBAMjbz2RhlpX4Z0brpl5GI6ZAVwA1YIrlhZel+5dk9A4EbhRqaMnQ/RETNxbfNcf85PCNbeM742zsvZW4JIcbddjKeeuopvOtd78LLXvYynHTSSXjzm9+Mxx9/HE888QTWrVuHrVu3Dtv+Ax/4AK666qphr+3cuRP/+I//iJNPPhknnngi3ve+92Hfvn2TWtdYZj4MT7NSvujAtD0koyNvzPoyJjp68pAk4NgVL5WVyGYaspmCb8QAAI7rQ1NlhPSx43F+MQPryZ+V9o+0QFLq5395ZeE6KAvXDf3Zzw9ACicgycFrlSVVL/XKyHRDMmKQ5PqKTUbDGgxdheWM/STxcPNbw0hENGQKDvYcymDN4pZxtw8bytD/S/XwVJGIqJaEEOhNFeH5YtQyTADY/GIfhACWzIthbkspg1Ey06UghqxCaOER+xQsF7E6ycY4nKSHIQo2/FQnJM2YskliQURDKhJhHVnTQVLVJ9x+9VEJhHQFuaKDvV1ZrFg4ytj4URiagv6shbZEaNSRukTUmPZ85cpx/37epR9HbP2ZAID+P/wP0n/+3zG3NRauwqJ33QQA8AsZ7P3/vWvMbVd++qdVrBb429/+hquvvhonnngibrjhBiQSCTzzzDPo7OzE0qVLAx1j//79uOKKK7BmzRrceOONkCQJ3/zmN/GOd7wD999/P3R94t+llaivKxjNGpmCDVnCqE+CtgxmY6w6KoFYZDDQ4VqQcz0QijY0Ms52fbTEdMjS6B/ehe/B/utPALsAKTkf2vGvm5qTqQE/3QXzsTugzFsF/ZRLII1xTqORQnGIQgqikIIUa5t4h2lkaAoSEQ19GTNQIEOSJKxZ0oK/vdCDHfvTEwYyNFVB1nOQLzp1d0NORDRZ2YKDgZyFeGT0bAwhBJ4eLCspN/mUzAyUTAeEJEPokRH7lLMFklEDcp1kYxxOCicg8v3wBg5BmbNkxgL0kiShNRHCQL6U9TdR5oqiyFi/rBVP7ejFM7v6AwcywiEF6byDnOkgceS0GSKiafKVr3wFy5Ytwx133AFlsPb/rLPOAgA88cQTgY5x2223IZlM4nvf+x4MoxSIftnLXoZXv/rV+PGPf4wrrxw/uFMp3vnTtHM9H6msBWOUshIhBLYOlZXMKb8IJd8LySnCD7cMbev7QNgYu9eFs+0P8Pv2AaoO47S3zGhfjIn4hQHAMeEd2ApbkqCf/A+BgxmSrACqDj/TBSkcr7vzTER19KbNQDeCALBmcRJ/e6EH2w+kcUGAfTRNxkDOQlsyVJc35URE1fD9UjaGJGHMMeV7u3Loz1rQVRnHLG+FZGWhZDoBISAGsxePVDBdxEIaIgH6S80ESZKAcr8MPQQlOX/G1hKPaAjrKgqWi2ho4mvrsSvb8NSOXmzbO4ALTl8KVZn4Oq7IMiQBZPIWAxlETWT5J+8a9+8l9aXfKW2vfBtaX3H5OBu/dH8rRxITHrtSxWIRmzdvxnXXXTcUxKjG448/jgsvvBCKosB1S+X8iUQCxxxzDJ555plaLXdIfV7FqKkVLRem5cLQVeCI3gb7u3NI5Wzomox1S1sAAJKVhVzoL5WUDP4gu56AKkswxhi76nXtgLv9UQCAftLFkGNzRt2uXqgLjwZOvQz2X38Mb/8W2EBFwQwYUYh8P/xc/4ze9I0mGtIQ0pXA5R8rFiagKjIyeRvdA0XMbxv5RPFwYUNFvuiiGPBGk4ioEaTzNlJ5e9QSzLJyNsaGFW0whAkl3Qn4LkRo9GwA3xfwRWk8dj0HfiVFBQb7ZUh6GHI4WHZDramKjDmJEPb35AJdX5bNjyMW1pArOtjZkRm6j5lI2FCQzjlob/FgjFFCRESNRdZDE280SFK0wA8iS5MLgx87iEwmA9/3MW/evEkdZ2BgAHfccQfuuOOOEX+nabW/R2cgg6ZdvujAF4CmSIMNx15SLis5ZllraaSq50DJdUPIMnDYD7jjetD10ceu+sX0UF8MdcUpUBcfO4VnUzvqomMAXAb7rz8pBTMkCfrL3hgomCFJMqBH4Gd6IIcTpYkmdUJTZbREDXQNFAIFMjRVxoqFcew4kMb2A+kJAxmqIsP1fOQKDgMZRNQUXM9HT6oIVZGgjPFU37RdPLdnAADwspUxKOkOSL4NP5QcdXsAKFgeoiENkQb4XTnUL2OgY0b7ZSSiOvSBUlPOsfqUlMmyhA0rWvHEc914Znd/4ECGoSvoz9jIFx0GMoho2sXjcciyjO7u7lH/vlwm4jjDGxNnMplhmdPJZBLnnHMO3va2t404RjQareGKS+qrMyA1PV8IpPM2QqNcqF3Xx7O7Szdlxw2WlciFfkh2DkIfniLruKWxq6M+UbKLkFQDUnIBtONeW/uTmELqog3QT70MkCR4+zbD/vv/Do2NnYikRwDXhJ/trbspHrGoBkgI3Ml97eD0kh37U4G2N3QFqZwV+PhERPUsk7eRLdpjTioBSmM+Xc9He9LAUrUfkmvBN8bOXPB9AeGLus/G+P+z959RdmbnfSf62/vNJ1Yu5NgAuoHOgexWk01SFC3JJEUFSqbsmSuNZJprXc31lZc9647W9bJHa/xhlpc/aDnMta2RbEljSVbOmaSYm+yc0BFoNHLFUye/ce/7YZ9KQKHOKaAKKKDf30LhpDee8O69//t5/s9KRFBBR22y2mW0Gqwt3GwCz6ZadOgMWIr13oPGq+qtcwvEyWDrCCFwbMF8I0Jts/Y7JyfnzqdQKPDggw/yh3/4h2TZ1detHTt2AKYiySLz8/O89tprq5Z74oknePvttzl+/Dj33Xffqr9Dhw5t+nHnERk5N5UwSulEGUMVm0539Q/lrfMLRElGpehyYEcZEXeQ3TljVrai06U1CLimeaSs7sD/2BfQabTt/CIGwd59ArQmfuZ3yc6+SDq8G+fQYwOtK/wKqj2HLA6Dv3Z+9K2g6NsUPNukf6zTMV/kyB4zo3h+pk077B9pEbgWzU6y5MSfk5OTc7uSpCYaw7OtdatYLKaVPLxbINPQRGKsI1B0o4zAtykFt0/Xz/hlDN1yv4yhss98IyJTCquP+eiusSLDZY9aM+Ktcwvce2iw1NaCb9PqxsbDJG/HcnJybjL/9J/+U37yJ3+Sn/zJn+Tv//2/T7Va5bXXXmN4eJjPfvazPPDAA/yH//AfKJfL2LbNL/7iL1Iul1dt4x//43/MZz/7WX76p3+aH/uxH2NsbIzZ2Vm+853v8Oijj/KpT31qU4/59mnNcu4IOmFKlmVrGpctppXcd2gEgUa2ZxBZiroiGiPNFLZ1tT+G6iwggmovdyzYVukVG8Wkw2iyi69jH3h44PVMOdY2WWMayytsqPrJVmJJSbXkcmGmPZCQUSm67BgJuDzf5Z3zdR64a2z97VsSpTXNzvozmDk5OTnbnVozpNVNGKlcO5Viar7DxbkOloCHJlOUP7yuiKGVaTsnS4VrVvpaRDWmSc88Z1bS2kQFar30GK1M2mNvoiB+8U+NYfUVyyzedw4+BA8+dX1vBiv9Mi7dMr+McuBQDBw6YUq5jyGnEIITB0f4+suXePXd+YGFDNuSqMxUdcvbsZycnJvNo48+yq/+6q/yC7/wC/zcz/0cUkqOHDnCz/7szwLwb/7Nv+Gf//N/zs/93M8xNjbGz/7sz/Knf/qnNJvNpW3s37+f3/7t3+YXfuEX+Pmf/3k6nQ7j4+M89thjHDt2bNOPORcycm4aupdWspavRTtMeOd8AzDVSmR3ARnWUV75qmXjRBF49qrtqM4C4Zf+E9bEIdyHf+CW1p7fLOw992Htvncp90wnIdhuX3FC+GV0ewFdrCOKwzfjUAeiFLhYVqcnRPUXWI7sHeLyfJe3BxAywKSX1NsxE8NB3xmznJycnO1IlGTM1kMCz1q3YtMLb00BcGxCEFTWFzEAunFKwXfWjMbQKkOHTWRhyDzu1klP9Sm19+Cnlnyrsrn30I2186oB9OTh9bc1AKv8MmwP4dzcNl5KwUjF473L8UAVuO7tCRnvXGjQjdKBy4MHvsVCM2K8GuBco1JNTk5Ozlbx8MMP86u/+qtrvrZv376rXvvkJz951XIHDhzgF37hF7bi8K4iFzJybhphnNEOU4prdKRee7eG0ppdowXGSxJZm0VbDsg1vDQyRXFF2TitUuLv/A4kXXS7BuLWGmXpLO35Wtx4DvKSiBG1Cb/xq9i7T+AcW39mS0gbbdmoxgzCL5vZrG1AwbcpeA7dqP+MFsDRPVW+9tIlTl1okGXqmoZ3iwSuTb0V0w7TvIRdTk7ObclcI6QbpetGY6RJzCun5gF4+GC5r4ihFSSZYnwouCoaQ0ctomd+F92ex//oFxBeAVEcwT76IRDSCOdCwJW3crldce75GCThFcss33eqRojWWhG/8CdYe05gjW88V1oEFXR7jmzhEtboPsRNFqzLBRfPtYniDL+PMDExHDA5HDBV6/L6ezUePjo+0D5812K+GdHqJgyXb/8JmZycnJytZHuMcHLeF3SjlCRVa7p+v3zK5Pred3gUqz2HSLqoYOiq5bQyMyPeCn+M5LUvomrnwfFwP/CjN33grlUGaYROY4RQKKuEbjfRThlhb86AOps+ja5PkTRnsXaf6FtOVvgldLvWK8d6Y6WUNgspBMNlj3NT8UDL7xorUvRt2mHK2ekWB3euH068mEveaie5kJGTk3Pb0QkTZhe6FHz72jP+WvH2W2fpJpqKLzk82X+wG8YpBde+Kl0hmz9H/O3fQodNsBxUYwpr/CCyNIp74nsGPm571z3rvi4tcy7Ju8+RnnmO9L0XcB/+DPa+BwbeB/SE/cIQujWLcoOb7pfhORbDJZepWrevkAGmJO5U7QKvnp4fWMgQQmBLwUIrZKjk9o38yMnJyXk/k8et5dw0Gu2YNbJKmK2HXJztIATct8tBdudQXnHNWaY4zXBsueSPkV56g/SdbwHgPvyDxuRyi9FaoZMI1W2gWnPorkmJkcUR7PGDeHvuRlZ3osOmSQfZBKw99yLHD4HKiF/6075VSYSQCMdHNafRSbQpx7AZFH0H25IkaX8ndyHEkunnWwNWL/E9i4V2RJrdGnf7nJycnOtlZqG7lDq5JlojmtM8d6oOwIP7/L7VR7SGOFUMlbyllDutNcnp7xB99b+gwyaiNIb/0c9jjR/c1PO5Emf/g1i7T4BWxM/9PskbX9lwhS0hbUTPL0P12t6bSbXkIaWpstaPxeolZy43aXYGE/DBRC822wndaLCKJzk5OTnvV3IhI+emECcZrTDFc9eKxjAmn3ftrlDOamgEWGvPqMepouDZWFKi2jXi5/4AAPvw431nhW4EnSXosIVqz6M7NXSWIPwi1ug+7B1HsHYexRrbhyyPYvlFrJFdyJE96KSLjlo3vH8hBO6DnwRpoaZPk51/pf9KbgESU451uxB4FsXAGbiDdqRXhvWtc/WBOryeYxH1UphycnJybhfa3YSZWnddk0fZrfHmqcucntdIAQ/v729oHcbGn6FUMNvVaUz83O+RvPRnoBXWruP4H/08srL1kXvCcnAf+xHsI08CkLz+ZeLn/9BENW5kO24ACFTtwk0X6gu+TTlwaUf925ihssee8SLAUmn5QXBsiyRTGxI/cnJyct6P5EJGzk2hE6XESYZ3RVqJ1ppXekLGA7tdZNRCe9cuG6qUJvBs44vxzO9AEiKHd+PcO3gY7CBolaGjDqpdM1EXcQdsFzm0E2viLuydR7EnDiMr4wi/hJCrZ9CEkMjKBNbofrTWqM5gA/H1kKXRJX+M+JW/RMfddZcXQiC8sjn+qH1D+94sRC+9JEnVQO/HoV0VpBTUmhFzjf4dVikFQkCzs32iUHJycnLWQ2vNbL1LmmZriv0AImoSz1/iT94wg/4PHy0wXFzfD0prY449VHSxpDReS1/5v8jOvQJC4Nz7d0w65k00zhRC4t77CZwHPwkIsrMvEn3zv204elH4FXTUJlu4uGEh5EaQQjBS8Umzwdqwew+ZqIxX353f0H58z6LWyqMLc3JyctYjFzJybgqtbowUXJXv+d5Ui3o7xnMk9wy10U5gTMLWIMs0tpT4roVuzaM6C+D4piMmb8wXw6SLhKhOHdWeQ4cNECDLY1gTh7B3HMXacRfW0E5koTqQ94UQAlkawRrbj7AdE8mhb6xTYh95ElEag6hN8trf9D8GxwOVkDWmb3jfm0XRd/Aci3iA0FzPsTiww1SueXvQ9BLXot5OBkpfycnJybnVtLoJ842ISnFtQUEkXazGJf7ijZhWpBkrWTx1tNh3u2FioiBLi55BboAIKuCV8D70EzhHvuuWeTA4Bx/De+LHjTfHzGmib//3Da0vhEAUhtCtOVRj+oYnCjZCKXAIXJvuAFEZxw+MIARcnG0z3xhcrAlcm26Y0u4mN3KoOTk5OXc0uZCRs+WkmaLRTtZNKzmxy8UVGdrxr7mdOM1wHYljW8jKBP7HvoD3+OeWSsZtFJ2l6LBpIhbaC2iVIoIy1uh+I1zsPIY1uhdZHEa4Qd+yp9dCBhWs8QNLBpw3MnskLBv3oU8BkJ55jmzubP91/IrZ7y3IJ14Lz7UoFxy6A6Z/LPlknK8PvP0wTml18/SSnJyc7Y3qRWMAaxphk8bIxkXenerw/HnTdnzmoTK2NYA3RqwYKjhYiYnIE0LiPfrDBN/9BayxA5t6HteDteMo/lP/E6I4jHP84xteX0gb4ZVQC5fRnYXNP8Br4NiSkYo3UIpkKXCWjKo3EpWxGF240MqjC3NycnKuRS5k5Gw5nSgliq9OK0lSxetnTN7oQxMpyr12SglAmmoKLkvmZjKoXHdnTGcJulsHx0eO7MHacRf2jqPYE4eQ5TGEV0SsUfr1ehFuwURmFIeXPDauF2vsANb+h7EPfWCgvGZhOSAsVGMGrbbH4L5S9Mi0HmgWbVHIODvVJBxgBkwIgSUEjXbeAczJydneNNsxC814ycNiFSrDal4i7TT5w9dNBNtjBwP2jfaPCIySlEBEBC/9FuHXfwWdmuuhcAsIv7yp53AjyKFd+N/zP2ON7Fl6TjVnBl5fOD7CcsjmL9zUFMpKwcOxLeKkv5ixaPr52rvzG4ocCXybejsZKPIjJycn5/1ILmTkbDntboLWy+UxF3nzbI0oyRgKBHvH3FV16a9Ea9AqpfDCbxC/+Cc3JARolaG7deNhMXEYqzqJDCqbVir1WgjbM4aglUl0t3FDFU3chz6N+8DfRawTwbJq334J3a2j2wvXvc/NpBTY+K5NGPfvBI5UfMaqPlrDqYuDRZUEnk2zkxAN0MnMycnJuRVkSjGzECItgW1d0R3TCqs5hezW+NJ7NvNtRSWQfM/x/iklWoOev8D4q7+OnjuD7tRRC5e36CxunJWTBsmppwm/+H+Snnlu8PX9kkmhnL+wJNhsNQXfplp0BjKWvnvfEJYUzCyETNfW97ZaiedYJGlGK08vycnJyVmTXMjI2VKU0jTaMZ579VftxbdNNY0HdgqEu37nLM0Uoxe/gWhcIj3/GjrqXNfxaK3QnQVEaRQ5vBMhb+5PQEgbObwbObwbHXevewZpZV6zjtp9y9AJaZlyrI1pdHrrndAd26JadAgHrl6ysTKsriOJkizPL87Jydm21Fsx9XZE+cpKJVoj23PIzgznuwHfOmVE7089UMZ3+rRZWmOde44db/8uIlpRWnVs/xadxeahtTaCi9bEL/wx8WtfHDiCQQRVdNgkq90888+hso/Wmkytf4y+Z3NXL7Jwo6afnmNRa0aoPvvIycnJeT+SCxk5W0o3TunGKf4V/hjNdsypC8bz4P79RehjOCan3qQ49SIA3qM/hCxUN3wsWit0u4YoVLGGd9+wQej1IqREViexxvahVdZXhFiPbOodun/z74lf+KP+HT63iI47qNbcde9vMykXPDQM1EE7umcIgHcu1AdaXgiBbeXpJTk5OduTNFPMLHRxHXlVtKIMF7Bal0msgD96uYvScO9uj2M7+lQXyWIKb/4ZlTNfRmiFtfvmlVbdDIQQuA9/BvvujwCQvvU14md/D50NklIoEYWqMf+sT90U889SYFP0nYEE88X0kldPbzS9xKIdJrTCXJTPycnJuZJcyMjZUjphSpaBdUXY7PNvXkZp2F0VjFWDdbchuwsMv/vXgKnaYe04uuHj0FqbSAy/jDWyd8vTSPphKpqMYo0fAMtCdeavq6qIKAxBGqOm3iG7eLLvPoVbRDVnTTnZW0zRt/F7xpz92DtRwnctulHG+ZnWQNsPPJtGJx1o+zk5OTk3k4VmRLObUPRXR2OIqIlsXkJLm2+9l3GpnhI4gu+/f31fCxG1KL/w67jTr6MRyOOfwH3s5pZW3QyEELj3fAz34c+AkGTnXyH6xq8N1GYZ888yqn4Z3d5Y5MP1YEnJaNUnjNO+4sTRvVVcW1Jvx7x3ubmhfaDJRfmcnJycNciFjJwtQ2tNvRXjOldHWzz72iUAHthXWH8jKqVw8o+RKobhPTjHv/v6jqVbRzgB1uiebdWxk0EFe+wAwi2h2/MbDomV5THsox8CIH7pz/v6bgg3gDQma87c1HJ1a2FbkuGyRxj1F3CkFNy120ThvD1g9RK3l1/czquX5OTkbCPiJGN6oUvgWqujMeIusnEJlGI29vjy6yb18PvuK1Hy1u+uaSdA2y6pXSB86Mfxjz15y0qrbgb2/ofwvusfgO2h5t4j/Movo9q1vusJx0PYrkkxCQcTvW+ESsHF96y+fkyObXHfoVEAvn1yekP7CHyLhVbu+ZSTk5NzJbmQkbNlhHFGJ7o6rWR6psb5uRAp4N4960djBKe+jN2eQtk+7mOfva5KIjpsgrSxRvci3D7CyS1AeEWs8f2I4sh1VTRxjn4IURyBqEVy8ov99xdU0K15877cYsoFFyEhy/qLGYs+GW+fG0zIAFMmb6EV3XLRJicnJ2eRWjOiG6UU/BXpjVkMC+cRSYhyS/zRi01SBYfHHR7Yew1TZ60QSc88UlosHPkkc/f+A0q7D239SdwErInD+E/9lGmz2nPoAdMihVcClZHVzqOTrY1k8FyLkbJPZwDTzw8eNyk+b55bYL4xuNm351hEcUqrk6eX5OTk5KwkFzJytoxulJKkGY69QnzQipffvAjA0R0exXVmmUTUxJ1+Aw107/kUdnFow8egozZaKxOJ4a9f3vVWImwPa3QfsjJhqotsoPMlLAf3oU8BkJ5+hmz+fN/lQRjjT7XxdJbNpODZFDyb7gDVS+7aXUUImF7ostAc7P0JPIt2N6E7oKloTk5OzlYSximz9ZCCby9HTKjMRGJ0G2i/wvNnI87MJjgWfPrBypqRFSJuU3z5tym++nvQK6vd1gGloRE859b4P20FsjqJ95F/iPvYZ7Em7xp4PRFU0GGLrHZhy8uOj1QDhBCkfQT5saFgyfRzI1EZQggcWzLfDFG5KJ+Tk5OzRC5k5GwZjXaMbV3RAevWefk9Ey770L71ozG0V6bx4P/A/L7vxtt1Hb4YcRedxVgje5CFoQ2vf7MRlo0c3tOraNLeUGUWa/wQ1t77AUx52j4pKsIvozt1dGfhRg75hpFSmPSSAYSMwLPZO2HEqDcHrF7i2BZJpujkRmk5OTnbgPl6RBinBF5PbNAK2ZpGdmpQGKIZav7qVZMS8d33lBguXh2FaDUuUn7+13Dq57Das1jtGZJEYVuSSsm5avnbHRlUsHefWHqcnn+V5NS3113HmH8Oo1s11MLWmn+WAodKwR0oKuPx45MAvPjOLN1ocIGl4Nu0w2SgfeTkvN/QSqGzBJ2ES5X8VGcB1ZrfcJRzzu3FnSPb52wr4iSjFab47urQ2bPvXaYeQuDKngP7Gp0LrUAYja1jlbF3P0jR39hXVacROukgh/eYtIvbBFPRZAfCcsxMUreBDCoDreve9710L7+Nrl8mu/TGqo7f1fuxwHZRjSlEUO5FadwaSoGDa0mSVOHY62ur9+wf5uxUixffnuUD90wMlAPuOpL5ZsRI1UfexjnjOTk5tzedMGW2EVJaUW5Vtuew2jNovwzS4k9eahCmml1DNh88dLXY715+heDtv0ZoRRaM0D7xGVRhlG47Zrjs3VHRGGuhmrPEz/0+qAzdWcC59xMIsXa7IaQFQcm0c66PKI1uyTFJKRipeMw1umit122XDu4sMzEcMF3r8vxbMzx5386B9mFbEpWZCaLSleV6c3LuMLTWoDLQGShlfu8qQ0lNItqkC02yKDQVjbKk97oy44fFdQCExJo8jMh/M3csd3aLl3PL6EQpUZJS9JeNNWVnjpfOmSiDB/cXsC1xdf11rSi+/NtklV109z9JnCpGq75x7h4QnSXosIkc2oWsjN92hmdCCER5DCybbP48qlNDBEN9z0N4RdwHPwlCYO063n9HXhHdnke15rGqk5t09Bsn8GwKvkMnSnD6VJO5//AoX3zuPFO1Ludn2ksRGv223+6mdKP0qgoBOTk5OTcDrTWz9S5pqqgUzXVIdhewWlNox0dYDi+f7fDaxQgp4DMPlbFWGoFqhX/6K/gXngMgHj1C59j3g+2SpApLSqrF7WNkvVWI0ijO3R8lOflF0ne+he4srOufJWwPspRs/gLYLtJfv/rL9VIuuASuTTfKVnufXHk8QvD48Un+6BtneOb1aR4/MTlw/8aYfkaMDwV9Rf+czUMrZdK3hABhITbQH81ZjVapESh6wgQr/nSamOiJLAGVmte1XhYmtAZLELV9VDtCaQFCms9DWGZCTsrec+Z6oAb01cm5fcmFjJwtodWNkUIsDb5F1CJrzvHalBEuHj1UXHM9//RXcOrnsFuXaY4ex/OHNjT7oFWK7tSR1UkT2XCNmZrbAVkYMpEZ8+dMKbnCUF+zU3vPvQNvXwgJbgHVmEEGFVPR5BYghGCo7FIfoLxc4NmcODjCS+/M8ewb0wMJGbYlSTNFq3N1qcOcnJycm0E7TKk1I0oF0+0ScbtXZtVC2z7dWPG73zElQ588UmBHdcW1Ko0ovv7HOLUzAIT7niDc/11mYAV0o4zhsrs6AvIORQiBc+zDiEKV+Pk/JLv4OsnLf2FE/Gut4xXRnQXU/HnE+EGEcw3z1BvAsU0Vrouz7XWFDIB7D47wxefO0+gkvH5mgXsPDRY16rsW882IVjdhuHzni1Y3C60VZKkZPGfp8v0kNH5lWdJL1xVm0CxtsB2E5SJsB6S19CcW74ve49tsIu16WIqeUNmyALFKoIiWBArz2sqoiZWTmRKkNH1TYSGkbaKzF8UJIZGWwKkESNFFZ7lfTE4uZORsAWmmaLST5WolKkO2Z3jtckqcwXDR4uC4R6cTr1rPmX59abapffT76cgyE0UP2xqsUonuhZqK8ihyeOcdoZoLr4g1dpBs/jy6U4NgCGEN9rPNZt8DlWJNHL729t0CujVLVp82VV1u0XtW9B0c2yJOMlxn/c/70WPjvPTOHCfP1PjeDyQUBhAnPHd5JmtVucOcnJzbijBOyW6xSfFGUVozu2DSDlzHgjTEalw0nX7fmD/+5atNGt2MsZLFR45dKfQLZNRCS5vOse8nGT+29EqSKiwhqGxCNIZOI3TUBrQZXwgB9K6Xi/cXJyeWHtNbZvk1rnhNI9HZ5orI9t77wXaJn/5N0nefQVZ3YB985JrLi6CKbs+T1S5ije0zg6RNplr0mKl1+7Zjti159O4JvvLiRZ4+eZkTB4cHGvAKIbAtSa0ZMlRy3xeD5M1gaaC9mIKQJWRCEaXzpLM1sjhEZxnoFDIjWJivdG9mX9omsmcxOiCLjcihMmDFtUjTEzF6A3JpgeWYSAHbNd+5KwUPaV31e1l5fys/Y617UQ5am5QM9BWPAa2Xl1t8fVHwSRN0Fl8hUJg0kCUERtTpvZdCSLAXIyfeH0JPztaSCxk5m04nSonijGrJpAnIbg0ZNXjxsrlgPbjXv+riJVszFN76SwDCvR+kXT2Mq6E8YDSG1sqIGIUhrOHdW9JJuVUIx8Ma20dWs9HNWSiO9L34pxdOEn/ntxB+Gf97/meEc+1OrgiG0K0ZlOvfshSTwLOpFGzq7bivkLFrrMjO0QKX5jq8+M4c33XvjgG2b9FoJ3SiNM8vzsm5TVFac+p8nYV6h1LgUA4cCr69odTDW0Gzk1BrRaY9yxKsxkVE0kH5QwCcmY159owpo/qZh6s4iybZWptBju3SPvGDiCwiK62+RoeRaWv9PtfN9dBpjI5aIC1kedy0FysHMNoMUFY/1sszqisHPWhQPSFkaeAjUN0M1WqjnRKiTwrhoNg770Yf/26Sk18ifulPEZVxrNF9ay4rhIDCkEmntD0z2bHJEZuBZ1Epuiy0ooEE+a+/fImLsx3OTbfYNzlYykvBs2l1kl753rwtW4nWGuJOb/Y/XTJ/JI3MwHsxSqCXopCWC6goAd1LS7D8gQfXay2hF38bKuvdKsi6KNU2AojWvTV7v+veYH6lAChWCYe9Pa0UEcXVjwUSpABk73ohiVWRtN4mS1JQi79dtXxcOls86N5rsPR7pfd4pXix6sx757Eo1ghp+tyWXBJycoEi52Zx54z2crYN7W5ihGkpIA2R7VkaqcOp6Z4/xhXVSkTSpXjyDxAqJRk+QHjgScJ2ythQ0LczAKbx0J0awi9jjezdtE7SdkJYDtbQDrKoDVEb+pSStXYcQRSH0e0ayetfxr3/+9bZtg1eCVW/hHC8W1bhpVrymWtEfc3ShBA8cmycP/nmezz35gxPnJjs22haUqIVNDu5UVpOzm2LNhF/YZzR6iRcFmZgVy26lLapqKGUicYw4wuN1biMDBuoYAiEIMk0f/RCE4AnjpQ4OOaSZRneheexF96jfeIHQUiz/BWkmUL0ojGuZ+Cw6CeFlIjyKFZpDOGtnfbZd1uLM7lcfWtbEq/s0j53lqwxi447CL/cN1VyEOyjH0bVL5NdOImaefeaQgb0zD/9Cqo+hXBcRHn8hve/avvCVOGab0YopdeN/isGDvcfHuWFt2f59snpgYUMx5Y0MkWjE+dCRg+dxuiwiWrXjCCX9QbpQvSiH2wz0La9XrqHSVGwywFSb16Kguh5aHDF93pt0WOFoLAoIpgXzH2ll59Dr1pmuQKP7v1bua4JCEkSH9UKjda4QvwQVwohiF4KxxViCVesk5OzTcmFjJxNRSlNox3jORK0xmrPIrKIl6c8NLB3xGa0tOJrpxWFN/4UK6yT+VU6d3+SJDO+BpXCgNEY3TrCLWCN7lk38uB2R9gesjpJNnMGlL9u1ImwHNwHPkn0zf+b9NS3sffdjxzade3lHR+dxqjaRYTt3RK/jKJv47k2UZL1zfW+9+AIf/3MeWrNiFMXG9y1u9p3+54nqbdjJoaDbTfYycnJGRzftXALDkppunHKpdkOyO0patTbMY12TKVoI9vTyO4cyq8sVeb62zfazLUzyr7k0w8Po6IuwVt/hTf1KgDOzFskE3evue1ulFEpOATuxgQBnaXoyIgnojiKVR4Fr3hDA5blAdIar9kSKyhije1D+VVUY9qU/ra9Tdmv+/APku2+F3t3f5NrYbvg+GS1S2B7A1cFG5RSwaHo2wNF/33w+CQvvD3LG2dr1JrRwL4XvmdRa0aMVQNs69Z/x28FWilTpr7TQHVqkIQmjcMt3tIqbIMihDQRDNcxDOv3a5GWwK4ESHIfiZw7n/fnFTBny+hEKd04xXctRNRAduZRXpmXzoYA3L93tcmW1Z7Brp83ub/HP4N2AtM5KzoDlZFT3QZYtonEcAtbck7bCVEYNpEWYaPvstbkXVh77gU08Qt/YmYA1tu2X0bHXbLaReMsfZNxHYtKwaEbZQMt+8BdppTec2/MDLT9wLXphint8OafW05OzuYjpaDoO4xUPapFh0wpLs12eOdCnXfO17k036bVTVBXVsfaIjKl6EYp9XbM7EKXs1NNLs61sSyBE9awWjMot2TMAoFLCwnffMdEKv7AgxUC3SF48b/jTb2KRtA99NFVfhir9tUboFQ3EI2hVYrqLKDDBiKoYk0cNn4RfummzLoKIZBBBWv8INb4AZAWuj1nwv9vZLu2u0rE0GFrxaz1Gst7BUCjahfQcfeG9n0llpSMVHyiuH87NjEccGhXBa3hO69PDbyPwLUJo4x2N7mRQ70t0UmIas6QTb1DdvkdVOMyQliI4igyqN4WIkZOTs7mkUdk5Gwq3SglyzQWGVZrBi0tpppwuZFiCbh392ohIytN0nrwx5Fhnaw0QZoppBCUC/1nJowpGVgjexB9Ui3uFISUWJUJ0rCJTsK+7uvufd9Ld+od1MJF0tPP4Bz+4LW3vZRDXEM5PnJ4100PKawWXebqYd+wXIBHjo3zndeneev8AvV2TLW4fkrR4vZa7YRK4c5LP3q/orVed9CS8/7AkpKiLyn6RlAI44xLs20ui46J1Ci5lAKXgmdviuFvkmbEqSJOFFGS0glTwjgjTRWpMt9JyxK4tqQiO1j1y2jbA8tcezKl+aMXmygNx3d5nCjXEV//feywgbY82vd8inTk4DX334lSyoFD4PXvxmmVocMWqAxRqBgfjKB8y6p6CWkhSqMIv4xqzqKaK9JNbnAgms28S/Sd38I5+iGcI09e+xj8ygrzz/0Dm2gPQqXg4jkWYZz2jS58/Pgkpy82eOHtWT7y4K6BKs9IKRACFloR1dKdG4W6iFYpOmyhOnV0twFpZCJHg8qmpCfl5OTcvtz2QsapU6f4V//qX/HCCy9QLBb5zGc+w8/+7M/iuusPVLTW/OIv/iK//uu/zvz8PPfccw8/93M/x4MPPnhzDvwORGvdM7mSyM4cIm6jgiFeetsIDkd3eBTcXsdphatxVppcMjDrRopyYPcNldVxF53FWKP7bpmnw61C+CVkeRy1cNE4Ya/TGRV+GefE95C8+CckJ7+IteuedUNphbQgqKAaUwjXR5RGt+IUrkkxcPBcizDO+pawGx8K2L+jzHuXmzz/5gwfe3h33+37nsVCO2Ji5P0bknu7oJfqx19Rc75n2rZY0k3rjLDpkXYUmbCMu/yiG7xlX+EOn7ukvx9YFjVMlEYYZVycbSOuQ9RQWpMkiijNSBJFN07ohEbESNOMTBmfPcsSOLY0KS3WitLjcRtr4TJaSLSznLL39KkuFxdSfEfwI3suUXjhLxEqQQXDtE78EKpw7ZKccWLaz37RGFplRvDPEkRQRVbGEH5l21T0EraLNbwLWaga74z2HFpYJkLkOgeoqjENcZfk1b9BViawJo+sve9F4b4zj1pwkSO7N03Y8VyLobLLTC3sK0wc3l1hrOozWw954e1ZnjjR37waoODb1NvG9HMQMet2Y9G4U4UtdHseHXcAiXALCH8wP5GcnJw7n9v66lev1/mJn/gJDhw4wL/7d/+Oqakp/o//4/8gDEP+xb/4F+uu+4u/+Iv823/7b/ln/+yfcezYMf7bf/tv/NRP/RR/+Id/yN69e2/SGdxZhHFGN0wpyBCrM4dyCyjg5fMmbPSBxbSSNEJ8/b/gTNxLtuvhpbzarGduVC316ZwlETruIkf2IG/yQHu7IMtj6G69Z/y5fqNuH3iY7OyLqIXLqNqFvjnBwnYhc8lqlxCOf93mb9eDbUmGih6Xa52+QgYY5/f3Ljd54e1ZnnpwZ9+ceM+xqLdi2t3kfTGTtR1ZJVBkq2vO6yw1pe2yxJR2W6w1v7jMIitKumnHRmc2Kmqj0myFeVqPVeXwbLB75fAs18zCriqHZ4OVCx53EpaUFANJMXDIekahF2fbSNEh8GyGSh7FwKHg2SitiRNFkmZEqaIbpnSihCTVpJlx8hfSGC46lqTguWsLISpDxF1E3EJ2F4xA4S/7+My3U778RguA7z/hM3z+awiVoMcO0T72KZR17YkYY3aqGB/yr3mN1FpB1EanEcKvIEf3buvZa1NmvIAurvDPcHxwCxv+HdqHPmDMP997geiZ38H/yOeR5bG19ystCIaM+GF7WNWJTTgbQ7XoMbsQkmZqXdFcCMHjJyb5k2++x3dOTvPBeyYHihhyHYtWJ6HVTe4oIcNU0Gkb486wCVlq+iGF4VsWQZSTk7N9ua2vfr/5m79Ju93m3//7f8/Q0BAAWZbx8z//83zhC19gcnLtUpJRFPGf/tN/4qd+6qf4yZ/8SQAeeeQRvu/7vo9f+qVf4n/73/63m3MCdxidMCVJEzw9bwYfnse70zHNUBE4giOTLmiN/8afIZozuNEzRBMn0L30iG6YUvLXD5XVWYKOmsihXcjK5jqO304I20VWd5BNv2sa+nXCYoWQuA//IEiJLF57lm/VOl4J3amRzV/AGj9wUyvBlIoOYoGB0kvu3jdE0bdpdRPePLvA8QPrn99iSG6zG+dCxk1ApzGksYmeiEN0GprH16o5D8uiQq/uvKk5f+2SbtISWEGATKyrjM2uLoeXQZSgrhRGWCyFtyh4WCYFQErWtFYbcGwlrrWgEMaYblFk6e3XnOPyfY2Nzry+/jY5g2FZq0WNbpxxfqaFJQW+a6E0JKkiVQqhBZYtcCxJ4Elsy15/UK0VIuki4jYyrCMS472gbQ/lLYvHWpsqJUkGB8ccHthfoj32g3gzr+Pc+wnoJr2yplejlKbdTRmt+AyXry5jbgSMTk/AKGIN70IUhratgLESIYQ5Vr+Ebi+QNaagPQ9eaUMm3kIIY3TdnEXNnyN6+jfxP/oPr5mGKSwH3AKqfrFXtau/cfQgFAOHUuDSCRMqfdIe7zs0ypeeu0C9HfPG2VrfdmwR17WYb4SMVvxNSZe6VSx+b1WnjuouQNwF6SDcABHkaaA5a6O1Rjen0UlsSuymESRRr99hHls7jt7qw8zZYm5rIeOrX/0qTzzxxJKIAfD93//9/Mt/+S/5xje+wQ//8A+vud7zzz9Pq9Xi+7//+5eec12XT3ziE/z1X//1Vh/2HUm9HXN5vkOQNZFR3biyAy+dM9EY9+7xsS2Bd/ZpnNm30dKie+8PLokYi2XpKyUXeY3OolYputNAVieR1R3v+xlTUagiSqbEqugjUFxrRmrd7QdVdLtGVr+ENbyXm+UNXPRtCp5NN0op9nF9tyzJQ0fH+frLl3j2jZmBOoC+a1FvJ0wOZzj29u/g3y7oLO11HmKT+tWbESZNzI9b9AYNN7Hm/KDl8NYUPLLOxgUEve7D1a9o1bvtHY3oldgTPVEFCbak2yyQtmMyLUzEiLSWIkmW0maEBCFMx9/OBbpBsCxJKZCUeqJGlGRIISgFNtagaWdaI9IQEXcQ4QIy6YLO0JaL8spXfe8AXjwbsjBf45OFd7jrwY8hhECVxokrkzjrRJSZ8tEJQyWXsSF/VTu5GIav4xDhF7CG9htRYBN9H24WQtqI8hgiKKMas6jWLDpum5SYAc9HWDbeB3+M8Mv/Gd2aJXr29/Ae/9w1Z/SFG6C7Cap2AWG7m1K1SwrBSMWjfql/SXHHljxybJyvvXyJp1+bGljICDyLRstEZfQTS7YjOolWl01Vyrz3xZE8+mINtMpMW7rUdqz4Q5s2YbFPnaWobsMsuqKU6qryqraz9D5rlW2o3OpSm6lXRExqtRRhuTJaWtUuorN4RZqoWpE2qpBDO5FVM/GczZ4hO/9ar+8QoZNouV+RRAjHo/Jj/5+lbYdf+o9LZWfXQlYHS9XKuX25/Vq5FZw+fZof+ZEfWfVcpVJhfHyc06dPr7sewKFDh1Y9f/jwYX7lV36FMAzx/fVNFNfDtm/8ArzYkRq4Q3ULmW+EnJ9pIbKIIRq9zrRDlCpOXowAeGhfgFs7g3/m6wDoE98HQ3uwejNPrTihGDhUimsLGVplqLCOPTyONbJ723bQbu7nJrFGdpAlbcjCgTpfWqXEb30TshTvxHf3WdpCl6ro1pzpHAc7zbNbfG42ktGqz/mZ9kD7euyeCb7xyiXOXG4y34wYH1r/fQgCh4VmRJgoAt8IJbfT7+162Ozz01na62jEqDg0KU5JaGZCep12YdkIxwG/sKUzwqvP7XojFwRGqLv11xW9qOpqhSVAWBZSCnSa9kQhtaozq+kJMxrEyG7s4Z239gTWYDPaRGCpg21Juam/VcuSuAOYLC6RRoi4jejWEUkbkaVguWjfVCS51jCgGWa8fvI0/7TyZcoyJKyPklQeA0D2RAy5hpih0dQ7MdWyx+RIAad37kbA6KLjLsILEMP7sUrD265yw3Vdf+wA/L2oyjCqMYNqz0Nm9yqsDLCdYoXgu36czt/+MuryW2Rv/C3evR+/5uKyWEF3atC4aKIQB3wP1zu3oYpHqe4Qp4qC36cU64lJvvnqZc7PtLk012HPRH8Dc8uSWFZKK0wYqV5/n3W97a+83SxU2Ea15qCzAGmMtBxEYXChajMYtN3QcZf41DNGaNEKlDLX6MWIQq1w734Ka8gMmOO3vkF66e3lQf3SYN/cytG9BI/+IACqOUfny/9Xz6x6pTCxLFQUPv6FpW13n/4t0ktvXvNY7b33EXzws1iWJJ49T/tP/89134PiJ//pUqpx+6v/FTV3bsWrq8UP5/AH8B/4XgCSC68Tfuu/s55UX/qRf7n0O+0+89vodu2ay7r3fhxnxJxj1polffeZay6rlanUs/j5ieKw6XPYnoncsj2E4xpB3/awghK2JZGb1AblbD9ufa/tBmg0GlQqV+f7V6tV6vX6uuu5rovnrZ65qlQqaK2p1+vXLWRIKRge3jxPgUrlxmcGtgqtNZfn2sw2I4bdmKJsgNJQGAYhOHm6RZJpxso2d48myG/8CQLQex+CfQ+zeGZKaaJMs3dHhaE16qhrrUgb89g7d+FNHkTY26uTthY373MrEjsJycw5rLLXt4MXXnib1qtfBCEZOvoQzuiuPtsPUAUbndbwrFEguCnn5ngOzUhRCNy+g6BKOeDEwVFePT3Hy6fm+aGP3tV3+0pLlJRX/Va38+9tM7ie89MqQ8chKolRcdd0QuOuSRdRCoFAuDaiUETYw7csjL1YvHMjEcoj/T+3tDGHU/FxN7H92Qw2s03MlIaZNoWC23dguOmkMcRt6NQhakKWgGNDYQgGHPS+8PTX+EeFr2ILhS5P4u6/DzdY/b0N1ohCq7cjxkaK7J0o4/WMsFXUIQvbyFKAPbQXuzyC3EAKxq3g+q6vRfSOcbJWnaR2iazTRLoBlj/Ad6pyF96HPkvtq7+JnXUor5GOsxJd9smac9iqjju6d0NRAdc6t0QJzk03qZTXP/dKOeDhYxM88/oUz745w/HDg6XOOq5DkmUERW+giifXw2a0i1prVNgirc+StWtolSCHKghn8PLBm4nOUtL6DFZzHt2cI2vOkzbnyZpzSL/E2Pd9HgAVaS699sV1t1U9/jh+7z2qRXWimXevuaxTGlp6P1N82nFn3W0Xiy5ub/nEsVmveLxjy6VtRy1MpN6iQLIG5bKPVegtb0niVa+uWE+D6y5vu7vgEa4lYgixFClYKbpLffW4OkZmr44iFCvuF8YmKfS2He89RKi/x6R5OR7C9c2t4y89Z94Xc1v5sf913fcvacwSDBWwiturXczZPG5rIWM7opSm0Vj/wjQIlmUuGo1GlyzbfvnRShkRY+ryDMVsAZG16QiJdkvQMZfDb7/dBOCh3RY889uIJCQr7yQ8/HECoNtNUErRiVIsS6CzjEZjdU13rTW6U0P4ZWxnjG4zhisut9uJW/G5aV0kzVz09ExfI0/Ke7B3Hye9cJLZr/0OhY/99ACdNYHqhHTiU4zcdQ+tkC0/N6U1Kk2ZmosoD1Aq9cEjRsj4zsnLfPiBHbh9UkbSNOPC5TolV+I51rb/vd0oGzk/nUTopItOYnTUQsddY7ypUkCYSiCWY8JSZa8JSXt/t+C3aVmSYtGj3Y7uuM9uI+emWiHS6WJb7U3Z92aJD5vVJkIvIkNldDoRaewsGUVvGVmCSDqIsImImog0BmmhbR/sImRApoBo/e0oRfvlv+Gp8EUQ0KzeBfd/CpQLbbOulJIgcJbaxUVaYYItBeWyRxTGhO0E3W2YFIjyGFZpFCE8aC39CLcdm3N9ddGF3WRqHl2fRs3XkH6pfyrVxD0EH/mfkGP7aTbDvnvRykOfPYPsZNjVtX3WVtL33FRGFCbM1lp926VHj43zzOtTvPT2DGcvLTA0gI+T1pr5RsQ5z2Zsk6MyNuNz01ob887mHLpdQ6vMRNXYRQg1hP0/k+veb9xBt2qodg1ZncDqfZ7xW98kevmvuFZEgfCKK/qiAufQoyZlY0Uq30ovo9CqEC8uv/t+/KF9y35Lix5Ii4/dYGnbWnkUPvEzJi2wlx54ZQpI1yoS9pa3H/4MpYd+YNXry8ubFM1Go2vajckDDP3Yzy99bquiPnq3rcRG9LbtPvEPcHXWSxm5IkIEjbDd5eMu76X4qX/W83harAomV/Ulm53l65H7Xf/Dup9VCsvvtzsKd30Yjbm8XollSWwYuL1XrZBooYOMN2e4u5kT1Tmbw20tZFQqFZrN5lXP1+t1qtVrGzZVKhXiOCaKolVRGY1GAyHEuusOQppuXmc6y9Smbm8zSDPF5csz1C5fokILWwpSr2jytwGUotHNOD1tBjWPVGaR0zMop0Dr+A8ge14LSinjwB6l7BwpgIZshVmf1hrdrSHcAlZ1N5lwYJu9F9fi5n5uFro0TjZ9GmXFfUNi7fu+j3TqHdT8eaJ3nsU59FjfPWi3DN0a8ex5UneCTG99mF614HJ2qklhAEf2gzvKDJc9as2Il9+Z46Ej63uC2BLqYUq9GTFSWe78bcff22ZyrfNbcorvLKDDlpl9hp5o4YJdWBX2qxf/y64dWnrzMOeTZWrV9ePOYPBzU0qjU7Utr5Gb9ZsSQiPnzmC1WgjbQls2SBstbZDOskmqWB5w6KVBRM9LpB8qM+JF1EKGDURmhIbMCcCrLIsn1zDkvOqY0xD/tT+mXH8PgNeCR9l9/0fMdtbYhlKKrPd8N05RGYwOFXAsQdJaMMdXHDUVNtzAdPa34We+Fjd+fZVQHAO3BI0Z0vYc6J5/xjqRYGJkf++t1ub6JsQ61bhstB2QzZ4nS1JkaXQgs+trnZtrSYqezUI76itMjA/5HNhZ5sylJk+/eplPPDZYBT1LwkytQ6XgXNNj7Ea4ns9Naw1Rm6xtBAyUQnglhOea9mOTr9Wq2yA7/ypq7qzx3OjUltsxwLnnY1AyVWm0U8AMzh1TDaUwjCiaP1k0j1deb50HPrX+ubKi71rdjayuXwp+edsWlMaXtrHmtle2s8Jdw+Bp5e3ig2u1Gz3Rg5WL9V6X63/HV39mNjil1ce8cltbysbae5VpyBTyNrlG5myc21rIOHTo0FVeGM1mk5mZmav8L65cD+Ddd9/l7rvvXnr+9OnT7Nq164b8Me504m6by+fP056ZouKCDMqoNQbOL583gWf7Rh2CXYdpF34ULSTaW10qNEoyPNeiVLh6G7pbR9gB1sjeTTHfupMRQQVRHEW3ZhF9StLKoIJz/OMkL/85yWt/g73r7r512Rcd5dPGHJkLujS55eGgxcDBti2StL8ppxCCh4+O8cXnLvDcG9N9hQwhBI4tqbdXCxnvJ4wpZwfVraM7TcgiU3bUCUylgG1mpquTEN1ZQHUWkEEFOWTSorL5C8x+88tk0gUnACcwPj3u8n05sue2qNyQsz6/9aV3ePGNWe4ahQf3eIyXMtBdhFYIrQDRM0ztOYcIiV40Tu0JGtpyQDroxXK7sid8CIGIO6biSGpmibXtmbKp1/tb0Jria3+AXT9PpG3+MP0wH3vy4YG2FycZaarZMVKgaKXoVgMRlJHVCURQ3Xa/z5uJcHys0b3I4jBZ/bIp11oc6fueqIVLRE//BqI4gvfk/3jNa4JwAxACVbuA7iwYc/FC9boMKIUQDPVE9kEqcT1+fJIzl5o8/9YsTz24C8/pf90qeDaNTkKzk1C9xaafSwJGcw7drRnhzStvaeUzrTXR1/4ruj1/1WsiqBihwl/2HLF23k3xU/8L1fExms3wDhTAc3LeP9zWQsZTTz3Ff/yP/3GVV8Zf/MVfIKXkySefvOZ6Dz/8MKVSiT//8z9fEjKSJOGv/uqveOqpp27Ksd9u6DQmrM0wc+EcnVaHQqWCdNceAGqteelciEXGA3vNADkd2rfmslGcMTFcwLZWN9aqWwfbwRrdu87MSc4iQkis6gRp2ETHHYRbWHd5+9BjZOdeQtUuEr/8F3gf+NH++5AWVlBBzU6B9IzJ0hbiuxYl36YZJlQHqC7y4JEx/vaFi1yc63Bhts3usfW/N4Fr0eykdKOU8k0sL3sr0VmK6jTR3Yb5jSWRCUl1A/CK22ZwlJ5/xTid94QL3V6AZDntzD74GO6DRshQ3TrRxbfX3V7wA/9fwHyHwi//Z2Pc5gaIntCx8r4cP4g1bGbUdBKBSs3ruYv+LefsdItL9YxLdfja6Q47Kjb37vG4b0+BocIV14iVrvqLQodKEFkMOkMuhk8DZpbS3DfiRWWw6I0r0RqrNQ1ZTDa0F4Tg3eHHGZr/S/5L6yN84vFDOFb/31iSKsJYMV52KKkmWnnI0T0mOmCbGl3fCoRfwrL2kGWJmfgoDK2/grSMIDp7huSVv8R94O9ee9uOD7ZrBuUzpxGFYazKxKoB8aCUAoeCb9OJUkp9KnEd2VNltOIx14h48e1ZPnh8sPQWKQVT8x0KnnVLqnFdLWD0IjA2uW3VWUo29TbZuZdx7vkYsjKBEAJrz72omXexdt2DLI+ZCIvC0JoRqsLxkNb6fik5OTm3B7d1i/i5z32OX/u1X+NnfuZn+MIXvsDU1BT/+l//az73uc8xObl88f+Jn/gJLl68uFRa1fM8vvCFL/Dv/t2/Y2RkhKNHj/Ibv/EbLCws8NM//dO36nS2JTpL0Z0anZnLzM3N01EOxZGJdft4l+spUbPBPx/6C6T9IeC+NZcLkwzXsSgHq7+GOmyCsEwkxnV0Gt6vCDdAVsZR8+fB8dcdeAkhcR/8NOGX/zPZhddIL92PvfNY331IxwPLJlssU7eFItPSTFYr7lu+DqDoOxw/MMwrp+d57o1pdn/o4LrLu45Fs5PQCVPKt2HpukHRKkV1QqJ0nvTyJbKwY2af7QCKwzdtgK7TCN0TJVRnwdzv/anOAv6HfwpZMWG22blXyS6v4c7uBsjCECJYjiCyhncz/JHP0anXUWHX+HvEXXTcMRUdsmRVZ1Z166bKSrexZiCsc+/fWRIy0nMvkbz0Z2YG3S0ivCLC7926RUShinPXE8vb7tQRXmHbVY24U/h//fB9fOkrz/HCeyGnZjMuN1Iun0z5m5Nt9o443LfH48Qun5K/mG9usShgXflZb9ocrFZY9Qs4c+/gzr6NjBqkpUlaD/+PJJnmN94qU2t9hof2Fzg43v86kypFu5sw7qcMORpZGseqjvcVp9+vCMdHjuwhmzmDjloI79p9BlmZwH30h4mf/k3S099BViexDzxy7W0LCX4ZVIruLpCGTWRpDFkZ39AA3bYkw2WPc9OtvkKGEIIPHp/kz54+y3den+axuyf6RnEAVAoOtUbEdK3LrrGbJ0rfDAFDa4WafY/03CtkF09CYiKmRGkU98T3AODc81HE8X6V2HK2C1kvtTxTJl09yxQrpWWUXn68aNmBxrIErTij1YpQSi3beLDoA7LKoxQ77DA8nFLIg7rvWG5rIaNarfIrv/Ir/O//+//Oz/zMz1AsFvnsZz/LP/kn/2TVckopsmy1bcznP/95tNb88i//MvPz89xzzz380i/9Env3DpaTeDOotyLmGyEFz8a+yWUhtcrQnTqqOU23XmemowlFmVLF7RsV+8rZNj9V/gojsk029TzNXcdNfvIVhFHGSMnDdVbk3kcttNZYY3v7G1fmXIUsj6K7dXS3iSis7/Uih3Zi3/U42aU3kcXB6tYDSL9E1pgjq13CGt+/pYO2ou/gOZI4UUtu/evxyLFxXjk9z6vv1vjEY3sJ+vhrOLZkoRUxMUBViNsJU2mkg+42jVigItKiiaAShZsjXmitlvajGlOEX/z/rb98dwF6Qoa18xiiNIIoDBnhojiECIZMebUrkIUqhR07SBvdgUKE/Y/8tDEw7ZWt1MmK+3F3qZ49sNRhRmuIWub61Fh+WRSGloQMrRXhX/4CoKEn8pm/khH8vCL23vuQ5V5OdNg0xnduASwnnx0cAM+xeHCvx7FxSSw8Tl6MeOV8yHuzCefmzd+fv9zi0LjDvXt87tnpEbhb8F1XKfbCWZzZt3Hm3kGuiBbS0ia0y5w83+aViylzrYySZ/OJE/1F+Uxp2o0mo3bCyMgE9vAOExqfRwOti/TLMLyLbPYsyGjN68Qi9s670fd8jOT1LxO/+KeI8jjW6NoRo4sIaSMKI+gkRNUvobt1ZHUSURgGBvtsKkUXz7GI4qxvW3b/4VG+9PwFas2It84tcPf+/tGPQghKBYfphS7FwBnIKPRGMCaeLVRz3vhR6M0XMFR9ivTcS2TnX0V3ly+8wi9j7bkPe+/yJFn+G9leaK17YoUmyzRpT7iIE0WcKlKlUKkm0wqtBUJc3Xav1SZaUhBm0O1Gxv+it8yVSy6uqrsp5TvMBDxnNbe1kAFw+PBh/ut//a/rLvNrv/ZrVz0nhOALX/gCX/jCF7boyG6chVqD02emCIIC46NlKkV3ywUNrZUJO2/Mort1OglMhS4pUCo6fUWMTGkOznyVA84sqfToHP/MmiJGnChsW1AuLg+CddRGqxRrdD+yX4hozpoIaSMrk2Qzp9Fp3LdT4Rz/OM6xpzbsQSIKQ+jWPGrBQ47s3rJOhOdalAsOtWY0kJCxd6LE5HDAVK3LS+/M8fiJ9cNyA8+m3U3oRmv5Y99eaKUg7qDCFrpTQ8eh6Vw6PiKoYldKiEYXsUX5wFordP0y2fRpsulTkIT4HzPXV1EeN/4VgCj2xIkVf7IwhCgti2n2gYe35BgBI9oNGEjkHHsK+8h3oaMORG1zjVrxt6oUdBwas0mVQRobD5J2bdX2rNG90BMykje+Qvrus72DsnopLoWev0cBObwb654PAya1L710auk14fX8P97Hvh8FV/LogYBHDwQ0uhmvXYh45ULIhVrKqZmEUzMJf/JSkyMTLvft8Tm6w8O1b0As0sudZmf+XYon/3DppUR6nLf380qyj2/XJ2nNWnB6uXrMJx8o9RVUVJbQmq1R8W1Gdx/BGRrLI3s2gCiOINMYVbtgfk/rpODYx55C1afILp4k+vZ/x//oP0L2Ef5hMd3E66WbnEEUalgjO2GASga+a1MtucwuhH3bMtexeOTYON945TJPn5waSMhYXC+MM6bmOwSePZC/xkZZFjBm0Z06oIwHxiZ9V1dGXyanniZ77wXzguNh7TqOvfd+5Nj+XLjYBijdEyqUNoawmSLJNHGckaQZWc/AXy1WPkEgpMCSRpBwPQsp7Q1ZEFlSUiy62OglU+T16GxOEa+cbcxtL2TcyejmHIXGGWjZXJqxqZUqDA9XKVeK2K5vyh9u0sV8qXFqzJgZXCQtHTDdihESyoXBviqNt5/nMectlIb2PZ9CB0NrLteJEsoFd6nuuY676CzGGt2H3GLvhTsdEVSQpTFUYwpR6mN6adnQ6/BprcgunMTafbzv90oICYUqqjENtmcc9LeIStFjthEOlF4ihOCRY+P82dNnee7NGT54fGLddRxb0shMKPftiNYK4m5PvKij47YJ7XU8M5PbG+iKAUKTrwfVWUBNnzLixcxpiK8onxw2EX4ZISTB9/7sujOl2xUhbURQgT4RYsIrEPzAP4c0WhY7wpb5TBaFj+KyEa/WyvgwaAUqM9UUwtaK0NplcU21a8Tf/s2rd+p4RthwA+wTn0BWd2zCGW9z4g6o1d/nSmDxxF0FnrirwHw75ZXzEa+eD5luZrxxOeaNyzGuJTi204gahydc7AF+EyLp4sydwpl9Gy3gvX2f5tJCylRtlO+hwuvxTl4I9/FOOolaMTNvSZis2Owcsjm2w+PYjnW+91oj4hbdTsTQrt0MT+7C9nNfqI0ihEBWJtFZjG7M9Mw/127HhBC4j/wgYWsO3Zgi/vZv4j31UwMNxoUQ4JdABeiwQTbVJnJitC6BWH/9asljth6SZQqrz6TUY3dP8K1Xpzg71eLibJtdfTyfFikXHOYaEVPzHfZObJ5p81YKGDrqkF58jezcK1i7T+Ac/iAA9r4HIAmx9tyHtePIHSXsaZUZ/6Usg5VJFUsNwOoKflesveZyizkVwhKkoovqRCglemVSl0vAIuRAIvhiVEWm9JJgkWaKJM2Ikl5qSE+oUNock5QCKQSWZVKqPEcOlBqVk3O95ELGtkYj0PgFnyBNiZrTTNcu0XQdypWAYqGAFRSRbsGEMtuuud3gLJ2O2mStWXSrBii0V6bezZhZ6GLbgsAd7GtiNS6xb+orALzsf4ADo2t7FKSZQlgW1V6lEp2E6KSLHDZmZjk3hunQjZtqFFF7IB8LrTXxs79Hdv5VnNbHcO7+SP/9WA64Aap+GeH6W5YKVAocfNcmjLO+qSIA9x0e5W+ePc9cI+TM5SYHd65/XK4jmW+GKHX7OJfrNDaRU+2aGShnGcL2jGggt+6yrlW2dH3JZt8j+tp/Wb2A7WKNHUBOHMaaOAQr8tVvRxFjowghjD+N40Ofa5n30A+gH/w0ZHEv1aWz5O2h4y7CX/29lcO7l15bSnlJInQSods1hHx/zFAGL/0Oxc482nJRTgHtBGingHLN/fGRQ3zk2B4+cqzIzHyLty60eP6SYLYDr5yPeOV8ROAI7tnlcd8enwNjq0tWiqiJPfs2YuptgtZ5RG+gkGnBL71zma42UW5f5zOAwJawc9hm15DDzqrNriGb8Yo9mFCShoi4Q0t5yLED7D1+lDRK7+gS0FuJkBKrupMsSUwlk8LwNQfywnbxHv8c4d/+554Phlq0UxlwX5ZJLdExydwl0ligS+PGZPIafbBS4FAOXNphQqWPL1Ol6HLioPF8+vbJKX7oqWtX4lt1XEJQLbrM1UPKBZfh8o1dd7XWprTpgpnkAr0pAoZOY7LLb5Gde5ls6h0j6AKobEnIsMYOYI0duKH93Eq01j2xIjU+K1lqzlPQExVsM5kkFr8vve+qEMu5EUIgVj6/4lYgl3MqlkQ7gbQtnGqAFE1UHPX2n6GzxJRq1hlaGXOJTJvUDwWkSqA0JJkgVpBkmgyBUpKsdz4mqgJsKZBS4LkSS8jr8kYe8E1cvLNs4JxJU1pXZeb6rFe8vtZtzh1NLmRsd4QwoYy2h+cXcRV0o4RWPabQaVL1WxRciSUFWBbCck1H2i2YWdlFcWONRkcnIao5h2rNQZYg/DLacphvhMzXQzxH4g4Qzg8gwjqF1/4AC8VL8T7sex+/5rLdKGXHuE/g22RRhI7bRsTo5cfn3DjC8bGqk2Sz75nvQx9xSwiBNXGY7PyrJK9/GVGdxN5597rrAAi3YMwaaxfMQHoLBquOLakWHWZq4UBChudY3H94lGffnOHZN2b6ChmBZ9OJMjrh9o/K0HHXREG05iCOTFSWW9yymSqtUtT8ebLpU6jp0yAt/Kd+CgA5vAtsF1mZRE4cwpo4jBze/b5Od9goond9F7YH66TTWdVJ/I9+fumxVhkk4ZKwoeMOvF/MIHulUUUWY2UxhAurXtZOgay6B4Dd3bc4UvsSn/QhK7h08KklHvXMozXjc2mqxO/xICd2eRwKFjg8/WXGsulV2zufDvNyvI+Xk32k0mFv1WZn1WHXkM3OIYfxsmXa342gUmTUQls2LXeC2B/m8N5RygWPWpRe91uTYwQKa2Q32UyMDhuI4NopI7I4jP+Rf2jEh+sciQnbwy5X0bNzZLPvIdoLpkSuX75KRJFCMFr1aV6KByrF+sHjk7xyep7X3q3x8UfivuLHIo4tcWzJpbk2gWctRb4OilYKki5ZNyLqxKRTl9FKGw+MGxUwohbJG18lPfuiGYz2ENUd2Hvvw9pz7w1t/1agVbYsVihzixZGZJAWWLYxpS0G5lpvO+Z9tBzz2iarALYtcYeL2FabNErJMk2cpKg0IUkS4iQliWLiJCHLMlSakqUxMstAJ0idYgmNJRSO0FgCJLonViyaTwBZ7+96uTLSRCyWz17cweL+xLK4IwUkvQpUSq9+TVi9ctvCRJ4giVXJjKFy7lhyIeM2Q0goBA7ac+jGKRc7ikLmMFRyKdoCS5sQZWO+hPkxWw7C6pnPuaakmI46qMYMpJF5PqiQKcXsQof5RkTBt3HswS+uQmVYSZvLWZW/4MP8o+G1GzvVcyIeKvumwkDYQg7tNC7gudndpiKKI4h23YT3D+A5Yu9/CLVwifT0d4if/T3kRz+/ZEy47n6CKro9R7ZwEWt035YMZCsFj+laOFDnD+CRu8d59s0Z3jy7QLMTUy5cuwNoW5IsS2m0Y4IbyaHfIrRWJk2hXUO1F4zo6AZQGtn034zWGt2cIeuli6jZM5CtEHiEQCfGTE9YDsHf/V/uqHDf2wUhLVMud0W0lWrP38Ijunl0H/88YbuFIzQi6SCTLiLpIJIuMu6QlpfTa4RK0EIitMJSMWViysuFTJhVZf5q4X6ePt3lFaH5V0MzKOBMOs5r6X6mgoMUxkbYNWTzw0MOo6XrEC1WojUibiNUivKH6DjDdLXLvonywIPUnP4IN1hRyaSD8K4t8q2MAjWTO7NYI3s2tj8hkF4RJT102CSbbiJLo8jy+FX+U5WiQzFwaHX7R2XsGiuyb7LE2akWz7wxzccfGfy4ioFNrdlLMZksr4o6WgudRKbiU9hGhw10EmEJhaqWEH4JuUnDhfTCSdLT3wGM19aiaaesbF166magtVqKbFgVXQFGrJA2wrZN1Son6E0iOiZCcvH2JpCkilaYUO+mXJ5pEsVZLy1E9VJUBEKAJT0s1zdeFVJiWWK5P7FUujoDrdAqI9MKobLeOV8ryuEG+yPCiBZarBAvVgoVCKRtQzkga0VkK4WMpdsr3g8Z5ULGHU4uZNymCAkF30YrjKAx16bgGUGjFJSwemHGRilOII1QUdtcmHp52cItIHqNeJplTNe61NsxxcDBXq/WvcpwZt/CmXmLzvFPg5Cowgjf4QH+onmIB45VrjnA6kQZpYJDwYZmt4ms7kAO7ciNm7YAIS1kdYJspoVOIzMT0Afnvu9F1adQc+8RPf2b+B/9vAmTX28/QkBhCN2aQzk+srpj0wfYBd8m8CzCOKXg9x84Tw4X2DtR4tx0ixfenuWpB3atu7znWsw3QnYOrX+uNxOtUnS3iWrNo8OGGQT1RMetIjv/KvGzv7v6Sa+INX4Ia+IQcvzQqqibWyFiaK1MGLjOQCmU1GTdFBVF6IzV4bdrdYh6r+XXnNsUIdC2j/ICYGTdCcFo7weJ9nzApHD0BA+ZdBCxue9Lm7/vVHn1fEgzdPhG8Anskd2MjVV5smT1Hfxt6LB7aSTaLZFWdxPJAp1QsXu8yEhl+1x37hRkUFmuZGLZfY2vVbdO9PVfQ0ct/I9+/rrSXE26yRA6jVGNGVSngayMI0ujS+ajlpSMVX3evdwYSJh//PgkZ6daPPfmDB++fyfugAaeQggqRZe5RkQpcBmtrv6OaZVCHJoov27dpKylMUiBsDwjXjgOVjFAZF24TpNorTJU7cJSZRj7wCOo2TPYBx4x7ck2m8BaTgdJjFih0uUogcVUEDdAOoFpCy17RXTFrak+lWaKTpjS7MTU2zFxqqiUfeJUIQUEnoUl7cG9Kq5RunpbJGlY0ggTlgLyFLycXMi47Vlf0HCwpGXUYsdf0kq1VhhV1jwTJxnTC12anYRywbnmxU7EbdxLL+NdehEZGyvgZO4dkrGj1DsZvz7/ABq4f8/anTKtQCvNkG+hunVkdQJdyUWMrUT4ZWRpHFW/BEW3v1mmtPA++KOEX/7P6NYc0TO/i/fEj/c3/5Q2eCXjl+H4iE02bLUtyVDJ4+JseyAhA+DRY+OcmzYdwA/dt3PdRjzwLNrdhLZvDewJs1Us+V+0ZtFh23SevPK6LvzXtR+tUbXz6MY09oFHALB2HDGdtKFdWL10EVGZ2PLf6JXixOIsEIvPo01HUtPLLTYdLSEtY8ZpewjZmyHTGo0GtUbu7FKere691OuaLV0crzgwIZY7r9LekjDgnC1GiJ6PxtrCxzFYYca5BUbTK9JIsvJOVGGEFItGK2bXSJGxoTur9PN2QpRGkUmEql+GQnXdWXHhmohV3Zolevo3TMpJHxH/mtuyXURp1ES+zp1Hd0x/RwTVJYGh5Du0w2TdaEGAo3uHGC571JoRL52a47G7B49csC2J50ouz3cIPIvAykwqWtgy5Z+TyFwzLccMyr3NNQfNLr9J8trfoFvz+N/zM0bQkRbeB35sU/Zxo8en08QIOXHcEyx6ioVlrvnCL5lKUXYvTXsxFWQbpE9mqidedBMWmhFhnCEA37MYrngMVQIaTcjy0qM5dzi5kHGHsJ6gUS44yBWd75Ud8TBOmap16UYJlYK7pmGP1ZrCu/A8zvQbCG26gcotEu18kLSyhzjV/PVJ47Z/YNRhuLj2Rb4bp/iOINAtnKH9xPYomc4HBVuJMf4cQ3frELdXmS9ecx2vhPfBzxF+9ZdRU2+TvP63uMe/u/96jg9ZQrZw0aQebHLOfrngYsnOQI7vAPccGOYvv3OOZifhrXML65aws6QkzTS1ZoQ/Yt2SWZUr/S+E495Q7vZ6+0nPv0L67nPoxhRIC2vXPT1fHZ/g+/7plogmJKExG7umOLHCTd2yEK7fm+lyEZYJ3V16fcWf4zoEw0XCWhuSbLXR12Lo79L9lULG8n2uuq/MTZagk64x1UwjU31kRTixkPZSDjTS3nazizm3CJUi0giRxYBE+UOo0pgxJVWaejNiYihgcjTY1KiPnNUIIZBDO0wlk9Y8rHM9FZaN98G/Z0T85izxs7+H+8G/d0ODVuEVwPV76SanEcVRrOo4lhMwPhTw7qVG32pcUgo+eHyCv/j2Ob59copHj20gDVellEREY6HObOcskyWQykTlXlnZajPJ5s+TvPpXqLmz5gk3QLfm+hogbxU6MxEWSykhKIQUKLuMMS8tLPnKLXnKWe62M1BWStOJUlrdmHorph2ZaBHflQyV3KXJmvyakvN+Ihcy7jDWFDRaawsanTBhqtYlTjLKBXfNWs6F1/8Ud+b1pcdpeSfR7odJxo6CtDhfS/i95+aZaxmB4/HDaw9etYYkSRkvJNiVXbjje+k0YuOgnLOlCNtDVifJZs6AEwzUcZHDu3Af+jTJa3+DtePo4Pvyy8Yvo3YRa2z/pqYeFDybgu/QjTJKhf4dDNuSPHhkjG++epln35xZV8gAqBY9Ls00KHg2Q6Wbk1O56H+h2vPodn3L/C+01kTT79F95Ruk5181ub4A0sbacwKdJcvm55soYugsMUaUWWKiwvzi1eKEtMzgYoU4cb2da7HS7b3fshs5D2XMxUgTE5KdGoFDxyFaJaYkaJaZgA6hjaghV0RxbIMZvDuCntdbGGXYIsWz7a1zy98oWdwTL1KQFtr2yQqjaKeAdgsgJFobsXS45LFztLiUApqzdQhpYQ3vIksTdHcBURi59rJ+GffxzxF99ZfJLr9F9M3/G++xH13XY6Pv/oU0PlJZgm7PkXbrCNuhqAXDYZe4KwkKngnlXyqTKdCL5TKF5KH9Rb78vGS+EfH2uXmO7h1mzS++VuY7mIbGiyVqI7KIIaVohYKGO8TI0NB1n0s/VGuO5OQXyS6cNE9IG/uux3GOfui6o1s2gtbapMdkybJoDmBZvagTH1ksIFwf2/Xwx4YIWwlCbd+Bv9KaMEppdRMWWjGdMEFpjedYVIvObXcNUUrTjVI6UUo3SulGGd0oJU4VlhTLf5a5lVJgSbn0vONYtKKMsGuMYq9eR/aySrfvZ5qzueRCxjZGX36T0qWXENFessIYqjBiGroB6CdotMOU6VqXLFOUCs5y6njSNWHdrjGRy0rj6Nk3ScaOEu1+hKyy0zyvNF95vcXX3uqgNJR9yQ8+VOauybUHgGEUU9RtiiO7sUZ29wa48ZrL5mw+ojCMKCwYF/fCYOHT9r4HsHbeveFKJKIwjG7PoxY85MjuTYsokFIwVHI5N92mf1yJ4ZFj43zz1cucvthgvhGum4vuOhaWXAzDtfEGzEW+Hpb9L+bQYXNL/S90GtP56i/Rqk8tPScqE9gHHsHee/9VZnQ3vD+tIO6aSAbLRnglZHHYuPj3yVPfrggpQZrqUVd2j5aEjcXbNEYnIaQhOk0g7aKzXkLDylQVy8mjODaIFIKdYyUEsBAKmt0EIcB3rQ2ZU28KWi+LFzpDW46JuChX0HaAdvxVg02tNQtNYzy8e6J084/3fYywPayR3aQz7xrza798zWWt4d14H/gxomd+BzXzLuFXfhHv8R+/YTNKYTmI4oiJ7MoyLDKqXsb0fBOpraUyv0vpDUuVGwS2kDy6R/KNdxXffuksx4M5I3ZIa0kA0UIi4w4iM+U2tZRgeSi/AkLixBnz7YygkG5J+mRy+hmSl/98STyw9j2Ic/xjyHWqxmwWRjDvQpqA45rJm+JQz8PCXW282UPaEukFiM5ihOD2QWtNGGe0uwm1VkQnTEkzhedYlAvOQBGpN+sYl0WJrCdMrPzLVggW5nGU3EiZk8FZFDcqRZd/8mMP5GbKdzC5kLFNSTPFwqlXqE6/DNMvA6CFRAXDZMUxssIYWWUX6fD+dbezpqDRtIkThZBQKpgZc9mewbvwAu70SeId99O9y6QSRDsfIJ64B+0tN/zTjZTfe67BpbqZ1b1vj8cn7y8TuGtfXLXSqNYC5R0TuON7b9vBzO2MkBKrOkkatdBJOPDsyKKIobUmOfMi6tiD9JvLFkKCX0E1pkHayNLIppVlLQUOjiVIUjXQQGC47HHX7grvXGjw3JszfOKxvesuXy44TNe6TNc67BnfvHzhRYz/Rb0nYGyN/8Wi94UcNiKSsF2T52s5WHtOYO1/BDmyZ/PPLYlM9AUK4QSmpHJQBrdwRw/WhbTBta8WOLReDmdOEzNLmMbLqSpx17y2Ki/bydNU+uC7NmMVn2rVpROlNNsx7TClE6a4tsRzrcFN7TbK0ox3DGgjXvgVlFdGOQFY3jUjghqdBM+12DNe2lKRNGdthFfEGtlDNnsG4u66Aq618xj+R/4h0dO/gW7XSN74203zdTDlN839kl1gPnboaH3t0uK9tLgPHE751pk6785lXKpn7KwKRLrsCyTRaGmb7+Ea2/Jci2YnYa4esnO0sOkz+XJ4F2iFnDyCe+J7kNXJTd3+lVwlmLsl5MiwKRG7BWXgbwZhnNLupiy0ItrdhDRTOI6k6NvYt0D41FrTaMdcmutwab7D5bkO842QTpQRxulV1VM3gu9aBJ7d+7NwbQulNJnWZJkiU5pMafOc0mS9yitKmyiVNF29zJUsvlbr+Yfk3LnkQsY25U++cYZ3TlW5zz/K0VKTSjqHzGKszhxWZw54k2T0riUhQ4QN/Pe+iSqOLQkd2i0udaquFDRsW+A5AnvuFN6F53AWzi7t22pPm8ZTCLA9dK/ahdKap091+eLJFqmCwBF86sEy9+5eZ1CsNWlrHqtYobzr4ECVM3K2BuGXkOUx1MIlM7O8gYFS8vqXSd/8KvMXX8N5/MeBPuaftgteEbVwAdWeM6XoisM3HF4aeDbFwJikOQMKYo/cPcE7Fxq8+M4cH3to97odAiEE1aLDbD2kFLgMlzfn+6rjDqpjBAwSU0Fms/0vdNwlPfcy6Znn0I1pvCf+/lJakP/wp6mMjdGKILtO9/k196lS05lMY5NbXBxBFqvGJO0mlZvbrgghwHYBF3HFV1UrBVlswp/TeKn04ZLAkaVoFMKyyOwyOk7RWLnA0UNHHYSIKUmLUtUmKll0Y02jm9EOTd6450gcxxo00+jarPK7MBVTsuIo2i0aA1Gr/3Wo1U2QQrBnokTBf3//Lm4lsjCEru5EzZ9fFg6vtWx1Ev+jnyd+7W9w7/07W3I8iybWU/MdfPcaGlivgsRQyeL4Lo9XL0R8672MH3pkdfTeIFf1ku/Q6CQEXsRo5foj8bTKyM6+SHb5LdwPfg4hBNbwbvyP/z+3tIyqSR3pXSOXBPPdpkKNG9yWRsxRYiIvGu2IZjclTjIcWxL41sB9nM1gMe3t0lyHS3MdLs+b226Urruea8tVgkTg2RSueLz4V+g957sbqKByBZYlqZQDGs3ukpGp1isEj5V/mSKKFaN5Vag7mrxF3abcf9cYX3r2MC8390MTRouS7z2iOV5uYndmsdqzpJXlkpJ2awpv6tVV21B2gCqOLgkb8Y57EdKmYGd4l1/Fvfg8VlgHQCNIxu4i2vUwWXXPVS1qrZ3xB883ODOXAHBk0uUHHixTCdaZWdIaGTYItcfIrgN4heImvTs514ssj6O7DYhasE547ZXYu4+TvvMtootvo179G5wT/Tt2wvFNmawkRNUuoJqzyNIIsjhy3ekMQgiGyx4LraivSdoiR3ZXqRZd6u2Yk+/VuP/w+oZjjm1hWxlTtQ4F//pTTLRK0WEL1a4bs9VF/4vi5vlfaK1R8+dI332O7MJrxnkdwLJR7RqLRy7LY0gvgKi7CftUZsCddAFhZjqHdpjUkZuQB30nYFJV/Kver8Vy2bqX5y11gnQVdOo9r5EULQDkikoqzsAph7c7QkqckUlk6qDi0IhAKsXVCtfKqBQUoZPSDhM6oaLVAtu28TwXaa/wIOhHlvTEi2TZ7yIYQbsFtFPY0PvdjUxY+P7JCpU+FSpyth5ZGYc0RjWmoDC8rn+N8Ip4D39m6bFOIpK3v4Fz7MOb5v9UKTgstCyiJMXvk/LxxOECr16IeOV8yPecKFL2N/a7FxICTzJfjwhce+AKYIuYSiRvkbz21+jmLADZpTewd90DsGUihs7SZa8l20WUR5DB7SuYa21MO+vNmForIoxTbEsQeDblwtaXNFdKM9cIl0WLuTaX57trpn1IIZgY9tkxWmTnSIHxIZ+C7yyJEtshzUWInj/GGj+H+UZ08w8o56Zy+10B3icc2lXhX/zoAf70G6f41lmYayt+/UWYrAzx8Xt2c/TY6lKaWTBMd/93YbWNyCG7NWTaRdbPY9fPo6VNvPN+AKzOPMHpLwOgbI94x/1Eux5E+1fnMmqtefFsyJ+/0iJKNa4l+N77Sjyy3+9fyjNqEGGjh3YzNDy0ae9NzvUjbBdZmSSbfReydOCUBlndgf/YDxE+/Vskb30TUdmBvff+/vsTwsyUuIGpyrFwGdWaRxZHkKXh66psUim6vaiMlFLQv9GXUvDw0TG+/MJFnn1juq+QASaFZa4RbTjFRGsNcQcVttDt+V6qhTSu6Jvsf5GefYnkra+jmzNLz4nKBPbBR7H33Lf53hdp3EuHMMadsjKJKFRM2cLbzHBsu7JYkWVR4LBtiT9cpBM0IOxVfckSYzIad9FZBHELVLZs4HqH41QnsFURUmV+byozAp7K0FlKSaWUVEYcdum0u7SaLbphTNZO8W1wrV7pcWFSepZ8BoQwAobKwHJQjo8qTfZKt/rrCiBamxnANFOkmbldDHe2pWTXaHHTortybgwhJHJoZ898s7YhYTl+/g/ILr6Omj6N9/jfW9drY1Bsy6Ja9JiudfCc9b2K94w47B1xODef8J3TXT5+fFC3qGVcxyJKEmYbIbscC3vAgaipRPLXqLn3zBNOgHP3U1iTRzZ8DIOwnDoSmmuiV0QWd/UE89vzt5QpRauTUGtGNNoxqdIUPIuRysYiZDe0z0wxvRByea7NpV6UxdR8l3SNsqy2JZgcLrBztMCOUXM7PhQM/B3JybkV5ELGNsaxJR/YK/ngsWGePt3lG293mGqk/Pq36+wZtvn48RKHxs0MjyqOERXHlldWKVZnHtmewWrPIlS61BHLKjuJJ46TVnYTT95zzdDYVqj4oxcbvHnZmHLuG3H4oUfKjBT7f21E1ATp0rDGGB8Z6jvTkHPzEMUhRHcE3Z5HFAcvh+bsOYF9/8dovfxl4uf/yMzyD+3qv+LifhcFjSRE1S+jWnPI4rDx0PAGj9axLclYxee9qSZFf7BQ+4eOjPOVFy9xfqbN5fkOO0bWF1BMionL7MJgKSY6S3rRFzVj3pmlCMc3JqtbFO6qOwtGxLBsrN33Yh98BDm8ud4XWmWQ9DqTloMIyiZFyCvmXjc3ESEt8/thtTi1ZDDaS1F5v0XECGG8RegJsiu/+X4FfGBIKTphRLPVZaHeoRklSJ1ScMGRCpHGJvJCK7RXQfnX9rvQWi8JFYuihVKmkoolBZYtcW2LatHFd20cWy6FXudsH4RlYw3vJsuMZ5EoDA20nn3wUbKZd1G184R/+4t4j38Oa3T3DR9PueCw0LaIkwzPXT/K4onDAefmE5490+WpY0Uca+PXe5NiElNrRowPrS94p41Zuk//Ken518wTi5VIjjy56WI5rPBa0grhBsjhXUi/DF7htkwdAYiTjEYnZr4R9dLMoBjYOPYWlL7NFG+eXeC96RbvXWoYU/81PCRcWxqxYmRRtCgyVvW3zl8oJ2eLyFvX2wDPkXzkWJHHDgZ84+0O3z7d4Xwt5Ve+scChcYeP31Niz8gVM9PSJitNkJUmSNbYZufuv7vuPl+/GPHHLzZoxxpLwMfuKfLkkcJA9alF1AIhCQs7kAT5TNQ2QwiJVZkg7TbRfUzPrqTy8PfSnT5Pdvltoqf/O/7H/tGGRAgwKSfC8dFJhGpMo9rziOIQVnEUvOJAA/FqySVYsOlG6UDhsaWCw937hzh5psZzb8zwye9a3yQXjJBo24LL82unmGitIOqgug1UpwZxF6RjBpzB5g7yVadO+s43EV4R59hTAFj7HwI3MJVHNnEAu5SHnHRAgfAC5MheY9zpBLlHwzZi2Wh08wcUdwpSSkqFgFIhYHx0iFY3od6KqLcTkjTD8ywC38JCL6WMKGXM5BbFiizT5nchzAy6bQkKnkPg2ni9iimLf/ns5e2BcDys4T2mkknUQnj9oxusicP4H/080bd+Hd2aI/zqL8OjPwQnHruhY1kUv2Zq3b5Cxt07PYYCyUJX8dK5kEcPbPy3v+iZNt8MCTx73cjG9lvPLIkY1r4Hce75GLKwuZVIllNHYuPftei15JU21Qj7ZtMJUxbakTGcjFJcRzJUcrdELJirhzz/9gwvvzNnfIJW4LvWcpTFSJGdo4UtjQLJybmZ3L5XiPchBVfyiRMlHj8c8LW3Ojz7bpfTMwmnZ2oc2+Hy3feU2FG9sY80TBR//nKLF8+FAExWbH74kcrA2xVxGwRkld00Y4/RqrfhPMycrUd4RWRlHFW7AI438EyHkJLgAz9C+4v/Gd2eJ3rmd/Ce/H9cV4MoHA/heCZloTlH2q4hgmFkecR0YNbZpmNbjFV9zk23CLzBojIevXuCk2dqvHx6ju95dE/fDiOYFJP5RsTUfIe9E+aYdBqZ6IvWPDpqgVIrvC82dxCjmrMkb32d7NzLxp3e8bAPfQDh+Miggjz0gU3dn05Cc062hyyNIZbykN8fHgw5dzaL5opDJY9ulNLuJsw3jaiBBnSKRiOlwLEktiWoFBz8nqv+SsFis6s+5Nx8hF8ykRmz74EcrJqXLI0aMeOZ30FNvUP47d+mEc2jD3+IfhW91qMSONRbMXGc4a7TNllS8MHDBf7y1RZPn+oMlOa7Fo4tiRPFXL2L70rsnsGAjlqohctYk3cBUL7/o4S1GewjH0JWd1zfya2BSR0JjdeSlCtSR0q3dWSZUppWN6HWDKm3YpJMUfDtLREO0lTx+ns1nn9rhvemWkvPlwsOj9w9yeSwz+RQQLXk5qJFzh1LLmTchpR9i797f5knDhf4ypttXjwb8ublmLcuz3PvHo+P3V1ktLTxj/b0TMwfPN+g3lUI4MkjBT52dxF7kNBFlSGSLgJNVtlNYpcQacJI7ha8bZHlMXS3jg5bG/JvEG6A9/iPE33r/zbhpTfYQArbRdgjRtBoz5F1aohCFVkaNZ2aa4gD1ZLHzEJIGGcDhW7vnywxPuQzsxDy8qk5HrunvzGZEKYO+dxCh7IMqcgQ1alDEpm69JtcOnURtXCR5M2vk108ufScHDuAc+zDxkB1kzGpMU1TLndol3nvb9M85JycQVh00h+p+LTChHY3wbIkjiWXUkJsWw4UhZhz+yKKw8g0MqK+tAYy8RSOj/fE3yd59a9J3/kWzRe/iBul2Hd/7LqPw3VsKkWX2YXuukIGwMP7ff72jTYzzYx3pmOOTF7ftbrg2zTaMXONkPECpG9/k/T0d0BIgu/9f0NQRLoBwQd/dHOrXUVtdNJFuAXk0E5TdeQ2Th0BSFJFs2Pey1Y3QSAo+BYVZ/NTMKdrXZ5/a4aXT80tlRYVAu7aXeXho2Mc2z/CcLWwqrJHTs6dSi5k3MYMFy1+8OEKTx4p8OU32rx2IeKV8xGvXYh4cJ/PR48VqRb6z6QmmeZvXmvx9GlT0WC4IPnhRyrsG+1zAc7i5fxiaaFtj6w4hgqGaDUjhkouxbzU3LZFWI4x/px5F50lG3Jhl5Vx/E/8402dqV8SNLIE3Vkgay8sCxpB+apOjudYjFQ9Ls50BhIyhBA8cmycv/j2OZ59c5pH7x7vL8KkIV7URremqdUjvJECbqE0cArMRtFx18z0TZ9aes7acQz72IewRvZu/v5UZgQMrRHFUazK2IZThXJybmekFFQKbl5R5H2KEAJZmURnMboxM3BknRAS977vxR6aJHnzaziHHxuoBOp6VAoO9VZEnGS461TL8h3JQ/t9nj7V5VvvdK5byBACSk6KevNputMv9koMgxzehY7aEGxuW6CzxFTwcnyssQOIwtBtnToCpipRvR0x34jo9tJHKkVn0yO24iTjtTMm+uLCTHvp+WrR5cEjYzx4ZIxq0VzDrNznIud9xO19BckBYLxs82OPVbl0JOFLr7d5ayrm+fdCXjoX8tiBgA8fLVLy176oXqgl/N5zDWZbRtV99IDP37m3hGevsbzWPfEiRGgFcm1n9yxTaA3DlTyffrsjClVEcRTdmoHi6IY+r5UiRnr+FURhGGtkz40fk+UgCsM9QaNO1llABFVkeRThV1ZVyBguecwthIRx/9J1APcfHuWLz11gZiHk7HSL/ZNruM6rDBG3kGEDETcRWUJgu9RVQC0LmLC9TZ2lXVVG1vFNB1IIrD334hz9ELIyuWn7WrlPojY6DRHBELIyjggq+e81JyfnfYeQEmtoF1lqRHQKwwNfC50DDzFy4gM024nxUslSdGMaOTy4EfYinmNTKbjMNcJ1hQyAxw8V+PapLqdmEqYaKZOVDXbn0xjv4vN4559Bpr0SlZVJ3OPfjbXj6OaaRmtlBHOlEJVxrMrk7Z0+ojXtrqk+stCKidNsy6qPXJxt88Jbs7zy7hxxYqIrpBAc3VvloaPjHN5VuSMMOlf1g3JyNkAuZGxzhMqMAZK01y3/BrBzyOEfPDHE2bmEL55scWYu4enTXZ57r8vjhws8eVeBwO1VLlGar77V4atvtlEayr7kMw+Vr1b2VYbIIkRqlHptuWh/COWVruns3g5TygWX8gClMXNuLUJIrKEdZGl3Q+7tK0nPvkT83O8j/LIx/9yEknTQEzSKw2iVosMmWaeOCCpG0PAKoMETMBLA5fkWftVH6JVzYnrFjbkfAPfur/DCqQWeO3mRA72qK8KSYMfI5gKiPY9IQxAC5QRo15jAFW3NQium4DubMnurVUZ24STJW1/HfejTWCOm4oj70KeNW3tx5Ib3seZ+4y46biPcAtb4QTMrlntg5OTkvI8RlmP8MtIEHTYQweCGliaqIEFrTfzin5Cdexn3wU9hH3h4w8dRKbrU2zFJqnDWmlDqMVy0uGeXx8mLEU+f6vCZhzZW3rt48g9wFs4CkBVGmZ/8AN7eE0yMbG604VJ741eQ1Qnju3SbDljTTNHsJMzVQ5rdGDQUAptKcXP7umGc8urpeZ5/a5bL852l54fLHg8dGePBu8YoFW5+/1opTZxmKAUaDdrMb2p07xbQy/e1NiWu6d0XmLLXGoEEFL3n0GYcsbi8Zqk89uJ9IQRSgG1baClpdxO0Ur3nBUKwtIxY8TjnzicXMrYztodyiogsRsRdQAECLSRYNlraawoc+0YdfvJDQ5yeMYLGhYWUr73V4Zl3uzx5V4G7Jl3++MUmFxeMs/GJ3R6feqBMoSdykCWINDIlWxEmZaQ0jnaKaCeAdVIQlDLl6UbzMk63Ddfj3r4Sa+cxRHkM3Zwl+vZv4X34J0w1hc06PmkjCkO9NIgWWVgHufwdrCQZrVYbHRoTUPqIGY9PKF44Ba+fbRIePEXJMw0hHQ/ZjcmEg/IrV/2ubEvgWILZehffsfrOmF0LnSWkZ18iffsb6HYNgPSdb2F94EcBsIZvvJzfmvtNE1RrDi0c5PBuk7KTl1DdUjK1WPVCLZft7JXCWzSTtK282kVOznZAuAFyZDfZzBl01N54mp3OII1AK+IX/gjVmMa59xMbEop91wyMa40Yp7T+NeGJwwEnL0a8fC7k48dLlLx1llcpIo3QrjmnaNfDyKhJuP+7SMaPIZVgoZ0Q+DHV4o37I2mVorsN47s0vBtZHttQ+up2ohulNDsx882IdpjgWJJywdnUa7bWmvMzbZ5/a4aTZ2okqYm+sKTgnv3DPHR0jAM7yjd1cK61Jk4UUZKRpAohBZ5jYQkzCSaEwJJGNDBigkBKsIRESJO2J4SRKhaXgdVCgxD0XhdorVHa7FcpjeqJIkprslSTaQUCCr5DEiUkiVk+1RqtzH20WU/1RBE7H4fc8eRCxjZGlsfoDGlcXyJUYhqiLEYkoUnvyBJE0u0N3DRaWCCNwCEsm8MTLofGh3njUsyXXm8x3cz44uttvvi6ya/zHcGnHihz327PpIyEkYkAsWyUE6DcMtotoG1/qSxdP9phQilwNl2hztlaVru3RxsyehSOj/fBzxF+5RdR8+dIXvpz3Ic+vfnHKC1EoYpWGahsKRLId6GUSGrNGHulsdZVDb55vMOH3cM1LtRSnpv2+PDRoklXKXpoIrS6tjmW7xlztPlmyMTwYOWIF9FJRHrmWdJ3voUOew7jboBz+HHsTa4+smq/KkOFLTLhIcvjiOIowi1s2f7eLyill4SK5TKdijhTxHFGvKJ8p9IKpViecQK0AIHGlhLLlthS4Ls2nitxbQvbkvieTTHJejNbOTk5W40MKjC8i2zuLFg2YgPmykLauB/4UdI3vkryxt+Snnoa1ZzBe+yzGytzXvRotJK+URl7Rxx2D9tcqKU8826Xj929hvCiMtzLr+KffZqsNEH73h8CIB09THP00JJgb1ng2IK5RojvWnjO9Q0PltMWI0RxGKs6eVv6LmVK0eqmLDTDpVLNvmcxUt7c9JFOmPLyqTleeHuGmYVw6fnxIZ+Hjoxz/+FRCjfJa05rTZIuCxcgcB2LUuBQLrgEno3vWj3x4tYIBLYtGR4uUqt5JEm2JHQotSx6LAoi5jl9096/nFtD/uluYwqBg+fYzLUzir6H7xeXzaS0BpUgsrR3mxhxIwkRKkGkywLH8RGLuz/k8colzZffipjvKA6PO/zQ/S5VO4Kwa1JGvArKL6Nt34gXG7xQLaq3u0b9vDTdbciye/tFsKwNRVXI8hjeoz9C9K1fJz3zHGJoJ87BR7fmOKV1lbBWKRdpdDSJEut2/Bb5wMGA3681efZMlyePFBh0vkwIU5J1oRUTePbAM1fZpTeJnvt9SExHRQQV7Lu+C/vAw1sWFaG16nUoY0R5CH/3QaLI2lT3+TuZTCniRJGp5YiKJMtWzVAZMcMIGhoTGiulmaVa/As8iSXtNSPUtNZkmSZVRvRYaEeohjZhuwgcx2KqEdLtxDhS4Hk2rm0qa9i9KA7Hknn0W07OJiJKo8g0Ri1cgsDakCGlEBLnno8iKuPEz/0+avoU4Vf+L7zHfxxZHhtoG4FrUy6acqzrtWdCCJ44XOB3nm3wzLsdnryrgGv3rgVa4U69hvfet7CihnmuBSIJe35mgivLxQaeTaNlUid2jBaxNlhOVqexSctxC1jjBxCF4VWeVrcDi9EXtWZEO0wRAor+5qePNNoxX33pIi+9M0fWi9KzLcmJA8M8fGycPeNbYyh+JUmaESWKJFFoTFle37WZGHJ7lZ0sE+m6DVmM6JAIBu7E5dxx5ELGNmZsKODI3iFmal3m6iFz9ZBiYBtTQyHActGWGQStFjhSU0mkJ3SItItMQh7YlXLfhMNcO2O8CDgWmVdFu4spIzc2oGqHKYFnSojl3H4Y9/YJdBL3zD8Hc29fxNpxFOf4x0lOfpHkpT9DlsexxvZv4REv4zvWQB2/RU7s9vmLV1osdBTvTMXcs2vw2TKrl2Iy1wgJXAv3GjNXK9N0RGUckghRGsU58iTWvvs3Nf3mqn0v5iV7RazhXdiVEaxiBRG34Ya99e9ckjSjE6a0uyn1TkSSKFKtV0RS6J5AIbEsgetILCmWQmg3ihAC2xbYrP2d1YBrW7S1ptlNWWjHSznJUpjjsC3R63xaDJU8ynn1jZycG0IIgaxOolWyoUomK7F3n0AWR4ie/g10a64nZnwOa+zAQOtXih6NdkKaqXVTGI7v8qgGknpX8bvP1fl7j5XxZt7EP/strK5JXVROgXDf48Q77zfpyOtQKtjU2zEF32a0Oli7qLUyaSSArOxAVsc3FMlyq1mMvqi3jHlnkmZ4rsVQyd10kTiMUr7x6mW+fXKKtDepsGMk4KGj49x3cAR/gApsN0KaGSE+ThRaa2zLwnctRis+Bc+ML1xH5v4SObcNuZCxzfFdm52jRYZKHrVGxFwzpN0NKQUO3lq1xoUAy0H3chGvEjhUwshISiakES9u0ORPa003yuhGKY4lmRwLBhpI5mxPhLSwhneSpRG6u4AobMxw0j76IVT9EtmFk0Tf+S2CT/zjDaWpXC9CCCpFj3o7Js00trV+I+xYggf3+XzrVJdn3u1uSMiA5RSTuUbI5EhxKcVEpxHZuVdJzzyH6jYIvu+fIKSFLI7gfeSnkMO7N9wh3ghmRqwJtrvKB+N2mxW7WWitCWNz/Wq0Y9phSpRkCMBzJQXfxrJuYRitZWbHir6Df4Uni/EjMhEjUZxRa0ZYlsyFjJycTUBIa7mSSbvWEzM2dh2QQzvxP/qPiL79m6jmHMI3hpw6aqHmL4DtgOUY7wjLMdF5vfuBa1Eu2DQ6CeXCta/flhT8yKMVfvUbC7x9qYv45u9RVPMAKCcg2vMBol0PrutttuqYpcBzJXONiGLg0s9CVMcddNwxlcWqkwj/5vo43AidMGGm1mW61qEdpkghCHxrS1Kj01TxzBvTfO3lS4SxqRK4d6LExx/Zzd6J0pa9Z5lSRLEiTjIypXEsiedaDA/5BL5JFfFd67b5zHJyriQXMm4TAs8mGLcZrnjMN0LmGsZ0qBg4eIOYDq4UODbhGp2mik6UkmSKwLXZNVakWjShaDm3N8J2sUZ2G/PPsLmhKiRCCNyHf5Co28A+/PiSiKGzZMuNvgLXohw4NLsp5UL/7+FjBwO+darL21MxtXZKcQMGZ4spJvV2QsGPKSfzpO8+S3r+FehV+EFaqIVLSyVprZG913Veg6BVZmbEhEBUxrDKExvKyX4/kSlFN8roRGYGrhtlJGmGbQnTwfPd26JTJ6XAXSFEJ9m1vV1ycnI2jrAcrJE9ZFly3VW9hF/C+9BPoltzyJKZGFC1i0RP/8a66wWf+l+pFj0anYTCK7+LFTXRlo2WTs/s3TGeaJbD4dHD/PAju/jtZxq81R3mIb9Ftv8DRLsehutIXfRdm2Y7YbbeZXRkbT8lnSWmzbE95MheU01sC6MMN4vF6ItWNyYTkvlaB9sSWxJ9AUZwfuX0HF9+4SKNtukbjA/5fPcjezi6Z2squKSZYqEZUauHgMa1LUYqPqXAwXeNeJGnI+bcKWz/q07OKgLPZvd4ieGyz3yzy3wjpt1JKRXs666iMChLs5dhhrSgHLgMl00ocx6FcWdhUhJ65p9JuKGa78J28Z766VUNdPzs76OjFs7RDyMn79qSxlsIQbXo0ewmZMqkAKzHaMnm0LjD6ZmEZ97tsmdiY4ZkltRU5l+DN14hbE8tH0dpFPvAI9j7Hthyk7NVPhiFKrIycVvNiN0skjSjE2W0Own1TkQUm9kp15EE3tbMwOXk5Nz+CMfHGtlLOnNmw8L+0jYsG1GdXH7CcpDDu9BpAlmCzswtacJSHK3lENiScuAgOvNYUf2a21demRP7DtHoKv74tYf5/c5j/N0DY9x/A/5LxcCm0U6oNULcFW2p1sqYVasUURrDqt4eonkYpzQ7CfONkE6YYlmCyfEyo1WfbAtEYK0171yo88XnLjBd6wJQKTh89KHd3H94dEuEhDRVtLoJ0hLs3hFQDcpLaYe5b13OnUouZNymFHybgl9mpJww1wipNSJa3ZRSsPmCRpaZ6Is40fiuxY6RApWSS8G3N1S1Ief2QhaH0WmMmj9vUpA24KGyciCtozbZ5bdApUTf+m+I6iTO0Q9h7Tq+obJ0gxD4NiXfMdVzBqiz/tjBgNMzCc+91+XTj27UO0JQvvQsVriAFhJr1z04Bx9Fjh24KULCUkhvT3QShaE8haTHypSRZiem1U2JExPO67mSctHJO3Y5OTkDIfwS1shusrn3IO7e8MDdGj+I9dF/dNXzWmtTkStLltrGatFj6tD3E1gpls6MsftSFTtzm1ZN1N8TdxWod0f41qkuf/B8g5IvOTR+fWKGlALfs5iuhRQcQeDZODrpeT8VkdW9iEJ1S1MlbxSlNK1uwkIrot6OiZMMz7Gollwcx8J3beIo2fT9np9p8cVnz/PelKlO5rsWT963gw/cM7klk35JmtHupgBUSy6TI0X27hqiXu+QpnmkXs6dTS5k3OYUfIeC7zBS8Zmrhyw0I9pdE6Fxo07DUWyM7+iF0e8a9SkXnC2P/MjZPsjyOKQRqjGNdkavaxvCK+L/nX9M+s7TpGeeRdeniM+1DfYAAEdQSURBVJ/5XUTxS9hHnjSRC5uUdiKFoFpyaXYTlNJ9Zz2O7fAo+5JmqHj5bIdjE9e4JGYx7sybuJdeonPk76BKEyDE/7+9Ow+TqyrzB/69a+1r793ZCd0kZA+QxLAlGDWIA4gK+hMZZVMHVByecWdEGRccB8f4OCKLOuqIS9SREFCHJRENm0DCGgJZSLrTSe+1V93l/P643ZXudKe3VHVXdX8/z9NPp27fW3Vun3SdW+8973uQmbUayKbQHWpCdW0l3GNITxkvYWQhsoljU3r90aKn7ZSDvovWdNZEdz5lxIaiOBeS4TJJGSGi0uME9g3YXQcBWSnKalOSJAGK6nz18rhVuCpmIJYxEBhFcP5ti/yIZWy81JzFfU/24OpzIqgJje9S360pkBQJre0JuKwU/D4dvqp6+CpqirbaViFkciYSKQOd8SySaQOS5MxmHs3v72S092Tw6LPNeOWAU2RVkSWctbAaZy+uK0radc5wAhiyLCEScOXTRzSNqSM0fTCQMUX43Bq8LhXRoBudsQy64lnYtgm/VxtTBNi2BVK9Be9cmoLKsBshvwt+t8Y3xmlIkmXI4TqniGSqGyI4dL7sSGRPEPrit0FrOhvm3qdhvPEERLILxvNbYL66De4NNxSsyrnXrcHn1pDOmvB5hn+LU2QJK2e78djuFP72WhxN1ZGB7U60wXV4J/SjL0OynPxWV+supOe/FQBg1C5y9suaI65icrKEZTiFPGUVcqjWyUkeQ8rPVGTbArFkDvGcjUMt3Uj2phUxZYSICk0OVgKWAbvnMOANT0hNiL7gfGKUwXlZknDpiiASmW4c6DDwsx3duObcCELe8d2A8iILoaaQ0nxoQQRKwoswsogEAJ9HK5lZuaZlI5k20JPMIZbM5a9hg/7iz76Lp3LYvvMwnn2tzVngCsCy+RU4b3kDQkVYxS+bs5DMGFBlGRUhN6JBN3xulYF6mpYYyJhCJEmC36PB51Z7Z2ik0ZXIAsKZUaEOE9DIGRaSGRNCOGtm10a9CHj1oVdGoWlFUjQokQagcz/sVAzA+AdmSfdCO+08qPPXwDzwLMw9f4McnZEPYgjbAox0ftnS8ei78Eu2GxA2MNLM15VzPNj+WgpvHM3iSMxApceG3vYq9MO7oMYP5/ez3GHk6pYgV3P6oOdw6yriqcGrmBSCsE2IdByQAMlXASVYWfTaG6XOMC3EU05aXTpnwutzw7IFU0aIqGgkSYYcroWwTIhEO+CLACj+NZLXrcHr0ZDKOunDI9EUCe9fFcI9f+lCW9zCz3Z04yPnRODRx/DeKGxImRjg98OOzIaqBRCRFeQMCx09GXTGMgh6dURDzkzdyXjftWwbyYyJRNJAd9KpfdQ3+2I0qaUnK5uz8LcXW/HEy0dg9KZwnDojhAtWzkB1pPB1QzJZE8mMCV1TUBPxIhJwwetmsJ6mNwYypqDBAY0MuhNZABL8XjW/JrltC6RzJjJZG5oqIxpwIRxww+9R+WGABpB0D+ToDCDdCpFLAcrJDdKSqkM7ZTXUuWcARja/3Tr0InLP3w919gqop74F8jiqxAOA36PC41KdD7nu4d/mgh4Fp9W58HJLFg+9EMc1lc/Affh5AICQZBgV85GrWwozPMtZrmSo85Gcu1Ox3lVMQgVIMTlWVM2A5AlDDlZN60KezlLPJnqSOXTFs0hlTbg0Z7nRaMiDWBxFKdo2HpZtoyfhtLMrnkVXwvneHc+iJ2lAAqAoEhRZgiLLUBQJqixBVnofyxJURXKWX3VpsG0bsoT8vs5xEhTl2L6WJRAJFD+1iWg6yy9RbhnOLMXA2JYoHw9ZclbVSI1yVgYAeHQZH1wTxt3bu3A0buG+p3pw5ZrwiEuTAwAsA3I2AeENAZVzIbIS0PveqmsKdE2BadmIp3PoSebg82ioCLoR9GknndI8Ert3HIincuhJ5JDMmoBw0gdDRVp55HimZePvu9vwl52Hkco6tSkaqnx468oZmF079mKww+mr95TKmHDpKuoqfYj4XVwhkKgX/xKmMEmSEPDq8Hs0RNPODI2eRO/SkBJg207R0BlVHgS5dCqNQPaGoHpliL2vQWiFyRGWZBXo9//OOvoGYJkw9z4Fc9/TUGYshtZ4NuRg9djaKskI+3W0tCchRG/8wcpBzvRAzvRASfdAznT3Pu7G5YGZuE1Zhj1HcngqOB9r3ft6Z18sgtBHN/tBkSWoqoT2WAZuXYFrnCkmQgggl4QwspDcAcjBmZA8oWlbyNOybSRSBrriWcSSORiWDa9bRUXQBUlyPsxPhnTWdIITiSw6Y873vsBFTzKXn2I8oSRgTm1wEl6YaProW6LcaneWZUVofCmXY+Fza/C4VaSz1ogpk33CXgX/b3UIP3q8G/vbDfzu2RguOyM47IxByUhBMnOwfVVAqAbQvUA2PWg/VZER8rtg2wLJjIH9rXF4XAqiQRdCvsJ+0O77MJ9MG+hKZJHMGLAsp/h8aAJn4Qkh8OK+Tjz6bDO6e6+lK4JuXLCyAU2zwgW9ySCEQCprIpO14HapaKjyIex3wa3zOp2oP/5FTAOSJCHYG9BIpJy1wSUJiAScwkDqJH0QoPKjhashh3pgdbYA3kjBVx3RV14Ke/YyGLsfh922F9bBXbAO7oJS2wS16Wwo0ZknPNaZwRCHSHZBJLvgq5wHj0tFJmcieuBhuFpfOOGxft2Pd58ZwS+f6MTvXvcivPZDmFU59rvbHpeKnoSTYlI7jhQTkUtD5JKQdC+UytmQfBOTh12KsoaFeDKHjphz4SpLTuA1qE1Mkbm++htd/QIU/b8yOWvY41XFKcAWCbgQ8bsQCboQ9rsQ8uuQIMGybViWgGU7X6Zlw7YHPhYC0DQVyXQOhmn123/gsZZlw7QFFs4p/t1hIjo2S1HqPAArHUexL6edWRkuNLclRpUy2acurOHys0L42Y5uvNicRcibxNtOHyJ1UwjI2TiErMAKzYDtCUNRRj4nWXZumPXNmGtuS6GtO4NIQEfYf3K1G/pqQXQnnFX5DNOCrsmTct36RnMPHv77IbR2OkEdv0fD+cvrsWx+ZUFngQghkMyYyOYseFwqZlb7EfK74GKRfaIhTc8r5GlKliQEfTqCRSg+RNODJMlQwrUwsxmIZBfgixb0LoQkSVCq5kGpmgerqxnma4/DankFVutuWK27oZ95GdQZiyFsC+YbT0Iku2CnnMCFSHU7S9f10s96H8LBeTjcmYKtOqkwtuqG7Q45X55w77/DgC+KVVE/XmlOYdfBDH799zg+tk6Ddyw5xb38XifFxOfKIeQfXTDEWYkkDqhuyJEZzkokJVwVvlj6LuJ6Ell0JXLI5ky4NAXhCZoybJg29hzqxgt7O/H6oR5Y9vDTKnxuFZFgb6AiMPDL79FO+m9DUWQEAx7E4ukR02a64llUhQufl01EQ5PdAcjRGRDpVoicASjFLb7s96jwurVRpUz2d0q1jouXB/C7Z+P4654UQh4Zq+b1m0Vim5AzcdguP+xA7ahnIfYnSVLvKnpOAOJoVwYdPVmEfDoiQTcCntEVjDdMG4m0gVgyi3jKQNawoaoSvJNUvPlAaxzbnm/B/tY4AMClKXjL4lqsXlhd0DSavpktOcOGz6OhtsbrLBNb5FQdonLHQAYRjYmkqFAi9bDMLES6B9I461iMRIk0QFl1Oex4G4zX/grryB4otY29jZBhvPIoYB23BrwkQ/KGIfkikDQX/F4NroSCWM1y5GaeBXGCVT4UWYYkSbh4WRDNXQY6EhZ+9/cYPrA6NOYPo4osQVMltMczcLuGTzFxViKJ9a5EUucEMPTp92HUtGzEUwa64hnEUjnYFuB1K/D1po8Uk2Xb2NcSx4v7OvHqgS7kzGMBA0V27oJGAjoiAXfvdxciATfCfp1LURNNc7I/Cs2nQux7DUKTixqAzqdMdiTHNCsDAJbN8iCWtvHwK0k8uCuBoFvBgnoXJCMNyczC9lXA8tcABVjK26UrcOkKDNPOp9z5vX11NPRBsylMy0YqYyKWcmoIZXImFEmCx6XC55mc1TgOtMaxbWcL9h92AhiKLOGM06pxzpLaghbY7Fs23LBsBDw6GiqH/h0R0dAYyCCiMZM0N+ToDFht+yGyyaKuoiEHquBaeQmEZUDqvciSJAnq3DMBWYbsizqBC1/EKYZ5XLpL2O/CkU4LuqpjpMshlybjfWcGcde2Lrx2JIe/vZ7G2lPHnv/scamIJQx09GRQWzE4xUTYlrOUqhCQfJXTdiWSTM5ELJlDZzyLZNqAqkjwu4dfYakQhBA4eDSBF/d14uX9XUhlzPzPwn4dp8+NYtHcKKrCHi47TUTD0iI1kDtjsDoOA75QUdMB/R4NXt1JmfSMYVYGAJzT6EVP2sIz+zP4zTM9+MczdcyOqrCC9bC90bFFRkZBU2WEAy5ndZG0iX2tMfjcGqIBp46GYdmIp3LoTmSRzlqQALhdCqKB4gewT+T4AIYsS1h+aiXOXlw76hmWo5VMG8jkLAR9OmaGPAh4mepNNFYMZBDRuMjuABCph9V+AFDU/BKqxSIdd6dIX/y2UR3n92jo0p1l40aznHBtSMM7FgewZWcc//dyArMqNMyMjv0OjM+rIpYy4HMfSzEZuBJJCHKwetqtRGILgWTayXvuTuRg9PZLJOAqetDgSFcKL+7txIt7O9GTzOW3e90qTp8TxaJ5Ucyo8k2r/iCik5NPucxlIRKdgC8CqcBBgT6KLDu1MjqScIsTLqR1gnZKuHBJAPG0hd1HDPz8WQMfeVsDKnwVRWlrH0WWEfQ5dTRSGRMHjyZwVEs7dYGEU7RzotIHT2QiAximaaMnmYPHpWJObRDhgM6VAonGiYEMIho3yReFbGRgd7cCXqUkC1PqqoKQT0dbV2ZUgQwAOGOOG/vac3ipOYvfPN2Dj66LwjPGehmKLEHTnFVMdE2GG1kIIwPJHZyWK5EYpnP3rTOWRTydA4QTQAh4i5v33BXP4sV9nXhxbwfaujP57bomY8GsCBbNi2JuXZAzL4ho3JyUywZYlgmR6gK8ha0f1Z/Po8HbW8h6rKuDqHYW7ztd4N6ciuYuEz/f1oyPXBiEv8jvw4ATSPF5NHjdKnKmDY9LmbRVp/rsPxzDo881T0gAQwgnjcQ0BarCHlRHPFyFhOgk8S+IiMZNkiTIoVoIM1f0O1EnI+jR0BPPIpezoI8imCFJEv5hWQCHu010Ji38/tkYrlg19noZHl1FvCeOtuZO+EMhhGpnQQ1EIY2iGvxU0LeEXCyZQ1c8i3TWhKbKCHq1ol7AJtIGXt7vzLw41JbMb1dkCafOCGHRvChOnRGGVuQUFiKaPvLLsrYZEOkYJG+oKK+jKjLCPh2HO1Nw66OclSEEpFwCEgAl2oArNgRx74OvoSuexS8e3oOr3tE0YTV/JEma9FU49h+O4fE/vYY9B7sBFDeAAQA5w0IsZcDv0TCjyinkOdZVzYhosOlxNU1ERSPJSm/xT6O3+Gdksps0iK6pCHpdaI+lRxXIAAC3JuO9ZwZx9/YuvNqawxN701hzyhjqZZg5yEYSAY+GtFKLg3YQHTENlZKBsF+e0rmw/Yt3xlMGLNuGW1cRLWLxzkzOwsv7OvDC3k7sOxyD6F1wRJKAObUBLJ5XgdNmheEe4x1MIqLRknTvhNSP6itknTXMke/q2xbkbAxC9cIM1EC4g/AB+H8bTsW9D7yKwx0p/PqxN3DFBfOnfIrDUEU8lxUxgCGEQDxlwLYFaqMeVIe9LBJNVEC8oiOikyapLiiRepht+yEyCUjuIdapn2RBv4buZBaGaY/6Tnx9WMPbF/mxdVcCf34xgVlRDQ2REabgWgbkXBKQVVi+atjeCHTVjUjv0qIHWuPo8GRQFfYg5J86ubFCCKSzJnr6Zl/kTKiKDK9bLdrMB9sW2H2wE68c6MbL+zpgWseWS62v9GHxvCgWzokg4J1+S9kS0eSQPUEg2gCr/U1AViCdYLWsk6EqSm8h6xRc2jCzMswsZCMJ2x2BFagF+tWyigbduOKt8/HfD72GN5pjeGDHm3jXW2ZPyRpBQwUwVp1ei1ULqxHwFCetJpuzkEgbCHh11ES9CHpPfkluIhqIgQwiKgjJ7Xem1bbvB4xMUS7eToZLUxH0aeiK5aD5R//B+qy5HuxrM/DK4Sx+/XQPrj//BPUybAtyNgFIEmxvFLYnCqEfm8EhSZJTcd6lIpkxsK81hqBXR2XIg5BvcgudnYy+2RfdiQziSWcZOU+RK88LIfDSvk489nwLOmPZ/PbKkBuL5jkrjkSDpfX/r5CEEBDCKZwqhIBtA5YtRj6QiCaE5ItCNg3YXc1OMKMAy5oeL9BbyDprWHAPMdNQyiYgCQuWvw62rxKQB+8zo8qPy86fh1898jqe39OOoFfD+csbCt7WyXKiIp7nLqvHrLowYvE0LMse4VnGxrYFYskcZElCXaUPVSEP0xiJioSBDCIqGMkbhhyq7b14U0uuFkTQ50IsYYxpVoYkSbh4eQCtPQa6Ujb+8Hwc7zszeOxDurAh5ZKQbAu2OwjbWwGh+094i0yWJQS8en79+P2HYwj6dFSGneXXyiFv1pl9YSGWyqIzlkUmZ0GRneKdQbV4sx+EEHjtYA8ee64ZR7rSAJzXXHV6LZpmhlAVcpfNHS8hhBOIsJ2AhN0vOGHbzr8lSULOAuLJNIQFOJfbAhIAWZIgSxIk2fnudanQpnC6ElE5cepHVQOWATt2BPBGBi0NfrI0VUHYp+NoVxouTTk25AgbciYGobphBhogXMFhC2k0zQzjwtWz8cCOA9i+8zBCPh3LG6sK2taJNtIqJMWq0ZTOmkhlLIR8OmqiHs4GJCqy0vqUQURlTZIkyMEaCCsHEWsDfNGSKv7p1hQEfBp6Erkx3SHx6DLee2YI92zvwsstWTy1L41Vcz2QjBQkKwfbFYDlrYBwBYBRnq8sSwj6dFi2jUQqh1gqh7BfR0XIg4CnNKegmpaNRNpAdzyLWDKXn30xEUvn7W2J4dFnm9Hc7hTvdGkK1iyqwVsW1aGqwl+UO2snSwgB07JhWgKGacOyBAQEAAmQAFkCZEiQZScgIQFQZRmqJkNVJLh0BdGID8mEBtsWkGVnX1lC73fnsdLv30RUGiRJhhyug7AMiGRnUcbDgEdHdyJ3bHlxKwc5m4DtCcP210BonlE9z8qmKvQkc3h812Fs2XEAfq+O02aXXr2rkUzkMqr9WbaNWMKAqsqYUeVDRcg9petgEZUKBjKIqKAkWYYSqoNl9F68qW5A9xT8btS42iZJCPpc6EnmYFoCqjL6D34NEQ0bTvfjoRcT+OOLCcz2ZlBX6YMVqIXtCg45bXc0FFlGyO+CadnoSRjoSeQQCbhQEfLAX6Tc3bFK9608ksgilTEhy4DXpSKoFf9u08GjCTz6bDP2tzoXpqoiY9XCarxlUS08LnXSl+8DnKnETsDCCVpYljPDQpIlJzChSAh4NHhcKnRNgarIQwYk+v7dR1VlRCI+dGkyTLO0gjRENDJJUZ2US8uESHdD8kYL+vy65iwvfrQ7DTcykCwTVqAGtq96zGPSuuX1iCVz2PVGB37z2Bv48IWnIRgYXSBksggh0NadwatvdmH3m9043JECMHEBDABIZQykcxYifhdqol743KUxbhNNBwxkEFHBSaoOpXIm7GQQItUJke5x7kNrHkBzTeosDY+uIODREE+bCHjH9ha4ZraE/UckvNomcN8LwHUXzYTLU5haDKoiIxzQYZg2OmNZJ6ARdKEi6IZ3Ei6MTMtGMm2gK55FLOWk47hd8oTMvgCA1s4UHn22GXsO9QBwirOtbKrC2Yvr4PdOzoViX8DC6BewgHAm4aiKDE2REPRqcLsU6KoCXVOgKTI0VeZsCaJpSlJdUKINMNv3w07HIHuCEEIAEMgvrzTgsfO+MvDxwP1Ev/38MJAwEshCh1YxA7Y7PMo1WY9rpyThXW+ZjXgqh32H4/j5n17Dp97vx1AloSaTbQscaktg95vdePXNbnTFj9VJmsgAhmk5szBcuoLZ1QFEgq4pU7ybqFwwkEFERSGpLiihaohAJUQuCZGKwU51AclOCFmFpHsgqcW90BiyXZKEkM+FeNqAZQsoo/mAaeUg55IQio5/WF2Hw4+0oStpYMuTzXj3efMKmgaiqTIiQRdyhoW2rgy64jlUBF2IBt3wFGnpUCEELPtYGkQq4wQwUhkTktRb+8I3McGDjp4MHnuuGS/t7wLgXI8vnV+Jc5fWIVzkC9P+DNNCznBmWfQV0pQlyQlYqDL8bhUelwJNVaCpcv6rHGqcENHEklw+KJEZsDrehJ3o6A00OClmx4IO8rF/936XpN5tktSbtigBsty73fnuliWEXVE0x1Vosh+ek3gPUhQZ71s3Hz9+8FUc6Urj+7/ZiYVzIqiv8KGhyoegb3JqPpimjX2tMex+sxu73+xGMmMea7Ms4ZSGIJpmRdA4M1T0GRGidwUyw7BREXKhOuIt2thMRMPjXx4RFZUky5DcAcAdgBysgsgmYSe7IDIJiEzcCWboHkjyxL0dedwq/G4NyYwx/N39/FKqCmxvFSxfFG7VjcvOC+LHD+7GS/u7MKeuHSubCl8YTdcUREMKsjkLrZ0pdMWzqAi5EQ24nVzoMbBtgaxhIZUxkcmZsKzemQWGjaxhImfaMG1nhoFl27BtAbeuIDRBsy8AoDuRxfadh7Hz9fb8zcfT50Rw3vIGVIYmZgUS2xZIZU1kcza03hoVAa8Ot0uF3hes6A1klGINEyIqXbI3BEmZB2Fbx2Yl9gUp0BuokND7777tcu/D4e/0RyMCoieDg20JADipD9YuXcEHNpyKex94FV3xLP76Qmv+ZwGvhoZKJ6jRUOlDfaUPulactNFMzsTrh3rw6pvdeP1QD3L90uvcuoJTZ4Rw2qwITmkIFq0NxzNMC7GkAY9LxezaAMIBF4PXRJOIgQwimjCSqkNSdci+CEQuDZFNwE50QWTiELbtpJ7o7qKnnsiShJBfRzxtwLYFBpVZsC3IOeeC0PZEelciObaU6oxqP9avbMD/PXMIDz35JhqqfKiNelEMLl2BS1eQyZpoaU+iM55FZdCNSMCVv3gzLaeQpGk7MypM04ZhOTMKsoYFAcDjSaI7loHR+1iCgCQ5hSJVxanl4FJlKIo6oR/SEykDj79wGH/f3Zaf+XDqjBDWLW9AbUVxfqf9CSGQzVlIZy1Acmp/VFd74Pfo8LgUBiyIqGAklw/FeEeRJAkVITcEBJrbnILIJxPMCHh1fPTSRThwJInXD3bi0NEEjnSlEU8ZeLU3pcN5XaAq7DkW3KhylhsdbwA8nsrlZ13sa43D7resdMCr4bRZYTTNimB2rX9C0ziEEIinnFmc1REPqsPeMd9QIKLCYyCDiCaFpHucL18FkEvBTscgUt0QyS4ISYakeyFpxUsl8Lo1+Nwa0lkTmtp7QWLbkLLxUS2luub0GhxojWPPoR5sfuwNXPOuhXAV8a6Q26XCpStIZy0cakugI5aB16Ugaxw3m0IISEKC5MxAhiLL0HQFLk2F36MC7tL4cJ7Omvjbi6146pWjMHrvtM2pDWDdigbMrPYX/fUN00Iqa8E0bbh1FVURN4I+F3xulXnORFR2JElCZcgDIYCW9pMPZnhdztLWC2aFYFk2coaFw50pNLcle78SiKUMHO1K42hXGs/taQcA6KqMukpnxsaM3uDGcMuQtvdksPvNLrx6oDu/KlWfypAbTbPCOG12BPUV3kkZu5wlVU34PRpqol6EfHpJjKFExEAGEU0ySZYBtx+K2w8RrHZmaSR7IDIxiGwcUHQnqKGc/NuVEAIQNiBsSLaNkG4hHU/CVrKAlIaUTUOoPli+yhGXUpUkCRefPRc//MNL6IhlsXXHAVxyztyiXuBIkgRvb22GdNZELGVAUZxZFbqqQJHVIe+EKYoMl64gm5UnfYnSrGHhyZePYMeLR5A1LABAQ6UP61Y0YF59sKivbdk20lkrnzoS8GoI+13we7QJm5pMRFQskiShKuysNNJcgGBGf7qmYHZNALNrAvlt8VQOzW1JHGpLork9iZb2JHKmjQOtcRzoXWkKAIJeDQ1V/nxKiiJL2H3QmXnR3pMZ8DoNVb78zIuJSiscSiZrIpEx4dFV1Ff5UBl0H7vpQUQlgYEMIioZkqJC8oYhe8MQRgYik3DqaWQTTl6x1ruUa2+AoX9gAnbvd2FB2P22oXdqaj732CmSBlmGz63A7XYjDQUBfxiWrsDS/KNets7rVvHu8+bhJw/txgt7OzGnNoDljYWvl3E8J6BRXku8maaNZ3YfxeMvtCLVW6itOuLBuhUNaJwRKloAiKkjRDSdHB/MkODM6CuGgFfHabN1nDY7AsCpM9TWkz42a6M9ibbuNGIpA7EDXXjlQNeg55BlCXNrA2iaFUbTrPCwszcmQjZnIZE24NIU1Ff6EA244Nb5cYmoFPEvk4hKkqS5nS9/FMimYGfiTtpJqsspBnl8YEKSndkdigZJVyEpmvNvWXUCE7IMyIoTBJFV57GkIBTK4c2jCdihMEQyA4xxxsKsmgDWLW/AI88248EnD6Khyo/qiKcYv5KyZFk2ntvTjsd3HUYsZQAAokEXzl/WgNPnRooWSBiQOuJi6ggRTR8Dghm9NTOKFczoT5Yl1ES8qIl4saI3qJ81LLS0HwtsNLclYZg2TmkI4rRZYcyfESqJQEHOcAIYqqKgNuot6kphRFQY/AslopImSf1TT6ogMknANnuDE4MDE9IYP6QGfTp8HhXJtDHuNq5dXIsDR+J4ozmG3zz2Bq65aMG0T1WwbBs7X+/AX3YeRk8yB8D5XZ+3tA5L51cWZTUUpo4QETkGBTMkTErAwKUpmFsXxNy64qYOjpcTwDChKjKqIx5EAx543fx4RFQO+JdKRGVDklVI3lBBn1NVZFSFPGiL5zDeIuSSJOGSc+bih394Ge09GWx94k1ccs7cgrazXNi2wAt7O7B952F0xbMAAL9Hw9lLarHi1CqoamFnQwghkMoY6IxlYNuCqSNERL36ghn9C4CWwuyHUpAzLHTGMpCEU1S0MuQuu5RNoumO72ZENO0F/TpSpkAsloZ7nNEMn1vDu8+dh//+427seqMDc2oDWHZqZYFbWrpsW+ClfZ3YtrMFnTEngOFzq1i7uA4rm6qgFTiAATgXoqmshaoKFTURL7xulakjRET9SJKUT3dkMMOp1xRL5hAQzpK14d6UQwa9icrP9H0nIyLqpasKqiMeHG1PQJWlcc8amF0bwHnL6vHYcy148Mk30VDly0/tnaqEEHh5fxe2Pd+Srz7vdal4y+JanNFUVZSUDiEEYikDQgjUVfhw6twKpBIZmObkrshCRFSK+gcznAKgElzjnYJYpkzLRqK3TlNFyINTZkdg5QxYlpjklhHReDGQQUQEoDrqQ1U4jtaOFCIB17hrOJy9uA4HWuPYdzier5cxFZdsE0LglQNOAKOt2wlgeFwK1pxei7MWVBetJkXWsJBIGQh4ddRGvYgEXXBpClJFeTUioqmhL5ghINDS7rxjTodghmXZiKcNCAGE/ToqQh5EAi6E/C50dZnIr2xGRGWHgQwiIgCKLKGu0od0xkJPIodI0DWu55FlCZeeOw8//MPLaOvO4MEnD+If1s4pbGMnkRACu9/sxrbnW3CkKw0AcOsKVp9eg1ULaop2YWzbAvFUDoCEugpnpoumypwOTEQ0SpLkrCoCYMoHMyzbRiJtwrIEQj4dlWEPAl4NsiRx3CCaIhjIICLqpavOuvH7Wy3EU7lxr2fv92i49Ny5+OkfX8Pze9qRMywsP7USc+uCRVmtYyIIIbDnUA+2Pd+Cwx3OBbCuyVi9sAarF9YUdWm/bM5ZFq9vFkbQN75+ISKa7voHMw63pwDJWVlkqrBtgUTaSRkJeHVUhd0IePWyHXuJ6MTKPpDxyCOP4Dvf+Q727duH+vp6XHfddbjsssuGPSaXy+E73/kOdu7ciZdeegnpdBo7duxANBqdoFYTUanyutXeYEYMmZw57qJoc+uCWLeiAY8+24yX93fh5f1dCHo1LJlfiWXzKxANugvc8uIQQuCN5hgee745fwdPU2WsWliNNafXwlPEAIZtC8RSOchwZstUhTxFKRpKRDSdOGkmXggBtPYGpss9mGHZNlIZEznTRsCjoyrsQcjHAAbRVFbWgYxnnnkGN9xwA97znvfg85//PJ544gl84QtfgM/nwzve8Y4THpfJZPDrX/8aixcvxsqVK/H4449PYKuJqNSF/S7URX041J6AKsvjLv55zpI6nFIfxPOvt+PFvZ2IpQw8vuswHt91GLNq/Fg2vxIL50SKVk/iZAghsO9wHI8914xDbU6le02VceZp1XjLopqiL1OXyZlIpk0EfTpqol4Exzk7hoiIBpMlCTVRZ2ZGOQczsjkLqYwJSM7qYQ2VboT8OlevIpoGyjqQ8V//9V9YsmQJvvKVrwAAVq9ejYMHD+K73/3usIGMYDCIp556CpIk4be//S0DGUQ0SFXYg6xhoa07fVLFP+srfaiv9OFtZ8zE7oPdeH5PO95oieHNIwm8eSSBB598EwvnRLB0fiVm1/hLInd3f6sTwHjzSAIAoCoSzjitGm9ZVAu/p7gBDNsWiCVzkCUJ9ZVOLQxV4QUpEVGh9Q9mHC6jYIZtC6QyJrKGBZemOMuoBlzwuzXOwCCaRso2kJHL5fDkk0/i5ptvHrD9wgsvxJYtW3Do0CHMmDHjhMeXwocFIipdsiyhrsKLnGGfVPHPPqoq4/S5UZw+N4pYMoedb3Rg5+vt6IxlsfP1Dux8vQORgAtL51dg6SkVCPlP7vXGIpE2cKQrhSOdaew51IMDrXEATgHUlU1VWLu4dtz1QsaibxZGyOdCTdQzIa9JRDSdHR/MkICSnCUIADnDQipjQQgBr1tFbdSLgFefsgVLiWh4ZRvIePPNN2EYBubNmzdg+ymnnAIA2Lt377CBjGIa7zT0/pTeO5DKFLwTyXMrT9Px3FRVxqzaAPYd7kEyYxasyGQk6Mb5yxtw3rJ6HDyawHOvtePFfR3oimfx2HMt2PZcC+bWB7G8sRILZkdPui5E3xRbIYC27gyOdKbQ2pnCkc4UjnSlkUgbx+0vYUVTFc5ZWo/QBBTWtGyBeDIHWZYwqzYwplkY0/H/ZbkpxJgITJ3fx1B4buVpKp1bQ7UfiiKjpT0JWZGha73nNskpGrYtkMqayGRNuDQFVRE3wn4X/F5t3G2bSv12PJ4bTSdlG8jo6ekB4KSJ9Nf3uO/nE02WJUQivoI9XzDoKdhzlRqeW3mabucWAeD1ubDnUDc0TYXHXdi3zVDQi0Xzq5E1LOza04anXm7F64d6sLclhr0tMbj1A1jeVI1VC2sxqzYwqtlkQgjEUwZa2hJoaU+ipd35fqQzBdsWg/aXAFRGPKiv9KOhyoczTqtBZIKKkaYzJjLpHOqqA2ioDow7WDTd/l+Wi0KPiUB5/z5GwnMrT1Pl3CJhH4JBDw4djUPVnLHO55u42YH9ZQ0LyZQBWwCRsBeVITdCfldB6zNNlX4bCs+NpoOSCmTE43EcPXp0xP1mzpw5Aa0ZH9sWiMVSJ/08iiIjGPQgFkvDsuwCtKx08NzK03Q/t6BLwcGjcQR9etFWzmiaGULTzBA6YxnsfL0dz+9pR3cihx0vHMaOFw6jKuzGslOrsHR+RT7twrRstHWne2dZON+PdKaQzJhDvoZbV1AT9aI26kVN1IPaqBdVEQ90tf/UXIFYPF2Uc+zTfxZGTcSDyoAOK2egK2eMfHA/0/3/ZbEUKvhQqDERYF+XK55befFqEoJuFa3tcdRWBWDmTFj2xJybLQTSWROZrAVNlRH06oiEXPB7NKiKhGw6h2w6d9KvMxX7rQ/PrXgKHZSnk1dSgYyHHnoIX/ziF0fcb+vWrQiFQgCc4Ed/sVgMAPI/nwymWbg/LsuyC/p8pYTnVp6m67lFAi4k08ZJF/8cjZBPx7lL63HOkjrsb43j+T3teOVAN9q6M/jz0wfxf88cxKyaAFIZA+09GYjBkywgSUBF0I3qiAe1FT7Mawgj4FHgd6tDzuqYyIuCdNZEMmMi4nehJup1CoiKk3vvnK7/L8tBodte7r+P4fDcytNUO7fKkBsCArFkFulUDoCALEtQJAmy7HwpslSwenOGaSOVMWDaAh5dRV1v7QuPS3Fe4yTHhxOZav3WH8+NpoOSCmS8973vxXvf+95R7ZvL5aBpGvbu3Ytzzjknv33v3r0AMKh2BhHRyZAlCXUVvnzxz3BAL3rRYEmSMLcuiLl1QWzMmXh5fxee39OOQ23JfEFOoHeWRcSDmqg3/70q7IbWO8tCUWQEAx7E4pN7hya/IoksY2aVHxUhN1ckISIqMX3jXTVkHGmLIZ0xkTNtWLaAadiwbQFTCAghIAGAkCDJGBDsUOSB348nhEA6ayGdNaEpMoI+HWG/GwGvxnGBiEalpAIZY6HrOlatWoU//vGPuOqqq/Lbt27dilNOOWXSCn0S0dSlqTIaqnzYd9hCIm1M6Koabl3FisYqrGisQnt3GvtbnTQXp2q7VvIrMaWzJlJ9szAqvPAVMM+ZiIgKS5YkVES80CSRv/tt2TYsS8Cy+31ZToDDsGwYho2cacG0bJiWgGXYsG0bA0szCUiSBFs4sy/qK30I+XR4XEPPFiQiOpGyDWQAwMc+9jF86EMfwpe//GVs3LgRTz75JLZs2YI77rhjwH4LFy7EJZdcgq997Wv5bdu2bUM6ncaLL74IAHj00Ufh8/kwf/58zJ8/f0LPg4jKh8eloqHShwOtcaSzJjyuiX8brQx7UBkuj2JXQgj0JHOQJRkzq51ZGJNdBZ+IiMZOkWWMZrKELQRsW/QGPWyY/f9tOV8+tw6/RytazSkimvrKOpBxxhlnYNOmTfjOd76D3/zmN6ivr8dtt92GjRs3DtjPsizYxxUquvXWW9Hc3Jx//PnPfx4AcMMNN+DGG28sfuOJqGyF/C7UVlg41JaEqsi8EDsBw7QQSzozV+oqvBM6g4WIiCaHLEmQFQlOdqMy0u5ERONS1oEMALjgggtwwQUXDLvP7t27B2175JFHitUkIpoGKsMeZA0LR7uKX/yzHCXTBrKGjZqoBzURb75eBxERERHRySr7QAYR0WSQJQm1UR+yho3uRA6RCSj+WQ5sW6AnkYOuKZhTG0Ak4OLvhYiIiIgKioEMIqJx0lQZDZU+5AwL8ZSBoG96p05kc04R1IjfhdoKH7xuDjFEREREVHhM7CYiOgkel4qGKj8gnJU5piMhnGVVMzkL9ZU+zKoNMIhBREREREXDQAYR0UkK+XTUVniRzlowTHvkA6YQ07LRGcvCpSmYUxdEXYUP6mjK2hMRERERjRNvmRERFcB0LP6ZyphIZ01UhtyorfDBpbGgJxEREREVHwMZREQF0Ff8MzcNin/atkAsaUBRJMyq8aMi6JkWgRsiIiIiKg0MZBARFYimyqiv9CE7hYt/9i9sWlfhg9+jTXaTiIiIiGiaYSIzEVEBTeXin4mUgWTGRG3Uizm1QQYxiIiIiGhSMJBBRFRgA4t/WpPdnJNm2U5BT1mWMKc2iPpKHzSVwwcRERERTQ6mlhARFUFl2IOcaeFIRxqRoFy2NSQyOROJtImKoAu1UR88Lg4bRERERDS5eEVKRFQE+eKfORtdsSxcLgVel1o2AQ0hBGIpA5IAZlT5UBX2QJE5C4OIiIiIJh8DGURERaIqMmbW+OH3auiKZ9GdyEGRAa9bK+nUDNO00Z3MIeDRUFfhm5JFS4mIiIiofDGQQURURJqqoDriRTToRiJtoCueQSxpwLIEvG4FLl0pmWVaTdNGOmfCNAWqwx7URr3QNWWym0VERERENAADGUREE0BVZIT9LoR8OpIZE7FEDl2JLDpjWbg0BV735KSd5AwLmZwF07ShKjLcLhX1FW5Egi7IJRJgISIiIiLqj4EMIqIJJEkS/B4Nfo+GirAb8WQOHbEMuhM5yBLg86jQ1OLNghBCIGfYyORMmJaApirwuTWEfDq8bhVul8oABhERERGVNAYyiIgmiUtT4Ap7EAm6kEgZ6IpnEUvmELcNeFwq3AVKO7GFQDpjoiuehWFacKkKQj4Xgj69oK9DRERERDQRGMggIppkiiwj5HcCC+msie5kDl1xJ+1E12R43eqYVwyxbYFMzkI2Z0FWJFRGVVSE3PDqKrxuFS7WviAiIiKiMsVABhFRiZAkCV63Bq9bQ2XQjXjKQEcsg1jCACTA51aHLb5pWXZv8MIGZMCtKaiJeBEK6GioCyERz8A07Qk8IyIiIiKiwmMgg4ioBOmagoqQgkjAhXjaQHc8g56kgXjKSTvxuJx0EMN06l3kDBuKIsGjq6iocsPn1uBxqVAVGaoqF7XuBhERERHRRGIgg4iohMmyhJBPR8inI5Ux0ZPM5tNOAEBTZHjcKmqjLnjdKjz65Kx+QkREREQ0URjIICIqE163U9+iMuSknQjhbGOxTiIiIiKaThjIICIqM5qqIBpkqggRERERTU9jK4NPRERERERERDSJGMggIiIiIiIiorLBQAYRERERERERlQ0GMoiIiIiIiIiobDCQQURERERERERlg4EMIiIiIiIiIiobDGQQERERERERUdlgIIOIiIiIiIiIygYDGURERERERERUNhjIICIiIiIiIqKywUAGEREREREREZUNBjKIiIiIiIiIqGwwkEFEREREREREZYOBDCIiIiIiIiIqG5IQQkx2I6YSIQRsuzC/UkWRYVl2QZ6r1PDcyhPPrXxN5fPjuRXndQuhkGMiwL4uVzy38sRzK088t+K9NpUWBjKIiIiIiIiIqGwwtEREREREREREZYOBDCIiIiIiIiIqGwxkEBEREREREVHZYCCDiIiIiIiIiMoGAxlEREREREREVDYYyCAiIiIiIiKissFABhERERERERGVDQYyiIiIiIiIiKhsMJBBRERERERERGWDgQwiIiIiIiIiKhsMZBARERERERFR2WAgg4iIiIiIiIjKBgMZRERERERERFQ21MluwHT0xhtv4LbbbsNzzz0Hn8+Hiy++GJ/61Keg6/qwxwkhcNddd+F//ud/0NnZiQULFuBzn/scli1bNjENH4UHH3wQf/jDH/DSSy8hFoth9uzZuPLKK3HZZZdBkqQTHrd+/Xo0NzcP2r5r1y64XK5iNnnUfvvb3+Jzn/vcoO3XXnstbr755hMeVw79duWVV+Kpp54a8mf/8R//gXe+851D/qzU+u3AgQO45557sHPnTuzZswfz5s3Dli1bBu3361//GnfffTdaWlowd+5c3HTTTVi3bt2Iz3/kyBHcdtttePzxx6FpGjZs2IDPfe5z8Pv9xTidAUY6t0QigR/96EfYtm0b9u/fD13XsWTJEtx0001oamoa9rmffPJJfOhDHxq0/cILL8Qdd9xR8HM53mj67UT/R7du3YpTTjll2Ocv5X47dOgQLrjggiGP1XUdL7zwwgmfe7L7rZCm6rjIMXGwUu8zYOqMiQDHRY6LQyvlfuO4SKPFQMYE6+npwVVXXYU5c+Zg06ZNOHLkCL7xjW8gk8nglltuGfbYu+66C9/97ndx8803o6mpCT//+c/xkY98BP/7v/+LmTNnTtAZDO/HP/4xGhoa8NnPfhaRSAR/+9vf8KUvfQmtra244YYbhj327W9/Oz7ykY8M2DbSRexkuPvuuxEIBPKPa2pqht2/HPrtX//1X5FIJAZs+8lPfoI//elPWLNmzbDHllK/7dmzB9u2bcPSpUth2zaEEIP2eeCBB/ClL30JH/3oR7F69Wps3boVN9xwA37+858PeyFtGAauueYaAMC3v/1tZDIZfPOb38Q///M/48477yzWKeWNdG4tLS345S9/icsuuwyf+tSnkM1mce+99+Lyyy/H5s2bR7yoAYCvf/3rmDdvXv5xJBIp+HkMZTT9BgArVqzAZz7zmQHbZsyYMexzl3q/VVdX45e//OWAbUIIXHPNNVi9evWoXmOy+q1QpvK4yDFxsFLvM2DqjIkAx0WOi4OVer9xXKRREzShfvCDH4hly5aJrq6u/Lb77rtPLFiwQLS2tp7wuEwmI1asWCG+/e1v57dls1mxbt068a//+q9FbPHYdHR0DNr2xS9+UaxYsUJYlnXC49atWyduvfXWYjbtpG3evFk0NjYOeY4nUi79NpT169eLa6+9dth9Sq3f+v8f+8xnPiPe+c53DtrnbW97m/j0pz89YNvll18urrnmmmGf+/777xdNTU3ijTfeyG/7y1/+IhobG8XOnTtPsuUjG+ncksmkSKVSA7YlEglx1llnia985SvDPvcTTzwhGhsbxa5duwrX4DEYTb998IMfFNddd92Yn7vU+20off2xdevWUe03Wf1WKFN5XOSYOFA59NmJlOOYKATHRY6Lg5V6vw1luo2LNDqskTHBtm/fjjVr1iAcDue3bdy4EbZt469//esJj3v22WeRSCSwcePG/DZd17FhwwZs3769mE0ek2g0OmjbggULkEgkkEqlJqFFk6tc+u14zz77LA4dOoR3vetdk92UMZHl4d/SDh48iP379w/oD8CZcrhjxw7kcrkTHrt9+3Y0NTUNiPCvXbsW4XAY27ZtO7mGj8JI5+b1euHxeAZs8/l8mDVrFo4ePVrMpp20kc7tZJR6vw1ly5Yt8Pv9WL9+fRFaVHqm8rjIMXGgcuizoZTrmAhwXOS4OFip99tQptu4SKPDQMYE27t374A3DgAIBoOoqqrC3r17hz0OwKBjTznlFLS0tCCTyRS+sQXy97//HTU1NSPm3d1///1YtGgRli9fjmuvvRa7d++eoBaOzUUXXYQFCxbgggsuwJ133gnLsk64b7n225YtW+D1ek+Yo9hfufQbcKw/5s6dO2D7KaecAsMwcPDgwWGPPb4fJUnC3Llzh/3bnUyxWCyffzoa1113HRYsWIBzzz0X3/zmN0vu/+dTTz2FZcuWYfHixfjgBz+Ip59+esRjyq3fDMPAn/70J2zYsGHUOfWl3m8jmW7jIsfE8uuzqTomAhwXR1Lq768cF4dW6v1GhcEaGRMsFoshGAwO2h4KhdDT0zPscbquD/oDDgaDEEKgp6cHbre74O09Wc888wy2bt06KH/veOvXr8eSJUtQX1+PgwcP4gc/+AE+8IEP4Pe//33J5MxWVVXhxhtvxNKlSyFJEh555BF85zvfwZEjR06Yx12O/WaaJh588EGsX78eXq932H3Lod/66/sbO/5vsO/xSH+D/fPA+4z0tzuZvvWtb0GSJLz//e8fdr9AIIBrrrkGZ555JlwuF5544gnce++92Lt374Tky47GmWeeiYsvvhhz5szB0aNHcc899+DDH/4wfvrTn2L58uUnPK7c+m379u3o7u7GRRddNOK+5dBvozGdxkWOieXXZ1N5TAQ4Lp5IOby/clwcrBz6jQqHgQwqmtbWVtx0001YtWrVkBWE+/viF7+Y//cZZ5yBtWvXYuPGjbjnnnvw5S9/ucgtHZ1zzjkH55xzTv7x2WefDZfLhZ/85Cf46Ec/iurq6klsXeH89a9/RWdn56gGjHLot+lq8+bN+NWvfoVvfOMbqK2tHXbfhQsXYuHChfnHa9asQXV1Nb7yla9g165dWLJkSbGbO6JPfOITAx6ff/75uOiii/D9738fd9111yS1qvDuv/9+VFZWjlhQECiPfqNjOCaWJ46JUwfHxfLEcZFOhKklEywYDCIejw/a3tPTg1AoNOxxuVwO2Wx2wPZYLAZJkoY9djLEYjFce+21CIfD2LRp05jz4aqrq7Fy5Uq89NJLRWphYWzcuBGWZeGVV14Z8ufl1m+AM4U2HA7j7LPPHvOxpd5vfb/v4/8GY7HYgJ8PJRgMDqpiD4z8tzsZtm3bhltuuQUf//jHcemll47rOfrypV988cVCNq1gvF4vzjvvvBH/r5VTvyWTSTz66KPYuHEjFEUZ13OUer8NZTqMixwTHeXUZ32m8pgIcFwci1J/f+W4OLRS7zcaPwYyJti8efMG5Z/F43G0tbUNm6/X97N9+/YN2L53717U19eX1FTMTCaD66+/HvF4fNCybNNNOfUb4PTd//3f/+Ed73gHNE2b7OYUXF9/HP83uHfvXmiaNuzU36H+doUQ2Ldv36hzbSfC888/j09+8pO45JJL8MlPfnKymzPpyqXfAODPf/4zMplMWRYUPBlTfVzkmHhMufRZn6k+JgIcF6ejcuk3YPqOizQ6DGRMsHPPPRd/+9vf8pFuAHjooYcgyzLWrl17wuNWrFgBv9+PBx98ML+tr/jNueeeW9Q2j4VpmvjUpz6FvXv34u677x5xPfkTOXLkCP7+979j8eLFBW5hYW3duhWKogyYxtZfufRbn0ceeQSpVGrcA0ap99vMmTMxZ84cPPTQQwO2b926FWvWrIGu6yc89txzz8Wrr76K/fv357ft2LED3d3dOO+884rV5DF5/fXXcf3112P16tW49dZbT+q5HnjgAQAo2b5MpVJ47LHHRmxfOfRbny1btmDWrFlYunTpuJ+j1PttKFN5XOSYOFA59Fl/U31MBDgujkWpv79yXBxaqfcbjR9rZEywK664Aj/96U/xT//0T7j++utx5MgR3H777bjiiisGXOBcddVVaGlpwZ///GcAgMvlwvXXX49NmzYhGo2isbERv/jFL9Dd3Y2rr756sk5nkFtvvRWPPvooPvvZzyKRSOD555/P/2zhwoXQdX3QuW3ZsgWPPvoozjvvPFRXV+PgwYP44Q9/CEVR8OEPf3iSzmSwq6++GqtWrUJTUxMA4OGHH8avfvUrfOhDH0JVVRWA8u23Pvfffz/q6+uxcuXKQT8rh35Lp9P5pcOam5uRSCTyF2dnnXUWotEobrzxRtx8882YNWsWVq1aha1bt2LXrl342c9+ln+e5uZmbNiwAR//+Mdxww03AADe/va3484778SNN96IT3/600in07j99ttx/vnnT0jO5UjnJoTA1VdfDZfLhauuumrAFEq/34/58+ef8NxuvvlmzJ49GwsXLswXx/rxj3+Mt771rRMy8I90bn0fAjds2ICGhgYcPXoUP/rRj9DW1ob//M//zD9POfZb3/KcnZ2d2LFjB6699tohn6cU+61QpvK4yDGx/Pqsv3IfEwGOixwXy6/fOC7SaDGQMcFCoRB+8pOf4Ktf/Sr+6Z/+CT6fD+95z3tw0003DdjPtu1BS5hde+21EELg3nvvRWdnJxYsWIB77rmnpCph//WvfwUAfOMb3xj0s4cffhgzZswYdG4zZszA0aNH8bWvfQ3xeByBQACrV6/GJz7xiZI6t7lz52Lz5s1obW2FbduYM2cOPv/5z+PKK6/M71Ou/QY4uZF/+ctfcNVVV0GSpEE/L4d+6+joGDRttO/xf//3f2PVqlW46KKLkE6ncdddd+GHP/wh5s6di+9973sDKnwLIWBZFoQQ+W2apuHuu+/Gbbfdhk9/+tNQVRUbNmzA5z//+ZI4N8ApJggA//iP/zhgv7POOgs//elPAQx9bqeeeiruv/9+3HvvvTAMAw0NDfjoRz+K6667rlinM8BI51ZbWwvDMHDHHXegu7sbHo8Hy5cvx6233jrgoqsc+23VqlUAgAcffBCmaZ7wzm8p9luhTOVxkWNi+fVZn6kwJgIcFzkull+/cVyk0ZJE/94nIiIiIiIiIiphrJFBRERERERERGWDgQwiIiIiIiIiKhsMZBARERERERFR2WAgg4iIiIiIiIjKBgMZRERERERERFQ2GMggIiIiIiIiorLBQAYRERERERERlQ0GMoiIiIiIiIiobDCQQURjsn79enz2s5+d7GYUxKFDh9DU1ITf/va3k90UIiIqUxwXiYgmHgMZRDSkZ599Fps2bUIsFpvsppSkdDqNTZs24cknn5zsphAR0QTguDg8jotENJEkIYSY7EYQUem55557cPvtt+Phhx/GjBkz8ttzuRwkSYKmaZPYusIQQiCXy0FVVSiKMqZjOzs7sWbNGtxwww248cYbi9RCIiIqFRwXh8dxkYgmkjrZDSCi8qLr+mQ3oWAkSYLL5ZrsZhARURnjuEhENPGYWkJEg2zatAm33347AOCCCy5AU1MTmpqacOjQoUG5wL/97W/R1NSEZ555BrfddhtWr16NM844A7fccgtyuRxisRj+5V/+BWeeeSbOPPNM3H777Th+Ipht2/jxj3+Md77znVi8eDHe8pa34JZbbkFPT8+A/davX4/rr78ejz/+OC6++GIsXrwYF154If70pz8NOoeDBw/iE5/4BM466ywsXboU73vf+/DYY48N2GeoXODPfvazWL58OY4cOYKPf/zjWL58OVavXo1vfvObsCwrf9yaNWsAAN/73vfyv59NmzaN/5dOREQli+Mix0UiKi2ckUFEg2zYsAH79+/Hli1b8LnPfQ6RSAQAEI1GT3jMbbfdhsrKStx4443YuXMnfvnLXyIQCOC5555DXV0dbrrpJmzfvh333HMPGhsbcckll+SPveWWW/C73/0O7373u3HllVfi0KFD+PnPf46XX34Zv/jFLwZM192/fz9uuukmXHHFFbj00kuxefNmfPKTn8Tdd9+NtWvXAgDa29txxRVXIJ1O48orr0QkEsHvfvc7fOxjH8N3v/tdbNiwYdjztywLV199NZYsWYJ/+Zd/wY4dO3Dvvfdi5syZ+MAHPoBoNIovf/nL+PKXv4wNGzbkn6+pqWm8v3IiIiphHBc5LhJRiRFEREO4++67RWNjozh48OCA7evWrROf+cxn8o83b94sGhsbxUc+8hFh23Z+++WXXy6amprELbfckt9mmqY499xzxQc/+MH8tqefflo0NjaKP/zhDwNeZ/v27YO2r1u3TjQ2Noo//vGP+W3xeFysXbtWXHLJJflt//Zv/yYaGxvF008/nd+WSCTE+vXrxbp164RlWUIIIQ4ePCgaGxvF5s2b8/t95jOfEY2NjeJ73/vegPZccskl4tJLL80/7ujoEI2NjeK73/3uiX6FREQ0hXBc5LhIRKWDqSVEVBDvec97IElS/vGSJUsghMB73vOe/DZFUbBo0SIcPHgwv+2hhx5CIBDA2rVr0dnZmf86/fTT4fV6B1U/r66uHnDnyO/345JLLsHLL7+MtrY2AMC2bduwZMkSnHHGGfn9fD4fLr/8cjQ3N+P1118f8Xze//73D3i8cuVKHDp0aJS/DSIimu44LhIRFQ9TS4ioIOrr6wc8DgQCAIC6urpB2/vn+B44cADxeDyfW3u8jo6OAY9nz5494MIQAObMmQMAaG5uRlVVFVpaWrB06dJBzzVv3jwAQEtLCxobG094Li6Xa9B04VAoNCg3mYiI6EQ4LhIRFQ8DGURUELI89ASvE23vY9s2Kioq8O///u9D/ny4/ONiGeuSc0RERMfjuEhEVDwMZBDRkI6/u1Mss2bNwo4dO7BixQq43e4R9z9w4ACEEAPat3//fgBAQ0MDAOcu2L59+wYdu3fv3vzPT9ZE/X6IiKg0cFwcHsdFIppIrJFBREPyeDwAgHg8XtTX2bhxIyzLwve///1BPzNNE7FYbMC2o0eP4s9//nP+cSKRwO9//3ssWLAAVVVVAIDzzjsPu3btwnPPPZffL5VK4Ve/+hUaGhowf/78k2533+/n+PYREdHUxHFxeBwXiWgicUYGEQ3p9NNPBwDccccduPDCC6FpGtatW1fw1znrrLNw+eWX484778Qrr7yCtWvXQtM07N+/Hw899BC+8IUv4B3veEd+/zlz5uALX/gCXnjhBVRUVGDz5s3o6OjA17/+9fw+1113HR544AFce+21uPLKKxEKhfD73/8ehw4dwqZNm0ac1jsabrcb8+fPx4MPPog5c+YgHA7j1FNPHTbHmIiIyhfHxeFxXCSiicRABhENacmSJfjkJz+J++67D3/5y19g2zYefvjhorzWV77yFSxatAj33Xcf7rjjDiiKgoaGBvzDP/wDVqxYMWDfOXPm4Etf+hJuv/127Nu3DzNmzMAdd9yBc845J79PZWUl7rvvPnzrW9/Cz372M2SzWTQ1NeEHP/gBzj///IK1+7bbbsNXv/pVfP3rX4dhGLjhhht4wUZENEVxXBwZx0UimiiSEEJMdiOIiEZj/fr1OPXUU3HnnXdOdlOIiIgmHcdFIpquWCODiIiIiIiIiMoGAxlEREREREREVDYYyCAiIiIiIiKissEaGURERERERERUNjgjg4iIiIiIiIjKBgMZRERERERERFQ2GMggIiIiIiIiorLBQAYRERERERERlQ0GMoiIiIiIiIiobDCQQURERERERERlg4EMIiIiIiIiIiobDGQQERERERERUdn4/zRh6SfVPhDqAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.lmplot(data=tips, x=\"total_bill\", y=\"tip\", col=\"time\", hue=\"smoker\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "OxNjkpwa6m06", + "outputId": "9fe5423d-be16-4d9a-e46d-29b9a9ac6cf6" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 5 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAHkCAYAAAD1kb7uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XecXVd97/3P2nufMr2oF4+abTXLkm0ZF9wwBmPLBqwLJhTHaZeQhAABkgt5nsALboB7AyEhxgYCPMGhB2KDbTk2prjgRmxjY6u5qhdLGs3M6but548jjXQ0ozIzZ+ac0XzfrxfI2qets89o9j7fvdbvZ6y1FhERERERERGROuLUegAiIiIiIiIiIkdSYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEyzl1++eV87GMfq/UwJpzbbruNhQsX8uyzz9Z6KCIicoJ0zKx00003sXDhwloPQ0TkqBRYiIwDTz31FDfddBN9fX21HsqYUiggIiJDNdGPmQf/t2zZMi666CL++I//mH//938nm83WeogiIkPm1XoAInJ8v/3tb/nyl7/MddddR2tra8Vt99xzD8aYGo1MRESkvkz0Y+YHPvABZs+eTRiG7N27l9/85jd89rOf5Vvf+ha33HILixYt6r/vn/3Zn/He9763hqMVETk2BRYi41wymaz1EERERMaFiXDMvOSSS1i2bFn/3//0T/+URx99lPe97338+Z//OXfffTfpdBoAz/PwvPr+OlAoFGhoaKj1MESkRrQkRKTO3XTTTfzDP/wDAK9//ev7p3pu27YNGLge9+CU0CeeeIK///u/5/zzz2flypV84hOfwPd9+vr6+Ju/+RvOPfdczj33XP7hH/4Ba23Fa8ZxzLe+9S1WrVrFsmXLuPDCC/nEJz5Bb2/v2L3xE/Sxj32Myy+/fMD2wdblLly4kE9/+tP8/Oc/55prruGMM85g1apVPPjggwMev3v3bv72b/+Wiy66iDPOOIPLL7+cT37yk/i+X3E/3/f53Oc+x/nnn8+KFSv4i7/4C7q7u6v7JkVE5ITomDm4Cy64gD//8z9n+/bt3HHHHf3bR3KsPPjYzZs387GPfYyVK1dyzjnn8PGPf5xCoTBgDD/96U9ZvXo1Z555Jq95zWv4q7/6K3bu3FlxnxtuuIFrrrmG5557jne/+90sX76cL37xi1XcEyIy3tR3pCoivOENb2DTpk3cddddfPzjH6ejowOAzs7OYz7u7//+75k8eTJ/+Zd/yTPPPMMPf/hDWlpa+O1vf8uMGTP4q7/6Kx588EG++c1vcvrpp/PWt761/7Gf+MQnuP3221m9ejU33HAD27Zt47vf/S7r1q3j+9//PolE4qiv6/v+Ca+TPd57GA1PPvkkP/vZz3jXu95FU1MT3/72t/nABz7Ar371q/59u3v3bt72treRyWS4/vrrmT9/Prt37+bee++lWCxWXKH7+7//e1pbW3n/+9/P9u3bufXWW/n0pz/NP//zP4/5exMRmeh0zDy6t7zlLXzxi1/k17/+Nddff/0x73six8qDPvShDzF79mw+/OEPs27dOn70ox/R2dnJX//1X/ff5ytf+Qpf+tKXuOqqq3jb295Gd3c33/nOd3j3u9/NT37yk4qlOz09PfzP//k/WbVqFW9+85uZNGnSiN63iIxvCixE6tyiRYtYsmQJd911F1dccQWzZ88+ocdNmjSJr3/96xhjePe7382WLVv45je/yTve8Q4+9alPAfCOd7yDyy+/nP/8z//sP/l64okn+NGPfsQXvvAFrr322v7nO++88/iTP/kT7rnnnortRzp4kngiNm7ceEL3q6aXXnqJu+++m66uLqD8vt7ylrewZs0a3vOe9wDwxS9+kb179/If//EfFdNqP/jBDw64stbe3s7/9//9f/1rouM45tvf/jaZTIaWlpYxelciIgI6Zh7L9OnTaWlpYevWrce974kcKw9avHgxn/3sZ/v/3tPTw49//OP+wGL79u3cdNNNfOhDH+J973tf//3e+MY3ct111/G9732vYvuePXv41Kc+xe/93u+N6P2KyMlBgYXISeptb3tbRWGxM888k9/+9re87W1v69/mui5nnHEGa9eu7d92zz330NLSwmtf+9qKpQ1Lly6lsbGRxx9//JgnXxdddBH/9m//VuV3Uz0XXnhh/wkYlE9um5ub+0/g4jjm5z//Oa973esqwoqDjizWdv3111dsW7lyJd/61rfYvn17RWEzERGpXxPlmNnY2Egulzvu/Y53rDzckcHCypUrue+++8hmszQ3N3PfffcRxzFXXXVVxT6aPHkyc+bM4fHHH68ILJLJJKtXrx7O2xORk5ACC5GT1MyZMyv+fvBq/4wZMwZsP3yd7ebNm8lkMlxwwQWDPu++ffuO+bpTp05l6tSpwxnymDjy/QO0tbX1t7/r7u4mm81y2mmnndDzHbmfD05rnWjt9ERExrOJcszM5/MntMTieMfKwx3tONjb20tzczObNm3CWssb3/jGQV/ryKKf06ZNmxDFUUXkxCiwEDlJOc7gNXWPtv2gOI6ZNGkSX/jCFwa9/XhraIvFIplM5oTGOGXKlBO637EcrT1dFEWDbnddd9DtRy71OFFH25/DfT4RERl7E+GYuWvXLjKZTMXMiaMZyrHyeMfBOI4xxvD1r3990OdtbGys+PvBDiYiIqDAQmRcGMue8V1dXTz66KOcffbZwzppuPvuu8e0hkVra+ugV3x27NgxrOfr7OykubmZF154YaRDExGRGtAxc3A//elPgfIylLHU1dWFtZbZs2czb968MX1tERn/FFiIjAMH+4+f6FWYkbjqqqv43ve+xy233MKHP/zhitvCMCSfz1dU8z7SWK/H7erqIpPJsGHDhv6aEa+++ir33XffsJ7PcRyuuOIK7rjjDp599tkBdSystWN6MiwiIkOjY+ZAjz76KLfccguzZ8/mzW9+86i/3uHe+MY38sUvfpEvf/nLfOELX6g4hlpr6enpGdB5RETkIAUWIuPA0qVLAfinf/onrr76ahKJBK973esGTKOshte85jW84x3v4Gtf+xrr16/nta99LYlEgk2bNnHPPffw//w//w9vetObjvr40ViP+5//+Z889NBDA7b//u//PldffTVf+MIXeP/7388NN9xAsVjk+9//PvPmzasojDYUH/7wh3n44Ye54YYbuP7661mwYAF79uzhnnvu4Xvf+94xTz5FRKS2Jvox88EHH+Tll18miiL27t3L448/zsMPP8zMmTP5yle+QiqVqurrHU9XVxcf+tCH+Md//Ee2b9/OFVdcQVNTE9u2bePnP/85119/PX/8x388pmMSkfFDgYXIOHDmmWfywQ9+kB/84Ac89NBDxHHML37xi1E5+QL49Kc/zRlnnMEPfvAD/umf/gnXdZk1axZvfvObOfvss0flNY/l+9///qDbV69ezfTp0/nyl7/M//k//4fPf/7z/b3gN2/ePOzAYtq0afzHf/wHX/rSl7jzzjvJZrNMmzaNSy65RGtrRUTq3EQ/Zv7Lv/wLAIlEgvb2dk4//XT+9m//ltWrV9Pc3Dzm4wF473vfy9y5c/nWt77FzTffDJTbrL72ta/l8ssvr8mYRGR8MFaV4URERERERESkzhy79LGIiIiIiIiISA0osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjlfrAdSLKIrp7s7VehjjjuMYOjub6O7OEce21sM5KWifVp/2afVpn1bfWO/TKVNaqvI8On4Oj/4NVZ/2aXVpf1af9mn1jddjp5w4zbCQEXEcgzEGxzG1HspJQ/u0+rRPq0/7tPq0TycWfd7Vp31aXdqf1ad9Wn3apyc/BRYiIiIiIiIiUncUWIiIiIiIiIhI3VFgISIiIiIiIiJ1R4GFiIiIiIiIiNQdBRYiIiIiIiIiUncUWIiIiIiIiIhI3VFgISIiIiIiIiJ1R4GFiIiIiIiIiNQdBRYiIiIiIiIiUncUWIiIiIiIiIhI3amrwGLz5s184hOf4C1veQtLlizhmmuuGfR+P/rRj7jyyitZtmwZb37zm/nVr341xiMVERERERERkdFUV4HFCy+8wAMPPMCcOXNYsGDBoPdZs2YNf/d3f8dVV13F17/+dVasWMH73/9+nn766bEdrIiIiIiIiNSd2Fo27erjuZf3sWlXH7G1tR6SDJNX6wEc7vLLL+eKK64A4GMf+xjPPffcgPv8y7/8C6tWreJDH/oQAOeffz7PP/88N998M1//+tfHcrgiIiIiIiJSR9Zv6mbNY5vZ1Z0niiyua5je2ciq8+eweG5nrYcnQ1RXMywc59jD2bp1K5s2beKqq66q2H711Vfz6KOP4vv+aA5PRERERERE6tT6Td3ceu9Gtu3Jkkq4tDYnSSVctu3Jceu9G1m/qbvWQ5QhqqvA4nhefvllAObNm1exfcGCBQRBwNatW2sxLBEREREREamh2FrWPLaZoh/S3pwimXBxjCGZcGlvTlL0I9Y8tlnLQ8aZuloScjy9vb0AtLa2Vmw/+PeDtw+X542r/KYuuK5T8aeMnPZp9WmfVp/2afWN532q4+fQjefPu15pn1aX9mf1aZ9W3+H7dPvOPnZ352luSOA4puJ+xhiaGzx2d+fZvjfHvBmtgz2d1KFxFViMJscxdHQ01XoY41Zra0Oth3DS0T6tPu3T6tM+rb7xtk91/ByZ8fZ5jwfap9Wl/Vl92qfV19raAE6G2EI66Q0ILAAcYyiUInBcHbfGkXEVWLS1tQGQyWSYMmVK//a+vr6K24cjji19ffmRDXACcl2H1tYG+voKRFFc6+GcFLRPq0/7tPq0T6tvrPdptU7WdPwcHv0bqj7t0+rS/qw+7dPqO3yfEkc4Bop+SDLhDrivH5RvJ47Yvz83rNdT0DH2xlVgMX/+fKBcy+Lgfx/8eyKR4JRTThnR84ehfnEMVxTF2n9Vpn1afdqn1ad9Wn3jcZ+Ot/HWk/H4edc77dPq0v6sPu3T6ouimFmTm5jW2ci2PTnaXQdjDs2ysNaSLYTMntLErMlN2v/jyLhaQHXKKacwd+5c7rnnnortd999NxdccAHJZLJGIxMREREREZFacYxh1flzSCdderI+fhARW4sfRPRkfdJJl1Xnz8ExA5eLSP2qqxkWhUKBBx54AIDt27eTzWb7w4nXvOY1dHZ28pd/+Zd89KMfpauri/POO4+7776b3/3ud3znO9+p5dBFRERERESkhhbP7eTGKxey5rHN7OrOky+GuK5h9pQmVp0/h8VzO2s9RBmiugos9u3bxwc/+MGKbQf//u///u+cd955XHPNNRQKBb7+9a/zr//6r8ybN48vf/nLnHXWWbUYsoiIiIiIiNSJxXM7WTingy27M2TzAc2NCbqmtWhmxThVV4HF7Nmz2bhx43Hv9/a3v523v/3tYzAiERERERERGU8cY5g7Xa1LTwbjqoaFiIiIiIiIiEwMCixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuqPAQkRERERERETqjgILEREREREREak7CixEREREREREpO4osBARERERERGRuuPVegAiIiIiIiIyMVkbE+/dgi1mMOkWnMldGKPr6lKmwEJERERERETGXLh9Hf7Ta4h7dkIcgePitM8guWIV3qwltR6e1AFFVyIiIiIiIjKmwu3rKD50K1H3VkikobENEmmi7m0UH7qVcPu6Wg9R6oACCxERERERERkz1sb4T6/BBgVMYwfGS2KMU/6zsR0bFMu327jWQ5UaU2AhIiIiIiIiYybeu4W4Zycm1YwxpuI2Ywwm1UTcs5N475YajVDqhQILERERERERGTO2mCnXrHCPUlLR9SCOyveTCU2BhYiIiIiIiIwZk24Bx4UoHPwOUQiOW76fTGgKLERERERERGTMOJO7cNpnYEs5rLUVt1lrsaUcTvsMnMldNRqh1AsFFiIiIiIiIjJmjHFIrliFSaSx+R5s6GNtXP4z34NJpMu3G31dnej0EyAiIiIiIiJjypu1hPTFN+J2zoagCPleCIq4nbNJX3wj3qwltR6i1IGjVDkRERERERERGT3erCW4MxcR792CLWYw6RacyV2aWSH9FFiIiIiIiIhITRjj4E6ZW+thSJ1SdCUiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3FFiIiIiIiIiISN1RYCEiIiIiIiIidUeBhYiIiIiIiIjUHQUWIiIiIiIiIlJ3xmVg8Ytf/IK3v/3tnHXWWVx00UV88IMfZOvWrbUeloiIiIiIiIhUybgLLB5//HHe//73c+qpp3LzzTfzt3/7t2zYsIE/+qM/olgs1np4IiIiIiIiIlIFXq0HMFRr1qxh5syZfPazn8UYA0BnZyc33ngjzz33HCtXrqzxCEVERERERERkpMbdDIswDGlqauoPKwBaWloAsNbWalgiIiIiIiIiUkXjLrBYvXo1L730Et/97nfJZDJs3bqVL37xiyxZsoSzzz671sMTEZEqMsYQK4sWERERmZDG3ZKQlStX8uUvf5mPfOQjfPrTnwZg8eLFfOMb38B13RE9t+eNu/ym5lzXqfhTRk77tPq0T6tvrPZpthDgOIbG1Lg7XA3ZeP451fFz6Mbz512vtE+rS/uz+rRPq0/79ORn7DhbR/HUU0/xp3/6p/yP//E/uOyyy+jp6eGWW27B8zy+973vkU6nh/W81tqKZSYiIlI7cWzpyZYo+iEtDUlampK1HpIchY6fIiIiMlrGXWCxevVqZs2axU033dS/bdeuXVx22WV86lOf4h3veMewnjeKYvr6CtUa5oThug6trQ309RWIorjWwzkpaJ9Wn/Zp9Y3mPrVY+rI+BT/EWmhrTk2YGRZj+XPa0dFUlefR8XN49Hup+rRPq0v7s/q0T6tvvB475cSNuzPAl156ide//vUV26ZPn05HRwdbtmwZ0XOHoX5xDFcUxdp/VaZ9Wn3ap9VX7X1qsfRmfUp+hAXMKLxGvRuP73e8jbeejMfPu95pn1aX9mf1aZ9Wn/bpyWvcBRYzZ85k3bp1Fdu2b9/O/v37mTVrVo1GJSIiIxVbS2+2RCnQCYeIiIiIjMMuIb/3e7/Hz3/+c/7+7/+eRx55hLvvvpv3ve99TJo0iauuuqrWwxMRkWGIIst+hRUiIiIicphxN8Pi93//90kmk3z/+9/nP//zP2lqamLFihX88z//Mx0dHbUenoiIDIEx4IcxfVmfQOt5RUREROQw4y6wMMbwzne+k3e+8521HoqIiIyAMVAMIvpyPlE0ruo/i4iIiMgYGHdLQkREZPwzxpAvhfRlFVaIiIhMdMZYHBvUehhShxRYiIjImDIGsgWfTD4gihVWiIiITGSODSHXA1FY66FIHVJgISIiY8dAXz4gWwiIFVaIiIhMWMYYnKhInNtPFPi1Ho7UqXFXw0JERMav3qxP0Q+xyipEREQmLGMslLJExTw2jsvTL0UGocBCRERGncXSm/Up+RHKKkRE5GRmbUy8dwu2mMGkW3Amd2GMJrYf5BBh831Evo+uYMjxKLAQEZFRFVtLb7ZEKVDbUhERObmF29fhP72GuGcnxBE4Lk77DJIrVuHNOaPWw6spY8BEJeJ8hjhUvQo5MYr6RERk1ESxpUdhhYiITADh9nUUH7qVqHsrJNLQ2AaJNFH3NooP3UqwbV2th1gzxlBeApLtVVghQ6LAQkREqs4YCKKYnkwJX2GFiIic5KyN8Z9egw0KmMYOjJfEGKf8Z2M7NihSfOourJ14x0RDDPn9RIVcuV6FyBAosBARkaoyBopBRG/WJ4h0YiIiIie/eO8W4p6dmFQz5ogCksYYTKqJqGcn/q5XajTCsWcMOLGPze0nKpVUr0KGRYGFiIhUjTGGfCmkL+sTKqwQEZEJwhYz5ZoV7lFKBLoexCFRvm9sB1Yjh5aA9BAHQa2HI+OYim6KiEhVGAO5gk+2GBLHuooiIiITh0m3gONCFIKXHHiHKATHw21sHfvBjbHyEpBedQGRqtAMCxERGTkDmXxAtqCwQkREJh5nchdO+wxsKYc94ku6tRZbyuG2zyA5fV6NRjj6yktASthst5aASNUosBARkRHry/rkigGxTk5ERGQCMsYhuWIVJpHG5nuwoY+1cfnPfA8mkSZ99jUYc3J+/TLGqguIjIqT81+MiIiMidiW25YWSqEupIiIyITmzVpC+uIbcTtnQ1CEfC8ERdzO2aQvvpHE7CW1HuKocIgg36MuIDIqVMNCRESGJQgjejIlin5U66GIiIjUBW/WEtyZi4j3bsEWM5h0C87krpNyZoUxBhMWiAsZ4lDnAjI6FFiIiMiQhbFlX1+RUqATFBERkcMZ4+BOmVvrYYyq/iUgxbxmVcioUmAhIiInzBjww5hcLqSxKVXr4YiIiMgYc2xInM8QB+oCIqNPgYWIiJwQY6AYRGRyARadoIiIiEwkWgIitaDAQkREjssYQ6EUkMkHRLHFdU2thyQiIiJjxGChmCEqFbQERMaUAgsRETkmYyBX8MkWQ+JYMytEREQmCmPAxCFxoY84CLQERMacAgsRETk6A5l8QL4YEuskRUREZMIwxmCCPHExqyUgUjMKLERE5Kj6cj6FUqgLKiIiIhOIwUKhj8gvagmI1JQCCxERGcBi6cv6FINIYYWIiMgEoSUgUm8UWIiISIXYQm/Op+Rr+qeIiMhE0b8EpJAljnQOIPVBgYWIiPSLYktvroQfaPqniIjIRKElIFKvFFiIiAjGgB/G9OV8glAnKiIiIhNBeQlIQFzIEPt+rYcjMoACCxGRCc4YKAURfbmAMKp+WGGMlsCKiIjUGy0BkfFAgYWIyARmjKFQCsgUAqKouqmCMeA5YACVwxAREakfWgIi44UCCxGRCcoYyBUDsoWAOK5uWOEYg2dCTDGLTbUATlWfX0RERIZOS0BkvFFgISIyARkDmXxAvhgSV3m9husa3KiEzWeIrcVJVfXpRUREZBiMMRDkiAs5LQGRcUOBhYjIBNSb8ymUwqrXlvBcgxvkCIt54ijCcd3qvoCIiIgMWXkJSC9xqYhVYSkZRxRYiIhMKJberE8xiKoaVhjAc8Ep9hL4RWyVl5iIiIjI0BkDJgqIi/W9BMSWcsQO0NJQ66FInVFgISIyQcS2PLOiVOUKmOV6FREU+vD9EiirEBERqTljAD9PVMxh63QJiA1K+M/eS/jio+A4NFzzv/Cmn17rYUkdUWAhIjIBRLGlN1fCD6pbCdx1DERFbCFLGARVfW4REREZHkMMhUxdLwEJt6/Df+qn2EJveUMcEe3cqMBCKiiwEBE5iRkDQRjTm/MJwuqGFcaAG+YJ8lmiOr1yIyIiMpEYAyb0y0tA6vRCQpzvxf/tHUTb11Zsd9pnkFh0aY1GJfVKgYWIyEnKGCgFEX25gDCqbliRcAym0EtYyBBV+blFRERk6IwBSrnyEpC4/o7N1saELz2O/+w9EJQO3eC4JBa/joaVb8amWms3QKlLCixERE5CxhgKfkgm7xNF1ZsKagwkTIwp9hJGjoprioiI1AFDDPk+Ir9E1VuAVUHcu4vSE7cR79tSsd2ZPJfUytU4bdMwbkJlsGQABRYiIicZYwy5YkC2EBBXMVBwHINnfWw+QxCHpBKq5C0iIlJL5S4gPnGhPpeA2DAgWP9Lgg0PgD1s1kciTXL5Krx552CMU7sBSt1TYCEichIxBjJ5n3wxJK7iFRbPdXDCPHExSxRGuK6p2nOLiIjI0JWXgGSJivm6XAIS7X6R0pO3Y7P7Kra7pywnueIanIYWrI2JurdhgwKmcxZMnqsAQyoosBARGUPWxsR7t2CLGUy6BWdyV1UPzH05n3wprOps0IQLjt9HWCwQ1+EJkYiIyERTz0tAbCmH/8wawk1PVWw3je0kz7kOb8ZCAMLdLxKsv584sweMIW6fRuymSJ75JrxZS2oxdKlDCixERMZIuH0d/tNriHt2QhyB4+K0zyC5YlUVDsyW3qxPMYiqdt5iDHiOxRQzBHXcFk1ERGSi6F8Cku8jDsNaD6eCtZZoy9OUnr4LSrlDNxhD4vSLSSy9AuMlgXJYUXridgiLkGyCRAq8FFH3dooP3Ur64hsVWgigwEJEZEyE29dRfOjW8pTHVDO4HkQhUfe2ER+YLdCT9Sn51Wst6hiDZyLI9xL4ftWeV0RERIbHGMDPExWydbcEJM7uo/Tk7cS7X6zY7nTMIrlyNW7HrP5t1sYE6+8vhxUNbRhjwDjgepiGNmx2H/7Ta3BnLtLyEFFgISIy2qyN8Z9eUw4rGjvKB2YALwluApvvGfaBOYotfbkSpaB6Jy6uY3APFNcM67CAl4iIyERjiKGQISoV62oJiI0jgo0PEaz7OUSHzfjwkiSXvgHvtAsxjlvxmHj/jvIykGTToXOiA4wxkGoi7tlJvHcL7pS5Y/AupJ4psBARGWXx3i3EPTsxqeaqHZiNgSCM6c35BGH1wooji2uKiIhI7ZSXgATExQxxnc14jPZtofTEbdjeXRXb3RkLSZ79VpymjkEfZ/1ceWms6w56O64HpQhbzFR7yDIOKbAQERlltpg5cGA+yq/cIR6YjYFSENOX8wmjaoYV4PoZwmJexTVFRERqrH8JSDGHjernIoINivjP3kv44mOUF6aWmXQzybPejDt72YALNIczySZwXIgi8AaZWRqF4LiYdMsojF7GGwUWIiKjzKRbDhyYw/IykCMN4cBsjKHgh2TyPlFUvSmhCRecYp+Ka4qIiNQBg4VCH3GdHZfD7Wvxn/opttBXsd2b/xqSZ16FSTYc9zmcjpk4LVOIe3dh3daKcMNaiy3lcDtn40zuqvr4ZfxRYCEiMsqcyV047TOIureBmxj2gdkYQ64YkC0ExHF1Tl6MgYQpr4v1/eLhF0pERERkjNXrEpA434v/258SbV9Xsd20TiV1zuoh1ZowxiGx+LJyl5BCHzbZCAkHohBb6MUk0iRXrFLBTQEUWIiIjDpjHJIrVpW7hOR7INXU3yXElnIndGA2BjJ5n3wxJK7SlRbHMXgE2EIfoa/imiIixxNby5bdGbL5gObGBF3TWnCOMfW9lsbTWKXMGCDIExXqZwmIjWPClx7Df/ZeCEuHbnBcEosvJ7HoUszRlrwegzftVFh5HcH6+8sFOCMf0o24HbNInvkmtTSVfgosRETGgDdrCemLb8R/eg1xz04oReC4uJ2zSa5YdewDs4G+nE++FFatMLjrGtyoRFzIENVZH3cRkXq0flM3ax7bzK7uPFFkcV3D9M5GVp0/h8VzO2s9vArjaaxSVo9LQOKenZSeuI24e2vFdmfKPFLnrMZpnTKi5/emnYo7dT7x/h3YoECicxZMnquZFVJBgYWIyBjxZi3BnbmIeO8WbDGDSbfgTO46zoHZ0psNKPrVCys81+AGuXJxzTq5giMiUs/Wb+rm1ns3UvRDmtIJvAaHMIzZtifHrfdu5MYrF9ZNEDCexir1uQTEhgHBul8QbHwQ7GFFuJMNJM+8Gm/eymMW1RwKYxzcztlgDG5TK7HCCjmCAgsRkTFkjHPC6zwtlp6sT8mvXqiQcA1OqY+gVMBWqQ6GiMjJLLaWNY9tpuiHtDen+r+oJRMuCc+hJ+uz5rHNLJzTUfMlF+NprFKfS0Ci3S9QevIn2Oy+iu1u1wpSK67BpJtrNDKZqBRYiIjUodhaerMlSkF12ov2F9csZghKpbqZbioiUu+27M6wqztPUzox4KqyMYamtMeu7jxbdmeYO721RqMsG09jnejqbQmILWYpPbOGaPNvK7abpg6SZ78Vb8bCGo1MJjoFFiIidcQYCENLT65EEFYnrHAcg2dVXFNEZDiy+YAosngNg09V9zyHfDEkm6/979fxNNaJzMQBNt9bF0tArLWEm57Ef+Zu8POHbjAOidMvIrH0CsxgLdlFxogCCxGROmEMlIKIvlxAGFUnrHBdgxsWiYsZorA+ppuKiIwnzY0JXNcQhjHJhDvg9jCMcV1Dc2OiBqOrNJ7GOlFFhSxRdj+xX/uC13FmL6UnbyN+9eWK7U7HbJIrV+N2zKzRyEQOUWAhIlIHjDEUSgGZQvnqWDUkXHD8LGEpT1ylAEREZKLpmtbC9M5Gtu3JkfCciqUW1lpyxZDZU5romtZSw1GWjaexTjTlJSC9RLHBxrW9gGCjkGDjgwTrfgnxYcGJlyR5xhvxTr0Q46j4pdQH/SSKiNSYMZAt+PTlqxNWGHMgrCj2ERRyCitEREbAMYZV588hnXTpyfr4QURsLX4Q0ZP1SSddVp0/py6KWI6nsU4UxoATB9j8fqJSHqhtvYpo72YK991E8NzPKsIKd+ZiGq78MInTL1JYIXVFMyxERGqsL+eTL1WnbaljDJ6JoNCHXyqN/AlFRITFczu58cqFrHlsM7u68+SLIa5rmD2liVXnz6mrNqHjaawnO2MMJsgTF7LEUYTr1S4osn4R/9l7CF96nMNDE5NuIXn2m3FnnVG1VqX1wJhyAfM4Btc5ed7XRKTAQkSkRiyWvqxPMYiqEla4jsGNS9hCljBQQTURkWpaPLeThXM62LI7QzYf0NyYoGtaS13OVhhPYz1ZGSwUM0SlAjau3UxHay3R9ufwn7oDW8xU3OYtOJ/ksjdhkukaja76DgYV+WJEsRTSkPZoSOor73imT09EpAaq3bbUcw1OkCcu5ojqpJe7iMjJxjFm3LQDHU9jPdk4NiQuZIgDn6pckRimON+D/9RPiXasr9huWqeRWrkad/KcGo1stFhyxYhCMSSMY7DQUOshyYgpsBARGUPGQBDG9Ob8qrUtTbgGp9RHUCpg49r3chcREZmIjDGYsFAOK2rYmcvGMeGLj+I/dy+Eh7VOdTwSSy4nsfASjHvyfA2MophcMSCbCwjjuD8j0nyik8PJ85MqIlLnjIFiEJGpUttSYyBhYihkCPwStoZXcURERCYyYyyUskTFfE2XgEQ9O/CfuJ24e2vFdmfqfFLnrMZpmVyjkVWXMeXlLvlSSKmnQCbnE1apy5rUFwUWIiJjwBhDvhiQLQREVZgF4TgGzwbYfJ/qVYiIiNSQQ4TN9xH5tVsCYkOfYO3PCZ7/NdjDApNkI8nlV+PNPeekKKrZH1QUI/LFEIultc2tce8VGU0KLERERpkxkMmXO4HEVQgrPNfBCQvExQxRDaecioiITGT1sgQk3PU8/pM/wea6K7a7c84itXwVJt1co5FVT0VQUQoJo/LSD9cd/yGMHJsCCxGRUdab8ylUqW1pwgXHzxCW8sRVWFYiIiIiQ1cPS0BsMUvp6buItjxdObamTpLnvBVv+uk1GVc1HS2okIlDgYWIyCixWHqzPiU/GvFURWPAc8Ap9hGUiqpXISIiUiMOETbXR1SjLiDWWsJNT+I/swb8wqEbjENi4SUkllyO8ZJjPq5qUlAhB43bwOL222/n1ltv5aWXXqKxsZFly5bx5S9/mXT65OkjLCLjVxRb+nLVaVvqGINnIsj34fulKoxOREREhqoeloDEmT2UnrideM/LFdudzlNIrrwOt31mTcZVLYeKaZZrVCiokHEZWHzlK1/h61//Ou973/tYsWIF+/fv59FHHyWKtJZbRGrLGPDDmL6sT1CFJRuua3CjEraQIQzCKoxQRERk7FkbE+/dgi1mMOkWnMldGOPUelgnrNZLQGwUEmx8gGDdryA+7HzAS5JcdiXeggswzvjZn0c6WA80XwoVVEiFcRdYvPzyy3z5y1/mlltu4dJLL+3ffuWVV9ZwVCIi5SsvBT8kk/eJqtBay3MNTpAnLuYUyIqIyLgVbl+H//Qa4p6dEEfguDjtM0iuWIU3a0mth3dctV4CEu3dROmJ27B9r1Zsd2cuJnn2W3Aa28d8TFXjGBzHwXdS9BWhGPgKKqTCuAssbrvtNmbPnl0RVoiI1JoxkDvQtrQanUASnjlQr6KArcLz1Uwc1azFm4iI1F64fR3Fh27FBgVMqhlcD6KQqHsbxYduJX3xjXUbWtR6CYj1C/i/u4fw5ccrx9XQSvKsN+POWjp+W5Uag+OWg4pinKTk26q0fZeTz7gLLJ555hlOP/10brnlFr797W+TyWQ444wz+PjHP87y5ctrPTwRmYgM9OUDCsWQeIRfzo2BhIkhnyHwS+O3uGZYIvHCL/C2/RbbMRsu+StwE7UelYiIjCFrY/yn15TDisaOQ1+uvSS4CWy+B//pNbgzF9Xd8pBaLgGx1hJtew7/t3dgi5nDR4W34DySy96ESY7Tun39QUWSYpyiFFgidT2TYxh3gcWePXt47rnneP755/nkJz9JQ0MDX/3qV/mjP/ojfvaznzFp0qRhP7fn1dcvyvHAdZ2KP2XktE+rbzT3qcXSl/UpBSHGAZfhX+lwHINnA2yhjzAMKC9Frc8rJ86BdbLlPytPNJxXn8d77i5MsQ8As28TXu9W7JQFw3ot13UmxO/n8fxvfyJ8PtU2nj/veqV9euKsjYn2bO6vJ+FOmTMgMKjG/gxf3Uzcuwsn3YxxKo9nxhhsuom4dxdm/1a8qfOG/TrVZmxEXOgjDko4jgWnOsdi98Cx03Uc8Ab/kh7n9lP6758S7lhfsd1pm076NavxpsypylhqwXE9fJMkZ5OUwkMzKlx3+Pu38ud04D6dKOcQJ7NxF1hYa8nn83zpS19i0aJFACxfvpzLL7+c73znO3zwgx8c1vM6jqGjo6maQ51QWlsbaj2Ek472afVVe58GYURPpkQinSSRHln7MMcYTJAjKhSJUx6kxsev58bGVP9/22KW6Ok7sUf2g586n5a5C4fdYq21MUlL0/huzzYU4+3fvo6fIzPePu/xQPv02AqbnqXnkdvx922HKATXIzlpFu0XXkfD3GUD7j+S/ZnvDsjbCCeZGnQGhXVSxH6eJi+gsU5+j8SlPFE+j007kB6dn6Wm5oGzI2wck33uAXK/uQsb+oducD1az7mKluWXY9zxcW5wpBiHgAQFEsTWIWGh2nMumwfZpzDxziFORuPup761tZX29vb+sAKgvb2dJUuW8OKLLw77eePY0teXr8YQJxTXdWhtbaCvr6DpXFVSz/v0RK7I1KPR2KdhZOnNlvCrsKbVc8Ep5YhKeeIaVB4fDsdxaGxMkc+XiKMIZ8fv8NbdgwkO9YO3xiE+7VJY/mYKuRAYZpeTKCL0g+oMvI6N9b/9aoUMOn4OTz3/rh+vtE+PL9i2jvwD/4b1i5h0EyQbIQop7trE7ru+QuOlf0hidrmeRDX2ZxgmiI2L9UuDhtY29LHGJRcmKO3Pjei9VYWfJS7mRm0JiOs4NDWnyWWLRIe9RtS9ncJvbiPu3lZ5/2kLSJ+7Glonk8n5gM94YlyX0KQoWI9SFBNFxaq/hus6NDenyWaLg/+cVvkcQgH92Bt3gcWpp57Kli1bBr2tVCqN6LnDUAe34YqiWPuvyuptn473Ct9QnX1qDJSCmExu5G1LjQHPAZvro1QqjrN6FeX3Hue68Z69C3dvZWActc3GP+NaTNsMXJMYdtcUQ/39Wxht4/H9jrfx1pPx+HnXO+3TwVkbU3jyTmK/XE+iv4+km4TGBHG+h8KTd8K00ysuRoxkf9qOU3DaphN1b8M0JioKRFprscUcbudsbMcpNf3MjIkh30fkl0a3UPSBZSBRHBOFFhv6BGt/TvD8r8Ee9v6TjeXzqzlngzFE4Xg6PwDHdQkO1KgohnaUO50d2KdRPOBcYyKeQ5yM6v/S6BFe97rX0dPTw/r1h9Z17d+/n7Vr17J06dIajkzk5HWwwnfUvRUSaWhsg0S6v8J3uH1drYc4JowxFEohvbnSiMMKxxgSJsbkewiKhXEWVgA2JnrhYZIP3lwRVlg3gb/oTZTO+0Ns89QaDlBERA4X791C3LMTk2oe0FnCGINJNRH37CTeO/iFweEwxiG5YhUmkcbme8ozKmxc/jPfg0mky7fXaLamMeDEATa7n6hUHNOuVuHOjRTu/SeCjQ9WhBXenLNovOojJOaeM+46gDiuS5RoIGOa6QmT5EoDQwSpH7fddhsLFy7k2WefrfVQjmnczbC44oorWLZsGR/4wAf4q7/6K1KpFP/6r/9KMpnkXe96V62HJ3LSGc8VvqvJGMgWfHLFcMRtS13X4EYlbD5DGA5zmUQNmeweEmvvIO7ZVlESNJq0AH/pNdiG9loNTUREjsIWM+UZkkerg+B6UIqO6Eoxct6sJaQvvvHQLM1SeZam2zm7prM0HcdgSzmiYg47qjMAKkX5PvIP/wfh5mcqtpvmSaTOeSvutNPGbCzVUp5RkSBnUxRDFFJIVY27wMJxHP71X/+Vz33uc3ziE58gCAJWrlzJd7/7XaZMmVLr4YmcdI53RYbDrsi4U+bWZpBjoC/nky+FI7744rkGN8gRFfOjPEVyFMQR3su/JvHyg5jDrgbZRAP+oiuJZpx5aIqxiIjUFZNuAcctF9ocrAhyFILjlu9XZd6sJbgzFxHv3dJfB8uZ3FW7mRVYbL6XeAyXY1pr8V/6bzK/vRvrH6r3hHFILLyExJLXY7zx1f7b8cpLP3JxUkGFjJpxF1gAdHZ28vnPf77WwxCZEGp1RaZeHGxbWgyiEYcVCRecUh9BqYAd4SyNseb0bCO59g6c7J6K7dGMMygtfBOkVIRKRKSeOZO7cNpnEHVvA3eQehKlcj0JZ3LXqLy+MU7NL2wYAyYOiAsZYn/sCljGfa9SevJ24j2vVGx3Ok8htXI1TvuMMRtLNZSDigQ5m6QYGAUVMqg4jgmCgFQqdfw7H8PJO39bRKqi4orMYEbxikytxdbSkylR8EcWVhgDSSfGFHrL9SrGU1gR+iTW30Pq8W9WhBU23Yp70R8QnvU2hRUiIuNAvdeTGG3GGExQIM72jFlYYaMQf+3PKfzsS5VhhZciedZbSF/+Z+MqrHA8lyiZJmOa6AlS5EqaVTEc2WyWz3zmM1x++eWcccYZXHDBBfzhH/4ha9euBeCGG27gmmuuYcOGDbznPe9h+fLlvOENb+Cee+4B4De/+Q1vf/vbOfPMM7nyyit55JFHBrzGunXr+JM/+RPOPvtszjrrLG688Uaefvrp446tt7eXt73tbVxyySW8/PLLAPi+z7/8y7/whje8gTPOOINLL72Uf/iHf8A/4t/RwoUL+fSnP80dd9zBqlWrWLZsGQ899NAI99Y4nWEhImOn1ldkasEYCMKY3pxPMMLK0o5j8GyAzfcRBuOrNaez90WSa+/CKfZWbA9OWUm86AqSHR2QLRzl0SIiUm/qtZ7EaDNYKPQS+aVRa1l6pGjPK5SeuA2bqZyZmJ53Jt7ya7DJ1jEZRzUYzyV0EuQPzKgIIwsoqBiuT37yk9x777285z3vYcGCBfT09PDkk0/y0ksv9TeR6O3t5X3vex9XX301b3rTm/j+97/Phz/8YeI45rOf/Sy/93u/xzXXXMM3v/lNPvCBD3D//ffT3NwMwAsvvMC73/1umpqa+JM/+RM8z+OHP/whN9xwA9/5zndYvnz5oOPq7u7mj/7oj+jt7eU73/kOXV1dxHHMn/3Zn/Hkk09y/fXXs2DBAp5//nluvfVWNm3axC233FLxHI899hj/9V//xbvf/W46OjqYNWvWiPeXAgsROaaDV2SKD92KzfeUr6a7HkQhtpQ76a7IGAPFICKTCwhH2AnEcx2csEBczBCF46hehZ8nufFneDsqC4LFTZPwl76ZuKML11WtChGZuGJr2bI7QzYf0NyYoGtaC844qeFTb/UkRpMxYKKAuDh2S0Csn8f/3T2EL/+mciwNraRXvpVJS8+lry8/LlqVGs8lNAlKKKiopgceeIDrr7+ej33sY/3b/uf//J8V93n11Vf5x3/8R6655hoALrzwQq666io+8pGP8IMf/KA/dFiwYAF//Md/zM9+9jNWr14NwD//8z8TBAHf//73OeWUUwB461vfypve9CY+//nP853vfGfAmPbs2cMf/uEfUiwW+c53vtMfNNx555088sgjfPvb32blypX99z/ttNP45Cc/yVNPPcXZZ5/dv/2VV17hzjvv5NRTT63GrgIUWIjICZgoV2SMMeRLAdl8QDTCZRsJFxw/Q1jME4/R1ZwRsxZ311qSG/4L4+cPbTYO4bzXEsy/5Oi1TEREJoj1m7pZ89hmdnXniSKL6xqmdzay6vw5LJ7bWevhnZB6qCcx2owB/PyYdQGx1hJt/R3+03dii9nDR4J36vkkl12J19Aw6uOohoqgIlRQUW2tra0888wz7N69m2nTpg16n8bGRlatWtX/9/nz59Pa2sq0adMqZkgc/O+tW7cCEEURDz/8MFdccUV/WAEwdepUrrnmGn70ox+RzWb7Z2MA7N69m49+9KMAfPe7360Y0z333MOCBQuYP38+3d3d/dvPP/98AB5//PGKwOLcc8+talgBCixE5ASd7FdkjIFMvtwJZCRtS40Bz7GYYoZgDKuPj5Qp9pFYtwZvz/MV26PWmfhnvBnbMvgBVURkIlm/qZtb791I0Q9pSifwGhzCMGbbnhy33ruRG69cOG5Ci6GwNh5Xx//yEpC+MesCEuf24z/1E6KdGyu2O23TSa5cjTtpfCybVVAxNj760Y/ysY99jMsuu4ylS5dy6aWX8ta3vrUiYJg+ffqA7nwtLS1Mnz59wDaAvr4+oLyso1AoMG/evAGvu2DBAuI4ZufOnZx22qH2uX/913+N53ncfffdA7pubt68mZdeeokLLrhg0Peyb9++ir/Pnj37eG9/yEYUWPzqV7/igQceYPv27QDMmjWLSy+9lNe97nVVGZyI1JeT+YpMb86nMMK2pY4xeCaCfC/BGFYfHxFr8bY+QeL5n2OiQ2O2jkdw2uWEXeeBU78npSIiYyW2ljWPbaboh7Q3p/q/TCQTLgnPoSfrs+axzSyc0zFuloeciGDbOgpP3lmeYRmXZ1g67TPqcoblWC8BsXFE+MIj+M/9DKLD6lS5HoklV5BYeDHGcUd9HCNl3HKNCgUVY+Pqq69m5cqV3HfffTz88MN885vf5Otf/zo33XQTl156KQCuO/jPzdG2jySYe+Mb38hPfvIT/v3f/52PfOQjFbfFcczpp5/Oxz/+8UEfe2SAkk6nhz2OoxlWYNHX18df/MVf8MQTT+C6bn8S8+ijj/LDH/6QlStXcvPNN9PaOn6KyYjIxBRb6M2V8P1oRIdm1zW4UQmbzxCGR+moUmdMbi/JtXfi7t9SsT2aNB9/yTXYxo4ajUxEpP5s2Z1hV3eepnRiwJVPYwxNaY9d3Xm27M4wd/rJcQ5c2PQs+Qf+jdgvYFLN/TWsou5tFB+6lfTFN9ZNaGGMgSBHXMgRj8ESkGj/dvwnbiPev71iuzPtNFLnvBWnedKoj2GkykGFR4kUpdAhiGIUVIyNqVOn8u53v5t3v/vd7Nu3j+uuu46vfvWr/YHFcHV2dtLQ0MArr7wy4LaXX34Zx3GYMaOyM8173vMeurq6+Jd/+RdaWlp473vf239bV1cXGzZs4IILLhjwe2+sDCuw+MxnPsOTTz7JRz/6Ud75znfS2NgIQD6f53vf+x5f/OIX+cxnPsP//b//t6qDFRGpFmPAD2P6qtAJxHMNbpAr16sYg5OkEYsjvE2PkHjpAUx8aLzWS+MvupJo5vIDi39FROSgbD4giixew+CzzjzPIV8MyebHV0eoo7E2pueR27F+EdPYcejLipcEN4HN9+A/vQZ35qKaLw852AUkHoMuIDYo4a+9j/CFh6mYlplqIrXiGtyuFTX7YneijOv0L/0ohe6BoGKc1Nsa56IoIp/P9y/lAJg0aRJTp04d0CZ0OFzX5bWvfS2/+MUv2LZtW/8Sjb1793LXXXdxzjnnVNSvOOgv/uIvyGaz/OM//iPNzc28613vAuCqq67igQce4D/+4z94xzveUfGYYrFIHMf9WcBoGVZg8fOf/5x3vetd/PEf/3HF9sbGRv7kT/6EnTt38pOf/KQa4xMRqTpjDAU/JJP3R9w/POGCU+ojKBWwIyzUORac3h0k196Bk9ldsT2ctgR/8VWQGngQExERaG5M4LqGMIxJJgZOyw7DGNc1NDcmajC66ov2bMbftx2TbhoQYhtjINVE3LOTeO+Wmi0XNQZMHBAXxmYJSLhjA/5TPyl3TTuMN/dskstXYVJNoz6GkTCuQ+QkKNokpUhBRS3kcjkuvfRSrrzyShYtWkRjYyOPPPIIzz77bEXXkJH40Ic+xCOPPMK73vUu3vWud+G6Lj/84Q/xfZ+//uu/Purj/tf/+l9ks1k+/elP09TUxFve8hbe8pa38F//9V988pOf7C+wGUURL7/8Mvfccw/f+MY3WLZsWVXGfTTDCiw8zxu0kMdB8+fPx/NUz1NE6o8xkC345IojL66ZMDEUMgR+qf6La0YBiRd/hbfpsfKVqAPiVAvBkquJpi6q4eBEROpf17QWpnc2sm1PjoTnVFxFt9aSK4bMntJE17SWYzzL+GGLGYhCSB7l6qnrQSkq368GjDGYIE9cyI767Ma4kMF/+k6irb+rHEPzJFLnXIc7rbpdEaqtHFR4FG2qHFSECipqJZ1O8853vpOHH36Yn/3sZ1hr6erq4pOf/GT/rIaROu200/jud7/LP/7jP/K1r30Nay1nnnkmn//85ys6jAzmU5/6FPl8nr/927+lqamJK664gptvvplvfetb/PSnP+W+++6joaGB2bNnc8MNNxwzE6gWY4dxlv2JT3yCV155hW9961sDCn+EYcgf/MEfsGDBAj71qU9VbaCjLYpiurtztR7GuON5Dh0dTezfnyMc4bR6KdM+rb6D+7R7f5bu3hJFf4TFNR2DZ31sIUMY1P/UX2ffyyTX3oVT2F+xPZh9NsHpb4DE0Askua6hubmBbLZwzFkqjuviNnfix8ObLmyA1uYkDcmTPwQf63/7U6ZU50uVjp/Do9/11TcW+/RQl5CIprSH55W7hOSKIemke3J1CeneTP5nN2HdJLjJATfb0IegSMMbPzDmMywMFkpZ4lJhVJeAWBsTvvwE/u/uhqB42AAcEosuJbH4cox34jNqXM/Q2tpIX1+eKBz9Cx0VQUXsjngJbD1yXUNbWyO9vfkB5yOjcQ5RrWOnnLhhfXpvfvOb+fSnP83v/d7vcf311zNnzhyg3Pbkhz/8IUEQcO2117J27dqKxy1dunTkIxYRGQY/iNifKVEojawgpuc6OGGeuJglCuu8XkVQILnxZ3jbn67YHDd24i+9lrhzbk2GJSIyXi2e28mNVy5kzWOb2dWdJ18McV3D7ClNrDp/zskTVgDulDkkJ82iuGsTNCYGzCixpRxu52ycyWPXsrO8BCQkLvQRBwEjuvpwHHHfq5SeuI1476aK7c6kOaRWrsZpq99238Z1DhXT1IwKGeeGFVi85z3v6f/vZ599tv8X2OGTNW644Yb+/7bWYoxh/fr1wx2niMiwHCyuWeorUvJHFjAkXHD8PsJigXiUi3qNiLW4u9eTXH83xj905dsaQzj3QoIFl4J7cqyxFhEZa4vndrJwTgdbdmfI5gOaGxN0TWs5qVqZQrmVefuF17H7rq8Q53sg1dTfJcSWcphEmuSKVWNWcNMYgwkL5XoVo3jBwEYhwfpfEWy4v9zG9aBEiuSyq/AWvKbmRUaPpjyjwqVo0woq5KQxrMDic5/7XLXHISJSdcYYCqWAfCmkuaVhBM9zoF5FMUNQqu96FabYR2L9f+G9uqFie9w6g9LSa7GtM47ySBEROVGOMSdN69JjaZi7jMZL/5DCk3cS9+yEUgSOi9s5m+SKVWPW0tQYC8UM0SgvAYlefZnSk7djM3sqtruzl5E861qchvr8zBVUyMlsWIHFddddV+1xiIhUl4FM3idfCkfUobNcryLAFvoI/TquV2Et7ranSD5/HyYsHdrseASnXkY45wJw6vOK0LFYawkjnXSJiNRKYvYSmHY68d4t2GIGk27Bmdw1ZrMMHBsS5zPEgT9qS0Csn8d/5r8IX/nviu2moY3k2W8Zs2BmqCqCitglCBRUyMnn5K9iJiITjsXSlw36i2u67vASi3K9igJxMVPX9SpMbh/JtXfi7t9csT3qmIu/9Bps06QajWz4enM+Dz+7k/9e/yqea/jwO1Ywb0Z9XtkSETnZGeOMfWHNMVgCYq0l2vo7Sr+9E0rZw18d77QLSZ7xRkwiNSqvPRLGdYiMR5GUggo56Z1QYPHxj38cYwz/+3//b1zX5eMf//hxH2OM4bOf/eyIBygiMhRhbMnkSpSCkR24y/UqMoTFfP3Wq4gjvE2PknjpAUx8qJio9VL4p7+BaPbZjGh6SQ28ur/AQ8/s4OkX9xIdaDtbCuCp5/cosBARmSCMAUoZomJ+1JaAxLlu/Cd/SrRrY8V2p30GyZWrcTtPGZXXHYnDgwrfevhBhIIKOdmdUGDx+OOPY4whjmNc1+Xxxx8/7mPMODtJFpHxzRgoBTGZnE8wgiUExoDnWEwxQ1Aq1m29CtO3k9Rzd+BkdlVsD6cuIlh8NTY9vtpubdmd4cFndrBu0/4Bt7U0JjhvSf1WYxcRkeoxxJDvJfJHZwmIjSPC5x/GX3sfRIct9XQTJJZeQeL0izCOW/XXHYmDQUWJJCWbIAgiLPU781Okmk4osPjlL39Z8fdvf/vbdHZ20tAweBG7QqHA/v0DTzpFREaDMZAvhmQLQf9V+eFwjMEzEeR7CXy/iiOsoigg8dIDeJsewRx2ImeTTfiLryaatnjczKqw1vL81h4eeGYHm3ZmBtze1pTkojNncPk5s+lorr8puSIiUj3GgImCQy1LR0HUvQ3/iduIe3ZUbHennUbynOtwmuurLW05qHDL7UkVVMgENawaFldccQWf//znueaaawa9/Ve/+hUf+chH1MZURMZEXz6gUAyJR3AlxnUMrvWx+QzhKJ0ojZTTvYnk2jtx8t0V28NZK/AXvhESw++EMpaiOOZ3L+3joWd2sqs7P+D2qR0NXLJ8JstPnYTnOKST9XWlS0REqstxDLaUIyrmsFH1v5DboIT/3M8IX3ykctZGqonUimtxu5bX1exwx3MJcSjZFKXYIwhjBRUyYQ0rsLDWHnOadBAEOOOwGr2IjC/l4po+xSAa0axRz3VwgjxxMUs0CidKIxYUSTx/H4ltT1Vsjhs68JdeQzxpfo0GNjR+EPHExj38+nc76MkOnMEyZ1oLl66Yyeld7Th1dOIoIiKjx2Cx+T7iUmFIyzCtjYn378D6OUyyCadj5qCdS8IdG/Cf+gk231Ox3Zu3kuSZV2NSjSN9C1XjuA6hcSnYFCXrEUQx1qpGhUxsJxxYZLNZ+vr6+v/e09PDjh07Btyvr6+Pu+++mylTplRnhCIiRzAGwtDSmy/hV6W4Zh9hsVC74po2xsnsxvg5bLKJuGUaHDjpcndvILF+Dc5h1csthnDu+QSnvg7cRG3GPAS5YsCDz+7h0ed2kS+FA25f1NXBpStmMmf6+Kq7ISIiI+PYsLwEZIjLMMPdLxKsv584swfiCBwXp2UKicWX4U07FYC40If/2zuJtj1b8VjTMpnUOdfhTl1QtfcxUsZxiIxDkTTFWEGFyOFOOLD41re+xc033wwc6gBytC4g1lo+9KEPVWWAIiKHM8ZQDEIyuYDwJCiu6ex7Be/lX+Pk9vafdMVNkwlPOQdv11q83esq7h83T8M/41ritlk1Ge9Q9ORCfv18N7958WWCsPKzcoxh+amTuHj5TKZ31s/VLRGA2Fq27M6QzQc0NybomtaiWT8yJurhZ8/amHjvFmyQpVScik1NrfprjKRlabj7RUpP3A5hEZJN4LoQRcS9uyg9cTv2nLdCrhv/d/8FQfHQAx2XxKLLSCy+DFMnYf/BoMInRdEmFFRIzd1www3s3buXn/70pySTyYrbPvCBD/DMM89w991309TUNGZjOuHA4rWvfS2NjY1Ya/n85z/PqlWrWLp0acV9jDE0NDSwdOlSli1bVvXBisjEZkz5an1upMU1HYNHCPm+mhbXdPa9QnLtnRD62GQDOC5EIU7vNlLdr2A4rKim4xIsuJRw7oXl+9Wx3b0+D6zr5ZnNWY78mBKew7mLpnLRmTNoVyFNqUPrN3Wz5rHN7OrOE0UW1zVM72xk1flzWDy3vgryycmlHn72wu3r8J9eQ9yzE2xEwUtgWqeTWH413qwlVXkNYyyUssNqWWptTLD+/nJY0dB2qO6E52DdVsjtx3/0u5VBBeBMnkPqnNU4bfXRcco4DrFrykEFiXKNCgUVUgc+9alP8Za3vIVvfOMb/Pmf/3n/9gcffJB7772Xm2++eUzDChhCYHHWWWdx1llnAeUuIG984xs5/fTTR21gIiJH6sv55EvhiOpVuK7BDYvlehXhwOUJY8bGeC//uhxWpFvKaUwc4pQymKgyRInau/CXXottnlyjwZ6YTXuKPLCuhw07CgNua0x7XHjGdM5fMo3GdH1c2RI50vpN3dx670aKfkhTOoHX4BCGMdv25Lj13o3ceOVChRYyKurhZy/cvo7iQ7digwIm1YzxPIyNifZtJXroVtIX3zji0GKkLUvj/TvKy0CSTRVFMq21UMxAcMTxJ5EmeeZVePPPHbS+xVgzjoMfG/I0kMdTUCF1Z/78+fzpn/4pX/3qV7n22ms55ZRTKJVK/O///b95/etfzxVXXDHmYxpW0c33v//91R6HiMhRxRb6ciVKIy6uCRSyhKU88QiWk1SDk9mNk9tbnlkBmFIWU8pw+MRfC4TzLiI47fK6bVUaW8u6bTkeXN/L5r2lAbd3NHlcdtYslp8+laRX3zNDZGKLrWXNY5sp+iHtzan+L0PJhEvCc+jJ+qx5bDML53RoeYhUVT387Fkb4z+9phxWNHaUDzlRAFhINWJLOfyn1+DOXDSsL/7GgAl94mJmRC1LrZ8rL590Dx1PbFCC/P7y9sO4s5eRPOtanIbWYb9etRxc+pEnje+0kA3zhKGCChlcHFte3t5LX86ntSnJ/FltOM7YHXfe+973ctddd/GpT32Kb3zjG3z1q19l7969fPvb32bXrl184Qtf4KGHHqJQKLBs2TI+/vGPc8YZZ/Q//he/+AU333wzr7zyCq7r0tXVxQc/+EEuvfTSYY1nWIGFiMhYMAaCMKYv74+ouKYx4BDjFPsoFYZWhXy0mIMnXTbGye3DxJUncNZNYh2XuHNOXYYVYWR5bGMP9z71Krt7B558Tm9PcuniNs5a0IbX3Ikf1/7KlsixbNmdYVd3nqZ0YkB7Q2MMTWmPXd15tuzOMHd67b8AycmjHn724r1biHt2YlLNEBaJ870QBfQfeR2XeN8W4r1bcKfMHdJzGwP4+aq0LDXJpgPLJyOsAxR6wT+iPbYxJM68muTCi0f0WtVgHENkXHySFEkSh5bWeFiTS2SCeOaFPfz4ly+w/dUsYRTjuQ6zpjbztstPY/lpY9PUIplM8ulPf5obbriBW265hW984xt85CMfoaGhgeuuu47Gxkb+7u/+jpaWFr797W9z44038rOf/YxJkyaxZcsWPvjBD7Jq1So+8pGPEMcxGzZsoLe3d9jjUWAhInXJGEPBD8nmR1Zc03EMCRtCrpugWB9hBYD1Upg4wORzlbMqjINNt2KNi4kCbHJs1wkeTymI+e+XMjy8sZee/MATz3lT01y6uI3FpzTjJdPYZBMhLlAf+13kaLL5gCiyeA2Dh2ue55Avln8niVRTPfzs2WIG4ggbh5DtBhuD42KMKR83wxAbhYTb1w4psDBYKPQRV6m4tdMxE9M8Gbt/W3kGyJHLKdwEpuMUEqe/dsSvNSKOIcalRJISCYLQYm2M69bfBQipH8+8sIebf/wMhWJIS1OChFsuxLppZx83//gZ/uJty8cstHjNa17D6tWr+dKXvsTSpUu54YYbuPnmm+nr6+NHP/oRkyZNAuCCCy7gyiuv5Jvf/CZ/8zd/w7p16wiCgL/7u7+jubkZgIsvHll4qMBCRGqmvxJ5MYNJt+BM7sIYp1xcs+CTLYbEIyiu6bkOTlggDrKE6eTxHzBEsbXs2V+gWIpIp1ymdDSc0HRdZ/8Wks/dMaBWRZxowKZawRhMMUPcMq3c4rQOZIsRjz7fx6Mv9FHwK08QDbB4diOXLm5j3rQm3GTqQFDhYPdtwZSyOKlm4vbZ/e1aT0RsLbv25djb69Hc6HHKVHVqkNHT3JjAdQ1hGJNMDFy+FIblLxvNjarBMl4c7RgzWo8bisO7gfTlfVyntj97Jt1SnrmQ7zkQVnjlX+6Y8p+OAzYifOVJksuvqtgfg+0vx3EwcVDuAlLF4tY2t79ccDM8Ygmi44HrgZfCm3E68f4d5XBjrOtWOIYIQ4kUvkkeCCoU2B+TjXF6tmFKWewwzhVOFnFs+fEvX6BQDJnUdmhpWMpxSbY67Osr8eNfvsCyBZPHbHnIe9/7Xm677Tb+8A//ENd1efjhhznvvPNoa2sjPFAHznEczj33XJ59ttw+eOHChbiuy0c/+lGuv/56zj33XFpaRta2XoGFiNRERSXygz3U22eQXHE1+Y7TKIywuGbCBcfPEBbz5YrkVbZlV4bfbNjN/kyJKAbXgY6WFK9ZNI2u6Uf5xRyWSDz/cxJbn6jYbDHEqRZINkAcYUoFSCQJ519U84N2dzbgoQ29PPlyliCq3I+uYzh7XjMXLWplekcDXiKJTTUSmgR25wYSG+7Fyew+1K61ZRrBoiuJpy487uu+tK2H+5/Zwf5MkUltjfTlSkxqTatTg4yarmktTO9sZNueHAnPGVDQL1cMmT2lia5pIzvxkrFx9GPMqmMWjhzu44biyG4gjgN+EFPyIya1p2vys+dM7sI0tpcDAcelcuqfLYcYboI4t79iWcjA/eXhTV9AcsmlOM1TiUe4BKR/CHFE8PyvCdb+/EBtjcO4yXJggYUoLN/vxUdxWqaQWHwZ3rRTqzKGozoQ7ITW4JMkIIUfKag4Ec6rG0d0rnAyeXl7L9tfzdLSNPjSsJaGBNtfzfLy9l5OPaV9TMaUSCQq/ty/fz9PP/30gE6hAF1dXQDMmzePr371q3zta1/j/e9/P47jcNFFF/GJT3yCmTNnDmscCixEZMwdWYkc14MoJOreRv7BWymd9U7sMA9UxkDCxFDMEJRKWGurPgVzy64M9z25FT+MaUi6pB2HKI7Z01vivie38oZzThkQWjh7nie5bg1Osa9/mwWiqYshKODku6GUBVM+WIfzLyKeNK+q4x6KnftLPLC+l2e35Aa0Jk16hvNPa+VN50wj6cYYpxxURCZJGMU4r24g9eT3ICxiU03lE8k4xOndQerJ71E6513HPBF5aVsPt//6FUpBREtDgqaGBCU/VKcGGVWOMaw6fw633ruRnqxPU9rD88qdGnLFkHTSZdX5czTLZxwIth39GFM8RreLYx2bjvW4oThaN5BS4FMKIvb1FGltTo75z54xDt68c/D3biqHExbKCzps+YukcaCxHROUystHGKSrSDKNk2zEZveRf+i7JJdfXZWwINq3Ff+J/yTu3VWx3Zl+Ot6C87F9rxK8+ChEIaSaygU5o4i4dxelJ26HldeNTmhhDhTHjg0lkyJ0UoRRefaMHJ/z6sYRnSucbPpyPmEUk3AHn0mV8ByyhYC+XPVmLA1VW1sbF198MR/84AcH3JZMHprJfMkll3DJJZeQzWZ58MEH+dznPsfHP/5xbr311mG9rgILERlTAyuRl0/ArJcgphUKvXgb7iWactqQZxe4jsG1PjafIRxBFfJjia3lNxt244cxzYcVSPNcl+a0Q7YY8psNu5k9rbl8clnKkdxwD96u5yqfp3kq/tJry1MfbYyT2Y3xc9hkU3kZSA1mVlhreeXVIg+s7+X5nQNbkzalHF67sI3zT2uhtTlJa3sLOd8hIHGgzkgMNiax4d7yCUhD+6GCoW4S25DAFHpJbLiX0lE+39ha7n9mB6UgorUxWV7WY8rV8tubk+rUIKNq8dxObrxyYf/V73wxxHUNs6c0aXbPOGFtTPGpuwYcY/CS4Caw+Z5Bu10c7dh0vMcNxbG6gUxuS7O3twhAyY9q8rPnzVqK/7t7ysst4ojy13EDXhLT0FaeeeGEmHTLgP3lphsxyQZs6BMGJSj0Eay/H3fq/GHvLxuU8J+7l/CFR6mog5RqJnXWtbinnAlYii88AnEIjW2HfW4O1m2tyjgGMBBbQxBB4KQI3QNBRaig4oSN8FzhZNTaVD7nCaKYlDNwaVgQlgtwtjZVf4nzibrwwgu54447WLBgAY2Njce9f3NzM1dffTW/+93vuOuuu4b9ugosRGRMHV6JvD+ssJYotlhjINlYbvnZs424o+uEn9dzDU6QJy7miKo0BXUwe/YX2J8p0ZB0B52y15B02J8psac7z8zSiyQ33Is5rC+8NQ7B/EvKyz0OHpCMQ9w6Y9TGfDyxtazfluf+9b1s2zewNWlns8fFi9o4Z14zqVQCL5HESTdBYxu+nyM6rCiq07MNJ7O7fLXkyEDBGOxxPt+de3Ps7SnQmPLUqUFqYvHcThbO6eivL9DcmKBrmuqnjBf+rleIjjjGHGSMgVQTcc/OAd0uBjs2ncjjhuJ43UDampIU/ZDVl86ntTE55j97zuQu3EldRPu2QqoRB4vjJYiNW14Vku/B7ZyNM7nr0P5Kt+A2tWFcj7iYJS6WC0nbZCNxZg/x/h24nbOHPJZw+zr8p36KLVR2FvDmnUvyzKswqfKXpah7O3FmDySbBt2nIx3HEU9IbC1+aAjdFIGbIooVVAzHSM8VTkbzZ7Uxa2ozm3b2kWwduCwxUwiYO6OV+bPaajbGP/iDP+DOO+/kPe95D7//+7/PzJkz6e7u5plnnmHatGn8wR/8AT/4wQ94+umnufjii5kyZQrbtm3jjjvu4LWvHX4hXAUWIjKmDlYixy3/+omtJY7toWsnrgdBHlPKntDzGQOeA06xl8AvYkdQpPNEFEsRUQxpZ/DE33UcEnGGKRt+RCq7ueK2qP0U/KXXYpvHpsLz8YSR5bebsjy0vpc9mYEzUmZ2lFuTLj2liWTCw00ctvQDS8Mg015NKdu/jnlQx/l888WwXBPEVacGqR3HGAVi41SU7ytfbXeP0mHJ9aAU9S9rOOjIY9OJPm4oTqQbSFyE1sYkZ8yfNOzXGS5jHJIrVpWXefgFSDdhvAT4JWwxh0mkSa5YhTFOucCm4+K0TcFYS5TtxoaH/V52XfAjrJ8b0hjifC/+b+8g2r62cmwtU0itvA53yvyK7fZgi3B34BXpkYyj8sUNkbUEoSVw04TegaBilM83TmYjPVc4UdlCgOMaGpL1/5XXcQxvu/w0bv7xM+zrK9HSkCDhOQRhTKYQ0JjyeNvlp41Zwc3BdHR08MMf/pB//ud/5gtf+AI9PT1MmjSJ5cuX84Y3vAEoF9381a9+xec+9zl6enqYMmUKq1atGnQZyYmq/09PRE4q/ZXIo5DYSRAd+aU3CsG42FTzcZ/LMQbPRFDow/dLY9I5M51ycR2I4hjviBMkY2MWxxs5L/UsyeyhWR7WTRKc9nrCrnMHXkmogWIQ85sXy61J+woDZ6MsmJbmksVtnDa9Ac87Iqg4sPTjaHVBbKq5/PnGYbkQ2pGO8/k2pr3y/o1iHE+dGkRkaNzG1vKXoCgsL+c4UhSW23WmK+sMHX5sGsrjhmI8dKLxZi0hffGN5UKavbuI/TzWuLidsysKjzpN7bgtncSlPFEpz4Aq2VG5gKI5wdbc1saEL/0G/9n/guCwmX6OS2LRZSQWvw4zSJhkkk0HPreofPXiSEMcR+WTG6LYEoTxgaAiraCiSkZ6rnA0sbVs35Njw+b9bNiyn5378niu4a/evnxcLOlbftoU/uJty/nxL19g+6tZsoUAz3WYO6OVt11+2pi1ND1o9uzZbNy4sWLblClT+MxnPnPUx5x11ll87Wtfq+o4FFiIyJhyJnfhtM8g3LeVON1W+QXeWoyfJ26bWa7tcAyuY3DjEraQHbV6FYOZ0tFAR0uKPb0lmtOHpux12F4u4XGmOfsq7h9NPhV/yTXYhtpN4TsoU4h45PleHnshQzEY2Jp06SmNXLq4ndmTUriuO2hQcTxx+2zilmk4vTuwDYkhf74zJjcxub2BXd0FWl2Hw0vVq1ODiBxPcvo83APHGNzEgGnVtpTrX9ZwuIPHpqh725AeNxTjpRONN2tJuVbH/q00eQG5MIHtOKW/BoQxFqepDesmiV59BRpaB7wX/DxO23ScjuN3BSgXx7yNeN+Wiu3O5LmkVq7GaZ161Mc6HTNxWqYQ9+7CuiMbRz8DkQXfjwndNGEyTRRBHCmoqJaRniscrhREPP38Hp5Yt5MNm3vIFirPCcPIsm7z/nERWEA5tFi2YDIvb++lL+fT2pRk/qy2ms6sqDUFFiIypiwG//Q3YH7zXUyhF5ts7K/Ebvw8JFIEi648ZpGlsapXMRjHGF6zaBr3PbmVbDGkKWlZ6WzgLLse1xz6Qm8TDfiL3kQ0Y1nNZ1XsyxxqTRoecWXIdeCceS1cvLiNyS2JYQcV/YxDsOhKUk9+b1ifr2MMly2fye2/foW+fEBLg0dswQ8ierK+OjWIyDEZ45A++xpy9/8bNt9zoGtE+XeQLVUuazjycf3LIYbwuKEYT51ojHHwps6jsaOJ0v4cYVg+Djg2xOYzxIGPO/88wu4dUOg78Lv+wEwHPw9eisTiy465v2wYEKz/JcGGB8qdSQ5KpEmeeTXe/JXH3d/GOCQWX1buBjLMcVSMyUAphMBJloOK2KhGxWgY4blCT7bUP4vi5R19hMcIk2ZPaeLiM2tXJ2w4HMeMWevS8cBYNQkGytOPu7tHsL5tgvI8h46OJvYfdjCTkTlZ96kx5QrHvTmfIIwre2/bqL+d5/F6bydcg1PqIywVieMT2z+ua2hubiCbLRBV6QrJll0ZXl63lvNKjzLJ6au4LZyxDH/RlTCcKahVtL273Jr0ua25AbN1UwnD+ae2cuHCVlobvIqgIu4PKo7OdQ1tbY309uYH3afD/XwPemlbD/c/s4P9mSKT2hrpy5WY1Jo+qTs1jPW//SlTqnMVV8fP4TlZf9fX0uH7tLj5ufKyhp6dB9bKuzjtMyqWNQwm3L5uWI8bivWbuvs70URRufX29M7Guvv9dvj+jCKLCQvEhQxxeOhCQbj7RYL195cLXx7cXy1TSCy+7JitRKPdL1J68nZstnJWonvKmSRXXIvTMLTfT8MdRz8DgYWSTRI6aUJrRmXpx/GOnRPNiZ4rlJd6ZFm/uYcNm/ezqzt/9Oc00DW9hcVdHSya08GCWa00pqq3zKpax045cQosDtAJ1/DohKv6TsZ9akx5yl5fLqj8ImxjnJ5tmFIWm2ouT/07SppuDCQcC8U+wlKJofzqqnpgEfokXvgF3pbfcPh1sDjdir/kGuIpp438NYbJWstLu4s8sL6HF3cVB9zeknZ57cJWzju1lXTSOWJGReKE988JnXQN4fMdTGwtu/blSCU8mhs9Tpl6cndqUGAxsZyMv+tr7ch9am1MvHdLuUBkugVnctcJXWkf7uOGIra27jvRHNyfPT1ZwlyGuJjHDnKhwNqYeP8OrJ/DJJtwOmYedX/ZUg7/mTWEm56q2G4a20me81a8GYuGPd6hjOPQCxtCC75JEpgUQTw6QcVBrmtoaWlg/ct7yOYCGtMeMyY31d1nP6aOcq5Q8iNe2N7Lxs372bC1h1zh6Mt/G1Iep5/SxsKuDk6f3U5juryIwACtzcmqFt1UYDH2tCREREaVMYZ8KShXRz/yJMA4J9SuqlxcM4R8H4Hvj9JIT4yz50WS6+7CKR5qtWaBsOtcgtNeD16qJuOKY8vabXkeWN/D9u6B+2hSi8eli9s5a24znmsqgoqwP6io8knaCX6+R+MYw6zJzVU/2RCRicEYZ1gtSIf7uCG9BpZT3G5sIoNxWzA0A/X3pdVGAXGuh6hQHFhY8wBjnOO2DLXWEm7+Lf7Td5WXahx6MN5pF5E84w2YwYqdDsGJjOPw140BnyQl50BQMRrHwSO8tK2XB5/dwK49WcK4vCxzcnsDly2fyYLZ7aP62nXrsHOF/ZkSG9a+2r/UY8B542EmtaVZ3NXBknkdLF84jWy2qFkrJymdAYrIqDEGsgWfXDEc9hWLQ8U1M4RBWOURDoGfJ7nhHrydz1Zsjpsm4y+9tmZ9woMo5revZHlwfS/7sgP3z+zOJJcuaWfJrEYcx+C4Lt6AGhU6wIuIjJWxWHYyUsaAiUqEfVli/+hhxYmIs/soPXk78e4XK7Y7HbNIrlyN2zFrpMM9Mab8f6GF0KTwTQq/v5jm6B8HX9rWw09+/Qp+GNOQckk7DlEUs6u7wO2/foXrLpo34UKLOLZs25M9UI+i57hLPeZMb2HRnA4Wd3Uwub0BKM9aOVordDk5KLAQkVHTl/PJl8Jhn+d4roMT5okL2TEvrtnPWtydz5HccA8mOHQgtcYhnHcRwYKLj95HfBQV/ZjHXuzjkY19ZIoD981p0xu4dHEb86elMeZoQYWmoYuIjKVw+7pyYc+ggEk19xcajLq3UXzoVtIX31jz0MIYwM8TBTlsc3rYz2PjiGDjgwTrflFuU3mQmyB5xhvxTrsQ4wxs71pN1sbYnh2EpTxxqpWwbTaR10Qwxu1JY2u5/5kdlIKYjpYksS1nQI7n0uo69OUD7n9mB/NmtZ30y0MOLvXYsHk/G7fsJ1c8+sWodNLl9FPaWTyng9NPaachpa+uE5E+dREZBZberE8xiIYdViRccPwMYTF/wsU1q80UekmuW4O794WK7VHbLPyl12Jbpo35mPoKIQ9v7OPxF/soBZU71xhYdkoTly5uY2ZneWmKggoRkfpgbYz/9JpyWNHYcagFp5cEN4HN9+A/vabcUrTKNTNOlMFCoY+4VGQkWUK0bwulJ27D9u6q2O7OWEjy7LfiNHWMcKQnMIZXX6K0/gGcoIBJJrHWYL0mggWXnVDx52rauTfH3p4CjWm3/LkfdnJkjKEx5bK3p8DOvTlmTWke07GNhf2ZIhs295zQUo/JbWkWzelgUVcHc6Y34zqaPTHRKbAQkaqKLfTmfEr+8GZEGMBzwSn2EZSKQyquWTXW4m39bxLP/wITHaoHYd0EwamvI5xz3pCKR1bDnr6Ahzb08NQrWY5s4OG5hnPmNXPxojYmtZQrYfcHFclGIkdBhYhIrcV7txD37MSkmg+FFQcYYyDVRNyzk3jvllGvoXGk8hKQgLiYIe6vFTX0K/02KOI/ey/hi49x+DILk24mueJa3FPOHPDeq86Av/NF4vX34ToeUUMLcVB+b6b0KqmeHZTOedeYhhb5YkgUc9SlC67rEJUi8seYbTCexLFl66tZNmzZz4bN+9m9v3DU+zoG5s5oZVFXB4u62vuXeogcpMBCRKomii29uRJ+MLwvxuXimhEU+vD9Uk1KK5jsXpJr78Dt2VqxPZo0H3/JNdjG0b8qdLit+0o8sK6HddvyA3ZHOuFwwektXHBaGy0N5UthzoFimhweVBynRamIiIw+W8yUa1a4Rzn9dj0oReX7jaH+JSDFHHYEyy/D7Wvxn/optlDZ6tub/xqSZ74Jk2wc4UiPw5SLexb9GLY9C8YlxCXOZ8u3u0lsQwJT6CWx4V5KU04bs4sPjWkP1yl3VUoMElpEUYzr0N/dYjwq+iEvbutlw5b9bNzSc8ylHg0pl4WndLCwq11LPeS49NMhIiNmDPhhTF/WJxjml+NDxTWzhMHRW1eNmjjCe+VhEi89iLGHTtisl8ZfdCXRzOUHzupGn7WWF3YVeGBdLy+/OrA1aWuDy0UL23jNqS2kEuUTH8d1cBMpSDYSK6gQEak7Jt0Cjluu5zBYR4woBMct32+sxnTYEpDhzmiM8734v/0p0fZ1lc/dMoXUyv8xZrNFSmFMYD3iQhZ3/w6iKAQ3UXknY7DJRpzMbpyebWNWMHvG5CYmtzewu7tAKlG51sZaS74UMb2zgRmTm8ZkPNXS3Vdkw5YeNmzezys7j73UY0p7ujyLYk4HXdNacJ2Tu1bHeHXTTTfx5S9/mZUrV/Ld73634rbPfOYz/OIXv+CXv/zlmI5JgYWIjIgxhoIfksn7w24n5bkGJ8gTF3M1Ka7p9GwnufYOnOyrFdvD6UvxF70JUmOznjSKLc9tzfHAul529gxsTTqlJcElS9pYMafcmhQGBhVRFGMVVIiI1B1nchdO+wyi7m3gJiqWRlhrsaUcbudsnMmj/yV68CUgQ2PjmPClx/CfvRfC0qEbHJfE4teRWHQZ5mizSarFQBBbgtghcJuITAqb3YrJ90JD6+CPcT0I8phSdnTHdhjHGC5bPpOf/PoVenI+DUkX50CXkHwpIpVwuGz5zLovuHlwqcf6zfvZsGU/rx5zqYdh7owWFnV1sHhOB5Pahl/AVcbeE088weOPP855551X66EosBCR4TMGcsWAbCEYVrXt/noVpT6CUgE7hhW7AQh9Ei/+Cm/z4+WrTAfEqRaCJauIxmh9axDGPPFKll9v6KV7kNakp0xKcemSNhbPauw/mTkUVDQQOykFFSIidc4Yh+SKVeUuIfkeSDX1dwmxpRwmkSa5YtWoF9ysxhKQuGcnpSduI+6uXD7pTJlH6pzVOK1TqjDSYzCG0FpKoSFyGwndBFFsscQ4qabyTJY4BPcoM1mMix2jixEHLZjdzv+4dAEPPruTXXuyhHGE68D0zgYuWz6zbluaFv2QF7Yd7OrRQ750rKUeHgtPaWfRnHZOm62lHuNVY2Mjp556KrfccosCCxEZxwxk8gH5Ykg8jGmkta5X4ex9ieS6u3AKPRXbg1POITjtCkiM/pWAgh/x2AsZHt7YS640MGxYOLPcmnTulHT/lbhyUJE8MKNCQYWIyHjizVpC+uIb8Z9eQ9yzE0oROC5u52ySK1aNektTQwyFzLCXgNgwIFj3C4KND4I97NiTbCB55tV4884BIOrehvVzmGQTTsfM6oUwB2ZUhJFD4KYJvWQ5qDjsvcTts4lbpuH07sA2JCqXc1qL8fPEbTOJ22dXZ0xDsGB2GysWT2f9y3vI5gIa0x4zJjfV3cyK8lKP/WzY3HMCSz0aWNTVrqUeVWRtjL/rFaJ8H25jK8np88a8c9Cf//mf8773vY+nnnqKs88+e9D7bN++nf/7f/8vDz/8MFEUcc455/A3f/M3LFxY3Qt+CixEZBgsvdmAoh8Oq22p6xrcqEb1KvwCyY0/w9vxdMXmuHES/tJriTvnjPoQevMhv97Qy29eyuCHlTvQMXDmnCYuWdTOjI5DV4Ycx8FNHggqzIETNAUVIiLjjjdrCe7MRcR7t2CLGUy6BWdy16h+IelfAlLoIx7mcTfa/QKlJ3+Cze6r2O52LSe14hpMuoVw94sE6+8nzuwpFxh1XJyWKSQWX4Y37dRhDh6wFj+MCaxLlGgg9FLl4+BgX6SNQ7DoSlJPfg9T6MUmG/tnshg/D4kUwaIrx7zb10GOY5g9pZmoswaVxY8iji1bXs30tx49kaUei+eU61FMatVSj2oqbHqWnkdux9+3vTwbyPVITppF+4XX0TB32ZiN43Wvex1Llizh5ptv5pvf/OaA27PZLDfccAOO4/CpT32KVCrFV77yFd7znvdwxx13MGPGjKqNRYGFiAyJxdKbLbctHc6h1nMNbpAjKubHtF6FtRZn51qSa+/G+LlD240hnPtaggWXHr1ye5W82uvz4Ppent48sDVpwjWsXNDCxQtb6Wg+VCTMcQ7MqEgdqFFxtBM0EREZN4xxxqwYpTFAKUdUyg9rCUhczFJ68i7Czb+tfN6mDpJnvxVvRvlqarj7RUpP3A5hEZJN4LoQRcS9u8rbV143tNDCGKI4xg8iQusSJ5rKRaVjjnscjKcupHTOu0hsuBcnsxuCPBiXuG0mwaIrx7Slab0q+iHPb+1l45bjL/VoTHks7GpnYVcHp5/SRjqpr5CjobDpWfbc/VWsX8CkWzANCWwY4L+6mT13f5UpV79vTEOLP/uzP+Mv//Iv+d3vfseZZ55Zcdttt93Gjh07WLNmDQsWLADg3HPP5XWvex233norH/vYx6o2Dv20icgJi2JLX65EaZhtSxO1qldR7CN6+j9I7KisYB63zqC09M3Y1umj+vKb9xZ5cF0v67bnB9zWkHS48PRWLji9labUocrh5aAiUZ5R4R64kjTMoqYiIjIxGWLI9xH5JYY6JdJaS27j4+QeuQ1bOuz4ZRwSp19EYukVmAPdTqyNCdbfXw4rGtoOFRT1HKzbCoU+gvX3406df/yZJAaCKMb3YyLjEHtNWC9VDiqGkLfEUxdSmnIaTs82TCmLTTWXl4HUaGZFPdjXV2TDgYKZr+zIHHNJ79SOw5Z6TG3B0VKPUWVtTM8jt2P9Ak7zpP5/QyaRwnpJ4mw3PY/cTnrO0jFbHvKGN7yB008/nZtvvpmvfe1rFbc98cQTnHbaaf1hBUB7ezsXXnghTz75ZFXHocBCRI6rv21pzicIhx5WGAMJU143G/ilYbdOGzJrcbc9RfL5+7CHVTC3jkdw6mWEcy4AZ3R+6Vtr2bizwIPrenllz8DWpG2NLhcvauPcBS0kvUNjMI7B8w7MqHCTRDEKKkREZEiMMZioSJzPEIdHv3J+NHFmL8Wnbifa/VLFdqdjNsmVq3E7Zlbef/+O8jKQZFNF95ODY7HJRuLMHuL9O3A7B6kdYcrHTT+MyzM4HRebaMJ6acLYDimoqHxeZ8xal9ajKLZs2Z05EFL0sKfn6Es9XMcwb0Yri+a0s6irg04t9RhT/q5X8PdtL8+sGOTfkEk34+/bjr/rFVIzFhzlWarLGMP73vc+PvzhD7N27dqK2/r6+pg8efKAx0yaNIkXXnihquNQYCEix2QMFIOITC4gHEbNBMcxeDbA5vvGtF6Fye0jufZO3P2bK7ZHnXPxl1yLbeocldeNYsvvNud4cH0Pu3oHvt9pbQkuWdzG8jnNFYWpjDF4B2ZUDOdKkoiICIAxFkpZomIeGw/tuG2jkGDjQwTrf1FeP3+QlyR5xhvxTr0QM0jQb/1cuWaF6w64DShv96Py/SoHSxzHlPyQUmDLFxFSzdhEA1EEsQL7ISsv9ehhw+YeNm7toXACSz0WzengtNla6lFLUb6vXGelITHo7cZLYIvZ8v3G0FVXXcVNN93ELbfcwsyZh4LKtrY2XnnllQH337dvH21tbVUdg34qReSojDHkD7QtPVaF6KPxXAcnzBMXs0ThGH37jiO8TY+SeOl+THzYaybSBIveQDDjrMqK4VXihzH//VKGX2/soyc38ORg7pQUlyxuZ+HMhopq4MYYXM/DpBqxXsPIriSJiMi4Y21clQKcxoCJw/KsisAf8hKQaO9mSk/ehu3dXbHdm7mYxFlvwWlqP/prJw+0Eo0i8AYZe1QuwGmSTQceUF72UfIjgigG42LS5RkVUWyIQwUVQ7Gvt8j6A0s9Nu08/lKPxXM6WNTVwSlTm7XUo064ja3getgwwCRSA263YQCuV77fGHIch/e973187GMf4zWveU3/9nPOOYd7772Xl19+mfnz5wPQ29vLI488wjve8Y6qjkGBhYgMyhjI5H3ypZB4GGFFwgXH7yMsFoiHeIVnuEzfTlLP3YGT2VWxPZq2mNRrVlOKElDlqzW5UsSjz/fx6PN95P2B73PxrEYuOdCatGKsB4OKZCM2kSaMja4kici4Fdvy1PNsPqC5MUHXtJa6a9U4mGqFBcMVbl93qMXpwa4a7TOG3OLUGIMJyhcI4iFeILB+Ef/ZewhfepzDe4ybdAsdF7+dYPLpxMd5SqdjJk7LFOLeXVi3tWJKu7UW/DxO23SczpmUwoiiHxHFFuO4mHTLgaUfB4+DOhYez+FLPdZv3s/e3oFLTw/SUo/xITl9HslJs/Bf3Yz1kgP+DdliluTUOSSnzxvzsV177bXcfPPNPP7448yaNQuA1atX861vfYs//dM/5UMf+lB/lxDP87jxxhur+voKLERkUL05n0Jp6G1L++tVFDMEpTGqVxEFJF68H2/zo5jDe7GnmgkWXw0zl5BuaIDs0dduDtX+XMCvN/Tx3y9lCI4IGhwDy+c0c+mSNqa1JStuOxRUNGATDTpBE5Fxb/2mbtY8tpld3XmiyOK6humdjaw6fw6L547O8rtqqFZYMByxtex47kkan/4BblzCbWjpb70ZdW+j+NCtpC++8YTGYbBQ6CPyi0NaAmKtJdq+Fv+3d2ALldPMvfnn0XD2VTROnkRfX57jHaOMcUgsvqzcDaTQd6CV6IEZF34evBScfjG9uYA4BuO6OOkjA3sdB4+lUDqw1GPLfp7f2kOhdPQUqTHtsfAULfUYT4xxaL/wOvbc/VXibDcm3VxeBhIG2GIWk2yg/cLrxjRQPch1Xd773vfy//6//2//tubmZr797W/zf/7P/+Hv/u7viOOYs88+m+985ztVbWkKYOyYVb+rb1EU092dO/4dpYLnOXR0NLF/f45wGMUYZaBa71OLpS/rUwyiIYcV/fUqCmNXr8LZ9wrJtXfiFPZXbA9nnYW/8I2QSOO6hubmBrLZAtEIZzHs6im3Jn1mc5YjJ54kPcO5C1q4aGEb7U1HnBwY8FwPJ9VAnGgksmZYM1fqhesa2toa6e3Nj3ifHosBWpuTNEyAk62x/rc/ZUpLVZ5Hx8/hqfXv+mpZv6mbW+/dSNEPaUon8DyHMIzJFUPSSZcbr1w4ZqHFUPZpuH0dxYduxQYFTKq5PyywpRwmkT7hsGA41m/qZs2jm7ii9z+ZarrJ0EjCdWlrTpJOeuWrqfke3M7ZNFz9kaN+QSkvAQmICxli3x/SGOJ8D/5TPyXasb7yOVunklq5GnfyXFzP0NraSF9fnugEl2iEu18kWH9/uQDngRCIlskE8y4i6pyH4x4K7Mf7cXA4hnrs3NtbYMPmHtZv3s/mXX0DzjsON1GXehxrn47GOUS1jp1HU9j0LD2P3I6/b3u5jozrkZw0i/YLrxvTlqb15OQ/AxSRExZbS292eG1Ly/UqCsTFzNjUqwiKJDf+DG97ZV/4uKEDf+m1xJOqN2XOWsumPSUeWN/Dxh0DZ2k0pRwuOL2VC05rpTE1sOCY63m4yQbiZAOBdXQlSUROCrG1rHlsM0U/pL051T+FOZlwSXgOPVmfNY9tZuGcjrpaHmJtjP/0mnJY0dhxWAvOJLgJbL4H/+k1uDMXVf1q5sGApzPYxeRkLyXSGBz8MGZfb5FJbeny1fBUE3HPTuK9W3CnzB3wPMYAQZ64kCOOTvyYa+OY8KVH8Z+9F8LDQg7HJbHkchILL8W4w/964E07FXfqfGzPDvx8lpJJEjRPw3WTeAcC+9BqRsXRRLFl864MG7ec2FKP+TNbWdTVwcKudi31OEk0zF1Ges5S/F2vEOX7cBtbSU6fV5OZFfVCgYWIYAyEoaUnVxpW29JyvYoMYTE/JvUq3N3rSay/G6eU7d9mjSGccwHBqZeBmwAb42R2Y/wcJtUETUMPMGJr2bA9z4Pre9m8tzTg9o4mj4sWtbFyfnNFa9L+cXou7oErSQGuTtBE5KSyZXeGXd15mtKJQdvwNaU9dnXn2bI7w9zpY1so7ljivVuIe3ZiUs2Djvt4YcGwX/ewgGdKY4QbxRRwMaZ8lTiKLL1Zn3SnV57xUYqwxcyA5zm4BCQuFYe07DLq2YH/xO3E3VsrtjtT5pNaeR1Oy5QRv0cMhDEUUlMJ3MkY1yWhwP6YDi71WL+5vNSj6B89gGpKeyzs6igv9ZjVRip5lK4sMq4Z44xZ69LxQIGFSB04vFhZW0uKtrbGMXttY6AUxPTl/CG3LTWA54JT7CMY4onTsJSyJNffjbe7cgpr3DKd0hlvxraW18w5+17Be/nXOLm9/W3WghenYuZeCB3HDy7CyPLM5iwPru/l1b6BS1tmtCe5ZHEby7qaKlqTHlQOKtLYRCMh7oEOKzpBGyrHMXiuwR2khZ6I1F42HxBFFq9h8H+jnueQL4Zk82PX0vpE2GLmwLHhKKfBxwgLRuLwgKdoGohx8IgID5yOO44hiGL8ICJhDnTVSB+afm4MmCggLg5tCYgNfYK1vyB4/iGwhx3nk40kl1+NN/ecAcHNkBjA0l9MM4xijOPgNTQpsD+KPT0F1r7SzYbNPcdd6jG9s5FFB1qPzp4ycZZ6iBykwEKkxo4sVua5hlOmv8Kbzj2F009pH9XXNsZQKAVkCsGQ6xD0F9csZPD94uieh1iLu/23JDfehwkPTY+0jkuw4DLCuReU18lyqKYFoY9NNpRP+OIIenfhPXcn8ZKjLxcpBQdbk/bSmx94hWP+1DSXLG7j9BkNg57cua6Lm0xhk02Exj2wT3WCNhQHQ4pUwiV1YFo5DLk7n4iMgebGBK5rCMOYZGLgld4wjMs1hBoTNRjd0Zl0y4EWnGF5GciRonBAWFANhwc8rzKFbtPBZLuXrG0CYzAG4rhcF8aLcrids3Emd5XHbAA/T1TMYYewBCTc9Tz+kz/B5rortrtdK0ituAaTbh7+GzLlJZOlUkTBj4jiGMd18dKNCuyPEMVxeanH1h6e39rL7u78Ue97+FKPRXM66GgZ2OJSZCJRYCFSQwOKlTU4RFHMpp19/Nvd6/n9USxWZgzkCj7Z4tDbljrG4JkQW+gl9Ef3ypnJd5Ncexdu9ysV26OOOfhLr8U2TTq00cZ4L/+6HFakWw6c4QGuA4kkJteL9/Kv8TvnwGFrAbPFiEee7+OxF/ooHNGa1ABLZpdbk3ZNHnx96KGgopHQeAoqhuhgSJFOuKQSHp5X/tysVVAhUs+6prUwvbORbXtyJDxnQBu+XDFk9pQmuqaNbpG6oXImd+G0zyDq3gZuYmD7wFJlWFAtRwY8/+2ezRXh/TSTo2jTBLgkTIgXlDCpRpIrVmGMg6F8cWAoS0BsMUvp6buItjxdsd00dZI85614008f/hs5EFQUSyFFP+4PKhINTeWgQoE9APliyPPbethwIks9GhIsOtDV41Qt9RCpoMBCpEaOVqzMTbg0pDz29hRHr1iZgb58QL4YDPkLoesY3LiEzWcIw7C64zpcHONtfozEi7/CxIdex3op/NPfQDT77EOBxAFOZjdObm95ZsWR+8wYbLIBJ7cXJ7ObuHUG3dmAhzb08uTL2QGtSV0HzprbzCWL25jSOsgVOChfSUoksalGQpPQCdoJMhw2kyLpkfJchRQi45BjDKvOn8Ot926kJ+vTlPYGdAlZdf6cuiq4CeX14ckVq8pdQvI9kGoa0CXkYFhQTUcGPFud2fzcu4xzo6fotPtJ2WK5+OXkOaRWrCIxewkm8stdQE6w85a1lnDTk/jP3F1uJ9r/ph0SCy8mseT1mMFmlZwIU/79nC8G+EE5qHBdj0RDY7lN9wSfUWGtZU9vkY2b97N+y3627Mqc+FKPqc119+9EpF4osBCpkeMWK2sYrWJllt5sQNEPh/zFsNwJJE9cyBINYUrqUJm+XSTX3oHbt7NiezhlIcGSq7HpwfeH8XOH2qgNxnHBRuzcl+NXz73Ks1tyA04mUp7hNae28tqFrbQ1Dv4r8vCgIjLJA7U/JuYJ2olyjMFxDAnXkEy4JBMunquQQmS8Wzy3kxuvXNi/tDFfDHFdw+wpTaw6f85xZwlaGxPv3YItZjDpFpzJXVUPCgZ7DW/WEtIX34j/9Brinp1QKh873M7ZJFesGpWWpoMFPJu9Wbxkp9Pm76Y94XP5eQuZsWwZjuNAKVdeAnKCxazjzB5KT95O/OrLla/bOZvkytW47TOHPXbLoRkVYX9Q0XSomOYEDSqiOGbTrgwbNu9nw+Ye9vUdvauH5xoWzGrjrEXTmDu1idbGYQZHIhOMAguRGjmRYmVRobrFymILvTmf0jGmJR7NmHQCiUISLz2At+lhzGHfYG2yCX/xVUTTlgycOXEYm2wqhxJxVJ4icfhtFl7Mt/GLvhVs2OUCuYrbm1MOr13YxnmntdBwlKmYh5Z+NBwWVIx+V5TxyJgDsyicyoDCMU7/lGaFFCInh8VzO1k4p6O/eHRzY4KuaS3HvWIcbl93KDA4EDY77TOqEhgcLGYdbltHx9ZfkcrvGfQ13JmLRj0wOdzRAh5n8hwuPn8Op87txCHC5vcT+f4J/aK0UUiw8QGCdb+Cw2Yk4iVJLrsSb8EFmGEWL45jS8GPyOUDoijG8VySDc0Tuphmvhjw/NZe1m/ezwvbjr3Uo7khwcKudhbP6WDBrDYa0x5tbY309uaHXDtMZKIa94FFLpfjqquuYvfu3fz4xz9m2bJltR6SyAkZ62JlUWzpzZXwgyF2AjHgOWBGuROI072Z5No7cfL7KraHM1fgL3wjJBuO+xxxyzTipsk4md3YtAfGEFtYm5/CL/vmsbnUNuAxnc0elyxq4+x5zf0FHo80eI0KBRWHc4zBOOA5hsSBYpkJ18FzywHFwR+bUe8kIyI14RgzpNmA4fZ15SUZQQGTau5fkhF1b6P40K2kL75x2KHFule6uePhV0jvf4FrzK/xTUDWaaC5uYmUy4DXqGbr0hNxtIDHdRxMWCgvAQlP7MJCtHcTpSduw/a9WrHdnbmY5NlvwWlsH94gDfhBzP5MgVzexxqHRGPThCymaa1lT0+RDVv2s2HzfjbvzhwzR5oxqbG/YOasKU1a6iEyQuM+sLjllltGdWq6TFyHtxo90atFMHDqKZNOYeuruQHPc9xiZYWQmZMbiS089/K+IY3hcMaAH8b0ZX2CIbYtLRfXjCDfR+CXhvTYE+bnSa67a2Cr0oZ2/CXXEE8eQh9q4xDOv4jk2juJCjn+O1jA/Zn5vBoOrII+syPJpYvbWHrK4K1JARzXwUukVKNiEI4xOMaQSrq4xpQDCs/BdSoDiqEWdBU5GQ12PKknwz3eDfd5rY3xn15TDisaOw4d/7wkuAlsvgf/6TW4MxcNebbDMy/s4d/uXk/RD/jD1O9IEZChiTji/2fvz4Lsuu4zX/C31trDmTJPjkggM5GJgRg5iqRESuIgyZZoiZJs2a66LkWXVY6uqlu32t3Rvi+ul4oKd1RE1Us/9HXcdkR3hG35dqnKtspySaQk2pbFmZQ4DyAAkiCARAKZCSQyzzzsYa1+2CeHk3MCCTATXL8gA8A+++y9z85hrf1f/+/7aJYCevMp/EzXNZ9jq+7V8gJPjJ76kKh0BaSH7B5c87pMUKf59k+JP/pF23aR7sT71DdRQ7dfW1SpEERxTK0REWtDR2cGlcqgnU+WmWYUJ1KPOT+KmdLqcyBHCQ4M5jk62sXRkW66cjbVw2LZSnZ0weLMmTN873vf4w//8A/5D//hP3zcl2O5hVgaNaqUYHdPZl097tL21tAIJsJO/jG4gzPR4LLjrGRWFkeaWjNGCqg1Y/7fP3hnU9ewGCGgHsSUa8GmWw+VFCgTJOaaGzT72izOmWdxzzyLMAtFRwPEA8cI7viNlePm1qHWOcozmW/w/EdNSvHyScPBgRSPHuvitt2pVSdzUkmU64OXIZbWo0IAQiYFClclHRQp36G3O03FSbqBbIHCYlmZ1caTb35+P5/vzn7cl3fN4931HPdwtoQuTCD83IoeTvhZdGECPT22qe4HbQzf/8cPaAQxh7IleqMCDZLf9UpBHBuKlYCBnsw1neNG3CshIJ48TfjuzwinzmDCZiJb6ejHPfYFnIHb2vY3xhCPv0vt1b9FhdVF2+FD9zCdd32NA8O7r+FCksWNZjMiiDUIgZdKoXJd6FpMENz642CtEXJ6rMCpsVnev1CkGa6+INohGxzrKHHk6H4OHj++YqesxWLZGnZ0weI//sf/yO/8zu+wf//+j/tSLLcQK0WNRpFm/EqV7z51mu+sEjW6tL21GUOxVKOLK3xDvcDfe49yVg8uO85SLaujBL35FDPFBrPlxqauYTFCCGqNkEo9bLVubpx5c81GhXiDbambolnBf+v7qNnzbZuNUBjpIkuTyOJFdO/Gf7bL9YgXTpf4xYdlGiHAQrFCAPcc6OChI50Mdq1eBJFSojwPvAxa+sSxxmyyK+VWQIjk+0cKgesIPEfhOHLegwIMal7uYb0oLJbVWGs8+bMfnyTXkWKkL7Mtr2+jY821HPdf32fYpeNEBrISyoFmjGmUN3Xe85NlLl6ukE07ZGgi0UQsPEhKKQhjTRDGuM7mznEj7pUQEF86QePl7xOXroCXgXQHxDG6OEnz1R/A/d+aL1roaoHg9b8lnjjF4sfjWfI8Iz7NuVo3/ssTfMtJcXCoawMXABhoRjGNIG4V5wXKaxXs3RSx9Ijj2npH2pEYY7hcqCeGmWMFxtaRegw5BY5nr3J7doZhdxYV1ODSazT3fBu968jNu3CL5RPGji1Y/PSnP+X999/nj//4jzlx4sTHfTmWW4TVoka9lia/UAlWjBpdqb21WKoRGIdYOuSo8oB+g4vOMG7OazvOUi1rR87jfzx3junZ+qauYTFCQLkWUGtGm17xvqHmmsagLr2Fd+opRLTgpG0A4+cwXiLdEI0yzkfPE/SMwjqtutPlJJr09Y8qREs+q5Jw3/4OHr29i/2DnVQq9RU7TaSUKNcDL41WPrE2n6hCxVyBQkmB15J2uEqhHIFAtPlOWA8Ki2VjrDeeFCsB3//HD/i//5O7tuX1bWSsudbjPnu6wm9LBXG0ciddHIFUiaxyE5RrIVGsSadc6jqFRuIQE7Wmu0KA1omnkxsnBpymXia68M6ahps34l4JNKZWpPH6k8Sly5DOL5LGSIzqhHqJ8OTTyP59xB++TPDu30EUzB8jQvKmvJN35TG0UHQ6hlIt5Ok3L7F/ML/6tYjkd3mzGVMPY+JYI8RcZ+HCOChvwXFwTuqRpHrMMlNeW+pxcLCTO4K3uN2cSqQe8/fUwygXUS/innqKZv+hdecrFovl2tiRBYt6vc5//s//mT/4gz8gl1uuTb9WnFUM9yyro1pJDErdGvfu7ESJqZkaubSLlMvbVHNph6mZGhenq+zfs6A9jS6fRxcnkakcQgqaYUwYa6QUCAFNk6LHzDLAFS7LXSse57bhLgDGpipcvFLZ9DUsplQNaIQRQoBSG508tcw1myWioIEQZsPv3RC1Wdx3n0BOn2nbbJSLSeVBucyfzUsja9M4lSnMKjFs41ebPP1egXfGqstWRFKu4MHDnTx0JE9nxkni4aD158IETEiBcjyEn0bLFHHLe2Hpfb8VmYsZTRI8JK6jcFrfr8trEsvvx632s78d2Mn31I6fy1l/PHG5eLnC+OUqIwNbN5fZuutbf6y51uOeKOb45p5deJUJcNqjvY0x0Kyievfi7d63KX+JrpyPoyRxZLji9DMruuk101RNdt6EWYikmG3qRQAar3w/kSVKB9W1h9S9X8cdbjf73Mp7JQQQB+haifDKOeLZSwg/u6I0xvgZdGmS5t/9b+glppoX2cXLzgOURHI+0Tp4xldMF+tMzdYY3pVbckyIY2gEEY0gThYlZCL9WGkcbP+dtHOLF9V6IvV47/ws718orJmU1pFxOTrazfHRbm4bzuOXx3FfeAecxcWKFkKAl0FWpnBK45ie0XWv5Va5p9uJ9e6pUtKOUTucHVmw+JM/+RN6e3v5rd/6rS07ppSC7m2gJd2pdHaun+CwEzg7VUUbSHnOig+tUgjqraz2xd8vtZmQmomRnp9MrkINBqQkMbDCIWWa5GSTGSVXPc7cNUSxpiOzfGK01jUAhFFModzE8V06/Y2niwhAmAjqRSIHfCe14feuh9Ea/cEL6HefgniJF0a6c0UNM9KFqEHGiRC5he8tYwynL1b5uzemOXWxPZYUIJ9x+OKdvTx8vJu0v1xPmskkMhEhBMpxEH4G46bQ5tYvUMDcRF3gew6+K/FcZ1XD0Y1yq/zsbyd22j214+fKbGQ8qTUjYj6e+3et491WHbd59DHS7/4lpl5EpHIIx8VEITQqyFSG/kd/m3TP5jos8vkMQ7tynJso0ev7vC7u44vBz8mZGg3j09SStGtwm7OYsIH0UshUZv7cZnacxnN/TsfX/g3pfQupc1t1r4wx6HqFuNGEjEtDhtRNjHS9ZeOgMZq4XoNGBd2ozG/Xbpqf1e/gUvpQYgy97FpU8kAuFZ2dC3KjOSPNMIoRjkPGdTc8DuZyWzcnuBkYY5i4WuWdD6d5+8NpPrpYXFPqsXeggzsP9nLXoX5GdrebqOp6RGg0uN6KxTMjPajVyTkRMr9xeddOu6c7gdXuaWfGoyO7eU80y/ZhxxUsLl68yJ/+6Z/yv//v/zvlcqI7rNVq839Wq1Wy2c0P/FobSqVbU6N3I1FK0tmZplSqE98KrYM6MbtsBNGKBkpBmLyOjpmdXXhgjiIXLRQmaCIcDzAgQBuQGBwTESOpaJ8IvepxABQGR0maQYzrLh8cV3qvENAMNaVqQLhJzwkpBY4OkrbYaGvNNUVpCuedHyKLF9u26669UJ8F6SU3aamRVxyCkNQiB1Opo7Xh3QtVfn6iwMWZgKX0dbg8ejzPfQc6cJQgDgMqiz6KlJJMxqdeDxBSIvwsWvvENYMx9S39zNsJIZKvr+sofFfhuhJHCEwY0QihwfJ7uVFuuZ/9bcDNvqdb9ZBsx89VWGc8CUONoyQKs2wc2A7Xt9Y4tRXHjfoOkXr4X9B4/QniwgTUy0mXQ/cwqXu/TiN/gMYm74tSkt/+0iH++K/eZLrQoJ7eTage5dPR63TrWTqFJuX6ycOrk4JcH0YIjDYgHUw6j64WuPLM98l1Luru2IJ7JUzilxEHjfk2tjh2krlDGCDUwiKDCRuYWgF0+3ju7r+Xmb1f5PQ/juFFGneF7rcwipNGAB1TLteIY6gHEY0gkYguFOzXHweVkuRyKSqVxrb/PR/Fmo8ulTh5fpZT59aXetw2nOfYaA/HRrvIL0r1KJfa74WIHFwhIQxArfDQGwUgJJXIwRTX/z24k+7pTmHdexrHRMHWzW9tgf7ms+MKFuPj44RhyL/+1/962Wu/+7u/y913381f/dVfXdOxo8j+4rhW4ljfEvdvqC/LQCtqtEstjxqt1COG+7MM9WXbPq/p3ovM7yaeGUdkXDxH4SpJEGmEBJ8G06KPKfoxevXjAAzvyjK0K8fZi0Xyylv3GoQQ1Jotc81NJoE4SiKaNcJGZWvjgXWEe+Y5nLPPI8yi++RmCI79GvHAcbzXvocsT2FSTnubpTGIoI7uGKCe3sXrp4s8d7LI1Uq07DTDvT6PHstzfCgzv+q10j0QwqAchUzliGSKWIMOb00vBikFSgg8V+J5Cs+RSJFEjaIh2mJfklvlZ387sRPv6U673pvB+uNJyP6hPMO7lo8D2+P6Vh+ntuq4Qhwl9dXDbVHgcz4S13pP7j7Uz+999Sg/fOEskzM13o13cVL9GnfkKzxypJO+Tmj88q8RXhoQS1bek4SSePYSweS5+fSQ67lXQoCIA3S9jF6SuGU69yBzfejiJCbdCUZDvQjBkofmbA/+/d9CDRxilzH05a8wOVunU8ll42e9GTMykKO/O02xEtAMY+J4UaFizkxTiw2Mg8lniWO96fnFzaBSD3n/QoGT52f5cHydVI+My9GRbo6OdnNwqBPPWSg8rfnZOodRuQFk8RIm7a4wX6mh84NEncOwoXu0ve/pzmT1eyrYmWOqpZ0dV7A4duwYf/EXf9G27eTJk/yn//Sf+KM/+iPuvPPOVd5psayPFGLFqNEo0lQbESlP8fiDo8uMrISQePc8nqSE1ArgZ8lnHYqlGinTJBAev5CfIljnOHPX8NtfOsQf/+Ub61/DdZtrloga9S0115SzF/BO/BBZnW7bHu25i+DoY4kLOhAdeAjvxI8QjTLGS4NUoGNEUKeuMjwrHuL5H12k0lg+ATm0O82jx/Mc2LV6NCksSD+cdAaR6yYqNQlvsUFLiOR7xlFzfhRJsWyxF4U1yrRYbj7rjSdpT/HbXzqEFAL9McRFXut4t9XHFUJuKrp0Ixzf38Ntw/l5M+tcxmVkIGn1jy68kxTSN5FQcu1zA6BZJW5UMSuMs0JI3GNfoPnK30DlastQc4l59N678T/92wjHnb+WL9wzyA+eP0upFpL21HwkuhGCgZ40nzk2QKm6EGfuOA7ST6PdDJER6HiFzsYdgDGGqdm5VI9ZLkxV1vwUQ31Zjox0cWy0m8G+5T4hG0JIwqOP4b/2PUS9iPEyyfdIHCGCGrg+4dHHrOGmxXID2XEFi87OTh544IEVX7v99tu5/fbbb/IVWW41VooaVUow3J9dM2vdGTpO6uHvELz5JLowga9jutOCibCffwzu4ExzF0rF6x4HWitEXzs2v0K08jUYipWQRhBtKlZSCHCkQTTKhM3G1j3MRk3cD36GM/ZKW5OqTuUJjj+O7j/Utrvu3U9w+zdwPno+KW6YmKLO8nTwAC+Vh2nGAAvFCiHgzr1ZHj2WZ7DHZ00EOGrRBE1INBJ9izy4z0k9PDXXRZE41ZuWWRrYqFGLZTuw1njyzc/v5+5D/R+PHGQD17feOPVxHHczSCHYt3u5AaZIdSQF8k0mlGz2M8lWCkgcBGv+QpbpPML1MbWZ9hccH/fux/EOfmbZew4OdfGth/bz9JuXmC7WEUKQzbh05XyO7u2iu8MnjpPOQuWlMW6aELUjCxVRrDk7kUg9To8VmF1P6jGU5+hoN0dGuslvkW+B3nWE5n3fxj31FLI8BWENhELnBwmPPmYjTS2WG8yOK1hYLDeDpVGji1dn1sIZOo4aPDrf3ppOddDZu5fM5eqmjgNrrxAlxYqARhBvauohhcAREdTKhMHqg/5mkVc+wHvvCWSjNL/NANHIZwgPfSlx114B3bufoGeUqxMTPPthg9cuS5bKDx0luP9AjoeP5unJrW8kqhwH5afRbprQSHRsUGpnTdBWYl7q4SWpHm1SD9h0h43FYrk5rDaerOSF8HFwrePdjThurGMuvX+SZrmI35Fn8PAxlNza+yT7RpBde4hnxpN0qiXyDtOsonqGkX0j1/SZEglIE10ro6PlUkZjNHr2ErpRQl86RXTutXavCuXi3PY53Du/jJSrT9MPDnVxYCjP5EyNUjWRmnR1eEghWoWKFMbNEKGIV/KK2sZU6iGnx2Y5db7ABxcLBOHqnZGdGZcjI90cG+3mwBKpx1aidx2h2X8IWRhHNCsYP4fuGradFRbLTeCWKFg88MADnD59+uO+DMstxmqrM+uxUnvrtRxn9Wu4tmKFUgIVNzG1MtEKk6hrIqjinXoKZ+Kdts0620dwxzcTc801uHC1yTPvFXhvPMDQPuinXMlnD3fwucN5cqn1JyC3wkrSYhZLPRLDzKSLQmClHhbLTuNax5ObxY26vs0c96PXfkHjzSfpiK6SQRMjOf1CL6l7HufAfSt31l4LK0k451r8TbOKcFN49zy+apzqWp9JCNOSgNRWlIBEUx8SnnwaXZhIVumX/A5XQ8fxPvXryEx+nQ+RFKnrQYTvKXrmYx0VyvMxXpZIqJYkZPuPE9ci9Tg6mvhRDPZmrk3qcS0Iie5eXsiyWCw3lluiYGGxfHK4tmKFowQqrBI1auitMNc0BjXxDt6pnyLCBXMwIyTRgYcIDzwMq6wMGWN4f6LOsyeLfHS5sez1zrTioaN5PnOwA3+FlJSl7PSVpMVIIVqpHkmRwnMVjlok9TA79ZNZLJZbHWP0iuaZG+Gj136BevW/0EVAQ6RpoFDEdEVXCF/9L3wEW1q0WCrhpBVJqnqG8e55HGfo+KaPKYkxtdKqEpBo6kOar/x3aJRBL1k0EBLn+Jfwb//VtU8iBLHWNJrRvJkmLC5UZIiEsyMKFXOpHqfG1pd6uEpycCjPsdEujox002kjKi2WTxS2YGGx7BC0gWI1SPLVN4gAHAWyWSJs1pPotutE1At47z2Jmv6wbXucHyK4/ZuYjl0rvi/WhnfGqjx7sshEYXmcZn+ny6PH8tw9msNR66+WtK0k7eBChZQCJecKFBLXSj0sFssOI7r43sLDv04e/mXXng09/Mc6pvHmk3QRUBW5+RSGGIcqWbKmSvXNJ4k/df+WykOWSjg3W2SZQwiBiOpJCsgqseJaxwRv/AhqBZaNU14SkaivnMMYvfL55woVjZBmtFCokEriuD7GzxAJd9sXKuakHnOpHsEaJtidWY+jI11JqsdgHtdpvy/aGCamq9QaEZmUw56+7HXLmCwWy/bEFiwslh1ArA3FanNNHedShABXaKgnfhXXLR8wGmfsFdwPfoaIF6LZjHIJD32JaOQzK2o5g0jz2kcVnjtVZLa6XIqyt9fn0eN5jg1lNjTZ2Kktr3PMGWY6c0UKL+misFIPi8WyE4kuvpfIK8I6ws/NyyvimXEaz32X1MPfWbNocen9k3REV2mIdHtkJIAQNEjREV3l0vsn2Xv0ji299utNKBEYaJSJm/UVJSAAujpL8xf/DVOaan9BOZDpRjgeJgrR5Svo2UuonuHFF9jqqAjbOiqkkijXAy9DLH2iWLMdx0FjDJMzNU6dL3BqbJbxy2tLPYb7W1KPkW72rCH1ODNe4Om3LjFdqBNrUBL6utJ84e5BDg533ZDPYrFYPj5swcJi2cYIkTzwlyoB4VI3yjVQUqBMkPhVLMl9v6brqFzBO/FDVGG8bXvce5Dg9q9j0l3L3lMPYl56v8SL75eoNpdf+5HBNI8ey7Ovf+1o0jmkUjiut2NWkhazIPWQ+K7EcxVKSsBKPSwWy87FGE3w5pNJsSLTvfC73PFAuZhageDNJ1GDR1ftXGiWi2TQNFi5eyJGkUJTKxdv1MfYNImxZohulNFhuKIExOiY6IMXCU78fSuudBHpTvBzC/dLKQhiTFBlLmYriGKazZgw1q0OQhBS4Lg++Bm08Ii1wWxibnAzCKPFqR6zFCrLOyrncB3JbUN5jo12c3iki87M+lKPM+MFfvD8WZphTMZ3UEoSx5rJmTo/eP4s33povy1aWCy3GLZgYbFsU4SAWjOiUg/nV1U2gqMEMqyjGxXi6/Wr0DHOR8/jfvQcwiwcy7hpgiOPEQ/etWxFrFiLeO5UkVfOlAmi9uuWAu4azfLosS52d21Mg5qsJPmtlSRv264kLaVd6qHwHIFYJPWwXRQWi2Wno6fH0IUJxOKH7xZCCPCz6MIEenps1U4GvyNPjEQRE68wLU22S/yOdYwobxJCkBhrNmuYFcZYYzTR+TcJ3/sZpnK1/UXpQLoT4aVgcQB4HCdFCy9LvRnRCGN0bOajuIUQKNdBeFm04xNrtkTiuVWUawGnx5IuivWkHvms1+qi6OLAClKPtdDG8PRbl2iGMZ0Zb/57TjqKTiUp1UKefusS+4fyVh5isdxC2IKFxbINibWhVA0o18JNeRi4SiCbJaJmA71Ke+pGkYVxvBM/QlYut22Pdt9BcPTXEmf1RVwuBjx7ssgb5yosvWRXCe4/2MHDRzrp3kA0KYCUEuUlLa9a+sSx3nYrSYuZl3ooie8qfEfhOMmEyUo9LBbLrYhplBPPCrXKdFI50IyT/VZh8PAxTr/QS1d0hSrZ9iK4MaRMg4LTz5HDx7b46jePQEOtRBw0V+yqCC+dJHjtf0C9sOSNMtlfR1CdxTRdSHUg3FQyLgRV6NxN2e0lboRth3YcB+FnkgQsDWYLfLOvl8VSj5PnZxi/Ul1z/41KPdZjYrrKdKFOxndWLJBlfMV0oc7EdJWh/tw1ncNisWw/bMHCYtlGCAFhrLlaqFNtbLxYMe9X0SgTNq/TryIKcD/8R5zzv1i8/oNOdRIe+xrxriNtu5+fbvDMe0VOXqwtO1Tak3zucCefPdxJ1t+YWZqUc9rcNFr5xPH2a3mdY07q4TkSz1N4jkJJwZzUw9YnLBbLrYxIdYBUEEeJDGQpcQRSJfutgpKK1D2PE776X8iaKg1SxK2UkJRpEOKSuufxLTXc3CxCCETcQNfK6FViwZvv/ZzoxN+DWWG8Mjox1wwbyd+jECqzmHQHJo4wjkcw+nkWrzMsjuqO5qO6Pz7CSPPRpSKnxgqcOj9Lsbq21OPQcJ6jI90cGemiYwNSj41Qa0SJZ0UrxjWMYrQ2LcmlSuQhzZhaY4ui2y0Wy7bAFiwslm2CEImDdjOMyXWkN/ywK6XAIWyZa64+gdjQsabP4L33BHLJ6lC4937Cw78Kjg8kqyunL9V55mSBc1eWR5F1ZZJo0k8f7MDbYLtnos1tdVQov6XN3V5P/FIIhEw8QhKZh8J1RFuqh+2isFgsnxRk3wiyaw/xzDgot23V2xiDaVZRPcPIvpE1j3Pgvgf4CKi++SQd0VVSaGIkBaef1D2PL4s0vZ4I1c0ihIFmhbhRW9FYU9fLBG/8kHj8nfYXpAJEK8JUgA4hk4dmBeIIYzQ0KsTdo0QHHkL37m+9TeFskwSsci3g3XMFXjs5yQfjRcINSD2OjXazf0/npqQeGyWTclAS6o2QehATLboex5GkPYWSyX4Wi+XWwf5EWyzXwJZPlgSUqgG1ZoSUG2+VVEqg4ia6XiZeZdVnQwQ1vNN/h3PprbbNOttLcPs30d3JZDPWhrfOV3j2ZJGp4nIzz4G8yyOtaFK1wc8hpMBx3ETrrLxEm7tNChVLEz1cV+EogZJJgcJKPSwWyycZISTePY8nKSG1QiIVbKWEmGYV4aZw7/7a/Hg5LyVsVpeNnfvu/Qzn9hzhwoen8KIau/bs4siRY8s6K9aMUB1dOUVEG8PYZJFg6hxZ2WTX7l2ovr2Yq+OrjuNCAHFAPHmGqDyNcNPI7sH5fYzRRB+9QvD2T5LOicWkcuCkoDqT+FZgkm4TIdGZnuT+RAFCx0SHfwWdH2zza4rkx2MsbYxh4mqNU2OznDo/u6bUQwDDu3IcHenm6GgXu3uuXeqxUfb0ZcmmPS5NJ9flSJFciIEg1AShZrAvy56+7NoHsmyKnRQhKwQIRPKnECjJpubVlu2JLVhYdhTaGMamylRqIbmMy8hAx03/pXk9efMrYyhWQhpBtCkJgaMEKqwSNaroa5VMGIOaPIF36ieIYEHSYYQk2v95wgOPgHIIIs0rZ8o8f6pIobZcQLuv3+fRY10cGUxveMIihMBxXfAyGMcn2iba3LkihackvqeWJ3rApnxFLBaL5VbGGTpO6uHvLIyLzWRcVD3DqOE7CN/6MbowgQmbEDWTX7KOh3D8+bHzg3A3T758nsmZGnFsUMpn9+WQx9NFju3rmT/XehGqSv0edH+67fpOnpvhjeef53jlF/RSQAjNjDD4jsRxVOIvsWQcFwLiiycovfEU5vI5BDHKcZAd/bjHvoBMd9J89W/Q0+fab4ZyIduNUC4EjdaYMTd2aHTYBM9J9pMKmhWUDlB+aknyx80bY+akHkmqR2FNqYfnSA4Nd3F0tIvDe7dO6rEp5oxIAYNBtFK2WnULq8XcYrZjhOzSooTrSlKeQre+H1XL9FwK0ZqTGvttscOxBQvLjuHkuZklExrB7p4Mjz842jahuZFcb978UrRJOiuaQbzhdRQhwJEgmyXCZv2ancJFo4T73pM4V95v2x53DhLc8U1MxwDVZsxL783y0vslasHyosixoQyPHssz2p/a+HmFQM2ZiDlpIm0+9kKFEKCkTGJHPYXvSivzsFgslg3iDB1HDR5t6zzUzSrN5/8CE9ZBukmxwmjQgG5gXJ94ZpzSz/+Up6sPMh4MkE25OGlJFGnGr1T57lOn+c5jRzi2r2dDEaqN15/A3HHf/HWdPDfD00/9I79mniUlw5Y/RkzeVBChJo4VsqMXIR3imXGaL30P+fDvMjV1FV7/74hmmbrx0MLFCw0d4SX0i/9l4bPMoTyQEvwOhHIxGEAmfy7aTzYrEDXQfgfC9XE6+zHde4jSXUmh4iYVw0tzqR7nZ/nw4tpSj57OFEdG8hzZ282BwU4cdWOkNxthYrpKtRGSz7rzkhBNUqxw3UQSUm2E1nRzi/g4I2RX6pRQUiZJeEq2FSVcV9GVTyO1bpMJgZ2/3SrYgoVlR3Dy3Azffeo0jSBac0JzI9mKvPk5hBA0w4hyLVxzorAUKQSOiKFeIgia19YtagzOhVdx3/8HRLywkmKkQ3joS0QjDzBbj3nutau8eqZMuGSlRwq4Z1+OR47lGchvfHVlvlDhZTBuikiLj9VEbL6TwlG2SGGxWCzXiRByPrrUGE3zx//PpFiR7oLy5eTBfd7XIYZmDdG5i+DqNA/q15nK/jpCJmOn5ypcR1KoBDz58nmOjHZjNhChGhcmCCbPQmo32hiefOkcv6JfJ6VCKiQygW4qCGGIjEQZA/USIj+AzA4hdUjplSeYvXSZblOiKrLzoSVaR5iwAaJ9zFbDd+Dd+w0aL/81pjCBlgqDwOgIuXSQFhJBYhApvBRxtp9mx/CGOiqupy1/Tupx8vwsp8ZmubgBqcex0W6O7+/myP4+SqX6puLVbxRzppu5jEsm5RLGesF0UyV3u1ILrenmFnAjImTndhMkUh6R/CMpTEhwWkbmSi4vSsx1SsDyJho7X7v1sQULy7ZHG8OTL5+nEUR05fz5X5orTWi2Wh6y2KvC1MvXnTef7AuVekC1EW1KWqCkQOkmpl4hCpf7R2wEUZ3GO/Ej1OxY2/a4Zz/B7d9gIsjyzMvTvD1WXRZN6jmCTx/s4KEjebqyG//VkRQqFNJLo90MkZkrVNz8AUYIcJScT/WwRQqLxbJTuJlGk9eLXlRcQIeYOEw6EObGTikhDgmbTarGo1+VGGCay+yaP4YQgmzKYXKmxthUmeFwAxGqQZW4VoLUbsamyojZMfqdEg1SIASOCVHEaJJr0cagDKhUFhyfuFIjmL5At9YEMoUgiTLNUSct26USws/h3v+bRP2HKYcxevRzOOUfQb2McVPIoLLk+jxUNo90PEwUEJevUD/6DQzrfw2vpS0/jDRnLhU5dX6WU2MFSmtJPVzJoaFE6nFkpJtcOokfV0osm+98nMyZbsaxxnUS4+vFRFFsTTe3iI1GyE5eTbpZhBDzXRFStlLUWgUIIeZMywWy1TEhW0WKuQ4KKcS8hApsUcLSjv2Jtmx7xqbKTM7UyKbcFX9pLp7Q7NvduWXnXepVYXScGGspB8EKnQUbyJsHQ+Ea/SpkWEM3qsTxNegndIxz7kXcM88g9ML7jZMiOPJlPnSP8cwrRU5fKix7a9aXfPZwJ5891Elmg9GkAAhQykH5abSbJjTyYylUSCFwlCTlOaiOFEokK4G2SGGxWHYKW++ddGMxjUXFhbDVDdg2fgswYOKYyCgyIiBNY9lxHEdSa0RUaiGiYyMRqg4qk8wDKrWQlG6g0NRJxi6Z9D5gkjVeRDqHk86g4xBdrxA2GmBiHAl1JD4BOWptnRIGEiPNu79BJX+QuB4m23r2o2//Bs5HzyPLUxCHyed0fFQ6h3R9TBwRVYuYKMA4SSrWemymLb9UDTg9NsvJ8wXOXCwSruFv1ZVrT/X4OKUeG2VPX5a+rjSTM3U6lVyWSlNrxuzuSVvTzS1gcYSsoGXyriSOSmQZSgmazRjfdeju8FFCIhWthcO5r8uin5u1plomWZy0WFbDFiws255KLSSODU565cF08YRmq1jRq6JZg6AK5auYToFw0+1vWidvXhsoVgOCTfhVALhKXJdfhSxewjvxw2QCtYho4Bjv5r/Az05GjE1PLntfd9bh4aN57juQ23A06RyL8+PD+fz4mzcYzVX156Qe6ZRDTz7F7GyiebVFCovFslPYau+km4FILSouSNl6fpmzRmz9XYBQCkc0iZHUWe6FFEUapQS5jLuhCFWndy/e7v3UCnVyGZeG9DEY0jQIjYNGYBCJKWiuC6lc4kYZoqQIouOIGInEkKeMR/sCQYSiRoqUEmjVsczwWvfuJ+gZxRl7FffMM8j8LkQmjzEQ1YroOAAvh0kpRLOMaC7pwljCem35xWrAU69c4PBkmdNjBS5Ory312Dswl+rRzUD3xk2ytwtSCL5w9yA/eP4spVpIxlfzBZxaM8Z3JV+4e3DbJlhsZxbfMiEEXR0+/V0p0r6D7zmt7onkezKODY0got6M6Mi4bZ0ui7skLJatwhYsLNueXMZFKUEUaTx3+Qr/4gnNVrCqV4WfxTQrEDYx1QKiK8Xc5Gu9vPlYG4rVJkG4cb8KAbjKIBpFwmZz8w/ZcYj74c9xzr2MWDR4aC/Hqd4v8YML/Vw+uXxys6fL45Fjee4cyW44mnSOxYWKm50fL6VACTGf7OE5EiGSwVNgJy8Wi2XnsZXeSTeTtuJCOp+kYkRBYoKEAK3BcXF9n2ylzETczZTT1/ab2hhDtREx3J9lZKADIcS6Eaqpe78+fx+Gogt81X+dVBSgRCIDiZHgZ/AzOWJt0KUrSYt6KocxBhU1CI1LXlTahBoGqIs0VeOTNnWi9G7oGFi0g0aWpxBBFeNlEf37cAofYhyPOGigm/Vkv7mFjigAoTD+2saQK7XlG2NohjGNIKbRjBhvRKvGj3puK9VjpF3qsZM5ONzFtx7avyCRaSYykN09H29yxXZjmV/EIhNL2ZJmKCWRMC/noCXNUFLQl/d58USGC5cr5GJNrBMpjiH5HixUAob7swzvsuamlhuPLVhYtj0jAx3s7skwfqWK6yxvAVw8odkK9CrGXkIISOcx8TREAaZZTdo5F02WvHseXzZpjLWhUG0SbrJY4YgYXS0RBs1NfwZ59SO8E08g67Nt2y/k7uD/mL6LqUkHaO9IObArxSPH8hzes/lVl4+jUDGniVRK4Ltq3tNEsNB6aBspLBbLTma18Qg25510sxFCLhQX6kXwskm3hY4X5CF+BlMr4mUyvFz9FIVqSDbl4DiJqXa1EZHyFI8/ODq/Yr5WhKp3z+O4w0mnSTj+Hs3n/4JBVaUcpcmaahLike1Aeil0o4aplpLryHZhoggaZZQO6JbtXRUhDiUyCANpUycWLurQI5jWWC+vnk1kINVppOsjM52YXD8RDubKOCbd2b58bQwiqKHzg+iu4TXv41xbPkC1EdII4nW7NLs7fI6MdO0oqcdmOTjcxf6h/DWbkO4k1jKqRNCSubb8IlSyPDPnFzE3T5Ji0d/l2l4Ri87MI3fu4btPnWZypr7uz6bFciOxBQvLtkcKweMPjvLdp05TqAQ3/Jdmm/Z2CcJLY3K9ULma6HKjsG2ytLQtN45bxYpNJIEoKZBxA2pFwmB1k6wVCet4p/8O5+KbbZsrKs/3Kg9yYmagbbsAjg9neORYnpG+jUeTzl+ro1BeCuNmbnihYvFgO1ec8Bw53wViWqe2NQqLxXKrsNZ4BGzQO+njYWlxwTh+EgcqBTgewoDsGcLffz+P1VKkT5d4t5ij1kj08sP92RVjy1eKUF1sQGqMTuJNwzpORy+ZVEytkSaXdhEiJi7NoqNm4i2hVDKWxxWI28fbpnGpkMYTIb5poo1khjwcfIS+vgNAUqzwTvwoeWDs2YPwUuhmHX3pFPOyl3oR42Xmu0FEUAPXJzz6GKzSFaON4dJ0lXfOXqXWDKnU15a87u7JcPdtvRwd6WbXDpR6XAtSiFsiunTOdHLxHMeRyZ+JYeUio8o5Y8tlRpWwUb+IzZi9H9vXw3ceO8KTL59ncqZGrRGt+bNpsdwobMHCsiO4mb8027S3Kxh7CelgUp34n/kniHTHipMlc3WMoFqipn3CzqFVJyVLcZRAhVWiqiaKNuHJYQxq6iTeyR8jgoXWUI3g6ebt/Lh6F+GiH3cl4VOtaNL+zo1Hk84hlcLxfIyXJRKqFXe29aUCIZLc7blUD7dl9gS2i8Jisdz6rDcereed9HGztLiA3zJDbFbR5SuEH71K8MYT7NIxvy0V39jTz+zeL+IMH2dkoGPVhYjFEapLCSbPEi/qSsl0dJLtTRPWqzSL0yjloZTCe+g7cPU8wcmnlxUrCt2381T1GFMVQ48pkBUNejOa/XsH6B/oQZtkEcI9/zJOpgOy3eg4Jq6UEoPuVEdSqEjnMV428ZAKayAUOj9IePQx9K4j7dcdxZy5WGqlesxSXsOXSwjwXYU2MNib5l9+43a70r0NWdoNIQStdBOZyHNMy8yyZVippNxg9wM3zajy2L4ejox2MzZVplILyWXcNX82LZYbgS1YWHYMN+uXpuwbQXTtIZweI3I7UUrOe2cs9qpwDj24TP4x5+QeFyYwcYQSCr9jYMXJyWKEAEeCbBSJoiYmu/FuB9Eo4578Mc7lU23bL0Q9/LfqZxmPe+e3+Y7ggds6+fyRTjozm//xl1KiPA+8LLH0iGLNVhcq5vSVnqNI+QrfkUtSPbb0dBaLxbJt2YjR5GreSdfDVkaorlRciC6+R/D2U8uMRL3KJLs//AGpPZ1IcW1GolG1RByGhDKN7+VQnouulxDNGn7Kxxg36WB868eY6XNt79WZXoLbv47Xs4/HjeHKbB159Sz906+Qas7C+NtwSWE6BhB778F1QJMhrlcwixcZhMB4GUSzQnDvt0EIRLOC8XOJDKR1L4uVJqfGCpwam+XMxSJRvPoAJwSkXEXKT6I964Em40p+5d5h+/D4MbLYG0KIJNJTySRRQ811SsxHfCYFi+7uDAVhlkmFN9P9cDORQmxpCp/FsllswcKyo7gZvzRPnS/wxuwRPte4gNeYoY6PkC5dGYGrm6t6Vcw7uQd1tJfBuBnQEbJ4Cf+179G879srFi2kFDhEUCsRBAFKbXDiYQxq/HW89/8eES34XARG8dP63fy8cTzJmgdyKcXnj3TywG0dpL1NRJO2EFLguEkEm5Y+sTaYNeLSrgUpBa4SpHwH33VQUtjoUYvF8ommzQtiFaPJlcaj6+FGR6hutZHo4uLKR0V46cQkX9QuWqSpV5uY6StkXfA9JxlL6mVMUINFxQojJNH+hwgPPDwvv5FCsMdM4U38LPGt8tLguCgvjZIaM/5qkvzhZlbuolQOhDVEUCXendw3bQyXrlQ5NTbLqfOzXLpaW/VzCQEjuzo4OtpF1nd488w0V4sNwkijd4DJpDbmlvGYWFqUUDLphpiL+lQyMapc6hGx1tTFTmsslo1jCxYWyyJOnpvhu0+dphF0U/Ef5bPiDbpNAamb1CoKv3eQ7s/+xrJJ2/wELKijU3nM3KCsPEzaRdSLuKeeotl/qG1io5RARQ10o0IcRRu+TlGdwTvxI9TsubbtH4QD/GX1s1zRSVGnJ+fwyNE89x7I4V6D8ZYQAsd1k0KF4xNrriladTVka5D3XUXKS3wpFqQedjS3WCyW9YwmtzLSdDMRqtqYa+p43Eoj0cXFlSgM8QK4NzOE7thFujlDpRZigEoE6Ag3KCHisC2NJO7aS3D7NzC5/vaDG43z0fNJsSKdR6WzSD+DQRA1qlCcbHlyuOD4yy8ujkAomirDB+dmODlW4PQ6Ug/fVRzam+fYSDeHR7rIphZSPe49umvHFADOjBcWUjx0IkPt69q+BRaxRLYhEC2phsBRArmkKJF8367c9blduyQslp2MLVhYLC20MTz58nkaQURXzmdCjPA3Zi+7zBVSps6VuoMMR/hfB48te6+5OkZcmEg6K5ZOIFqtobI8hSyMo7uT1t15v4pGdVmW++oXqXHOv4T74dMIvVDgqGuX/1G/j5ebhzAIBrs9Hj2e547hLHKT0aTJJQuU4yD8DMZJE2mDidd/3/rHnVudSIwz54oUc8ketkZhsVgsy1nPaHIr2Eznw6nzhXlPqTg2KCXY3ZPZkKfUVhmJLi2uFKI0qS6fQSpElTJh0CQFNHFxdYBbb7bHpjo+4eFfJRq+rz3Fo4UsTyGrVxGdfTjZPCCJg/pCRKmfQ0ZNRKOCyXptxyiEHu8VujgR7+ODH04RxZOrfo6eDp+jo90cHe1m3+6OVVM95kwm5zoXzowXt2Xh4sx4gR88f5ZmGJPxHZSSxLFmcqbOD54/y7ce2v+xFC2Wdkk4SuAoOW9uudAhQet+rl6UsAsqFsvNxRYsLJYWY1NlJmdqZFOLdMJCcFnsAiDwY5qzdcamym2yFCEEjXIBE0eJDGQl5lpDmxUAXAWyWSJs1jfcsSBKE7jv/BCn0j7xeTvYy19XH6BkMtw2kOLR410cHEhdk0v4fKFiLqJUC/QamtqNMNci6TpJJ4XrqHbjTJvsYbFYLOuyltHkVrDRzocz77zDd1+q0QgisikXJ52kdo1fqfLdp07znceOrFm02Aoj0bbiSrYXIyQ9MkAEs8TVIo7RgEOVFHkqSNE+ykQDxwmO/Rr4q59D6SZOvhdSHcRhgG7W2p9clYtRHkgHUytygd2caAzwXrWXi+Fi6Wr7uYWA0YGOpEgx0k1/18bH6zPjBZ5+8yJuaZyUadAQKcLOYb5wz9C26FzQxvD0W5dohjGdGW/+c0lH0akkpVrI029dYv9QHinElstGFqdnKDnXxSmRLW+sxfKNuYLESrWHxcaXFovl48cWLCyWFpVaSBwbnPTKqxuOI6k1IipL2jnLtYC6SeEJBToCtcoETChId+JJDfVk9WdDVfo4xJx+mtSFl5CLBtCSTvH96gO8HY1wx3COR4/nGepZoS11gyjHQflptJsmMrJVqLj2AVtJgedIUikHz5FIa5xpsVgs25aNdj68+vZZGkEvXTl//oF0Lmq6UAl48uXzHBntXvXBcyUj0SCMibVBCXDC9Y1EzdUxdHECketFeSl0tUBUmSWKFtI+XCK6qbS9L3Q70Hc8TryGCbaUEuV6yK5BTBwTla6AWH5PmqHhg3CUd1L3cupyTDlePXEr5SkODXdxdLSLI3u7yCySemyUM+MF3njheb7Km+xyiyihiY3kcjXPiy/cA59/6IYULbQ2jF+pUKmG6xYVJqarTBfqZHxnxaJXxldMF+pMTFdpNKNrko0sjgEVLPeTcGWSuCGFZPUOCbAFCYtl52ALFhZLi1zGRSlBFOn5VJDFRJFGKUEu4yIExNpQrAYEYYzJD6M7BpDFS5i0295eakySu95/AJXfhakViMKNRZaWxz8kffIJOnWxbfvLzYM80fg0x/b18r8ey9PXsfnJzxzKUSgvhXEzhKjrKlTMtVWmPEXKc3CUtMaZFovFsg1ZmgSCn1238yFCcrFEeydiCyEE2ZTD5EytrRNxpcSROSPRqDxDMXRpaoE0MRnRJJY+4e5HOLBE7iKESDorIk2zOIv0s4hUB7o4QVyeIWp1K0phUNAm/9AG3tK30X3v4+zq71rxfggpcBwP/Axa+YReB0alkZVZTDoPQjAb+rxX6+VEtZcP611EzM0Vls8Zejp9jo20pB57OlDy2uU72hg+fP2XPC6eJyVD6qSIUDgiZo+a5XH9PM++7rF/6MtbKg85M17k2XdOMXmlQrSBokKtESXFh1VkLUpJ4mbMh+MFXjl9ZZls5HKhwZMvn+fXPy85MJxPfCVgvlvCURLVijefk3CsJt2wcw6L5dbBFiwslhYjAx3s7skwfqWa+CosiY+rNiL27soyuruDehBTqYWtWE9ASMKjj+G/9r0ke93LzJuViaCGyvcTHXoUXS8RR+ubQVyYmKXw0g85Gr3Xtn06zvE3zc/St/8o/9cjnXSkr/1HWDkK5foYL0skFPE1FCqWelL4rsJzF3tS2AmDxWKxbDdWTgLZjUh3oKuFVSNUg/QAFwu9dGywE3GtxJHLh36T8qs/pMcU6JAaLRTT9PLz5l1MvKr5vf5Zjo72YIymGWmazZgg0hhjcNwcnvIIi1OI0tUkNlSAMnPZWAvECJ4K72e64zC/2Zdfds0Lnk1ZjOMTaTCxASTNI1/h8ks/5sTlXt5tDjIRri4haZN6jHbTn782aeZKTFwpc1f9l6RkSJksc+WYCIcyWTpElbvqv2TiyoMM7dqaJLUz4wX+9vmzBJEm7StScn0vikwqiVyNY4102os4QoAwkE07nLtcIeU7DHRnkC1zy7mEtEo94sT5We47NpAUKuaLErBUwmE7JSyWTwa2YGGxtJBC8PiDo3z3qdMUKgHZlIPjJNrcaiOiI+Py65/fT7ka0ghi9JKHcb3rCM37vo176ilkeQrCGigPOXiMaPTThKke9BrFCmMMH042uPDeWzwUPMtRWV84thG8GB2nuu9RfvtwLynv2ldqrqdQIVo6UEeKeS8K60lhsVgsO4fVk0AuJg/YQmJqhaTwjoEoSP73MgRHvoK83NxQJ+LaiSN/zsvRQ7wSPMahbIkO2SSQWQreAEoJ8s2Y596ZYKA3SxRpYq0xhmSFPW6glU8Qg6wVAQ1G4qDbmxuBikkhjCZUKT5zdKCt+2A1z6ZmGPPheJFT52c5faFKpf65Ve/lnNTj2Gg3h/d2kUndmGm1mblAnyhSFynae0cABHWRok8UmZq5ALtuv+7zLXhRaLo7PHTLFHs1L4o59vRlGejNcLXYJJNyWh0RLXNLkRQjurIuxWpAV9bDURJtDJE2BK2vc70R8d65OuOXky4dW5SwWCy2YGGxsNCyekiV+ZefzfC3J2ImZ+vUGhFKCQ4N5/nK/XvpzqeoNVePH9W7jtDsP4QsjCPDGirTQexliIIQo9uTQLQxXGmdY7wQ8cHYVT4fvsDXvfMsXiKaMj1c3Ptr3HX0tvnCAEYjy1OIoIrxsuiOgZVz4BehpMAJS4jQEEVZQpVNljvWQYhEH+o5Et9X834Ui1c6bCOFxWKxbH+WJoEAEAegNXhpTLOGzHUnHRWzl8DEc0+qCD+DrEyR9Xu5UmiQ9h0QAs+V+K3iRbURMdyfZe+uLM2frH6esFrmjuiXXOj5FjrdTRFDT3SZfDSGbFYRQZWwrBk/UWNXTwYVNVCZTkjliJpNtNbI/Z/He/P7AAiWjq9QMT6GpMB+92176RvIMTVTo9GM6ejw2bWrB7wMkZHMFBucOj/LqbFZzlwsEa9hht2bUxzd18fRfT3s2319Uo+NkhUNlNDUjVxerwAiI0kJTVY02ravZWq51mvzXhQplRSxFg3yQgg60g7lasCV2TqD/VkErdQNR/Lrnz/Aj39xnkYzRmAAQaUWUK6FOEpw94Ee/v7VcTpz3oryFSEFcWyW+YV93KwV43utEb/X+16L5ZOCLVhYPvEsbVndLRX/S9ceZu/4IsXsfro6fbo7fKqNiDDcQPyokNA7iiRE10tEzWDZLmOTZV4+OcWF2ZhCoLjXPcvvZV4l6y3sG6GY7P8sXXc/ytFFJmjy6lmcj55HVqfnW2x1to/owEPo3v3LziWVwq1O4Yy/jpkdR9dKOEIiOwYIjz6GXsF8TABSCTwl8X0H311qmmkrFBaLxbLTWJwEQtjA1IsQh7SeK5PxpHgZvBS4fjKehU2MjtCly2Te/j7/NO7mh+Y+PqjsmT+uoxJZYC7t8viDo3D1wornMcagDWgk/WYaWbiAKQQ84r7FADOkaMybSxsJ4s2XkNkuZKYbrTUhLuz/HOQHccZ+iYhq7VGlJEaMCElOhEkhQyj6Jp7jxfOXOa934fhpGngEukxH2mVqts7kTG3VeyYFjO7u4GjLj6JvC6UeG6W7v49YKkQcY1ZYnJAmxihFd3/f/LYz44VVTS2BNQ0va40IbSDlO6RcBS3pp6Nk4k0F1OohKU/Rl0+1eUkcG+2GVkz8SrG36ZTDP75xcUNdOtuFk+dmVv08wDVH/K513PXea7F8krAFC8snmtVaVvXMOF3lv2bXQ79LI3OISi1aJgFZDaUEKmqgG+UV/So+uFDkb1+ZotBUdMsm/zr3MkfcibZ9Gp0jiLu/QU+mr227vHoW78SPIAowXjoxSNMxsjyFd+JHBLd/Y75oIZVEuT6yehnnvZ8Ql68m70l1gI6QxUv4r32P5n3fni9ayJaONO07pDyFkrZIYbFYLLcKc0kgRkdQmQGjQcqWUbRJDDdNkGzP5KEyg9GayAgMEoVmUBX4p9mX+avqg3wQJUWLKDYoqfnV+4Y5vr+X6MLF1nlCqMyC0WgkcwpERUyamLvid7nNnSKrm6REuBA/akAqF9XRhZAOcfkKsVFIHeG9/d8ROkJEzfbPtuhvgrmxVxI6GWRQ5j7/LBPNXj6YgUq9umZnYMpTHN6bSD0ODd84qceG6d6L6NxNtnCRolZIIVompAZtDDnRhM4h6N4LJMWKHzx/dpmp5eRMnb96+gyQrOxn/ET6KoBiNeQfXr9IOuUy0JNmqD+L7ypSvkMYxUSRIdaGWhhSb0bUGhG+pxCIZbKNY/t6ODLavWLngDZmXb+w4f4sIwOr+4XcTE6em+G7T51eMcb3//tE4jOmjdl0xO97Z1c/7kbigS2WTxK2YGH5xLK0NXZ+0HS8JF+9OkvttSdoPPR/WVduMYerQAYVomYNHbd3Y5RqEc+dLvLi6SLGKB5NneJr6TfxxYLEpGkc3nTv5XNf+Q1qtYBkdjd3wRrno+eTYkWqYyGJRElMykE0yjgfPU/Uvx/lpcDLoIWLePkviEtXMOmuRe/xMGkXUS/innqKaPdhPNch7Tt4rkIAWmuiy2fbnN3FBu+DxWKxWLYfItWRrNDXCq1ihVqUarWQtoDRUCuC0UStxn4QxCgkmqwIeCx7givxCI6j8JRCSjg3WWK23EBHHgqBqCbHQChi3ZIRCoFGoIzmU955QiQSvdBZAahMJyqdxUQRYfEK6AghHRAKES8pVEiFdjPIsAF6kYxAeVz19vB6fS+n6j2cq3cSI4GVpQZ9+VSri6KL0Zsk9dgwQuLc/Tjyl/8/uht1KtojNgpFTF4GOKkM+u7H0UIu8p+I6cx483Mb5SoyvsNMqYHjSHb3ZPFcByUFCDAYCuWAV05d5l9+4zgpT3FhqkpXh7fwtSMpKhQqwbpFBSnEfFLM0u1r+YWlPMXjD45uC1mEbnWKNIJoWYyvowSXppPOnKH+7KYifrU2PPHiuRWPu9F4YIvlk4QtWFg+sSxujV1c4dfGoLXBuBlEaRJZGEd3r54HD8kA7IgY6mXCoNnWjXClFPDsySJvnKsQaxhUBX4n+yKjztW2Y5xnkKfNvRRrKQ5crdOZbm+VlOUpZHU66ZJYOoAJAdkuPAeEDoj83cTaIGbGcEsTGD+77D1CCPAzOJXL5ILLeN0Hkus2EK7h7O4MHd/MbbZYLBbLNkH2jSCz3eh6AYRimUvlXMFCx0BLfmCS3eZGNYEgEi67KDEiZ7kQ9VIJApqRplBt8qlD/Qz1DeGnulD1IkiFYc4GITmfxBCj8EREQ6fIypYcUnk4uS6kUMS1MrpRWbg+HSFYKPAbwHg5jJ9LiiDKg+osY1Ev70Z7eS/ez6Ugu+b9cFXSVfhbjxzk9gO9yWnW8Hb4ONG7jsBn/k/4p57CK06CbibeIvmRNnnnxHSVYqVJb2eKtJ8YXzqORAlBFGvC2BBrjTYQRjH11r+j2BCEMR+MF7gwVebL9+3lL546zdVSk4yvUGrrigrH9vXwnceOzMsh5vzChvuz20oOMTZVZnKmtmKMbxib1o+MIVwib1kt4neOjy4Wmbha3VQ8sMXyScYWLCyfWOZaY1nkDzE3iAPJ9rCGaFZWPsDcbkqg4iamXiEKF1ZuxqYbPHuyyHvjNQzgEPO19Nv8aupd1CKzyzo+L3IfZxjBSIh0RK0RLitYiKA6Xzxo2+56qFQOoRxMdYaoViHqaOXRNyut9ySfcW5YlEIkTSPSg7COaFbmiyxrO7t/l9TD37FFC4vFYtmBCCFx9t9HMH0uMcBc5D0w/2+zYLLYppowIEge0hpakhIhQbXIbJhDtgoawihqjQiEJB66B1U4n4xBQgEmSZpCY5DUhU/O1JL+DSFRmQ6En0ZHTcLqDOiF4sTSx2IDaL8T/CwNrThd6+W9ag8n6/1UTGrVz58SATnXEPmdLW8GqNTC+YfNtXwflkZ4fhwsNvYWQQX8HPTsRQqFKxODbN9VdHemyaVdjElkHEEYE8WGai1I/DpEIuNI++2PAYtjae840Mvvfe0YP33lAhcmS0Tx1hYV1pKNbBcqtZA4NjgrxPjqRcasegWT1qURv4spVQOi2JDZYDywxfJJxxYsLJ9YRKpj4WFcJgN725ATRyBUsnqzCkslIMYY3p+o8+zJIh9dXnDrPuBM8T9lX2a3Kra9/3328RL30hR+cso4xpGQ8RWicAnVXEgBMV523rMCJRGOh0pnEY6HiSKi0lVoVtHewoqS8XOgFEJHSMdHyJYh2dzrcQhSJfeCDchkagWCN59EDR618hCLxWLZxiS/vgVCJF0DxpikJjF4DPwsRM1kPDEGI0TyOz7ViagXEiNOFsVVk0gGJJrQOGgDMYKKTooDc2IS5Yh5vwc9cBTzwT8gogB0jEJjjCASDhUySJICiZPJ4aZbUsRaEd1sN8BsN9UUGCfFTFPwbu0gJ2YHOdPobkk9VqZHVjjoXuaoN8kBZ4ofyseYEsk1hlGMkpBJOWv6Pvzg+bN866H9H0vRQpCsugtJK1LcRXXchpICKQVSJH+K1lehs+pRrDSo1IJlppaL5zhSLi8MLDW8PL6/h8/eM8ybpyYplptbXlRYTTayXchlXJQSKxqELr5/G7mXi+nMejirHHe991osn0RswcLyiUQIgenZi87tgtmL6HR+SWusQQQ1dH4Q3TW87P1LJSBRrHlnrMqzJ4tMFBaSPnwCvpF5g4dTp9veXzQZnhef5qIYXHRKQz3Q3NVRoP+9v0SXLkO8KAVk/+fQ2T5UfRbZ2YfwUpg4JqqWMVGAqJfmr1e2HL29PfuRXXvQsxcRrt9erDAG06yieoaRfYnkZTWZzNw9w8+iCxPo6TFU/77r+RJYLBaLZQuZk21EkSZs/R/PSRxNUnDAgHEH8PJDiMJFSGWglaRhVPJwJKSTVCl0jDC6FWsJCo1GUDY+GRkwEXVzMU5W2XVLNjLQnWZPX1I0113D6PwwsngR42YoVRuEMcQiOU+nbBBnB/Bdn6BRRtULid/F3OdZ8vkqJsXz8V28UdzDZJxf9T5INAfcKxzvKHM8cxVZnyGMNV2yxhV6mSIxszbGUGvG7O5Js7s3w5//5NQy3wfpKDqVpFQLefqtS+wfyt+wDgAhmDfTVEqgWn/K+XQOMW+EvcwwdO7rCwz35+jLp1c0tVz8b1e1f47VDC+lFOzf00nUv4GUtFuMkYGOVQ1CXdWaUQmB67QXzNYzDz0wlGdPb5axy5UdYTxqsXzc2IKF5ROFEBBrqNYDGkGEOfwV/Ne+h6gXMV5mvuNCBDVwfcKjjy0z3FwsAanVm7z2UYXnThWZrUZt+x13x/l2xy/ooDq/zQCzfZ/iryb3UY0UaS9GSUmsNfVAc8C9zKPibSiG4KQx7qIUkFM/hYMP4UyfxjRrRI0axui2642PPUbad0mnHDxHIQSEn/p6IvGoFZJVtdZnNM0qwk3h3fP4fLfESjKZ9g/vQDNO9rNYLBbLDaH9mVjMb5t7WDUkf8Y6afnX2hDHmiBcKFKscXSCI4/hv/Y9COuLxr4QEdQwfpZw/8M4F15BFi/imJgYQYiiqj18EdE0Lv/QuAMz14UB5NIuX7xnaOGBXkjCo8l5RFgnlUrRqMVIHdGZdtCZPZyIB9lXeBs/riCFZk6gspiK9vl+9TO8ES6P7Z4joyKOpqe5Q53jmBwj7Ul0qhOUQ2AEUa1GQ7u8wN1oBXEUU2vG+K7kC3cPMnm1xnShTsZ3VizWZ3zFdKHOxHSVof7Vuy43ihDJcaUQOCp54HUciSMlSi10SwBtxYm1v64J65ladrRW7YvVcFsbXm4HNnovN2seKqXg65/bx5/++OS2Nx61WLYDtmBh2REYo9HTY9ecWDHXElutR9SbMdFcgseuIzTv+zbuqaeQ5SkIayAUOj/YZmI1x5wEpFQq8+KpAi++X6LabF91yIoG/6L3dQ7rD9u261w/we3fJNU1zBcmy/zy1BSz5SYNrVES+jt9vuydw22GSZzc3MTEUchsF0oY4soktUOPoU7+FFmbQphEG2y6hpB3fpWu0TtwHbUoihScoeOkHv7OgolmM+naUD3Dy0w0RaojkZ3EUSIDWUoctUlILBaLxXJ9CJE8wMRaE2tDFCfFB61NS8pBK76yXZ7R+m/lFfd10BsY+6LDX8L56Hmcsy9gqrPEoUYJwUTczT/U75iPNFUSBrozfPWBkWWSicXn8ctT9Kch9DopijyvlvdwptbJ5cy9POK+iWhebStWaCN4pnGMH9fvJmB5a/yuDsmdmWmOizOMiktJ90HnbtzRbxJ++EtEdRqMwVceUdcQz9bv4P1yL3EzREnY3bPgTfHBhULiWaFWnlcoJYmbceLPsUmWdk64rW4JV6mkONGKlJ3/Gi7qlrhW1jO1BLa94eV24Ubdy+P7d4bxqMWyHbAFC8u2J7qOxIq5FalaI5loRLFeNg1oM7FqVjB+LpGBLCqICAGu0BSmZ3j67Sv88kyJIGo/khSG39hziYeiF1FRfX67EZLwwMNEBx6eN8wc2d3B8ECOK7N1Gs2YlK8YUAVSbxQwXnp+AiO9NCqdAymJqiXMxGn0/i8QP/L7qOI4TljDz3Xi7T6Ao1Rr4rqC+dPQcdTg0XWLPrJvBNm1h3hmHJS7rE1xqYTEYrFYLOsz33QgksKE1hAHMcVKk0Il6fibl25cQwHiWlh37BOS6OAjRAceSvZplCnWFXXVzz3NmMPNxDli70COwf7cqqvBc+dxyxO4pQuIZg0dpDkoe7nTVOg9/yqpcntq1oWoh/9W/Szjce/8Nilg/64Ut4/kOX5bP91dHcRRjCyMEzcrRH4OFdVwPvxZ4sPR0qnoVB7njq/x5V1HuGOV9I9MykFJiGONdJZ7CsSxnve6WIvFnRPuos4JJSVKrlCcgBXH7K1gPVPL7W54uZ24UfdyJxiPWizbAVuwsGxrrjWxYq5QUW3E1BsRkdZrTwCFXDW6VEnBlZkSP3/tAm98VGJpR6arBI/uM3yZF0jNftT2WpwfJrjjG5jcrmXHlUIw0JNZOM/0pfmCjHBcnEwWHA8dNomrNYSOECYmTR2vM43bfWRezwrrT3qEkOv6Tggh8e55fMMSEovFYvmkM2duaWhJM1r/My/fSH4/R7Em0gajk44/KSGWklojSSK4oRi9cmFijbFv4QMu7NPX+n8zCAFe4RzuR89hps/TqNaZDHdjjOE2eQZXxPP7No3Dj2v38GzzKBpJ2pMcGUxzbCjDsb2dZDo60U6KODbJPVt0bfLyaZzX/ysmboKbSUyndYSszeC//l/hvm8ztKRrco49fVn6utJMztTpVMs9Bea8Lub8OWCuayIpULhKJJKOFWQdN6M4sRprmVpud8PL7caNupf262CxrI8tWFi2LdeTWFFrRgsdFdc4PxACxi9XePq1MU6MlZa9nhFNHs5+xBc6z5EuziIWRbAZ5RIe+hWikU8v88BY9fN6SYFCpTtwsp3EYUhUKSBMjBICgQbHIZPvnl8BuhGTn81ISCwWi+WTwlxhAkybdCNq/R9r5tOmFsvyVj/ezVlFlZdPL0g/WkVx3TGwouxxq3GUxLlymsJrT/H2VY8TzXsJI80/zf6CIWe2bd8TwRB/XXsAN9fNQwcyHBvKsLfXx3MdlJ9CezkiLdArFXeMxj31FCJsQK5nQVKpPEzaRdSLuKeeotl/aMUxWQrBF+4e5AfPn6VUC8n4aj4lpBlq8lmXr9y/l5SnWpIOiWpJOxYndGylrMNisVgsCbZgYdm2bCaxwtm1D2MMjSCm1owIo2svVGhj+GC8yLNvjHN2srLs9W5Z5dHOczyYHSPVnEUs0bTGvQcJbv86Jt21qfOK7iHUnsPIymXiRhUTNnCEACHb5Bii98bLMTYqIbFYLJZbiYWiBMs6JuJYJwkcsZmXbeibvGK+WeTl04m5ZtTA+FmQTtJ1ULyE/9r3aN737RtStDDApaki7525zHvvjzMV3I9PwOOZN3k4c4rFKZAlneIF9/Oo2+7g/zycpbdjLq1E4Lg++Fki6ba6UFa+37IwjixPYfw5mcei/YTAeBlkeQpZGF+1o+TgcBffemg/z70zQbkWoKQkl3HZ1ZXmkbsGObQ3v3JKhy1OWCwWyw3FFiws25aNJlbEtRL1WkgjiInXk36sQaw1b314lefeusTUbH3Z67u9Kr+SOsE9+QJOWEHUK+358EIS3P4N4sG7l1q8r4lyFI6XRqazyMOPol/8LjKeBS+DkR+fHGMjEhKLxWLZaSztlFictJEUKHTrz/aOiW1em1hOq+uAqJEU0OfGpQ12HWyWRhDxwYUipy/Mcur8LLXmnNQjzZ3uGL+d/SVdstb2niumi4yj+eKn96PzXclGAY7jIvwMxkkRaTDrSGZEs9LqHlljvhDWkv2WvneR78SdB/v41JF+posN6o2IbNplqD87Hwm+kZQOi8VisWwttmBh2basl1hhohAjJMXYI66H13yeIIx55dRlXnhngkIlWPb6vn6fL+7T3Hnh70EKZL3aJv8A0MpPZCodAxsuVjiOQvkpvEwOz0/hKInoOI72fo/4nZ/QuDIOcdXKMSwWi2WTLPwaFq0464UEjqjVKREt6pQwfDwFCWM0YuY8qr6y4fP1sLjrAEBEAcwlSyl3Q10H63G11ODU+VlOjc1ydqK87IE+L2r8VvaX3O2NtW2fi0PtEwXQoN/9EeHRxxADt6G8NNrLEGm5svxjBYyfS+YLOmLFqW0cJZ/bz82ndkiZmGJ6jkwSO5yWsMPAyK7lqSQWi8Vi+XiwBQvLtmWlxIok2s1gtIFGFZ0fJM4PX9Pxq42Ql96d5KUTU9Sby6PKjg1lePR4ntG+FGrqJDKqgY6WdVXoVB4cD9GsIILqmucUAhzXwU+l8bIduL6PQLTpnd3h4/TfcR/T779HVC1ZOYbFYvnEs7gAMfdvrU1LtkEr/rMV/akNsTHouPXnknjQ7dIpIadOET7/D7izlyDeem+Jua4DEceIWgHikEQqIRDKxfgdYOIVuw5WI9aGsanyfJHiSqGx8rnRPJx6n29k3sBjYUHBtF4FA6KVxmE0MqqTufAyYVc/YbZ/TfnHSuiuYXTHAKp4CeP67S8agwxqmO4h0nv247rOfLRo6+X5i9sm3xoWi8ViWYQtWFi2LUJI/E99nfqzf5ZkwLsZTCuxQgQ1cH3Co49tejVqttzk+bcnePXUZcJYt72mJNwzmuPhY3kG8klXh7zyId57P17eVeFmMKmO5PxxmKzeeFmWIiBZyfEcMpmkUCGcFFrrVbWvQkicXfsh0ste+ySjjbHxXxbLLY6BlmFyqwDRKlLHBrTWaMNCBOiizoiNGF1uF5JEi+8tJFp4W+8tYfwcoBG1GZICQZIKgjEQB4jaDMZLt/ZbnXoz4v0LBU6PFTh9obBigX+OrC/5zK46v6KfpaM+0X49stW1oKNEumEAEyNz3YjuvVArYN79KfHn/5fNd5kISXj0MeTr30uKM24aqRxEHENQRfhpMp/+JirrL/p+2dwpNoIx2no/WSwWyxZjCxaWbcXcYE+zQuxmaOT3E977z5DvJQ7nIqyBUOj84KZXoSZnajz75iXePjO9LJrUcwSfOdjBQ0fz5DOtH4ughnfqKZyJt9uvUSp0qmtBpmIMIqijOwbQHQPz+0kpcKQglXLxU2ncTA4tvdbk2xYiNsvJczM8+fJ5JmdqxLFBKcHungyPPzjKsX09H/flWSyWLaLRjCjXw4UUpFtt5fs6Ey02is4PgtaJDEQ6C8eaK/LqCLRO9lvCdLHOqfMFTo3Ncm6ivKa56EDe5ehghuN7XA4UfoF7/iWEWRjjjPIw0km2RU1AgNYIx0Fl+zDZHuKwgQ6ayFpp0xIVKQRCgjN8HDfzHdTJpwivXoKwDkohe/fi3fM4cs+xG1rMii6+t5Cu1UpjkV17rJzTYrFYrhNbsLBsG+YG+7gwgYmjpDCQGyA++hjhw7+/cob8YlbImTcIzk2WefbNS5y+UFh2zmxK8bnDnXz2UAdpT6GNYWK6SnThLQ5MP4ejF9pdjRCgfAwymfAZnbTbBnVwPaIDDyGVwpECz1X4vovnpxLzTOURJ/3IN/gu3pqcPDfDd586TSOIyKZcnLQkijTjV6p896nTfOexI7ZoYbHcQtzK5oabTbSYG5dqjYhMymFPX3blzjKjkbMXkDNnk386KUAk0gut0SLp+EtOqZPtQqIuvE7sZjlX8Tg543LyfIHp4spSDwAlBQd3Zzg2mObwnhQ9ORd59SO8E08g6+1RpdHuOwiOPoasXME9/XfI8iQIgcp2Ir00OgyIp8/Px3oT1hCNEnJ2bNXxXoiFBQHPVbiOwnUEUkhU11103fvATZdURhffo/Hcd5MYdj+XmHzGEfHMOI3nvkvq4e/YooVlW2I7Vy07AVuwsHzsCCEIx9+l/tx3Mc06xs9i3Mym2mOX5sxroXhXHOFntWOMzcbL9u/p8HjkWJ57RzO4TjKRGZss89pbH/JA+AuOuFNt+9fTA/CpbyGCGs5HzyOr0/PmZbpjAH3wIdyB20j5Dr6rkK6L8HMY5SerhLZQcc1oY3jy5fM0goiunD8fcZtMVCWFSsCTL5/nyGi3HWQtFsu2ZzOJFmfGCzz91iWmC3VincgW+7rSfOHuQQ4Od82/RV4+jff23yBLrdV9mI/ELpPCMyGOiQGTFN+lS93p4HS1k3efOcep5m5qZrm59RzZlMPR0W5uH85wqN/BEa0OiqCG986TOJfeatvfeFnCA48QjdwPQqL9HNHQvaTOPo3MdIIRRLUKJqiD0YioCX4nGI3z3o+RjeJ8l4LuGCA+9hhizzF8TyUmmY5ECpl8njZJkLjpkkpjNMGbTybFikz3Qgy74yVm3LUCwZtPogaPWnmIZVthO1ctOwVbsLB8LAiRTC6akabZCNGvPoFo1q8pem1xznzo5Xi9NsTPCyNMhTmgvVixpzfDr9zZw/E9HmLRqtbYRImLrz3Nbzvv4LsL+tzQKH7eOMZ7zSP8WjXDyO4Bgp7RRJ4SVBF+Fq93CM938VwHIRXSz2DcdNLlawsV183YVJnJmRrZlLswEWwhhCCbcpicqTE2VWbf7s6P6SotFotlY2w00eJCwfCDN8/SDGMyvoNSkjjWTM7U+cHzZ/nWQ/s5ONyVjIG//HNEowSI5NjGYEyMMJClziw5jFDMRmlOBXv4MBrgQtSLZvUH6IHuNEdHu7ljXw+jfS4yrBGFIcZoMAZ16W28008hwoUYcAPJ2K0NztkXkJdPEx14CN07il+5hMp2o4M6cb1l9ClaHYtxhGgUQChkdRqTyiFk4uvhlC7hvvFfSXX8C9yh48s8S9a81zfBU0JPj6ELEwg/t+IYhZ9FFybQ02M2KtyybbCdq5adhC1YWG4qUgrCUFMPIppBTKQ1YmYMvzSZRK8tXSFfoT22jZYWuBFEvBTeyTOX91KMlziEAwcGO/nSPbs50i+Jw6BtomMqV+h556856l5pe8/ZqJ+f1u9hJs4iRMwvTk4xPJDDUQqnZwjfVXiuQkqJVBLhZ8FNoxG3mOD646VSC4ljg5NeeZLpOJJaI6JSu/ZoW4vFYrlZrJdoIYIaOj/ITz6EZhjTmfHmH4Slo+hUklIt5Om3LrF/sAP/5E+Trg3Rkn+IRPsRxyCM5qN4F++EI7wb7GVGr26wqdDcli5wu3uBY32Gzi//zyihoVklrpcIW95LojqD994TqJb0ZP7S5+JS5wsyMbI8RerDn6HlF5BBhSCKELVSS5IimU8MgWSbdCHTjVKy9TEcjOsnXQpvPInas/EuhZvlKWEa5eT4ao2OmWac7GexbANs56plp2ELFpYbjhACbTTNIKYexESRJl6kT5abaI9dSm3yPD+/2MXz1U9R1+256QLDHZnLfKX3EkOf/xqxa4iC5sIOOsY5+wLumWfJmoVOjLpx+cfGHbwTjQACKUFIQTOMqTcjhvpzuCqZaEklEV4GvHSr/fZ67pRlJXIZF6UEUaTxXLXs9SjSKCXIZdwV3m2xWCzbjKWJFk563vNgLgFrYvcjTF9okPGdFVftM75iulBn5twH7C1dYiEFRFDTLieDPbzTGOR0tIe6WV7EnyMnmxzPznA8c5XDmVlSMkYAjusRFs4SeZ3EUWt81DHOuRdxzzzblppllIv2OxFBHZPunF94EK6H6tyF1AFceJ2ocBmT6cRkehLJRxwBGhBJdHkcQCqLctp/z19Ll0I4fvM8JUSqIynQxNGCGfdi4gikSvazWLYBtnPVstOwBQvLDSGRfEAQxTSaMUGkibVe8YG+rT1WrTLYC9UWvTZTavDc2xO8dmqKSB9u212hub9jii/1TTLYKaFZpVGYIOreP7+PLF7Ee/eHyMrltveeDAf5++Zd1EwKAN9TpD2FUgolJTo2uFIipUL4SwoVtlhxQxgZ6GB3T4bxK1VcR7YNrsYYqo2I4f4sIwN2MmixWHYGetcRovu/jf/BP8DspWUJWFebA8T6DEqt3E2glCRuxkTVEuiYqbiTE8FeToRDnA371pR67FZJF8WIM8NtXRFpv1UgkAqV6kQqhalcJZqdJO5Norpl4UJiqrlkzIz7DxPuvR/vxBMYPzNfrJCpLCqdw2hDWC5B/TIIk4zzbgrj+BCHSNMy5gibUA9XfuCHTXUpGKNpvP7ETfOUkH0jyK49xDPjSeFlyRhlmlVUzzCyb+PJJxbLjcR2rlp2GrZgYdkyREsJEUZJN0UziIm1WTMODRbaY2XxEibttstCFrXH6q5hLk1XefatS7zz0dVlxQ9fRHwuf4lHui7R0+EhHQddL6NLM2iVFCCIAtwPf45z/hdtHhZlk+Kn1bv5UO9ByaS6nPYdpBQEYUSpFuAoSSbjozI58DK2UHGTkELw+IOjfPep0xQqAdmUg+MkWstqIyLlKR5/cNS2LVoslh2FHjiKe+geGudOY+rtiRiZKxWUhDjWSGelzrIYYzTPX3T5r9O/xpV4LalHzAH3MtJNk/MM3bLGI+Y0DePhyGySFJLKIF0fE0dEpWmolxPz67CB+8HPcC68yuLfsNrPER79KvHAMdTVM/OSC6FcVKYT4bjEzTq6WQNawo90F7JeRGQ8hJIIJxmXjTFJIUKo1p4rsIkuhWDyLPFN9JQQQuLd83jS0VErgJ+d7+gwzSrCTeHd87g13LRsG2znqmWnYQsWluvGGEMYa2r1kMZckWIzkXSt9lj/te8h6kWMl2lrjzWOz6neL/H0T07zwXhx2ds7VMAjmQ/4XM8M2bSTrOrEEVF5FsrTSYpHx0Ardu1HyHqh7f3h8H08cfkAY9WQbNoll3YxBhpBRL0REkSGTNrlttF+BkeGkhUaW6i4qRzb18N3Hjsy72Zda0QoJRjuz1o3a4vFsmMRQmJ6Ronj9gFlT1+Wvq40kzN1OlXSWaa1oRHENIKIRpDINF4fi4HlxYqcaHDcvchxd4zD3hSXxS7+SnydshBc0pqj+iSDqoif7UCl0qBj4loR3aghGmV0xwCiNkPq9f+KbLZ3NYR77yM89KvgtgoOXjbpzvDTyGwXJo4JK4X5tBIRR0jl4Bz/AvG7f4dpFMHPYpQDcYiplxDKhVQnJqhiHO+6uhTiWqnVsZldeYcb4CnhDB0n9fB3FjwzmkkBR/UMb7lnhsVyvdjOVctOwxYsLNeEEIlpT60ZEc7WmSk1CMMNRogZjSyMt2Ws611HaN737YVo0rCGRvGWuJ2flY8y/sJy/4qeTp9H7h7kvq5Zcm/9HOV6CDeLblSIqwVEswauRzTyabwTP8K5+Gbb+3Wml+D2b2B6R/ns1TrxuxNU6iGFakAYROwSBfqdCDq6qGR3c/89h0G61qfiY+LYvh6OjHbbvHCLxXLLI4Xg0bv28N+f/YjpYgOMIYzXHnwG1Qx3uBc57l9iRE0j0BhjqJgML5i70QriKKbWjHm98zMc7D6JY0KiSh0dNEFHiKAOykHoEP+t77cdX2f7CW7/+jLza9O5G7nnEKpWJGrU0EEDwbz3J0R1VM8wqdu/SNy9Z/6h3tSbEAWtRBOSAkfYxOhpSOcxUkFQh6AGbgr37q9tqEtBZToTT6yb7CnhDB1HDR694akkFsv1YjtXLTsNW7CwbJilko9GEIMwdCq14Y4Kefn0QlFiUcZ6ePSxpGjRfwh99QKvn5nl2TMh05WYpdGkQ31ZHrlnkNv39SClQIgBdPqfoz58mnj6HCaoI4RC53ahu/fiv/cEIqjOv98IQbTv88SHHsXxfFKeoq8zTSaleOLlMTqrF3gg/QEDOXBTGbQeQ/of0SU6ga4tu5+WzSOFsAZQFovlliXWmnMTZU6NzXLqfIFidXUNuaMEBwbzHB3p4nh2ll0f/hxZmpjvbEAqGqld/Cz6DO+Xe4mbIbm0wx378jx4aJhY96NP/xxZmUWYGJAYN4VslBJTzBZGKsIDjxDt/3ziN7UI5SiUnyG67UvoX/wfiKCG9LMI10HqGN1ol0TMPdSHJ5+m+foPk4OkEgkJcYTRGqIQU52FOClmICRCKsK3fowQYt1uBW/3flTXHqKrF266p4QQ0kaXWnYEtnPVspOwBQvLmswlfISRJgg1zbBd8qHUxquv8vJp/Ne+B1EjiTBtZazL4iX8175H8a5/xstXOnnh3WnKKxj93DaU55F7Bjk42Dk/AVFKoOImOtVF9fBXkXumEEEVY8AZfxXvo2fbjqE79xDe+U2c7iEyvsJz1Ly0Y/+ePP/msykab59FqAyxk0bEIU5Uw1QubrmzuMVisVgstUbIyXMFTp6f5YPxwrzcYyXSvsOx0W6O7+vm4FAef15/vpvG6BHk7AVkK25U9+zDdI/wZQR3zdSI45hOJ6I7bRLZhhmE+/7ZfGy4c+EVVKU93jvu3kdw+9cx2d627UIIHM+HVI4YhZQO6rbPIcbfTHwcwhpmDUlEdPY1MBqR62s3xezow5SuJMUKx18wt47jDSd8CCFJ3ft1qk//GaZWSGSmmKSbIwrAy1hPCYsF27lq2TnYgoVlGfMxpKGm2YwI46RAsZ555poYjXvqqaRYke5aMNZUHkU3y3NX+3nhJ9M0dGHJtcDt+3t49O5BhvpzbdsdCTKoEDVr6DjJdNcdu1Hjr+O///eIaCHC1EiH+PCXcA59jg7fS2JJl/hQGAzm4tv46Qxa+ahmLdnhBjmLWywWi+WThzGGK4UG71+Y5f3xEmcuFtaUGu7pzXB0tJtjI90M9mdXf5gQEt0zStQ9wsR0lVo1IqtrDO/KMdrrQjMkCiN0tOhkOkZNnsA59yJi0UUYN01w5MvEg/e0G2HT6qpIZcDLoD56EfnBs1AvAAItJDLbjbP/Ppyh21eUROjpMfQqppjJySPQMSLdiWj5ZOCoTY3D7nDiKdH8xV+iZy7CXHS5dJAdvau+z2L5pGE7Vy07AVuwsCyjGUaUquGqMaTXgiyMI8tTSWdFa4JyJUjz8+JeXi3vJjLtEw9HCe493M/Ddw3Sm0+1vaaUQOkAalXCMMC0LlJUr+Kd+BFq9nzb/rp3P9793yLXtSvZsIJhpnQUpl5CV2YwUQgianv9RjiLWywWi+WTQRRrzk2WOX1+lpNjs8yUmqvu6yjBwcE8R0e7OTLSRVfO3/B5zowXePqtS8yUGmR8l+6MoT8Dd+ztYLAv07avnD6D996TyPps+7XuuZPg8JeRQQV19QzGyyYmnFLhpXxUphNn9jz6mb9EX72QjMFCgHIhlUVXrhKeehbVv3/FooJplBPZilphChoHLUlLKxt9EdcyDpugDq6fdGs4HgiBrhZsx6TFYrHsIGzBwrIMbdjSYgWAaFZanhUOFxod/GNhL29X+zFLIswUmo5ciq8+MMKdB/vaXpNCoKRBBhXiZp04bq2Y6Bjn3Eu4Z55G6IVWWuOkcO76KpnbPoNArJjqIZRCeinws8TFK+jSNGTyKwer3QBn8ZuNMdoaglksFstNoNYIOT1W4OTYLB9cKNIMV5d6dKRdjox2c3Ski9uG8itGDa7HmfECf/v8WVxXMtKfIkNAvVblzHSTC5eu8uX79jKyuwOaVbzTT+FMvNP2fp3uIjj+dRAS752/RVan58dt2TeCc/xXcXvvQFx+n9rzfw7Vq8kbpZO4a8YR1EqQ68GEjVU7IUSqI/HCWMkUU+uWbwUIucLYtMFx2BhN8OaTmLDRLjsBUJ7tmLRYLJYdhC1YWG4K2styOhjgZ7OH+aCxvB0zJxp8LvUB494+zgc+T71ygYzvcHC4C0hWnGTUwNSrhFG00FVRmsB/94fI8mTb8cTg7aTv/3VkauU2NyEl0vUQqSxmLvnDy6w+iYIb5ix+s4guvrcQudYyPJVde2zkmsVisWwBxhguF+qcOp8YZo5dLq9Z+B/sy3LP4X4O7EkiBq9HN66N4ZenL9PToehPGcJmmXI9wAC5lEOlEfHLk5Psiz5MJJNhfeG6hSAa/SzhbV9AFsbxTvyo5fWQRvppnHQW4gbmzR9gXIfgrR/DnJG1lAuSEamSsaVeQmS7V+2EkH0jyK49xDPjy00xhQBM0q1xHeNwfOX8qrIT2zFpsVgsOwtbsLDcUGJtOHH2Ks++VeTS1c8ue71bVngw/REPeh8wK7p5VzxApwOlWsjTb13itr1duEJDo0wcBGjdik6NQ9wPn8Y5/1Kb7hY/h3//b+AM3bHyBQmBdF1kKodRfuLL0Xr7mpOoG+wsfqOJLr5H47nvYsI6ws8lq1RxtGETM4vFYrEsJ4qTVI+TY7OcPj/LTHkdqcdQnqMjSSdFTz5FPp+hWKwRrxNZuhZSCmZmqzhBhU7TpFyM2zynhBDs9qo80niG1Iklppqdg0m8d+fuxGvq7POIKEBk8qhsB9LPYuKIOChjKrOYV/47ujoLjg9Bo93fQpAUMOIw6ZLQK3dCCCHx7nk8GZNqBfCz82MSzRpIN/GrMO2H38w4vKbsBG6JjkmLxWL5pGALFpYbQhhpXn//Cs+9dWnFCdxet8D97occ8y6RlU0CPF4WnwIhEEBX1kWgKU5fpSdjiKOFVlp59SzeiR8t0906++/Hu/trCC/DMoRAKolIZcFNo81K+tjVJ1Gm2R7NtpNYaI2tIzLd7Y7s1kzUYrFYNkW1JfU4dX6WD8Y3JvU4NtLFwWuUeqzGvEwyrBIWpinMFkl7qq3YLk3M3ZzkU/IEDnp+u1Ee4aEvEY18GiEljpR4lSmoXUVk8zidveC4mEaNRrVKrA1KpXDKV5KxM5VLChQYaBNRJvJLEwWINTohnKHEFHO+66+ZdP2p3r2o4TsITz59XePwmrIT2PEdkxaLxfJJwhYsLFtKvRnxi/emeOHdSar15dGkh3c5/Ir/DvuD9wmaAVoqrtDLy+JTjIlhpBDk0g4dniaolinNFsh7rXSQsIF3+u9wLr7RdkyR7cH/9G+idt224jVJpRB+Grxs4pmxxkLWqpOoVaLZdgJrObLb1liLxWJZG2MMl2frnBrbuNTj6EgXR0e7GexbI9XjGpFSoIRBhHVMvUYYRQg0AkOsNY5KiiID5goP80t6KLW9P+o/Qnjsq4hsF54U+J7CdxW6EhD4aVTXLowx1GauUizVCePE00oKQ5cM8RyFomWyGQUgxaJWiJarddRE9u1bsxPCGTqOGjy6oq+S6hu9rnFY9Y/esh2TFovF8knDFiwsW0KpGvDsm5f4xckpglC3vSYF3Hmwl0fuHmRPbxbMvUyefZ9nXj5N4GS4qgZACDIph3xKkjINyqUylVqA5ybJHmrqJO7JHyOblUVHFrhHHsa9/VcT9+8lCCmRno/wsxjpbNhEdK1J1E7EtsZaLBbL5ohizdmJEqfOFzg1NsvsOlKP24bmUj26yWdXWNHfAhYKFTVMUCda5OfU352mu8PnSrFJTyriAd7mOB+2vb9GGnH315F7juO7DilfLUR8A6qjF5nJo+sV6vUGV4sNtEnOKyUoE9OMFVd1hj2igkp3QmWm5YkkwYjW3wXCz26sE0LIFQvl1zsO36odk9eDNd22WCw7lR1XsPjJT37CD3/4Q06cOEGpVGJ0dJR//s//Ob/1W7+1cp635YZyebbO/3jhHL94d5JYt1cEXCW572g/D925h57ORdGkQtKz/wiFk5rJmTo9HZKurEuHExI1yhSqDcqNiP68z65MjPfmX+FMnWw7tuzag3f/b6F6hpdf1Bo+FXNoYxibKlOpheQyLnt3ZeHqhbaB/FbpNrCtsRaLxbI+lXrI6bFZTo0V+GC8sKz4vpjOjMuRkW6OjXZzYKgTz9k6qcdS5qQfKxUqFu/zmSO7+OiNl3nEvEFONOZfMwbeNQfJ3fs19o/sIuU5KCWTF8xccT+F6erHvPN3xLPnKDY8tElixOcOkqbBtOrlH5t38pvyRbpUE9J5CCoQRWDiZPztGcZ/4H+67o7E1YoZG+Xj7phcOs8YGejY8m6bjWJNty0Wy05mxxUs/vzP/5yhoSH+3b/7d3R3d/Piiy/y7//9v2dycpLf//3f/7gvb9uy1ZX1C5fLPPPmJU6em12msPAdwWfv3MPn7thDLu0uugiNLIwjmhWkn+MLd+3mH96YIOPEpOMSfmWSTFjFhC5Np5vPd14i9fz3UfHCypYREnX8S1zt/zS1qiGjKwz2ZhGYRPZgImSulzj2iGYuIfzcss968twMT758nsmZxOjsoHOJL7nvMCBnUSSdCE7vXlKf+votMZDfymaiFovFcq0YY5iabaV6jM1yYaqylmKQob4sR0e7E6lHb2b5IsmiMc74OXTXMGxinNXGMDFdpdaIyKQcBvuzeEogWglZKxUq5hD1IocmfsxR9X7b9qLJ8kHmHvbvG2S3N4ksVMDLEnUNcOXcWUwc4fcM0HfgGAKJe8dXqP3jn5LSFYzw0cbBISZFgxCPV9R9XPb38D8iwT/LncGvXcEoH6QHfhbVN4LcdRu6Mks49jYy3bnufON6H+wXz2/IdqLzR4kunyWqlhCpDlJf/QPM1fFrnv9s9vq0MTzzxkWeeesShUoTYQzDzgxDnXD/Xfs5eOedW9bZsJFrux7TbW0MH14ocHGqRMpTCAzVevSxF2AsFssnix1XsPiTP/kTenp65v/92c9+lkKhwJ/92Z/xb//tv0WulNv9CWerKuvGGD4YL/LMm5c4O1Fa9nqnqPF5/30+5Z+ncaGTSuYr5G6/DwB5+TTuqaeQ5SnQMcLPcHffPgaO387JDyfYX3yVblFGCg2+wEGTuhK0HT82gmrscOXNt3gtbjAh9yAl3J4r8Ej+EikZQtQkrsxgmnVwfITrt33Wk+dm+O5Tp2kEEdmUy37/Er8WPU02bsCcS3sI4aVThFfH6fjVf7Pjixa2NdZisVgS5qQeJ8/PcnqssKbUw1WSg0N5jo12cXgdqcfSMQ6p0B0DhEcfQ+86su51nRkv8PRbl5gu1AFBV85lT97htn6HXZ0evXl/+cOh0cjSBM74G6hLbyF0tPASYISikzr3N16Ck4YQQAhi4RAJRSrXgxEOzXdKnHy6g+LoF3lhugu39Bk+J95klyzhiCZSQFVkeVvezgUxhOPAmcYgE3d9kWOdVaKLJwjffx5TvkJcmiL+6JfJRQiJ8LPI3pFV5xtLFxCUEuzuyfD4g6Mc29ezbP+lLJvfYKgajUYmBaXF8529d657vOu9vpPnZvirp8+0il+GQ+4kX069yy5VRFU1+iXF9PuDdH/2N657brGRa7se0+2T52b4yS/GmJqtU2uE8+ayvqvwPbWpr5PFYrFcD8KsVq7fQXzve9/jj/7oj3jttdfI5XLXdIw41szMVLf4yj5+Vquszz2orlRZb4QxxUpz3vMh1oZ3PrrKc29dYuJqbdk5+mSJR1InuU1NoYXEJSYjm4TCo3D8nzDYn8N/7XsQNTDpTlQmj5QSUy0Q10pgNFprIukjoiZeXFsSZQZl7VM1PgpNWgYExuWZ+D4yWZ+H0h/gSYMiRhUnwOjEAEzIpF1VRwg3hf/Q7/L/ej5g/EqFrpyPAH4n+CsGuNqyCROJ37kQSKMRQNQ5RM/v/D9u6sO840i6u7PMzlaJotVbkjfLJ7kl9Ebd008y9p5uPTf7nvb3b40MbKvHz3ozolgN1t9xg8xLPc4X+ODiOlKPrJcYZo50c3Aoj+us/7tfXj69MMb5WZBOMu40a+D4NO/79opFC6UE+XyG109M8P1nzhDGmv58iqxriOsVyuU6zWZIylf0d6X4zNEBRnYnXzN59SzO+z9DlScQpv3zGCGTtKygnsg05hEYDNLLIDN5Yh0xW4mINKR0nYZx+dvg80x6I8yW6nzW/4AHvffJyxpSgBYOM6Kbl8w9vB/t5vd/806G43EaP///YGrFubMvvTvgpxF+btl8Y+kCguNIokhTbUSkPMV3Hjuy5sPw0vmN0RFUroLWiadGrhchnTXnO2ux2eub2z/x/jAcdSf5rfRL+CKkpn2McpAmJicDcp05Ug//i2seezd6bfGVc9T/7n8DN7Wi15eJAggbpL/yf2uT38wdvxnEeJ5iplhHm7nkWkFn1iOKzYa+TpZ27Ni59ezUsdOycXZch8VKvPbaawwMDFxzseJWZbOVdW0MFy6XqdYjmkFMd97njdPTPP/OxIqrUFLCr/lv8ID3AWWTQZNoeAMcQqPoooZz+u9wpzMQNRBdgzipDCaOiOolTBjOm2iKdBd+s4zQYVtCmjZwOc6hW9+qEZKyVnSoBp/OjJPKduCGAdOFiD4KKGES53KSDHiCKnTswtSLlF75IZMzD5NNJbKIXfEU/cwk50Ewd2KDQAuJNBpZniC8fA5v4MCN+SLdRG41M1GLxWJZicVSj5PnZxm/vI7Uoz/L0ZE1pB5rnkzjnnqqVZDvWkjLUB4m7SLqRdxTT9HsP7SiPERrwzNvXsL3FPvzKWRUZ2a2RKUWIOaa/uKYK4UGf//aBb583172yQn8d/4GoiYrXalId0JQS4r3bS8IZK4b5fjEQY24WiKDwyxdFE2GDlHjUfdtnvD3M5C6zBe8E/MP27FQ+MrQZ6b5sn6GXOevsndXluZPnlgwbBa06hXzfwE0RCFG1pfNN558+TyNIEoWEFr3zXMVriMpVAKefPk8R0a7V5QdLJ/fgCnOJKdVTjL+10vQOYDIdG06vnuz1ze3f7UeYozBlYIvpd7FFyFFnQEEQifXVjSKVLN+zXHim7m2azHdXnz87pzP5UIDELhKYIwhNoZaI6K/K0WxGq75dbJYLJatYMcXLF599VV+/OMf84d/+IfXfSxnAyspO4no8nl0cRKZyiHk8jhLk8qii5OI2Qu8X83zxIvnuFKokU17TF6t0gz1MiNNgH17OpierTHizvJpeYaG8VncEiGSXlTqIkVPPA2VFE7vMMLxiOtldKPa2i+GVi68rM+0Tbw0ycBoADm/V4LyM8SZXvpEiC5foBIaPAzSRBgpW5cikopKHCJ1CKkssjzFLj1NzR1ECBiIJ1EY4kXFikV3CC0kymhmz77H0NDKkak3AqVk259bi4Q9O7/4sllu7D39ZGLv6dazk+/pVo6fKpYLZo8bJIo1Zy6WOHl+hlPn15F6OJLbhvIc25eYZnZeR6qHmBlHVqbAzy4vdAgBXgZZmcIpjWN6RtteVkoyMV3FIWKkM8Y061y8UiKKDFICEmSr9p7KSJqB4eJ7b3Akfq5N/pF8KB/CJiCgWU3eJOR8h4XwUshMHoCwMgthA4PEIcYhJDSKuvHpE0V6oikeSZ/A1wsP2xgIjKRpMuRFja+kTyALd6FnLiZtkFJB2zUtKlroCOH48/MNZ9d+zk6UmJqpkUu7yBXmJ7m0w9RMjYvTVfbv6Vx235fOb0wUQByClAghMdJAHCLiAOH6bfMdZ9f+db+um72+uf19T9EIYobUVfplkdqi+dFc16oxAu2kN3U913pte7OdoByEjlbssCCOMMrByXbO/wwvPn4YG8IoTs4j5jpQIYw0kTbrfp0sy9nJv+e3K/ae3vrs6ILF5OQkf/AHf8ADDzzA7/7u717XsaQUdHdnt+jKtge1mZCaiZNozxUq+Eb66KDG1OVpvvv8JLV60t1wpVBOkjUWIaXg08cG+MqDoxRKTb774xPkVBMHTY2V3dFj6eJnXLxMFiEhrs6CjpFzv1CClVt+G3g0jEMHNQSghCEyIKTCzXaC69NoNnAbl5EYIpnHI0AYA0Ig5jslJBAnEfGej2pUyTsBVZNMrldbcRPzf7b2EPJj+d7o7Ezf9HPe6th7uvXYe7r17LR7utXjp6oEoNZP3ShVm7x75ipvfzjNybMz8xr7leju8Lnztj7uvK2PIyPdeO7WpHroUkRoNLjeKuOsB7U6OSdC5jPz26UAdMTM5cvQKFBvGMLYEMcmacRoPeQmIg7IiCZfSb3JoXCs/QRSoXJJO34cXU3eF7cKBy1ppMp2Ir00cVAnrpQwrZ7CuaLC3GgYCUVGBAxymX5RoCHTCCPmwkQwBnzPIZ3O44VX8UsXqJlooamCtr8suUwFYUjWCcl0Zzk7VUUbSHnOsofu5P4I6q1Uj5W+t5bOb3Rk0LCoaLQw/kul5uc7c+dfj81e39z+6ZRDqRqQEU0UmhjV1m/Smqbg+D6yWd7w9VzrtfUdPk702jDB5fNIL7XMdFsHNfxdo/QdPj7//bv4+I0gTupRkvm5VXJnk0+U8pw1v06W1dlpv+d3Avae3rrs2IJFqVTiX/2rf0VXVxd//Md/fN1mm1obSqXl/gw7mShy0UJhguaq2kUjFE+9Pk2tnkUpwUxp+apUV87jf/71O+jp9AEomBgJVGKfSEocExOK9m8lJ5Uhk02BaBDWyoh6pSXVAIxGNMqIsP1+G6Eo6P9/e3cepWdd3///+bm2e5s9ezJJCKEMCVtAgVALsllWoW61p1WsO37Fuvx6jmhd2iNH25669FC0WovFU2txgfYIEaqoiFawIgiyBgPZE5LZ516v5fP745q5k8kMIZPcmbkn83qckxPmvq/7ms/9mSHv635fn8/7nSM0Ph5RPcDH1uBlC7j5AnECtaFB3KhEZAyO4+DZiBiDxYC12LF1tKPrMhIL1Ko4rkeurZ2h3hodrQE7WEiMwRm9qDiQGX087lxBf//01TdxXYe2thxDQ2XiWPsbG0Fz2nia08ab7jlt1AeMRsfPUjVicGRiLLLWsrO3xFOb+3ni+Zfe6tG9sMCalV2sPa6TJftt9SiXqpQbNFYTefjGgbAG7iR3sKMaGIeRyMMOlnAcg0uMqZUhquLENSrlEN83xIlNPxwaGPuIa7Gc7m/mYp4gywFJ/mwLJtuGNQYbh7DvZenY/AxuPt1rHY30k9Qq6fP1z6zpwWPpC8/GRDhpnQKbkODie/vG1dWWoSXnp105SmVKpSp2LPbb/c858UN0EsdgXIqRT7U/XQHiGKjUokmTR7UwHk3qxJPG3wOvb+zYjQprR3/O++K/jeP69U79+7+UqY4vGfva4rkOI0mGGAeXmHC/S22bWILAxbUxyVTGc5hjGxgo4556Ofa+rxEN9WKy+xXdrhQxQRb31MsZGChPen4w6XYbC2N7lJL9fskqteigPyeZSLGz8WZr7JRDNysTFpVKhXe/+90MDw9z22230dramOInx1rxG9u5HKd9MXHfNkx+knaWlSK1lsU8urNAPutR2+/9O8ZQyHkEnkMUJ4yUavUK6Ys688zryLGlr5O9fjtLnT7K1ifBJXJz+IVWPM8hqPayp+azqL0NM/ICNuulF2iVwQlFwsgUMLk27GAVG1tixwNrsI6LU5gPXpZapUxYGgEsrU6VnXEHWddjPr0MJnkSx8Oz8eiFk00Lb3kBieNDeRC3q5uz1r6MJ/5nI/3DNWqZBexKOlnq9OISk+DWLxEd0vP0u/M47oQ1M/K7EcfJMfc7OdM0p42nOW282TinjRxvHCXEo12bwihh045BntoywFOb+w9ajLO+1WNlJz0rOmjN70sgJAlMLAjZAG3duC2LcAZ3YHP+uO2RWIuplUjal5J0LMclwamWiapl4ijCdQ1L5hfoasuwe6BC1t+3dcAAnWaYy3KPsNLrHfctrXExuXZMJr2baCH9EOp6EIWAwW3twvEDkrBCPDKQ3igAEpN+7rQmXb0R4RHhY0xMzlTZnXSx211MHKcftiM8rIXAcyhk/XS1RRSBcWH+8Thdy4h3Pj26BWXsk+0Bc+142KiK27Uc27mcKEpYNr/Aoq482/YU6XCdCdcnI+WI7gUFls0vTPq7NeH6xvXTmyJRiHWox3/rBtgkvd5xu7rr3/+lTHV8+x/flvfZMdzF7riNpW4/g4nLWBLHOIb2vE9SGZnSeI5kbGbxSWT+4C0Ti253dacdwhafNG4M+5+/syXA91xqYYzrpFt1E2sJPBfPMQwWw4P+nOTFzcZ/55ud5vTYNesSFlEU8YEPfIBNmzbxjW98g0WLFs30kJrWobSz7F9+IfG2CC/n4HsOnpsjl/GIYkuSpIGpGiaUKvv2pjrGcMHpS3n45z8jR42cqZF3QkyhjcT3KIdFzNAAlcQQr76AqCtP8Nv/xhnZM1q3Yv9BOuBnAQNxTEvOo1QskrE1wqANcu0UiBga2ksUJfUOJFXr84A9gwwer0ruo92U0jsH1aF0OawZPXdQgPJgvXXnmmXzeculTr0V2D3RWbze/yktTgVDgmPGlr46lMhizngdrtOYpcMiIvLSBos1fvXUCzy1pZ9ntw2OS6YfqL0QcNLKTk5a0cHxSw+tq0dDGYfwpEvJPPQfmPIgNsjX46yplTCFdjjtKry4gi2XqEXR+FUQxnDO2kXc/cstVMIEx0lXBPx+biO/HzyDZ/a995r1eCxzBi9r74Oh3Vi7/xJ/A5kWsEN4rfMg30HUvwNbTpP8Y2M1Nu2JhQVrDEVyuEQUTNol5Kfhaez15tFnOphvexmM8zjG0N6SJn+stdhq+uHfXXAcwbqrqPTvSLuEjFtlMcYBz8f4uXHtsx1juHL9Sm6952kGRmoUst6EThdXrl/5ooUcJ72+ybWlXULiKN3DkGuDODys9t1THd/+x1dqMa35DPeFp/Fa539pd0qUkgx4PvMKDn40ckTtxA9n7qZSdPvA87fkffoGI8LY1ruE5LMeg8XwJX9OIiKNMOvamn784x/nW9/6FjfccANnnHHGuOfWrl1LEBxe8axjta0pHLyd5Ta3m3+6/TEyvkvgu3iuob0lw96BClGcEEYxtTDmTX/Yw7IF+8toZBgAAC/WSURBVLqwOC88jfPLfyeqlIkyrbTmPFwikuIQSa1Mv+mkdPzFzD9hLe6ORwme3ICJx98ZM4Uu/DOvwTgu4ZM/SccXVrBYTEsnNa+F/rKhOjJMiynjGktsDS8k7dwfncZWZzmuazizrZdXZX9LrroXG1XTJbjWgpfB+JlJW3cm1rJl9zAjpZDKlt+S/90P6Yj24hIT4zLgzSe77iqOf9k50/ZzGqOWV42nOW08zWnjzdbWbI2Kn3sHy9xy15M8tWXgoMd1Lyhw0sq0YObiril29ThKnBeexn/qHpzh3WBjTJDHzFtJfNx64sIC4ijiwMst1zW0tOQYGSnz3PYhfvnUbjLD27nEf4h5ZnjcsRujpdxvz+CyC05llbeX6q/ugKgKQT6t9xGP1mvIt2MyeaK+HdhqKT0Gu2/lgzHExqcWp/HUYohxGPbmMbjyQn6+t4NdfSVWJNu52v8ZWRMRFFoIstkXbYkebX+C6oO3kfTvGK2fsV+CJFPAmbfiRdtnP/l8X/0GQhxbXNewuCvPletXHlKrzAnXN1iMTUgYXXlwhO27pzq+/Y+PYssqs4OLMo+yxB8m69LQduJHOneHcv7vP7iF3f1lSpWwXiMm47tkAreh32suUexsvNkaO+XQzbqExUUXXcT27dsnfe7ee++lu7v7sM57LCcsIG0BNllmPbGWz932SLq0sCXA95x6wiKMYoZKIYu7crz1ijX7Mug2IXP/P+GWe3E7lpJYS604TDQyiEuMm1SgbSnhKVcRPLEBt/d348Zi2hbir70Eb/kp9ex+uGsjtf/7DsYxuG0LIchRHexL75x4GXYtfgV9cQu59k5Ofvnp7NxbZqQU0pL3WbGoFYOtvz8yo3vLqsVDbt0ZJzE7nnmS6vAgmdZ2lp64ZsZWViiYNZ7mtPE0p403Wy+6GhU/b/vRRu755dYJjweewwnd7Zy0YuJWj6ZiE7yhHXhJBVyP2G8hjpMJiYox+ycskmoJ/5l78bY+NO6Y4STLPeXT2BgvJZvxWNKV54J1S1np7U0T/cN7wCa4LV2487rxT3olZuEJE+KhrYxAZQSyLTi5NmzXMnZufHpCzNs/md9RfI7OLT/GTnKz48AP29YmxHueJ3lhU1pHIshjcq04ubaDxmBrE6I9m3lh1wsUkwzBouNYsbh9Snfs97++8QptzPu9k+jd+BRRcagh7bv3n5Oxa46Dje/A45cvLEDv1qPSTnyqY5sqxzX0FyO27x4iG7gYLMVydFS+11yh2Nl4szV2yqGbdQmLo+VYT1gczJPP99WXMbYXfOZ15NndW2SoFJLxHV7zB6tY3d1RP97t30L+kf+AIDtazKpKEsX7FoFGNUx1BGPj8a3XvIDg1MvwTlg/Llhbm1C572uYsIjTvggbRySVkbSAprXY0gBuVze5K/6/hgX5ZqZg1nia08bTnDbebL3oalT8/OWTu/nn/34cSIs996xIV1GsWtI2/Vs9psgxBtcFE5ax1dKkKyoO5LqGQiGg9tiPcH73Mwgr9ecs8Gh8Aj+trsHJ5MgELnFsKdfielw+fmkbdnAXBovTtgDT1U3aw6FxXuxmRyMcbPXn4a4+0L9LjaX5bDzNaePN1tgph27W1bCQxltzXBdvubSHux7YzN7BMsVySBjFLO7KccHpS8clK4L+58hs/AEmLBMP7sZGIcbzIGgBLwNxiFMZwiThuO/hLukhOPM1OIUODpQM7MIxCbTOI6mWsOG+6vDGGMgUSAZ2kuzdgrvguKM0CyIiMpPOXrOI5QtbqFRjshm3KbZ6vBTHGFwHTFTGlktEh5CogDRZkdn1OPHjG3Cq45M9ptDJD+L1PD5UoK0tqBfydJy0sOhQKeQnj+xg9fIuvKU9kClwtG49GeMclbgbbX8irT8RljGZlnrdj7hvG5X7bx235UREROY2JSwESJMWPSs72frCMMVyRLUWs2hevr7cz3UMft+z+I/fiR3eQ1zsB0x6IRWFmGgAvAATVcY3NAsKZM58Ne7y0ye9+DSOg+u5hElMUh7GTHbR5XpQjbGV4aN6t0dERGbWknkFytXooN1AmsFhJyocQ8YF54kNJJt+ObFvieMSRQkjpSK5oH181xEAY2jJ+YS47K76LG0/esmKo8XahNojd6XJinznvmsDLwDXx5YGqD1yF+7SkxTfRURECQvZxzGGlYvaqIQxgyPV0X7wBtexOLUhzBP3EPVux2YKOK4PcZh24sABG+NElXHnc1esI3PGqzGZyfsVG9+D8ghJcZB4uC9tbepnJh4YR+C4JMN7qG34bEOXj4qIiByqI0lUBL5LprSb6IHb0wKVk0linOogrzQPcYe7bMLTuayPl82zc9jQN5KwZMGRvqND16h6CcneLSQDOzGZlgk3MrSqUkREDqSEhUzKGPD2vyjr20rQuwUbZMFxsJkWTGkARmtUjLvkMA7+Ka8iWHPh5Od2HJKhnYTPPki069l0C0hYhlqRpGUeTpCvHzvWQs0pdFB79G5sWNHyURERmVb7EhUVbKVIFE5h64fnknFi4if+h9rGn3GwJRFjz3SaIi+Pf8VDztnp93cMrYUskVdg90hC/0iFQs5vxFs7JI3sSGErw+lNB/dFLkH3W1UpIiKitXYygeMYfEJMeYCoNEQUhpjqSH1VA6SJBMz4RIWFdAvIK970oskKx3WxxT3Ufn0nta2PYx0P8u2Qa4UkgeG9JOV064eNavUuIUCarMh3ElqXSi0htC4m34ENK+nyUqviRSIi0jjGgO+atPNHqZeoOEhUCw+arDAGPNchn/XoKGTIDGyi9j9fIHrm/hdNVlggIX167JCeZBPVWo1M4NHa1krRaWH3cMzu/jKLu/KsWDQ9hd/GCnNv2zNCxndpawnI+C7b9hS59Z6nefL5vimdz2Rb02uJOJr8gNFVlSarwnYiIqIVFrIfY8AkIaY8RDwyQhzvSwDYoDB6gRFiwhJOWDngxQ7GC8ic/+d4XcsnPb8TBJhsC9VffJNocPe4vasm20bieDDSC+VBbBxiXA+3qxtv1cuoPXwnoZNjoL9MGCdYO3Yh6dCRy2C0fFRERBrMc8CU+4jCEJscfEWF4xg8x5ANXALfheoI1QfuJN76m3HHmVw7tlqsr1C07JfHGLsLYCFwLCc4u9nmrqUYZugfrDBSicgGLleuXzktLSUTa7nrgc1UahEdLRkMsNDuIedWKBUybCy2c9cDm+lZ2XnI43Hmr8DpWELctw1cf9y2kLFVlW5XN878FUfpXYmIyGyihIWM1vRKoFIkrlWIqjWSZPxqhaRlIdbL4hRfmLCqwmTT1RFOxxLczol7bo0xOJksZNuI9m4h3vP8pHtXnSCPbXOhWiQ442rcRSfgzF9BvO1xojBkb9WQWIPjGBwnvcCrRQl7RywLM6GWj4qISGNZSOL4RZMVBnBdh8B3yPgunutgk4Ro0/9R+82Gca1KMQ7u8lNJykNQHpr8ZGN/+QFeoZN8zeHZF2o4hHieQ/eCwmFtwzhcW3YPs6uvRCHrs8Ju56z413TZfhwSEhx6Mx38tP80tuxezXGL2w7pnMY4BOuuTLuElAYgU6hv87TVIsbPEqy7UgU3RUQEUMJizjPGQq2MrRZJonjyY8qDBE/chVt8Ydzj1vXTTh1JiA2y+GsumHCBYRwHJ9cCQT5d6loeeom9qz5gcNoX1VdL2EwLpdDi2Bjj7tuza0y6P9jEEaXQUsi0HPY8iIiIHCpjwHUcsoFDxvdxHNLkxuALVB+6g2TPc+OOd+atwF31csIn74OoAn4OwlK6lXJ0xaAlTVY4uZZ0m2RYo6/i4hiHV5+7ktXd7Ydd6PJwjZRC4tiyKrODS6L7CKhRJkuEi0fMAnq5yvyMaNsKWLz+kM/rLVtL9ry3UHvkrrSQdjXdcup2dauQtoiIjKOExRxlTFo8LKmWiGtVkr7tJNUiVIvEXg5jM9iWhXhbH8LfeC8m3tdizmIwXgbjuGAT/HnLcE88HzP/+PR5m5D078AQ47YtJGmdR/LC82lb0vLwvr2rXjBxYJPsXd0edzIQt7PI6WPEeuPbvFlLwamyO+6iFndy3NGasAZRW1YRkdnLcQzu6LaPrO/WMw02igif/DHhUz9Jk/JjvAzBaZfhHn8W1Z/+W5qsyLWnL+svjTu3cVzcQgfWD7DlYUrlkKfd38MQsWi0ZsX+XTq6F7aw7YWR+tfLFxagd2tD40tL3sd14ez41wTUGKZQj8Gh9agleVpNidYtP8a+7OwpfT9v2VrcpScpJr4EXTeIyFynhMUcM1anwpZHiMOQcOczhE/+JL3DEVbAJmAMgRtgsJioOu71yfzVeGdeQ8bWSKpFvFwLncedwNBwhTiyRLufJXzqpzhEYBwqI/1psUzjgHGwxoG4BlEVWuYf0t7VkXLMT6PT+aPg57RQpGL33d3JUiEk4KfR6VxUnnyFSLOItj+x726S2rKKiMwarmvwXZdM4BJ4zr52HhbiPZuo/uoO7PCe8a9ZdjLBGVfj5NuJ+7aRDO+BoLAv7uXa6ltDjJ/FbekgthY71EsShTxuTiUa7cixZ7DM5257pN6lI7GWJLHpFkljWO3t4KLgtyzxh/CNbVh8WbGolVPaR+gc7qfsZMEYbGKJE5uumgSKBNC7nd899hgnnHb6lM5vjKPaUweh6wYRESUs5gxrE5LerZjaMDaKoXUB8QvpRRa1IoQ10hrlDtgEE1XG16rwcyRrLyP/e2fhuenFmgO4noHRTH+0+1lqj9yFm8lBkCca6YXSACRJmqhonYdxPGypBmEFO7IXcu0vuXe1Je+zxVnG3ZzPueYRumw/WaokOOw18/mFXccWZzEt+elr8TZV0fYn0v26YVltWUVEZgnXNfgZj8BNEwM7ekcoliLyOY8lrQ7Ro98neu7/xr3G5NoJzrwab9nJ9ceSahGiMF1hGFnwfJxsa9omHIsb5EnCMrY4hLUJET4n2k10xL08nHkZ9/zSoVKLKGR9Yiehd6hCnIDrGM5s38sV5uf4UY3+KEN7W4GMS0Pii2MM5/e04T2UUEocMJY4TrM1Y1tYrOtBUuNHv3iasG35tNXXONbpukFEJKWExRwwlqG3I724+RbCoT6cQic2LKfLU5OYdBOtCzZdpbB/siIJCphX/j/aOrvSZyapPWatJf7dg3j5PImXJykPQ7E/rYzpeOnKjfIQpn0RtM7HDu9NXxhWXnLv6opFrSzuyvPEnkXsKFzFIvaSo0KZLLuZz0AxpHvB9LV4myprk3T+w/K4zih4Abg+tjSQJnqWnqRlniIiTcB1DbnAo5B1wfg8u7mXnzyygz2DZZLE0uNu5ZXeb8jZ/TtmGbzfO5fglEsxfqb+aLT7WcLf/gDCMoRlrDHph898J5kFKylHUHphM5nqAKHxGKadEBcniVjs9HFJfB/D4e/T37IKYwy7h6tYDL4LiU04O36YwKsxYgrECQwW0y0kjYovK1cuZeiJDNWqpRTuV2vDpAkT38RYXAZqwZQ7hsjkdN0gIrKPEhbHuP0z9E6hEzIt4I2Q9O9IkwWZ/L5e6Hb8lgoLWL+A43jkKDM+jXGA4b2YpEZi3bRORVSFOATHGd3j66RfRzWMl4F8O7ZWJnPW6zG51oPuy3SM4cr1K7n1nqcZKIaE2Xl4nkMUJRQr4bS2eDscyd4tJAM7J+2MYoyBTIFEbVlFRGbUWMePbOCSz/q4DmATntsxyB0/e45qGLMgqHC+eYjldue45L3TsYTgZa/FnTe+rXe0+9l0JWNYqd8hB4NxPFzfxSYhTrVMNhwmNg69th1rDcaA4wWYTA6vNMCFwWPcwSpqYUwYJbgmPWa50898M0iZdLuG40AYJ9TCOG2t2oD44sxfQWbeMjr2bqESBxhjRv8A1pKlwl4zn8FgEdW+Elt2Dx9yxxCZnK4bRET2UcLiGDYhQ+8FYByM52ODXHq3p1ZmsiUTNl3oieMHEIck1SIvlsM3no/xXOKRAayfSZMOSTJ6G2Ys0I4WJkuSNO3hehibYHKteMtPfcn3sua4Lt5yaQ93PbCZXX0lSpUI1zXT3uJtqqxNiHc/iw0r6Z0RaydcfOB6UI3VllVEZAYYA57rkMt45DIujjFpfYbRPz//7S5qYcjvZ5/jjORR/P2S+6F1eTw4nfUXvxb3gO5X1iaET/4kXcmYb4ewCqUBnFwLbq6VpFqkOtiXxkMsXqGDhV6eOLG4jiHwXcrViAGbYZ4ZYKHdw5ZkNNaNhpGCU8EzCVXrpDWqTBp+47E2rA2IL/U2pD+6hTZTpGpG60jZfXWk/s89E8+4lKoxI6XwsL+XpGxl+CU6qum6QUTmDiUsjmEHy9DXEwk2mfhC46Z/jSUyHBcTFCYe5ji42TxeaxfW242NR/fnesHoygrYb5crmPQ1wKTdQF7KmuO66FnZOa5K+nS3eJuKerGsvq2jS4GrWM9PK8QHuX0HHsZciIjIkTEGfM8hn/HIBi5mv0TFmJ17R2BgO38aPMCCpH/c67eZJfyUl9FbzrGyv0L3/PGttZP+HeMLbWYLuG1dENWIRnqxlbRLiFPoIMFisi0EB6wydB1DYlwcquSo4DhjsRswUEyyRNbBcxJiHKwda7k6elyD4ou3bC2ldX/C3p/fwXwzOK6O1P+5Z7LV6SYKY1zXNHU9qdnCZFun3FFNRORYpYTFMWyyDH3aiaOU1peYwEkTDRaMjcHzIarhdCzB6Vw67kjjuji5AibXkrZiW7ASp2MJcd82cH1w032WRLXRLSFJej4veNFuIIfCMWZWLDUdXyyrkN5Zi9ItMXakF1rmYYLcEc2FiIhMneMYfC9dUZEN3PoiQ3vAYkMbVnB+/V2uin6Ks99KxDIZHnRfxiZzHBZIaiGlcjTh+9hacTQGuxg/i5NrgTgkKhfBzUJLFiesEJx6CdWHN0z64TTwXTKOJYodSmQIfBffc6hFCS6wNelkr21nKf2M2AJJAoHnEPhuw+PL0lNexn/+1iHp3cKCXETF5HjBLEg7h1hLsRLRvaDQtPWkZhNn/opx11SH0lFNRORYpUo9x7BxGXrAxiHxC5tgpPeAlRWG+ioIa9NaFsakKy38LP6aC8bVlnB8H7fQAX6+foE3tmTU+FlsaSCtV5FrG12fOnohl2vDRiG2NDBpN5BjxcStOBlMoaOeDMIm2PIASVg95udCRKRZOI4hF7h0tGToas2Q9fclKw5kk4jSnX9HYfN945IVz5jjud17NZucVWAMUZTgOJDPTbz/Y4JCWlA6yOMGWezgLqIdz8Dgbij1py1NHQdv0WqcjiXYahF7QNbEWku7H9JnOthYbKcWxrTlfQyWMLaAwy/dM6gRULBFAhPRXvCwUa3h8cUxhivPPY4+fxG/KS1mWzyPBKiFMQMjtaavJzWbHHhNZaMa1iZH5ecqItLs9C/dMWwsQ2+rRZKwSrJ3C7Y0OP6gXBssWAVBfnQlRAwY8LI4ncvIvPw1eItOSI81BjeTwRQ6SRx/wt0ob9lasue9BberG8IKJqym583kMZl8+nVYwe3qPqbbcU22Fcf4OUzrPPBH755FNRi9Q3Isz4WIyExzXUM+49HVmqGjNUvgORPi14FstUSy57n61/22hQ3OxfzMO5eqGe0AYi3lWsyC9hxL503cNul0LiVY2oMhIdq7hXhwz2h7jdHkdVQjqZSIXngO77TLMY6LHd6DrY5gbVz/cOpl87S+/GqWLWihGsZUw4R81qeQ9chnPZ6pLeF78SsY8BbQmYNMVDxqsXasnlT3ggLVMGZopEY1jOleUOAtl/Y0bT2p2ejAaypKg3PiGkpE5EDaEnIMqxfKuv/WdBvC/qsqjAvZVjJnvx5rLeFj92BHxlZXuJiWLryTXllPVhjHwcnmIVPA2he/e+ItW4u79KQ0OVIZxmRbMfO6sb3b6l+/WDeQY8WLFcsyfg7TnsWGVWxlmMyZV+OffNExPRciIjPFdQ3ZwCOX8fBdJ11K/1KZilFOro1g3VVEzz/ESPsJfPv5RZQqhlwQ17tUlWsxGd/hgnVLJ6wqMMbgZlvg5Esoff/z6QdOxwWcNM6OFe5MYio//wb42dFqmbW0SLNxMEEOd94KgnVXcvyytXzoTDuuhlP3wha2vTAy+vVpLF/4OujdetRj7WyrJzWbTXZNdaxfQ4mIHEgJi2PcWIa++uC3SXqfB+OAl8W0LyZYeyEAtYf+K61inm0B14U4Tnt8P/RfmJe/hmBZD06+DetmD+lizxhnYputOdR26+DFssxop5YM7qITdNEhItJAacFJh1zGJZdJW5OmhTQPLVGxv8zZryd79mvJD/dydXcvP3lkB3sGy1RqMY4DiztzXLBuKauXdYwfg+viZAsQFGC4D+N6WOuniew4AkZvHjijW1KSGKrF9OtCVzrgWgnr+vinX1G/kz5ZDacJNZ2mKdbOlnpSx4JJr6lEROYQJSzmAG/ZWtzXfJx4z3OYapEkCnE6lgBQue+WNFmRa99X1MlzsG4bplbGbn8Mc+I5JMafWJFMJqViWSIi02usNWk+45E9oDVpI6xe1sGqpe3s6C1SKkfkcx5L5xUmrCpwPBcn3451RwtMV4bTJHX7IohC7EhfWtfJcdNBx6MtQI2bDrYyjGlblK5mLA0Q/mYD3rI1Sm6LiMicpYTFHGGMg7dwNSYsEReHAIj7to1vubYfJ5PDae0iHtpDtHe7svtTMG4rTmkAMoV0e0gcYatFFcsSEWkQxxg8z4y2JvXSUkwNTFQc+L0ObF067vkgwMm1kRivXsxz34q7eF+dKMdhwkAdB7BpAiOuYbwMZAokAztJ9m5RDJZjTmKtthWJyCFRwmIO27/l2v6cXCtOJk9Sq5AM96Z3iGRKxrbi1B65i2RgJ1TjtFp8VzfBuitVLEtE5Ai4jiHwHHJZj8B/8dak08EYg5PJQraNhAOS//uvuPMy6TjHPpTVB2tGExijjyWjW0ZcD6qxYrAcc558vo+7HtjMrr4ScWxxXcPirjxXrl+pwq0iMoESFnPYWMs14hg8B4yDW2jH+AFJuUhSHgbHTe8QyZSpWJaISOOM1afIBC75wMPz0kKaL9aadDo4rovJFcAvTFonY9yKu2oxfXDsuLFC2M5YTLD7uohAWu/iMGOw7l5Ls3ry+T5uvedpKrWIQtbHy6VFbLftKXLrPU+r24yITKCExRzmdC7FaV1AMrgLgi68lg4wLklxiCQKVWuhAVQsS0TkyIxt+8gFB9anmNm6Sk4Q4GRbsa5/0LHUi18/fCfJrmfSlY3GgBdgbIKNY0hsmsDwAhirf3GYMVh3r6VZJdZy1wObqdQiOloy9e3Ige/iew4DIzXuemAzPSs7lWATkTrd6p3DjHHw11yAybfj+gFJFBGN9JNUS9jSgGotiIjIjDEGMr5De2tAV1uWfNbDYGa8/rNxHNxsHpPvJHH8QxqPt2wt+Sv/kszv/ykm3w5BDqelC7e1K11VkUTpG861QRwedgweu3u9bc8IGd+lrSUg47v1u9dPPt93+G9c5Aht2T3Mrr4Shaw/oXaaMYZC1mNXX4ktu7UNSkT20QqLOc5fciJeaye1p35KvHNjeudHtRZERGQGBb5DPuuTDUbrU8zszo86x3Vxci1YPz/lFR7GOARrL8JpX5zWNxrchbUxJlPAJnHaTSSsghMdVgzW3WtpdiOlkDi2eLnJk3Ce51CqRIyUwmkemYg0MyUs5rC0/Vobtn0hmSVr8FVrQUREZkhiLVtfGKZSTSjkPDpaMg3LUky1poO1CcneLZiogg2r0LYQN8jg5NqwjndE21HG6huZ/q0UvJBi5JN0LMP2bjuiGLxl9zA7e4sEnkulFuOMFiY1xky4e33c4rbDHv9Ujc2lri+kJe/juoYoStJiuQeIogTXNbTk/RkYnYg0KyUs5iJjcHx/XPs11VoQEZGZsn/dBYPBYhtWd2GqNR2i7U/UOzy5+XZwDE77IsyaCyHf1ZAkStpqfBX5zgLV/iJRlMARxuAnnutjqJjembakO018z6GtEJDLeDNy93r/uRxbwel0LNEKzjlqxaJWFnfl2baniD+aTBtjraVYieheUGDFIhV7F5F9lOKeg9wgwBQ60mSFiIjIDDqw7kI+5zWs7sJUazpE25+gcv+txH1bwc9CrhWTaSHau5XSj/+VaPsTR/p2j4onn+/jR7/eTpJYDOCOdkqtRTF9QxXK1Wja715PmMt8O/hZ4r5tVO6/tWnnUo4exxiuXL+SbOAyMFKjFsYk1lILYwZGamQDlyvXr9SWJREZRwmLOca4PuQ7sFY/ehERmVkH1l0I/LQLSOC7dLQEVGoxdz2wmeQwtmBM9dzWJtQeuQsbljH5TowXYGsVkloFa1xsWEmfH2tH2iTG3meUJAS+Q0JawNAxBtcYEmsZLNYYKYcs7spPy93ryebSGCf9O9/RtHMpR9+a47p4y6U9dC8oUA1jhkZqVMOY7gUFtTQVkUnpFvsck7Zfm+lRiIiITK1rwFTrLkz13MneLSQDOzGZlvrxNqrVjydTIBnYSbJ3S1Ntodz/feYCj96hClFicU26zMKxUAtj8hlv2u5eTzaXY5p5LmV6rDmui56VnVOqKyMic5cSFnOMkhUiItIsjmbXgKme21aG0zoL7otcGrkeVOP0uCay//t0jGFeW5bBYo0wStLuKtbiOoaLz1w2bXevZ+tcyvRxjJnW4q8iMnspYSEiIiIz4mh2DZjquU22FRwX4gi8YOIJ4wgcNz2uiRz4PrMZj2zGS+sDJJY4sSSJZe2q6VtqP1vnUkREmo8KGYiIiMiMGOsaUKxEE1qFjnUNONy6C1M9tzN/BU7HEmy1OOnxtlrE6ViCM3/FlMdyNL3Y+wx8l0zgUosSFs+bntoVY2brXIqISPNRwkJERERmxNHsGjDVcxvjEKy7EuNnsaUBbFTD2iT9uzSA8bPp86a5Lp2asfPCbJ1LERFpPooUIiIiMmOOZteAqZ7bW7aW7Hlvwe3qhrACpUEIK7hd3WTPewvesrVH+naPimbsvDBb51JERJqLaliIiIjIjDqaXQOmem5v2VrcpSeR7N2CrQxjsq0481c0/WqAZuy8MFvnUkREmocSFiIiIjLjjmbXgKme2xhnVrbbbMbOC7N1LkVEpDkoxS0iIiIiIiIiTUcJCxERERERERFpOkpYiIiIiIiIiEjTUcJCRERERERERJqOEhYiIiIiIiIi0nSUsBARERERERGRpqOEhYiIiIiIiIg0HSUsRERERERERKTpKGEhIiIiIiIiIk1HCQsRERERERERaTrGWmtnehDNwFpLkmgqDofrOsRxMtPDOKZoThtPc9p4mtPGm845dd3G3LNQ/Dx8+n+o8TSnjaX5bDzNaePNxtgph04JCxERERERERFpOkoRiYiIiIiIiEjTUcJCRERERERERJqOEhYiIiIiIiIi0nSUsBARERERERGRpqOEhYiIiIiIiIg0HSUsRERERERERKTpKGEhIiIiIiIiIk1HCQsRERERERERaTpKWIiIiIiIiIhI01HCQkRERERERESajhIWIiIiIiIiItJ0lLAQERERERERkaajhIW8pM2bN/OJT3yCa665hrVr13LVVVdNety3v/1tLr30Uk499VSuvvpqfvzjH0/zSGeH73//+7znPe/h/PPPZ926dVxzzTV85zvfwVo77jjN56G77777eNOb3sT69es55ZRTuPjii/nMZz7D8PDwuON+9KMfcfXVV3Pqqady6aWX8t3vfneGRjz7FItFzj//fHp6enjsscfGPaff1UNz++2309PTM+HPP/zDP4w7TvN57FD8bCzFz8ZT/Dy6FDsbQ/FzbvNmegDS/DZu3Mh9993H6aefTpIkEy4MAO666y4+/vGPc91117F+/Xo2bNjA9ddfzze+8Q3WrVs3/YNuYv/2b//GsmXLuOGGG+js7OR///d/+fjHP86uXbu4/vrrAc3nVA0MDHDaaafx5je/mY6ODjZu3MhNN93Exo0bueWWWwD41a9+xfXXX8/rX/96PvrRj/LAAw/wV3/1VxQKBS677LIZfgfN74tf/CJxHE94XL+rU/fVr36V1tbW+teLFi2q/7fm89ii+NlYip+Np/h5dCl2Npbi5xxlRV5CHMf1//7whz9sr7zyygnH/OEf/qH90Ic+NO6xN77xjfYd73jHUR/fbNPb2zvhsY997GP2zDPPrM+15vPI3XbbbfbEE0+0u3btstZa+7a3vc2+8Y1vHHfMhz70IXv55ZfPxPBmlWeffdauW7fOfvOb37QnnniiffTRR+vP6Xf10H33u9+1J5544qT/BozRfB5bFD8bS/Fzeih+NoZiZ+Mofs5t2hIiL8lxDv5rsnXrVp5//nkuv/zycY9fccUV/OIXv6BWqx3N4c06XV1dEx5bs2YNIyMjlEolzWeDdHR0ABCGIbVajQcffHDCnaArrriC3/3ud2zbtm0GRjh73HjjjfzJn/wJq1atGve4flcbS/N57FH8bCzFz+mh+NkYip3TR3N6bFPCQo7Ypk2bACb8g7x69WrCMGTr1q0zMaxZ5aGHHmLRokW0tLRoPo9AHMdUq1Uef/xxbr75Zi666CK6u7vZsmULYRhy/PHHjzt+9erVwL7fYZno7rvv5plnnuG9733vhOf0u3p4rrrqKtasWcPFF1/Ml7/85fpyYc3n3KOf+ZFT/GwMxc/GUuw8OhQ/5ybVsJAjNjg4CEBbW9u4x8e+HnteJverX/2KDRs28OEPfxjQfB6JCy+8kN27dwNw3nnn8dnPfhbQnB6ucrnM3/7t3/LBD36QlpaWCc9rXqdmwYIFvO997+P000/HGMOPfvQjvvCFL7B7924+8YlPaD7nIP3Mj4ziZ+MofjaOYmfjKX7ObUpYiMygXbt28cEPfpBzzjmHa6+9dqaHM+t95StfoVwu8+yzz/KlL32J6667jq997WszPaxZ60tf+hLz5s3jda973UwP5Zhw3nnncd5559W//oM/+AMymQy33nor11133QyOTGT2UfxsLMXPxlHsbDzFz7lNW0LkiLW3twNMaIE1NDQ07nkZb2hoiHe+8510dHRw00031fc6az4P30knncQZZ5zBG97wBr74xS/y4IMP8oMf/EBzehi2b9/OLbfcwl/8xV8wPDzM0NAQpVIJgFKpRLFY1Lw2wOWXX04cxzz55JOazzlIP/PDo/jZeIqfjaHYOX0UP+cOJSzkiI3tazxwH+OmTZvwfZ/ly5fPxLCaWqVS4d3vfjfDw8MTWjRpPhujp6cH3/fZsmULK1aswPf9SecUmLA3V2Dbtm2EYci73vUuzjrrLM4666z6XYxrr72Wt771rfpdbTDN59yjn/nUKX4efYqfh0+xc2ZoTo9tSljIEVu+fDnHHXccd99997jHN2zYwLnnnksQBDM0suYURREf+MAH2LRpE1/96lfH9ZAGzWej/OY3vyEMQ7q7uwmCgHPOOYd77rln3DEbNmxg9erVdHd3z9Aom9eaNWv4+te/Pu7PRz7yEQD+5m/+hk9+8pP6XW2ADRs24Loua9eu1XzOQfqZT43i5/RQ/Dx8ip3TR/Fz7lANC3lJ5XKZ++67D0iXuo2MjNT/QTj77LPp6urife97H3/5l3/JihUrOOecc9iwYQOPPvoo//7v/z6TQ29Kf/M3f8OPf/xjbrjhBkZGRnjkkUfqz61du5YgCDSfU3T99ddzyimn0NPTQzab5amnnuJf//Vf6enp4ZJLLgHgPe95D9deey1//dd/zeWXX86DDz7InXfeyec///kZHn1zamtr45xzzpn0uZNPPpmTTz4ZQL+rU/D2t7+dc845h56eHgDuvfdevvWtb3HttdeyYMECQPN5rFH8bCzFz8ZT/Gwsxc6jQ/FzbjPWWjvTg5Dmtm3bNi6++OJJn/v6179e/4f529/+Nv/yL//Cjh07WLVqFR/60Ie48MILp3Oos8JFF13E9u3bJ33u3nvvrd+t0Hweuq985Sts2LCBLVu2YK1l2bJlvOpVr+Ltb3/7uArd9957L1/4whd47rnnWLp0Ke9617t4/etfP4Mjn10efPBBrr32Wr7zne9w6qmn1h/X7+qhufHGG7n//vvZtWsXSZJw3HHH8YY3vIE3v/nNGGPqx2k+jx2Kn42l+Nl4ip9Hn2LnkVP8nNuUsBARERERERGRpqMaFiIiIiIiIiLSdJSwEBEREREREZGmo4SFiIiIiIiIiDQdJSxEREREREREpOkoYSEiIiIiIiIiTUcJCxERERERERFpOkpYiIiIiIiIiEjTUcJCRERERERERJqOEhYiMiO2bdtGT08Pt99++yG/5sEHH6Snp4e77777JY+94YYbuOiii8Y91tPTw0033VT/+vbbb6enp4dt27Yd+sBFRERmkOKniMwlSliIzFG//vWvuemmmxgaGjqs13/jG9+Y0sWSiIjIsUDxU0Rk+ihhITJHPfzww/zTP/3TYV9wffOb3+SOO+5o8Kga51Of+tQh3UkSERGZCsVPEZHp4830AEREjgbf92d6CCIiIrOO4qeINBOtsBCZg2666Sb+/u//HoCLL76Ynp6e+l7UKIq4+eabueSSSzjllFO46KKL+NznPketVqu//qKLLmLjxo388pe/rL/2zW9+MwADAwP83d/9Ha9+9as544wzOPPMM3nHO97BU0891bDxJ0nC5z73OV7xilewbt06rrvuOnbu3DnumMn24IqIiBwJxU8RkemlFRYic9CrXvUqnn/+ee68804+8pGP0NnZCUBXVxcf+9jHuOOOO7j00kt561vfyqOPPsqXv/xlfve733HzzTcD8NGPfpRPfepT5PN5rrvuOgDmz58PwNatW/nhD3/IZZddRnd3N3v37uW2227jTW96E3fddReLFi064vF/6UtfwhjDO9/5Tnp7e7n11lv58z//c/77v/+bbDZ7xOcXERGZjOKniMj0UsJCZA466aSTWLt2LXfeeSeXXHIJ3d3dADz11FPccccdvOENb+DGG28E4M/+7M/o6urilltu4YEHHmD9+vVccsklfOELX6Czs5Nrrrlm3Ll7enq45557cJx9C7iuueYaLr/8cr7zne/w3ve+94jHPzg4yIYNG2hpaQFg7dq1fOADH+Bb3/oW11577RGfX0REZDKKnyIi00tbQkSk7r777gPgrW9967jH3/a2t417/mCCIKhfbMVxTH9/P/l8nlWrVvHEE080ZJx/9Ed/VL/YArjssstYsGDBIY1PRESk0RQ/RUSODq2wEJG67du34zgOK1asGPf4ggULaGtrY/v27S95jiRJ+PrXv85//Md/sG3bNuI4rj/X0dHRkHGuXLly3NfGGFauXHlI4xMREWk0xU8RkaNDCQsRmcAYc9iv/ed//mf+8R//kde97nW8//3vp729Hcdx+PSnP421toGjFBERaS6KnyIijaWEhcgcNdlF1bJly0iShM2bN7N69er643v37mVoaIhly5Yd9PUA99xzD+eccw6f/vSnxz0+NDRUL052pDZv3jzua2stmzdvpqenpyHnFxEReTGKnyIi00c1LETmqFwuB8Dw8HD9sVe+8pUA3HrrreOO/drXvjbu+bHXDw0NTTiv67oT7gR9//vfZ/fu3Y0ZOPBf//VfjIyM1L++++672bNnD+eff37DvoeIiMhkFD9FRKaPVliIzFEnn3wyAJ///Oe54oor8H2fCy+8kNe85jXcdtttDA0NcdZZZ/HYY49xxx13cMkll7B+/fpxr//mN7/JF7/4RVauXElXVxfnnnsuF1xwATfffDMf+chHOOOMM3jmmWf43ve+x/Llyxs29vb2dv70T/+U1772tfW2bCtXruSP//iPG/Y9REREJqP4KSIyfZSwEJmjTjvtNN7//vfzn//5n9x///0kScK9997LjTfeSHd3N3fccQc//OEPmT9/Pu9+97u5/vrrx73+ve99Lzt27OCrX/0qxWKRs88+m3PPPZfrrruOcrnM9773PTZs2MDatWv58pe/zGc/+9mGjf26667j6aef5itf+QrFYpFzzz2XT37yk/W7XiIiIkeL4qeIyPQxVlV8RERERERERKTJqIaFiIiIiIiIiDQdbQkRkRlXq9UYHBw86DGtra1ks9lpGpGIiEjzU/wUkWOdEhYiMuMefvhhrr322oMe85nPfIbXvva10zQiERGR5qf4KSLHOtWwEJEZNzg4yOOPP37QY0444QQWLlw4TSMSERFpfoqfInKsU8JCRERERERERJqOim6KiIiIiIiISNNRwkJEREREREREmo4SFiIiIiIiIiLSdJSwEBEREREREZGmo4SFiIiIiIiIiDQdJSxEREREREREpOkoYSEiIiIiIiIiTUcJCxERERERERFpOv8/2OXPykCG7IYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Distributional representations" + ], + "metadata": { + "id": "aELPYGjj6sEm" + } + }, + { + "cell_type": "code", + "source": [ + "sns.displot(data=tips, x=\"total_bill\", col=\"time\", kde=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "id": "2OA0MofE6nbe", + "outputId": "8246a4d1-2d69-46cf-a976-7a834cec6760" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAHjCAYAAADYCLc2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjItJREFUeJzs3Xd8HOWdP/DPzPaqVe/dttwbNm7YgKkGYwdCySUxuUslORLK5RIuOciPHHfJ7y4JCfWXAIGEXEIoIRAwJoCNAdvggnuVLKt3aVfb68zvj5WEhauk3Z0tn/frpZet0Wie7zyS9pnvPk2QZVkGEREREREREU2IqHQAREREREREROmACTYRERERERFRDDDBJiIiIiIiIooBJthEREREREREMcAEm4iIiIiIiCgGmGATERERERERxQATbCIiIiIiIqIYYIJNREREREREFANMsImIiIiIiIhigAk2UYpbuXIl7rnnHqXDyDh/+ctfUFdXh/379ysdChERnQe2l6M9/PDDqKurUzoMorTDBJsoBXz88cd4+OGH4XQ6lQ4loZjEEhHRWGR6ezn8MWvWLFx00UX4yle+gt///vdwu91Kh0iUMdRKB0BE57Z792488sgjuP7662G1Wkd9bcOGDRAEQaHIiIiIkkemt5ff+c53UFZWhnA4jL6+Pmzfvh3/9V//hWeeeQaPPfYYpk6dOnLuN7/5TXz9619XMFqi9MQEmyjFabVapUMgIiJKepnQXq5YsQKzZs0a+fwb3/gGtm3bhttuuw3f+ta3sH79euj1egCAWq2GWp3cqYDP54PBYFA6DKIx4RBxoiT38MMP47//+78BAJdddtnI8K+2tjYAp84pGx4mtnPnTjzwwANYvHgxFixYgPvuuw/BYBBOpxPf+973sHDhQixcuBD//d//DVmWR5UpSRKeeeYZXHvttZg1axaWLl2K++67D4ODg4m78fN0zz33YOXKlaccP93csrq6Ovz4xz/G22+/jdWrV2PmzJm49tpr8d57753y/d3d3fjBD36Aiy66CDNnzsTKlSvxox/9CMFgcNR5wWAQP/nJT7B48WLMnTsX//zP/4yBgYHY3iQREZ0T28vTW7JkCb71rW+hvb0dr7766sjxibSTw9/b3NyMe+65BwsWLMAFF1yAf/u3f4PP5zslhldeeQU33HADZs+ejQsvvBB33XUXOjs7R52zbt06rF69GgcOHMAXvvAFzJkzB7/4xS9iWBNEiZHcb1sREa644go0NTXhtddew7/9278hOzsbAJCTk3PW73vggQeQl5eHb3/729i7dy/+/Oc/w2KxYPfu3SguLsZdd92F9957D0899RSmTJmCz3zmMyPfe9999+Hll1/GDTfcgHXr1qGtrQ3/+7//i0OHDuFPf/oTNBrNGcsNBoPnPdfrXPcQD7t27cLf//53fP7zn4fJZMKzzz6L73znO9i0adNI3XZ3d+PGG2+Ey+XCzTffjJqaGnR3d+PNN9+E3+8f1QvywAMPwGq14vbbb0d7ezt+97vf4cc//jF++ctfJvzeiIgyGdvLM1u7di1+8Ytf4IMPPsDNN9981nPPp50cduedd6KsrAx33303Dh06hBdeeAE5OTn413/915FzHn/8cfzqV7/CqlWrcOONN2JgYAB/+MMf8IUvfAF//etfRw3ldzgc+NrXvoZrr70Wa9asQW5u7oTum0gJTLCJktzUqVMxffp0vPbaa7j88stRVlZ2Xt+Xm5uLJ554AoIg4Atf+AJaWlrw1FNP4ZZbbsH9998PALjllluwcuVKvPTSSyMPDDt37sQLL7yAn/3sZ7juuutGrrdo0SJ89atfxYYNG0Yd/7ThB5vzcfTo0fM6L5aOHz+O9evXo6KiAkD0vtauXYvXX38dX/ziFwEAv/jFL9DX14fnn39+1FC7O+6445TeC5vNht/+9rcj8/okScKzzz4Ll8sFi8WSoLsiIiK2l2dWVFQEi8WC1tbWc557Pu3ksGnTpuG//uu/Rj53OBx48cUXRxLs9vZ2PPzww7jzzjtx2223jZx35ZVX4vrrr8cf//jHUcd7e3tx//3343Of+9yE7pdISUywidLUjTfeOGoxl9mzZ2P37t248cYbR46pVCrMnDkTBw8eHDm2YcMGWCwWLFu2bNRQ5xkzZsBoNOKjjz466wPDRRddhKeffjrGdxM7S5cuHXloAKIPZGazeeShQ5IkvP3227j00ktHJdfDPr1Azs033zzq2IIFC/DMM8+gvb191GIyRESUnDKlvTQajfB4POc871zt5Mk+nQgvWLAAb731FtxuN8xmM9566y1IkoRVq1aNqqO8vDxUVlbio48+GpVga7Va3HDDDeO5PaKkwQSbKE2VlJSM+ny4N7W4uPiU4yfPFWtubobL5cKSJUtOe93+/v6zlltQUICCgoLxhJwQn75/AMjKyhrZ0mVgYAButxuTJ08+r+t9up6Hh7pl2hYxRESpKlPaS6/Xe15Drs/VTp7sTG3g4OAgzGYzmpqaIMsyrrzyytOW9elF1goLCzNiMTpKb0ywidKUKJ5+DcMzHR8mSRJyc3Pxs5/97LRfP9c8ML/fD5fLdV4x5ufnn9d5Z3OmLVcikchpj6tUqtMe//TQ7/N1pvoc7/WIiCixMqG97OrqgsvlGtUzfSZjaSfP1QZKkgRBEPDEE0+c9rpGo3HU58MrnBOlMibYRCkgkft2VlRUYNu2bZg/f/64Grr169cndA621Wo97bvqHR0d47peTk4OzGYz6uvrJxoaERElGNvL03vllVcARIelJ1JFRQVkWUZZWRmqq6sTWjaRUphgE6WA4T0gz/ed7olYtWoV/vjHP+Kxxx7D3XffPepr4XAYXq931Iqfn5boOWUVFRVwuVw4cuTIyJznnp4evPXWW+O6niiKuPzyy/Hqq69i//79p8zDlmU5oQ9wRER0/thenmrbtm147LHHUFZWhjVr1sS9vJNdeeWV+MUvfoFHHnkEP/vZz0a1n7Isw+FwnLIyOVGqY4JNlAJmzJgBAHjwwQdxzTXXQKPR4NJLLz1laFUsXHjhhbjlllvw61//GocPH8ayZcug0WjQ1NSEDRs24Ic//CGuvvrqM35/POaUvfTSS3j//fdPOX7rrbfimmuuwc9+9jPcfvvtWLduHfx+P/70pz+hurp61GI0Y3H33Xdjy5YtWLduHW6++WbU1tait7cXGzZswB//+MezPjAREZFyMr29fO+999DY2IhIJIK+vj589NFH2LJlC0pKSvD4449Dp9PFtLxzqaiowJ133omf//znaG9vx+WXXw6TyYS2tja8/fbbuPnmm/GVr3wloTERxRsTbKIUMHv2bNxxxx147rnn8P7770OSJLzzzjtxeWAAgB//+MeYOXMmnnvuOTz44INQqVQoLS3FmjVrMH/+/LiUeTZ/+tOfTnv8hhtuQFFRER555BH89Kc/xf/8z/+M7MfZ3Nw87gS7sLAQzz//PH71q1/hb3/7G9xuNwoLC7FixQrODyMiSmKZ3l4+9NBDAACNRgObzYYpU6bgBz/4AW644QaYzeaExwMAX//611FVVYVnnnkGjz76KIDotmHLli3DypUrFYmJKJ4EmSvxEBEREREREU3Y2ZdHJCIiIiIiIqLzwgSbiIiIiIiIKAaYYBMRERERERHFABNsIiIiIiIiohhggk1EREREREQUA0ywiYiIiIiIiGKA+2APiUQkDAx4lA4j5YiigJwcEwYGPJAk7vgWC6zT2GOdxhbrM/YSXaf5+ZaYXIdt5/jwbyj2WKexxfqMPdZp7CVr28kebJoQURQgCAJEUVA6lLTBOo091mlssT5jj3WaWfjzjj3WaWyxPmOPdRp7yVqnTLCJiIiIiIiIYoAJNhEREREREVEMMMEmIiIiIiIiigEm2EREREREREQxwASbiIiIiIiIKAaYYBMRERERERHFABNsIiIiIiIiohhggk1EREREREQUA0ywiYiIiIiIiGKACTYRERERERFRDDDBJiIiIiIiIooBJthEREREREREMZBUCfbmzZvxxS9+EYsXL8bMmTNx2WWX4Sc/+QlcLteo8zZu3Ig1a9Zg1qxZuOqqq/DSSy8pFDERERERERFRlFrpAE7mcDgwe/ZsrFu3DjabDfX19Xj44YdRX1+P3/72twCAnTt34vbbb8eNN96IH/zgB/jwww/xwx/+ECaTCVdffbXCd0BERERERESZKqkS7LVr1476fNGiRdBqtbj33nvR3d2NwsJCPP7445g9ezZ+/OMfAwAWL16M1tZWPPTQQ0ywiYiIiIiISDFJNUT8dGw2GwAgFAohGAzio48+OiWRvuaaa3D8+HG0tbUpECERERERERFRkvVgD4tEIgiHw2hoaMCjjz6KlStXoqysDA0NDQiFQqipqRl1fm1tLQCgsbERZWVl4y5XrU769xuSjkoljvqXJo51Gnus09hifcZeKtcp286xU+LnLQgCRFFIWHkAIMuAkKAih+9NrVYlpsA0l8qvScmKdRp7yVqnSZlgX3rppeju7gYALF++HD//+c8BAIODgwAAq9U66vzhz4e/Ph6iKCA72zTu7890VqtB6RDSDus09linscX6jL1Uq1O2nROTyJ+3LMsQEpXtDpFkGWKCyzSbdQm/z3SWaq9JqYB1GnvJVqdJmWD/5je/gc/nQ0NDAx5//HHcdtttePrpp+NapiTJcDq9cS0jHalUIqxWA5xOHyIRSelw0gLrNPZYp7HF+oy9RNdprJJitp3jk+if93B57+5sgcMViHt5AFBWaMaC6cXYvKsVdqc/7uWJIpCXbcLS2SV8bYoBvs7HHus09pK17UzKBHvq1KkAgHnz5mHWrFlYu3Yt3nrrLUyaNAkATtm2y+l0AgCysrImVG44zF/28YpEJNZfjLFOY491Glusz9hLxTpNtXiTSaJ/3gNOP/odvriWEQpLcHmD6B7wwhuI4EjzAMKhCLSa+A7dFkUBGk30sTYV/46SFesy9linsZdsdZqUCfbJ6urqoNFo0NLSgpUrV0Kj0aCxsRHLly8fOaexsREATpmbTURERETxJcsyuga8aOl2o9fhgyRHj7+2tWnknLwsPcoKzCjLNyV82DgRUSIl14zw09i7dy9CoRDKysqg1WqxaNEivPnmm6POWb9+PWpraye0wBkRERERjY3DHcCWA13YcaQX3fZocq3XqlCca8KMmlyYDBoAQN+gH3vq+7B5dwd67PHtRSciUlJS9WDffvvtmDlzJurq6qDX63HkyBE89dRTqKurw+WXXw4A+OY3v4lbb70V/+f//B+sWrUKH330EV577TU8+OCDCkdPRERElBlkWUZzlwv7TwxAlgGVKKC62IKyAjOsRi1qy2xYeWEl/rqpHk2dg2jv9aCxwwmXL4QPD3WjutiCGVU5CV/ZnIgo3pIqwZ49ezbWr1+P3/zmN5BlGaWlpbjpppvwla98BVqtFgCwYMECPPzww/jlL3+JF198ESUlJXjggQewatUqhaMnIiIiSn+yLGPf8X40d7sBAEU5RsyqyYFBd/rHSpNegynlNlQVW3CsxYHGThdOdLrgcAdx4bQC6OI8P5uIKJGSKsH++te/jq9//evnPO+yyy7DZZddloCIiIiIiGiYLMvY29CPlp5ocj2tMhuTSq3ntTWWVq3CzJpc5NkM+PhYL+yuALYe6MLSGUXQaZlkE1F6SPo52ERERESkPFmWsb9xYCS5XlCXj8llWWPed7oox4jls4uh16rg8oaw5UAXAsFIPEImIko4JthEREREdE5NXS40dUW3Sp0/OQ8leePfT91i1GLpzCLotSq4fSFsP9KDiJQ82+wQEY0XE2wiIiIiOqv+QT8OnBgAAEyvykZZgXnC1zQbNFg6owgalQi7K4Dd9X2QZXnC1yUiUhITbCIiIiI6o0Aogp1HeyDLQGmeCbUl1phd22zUYOHUfAgC0NHnRUO7M2bXJiJSAhNsIiIiIjqt4RXDAyEJFqMGcybljnnO9bnk2QyYVZ0DADjSYseAyx/T6xMRJRITbCIiIiI6rY4+Lzr7vRAEYN7kPKhV8Xl0rCyyoCTXCFkGPj7ah1CYi54RUWpigk1EREREpwiEItjf2A8AmFyWBZtZF7eyBEHAnEl5MOrU8AbCOHDCHreyiIjiiQk2EREREZ3iSIsDwXB0aPiUMlvcy9OoRcybkgcAaO1xo8fui3uZRESxxgSbiIiIiEYZdAfQPLQl1+yaXIhibOddn0muVY/qYgsAYO/xPoTD3LqLiFILE2wiIiIiGiHLMvY3RrfkKs0zITdLn9Dyp1Vmw6hTwxeI4EirI6FlExFNFBNsIiIiIhrRNeDFgCsAlShgelV2wstXq0TMro2uKn6i0wmXN5jwGIiIxosJNhEREREBiPZeH2lxAABqSqww6NSKxFGQbURRjgGyDOxvHIAsy4rEQUQ0VkywiYiIiAgA0N7rgcsbgkYlYlKpVdFYZlTnQBSAvkE/Oge8isZCRHS+mGATERERESRJxtGhOc+1pVZo1CpF4zHpNZhUmgUAONxkhySxF5uIkh8TbCIiIiJCe58HHn8YWo2ImhJle6+HTSrNglYjwuMPo7nbpXQ4RETnxASbiIiIKMPJsoyG9kEAQG2JFWpVcjwiqtUi6sptAICjrQ5u20VESS85Xj2JiIiISDHddh9c3hDUKgFVRRalwxmlstACk16NYEjC8Q6n0uEQEZ0VE2wiIiKiDNfQFu29riqyKD73+tNEUcDUiuh2Ycc7BhEKRxSOiIjozJhgExEREWWwAacfA64ARAFJM/f600ryjLAYNQhHZPZiE1FSY4JNRERElMFOdEYXDyvNN0OvVWbf63MRBGFkLnZjhxPBEHuxiSg5McEmIiIiylD+QBgd/R4AQE1xcs29/rTiXCOspmgvdiN7sYkoSTHBJiIiIspQTd0uyDKQY9Uhy6xTOpyzEgQBU8psAKK97lxRnIiSERNsIiIiogwkSTKau6LDw6uLk3Pu9acV5xph0qsRikjcF5uIkhITbCIiIqIM1NnvQSAkQa9VoTjHqHQ450UQBEwqzQIAHO9wQpJkhSMiIhqNCTYRERFRBmrudgMAKgrNEEVB4WjOX1mBCTqNCv5gBG29bqXDISIahQk2ERERUYbx+ELoG/QDACoKkntxs09TieLIdmIN7U7IMnuxiSh5MMEmIiIiyjAtPdGe3wKbAUZ9cm7NdTZVRRaoVQLcvhC6B3xKh0NENIIJNhEREVEGkSQZLScND09FGrWIqqJoz3t9+6DC0RARfSL13rIkIiIiSmGCEJ3vrFIlpp/j0+X0OHwIhCLQakQUpcjiZqdTU2JFY4cTdlcA/YN+lKTYUHciSk9MsImIiIgSRBQFWK0GABj5N1EERBP71qHh4WX5qbW42afptWqUFZjR0u1GQ/sgZk3OVzokIiIm2ERERESJIooCRFHA1n0d6On3QErAAl1lhRZcOKMYggAEwxF0D3gBAOUFqTk8/GS1JVa0dLvR2e+FyxNUOhwiIibYRERERIk26A6gf9CXkH2cbWbdyP87+ryQZMBq1CDLpI172fFmMWqRl6VH36AfBxr7cbPSARFRxuMiZ0REREQZom14eHga9F4PqymObtl16MQA/MGwwtEQUaZjgk1ERESUAZyeIAZcAQBAWZ5J4WhipzDHAKNOjUAogs0ftysdDhFlOCbYRERERBngeEd0O6t8mx56XfrMEhQEAdUl0V7s1z5ohJyAee1ERGfCBJuIiIgoA5zocAIAStOo93pYZaEZapWApk4njrY4lA6HiDIYE2wiIiKiNNfcGd0vWhCA4tzU3fv6TLQaFaZUZAMA3trRqnA0RJTJmGATERERpbn390TnJhfYDNCoVQpHEx+zanMBALuO9mLA6Vc4GiLKVEywiYiIiNKYLMsjCXZpfvoNDx+Wm2XA7El5kGQZm3ZzsTMiUgYTbCIiIqI01mP3oaPPA5UooCg7/YaHn+zaZdUAgPf3diAckRSOhogyERNsIiIiojTW0B5dPby8wAy1Or0f/S6cUQSbWQunN4SPj/UqHQ4RZaD0fpUlIiIiynANbdEEu7LIqnAk8adWiVgxtxQAsHlPh8LREFEmYoJNRERElKbcvhAGnH6oRAHlhWalw0mIS+aWQABwuNmO7gGv0uEQUYZhgk1ERESUpjr7ownmrEl50GnSc/XwT8uzGUZWFN+8l73YRJRYTLCJiIiI0lTXUA/uklnFCkeSWBfPLQEAfLCvE6EwFzsjosRhgk1ERESUhvzBMOyuAABg0YwihaNJrNm1uci26OD2cbEzIkosJthEREREaahrwAcAKMoxIjfLoHA0iaUSRSyfHe2137yHe2ITUeIwwSYiIiJKQ539HgBAbVmWwpEoY8WcEggCcKTFMVIXRETxxgSbiIiIKM2EwhL6Bv0AgEmlmZlg51j1mFObB4BbdhFR4qiVDuBkb7zxBl599VUcPHgQTqcTlZWVWLduHT772c9CEAQAwLp167B9+/ZTvnf9+vWora1NdMhERERESafb7oUsA2aDBjlWvdLhKObiuSXY09CHrQe6cOMltVCr2LdERPGVVAn2M888g9LSUtxzzz3Izs7G1q1bce+996Krqwu33377yHnz58/H97///VHfW1ZWluhwiYiIiJJS19D2XEU5RoUjUdbMmhzYzFo43EHsqe/DgqkFSodERGkuqRLsxx9/HDk5OSOfL1myBA6HA08//TS+9a1vQRSj7zparVbMnTtXoSiJiIiIkldEktBtjy5wVpyb2Qm2ShSxbFYxXt/WjPf3dTLBJqK4S6pxMicn18OmTZsGt9sNr9erQEREREREqaXP4UdEkqHXqmAza5UOR3EXDa0mfuBEPwacfoWjIaJ0l1Q92Keza9cuFBYWwmw2jxzbvn075s6di0gkgjlz5uCOO+7AwoULJ1yWWp1U7zekBNXQXCYV5zTFDOs09linscX6jL1UrlO2nWNz8s9YFIW4lNHj+GR7LpVKHFnHRhTjV+anJbrMk8vQaFSj6rmiyIqpldk40mzHR4d78JkVNTEtW5JkyLIc02sqLZVfk5IV6zT2krVOkzrB3rlzJ9avXz9qvvXChQuxdu1aVFVVoaenB0899RT+6Z/+Cc8++yzmzZs37rJEUUB2tikWYWckqzWz9tdMBNZp7LFOY4v1GXupVqdsOydGp9PE/JqyLKPHEe2lrSiywmDQQqtVAQA0GjUMhsT0aCtRpl6rgizLMJtPXdRt1dIqHGm24/19HfjiNdNjmvTLsjzyhkK6SbXXpFTAOo29ZKvTpE2wu7q6cNddd2HRokW49dZbR45/5zvfGXXeJZdcgtWrV+Oxxx7DE088Me7yJEmG08lh6GOlUomwWg1wOn2IRCSlw0kLrNPYY53GFusz9hJdp7FKitl2jt3wzxoAAoEQJCm2PZ8ubxAeXwiiAFiNavh8QQSDEQBAKBSGzxeMaXlnkugyRVGAVqOCIAjYvKsV9k8NBQ+FJWjUIrr6vfj1S3tRnBebvwGbRYdLFlSk3eshX+djj3Uae8nadiZlgu10OvG1r30NNpsNDz/88MjiZqdjNBpx8cUX480335xwueEwf9nHKxKRWH8xxjqNPdZpbLE+Yy8V6zTV4k0mkiTHPMHuGoi+4ZFj1UMUhFHDlyUJMS/vTJQoc5jd6Uev/dQ3fkpyjWjudmPf8T6oVbHpcZaG7jMV/3bPR7rel5JYp7GXbHWaXAPWAfj9fnzjG9+Ay+XCk08+CYvFonRIRERERCmhZ2j18MLs5BoymQwqCqPPlJ39XoSS6GGciNJLUiXY4XAYd955JxobG/Hkk0+isLDwnN/j9Xrx7rvvYtasWQmIkIiIiCg5hSMS+gejQ6MLmGCfwmbWwmLUICLJaO/zKB0OEaWppBoifv/992PTpk2455574Ha7sWfPnpGvTZ8+Hfv27cOTTz6JK664AqWlpejp6cHTTz+N3t5e/OpXv1IucCIiIiKF9Q/6IcmAQaeC2RD7BdRSnSAIqCgw42CTHS3dLlQVcZQkEcVeUiXYW7ZsAQD89Kc/PeVr77zzDvLz8xEKhfDggw/C4XDAYDBg3rx5uP/++zF79uxEh0tERESUNLqHhocXZBvTdlXriSorMONQsx0OdxBOTxBWE/cJJ6LYSqoEe+PGjec856mnnkpAJERERESpI7o919D8axuHh5+JTqNCUY4Rnf1etHS7MbMmR+mQiCjNJNUcbCIiIiIaO48/DK8/DFEA8myn7gNNn6goMAMA2nrdCV/hnIjSHxNsIiIiohQ3vHp4jlUPtYqPd2eTn22AXqtCMCyNbGtGRBQrfAUmIiIiSnHdQ/s+c/XwcxMFAeVDvdgt3W6FoyGidMMEm4iIiCiFnbw9F/e/Pj/DCXaPwwdfIKxwNESUTphgExEREaUwbs81dmaDBjlWHYDoXGwiolhhgk1ERESUwoZXDy+wGbg91xhUnDRMXJa52BkRxQYTbCIiIqIU1jc0PDyf23ONSUmuCSpRgMcfht0VUDocIkoTTLCJiIiIUpQ/GIbLGwIA5GVxe66xUKtFlOQZAQCtPRwmTkSxwQSbiIiIKEX1OaK911kmLbQalcLRpJ7yAgsAoL3Pg3BEUjgaIkoHTLCJiIiIUlTvyPBw9l6PR65VB6NOjXBERmc/98Qmooljgk1ERESUgmRZRt/QAmd5nH89LsJJe2JzmDgRxQITbCIiIqIU5PGH4QtGIApAjkWndDgpazjB7hv0w+vnnthENDFMsImIiIhSUO9Q73WOVQ+1io9042XUq0cWiGMvNhFNFF+NiYiIiFLQ8PZcXD184k4eJs49sYloIphgExEREaWY6Pxr7n8dK8W5RqhVAryBMPqdfqXDIaIUxgSbiIiIKMUMuoMIRSSoVQKyzFqlw0l5apWI0jwTAKClm8PEiWj8mGATERERpZjewaHVw7P0EAVB4WjSw/Aw8c5+L8Jh7olNROPDBJuIiIgoxfQ6hudfc3h4rGRbdDAb1IhIMjr6PUqHQ0Qpigk2ERERUQqJSBIGXAEAQL6NC5zFysl7YrdwNXEiGicm2EREREQpZMAZgCTJ0GlUMBs0SoeTVsrzown2gDMAty+kcDRElIqYYBMRERGlkOHtufJtegicfx1Tep0aBdnRYffcE5uIxoMJNhEREVEK4f7X8VXBPbGJaAKYYBMRERGliHBEgsMdnX+dywQ7LgpzDNCoRfiDkZHF5IiIzhcTbCIiIqIUYXcFIMuAQauCUadWOpy0pBI/2RObw8SJaKyYYBMRERGliOHh4blZnH8dTxWFw3tiexAMRxSOhohSCRNsIiIiohTR7/wkwab4yTJpYTFqIMlARy/3xCai88cEm4iIiCgFhCMSHEP7X+damWDHkyAII4udcU9sIhoLJthEREREKcDuCkCSAb1WBZOe86/jrSzfDEEAHO4gXN6g0uEQUYpggk1ERESUAkaGh1s5/zoRdFoVCof2xG7pZi82EZ0fJthEREREKaB/kPOvE628wAIAaOt1Q+Ke2ER0HphgExERESW5iCTBPjT/Oo8JdsIUZhug1YgIhCT02H1Kh0NEKYAJNhEREVGSG55/rdNw/nUiiaKAsvzoYmfcE5uIzgcTbCIiIqIk1z/4Se81518n1vBq4l0DXgRC3BObiM6OCTYRERFRkvtkgTOdwpFkHqtJiyyTFrIMtHNPbCI6BybYREREREksIskYGN7/mvOvFVFRyD2xiej8MMEmIiIiSmIOVwCSJEOrEWE2aJQOJyOV5pkgCoDTE8SgO6B0OESUxJhgExERESWxvqHh4Xnc/1oxWo0KRTlGAOzFJqKzY4JNRERElMQGnNz/OhmUDw0Tb+/1QJK4JzYRnR4TbCIiIqIkJckyBpzRIck5VibYSiqwGaDXqhAMS+iye5UOh4iSFBNsIiIioiTl9AQRkWSoVQKsRs6/VpIgnLQndjeHiRPR6THBJiIiIkpSJ/dec/618ob3xO6x++APhhWOhoiSERNsIiIioiTF/a+Ti9moQbZFBxlAWw/3xCaiUzHBJiIiIkpCsiyPLHCWY+H862Qx3Ivd2uOGLHOxMyIajQk2ERERURLy+MMIhCSIAmCzaJUOh4aU5JmgEgW4fCH0DfqVDoeIkgwTbCIiIqIkNNx7bTProBL5yJYsNGoRxbnRPbHrWx3KBkNESYev1kRERERJiNtzJa/yoWHiJzqcCIQiCkdDRMmECTYRERFREuICZ8krL0sPgy66J/ZHBzqVDoeIkggTbCIiIqIk4w9G4PFHt4HKZoKddARBGOnFfnt7i8LREFEyYYJNRERElGQGXNHea4tRA61apXA0dDrDCfae+l70c7EzIhqSVAn2G2+8gW9+85tYsWIF5s6di7Vr1+LFF188ZQuEF154AVdddRVmzZqFNWvWYNOmTQpFTERERBR7A4PR+de5nH+dtEx6DYpyjJBlYMt+DhMnoqikSrCfeeYZGAwG3HPPPXj88cexYsUK3HvvvXj00UdHznn99ddx7733YtWqVXjiiScwd+5c3H777dizZ49ygRMRERHF0HAPdg6Hhye1SeVZAID393ZwT2wiAgColQ7gZI8//jhycnJGPl+yZAkcDgeefvppfOtb34IoinjooYdw7bXX4s477wQALF68GMeOHcOjjz6KJ554QqHIiYiIiGIjHJEw6A4CYA92sqsqsmLXkR50232obxvElHKb0iERkcKSqgf75OR62LRp0+B2u+H1etHa2oqmpiasWrVq1DnXXHMNtm3bhmAwmKhQiYiIiOLC7gpABmDQqWDQJVVfCH2KRi3iojmlAIAPOEyciJBkPdins2vXLhQWFsJsNmPXrl0AgOrq6lHn1NbWIhQKobW1FbW1teMuS61OqvcbUoJKJY76lyaOdRp7rNPYYn3GXirXKdvOsTn5ZyyKwmnPGXB9Mv/6TOeMhSAIQ+WducxYS3SZJ5eRyPsUBQGXLazAW9tbsPNID7509VTotKm/KF0qvyYlK9Zp7CVrnSZ1gr1z506sX78e3//+9wEAg4ODAACr1TrqvOHPh78+HqIoIDvbNO7vz3RWq0HpENIO6zT2WKexxfqMvVSrU7adE6PTaU573DE0PLwozwSDQTvhcrRDCZ9Go47J9ZK1zGGJLFOnU2N6dQ6K80zo7PPgYIsDly2sSEjZiZBqr0mpgHUae8lWp0mbYHd1deGuu+7CokWLcOutt8a9PEmS4XR6415OulGpRFitBjidPkQiktLhpAXWaeyxTmOL9Rl7ia7TWCXFbDvHbvhnDQCBQAiSNHphLFmW0T/oAwBY9Gr4fBOf/hYMRgAAoVA4JtdLxjJP7rFO5H0atSoIgoCLZhXjhU0NeHNbE+ZPyk1I2fHE1/nYY53GXrK2nUmZYDudTnzta1+DzWbDww8/DFGMdvtnZUVXanS5XMjPzx91/slfH69wmL/s4xWJSKy/GGOdxh7rNLZYn7GXinWaavEmE0mST0mwBz1BhCMyVKIAs0FzytfHY3h1a0lCTK6XrGUOS2SZ0tB9Lp1ZhBc3NeBwsx0dvW4UZBsTUn68peJrUrJjncZestVpcg1YB+D3+/GNb3wDLpcLTz75JCwWy8jXampqAACNjY2jvqexsREajQbl5eUJjZWIiIgoluxD86+zLbqRecyU/HKz9JhRHV2s9/19XOyMKJMlVYIdDodx5513orGxEU8++SQKCwtHfb28vBxVVVXYsGHDqOPr16/HkiVLoNUmdo4PERERUSzZh/e/tnD/61SzYk4JAOCDfZ0IcwgwUcZKqiHi999/PzZt2oR77rkHbrcbe/bsGfna9OnTodVq8e1vfxvf/e53UVFRgUWLFmH9+vXYt28f/vCHPygXOBEREVEMDDg/6cGm1DJ3ch6sRg0GPUHsO96P+VPyz/1NRJR2kirB3rJlCwDgpz/96Slfe+edd1BWVobVq1fD5/PhiSeewG9+8xtUV1fjkUcewbx58xIdLhEREVHMBEIRePxhAEywU5FaJWLZrGK88VEL3tvbwQSbKEMlVYK9cePG8zrvpptuwk033RTnaIiIiIgSZ3j+tdmghlaT+nspZ6IVc0rwxkct2N/YjwGnHzlWvdIhEVGCJdUcbCIiIqJM9ckCZ0zKUlVhjhFTK2yQZS52RpSpmGATERERJYHhBJsLnKW24cXO3t/XkfAtyohIeUywiYiIiBQmyfKoLboodV1Qlw+TXo0BZwAHTgwoHQ4RJRgTbCIiIiKFuTxBRCQZapUAi1GjdDg0RiqVCLU6+mHQa7BsdjGAaC/28PFYfogi90gnSlZJtcgZERERUSYaOKn3WhCYPKUKg04NWZZhtRpGHV9z8ST8fXsr9tT3QVapYr7YmSTJsNs9HIJOlISYYBMREREpjMPDU5NOo4IgCHh3ZwsGnP5RX8u3GdDr8OGh5z7G7El5MSvTZtFh5cJKiKLABJsoCTHBJiIiIlLYABc4S2kOVwD9Dt+oY6V5RvQ6fDjcbEdJrpEjE4gyBOdgExERESkoEIzA6w8DYA92OinJM0GtEuD1h9E36D/3NxBRWmCCTURERKSg4eHhFoMGGrVK4WgoVtQqEaX5ZgBAc7dL4WiIKFGYYBMREREpaIDzr9NWZWE0we7q9yIQiigcDRElAhNsIiIiIgXZXdHhw9lWJtjpxmbWIcukhSQDrT1upcMhogRggk1ERESkEEmS4XAHAXCBs3RVVWQBADR1uSDLXPWbKN0xwSYiIiJSiNMbRESSoVGJMBs0SodDcVCa/8liZ70OLnZGlO6YYBMREREp5OT9r7mNU3pSq0SUF0TnYjd1cbEzonTHBJuIiIhIIQNOLnCWCSqHhol3DXjhC4QVjoaI4kmtdACU2obfbVep0vu9GkmSIUmcN0VERLE10oPNBc7SmtWoRa5Vh35nAM3dLkytyFY6JCKKEybYNG6iKMBqNQDAyL+JIMkyxAQPo5MkGXa7h0k2ERHFjD8YhneoNzPbzAQ73VUVWaIJdpcbU8psEEVOCSBKR0ywadxEUYAoCti6rwM9/R5ICVgZs6zQggtnFOPdnS0YcCZmoRCbRYeVCyshigITbCIiipnh4eEWowYadXqPBCOgONcErWYAgVAEXXYvSnJNSodERHHABJsmbNAdQP+gLyHJp23oHX6HK4B+hy/u5REREcXLwNDwcG7PlRlEUUBloQX1bYNo6nQxwSZKU3y7lIiIiEgB9qGRWFzgLHNUFkZXE+8b9MPtCykcDRHFAxNsIiIiogSLSBLs7iAAIMeiVzgaShSjXoPC7Oi6Ndyyiyg9McEmIiIiSrA+hx+SJEOjFmEycMZeJqka2rKrtceNSERSOBoiijUm2EREREQJ1j3gBRAdHi4keGcMUlZBtgEGnQqhsIT2fq/S4RBRjI07wb711luxbdu2M379ww8/xK233jreyxMRERGlra5+DwAucJaJBCG62BkANHc6FY6GiGJt3An29u3b0dfXd8avDwwMYMeOHeO9PBEREVHa6jqpB5syT0WhBYIA2N1BDLoDSodDRDE0oSHiZxvS1NzcDJOJ2w8QERERnax/0Ae3N7qCdLaZCXYm0mtVI9t0nejkYmdE6WRMq2q8/PLLePnll0c+f/zxx/H888+fcp7L5cLRo0exYsWKiUdIRERElEaONNsBAFaTFmo1l8PJVNXFFrT3edDW58G0qmzoNCqlQyKiGBhTgu3z+WC320c+93g8EMVTGwaj0YjPfe5z+Od//ueJR0hERESURo40DQDg/OtMl23RIcukxaAniJZuFyaX2ZQOiYhiYEwJ9uc//3l8/vOfBwCsXLkSP/zhD3HZZZfFJTAiIiKidHR0qAc7x8oEO5MJgoDqEiv21PehqdOF2tIsiFxRnijljXvjxY0bN8YyDiIiIqK0FwpLaGhzAAByrHplgyHFleYZceiECF8wgq5+L0ryuH4RUaobd4I9zO12o6OjA06nE7Isn/L1hQsXTrQIIiIiorTQ3OVCKCxBr1XBpFfjNI9OlEFUoojKIgvq2wZxotPJBJsoDYw7wR4YGMADDzyAv//974hEIqd8XZZlCIKAw4cPTyhAIiIionTR0O4AABTmGCEIwmk7JyizVBVZ0NA2iH5nAIOeILJMWqVDIqIJGHeCfd9992HTpk1Yt24dFixYAKvVGsu4iIiIiNJOQ9sgAKAolz2VFGXQqVGca0RHvxcnOpyYOzlP6ZCIaALGnWBv2bIFX/rSl/C9730vlvEQERERpa1PEmwjOD6chlWXWNHR70VbnwfTq7Kh5ZZdRClr3Jsv6vV6lJaWxjIWIiIiorQ14PRjwBWAKAooyDYqHQ4lkZyhLbskSUZzt1vpcIhoAsadYK9ZswZvv/12LGMhIiIiSlvHO5wAgKpiKzTqcT+CURoSBAHVxRYAQFOXExJHNxClrHEPEb/qqquwY8cOfOUrX8Ett9yCoqIiqFSnDmeZMWPGhAIkIiIiSgfDw8OnVmYrHAklo9J8Ew412eELRNA14EUJ5+kTpaRxJ9if//znR/6/devWU77OVcSJiIiIPnG8YyjBrsqBPxBWOBpKNqO27OpwMcEmSlHjTrB/8pOfxDIOIiIiorQVCkfQ3OUCAEyrysHuoz0KR0TJ6JMtu/zcsosoRY07wb7++utjGQcRERFR2mruciMiybCatCjM4QJndHrcsoso9XGFDSIiIqI4a2iPDg+fVJoFQRAUjoaSWU2JFQDQ1uuGP8ipBESpZtw92P/2b/92znMEQcB//dd/jbcIIiIiorQwPP96UlmWwpFQssux6pFt0cHuCuBEpwvTuCgeUUoZd4L90UcfnXJMkiT09vYiEokgJycHBoNhQsERERERpTpZlkf1YBOdS22pFTuP9KKpy4XJZVlQqzjolChVjDvB3rhx42mPh0Ih/PnPf8bvfvc7/Pa3vx13YERERETpoN/px6A7CJUooHpo+C/R2RTnGGHUq+H1h9Ha40Z1MX9viFJFzN8O02g0+OIXv4hly5bhP/7jP2J9eSIiIqKUcrzdCQAoLzBDp1EpHA2lAkEQUDv0ZszxDidkWVY4IiI6X3EbbzJ16lTs2LEjXpcnIiIiSgnHh4aH13J4OI1BeYEZGrUIrz+MrgGv0uEQ0XmKW4K9detWzsEmIiKijDe8wFltKYf50vlTq0RUFVkAfDIKgoiS37jnYD/yyCOnPe5yubBjxw4cOnQIX//618cdGBEREVGqC4YiaOl2AwAmlbAHm8amutiC4+2DGHAFMODyI8eiVzokIjqHmCfYWVlZKC8vx/3334+bb755TNdsbm7GU089hb1796K+vh41NTV47bXXRp2zbt06bN++/ZTvXb9+PWpra8dUHhEREVE8NXW5EJFkZJm0yM1ickRjo9eqUZpvRmuPG8fbnciZyt8homQ37gT7yJEjsYwDAFBfX4/Nmzdjzpw5kCTpjAs6zJ8/H9///vdHHSsrK4t5PEREREQTcfL8a0EQFI6GUlFtiRWtPW509nvh8YeQC07BJEpm406w42HlypW4/PLLAQD33HMPDhw4cNrzrFYr5s6dm8DIiIiIiMaO+1/TRFlNWuTb9Oh1+NHY4URFEefyEyWzCSfY27dvx7vvvouOjg4AQElJCS655BJceOGFY76WKMZtzTUiIiKihJJlGcc7ootTcYEzmoja0iz0Ovxo6XYjEIooHQ4RncW4E+xgMIh/+Zd/wdtvvw1ZlmG1RhsOp9OJp59+GldccQV+/vOfQ6PRxCzYYdu3b8fcuXMRiUQwZ84c3HHHHVi4cOGEr6tWM8EfC5Xqk/oSxcQMexseXieKiStTHCrz5PuNp+FyElVeJmCdxhbrM/ZSuU7Zdp5Zr90HpycIlSigtiwLarWYMW1noss8uYx0vM/CbAOsJi2cniCOtTgAxPf1IpVfk5IV6zT2krVOx51gP/roo3jrrbfw5S9/GV/+8peRl5cHAOjv78dvf/tbPPXUU3j00Udx5513xipWAMDChQuxdu1aVFVVoaenB0899RT+6Z/+Cc8++yzmzZs37uuKooDsbFMMI80sOl3s30g5Ha1WBQDQaNQwGLQJKVOni/6ZWK2JnfOU6PIyAes0tlifsZdqdcq28+z2nrADAGrLslCYf2oPdjq3nUqUOSxd73N6dQ4+PNCFgyf64Q+GE/J6kWqvSamAdRp7yVan406w//a3v+H666/H9773vVHHc3Nz8a//+q/o7+/Hq6++GvME+zvf+c6ozy+55BKsXr0ajz32GJ544olxX1eSZDid3omGl1FUKnHkFzoQCEGSTr8oXSwFg9FhUaFQGD5fMO7lAYBxqPF0On2IRKS4lzdcr4kqLxOwTmOL9Rl7ia7TWCXFbDvPbu/RbgBAVZEFdrsHQOa0nYku8+Te43S9z4IsPYw6NbyBMN7e3oIVs4vj9nrB1/nYY53GXrK2neNOsHt7ezF79uwzfn327Nl4/fXXx3v582Y0GnHxxRfjzTffnPC1wmH+so+XJMkJeUgYXllekpCQ8gBAGiozEpES+juS6PIyAes0tlifsZeKdZpq8SZSfWt0gbOaYutp6ymd204lyhyWzvdZW2rF/sYBvLSpAYum5gNxLjIVX5OSHes09pKtTsc9YL2oqOi0+1EP27FjB4qKisZ7eSIiIqKUFQhG0NrjBsAVxCl2KgrNMOhU6HP4sO1Al9LhENFpjDvB/sxnPoM33ngD9913HxobGxGJRCBJEhobG/GjH/0IGzZswPXXXx/LWE/L6/Xi3XffxaxZs+JeFiUXfzCMvkEfWrpdaOpyoaXbhV6Hj6trEhGR4pq6nJBkGdkWHXKseqXDoTShEkXMqM4FALy2tSnhowOI6NzGPUT8tttuQ2trK55//nm88MILI1tsSZIEWZZx/fXX47bbbhvTNX0+HzZv3gwAaG9vh9vtxoYNGwAAF154IRobG/Hkk0/iiiuuQGlpKXp6evD000+jt7cXv/rVr8Z7K5RC3L4Q/vjmEbz5YTMGnP4znmc2qFGSa0JZgRlmQ2IWkSEiIho2vP91bQm356LYmlppw+FmOzr7vfj4WC8WTC1QOiQiOsm4E2yVSoWf/vSn+Md//Ee89957aG9vBwCUlpZixYoVmDp16piv2d/fjzvuuGPUseHPf//736OoqAihUAgPPvggHA4HDAYD5s2bh/vvv/+s88Ep9fmDYRxpcaB9WzMiJ71ba9KrYdSroRIFRCQZXn8YHn8Ybl8Yx9oGcaxtECW5Rkwpt8FqSuwqpkRElLmOtw/vf83h4RRbGrUK111Ug+feOorXtjXhgrr8ke3CiEh5Y0qwA4EA/vM//xOTJ0/GunXrAABTp049JZn+/e9/j+eeew4//OEPx7QPdllZGY4ePXrWc5566qmxhEwpTpZlNHe5cKjZjnAkmlhPr85BnlUPg04FnUZ1yveEwhK67V609XrQY/eho9+Lzn4vakqsqKuwQZ1ke+UREVF6kWUZxzuGerCZYFMcXLe8Bi+/24CWbjcOnBjArJpcpUMioiFjyjT+/Oc/4+WXX8Yll1xy1vMuueQSvPTSS3jhhRcmEhtluFBYwo4jvdjXOIBwRIbNrMXNKyfh/96+HJPLbadNrgFAoxZRlm/G4umFuGRuCYpzjZABHO9w4t3dHXC4A4m9ESIiyig9Dh9c3hDUKgGVhRalw6E0ZDVpcen8UgDA61ublA2GiEYZU4L9xhtv4Morr0R5eflZz6uoqMDVV1+dkG26KD15fCG8v68DXQNeiAIwozoby2cXozTfPKbrWE1aLJxagEXTCmDQqeANhPHBvk40d7niFDkREWW640PzrysLLdCoOWqK4uPqRRVQq4TolLhWh9LhENGQMb3qHzt2DBdccMF5nTtv3rxzDvcmOh2XN4gP9nfB7QtDr1Vh2axi1JZkTWh+UWGOERfPLUFRjgGSDOw93o9DTfaR/SuJiIhihfOvKRFyrHosm1UMAHh9W7PC0RDRsDEl2KFQ6LznVGs0GgSDwXEFRZnL6Qliy/4uBEIRWIwarJhTjGyLLibX1qpVWDi1AHUVNgDRFV73NPQxySYiopga7sHm/tcUb6sWVUAQgP2N/RydR5QkxpRgFxQUoL6+/rzOra+vR0EBtw2g8+cNhPHhoW4EwxJsZi2WzSyCXjvuhe5PSxAE1JXbMHdSLgQArT0e7K5nkk1ERLHhC4TR2usGwB5sir+CbCMWTSsEEN0Xm4iUN6YEe+nSpXjllVfQ399/1vP6+/vxyiuvYOnSpRMKjjJHMBTBhwe74Q9Ge64XzyiE9gyLmMVCRaEFF0zNhwCgrdeDvcf7mWQTEdGEneh0QpaBXKs+ZiOwiM7m2iWVEADsOtaL1h630uEQZbwxJdhf+9rXEAgE8KUvfQl79+497Tl79+7FP/7jPyIQCOCrX/1qTIKk9CbLMnYd64XbF4Jeq8Li6YXQquOXXA8ryTVh/pR8AEBLtxtHWxxxL5OIiNJbw/Dw8DL2XlNilOabsXBadNToqx+cUDgaIhrT+Nvy8nL88pe/xN13343Pfe5zKC8vx5QpU2AymeDxeFBfX4+Wlhbo9Xr84he/QEVFRbzipjRypMWBXocfKlHAoumFMOhiOyz8bErzTQhHJOw93o9jbYMw6tWo4JYqREQ0Tg1tnH9NiXfdsmrsONyDXcd60dLt4rMMkYLGvHfEJZdcgldffRU333wzAoEA3n77bbzyyit4++234fP5cNNNN+HVV1/FypUr4xEvpZmuAS/qhx5G5kzKRZZJm/AYKossmDLU07C3oR99g/6Ex0BERKlPkmUc72CCTYlXmmf6pBd7S5OywRBluHF1FZaVleH+++8HALjdbng8HphMJpjNY9ujmDKbPxjBnoY+AEB1sQVlY9zjOpbqKmzw+MNo7/Ng59EeXDynJKE96URElPo6ej3wBSLQaVQoKzApHQ5lmOFe7I/Zi02kqDH3YH+a2WxGYWEhk2saE1mWsbehD8GQBKtRg+lVOYrGIwgC5kzKhdWkQTAkYceRHkQkLnpGRETnb3j+dU2JFSpxwo9YRGNSmmfChdOjK4q/wrnYRIrhqz8poqXbjW67D6IAzJ+SD5UoKB0S1CoRC6cWQKMW4XAHcbhpQOmQiIgohdRz/jUp7LqlVRAA7K7v477YRAphgk0J5w+GcXAoeZ1amQ2rAvOuz8Sk12De5DwAQGOnC10DXoUjIiKiVHGcK4iTwkrYi02kOCbYlHAHGgcQjsiwmbWoLbEqHc4pinKMqCmOxrWnvg9ef0jhiIiIKNkNeoLocfggAEnZtlHmWLOsCoIA7GnoG1nVnogShwk2JVTXgBcd/V4IAObU5kIQlB8afjrTqrKRZdIiGJaw7UAXZJnzsYmI6MyGE5mSfBOMeo3C0VAmK8414aJZxQCAFzcf5zMMUYIxwaaEiUgSDpyIDg2vKbUiy6xTOKIzU4kC5k3OgyBE54u/t7td6ZCIiCiJDQ8Pn8z515QE1l5UDbVKxLFWx8izFxElBhNsSpjGDie8/jD0WhXqym1Kh3NOVpMWU4bi/PXL+zHoDigbEBERJa36dgcAoJYJNiWBHKseK+eXAgBe2nwcEnuxiRKGCTYlhC8QxrHW6Lv70yqzoValxq/e5NIs5Fh1cHmD+P2Go0qHQ0RESSgUjoys2MwFzihZXLOkEjqtCi3dbuw80qN0OEQZIzWyHEp5R1ociEgysi06lOWblA7nvImigItml0AlCthxpAc72EAREdGnNHW5EI7IsBo1KLAZlA6HCABgNWpx9YUVAICX32tEOCIpHBFRZmCCTXHn9ATR2uMGAMyszknahc3OJDdLj5sumwIA+MPfj8LlDSocERERJZOGofnXtaVZKdfGUXq7cmE5zAYNuu0+bNnfqXQ4RBmBCTbF3eFmOwCgONeIbEvyLmx2NjdfPgXlBWa4vCG8tLlR6XCIiCiJDK8gzuHhlGwMOjVWL6kEALy6pQnBUEThiIjSHxNsiqv+QT+67dF9QadVZisdzrhp1CK+tGoqAOD9vR040elUOCIiIkoGsiyP9GBPLrUpGwzRaVw6vxQ5Vh3srgA2fsxdUYjijQk2xY0syzjcEu29riiywGxI7X1Bp5TbsHRmEWREh4pzRU4iIupx+ODyhqBWCagsMisdDtEpNGoV1i6rBgC8vq0JXn9Y4YiI0hsTbIqbvkE/BpwBiAJQlybD5m66pBYGnQonOl34YB/nMhERZbrh4eFVRVZo1CqFoyE6vaWzilCca4THH8aG7S1Kh0OU1phgU1zIsowjLQ4AQGWRBXqdWtmAYiTLrMPai2oAAC++exxuX0jhiIiISEnDw8Mncf9rSmIqUcT1y6PPL3/f0QK7K6BwRETpiwk2xUWvww+7KwBRFDA5TXqvh62cX4rSPBPcvhBefp8LnhERZbKTVxAnSmYX1OWjttSKYEjCX947rnQ4RGmLCTbFxbE2BwCgqtACvTY9eq+HqVUivnBFdNuud3e3o6XbpXBERESkBK8/hI5eDwCuIE7JTxAEfG7lZADA1v1daO7i8wtRPDDBppgbcEbnXgsCUFtqVTqcuJhamY0LpxVAloHnNzVA5oJnREQZ53iHEzKAApsBWSat0uEQnVNtaRYWTS+EDODPG+v5/EIUB0ywKeaGh8uV55thSJO516fz2YtroVYJONRkx4ETA0qHQ0RECVbP/a8pBX324hqoVSKOtDiwp75P6XCI0g4TbIoplzeIrgEfgPTtvR6WbzNg5fwyANFebEniu8BERJnkOBc4oxSUl2XAVReWA4g+v4QjksIREaUXJtgUU8fbnQCAohwDLMb0Hy63emkVjDo12ns92LKf23YREWWKiCShsSPa5jHBplRzzeJKWI0adNt92LS7XelwiNIKE2yKGV8gjNZeN4DMedgwGzRYvbQKAPDy+40IBCPKBkRERAnR0u1GIBSBQadGSZ5J6XCIxsSgU+MzK6Lbdr36wQluO0oUQ0ywKWYaO5yQZSDHqkOOVa90OAlz2QVlyMvSw+EO4u87WpQOh4iIEuBYqwMAMLksC6IoKBsM0Tgsn12M0nwTPP4wXtvapHQ4RGmDCTbFRDAcQfPQdlWZ0ns9TKMWccPF0XeB13/UgkFPUOGIiIgo3oYT7CnlNkXjIBovlSjilpWTAADv7GpD94BX4YiI0gMTbIqJpk4XwhEZFqMGhdkGpcNJuAunFaKqyIJAMILX+S4wEVFak2V5ZAVxJtiUymZW52JWTS4ikoznNzUoHQ5RWmCCTRMWkeSRhV5qS6wQhMwbKicKAm68pBYA8O6edvQP+hWOiIiI4qWj3wu3LwStWkRVkUXpcIgm5OaVkyAKAnbX9+Egtx0lmjAm2DRhJzoG4Q9GoNWIKM03Kx2OYqZX5WBqhQ3hiIxXt5xQOhwiIoqT+qHh4TUlVqhVfJSi1FaaZ8LKC0oBAP/71jFu20U0QWwVaMIOHO8HAFQVWqDK8IVebrg42ou9ZX8X5zIREaWpY20OABweTunjMxdVw2rUoGvAi7d2tiodDlFKY4JNE3KiYxAdfR4IACo5TA6TSrMwuzYXkizjrx+wF5uIKB2NrCDOBJvShFGvwY2XRBc8e3VLEwacnOpGNF5MsGlCXhtKIovzTDDo1ApHkxxuGNpX8qND3WjtcSscDRERxVLfoA8DzgBUooBJJZm1awalt6WzilBbakUgGMGf3+GCZ0TjxQSbxs3tC+Hdj9sAROehUVRFoQULpxYAAF5+r1HhaIiIKJbqW6Orh1cUWqDTqhSOhih2REHAF6+ogwBg28Eu7D/ep3RIRCmJCTaN23t7OhAMRZCbpUeuVad0OEnlM8urIQjAnoY+HO8YVDocIiKKkaMj+1+z95qUpVKJUKtj+1FbloVL50cXPPv1X/YBAqBWixAzfI0dorHgmF4aF0mS8fbQIhizanMhCAJkWVY4quRRnGvC0plF2LK/C698cAJ33zxX6ZCIiCgG6rnAGSnMoFNDlmVYrYa4XP8rn5mNHUd60Nzlwvv7u7BmeS0kSYbd7oEk8VmP6FyYYNO47D3eh75BP8wGDSaXZ6N3wKN0SEnnumXV2HagGwcaB3C8fRC1peztICJKZU5PEJ390R0iJpfZlA2GMpZOo4IgCHh3Z0vcFiObXZuHLfs78cxrhyBAxnXLJ0EUBSbYROeBCTaNy8aP2wEAVy6qhEbNmQanU2AzYOmsInywrxOvbGEvNhFRqhvuvS7NM8Fs0CgbDGU8hyuAfocvLtfOy9Ihx6rDgDOAjTvbcN3ySXEphygdMTOiMetx+HDwxAAAYNXSKmWDSXKrl1ZBFISRXmwiIkpdx4YWOOPwcEp3giDggqmFAICGtkEcbOxXOCKi1MEEm8bs/b0dAICZNTkoyjUpHE1yG+7FBoBXtnBfbCKiVHZsqAd7Mhc4owyQZzOgssgCAHjkhT0IhSWFIyJKDUywaUzCEQnv7+sEAFw6v0zhaFIDe7GJiFKfLxBGS7cLADCF868pQ8yoyoZeq0Jbjxuvb2tSOhyilMAEm8Zkb0MfnJ4grCYt5k3OUzqclMBebCKi1Fff5oAsA/k2PXKseqXDIUoIrUaFRdOjQ8X/9kETuga8CkdElPySKsFubm7Gfffdh7Vr12L69OlYvXr1ac974YUXcNVVV2HWrFlYs2YNNm3alOBIM9e7e6LDw5fPLoZalVS/PkmNvdhERKntSLMDADC1IlvZQIgSrLrEivl1BQhFJPx+wxFuy0p0DkmVIdXX12Pz5s2orKxEbW3tac95/fXXce+992LVqlV44oknMHfuXNx+++3Ys2dPYoPNQL0nLW62fE6JwtGkFvZiExGltiMtdgBMsCnzCIKAb352NrRqEUdaHNh6oEvpkIiSWlIl2CtXrsTmzZvx0EMPYcaMGac956GHHsK1116LO++8E4sXL8aPf/xjzJo1C48++miCo8087w0tbjajKhsFNoPC0aQe9mITEaUmrz+M5qH511MrmWBT5inKNeEzK2oAAH/e2ACXN6hwRETJK6kSbFE8ezitra1oamrCqlWrRh2/5pprsG3bNgSD/GOPl3BEwgdDi5tdPLdU4WhSE3uxiYhS07HW6PzrwmwDsi06pcMhUsTViypQlm+C2xfC8xsblA6HKGmplQ5gLBobGwEA1dXVo47X1tYiFAqhtbX1jEPLz4danVTvNySVPQ19GPQEkWXSYsG0AqhVIlQnzcEWRSEhcQiCMFRe4soUh8pUxWDO+WeWV2Pr/i4caBxAU5cLk8pO3epluJxYlEdRrNPYYn3GXirXaSa0nUeHtueaXpUz4fvNlLYz0WWeXEY632eiyhy+rigKI89BOq0aX752Ov7jmR3YcqALy+eWYHpVTlzKT0ep/DqfrJK1TlMqwR4cjA6rtVqto44Pfz789fEQRQHZ2dzT+Uw+GJpvc8WiSuTnWU75uk6nSUgcWq0KAKDRqGEwaBNSpk4X/TOxWic+LD4724TLFpbjre0teO3DZtz/tSVnPDcW5dForNPYYn3GXqrVaaa0nfWt0eeLBTOKYnq/6dx2KlHmsHS/z0SWqdNpRj0HLZxlwKqlVVi/tQm/33AUD333Uug0qrjGkG5S7XU+FSRbnaZUgh1PkiTD6eTWA6fTP+jH7iM9AIBFU/Nht3sARN8tGv6FDgRCkKT4ryoZDEYAAKFQGD5fYqYEGIcaMqfTh0hEmvD1rlpYhnd2tOLjIz3YeaADtaWje7GH6zVW5RHrNNZYn7GX6DqNVZKYCW2n2xfCiY5ogl2eZxxpA8crU9rORJd5ck9uOt9nosoURQE6nQaBQAiBTz0HrVlaha37OtDR58HTr+zHLZdNjksM6YZtZ+wla9uZUgl2VlY0EXG5XMjPzx857nQ6R319vMJh/rKfznt7OyADmFJuQ65Vf9p6kiQ5IQ8Jw1tDSBISUh4ASENlRiJSTH5Hcix6LJlZiC37u/Dye42486Y5pz0vVuXRJ1inscX6jL1UrNNUi3esDp0YgAygONcIs14T0/tN57ZTiTKHpft9JrJMSZJPeQ7SqkWsu6oOD7+0H+s/bMa8yfmoKbGe40o0LBVf55NdstVpcg1YP4eamujqhcNzsYc1NjZCo9GgvLxcibDSmizL2LI/urjZRbOKFY4mfQyvKL7veD9OdDqVDoeIiM7gSDO35yL6tHmT87F4eiFkGXh6/WGEkii5IVJaSiXY5eXlqKqqwoYNG0YdX79+PZYsWQKtNrFzfDJBfdsgeuw+6DQqLJiaf+5voPNSmG3EkhmFAIBXPuCK4kREyWpk/2tuz0U0yuevmAKrUYP2Pg/+trVJ6XCIkkZSDRH3+XzYvHkzAKC9vR1ut3skmb7wwguRk5ODb3/72/jud7+LiooKLFq0COvXr8e+ffvwhz/8QcnQ09bw1lwLpxZAr02qX5eUt3ppFbYe7Brpxa4u5vAqIqJk4vQG0dYbnXNdV2FTNhiiJGM2aPDFK+vw2F8PYP22ZlwwJR+VRacuhEuUaZIqY+rv78cdd9wx6tjw57///e+xaNEirF69Gj6fD0888QR+85vfoLq6Go888gjmzZunRMhpzR8MY8fQ4mYXzebw8FgrzDFi8fQibDvYhb9tacJ3bpytdEhERHSSYy0OAEBpvglWI0fJEX3agqkFWFCXj51He/Hb9Ydx75cWQJ1kWyYRJVpSJdhlZWU4evToOc+76aabcNNNNyUgosy280gvAqEICrINmHya/Zpp4q5bVoUPD3VhT0MfmrtcfOeXiCiJjAwPL+fwcKIz+eKVdTjS4kBrjxvrtzVjzUXVSodEpCi+xURn9MHQ4mbLZhVDEIRznE3jUZRjxKLp0bnYr27hXGwiomRyZKgHe2qlTdE4iJKZ1aTF56+IbtX1t61NaOtxKxwRkbKYYNNp9di9ONbqgABg2cwipcNJa9ctrYIAYHd9H1q6XUqHQ0REAAY9QXT0eSAAqOMK4kRntWhaIeZOykNEkvHU+sOISFxVnDIXE2w6rQ/2dwEAplfnIMeqVzia9Faca8KFI73YTcoGQ0REAIDDTQMAgPICM8wGjcLRECU3QRBw69V1MOrUaO5y4fWtzUqHRKQYJth0CkmSsfUA975OpOFe7I+P9bIXm4goCRw8EU2wZ1TnKBwJUWqwmXX4wpVTAEQ7DE50OhWOiEgZTLDpFIeb7RhwBmDUqTF/Sp7S4SQNlUqEWh2fj4oiy8hc7OF9sTnvnYhIGbIs40ATE2yisVo8vRALpxZAkmU88bdDCIQiSodElHBJtYo4JYfhxc0WTS+ERq1SOBrlGXRqyLIMq9UQ13LWXTsdHx3uxo7DPTjRMYjKIivsdg8kSY5ruURENFpHnweD7iA0apG7aBCNgSAIWHdVHY61OdA14MWLm46P9GoTZQom2DSK1x/Cx8d6AXDv62E6jQqCIODdnS0YcPrjWlZlkQVNnS489uJe/M93VkAUBSbYREQJNjw8vK7cxjeaicbIbNDgK9dMwy+e34t3Pm7DnMm5mFmdq3RYRAnDBJtG+ehwD0JhCaV5JlRxT+ZRHK4A+h2+uJZRVRhNsI8029Hc6YRVzwc7IqJEGx4ePr2Kw8OJxmNmTS5Wzi/Fxo/b8dvXD+PHX1nExQIpY3AONo3ywT7ufa0kq0mLkjwjAOC5t44qHA0RUeYJhSM4NrT/9UzOvyYat5sunYTCHCMc7iD+8Hc+01DmYIJNI9r7PDjR6YQoCFjCva8VM7zf6pZ9HWjrdSscDRFRZmloG0QwLCHLpEVpvknpcIhSlk6jwtevmw5RELD9cA8+PNSldEhECcEEm0ZsGeq9nl2biyyTVuFoMleWSYua0izIMvDK+yeUDoeIKKOcPDycI7mIJqa62IrrllUBAP7w5rG4r2VDlAyYYBMAIByRsPVg9J1FLm6mvAXTCgAA2w91o73Po3A0RESZY3iBMw4PJ4qNa5dUorrYCm8gjF+/ehARSVI6JKK4YoJNAIADjQNweoKwGDWYXcuVHpWWl2XAklnFkAH8bQt7sYmIEsHpDaKlOzo1Z3pVtsLREKUHtUrEN9ZMh16rQn3bIF79oEnpkIjiigk2Afhk7+slM4qgVvHXIhn8w5V1AIDth3vQ0u1SOBoiovR3aGh4eFm+GVlmncLREKWPgmwjvnT1VADAa1ubcLjZrnBERPHDTIrg9Aaxt6EPAHDRLA4PTxbVJVlYNL0QAPBXzsUmIoo7Dg8nip9F0wuxfHZ0dN5v/nYQTm9Q6ZCI4oIJNuHDg92ISDIqiywoKzArHQ6d5IaLayAKAvY09OF4+6DS4RARpS1ZlnGoKdqrNr2aw8OJ4uHzl09Bca4Rg+4gnnrtMCRZVjokophjgp3hZFke2fuavdfJpzjXhGWzolum/eW9RoWjISJKXx39XthdAahVIqaU2ZQOhyjpqFQi1OqJfZiMGtz+2dnQqETsb+zHO7vazniuKHIVf0pNaqUDIGW1dLvR1uuGWiWMDEem5LJmWTW2HezC4WY7DjUNYHoVhy4SEcXavuPRqVJ1FTZoNSqFoyFKHgadGrIsw2o1xOR62dkmfO0zM/HYS/vw/MYGLJhRjCkVp44akSQZdrsHksRebkotTLAz3HDv9bzJ+TAbNApHQ6eTm6XHJfNK8fbONry0uRHTKrO5NysRUYztbegHAMzhThpEo+g0KgiCgHd3tsRsH2tZjk5NbO5y4f88sQ1rLqoe9caWzaLDyoWVEEWBCTalHCbYGSwUlvDhIe59nQquXVKF9/d24kSnE3vq+zBvSr7SIRERpQ2PP4SGtug6F7Mn5SkcDVFycrgC6Hf4Yna96ZU29Ni9cHlD2LirDQvq8tmBQGmBc7Az2J6GPnj8YWRbdJjBYcdJLcukxeULygAAf3m/ke/mEhHF0IHGAUiyjJI8EwpssRkGS0Rnp1GrsKCuAIIAdPZ7cbzdqXRIRDHBBDuDDQ8PXzqziAtJpICrF1XAqFOjvdeDjw53Kx0OEVHa2Ds0/5rDw4kSK9uiG9kW71CzHX2DseshJ1IKE+wMZXcFcOBEdL4ZVw9PDSa9BqsWVwAA/vp+I8IRSeGIiIhSX0SSsP/40PxrDg8nSriqIgvK8k0AgJ1He+ELhBWOiGhimGBnqK0HOiHLwJSyLBTmGJUOh87T5ReUw2rUoNfhHxmBQERE43e83QmPPwyTXo3aUqvS4RBlHEEQMLs2F1ajBsGQhJ1HexHhVDhKYUywM5Asy3h/KDlbxsXNUopOq8LqpVUAgFe2nEAgGFE2ICKiFLdvqPd6Vk0uVCIfi4iUoFaJWDi1AGqVALsrgO0Hu5QOiWjc2JJkoPq2QfTYfdBpVFg4tUDpcGiMLp5binybHoPuIDZsb1E6HCKilDY8/3r2JM6/JlKSyaDB/KFdUo60OPDG1hMKR0Q0PkywM9Dw0OKFUwug13KntlSjUYu48ZJJAIA3PmqG3RVQOCIiotTU5/ChvdcDQQBmVjPBJlJaUY4R0yptAIBfv7wfR5rtygZENA5MsDOMPxjGjiM9ALj3dSpbUJeP2lIrgiEJL7/fqHQ4REQpae/Q8PDJpVkwGzQKR0NEADCpNAvVJVZEJBkPv7QPfTHce5soEZhgpxFRFKBWi2f9+PhYHwKhCApzjJhWlX3O88/2oVLx10cpgiDglpWTAQBb9nWipdulcERERKlneP71vCn5E2oP2XYSxY4gCLhodjFqy7Lg8obw0Ev74Q9yZXFKHRwfnCZEUUB2tumc+1lvOxTdP/mqxZXIyTEnIjSKk0mlWVg4tQA7jvTg+U0N+Jdb5kIQuJ85EdH5CAQjODw0/HTFBeXIzjYpHBERDVOrRPzwHxfhrgffRVuvG7959RBuv2HWOZ9ziZIBE+w0IYoCRFHAxh3NcJxhTu6gJ4iDjf0QAPgDIfxl47EJlVlWaMGFMzjMXEk3XlKL3fW9ONRkx/7GAcyu5RxCIqLzcbBpAOGIhIIcI+pbBrDzUGJWLWbbSXR+8rMN+M5Ns/GTZz/GnoY+PPdOPT5/xRSlwyI6JybYacbhCqD/DHNVht+pz882wO8Pw++f2HAbm1k3oe+nicu3GXD5BeXYsL0Ff95Yj+lV2VBz+CER0TntOhpdj2TJzGIMuoNnbDtjjW0n0fmbXGbD166bjsf/egBv72pDvs2AKxaWKx0W0VnxSTxDyLKM1h43AKCigEPD08nqpZUwGzTo7PfinV1tSodDRJT0QmEJexqi23Mtm12icDREdDYLpxbgpktrAQDPvVOPj4/1KhwR0dkxwc4QvQ4f/MEINGoRhTlGpcOhGDLqNbjxkmjD88oHJ+Bwc9suIqKzOdQ0AF8ggmyLDnWV2UqHQ0TncPWFFbhkbglkAL959SCOdwwqHRLRGTHBzhAt3dHe67J8E1RcICLtXDS7GDUlVviDETy/qUHpcIiIktrOoeHhC6YWcNEkohQgCAK+cOUUzKzJQTAs4Vcv7ENHn0fpsIhOiwl2BgiGIuga8ALg8PB0JQoCvnDFFAgAPjzYjaMtdqVDIiJKSuGIhD310eHhC6cWKBwNEZ0vlSjiW5+ZiepiC9y+EH7+5z3oG+Qe2ZR8mGBngNYeNyQZyDJpkcXFVdJWdbEVF8+NziX837eOISJJCkdERJR8jrTY4fGHYTVqMKXcpnQ4RDQGeq0ad940B8W5RthdAfz8z3vh9AaVDotoFCbYaU6WZTQPDQ+vLLIoHA3F2w0X18KkV6Ot14ONu9qVDoeIKOnsPBJdIGl+HYeHE6Uii1GLf7llLnKtOnQPePHg83vhC0xsZxyiWGKCneYGXAG4fSGoRAGleSalw6E4Mxs0+OzF0QXPXn6/EQNOv8IRERElj4gkjaxAvKAuX+FoiGi8cqx63H3LXFiMGjR3ufCrF/YiEIwoHRYRACbYaa+5ywUAKM0zQaPmjzsTrJhTMrLg2bNvHoUsy0qHRESUFI61OOD2hWA2aFBXYVM6HCKagOJcE+6+eS4MOjWOtQ3iVy/uRSDEJJuUx4wrjQXDEXT0Rxc34/DwzCGKAv5p1VSoRAF7j/dj++EepUMiIkoKO49Ge6/nTc6DSuQjEFGqqyyy4O5b5kCvVeFIiwMPvbgPQSbZpDC2LmmsrccDSZJhNWpgM2uVDocSqDTfjOuWVgGILnjm4gIgRJThJEnGruHh4Vw9nCht1JZk4e6b50KnVeFwsx0Pv7QPofD4kmxRFKBWi3H5UKmiaZdKNfo414JIP2qlA6D4iC5uFh0eXllkgSDwjzfTXLOkEjuO9qC914Pn3qnH166boXRIRESKqW9zwOkJwqhTY1plttLhEFEMTSrLwl03zcGDz+/FwSY7HnpxH26/YTZ0WtV5X0MUBWRnm+Ke8FqthlGfS5IMuz3aKUbpgQl2mrK7A3B5o4ubleVzcbNMpFaJ+KdV0/Cfz+7EtoPdWDS9ELNr85QOi4hIER8NTZeZNzkPahUH8BGlmynlNtx502z88oV9ONhkxy+e34M7bpwDo/780h1RFCCKAjbuaIbDFYh5fKIgQKdTIxAIQxpaH8dm0WHlwkqIosAEO40wwU5TzV3RrblK8ozQqM//3TtKLzUlVly5sBxvbm/F7zYcxY+/kgWTXqN0WERECRWOSNhxuBsAsHhGkcLREFG81FVk418+NxcPPr8X9W2D+J/nduPum+fAYjz/qZIOVwD9Dl/MYxNFAQaDFj5fkMl0muNbuGkoFJbQ0ecBAFQUcnGzTPeZ5TUoyDbA7gpwVXEiykj7G/vh8YeRZdJyeDhRmptUmoXvf37eyBZe//ePu+Fwx75HmuhMmGCnodYeNyKSDItBgxyLTulwSGE6jQrfWDMDKlHA9sM92HqgS+mQiIgS6sOD0d7rC6cVckEhogxQUWjBPV+Yj2yLDh19HvzXs7vQ2e9ROizKEEyw04wsy2jqcgIAqoq5uBlFVRdbsfaiagDAH946hh67V+GIiIgSwxcIY09DHwBg8YxChaMhokQpzjXhni/MR4HNgL5BP37yh4/R0D6odFiUAZhgp5nOfi/cvjDUKgHl+Walw6Ekcs3iSkwpy0IgGMFv/nYI4YikdEhERHG362gvQmEJhTlGVBVx2hRRJsm3GfCDdRegutgCty+E//nTbuwe2q6PKF5SLsH+y1/+grq6ulM+fvaznykdWlI43DQAACgvMEOtTrkfL8WRKAr42nUzYNCp0djhxN+2NCkdEhFR3G3Z3wkAWDqziKO6iDKQ1aTF9/5hPmbX5iIUlvDIy/vxzq42pcOiNJayq4g/+eSTsFg+eSe6sJDDvnrsXrR2R1cP57v0dDq5WXp86eo6/L9XDuK1bU2YXJ6FmdW5SodFRBQXPQ4fjrY6IABYNpOrhxNlKp1WhW9/dhaeffMY3tvbgf996xg6+jz4h8snc9s+irmUTbBnzJiBnJwcpcNIKhu2NUEGkJelH9N2BJRZLpxWiIMnBvD+vk78+pWD+NE/LkSezaB0WEREMbd1qPd6enUOcqx6haMhIiWpRBFfuroO+TY9/rK5EZt2t6Oz34NvXT8LZgO3MKXY4Vs2aSIYjuDND5sBRBc3IzqbL145BdXFFnj8YTzy8n4EQxGlQyIiiilJlrFlf3TXhGWz2HtNRIAgCLh2SRW+/dnZ0GlVONLiwI+f2YH2XrfSoVEaSdke7NWrV8Nut6OkpAQ333wzvvrVr0KlUk3omqk8Z3nrgS44PUGY9GqU5JkgJmCe2clz2RK17clwmaKYvmWeXIZGo4IqDkOXdDo17rplHv79N9vQ0u3GH946hts+MxOyjLTcJ3u4DuNRl5mI9Rl7qVynydp2HjwxgH6nH0adGhdOKzxtnMP1LQpCwtsUIH3bMSXKPLmMdL7PRJU5fF1RFBS5x+Hn2Hg9By2aWYTSAjN+/txu9Nh9+M9nd+H2G2fj4gtMcXs9OLlOR44N3WcqvvYng2RtO1Muwc7Pz8e3v/1tzJkzB4IgYOPGjfjlL3+J7u5u3HfffeO+rigKyM42xTDSxNr0cTsAYEZtLkzGxOx9rdV+8oaGTpeYoTXDZWo0ahgMiRkGr0SZeq0KsizDbI7fkEar1YDvf2kh7v31NnywrxMzavNw7bLqtF4EyGrlUPhYYn3GXqrVaTK3nVtfOwwAuPiCMhQWWM96rk6X+DYlWi7bznhI9/tMZJk6nUaRe8yy6OL+HDTdasCDd12C//v7HdjX0Ief/2k3uu1+mA3xvc+T/+51umgqlmqv/ckm2eov5RLs5cuXY/ny5SOfX3TRRdDpdPjd736H2267DQUFBeO6riTJcDpTc2/gxg4njrbYoVYJmFSSBa8vmJByg8FPhhUHAiFIUvx7PofLDIXC8CX4PhNVpigK0GpUEAQBm3e1wu70x7W8BVMLsP1QN574636U5JsxqdiCSJpt4aVSibBaDXA6fWl3b0pgfcZeous0VklxsradTk8QW/d1AACWTi+E3e457XnD9R4IJL5NAdh2xtLJvYLpfJ+JKlMUBeh0GgQCIUXuEbIxYc9BF0zJRygUweFmO5594zAqCs2YWZ0DrWZiI2M/7eQ6Hf67Nw69ecH2dHySte1MuQT7dFatWoXf/va3OHz48LgTbAAIh1PzF3v9tiYAwEVzS6HTquD2JubF7+ShxJIkJ+QhYbhMSUJCylOqzGF2px+99vg+vBba9CjLN6Gt14Of/m47/u2LF6AsTfdQj0SklP07T0asz9hLxTpNxnjf3d2OiCSjutiK0jzTOWOU5MS0YQDbzkRI9/tMZJmSJCt6j4l4DgKAyWVZKM03Y/OedrR0u9Hr8GFhXQFsltiPCj35714aus9UfO1PJslWf8k1YJ3GrG/Qh51HegEA1188SeFoKBUJgoC5k/JQnGuELxDBz5/bg16HT+mwiIjGRZJlbN4TnTZ1ydwShaMholQxqzYX//Pt5bAYNfAFIvhgfydOdDrTcm0aiq+0SLDXr18PlUqF6dOnKx1Kwr29sw2SLGN6VQ5qSrOUDodSlCgKWHlBGapLrBj0BPGL5/fClaCREEREsXS4yY5ehx8GnQoXTitUOhwiSiG1ZTasXV6DohwjJBnY3ziAj4/1Iczh2zQGKTdE/Ctf+QoWLVqEuro6AMA777yD559/Hrfeeivy8/MVji6xvP4w3tsbnWO2anGFwtFQqtNqVPjRVxfjX375HroHvHjoxX34l8/NhV6bci8TRJTB3tnVBgBYMqMIOm1s51ASUfrTaVRYODUfjR1OHGqyo73Pg0FPABdMyUeWOTELCVNqS7kn5+rqarz00kvo6uqCJEmoqqrCD37wA6xbt07p0BLuvb0d8AcjKMkzYXZtrtLhUBrIzTLgu5+fhwee2YHjHU788vm9uOOmOTDoUu6lgogyUI/Dh70NfQCAyy4oUzgaIkpVgiCgtjQLNosOu472wu0L4/19nZhWmY2aEmta77hCE5dyT83//u//rnQISSEckfDWzlYAwJULy/mHTjFTmmfCXTfPxc//vAfH2gbx4At7cReTbCJKARt3tUEGMLM6B8W5ybl9GBGljlyrHhfPLcHehj50DfhwsMmOHocP8ybncYQfnVFazMHORDuP9MDuCsBq1GDJDM4xo9iqKbHiu5+bC6NOjYa2Qfzi+T3wBcJKh0VEdEb+YLSHCQAuX1CucDRElC6iQ8YLMLsmB6IooNfhx7t7OtA9kHxbFFJyYIKdgmRZxpvbo73Xl11QBo2ac8wo9qqLrfjuP8yFSa/G8XYnfvHnPXD7QkqHRUR0WlsPdMEXCKMw24CZNTlKh0NEaUQQBFQVW3HxnGJYjRoEQxI+OtyD/Y39iEhcAI1GY4Kdgo4029Hc7YJWLeLS+ZxjRvFTVWTFdz83L5pkdzjxkz/s4hZeRJR0IpKEN7e3AIj2XoucNkVEcWAxarF8TjFqiq0AgBOdLry3txNOD3deoU8wwU5Bf9vaBAC4aHYxzAaNssFQ2qsssuD7X5iPbIsOnf1e/Ofvd6Kxw6l0WEREI3Yd7UWvww+zQYOLZhUrHQ4RpTGVKGJmTQ4WTS+AViPC5Q3hvb0daGgf5J7ZBIAJdso52mLHkRYHVKKAaxZXKh0OZYiyfDP+/dYFqCgww+kN4b//+DF2H+uNybVFUYBaLcb1Q6WKvtSpVCJEkT1bROlElmW88VG09/qyC8q4NRcRJURhthGXzC1FQbYBkgwcarJjy4EueDid7rTi8bx38vPd6b6u1DMfl79LMcO918tnFyPHqlc2GMoo2RYdvv+F+fh/rxzE/sZ+PPKX/Vi7vBqrl1aNezimKArIzjYl7AXQajVAkmTY7R5IEt9lJkoHh5vtaO6KTptaOb9U6XCIKIPotSosmlaAlm43DpwYwIAzgHf3dGBGVTYqiyzc5WdIvJ/3rFbDaY8r9czHBDuFNLQP4lCTnb3XpBiDTo3v3DgLf3yrHpt2t+Ov759AQ9sgvnrddFiN2jFfTxQFiKKAjTua4XAF4hDxUDmCAJ1ODYNWhUsWVEAUBSbYRGnitZE3nktgGcfrEBHRRAiCgMoiC/Jteuyu70e/0499jQPoHPBi7qQ8bnOK+D3vDT/fBQJhSJ8anm+z6LByYaUiz3z8iaeQv21pAgAsnVmEPNvp36khijeVKGLdVXWoKbHi2TeP4sCJAdz/9A58c+1MTCrLGtc1Ha4A+uO4eJooCjAYtAhw6ChRWjl52tTViyqUDoeIMphRr8HSmYU40enCoWY7eh1+bNrdjpk1uSjPNwFgb3asn/eGn+98vmBSdZxwDnaKONHpxP7GfoiCgGuXsPealLdsVjH+/dYFKMoxwu4K4P/+8WO88sEJhCPcroKIEuPVoTeel88uRm4Wp00RkbIEQUBNiRWXzClBtlmLcETGnvo+7DjSA18grHR4lCBMsFPEcO/14hmFKMg2KhsM0ZCyAjPu/dICXDitABFJxisfnMB//G4nWrpdSodGRGnuWKsDh5uHpk3xjWciSiJmowbLZhdjWqUNggB0Dfjwzq52NLQ5uNJ4BmCCnQKau1zY09AHQQB7rynpGHRqfGPNDHxjzQyYDRq09rjxH7/bib++34hQmL3ZRBR7sizj5fcaAQDLZhUhL4vTpogouYiCgMllNlw8pwQ2sxbhiIQdh7rxwf4uuLnSeFpjgp0CXny3AQCwaHohinNNCkdDdCpBELBoeiH+46uLcMGUfEQkGa9uacK9T32EvQ19SodHRGlmf+MAjrY6oFaJuG5ptdLhEBGdkdWkxfLZxZhZkwOVKKB/0I93d7ejvs2RVPOGKXaYYCe5Ayf6cXBo5fDrl9coHQ7RWWWZtPjW9TNx29oZsJq06LH78KsX9+HB5/eis9+jdHhElAYkWcZLm48DAFbOL+XcayJKeoIgYFJpFq5ZVo0CW3Tf7MPNDrz6wQkcPjGgdHgUY0ywk5gky3hhU/Qh4rILypDPlcMpBQiCgAunFeInX1+MqxdVQCUK2N/Yj/ue2o4//P0oHO74bcdFROlv+6FutPa4YdCpsHppldLhEBGdN7NBgyUzCzFvch60ahF2VwDfe+R9/PqVA3w+SiPcpiuJfXiwa+ghQs2HCEo5Bp0aN186CSvmlOC5d+qx73g/Nn7cjvf3deKy+WVYtbgC2Vb2PBHR+QuEInhxqPf66kWVMBs0CkdERDQ2giCgvMCMgmwDTnS6UN/mwJb9Xdh5tBdrllXhigXlUKvYB5rK+NNLUqFwBH8ZWsDl2iV8iKDUVZRjxJ03zcG/fm4uakutCIUlbNjegu/9v2147p169A/Gb/9rIkovGz5qwYAzgFyrDlctLFc6HCKicdNpVFg2uxg/+84K1JZaEQhG8MKm47j3qe3Y39ivdHg0AezBTlJv72rDgDOAbIsOl19QpnQ4RBM2rSoHP6jMxv7GAbz8XiOau11Yv60Zf9/egupiK8ryTbAYtUqHSURJasDpxxsfNgMAbl45GVqNSuGIiIgmbkpFNu79x4V4f08HXnj3OLoHvHjw+b2YUZWNGy6uRXWxVekQaYyYYCchty+E17ZGHyJuWFHDhwhKG4IgYHZtLmbV5GBvQz/e3N6Co60O1LcNor5tEAU2A6qKLSjMNkAQBKXDJaIk8tzGBgTDEqaUZWFBXb7S4RARxYwoCFg2qxjzJufj1S0n8M6uNhxssuNg005cUJeP65fXoCSPOwmlCibYSeiV90/AFwijLN+MJTOKlA6HKOYEQcDcyXlYMK0A3YMBPPz8HrR0u9Dj8KHH4YNBp0JVkQXlBRbotXyDiSjT7W3ow84jPRAFAZ+/YgrfgCOitGTUq/G5yybjsgvK8MoHJ7DtQBd2He3Fx8d6ceG0QqxaVIGKQovSYdI5MMFOMi3dLmzc3QYA+NxlkyCKfIig9Da1KgeXLShDS6cTTV0utPS44QtEcLjZgSPNDhRkG1BeYEZhjgEqkctGEGWaQDCCP/z9GADgyoXlfLgkorSXbzPgq6un4+pFFXj5vUbsru/DR4e68dGhbsysycE1iypRV2Hjm41Jigl2EpFkGX/4+zHIMrBwagGmV+UoHRJRwpgMGsyozsHUChva+zxo7nLB7g6i2+5Dt90HjUpESZ4R5QVmZFt0bFSIMsRfP2hEv9OPXKsOay+qVjocIqKEKcs349ufnY3mLhfe+KgZO4704EDjAA40DqAs34yL55ZgyYxCGPVcDDmZMMFOIlv2d6KhfRA6jQq3rJykdDhEilCpRFQUWlBRaIHLG0RbrwetPW74gxE0d7vR3O2GUadGca4RJXkm2MxaJttEaaq+zYG/b28FAHzxyjroOGWEiDJQZZEFt62diRtWePHm9lZ8sL8Tbb1u/O9bx/DCpgYsnFqAxTOLUFdu4xZfSYAJdpIY9ATx/MYGAMCai6qQw/2BiWAxajGtUoupFTb0DfrR2uNGZ78X3kAYxzucON7hhF6rQkmuEcW5JuRY2bNNlC4CwQieeu0wZADLZhVhzqQ8pUMiIlJUQbYR666qww0X12DbgS5s3tuB9l4PthzowpYDXTDp1Zg7OQ8X1BVgWmU2dFwoWRFMsJPEn94+Bo8/jIpCM67k3p5EowiCgHybAfk2A8IRCT12Hzr7vega8MIfjKCx04XGThe0GhEFNgMKs43Iz9ZDq2bDQpSqnt/UgB6HD9kWHf7hsilKh0NElDRMeg0uX1COyy4oQ2OHEx/s78THx3rh8oawZX8XtuzvgkoUUF1iRV25DXUVNtQUWzmUPEGYYCeBPfV92H64B4IA/OOqqVzIiegs1CoRJXkmlOSZEJEk9Nr96Oj3oGvAi2BIQluvB229HggAsq06FGYbUJhjhJ6NClHK2HmkB5t2twMAvnzNNBj1fFwhIvo0QRBQW5qF2tIsrLuyDvVtDuw82ovd9b0YcAbQ0DaIhrZBvL4tuv1vtkWHsnwzSvNNKMw2IMeqR45Fh2yLnq+zMcSaVJjLG8QzG44AAK5aWIGqIm4mT3S+VKKIolwjinKNkCQZAy4/uu0+9Az44PKFMOAMYMAZwOFmB7QaESW5Jmg0KlQWmFBg417bRMmoz+HD029E28VViyowo5oLfhIRnYsoCqiryEZdRTY+f/lk9Dp8ONriwNFWB461OtA36IfdFYDdFcD+xv5Tvl+tEmHUq2HQqWHUqaHTiFCpRKhFAWqVCJVKgEoc/leAKApQCUP/ip/8q1KJ0GtU0OtUMGij18vJ0kPUqCHLsgI1k3hMsBUkyzKeffMonJ4gSvJMuH4FV0clGi9RFJCXZUBelgEzqgCvPxRNtu0+9Dv9CIYkNHW58P9e3g8AsJqic7unVWZjakU2CrKZcBMpLRSO4PFXDsAXCKO2xIrrV9QoHRIRUcoRBAEF2UYUZBuxfE4JAMDrD6O9z422Xg/ae93oG/RjwBmA3eWHxx9GOCLB6QnC6QnGMS5Ar1HBZNDAZNDArFfDbNDAZtal1SKWTLAV9OHBbuw82guVKOCrq6dBw/miRDFj1GtQXaxBdXF0VIgvJGFg0IewJOPQiQE4PUFsP9yD7Yd7AAAWowaTSrMwqSwLk0qzUFVk4d8kUQLJsozfv3kUJzpdMOnV+MaaGVwNl4goRox6NSaX2TC5zHbK1/zBMNy+ELz+MHyBMLyBMIIhCRFJQjgiIyLJCEckRCIyIpIESYoek2R56JgcPSbLCIcl+IORoY8wvP4wnN4gXN4QZBnwBSPwBSPoG/SPisGgUyHbrEO2RYe8LD2sptTdJYYJtkK6B7z4/d+PAgCuW1bFoeGUNFQJfKBNVFmiKCDPZkBFgRmfuXQyunudqG9x4HCzHYeb7TjR6YTLG8Lu+j7sru8DAKhVAiqLLNGke+gjy6wbd/mimNhGQhpq7BIpU+6T4uP9fZ3Ysr8LggD88w2zUJRninuZiXy9IyJKFp9ur81qLcxGbdzKU6lEGE06/OnNw+jodcPjiyb0bl8ILm/0X18gAl/Ai45+LwBAqxGRbzMMLV5rgDaFVkRngq2AUDiCx/96AIFgBHXlNqxeUqV0SEQw6KJzY6xWQ8LLFpDYpEyrVo3MU/rMciAUltDc5UJD+2D0o80BpzeE4+1OHG934k1E9+HNt+kxaWgxkUmlWSjNN51zUUJRFJCdbVIk8bTbPQlLPjPlPil+6tscAIB/Wj0Dyy+oSGjZiX4NIiJSilLtNQCY9VrkWPTIsYw+HgpLcLgDcLija+f0DUan9rX3etDe64EgAPlZBpTkRdfdSfZdYphgK+BPb9ejpccNs0GDr6+ZocgvONGn6TQqCIKAd3e2YMDpP/c3xEBZoQUXziiG0iOANGoxOjS8LAtAdKhqr8M3lHA70dA2iPZeN3odfvQ6/Nh2sBsAoNOqUFNsHUm4a0utMH1qtfLhd4k37miGwxVIyP3YLDqsXFgJURQSmmBnwn1S/Ky7aipuvKwOLV2D+MvGYwkpM1leg4iIEkWJ9vpcr7UatTiyHSuAoYVrA+h1+NA94IXTG0KPw4cehw/C8X4UZhtRWWhGYa4xIfGPFRPsBNu8px3v7umAAOBr101HtmV8Q06J4sXhCqDf4UtIWbZxDrmOt5MXB1k6sxhAdHGQxs5BHG93oqF9EI0dg/AFIiPDzIeV5JlQW2Idmc9dWmAGkNh6VVKm3CfFnlGvRmm2CfvqezL+NYiIKN6S+XkvunCtHnlZekyrzIbbG0JHvwftfR64vCF0DXjRNeCFXqtCbZkNpblG6JNokTQm2AnU0DaIP/w9+q789StqMKsmV+GIiOh8GfVqzKzOxczq6N+tJMno6POgoX0Qx4eGlnfbfejo86Cjz4P393UCAEwGDaZV5QCyDINWhSyzFiK7y4iIiIjOi9mowRSjDVPKbXB6gmjpcaOtxw1/MIKDjf041NiP4lwjakqsyLHqlQ6XCXaidNu9eOilfYhIMi6oy8e1SyqVDomIJkAUBZQVmFFWYMYl80oBAE5vEMfbP+nlPtHphMcXws7D3SPfpxIF5Fr1yB16ZzbLpOU0ESIiIqLzYDVpMbM6B9Mqs9Fj96Klx4PugejiaB39XmSbtagpyUK2gok2E+wEcHmDePD5vXD7QqgssuAr105L2WXniejMrEYt5k3Ox7zJ+QCAcERCR78Hbf0+/P3DJnT2exEKSyPziIBowp1jjW5JkZulh82kY8JNREREdBYqUUBpvhmTKnLQ1eceWS/H7g5i17FeHG6xo6IkC5OLLee+WIwxwY4zXyCMX76wFz12H3Ktetx542zotax2okygVomoKcnCBTNKEAlH0GePLtTRP+hH36Af/U4/QmFpZPE0YHTCnZdl4JByIiIiorPIMmkxb3IeplVmo7nLhRNdTnj9YazfcgJ33Dg74fEw04ujQDCCX72wFyc6XTAbNLjr5jnj3keXiFKfIAjIMmmRZdKipsQKWZbPkXA7okPKs/TItQ4NKWfCTURERHQKvVaFugobJpVZEQhJ+MKq6YAsJTwOJthx4guE8fBL+3CsbRAGnRr/cstclOSZlA6LiJLI+SbcPXYfeuzRIeVq1UlzuK3RhJtTToiIiIiiVKKI8kIT8mwG2O2ehJfPBDsOvP4QHnx+L453OKHXqnDXTXNQWZT48f9ElFpOm3B7giPJdt+gH+GIjG67D932T+Zw28w6ZFuGP7QK3wURERFR5mKCHQevfNCE4x1OmPRq3H3LXFQXW5UOiYhSkCAIyDLrkGXWobY0C7IsY3A44R5KusMRGf3O6P+HmQ0aHG11oNBmQHGOEWUFZhTYDFw8jYiIiCjOmGDHwayaHPQ6fLh+RQ3KC8xKh0NEaUIQor3VNrMOk4YSbpc3BLsrEP1wB+DyhuD2hbB1aB/uYRq1iJJcE4pzjSNbhA3P7c616qHVqBS6KyIiIqL0wQQ7DmbW5GJmTa7SYRDRGahUYlqUJQgCrCYtrCbtyDSUUFiCBKCs0IJjzQNo7Xajo8+DYFhCc7cLzd2u017LbNCM+jAZ1DAbNDDqNdCqRWjVIjRqFbQaETqtCjnZJgT9QYiCAI1KhE6nQkgW4PWHEQpHIAoCRFHg/HAiIiLKKEywiShjGHRqyLIMq9WQ8LIFJCbR1KhF5NoM+MzFk2C3exAOS5BkGX0OH9p6Pei2ez9ZRG3Qjz6nH4FgBG5ftOc71gQBEAUBKjGacIuiALVqOGEXoVEN/asWodeqoNeqodepYNCqoFaJTNCJiIgopTDBJqKModWoIAgC3t3ZgoGT5izHU1mhBRfOKIaSeaIoCCjINqIg23jK12RZhscfhsMVGEmy3f4QPL4QPL4wvIEQgmEJoZAU/TccQSgiQZIBnz+MYDiCcFhCOCIjFJEQCkufuj4QkWVEJHnMcatEAXqtCka9+pOedb0GZoMaBh2bLyIiIko+fEIhoozjcAXQ7/AlpCybWZeQcsZLEISR5PV8qdUisrNNIz3kJx976Z2j6LP7IEkyIrIMSRr6GPp/RPokET/5IxiWEAhG4AuG4Q9GEApLiEjR5N/jDw/tC/4JUQBsFh2au90oytajNM+M8gLzmO6DiIiIKNaYYBMRUcwIwklDwSdwnXBEgj8YgT8YTbA9vhDcvui/Hn8IkgwMOAPYuLN11PflWHWoKLCgrMCMykIzKgstyM3Sc6g5ERERJQQTbCIiSjpqlQizQYTZoEFe1uivybIMbyAMGQKK8sw42tSP5i4X+gb9GHAGMOAMYE9D38j5ZoMmmmwXWVFVZEFlkQV5TLqJiIgoDphgExFRShEEASa9Brk2A25YOWVkqLrXH0Zbrxst3S609ET/be/1wO0L4WCTHQeb7CPXMOnVqBxKtquKrKgssiCfSTcRERFNEBNsIiJKC0a9GlPKbZhSbhs5FgpLaOt1o7nLhaYuF5q7XGjrdcPjD+NQkx2HTkq6jbqTk+7ovwU2A5NuIiIiOm8pmWAfP34cDzzwAHbv3g2TyYS1a9fizjvvhFarVTo0IiJKIhq1iOpiK6qLrSPHQmEJ7X3ukYS7qcuF9l43vIEwDjfbcbj5k6TboFOjstCMkjwTSvJMKM6N/ms1aph4ExER0SlSLsEeHBzEl770JVRVVeHhhx9Gd3c3fvrTn8Lv9+O+++5TOjwiIkpyGrWIqiIrqoo+SbrDEQntvR40dw/3dDvR2uOBLxDGkRYHjrQ4Rl3DpFejOM+EApsB+TbDyL/5Nj2sJi2TbyIiogyVcgn2c889B4/Hg0ceeQQ2mw0AEIlEcP/99+Mb3/gGCgsLlQ2QiIhSjloljgwPXzEneiwckdDR50FLtxud/R509HnQ2e9Fr8MHjz+MhrZBNLQNnnItrVqEzaKDzaxDtkUHm1kLmzn6udmogVmvgUmvhsmggV6rYjJORESURlIuwX7vvfewZMmSkeQaAFatWoUf/ehH2LJlC2644QblgiMiorShVomoKLSgotAy6ngwFEHXgHck2f7kw48Blx/BsIQeuw899nPvtS4KAkwGNcwGDbLMOqhVAnRqFbQaFfRaFXQaFXRaFS6Yko+yAnO8bpWIiIhiRJBlWVY6iLFYsmQJPvvZz+K73/3uqOPLly/H2rVrTzl+vmRZhiTFtioS3SkhiiJ8gXDM7+NM1CoBOq0a/kAYkQSXqcR9JrRMtQidRpX+95nAMgUBUInpfY/DRFGAQaeGJElxLEM85fqJfg1KxH2OlSwDkiQjMtSmDH8Mfy7LgDSO9kajivaKx4pKJcbkOrFsOwVBuXaMbWealMm2M6YEIfqals73mOgyh+t0mFLtWDq91n66ToedXLexynbPt+1MuR5sp9MJq9V6yvGsrCwMDp46VO98CYIAlSr1h+kZdIn/keoVKFOJ+2SZ6VNmJtwjEG1AE339dLzPsVKpAI3SQSRIPNrOTPn7ZNvJMlOtzEy4R6XKVKIdY93GscyEl0hERERERESUhlIuwbZarXC5XKccHxwcRFZWlgIREREREREREaVggl1TU4PGxsZRx1wuF3p7e1FTU6NQVERERERERJTpUi7BXrFiBbZu3Qqn0zlybMOGDRBFEcuWLVMwMiIiIiIiIspkKbeK+ODgIK699lpUV1fjG9/4Brq7u/HTn/4U1113He677z6lwyMiIiIiIqIMlXIJNgAcP34c//Ef/4Hdu3fDZDJh7dq1uOuuu6DVapUOjYiIiIiIiDJUSibYRERERERERMkm5eZgExERERERESUjJthEREREREREMcAEm4iIiIiIiCgGmGATERERERERxQATbCIiIiIiIqIYYIJNREREREREFANMsOmcmpubcd9992Ht2rWYPn06Vq9efdrzXnjhBVx11VWYNWsW1qxZg02bNiU40tTwxhtv4Jvf/CZWrFiBuXPnYu3atXjxxRfx6R3zWJ/nb/PmzfjiF7+IxYsXY+bMmbjsssvwk5/8BC6Xa9R5GzduxJo1azBr1ixcddVVeOmllxSKOLV4PB6sWLECdXV12L9//6iv8ff0/PzlL39BXV3dKR8/+9nPRp3H+kwfbDtji21n7LHtjC+2nROXqm2nWtHSKSXU19dj8+bNmDNnDiRJOqUxA4DXX38d9957L2677TYsXrwY69evx+23347//d//xdy5cxMfdBJ75plnUFpainvuuQfZ2dnYunUr7r33XnR1deH2228HwPocK4fDgdmzZ2PdunWw2Wyor6/Hww8/jPr6evz2t78FAOzcuRO33347brzxRvzgBz/Ahx9+iB/+8IcwmUy4+uqrFb6D5PbYY48hEomccpy/p2P35JNPwmKxjHxeWFg48n/WZ3ph2xlbbDtjj21nfLHtjJ2UaztlonOIRCIj///+978vX3vttaecc+WVV8p33333qGO33HKL/NWvfjXu8aWa/v7+U479+7//uzx//vyRumZ9Ttyf//xnecqUKXJXV5csy7L85S9/Wb7llltGnXP33XfLq1atUiK8lNHQ0CDPnTtX/tOf/iRPmTJF3rdv38jX+Ht6/l566SV5ypQpp/37H8b6TC9sO2OLbWdisO2MDbadsZGqbSeHiNM5ieLZf01aW1vR1NSEVatWjTp+zTXXYNu2bQgGg/EML+Xk5OSccmzatGlwu93wer2szxix2WwAgFAohGAwiI8++uiUd9uvueYaHD9+HG1tbQpEmBoeeOABfO5zn0N1dfWo4/w9jS3WZ/ph2xlbbDsTg21nbLDtTIxkrU8m2DRhjY2NAHDKi0htbS1CoRBaW1uVCCul7Nq1C4WFhTCbzazPCYhEIggEAjh48CAeffRRrFy5EmVlZWhpaUEoFEJNTc2o82trawF88jtMo23YsAHHjh3DP//zP5/yNf6ejs/q1asxbdo0XHbZZfj1r389MnyQ9Zl5+DOfOLadscG2M7bYdsZeqrWdnINNEzY4OAgAsFqto44Pfz78dTq9nTt3Yv369fj+978PgPU5EZdeeim6u7sBAMv/f3v3Fttk/cdx/NPx75wEGUymies2CCYPdniYySiLTmWUyEwMJ+eFSuNEoAYQMF4wY0TCgocEmJljMjlki8oxVMOsW2Qawo3zQhSjzhM67BAiRtdtzABr/xf/2L9lCzv9WFv7fiW76HPqN78+2affPs+vLSrS5s2bJTGmw9HT06OXX35Za9eu1bhx4/qsZ0yHJjMzU6tWrdLtt98um82mjz76SJWVlTp79qxeeOEFxjMJ8ZqPDNlpDtlpDtlpVqJmJw02EENnzpzR2rVr5XK55PF4Yl1OwqutrVVPT49++OEH1dTUyOv1avfu3bEuKyHV1NTo+uuv16JFi2Jdyr9CUVGRioqKIo/vvvtuXXPNNaqrq5PX641hZUDiITvNIjvNITvNStTs5BZxjFh6erok9flZh2AwGLUe0YLBoJYuXaoJEyaoqqoqMl+P8Ry+adOmKT8/X6Wlpdq2bZtaWlr04YcfMqZD1N7erl27dunpp59WZ2engsGgzp8/L0k6f/68uru7GVMDSkpK1Nvbq2+++YbxTEK85sNDdppHdppBdo6ORMhOGmyM2N9zcy6fi3Py5EnZ7XZlZ2fHoqy49tdff2n58uXq7Ozs89MDjKcZlmXJbrfr1KlTysnJkd1u73dMJfWZX5bsAoGALl68qGXLlqmgoEAFBQWRT4o9Ho/Kyso4Tw1jPJMPr/nQkZ1XH9k5fGTn6IvX8aTBxohlZ2dr8uTJamxsjFru9/tVWFio1NTUGFUWny5duqQ1a9bo5MmT2rFjR9Rv+UmMpylffPGFLl68KIfDodTUVLlcLjU1NUVt4/f7NXXqVDkcjhhVGZ9uueUW1dfXR/2Vl5dLkjZs2KD169dznhrg9/s1ZswYOZ1OxjMJ8ZoPDdk5OsjO4SM7R0ciZCdzsDGgnp4eHT16VNL/bn/p6uqKnMgzZsxQRkaGVq1apWeffVY5OTlyuVzy+/06ceKE3nrrrViWHpc2bNigjz/+WOvWrVNXV5c+//zzyDqn06nU1FTGc4hWrlyp6dOny7IspaWlqbW1VTt37pRlWXK73ZKkp556Sh6PRy+++KJKSkrU0tKihoYGbd26NcbVx5/x48fL5XL1uy4vL095eXmSxHk6BEuWLJHL5ZJlWZKk5uZm7d+/Xx6PR5mZmZIYz38bstMsstM8stMsstO8RM1OWzgcDsfs2ZEQAoGAZs+e3e+6+vr6yD+TAwcO6M0339Tp06c1ZcoUPfPMM5o1a9ZolpoQiouL1d7e3u+65ubmyCfCjOfg1dbWyu/369SpUwqHw8rKytKcOXO0ZMmSqG/xbG5uVmVlpX766SfddNNNWrZsmR566KEYVp44Wlpa5PF4dPDgQd16662R5Zyng1NRUaFjx47pzJkzCoVCmjx5skpLS7V48WLZbLbIdoznvwfZaRbZaR7ZefWRnSOTqNlJgw0AAAAAgAHMwQYAAAAAwAAabAAAAAAADKDBBgAAAADAABpsAAAAAAAMoMEGAAAAAMAAGmwAAAAAAAygwQYAAAAAwAAabAAAAAAADKDBBhATgUBAlmXp0KFDg96npaVFlmWpsbFxwG3XrVun4uLiqGWWZamqqiry+NChQ7IsS4FAYPCFAwAQI2QnEP9osIEk9dlnn6mqqkrBYHBY+7/99ttDCngAABId2QlgIDTYQJI6fvy4Xn/99WG/SdizZ498Pp/hqszZuHHjoD6tBwBgsMhOAAP5T6wLAICrwW63x7oEAAASCtkJjBxXsIEkVFVVpVdffVWSNHv2bFmWFZlPdenSJVVXV8vtdmv69OkqLi7Wli1bdOHChcj+xcXF+v777/Xpp59G9l28eLEk6c8//9Qrr7yiBx98UPn5+brzzjv15JNPqrW11Vj9oVBIW7Zs0V133aU77rhDXq9Xv/76a9Q2/c0jAwBguMhOAIPBFWwgCc2ZM0c///yzGhoaVF5erokTJ0qSMjIy9Pzzz8vn8+n+++9XWVmZTpw4oe3bt+vHH39UdXW1JOm5557Txo0bNXbsWHm9XknSpEmTJEm//PKLjhw5orlz58rhcOjcuXPat2+fHnvsMb3//vu68cYbR1x/TU2NbDabli5dqt9//111dXV6/PHH9d577yktLW3ExwcA4HJkJ4DBoMEGktC0adPkdDrV0NAgt9sth8MhSWptbZXP51NpaakqKiokSY8++qgyMjK0a9cuffLJJ5o5c6bcbrcqKys1ceJEzZs3L+rYlmWpqalJKSn/v0Fm3rx5Kikp0cGDB7VixYoR19/R0SG/369x48ZJkpxOp9asWaP9+/fL4/GM+PgAAFyO7AQwGNwiDiDi6NGjkqSysrKo5U888UTU+itJTU2NvEHo7e3VH3/8obFjx2rKlCn6+uuvjdQ5f/78yBsESZo7d64yMzMHVR8AACaRnQD+iSvYACLa29uVkpKinJycqOWZmZkaP3682tvbBzxGKBRSfX293nnnHQUCAfX29kbWTZgwwUidubm5UY9tNptyc3MHVR8AACaRnQD+iQYbQB82m23Y+77xxht67bXXtGjRIq1evVrp6elKSUnRpk2bFA6HDVYJAED8IDsBSDTYQNLq741AVlaWQqGQ2traNHXq1Mjyc+fOKRgMKisr64r7S1JTU5NcLpc2bdoUtTwYDEa+EGak2traoh6Hw2G1tbXJsiwjxwcAoD9kJ4CBMAcbSFLXXnutJKmzszOy7N5775Uk1dXVRW27e/fuqPV/7x8MBvscd8yYMX0+bf/ggw909uxZM4VLevfdd9XV1RV53NjYqN9++0333HOPsecAAOByZCeAgXAFG0hSeXl5kqStW7fqgQcekN1u16xZs7RgwQLt27dPwWBQBQUF+vLLL+Xz+eR2uzVz5syo/ffs2aNt27YpNzdXGRkZKiws1H333afq6mqVl5crPz9f3333nQ4fPqzs7Gxjtaenp+uRRx7RwoULIz81kpubq4cfftjYcwAAcDmyE8BAaLCBJHXbbbdp9erV2rt3r44dO6ZQKKTm5mZVVFTI4XDI5/PpyJEjmjRpkpYvX66VK1dG7b9ixQqdPn1aO3bsUHd3t2bMmKHCwkJ5vV719PTo8OHD8vv9cjqd2r59uzZv3mysdq/Xq2+//Va1tbXq7u5WYWGh1q9fH7myAADA1UB2AhiILcw3JwAAAAAAMGLMwQYAAAAAwABuEQcQcxcuXFBHR8cVt7nuuuuUlpY2ShUBABDfyE4gPtFgA4i548ePy+PxXHGbl156SQsXLhyligAAiG9kJxCfmIMNIOY6Ojr01VdfXXGbm2++WTfccMMoVQQAQHwjO4H4RIMNAAAAAIABfMkZAAAAAAAG0GADAAAAAGAADTYAAAAAAAbQYAMAAAAAYAANNgAAAAAABtBgAwAAAABgAA02AAAAAAAG/BdziB+7u3G0fgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.displot(data=tips, kind=\"ecdf\", x=\"total_bill\", col=\"time\", hue=\"smoker\", rug=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "id": "N98UJAVR6vU3", + "outputId": "8baa58dc-61f7-47bd-b583-9d043c2878db" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDIAAAHjCAYAAADR8z8NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeBBJREFUeJzt3XecVNX9//H39O1LEVZhRQQUe8GCCKIiFtSIYiPSLImQIAqWr8gvwRARiBVpaiwBQUVNYixBFDURA5FEsRArRSmLLHU7O/X8/lh32Nm+O3d2ZnZfz8eDB7t3bvnM2WHP5XPP+RybMcYIAAAAAAAgCdjjHQAAAAAAAEBjkcgAAAAAAABJg0QGAAAAAABIGiQyAAAAAABA0iCRAQAAAAAAkgaJDAAAAAAAkDRIZAAAAAAAgKRBIgMAAAAAACQNEhkAAAAAACBpkMgAWoFBgwZp8uTJ8Q6jzfnrX/+q3r17a926dfEOBQAg+sPq5s6dq969e8c7DACwHIkMIEmsXbtWc+fOVVFRUbxDaVEkCwAAVbX1/rDyz/HHH68BAwbopptu0nPPPaeSkpJ4hwgALcYZ7wAANM6nn36qefPm6YorrlBWVlbEa8uXL5fNZotTZAAAtJy23h/eeuutys3NVSAQ0O7du/Wf//xHM2bM0MKFC7VgwQIdddRR4X1/9atf6eabb45jtAAQGyQygFbA7XbHOwQAAOKuLfSHAwcO1PHHHx/+fuzYsfr3v/+tcePG6de//rWWLVumlJQUSZLT6ZTTmdi3+/v371dqamq8wwCQZJhaAiSBuXPn6oEHHpAknXfeeeFhpdu2bZNUc05w5fDTjz/+WNOnT9cZZ5yhU089VVOnTpXP51NRUZH+7//+T6eddppOO+00PfDAAzLGRFwzFApp4cKFuuSSS3T88cfrzDPP1NSpU1VYWNhyb7yRJk+erEGDBtXYXtvc4N69e+v3v/+93n33XV166aU67rjjdMkll2jlypU1js/Pz9eUKVM0YMAAHXfccRo0aJDuvfde+Xy+iP18Pp9mzpypM844QyeddJLGjx+vvXv3WvsmAQD0h3Xo16+ffv3rXysvL0+vv/56eHs0/WDlsZs3b9bkyZN16qmn6pRTTtE999yj/fv314jhtdde07Bhw3TCCSfo9NNP16RJk/Tjjz9G7DNq1Chdeuml+t///qcRI0boxBNP1COPPGJhSwBoKxI7RQtAknT++efrhx9+0Jtvvql77rlH7du3lyR16NCh3uOmT5+ugw46SBMmTNDnn3+ul156SZmZmfr00091yCGHaNKkSVq5cqWeeeYZHXnkkbr88svDx06dOlWvvvqqhg0bplGjRmnbtm16/vnn9dVXX+nFF1+Uy+Wq87o+n6/Rc3Ubeg+x8Mknn+idd97Rddddp/T0dC1evFi33nqr/vGPf4TbNj8/X1dddZWKi4t1zTXXqEePHsrPz9fbb7+t8vLyiKd+06dPV1ZWlm655Rbl5eVp0aJF+v3vf6/Zs2e3+HsDgNaM/rBuQ4cO1SOPPKJ//etfuuaaa+rdtzH9YKWJEycqNzdXt99+u7766iu98sor6tChg+66667wPo8//rgee+wxDRkyRFdddZX27t2rJUuWaMSIEfrb3/4WMQWooKBAv/zlL3XJJZfosssuU8eOHaN63wDaJhIZQBI46qijdMwxx+jNN9/U4MGDlZub26jjOnbsqKeeeko2m00jRozQli1b9Mwzz+jaa6/VtGnTJEnXXnutBg0apL/85S/hG7ePP/5Yr7zyih566CH97Gc/C5+vb9+++sUvfqHly5dHbK+u8gazMb799ttG7WeljRs3atmyZerWrZukivc1dOhQ/f3vf9fIkSMlSY888oh2796tl19+OWII72233VbjaV27du307LPPhudlh0IhLV68WMXFxcrMzGyhdwUArR/9Yd0OPvhgZWZmauvWrQ3u25h+sNLRRx+tGTNmhL8vKCjQn//853AiIy8vT3PnztXEiRM1bty48H4XXHCBrrjiCr3wwgsR23ft2qVp06Zp+PDhUb1fAG0biQygFbvqqqsiip6dcMIJ+vTTT3XVVVeFtzkcDh133HH68ssvw9uWL1+uzMxM9e/fP2KKxLHHHqu0tDStWbOm3hu3AQMG6E9/+pPF78Y6Z555ZvjmTaq4Mc7IyAjf/IVCIb377rs699xzI5IYlaoXkrvmmmsitp166qlauHCh8vLyIoquAQDio630h2lpaSotLW1wv4b6waqqJxxOPfVUrVixQiUlJcrIyNCKFSsUCoU0ZMiQiDY66KCDdNhhh2nNmjURiQy3261hw4Y15+0BQBiJDKAV69KlS8T3laMDDjnkkBrbq8713bx5s4qLi9WvX79az7tnz556r9u5c2d17ty5OSG3iOrvX5Kys7PDS/nt3btXJSUlOuKIIxp1vurtXDmEtq0tDQgAiaqt9IdlZWWNmqrRUD9YVV19XGFhoTIyMvTDDz/IGKMLLrig1mtVLzaak5PTJoqyAogtEhlAK2a3117Pt67tlUKhkDp27KiHHnqo1tcbmsdbXl6u4uLiRsXYqVOnRu1Xn7qW2gsGg7VudzgctW6vPmWksepqz+aeDwBgrbbQH+7YsUPFxcURIy3q0pR+sKE+LhQKyWaz6amnnqr1vGlpaRHfV66oAgDRIJEBJIm6/rMeC926ddO///1v9enTp1k3HMuWLWvRGhlZWVm1PkXavn17s87XoUMHZWRkaP369dGGBgCwGP1h7V577TVJFdNZWlK3bt1kjFFubq4OP/zwFr02gLaLRAaQJCrXWG/sk51oDBkyRC+88IIWLFig22+/PeK1QCCgsrKyiArk1bX0nOBu3bqpuLhY33zzTbgmxc6dO7VixYpmnc9ut2vw4MF6/fXXtW7duhp1MowxLXojDQA4gP6wpn//+99asGCBcnNzddlll8X8elVdcMEFeuSRRzRv3jw99NBDEf2jMUYFBQU1VkIBgGiRyACSxLHHHitJevTRR3XxxRfL5XLp3HPPrTFk0wqnn366rr32Wj355JP6+uuv1b9/f7lcLv3www9avny5/t//+3+66KKL6jw+FnOC//KXv+jDDz+ssX306NG6+OKL9dBDD+mWW27RqFGjVF5erhdffFGHH354RNG2prj99tu1atUqjRo1Stdcc4169uypXbt2afny5XrhhRfqvXEFAMROW+8PV65cqU2bNikYDGr37t1as2aNVq1apS5duujxxx+Xx+Ox9HoN6datmyZOnKiHH35YeXl5Gjx4sNLT07Vt2za9++67uuaaa3TTTTe1aEwAWj8SGUCSOOGEE3Tbbbdp6dKl+vDDDxUKhfTee+/F5MZNkn7/+9/ruOOO09KlS/Xoo4/K4XCoa9euuuyyy9SnT5+YXLM+L774Yq3bhw0bpoMPPljz5s3TrFmz9OCDD4bXu9+8eXOzExk5OTl6+eWX9dhjj+mNN95QSUmJcnJyNHDgQOb3AkActfX+cM6cOZIkl8uldu3a6cgjj9SUKVM0bNgwZWRktHg8knTzzTere/fuWrhwoebPny+pYjnY/v37a9CgQXGJCUDrZjNUowMAAAAAAEmi/lLNAAAAAAAACSShEhmbN2/W1KlTNXToUB1zzDG69NJLG3WcMUZ//OMfdc455+iEE07Qtddeq88++yy2wQIAAAAAgBaXUImM9evX64MPPtBhhx2mnj17Nvq4p556SnPmzNH111+vJ598Up06ddKNN96orVu3xjBaAAAAAADQ0hKqRkYoFJLdXpFbmTx5sv73v//pzTffrPcYr9erM888UyNGjAgvi+Xz+XTRRRdp4MCB+t3vfhfrsAEAAAAAQAtJqBEZlUmMpli7dq1KSko0ZMiQ8Da3263zzz9fK1eutDI8AAAAAAAQZwmVyGiOTZs2SZJ69OgRsb1nz57avn27ysvL4xEWAAAAAACIgaRPZBQVFcntdsvj8URsz8rKkjFGhYWFzT53As26AYCkEfKVa9P9V2rT/Vcq5Gt6MrncG9DP7nhNP7vjNZV7AzGIENGgbwQANCTae4HquDdAdc54B5DIQiGjoqKyeIeRVBwOu7KyUlVUtF/BYCje4SQ12tI6tKV1GtOWxu8Nf11QUCabK9ika3h9B/YvKCiTx+1oXrAJrqU/l+3bp1tyHvrGpuN3kHVoS+vQltahLWuK5l6gtvaM1b2BVX0jWl7SJzKysrLk8/nk9XojRmUUFRXJZrMpOzs7qvMHAvwyao5gMETbWYS2tA5taZ362tJU2R4IhGSzNa3NA9WOd9htzQsySSTj5zLZ4k0UyfizTlS0pXVoS+vQlgeYwIHEQ3PuBaTI9mxr9wZoWNJPLamsjfH9999HbN+0aZO6dOmilJSUeIQFAAAAAG2OMUZlr8+Idxho5ZJ+REafPn2UkZGht956S0cddZQkye/365133tHAgQPjHB0AAAAAJBZjjHz+2IweMQGv9u/eLskpe4dceUMO2XyNn1oSDBmVewPy+oLhkRhef9OmqaL1S6hExv79+/XBBx9IkvLy8lRSUqLly5dLkk4//XR16NBBY8aM0fbt27VixQpJksfj0dixYzV37lx16NBBRx55pF588UUVFBTopptuitt7AQAAAIBEY4zRzCVrtSGv+YsiNOy6ir/2SXp0ZQyvg7YqoRIZe/bs0W233RaxrfL75557Tn379lUoFFIwGJmR++UvfyljjJ599lnt3btXRx99tJ555hkdeuihLRY7AAAAACQ6nz8U4yRG7PTKzZbblfTVEWCBhEpk5Obm6ttvv613n8WLF9fYZrPZNHbsWI0dOzZWoQFAzBhjpIAv3mE0ijF2hXwOGb83oqhnxD4Bb63bAQBAYpk9YYA8LutWB6uojzFdob3bJEkZo+bI5vQ0cFQkp9Oudu3SVFBQVqN4qttll81GoU8kWCIDANqaig7/foXyN8Q7lEYriHcAAADAEh6Xw9Jlzo3fK/++HySbZO/YTZ7U1CYnHpxOu1I8TnncDlYnQZ1IZABAPAV8SZXEaApHzhGS0x3vMAAAsFT1kZSNGa3Ykowx8tUTR9XCmSbglbFZmMioMioz7bIpjJ5AzJDIAIAEkd6M4Zctrb7hnjV3dnMDAwBoVeoaSVkQn3BqMEZ6rPgifR/o3Kj9SxbfKr8tEKNouAdA7JDIAIAEYXN6ZHMldiLD5rTL7k6RzRWUzRb/p04AALSoBB9J6ZOz0UmMw5075VZskhiMykSskcgAAAAAgCaqHEnZpNGKMebyB6U5H0mSHv3VafUW8nQ77bLZrohNIIzKRIyRyAAAAADQZjVl9bCqNSAqR1Im0mhFmzlQ/yIlNc3SQp5AIiGRAQAAAKBNSsbVwwCQyACAZjPGyOeP7smLCQTlNRW/il3+YMSTlEQUDBmVewPy+oIxGz5btZo6AAAx1cyaFw3VgLDiHqE56EPRVpDIAIBmMMZo5pK12pBXaMHZrqv466c5rQAAoOU1afWwempAWHuPAKA2JDIAoBl8/hA3KDHWKzdbbpc93mEAABJUU2pb1HmOWmpeRCsR7hHoQ9HakcgAgCjNnjCg3qrgVZmAVyWLb62x3dG5p1IvvivhK3y3ZGV2t8ue8O0BAIiPZKlt0ZR7BCvRh6K1I5EBAFHyuByNrgpubA75bRVrtkcMYU2SZcqcTrtSPE553A457IkfLwCglWpmbYu6NFTzormaco8AoPFIZABAnFg1hBUAgNau+jSSqlNCmlTboi5J8kABQAUSGQAAAAASVkPTSBLlwYAxRl5fkJVDgBZAIgMAAABA4qpnGkmspoQ0lTFG0xd9rPXbKAQOtAQSGQAAAACSQo1pJAkyJcTrC9ZIYrByCBA7JDIAtFqV82mNsSvkc8j4vTIWrbRhAsEqX3tlbI1ftQQAANSvak2MWCyRGkuVK5WwcggQOyQyALRK1efTFlh8fq9xSrpOklSy+NbwSiQAACA6ybK0al1YqQSIPRIZAFoni5dls1qizOkFACDh1NGHt3TfaYyRz9/wSM5gyMjmpMAn0JJIZABo9bKvn6f2ndqroKBMAYumlrj8QWnOR5KkjFFz5HE18clLgszpBQAgkUXUxGjBvtMYo5lL1mpDHsU7gUREIgNAq2dzeWR3p8jmCspmsyaRYTMHnrxUzNdlCCkAoO2qWtMi6nMlQE0Mnz/UrCQGBT6BlkEiAwAAAECzJXtNi4ZUFu+si9NpV7t2aSooKJPdJkZcAi2ARAYAAACA5otRXapEqSfVUPFOp9OuFI9THrfDsimsAOpHIgMAAABAo9Q2haTqVJCImhbRop4UgDqQyACQVBpbQdwEgj8tkSp5fUGVewPy+oKWPSnx+qlODgBoWxozhSReNS2iUdu9Bf08kNhIZABICI0pEmaM0ayl67Rhe3Ejz3pdxV+Pro4uOAAA0OAUkkSZCtIUrE4CJCcSGQDirrFFwrzGqQ37rmuhqBqH6uQAgLao1ikkSTgVpKHVSejngcREIgNA/DWjSNj0di/LbQs0uJ+jc09lXna32rdPV0FBmeVFuNwue9LdtAEA0BSVoyYTYVnUWKptdRL6eSAxkcgAkFDqKxLm8gelOR9JkjqMfqTepdDCnG65XI5wNXGHnZsRAAAaq7UvrVpVQ6uTAEgcJDIAJJT6nvDYTLDaftxsAAAQU7WMmox1LYzGFva2AkU9geREIgMAAABAg8KjJmNYC4PimwAag0QGAAAA0IbVt3JYS9fFaKj4ZqxQ1BNILiQyAAAAgDYqkWtg1FZ8M1Yo6gkkFxIZAAAAQFvVyJXDYl0XozYU3wRQFxIZAOLKGBMxbBUAAMSeMUYhX7mM/0AfXN/KYbGsiwEATUUiA0DcJPJwVgAAWitjjIpfvV8FO9ZHbG+JGhgAYAUq2gCIn2rDWeMxbBUAgDYn4FOwWhKDPhhAMmFEBoCEkD5qjmwpmQxbBQCgBWVfP09Bm4upIwCSCokMAAnB5vRwAwUAQIsw4a9sLo9sNlccYwGApmNqCQAAANBGVNSnmhHvMAAgKozIAAAAANqKgE+hPVskSe6cwyvqYgRNAwc1nTFGPn+oycd5/UHLYwHQ+pDIAJJEc28IEpkJBOU1Fb+GXP6gbKb+mxdubgAAsE6X0fepsDSkqlNNrGCM0cwla7Uhr9DS8wJAJRIZQBJo3TcE11X8Neej+IYBAEArYoyRAr6a2wPeKt/FpjaVzx+K+p6lV2623C5mwQOoHYkMIAlYcUPQmnBzAwBA3SrqYNwfscR5vMyeMEAel6PJx7lddoqAA6gTiQwgyTT3hsAqJuBVyeJbLT2no3NPpV58V6NvWLi5AQCgHgFfg0kMx8FHyObySCqLaSgel0Med/zuWwC0TiQygCQT7xsCY3PIbwtIktJHzZHN6Yn+pKxdDwBAVKpOJak6faSuvtqZkkLfCyBpkcgA0Gw2p+enpzkAACBe6ptKUldfTRIDQDJjkjkAAACQzOqYSuLIOaJieVUAaGUYkQEAAAC0EhFTSZi6CaCVIpEBAAAAJIi6lk2t95gqNTGY9gmgLSCRAQAAACSARFo2FQASGYkMAPWq/mSo6lMfAABgoUYsm1ofamIAaCtIZACoE0+GAACIj2Ytcd6CNTGMMfL5Q7W+5vUHWyQGAG0XiQwAdavnyRBPfQAAiF7VkY/JUuvCGKOZS9ZqQ15hvEMB0EaRyADQKDWeDFEJHQCAqCTryEefP9SoJEav3Gy5XfYWiAhAW0MiA0CjJPKTIQAAklIdIx+TadTj7AkD5HE5an3N7bLz0ANATJDIAAAAAOIsYuRjEo169Lgc8rhrT2QAQKyQyAAAAABirPoqYFJi1cSor3hndRTzBBBvJDKABFN5IxEMGZV7A/L6gtwwAACQxBK9FgbFOwEkGxIZQALhRgIAgFaonlXApPjXxGhs8c7qKOYJIF5IZAAJpKEbCatuGGob3lrrflWGvAIAgOYy4a9qrAImJVRNjPqKd1ZHMU8A8UIiA0hQ8yYNVE6nTBUUlCkQqJizasUNQ6IPbwUAoDWp6HdnhL+Pdy2MhlC8E0AyIJEBJCiPy6EUj1Met0MOu4VPOxoY3lqbeA95BQAgaQV8Cu3ZIkmyd+xGfwoAFiCRAbRhtQ5vrU0CDXkFACBZpV02JaH6U2MMRcUBJCUSGUAblujDWwEASGbGmGr1phIriXH3vH/p6x/2xjsUAGiyhEtkbNy4UdOnT9enn36q9PR0DR06VBMnTpTbXf8wvH379unRRx/VypUrVVBQoNzcXI0YMUI///nPWyhyAAAAoEKi16Ty+UM1khisQgIgWSRUIqOwsFBjxoxR9+7dNXfuXOXn52vWrFkqLy/X1KlT6z32tttu06ZNm3T77bfrkEMO0cqVK/W73/1ODodD11xzTQu9AwAAAEA1alIlcr2pypVKWIUEQLJIqETG0qVLVVpaqnnz5qldu3aSpGAwqGnTpmns2LHKycmp9bhdu3ZpzZo1mjlzpoYNGyZJ6tevn9atW6e///3vJDIAAAAQN+mj5siWkpmwSQJWKgGQbBJq7NjKlSvVr1+/cBJDkoYMGaJQKKRVq1bVeVwgEJAkZWZmRmzPyMiQMaa2QwAAAICYqF4bw+b0JGwSAwCSUUKNyNi0aZOuvPLKiG1ZWVnq1KmTNm3aVOdxhxxyiAYMGKAnnnhChx9+uA4++GCtXLlSq1at0kMPPRRVTE5nQuV6Ep7DYY/4G00TDB1IvNkdFTc8VrelMQfO53TaZWsDn3E+l9ahLa2TzG1J39g0yfyzTjTJ0JbGGBW/er+CO9aHtyVif2uCofDXTqedf9dRSIbPZTKhPdEYCZXIKCoqUlZWVo3t2dnZKiwsrPfYuXPnatKkSbrkkkskSQ6HQ7/5zW904YUXNjseu92m9u3Tm318W5aVlRrvEJJSuTcQ/jors6INrW7LkM+hgp++btcuTXZ3iqXnT2R8Lq1DW1on2dqSvrH5ku1nncgSuS1DvnIVVElieHKPUvtO7RNuREbVe4527dKU4kmo/xYkpUT+XCYj2hP1aRW/sYwxuueee/TDDz/o4YcfVqdOnbR69WrNmDFD2dnZ4eRGU4VCRkVFZRZH27o5HHZlZaWqqGi/glUy/Wgcr+/AOu5FxfuV4sm0vC2N/8BQ14KCMtlcrX/teD6X1qEtrdPSbWlV8oG+sen4d2OdRG1LY4wU8FV8XaWfzb5+nmypmSooSLx/M/4q7VdQUEaNjCgk6ucyWbVke5KYT14JlcjIyspScXFxje2FhYXKzs6u87h//vOfWr58uV5//XX17t1bktS3b1/t2bNHs2bNanYiQ5ICAX4ZNUcwGKLtmqFqm4WCFdNMrG5LU+VcgUBINlvb+TnxubQObWmdZGzLZIs3USTjzzpRJVJb1rfMatDmki1oJCVezbZQlemsgUBIDntijRhJRon0uWwNaE/UJ6EmHvXo0aNGLYzi4mLt2rVLPXr0qPO4DRs2yOFw6Mgjj4zYfvTRR2vnzp3av39/TOIFAABAG1dtmdVKibzcKgAku4QakTFw4EA98cQTEbUyli9fLrvdrv79+9d5XNeuXRUMBvXtt9/qqKOOCm//8ssv1bFjR6WmMr8KAAAAsZU+ao5sTk/FN053XOtiGGPk89f9NDvIyn4AklhCJTKGDx+uxYsXa/z48Ro7dqzy8/P1wAMPaPjw4crJyQnvN2bMGG3fvl0rVqyQVJEA6dKli2699VaNHz9enTt31r/+9S+9+uqrmjBhQrzeDtBolTcbXn/rr1cBAEBrZXN6ZHN54h2GjDGauWStNuTVXywfAJJVQiUysrOztWjRIt13330aP3680tPTddVVV2nSpEkR+4VCIQWDB/7Dl5GRoYULF+rRRx/VQw89pOLiYuXm5mry5MkaOXJkS78NoEm42QAAAFby+UONvq84IjdbbldCzTYHgAYlVCJDknr27KmFCxfWu8/ixYtrbDvssMM0e/bs2AQFxFBtNxu9GnlTUbVKemOZgLfhnQAAQKswe8IAeVw1VyRxOu1q1y5NZaXlCgaZZgIguSRcIgNoyypvNtwue4Pzauurkg4AACBJHpej1qVVnU67UjxO7S+zKRFXVQGA+pDIABJIXTcbtaqjSnpjUU0dAIDkVldBT2puAWjtSGQArUBElfTGinM1dQAA0HzU2ALQlpHIAFqBRKmSDgAAWkZjCno2tuYWACQbEhkAAABAE1Qttp0IRbTrKujZmJpbAJCMSGQAAAAAjZSIxbabVGMLAFoBxpoBAAAAjVVHsW2KaANAy2FEBgAAANAMEcW2KaINAC2GRAaQ4IwxMv6a828TYU4uAABtjwl/RbFtAIgPEhlAAjPGqPjV6QruWB/vUAAAaPMq6mPMiHcYANDmUSMDSGDG720wicGcXAAAWkjAp9CeLZIke8du9L8AECeMyACSRMQ83KqYkwsAQItLu2wK/S8AxAmJDCBJMA8XAID4McZUq09FEgMA4oVEBgAAAFCPitoY99e67Gqsr+vzh2p9zesPtmgsAJBISGQALai2GxJuRAAASHABX0QSoyXqUxljNHPJWm3IK4zpdQAgGZHIAFoINyQAACQuY4wU8NX+WpUpJemj5siWkhnz+hg+f6hR9wy9crPldlG/H0DbQiIDaCEN3ZD06pIpl/wy/oAkyRi7jN/RUuEBANBmNWXqiM3pafEin7MnDJDHVfs9gdtlp+gogDaHRAYQB4/e0l/BFQ8rtHNTeJt7f0ClCyP3K2jRqAAAaKOqTR2pS7yWPPe4HPK4ebgBAJVIZABx4LEH5d/1XaMLnsfrxgkAgLamzuXOJZY8B4AEQSIDiLO6bpicTrvatUtTQUGZAnJy4wQAQAxUX1aV5c4BIPGRyADirK4bJpvTLrs7RTZXULZA7UuvAQCA5ovXsqoAgOhQ4hgAAABtUxyWVQUARI8RGQAAAGjzWmpZVQBA9EhkAAAAoE0xxkgBX83aGCQxACApkMgAAABAm5HodTGMMfL5Q/L6g/EOBQASFokMoIUYYw58XeUJEAAAaEHV6mJIiVMbwxijmUvWakNeYbxDAYCERiIDaAHGGJUte0DSGZKk0hfvkofRqwAAtIjKqSRS5MOE8BLoTndCTCvx+UM1khi9crPldlGfHwCqIpEBtISAT6Gdm1SZyKiUKE+AAABoreqbSlLXEuiJYPaEAfK4HHK77AmRZAGAREIiA4iDjFFz5HE5EuYJEAAArVYtU0mkxH+Y4HE55HE74h0GACQkEhlAHFQ8AeLmBACAlhSeSiIl3MMEYwwFPgGgkUhkAAAAoBU7UGw7UaeSUOQTAJqGRAbQCJVLoTX7+EBQPsM/NwAAWlJFfYwZ8Q6jQdWLfFLgEwDqx/+sgAZY95TkGkviAQAAjRTwKbRniyTJ3rFbQtfEqDR7wgBlprkSatoLACQaUr1AA2pbCi0avbpk8pQFAIAWlnbZlKRIDnhcjqSIEwDiiREZQBNULoXWWMYYKeiTCXhV+uJdkqQOw+dxgwIAQIswVb6m7wWA1oJEBtAETVkKrfq69Z6f7p9IYgAAEHuJWh+jtrpbrFYCAE1DIgOIlVrWrU/0NesBAGg1ErA+BquTAIA1SGQALSC8bn2CrVkPAEBrYoyRAr6KrwPe8PZEqY/RUN0tVisBgMYhkQG0gERdtx4AgNai+pTOSPFPYlRXW90tt8ueEAkXAEh0JDIAAACQ/GqZ0ikl7rTOptTdAgBEIpEBAACAViU8pVOK67TO6oU9KeoJANYgkQEAAIBWJRGmdFLYEwBih2pCAAAAgMXqK+xJUU8AiA4jMgAAAIAYql7Yk6KeABAdEhkAAABADFHYEwCsxZg2AAAAJDVjjEzAG+8wAAAthBEZAAAASFrGGJW9fn+tS6/Gk5GJdwgA0GoxIgMAAADJK+CLSGI4co6QnO44BlSRXJm1ZG1cYwCA1owRGUADeKICAEBySB81R7aUzLgX0vT5Q9qys0SS1K1zBiuUAIDF+K0K1IMnKgAAJA+b0xP3JEZ1k0f2SbiYACDZkcgA6sETFQAAEA2bSGIAgNWYWgI0Un1PVIwxUsAXuY3q6QAAtFrGGPn8oVpf8/qDLRwNALQtJDKARqrriUqiVksHAACxYYzRzCVrtSGvMN6hAECbxDh5IFrVqqVXlwjV0wEAgHV8/lCjkhi9crOZlgoAMcCIDMBC6aPmyOb0RG50uinyBQBAKzV7wgB5XI5aX3O77NwDAEAMkMgALGRzemRzeRreEQAAtAoel0Med+2JDABAbDDWDQAAAEnMxDsAAEALI5EBAACApFRRcHtGi1+TVUkAIL6YWgIAAIDkFPAptGeLJMnesVvMi2uzWgkAJAZGZAAAACBJHZhWknbZlJgX1qy+WgmrkgBAfDAiA4iCMUYm4I13GAAAtDk1p5W07OogsycMUGaai1VJACAOSGQAzVRxA3W/Qvkb4h0KAABtTwtPK6nO43KQxACAOGEsHNBcAV9EEsORc0SL30QBAICWmVYCAEgcjMgALJA+ao5sKZncRAEA0AJqTu2MTf9rjJHPHwp/z2olAJAYSGQAFrA5PSQxAABoAcYYFb86XcEd62N+HVYoAYDElHBTSzZu3KgbbrhBJ510kvr3768HHnhAPp+vUcfm5+fr7rvv1hlnnKETTjhBQ4YM0euvvx7jiAEAANBSjN8bkcSI1dTO6iuUVMVqJQAQXwk1IqOwsFBjxoxR9+7dNXfuXOXn52vWrFkqLy/X1KlT6z12586duvbaa3X44YfrvvvuU0ZGhtavX9/oJAgAAACSS0tN7Zw9YYA8Lkf4e7fLzkhMAIijhEpkLF26VKWlpZo3b57atWsnSQoGg5o2bZrGjh2rnJycOo998MEHdfDBB+vpp5+Ww1HR0fTr168lwgYAAEActNTUTo/LIY/b0fCOAIAWkVBj4lauXKl+/fqFkxiSNGTIEIVCIa1atarO40pKSvTWW2/puuuuCycxAKsZY2T83gN/IoqMAQCA1sIYQ2FPAEhgCTUiY9OmTbryyisjtmVlZalTp07atGlTncd9+eWX8vv9cjqdGjlypD799FO1a9dOl19+uSZOnCiXy9XsmJzOhMr1JDyHwx7xd7ILhkz46/1vPSj/zm9r3c/ptMtm8WeltbVlPNGW1qEtrZPMbUnf2DTJ/LNONNXbMBb9rzFG0xd9ovXbDtTHcDrtre5zz+fSOrSltWhPNEZCJTKKioqUlZVVY3t2drYKC+uuGL17925J0m9+8xtdc801uuWWW/TFF19ozpw5stvtuuOOO5oVj91uU/v26c06tq3LykqNdwiWKPcGwl8H8zfKWcvoVU/uUWrfqX3Mhra2lrZMBLSldWhL6yRbW9I3Nl+y/awTVci3P/x1u3ZpsrtTLD1/uTcQkcQ4unsH5XRuvUus87m0Dm1pLdoT9bEkkbFhwwZt3bq1zmTD5ZdfbsVl6hQKVazvfeaZZ2ry5MmSpDPOOEOlpaV69tlnNX78eKWkNL2TC4WMiorKLI21tXM47MrKSlVR0X4Fg6GGD0hwXl/NYaXZ18+TzeU5sMHpVkGB9Z+T1taW8URbWoe2tE5Lt6VVyQf6xqbj34117Habil85UAC+oKBMNpe1U0Cq9v3zJg1UZporJv18vPG5tA5taa2WbE8S88krqkTGli1bdNddd+mLL76QMabWfWw2W6MTGVlZWSouLq6xvbCwUNnZ2fUeJ1UkL6rq16+fnnjiCW3evFm9e/duVAzVBQL8MmqOYDDUKtqutvcQtLlks1WZrhQ0kmr//FuhtbRlIqAtrUNbWicZ2zLZ4k0UyfizTjQO45cv/3tJkr1jNwXklM3iNq36M3LYbArGuJ+PNz6X1qEtrUV7oj5RJTKmTp2q7777TlOmTNGpp55a67SQpujRo0eNWhjFxcXatWuXevToUedxvXr1qve8Xi9FGQEAAFqTtMumtNrpHgCA+kWVyFi7dq3Gjh2rUaNGWRLMwIED9cQTT0TUyli+fLnsdrv69+9f53Fdu3bVkUceqdWrV2vkyJHh7atXr1ZKSkqDiQ4AAAAkLmOMFPDJGH+VrSQxAKCtiiqR0b59e2VmZloVi4YPH67Fixdr/PjxGjt2rPLz8/XAAw9o+PDhysnJCe83ZswYbd++XStWrAhvmzRpkn7961/r/vvv1znnnKN169bp2Wef1U033aS0tDTLYgQAAEDLMcao7PX7FcrfEO9QAAAJIqo1bYYPH67XX39dwaA1RZays7O1aNEiORwOjR8/Xg8//LCuuuqqcAHPSqFQqMY1Bw0apEceeUT//ve/NXbsWL388suaMGGCJk6caElsAAAAiIOAr0YSw3HwEZLTHaeAAADxFtWIjO7duysUCmno0KG68sordfDBB8vhcNTY74ILLmj0OXv27KmFCxfWu8/ixYtr3X7xxRfr4osvbvS1AAAAkDyyr5+n9p3aq6Ak8FMRTgBAWxRVImPSpEnhr//whz/Uuo/NZtPXX38dzWWAuKlrNR4AANDybC6P7O4U2Wylas0riQAA6hdVIuO5556zKg4gMQV9Ed86chjKCgBAa2OMkc9fscyj12/NlGkAQOxElcg4/fTTrYoDSHjpP39QKZntWOoNAIBWxBijmUvWakNeYbxDAQA0UlSJjKo2bNigvLw8SRXLobLkKVobm9NDEgMAgBYX2ykkPn+o1iRGr9xsuV1R1cUHAMRI1ImMd999V7NmzQonMSrl5uZq8uTJOu+886K9BBA3lMgAACB+KpZendFi15s9YYA8rorC9W6XnQcYAJCgokpkfPDBB7r11lvVpUsXTZo0ST179pQkbdy4Mbz86RNPPKGBAwdaEizQkowxmrV0XbzDAACg7Qr4FNqzRZJk79gt5nWqPC6HPO6aK/ABABJLVImMBQsWqHfv3nr++eeVlpYW3n7eeedp5MiRuu666zR//nwSGUhKPn9IW3eVSpK6OvbK7WR4KQAA8ZJ22RRGSAAAJElR/c/s22+/1eWXXx6RxKiUlpamK664Qt9++200lwASwm1Zy7l5AgCgxVWd42l9P2yMYZUSAEhCUY3I8Hg8Kiysu8JzYWGhPB5PNJcAWpwxRgr4ZALc2AAAEC+xro/BaiUAkLyiSmT07dtXzz33nM466yydfPLJEa99/vnnWrx4sfr37x9VgEBLqrhpul+h/A3yGqek6+IdEgAAbVOM62NUX62EVUoAIHlElci46667NHz4cF133XU64YQTdPjhh0uSvv/+e33xxRfq2LGj7rzzTksCBVpEwKdQ/oYamx2de8a8wBgAAKhdrOtjzJ4wQJlpLqaRAkCSiCrtfOihh+r111/XqFGjVFhYqGXLlmnZsmUqLCzU6NGj9dprryk3N9eqWIEWlf7zB8Nfp158Fzc3AADEiDFGxu+N/BPwVtkjtn2wx+WgnweAJBLViAxJ6tixo6ZMmaIpU6ZYEQ+QMGzOA/VduLkBACA2qk7rbMlrUuQTAJJX1IkMAAAAoNnqmNZZyZFzhKXTOynyCQDJr0mJjHvuuUc2m0333XefHA6H7rnnngaPsdlsmjEjdhWnAQAAkMwOLLGaPmpOxIhISZLTbenISIp8AkDya1IiY82aNbLZbAqFQnI4HFqzZk2DxzAkHwAAALWpvsSqzemRzeWp5whrUeQTACL99a9/1T333KM///nPOv744+MdTp2alMh4//336/0eAAAAaLQYL7HaEIp8AkByimoc3fbt21VeXl7n6+Xl5dq+fXs0lwAAAEAbEOslVgEArUdUiYzzzjtPK1asqPP1999/X+edd140lwAAAEArZIyxfIlVY4y8vmD9f1itBADiJhQKyev1NrxjA6JatcQYU+/rfr9fdjvFkwAAAHBALJZcZTUSAMmspKREjz32mN577z3t3LlTmZmZOuqoo3TnnXfq2GOP1ahRo7Rv3z499NBDmj59utatW6fOnTvrjjvu0EUXXaT//Oc/evDBB/Xtt9/qkEMO0b333qszzzwz4hpfffWVHnnkEa1du1bGGJ1wwgmaNGmSTjrppHpjKyws1E033aSdO3dq4cKF6tGjh3w+n5544gm98cYb+vHHH9WxY0ddcsklmjhxotzuA9MEe/furREjRuikk07Sk08+qR9++EGPPfaYBg8eHFV7NTmRUVJSoqKiovD3BQUFtU4fKSoq0rJly9SpU6eoAgQAAEArU23JVSuWWK2+GklDWK0EQCK599579fbbb2vkyJHq2bOnCgoK9Mknn2jjxo069thjJVUkFMaNG6eLL75YF110kV588UXdfvvtCoVCmjFjhoYPH65LL71UzzzzjG699Vb985//VEZGhiRp/fr1GjFihNLT0/WLX/xCTqdTL730kkaNGqUlS5boxBNPrDWuvXv36sYbb1RhYaGWLFmibt26KRQK6Ve/+pU++eQTXXPNNerZs6e+++47LVq0SD/88IMWLFgQcY6PPvpIb731lkaMGKH27dura9euUbdXkxMZCxcu1Pz58yUdWFq1ruVVjTGaOHFiVAECLc0YySenQgw9BQAg5tJHzZEtJdPS+hizJwyQx+Wodx+3y05NDgAJ44MPPtA111yjyZMnh7f98pe/jNhn586devjhh3XppZdKks4880wNGTJEd9xxh5YuXRpORvTs2VM33XST3nnnHQ0bNkySNHv2bPn9fr344os69NBDJUmXX365LrroIj344INasmRJjZh27dqlG264QeXl5VqyZEk4AfHGG29o9erVWrx4sU499dTw/kcccYTuvfderV27Vn369Alv//777/XGG2+oV69eVjSVpGYkMvr376+0tDQZY/Tggw/qkksuCWeIKtlsNqWmpurYY49N6CVbgOqMMXqs+CJ9H+gsPf7feIcDAEArdWB6ss3psTyh4HE55HHXn8gAgESSlZWlzz//XPn5+crJyal1n7S0NF1yySXh73v06KGsrCzl5OREjKio/Hrr1q2SpGAwqFWrVmnw4MHhJIYkde7cWZdeeqleeeUVlZSUhEdvSFJ+fr7uvPNOSdLzzz8fEdPy5cvVs2dP9ejRQ3v37g1vP+OMMyRJa9asiUhknHbaaZYmMaRmJDJOPvlknXzyyZKk/fv364ILLtCRRx5paVBAvPgCoYokRhUMPQUAwDoV9TFqH80LAG3VnXfeqcmTJ+ucc87Rscceq7PPPluXX355ROLh4IMPrpH4zczM1MEHH1xjm6RwSYi9e/dq//79Ovzww2tct2fPngqFQvrxxx91xBFHhLffddddcjqdtZaL2Lx5szZu3Kh+/frV+l727NkT8X1ubm5Db7/Jml3sc//+/Vq8eLFSUlJIZKBVevRXpyklNY2hpwAAWCngU2jPFkmSvWO3qGtjVDKqvwg9ACSyiy++WKeeeqpWrFihVatW6ZlnntFTTz2luXPn6uyzz5YkORy1jzSra3tDi3PU54ILLtDf/vY3Pffcc7rjjjsiXguFQjryyCN1zz331Hps9cRKSkpKs+OoS7MTGampqXI4HEpNTbUyHiBhMCwVAIDYSrtsiiUPC4wxmrVkrQURAUD8dO7cWSNGjNCIESO0Z88eXXHFFXriiSfCiYzm6tChg1JTU/X999/XeG3Tpk2y2+065JBDIraPHDlS3bp105w5c5SZmambb745/Fq3bt30zTffqF+/fnF74BvVePkLLrhAb7/9dlSZHgAAALRV1twA+/whbdlZIknq1jmDKaEAkkowGFRxcXHEto4dO6pz587y+XxRn9/hcKh///567733tG3btvD23bt3680339Qpp5wSUR+j0vjx43XjjTfq4Ycf1gsvvBDePmTIEOXn5+vll1+ucUx5ebnKysqijrkhzR6RIUmXXHKJpk2bptGjR+vqq69W165dax02Ur0YKAAAABALk0f2YUoogKRSWlqqs88+WxdeeKGOOuoopaWlafXq1Vq3bl3EKibRmDhxolavXq3rrrtO1113nRwOh1566SX5fD7ddddddR539913q6SkRL///e+Vnp6uoUOHaujQoXrrrbd07733hgt7BoNBbdq0ScuXL9fTTz8d80U/okpkjBo1Kvz1xx9/XON1Y4xsNpu+/vrraC4DAAAANIrNolEeANBSUlJS9POf/1yrVq3SO++8I2OMunXrpnvvvVfXXXedJdc44ogj9Pzzz+vhhx/Wk08+KWOMTjjhBD344IMRK57UZtq0aSorK9OUKVOUnp6uwYMHa/78+Vq4cKFee+01rVixQqmpqcrNzdWoUaNqLSpqNZuJYl7Iq6++2qj9rrjiiuZeIq6CwZD27i2NdxhJxem0q337dO3bV6pAIBTvcJqsvKxMv57zkSRpwa1nKCUtLW6xJHtbJhLa0jq0pXVaui07dcq05Dz0jU3Hv5tIxl+ukj+NkyRl3PCkbC5Po4+t3pbGGPn8IXn9QU2c+y9J0uO3n02Nq0bgc2kd2tJaLdmeVvWNaHlRjchI1gQFAAAAWp6VS68aYzRzyVptyCu05HwAgOQRVSKjqtLSUu3YsUNSxXIr6enpVp0aAAAArYGFS6/6/KEaSYxeudkU+gSANiDqRMYXX3yhBx98UGvXrlUoVDH0x26365RTTtFdd90V8yIfAAAASD5WLb0qSbMnDJDH5ZDbZafQJwC0AVElMj7//HONGjVKLpdLV111lXr27ClJ2rhxo/7+979r5MiRWrx4sU444QRLggWawxgjBRq3bJEJeGMcDQAAbVnV0mzWJRw8Lgd1MQCgDYkqkfHoo48qJydHL7zwgjp16hTx2oQJE/Tzn/9cjz76qP70pz9FFSTQXBVzce9XKH9Do/b3GqckayoDAwCAA6ysjwEAaNuimkT4+eef69prr62RxJCkgw46SNdcc40+++yzaC4BRCfga3QSowZH8+ftAgCAaiysj2GMkdcftCoyAECSiWpEht1uVzBYdycSCoVkt1NwCYkhfdQc2Zz1L/Hm8geln5ZfZY4tAACxEU19DGOMpi/6WOu3sVoJALRVUWUZTj75ZD3//PPKy8ur8dr27dv1wgsvqE+fPtFcArCMzemRzdXAnwYSHQAAoLmsqY/h9QUjkhisVAIAbU9UIzJuv/12jRgxQkOGDNH555+v7t27S5K+//57vffee3I4HLrjjjusiBOIGWOMfP6KFXcYpgoAgPViVR9j9oQBykxzMYoSANqYqBIZxxxzjF555RU9+uijev/997V//35JUmpqqs466yxNnDhRvXr1siRQIBaMMZq5ZG2NdegBAICFLKyPUZXH5SCJAQBtUFSJDEnq1auX5s+fr1AopL1790qSOnToQG0MJAWfP1RrEoNhqgAAWOnAtJK0y6ZIqpgi0lTBkJHNyehJAGjrok5kVLLZbOGMOJlxJKPZEwbI46pYg97tsvM5BgDAAtWnlRgjzWI0JAAkjVGjRmn37t167bXX5HZHjqi79dZb9fnnn2vZsmVKT09vsZiifuS8YcMG3XrrrerTp48GDBigAQMGqE+fPrr11lv13XffWREj0CzGGJmAt9H7e1wOedwVf0hiAABgkWrTSnzGaUkSg9GTANAypk2bpm3btunpp5+O2L5y5Uq9/fbb+u1vf9uiSQwpyhEZH3/8sX75y18qFArpvPPOiyj2+f7772vlypV6+umndeqpp1oRK9BoFU9/7lcof0O8QwEAAD9Ju2yKfObAw4KqoyEbw+m0q127NBUUlMluYxQwALSEHj16aOzYsXriiSf0s5/9TIceeqi8Xq/uu+8+nXfeeRo8eHCLxxRVImPGjBnq0KGDlixZokMOOSTitR9//FEjRozQzJkz9Ze//CWqIIEmC/gikhiOnCMsKywGAACaKzLxUDkasrGcTrtSPE553A4FAiGrgwMA1OHmm2/Wm2++qWnTpunpp5/WE088od27d2vx4sXasWOHHnroIX344Yfav3+/jj/+eN1zzz067rjjwse/9957mj9/vr7//ns5HA5169ZNt912m84+++xmxRNVImPDhg267bbbaiQxJOmQQw7Rz3/+c82bNy+aSwBRSx81R7aUTJ7aAAAAAIgrY0yzih1bIZop9G63W7///e81atQoLViwQE8//bTuuOMOpaam6oorrlBaWpp++9vfKjMzU4sXL9aYMWP0zjvvqGPHjtqyZYtuu+02XXLJJbrjjjsUCoX0zTffqLCw+dMMo0pkdOnSRT6fr87X/X6/Dj744GguAUTN5vSQxAAAIAEYY+T1s+oIgLbJGKO75/1LX/+wNy7XP7p7B/3hlgHN/r/R6aefrmHDhumxxx7Tscceq1GjRmn+/PkqKirSK6+8oo4dO0qS+vXrpwsvvFDPPPOM/u///k9fffWV/H6/fvvb3yojI0OSdNZZZ0X1XqKqkDR+/HgtXrxYX3/9dY3XvvrqKy1ZskQTJkyI5hIAAABoBYyRZi1dp4lz/xXvUAAAzXTzzTdLkm644QY5HA6tWrVKffv2VXZ2tgKBgAKBgOx2u0477TStW7dOktS7d285HA7deeedev/991VcXBx1HFGNyPj888/VsWNHDRs2TCeffLIOO+wwSdIPP/ygzz77TEcccYQ+++wzffbZZxHH/eY3v4nmsgAAAEgaRpLkk1Mbth+4eWXVEQBtjc1m0x9uGZCUU0squVyuiL/37dunzz77TMcee2yNfbt16yZJOvzww/XEE0/oySef1C233CK73a4BAwZo6tSp6tKlS7PiiCqRsWTJkvDXa9eu1dq1ayNe/+6772oswWqz2UhkAAAAtAEVq4jNqLF99oQBykxzMfUTQJtjs9mU4onqv+EJJTs7W2eddZZuu+22Gq+53QcWWxg4cKAGDhyokpISrVy5UjNnztQ999yjRYsWNeu6UbXgN998E83hAAAAaM0CPoX2bJEk2TvkSvsqNntc0T8VBADE35lnnqnXX39dPXv2VFpaWoP7Z2Rk6OKLL9YXX3yhN998s9nXbT2pICCCiXcAAACgSn+cevFd0tw1cYwFAGC166+/Xm+88YZGjhyp0aNHq0uXLtq7d68+//xz5eTk6Prrr9fSpUv12Wef6ayzzlKnTp20bds2vf766+rfv3+zr2tJImPr1q1auXKltm/fLqliNZOBAwfq0EMPteL0QJPUNYwVAAC0nKr9cUWhz//FOSIAgNXat2+vl156SbNnz9ZDDz2kgoICdezYUSeeeKLOP/98SRXFPv/xj39o5syZKigoUKdOnXTJJZfUOh2lsaJOZMyaNUvPPfecQqFQxHa73a4xY8bo7rvvjvYSQNNUHcbasZvkdDdwAAAAsFyV/jjQobu2biyVJHXrnEGRTwBIUrm5ufr2228jtnXq1En3339/ncecfPLJevLJJy2NI6pExrPPPquFCxfqwgsv1I033qiePXtKkjZu3KiFCxdq4cKF4eEkQDykXTaFObgAAMRZ2iV3SXMqppVMHtmHvhkAEJWoEhkvv/yyBg0apMceeyxi+4knnqhHH31UXq9XS5cuJZGBmDLGyOc/MCLIBILymoqPtssfks3UvbyR1x+fpY8AAGj9qtarslX5iiQGACA6USUy8vLyNHr06DpfHzBggD788MNoLgHUyxijmUvWakNeYbVXrqv4a85HLR4TAABtHfWqAACxFNUExY4dO9a7BOs333yjDh06RHMJoF4+f6iWJEbT9crNZr4uAABWqVavyjhccQ4IANCaRDUi46KLLtJzzz2n3NxcjRw5MrxubFlZmZYsWaI///nPGjNmjCWBAg2ZPWGAPC6HTMCrksW3SpIyRs2Rzelp8Fi3y858XQAAYiD1Z/fo90s+jXcYAIBWJKpExm233aavv/5ajzzyiObMmaPOnTtLknbu3KlAIKC+ffvq1ltvtSRQoDbGHJh/67YF5LYZGVtAHltAkuRxOWRzOeIVHgAAbY4xRibgDX/vCxht2VkiiRVLAADWiCqRkZqaqkWLFundd9/VypUrtX37dkkVtTHOPvtsDRo0iKfciBljjMqWPSDpDElSyeJb5f8pgQEAAFpeRW2M+xXK31Dr66xYAgCwQrMTGfv379ddd92lCy64QJdddpkGDx5sZVxAwwI+hXZuUmUiozpHzhGS092yMQEA0JYFfBFJDEfOEZLjQF/MiiUAACs0O5GRmpqq1atXa+DAgVbGAzRbxqg58lSdRuJ089QHAIA4SR81R7aUzIgl0gEAsEJUkxRPOeUUffopxZuQGGxOj2yuKn9IYgAAED8Ot3z+kLz+YLwjAQC0MlElMqZOnapPPvlEjz76qHbs2GFVTAAAAEhixkizlq7Trx75QBPn/ive4QAAojB37lz17t1bI0aMqPHa/fffr0GDBrV4TFElMi677DLt2LFDf/zjH3XuuefquOOOU58+fSL+nHLKKU0658aNG3XDDTfopJNOUv/+/fXAAw/I5/M16RwLFy5U7969NXbs2CYdBwAAgOj55NSG7cUR23rlZrNiCQAksY8//lhr1qyJdxiSoly15KKLLrIqDklSYWGhxowZo+7du2vu3LnKz8/XrFmzVF5erqlTpzbqHLt27dL8+fPVsWNHS2MDAABA3aovu1pp9oQB8rgccrvsTPsEgCSVlpamXr16acGCBerbt2+8w2leIsPr9eq9997T4Ycfrnbt2umcc85R586dow5m6dKlKi0t1bx589SuXTtJUjAY1LRp0zR27Fjl5OQ0eI4HH3xQgwYNCi8FCwAAgNiqb9lVj8shj9tRy1EA0PYYY2T8NZO+LSHaOoK//vWvNW7cOK1du1Z9+vSpdZ+8vDz94Q9/0KpVqxQMBnXKKafo//7v/9S7d+9mX7c2TU5k7NmzR8OHD9e2bdtkjJHNZlNKSormz5+vM888M6pgVq5cqX79+oWTGJI0ZMgQ3XvvvVq1apWGDRtW7/Eff/yx3n33XS1fvlx33HFHVLEgsdX11AcAALQsY4y8+/dr/44fVHlrGTzoCGlfXMMCgIRjjNH25/6fvNu+jcv1PblHqcvo6c1OZpx77rk65phjNH/+fD3zzDM1Xi8pKdGoUaNkt9s1bdo0eTwePf744xo5cqRef/11HXLIIdG+hbAmJzIWLFigvLw8XX/99TrjjDO0efNmLViwQFOnTtW7774bVTCbNm3SlVdeGbEtKytLnTp10qZNm+o9NhgM6r777tO4ceMsGR1SyelkLmdTOBz2iL9jwRij4lfvV3DHelX9CDud9lb182qJtmwraEvr0JbWSea2bE2/a1tCMv+sG2KM0fRFn2j9tkJJ1x14oUoSw8r+uTW3ZUujLa1DW1qr9bdnck+x+9WvfqUJEyboiy++0AknnBDx2l//+ldt375df//739WzZ09J0mmnnaZzzz1XixYt0uTJky2Lo8mJjH/9618aOnSo7r777vC2gw46SHfccYc2bdqkHj16NDuYoqIiZWVl1dienZ2twsLCeo994YUXtH//fl1//fXNvn51drtN7dunW3a+tiQrKzVm5w75ylWwY32N7e3apSnFE1XZl4QUy7Zsa2hL69CW1km2tqRvbL5k+1k3Rrk38FMSo3ZHd++gnM6ZltfGaI1tGS+0pXVoS2u1xva02WzqMnp60k4tkaTzzz9fRx55pObPn68nn3wy4rWPP/5YRxxxRDiJIUnt2rXTmWeeqU8++SSq61bX5P/1/fjjjzVWIjnllFNkjNGePXuiSmQ01549ezRnzhz94Q9/kNvttuy8oZBRUVGZZedrCxwOu7KyUlVUtF/BYCgm16j6Dz975MPS3Ip/FAUFZa1qDm5LtGVbQVtah7a0Tku3pVXJB/rGpmvN/268vmD46+ntXpbbFlC76+fJ5vJIktwuuwoKrPu8tOa2bGm0pXVoS2u1ZHvGIzFvs9lkc6e0+HWtYrPZNG7cON1+++368ssvI14rKirSQQcdVOOYjh07av36mg+io9HkRIbP55PH44nYVpk8CAQCUQWTlZWl4uLiGtsLCwuVnZ1d53GPPfaYevfurVNPPVVFRUXhWAKBgIqKipSWlians3lP6gMBfhk1RzAYilnbmSrnDch14OtASA57cg/Vqk0s27KtoS2tQ1taJxnbMtniTRTJ+LNuSNX347YF5LEF5LDbZPupPw4GjSRj+XVbY1vGC21pHdrSWrRn4hoyZIjmzp2rBQsWqEuXLuHt2dnZ+v7772vsv2fPnnr/P98czfrffV5eXkT2pTL5sHnz5lqnhhx77LGNOm+PHj1q1MIoLi7Wrl276h3p8f333+u///2vTjvttBqvnXbaaXrqqac0cODARsWA5GGMNGvpuniHAQAAAABtht1u17hx4zR58mSdfvrp4e2nnHKK3n777YiSE4WFhVq9erWuvfZaS2NoViLjscce02OPPVZj+7Rp0yK+r1zV5Ouvv27UeQcOHKgnnngiolbG8uXLZbfb1b9//zqPmzJlSngkRqUZM2YoJSVFt99+u+VLvSAx+OTU1l2lkqRunTPkdrXWgkAAACQOY4x8/oqnpF5/sIG9AQCt0c9+9jPNnz9fa9asUdeuXSVJw4YN08KFCzV27FhNnDgxvGqJ0+nUmDFjLL1+kxMZM2fOtDSAqoYPH67Fixdr/PjxGjt2rPLz8/XAAw9o+PDhysnJCe83ZswYbd++XStWrJAkHX300TXOlZWVpbS0NPXt2zdm8SJxTB7Zx/JCYgAAIJIxRjOXrNWGvPqLsAMAWjeHw6Gbb75Zv/nNb8LbMjIytHjxYs2aNUu//e1vFQqF1KdPHy1ZssTSpVelZiQyrrjiCksDqCo7O1uLFi3Sfffdp/Hjxys9PV1XXXWVJk2aFLFfKBRSMMgTABxgS/JljAAASAY+f6jWJEavLply74+uVhoAIDFNmDBBEyZMqLH96quv1tVXXx2xrWvXrpo7d27MY0q4tSp79uyphQsX1rvP4sWLGzxPY/ZBsrK+aBgAAGia2RMGyOOqWC3MJZ9KF8Y3HgBA25FwiQygPsYYlb0+I95hAADQ5nlcDnncjoq++a+xm3oMAEB1JDKQXAI+hfZskSTZO+RK++IcDwAArVyDxT2r9s0du0lOd0uGBwBog0hkIGmlXXKXNGdNvMMAAKDVampxz7TLplB8GwAQc6xXiSTGjRIAALFUZ3HP3Gy5nDYZv1cm4K3yCn0zACD2GJEBAACABkUU93TatP+NGQrlb4hzVACAtohEBgAAABpUWdxTkozfWyOJ4cg5gvoYAIAWQSIDAAAATXRgKfT0UXNkc3okp5v6GACAFkEiAwnNGCMFfAe+j5iHCwAAYslUSViEt1VbCt3m9Mjm8rRkWACANo5EBhJWxY3S/cy/BQAgDowxmrVkbc0XWG4VABBnrFqCxBXw1ZnEcOQcITm4cQIAIFZ8/pC27CyRJHXrnCG3q+ZtI8utAgDigREZSArh+beVnG75/KH4BQQAQBsyeWSfKgmLqtNNSGIAAFoeiQwkBebfAgAQP7afEhbV62MAABAPTC0BAABA41AfAwCQAEhkAAAAoMmojwEAiBcSGQAAAGgGkhgAgPggkQEAAAAAAJIGiQwAAAAAAJA0SGQAAACgkUzDuwAAEGMkMgAAAFCDqZa0YOlVAECiIJEBAACACMYYzVqyNnIjS68CABIEiQwAAABE8PlD2rKzRJLUrXOG3K7IW0aWXgUAxBOJDAAAANRp8sg+PyUtqk41IYkBAIgfEhkAAACok0026mMAABIKiQwAAADUj/oYAIAEQiIDAAAAYcYYef3BOl+nPgYAIN6c8Q4AqI0xRibgjXcYAAC0KcYYzVyyVhvyCiO2mWDVPpkkBgAgvkhkIOFUzMO9X6H8DfEOBQCANsXnD0UkMXp1zVbgrVny76RPBgAkDhIZSDwBX0QSw5FzRMRcXGOMfP5QvcNeAQBAdGZPGKAMV0ilC+eGt1XvkwEAiAcSGUho6aPmyJaSGZ6LW9uQVwAAYD23LSAFA+Hvq/fJAADEC4kMJDSb0xNxw1R9yKsk9crNlttF3VoAAKxUsvhWeWwHEhnV+2QAAOKFRAaS1uwJA+RxOeR22bmxAgAghphSAgBIJCQykLQ8Loc8bke8wwAAoNVKHzVHNqdHcrp5aAAASBgkMgAAAFDr0uc2p0c2lydOEQEAUDsSGUgYxhgp4KtxEwUAAGKrcunz/Tt+kHRdvMMBAKBeJDKQECpvoKouuwoAAFpIeOnzA7eGjs49qYsBAEhILPWAxBC+gTqAwmIAALQMY4y8ximfOZDISL34LupiAAASEiMykHAoLAYAQMsxxmjW0nXasC9ySgl9MAAgUZHIQMKhsBgAAC3H5w9pw/biiG29crPldjFwFwCQmEhkAAAAQJI0vd3L6jD6EXlSUxmRAQBIWKTaAQAA2jBjTPhrty0gj8tBEgMAkNBIZAAAALQxxhh5fUGVewMqePPheIcDAECTMLUEAACgDTHGaOaStdqQV/jTltPCr7HkKgAgGTAiAwnCNLwLAACIms8fqpLEOKDXIRnKHno300oAAAmPERmIO2OMyl6fEe8wAABocx791anyL71dktTh5/Nkt/OMCwCQ+EhkIP4CPoX2bJEk2Tt2Y0grAAAtJPjOI/LYApLESAwAQNIg7Y6EknbZFG6kAABoIaG92yTxIAEAkFxIZCDBkMQAACCWTC11qXiQAABIJiQyAAAA2ghjjGYtWVvLKyQxAADJg0QGAABAG+Hzh7RlZ4kk6dBO6XIrEOeIAABoOhIZAAAAbdDk4ceL2SQAgGREIgMAAKANMMbIBLwHNgS9de8MAEACY/lVxI0xRgr4Im+qAACAZYwx8vlDMsaobNkDKs/fIukaSVLpi3fJw4gMAEASIpGBuDDGqOz1+xXK3xDvUAAAaJWMMZq5ZK025BX+tOWMn/5EcuQcwdKrAICkQiID8RHw1UhicCMFAIB1fP5QlSRGpF5dMtVh+LyKJVedbpZeBQAkFRIZiLv0UXNkc3q4kQIAIEYe/dWp8i+9XZKUMWqOPKmp9LkAgKRFIgNxZ3N6ZHN54h0GAACtVvCdR+SxVSy16nE5SGIAAJIaq5YAAAC0cqG92yRJ9o7dmMYJAEh6jMgAAABoJSpXKZEkrz9Y4/W0y6YwGgMAkPRIZAAAALQCNVcpqQ1JDABA8mNqCVqcMUYm4I13GAAAtCp1rVLSI6VQbgXiEBEAALHBiAy0KGOMyl6/v8bSqwAAwDqzJwyQx+WQCXjlW/xr2WzUxwAAtB4kMtCyAr6IJIYj54hG3VRVzvmtbb4vAACI5HE55HE7ZGx2+X+aTUJ9DABAa0EiA3GTPmqObCmZDd5UNW7OLwAAbVNdyf6KUZAzqmwhiQEAaB1IZCBubE5Po54M1Tbnt1duttwuSrwAANq2epP9AZ9Ce7ZIYloJAKB1IZGBpFI559ftsjM8FgDQ5tWb7K9S35NpJQCA1iThEhkbN27U9OnT9emnnyo9PV1Dhw7VxIkT5XbX/RRh586dWrhwoVatWqUtW7YoMzNTp512mm6//XZ17dq1BaNHrFXO+QUAAJEqk/0up00K+KqtEEYSAwDQeiRUIqOwsFBjxoxR9+7dNXfuXOXn52vWrFkqLy/X1KlT6zzuyy+/1IoVK3TllVfqxBNP1L59+/T444/r6quv1ptvvqkOHTq04LsAAABoeZUjFlkdDADQ2iVUImPp0qUqLS3VvHnz1K5dO0lSMBjUtGnTNHbsWOXk5NR63CmnnKK33npLTueBt9OnTx+dc845+tvf/qYbb7yxJcIHAACIr2qrg0mNXyEMAIBkkVDVEleuXKl+/fqFkxiSNGTIEIVCIa1atarO47KysiKSGJJ08MEHq0OHDtq5c2eswkUjGWNk/N6KPxHDXAEAQDSMTJ2vpY+ao4wbnlQq9TEAAK1MQo3I2LRpk6688sqIbVlZWerUqZM2bdrUpHN9//332rNnj3r27BlVTE5nQuV6Ep7DYY/42xij4lfvV3DH+hr7Op122RrRvsHQgZs0p9PeZn4m1dsSzUdbWoe2tE4yt2Vb+T1slVj9rI0xmvX82vD3TqddTtuBa7hSUmVzeSy9Zrwl87+bRENbWoe2tBbticZIqERGUVGRsrKyamzPzs5WYWEty4rVwRij6dOnq3PnzrrkkkuaHY/dblP79unNPr4ty8pKlSSFfOUqqCWJ4ck9Su07tW/UE6Jy74Gy6+3apSnFk1Af25irbEtEj7a0Dm1pnWRrS/rG5rP6Z13uDWhLfokkqUeXbOV0zpTxe1Xw0+vt2qXJ7k6x9JqJItn+3SQy2tI6tKW1aE/Up1X+j3Du3Ln66KOP9PTTTystLa3Z5wmFjIqKyiyMrPVzOOzKykpVUdF+BYMhGf+BqSTZ18878GTI6VZBQePa1usLhr8uKChrM6uWVG9LNB9taR3a0jot3ZZWJR/oG5suVj/rqv3j5JEnq6CgLKLfLSgok80VrO3QpMXvIOvQltahLa3Vku1JYj55JVQiIysrS8XFxTW2FxYWKjs7u1HnePnllzV//nzdf//96tevX9QxBQL8MmqOYDCkQCAkU6X9gjaXbDbXT98YqZ55vVVV/RkEAiE57G1rnm9lWyJ6tKV1aEvrJGNbJlu8icLqn3XVcwUDRgF7SCYQjHjdZmudP6tk/HeTqGhL69CW1qI9UZ+EmnjUo0ePGrUwiouLtWvXLvXo0aPB41esWKHf/e53uvXWW3XVVVfFKkwAAICEY4xR2esz4h0GAAAxl1CJjIEDB2r16tUqKioKb1u+fLnsdrv69+9f77Fr1qzR7bffrquvvlrjx4+PdagAAABxY4yR119t2kjAp9CeLZIke8duLLkKAGi1EmpqyfDhw7V48WKNHz9eY8eOVX5+vh544AENHz5cOTk54f3GjBmj7du3a8WKFZKkjRs3avz48erevbuGDh2qzz77LLxvhw4d1K1bt5Z+KwAAADFhjNHMJWu1Ia/uQuhpLLkKAGjFEiqRkZ2drUWLFum+++7T+PHjlZ6erquuukqTJk2K2C8UCikYPPAU4vPPP1dxcbGKi4v185//PGLfK664QrNmzWqR+AEAAGLN5w9FJDF65WbL7bJLgaq1p0hiAABar4RKZEhSz549tXDhwnr3Wbx4ccT3w4YN07Bhw2IYFZrKGCPj98oEvA3vDAAAmmX2hAHKTKsopE19DABAW5FwiQwkP2OMil+druCO9VGdw+evqFJcYw4wAACQJHlcDtlsNhm/l/oYAIA2g0QGLGf83hpJDEfOEY2+qWrM3F8AANqSpiT4qY8BAGjtSGQgptJHzZHN6ZGc7kbfVFWf+1spPAcYAIA2pL4Evwl4ZWyOalM5SWIAAFo3EhmIKZvTI5vL0+zjZ08YII/LIUlyu+w8YQIAtDl1Jfh7pBbJt/jX8tM1AgDaGBIZSGgel0MetyPeYQAAkBAqE/wm4JVv8a9VPb/flKmcAAAkKxIZAAAASaIywW9sjvBIjPA0TqlJUzkBAEhWJDIAAACSWLTTOAEASDYkMmApY4yM39vwjgAAoE4sQw4AQN1IZMAyxhgVv3q/CqotvQoAABqPZcgBAKgfa1nCOgGfglWSGBQcAwCg6Rq3DLlp2aAAAEggjMhATGRfP09BVzoFxwAAiEJty5AbY1T2+ow4RwYAQPyQyEBM2FwekhgAAESp1mXIAz6F9myRJNk7dmP0IwCgzWFqCQAAQIIwxjSpuGfaZVN4cAAAaHMYkQEAAJAAGl/ks2p9DJIYAIC2hxEZAAAACaB6kc/I4p4VqI8BAAAjMgAAABLO7AkDlJnmqjlthPoYAAAwIgPWMMbIBLzxDgMAgFbB43I0WPuC+hgAgLaKERmIWsUw1/sVyt8Qsa0pxcqqau5xAAC0RsYYKeCr+DrioQFJDABA20QiA9EL+CKSGO6uR2n6C+u0YVtDxcoAAEAlE1HE86dttTwsAACgrSORAUtlXz9PaR0P0ob/tyzqc9VW5AwAgNbIGKNZS9bWfKHaw4JKjpwjqI8BAGizSGTAUjaXJ2K+7uwJA+RxOZp1LrfLztxfAECb4POHtGVniSSpW+cMuZw2Gb83YipJ+qg5sjk9Fd843fSRAIA2i0QGYsrjcsjjbl4iAwCAtujuESdr/xszaozEsDk9srk8cYoKAIDEwbh9AACABGIL+mskMZhKAgDAAYzIAAAAiKP6VvoKTydhKgkAAGEkMgAAAOLAGCPj92rW0nXasL34wPYqdTGYTgIAQE0kMlCnquvW17tfxJr2AACgIZXLqu7f8YM27LsuvP1w5075X5wkBl8AAFA3EhmoFevWAwAQQ+FlVQ/cik1v97IybOXhJAZ1MQAAqB2JDNSujnXr68MNFwAAzddh9CORS5ZTFwMAgFqRyECDItatrw83XAAANMgYU+u0zIp6GCxZDgBAQ0hkoEEUGgMAwBqVUzeDOzbIJ6d8hlsxAACait4TAACgpQR8Cu7YoMeKL9L3gc7xjgYAgKRkj3cAAAAAbUHllBKfnDWSGL1ys+V2cVsGAEBjMCIDAAAgxowxKn51uoI71qvq7dfsCQPkcTnkdtmpMwUAQCORyAAAAIgx4/f+lMSI5HE55HFT4BMAgKZgDCMsZYxRuS8Y7zAAAEhY6T9/MN4hAACQ1BiRAcsYYzR90Sdav60w3qEAAJCwGrWkOQAAqBMjMmAZnz8UkcSgcBkAAAAAwGqMyEBMzJs0UKluB4XLAAAAAACW4nE5YsLjIokBAAAAALAeiQwAAAAAAJA0mFoCAABgIWOMfP5Q+PtgyKjcZeQ1FbddIT+rewEAEA0SGQAAABYxxmjmkrXakFfbCl7XVfz1+H9bNCYAAFobppagDibeAQAAkHR8/lAdSYyaWN0LAIDmYUQGajDGqOz1GfEOAwCApDZ7wgB5XA45nXZlpdu1efZNkqSMUXNkc3rkdtkpjA0AQDOQyEBNAZ9Ce7ZIkuwdu0lOd5wDAgAg+XhcDnncFYmMFLdDHlsgvN3mcsQ5OgAAkhfjGVGvtMum8LQIAAAAAJAwGJGBBpDEAAC0PdVXHmksby0rkhhjZPxeK8ICAAAikQEAABCh/pVHmn6u4lfvV8GO9RZEBgAAJKaWAAAARGjKyiN1Ca9IEvApWCWJ4cg5gtpTAABEiREZAAAAdahceaSpKlckqbqYefb18xR0pVN7CgCAKJHIAAAAqEPlyiPNdyCVYXN5SGIAAGABEhltmDFGCvhqbg94I/bx+WoWLqtNbQXOAABIBlWLe1rVnxljVPb6DEvOBQAADiCR0UZV3Fzdr1D+hnr2kWYtXacN24tbMDIAAFqWlcU9IwR8Cu3ZIkly5xxeURsjaBo4CAAANIRin21VwFdvEkOSgp17NyuJcXT3DhUFzgAASAJ1FfcMF+xsBmNMxAjHLqPvY1oJAAAWYUQGlD5qjmxOT43t3pBD+nalpMYXO3M67crpnKmCgjJJPHUCACSXqv1dZcHOpqp91CNJDAAArEIiA7I5PbK5aiYybFVqYzS22JnT2bybPgAAEkH0xT1VY9Sj4+Ajfupny6I7LwAAkEQiAwAAIGbSR82RKyObJD8AABYikQEAAFqVqiuQNIb1q25VWXLVyZKrAABYjUQGAABoNWK2AkkTrs+SqwAAxBZLSwAAgFajrhVIGiOaVUrCqiy5au/YrWLJVQAAYClGZEDBPVvlPLhXxLZQWYH8/3lVv0hfr6WlZ6qwxKvOHdLqPEeorED+r/6hgoNP0l9fWa+Tjj1c//10vc4ddJrapbvk/+ofch1zruxp7cL7Orr3UfCHtXIdc64kyff5W5Ik94lDVFDq1z/e/6/OPrmrUr9Zpv0nXaN/bbbpnJO7qmDPHr2w7Atd3bNYjsNO0PPvbdahh3bW5ecerXYZnnA8ledzHnFm+Dr2tHY1Yi8o8eqfn+bpnJO7ql2GR7u/+0xb//k3HXrO5XJ2OVp/++c3+v6HfHXv2l6XdM7TQSefEz5Pbe+l6jUCuzfLu/oFec68Tva0bO3+9J9a5T1S557eU1n2/eF2KQqlhmOQpH9+mqfBpx6q9u3TFSotkHfdeyo9bIBWflMcjrPq9et6b3WpGpfzoMPq3be2azT3uvWdv642rK76z6sx57Yff57UPj2qOKONpba4qv+bsKI9E0W076m5bYvkEuuf87QbT1fndqmNi2XXLn34r7Xat3u3OnTq1GBs9X3GC0OpWl1+pAYekSPPni3yb/i3giku+TwdVP7Ry3KfdpW27irRsi2ZGt59l9zHnKt/flOiPkd20ur//SjJpv69UrX3k3d02FmXKivdXaP/2PWft7Vyi10nuLfok4xzZE/N0gUntFPgy/e0/cddynGWqNO516nEpGrzP/+mQ9q7lemWbC6Pynudp+VfFEiyafARdqWufUElGd20yttbZ5T/S+XH/UwvrynQRTn5+sx/mH7IL1M31z5ddk5vZeT9R/uLCrVys01ndLMrOztDZb0G64N1u3SGb7Uydn8p90mXKrDpP9p/1MX65yebNaBTgWwBr7bk7dZ36iE53RrQcbc+3x7S6T1SddBJZyuwfrWkinuAqu1Z2Z+H9hfJFO1U+tnXK+A8RHvfeU6bt+xQ1ikXquCbT3Rwmk/+3du0MnWwDitZp6PPv0wdDu0ZPt74vbK5POHz7921S/94/7865YyT9OnGAh1vW68vfN00IGOzDjr5HG0rduiFd7/Tz87srvXbCnXOyV3D/XZx5xP0z1Vf6sSOXv3PeazOPb2n0vetV/nKPyll4A1yHXqcQmUFKv7sXb23L1f7C/bqwrMq2k6SynoNjujPKz9Llf38Sd1S9MlHn+ncQaepJJSiF979TtcNPlLdcjJrfA635BeHX8/NDEZ8Jgt27dTmD9/UYWddqnadOtf4/JatW65NXo9e3NxV1w7MVdq2/4Q/Y9U/81U/75Ii4q3+PiqvXzW22mKvz5b8Yr3w9le66tAd6tH37Dr7Sqv6z7raqq7fA3Vdt6DYq3c/3hpxPxePfqwxv1tj+fu3rn930eLeAFUxIgMK7dteY5spK5D57gO1c5SrRGkqLPXVew5TViDf2te0N/9H/e1bp7bm5evv36eoYM/e8GumrCBiX7MvL7zdlBXIv+5t+de9LVNWoII9e/X371O0b/tWhXZ8q8IdP+r1VT+osMSnvB/3aEOhW9u+/VLbt+Xr+yKnVn65V4Ulvoh4wuercp3aFJb4wueWpNLtP6iXflDp9optK/+3R1tLnPrw22Lt/nxlxHlqey8R7bIvT6Ed38rsy5MpK9Duz1fqjf/sUGGJL6JdqsZQ+XVBibfi5/PTfgV79kbEGXH9Ot5bnT+vKnE1uG8t12judes9fwM/p0rVf16NOXfIgjijjaW2uGr8m4hRnPEQ7XtqbtsiucT651zuDcjjdjTqT2lxoZb91G81JrZQ6b6K3y+Fu2T83gN/Al4VhVK1vPxE7f36Y5l9efJ+sVxF/3lDgbyvJP9+Bbd/ra3/+1S7d+5R6rdvqWTPbr2+6gdt312qd/67Te/8d6v27MhXj90rVbJnd639x56v1uit7R21fVex3v1fod7571YV7Nmrwq9Wq2fxJyrZ9aPMvjyV7NmtHvtWq/S7/yrwzT/lX/e2SvbsDl+ncMePCu3cqKLvPtGb68pUkL9d27fl67vtpdrw9Xda+b892rJrv/61PUWFO36Uf93bcm7+SJ8UdlDRpnXyr3tbBXv26o3/7NC+TV9JZfsU3P61Qju+1b7tW7Vsc4b2fveZijat01HBb/XtXrve+zFbpVu+1seFHbT3u89k9uVF3ANUVdmfBzf8W6GdGxXcl6dgyT7ZNqxUd9932rf1B/XYt1rezf9TUalP726yq335VpXs2BZxfOV7rzx/5X1G3o979MZ/dmjr/z7Vm5/uC/fz23eX6ruthfp+e1H4c1D5e61wx49atjlD2779MvwzCe3aJJXuqfj7p+va//emPvtqq97beqDtKtur6mfLVOvn837cE76Hqoxj++7SWj+HVV+v/nu3ZM/u8GeoOlNWIO/ny7Xx88/1bV6J8n7cE/EZq23/qvdstd2XVL9+Q7HXZ/vuUn23vVRb//dpvX2lVf1nXW1V1++Buq5bUOKtcT8Xj36sMdeOZXx1/buLFvcGqIoRGQAAIC6MqSiK6fMH5fVZU3DT+sKdNRljVP7BM5Kk/W/cX8seHWIeAwAAbRmJDAAA0OKMMXp22TeSpJnPr41zNE0U8Mns3RbvKAAAaLNIZAAAgBbn84e0bVdJTK/hcjZ+Bm3l6BATCPw0ReSn4fIBn4zfG7lv4MD3KRffJWdOZJ0pz7cbpDfzmxs2AABoQMIlMjZu3Kjp06fr008/VXp6uoYOHaqJEyfK7a6/6rcxRk899ZReeOEF7d27V0cffbTuuecenXTSSS0TOAAAaJY7rj1JvbpmW3a+LfnFmvn8Wtlstkbtb4yR75O/STpd3pXPqGT1XpUFOki6VGWv368S5946j7U53LK5IovO2ZwJd3sFAECrklA9bWFhocaMGaPu3btr7ty5ys/P16xZs1ReXq6pU6fWe+xTTz2lOXPm6M4771Tv3r31/PPP68Ybb9Rrr72mQw89tIXeAQAAaCq30y6P22Hd+VxNPFfAJ1O0s3kXI2kBAECLS6jed+nSpSotLdW8efPUrl07SVIwGNS0adM0duxY5eTk1Hqc1+vVk08+qRtvvFHXX3+9JOmUU07RRRddpGeeeUa/+93vWuYNAACApObpP1oZxxyttPwSacnnSrvs/ykjJ6PGfsHdW7T/jfsbPeoDAABYJ6GWX125cqX69esXTmJI0pAhQxQKhbRq1ao6j1u7dq1KSko0ZMiQ8Da3263zzz9fK1eujGXIAACgNXG4ZHN5ZHNWTGm1OSumjtT844pzoAAAtF02U1ndKgH069dPV155pe68886I7WeddZaGDh1aY3ul559/Xr///e/1xRdfyOM5ME/15Zdf1tSpU/XZZ58pJSWlyfEYYxQKJUzzWMwoVFSxVrYtNVM2V7X2CQYUKt2ngOwqDKWpXYan/qJpP+0f9GSqYL9RpsemYq9R+3SnnHabQqX7ZE9vLzmc4X1tqZky+4srtksKle6TJNnT2ysQMtpXGlA7j5HDXxo+b/tMjwL+gIrLg8qwlcvmTlWxt+Jn1D7TI6fDHhFP5fsLX8dRcxBSIBjSvmJv+PhAeansvjKF3GmSK1X7ig8Udcu2l8mdnn3gPLW9lyrXMP5ymf3FFW1sd8pXWqjCUFrFtRQKt0tA9nAMksJfe9xOBf0+hUr2KZTaTvtKA7W+z7reW10i4qr+s6/jZxtxjWZet77zN/RzqlT959Wo2DPay+FyKxQKycrfeE2Kpba4qv2bsKQ9Y8xmk+x2e8NtGeV7anbbJpFGt6VFHBa1o1V9ozHS7sL9ktRwH9NETf/8GPmK9lb0d2kOudzuhs9Rz2c84PdrX2lA2fYyuVLTZfYXS5JsLo+M3yuby6NyX1Dlxq1se5lCqdnaVxpUVppbRWUVRUazU+1yeosUSs2W026v0X9Ufp9hK1eJqfg93j7dKbO/UA4ZBWWTMzVDQdll31+ooGxyqOLnVnk9SWqXapPDW6ygbCoIpVfE40pXsdcozeZVmTlwX1W5r6SKa9v3yyET7p+y7WVyKhR+n0FXugq8NmXby2STkUNGhaE0BWRXtr1MpaEUpdvLI9qoRntW6c8lyZ6aKbvTpUBxRd2SgDNNzkCZQrIpJJsKQ2nKtpfJ7kmX05NS8/ifzl/5M8pMcYTvKUpMSrif9wZtKirzKT3FpdJyf0S/XXlPUnlM+0yPHIFyGW+pbJ502Txp4etWvt+qbVejP/9p38rtlTG1T3cqaOwqKvMpK81d6/Qrry944HWHifhMBvw+2fcXVnyGXNVqzf10Ta9xqsSkKDPFIbuv+MBnrPpnvurnXYqIt/r7qLx+RGxNnDpWeWyGrVypGZl195UW9Z91tVWdvweqXbfy97nXF6j1fq6l+7HG/A6MaT9bx7+7xqqrf4xFzFb1jWh5CZXIOPbYY3Xbbbfp5ptvjth+6aWX6uSTT9Z9991X63GPP/64FixYoHXr1kVsX758uW677TatXLmyzmkpAAAAAAAgeZCCAgAAAAAASSOhEhlZWVkqLi6usb2wsFDZ2XUvy5aVlSWfzyevN3Kd96KiItlstnqPBQAAAAAAySOhEhk9evTQpk2bIrYVFxdr165d6tGjR73HSdL3338fsX3Tpk3q0qVLs+pjAAAAAACAxJNQiYyBAwdq9erVKioqCm9bvny57Ha7+vfvX+dxffr0UUZGht56663wNr/fr3feeUcDBw6MacwAAAAAAKDlJFR5/OHDh2vx4sUaP368xo4dq/z8fD3wwAMaPnx4RLHOMWPGaPv27VqxYoUkyePxaOzYsZo7d646dOigI488Ui+++KIKCgp00003xevtAAAAAAAAiyVUIiM7O1uLFi3Sfffdp/Hjxys9PV1XXXWVJk2aFLFfKBRSMBiM2PbLX/5Sxhg9++yz2rt3r44++mg988wzOvTQQ1vyLQAAAAAAgBhKqOVXAQAAAAAA6pNQNTIAAAAAAADqQyIDAAAAAAAkDRIZAAAAAAAgaZDIAAAAAAAASYNEBgAAAAAASBokMgAAAAAAQNIgkYEm27x5s6ZOnaqhQ4fqmGOO0aWXXlrrfq+88oouvPBCHX/88brsssv0j3/8o4UjTWxvvfWWfvWrX2ngwIE66aSTNHToUP35z39W9RWRacfG+eCDDzRy5EidccYZOu6443Teeedp5syZKi4ujtjv/fff12WXXabjjz9eF154of7yl7/EKeLkUFpaqoEDB6p3795at25dxGt8Nhv217/+Vb17967x56GHHorYj7ZMfvSN1qBvtBZ9Y2zQN0aHvhFWcMY7ACSf9evX64MPPtCJJ56oUChU4+ZCkv7+97/rt7/9rcaNG6czzjhDy5Yt0y233KLnn39eJ510UssHnYAWLlyorl27avLkyWrfvr1Wr16t3/72t9qxY4duueUWSbRjUxQUFOiEE07QqFGj1K5dO61fv15z587V+vXr9eyzz0qSPv74Y91yyy266qqrNGXKFH300Uf6f//v/yk9PV0XXXRRnN9BYlqwYIGCwWCN7Xw2m+bpp59WZmZm+PucnJzw17Rl60DfaA36RmvRN8YGfaM16BsRFQM0UTAYDH999913m0suuaTGPhdccIG5/fbbI7Zde+215he/+EXM40sWe/bsqbHtN7/5jenTp0+4jWnH6Lz00kvmyCOPNDt27DDGGHPjjTeaa6+9NmKf22+/3QwZMiQe4SW8DRs2mJNOOsm8+OKL5sgjjzRffPFF+DU+m43zl7/8xRx55JG1/nuvRFu2DvSN1qBvjD36xujQN0aPvhFWYGoJmsxur/9js3XrVv3www8aMmRIxPaLL75Y//73v+Xz+WIZXtLo0KFDjW1HH320SkpKVFZWRjtaoF27dpIkv98vn8+nNWvW1Hi6dPHFF2vjxo3atm1bHCJMbNOnT9fw4cN1+OGHR2zns2kd2rL1oG+0Bn1j7NE3Roe+MfZoSzQGiQxYbtOmTZJU4xd8z5495ff7tXXr1niElRQ++eQT5eTkKCMjg3ZspmAwKK/Xqy+//FLz58/XoEGDlJubqy1btsjv96tHjx4R+/fs2VPSgc8tKixfvlzfffedxo8fX+M1PptNd+mll+roo4/WeeedpyeffDI8JJm2bDv4WTcffWP06ButQd9oLfpGRIMaGbBcYWGhJCkrKytie+X3la8j0scff6xly5bp7rvvlkQ7Nte5556r/Px8SdJZZ52lhx9+WBLt2RT79+/XrFmzNGnSJGVkZNR4nbZsvE6dOmnChAk68cQTZbPZ9P7772v27NnKz8/X1KlTacs2hJ9189A3WoO+MXr0jdahb4QVSGQACWDHjh2aNGmS+vbtq9GjR8c7nKT2xz/+Ufv379eGDRv0+OOPa9y4cfrTn/4U77CSyuOPP66OHTvqyiuvjHcoSe+ss87SWWedFf5+wIAB8ng8WrRokcaNGxfHyIDER99oHfrG6NE3Woe+EVZgagksl52dLUk1lvYqKiqKeB0VioqK9Mtf/lLt2rXT3Llzw/OsacfmOeqoo3TyySfr6quv1oIFC7RmzRqtWLGC9mykvLw8Pfvss7r11ltVXFysoqIilZWVSZLKyspUWlpKW0ZpyJAhCgaD+vrrr2nLNoSfddPQN1qLvjE69I2xR9+IpiKRActVzrOsPq9y06ZNcrlcOvTQQ+MRVkIqLy/X2LFjVVxcXGMJKtoxer1795bL5dKWLVvUrVs3uVyuWttTUo35wW3Vtm3b5Pf7dfPNN+u0007TaaedFn46Mnr0aN1www18Ni1EW7Yd/Kwbj74xtugbm46+sWXRlmgMEhmw3KGHHqru3btr+fLlEduXLVumfv36ye12xymyxBIIBDRx4kRt2rRJTz/9dMTa2RLtaIXPP/9cfr9fubm5crvd6tu3r95+++2IfZYtW6aePXsqNzc3TlEmlqOPPlrPPfdcxJ977rlHkjRt2jTde++9fDajtGzZMjkcDh1zzDG0ZRvCz7px6Btjj76x6egbY4++EU1FjQw02f79+/XBBx9IqhhqV1JSEv5Fc/rpp6tDhw6aMGGC7rzzTnXr1k19+/bVsmXL9MUXX2jJkiXxDD2hTJs2Tf/4xz80efJklZSU6LPPPgu/dswxx8jtdtOOTXDLLbfouOOOU+/evZWSkqJvvvlGzzzzjHr37q3BgwdLkn71q19p9OjR+t3vfqchQ4ZozZo1evPNN/Xoo4/GOfrEkZWVpb59+9b62rHHHqtjjz1WkvhsNtJNN92kvn37qnfv3pKk9957Ty+//LJGjx6tTp06SaItWwv6RmvQN1qLvtEa9I3Wom+EFWzGGBPvIJBctm3bpvPOO6/W15577rnwL/pXXnlFTz31lLZv367DDz9ct99+u84999yWDDWhDRo0SHl5ebW+9t5774WfgtCOjfPHP/5Ry5Yt05YtW2SMUdeuXXX++efrpptuiqgu/t5772n27Nn6/vvv1aVLF91888266qqr4hh54luzZo1Gjx6tP//5zzr++OPD2/lsNmz69On68MMPtWPHDoVCIXXv3l1XX321Ro0aJZvNFt6Ptkx+9I3WoG+0Fn1j7NA3Nh99I6xAIgMAAAAAACQNamQAAAAAAICkQSIDAAAAAAAkDRIZAAAAAAAgaZDIAAAAAAAASYNEBgAAAAAASBokMgAAAAAAQNIgkQEAAAAAAJIGiQwAAAAAAJA0SGQAiJtt27apd+/e+utf/9roY9asWaPevXtr+fLlDe47efJkDRo0KGJb7969NXfu3PD3f/3rX9W7d29t27at8YEDABAj9I0A0DASGUAbtnbtWs2dO1dFRUXNOv75559v0o0WAACJjr4RABIfiQygDfv00081b968Zt+svfjii3r11Vctjso69913X6OeTgEAUIm+EQASnzPeAQBArLhcrniHAABAQqFvBNAaMCIDaKPmzp2rBx54QJJ03nnnqXfv3uH5sIFAQPPnz9fgwYN13HHHadCgQXrkkUfk8/nCxw8aNEjr16/Xf/7zn/Cxo0aNkiQVFBToD3/4g372s5/p5JNPVp8+ffSLX/xC33zzjWXxh0IhPfLII+rfv79OOukkjRs3Tj/++GPEPrXNAwYAoC70jQCQHBiRAbRR559/vn744Qe9+eabuueee9S+fXtJUocOHfSb3/xGr776qi688ELdcMMN+uKLL/Tkk09q48aNmj9/viRpypQpuu+++5SWlqZx48ZJkg466CBJ0tatW/Xuu+/qoosuUm5urnbv3q2XXnpJI0eO1N///nfl5OREHf/jjz8um82mX/7yl9qzZ48WLVqk66+/Xq+99ppSUlKiPj8AoO2hbwSA5EAiA2ijjjrqKB1zzDF68803NXjwYOXm5kqSvvnmG7366qu6+uqrNX36dEnSiBEj1KFDBz377LP66KOPdMYZZ2jw4MGaPXu22rdvr6FDh0acu3fv3nr77bdltx8Y9DV06FANGTJEf/7znzV+/Pio4y8sLNSyZcuUkZEhSTrmmGM0ceJEvfzyyxo9enTU5wcAtD30jQCQHJhaAiDCBx98IEm64YYbIrbfeOONEa/Xx+12h2/UgsGg9u3bp7S0NB1++OH66quvLInz8ssvD9+oSdJFF12kTp06NSo+AACagr4RABILIzIARMjLy5Pdble3bt0itnfq1ElZWVnKy8tr8ByhUEjPPfecXnjhBW3btk3BYDD8Wrt27SyJ87DDDov43maz6bDDDmtUfAAANAV9IwAkFhIZAGpls9mafewTTzyhxx57TFdeeaVuu+02ZWdny263a8aMGTLGWBglAAAth74RABIDiQygDavthqxr164KhULavHmzevbsGd6+e/duFRUVqWvXrvUeL0lvv/22+vbtqxkzZkRsLyoqChdOi9bmzZsjvjfGaPPmzerdu7cl5wcAtE30jQCQ+KiRAbRhqampkqTi4uLwtrPPPluStGjRooh9//SnP0W8Xnl8UVFRjfM6HI4aT5feeust5efnWxO4pL/97W8qKSkJf798+XLt2rVLAwcOtOwaAIC2h74RABIfIzKANuzYY4+VJD366KO6+OKL5XK5dO655+qKK67QSy+9pKKiIp122mlat26dXn31VQ0ePFhnnHFGxPEvvviiFixYoMMOO0wdOnRQv379dM4552j+/Pm65557dPLJJ+u7777TG2+8oUMPPdSy2LOzs3Xddddp2LBh4SXmDjvsMF1zzTWWXQMA0PbQNwJA4iORAbRhJ5xwgm677TYtXbpUH374oUKhkN577z1Nnz5dubm5evXVV/Xuu+/qoIMO0tixY3XLLbdEHD9+/Hht375dTz/9tEpLS3X66aerX79+GjdunPbv36833nhDy5Yt0zHHHKMnn3xSDz/8sGWxjxs3Tt9++63++Mc/qrS0VP369dO9994bfpIGAEBz0DcCQOKzGaoLAQAAAACAJEGNDAAAAAAAkDSYWgIgIfh8PhUWFta7T2ZmplJSUlooIgAA4ou+EQBqRyIDQEL49NNPNXr06Hr3mTlzpoYNG9ZCEQEAEF/0jQBQO2pkAEgIhYWF+vLLL+vdp1evXurcuXMLRQQAQHzRNwJA7UhkAAAAAACApEGxTwAAAAAAkDRIZAAAAAAAgKRBIgMAAAAAACQNEhkAAAAAACBpkMgAAAAAAABJg0QGAAAAAABIGiQyAAAAAABA0vj/G1kszWs2BgYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Plots for categorical data" + ], + "metadata": { + "id": "NWr7-mqF64qn" + } + }, + { + "cell_type": "code", + "source": [ + "sns.catplot(data=tips, kind=\"swarm\", x=\"day\", y=\"total_bill\", hue=\"smoker\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "lELabNdQ6yj5", + "outputId": "4bf5ad74-0161-4c5e-9265-8420a72f7904" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHkCAYAAAAkQ8X2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAr75JREFUeJzs3XeYVOXZ+PHvOdO298YW2AIsvfcqCFIt2I09xZjE5DXRJCZ5TaLpll98NWisUaMxdkWlgyDSe2/LLmxhd9lep5/z+2Ngl2FmERZ2Z8v9ua5ccZ7nzMw9wM7e5yn3o+i6riOEEEII0QmpgQ5ACCGEEKK1JJERQgghRKcliYwQQgghOi1JZIQQQgjRaUkiI4QQQohOSxIZIYQQQnRaksgIIYQQotOSREYIIYQQnZYkMkIIIYTotIyBDqCjcLs1KisbAh2GEEKILiY+PjzQIXRpMiIjhBBCiE5LEhkhhBBCdFqSyAghhBCi05JERgghhBCdliQyQgghhOi0JJERQgghRKcliYwQQgghOi1JZIQQQgjRaUkiI4QQQohOSxIZIYQQQnRaksgIIYQQotOSREYIIYQQnZYkMkIIIYTotCSREUIIIUSnZQx0AEIIEQj5pXV8ubOIilobWcmRTBuRQkSIOdBhCSEukqLruh7oIDoCt1ujsrIh0GEIIdrBnmPlPPfhXtxa89dfbISF39w1iqgwSwAjE11RfHx4oEPo0mRqSQjR7by7OscriQGoqLWzdHN+gCISQrSWJDJCiG6lpt5OcUWj375D+VXtHI0Q4lJ1qETmo48+Ijs72+d/Tz31lNd177//PrNmzWLw4MFcc801fPnllwGKWAjR2QRZjJiM/r/6ZI2MEJ1Ph1zs+8orrxAe3jynmJiY2PTfX3zxBY8++ij3338/48aNY/HixTzwwAO8/fbbDBs2LADRCiE6E4vJwIRBSazdddKn74rhKQGISAhxKTpkIjNw4EBiYmL89j377LPMmzePBx98EIBx48Zx5MgRFi5cyMsvv9yOUQohOqtbr+yDw+lm84FTaLpOiMXINRPTGdE3PtChCSEuUodMZFpSUFDA8ePH+fnPf+7VPnfuXJ544gkcDgdmswwNCyHOz2Iy8L2rB3Lz9D7U1NtJjAnBYjIEOiwhRCt0qDUyZ8yfP5/+/ftz5ZVX8uKLL+J2uwHIzc0FICMjw+v6rKwsnE4nBQUF7R6rEKLzigw10zMxXJIYITqxDjUiEx8fz49//GOGDh2KoiisXr2aZ555htLSUn77299SU1MDQEREhNfzzjw+099axhYWAAohhBCiY+pQiczkyZOZPHly0+NJkyZhsVh44403uP/++9v0vVVVITo6tE3fQwghhBCXV4dKZPyZM2cOr732GgcPHiQyMhKAuro64uObF+XV1tYCNPW3hqbp1Nb6ry0hhBBCtJbcJLetDp/InC0zMxPwrJU5899nHptMJtLS0i7p9V0u7ZKeL4QQQoj21eEXhSxevBiDwcCAAQNIS0sjPT2dpUuX+lwzfvx42bEkhBBCdDMdakTmO9/5DmPHjiU7OxuAVatW8d5773HXXXc1TSX9+Mc/5uGHH6Znz56MHTuWxYsXs2fPHt56661Ahi6EEEKIAOhQiUxGRgYffvghJSUlaJpGeno6v/71r7nzzjubrpk/fz5Wq5WXX36Zl156iYyMDP7xj38wfPjwAEYuhBBCiEBQdF3Xv/myrs/t1qisbAh0GEIIIbqY+Pjwb75ItFqHXyMjhBBCCNESSWSEEEII0WlJIiOE6NLcZcdxlxxF19yBDkUI0QY61GJfIYS4XNyVBdhWvoBWfRIAJSSKoCnfxthzCACukiM4961Ea6jEEJ+Jecgs1LDYQIYshGgFWex7miz2FaLr0DUXDe/8Ar2h0rvDYCL01idwl+ZgW/U8nPX1pwRHEHLdb1HD49o5WnGGrus49y7DsW8FekMlakIWltE3YEzuH+jQLoks9m1bMrUkhOhy3IX7fJMYALcT59GN2Le875XEAOjWWhy7l7RThMIfx85F2Df9F72+AnQdrTQH6+KncZcdD3RoogOTREYI0eXotpZHV/WGCvTaU3773KVH2yok8Q10txPH3uW+HZoLx96lvu1CnCaJjBCiyzGkDADF4L+v51AwWvz2KaHRbRmWOA/dWgd2/wmoVl3SztGIzkQSGSFEl6OGRmMecY1PuzFzDKa0IZj6TfH7PPPAK9s6NNECJSQCJTjCb58ac2kHAouuTXYtCSG6JMvIazEk9cGVswnd7cSYPgJjxkhP39hbQNdwHloHbgdKSBSWUddjTBsS4Ki7L0U1Yh42D/vGd7w7jBbMQ2YHJijRKciupdNk15IQ3Y/usKLb6lHCYlBU/1NRon05j3yNY69n15IhsTfmkddiiEsPdFiXRHYttS1JZE6TREYIIURbkESmbckaGSGEEEJ0WpLICCGEEKLTkkRGCCGEEJ2WJDJCCCGE6LQkkRFCCCFEpyWJjBBCCCE6LUlkhBBCCNFpSSIjhBBCiE5LEhkhhBBCdFqSyAghhBCi05JERgghhBCdliQyQgghhOi0JJERQgghRKcliYwQQgghOi1joAMQQgghzth5pIyV2wuprLWRlRLJvPG96BEbGuiwRAem6LquBzqIjsDt1qisbAh0GEII0W19tfskry855NUWYjHy6D2jSIwOCVBUly4+PjzQIXRpMrUkhBAi4DRN59Ov83zaG+0ulm3OD0BEorOQREYIIUTAVdfbqaqz++3LK6lr52hEZyKJjBBCiIALDzERZDb47YuPCm7naERnIomMEEKIgDMZDUwbkeLTrioKV41KC0BEorOQXUtCCCE6hBumZGFUVVbvKKTB5iIlLpTrp2bSOzUy0KGJDkx2LZ0mu5aEEKJj0DQdu9NNsKVr3GvLrqW21TX+lQghxEWqqrOzbvdJKk7XKxk7IBGLyf8aDdG+VFXpMkmMaHsyInOajMgI0X3kFNXw/97dhc3hbmpLjQ/jl7cPJzTIFMDIRFckIzJtSxb7CiG6nbdXHPFKYgAKy+pZvqUgQBEJIVpLEhkhRLdS2+DgRAt1SfbkVrRzNEKISyWJjBCiWzEZVQyq4rcvuIU6JkKIjksSGSFEtxJsMTIyO95v38TBPdo5GiHEpZJERgjR7dxxVTb9ekY1PTaoCrPGpEkiI0QnJLuWTpNdS0J0P4Wn6qmotdErKZyoMEugwxFdlOxaaluSyJwmiYwQQoi2IIlM25KppS6mtLKR/XmV1DY4Ah2KEEII0eakdGIXYbW7eGnRfnYf82wfNRoUZoxK4+ZpvQMcmRBCCNF2ZESmi3hn1dGmJAbA5dZZujmfdXtOBjAqIYQQom1JItMFOF1uNh8o9dv39Z7ido5GCCGEaD+SyHQBTpeG06X57Wu0udo5GiGEEKL9SCLTBYQEmcjoEeG3b1BmTDtHI4QQQrQfSWS6iNtm9MFyTnn1xOhg5oztFaCIhBBCiLYndWRO6wp1ZCpqbKzdfZKKGivpSRFMGtKDYItsTBNCiECSOjJtSxKZ07pCIiOEEKLjkUSmbcnUkhBCCCE6LUlkhBBCCNFpSSIjhBBCiE5LEhkhhBBCdFqSyAghhBCi05JERgghhBCdliQyXYxmrcVdfhzdaQ90KEIIIUSbk2ppXYTucmD7+g1cRzeB7gZTMObh87EMmxfo0IQQQog2IyMyXYR987u4jqz3JDEATiuOLe/jPLY5sIEJIYQQbUgSmS5Ad7twHv7ab5/z4Jr2DUYIIYRoR5LIdAUuu+d/fujWmnYORgghhGg/ksh0AYolFDU2zW+foUf/do5GCCEuTV2jg8KyepwuLdChiE5AFvt2EZaxt2Jd9ndwu5ralNBozMPmBjAqIYS4cA6nm38vO8ymA6W4NZ2wYBMLJmcwbURqoEMTHZicfn1aVzj92l1ZiPPAarS6cgzxGZgGTEcNiQx0WEIIcUHeWHqItbtO+rQ/eNNQhmTFBiCiy0NOv25bHXpqqaGhgSlTppCdnc3evXu9+t5//31mzZrF4MGDueaaa/jyyy8DFGXHYYhJJWjSXYTM+RmWUQskielAahsd5JfWYXe6Ax2KEB2SzeFiw74Sv31f7ihs52hEZ9Khp5aef/553G7fL/4vvviCRx99lPvvv59x48axePFiHnjgAd5++22GDRvW/oEK0YJzh8pDLEaunpjOrDE9Ax2aEB2K1e5ucU1MTYOjnaMRnUmHHZE5duwY//nPf/jxj3/s0/fss88yb948HnzwQcaNG8fjjz/O4MGDWbhwYQAiFaJl736Zw/p9Jbg1zwxuo93Fu6tz2H74VIAjE6JjiQozkxAd7Lcvu2dU+wYjOpUOm8j88Y9/5NZbbyUjI8OrvaCggOPHjzNnzhyv9rlz57Jx40YcDsncRcfgdLlZv7fYb9+XO4vaORohOjZFUbh5Wm9URfFqj4mwyAimOK8OObW0dOlSjhw5wnPPPcf+/fu9+nJzcwF8EpysrCycTicFBQVkZWW1W6xCtMTmcONw+h8qr5WhciF8jOgbz2/uGsnqHYVU1trJSonkypGpRIaaAx2a6MA6XCJjtVr561//yk9/+lPCwsJ8+mtqPAXeIiIivNrPPD7T3xpGY4cdoBKdUHREECnxoRSV+e6GG5AeI//ehPCjT1oUfdKiAh2G6EQ6XCLzwgsvEBsbyw033NCu76uqCtHRoe36nqLr+951g/nja1twuZtHZuIig/jWnP5ER/pfDyDaj6u+GvvJoxjDY7H0yAx0OEKIVuhQiUxRURGvvfYaCxcupK6uDoDGxsam/29oaCAy0rOluK6ujvj4+Kbn1tbWAjT1XyxN06mtbbyU8IXwkZkYxu+/PZpV2wupqLGRmRzBjFFpqJpGVVXnrlvU2Vk3f4Bt5xegeXZGGpL6EDb7J1K2QFx2cpPctjpUIlNYWIjT6eS+++7z6bvrrrsYOnQoTz/9NOBZK5OZ2XwHlZubi8lkIi3Nf6n+C+GSctiiDSTHhnLnVdlebfJvLbCcuVuxbV/k1eYuOUr96lcJmf1gYIISQrRKh0pk+vfvz5tvvunVdvDgQf7yl7/w2GOPMXjwYNLS0khPT2fp0qXMmDGj6brFixczfvx4zGZZFCaEOD/n4XV+290Fu9FsdahBUolViM6iQyUyERERjB071m/fwIEDGThwIAA//vGPefjhh+nZsydjx45l8eLF7Nmzh7feeqs9wxVCdFZOm/92Xff0SSIjRKfRoRKZCzV//nysVisvv/wyL730EhkZGfzjH/9g+PDhgQ5NCNEJGHoOwV1yxKddjU5BDY/38wwhREclh0ae1hUOjRRC+OfWNJZvLWDDvhLsDjdDM6O4svYTQqvOSmaMZoJn/xRjcv/ABSq6JDk0sm1JInOaJDJCdF0vf7afjftLvdp6xATz68kuDGU5KCFRmPpNQQ3rvCcsi45LEpm21SmnloQQ4kKVVDay6ZwkBqC40soORz8mT5kcgKiEEJeLlBYVQnRpBafqaWnYOb+0vl1jEUJcfpLICCG6tISolisot3TashCi85CpJSFEl9YrKZz+vaI5eKLKqz0y1Ey/XtEcLawmJS6MkCD5OuwI3BUFOA+sRmuoxJCQhXnAdJQg33P3hDhDFvueJot9hei6rHYX732Zw8b9JThdGgPSY9B1nYPHq9ABi8nA3PG9uHpCeqBD7dZc+buxLn+26dgIACU8npBr/7dTHx0hi33bliQyp0kiI0TXp+k6uq7z+pJDrN9b4tN//7UDGdM/MQCRCYCGdx9Bq/H9ezEPnYtl7M0BiOjykESmbckaGSFEt6EqCi6XzuYDvruYAL7afbKdIxJnaA1VfpMYANfJg+0cjehMJJERQnQrNqcbl9v/QHS91dnO0YgzFFMQqP7XKSlyZIQ4D0lkhBDdSmSomZT4UL99A9Jj2jkacYZiDsbYe7zfPnP/ae0cjehMJJERQnQ7t13ZB5PR++svITqY2WN6BigiARA08XaMmWNAUTwN5mAs427DmC7n6ImWyWLf02SxrxDdS3FFA2t3naSi1kZmcgRThyYTEmQKdFgCz3oZvbEaNSoZxWQJdDiXTBb7ti1JZE6TREYIIURbkESmbcnUkhBCCCE6LUlkhBBCCNFpSSIjhBBCiE5LEhkhhBBCdFqSyAghhBCi05JERgghhBCdliQyQgghhOi0JJERQgghRKcliYwQotvSnXa0+gp0TQt0KEKIVvJ/1KgQQnRhuubCvuldnIfWgsuBEhqDZfT1mPpOCnRoQoiLJCMyQohux77pPZz7VoDLAYDeUIltzSu4CvcFODIhxMWSREYI0a3oLodnJMYPx74V7RyNEOJSSSIjhOhWdEcjuOz++xqq2jkaIcSlkjUyQohuRQmORAmPR68r8+kzJPYOQERdl+524crZiKvoAEpQGKbsKRhi0wIdluhiJJERQnQriqJgGXMTttUvgK43tweFYx46J4CRdS2624n1iydxlxxpanPuX0XQtPsw9R4XwMhEVyOJjBCi2zFljUEJicS5bwVafSWGhEzMQ2ajhscFOrQuw3lkvVcSA4CuYd/4H4wZo1AM8utHXB7yL6mT0hqq0KqKUCMTUcPjAx2OEJ2OsUc2xh7ZgQ6jy3K3sANMt9ailR9v9TSe7nahW2tRQiJQVPkVJiSR6XR0TcO+/t+eXRe6BigYs8YQNPU7KEZzoMMTQggAFEvIefpCW/Wa9p2f4dizFOwNp6cC58p0oJBEprNx7l2G8+CXZ7XouI5txh4aQ9C4WwIWlxBCnM3UdzLOQ+sA3atdT+jLskMONh3YgqbpDO8bz5yxPQm2eH4dFZ6q58udRVTV2clMjuCK4SmEBZtw7FuBY+uHza9jq8O++V2whGDuN7U9P5roYBRd1/Vvvqzrc7s1KisbAh3GN2p479do1Sd9OyyhhN+9sP0DEkKIFjgOrMa++X1wWgFQ4zN5zTmXnbm1XtdlJUfwqztGsi+vguc+3Itba/61FB8VxG/uHIX62f+i157yeQ81OpXQm/7Yth/kEsXHhwc6hC5NRmQ6Gd3R6L/DYUXXdXA70e0Nni2mqpQJEkIEjnnAdEx9JuA+lYsSFE6BM5Kdr2/zue7YyVp2Hyvn/S+PeSUxAGXVNpZtzWd2Q6Xf99AaKtokdtF5SCLTyRhSB+E68rVPu5oyEPvm9zzTTk6b5+yYUQswZU8OQJRCCOGhmIIwpgwA4PiuohavO3SiipJK/zdqB49XMS+hN+7iQz59hsQ+lydQ0WnJLXsnYxl5HUpozDmNoahh0Tj3LAGnDTh9dszaV3Hl72r/IIUQwo/4qOAW+xJjQjAaFL99EaFmzKMWwLlbtg1mLCOvu4wRis5IRmQ6GTU8jtAbHsd5+CvcFQWoUUkY+06i8YNH/V7v2LcSY89h7RukEEL4MaBXNGkJYRScqvdqj4mwMHFwD/KKa1m/t8TneVOHJmPsEU/ItY/i2LMUrboYNSYF85DZGGKkUnB3J4lMJ6QEhWEeOrfpsW6rhxbWzugtzCsLIUR7UxSFn90yjP+sOMKOI2Vous7gzFhum9EHi8nA7TP7YndqbD98Cl2HYIuRqyekM7yvp1aWIa4XwdO/H+BPIToa2bV0WmfZtdSShncfQavxvZMxZU8maOp3AhCREEK0zOnS0HUds8ng01dVZ6e63k5ybCgWs29/ZyO7ltqWrJHpIsxjbgTlnPllSyjmofMCE5AQQpyHyaj6TWIAosMtZPSI6BJJjGh7MiJzWmcfkQFwFR/2nB1TV4YhPgPz0LmoEQmBDksIIbo1GZFpW5LInNYVEhkhhBAdjyQybUumloQQQgjRaUkiI4QQQohOSxIZIYQQHUZVnZ16qzPQYYhOROrICCG6pdpGBxv2llBZayMzJYJR2QkYDXJvFyh5xbW8uewwJ0rqUBQYkhnL3XP6ERVmCXRoooOTxb6ndYXFvrquc+BEFRU1NtKTwumZKAvMhPDneEktT/93Fw02V1NbRo9wHr51OMEWub9rb7WNDn794iYa7S6v9l6J4fzu3tEBiurykcW+bUt+YruImno7/++93V6lv8f0T+B7Vw/AIKdgC+HlreVHvJIYgLziOlZsLeCaSRkBiqr72rC3xCeJAThRWsfRwmr6pEa1f1Ci05DfcF3EWyuO+JxfsuXgKVZtKwxQREJ0THWNDnJP1vrt25VT3s7RCIDKOlvLfbV2dF3HXVmIVlPajlGJzkJGZLoAu9PNziP+v4A3HyzlqjE92zkiITouo0FFVRQ0P7PqLVWaFW2rd0okK/3cdCkK9DKeouHdp9FrTwGgJmQSPO37qJGJ7R2m6KBkRKYL0DSdlpY6udyyBEqIswVbjAzvE+e3b8KgpHaORgCM6BtPVkqET/sVg+MJ/fofTUkMgHYql8al/w9d19ozRNGBSSLTBQRbjPTrFe23b8TpU2OFEM3unJVNRo/mX5yKAlcMT2HykB4BjKr7MhpUHr5lODdMzSQrJYL+vaL59tz+3JxcAC67z/V6TSnuooMBiFR0RLJr6bTOvmupuKKBJ97ZSU29o6ktKyWCh24ZRpBZZhCF8OdYUQ0VtTYyekQQHxUc6HDEOWyb/otzz1K/fUHT7sPUZ0I7R9Q6smupbUkic1pnT2QAbA4XWw6eorzGSnpSBMN6x6Gqyjc/UQgh2omm6azcVsD6fSXYHW4GZ8Vy9YR0IkLNPte68ndhXfqM74soKqG3PYkaFtv2AV8Gksi0LUlkTusKiYwQQnR0/1p8kHV7ir3aEmNC+P09o7GYDbiKD+PcvwqtoRJDQibu8ny04kNe15uHzsUy9ub2DPuSSCLTtmTOQQghRLsor7by9d5in/bSykY27i9hYkQhttX/hNP311ppDkpwJOYxN+EuOYpiNGHqPQFj+vD2Dl10YJLICCGEaBcFp+ppaQ7gREktow59wLkX6NYa9MZqQmY/2PYBik5Jdi0JIbotd1kezrxtaPUVgQ6lW4iPbnlBdXyogl5X5rfPXZrTViGJLkBGZIQQ3Y5mq8O27FncpUc9DYqKacB0LBNuR1FkgXxbSY0PY1BGDPvyKr3aw4JNTBqWCjlmcDl8nqeGRLVThKIzkhEZIUS3Y1/3RnMSA6BrOPevxHXk68AF1U384LpBTB2WjNmkogAD06P5xW3DiYgIw9R3sp9nKJgGzmjvMEUnIruWTpNdS0J0D7rDSv0bPwI/lWENPbIJufpXAYiq+9E0HU3XMRqa76d1txP7xndwHl4HbidKaDSW0Tdg6jspgJFeOtm11LZkakkI0a3obqffJAZAd/pWkRVtQ1UVPGMyzRSDiaBJd2EZcxO6rQ4lLBZFlfOvxPldcCJz8uTJVr1BcnJyq54nhBBtQQ2OQI3PQCvL8+kz9hwagIjEuRRzMIpZKi2LC3PBicz06dNbtQju4EE5D0MI0bEETbyTxsVPgsPa1KbG9sI8ZFYAoxJCtMYFr5H56KOPWpXILFiw4KKfEwiyRkaI7kVrrMZ5ZD16fQWGhCyMmaNRjL5l8kXHoNVX4Mrdgq5pmNJHoEY1H/C5clsBq7YXUlVnp3dqJNdNzqR3SmQAo/Uma2TaVoda7Lt27VpefvllcnJyqK+vJzExkRkzZvDAAw8QHt78D2H16tU888wz5OXlkZyczH333ccNN9xwSe8tiYwQQnRMziNfY1v7L9Ddp1sUzGNuwDJsPp+tz+Pjdd7ThCajyqN3jSI1Iaz9g/VDEpm21aEW+1ZXVzNkyBDuvPNOoqKiOHr0KM899xxHjx7ltddeA2Dbtm088MAD3Hjjjfz6179m06ZN/OY3vyE0NJTZs2cH+BMIITqSequTbYdP4XRpDOsdJydcd0KarQ7butfPSmIAdBxbPkBPGcayLQU+z3G6NJZtzec78wa0W5wicC44kfnHP/5x0S+uKAo/+tGPLvj6a6+91uvx2LFjMZvNPProo5SWlpKYmMgLL7zAkCFDePzxxwEYN24cBQUFPPvss5LICCGa7Dxaxouf7sfh8uxQ+u+qo1w/JZN549MB2JdXwcpthVTW2shMjmDOuF4kRocEMGLhjzt/N7hdfvsqj+yk0R7qt6+4orEtwxIdSIdKZPyJiooCwOl04nA42Lx5Mw8//LDXNXPnzuXzzz+nsLCQ1NTUS3o/IUTnZ3O4eOXzA01JDHiO8PlwbS6DM2MpKmvglc8PcGZevbCsge2Hy3j07lEkSDLTpnRdw3noK1w5G9HdToy9RmAePBPFaGm6RrPVoTfWoEYmgtJy3daIYJXQICMNNt9EJznWf4Ijup4LTmQOHTr0zRddJm63G5fLRU5ODgsXLmT69OmkpqaSk5OD0+kkMzPT6/qsrCwAcnNzu3Ui4y7NwbF3OVp9OYb4DMxDZqOGxwc6LCHa3b7cSqx2t9++rYdOsWl/KecuDmywuViyOZ+7Z/dr+wC7MftX//IUvDvNcSoXd8Eeguc/ApoL27o3cOVsAt2NEhSOedhcMFrAdU6NH0UhpPdoZtsb+XBtrleX2aRy1Zi09vg4ogPoUGtkzpg2bRqlpaUATJ48maeffhqAmpoaACIiIryuP/P4TH9rGY2d98QGR952Gpc+11ToSzuVi+vYZsJv+B2GyMQARydE+zIYWt5h6XRrVNTa/PblFdd26u+Bjs5dVeyVxDS1lxxBL9yNM38PrqPrm9p1Wx32Te9iGXkt9t1Lms9hUg2ETL4Tc0wS106G8BAzK7YWUFlno09qFAumZJLeI8LnfUTX1CETmZdeegmr1UpOTg4vvPAC999/P//617/a9D1VVSE6uvMORRa896FPtVLdVo++fxnR834QoKiECIxJI9J45fODWO2+Uw5XjUtn3e5iv3094sI69fdAR1dX4Lsw9wxD5TEaj6z331dTSK+fvEzj0a3objchfUZiDItu6r9hRjY3zMi+7PGKzuGiCuKpqsqSJUswmUwXVCBPURRWrlx50UH16+cZ2h0+fDiDBw/m2muvZcWKFfTu3RuAuro6r+tra2sBiIxsfd0ATdOpre2ci8M0Wz3O8kK/fQ0nDmKskm3lovu575oBPP/xPpyn18kowA1XZJEQYWH6iBS+2HjC63oFmDYsmSr5eWkzTrXl7dAOgtD9nHwNYK+ppNamQNoYAOqcQCf6e5LkuG1dcCIzZswYFEVBVVWvx20tOzsbk8lEfn4+06dPx2QykZuby+TJzaek5uZ65kfPXTtzsVwu/+evdHS6agZzsFeV0jOUkKhO+7mEuBRDs+J46ocT2H64DIdLY1jvWBKiQ3C5NK6bnIGuw5c7i7DaXSREBXP91Ez6psnPS5tKyEaNSUOr9B6ZUSxhGPpdgXJoHXptqc/T1B7Z8vciWtShCuL5s2vXLm655Rb+/ve/M3fuXL7zne9gtVr5z3/+03TNww8/zIEDB1i8eHGr36ezF8Szb34Px27fzx88638w9hoegIiE6Phcbo1Gu4vwYFO73JgJ0BqqsK17HXfBHtB11MTeBE28E0NcL5zHt2Nb8bxXzRglNIaQBb9FDYkKXNCXSArita0Olcg88MADDBo0iOzsbIKCgjh06BCvvvoqMTExfPDBB5jNZrZt28Zdd93FzTffzJw5c9i8eTPPP/88f//735kzZ06r37uzJzK65sa++T2cB9eAy44SEoV55HWY+18R6NAEUFrZSHmtjZ4JYYSHSBn8QNMaqnDuX4m7LA81LA7TwCsxxPUKdFjdim5vQNfcqMHei3LdZXk49q9Cb6jEkNgb08AZPtd0NpLItK1LSmQcDgfvvfcea9eupaioCICUlBSmTp3KTTfdhMVi+YZX8PbSSy+xePFi8vPz0XWdlJQUZs6cyXe+8x3CwprnVletWuVzRMGNN97Y2o8BdP5E5gzdaUe31aKERqOoHXItd7ditbt4cdF+9hyrAMBoUJk1Jo0bpmYFOLLuS6srp/GTP6Bbz9rlqBoInvUgxrTBgQtMdFmSyLStVicyJSUl3HvvveTl5REfH0+vXp67mRMnTlBWVkZ6ejqvv/46SUlJlzXgttJVEhnRsbz6+QHW7yvxaf/u/P5MGNTDzzNEW7Ote90zcnkONSaN0Bv/0P4BiS5PEpm21epb9scee4yTJ0/yzDPP+BwNsGTJEh555BEee+wxXnjhhUsOUojOyO50s/ngKb9963YXSyITIO7iI37btcoCdHsDikV2mAjRmbQ6kdm0aRP33HOP3/ON5syZw4EDB3jrrbcuKThx8ZwuN/VWF5GhZlRVFi8GktOl4XL732nhr6S6aB9KSCRUn/TtMAWB6eKmw8Xl59i3Ese+FZ41MglZmEdfjzGpb6DDEh1YqxOZ0NBQYmJiWuyPi4sjNFTubNqLpul8uPYYX+4swuZwEx1uYcHkTCYNkbv+QAkLNtErKZwTJXU+fYMzW/7ZEW3LNGA67pMHfduzp8i6sgCz7/wcx9YPmh67iw9h/eIJQq59VBZjixa1uhb39ddfz8cff4zV6lu7pKGhgY8++ogbbrjhkoITF+7jdbks2ZyPzeHZtlhVZ+e1xQfZc6w8wJF1b7dd2QeLyeDVlhQTwuyxPQMUkTBljsYy7jY4M4WkGjH1uwLL2JsDG1g3p7tdOPYs8e1wu3DsWdr+AYlO44JvP5YvX+71uH///qxZs4Y5c+Zw3XXXNS32PX78OJ9++imRkZFkZ0vJ6Pbgcmt8uaPIb9/KbYUMyYpr54jEGX3TovjDd8awdvdJKmptZPSIYNLgHgRb5M6/rTXaXHy49hibDpTidmsM7xvPTVdkERMRhHnILI4GD2Xrtv0U1RtJrk9gbo2DxBj5ewkU3VoLdv8bLrTq4naORnQmF7xrqV+/fiiKwpnLz/7vFl9cUTh40HcItyPqzLuW6q1OfvJ/vgexASTHhfLH745t54iECLy/vrWdI4XeB8kmRAXzh++OYeuhU7z6+UGvE7BDg4z8792jSIwOad9ABQC65qLhrZ+i23ynYo19JxJ8xfcCENXlIbuW2tYF3368+eabbRmHuARhwSaSYkIoqfQ9KyozuXMXkhKiNY4WVvskMQCnqq1sOVjKJ+uOc+5tWIPNxdLN+dw9u1/7BCm8KKoR89C52De/691hMGMe4rupRIgzLuqspUtht9tZsmQJkyZNIi5OpjoutxumZvL8J/s4e5AsNMjI3HGyQE50P8UVLR8Ae7yknopam9++vJO1bRWSuADmoXPAHIxz30q0hgoMib2xjLwOQ0xaoEMTHVi7TQjX1dXxq1/9itdee00SmTYwMjuBX9w2nJXbCimvsZHeI5zZY3vKMLnollLjWz5lOSMpnGCLAavd7dMXGxnUlmGJC2Duf4UcrSIuSruubOtAxzp1Sdk9o8nuGR3oMIQIuMzkCAZlxLAvr9KrPSUulDEDEimqaGDJpnyvPkWBGaPkzl+IzkaW6AshuqQfXT+YzzccZ9P+Ulyaxog+8Vw7OQOjQeWGKVmoisLqHUVY7S4SooO5fkom/XvJjYAQnY0kMp2MrrlwF+xDdzRiSO6PGipfvB3d8q0FrNhaQGWtjfQeESyYksGgjNhAh9XlWUwGbpia5feATlVVuGFqFtdOysDmcBMaZERRvrkSdmlVI402F2kJYRgNrS7DJUSn8NFHH/GrX/2KDz74gMGDO+6BqpLIdCLuinysS59Bbzg9XK4YMI+8FsuIa5qu0ay16A1VqJFJKFJuPeC+2HicD9fmNj3OK67l/97fwy9vH0HvlMgARibAcxp5WPA3JyRVdXZeWrSfwwXVAESEmvnWjD6M6Z/YxhEKIb6JJDKdhK7rWFc+35zEAOhuHNs+wpDUF0NCJrav38R1dCPobjAFYx5+NZZhcwMXdDfn1jSWby3w066zbEs+vRd03Dsc4e2FT/aRU9S8nbu2wcFLiw6QHBtKakLLC4uFEG1PEplOQivLQ68p8dvnytmIK28briNfNzc6rTi2vIcaHospSwriBUKDzUVdo9Nvn7+aPyLwiisaWL2jiPJqK72Swpk2IpW6RodXEnOGput8teck35ohBxpeTs7j23HuXYHWUIUhIRPziKsxRCUHOizRBjRNw+l0YrFc2uyBTPJ2ErrW8mnJmsuO87D/yr7Og2vaKCLxTcKCTESH+/8BTZO7+A7ncH4Vv//XVlZtL2T3sQoWrT/O469v5WRZyxW/W0pURes4Dq7Btvw53MWH0GtLceVspPGTP6C1cBPXVdXX1/OnP/2J6dOnM2jQIMaPH8+9997L/v37AbjzzjuZP38+hw4d4o477mDo0KHMnDmTpUs9Z1Jt2bKFm266iSFDhjBr1iw2bNjg8x4HDhzgu9/9LiNGjGD48OHcfffd7Nq16xtjq6mp4cYbb2TKlCnk5nqmzR0OB88++ywzZ85k0KBBTJ06lSeeeAKHw+H13OzsbB5//HEWLVrEvHnzGDx4MOvW+f/ddTHabUQmMjKSN998k/79+7fXW3YphoRMlOAIz3kk5zCmDsKds8nv83Sr752kaB+qqjB/Qjr/XnbYq91sVJk9Rg6NbGs5RTVsO3QKRYEx/RPJ6HH+Ktfvrs7B6dK82qrq7Ow7XkmQ2dB0IOvZZJfT5aNrbhzbP/HtcFhx7FlK0OR72jukgPnd737HsmXLuOOOO8jKyqK6uprt27dz7NgxBg4cCHgSivvvv5+5c+cye/Zs3nnnHX72s5+haRp//vOfufXWW5k/fz6vvvoqP/nJT1izZg1hYZ4bqKNHj3L77bcTGhrKd7/7XYxGI++++y533nknb731FkOHDvUbV2VlJd/+9repqanhrbfeomfPnmiaxg9+8AO2b9/OzTffTFZWFkeOHOGNN97g+PHjPP/8816vsWnTJpYsWcLtt99OdHQ0KSkpl/zndcGJzCeffNKqN7juuusAMJlMl1wduDtTVCNBU7+NdcVCcDffBRqzxmHqMwHn3mVoFb7rMQw9JHEMpGnDUwi2GFixtZCKWhuZPSK4emI6PRPl7JW29OHaY3yx8UTT42VbClgwOYOrJ2Y0tWn1FeByoEQmYXO4OV7ie8YPwNHCGm66Iot/Lz/i1d47JZLxA2Wx7+WiN9agN1b77XOXHW/XWAJt7dq13HzzzTzyyCNNbd/7nvdZU6dOneLpp59m/vz5AEyYMIE5c+bw0EMP8d///rcpGcnKyuI73/kOy5cv5/rrrwfgmWeewel08s4775CW5qmddN111zF79myefPJJ3nrrLZ+YysrKuPfee7HZbLz11ltNCchnn33Ghg0b+Pe//82oUaOaru/Tpw+/+93v2LFjByNGjGhqz8vL47PPPqN3796X448KuIhE5uw/0AulKEpTIiMunbHnMEJvfQLn0Y3gaMCQOghjsidRsYy9Feuyv4O7eQpKCY3GLIt9A27cgCTGDUgKdBjdRlF5g1cSc8YnX+cxdmASccZGbGtewX3Sc6CtEpmEceJdWMwG7H5GXcJDTEwbkUpKfBhf7ymmweZkUEYMEwf3wGQ0tPnn6S6UoDAwBYPT6tOnRiQEIKLAiYiIYPfu3ZSWlpKY6D9ZDgkJYd68eU2PMzMziYiIIDEx0WtE5cx/FxR4bnTdbjfr169nxowZTUkMQEJCAvPnz+f999+nvr6+afQGoLS0lIcffhiAt99+2yumpUuXkpWVRWZmJpWVzZtRxo0bB8DmzZu9EpnRo0df1iQGLiKRWbVq1WV9Y9E6ami0351IxtSBhCz4Pc4Dq9HqyjDEZ2AacCVqiGzxFd3LnmPlftt1HfbklDP++Etolc2jl3pNCc7lzzC5/49ZubvM53lXDPMsNO2bFkXftKg2iVmAYjRjHjgdx64vzulQMQ+aGZigAuThhx/mkUce4YorrmDgwIFMnTqV6667zivxSEpK8ql9FB4eTlJSkk8bQG2tZ1lCZWUlVquVjIwMzpWVlYWmaRQXF9OnT5+m9p///OcYjUYWL15MfHy813NOnDjBsWPHGD9+vN/PUlFR4fU4NTX1mz7+RbvgROZyzGOJtmWIScUw6a5AhyFEQFlMLY+SmKzlXklME5eDa+JPYB2UyaYDpbg1HYvZwNyxPZkwqEcbRivOZh51A6hGnPtXodvrUaNTsYy5AUNSn29+chcyd+5cRo0axYoVK1i/fj2vvvoqL7/8Ms899xxTp04FwGDw/++8pfZLOSLoqquu4pNPPuHNN9/koYce8urTNI2+ffvyq1/9yu9zz02sgoIu/3lmsv1aCNGljOqXwHurc3Ccs3A3yGxgeLwTDvp/ntFezXfmD2DehHSq6mykJ0UQbJGvyPakqCqWUQswj7gW3A4UU/c9xDMhIYHbb7+d22+/nYqKChYsWMA///nPpkSmtWJiYggODiYvL8+nLzc3F1VV6dHDO3m/44476NmzJ88++yzh4eHcd999TX09e/bk0KFDjB8//oKqY7eFS/opLSsr44MPPuDAgQPU1dWhad5fHIqi8MYbb1xSgEIIcTEiQszcf90gXv38AA02z5qxsGAT910zgLAElQbF4CkaeY7qiD68895u9uV6hsIHpEdzx6xsOUE+ABRVBbV7JjFut5vGxsamKSGA2NhYEhISfLYzt4bBYGDixImsWrWKwsLCpqme8vJyPv/8c0aOHOm1PuaMH/3oR9TX1/P0008TFhbGt771LQDmzJnD2rVree+997jlllu8nmOz2dA0jZCQtv0ZanUic+jQIe666y5sNhsZGRkcOXKE3r17U1tbS2lpKT179vQZUhJCiPYwrHccT/9oIgdOVKEqnm3SZxbmmofOwbHrc+8nJGXzzHqNU9XN8/n7j1fx1Ds7+fN942RR72Wm6xqu3K24ju8EgwFT7/EYUwcFOqwOoaGhgalTpzJr1iz69etHSEgIGzZsYO/eva3adOPPgw8+yIYNG/jWt77Ft771LQwGA++++y4Oh4Of//znLT7vl7/8JfX19Tz++OOEhoZy7bXXcu2117JkyRJ+97vfNS3sdbvd5ObmsnTpUl555ZU2P6ep1YnM008/TUhICJ988glBQUFMmDCBX//614wfP54lS5bw+9//nqeeeupyxiqEEBfMbDIwrHecT7tlzI2oCRm4jmxAd9kx9hzGXsNATh3wnXOqqLWz/XAZ4wbKTdnlZFv1T1y5W5oeu46s9xypMvqG8z5PdzTiPLYFvbEGQ4++Tbs2u5KgoCBuu+021q9fz/Lly9F1nZ49e/K73/2uaRTkUvXp04e3336bp59+mhdffBFd1xkyZAhPPvlkizVkznjsscdobGzk17/+NaGhocyYMYOFCxfy+uuv8+mnn7JixQqCg4NJTU3lzjvv9Luo+HJT9FauABo5ciTf/e53+cEPfkB1dTXjxo3jtddeY8KECQD88Y9/5NChQ373o3dEbrdGZWXLFTyFEF3Xiq0FvLPqqN++G6ZmMm98evsG1IW5Th7E+vnffDsUldDbnkQN838yvLssD+vip9Ht9U1txvQRBM34EYrasUfM4uOlblRbavURBZqmERfnuduJiIjAYDBQXV3d1J+dnd1UTlkIIQJB03QO51exL7cCh9N3XcwZmcktV/39porA4uK4C1v4vaBruE8eRNd1XEUHcB5eh1Zd3NRtW/uaVxID4Dq+A+fZZ8yJbqnVU0upqakUFhYCoKoqqampbNy4kblzPTVOduzY4bVYSQgh2lNecS3Pf7yPilobAKFBRu6e3Y9R/TzF1XJP1rJ6RyGVtTYykiMYmBHD/rxKr9cYmB7NgPSYdo+9K1OCQlvs03Wdxg8eRasqbGozZU/GNHSu/23zgCtvG+Z+l7aTR3RurU5kJk2axNKlS/npT38KwG233cZf//pXCgoK0HWdLVu2cO+99162QIUQ4kK53BrPfriHmvrmXR4NNhcvLtpPeo9wCkrrWfjxPrTTM+uH8quJDDVx9YR09h+vRNd1RmYnMHPU5S/e1d0Ze4/Hvu1jcHnvwFFCY3Ae2+KVxAA4D69DiTzPURBK88SCZq1FMZhQzMGXNWbRsbV6jUxNTQ0FBQVkZ2djMpnQdZ0XXniB5cuXo6oq06ZN4/vf/z5ms/lyx9wmZI2MEF3HrqPlPPvhHr99CyZnsGF/KaWVjT59M0am8q2Zfds6vG7PVbjPM1XU4BkBU6NTsEy6C+tnfwV8fyUZevRDdzvQTuX69AVNuw81MhHb+rfQyvJAMWBMH45l0l2owR1jWlDWyLStVo/IREZGEhnZXP5eURR++MMf8sMf/vCyBCaEEK1ldbha7KtpcPhNYgCOFFS3UUTibMbUQYTe9hRa+XEwGDHE9kRrrMFfEgOgu50EXfFdz2Lf+uYt8qZ+U1GTB9D4/q/AYT1zMa68beiNNYRc+5u2/zAi4Fq92Peuu+5i48aNLfZv2rSJu+6ScvltxZm7lcYvnqThg//13Ik0VAU6JCE6jAHpMRgN/quMDu8Tj9nk/6svMszSlmGJsyiqiiEhE0NsTwDUkEjUhCy/1xrTR2KISib01r8RdNWPsUy6i5Ab/0TQlHtxHf26OYk5i7v0aLc7Nbu7anUis2XLFsrL/R/OBp6DqbZu3dralxfn4dizBNvKhbiL9qNVFuLcv5LGT/6AZq0NdGhCdAiRoWZunOr7S3HS4B4MPH1ytT/TR8iZcm3BeXw7jZ/9hfr/PIR1xT9wl3ufTq7VlePM3YppwHQUi3dVWUNSX8yDrjx9oQYOG1p1Me6TB9DtDej13gu0vV63vqLFPtF1XNIRBec7V+HEiROEhra8Ol20ju6yY9+xyLe9oRLn/lVYRi0IQFRCdDxXjelJn7QoNu0vxenWGNEnjoEZnh1It07vg9uts2FfMS63TniIiesmZTDUTwE9cWmcR77GtuaVpseu+gpcBXsIufZR1JhU7Bvexnlgled4ckCNS8c0ZDY4GjEk9sHQcyiKqqLb6mn87K9ei4EdOz/DNOgq/2+sqBji09vyo4kO4qISmY8//piPP/646fELL7zAe++953NdXV0dhw8fZsqUKZceofCiVZf4HUYFcJf5LoQTojvL6BHhtw6Myahyz5x+3DQti9oGB/FRwRgNzQPUuq5z6EQVlXV2eqdGynlLraTrOvbtn/h2uBw4dn+BMWUgzv0rvbq08uNoYTEEX/UTr3b7rs99djTp1lpcJw+gxvVCO2eUxzTwyhaL64mu5aISGavVSlVV81qMhoYGVNV3diokJIRbb72VH/3oR5ceofCihEZDC4feyQ+tEBcnNMhEaJDJq62y1sbf399NUZlnF6MCTB2WzJ2zsgN2um+n5WhEr/O/BEErP4GzscZvn+vELnR7A4ol1KvN7+sUHST0jr/jPLgGV/5uFKMFU9+JGPtOuuTwRedwUYnMmQOmAKZPn85vfvMbrrzyyjYJTPinBkdg7D0O19H153QYUaKSafzsL2h15RjiMzAPvxpDXK/ABCpEB+DM244rZyO624kxfQSmvhNR1OavvdyTtVTW2kjvEU5cpKf2yL+WHGpKYsCzj2bNrpNkpUS2uLZGtMAUjBIcge5n/Z4SkYBuq/P/PF1Ddzs5O21UjGb/e5oMRpSgMCwjr8My8rrLELTobFq9Rmb16tWXMw5xEYIm343dZPGU5nY5UKNTMaQOxLHxP03XnD0PbYhNC2C0QgSGbeM7OPcua3rszt+N6/gOgmc9SJ3VyXMf7uFYkecXrKLA9OGpzJ/YiwN5/hePbtxfIonMRVJUFdOgq3Bs/eCcDgXzkNm4S47i8FMbRo3PwF2wF+uhtei2OozJAzD2HIajIt/nWmPWWK/kVLStO++8k/Lycj799FOfOnE/+clP2L17N4sXL27XNbKX/Le/ZcsW1qxZw8mTJwFITk7miiuuYMyYMZccnPBPMZoJmnQXlnG3orvsKJYwGv7r5+h1lwPH7sUET/9++wcpRABptadw7lvu0+7O3427aD//3qo3JTHgWWe6akchsZFBLVQyAadLa6NouzbzsHkoqgHH3mXojdWoMWlYRl2PMbk/hrh0XCd2egrZNT0hGDUmFdvaV5uanDWlEBKNMXM0rtxtnKk3Y+iRTdD429r5E3Vvjz32GNdeey2vvPKKV924r776imXLlrFw4cJ23+jT6kTG4XDw0EMPsXLlSnRdJyLCs6CutraWf/3rX8ycOZOnn34ak8n0Da8kWksxmj3Drbb6885DC9HduEuONO2COVd9/iF2HvG/nmx3Tjm9ksI5UeI75TG8T/xljbG7UBQF89A5mIfO8UwXGZp/JyjmYEKu+Q2uvK24S3NQQmMxpg+n8cPf+b5QYxVqTBqho27AXXECNSIBQ3wGAO7KIpz7V6DVnkKNScM8aCZquOxAawuZmZl8//vf55///CdXX301aWlp2O12/vCHP3DllVcyY8aMdo+p1XVkFi5cyIoVK7j33nv5+uuv2bJlC1u2bGH9+vV8+9vfZvny5SxcuPByxipaYg5GCfJfAluJSGjnYIQIPOU8pend5vCmM5bOZXO6uWtWNqFB3vd42WlRUmPmMjg7iWluM2LqPZ6giXdiGTYX7A3gdvh5tmdHkxqVhClrbFMS4yo+TOPHv8d5cA3uogM49y6j4aPf4a4+2aafpTu77777SE5O5rHHHgPgn//8J+Xl5fz2t7+lpKSEhx9+mLFjxzJkyBBuv/129u3b5/X8VatWcf311zN8+HBGjRrF9ddfz9q1a1sdT6tHZD777DMWLFjAL37xC6/22NhYfv7zn1NRUcGiRYt48MEHWx2cuDCKasA0+CocWz88p0PBPGRWYIISIoAMKYNQwuPR68q8O0xBRA8cT8b+I+QV+y5AHdY7joweEfzl++PZuL+E6jo7vVMiGdo7DlWVHUvtQQmL9RwEqftO5SnhvqNi9i3vg9t5TmMDjh2fddlp9Y17i3l/1RHyS+vomRjOTVf2ZXw7rt8ym808/vjj3HnnnTz//PO88sorPPTQQwQHB7NgwQJCQkJ49NFHCQ8P59///jd33303y5cvJzY2lvz8fP7nf/6HefPm8dBDD6FpGocOHaKmxv8OtgvR6kSmrKyMIUOGtNg/ZMgQvvjii9a+vLhI5mHzT89DLz89D52K+fQ8tBDdjaKqhMx5COual5oOGlQikwiaci9qcAR3XNWXp/67C6u9+UymXonhXDXaszA+LNjEzFGySL4tOF1uPl6Xx9d7irHaXQzOjOXGK7JIjvOsq1BDozFmjcWVc84ROEYz5gHTvJp0zY1WmuP3fdzFh9sk/kDbuLeYP7++penx0YJq/vLGFn5195h2TWbGjBnD9ddfz//93/8xcOBA7rzzThYuXEhtbS3vv/8+sbGe6dvx48cza9YsXn31VX7xi19w4MABnE4njz76KGFhnirOkydPvqRYWp3IJCUlsWXLFm67zf9Cq61bt5KUlNTqwMTF8cxDz8U0ZA64nSjGznHquBBtRY1KIvS636LVnkJ3O1GjkpvqwGT0iODP941jw95iKmptZCZHMLpfIiZjq2fbxQV65fODbD10qunxrpxyjp2s4Q/fGUtEqOd7q3H4t6h2RxFbsAaDy4qakIVl3C2cckewcvlhiisaSYkPZcaoNEKCwv1u41ZCIn3auoL3Vx3xadN1+GD1kXZNZMAzxfTRRx9x7733YjAYWL9+PWPHjiUyMhKXy3OToKoqo0ePZu/evQBkZ2djMBh4+OGHufnmmxk9ejTh4Zd2OnirE5nrrruO5557jvDwcO655x569eqFoigcP36cN954g6VLl/LjH//4koITF09RFJAkRogmagvrxCJDzcwZJ3WW2tOpaivbzkpizqhrdLJuz0kmD03m1c8Psi+3Ap14osNu59ZpGYwemEJecS1P/GsrdqenGOjBE1Ws31vCz4bNIOHoxz6vae4/zaetK8gv9V97J9/PAvW2dmYzz5n/r6qqYteuXQwcONDn2p49PYeDZmRk8M9//pMXX3yRBx54AFVVmTRpEr/97W9JTk5uVRytTmTuv/9+CgoKeO+993j//febKvxqmoau6yxYsID777+/tS8vhBCiiymtbGxxe3tJRSMvfrqfgyeaq8dX1Tt46YsjJMVH8tHaY01JzBlWu4vFlel8b9BMnAfXeNbKmIMxD5mDqV/XPCKnZ2I4RwuqfduTLm1U43KIjIxk8uTJ/M///I9P39k1Z6ZMmcKUKVOor6/nq6++4i9/+Qu/+tWveOONN1r1vq1OZEpLS/nd737HPffcw1dffUVRUREAKSkpTJkyhV69elFSUtLqDEv40p027Fs+wJmzEVx2jD2HYRl7C2pEfFO/89hm9Lpy1PgMjD2Hofg5QkJcfrrmxp2/B63ulOfPPqlvoEMSosNJjg1FUfzvjI8MM7N+X4lPu1vT+Wr3SQ4X+F8MeqSghqAbbscyagFafRVqeByKyXK5Q+8wbrqyL395Y4vXn6GieNoDbcKECSxatIisrCxCQr75fLKwsDDmzp3Lnj17+Pzzz1v9vq1OZK688kqefPJJ5s+fT79+/Xz6Fy9ezEMPPcTBgwdbHZzwZl3xD9yFzdvYXHnbcJ/KJfSmP6E3VtP4+d/QG6ub+tXE3oTMfRjFFBSAaLsPrb4S6+In0aqLm9oMqYMIvuonslapiyiuaGDJ5nzyS+qIjw5m5qg0+qZFBTqsTic2MoiJg3vw9Z5ir/aYCAt90qJgk2/lXoDaBgeRoSYqau0+fWfW1SjmEAwxXf9wz/GDe/Cru8fwweoj5JfU0TPJs2tp3KDAV52+5557+Oyzz7jjjju46667SE5OprKykt27d5OYmMg999zDf//7X3bt2sXkyZOJj4+nsLCQRYsWMXHixFa/b6sTGV3X0VuoxQDgdDr9HigpWsddfsIriTlDb6jEmbMRV952ryQGQCvNwbFnqZw/0sbsG972SmIA3IX7PH/2I65B1zXcRQc8Z2AlZMmREZ1MUVk9f35rO1a7Z1oj/1Q9O4+U88D1gxnWR4quXay7Z2eTFBPCuqZdSzFcOymDsGATwRZD05/z2fr1jKJXUjgfrDnm0zdtePer7zN+cI92X9h7IaKjo3n33Xd55plneOqpp6iuriY2NpahQ4cyc+ZMwLPY98svv+Qvf/kL1dXVxMfHM2/ePL/TURfqohKZ+vp6amubay9UV1c3HU1wttraWhYvXkx8vFTCvFzO/UXp1VdRgLvogN8+1/Htksi0Id3lwHVip98+V+5WTNmTsS5+Gq2qsKndmDWWoGn3oaiG9gpTXICCU/Us3nSCEyV1xEcFc9XoNAZmxPD5xhM+v1w1Xeejr45JItMKBlVl7rhezPWz0Pr6KVm8vcJ7V06vxHAmDO6ByahS3+hk9c5CHE4Ni9nAzFGpXDkytb1CF+dITU3l8GHvbe7x8fH86U9/avE5w4cP58UXX7yscVxUIvP66683VetVFIU///nP/PnPf/Z7ra7rUgzvMlJjWr6LV2NTaXHiWQ5TawctjEzqOvav3/RKYgBcxzbjTOyNedDMdohNXIiCU/X8+d/bmxaTllQ2si+3gh9cN4jck/7XZhSWNWB3urGYJCG9XK4cmUpyXCjrdp+kvraOftEOpg6Pafozvnl6b+ZPSKeyzkZsRBDBFvl+ExeZyEycOJGQkBB0XefJJ59k3rx5PtusFEUhODiYgQMHMnjw4MsabHdmiEnBmD4S1/HtXu1KZCKmvpNwFx7w6QMwZY1rrxC7JcVoxpA2FHf+Lp8+Y6+hOHYv9vs8Z84mSWTaSXFFAzuOlGFQVcb0TyAmwnfN2Bcbj/vsiNGBj9flEhMeRFm1zec54SEmqTvTBvqlhJJ+aCWuxp3QCFoRNKYMJHjmA56zmYKMhASFBTpM0YFcVCIzfPhwhg8fDoDVauWqq66ib9/Ar5TuLoKuvB/Hzs9xHt3g2bXUawTmUdehGC1YJt2JVncKraKg6Xpj5hhMg9r/AK/uJmji7TRWFXmVwzf06Idp4Awcu1qobq25/LeLy+qLjcf5cG1u0+MP1x7jnjn9mHjO+oLjxf5rcBRXNHL1xHQO+9nueuXIVFRFji243By7PveZrnUX7ce+9UOCJt4RoKhER9bqcbkHHnjgcsYhLoBiMGEZtQDLqAU+fWpIFCHXP+5ZVFpfjiEuHUOcFPtqD2p4PKE3/wXX8e1odWWeP/uUgSiKgiG5P+6Tvjv3jOkjAxBp91JUVu+VxIBnK++byw4ztHccYcHNBxjGRQVxqtrq8xoRoWbG9E/E4dT49Os8qurshFiMTB+ZyvwJ6W39Ebol59EN/ttzNkoiI/ySCcYuRFEUjKm+FRVF21MMRkxZY33aLRPvwPrFk147ygxJfeUwz3aw/UiZ33anS2PPsXImDOqB1liD3ljNzBFJHDxe5bPaaeYoz6jLlKHJTBrcg9pGB2HBJowGmVJqMy5nC+3+T8QWQhIZIdqQITqF0Fv+6ilUWF+BIT4TQ88hKIr8Imxr55v2UXQ31tUv4jq2GXSNTHMI9w69js/zwzlVZSU8xHNo5Nk7a1RVISqs6xZa6yiMvYbhPLTWT/twv9fruo5WfgLd7cSQkIEiGxy6HfkbF6KNKaYgzP2mBjqMbmd0/wQ+Xpfrs5nPYjbQr2yV9+nKjkaGFvyHMVc9gKvHKILMRlRV1r+0F62hCufhr9BqT3nOxopIgNrmM5mUsFgsY2/yeZ67sgDbyuebylMowZEETbkXY69h7RW66AAU/XxV7boRt1ujsrIh0GEIIS6jL3cW8Z8VR3Brnq85s0nlvnl96bP+d55zec5hSB1EyNyH2zvMbs1dfpzGz58AR2NTmxIej3nQDLT6StSoHph6j/OpUK5rbhr++wv0+grvFzQYCb3lCdSwmPYI/4LExwf+HKSuTEZkhBBd1rThKQzvE8funHKMBpXhfeII0hpp+Mr/Ogzd2v4nCHd39o3/9UpiAPS6MrTasvMu7nUX7vNNYgDcLpw5G7EMm3e5QxUdlCQyXYjj0Fqce5d7SuHHZ2AeeR3GZN9zsIToTqLCLEwddnYZ+0jUqB5+q2Ub5OelXekuB+7iQ377XAV7z/9c+3lG0M/XJ7ocWXHYRTj2rcT+1b/QqorAZcddfAjr4idxn/I9m0S0r5zCGv756T7+9OY2/rPyCOU1vtt8RfuyjLsVzjkiQgmLxTR4FrqtHl3XAhRZ16DrOs7D62j84kkaF/0Zx54l6P52HakGaOFgVcUcfN73MKQMAMV/VWVD6qCLjllcmOeee47s7Gxuv/12n74//elPTJ8+vd1jkhGZLkDXNBy7/ByBrrlx7F5C8Eyp+RMo2w+X8cIn+9BOL0U7drKWzQdK+d+7RhEfdf4vatF2jD2HErLg9zgPrEKrr8SQkImua1g//j26tdazuHTEtZj6TQl0qJ2S/es3cB5c0/TYXXIEV/4eguf93GvHnqIaMPWZ4HXtGabsST5t2w+XsXTLCU5VWemZGM7szAX0PPaB1zXGzDEYUwZcts8i/Nu2bRubN29m7FjfshPtTRKZrsDR6HPy9Rlale+hnqJ96LrOB2uPNSUxZ9Q1OlmyOZ+7ZmUHKDIBYIhNwzD5HgAce5bh2PROU59eX4Htq9fAHIwpc/RleT9d05pGSA0JWShq1xwQ16pLcB703T7tPnkQd/5uDGlDcR78ElfOJnTNhTFtMIa0IbgL9nguVAwYs0ajRPZAt9WjnD6OYOP+El7+rPlw3P15lRw6EcpDV/2U9Nrt6C4nxvQRGDOk2GRbCwkJoXfv3jz//POSyIjLxBKCEhLlN5lRo5MBzy9V8BTNE+2jzuqktLLRb19OYXX7BtMJ6E4b9m0fN/+C6zUCy5gbUEOi2vy9HXuXtdh+ORIZV/FhbKtfRG+oBEAJjSFo+vcx9uh6yaz7VA4tHaTqLjmKM3cbrqPrm9ocZXkYEvsQcuOf0KqKcB5YjStnE66cTWAwYR46F8uoBSxaf9z39TSdpUfhwZu+3UafpmNqOLyZ6vUf4SgvwByXRtTE6wnNbt+E4oc//CH3338/O3bsYMSIEX6vKSoq4m9/+xvr16/H7XYzcuRIfvGLX5CdfXn/3XfNW4JuRlFUzMPm+3aoRqx9ruKlz/bz/afW8v2n1vLSZ/upqbe3f5DdULDZSJDZ/xx+VLgUVjuXdfmzOPcuQ7fWgL0B15F1NH72V3Q/26Qvxe6ccl5ctJ+FH+9l474S3C53U4JxLr2u/KJeW7c34MzZhDNnE7rDsxZKdzRiXfaM13voDZVYl/1f0zVdiRIS3WKfrqheScwZ7tKjaLWluI5v917863bi2PEpjUc2t3hTUFRWf8kxdyYNhzdT+sET2Itz0J127MU5lH7wJA2HN7drHNOmTWPAgAEsXLjQb399fT133nknBw4c4LHHHuPJJ5+kqqqKO+64g+Ji34X2l0JGZLoI86AZKCYLjj3LPOf9xGdgHHEdTyypoqi8eQX/pv2lFJTW8/tvj8bQRYe2OwqTUWXK0GSWby3w6ZsxMjUAEXVc7tIc3EUHfNr1mhJcuVsx9ZmAputU1toIsZgICfL96tIaawD9vCM473+Zw5LN+U2Ptx8uY8fReO6J7YVWccLnekN8xgV/BmfOJs901JlFraYggqbdB7Z68JewOBpx5W3DlD35gt+jMzCk9EeNTvad1raEooZEtvg8d/FhXLnb/HfmrCM2YgIVtb6nkCfGhFxKuJ1O9fqP/LTqVG/4uN1HZX7wgx/w4x//mD179jBkyBCvvo8++oiTJ0/yxRdfkJWVBcDo0aOZNm0ab7zxBo888shli6NDJTJLlixh0aJF7N+/n9raWnr16sWdd97JDTfc4DUl8v777/PKK69w8uRJMjIy+OlPf8q0adMCGHn7c53YiX3HIrTKAtTIHpiHzcOUPdnrS3Hn0TKKyn3XyBSVN7Anp4LhfePbM+Ru6cYrstA0na92n8Th0ogMM7NgciZDsuICHVqHcr61XFrVSbYfLuO9L49SVm3DaFAY2z+RO67KxmI2oNWUYvvqX0138mpib4Im34shJsXrdcqqrSzdku/z+tsPlzF1+nx6Vb4AZ+9WMpgxj7jG61pd13Dlbcd1YieKwYSx93iMyf3QGquxrXnF+1Rzpw3b6n9iHja3xc+m2/2PMnRmiqISPOchbGtfO52c6qhxvQiafM95R6CUoHDQ3X77dHsDc8f34t/LDp/zXjBnbPc6HNdR7ntjBOAo89/elmbOnEnfvn1ZuHAhL774olfftm3b6NOnT1MSAxAVFcWECRPYvn37ZY2jQyUyr7/+OikpKTzyyCNER0ezYcMGHn30UUpKSppO2/7iiy949NFHuf/++xk3bhyLFy/mgQce4O2332bYsGGB/QDtxJW/G+uyZzkzD61VFmBb/U/QNUx9JjRdV1rZ8pdGSVXX+wLtiIwGlW/N7Mv1UzOpa3QSE2GRkTA/zqzl8qeAJK+dXy63zvp9Jbg0nfvmZ9O4+EmvKSCtNAfr4icJvfVvKMbmKbxD+VU+xxWccdgaQ7/5v8S5ZylaTSlKaBRKVDJaRQFqZFLTVmDbmfOZTnMeWot51PWe/rOTmDNcDtBbXpdmSBvcYl9npobFEjLv52jWWnC7mqrs6rqOGpOGVun9S1cJCsc8cDquY5vQKgt9Xs+YNphpw1NQFViyOZ+y07uWrpmUzsCMjlPBtz2Y49KwF+f4tsentXssiqJw//3387Of/Yz9+/d79dXW1hIX53vDFhsby9GjRy9rHB0qkXnhhReIiWn+Rzl+/Hiqq6v517/+xQ9/+ENUVeXZZ59l3rx5PPjggwCMGzeOI0eOsHDhQl5++eUARd6+HLsX428xnWPX516JTFpiWIuv0TNBSma3pyCzkSBzh/px61AMib0xJPfHffKgV7sSmcRXp6LR9FKf52w9eIob+zRg9rOORW+sxpW7DVPfiU1t4SH+65Wc6TP2yMKQ2Afbl6eTlaIDuABl83sEz30Y3dHolcSc4dj+KebzVJFVgsMxDZqJc98Kr3bT4FkYzpPAdQVqcITXY0VRCJ7zM+xfv4krfxfoOoakvlgm3YliDsEy4XasS/4O7uaaM2p0MuZBVwEwdVjKOcUNu5+oiddT+sGTeP8OUIiacH1A4pkzZw7PPfcczz//PMnJzf+eIyMjycvL87m+oqKCyMiWpxhbo0N9s56dxJzRv39/3nvvPRobG6mqquL48eP8/Oc/97pm7ty5PPHEEzgcDszmlr+suoqWhuHPVCqtqrNzOL+KsGATfVIjOVpY43Vd79RIBqS3vCBPiEAInvU/p3ctbUR3uzCmj8Ay5kaqPzvu93pN16mpqqGlCVKtoQrdacd1fDu6vYEByQOIjQjyWWdhMRsYNzARAFfORp9kRbfXY1vzCsae3msAmi9wgzkIUPC5wVBUjD2HoQ6YjjFtCK7crQAYs8Zg7KZF29TQaIJn/Q+avREcVtTw2KY+Y3J/Qm/6I85Daz31fRKzMPWd5HPOUncWmj2WxBt/TvWGj3GUFWCOTyNqwvWEZo8JSDyqqnL//ffzyCOPMGZMcwwjR45k2bJl5ObmkpmZCUBNTQ0bNmzglltuuawxdKhExp/t27eTmJhIWFhY07xaRob3ArysrCycTicFBQVe83FdlRqd4restxqdwifrcvli44mmQ/LiIoOYMrQHB09UATCqXwLzx6fLNmzR4SimIILG3wbjb/Nq750Syb48311FYcEmkjPSce5r4QXNwdT/52de5ep/2Hcur+enU3DKs9MlLtLCPdN7Eh7s+Sp05flfbKpVFaKfJ/EwRCdjHn0Djq1nF2dTsIy/rWlaxZg2GGMXnUq6WI49S3HsWYreWI0SmYRl5HWYeo8DQI1IwDLG96Rr0Sw0e2y7L+w9n6uvvpqFCxeyefNmUlI8I2bXX389r7/+Ot///vd58MEHsVgsvPDCCxiNRu6+++7L+v4dOpHZtm0bixcv5pe//CXgyeYAIiK8hyvPPD7T31pGY+dYuxA88mrqvzjMuRP+uSnzWLT2uFdbeY2N4yV1PP2Ab5VMITqDmWPSWL+vhLJq7zVf10/NJCwtjfreY3HmeI+iGHsOwbV3qc+ZO3G5i/n9/IcptQygfucy4vNXoK610bgjjqCxN6KoLSf4lqyROA+s8jk1WwmLwdJrCErmCIKyRuA4thUUBXPWWAzRPS7x03c9tt1LsW/6b9NjvaYE2+p/YggKxpw+PICRidYyGAzcd999/O///m9TW1hYGP/+97/561//yqOPPoqmaYwYMYK33nqLHj0u78+FoustLX8LrJKSEm666SaysrJ47bXXUFWVRYsW8fOf/5yvv/6a+PjmAeW9e/dy44038s4777RYmOeb6LreoUcpyqutbNpXjAKMG9yD4PJDVK//EMepE5hikomasIB/7jCxZrvvQjmAhT+fRs+kCL99QnR0VXU2Fn2Vy95j5USFWZg9Pp1R/T3TQbrmpm7nSuoPrgddJ7TfeMxJGRS/+b9+XytsyHQMwWHUbF50To9C5IQF1Gzw3d5qTswg9btP0Xh0O2VfPI+7oRoAU2wKCQt+hiUx/TJ+2q7txLPfw13nO8IW1GsgyXc8TsORrdRuW4yrthxLSjZRE67HHNu11xKJS9MhR2Rqa2v53ve+R1RUFM899xzq6V0eZxYI1dXVeSUytbW1Xv2toWk6tbUdcyfPlzsKeXPp4abpopc/3ce35/Vn8tW/4sxpPQ6goXFPi69RXtlAuMV/cTYhOoNrJvTimgnNW22rqs4abcmcRHCmZ9RRA+pLWt4VYbfacB7c4KdHp6EoF3P/qTjOKrGvhEYTdMX3PO8X14/wO/6f56gBgwlDfAaNikJjlZy2fCF0t9NvEgPgqCihZP1iGte82tTmrDhJw+EthN/4ewyRie0V5mUXHR0a6BC6tA6XyNhsNr7//e9TV1fHu+++S3h48+6aMwuGzl48dOaxyWQiLe3Stp+5XB3vxNvKWhtvLDnsdV6PW9N57YuDDOgVTWRY8/bSoVmxbD14yuc1YiMspMSGdsjPJ0Rb0GMyUEJj/FbsNaQMxHnUXyIDWn0lwbMexDhgBu7iQyjBkRh7DUM3ms/6+VEhvg8AbrdOS+X4hT8G1OgUtKoinx4ltifWrb6jYbq9AeuOxQRNvrzrKkTX0aEWhbhcLh588EFyc3N55ZVXSEz0zsDT0tJIT09n6dKlXu2LFy9m/PjxXXLH0vYjZT6HDoInmdlxtBzdacdxYDXWNS8zrHEjw9K9p4/MRpW7Z/dDPc/cvxBdjaKqnqq6Ju8Txk0DpmPsMx4l3H9BQkOCZ7OAITYN86CZmLLGoBi73vdKIJlHXodnh9dZDCZM/a5Ab6jy+xx3me82XiHO6FAjMo899hhffvkljzzyCPX19ezataupb8CAAZjNZn784x/z8MMP07NnT8aOHcvixYvZs2cPb731VuACb0vnudkzuKw0fvK4193NPQYLuTN+yJHaUMJCTIwfmES0nOsjuiFjcj/CvvUUztyt6PYGjKmDMMR5pqYso2/EtvpFzv4BUyxhmIfOCVC03YcpczTK3Idw7F6CVnsKQ1wvzMPme4oimoLA6XsMgdpC4ikEdLDFvtOnT6eoyHfIEWDVqlWkpnrOp3n//fd5+eWXm44o+NnPfnbJRxS43RqVlR1vnruixsYv/7nRZ1TGoCo8PbEMZf9in+eosb0IveGxi3ofd1keusOKITHLqxqqEF2Vq+gAzn0rPPVKEjIxD52DGpEQ6LC6Nfvm904X/DyLohJ89a8wJvUJTFCXQXy8FCBtSx0qkQmkjpTINNqcfLmziMP51USEmokMNbNsS0FTMmNQFe6e3Y/hx15Ca2HINfSO//M5oE2rKQFF9fqy1mpKsK74R3NZcHMIQRNu96qIKkRXpFlrcR3dgFZfgSEhC2PGKBRDhxqk7nZ0TcOx/WMcB1aDvcFT1Xf0DZjSRwY6tEsiiUzbkp/aDqbB5uTP/95OcUXzDipFgduu7HP6vxVG9I0nOtxCY0Gw/xdRDV7z+u6y49jWvtp0vokan0HQFd/DEJ2Mdflz3gvvHI3Y1r6CGtcTQ0z7n90hRHtwlx+n8Ysnm+rMOFmBGp9ByLxfNJ2rJNqfoqpYRt/gWUfjtKFYZLeP+GYdarGvgNU7irySGPDUvfti0wmuGJ7ClSNTm9a8mPr6L3JnzBjd9GWsO6xYFz/ldUibVpaHdfFTuIqP+N09gK7jPLL+Mn0iIToe29f/9imWp5Xl4di3PEARibMpquGSkxjdVo9j3wrsWz7AVbAXmXzoumREpoM5ku9/1X5NvYOSykZSYoJwF+1Ddzkx9hqGedg8HHuWNZ28qyZlYxpwBbrLjmK04Mzdgm6v93k9vaESV+HelgOxd4xpNtH9FJU3cOhEFeEhJob3icNkvLz1jzRbHdqpY377XCd2YRlx7WV9P/AU3MTt9NkB5So+jGPX502nbJuHzcWY1sKZTp2Yu7IA98nDKCGe7eyKwdS271eaQ+OSp8Fxuhr0rs8xpA0heNZPUFT5tdfVyN9oBxMR6n+rp6JAcF0BDUtfQLd6CgBiNBM08U5Cb/9/uEuP4TyyDnf+bqyf/RXMwViGX43udrX4Xoo5pMVdAgY5E0YEwFvLD7N6R/MoYWSomZ/ePJSeiZdvjYGiGkFRQfetq3S5t1rrmoZjxyc4969Gt9ejxmdgGXMTxpQBuIoPY/38Cc+hk4C7sRpr8WGCrnqg068JOUPXdexf/Qvn4a+a2pTQaILnPowh+vynWGu6zpH8ahpsLrJ7RhEWfOHJj+2rfzUnMae5C/bgPLQO84BL2xgiOh6ZWupgpg5LObfCAgAj+sRiWX9WEgPgcjT9wLqL9uM+vgM0z5ciDiv2ze+B1nIRPGPaYCzjb+Pcmg6GtCEYu8gXqeg8th8+5ZXEANQ0OHj5swOX9X0UczDGXv7P9DH2mXBZ38u++V0cOxY1jYpqZXlYl/w/3OUncOxY1JTENNNxbP/0ssYQSK5jm7ySGAC9oQrbmlfO+7yT5Q385qVNPPHOThZ+vJeHFq5n+dYCv9e6y/Jw7F6M88jX6E4bWk2J/ylzwHV8e+s+iOjQZESmg+mbFsW9c/vzwZocahudKAqM6BPPnYOc6GtqfZ+gaziObMB5eJ3f13OXHMaYMcrnVF9TvykYYlI9/4vrhfPIenRHI8a0IZ7dG6ocZyDa1xY/VanBM9VUVFZPcqQB57HN6HXlqAmZGHsOQ1Fbdy9mmXQXWkMVWlmup0FRMPW7AlP2lFa9ntOlsf3wKYrKG0iODWVUvwSMugPnwS99L9ZcOPat8Fq35tVd4b+9M3Id2+K3XSvLQ6s9hRqRQF5xLQ1WJ5nJkYQEeX4lPf/JPkqrmkdUnC6N/646SmZyBL1TPLsxdV3DtuZVXEeb1/Mpm97FMvU7LcbT1lNaIjAkkemAJg3pwbiBiZwsbyAi1ExUmAVnziZ8J4BOczSCy+63S7fWEDz3YVxH1uPM2waKiilrDMbe45uuMcSlY4hLv+yfQ4iLcb7FmK7aUzQsexa9sbqpTU3sTcjch1FMQWiN1Tj3rcRdlosaFodp4JVNxe983kdz4z51DFPfCTBgGorRjCE+4xtryLgri3AeWoNurcXQIxtT34koRgs1DQ6e+M8Or0X6izYc55fzkzG4HP5jqD2FGpGI2+p7c6J04jOFzqX7mb47o7zaxvMfbiG/1DNaZTEZuGFqJr1TIzlZ7n+N3oZ9JU2JjOvYFq8kBkC31eHY8j5qYm+00hyf5xt7j2vtRxEdmCQyHZTRoHqtCzCmDgKDCdxOn2tNWWNwFx/ye4dn6NEPRTVg6jcFU7/W3W0K0R5GZiew7XCZT3tiTAhxB95HOyuJAdBKc3DsWYYpexKNn/yhKclxA86j6wm+6n8w9vReOKvVnqJx8VPotc2jP8bMMRgzRp83Nmfedmwrn2+aCnId24zz0FeEXP0IH63N89lpWFrZyMfbq7nJEuZ3sb0a1wtj8gCsy//Pp68rVRc2ZYzCnb/bp12NSeWlNaeakhgAu9PNf1Ye5faZLRe+szuap+JcuVv9XqNVFRE8+2fYNrx11t+zgmnAdExZY1v3QUSHJmtkOgklKAzLhNs9q37PYhpwJYakPljG3QLnrMZXQqIwD5vXnmEK0Wqj+ycwfqD3aESIxci3r8pEKz7o9zmu49tx7PrCa6QGAM3tWSN2Dtu6172SGABX7hbPSIum4di9mPp3f0n9Gw9gXfUCWk0JuqZh3/C2z3oWrfw4zoNr2Hm03G9s23KqMA+f79thCcU86CqM6cMJuvIHntL8gBKRgGXyPZj7TfX7eh2J3eFmz7EKDudX+T0L7gxjn4kYM72TRMUSRtXQu8g96WeqHDheXNfiwt6hvWMvKD4lPI7Qm/9K8OyfETTl24Te8heCJt15Qc8VnY+MyHQi5v5XYOjRF1fOJnSXA2P6CIxJfQHPiE3I9b/HuX8VWl0ZhvgMTANnoNvqaVz6d9yF+1DMIZiyJ2MetUDmikWHoyoK37t6INNHpHLgRBURISZG90sk2OCmvoVdRqhG3MVH/L6eVlWIbqtHCQrzPLbW4i7yv3DYdWwzWmURzgOrvNrcJw8SdOUP/Z6iDeAq3IfB4H+6wqCqmIfMRgmJxLF/FXpjNYbEPlhGXIMaEQ+AKWsspqyx6JrW6vU+7W3TgRL+vewIVrtnR2RcZBA/WjCYXkm+O8sUVSV4xo9wlRzBffIQSkgkpswxlJY5gEK/r293urlrVjYvLtqPW2tOkob3iWNUdvP0nzFrjN/Fu2pMKobTyeGZETn3qVwal/4drSwPJTwO8+BZMjrThUgi08kYopIxjLreq03XXLhyt+EuPYoSHkfQyGtRQ6LQGquxfvaXpqFt3VaHY/ditIYqgqd/PxDhC/GNslIiyUo5+3gNI8Zew/3+0jL1Hocrfxf4K79kCgLTWeeGnWfkQHc5cR5a49turcV1YieenX2+z1csoYwbkMiyLb7TuuMGJJ6OcTyms9ak+dNZkpjSqkZe/fygV4JRXmPjuY/28Lf7x2No4XMYk/o23XQB9EqyEBFiorbRd6p8cGYsw6NqeGxWMJvKwrBqZgZmxjAkKxasNdj3rcRdlocSFuv5d3FiZ9NzleAIgq74ntfructP0PjZX8HtWa+kW2uxrXoB3WHF3P+KS/njEB2EJDKdnO6007j4Sa+FbY6dnxMy52e4Th7wOz/vOrYJbfQNcqKs6DQsk+5EqzvltaPHmDkG08ArUcJi/I60mLIne408qiGRGBL74C496nOtISGjeQfTOfSGSgxpg3AX+BaQNGVP4dqEDPJL6zl4ojmbyk6LYsGUzIv6jJ3Bxn0lXknMGZW1dg4er2JQ5oVN/RgNKt+a2ZeXPzvg9Xr9UsMZcuwVGjfnEg7MVBRM/adjyboDvaHSay0UAKoBy4Q7QHOjBIdjzBjpc+itY/fipiTGq33HIkz9pqAonSOJFC2TRKaTc+xf6bs632nFtv5N1OhU/0/SdbSaEklkRKehhkQRcv3juE8ePD11mokh1nMWmCljFPr427DvWOSpSK0aMaQOQqs9Rf27j2CITsE8dA6GxN5YJt+D9Ysn0K01Ta9tSBuMafBsnAe+9Dt9pUYmYRo0E9vK53EXH/I0moKwjLoeY+pAjMDPbxvOsaKapu3XvVMjfV6nK7A5zq17492nu51oFQUollDUb9h9NaZ/IqnxYXy9t5j6RicD0qMZVPAuev5ZCaWu4zywCkN8Ou6y437XQjkPrSH0xj+e9RTds5PTHIyiqC1uc9cbKsHeCKenHkXnJYlMJ+dvRwB4alEYWip1rqio31BVU4iORlEUjCkD/PaZB8/C1H8aWu0ptJpS7x1GNSW48ncRPO8XGHtkE3rrE7hyt+AqPYZeVwYuJ66DX2LMHI3r2GbvF7aEYhowHTU4gpCrH8FdfRK9sQZDXLrP4ZK+U2Jdz+CsWL+F6UxGld7uozS8/V90Wx3g2TEZdOX9qCFRLb5eclwoN0/rDYBub6B+wy6/1zmPbkC31vnt0yqb10I5D32Ffcen6PUVKMGRmIfORo1MQqs66fM8JTgCzCHf8IlFZyBjap1dSyXVFQVT38kofr5ETNlTUEOj2zYuIdqZYjRjiEnFuXeZb8VczY1j+yee60wWsITiOvyVpyJ28SEcuxfjOnkI06CZnp8Z1Yih51BCrn7E62fFEJWMMbl/tz0he2B6DOMHJnm1KcBNY6IxbHilKYkBcBcf8iSUQKPNyXurc3jknxv5zcubWPR1Hk6X9+iX7na2uI5Jd9lRQiL8B2W0gMlzrpztq9fQ6ys8z7HWYN/0LkpYLCi+BT7NQ2Z3mrVJ4vxkRKYD0HUdRfF3MME3M/WdiLtwn0+7IW0IhqgkQq75Dfbtn+Au3AvmEEzZUzAPmX2pIeMq3O+p46CcrsPRwp2yEO3NXZbXQvtx4PT5P5vf851GOj3dFHbHM20YXef33fn9GTsgkV055ZiNKuMHJpGY8zFOP0mIu+QIjsoinlx0khMlzUnOJ1/nkVtcy4M3DW1qU0OiUOMz0Pz8/Rl7DUeNTDrvWijHXv8nl7uO7yB49oPYt32EVnYcJSwG85DZmAfNbM3HFx2QJDIBlF9ax/trjnHgeCWhQSamDE3muskZGA0Xfpdg6j0ed9lxnPtWNH0xq3HpBE251/PfEfEET/ve+V7ivMprrJhNBiJCmkd+bBv+g3Nf85eG8+AazEPnYhl7c6vfR4jLRQ2PR6v2nUo4syZMt9ag15T4fa67+HCbxtYVKIrCkKxYzy6i06z7fDcVnLHzSJlXEnPGnmMV5BXXktEj4vSJ5LmYB87AtuFtzxqX09SETMyDZqKYgtDH3YZ955m1UAZMfSZ6amgBeq1vMUUAvb4CQ+pAQtMGX9JNo+i4JJEJkMpaG0/8ZyeNp2sx1FudLN50gup6O9+d7xndOHSiih1HyzAaVMYNSGzxBOCg8bdhHnwVjkNr0YoOojus2Ld8iGXYXNSoHq2K70hBNf9efpiisgYUPHPj987pR5jjlFcSc4Zj9xJM2ZNb/X5CXC6mIbOwf/Uvn/YzI5GKOcQzJevn+AB/U7Guwn3Yt3+CdioPJcJTg8Q8YPplj7szMyT3x5Xr51wlcwhFtlDAfx2e/NI6kou/xLHzM3B7vgvV+HSMqYPRHVYMib0xZo7ynFgOmIfMwjRgGlptKWpIdFONoDPP81tFOC69aWeSJDFdkyQyAbJmV1FTEnO2TftLuWFqFl9sPO51EvDSzfncemUfrhqd5vf13KeO4dzxGWdqXWhVhbiObyPkukcxRCVfVGxVdXb+/v7upnLgOp67p2c/3Msvh/m/6wEdV+E+zJLItOhwfhW7csoxGVXGDkgiJS4UAJdb4/MNx1m3p5hGu4vBGTFcPzWLpBhZiNga5n5TweXEsfsL9IYqlNAYDEl9cOxbjn3bRxhTBnoOUj26wfe5A70TFFfJUaxL/t605kavKcX+9ZvgdmIePKtdPk9nYOo7EeeRr9FOHTurVcEy9mYSXS3vCop1FOHY9bFXm1Z2HLcljJC5DwOe85q0xmoUSyiKwXR6LVQautuJ48BqXCd2oRjNGHv080w9nX2Mi6JiGXXdZfykoiOSRCZASiqtfts1XWfn0TKvJOaM97/MYeyARCJDvRf46rqOfeuH+BTsclhx7FpM8BXfvajYvt5b7HWmyRl5xbXk9QmipbSouy6AvBD/XnaYL3c2/51+sfEEd83KZuqwFF5fcogN+5qnOrYdLuNIYQ2Pf2eM15SeuHDmQTMwDZwOThv2HZ/h3LOkqc95+CsIicLYe4JnFEFzoQSFYx61AGPPYV6v49yzxHfhMKdHIAfNlBokpylGMyHzf4nzyNe4C/ejWEIx9ZuCIbE3o51uPlmXR0Wt97G36UnhZFZtwt+GbnfhfrTGatyF+7Fv+8izgNcUjHnANMyjbwTAuvQZ3EX7m57jytuGMXsyOG2eLeCRiZiHzMGY3K8tP7roACSRCZC0+FC2HfJtNxoUTlX5T3Lcms6+3AomDu6BrrnA7UIxBYG9Ab2m1O9zzhT5cledRK8rQ43t6bNjKfdkLUcLq4kOtzC8TzzVdf5P0gaoj+ztqZjqPOcsbnMIxvSR5/nE3YOuuXCXHAVdx9CjL4pq5EhBtVcSA57NGe+sPEpGj3A27vddr1Hb4GDd7pPMG5/eTpF3PYqiomsazv0rfTsbq1Gjkgi78//QrDWo4QkoBt+vQ6262O9r643V4LCCxTOqpus6rqPrceZsAl3DmD4CU78r/L5mV6UYzZ4pt3Om3cwmA7/81nD+uzqHXUfLUVWFMf0TuPXKPrD6yxZeTceVvwf7V681NzmtnuJ2iooan+GVxJzhOrKB0G89Jbsyu5nu81PWwUwdnsLqnUXU1HvP018xLIWI0Jbvwi0GHdvXb+I88jW4HKgJWVjG3uL5QrU3+FyvhETRuOT/4S7Yc7rBgGnANCwTbkfX4cVF+9l6qPkQvehwCzNG+i+kZ1AVMnsmEBz1E2xfvtRUnEoJjSZo+v3dfkTGdfIgttUvNv+5BEcSNO177M4J8nu9w6Wx9dCpFivnnyxv9N8hLpi7utjvifEAWvkJFEsohtPJiD9qdIrfZEYJjYGz/r3bv/qXZ6TnzPsWHcCVv4fg2T+VdRlAXFQwD1w/GLemoSgK6uk/E0faYL87kZSIRFx5/k+3dhxYjbFPC0c+6G7cJUdRs8ZctthFxyeJTIBEhJj51R0j+ezrPPYdryQsyMTkocnMGJVKVa2dj7/K9SkFHhZsom/BxzhPNP+Aa6eOYV36/zD1neTnzlMBRW1OYgB0N879K1Gjk9noyPZKYsCzPmbHkTKykiM4ds7ptFeNTiM63ALhAwj91lOekQdFxZDYG0X1rdPQnegOK9blz3ru0s+0WWuwrvgHpoyftvi8hKgQFMV/+YzkOFkjc4a75CjOnI3oLjvGXsMxpo/wmdbRNB1V9U4a1PA4aOHASX+VZ/fnVfLp+jzyS+tIiApmVv8pDDHsalqIeoZ5+NVN7++uLPJKYppiLtiDu+gAxtSBF/txu6xzz2IyZE9Dzd2Kduqsar4GE0GT7sS+8R3/L+Jo9CzYboES3EK9GdFlSSITQAlRwXxnvm/9ldjIIO67ZiCvLznUdMJsZJiZ+69KQ1nzms/1OG1gNGMefjWO/as8P+jh8ZhHXONZmOiH8/DXbLX7H349drKWP983jp1Hyth9rIIgs4EJg5IY07/5i19RjRiT+7fiU3dNrrxtXklME6eNkaEn+VxR0M7JViJCzYwflMSRwmrW7/WeXooMNTNl6MUt0u6qHHuWYN/0btNj15H1GDPHEHTlDwBYtqWAFdsKqKqz0ysxnAVTMhiS5dlqrYZGY8waiytno/eLmoIw9Z/m1XQ4v4q/v7e76e+psKyBV8sauGvCjxhTvwp3WR7qmZOT+0xoep67xP/p22f6JJHxtWJrAcu35lNRayctfhZX97UzSMnxnI6dPRk1IgFXQhZale9aQSUyEVP/aZ7Ch+fsPFOjUzD0yG6vjyE6CElkOqjR/RIYkhnLwfwqTAaV7J5RUHoEq58TeAH0unKCZvyQ4wlXUF5RS3paHMlRJuxrX/X/Bk7r+Q4DxmxUmTOuF3PG9br0D9MN6OeuGTpLotnGPXOG8faKI9idnqWNkaFmfrRgMEaDyt2z+xEfGdy8aykzhgVTMgmXhb5o1lrsWz70aXflbsHdbwpL88P46Kvmu/kTpXU8+8Fefnn7cPqkRgEQNPXb2IMjPKMmDiv1cYNYZ7mC3EX5xEScYvqIVHqnRrJ4U75Psgmw5ICVK+5/uMUY1dCoFvsUWavhY9mWfN5d3Xw+XEFZAy+Uw8O3XEf/9JimdvOwuTiPb/eeMlcULKNvwBAWQ/CsB7GtewO91rM+0JDUl6ArvidTed2QJDIdmMVsYFjv5oMd9ZhUMBh9hrkBGiLSefL1rRxvKjyVx/iBSdyW2Be91PeO0ZA2hNFBCV4n9p6RlRxBTIT/dR3CP2PqYOwo+OwcA2xx/akrdDB2QAImg8qA9GgGZ8U1FT40GlSumZTBNZMy2jnqjs998hBovv/eAez5e1m+1Xc9l6brLN9S0JTIKAYTQeNvwzLuVqpqGnnq7V1U1Z2ZNq1h88FS7r92ECfL/Rd1K6u24XS5MRmbp081TWdvbgXlNTbSE9NJjEhAr/WeplUsYZiyxl78h+7CNF1n6ZZ8n3Zdh2VbC+ifHoMzZxOOfcvRG6owxGeAMQi9rhQ1LA7T4KuaRoKNKQMIveWvaFUnUYxm1Ij49v44ooOQRKYTUYLCMA+6yrNy/+z28DjeL0zmeIl30amN+0voNW4e46sKvSplKpFJmIfNY7IljP3HK9l+uLk2TFSYmXvmyHbFi6VGef5MHbs+92q3Zk7j8ffyvWoGHS2sIbtnzEVVcO6uFEvLayGsaij1Vv8LeUuqfBdKK4rC8u0nqTpnV56uwwdrcugRG0pFre+OvfioIK8kprLWxtPv7qK4ovk9hqbfxL2JK1FKPZWB1bheBE25t9svgD+X3eH22eBwRmllI459K7FveKupzd1QBaYgQq77LYZo36lWRVEwxMgBuN2dJDKdjGXszSiRiTgPrwNbPYbUQegD57DjpT1+r998wsmMm/+M89BXaLVlGOLTMfWd6Nm2DfxowWByimo4WlhNVJiFkX3jMZu698Ld1rKMuRFD2mBcx7YAOsbM0Ty7qoFGu/ei6fxT9Szbks+CKZmBCbQTMSQPQAmPQ68r9+5QjUQNGEf09qM+iQlAz4QwdF0DeyNYQpoW5h4trPb7PmXVNm6cmsXBE1U+i+zP3QL/9oojXkkMwO7jday/4lvMmhEBmrvpOAThLchsID4qiLJq36nY1IRQHDv9LPB12nDuWYph6rfbIULRGUki0wmZ+031VC89zWp3+Xz5nuF0aaghUVhGXNPi6/VOiaR3SuRlj7M7MvbIxnh6sWGDzcmxonV+r9udUy6JzAVQVJXgWf+DbeXzTduglaBwLJPvxhiRwDUTnbyx1Pt8JLNJZUbsSRrefhm9sRolNAbzsHmYB15JZKgF8D33x2RUGZwVy4M3D+Wzr/M4UVpPXFQQafFh7M2toOBUPVOHJRMfFczunAq/sW45eErWlH0DRVG4ZmIGr35x0KvdZFSZMzQGfWWt3+e5K3yno86may4cuxbjPLoenHaMPYdhHnUdqp8jJ0TXI4lMFxBsMdKvZxSH8qt9+ob3kTvDQDGqKgZV8Ztkms0y6nWhDDFphNz0Z7SyPHSX3bPd32ACYOqwFEKCTKzYWkB5jZXM5EhmJ1cQt+ftptVKekMl9vX/RjFZmD6yP7tyyn3eY+KgJILMRgamxzAwPYYGm5O/vLWDTQeaC02u2VnE964egN7CKnl/C4WFr4mDexBkNrJ8az5l1VbSkyK4emI66QnB1JtDvKbBzzizVV7XNbRTuei6hiEhq6nsg+3Ll3Ed29x0vfPQGlwnDxJ6w+MoJkv7fDARMJLIdBG3z+zLk+/spLaxec1ARo9wZo/tGcCoujeL2cCIvvE+tXrA84tTXDhFUTAk+B/BGt0vgdH9EpoeN7z3a3yrxoBjzzIG3TiJe+b04+OvcqlpcGA0KIzLCuX6uBwcB0swZY1BMYewalshJ8u9C0y6NZ2P1uYyMCOGfXm+hyCOzJbFphdqaHg5/WPXohlOooalYFbmoxj6YB40E8eOT70vVg2YB8/CfSoX66oX0Os8a/qUkCiCrvgealiMVxJzhl5bijNnI+b+V7TDJxKBJIlMF5ESH8af7xvPpgMllFfbyEiOYETfOJ8CVKJ93XFVX6rq7eQU1gCgKJ7qzVIjpu1odf4PNtVOr7OZMjSZCYOSKKu2Ytn1HqZja9HLwQ7YN79L8OyfceC4/ymOU9VW7p6dTXFFo9fZQdlpUcwaIzcNF8JVsBfr0r83FSl015VjLdhH8LyHMY+8DowmnPtWojdWo8ZnYBl9A2pMKg3/eQjd1jwtqDdWY13+LJYJt7f4XlpFQVt/HNEBSCLTCWh1ZTh2fYG75ChKaDTmgVdi7DXc57qQICPTR/g/XkAERniImV/fMZK84loqamykJ4UTFyU7WdqSIT7Db5E6Q3x6038bDSpxtQexHVvrfZHDiu3LlwgNusPva6uKQmpCGH++byzbDpdRXm0lo0cEAzNipH7JBbLv+NS30rLuxrFjESHz+6P1n802fTiVtTayUiIZnBKLK3eLVxLTxGVHa+GcOfDsJhRdnyQyHZxWX0HjJ39At56+Q6wqwlq4D8ukuzwHtIlOIaNHBBk9pHR6ezCPWoB18VOgnXWusmrEPvBqKk7VkxQTjMlowJW7ze/z9boyZo7W2Znj2zeib1xTocLxA+WXZGto5cf9trvLj1Nwqp6n/ruTurOmyPv1jOKHg33PkTtDMVkwpA3GXbDXuz0kyqsCs+i6JJHp4Bx7lzcnMWe3b/8EU/aUCzpd15m3Heehtej2eowpAzEPnoUSFNYW4QoRcMbk/oRc/Sscu5egVZ/EFZnKe3Wj2PJ+KW6thNAgI9dOymDieQZQ+qRFc8v0GD79Og+bw5MQDcmK5W6psXTJ1IgEtKqTftv/veywVxIDcCi/mq9SEpncQsFJY+ogzIOvwr7lA8+uJZcDY89hWMbehHKeA0FF16HoLS3B72bcbo3Kypaz/kBpXPTnFs9yCb3lb7hOHsS5f5WnCmZSH8wjr8MQ17wF1L7rcxxbPvB6nhrVg5DrfivFukS38Oayw6zZ6Xtmzw8nh5K9/wWfdjUyiZCb/4KiKNgcLgpO1RMZZiFBpgQvmO5yeL63VAOGpL5eh8o6D6/D5ufoFMeE7/Pzz/2cVwZkpUTwcPZxn4KTpn5TCZpy7+UNvg3Ex4cHOoQuTUZkOjglLNZ/h8GM8+gGrxX+rhM7PVsOF/weNSoJ3dGIY8dnPk/VqotxHv4K8+BZbRW2EB2C3elmw95iv33rioIYNHCG16nxSlA4QdO/j6Ionro1+1aQUlWEGp2KNngmaqRMJ30T5/Ed2Ne+hm73HPmghMYQPOOHGBJ7A2DKnozuduHY9Tl6fQVKeDyWEdeg9ByFwjq/p8kZVdVTcDJlAK5jm9GcdgxRPTBmjGzHTyY6KklkOjjzoBmerYXnLI4z9pmAY98K3yc4bTj2LiNo8t24KwrA5Vv1FMBdmgOSyIguzmZ34XD524wNNQ12gibeQV3aBKzH9xEdF0No3zEoRjPusjwaP/+b52R5wF18GOfR9YRc/QiGuPR2/ASdi9ZQhW3V817nwekNlViX/R+h33oaxWhG11yoMSkEz3wAJaoH6ukq4yZgYGYM+3J9t7aPHeCpI2NMGYD7VC7uHYtwux04tn/sOSxyxo9QQ6SoZ3cle3M7OENCFkEzH0CN6uFpMAVhGjwL8+CZfgtHAWiVhQCo5zl5VwmNabFPiK4iMsxCj1j/5zX1Tonk2Q/28Mv/HOf3G8J4eLGLjzd4tuvat37YlMQ0cdqwb/u4rUPu1Fw5m/weaqvb6nDl78Z1YhcNb/8M66I/0/jxY1g/fsxzw3Xa3bP6+fx9TRiUxJRhnnIFrvxdOLZ+AO7m85rcJUf8TlWJ7kNGZDoBU/oITOkj0G31YApCMRjRXXYwBfl+2UJT0qNGJGDoORR3/m7vCwxGTP2n+jxPiK7opmm9WfjRXq8Ky9HhFuoanV5Vfp0ujc83nKBHTCiDWliX5i723y48dD/fR019deXYtn3oleho1cVYlz1D6K1PoKgGYiOD+MN3x3Igr5LKOjuZyRGkxjdvTHAe8n/kh7tgL1pjtRxJ0E1JItOJnL3TSDFaPFUwd56zBsZgYkfwOFa9sY3KOhtZSVdwVY8oepR8DbobNaoHlvHfwhCVjFZXhu6woUanoEjhvEtWWtmI062REhfqU1OktsFBVZ2dpNgQLHIoZ7sa1juO/71rFF/uLKSi1k5mjwgmD+nBr1/2rQYLsG7PSQYHRzZVkD2bTF+cnzFtsG9lXgDFgGar9z9aU1+Bu2g/xrQhgKdWz6BM/2sD9RZGoUEHhw1aPixddGGSyHRi5lHXo5hDcOxfid5QjSGpD1+HXcV/V5c0XbMjx8F+cyb/e9vV9AhXUMNi0RqqaPz8b7hPeg5uU0JjsEy8A1P6iEB9lE6tpLKRlz/bT16xp2BXQnQw987pR3bPaBxON28sPcyWg6W4NZ1gi5GrJ6TL0RGXge5yoDsaUYIjv7EYXa+kcO6Z0x+3pmFQVeqtTlxu/2tn6q0uzKOvxL7pvz59poFXthyPw4pj73Jc+btRTBZMfSZg7DupWxXKMyT2xtT/CpwH13i1m0cvQLe1vCtUtzfg2Lfy9HdZJYbEPlhGX48hIcvrOmPa4KbvrbMpEQkop89jEt2PbL8+rb23X+u6hl5zCoJCUYMuz9Y8t6bx0MIN1DY4fPomDenBt+f2B6Dhk8fRTuV6X6AaCL3xj81rccQF0TSdX720kbJq7yF1i9nA374/nk+/zuNLf1t/rxvEqLPOBxIXTtdc2De/j/PQWnDaUCISsIy5CVPm6Bafs/NIGR+vy6OwrJ6YCAuzRvdkw/4STpT4VoudPaYnN03LwrH1Qxz7V3qmb01BmAfN9Nw8+ElMdLeTxkWegy3PZho0k6DzlNDvqlyF+3DlbfdMY2eNxZDYG1fhfqyLn/S9WDVgGnQVzj1LvNsNZkIW/BZDTHO1ct1po/Hzv3n/ORuMBM/8CcaeQ9ro01w62X7dtmREJgCceduxb/wPen0FKCrG9BEETbn3kos31TY4/SYxAAWlnq2Q7vITvkkMgObGeXgdlrE3NzXpDiu6rR4lLMarDoRoti+v0ieJAbA73KzfV8z6ff63/q7ZVSSJTCvZN72L86wde3rtKWyrnkcJfgRjj2yf6w8cr+QfH+/lzC1bZa2dd1YdZfqIFIorGnA4m0dmEqODmT22J4qiYBlzI+bh89HqK1HDYs97irIrd6tPEgPg3L8K85DZqC2VUeiijKmDMKYO8mozpAzAmDkGV+4Wr3bz8Ktx7F3u+yJuB869yzBM/Q5aTSn2bR/jPnkALKEYMseAasQQGoWp3xTZFt/NSSLTztzlJ7CtfB700+XTdQ1X3jasbhchsx/0uX7DvmJWbS+iqs5G79QorpmQTmqCZ63MtkOnWL6tgPJqK+lJEcwZ25PQICMNNt956MQYTzEvf1WCz9BO9+maC/vGdzwL69wOlJAozKMWYO4nC4TPVdfoP3EEqKq1e/2SPFtLCac4P91p94zE+HToOPev9JvILN2Sj79x5+1Hynjs22NYt7uY8hormcmRTB7Sg2BL89eiYgrCEO17wKem61TX2QkNMmExGzzlDPwGrOEuy+t2iYw/iqIQdOX9uDJH4zqxE8VgwthnAmpoNI7tn/h9jrvqJFpjNY2L/tT83WWtxV1djGnQVV43XqL7kkSmnTkPrmlOYs7izt+NVl/h9YW3fEs+/13d/AW57dAp9udV8OjdozlaWM2/Fh9q6tuVU86B45WMH5TE2l3e5b8NqsJVoz1rMgwJmWA0g8v3F6kx2TP1ZN/8Ps79q5ra9cZq7F/9CzUkCmPPoa374F1U37QoFAW/vyiH9I7lYH4VRWW+U5b9era8NV60TLfV+f23C55zyZr+W9NRVc8U0Kkq/9Via+odRIaaufGKLL/9Ldl26BTvr8mhrNqG2agyYXAPro9rOVFRpdRBE0VRMWWO9poG1F0OsISC3ffnxBCdgvPAl35vwJwHV2MecfVlm5oXnZdsVWlnemN1Sz3ojTVNj1xujc83nvC5ymp3s2zzCRZ9fdynz+HSaLS5uGlaFtHhnmHwjB4R3Dy9N19sPM4j/9zIc58doyDzep/nGhL7YMwag+5y+L/jBRxnJTfCIz4qmFmjfRfuDusdx8D0GG6Z1hujwXtNRUyEhTnjevk8R3wzJTSmxRpISlwm76/J4cfPfMX3nviSJ/6zg7ziWtIS/J8rlhAdfN4dZK6iA9h3LcaZuwX99G6bnMIaXvh0X9N0osOlsWZnER+cTAU/R36oCVmemwfhw11ZhPtULqgG/1XGjWZMg2c11cXyfQEXWnWJ/z7RrciITDszJPXFdWKnb4c5BDUmpelhVZ2deqvT9zrgRGk9FbX+6zUUltXzg+sGMWdsLzRd50h+NU+/u6uphsapait7cy38ZNpP6F23Bd1hxZg2+PQBlCbP9FILtSD0hqqL/LTdw83Te9MnNZKNB0pxuTSG941jwqAklNPbSH9792hW7yyiosZGRo9wpo9IJSLUHOiwOyVFVbGMWuBTAE0JCufTyj6sOJDf1HYov5on39nJfVcPYM+xCpznVPgdNyCRVz4/4NmSnRzBzFFpRIdb0F0OrMuewV10oPn1w+MJmf8LVu845Xf0bcOhKm649Weo2/7jWSujqBh7Dccy+e7L+wfQBWjVJVhXv4BW7rlRU0KiCJpyD5aJd+LcvxKtoQo1Jg1TxiiU4PCWNyAoBtSI+HaMXHRUksi0M1P/K3AeXodW7T39Y8qehO3Ll9FqS1FjexE6YBZBZkPTybtnS4oJobLO7nedRWJ0cyEFVVFYtD7PqxAYgFvT+eKwziN33A941sY4czYCYOg5DCUyEb2m1Oe1DUl9Lv4DdxPD+8YzvK//L9XUhDDumuW7duNc7lPHcB7+Gt1pxZg2BGPWGBRVfkTPZcqejBISdXqrbhWGxN7Ye1/J6jd9i9XZHG6OFtbwy2+N4IuNxzleUkd8ZBC9UyP5fMMJtNNZyZGCajbuL+HRu0YRmrPcK4kB0OvKsK1/i8raKX5jcrk1GkJTSFrwO7TGGhSjCcUsRU3OpesajcueQa9pHknRG6uxrvgHoTf/FVPWWKwrF+I+eRB76VHsW97H1G+qZ7TL4T1FaOo7UQrgCUASmXanmIMJufY3OPavwl20HyUoHDU2Dcf2T5vOU9IqCiBvG9MHfP//t3en4VGV2b7A/3vXmMo8knmGJDLPIGOQQRAE5xHkap/Wq+DTavs057QeH05fu227276C2KdFPQ5o0xdQGwOCIIPMs4Z5CISEkAESMta8974fKqlQVAUBU6ns5P/7RO2hWLuKKla9+33XwtofPEdBtBoBU4alIqVHCFZsLvLYJwoCJg9JhGyph2AMgSCIKPaxvBSAe7vj9E5Yv/+wtVCVqHUlW/VVHhM/hKAw6PtPba+Xga5hP/odbDuWAc0t85xndkNzZheCpvyKK8Z80Kb0hTalr/vxhbI6r4S9RUWNGZmJYZh/n2t5rqIo+I/3druTmBZ1jXZ8s6cEs+r3+3weqbQQmZnTcOpCnde+8GA9YsJdPYNYNK9tUvlJjySmdYcTjlM7IF8p86wTIzvhOPYd9EPvh1R+AlLZMQjGEOhyx0E/eGbHBU6dGhOZABAMwTAMuhsYdDcAoGnVf3o1hYTDiqmaXTCOnYbvDlxAXZMdWYlhuHdsJtLiQ5EWHwqNKOLbfSWoqbchNS4E0xMqkLTlP9FkN0MIjYFhyL2IjQhCaVWjVwyxEUGQzXWwbv0QkK9a5SQ74Ti+GUGT5sNRtAdyYzU0sRndcgmpvxRX1KO20Y7MhDCEBeuh2M2w7fl/wDV9f6XSw3AWH4Auc1hgAlWR+CgTdFrR6/YRAKT28JwMWt9kR2UbE4BPl9YC18lDJg5OwO7jl1Db6Dkaes/YTGg1nHL4UxSr93eRe5/5iqv2jA/SxeMw3fWyv8IilWMiE2CK5IBcXeJ736UiTJ+Ujum3p3uswmgxeWgKJg9NgSwrcBz8EvaDq1vPbbgM6+b3MDHnWfxPlfdzTx6WAmfxAc8kpoUsQW6sQdAd//tnXVt31WhxoLi8HmHBeo//ROsabXjni8MouuhagaHVCJg2Ig3T0xrb7lJ+4QgTmRsQEqTDxMHJ+GaP52cpPFiPsT0NkC4VQ4xOhiBqEWTQQq8TfS6Njwg1QJs5DHYfn0lt6gCERoTh1SeGYv3eEpwqrUVEiAETBiehTwaT/Buhie8FiFqf3ztij2zgmorALRS778STCGAiE3CCRgchKMzn8sKWERBFdkIQ2r69IEBqc0XRYPM2SFMexppdxaiutyEqzIBpI9Iwpl8i7EeP+Tyn+S+9uQshAEDBzmJ8vbPYPTKQnRyO5+7pi/BgPT5ce8KdxACAU1KwekcxkgwxyG3j+QSD7xU35O3+8VmIDjfi+x8uosHiQF5yCCbLW6H91/sww3V71DDyEeizR2JM30R8d9B7NcyEQUnQp+VBqjgJqfSwe7sQ3gOGUY8DcDWcfPgOzhe7FaIpHPrBM2Hft8pjuya1P3Q9b4fj8HrXrfVrXH0bkehaTGQ6AV2fya7W9NcQE/Pc7QQEQwh0t+VDP3iW95wJu9VnDQbA1ZBt/MAkjBuQCKtdglGvcZdY16YNgm3n595JiyBCmzG4Xa6tO/nhzGV88b1n1eQzF+rwP2uP439NzcWRs9U+z9tdCtwWmQz5yjX/sQoitL1G+SvcLkcQBEwYlIwJg1wl7c0Ff4RU2TrfQrHUw7r5PYgRCXhwQjYkWcb2wxVwSjLCTDrMGpOJflkxAADT1JfgLD8J+dI5CKGx0KYN4FyldmIYOAOauCw4Tu8EnDZoUwdAmz0CgiDCcPvjsHzzlscIpRiVDH3fyQGMmDo7JjKdgH7AXYAswX7kW8DWBCE4CtqcMXD8uMY9CVexNcJ+6GsoDhuMtz/q+QSG4DZXGomxrhoWgiC4K5Y6y0/CWbQXgAJd74lwHN3QOrFXEGC4/VHOh7kFOwp9tyM4XFSNS7UWtNXUzGJzImj687BsWAK5unlJqiEEhlGPQxOZ1MZZdD1yXaXP5oJQFDiOb4VxzBOYc2cu7h+fhXqzAzHhRq85LtqEHMBHpWD6+bRJt0GbdJv39oQcBD/wOhwnv4fcWONqQtlzJARt2+0hiJjIdAKCIMAweCb0A+6CYmuEYAyDbftHPlveO45vgWHIPRCuKr4lCAIMQ++DdePf4DFhVB8E/YBpHufb9q6E/YcCj2263HEQI+IBBdBmDIYYxh5At8Js8zHfCK53JDhIh/goEypqzF77+2XFQAyLQ/B9CyFVl0CxW6CJy4Sg0fk54q5LsfperQd4tukwGXUwGXU4cq4aG/dfQHW9FZkJYZg2Ig09olzLp50Xj8O+/0tIlWcghES7mkdyhMBvxOaFCkQ3iolMJyJotBCa6yLIdT5m6AKAZIfcdAWaa6qI6jKHQZgeCsfhbyE3XIImNgPanqMAWYGiyBAEEXJtBew/rPF6SseJrTA98Dp//f9MfTOjcfy8d9HAuMggxEeZ8PjkXli0shD2q1bWZCaGIX9g6+uuifauEkw3T4xObbvs/TUjAbuOVOD9gmPunwBll5pw8NQlvDJnCGKkKljW/sU9OVVpuORq+Oq0wTBwhr8vg4huABOZTkqMSYNUfsJ7hyEYYmiMz3O0iXnQJuZBNtfCuuV9WAreAAAIIdEwjnoccsNlXLvEt4VUUshE5mcaPzAR+05U4lx562iAViOif1Y0XvtwL6rrrUiND0F8pAmiKKJXSjiG5vaATstlu+1N0OphGPYAbNs+xtX/5sWYdNhShkGUZGg1ImRFwZfbznp9KpqsTnyzpwQPGbb4XGHjKFwPfb+pEDT8CiUKNH4KOyl9n0lwnNru9YtSlzce9iMbALsFmtR+0Mb38jrXumEJpMrT7sdKYzUsG5Zcv4CUjz4xdHOMei0WPDYIu49VupfmCgJQsLO1Z9aZC/UoLm/Ef8wehPT4sABG2/Xp88ZDjEyC48RWKNYGlOvS8HFRLC68uw9BBg3G9U/CpKHJuFznuyXH2Yv1kCN9z3tSbI1QrA0Qgtn8kyjQmMh0UmJoDIJnvgLbwdWQKk5BMIW7ZvoXrm/9hfhDAXQ5Y2AY+6R7JZJUU+qRxLjJTtfcAF0Q4LimJoPO6NGNlm6dTqvBmH6JGNMvEbKs4KV3d3gd45RkrNtTgmdm9glAhOonKwpOnr+COrMdvZIjEBVmbPNYbXxPaON74lRpLf74+UEoiqt/mcUmYd3eEjglGUEGDSw271YgMeFGiFHJ7p5AVxOCwiAEsesyUWfARKYTEyMSEDThaQCuVvdNn73oNcztOLkN2oyh0KY2l183e9ejaaHYmhA05XlYv/tvKBZXmXUhKAzG/F9CMAT76Sq6r0aLA3WN3v2wAKDssu/l8nR9VVfMeHtlIcqrXZOmRUHAncNTcf/4rOuet/HABZ/NHrcVlmP8gESs3+dZu0QAMGlIMvRhUXCe3Qc4Pd9H/YC72AeLqJPgJ1ElpIpTUGy+y3s7iw+6ExlNXAag1Xt98QKANiEX2sQ8BD/2F0jlrgZ7mvhevM/vJ8FBWoQF630290yMZuJ4K5YWHHMnMYBrdGbt7vPISgrDwJ5td0KubuP2kc0hYcKgZGi1IjYdLIPF5kRcZBDuHZuJvPQoAFEwTV8A28F/ueo5BUdB32citNkj4Di333WLN+k2lisgCiD+D6YW11uKq9FCttS7+pTITuj7TPZaYi3GZkKbPQIAIIhanzUcqH1pRBFTh6fin5vOeGzXalyjCHRzqmotKCrzPeK460gFBvaMhcXmxJmyOpgMWmQltTZNykgIxbly73MjQw2ICjfgvnFZmDk6AxabEyFBOvetWgDQxGXCdOcL7sfSpXNo+vzX7lFNCCL0g2bCwCaGRAHBREYlND16QgiJhtLoXR1WMIWh6fMXW+vOCAJ0eeOh2MxQ7GZoU/pClzseglbfwVHTlGGpMOg12LCvFNV1VmQkhGHWmAxkJHCi783y1RCyhd0pY8sPZfjnpjOw2V3zXZJigjHv3r7oEWXClGGp2Hu8Co0Wh8d59w+LgXxuHxRDMDSJtyHU5PqMmK0OrNp6FruPVUJWFAzuFYv7x2chPFgHy8Z3W5MYAFBk2A98CU1irquIHhF1KEFRfN057n4kSUZNTeeetyBVnYVl/dutX6KiBvqBM2D/ca2PW0kCTA++Dk1E4g09t6+mlESdiaIo+Pf3dqPKR+fqu0amYe2u817LqJNjg/FfTw0H4Jpfs3Z3CYrK6hAZZsB9UScQVbwBkF2JjxAai6A7X4AmMhGvf7rfa/QnPsqE16ZHwV7we5/x6fLGwzhm7s++TrVw/dehQBBYPuCnxMZyYrg/dboRmfPnz+ODDz7Ajz/+iNOnTyMzMxMFBQVex61YsQLvv/8+Ll68iIyMDLzwwgvIz88PQMQdRxOXieBH/wxn6WHXvfnk3pDKjvmcDwMocJ7dD7HfnbAf/Bccp3cBkgPatAHQD70PYnPhvW/3lmD9vlJcabAhNS4Es8ZmYkC27zo1RIEkCAKeuDMXi1YWwuZoXWXUJyMKZqvTZ4WkC5eaUFxRj/T4MMRFmjB3qqs9p/PicVgK1nkcqzRcgvW7d1E69CWft7Aqasw4fV5BWhvxKZL3yqeuSLFbYNvzz+bvFDs0Kf1gHPGIqzo4ALnpChwnvm8uzJkOXc9RHpXI2y0ORYZUWgippgyaiERoUvtDEF1JlVxbAdv+L+AsOwrBEAxd7ljo+01z76eupdMlMqdPn8bWrVvRv39/yLIMXwNGa9aswauvvopnnnkGI0aMwNq1azFv3jx89tlnGDBgQMcH3YEEjQ669EHuxz/11WnZuARSyY/ux46T2+CsOIXg+36Hb/aXY+WWIve+kqpGvLPqMF5+ZAByUlkfoz3JsgKbQ3L3u6Jbk5cWiT88PQK7jlSgrsmO3LRI9MuKxodrfPRVamax+ihod2qnz2PlmgsoK/Huit2iyBGD9Da61esyBvk4o+uxbFjs+gHVTCr5EebL5xH84O8h11bAvPZPgN01auY8tR2OIxsRdPd/QAxqv9upiq0J5jV/gny52L1NjEpB0F0vA4oC89e/d79Hiq0J9r0roTTWwDh6TrvFQJ1Hp/tWnTBhAiZOnAgAWLBgAY4cOeJ1zKJFi3DXXXfhV7/6FQBgxIgROHXqFJYsWYKlS5d2ZLgdzll2DPYf1kC+UgYxMgm63ne0uUpJjEyEff8XXtuVukrYz+zGt3u9byXJioL1e0uZyLQTWVFQsLMYG/dfQKPFgYRoE+4dm4nBOexndasiQgyYOsJzXKRvZjR2HqnwOjbYqEWGUgJzwVLIteUQo1OgHzAdkHwviweApPC2b7EmxYXDmP4ULBveAaTW+TbaXmOgSR1w8xejMtLlYo8kpoViroXj1E44i/a4k5gWcp2rNYpx5CPtFodt/xceSQwAyDWlsO9bCSE42mei6TixFfpBd7tHo6nr6HSJjPgTQ3+lpaUoLi7Gyy+/7LF92rRpePPNN2G326HXd81Jrc7SQljW/dXdqVoy10K6eBy6/tPgKFzXWmNGEGAY/mAbt5xcmi6Vo97se7lq5RXvxoZ0a1ZvP4fVO4rdj8urzXj3qyN4+eGByE1jsthehuTGYtfRaBQWtU6GFwUBTw90wLHhbbS0KZDMtbCUHYO+/zSfzyOYIpDTJw+5R+w4UVLrsS85NgQDe8VAI8Yh+JE/wXlmt2syfXJfaOJ7+uvSOhW5rrLNfdKVMt/FOAFIpYehDH8A9sL1cJ7eBUVyQJs+EIYB0yEYQ246DufZfT63O87ugza5jUKTsgS5rpKJTBfU6RKZn3L27FkAQEZGhsf2rKwsOBwOlJaWIivr+sWx1Mp2cDW8qnopMuSKUwh+9C9wnPjeVQVYZwS0BgjXqW0RHNMDMeF6n+XZU+Ju/ouFvDklGd8d8L5NoSjAt/tKmci0I40o4vn7+uHgqUs4fLYawUYdRvWNR8T3b0K+dvaMLEGqOgtt+mA4iw9c9SRaGMfOhSBq8Pz9/bB6ezH2HK+ELCsYlBOLWaMzoGn+oSWaIqDvd2cHXmHnIEantLlPE5MGp0bnMVLlpg+CddN7cJ7d697kKFwH6cJRmO557RZqWbU1aiZAbGuBgyBCDONIaFekukSmrs61YicszPN+a8vjlv23QtvJm/fJ1SU+t0vVJRAtNbAXrm29N31uH8SIBGgScyFd9Gw+KYbGwJQ7CjOly/igwHNugV4rYsaojE7/WqiB2eZEk4/5GQBwuc7C19gPRvSJx4g+rkmniqKgtrrU53FyTSnC5y6Gs/QwHKVHIBhDYOg1CmKoK/kP0erx6OReeHSydy+z7kwbkwxH9gg4zuz22C5GJCAobzSUS2dhP/G913n61L6w7v/Ka7tcUwql5AB0PUdCkmWUVjbCZNQiLtLkPkaRZdiObIT99C7A6YAuYxB0GYNhP7bJ++/JHo6gvhPgOLoRyjV96vS5Y6APZ+HCrkh1iYy/iKKAyMjOXW21KSoR9qpir+366ETYdy/3vjddW46wnoOA5Gw0HvkeisOO4F5DETXhcWjDojArLgpx0SH4amsRqq6YkZ0cgYcn5SA7JaJjLqiLCw83IS7KhKoa71t1OelRnf7fW1fQFBUPR41340d9dCKC6s6i7uQWKHWXoU/qhbBQPXR8T35SxP0voHb3ajQe2QrFYYOp5xBEjn4AmuBwREz/N1Q6GmEpOug6WNQgbPCd0MenwHdtZUDbUIbjpXX4+5eHUVPvOqpPVjReenQwYiKCUPWvt2E50pocSdUl0MdnQp+QDXt5a7FJfXwmEu58ApqgUIQ+8X9Qs/lzWM79CNEYgtCBExE56j5WMe+iVPeuhoe7qnU2NDQgNrZ1jkd9fb3H/pslywrq6zv33BBdvzth3/jfXtu1ufkwb/nA5zmNRT8i/OHfI3zIg+5tDRKAK65fK3kp4ch73HO1xZUrnbuejprMHJWOpV97To406jWYODiZr3MH0PWbBoevz0ZUGso//y+0zJ2xVxWj8fhOhN73GjThPTo2SDW6bQpCbpviflhvB2B3/Xs2TvkVdFcuQq6/BE1MGsTgCNjKfc+dAYASWyTe/HQ/JLn1FuCRomr87oPdeHVWEhqPeI/w2CvOwjR5HvRDTJBqLkATmQhtSh/UW0XA2gRoo2GYNB+Gq86prbcBsP3cK78l/NHiX6pLZDIzMwG45sq0/LnlsU6nQ0pK2/dwf4rzOpVDOwMxcwSM452wHSqAUlcBMTwe+oEzIGYOBbZ93FrZ92o6Y6e/rq5sZO94mAxabNjfXNk3MQx3jUhDj4ggvi8dQNNrDAySBPuPa6HUV0GMTIRu4N2w71sJXDN3RrE2wnJwTbcqauc3ofEQQuMhA5CdMhCbBbFHNuRKz3YdgikC22vjIcneo2ZnL9aj6IQZbXXQclaehWH4g9AmuNqtuMr48DPVHakukUlJSUF6ejrWrVvnXqYNAGvXrsXIkSO77IqlFrpeo6HrNRqKLHsUd9JmDYfz1A7v43PGdGR45EP/7Bj0Z5HBgNHnjYc+b7z7MyOba2FruOzzWKnqbAdH132YpvwK1t3/cC3RliV3Ib3G7TVtntMohrWZyFxvMQN1L50ukbFYLNi6dSsAoKysDI2NjVi3zlWBc9iwYYiKisL8+fPx61//GqmpqRg+fDjWrl2LwsJCLFu2LJChd6hrK1Qab38MFks9pNLDzQdooOt9B3Q5YwMQHVHn0/KZEfQmQGcEHN6zNtjF2n8EYwiCxv8blLFPAYrsnq+Sl6b4rAFk0GmQ3ac3lJI0yJfPez5XUBh0PUd2SNzU+XW6XksXLlzAHXfc4XPfJ598guHDXX1TVqxYgaVLl7pbFLz44os/q0WBGnot3QjpShmUhssQY9JYL4GoDdbdy121lzwICLrrZXaG72AOp4w/Lz+E0xc8V5w+ckdPTBqaAtlcB9uOT+EsPgQoEjSJeTDc/jg0UUkBivjmsdeSf3W6RCZQukoiQ0Q/TZEl2PauhOP4ZsBhhRAaC8PQe6HL5q/8QHA4JWwvLMfhszUIEuwYbixCT20FxB7Z0OeNh2AIhuK0AbLsl75N/sZExr+YyDRjIkP+VNdkR22DDfFRJhj0mkCHQ80UyQHFZoYQFMouzp2As7QQlvWLWquUAxDC4mCa+Uq79mrqaExk/KvTzZEhb4oswXlqBxzFByCIGmizR0CXOeyGzpWulMFx4nsoljpoEnKh63k7BG3XnhDdmdgdEj5edwJ7jlVBVhQEGTSYfns6pg5vq4cydSRBo4NgurWSDdT+bLv+4ZHEAIBSXwXH4fUwDHsgQFFRZ8dERgWsG96B8/wh92Nn8UFIvU/COGo2AEBx2OAs+QGQHNAk94XY/MXsOHcA1u/eBWRXj2znmd1wnPgepum/gaAzeP091P6WbzqDXUdb+9NYbBJWbC5CbHgQhuSyXDpRC7npCuRa72XYgKtZLr+xqC1MZDo5Z9kxjySmhePoJuj7TILcUA3LxiWAvbmYn6iBYeQj0OVNgG3nZ+4kpoV86SwcJ7ZA33eK13NS+3I4Jew87PuLefOhMiYyRFcRdEZA1HqNyACAYOStGWobbwp3clL5iTb2KHBcOArLd++2JjEAIEuw7fgMzpJDUJp812dwXjjS/oGSF6tdgr2NoncN5rY7kxN1R4I+CNrs4T736fLGdXA0pCZMZDo54XoT3JquADZfE5QVr0aRHs+pZ7nsjhBq0iMp1vdrzc7XRN6Mtz8ObcYQQGjubq0LgmH4Q9ClDw5sYNSp8dZSJ6fLHgnbvi88R10ACKExEKOS2zxP0OqhSe4Dycfoiy6XRfI6ykP52Vi0qhBOqXVxYFSYgZN9iXwQ9EEImjQPcmM1lKYrEKOSXbeciK6Dy6+bdebl11LlGVi3fgi59iIAQIzNRFD+v0EwhaNx2QuA07sRmmnWf0IIiYL1u79BKj/p2qgzwjDkHs6P6WAXLjVi88EyVNdbkZEQhvxBSQgzceVYR7lca8H2w+Woa7KjV3IEhubFQavhYDR1HC6/9i8mMs06cyLTQqq9CEF0DaIpTjvEyCQ4z+yCdcsHgNI6qVfffxoMw1u7XUtXyqBY6qGJSVdlMSmiW3X0XA0WrSqE46q5StlJ4Xjp4QEw6FjPhzoGExn/YiLTTA2JjFxfBcvm99wdZIWwOBjHzIUYFgdH0V7ItRehNNZAsZuhic2Avv9UiGFcGUPdk6Io+Pe/70ZVrcVrX0v5e6KOwETGvzi+qhKKIsPyzVvuJAZwFYqyrP+/gKiBGN4DztM7IF08BvlyMRzHN6Ppy4WQ67ybsRF1BxU1Zp9JDAAUFvnufk1E6sPJviohXTzhOylx2uE4vRPOk9uAawfXbE2w/7AGxnFPdUyQRJ3I9W4dGfVaSJVnYD/6HZSmGoixmdD3nQwxmKvJAu1MWR02HbiAmgYbshLDMGloCiJCWA6P2sZERiUUS33b+xqr2xx5kSqL/BUSUacWFWbEbemROFZ8xWvf8LgmmFf/FVBcc2ek8pNwntkF06xXIYZEd3So1Gz/iSr87V9H3L/JTpXWYtfRCrz6xFBEhjKZId94a0klNPG9gDaa2mmSbgP0Jp/7hJAof4ZF1Kk9dddtyEhonZ+g1YiYOToduWVfupOYFoq5FvYfv+noEKmZoihYseWM18BybaMd6/eWBCYoUgWOyKiEGBIFff9psP9Q4LFdk9wH2vRB0F8q9toHAPo+EzsqRKJOJzLUgFefGIpz5fWoa7QjMykMITCj6Vilz+OlilMdHCG1qG2041Kt1ee+U6W1HRsMqQoTGRUxDLsfmh5ZcJzeCcVphzZtIHS9RkMQROiH3AsoMuzHNgEOK4TgKBiG3ANt6oBAh00UcBkJrRWyFScArR5wereJEEwRHRcUeTAZtNBrRZ9tPThHhq6HiYzKaNMGQps20Gu7IIowDH8Q+sGzoFgbIZgiIIi8c0h0LUGrhy5nDBxHv/Pap+99RwAiIgAw6DUY1TcBmw+Vee2bMCgpABGRWjCR6WIErZ7zYoh+gmHEw4AswXFqOyA5IQSFQT/4HmhT+wc6tG7t4TuyIckydh6pgFNSEB6sxz1jM9EnkxOwqW0siNdMDQXxiKh9KbYmKJYGCKExEDT8XddZmK0O1JsdiAk3dol2EiyI51/85BJRtyUYgiEY2A2+szEZdTAZdYEOg1RC/akuERERdVtMZIiIiEi1mMgQERGRanGODJGffXfgAjbsK0V1vRUZiWG4Z3QG8tK5soyIqD1w1VIzrloif/hmz3ms2OzZ70ojCljw+CBkJYYHKCoi6khcteRfvLVE5CeSLGP9Hu8eMZKs+NxOREQ3j4kMkZ80WZ2oNzt87iuvMXdwNEREXRMTGSI/CTHqEBGi97kvOTakg6MhIuqamMgQ+YkoCrhrZLrXdp1WxJ3DUjs+ICKiLoirloj86I7ByQgyaLBh3wXXqqWEMNw9Oh1p8Zz8R0TUHrhqqRlXLRERkT9w1ZJ/8dYSERERqRYTGSIiIlItJjJERESkWkxkiIiISLWYyBAREZFqMZEhIiIi1WIiQ0RERKrFRIaIiIhUi4kMERERqRYTGSIiIlItJjJERESkWkxkiIiISLWYyBAREZFqaQMdABFRIHz/40Vs2F+KmnorMhPCMHN0JrKTwwMdFhHdJEFRFCXQQXQGkiSjpqYp0GEQUQf4dm8Jlm8647FNpxXx29mDkdojNEBRUVcVG8t/U/7EW0tE1K1Isoy1u897bXc4ZazbWxKAiIjo52AiQ0TdSoPZgXqzw+e+i5c4KkukNkxkiKhbCQnSIdSk87kvISa4g6Mhop+LiQwRdStajYg7h6f63D5lWEoAIiKin4Orloio25k6PA1GnQYb9l9wrVpKDMOsMZlIjw8LdGhEdJO4aqkZVy0REZE/cNWSf/HWEhEREakWExkiIiJSLSYyREREpFpMZIiIiEi1mMgQERGRajGRISIiItViIkNERESqxUSGiIiIVIuJDBEREakWExkiIiJSLSYyREREpFpMZIiIiEi1mMgQERGRarH7dTNFUSDLfCmIiKh9aTQcM/AnJjJERESkWkwTiYiISLWYyBAREZFqMZEhIiIi1WIiQ0RERKrFRIaIiIhUi4kMERERqRYTGSIiIlItJjJERESkWkxkiIiISLWYyBAREZFqMZEhIiIi1WIiQ0RERKqlDXQA5CknJ+cnj/nDH/6ApKQkzJkzBytXrkTfvn07IDK6EYsXL8Y777zjtb1nz54oKCjwec6CBQtw5MiRNvfTrVm9ejU++eQTnDt3DoqioEePHhg0aBBefPFFREdH3/Dz7NmzB4cOHcIzzzzjx2i7vvZ6P4iuxUSmk/nnP//p8fihhx7C7NmzMX36dPe21NRUnD59uqNDoxtkNBrx8ccfe21ry7PPPguz2ezvsLqVpUuX4i9/+Qvmzp2L559/Hoqi4PTp0/j6669RVVV1U/9x7t27Fx9++CETmZ+hPd8PomsxkelkBgwY4LUtISHB53Z/slqt1/3Pl9omiuINvV8tr3Fqaqr/g+pmPv30U9xzzz1YsGCBe9u4cePwi1/8ArIsBzCy7onvB/kT58ioXH19PV566SUMHDgQ+fn5WLp0qcf+2bNn4+mnn/bYdvz4ceTk5GDPnj3ubTk5OXjvvffwpz/9CaNGjcLIkSM7JP7upK3XeMGCBR4jbvTz1dfXIy4uzuc+UWz92vvqq6/wyCOPYNiwYRg6dChmz56NwsJC9/6WW4Vmsxk5OTnIycnB7Nmz/R5/V3Oj70dOTg4++OADj/0fffSRxy33PXv2ICcnBzt27Ljudx91HxyRUbnXXnsNM2fOxJIlS7Bx40b8+c9/Rk5ODsaOHXvTz/XJJ5+gf//+eP311+F0Ov0Qbfdx7eun0WgA8DXuKL1798by5cuRnJyM8ePHIzY21udxFy5cwKxZs5Camgq73Y41a9bgsccew+rVq5GRkYEHHngAFRUVKCgocN8uDAkJ6chL6RJu9P24Ge353UfqxkRG5SZPnoz58+cDAEaOHIktW7Zg/fr1t/RhDg8PxzvvvANBENo7zG7FbDajd+/eHtvefPNNAHyNO8prr72GefPm4ZVXXgEAJCcnIz8/H3PnzkVycrL7uHnz5rn/LMsyRo0ahcLCQnz55Zd48cUXER8fj/j4+Bu+XUi+3ej7cTPa87uP1I2JjMqNHj3a/WdBEJCVlYWKiopbeq6xY8fyP9h2YDQasWzZMo9tKSkpAPgad5RevXqhoKAAu3btwvbt27Fv3z58+umn+OKLL/DZZ58hLy8PAFBUVIS33noLhw4dQnV1tfv84uLiAEXeNd3o+3Ez2vO7j9SNiYzKhYaGejzW6XRoaGi4pefiyoH2IYpim0vi+Rp3HL1ej3HjxmHcuHEAgG3btuHpp5/GkiVL8M4776CxsRFPPvkkoqKisGDBAiQmJsJgMOCVV16BzWYLcPRdz0+9HzerPb/7SN2YyHRxer0eDofDY1tdXZ3PYzlS4H98jQNnzJgxyM3NRVFREQDghx9+QEVFBf7+978jNzfXfVxDQwPi4+MDFWa3ce37Afj+vqqvr+/o0EhluGqpi4uPj3cXoGqxY8eOAEZE5H+XL1/22ma1WlFeXo6YmBj3Y8D1S77FwYMHUVZW5nGeTqeD3W73Y7Rd3428H4Dr++rqxAYAdu7c6ff4SN04ItPFTZkyBStXrsTvfvc7TJw4EQcPHsT69esDHRaRX82YMQP5+fkYPXo04uLiUFlZiWXLluHKlSt44oknALhqNplMJixcuBC//OUvUVlZicWLF6NHjx4ez5WVlQWn04mPP/4YAwcOREhICDIzMwNxWap1I+8H4Pq++vjjj9G3b19kZGRg9erVqKysDGDkpAZMZLq4sWPH4uWXX8ayZcvw5ZdfYuzYsVi4cCHmzp0b6NCI/GbevHnYvHkz3njjDdTU1CAyMhI5OTn46KOPMGLECABATEwM3n77bbz55pt49tlnkZ6ejoULF+L999/3eK78/Hw8+uijeO+991BdXY2hQ4fi008/DcRlqdaNvB+Aq8p1dXU1lixZAkEQ8NBDD2HOnDl44403Ahg9dXaCcvU9ByIiIiIV4RwZIiIiUi0mMkRERKRaTGSIiIhItZjIEBERkWoxkSEiIiLVYiJDREREqsVEhoiIiFSLiQwRERGpFhMZIvJp8eLFyMnJCXQYRETXxUSGiIiIVIuJDBEREakWExkiIiJSLSYyRIT9+/fjvvvuQ9++fTFx4kQsX77c65hVq1Zhzpw5GDlyJPr06YNp06bh888/9zjmN7/5DYYPHw6Hw+F1/pNPPokpU6b47RqIqHvSBjoAIgqskydP4qmnnkJUVBTmz58Pp9OJxYsXIzo62uO4f/zjH+jZsycmTJgArVaLzZs3Y+HChVAUBY899hgAYObMmfjqq6+wfft25Ofnu8+9dOkSdu/ejeeee65Dr42Iuj5BURQl0EEQUeA899xz2LZtG9atW4fExEQAQFFREWbMmAFJknDy5EkAgNVqhdFo9Dj3qaeewvnz57Fx40YAgCzLyM/Px6BBg/DXv/7VfdxHH32EN954Axs2bEBKSkoHXRkRdQe8tUTUjUmShO3bt2PixInuJAYAsrKyMHr0aI9jr05iGhoaUFNTg2HDhqG0tBQNDQ0AAFEUMWPGDGzatAmNjY3u41evXo2BAwcyiSGidsdEhqgbq6mpgdVqRVpamte+jIwMj8cHDhzA3LlzMWDAAAwZMgQjR47EW2+9BQDuRAYAZs2aBavV6h6lOXv2LI4ePYqZM2f68UqIqLviHBki+kklJSWYO3cuMjMzsWDBAiQkJECn02Hr1q346KOPIMuy+9js7Gz07t0bq1evxqxZs7B69WrodDpMnTo1gFdARF0VExmibiwqKgpGoxHnz5/32nfu3Dn3nzdt2gS73Y6//e1vHreg9uzZ4/N5Z82ahTfeeANVVVUoKCjA+PHjER4e3v4XQETdHm8tEXVjGo0Go0ePxsaNG3Hx4kX39qKiImzfvt3jOAC4em1AQ0MDVq1a5fN5p0+fDkEQ8Prrr6O0tBR33323n66AiLo7jsgQdXPz58/Htm3b8Nhjj+GRRx6BJElYtmwZsrOz3SuWRo0aBZ1Oh2eeeQYPP/wwmpqasGLFCkRHR+PSpUtezxkVFYUxY8Zg3bp1CAsLw/jx4zv4qoiou+CIDFE3l5ubiw8++ACRkZFYtGgRVq1ahfnz52PSpEnuYzIzM7Fo0SIIgoA//vGPWL58OR588EHMmTOnzedtmdw7depU6PV6v18HEXVPrCNDRH6xceNGPPfcc/jss88wZMiQQIdDRF0UR2SIyC9WrFiBlJQUDB48ONChEFEXxjkyRNSu1qxZg5MnT2LLli347W9/C0EQAh0SEXVhvLVERO0qJycHJpMJ06ZNw8KFC6HV8vcSEfkPExkiIiJSLc6RISIiItViIkNERESqxUSGiIiIVIuJDBEREakWExkiIiJSLSYyREREpFpMZIiIiEi1mMgQERGRajGRISIiItX6/1ei1nT7WiwhAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.catplot(data=tips, kind=\"violin\", x=\"day\", y=\"total_bill\", hue=\"smoker\", split=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "YXWYqu2368wr", + "outputId": "ff412a54-c6df-48d9-bd6f-db5f04fe374a" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 9 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHkCAYAAAAkQ8X2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmFhJREFUeJzs3Xd4HNX1N/DvzFaterdlSVaxLTe5gRtuuICRCxiDQ7XpxAFDCCXxm18IgRQIhEAAU0M3CQECBIxtOsbgBrh32bItyep1e5mdef8Y7apLu6vdnZnd83mePLG2zUGj3T1z77nnMoIgCCCEEEIIUSBW6gAIIYQQQgJFiQwhhBBCFIsSGUIIIYQoFiUyhBBCCFEsSmQIIYQQoliUyBBCCCFEsSiRIYQQQohiUSJDCCGEEMWiRIYQQgghiqWWOgC5cLt5NDVZpA6DEEJIhElPj5c6hIhGIzKEEEIIUSxKZAghhBCiWJTIEEIIIUSxKJEhhBBCiGJRIkMIIYQQxaJEhhBCCCGKRYkMIYQQQhSLEhlCCCGEKBYlMoQQQghRLEpkCCGEEKJYlMgQQgghRLEokSGEEEKIYlEiQwghhBDFokSGEEIIIYoly0Tmgw8+wLJly1BcXIypU6fi5ptvht1u997/1Vdf4eKLL0ZxcTEWLlyI//73vxJGSwghhBCpqKUOoKvnnnsOL730ElavXo0JEyagubkZ27dvh9vtBgD8+OOPWLNmDS6//HL89re/xY4dO/B///d/iI2NxUUXXSRx9IQQQggJJ0YQBEHqIDzKysqwdOlSPPvss5gzZ06Pj7nppptgsVjw9ttve2+75557cOTIEWzcuDHgY7vdPJqaLAE/nxBCCOlJenq81CFENFlNLb3//vvIzs7uNYlxOp3YuXNnt5GXRYsW4eTJk6isrAxHmISQCOF2u/Huu//GkSOHpA6FEBIgWSUy+/btw4gRI/Dss89i+vTpGDt2LK688krs27cPAFBeXg6Xy4WCgoJOzyssLAQgjugQQoivzpw5hU2bPsYTTzwqdSiEkADJqkamvr4eBw8exPHjx/HAAw8gJiYGzz//PG688UZ89tlnaG1tBQAkJCR0ep7nZ8/9gVKrZZXXEUJCTBDE2juOc9H7nxCFklUiIwgCrFYr/vGPf2DkyJEAgPHjx2PevHlYv349Zs6cGbJjsyyD5OTYkL0+IUR+DAat99/0/idEmWSVyCQkJCApKcmbxABAUlISRo8ejRMnTmDx4sUAAJPJ1Ol5RqMRAJCYmBjwsXlegNFoDfj5hBDlaW1tL/BvbqZifxIalCSHlqwSmWHDhqG8vLzH+xwOB3Jzc6HRaFBWVoZZs2Z57/PUxnStnfEXx/EDej4hRFmcTpf33/T+J0SZZDUpPHfuXLS0tODIkSPe25qbm3Ho0CGMGTMGWq0WU6dOxaefftrpeRs3bkRhYSGys7PDHTIhRME4jpM6BELIAMlqRGbBggUoLi7GnXfeiV/96lfQ6XR48cUXodVqcfXVVwMAfvGLX2DVqlX4wx/+gJKSEuzcuRMbNmzAE088IXH0hBCl8TTaJIQol6xGZFiWxYsvvogJEybg97//Pe6++27ExcXhrbfeQnp6OgDg3HPPxdNPP42ffvoJN910EzZs2IA//elPKCkpkTh6QojSUCJDiPLJakQGAFJSUvDYY4/1+Zj58+dj/vz5YYqIEBKpaGqJEOWT1YgMIYSEEyUyhCgfJTKEkKjldlMiQ4jSUSJDCIlaNCJDiPJRIkMIiVoul6v/BxFCZI0SGUJI1PKMyKhUKokjIYQEihIZQkjU8ozIqNUaiSMhhASKEhlCSNTyjMhoNLLrREEI8RElMoSQqOVyOQEAGo22n0cSQuSKEhlCSNTyTC1pNDS1RIhSUSJDCIla7VNLNCIjJxaLGR9//CHKy89IHQpRAEpkCCFRy+kUp5bUaqqRkZMdO7bhgw/ewYsvPiN1KEQBKJEhhEQtp9MBAKisOAOHwyFxNMTDZrMCAKqqzkocCVECSmQIIVHLMyLj5nm0trZIGwzxomXxxB+UyBBCopZn1ZL4b+ryKxe0LJ74gxIZQkjUcjpdHf7t7OORJJxoWTzxByUyhJCo5amR6fpvIi1aFk/8QYkMISRqOTokL1TsKx+UyBB/UCJDCIlaTkf7dJLDYZcwEtKRZ5pPq6WpJdI/SmQIIVGrY12M3U6JjFx4RseampokjoQoASUyhJCoxPM8BIH3/kyJjHx46pXMZpPEkRAloESGEBKVutbEUCIjH1SvRPxBiQwhJCp1XaVkt9skioR0RSvIiD8okSGERKWuV/2etvhEejQiQ/xBiQwhJCp1T2RoREYuaJqP+IMSGUJIVOq63JpGZOSj47nheb6PRxJCiQwhJEp13ZLAaqVERg4EQfDutQQAbjfXx6MJoUSGEBKluk4tWa0WiSIhHXUt9HW5KJEhfaNEhhASlbomMhYLJTJy0LU+huNoV3LSN0pkCCFRqeuVP43IyEPXKT7PvkuE9IYSGUJIVOpa7OtyubrVzZDw61p0TYkM6Q8lMoSQqNRTrxKLxSxBJKSjrsvgKZEh/aFEhhASlXpKZMxmSmSk1nVEhkbJSH8okSGERCUakZGnrkXXVOxL+kOJTARqaWmmJlKE9KOn/Xxot2XpdS26phEZ0h9KZCLMrl07cPfdt+PFF5+ROhRCZK3nRIZGZKTWPZGhfZdI3yiRiTC1tdUAxISGENK7nmtkaERGal2TSRqRIf2hRCbCeK5eNBqNxJEQIm8dvyBj1AwAGpGRg651SpTIkP5QIhNhPFeZWq1W4kgIkbeOIzIGjfhRSCMy0uta7EtTS6Q/lMhEmPZERidxJITIm9PpABg1ACBGLX4U0qol6ZlMJoBReX92OmnVEukbJTIRxpPI6HSUyBDSF4fDCbDiF6ZWxUDF0NSSHJjNJkDV/vlFIzKkP5TIRBjPm54SGUL6Jo7ItF/5x2hYSmQkJggCTCYTmA6JTE9F2YR0RIlMhPHsHKvT6SWOhBB5czodYFi192eDmoWFamQkZbfb4HZznRIZl4uKfUnfKJGJMF33KSGE9MzpdHprZABx5ZLVZoUgCBJGFd1MJjGRZNQdp5YokSF9k1Ui8/7776OoqKjb//72t791ety7776LhQsXori4GBdffDG+/vpriSKWH8+IDCGkdzzPw+VygWE7Ty3xPA+7nS4GpGI0tgIAGFX7iDJNLZH+qPt/SPj985//RHx8vPfnzMxM778/+eQT3H///Vi9ejWmTZuGjRs3Ys2aNXjrrbcwYcIECaKVl64brhF5qKgox3/+sx4zZ87BtGkzpA4n6nmnKzrUyOjbeslYLBbExBikCCvqmUxGAACrbm8fQVNLpD+yTGTGjBmDlJSUHu976qmnsHjxYtx1110AgGnTpuH48eNYt24dXnrppTBGKU+UyMjTnj0/4vDhgygvP0OJjAw4HOKXY8caGc8SbLFFfroUYUW91tbuIzI0tUT6I6uppf5UVFTg9OnTKCkp6XT7okWLsH379qj/g+c4Di4X9VyQI8/fJl1dyoP3PLDdR2SsVroYkIp3akndnsjQZxrpjywTmSVLlmDUqFGYP38+XnjhBbjdbgBAWVkZACA/P7/T4wsLC+FyuVBRURH2WOWk62ZrRD48iYxGQx2X5cBzPpiOU0uqjiMyRAreEZlOiQwl/6RvsppaSk9Pxx133IHx48eDYRh89dVXePLJJ1FbW4vf//733j/yhISETs/z/Oy5P1BqtSzzOp85HO1FigzDKP6/J5K43eJVpVarpfMiA57z0bFGRts2IuN0OugcScRk6p7IcBxH54P0SVaJzKxZszBr1izvzzNnzoROp8Prr7+O1atXh/TYLMsgOTk2pMcItbo63vtvtZpV/H9PJBEEcVTRYIih8yIDNTViAtNx1ZJOJSYyLMvTOZKI2WwEGBYM2z5yyXEuOh+kT7JKZHpSUlKCV155BUeOHEFiYiIAsddAenp7MZ7RKFa6e+4PBM8LMBqVPTdeU9Pg/TfH8WhupiFyuTCZxHOhVmvovMhAY2Pb6C3TPZFpbGylcySR+voGMOoYgGm/zel0Kv58UCIWWrJPZDoqKCgAINbKeP7t+Vmj0SAnJ2dAr89xfP8PkjGjsb0rqSAIiv/viSSe/j5arY7OiwzY7Z5VSx2mllTtxb50jsJPEAS0traA0XS+IHW5XHQ+SJ9kP/G4ceNGqFQqjB49Gjk5OcjLy8PmzZu7PWb69OnQaqO7kJL2iZEvT1MvlUrVzyNJOPTUR0bDMp3vI2FlsZjBcRxYdUyn2zmOkygiohSyGpG56aabMHXqVBQVFQEAvvzyS7zzzjtYtWqVdyrpjjvuwL333ovc3FxMnToVGzduxP79+7F+/XopQ5cFM+0TI1vUnVRevK0aOozIaFRM5/tIWDU3NwMAGHXnZoR826pVQnojq0QmPz8f//3vf1FTUwOe55GXl4ff/va3WLlypfcxS5Ysgc1mw0svvYQXX3wR+fn5eOaZZzBx4kQJI5cHi4VGZOTK4aCtI+Skp+XXnhEZSjql0dzcBABijUwHHCUypB+ySmR+97vf+fS4FStWYMWKFSGORnloakm+aDNPefE2WeuQyKjaEhmaypBGS4s4IsNqOicyPM9DEAQwDNPT0wiRf40M8R1NLckXbeYpL546mI7Fvm1tZMBx1ElWCk1NjQC6Ty0BoB3JSZ8okYkgJpMJDKsB0H51Q6TndrupgFRm+hqRcbloREYKnqmlriMygDgqQ0hvKJGJICaTEVDpAAB1dbUSR0M8aFpJfrw1Mh1GZNryGPA81WRIoa8RGUpkSF8okYkQgiDAbDaBUeu8t9GbXx5oR3L56WlEhm2rwaD3jTSamhrBqHSdkktCfEGJTIRwOBxwuVxgVO2JDBUtygMlMvLjqYPpuGoJEEdl3LRKJuwEQUBTUxMYTffRGM/9hPSGEpkIYTKJ2zR0TmSoaFEOaGpJfnrqIwMADBj60pSA1WqBw2EH28O0kojOCekdJTIRwpPIsB2mlqhoUR6sVmXvExOJeppaItJpamrrIdPLiEynzZcI6YISmQhhMolLrxmV3nsbrZSRB4uFEhm58S6/7pLIUKsSaTQ21gMAWE3PmyuyLJ0Y0jtKZCKEp4dMx6klSmTkgUZk5Kd9aqnzRyBNK0mjsbEBAMD0ksjQiAzpCyUyEcJbI9NhasnppBoZOaARGflxuVwA0/3jTwDAsvSxGG6eRIbtZWqJuvqSvtA7NkK0Ty11TGRozxg5oBEZ+XE6nd2mlQBAECiRkUJDQ98jMnROSF/oryNC9DS1RLv4ygONyMiPy+XstmJJEAQIoKt/KTQ21gOMqtPnV0d0TkhfKJGJED2PyFAiIwe0K7n8OJ3ObiuW+LbyGJWKVjKFW31DPVhNbI8JC8uylMiQPlEiEyHMZpM458+2b2jucNBGhXJgsVjAsLLaaD7q9TS15ElkWOosG1YOhx1mk4mmlUjA6C8kQpjNJrG9d4crF4eDamTkwGw2AaxW6jBIB05n96kld9uKJZWKPhbDqb6+bem1tpdEhkZjSD/oHRshTCYTGFXnL0u7nTrKyoHZbO52boi0XC4nGKbzKFn71BKNnoVTQ0MdAIDVxPV4P0tTfaQflMhEAJ7nYbVaun1Z0oiM9Hieh81mpURGRjiOE/dT6mVERq2mRCacPCMyNLVEAkV/IRHAbrdBEIRuFf80IiM9i8Xc47kh0umtq6+7bdNrKvYNr/r6thEZbS8jMpTIkH7QX0gEMJvFVTFMlzoM2qxQej0tiyfS6m3DyPYaGUpkwskzteSo2wfOUtvtfhUVX5N+0BhqBPA2XOtWI0OrlqTmTTJpakk2PFOuXVeSeUZkNBpNuEOKanV1tQAYuC01cApuqGMzO91PIzKkP/QXEgGsVisAgFF1/gCmERnpeUdk1DQiIxfeEZkuxb7tNTKUyIQLz/NijUzbdhECz3V7DEOJDOkH/YVEAG8i021qySpFOKSDnhoVEmm1j8hQjYzUWltbxJqlHva98qARGdIf+guJAJ6EhUZk5MfT1ZcSGfnw7kHWdWqJVi2FnTit1L3wuiNKZEh/6C8kAngSFobtmsjQiIzUqEZGfjwdr7v2kXHznmJfSmTCxZPI9DUiQ0h/6K8nAniXWXe5wrRZKZGRGk0tycuRI4fw4Yf/FX/otmpJ/H+1mqaWwqWurkb8Rx8rk2ifJdIfSmQigGd1UrcRGbsNPM9LERJpY7FQIiMnH330PsrLTwPovmqJOvuGX22tmMgwNCJDBoD+eiKAd3PILh/MgiDQxpESM5lMAMN0OzdEGp2aRPZSI0N7LYVPbW1N2wUY/c5J4OivJwL01hcDoIJfqVks5m6beRJ5oBEZaQmCgNraWjCaOKCPtweNKpP+UCITAXpbTgp0aJZHJGE2m7stiyfy0HUqlm8bkaFVMuHR0tICp9MBVhff5+MokSH9oXdsBPDsHdO1wRfQ3mOGhJ8gCLBYLFQfI1ddlvy25TGUyIRJbW01AIDV9pPIuN3hCIcoGL1jI0B7p9Lup5MSGenY7TbwvJuWXstU175LPCUyYVVT40lket4s0oOjRIb0g96xEUDsjKnqsQ6DeslIx2LpeQ8sIg9d+8gI3tupnikc2hOZhD4fx3GucIRDFIwSmQjAcVyP9TFAhy9TEnbtXX0pkZElVddERkxlaClweLQnMn1PLXFc9/2XCOmI3rERgOO4Xjtj0oiMdKirr7x1a4sveG4PfyzRqKamCoxa3+/7w+VyUcEv6RMlMhFAvGLpfCq1KvHTmGpkpONZMUarluSo92yFppZCj+M4NDTU9zsa4+Fd0EBIDyiRiQBut7vbZaSuLZGhERnpeKb1aERGjnpPVgTP8iUSMrW1NeB5vt/6GA9PiwlCekKJTAToaWpJr/aMyFCNjFR625WcyEBPoy5tN1EeE3rV1VUAAFbnWyLj2YaFkJ5QIhMBeJ4Hg64jMuKppc6+0qGpJTnrnsh43kOCQPUYoeZNZHwckaGRZdIXSmQiQE9TSyoG0LAM1chIyGptSyJpREY2eL73il7PTVRYGnrV1ZUAfB+Roc8x0hdKZCKA+MHb/VTq1AxdyUjIs0Fh11b4RDrtoy3dExnPO4gSmdCrqqoCw6rBqA0+PZ7aSJC+UCITAQSB77F2Ua9iYKMrGcl4pvWoRkY+vElKDyMyrLdGhopkQonneVRXV4HRJvi8QsxsNoU4KqJklMhEAHG4vPsHgk7N0oiMhDwjMj3tgUWk4UlkutaUAQDb9qXqppb4IdXQUA+Xy+nTtJInuaREhvSFEpkIIAhCj1eYehUDp8tFnTElYrNZwbAa6ksiI76MyND7JbSqqs4CAFhtYr+PjdWIX1FGozGkMRFlk3UiY7FYMHv2bBQVFeHAgQOd7nv33XexcOFCFBcX4+KLL8bXX38tUZTSE+f9exqRoV4yUrLb7QDVx8hKe/1L9/eLiqURmXCorhYTGZUPIzJxWvErqrW1JZQhEYWTdSLz7LPP9vih8sknn+D+++9HSUkJXnrpJUyYMAFr1qzB3r17wx+kDAiC0ONQuV5NS7ClZLPZwLA0rSQnfY3ItPWQhNtNIzKhdPasZ8VS/yMyBjULBpTIkL7JNpE5efIk/vWvf+GOO+7odt9TTz2FxYsX46677sK0adPw0EMPobi4GOvWrZMgUumJU0vdb2/v7kuJjBTEERlKZOTElxEZl4t2Ww6ls2crxRVLmth+H8sw4qhMS0tzGCIjSiXbROZPf/oTrrzySuTn53e6vaKiAqdPn0ZJSUmn2xctWoTt27fD6Yy+PTl6W2VB2xRIh+d5uFxOGpGRmb5GZNRtt1GNTOjwPI+qqrNgtPE+144l6Fg0NzfRajLSK1kmMps3b8bx48dx++23d7uvrKwMALolOIWFhXC5XKioqAhLjHIivsH7mlqiRCbcXC6neF4okZGVvlYttb1dwHE0IhMq7SuW+p9W8kjQquByuWAy0col0jPZfcrabDY88sgj+NWvfoW4uLhu97e2tgIAEhI6F4p5fvbcHwi1WpZ5XZ/ar1J6KPZtG5FxOOyK/G9TMqtV/DLsOiLDMMr8O4sUPN9Wc8d0PwfqDsW+dI5Co6ambcWSH4lMol4FAGhtbUJKSlIowiIKJ7tE5rnnnkNqaiouu+yysB6XZRkkJ/c/Zys33mLonmpk1J4bOUX+tymZ02kGADCMqtPtarWKzoWE+kr8PYkMw/B0jkKksbEWAKDyI5FJ0onvIZvNSOeF9EhWiczZs2fxyiuvYN26dd5hRM8eG1arFRaLBYmJ4hvAZDIhPT3d+1xPnwHP/f7ieQFGo/KmYNrn87tfQerbRmQaG1vQ3EwtvsOpvr5F/EeXERmOc9O5kJD3/dJD4u8ZhDGbrXSOQuTECbE0wJ8RmeS2EZlTpyowerQyzwslYKElq0SmsrISLpcLt956a7f7Vq1ahfHjx+Pxxx8HINbKFBQUeO8vKyuDRqNBTk5OwMfnOOXtseJyeT6Ye6+RsVgsivxvUzKr1Q4AYNjOIzKCoMy/s0jR1z5KnhEZh8NJ5yhEKioqxCaRPu6xBLQnMrW1NXReSI9klciMGjUKb7zxRqfbjhw5gocffhgPPvggiouLkZOTg7y8PGzevBkLFizwPm7jxo2YPn06tFptuMOWlNvd+xtb3za1RDvHhp/T6RD/0WVqiUhHEIQ+m92pvcuvo2/lYzhwHCfusaRL9KvbtSeRqaurDVVoROFklcgkJCRg6tSpPd43ZswYjBkzBgBwxx134N5770Vubi6mTp2KjRs3Yv/+/Vi/fn04w5UFT/Ei00Pxoq5tRIYSmfDzfhnSqiXZsNvtfd6vYsQZp2hs4RAOdXW1cLs5aPyYVgIAjYpBgo5FbW1NiCIjSqfIT9klS5bAZrPhpZdewosvvoj8/Hw888wzmDhxotShhV37FWbPey0BtPxaCg6H+GXYtdiXSMdk6nu/HoZhoFExNCITImfPiq0x/KmP8UjRq3CmqREulxMaTXSNupP+yT6RmTp1Ko4dO9bt9hUrVmDFihUSRCQv7auWuo/IqFgGWhUDq1WZBXJK5v0ypERGNvpLZABAwzJwOqmPTCj4szVBV2kGNU63ulBbW4Ps7Nxgh0YUjpolKFz7KoyeT6VexcBioUQm3DzTE12LfYl0fNlBWc12qG8iQdU+IpPk93PTYsRr7urqqmCGRCIEJTIK59ngrrfiOb2ahZUSmbDz7tdDIzKy4cvGgxqWgcPRdy0NCczZs5VgVDowKp3fz003iO8jSmRITyiRUbj25dc9f2Hq1QysNivtUxJmnqklGpGRD6Ox/67fGhUDF00tBZ3L5URtbQ1YXYJfK5Y80g3iiIxneoqQjiiRUbj+rvxjNCx4nofdTjtgh5N35QuNyMiGLzsoa1gGDppaCrrq6moIghBQfQwANFg5sAxQVnYiyJGRSECJjML1d+Uf09ZLhupkwqu9Rkb29fRRo6Wlpd/HaFgGPM/TDthBVlXVVuirDSyR2VJhAS8AjY0NdG5IN5TIKFy/IzIduvuS8KERGflpamrs9zEaFTXFC4WqKv83i+zI6W6fGq+pqQ5KTCRyUCKjcJ4VFr1d+XtGZMxmU9hiIlQjI0dNzY29ru7z0LR196WmeMHVnsgkDPi1KisrBvwaJLJQIqNwDkffrfBpREYa7SMyNLUkBy6XE2aTqf9ERuXZb4nqZIKpqkpcscSq9QN+rcrK8iBERCIJJTIK52m7zqg0Pd4fo/EkMjQiE07UR0ZeGhoaxH/0OyIj/r93ypYMGMdxqKurBasd+GgMAFRUnAnK65DIQYmMwnkTmX6nlmhEJpy8V/SUyMhCQ0M9gP63jFB7p5ZoRCZYamtrwPN8UKaVWIYSGdIdJTIK511W3VsiQyMyknA6HQDD0F5LMtHQUCf+g2pkwq6mRmxiF4wRGQ3LoKWlxacuzSR6UCKjcDabmMgwbM8bqRnaamTMZnPYYiKAw2EHQ/UxslFfL47I+F4jQ919g8WzyojVxQ/4tTyJJo3KkI4okVE4z4aQvdfIePrIUCITTna7o9dRMhJ+tbXil2l/I2TtIzJUIxMsnm0FgjIi03b6zpw5NeDXIpGDEhmFs1qtAACG7TmR0bIMVAxDIzJh5nDYqRmejFTXVIt7/PTTHt+TyFAfmeCpra0GGBaMxjDg1/Kcn/Ly0wN+LRI5KJFROHGkhQF6SWQYhkGMhhKZcLPbbTQiIxNutxv1dbVgtP1PbdDy6+CrqakBq4kD08+0ni9UDAODhsWZM6cHHhiJGJTIKJzVagGj0va5EZtBzVKxbxjxPA+Hw9HrKBkJr/r6OrjdbrC+JDJU7BtUFosZFovZp9+9TxhgUKwatbU13tFoQiiRUTiz2dzraIxHjIaBxWIBz/Nhiiq6ORwOCIJAiYxMeDrBqnxoj+/pI0PLr4OjtrYGAMBo44L2mllx4kgnTS8RD0pkFEwQBJjNJjBqXZ+Pi1GzEAQBNhtdwYSD9/fcSwE2CS9PJ1hWl9TvY2lqKbjq68Vl72wwE5l48X1FBb/EgxIZBXM4HOA4Tixi7INBQ9sUhFP7knhKZOTg7FlxRIbV+zAio6KppWCqq2tLZDTBS2QGx4nvq9OnKZEhIkpkFMyzEWR/iYynuy8twQ4Pz++ZUfXc24eEV3n5GTAqHRhV//v8eGpkqI9McNTX1wII7ohMko6FQcPi9OmyoL0mUTZKZBTMZBK7W/afyHhGZCiRCQdvb59emhSS8LFYzKivrwOrT+mzIN5Dq6ItCoJJ3BqCCcrSaw+GYTA4zlPwS6PMhBIZRfMkMv3tKEv7LYWXZwqvtyaFJHw80w+qmBSfHt8+IkOJTDA0NNSDUccEfauOITS9RDqgREbBPPuN9DsiQ/sthZWvU34k9DxfdKw+2afHa6nYN2h4nkdTUxPYII7GeGTFiyuXTp2i6SVCiYyieaeW+h2RoWLfcPI0H6RERnplZaUAAJU+1afHswwDNctQIhMELS3N4Hk3GE1s0F87yzsiczLor02UhxIZBWttbQXgT7EvJTLhQMW+8iAIAkpPHAejiQWrifH5eVoVQ8W+QdDU1AgAIRmRSdCpEK9lceoUJTKEEhlFMxrbEpl+RmT0VOwbVt4pv37OCwmt2toamE0mqGLS/HqelmVgt1MiM1DNzU0AAEYd/EQGAIbEa9DU1ITW1paQvD5RDkpkFMzXRMazAzZV+IeHyWQUNyekPjKSKi09BgBQGdL9eh6NyASHN5HxYzTMH0PaGuOVldGoTLSjREbBWltbxf4Y/WzGJu6ADdo4MkyMRiMYld6n5b4kdI4dOwIgsESGRmQGrrm5GQDAhnBEBgDKyk6E5PWJclAio2CtxhafCkoZhkGMmqUamTBpbW3xqfkaCR1BEHDkyCEwaj1YbYJfz9WpGbhcLnAcF6LookNrq5jIMOrQjMhkxanBgBIZQomMYrndbljMZp/rMPRqhpZfh4HD4YDdbqP6GInV1dWgubkJKkOG3yNjurYl2Ha7LRShRY2WlhYA6HcvuEDp1SzSDCqcPlVGG+JGOUpkFMpkMoo7LPt4tROjEUdkBEEIcWTRzde6JRJahw8fAgCoDJl+P9eTyFittMnqQLS2toBR6/ud+h6I7HgNbHYbqqurQnYMIn+UyCiUd+m1j1+YBjULt9tNc/8h1tLiqQsIzXA68c3Bg/sBAOq4QX4/17PKz7P5JwmMWMMX2oQ+u61O5uTJ0pAeh8gbJTIK5Vly6Gsi41m5REuwQ8uTyISqLoD0j+M4HD58EKw2AWwAzdj0alrlN1Acx8FqtfQ7rSRwDjjqD4B3iC0LeJcNAud7M8LsBCr4JYDa1wdWVQU2dJeVlRXQ80jfPIkM6+MVj6HtKtNkMiEtzb9VHMR3npUaoVpySvp34sRxOBx2aFKGBvR8vUp8r1AiEziTybNNR++fT4LbBeuZL8E7je03uu2wnvkS+qHn+3ScdIMaOhWDEydoRCaa+ZzIzJs3L6DlpEeOHPH7OaR//jZdM7Ttt+TZB4iEhqd3RqiWnJL+7d+/FwCgjvV/WgkA9BrqhD1Q7dun9D4i42g41DmJacM7jXA1HPXpOCzDYEi8Bqeqz8JqtcBgCP52CET+fE5k/vKXv1BfDBnxd2qJEpnwaG4W27LTiIx09u7dDYZVQ2XICOj5BuqEPWDeRKaP9hBua13v99nqfT5WdrwGZS1OlJWdwNix430PkkQMnxOZ5cuXhzIO4iejsQWA74lMbFsi41lVQ0KjqakJYFjqIyORmppq1NRUQR2fA4ZVBfQaMd6knxKZQPmyA7zg6n1VWF/3dZWbqAEqgNLS45TIRCkq9lUo79SSjzsstycy3YdySfA0NTWCUcfQ6KVE9u7dDQBQxwVem2doK/al0cvA+ZLIBEt2vAYMxNooEp18HpF55pln/H5xhmFw++23+/080j9/ezTEamlEJtTcbjdaWprB6lOlDiVq7dnzIwAGqgEkMp6k31OwSvznqS8Kxw7wejWLjFg1yspOgOM4qNU+f62RCEGJjEL526Mhri2RoZ1iQ6e1tQU8z0NNhb6SaG1txYkTx6EypIMdQDdZrYqBmmUo6R+AcI7IAEBugga11TZUVJQjP78gLMck8uFzInP0qG9V5CT0XC4XrFYLVLG+dy3VsOJ+S5624ST4GhsbAACshhIZKezZ8yMEQYA6PntAr8MwDGI1lMgMRDhHZAAgN0GLH6ptKC09SolMFKIaGQVqX9ro38qYOC2DlrblwST4PIkME0ATNjJwu3f/AABQxw8Z8GvFaVVoaWmmLT0C5FnxFbZEJlFsjHfsGF1wRyNKZBTIu/Taz5UxCToVzBYznE5nCKIi7SMylMiEm8VixuHDh8DqU4Ly+0/QsuA4jpZgB8hisQAMCzCBrRzzV6JOhWS9CsePH6ENJKOQXw3xWJbFpk2boNFofGqQxzAMvvjiC5+D2bJlC1566SWcOHECZrMZmZmZWLBgAdasWYP4+Hjv47766is8+eSTOHXqFLKysnDrrbfisssu8/k4Suft6uvnxoSJOvFDpbm5EZmZg4MdVtRraBB7XzA0tRR2e/fuBs+7oUvICcrrxbfVlDU3NyMuLr6fR5OurFYLGJU2rKv3hiZqsLfWgqqqSmRn54btuER6PicyU6ZMAcMwYFm208/B1NLSgnHjxmHlypVISkpCaWkpnn76aZSWluKVV14BAPz4449Ys2YNLr/8cvz2t7/Fjh078H//93+IjY3FRRddFNR45MrfDSM9EnXiuWtspEQmFGhERjo//bQLAKCOD04ik6gXk/6mpkbk5NCXor8sFgsYNjzTSh55iVrsrbXj6NEjlMhEGZ8TmUceeaTPn4Phkksu6fTz1KlTodVqcf/996O2thaZmZl47rnnMG7cODz00EMAgGnTpqGiogJPPfVUFCUyLQD8r5FJahuR8YwckOBqbGwQl8SztPwznGw2Kw4c2A9WlwxWGxeU10yk90rABEGAxWIGo00O63HzEsXE6ejRw1iwYGFYj02kJftP3KSkJADiSh2n04mdO3fi3nvv7fSYRYsWYcOGDaisrER29sBWLChBoDssJ7VdZdbX1wY9pmgnCAIaGhrAqPv+Ij1z5hQeeeQh788JCYm46aafQ6ejTsCB2rdvD9xuDtqU4L33Pe8Vzygb8Z3T6YDb7YYqTIW+Hkl6FVL0Khw9egg8z3tnD0jkG1Ai43Q68c4772DLli04e/YsAGDIkCGYM2cOVqxYAZ0usB4CbrcbHMfhxIkTWLduHebNm4fs7GycOHECLpcLBQWdl9cVFhYCAMrKyqIikQm0Ria57cO5rq73PU5IYIxGI1wuJ9T6vqeVrFYrTpSKKysEARAAjBgxkq4gB8AzraQJ0rQSACTrKOkPVLiXXneUn6TFTzVWlJefRl4eLcOOFgEnMjU1Nbjhhhtw6tQppKenY+jQoQDEfjNbt27F+vXr8dprr2HQIP93oJ07dy5qa8UPkFmzZuHxxx8H0F4bkpCQ0Onxnp899wdKrVZGBt/a2iKuBmA1fj0vXstCq2JQV1ejmP9WpWhpaauP0fadyOQnanHdOHHI3eri8cSuBnz++UYsWHABdSQNgN1ux/79e8HqEsHqEvp/go8MGgZ6NYPaWnqv+MvhsAFA2GtkAKAgSYufamw4cuQQhg0bFvbjE2kE/Mn54IMPoqqqCk8++WS32pRNmzZh7dq1ePDBB/Hcc8/5/dovvvgibDYbTpw4geeeew6rV6/Gq6++GmioPmFZBsnJyijSbGlpBqMx+FRsfarFie1nLZg+JBb5SVqk6FWora1BUpJvzye+sdnaOpmqff8bMmhYTBoUg51V9di37wcsWLAgVOFFrO++2wOXywVtWvBGYwBxxWVqjBq1tTVISNBDpQrPMuJIUFnJAZBuRIYBcOzYIaxadXXYj0+kEXAis2PHDlx//fU9FtiWlJTg8OHDWL9+fUCvPXLkSADAxIkTUVxcjEsuuQSff/65N8PuugeKZyPExMTEgI4HADwvwGj0fcdVqXAch+bmZrAx6T49/ptyM860uuBwC8hPSkGaQYWaejvKyiqRkpIS4mijx+nTFQD6H5Hpaka2AT/V2LB+/XoUF58DrTb8H/5KtmXLVgAYcDffnqTFqHDWZEdp6WlkZvo/shytamraGkNKkMgYNCwGx6lx+PBh1NQ0yqb2TCkXyUoVcCITGxvb5xdhWloaYmMHfvKKioqg0WhQXl6OefPmQaPRoKysDLNmzfI+pqysDAC61c74i+Pk30ipsbEJgiD43KvE6RY6/X9ajBqAAxUVFUhISApRlNHHU3fEaPxbNZOgU2FqVgy+r2zEp59uQknJ0lCEF5FcLhf27N0NVhsHVhf4RUxvMmLFj8czZ84gNTUj6K8fqYxGzz5L0iTlhck6VFVYcPDgIYwfP1GSGEh4BTz5u3z5cnzwwQew2Wzd7rNYLHj//feD0qRu3759cLlcyM7OhlarxdSpU/Hpp592eszGjRtRWFgYFYW+3l4lAW5MmG4QP5zPnq0MWkykfZluIPsszcqJRayGxUcfvY9m2kLCZ0eOHITDboc6Pjsk06SZbYlMZWVF0F87krVvTxCeDSO7Gp4sJlAHD+6T5Pgk/Hwekfnss886/Txq1Ch88803KCkpwbJly7zFvqdPn8b//vc/JCYmoqioyK9g1qxZg7Fjx6KoqAh6vR5Hjx7Fyy+/jKKiIm/9wC9+8QusWrUKf/jDH1BSUoKdO3diw4YNeOKJJ/w6llJ5u8f6OYXhQR/OoVFfXx9wDxm9msUF+XH48LgR69e/ijVr7qb6JR/s3v0jgOBOK3WsKfO8V8rLzwTt9aOBZ+pfqhGZIQka6NUMDuzfC+Fqgd5LUcDnT90777wTDMN4N1Hr+O/nn3++2+Nrampwzz33YNGiRT4HM27cOGzcuBEvvvgiBEHAkCFDsGLFCtx0003e2oFzzz0XTz/9NJ588km89957yMrKwp/+9CeUlJT4fBwla7/yDyyRSYlRQc0yOHu2PJhhRTWe59HYWA9G0z69wVlq4Ww6Bm1KEdQ+7FI+PkOPfXV27NnzE3bu3IZp02aEMmTF43kee/fuBqPWg9WnBu11O9aU3TAuBQk6FqfKTgTt9aOB2SztiIyKYVCYpMWh+jrU1FRj8OAsSeIg4eNzIvPGG2+EMg4AwK233opbb72138fNnz8f8+fPD3k8clRbWwMAYP2sxfBgGQYZBhUqKyvamlbRaoyBam1tBcdxUBvak0tnw0G4rfVw8i6fEhmGYXDx8AQ8v7sR6998FcOGjUBamm8F3dHozJlTMBpboUksCOoVd9easux4DQ43NKOpqREpKcFLmCKZ2SwuvpAqkQGA4Sk6HGpwYP/+PZTIRAG/9loaCIfDgU2bNmHmzJlIS0sb0GtFs7q6WoBhB7Qx4eA4DarMNlRXVyE7O7jLVqNRY2P3UTKB5zr9vy+S9SpcVBiP/x034sUXn8Gvf30/9Zbpxd69uwEAqvjQfkkNidfgcIMDJ0+WUiLjI5PJKO58LeFWHcOTdWAgdn1euHCxZHGQ8AhbpyeTyYT/9//+H0pLS8N1yIgjCAJqaqrBauLAMOKp4yy1sFZ8C87iewfSwXGe1RinQhJntKmv96xYGvgqvQkZehSn63HiRCneffffA369SLV//16AYaGODe2y6NwEsenk0aNHQnqcSGI0mcCo9JLWpsRqWWQnaHD8+FFv8TGJXGFtWempqSGBMRqNsFjMnTqYOhsOwm2ugrPhoM+vkxUnfjifPl0W9BijUXvd0sA3LGQYBkuGxyPdoMbnn2/C9u3fDfg1I43R2IozZ05BZUgP+QadWfEa6FQMjhzx/f0V7UzGVkmnlTxGpOjA8zwOHNgvdSgkxKj3toJUVYlLpjv2zAhkCiMjVg01y6Cs7GRwA4xS9fVtiUyAK8m60qlYXDk6ETFqFq+++iJOnDgelNeNFIcOHQAAqGMHh/xYKobB0EQNamqq0dTUGPLjKZ3DYYfdbgfj5z5woVCUIiZTe/f+KHEkJNQokVEQz5LpgTb/UrMMBsWqUVF+Bi6XKxihRbWGBs/UUuB1S12lxqixYlQieDeHp/7xN9TWVgfttZXOk8ioQjyt5FGYLH4h7t+/NyzHUzLPfnf+bmgbCukGFVJiVNi/fy99zgXo/fffR1FREQ4cOCB1KH2iREZBPDUtKn3ygF8rO14Dzs1RnUwQNDTUt+19FdwVYAVJWiwdlgCzxYy/P/4IWlqag/r6SiQIAo4cOSQuuw5BN9+eeK7s9+yhK/v+GI1iIsOoYySORJymHZmqg91ux7Fjh6UOh4QQJTIKcvr0KTCsxu82+D3JaStiPHGCiq8HguM4NDU1BtzXpz8TB8Vg7tBY1DfU4+9/fyTqCxfr6+vQ3NwElSEjbMWkSXoVBsepceTwIdhs8t+PTUqeztRySGQAYGSqmIR6mieSyESJjELYbFZUV58Fq08Oyge4J5EpLT024NeKZk1NjeB5PijJZW9m58RialYMKisr8MQTf+1xW5BoceyYuHpIZfCvx47AOeCoPwDeIfY44V02CJzD5+ePStWBc3PeZd+kZ83N4qgho5FHIpMdr0GchsXu3T+A5+W/l1604XkeDofv78PeUCKjECdPlkIQBL8/wHuToFMhSa9C6fGjtJpsADxLr1lt6BIZhmGwsCAeEzL1KCs7iSeffBR2uz1kx5Oz48ePAgBUBt83cRTcLljPfAlnwyFAcIs3uu2wnvkSAu9b7cTYdLHmY9u2rf4FHGVaWsQRmUD3ggs2lmFQlKqD0WjEyZPKGX02m83485//jHnz5mHs2LGYPn06brjhBhw6dAgAsHLlSixZsgRHjx7Ftddei/Hjx+OCCy7A5s2bAQC7du3CihUrMG7cOCxcuBDbtm3rdozDhw/j5ptvxqRJkzBx4kRcd9112Lt3b7+xtba24vLLL8fs2bO9GzY7nU489dRTuOCCCzB27FjMmTMHjz76KJxOZ6fnFhUV4aGHHsJHH32ExYsXo7i4GFu3Dvw9FbZEJjExEW+88QbGjh0brkNGlOPHxZETVUzwur0OTdDAbDGjqups0F4z2ngTmRBNLXmwbZ1/i9P1KC09hn/84zE4HNGXzJw8eQKMSgtWm9D/g9s4Gg6Bdxq73c47jXA1+NYfJiVGjdwEDQ4fPkirl/rg+d3IZUQGAEalKW966YEHHsC///1vXHjhhXjggQdw4403QqfT4eTJ9pWmra2tWL16NcaNG4f77rsPWq0Wd999NzZu3Ii7774bc+bMwT333AObzYY777zTu3UEAJSWluKaa67B0aNHcfPNN+MXv/gFKisrsXLlSuzb1/tmm01NTbjuuuvQ2NiI9evXo6CgADzP4xe/+AVeeeUVzJ07F/fffz8WLFiA119/HXfddVe319ixYwcefvhhlJSU4Le//S2GDBky4N+Xz00YPvzww4AOsGzZMgCARqMZcHfgaHb06CGAYaAyBK+76NBELfbV2XHs2BEMGRL5O4eHQl2d2IiQ1caH/Fgsw2BZUQIECDh47Aj+/ve/4le/+g30eulXiISD1WpBTU0VVLGD/JpedVvrer/PVu/z60zIjEG50Yjvv9+KpUuX+fy8aNLY2Ch2HlfJ528yL1ELvZrB7t0/4Gc/u1oRm0hu2bIFP/vZz7B27Vrvbbfcckunx9TV1eHxxx/HkiVLAADnnXceSkpKcM899+Dtt9/G+PHjAQCFhYW46aab8Nlnn2H58uUAgCeffBIulwv//ve/kZMjdndftmwZLrroIjz22GNYv359t5jq6+txww03wG63Y/369d4E5OOPP8a2bdvw5ptv4txzz/U+fvjw4XjggQewe/duTJo0yXv7qVOn8PHHH2PYsGHB+FUB8COR6fgL9RXDMN5EhgTOYjHj5MkTUMWkgWE1QXvd/CRxI86jRw9h3rwLgva60cSbyISwRqYjFcPg0qJEAEYcLD2Gv//9Ydx1129gMMhjKD+UTp0Sh7FV+hS/nie4ei/Q7eu+rsak6fBpGYNvvv4cJSVLaPuIHjQ2NoBRG2SVLKhZBsOTdThQX4eKinLk5g6VOqR+JSQkYN++faitrUVmZs97tRkMBixe3L79QkFBARISEpCZmelNYgB4/11RIbbvcLvd+P7777FgwQJvEgMAGRkZWLJkCd59912YzWbExbV/ptXW1uLee+8FALz11ludYtq8eTMKCwtRUFCApqYm7+3Tpk0DAOzcubNTIjN58uSgJjGAH4nMl19+GdQDE98dPnxQrI8JcgOwZL0KiToVjh49DJ7nwbJUMuWvuroaMblUacN2TBXDYHlRAlQMsO9EKR5//C/41a/WdvrgiUSeTtSqGGn2PNKpWUzMjMGOqmbs3v0DpkyZLkkccsVxHFpbW8AGcfo7WEal6XCg3o7du39QRCJz7733Yu3atTj//PMxZswYzJkzB8uWLeuUeAwa1H1kMj4+HoMGDep2GyB2hgfE6SGbzYb8/Pxuxy0sLATP86iursbw4cO9t993331Qq9XYuHEj0tM7n98zZ87g5MmTmD695/dDY2Pnqdjs7OCP/vucyARjHosExrNSQh0X/E6mBUka7Kk1o7KyHLm5eUF//UjG8zxqa2vAaOPDfgXKMgwuGZEAFctg96kyPProH3Hvvb9FQkJ4eqtIwdsQUp8kWQxTsmKws8qKzz7bhMmTp8lq5EFqjY31EAQhbKOT/hiWrIOaZbB7949YtuxyqcPp16JFi3Duuefi888/x/fff4+XX34ZL730Ep5++mnMmTMHAKBS9dy3qrfbB7Ko48ILL8SHH36IN954A/fcc0+n+3iex4gRI/D//t//6/G5XROrUEyF09iozLlcLuzd+xMYTSxYXVLQX78gSYc9tXYcOnSAEhk/NTc3weVyQR0T+vqYnrAMg6XD4qFhgZ2VFfjrIw/h3vv+D8nJ/k29KEVlZbnYR0nCFTEpMWoUpepwtOwEjh49jFGjxkgWi9x4tupggrRVRzBpVQwKk7Q4VlmOurpaZGT0PF0jJxkZGbjmmmtwzTXXoLGxEZdeeimef/55byITqJSUFMTExODUqe7NUMvKysCyLAYP7nzRfO211yI3NxdPPfUU4uPjceutt3rvy83NxdGjRzF9+nTJEvsBJTL19fV47733cPjwYZhMpm7r9BmGweuvvz6gAKPd4cMHYbPZoE0dGZI/koIkLRiIbd9LSpYG/fUjWU2NuG1AOAp9e8MwDC4qiIdGxeC7imo88vCDuO/Xv0NamvyG9weC4zhUV1eD1QWnj9JAzMmNxdFGB/73v/9i5MjRkscjF+0r+OQ3IgMAI9N0ONbkwJ49P2LhwsX9P0EibrcbVqvVOyUEAKmpqcjIyOi2nDkQKpUKM2bMwJdffonKykrvVE9DQwM2bNiAc845p8dp6ttvvx1msxmPP/444uLicPXVVwMASkpKsGXLFrzzzju44oorOj3HbreD5/mQ1/AFnMgcPXoUq1atgt1uR35+Po4fP45hw4bBaDSitrYWubm53YaUiP88ux+r43ND8vqxWhaD49Q4fuwo7HZ71KyACQbPsvVwtcrvDcMwWJAXDw3L4Osz9Xj44T/g17/+HTIzQ7+pYrjU1dWC593QSPy7BoDBcRoUpepw7PhRGpXpoL7es4JPnonMiBQdGAB79vwk60TGYrFgzpw5WLhwIUaOHAmDwYBt27bhwIEDAS266cldd92Fbdu24eqrr8bVV18NlUqF//znP3A6nbjvvvt6fd5vfvMbmM1mPPTQQ4iNjcUll1yCSy65BJs2bcIDDzzgLex1u90oKyvD5s2b8c9//hPFxcVBibs3AVd3Pv744zAYDNi8eTNeffVVCIKA3/72t9iyZQueeOIJtLa2equcSWAsFjN27/4BrC4RbBD2V+rNsGSxa+nRo4dCdoxIVF3tSWR872kSSnNy43Bhfhyam5vxyMMPRVR/oLq6GgDSjn51NCdXnD557723qWNsm9ra4Ccybl7AV6fNqLdyAACTww2rK7Dfd6yGRW6CBqWlx2Ayde8rJBd6vR5XXXUVjhw5gqeeegoPP/wwTp06hQceeAA33HBDUI4xfPhwvPXWWxg+fDheeOEFrFu3DllZWXjjjTc6rXjqyYMPPojFixfjt7/9Lb744guwLIt169bhnnvuwfHjx/HXv/4V69atw4EDB7By5coei4qDLeARmd27d+Pmm29GVlYWWlpaALQXE5WUlOCnn37Co48+2uN6dOKbXbu2g+M46FLyQzp8PTxFi28rLNi/fy8mTDgnZMeJNGKiwMjqCvS87FioWQYbT7bir3/9I379699FRI8gzzJ3Ria/66w4DYrT9Thw6iR27dqBadPOkzokydXW1oBRacGodEF7zbMmDqda27svm10CXt3fhJvHp0Cn9v86vChVhzNGF/bv34sZM2YHLc5g0mq1+PWvf93nY958880eb//qq696vP3Yse5b0YwePRovv/xyn8dZvny5t/eMB8uyePzxx/H44497b9NoNLjlllu69brxJY5gCHhEhud5pKWlARDXvKtUKm9CA4itiD3tlIn/BEHAl19+DjAs1Il5IT3WkHgNDBoW+/btoe0KfCQIAioqysHqEoK+6/VATckyYOnweJhMRjz61z96V/soWbj79fhifl4c1CyD9977d1BqF5SM53nU19cGfc8xJ9/986je6saWCktAr1fUtokk7ZkVWQJOZLKzs1FZWSm+CMsiOzsb27dv996/e/fuTsVKxD9HjhxCVVUl1Am5YNWhrVthGQbDk7Vobm5CefmZkB4rUjQ1NcJms0peH9ObcwYZcPHwBJjMJjz22J8VP83U0NAAAGBltCImSa/C9CEGNDU1YvPmDVKHI6mmpka4XK6wTf2dbgkscUyNUSM1RoWDB/eB47ggR0WkEnAiM3PmTO8GVQBw1VVX4d1338X111+P6667Dh9++KG3dTLx3xdfiL9bbfKIsBzPc6WyZ49y9iORUkVFOQCEZEl8sEwaFIOlw8SRmb/97c/eVSVK1NLSJC69DmJn62CYmWNAgk6FDRs+RG1ttdThSCbcK/haHYHXJY1I0cHhcHh3UifKF3Ais3r1ajz++ONwucT5y+uuuw533nknWlpaYDKZcNttt/W4YRTpX0VFOfbu3Q1VTDpUMeHpCdKxYRTpX3n5aQCAKoRF2MFwzmADSgri0dLSgr899me0trZIHVJAmpqbwKjlsxGhh07FoqQgDhzH4Y03XonaqVlvIiOTwve+jEgRL9r2798rbSAkaAJOZBITEzF27FhoNOIVEsMwuO222/Dhhx/i/fffxx133AGtNnxt2yPJJ598CADQpo0O2zG1KgaFyVpUVpajtrYmbMdVKk+7/FCuJguWqUMMmDs0FvUN9Xjiib/CZvN9fyE5cLlcMJtMstpRuaNRaXoUpehw5MghbNu2VepwJFFTUwVAPqvK+pKToIFOxeDAgb1Sh0KCJOBEZtWqVZ1qYrrasWMHVq1aFejLR62qqrP44YedYPUpUMWGtw/P6LbppR9/3BXW4yrR6dOnxG7LIa5fCpbZObGYPDgG5eVn8PzzzyhqybBnqaycdlTuatGweOhUDP79rzfQ3NzU/xMiTHW1chIZNcugIEmLmppqbxE5UbaAE5ldu3Z5C/B60tTUhB9++CHQl49aH3zwDgRBgC5tbNg7hhal6qBiGOza1XuCSsTCxpaWZr93YZYSwzAoKYzHiBQtDhzYi3fe+ZfUIfnMbDYBABh18Jb1BluiToWFBfGw2qx47bWXom6KqaamGowmFgyrjF1vhiWLswWHDu2XOBISDAPa7rivL9ozZ84gNlY+KwyU4MSJ4/jppx+gMqRDFYINIvujV7MYlqxFRcUZ7xUW6e7EieMAAFVMmsSR+IdlGFxWlIh0gxqffbZRMQmrydSWyASxP0koTMzUY1iyFgcO7MPWrd9IHE342O12NDc3gdXKvz7GozBZ/Fs6ePCAxJGQYPArff7ggw/wwQcfeH9+7rnn8M4773R7nMlkwrFjxzB7tjwbDsmRIAh4991/AwB0GeMl279lbLoex5oc2LlzmyJ2iZWCN5ExKCuRAQCdmsWVoxPx4t5mvPbaS8jLK5D9BnoWixmA/BMZhmFw8fAEPLu7Cf/+1xsoKhqFzMzI36bFWx+jgEJfjyS9CqkxKhw5chAcx0GtVsZIEumZXyMyNpsNzc3NaG5uBiDuCeH5ueP/tFotrrzySvz5z38OSdCRaNeu7SgtPQZ1fI6kV/pFqTpoVQx2bP8u6obHfXXs2FGAUYHVJ0kdSkBSY9RYUhgPu92Ol156Vvb1MlarWJzMqOS/eCBBp8LSYfFwOB148cVnoqJXiZLqYzoqTNbCbrd7C/eJcvmVhno2mAKAefPm4f/+7/8wf/78kAQWTRwOO/7zn7fAMCroMidIGotWxWBUqg776upw8mQphg0LTx8bpTCbTaisLIfKkCG7jr7+KM7Q43iTAwdOluKLLz7FhReWSB1SrzyrrJRSfzEmXY/SZgf2nirD//73X1x22RX9P0nB2hMZ5YzIAEBBkha7qmw4fPggfc4pXMCfDL3t6UD8t2HDh2hpaYY2bSxYjfR1RRMyY7Cvzo7vvttCb/Aujh07AkEQoDJkSB3KgJUUxqOsxYkPPngHU6dOR2JiktQh9chmswEAGFb+IzIeJQXxKDe6sHHjRxg9emxE75CtxKklAMhL1IJlgEOHDuDii5f3/4QQWLt2bZ+LZkItLS0NjzzyiF/PWblyJRoaGvC///2vW4uVO++8E/v27cPGjRvDWiM74EucXbt24ZtvvkFVlfjHnJWVhfPPPx9TpkwZcHDRoLKyHJs2bQCriYU2daTU4QAAhiZqkKhTYdeu7bjqqpXQ6eS77DXcDh8+CABQxwZWV+LZzfd4kwOA2Jxr2hADDJoB1d0HxKBhMS8vFh+XmvDhh+/huutuDnsMvvAkMlDIiAwg1iJdVpSIV/Y148UXnsGDDz2ChAR5bmcxUDU11WLX5QBqmB577LEeb//12t8NNKx+6dUssuI0OHmyFA6HXZLPuYaGBtTW1oHRGMJ+bMEVWD+pBx98EJdccgn++c9/4rbbbvPe/u233+LTTz/FunXrwr7QJ+BPBqfTiXvuuQdffPEFBEFAQoKYjRuNRrz66qu44IIL8Pjjj3sb5pHueJ7H66+/DJ7nETPkXNkMnbMMg4mZenxTbsEPP+zEzJlzpA5JFgRBwP79+8CotGADXHpdbeFQbmrfzbfGwuFIoz3g3XwHamJmDHactWHr1m+wePElSEtLD3sM/XE4xKRPLu8PXw2J12BBfiw+LWvFP//5HO6669dg2fCf41DieV7c9VobL9kChYHIT9Ki0mRBaekxjB07XpIYGI0BccOWhv245hMfB/S8goIC/PznP8fzzz+PpUuXIicnBw6HA3/84x8xf/58LFiwIMiR9i/gd9W6devw+eef44YbbsB3332HXbt2YdeuXfj+++9x44034rPPPsO6deuCGWvE+frrL3DyZCnUCUOhlmC5dV8mDooBA2DLFppC9KipqUJjYz1UsYPAMIG9dVxB3s13oFiGweycWPA8793fS24cDrv4D4UlMgAwLcuAESlaHDy4H5s2Rd7Gks3NTQPaLPK+++7r8X/hkp8oXmgfOXI4bMeMBLfeeiuysrLw4IMPAgCef/55NDQ04Pe//z1qampw7733YurUqRg3bhyuueYaHDx4sNPzv/zySyxfvhwTJ07Eueeei+XLl2PLli0BxxNwIvPxxx/j0ksvxa9//WukpbWvsklNTcV9992HZcuW4aOPPgo4sEhXX1+Hd9/9NxiVDrrMiVKH002iToXhKVqcPFnq3SAx2u3btwcAoI4NftIZ6G6+wTA6TYcErQpbt34Dl0u6OHqj1BEZQFySvWxEIhJ1KnzwwTsoLT0mdUhB5dnORGkrljxyErRQMQyOHqVExh9arRYPPfQQtm7dimeffRb//Oc/8ctf/hIxMTG4+uqrcfToUdx///14+umnERMTg+uuuw6NjY0AgPLycvzyl7/E8OHD8cwzz+CJJ55ASUkJWltbA44n4ESmvr4e48aN6/X+cePGob6+PtCXj2iCIODVV1+C0+mALnOSbNvcnztYnLf9+uvPJY5EHnbv/gEAA3V8VtBfeyC7+Q6UimUwPlMPm80my430nE4xkYFCV4kZNCwuK0oABB4vPP+0t1NxJFB6IqNRMciOV+PMmVOK24NMalOmTMHy5cvxj3/8A8OHD8fKlSvx+uuvw2g04vXXX8eSJUswZ84cPPvss0hISMDLL78MADh8+DBcLhfuv/9+zJgxA7NmzcItt9yCiy++OOBYAk5kBg0ahF27et+T54cffsCgQZHfDCoQ33zzBY4ePQR13BCoE3KlDqdXw5K1SNKrsH3bd95eHtGqpaUZJ0+eEJddy7wxWyDGpIn/TXv37pY4ku4cDgcYVq3IGgyP3EQt5g6NQ1NzE1555YWI6dHk2auI1cZJHEng8pK04Hkex49H1mhZONx6660AgBtuuAEqlQrff/89pk6disTERHAcB47jwLIsJk+ejAMHxC7KRUVFUKlUuPfee/HVV195O3cPRMCJzLJly7Bp0yb8/ve/R1lZGdxuN3ieR1lZGR544AFs3rwZl1566YADjDS1tTVizxiVDrrB58r6w5llGEweHAOH04HvvvtG6nAktXv3jxAEAer4bKlDCYnMWDXitKx3VZacOJ1OxY7GdDQj24DCZC327t2NL774VOpwgqK+vg6AwhOZRHEJ8bFjRySORHk8i3k8/9/c3IwvvvgCY8aM6fS///3vf6ipEUfv8vPz8fzzz8NkMmHNmjWYPn06Vq9e7V35HIiAJ51Xr16NiooKvPPOO3j33Xe91fg8z0MQBFx66aVYvXp1wIFFIp7n8fLLz8HpdEI/ZAZYdYzUIfVrUmYMvjljwRdffIoFCy6KuFUXvtq5cxsABuqEyExkGIZBdrwGRxub0NLSjKSkZKlD8nI6HQCr/ESGZRhcOiIBz+9pwrvvvIURI0Zi6NA8qcMakIaGOjCsBlBQj5+usuM1UDEMJTJBkJiYiFmzZuGXv/xlt/s69pyZPXs2Zs+eDbPZjG+//RYPP/ww/t//+394/fXXAzpuwIlMbW0tHnjgAVx//fX49ttvcfbsWQDAkCFDMHv2bAwdOhQ1NTXIygp+PYFSbdq0ASdOiKuUNAk5UofjkxgNiwmZevxQXY89e37COedMljqksGtsbEBp6TGoYjMVkXwGalCsGkcbHaiqOiurRMbhcIBhlFfo25M4rQqXjkjAmwdb8PzzT+EPf/iLovs01dfXi7tey3hkuT8aFYMhHepkYmLC39MlUpx33nn46KOPUFhYCIOh/99jXFwcFi1ahP3792PDhsBX9QX86TB//nw89thjWLJkCUaO7N7IbePGjbjnnntw5AhluQBw5sxpfPjhu2A1BugHnSN1OH6ZmmXAj9U2fPrpJ1GZyIijMYAmYajEkYRWcow46tHQIK8ifXFEJnK+XAqTdZiRbcD3leI086pVN0kdUkCsVitsNivUcfJJegOVl6hFudGCEydKUVwsTT+ZSHD99dfj448/xrXXXotVq1YhKysLTU1N2LdvHzIzM3H99dfj7bffxt69ezFr1iykp6ejsrISH330EWbMmBHwcQNOZARB6LNgzeVyRe00RFdOpxMvvrgObrcbMUOmKGLzu47SDGqMSNXh2InjOHHieFRtWyAIArZu/QYMo4rY+hiPuLbuwiaTUeJI2gmCAKfTCUYf2lUxno7L9VZxk0eTww2riw9Zx+W5Q+NwstmJb775EhMmTMK4cfJrwdCf5uYmAJCkK22wDU3UABVinUy4ExnBZQ24Od1AjwsEt7YpOTkZ//nPf/Dkk0/ib3/7G1paWpCamorx48fjggsuACAW+3799dd4+OGH0dLSgvT0dCxevLjH6Shf+ZXImM1mGI3tH3ItLS09FugYjUZs3LgR6eny6xIqhffeexvV1WehSSmCOlaZK7nOG2LAsUYHNm/+BGvWRE8ic+LEcdTW1kCdmKe4BNRfWpU4PeDp2yIHHMeB53moQjy1VGXmcMbY3nHZ7BLw6v6mkHVcVrMMlhcl4sW9TXj1lRfx0B//ivh4Ze1V1Nws9gVhImC6NSdB3Hcp3HUyHXuwhV/cgI+fnZ2NY8c6r/ZKT0/Hn//8516fM3HiRLzwwgsDOm5Xfn06vPbaa95uvQzD4C9/+Qv+8pe/9PhYQRBw1113+RXMpk2b8NFHH+HQoUMwGo0YOnQoVq5cicsuu6zTHOy7776Lf/7zn6iqqkJ+fj5+9atfYe7cuX4dK1wOHTqAL77YDFaXCF1673135C43QYPseA327PkR1dVnMXjwEKlDCoutW78BAGgSC6QMIyw87zGel66nTVeerr6hbobXV8flC/NDMxqUEavG/DxxC4N///sN3HrrmpAcJ1SamsQRGVaj/ERGq2KQFafBqVMnw7rvkr8bNpKe+fXpMGPGDBgMBgiCgMceewyLFy/GmDGdd3VlGAYxMTEYM2YMiouL/Qrmtddew5AhQ7B27VokJydj27ZtuP/++1FTU4M1a8Q3+SeffIL7778fq1evxrRp07Bx40asWbMGb731FiZMmODX8ULNYjHj5ZefBxgW+qxpYMK48iLYQ+UMw2BmjgFvH27Fpk0bcOONPw9muLJksZixc+d2sNo4qAyRP7rItX2Zq9XyKay126XdniDUHZenZhlwuMGBHTu2Yfr0WYqqzzAaxU6sjEr5iQwA5CVqUGlyoazsZETvVh6J/Pp0mDhxIiZOFOdybTYbLrzwQowYEbxphueeew4pKe2b8U2fPh0tLS149dVXcdttt4FlWTz11FNYvHixd7Rn2rRpOH78ONatW4eXXnopaLEEw1tvvY6WlmZo08dDpQ9vQVytlUOlmfP+HIyh8hEpOqQb1Ni2bSuWLbscKSmpwQpXlrZt2wqXywldxmhFr8rwlYMTExlfVhuEi90u7nzNsNJsPhvqjsssw2DpsAS8sKcJb77xMv74p0cVs4rJU2bAqCOjQeTQRC2+q7Ti2LEjlMgoTMCXOZ4RkmDqmMR4jBo1Cu+88w6sViuam5tx+vTpbpuKLVq0CI8++iicTmentepS+umnXdix43uwMWnQphYF/fUFzgFn83HwDvHDhHfZIHAO74eKq4fP34EOlbMMg5nZBnxw3IhNmzbgmmuuCzh+uRMEAV9//QXAqKBJypc6nLCwtP3RxMbKp7mZZ0RmoFNLjz32WI+3/3rt7wb0usGQEavGjGwDvq1owEcffYAVK66SOiSfmM1tiYxKGYlXf3ISNGAAHD9+VOpQiJ9kv6zop59+QmZmJuLi4lBWVgZA7AzYUWFhIVwuFyoqKqQIsRujsRWvv/4yGFaFmKypAe+U3BvB7YL1zJdwNhwCBLd4o9sO65kvIbhdfT53oEPlYzP0SNKr8O23Xw1oky+5O3ToAGpqqqFOyI3ILQl6YnKKf0vJyd0vKKTi2RqDUUkzIhMus3JjkaRX4fPPN8lu+XtvzGYzAIBRy+PicaD0ahaZsWqUnSwFx3H9P4HIhnwmw3vw448/YuPGjfjNb34DAN4vzoSEztX9np8H+sWqDtLqhH/963WYzSZxQ8gQbKbmaDgE3tl9iSzvNMLRcKjP5w50qFzVNiqz4YQJX365GT/7mTKuHv31xRebAQDalOhZodVsFxOZQYMyg/ZeGCin01MjM7BEpusorodcklQNy2BBXhzeO9qK99//D2677U6pQ+qX3W4DGBWYCNg+wmNoogY1VTZUVp7BsGHDpQ6H+Ei2iUxNTQ1+9atfYerUqVi1alXIj8eyDJKTYwf8Otu3b8euXTugikmHJjk0bwS3tS6g+4JlQmYMtpSL2xZcffUViI9X5s63vamsrMT+/XuhMqSHvbZJSo02N9QqFYYNGwqVSi5fTuKVcaQvfQfEjTu3x2uwY8c2rFhxWVDrD0PB6XRE3EhZboIWO6tsqKgow+TJE6QOh/hIlomM0WjELbfcgqSkJDz99NPexnqJiYkAAJPJ1KlHjafozHN/IHhegNE4sB2eLRYL1q17FmBU0A+eHLICUbGRkf/3BYuaZTAjOxaby0x4553/YvnyFSE/Zji9885/AQCalODXNsmVIAhosLqRkTkYRqNd6nC86uubAUhX7BtODMPggvw4vLa/Gf/619v45S/vkTqkPpnNFiBCto7wyEkQ/84OHDiEuXMXBu11g3GRTHonu79Cu92On//85zCZTPjPf/7T6Wq/oEDs5VFWVub9t+dnjUaDnJyB7V/EcQObdnnnnbfR2toCbfo4sDplNbfy16RBMdhaYcFnn23CBReURMz+JEZjK7Zu/QasNh7quOjZJ8zk5GHjeIwdkjPg90EweboMy2UKKNTyErXIjtdg9+4fUVl5FoMGDZY6pF45Xc6wtpQIhwSdCok6FUqPH4PL5Y6K1YqRQFaJDMdxuOuuu1BWVoa33noLmZmZne7PyclBXl4eNm/ejAULFnhv37hxI6ZPny7piqUzZ07hm2++AKtLhDa1+95TkUarYjB9iAFfnDbj66+/wKJFF0sdUlB8+eVn4DgOukFFQS/SBnpfPfOH3/4m6MfyR61FnMLJzpbXZqbegtIomFrymJFtwH+OtGLz5g24/vpbpA6nV26OA5jIWLHUUU6CGgfrW9HY2IC0tMjvHxUJZJXIPPjgg/j666+xdu1amM1m7N2713vf6NGjodVqcccdd+Dee+9Fbm4upk6dio0bN2L//v1Yv369ZHHzPI8333wVgiBAnzkpJF+AcnTu4Bh8X2nFp59+gvnzF0KnU/ZVs8Nhx5dffQZGpYMmMS+g1+hvWbxc1bQlMjk5uRJH0ll7IiPv318wFaXqkBKjwo7t3+HKK1dCr5dnssBxHCCTovBgGhKvwcF6B06dOhnyRGbt2rVoaGgI6TH6kpaW5nd34aeffhrPPPMMzj33XLz11lud7vvzn/+ML7/8El999VUww+yXrBKZ77//HkDPbZu//PJLZGdnY8mSJbDZbHjppZfw4osvIj8/H88884y3UZ8Udu3agbKyE1An5EIdm9n/EyKEXs1iSlYMtpSbsHXrN1iwIHhzylL49tuvYbVYoE0bG1DfEs+y+E4rytqWxRvyxA3Tels9ExuizQl9VWMWl+3n5uZJGkdXZrMJYFjJOvtKgWUYjM/Q4+szFuzd+xOmTQt8V+BQ4nkeDCJv6iUrTqyTOXXqJCZPnhbSYzU0NKCuthaJ+vBP0bW2rVIM1I8//oidO3di6tSpQYoocLL6dPA1i1uxYgVWrJBHgSnHcXj//f8ADAtdhnLaiwfL1CwDtp+1YvOmj3H++fNl1d7eHxzH4dNPN4Jh1dCmBLbabCDL4qVWY+EQGxsrqx4ygFgjw6h0UVerMDZdTGR27Ngm20SGZVm40X2PKqUbHCc2xjt9+lRYjpeoV+GuyeHfPPLJHwIfCTIYDBg2bBieffZZWSQykTcuGGbffPMlGhrqoUkeDlYTfZXpBg2LcwfFoKm5Cdu3fyd1OAHbtWs7mpoaoU4qDHgaQ+pl8YFyugU02dzIzc2TXcJgNBqjalrJIzVGjaw4NQ4e3AebzSZ1OD1iGBYQIi+R0aoYpMaoUF5+BkIE/vcFy2233YYdO3Zg9+7dvT7m7NmzuPPOO3HOOedgwoQJuOmmm7rtlh0Myrx8lgmXy4VPPvkfGFYDXepoqcORzLQhBuyssmHzpg2YMWO2d7m8UvA8j40bPwYYFtoBLLmWell8oOosHATIrz6G4zjYbFaoYiOrT5GvCpN1qDJbUFZ2AmPG+LcBbzioVCy4EH/RS1UcnxmrxqEGC5qbmyJ+T7lAzZ07F6NHj8a6devw8ssvd7vfbDZj5cqVYFkWDz74IHQ6HZ577jlce+21+OijjzB4cPBW5CnrG0dmtm//Dq2tLdAkD5N9MWcoJehUGJehQ3VNFfbu/UnqcPy2f/8eVFVVQp0wFKwmMpaR+6PWKtbHZGfLK5FpX3otz2LXUPP0NDlx4rjEkfRMq9UB/MDqLORqUFudTGVlucSRyNsvfvELfPfdd9i/f3+3+95//31UVVXhhRdewJIlS3DBBRfglVdeAcdxeP3114MaB43IBIjneWza9LG4qWCyvDtwhsOM7FjsrbVj8+ZPMGnSZKnD8cvGjR8BALSpoySORBp1FvHLaMgQeS29NhrFLUcYdZQmMvHyTmT0ej2Mlu41YcEkVXF8WoxYfFtTU4Nx40J6KEW74IILMGLECKxbtw4vvPBCp/t+/PFHDB8+HIWFhd7bkpKScN555+Gnn4J7wUuJTICOHDmE2toaaBILwGpipA5HcmkGNUak6nDsxHGcPFmKwkJl7FNy/PhRnDhRCnV8NlQR3sSwN/VWcel1Vpa8GgB69k4Lx4iMHPv7xGhYJGhZ1NXVShZDX3Q6PSA0SR1GSKTGiF+NtbXVEkcibwzDYPXq1bj77rtx6FDnBQ1GoxFpad2LmFNTU1FaWhrUOGhqKUDffbcFAKBJLuznkdHjvCHitMynn34icSS+27TpYwDROxoDAA1WDqmpaeIXk4x4ppbYKJ+2bW5ukmXRqcFggOB2QhDk0wk6WJLbRmRqa2skjkT+SkpKkJ+fj2effbbT7YmJiWhsbOz2+MbGxgFtJ9QTGpEJgNVqwU+7fwCrTQCrl9dyVSnlJmiQFafG7t0/oqmpUfZFcmfPVmLfvj3i5pAx8o41VJxuAUYnjzEybIUfzqklufb3ideyqDQ5YDabEB8vrxHDuDixCFtwOyNu+k/DMojVsGhpaZY6FNljWRarV6/G2rVrMWXKFO/t55xzDj799NNOWwq1trZi27ZtuOKKK4IbQ1BfLUrs378PnMsFdaL8lqtKiWEYTM0ygOd5fP3151KH06/PPtsIANCmRP6WEr1psovTSpmZgySOpLtoL/YFxOklALBa5bfqLSFBTKwEt0PiSEIjXsuiuTkyp86CbenSpcjJycHOnTu9ty1fvhxZWVn4+c9/jk8++QRffPEFbrzxRqjValx33XVBPT6NyATgwIG9ABBVmwr6aky6Hp+dMmPLN1/h4ouXQ6OR5x45ra2t2L79O7DaeKii+Dw22cRC34wM+SUynl3to3lFIN82paRSyW9zxoQEcXpA4OyALrhTBXIQp2VR02yD0+kM6T5+rXb3gJrTDeS4GUE6bSqVCrfeeit+97vfeW+Li4vDm2++iUceeQT3338/eJ7HpEmTsH79+qAuvQYokfEbz/M4eHA/GHUM2Ah88w6UmmXadsY246effpBtV9Kvv/68w+aQ0Tuq1tzWpjw9PUPiSLrzJjJRPCLjKY2RYyLj6QIdaI8kRmOA4Lb3cZ+0Iz36tn2kbDZbyBKZnophwyUjMbDj33HHHbjjjju63d5Tx/0hQ4bg6aefDjhGX1Ei46eGhnqYTEaoE4ZG9RdgXyYNisF3FRZ8882XskxkOI7DN998CUalDXhzyEjR4k1k5LfLr8ViBsOqwbDy+xIPFxcvZjJy3PrDUwPHuywBPV9lyABv73nqRhWTDt4ubX2KTiV+vtvttqAXp3r4u2Ej6RnVyPipokJskKTSJ0sciXwl61UoSNbi+PGjqKmR3/LFn37aBaOxFerEgoA2h4wkLQ4xkUlNlWciA1aeU5Ph0mJ3Q6vVegtr5cRzNR/oiIwubQxYbfcCZlaXCE2a9KsItW2JjMPR86gRkY/o/hQPgKfTI6tLkjSO3vpe/Hrt/WGOpGcTM2NwstmJbdu2Yvnyn0kdTidffSUWImuTh0kcifRa7G7ExsYiJkZ+vZDMZjMYVXQnMs12HmkZg2Q5+puSkgaGYcC7zAE9n1FpYMibD2fTcTgbjwKCG1DpYRg6DwIjn2tsGa58J13I569FIZqaxHXxrDb6Noj0R1GKDno1g23ffwuel0+fiaqqsygtPQZV7GCw2jipw5GUIAhodfBIS5PfaIwgCLDZrFGdyNhcPGwcj4wM+dUvAYBGo0FaWgZ4pyng12BUOujSi8G2NaNkNTGy2STUk8Aobe+4aEQjMn4ym8WrD6nfbL31vZBLYaRGxWB0mh67a5pw8mQphg8PfDPGYPI2MkwqkDgS6VldApxuAWlp8vuidDodYhO4KJ76qzCJe2ANHZovcSS9Gzx4MOrrayG4XWBUGqnDCSrPijFKZOQvej8lAmSxmAEwACvvN60cWq6PSdNhd40NP/ywQxaJDMdx2LZtKxiVDur46F1y7dEs40Jfu11cscLI/H0WSmdanQCAESPk2+do0KAs7N+/F7zTGHFNJe1uMZGR47Qr6YxSzUAwjCznrOUmL0kLg4bFTz/ukkWL9aNHD4lFvglDwTDRuxLGw9MMLz09U+JIurPbbQAQ1cXYZ1pdUKlUKCiQby1Xdra40ajb3iJtICFgdYlT4nIstCadRe+nRIC0Wi0g8BAEHoyMCtK6kkPLdRXDYESKFntrm1FefgZDh+aF7dg92bVL7DqpSciVNA65aGxrhjdIhtsTuFzitAqiNOE0Od04a3KhaORo6HTyqBnpSU7OUAAA72iRNpAQsLp4aLXakDbDI8Eh329imdJq2z5UeE7aQBRieLL4+/J0Q5YKx3HYvecHMBoD2AgbAg+UZ9frQYPkN83mLRCP0pHPw/UOCAAmT54qdSh9ysoaApZVSd7zJRRaHDxSU6VrWEd8R4mMn5KSkgAAfIC9E6JNYbIWLAMcPLhf0jiOHz8Kq8UCdXw2TQu2qbNwMBhivX/TcsLz7rZ/Ree5OtRgB8MwmDRpSv8PlpBGo8GQIdngHS0RtQu2zcXD6uKRmSm/0UrSHSUyfvJcvfJOo8SRKINezWJwnBplJ0/A5XJKFocnkaL9sUROt4BGmxu5ufLsUO0ZkZFjbKHWYOVQbnRh1KgxIesoG0wFBYUQeA68I3I+ExvbCuHluJkq6Y4SGT8NGiT+YUfSmzbUhiZowbk5lJWdlCyGgwf3A4wKqhj5rdABgERdeN+K1WYXBAB5efJchq5SieV7kXSV76sfqsXR3rlzF0gciW/y8wsBAG5bo8SRBE9129J3TzEzkTdKZPyUl1cAhmHgttVLHYpi5CSIS2hPniyV5PhGYysqK8uhMmTIdt+evKTwFhSWG8UP6sJCea6I0Wjall0L7r4fGGEcbh57a+1ITk7BhAnnSB2OTzyrqnhb+HZwDnXiX9mWyMh5xRhpR4mMn+Li4pGTMxRuawMEPro+ZAM1OE78UvJs7xBuZWUnAAAqg/SFexq2+1RJukGFObnh7RR9uq1HyfDh8uxR4l0pIvF7LNwjZXtr7HC4BZx//nxZ7njdk6ysIYiJMcAdxkQm1Il/pckFg8FAU0sKQYlMAEaNGgMIbhqV8VGijoVezaC8XKpERpzSkkPDrsGxaszJjYW67Z0Xp2Fww7gU6FTheyu63ALOtLqQkzMUCQndN+2TA41G/KISJB6RCedIGccL+L7SCp1Oh7lzLwjbcQeKZVkMH14E3mkCzwV3g0WtBIl/q8ONRpsbw4cXUVdfhaCzFICJE8UhX1frGYkjUQaGYZAWo0ZdXY0k+y6dOtWWyOhTwn7srlQsg7lD45BuEGtA4nUqGMLY2wcAylqc4HgB48ZNCOtx/REbK35RCW5HWI4nh5GyvbU2GJ1uzJt3IeLilLUP2IgRYudutzW4F3dD4sOf+J9oFv/miosnhOwYJLgokQnA8OFFSEtLh9tUCYH6yfgkUceC4ziYTOEvkq6pqQajMUT1BoQdHWoQr5onTTpX4kh6p1arYTDEQuDCk8hkxUk7UsbxArZWWKHRaLBw4aKwHDOYiopGAQDc1rqgvq4Uif+JJnHadezYcSE9DgkeSmQCwDAMpk+fCYF3gTNWSB2OIiTpxfn+xsbwzaMDYofYpqZGsBplXeGGitMt4GijAxkZmbJdseSRmJgIwR3cqYreSD1S9kO1Fa0ON+bPX4iEBPkvue5q6NB86HT6oCcy4eZw8zjR7MTgwVnIyJDf1h2kZ5TIBGj27LlgWRbOpqOy2EdI7mLaLnWtVktYj9vQUAdBEMBqKZEBgIP1djjdAs47b5bse7QkJiZB4BwRvwTbxvH4ttwKg8GAxYsvljqcgKjVahQVjQTvaA16nUw4HW90wMULmDr1PKlDIX6gvZYClJqahqlTz8P27d/BbamBOi58HSAZjaHXK9W+7pOSViV+aXp2NQ4Xo1GcymLUhrAcr7ddx3+99v6wHL8vgiBgV5UVLMti1qy5UofTr/T0DBw9ehiCywJGG7kb931XYYGN4/Gz5ZciNla5CffIkWOwf/9euC01YBPzpA4nIAfqxc/OKVOmSxwJ8QeNyAzARRctAQA4Gw6FdVRGZcgI6D4padoSGaczvImMxWIGAKqPAXCq1YUaC4dzz52K5ORkqcPpl2czS95hGtDrMJrek9i+7guHJhuHHWdtSEtNw/z5ylmp1JMxY4oBAJylVuJIAmN0uHGi2Yn8/AJZbqRKekcjMgOQk5OLc86ZjJ9++gFucxXU8UPCclxd2hi4zVXdtklgdYnQpY+Bq+loWOLwh5sXEz21Orx/clar2CWVYTVhOV5vu44zKn1Yjt+Xb8vFpK6kZInEkfgmI6Oti7ZzYImMypAB3t7U830x6ZJuePhpmRluQcAVV17rXXKuVNnZOUhISITJUgNBEGQ/ddnVnlobeAGYM2e+1KEQP9GIzAAtX34FWJaFo35f2ObyGZUGhrz50KaNAZi2plkqPQxD54XtC9tf7rZfTbgTGY5rW1Um046+4VLW7MDpVhfGj5+IoUPzpQ7HJ1lZ4r5YbkfLgF5HlzYGrLZ7vxxWlwhN2ugBvfZAnGh24FiTA6NGjcGkSZMliyNYGIbB2LHjIHA28I5WqcPxi1sQsLvGjhi9HlOn0rSS0lAiM0CDB2dh9uy54B1GuJpPhO24jEoHXXoxWJ34Ac1qYsCodGE7vr9snJjJ6PUxYT2ut6FVFBdk84KAz0+bwTAMLr30Z1KH47PMzMHQ6/W9jqb4qu/EX5pBaRcvYONJE1iWxdVXX6e40YveeKaX3JYaiSPxz5EGB1odbpw3Yw50OulHT4l/KJEJgmXLVsAQGwtn/QHwLpvU4ciS0SkmMqmp4e2u2/4FEb2JzL5aO6rNHKZPn4nc3KFSh+MzlmWRl1cA3mEccL8muSX+31dY0GRz44ILSjBkSLZkcQTb2LHjwDAMOHOV1KH4TBAEbKu0gGEYXHhhidThkABQIhMECQkJ+NmKqyHwLjjq9kgdjiy12sVW88nJ4U1kPHv2yK1xoWcVl+f/Q8Xq4vH5aTN0Oh0uv/zKkB4rFMSdlQW4BzgqIyeNNg7fVVqRnJyCSy65TOpwgio+PgF5eQVw2xoguF1Sh+OT060uVJnFIvj0dHkuliB9o0QmSGbOnINhw0aAM5aDM52VOhzZqbVySE1Na98MMEwSE5MAAILMelucnxuHESlanJ8b2uW2n50ywericemlP0NSkvxXKnU1bNhwAIDbouxGax6CIOCTEyZwvICrr74Oen3kTWOMGzcBEHhwVmWsXtrSVgTvWYVKlIcSmSBhWRY33HAL1BoN7DU/hK21uhIYHW6YnTzy88PfSTYxUeySKrdEJj9Ji6vHJCM/hJsSljY5sLfWjry8fMyff2HIjhNKRUWjwbIs3Apd0tvV/jo7ylqcmDBhkqy3iBgIzx5ebgVML51uceJ0qwvjxk2U5POJBAclMkE0ePAQXH7ZFRA4O+y1P0kdjmxUmsQhZila4ntGIXhXeDsKS83q4vFRqRFqlQo33rgaKpUyV20ZDAbk5xfCbVfOVEVvLC4en54Sp/muvfaGiCnw7Wro0HwkJCSCM1fLuuu5IAj4um00JtKm+KINJTJBtmDBRRgxYiQ4YzlcraekDkcWSpvE0anRo8eG/dgxMQYkJSV367kTyQRBwEelRpicPJZfdiWys3OkDmlAxowpBgRB8fv4fFYmTvNddtmVSEkJb61YOLEsi+Li8W3LsFukDqdXJ1ucONPqwoQJk2g0RuEokQkylmVx882/QExMDBw1Pw24mVewJerCe8p5QUBpkxNJSUmS9S/Jzs6B4LKE/IpeLh1kf6y24WijAyNHjomIVRieqQqXqVLaQAbgRLMD++rsyM8vxLx5yu7g64vx4ycCgGxXL/GCgM9PiS0Jli+/QupwyABRIhMCaWnpuO66WyDwHGxnt0MQ3FKH5JUXwpqMnpxpdcHs4jF+/CTJhtI9IxIDbazWHzlsHVFldmFzmRlxcXG45Zbb2vvoKFh+fiGSk1PgNp9V5AaSTreADSdM3jq6SDgn/Rkzphgsq5JtInOg3o5aC4cZM2YrfsSSUCITMlOmTMPMmeeDtzfBUbc/7MfX9HBm0w0qzMmNDWscu2vEvjozZswO63E7KiwcAQAhn5roq4OsLn1MSI8NADYXj3eOtIIHcOutaxSxn5IvGIbBOedMhuB2KnJ66eszZrTY3Vi06GJkZ+dKHU5YxMQYxN2wbY2y2w3b6Rbw5WkLNBoNli27XOpwSBDILpE5c+YMfv/73+OSSy7B6NGjsWRJz0vi3n33XSxcuBDFxcW4+OKL8fXXX4c50v5dc80qZGVlw9V0DC5jeIfFM2PVmJMbC3XbGY7TMLhhXAp0qvCdcquLx5FGB7KyhqCwcHjYjtvViBFFAAC3tT6kx5Fy6wheEPD+sVa02N24+OLlGDt2XEiPF27nnDMFAMAZyyWOxD9nTS7sOGvFoEGDsXTpMqnDCSvP9JLcVi9tq7TA6HDjoouWRHStUjSRXSJTWlqKLVu2YOjQoSgsLOzxMZ988gnuv/9+lJSU4KWXXsKECROwZs0a7N27N7zB9kOn0+O2234JrVYHR81O8E5z2I6tYhjMHRqHdIPYgj1ep4Khp2GaENpVZQXHC5gzZ76kKzTi4xMwZEg2eFsDBD6003xSdZD9+owFpc1OjBs3EUuXXhry44Xb8OFFSElJBWesCPk5DBY3LxZdCwCuv/4WxW8K6a/2OplqiSNp1+pw4/uzViQlJaGkZKnU4ZAgkV0iM2/ePGzZsgVPPfUUxozpeTj+qaeewuLFi3HXXXdh2rRpeOihh1BcXIx169aFOdr+ZWUNwXXX3QTB7YKt8nvZdZgNFQfHY2eVDfHx8Zg9+3ypw8G4cRMh8BzcCmnS5Y/DDXZsrbAgMyMTt94aGXUxXbEsi/POmwWBd4EzK6Ph5PeVVtRaOJx//nyMGDFS6nDCLjNzMDIzB8FtqZFNneDnp8xwuQVcdtmVEdmMMFrJ7hOvvw/hiooKnD59GiUlnVdjLFq0CNu3b4fT6QxleAGZPn0m5s5dAN7RDEfNbqnDCYtd1TbYOB4XXrhIFpuweZqPcQpe+dKTGosLHx43QqfTYc0d98BgCG8NVDhNnz4TAOBqkX9bgwYrh28rLEhKSsLll18ldTiSGT9+EgTeFfJpXV+cbnHiYL0dBQXDvH9LJDLILpHpT1lZGQAgP7/zUt7CwkK4XC5UVFRIEVa/rrxyJfLzC+FqLYOz5WTQXteze69Uu/j2xOx047sKC+Lj42Wz1DQ/vxCJiUngTMpc+dITi5PH24db4eLF4t5I2nywJ4MHZ6GwcDjclhrwLqvU4fRKEARsOGEExwu49tobYDCEb+m93MhlesktiLuNMwyDlStviMhRy2gmn28/H7W2tgIQN2rsyPOz5/5AqNWh++NWq3W4445f4f7718JSsxsqXTJUMSkDfl1t2lg4m45Bm1IUhCiD46szFjjcAq6+/ArEx4d2LyHfsZg6dTo++2wT3OZqqOOHSB3QgHC8gHeOtKDF7sbll1+ByZMnSx1SWMybNx8nT5bC1XISuvRiqcPp0Z5aO063unDuuVMwZcpUqcOR1KhRo6DX6+E0VwGZEyWLY1eVFXVWDnPnLui19pIol+ISmVBhWQbJyaEdlk9OjsWvf30f/vCHP8B+9nsY8i8ccCGoOjYT6tjMIEU4cJUmF/bU2JCXl4dLLlkiq9b4S5aU4LPPNsHVekrRiYwgCNh00oQzRhdmz56NVauuidh2911deOF8/Otfb8LaUgZt2hgwjLyurM1OHp+fMsMQE4M1a24L+WeKEkyaNAnbtm0D7zSB1caH/fhGhxvfnLEgIT4et9xyI+Lj6ZxEGsUlMp5NAE0mE9LT0723G43GTvf7i+cFGI2hH67Ozy/C8uUr8N//vgPb2R2IyZkdMV9CHC/go+NGgGFw7bU3wGiUV/+IpKQMDB2ajzPlp8FzdrBq6Wt3AvFDtQ0/1diQl5ePVatuRkuLfKdZQmHGjNn47LNN4ExV0CTIazrt81Mm2Dgeq66+EiyrR3NzdO3x1ZPRo8dh27Zt4MzV0KaEP5H57JQZDreAa392NTiOleScUEIbWopLZAoKxD0xysrKvP/2/KzRaJCTE3iXRo4LT+1EScnFOHGiFPv27YGz4RB06eHfgygUvq+0oM7KYd68C1BQMDxsv09/zJ49F2+++QpczScU+Xs/1eLE5jITEhISsGbN3WBZtSx/z6E0Z848cWSt+bisEplTLc62bQgKMHv2/Kg7L70ZM0bsacSZq6BNGRHWY5c1O3Cw3o7CwuGYPn0WnZMIJa9xWR/k5OQgLy8Pmzdv7nT7xo0bMX36dGi18u/V4NmPKS0tHc6Gg+DMNVKHNGBnTS5sKbcgJTkFl112pdTh9Oq882YiJsYAV8sJ2SwJ9VWL3Y13j7aCZVVYs+buqG3mNXjwEIwZUwy3tQ5ue4vU4QAQRyM/OWEEwzBYtepmKibtIDExCUOH5sFtrQtr+wmOF/CJt8D3RjonEUx2Z9Zms2Hz5s3YvHkzzp49C7PZ7P25qakJAHDHHXdgw4YNeOqpp7Bz50488MAD2L9/P2677TaJo/ddbGwcbr/9LqjVatirtst6FUZ/nG4B/z3WCgEMbr7lNsTExEgdUq90Oj3OP38+BM6uqC6xLreAtw+3wOrice3KGzFsWHivbOVmwYKLAACu5uMSRyLacdaKBpsb8+cvxNCheVKHIzvFxRMAgYfbEr4+TtsqrWi0ubFgwUXIzR0atuOS8JNdItPY2Ihf/vKX+OUvf4ldu3ahurra+3NpaSkAYMmSJfjjH/+IDRs24KabbsLu3bvxzDPPYOJE6ariAzF0aD6uvfYGCG4H7Ge3KXZZ8KaTRjTZ3CgpWYqRI0dLHU6/5s+/ECzLwtl4FIIgSB1OvwRBwMcnjKixiKsuZs+eK3VIkisuHo+MjEFwtZ6BwDkkjaXV4caWcgsSExJp755eFBePBwBwlvCMPjfb3dhaYUFiYhKWLbssLMck0pFdjUx2djaOHTvW7+NWrFiBFStWhCGi0Jo163wcPXoYO3Z8D2f9Aegyxksdkl/21tqwp9aOvLx8xXyIp6Sk4rzzZuG777aAM5+FJl4+dRY9+bHGhv114jz/VVetkjocWWBZFgsWLMS//vU6nC0noEsL/aacvfm0zAQXL+BnV1wT1T1j+lJQMAwxMTFwWMLTT2Zz2zm56qqViImhcxLpZDciE23EOfWbkDloMJyNRyRvHOWPWguHT06YYIgx4Be/+CXUatnlxb1atOhiMAwDZ8NhWY/KVJld2FxmRnxcPG67TVm/41CbOXMOYmJi4GqWrt7pdIsThxscGD68CNOmzZAkBiVQqVQYM6YYvNMM3mny+/laFdPp//tyvMmBY40OjBw5BpMnT/P7WER5KJGRAb1ej9vaEgF79U7ZbXvfEzvH450jLXDxAm6+5RdIT8+QOiS/DBo0GJMnTwNvb5Ld7rwedo7He0dbwQvArT9fg+TkgTdQjCR6vR5z5syHwNkkqXfiBQGbysRi0quvvi5i2iiEytixbdNLASxuOD83DiNStDg/t+8Gmy5e7LGkUqmwcuX1dE6iBCUyMpGTk4srrrgGAmeHvWqnrEcJeEHA+8da0WhzY/HiizFhwjlShxSQSy5ZDoZh4Kg/IMvf98aTJjTZ3Fi8+BKMGSPPLrZSW7BgYVu907Gwn8M9NTbUWjjMnDmHCnx9MHq02O7AHUCdTH6SFlePSUZ+Ut+rUrdXWtBsd+OCC0oweLBym14S/1AiIyPz5l2I8eMnwm2pls1qjJ5sKbfgeJMTxcXjcemlP5M6nIANHjwE5503C7yjBZxJXnt0Hay3e+tiLrmEihV7k5KSinPPnQre0QK3tS5sx3VwPL46Y4Fer8fy5VeE7bhKlpaWLu6Gba0LycKGVocbWyusSExIxNKllwb99Yl8USIjIwzD4IYbfo74+AQ46/bD7TBKHVI3hxvs2FJuQUZ6Bm699XbF92a45JLLoFKp4Kw/IJtVY0aHG5+cMEGn0+GWW26T1TYPcnThhSUAAGdT/4sEgmXbWSssLh4lJRcH3E08Go0dOw4C7wJvawr6a39+ygwXL2DFz66WdQsIEnzK/haKQAkJCbj++lsgCG7Yq3bI5ssVAGrMLnxw3Ai9Xo877rwXsbFy2RAycGlp6Zg79wLwThNczcHblTxQnp2TbRyPK69ciYwM+eyjJVcFBcMwbNgIuM1V4MOQ/Jucbmw/a0ViYhIuvPCikB8vkowaJa4uC/Yy7AqjEwfr7cjPL6Si6yhEiYwMTZx4DmbMmA3e3gRn41GpwwEAWJw83j7cCo4Hbr31dgwZIu8ly/5YunQZ9PoYOBsOQnC7JI3lUIMDx5ucGD16LPWL8cPChYsAAM7m0pAf69tyC5xuAcuWXQ6dTpn7dUll5MjRYBgGbmvwGuMJgoBPy8wAgKuuWqn4UWLiPzrjMnXVVauQmJgMZ8OhgJYrevizbLE3HC/gP0da0OJwY/nynym2uLc38fEJWLz4YghuB5yNRySLw87x+LTMBI1Gg1WrbqIVF36YOPFcpKamgWs9BcHtDNlxWuxu7K6xITNzEGbOnBOy40QqgyEWeXkFcNsag7ZdwZFGBypNLkyZMi3qO15HK0pkZMpgMODaa68HBDfs1T8EvCLD12WLvREEcQ+ZcqML06adh0WLLg7odeTuggtKkJycAlfTMfAuaXYs/rbcApOTx9Kll9KUkp9YlsX8+RdC4Dm4Wk6F7DhbKyxwC+21VcR/o0aNEbcrsDUM+LXcgoAvT5vBsiwVXUcxSmRk7JxzJmPSpMlwW+vAtQb24ezrssXe7KwSO/fm5xfg+utvjdhRAq1Wi8svvxKC4Iajbn/Yj99o47CzyoaM9AwsXLg47MePBLNmnQ+tVgtn8/GAa8v6GsFstruxp9aGwYOzMGXK9AHFGs0825i4Le2rzBhW3en/fbWv1o5Gmxvnnz+fkv8oRomMzF1zzXXQanVw1O8P6ZB5T042O/DZKRMSExOxZs09ithZfCCmTj0P+fmF4Ixn4LY1hvXYX502wy0IWPGza6DRaMJ67EgRGxuHGTNmQ3BZ4A6wQ3ZfI5jbKi3gBeDii5dTHcYADBs2Aiyr6rRcXps2Fqq4LGjTxvr8Ohwv4JtyC7RaLS23jnL0bpS55OQULF16KQTODkfDobAdt8nG4b2jRrAqNe644x4kJyeH7dhSYVkWV121EgBgr90dtgZr1WYXDjU4UFAwDJMmnRuWY0aquXMvAAA4m08E9PzeRjDNTjf21NqRkZ5Bbe8HSK/XIz+/AG57k7dORh2bCUPObKhjfR9V2Vdrg9Hhxrx5FyIxMSlE0RIloERGAS68sAQZGZlwNR8fUOGvrxxucYWSjeNx3XU3o6BgWMiPKRfDho3AlCnTwdsawRnPhOWY35aLNTmXXroiYqfuwiU7OwfDhxfBbakG7zQH7XV3VtnA8QIuKllKozFBMGLEyLY6mcBGPt28gK2VVmg0GpqKJZTIKIFGo8GKFVcDggBH/YGQHksQBHx03Ig6K4cLLijBjBmzQ3o8OVqx4ipoNFo46/cHbWVFbxqsHI42iqMxnhbuZGA8ozKuluD0BXK6BfxQbUNiQiJmzJgVlNeMdsOHFwEA3Nb6gJ5/sN6OFrsbc+bMp4aEhBIZpZg06VwUFAwDZyyHOwRdMT22n7XiUIMDRUWjsGLFVSE7jpylpqahpGQJeJc15H18dpy1QgCwePHFNBoTJOecMxlxcfFwtZ4KSkPJ/XU22Dkec+ddAI0msuvEwmX48BFiPxmb/4mMIAjYftYKlmVx0UU0GkMokVEMhmG8iUWoRmXKjU58cdqM5KRkrF59J9Rq/1YQRJKSkiVITEyGq+koeJc1JMewczz21dmRnp6B8eMnheQY0Uij0eC882ZC4OzgBrizuSAI2Fllg0qlwpw584MUIYmNjUPWkGzwtka/k83TrS7UWDhMnjwNKSmpIYqQKAklMgpSVDQKo0aNgdtSHfRRGYuLx3tHjQDDYvUv7oz64VqdTo8VK66EwHNw1O0LyTEO1Nnh4gWcf/58qrsIspkzzwcAcAPsKXOm1YV6K4cpU6ZH/Xsi2IYVDofAc+AdrX49b2eVeGHh2WOLEPr0VJglS5YBAJyNh4P2moIg4MPjrTA63Ljssiu889fRbtq0GcjLLwhoObYvfTH21tnBsizOOy/66pBCLTs7R1xKb64Cz9kCfp3dteJzzz+fRmOCzdOF15/GeCanG8ebHMjPL0R+fmGoQiMKQ4mMwowcORqFhcPBmSqDtkHeD9U2lDY5UVw8nlYAdMCyLK684loAgKN2j1/Lsfvri9Fk43DW5MLYsePoSj9EZs6cDUAAZywP6Pk2jsfhBgcGDRpMre9DYNiw4QAAt9X3RGZvrR28AMyZMy9UYREFokRGYRiG8SYbgfbK6KjeyuGzU2bEx8XjxhtX0xRHFyNGjMS5506B29YAzlTp8/P664txuMEBANSTJITOPXcqWJaFqzWwZfQH6+3geAGzZp1PhdghkJExCAZDLHi7b9PkgiBgd40NOq2O3jekE/rWUqCJE89BcnJq2wZ5ge/W7BYEfHCsFRwv4PobbqWRgV5cfvlVUKlUcNbvgyC4g/Kax5ocYFkWEyZQkW+oxMcnYOzY8eDtTQH1XzpYZwfDMJg+fWYIoiMMw6CgoBC80+RT1/KzZg7NdjfOOXcKYmJiwhAhUQpKZBRIpVJh3rwFEHgXXANo2rbjrBVVZg4zZ87BxImRtaN1MGVkZGLevAvBO81wNQ+sN4kAAVYXj0qjC8OGjUBsbGCbeRLfTJt2HgDA5ef0UqvDjXKjCyNHjkZSUuR3tZaKp9mmLzVoh+rtAED7XJFuKJFRqBkzZrcNmwe2KqPJxuGbMxYkJCTgiiuuCXJ0kWfp0mWIiYmBs+HQgEbBTre68OiOeggAxo4dF7wASY/Gj58EtVoNzuj7tCAAHG6wQwB9aYZaXl4BAMDdz/SSIAg41OBAbGwsNY4k3VAio1BJScnisLmtEW4/i34FQcDGkya4eAHXXnsDjQr4IC4uHosXXwLB7YCzKfAmeZ4P4okTz4nKrsnhFhMTg9Gji8E7mv3asuBIgzj1d845k0MYHcnLywcA8PbmPh9XY+FgdLgxYcI5Ud3fivSMEhkFE1dlAFzrab+ed7zJiRPNTowdOx7nnDMlBJFFpvnzFyIxMQmupmPgOXtAr5Gbm4d77/1t20acKUGOkPTEsxEnZzrr0+OtLh4VbVN/cXHxoQwt6iUlJSMpKRnufhKZ0iaxhmb8+InhCIsoDCUyClZcPAFardav1TQcL+DTMlPbTs/X0moMP+h0Olx88aUQeA7OxiNSh0N8NGHCOWAYBpzZt0SmtMkBAaBC7DDJy8uH4LJA4By9Pqa0WRwhGz26OIyREaWgREbBdDodxo2bAN5phNvH7pi7a2xosruxYMFCDB48JMQRRp5Zs+YiLS0DruYT4F2BN1oj4ZOQkID8/EJxXx8fegGVNotfqHT1Hx45OUMBAG5HS4/3O90CzppcKCgYBoPBEMbIiFJQIqNwnqkhX4bNXW4BWyss0Ol0WLz4klCHFpHUajWWLl0GCG4alVGQ4uLxgCBA4Psu1BYEAadaXEhJScGgQVlhii665eaKiUxvdTKVRid4ASgqGhnOsIiCUCKjcGPGjBN3kbXU9PvYH2usMDl5XHjhIsTHJ4Qhusg0ffpMpKVlgGs5SaMyCjF27HgAgMBzfT6uzuqGxcVj1KixNO0aJt4RmV4SmTNGMfkcMWJU2GIiykKJjMLFxcW1DZs39Lks2M0L2H7WBr1ej4ULF4UxwsjjGZURBPeAVjCR8MnPL4DBEAv0MyJzqkUsKh01akw4wiIA0tLSodPpe9088qxJPGeFhcPCGRZREEpkIsDYseMAgRdrAHpxqMEOo8ON2bPnih/oZECmT58pdlduOQnB3XuRIpEHlmXFqQmB7/NxFUYxkRkxgqYxwoVlWQwZkg3eaYTQw/mpNnPISM+gzy3SK0pkIoBnt+q+Nl/bcdYKlmWxYMFF4QoroqnValx00SJxBVMQ9rwioVdU1P/URKWJQ2JCIlJT08IQEfHIzs4BBL5brx+jg4fFxWNoW+M8QnpCiUwEKCwcDpZlex2RqbG4UGXmMH78JKSlpYc5usg1e/ZcGGJj4Wo63m/tBZFex0SGYbs3VTM63Gh1uFFQOJzqY8JsyJBsAOg2vVRnFd9X2dm5YY+JKAclMhFAr9cjJycXbltTj0Oze2rE5m2zZp0f5sgim06nx7y5F0BwOwa05xUJj5ycodBoNACrhjate5v7arP4pZmfT1f/4eZpBdFbnUxWFq0gI72jRCZC5OUVAIIbfJftCtyCgIP1diQmJIpLUElQzZ17gbjnVdNxCD70KCHSYVkWhYXDAZ6DSt+9q3KtRSwq9SwHJuGTldWWyDh73m6FlsKTvlAiEyGGDu15z5LyVhcsLh7nTp4KlUolRWgRLTk5GZMnTwPvaIXbWid1OKQf3t2We9iksMYijsjk5OSFMyQCIDk5BXq9vtuFmEdGRkaYIyJKQolMhPBcRXbtjnm4QZxWoj2VQmf+/AsBAK6WkxJHQvpTUFAIAHDbGrvdV2fhEBsbi6SkpDBHRRiGQWbmYAguc7eRzcTEJGg0WokiI0pAiUyEaJ9j7nxFU9rsRGxsLC0nDaHCwuEYMiQbnKkSfB/7xRDp5bWtfuG7JPy8IKDZ7sbgwUOo0FcigwYNhsBzELjOTSZpgQLpDyUyESImJgbJKangne3Fck02Di12N0aNGguWpVMdKgzDYM6c+YDAg2s9JXU4pA/JySmIjY0Fb2/pdHuL3Q23QLUYUsrMHAQA4J2mTrfTLvGkP/TtFkGyBmdBcFm9P5e1dSkdM4Z2jA216dNnQKVSw9V6WupQSB8YhkFOzlDwTlOnJfMtDnG136BBg6QKLer1lsjQVB/pDyUyESQ9vXNBXHnbHiW+NAIjAxMbG4cJEyaBd7TA3eVqn8iLuLeP0ONS367vIRI+nt+94LJ0uj0xMUmCaIiSUCITQbp+CFeaXIiNjfVe6ZDQOu+8mQBAozIy513q28MKGarHkE56eiYAtHX3ba9Tys8vlCgiohSUyESQ1NT2D2EbJ6DJ5kZBwTAqXgyT4uIJMBhiwZnKqaeMjA0eLNbB9NSzhLYmkE5CQgK0Wi14l9n7mTVmTDFGj+7evJCQjhSbyJw8eRI33HADJkyYgBkzZuDRRx+F0+mUOixJpaS0F8V5Wnvn5uZJFE30UavVmDTpXAguK/ge+pQQefAmMl1GZNRqNeLjE6QIiUCsX0pLS+9U50eLFIgvFPlX0traiuuuuw4ulwtPP/00fvWrX+Gdd97BI488InVokuqpun/IkBwJIolenn49nKlC4khIb+LjExAbG9etqDQxMYlGLyWWmpom7ibPu6UOhSiIIhOZt99+GxaLBc888wxmzZqFyy+/HPfddx/efvtt1NbWSh2eZJKTUzB9+sxOt3k2YyPhMXr0WOj1enCms1KHQvqQkZEJvktRKa2OkZ5naq/ruSGkL4pMZL799ltMnz690wdPSUkJeJ7H999/L11gEmNZFrfcclun4diMjEwJI4o+Go0GY8aMA+80dbviJ/KRnp4BCG4InN17W0JCooQREaA9kek4vURIfxSZyJSVlaGgoPMOtQkJCUhPT0dZWZlEUcmHp9A0MTEJOp1O4miiz7hxEwAAnLla2kBIrzwr/MQVMiKqj5GeZ3qc79Ldl5C+qKUOIBBGoxEJCd0/dBITE9Ha2vM28L5QqxWZ13Uzrng8jh0/iqlTp0fMf5OSTJw4Ca++KiYy2pQRne5jmMj5O1OyzExxpLJjz5KEhAQ6NxJLS0sF0D4iwzAMnRPSL0UmMqHAsgySk2OlDiMo/vTnP0odQlRLTo7F0KFDUV5xFoLAg2HaP4jValXE/J0p2dChbb1kOkxhpKen0LmRWF6eWNPHc+J50Wjo/UL6p8hEJiEhASZT9/qD1tZWJCYGNs/N8wKMRpqXJcFRVDQKZ86cAW9rgsrQ3puE49xobqZCRqlptXEAAIFrf88zjIbOjcRYVg8A3tollysy3i+UjIWWIhOZgoKCbrUwJpMJ9fX13Wpn/MFx/EBDIwQAUFQ0Gp99thmctbZTIiMI9HcmB4mJyQA6j8jodHo6NxJTq7XQanXg2hIZQRDonJB+KXLycfbs2di2bRuMxvaGVps3bwbLspgxY4aEkREiGjZMrI1xWxskjoT0RK/XIyYmBkKHotKYGIOEERGPpKSkTueFkP4oMpG58sorERsbi9tvvx3fffcd/vvf/+LRRx/FlVde6S3iI0RK8fEJyMwcDN7eSNsVyFRiYlKn5dd6vV7CaIhHYmKS2BSPEB8pMpFJTEzE66+/DpVKhdtvvx2PP/44Lr/8cqxdu1bq0AjxGjZsOAS3k/rJyFRSUjLAt29rQomMPNAyeOIvRdbIAEBhYSFee+01qcMgpFf5+YX4/vtvwduboNLRh7PcJCYmdfpZq6WeS3LQU2sNQvqiyBEZQpRg6NA8AIDb3ixtIKRHHa/8ExMTkZaW3sejSbjExcVLHQJRGEpkCAmR7OxcMAwDnhIZWYqPb//CzM7OpZ2WZYISGeIveucSEiI6nQ6ZmYPAO1qp4FeGqBZDnuLi4qQOgSgMJTKEhNCQIdkQ3A5ahSFDHUdkiHxQIkP8RYkMISGUldXWct0R+B5gJDQMBuq2KkexsZTIEP9QIkNICA0e3Lanj9PYzyNJuNEXpjxRgkn8RYkMISGUmTkIAMA7zRJHQrqKjaUvTDmiRIb4ixIZQkLI02mamuLJD31hypPBQFtFEP9QIkNICBkMsYiNjYVAIzKyQ5185Umj0UgdAlEYSmQICbHU1HQInLX/B5KwYhiGkhmZ0utjpA6BKAglMoSEWGpqGgSekzoM0oOYGPrClCM6L8QflMgQEmKpqalSh0B6oddTPYYc0YgM8QclMoSEWHJyitQhkF7o9bRRpBzpdHReiO8okSEkxJKSkqUOgfRCpxNrZHielzgS0pGndsntdkscCVECSmQICbHExCSpQyC98Hxh2u12iSMhHWm14oiMw0Fbe5D+USJDSIjR5oTy5fnCdDqdEkdCOvJMLdF5Ib6gRIaQEEtIoERGrtoTGbrylxOtVguAEhniG0pkCAmxuDjaZVmudDr6wpQjTyLDcS6JIyFKQIkMISGmUqloOalMaTSeRIZGZORk9OixMBhiMXfuAqlDIQqgljoAQqJBXFwc7Hab1GGQLjxX/i4XXfnLyTnnTME550yROgyiEDQiQ0gYeHZaZhhG4khIR559fTiOOi8TolQ0IkNIGCxdeil27tyOGTNmSx0K6YA2KCRE+SiRISQMJk2ajEmTJksdBumCEhlClI+mlgghUUutpkSGEKWjRIYQErXUahqUJkTpKJEhhEQtSmQIUT5KZAghUUulUkkdAiFkgCiRIYRELZWKRmQIUTpKZAghUYtGZAhRPkpkCCFRixIZQpSPxlUJIVErN3co8vIKMGPGLKlDIYQEiBEEQZA6CDlwu3k0NVmkDoMQQkiESU+PlzqEiEZTS4QQQghRLEpkCCGEEKJYlMgQQgghRLEokSGEEEKIYlEiQwghhBDFokSGEEIIIYpFiQwhhBBCFIsSGUIIIYQoFiUyhBBCCFEsSmQIIYQQoliUyBBCCCFEsSiRIYQQQohiUSJDCCGEEMWiRIYQQgghikWJDCGEEEIUixEEQZA6CDkQBAE8T78KQgghwaVS0ZhBKFEiQwghhBDFojSREEIIIYpFiQwhhBBCFIsSGUIIIYQoFiUyhBBCCFEsSmQIIYQQoliUyBBCCCFEsSiRIYQQQohiUSJDCCGEEMWiRIYQQgghikWJDCGEEEIUixIZQgghhCgWJTKEEEIIUSy11AGQzoqKivp9zMMPP4whQ4Zg1apVeO+991BcXByGyIgvnn76aTzzzDPdbh8+fDg2bNjQ43PWrl2LgwcP9no/CcxHH32EN954A6dOnYIgCMjMzMSkSZNw9913IzU11efX2blzJ/bs2YPVq1eHMNrIF6zzQUhXlMjIzH/+859OP19xxRVYuXIllixZ4r0tNzcXpaWl4Q6N+Eiv1+P111/vdltvbrvtNlit1lCHFVVeeuklPP7447j++utx5513QhAElJaW4uOPP0ZdXZ1fX5y7du3CK6+8QonMAATzfBDSFSUyMjNhwoRutw0ePLjH20PJbrf3+eVLeseyrE/ny/M7zs3NDX1QUebNN9/EpZdeirVr13pvmzNnDm6++WbwPC9hZNGJzgcJJaqRUTij0Yh77rkHEydOxNy5c/HSSy91un/lypX4+c9/3um2I0eOoKioCDt37vTeVlRUhBdffBGPPfYYZsyYgenTp4cl/mjS2+947dq1nUbcyMAZjUZkZGT0eB/Ltn/sffjhh7jqqqswZcoUTJ48GStXrsT+/fu993umCq1WK4qKilBUVISVK1eGPP5I4+v5KCoqwssvv9zp/tdee63TlPvOnTtRVFSE77//vs/PPhI9aERG4R544AFccsklWLduHb744gv87W9/Q1FREWbPnu33a73xxhsYP348/vznP4PjuBBEGz26/v5UKhUA+h2Hy5gxY/D2228jOzsb559/PtLT03t8XGVlJZYtW4bc3Fw4nU588sknuOaaa/DRRx8hPz8fK1asQE1NDTZs2OCdLoyLiwvnf0pE8PV8+COYn31E2SiRUbgLL7wQd9xxBwBg+vTp+Oabb/Dpp58G9GZOTEzEM888A4Zhgh1mVLFarRgzZkyn2x599FEA9DsOlwceeABr1qzB7373OwBAdnY25s6di+uvvx7Z2dnex61Zs8b7b57nMWPGDOzfvx8ffPAB7r77bgwaNAiDBg3yebqQ9MzX8+GPYH72EWWjREbhZs6c6f03wzAoLCxETU1NQK81e/Zs+oINAr1ej/Xr13e6LScnBwD9jsNlxIgR2LBhA7Zv347vvvsOP/zwA9588028//77eOuttzBq1CgAwMmTJ/H3v/8de/bsQWNjo/f5p0+flijyyOTr+fBHMD/7iLJRIqNw8fHxnX7WaDQwmUwBvRatHAgOlmV7XRJPv+Pw0Wq1mDNnDubMmQMA2Lp1K37+859j3bp1eOaZZ2A2m3HjjTciJSUFa9euRVZWFnQ6HX73u9/B4XBIHH3k6e98+CuYn31E2SiRiXBarRYul6vTba2trT0+lkYKQo9+x9KZNWsWRo4ciZMnTwIA9u7di5qaGrzwwgsYOXKk93EmkwmDBg2SKsyo0fV8AD1/XhmNxnCHRhSGVi1FuEGDBnkbUHl8//33EkZESOg1NDR0u81ut6O6uhppaWnenwHxSt5j9+7dOHv2bKfnaTQaOJ3OEEYb+Xw5H4D4edUxsQGAbdu2hTw+omw0IhPhFi5ciPfeew9//OMfsWDBAuzevRuffvqp1GERElJLly7F3LlzMXPmTGRkZKC2thbr169Hc3MzrrvuOgBizyaDwYAHH3wQt956K2pra/H0008jMzOz02sVFhaC4zi8/vrrmDhxIuLi4lBQUCDFf5Zi+XI+APHz6vXXX0dxcTHy8/Px0Ucfoba2VsLIiRJQIhPhZs+ejfvuuw/r16/HBx98gNmzZ+PBBx/E9ddfL3VohITMmjVr8PXXX+ORRx5BU1MTkpOTUVRUhNdeew3Tpk0DAKSlpeEf//gHHn30Udx2223Iy8vDgw8+iH/+85+dXmvu3Lm4+uqr8eKLL6KxsRGTJ0/Gm2++KcV/lmL5cj4Asct1Y2Mj1q1bB4ZhcMUVV2DVqlV45JFHJIyeyB0jdJxzIIQQQghREKqRIYQQQohiUSJDCCGEEMWiRIYQQgghikWJDCGEEEIUixIZQgghhCgWJTKEEEIIUSxKZAghhBCiWJTIEEIIIUSxKJEhhPTo6aefRlFRkdRhEEJInyiRIYQQQohiUSJDCCGEEMWiRIYQQgghikWJDCEEP/74Iy677DIUFxdjwYIFePvtt7s95r///S9WrVqF6dOnY+zYsVi0aBH+9a9/dXrMb37zG0ydOhUul6vb82+88UYsXLgwZP8NhJDopJY6AEKItI4dO4abbroJKSkpuOOOO8BxHJ5++mmkpqZ2ety///1vDB8+HPPmzYNarcbXX3+NBx98EIIg4JprrgEAXHLJJfjwww/x3XffYe7cud7n1tfXY8eOHbj99tvD+t9GCIl8jCAIgtRBEEKkc/vtt2Pr1q3YvHkzsrKyAAAnT57E0qVL4Xa7cezYMQCA3W6HXq/v9NybbroJZ86cwRdffAEA4Hkec+fOxaRJk/DEE094H/faa6/hkUceweeff46cnJww/ZcRQqIBTS0REsXcbje+++47LFiwwJvEAEBhYSFmzpzZ6bEdkxiTyYSmpiZMmTIFFRUVMJlMAACWZbF06VJ89dVXMJvN3sd/9NFHmDhxIiUxhJCgo0SGkCjW1NQEu92OoUOHdrsvPz+/088//fQTrr/+ekyYMAHnnnsupk+fjr///e8A4E1kAGDZsmWw2+3eUZqysjIcOnQIl1xySQj/Swgh0YpqZAgh/SovL8f111+PgoICrF27FoMHD4ZGo8GWLVvw2mv/v507Zk0dCsM4/gRrKR0Ude4iggXHdqsFlw6RIpmKInQulHwCpw6CXbN0Eu7QQiFkCQoOQQRd/AgOUkrBQcfSpdBypyu3tHfTKzH/3xSSw8t5tyfnnOSXPj8/l2NzuZwKhYJ835dlWfJ9X/F4XKZpbrADANuKIANEWDqd1t7enp6fn789e3p6Wl73+329v7/r7u7uyxbUeDz+sa5lWWq1WprP5+p0OiqVSkomk6tvAEDksbUERFgsFlOxWFQQBJrNZsv70+lUo9HoyzhJ+vvbgNfXV3me92Pd8/NzGYahZrOpl5cXVSqVNXUAIOpYkQEizrZtDYdD1et11Wo1fXx86P7+XrlcbvnF0snJieLxuK6urlStVvX29ibXdZXJZLRYLL7VTKfTOj09Va/XUyKRUKlU+s9dAYgKVmSAiDs8PFS73VYqlZLjOPI8T7Zt6+zsbDkmm83KcRwZhqHb21s9Pj7q4uJCl5eX/6z753CvaZra3d1dex8Aoon/yABYiyAIdH19rYeHBx0fH296OgC2FCsyANbCdV0dHBzo6Oho01MBsMU4IwNgpbrdriaTiQaDgRqNhgzD2PSUAGwxtpYArFQ+n9f+/r7K5bJubm60s8P7EoD1IcgAAIDQ4owMAAAILYIMAAAILYIMAAAILYIMAAAILYIMAAAILYIMAAAILYIMAAAILYIMAAAILYIMAAAIrd/Z52RY0PNChQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.catplot(data=tips, kind=\"bar\", x=\"day\", y=\"total_bill\", hue=\"smoker\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "_ouoQNjR6-tz", + "outputId": "cee97498-d3d8-45e3-ab7a-7ceeaa62ca1e" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHkCAYAAAAkQ8X2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN7tJREFUeJzt3XlclOX+//H3DIuKCi6hpqAiFZliYqWSW5pmKKbZ8ZQpLi3qcWk5tlAn81CPylN5WpSyxBKlb1qnzQyx1LTS0rJjnlNpfkXTNJdUNgFZZn5/+HV+TmDCzDAzF7yej8d5HO/tuj8zF928uZfrttjtdrsAAAAMZPV1AQAAAK4iyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxvKrILNhwwaNHTtWPXv2VOfOnXXttdfqqaeeUn5+vtN669at0w033KDY2FgNHjxY77zzjo8qBgAAvhTo6wLOlpOToy5duigpKUlNmjTRrl27NG/ePO3atUuvvfaaJOmbb77R9OnT9ac//UkPP/ywvvrqK/3tb39Tw4YNdf311/v4EwAAAG+y+Pu7lt566y3NmjVLn332mVq2bKnbb79dJ0+e1LJlyxzrzJw5Uz/++KMyMzN9WCkAAPA2vzojU5kmTZpIkkpLS1VSUqLNmzfrvvvuc1pnyJAhWrlypX755RdFRES4tJ/ycpuOHz/pbrkAADgJD2/s6xJqNb+6R+aM8vJynTp1St9//71SU1M1YMAARUREaN++fSotLVWHDh2c1o+OjpYkZWdn+6JcAADgI355RqZ///46fPiwJKlPnz6aO3euJCk3N1eSFBoa6rT+mekzy10VGOiXuQ4AAJyDXwaZV199VUVFRfrf//1fvfzyy5oyZYpef/31Gt2n1WpR06YNa3QfAADAs/wyyFx66aWSpLi4OMXGxmr48OH65JNPdNFFF0lShcex8/LyJElhYWEu79Nmsysvr9Dl7QEAqAx/JNcsvwwyZ4uJiVFQUJD27dunAQMGKCgoSNnZ2erTp49jnTP3xvz+3pnqKiuzubU9AADwLr+/KeS7775TaWmpIiIiFBwcrB49emj16tVO62RmZio6OtrlJ5YAAICZ/OqMzPTp09W5c2fFxMSofv362rFjhxYtWqSYmBgNHDhQkvSXv/xF48aN09///nclJCRo8+bNWrlypZ577jkfVw8AALzNrwbEe/XVV5WZmal9+/bJbrerTZs2GjRokG6//XY1atTIsd7atWv1/PPPa8+ePWrdurUmTZqkP/3pT27tm3FkAAA1gXFkapZfBRlfIsgAAGoCQaZm+f09MgAAAOdCkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwBwS3p6mm69daTS09N8XQrqIIIMAMBlp06dUlZWpmw2m1avztSpU6d8XRLqGIIMAMBlZWWlstttkiSbzaayslIfV4S6hiADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQJ9XcDZVq1apRUrVuj7779XXl6e2rVrp6SkJN10002yWCySpKSkJG3ZsqXCtpmZmYqOjvZ2yQAAwIf8KsgsXrxYbdq0UXJyspo2bapNmzZp1qxZOnTokKZPn+5Yr1u3bnrwwQedto2IiPB2uQAAwMf8Ksi8/PLLatasmWM6Pj5eOTk5ev311zV16lRZraevhIWGhqpr164+qhIAAPgLv7pH5uwQc0bHjh1VUFCgwsJCH1QEAAD8mV8Fmcps3bpVLVu2VKNGjRzztmzZoq5duyo2NlZjx47V119/7cMKAQCAr/jVpaXf++abb5SZmel0P8xVV12l4cOHq3379jpy5IgWLVqkiRMnaunSpYqLi3Nrf4GBfp/rAMCv/P64GRho5VgKr7LY7Xa7r4uozKFDhzRq1ChFR0frtddec9wf83uFhYVKTExUdHS0Fi5c6PL+7Ha748koAEDVFBQUaPjw4Y7pDz74wOkMOlDT/PKMTF5enu688041adJE8+bNO2eIkaSQkBD169dPq1evdmufNptdeXnchwMA1XHy5Emn6Zyckyot5Y/CszVt2tDXJdRqfhdkiouLNXnyZOXn52v58uVq3Lix1/ZdVmbz2r4AoDb4/XGzrMzGsRRe5VdBpqysTPfcc4+ys7P1xhtvqGXLlufdprCwUOvXr1dsbKwXKgQAAP7Er4JMSkqKPv30UyUnJ6ugoEDbtm1zLLvsssu0fft2paWladCgQWrTpo2OHDmi119/XUePHtULL7zgu8IBAIBP+FWQ2bhxoyRpzpw5FZatXbtW4eHhKi0t1XPPPaecnBw1aNBAcXFxSklJUZcuXbxdLgAA8DG/CjLr1q077zqLFi3yQiUAAMAEPOwPAACMRZABAADGIsgAAABj+dU9MgDwR9LT07R6daYGDx6i8ePv8HU5RrNaLbJa3R+4rqZeUWCz2WWz+eXA8/AzBBkARjh16pSysjJlt9u0enWmbrklSfXq1fN1WUayWi1q0iREAQHuB46gIOew0aRJQzVq5P5ItuXlNuXkFBJmcF4EGQBGKCsrld1+esRYm82msrJSgoyLrFaLAgKsSn1zow4cyXWrrbLSYqfpxxZ8rMCg+m612aZFmKaN7iWr1UKQwXkRZACgjjpwJFd7D5xwqw1b2Smn6X0Hc2QNJGDCe7jZFwAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIKMj6Wnp+nWW0cqPT3N16UAAGAcgowPnRly3WY7PeT6qVOnzr8RAABwIMj4UGVDrgMAgKojyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwCo9Rh8tPYiyACG4sAMVA2Dj9ZuBBnAQByY/RcB0/8w+GjtRpABDMSB2T8RMAHvI8gAgIcQMAHvI8gAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDFCJ9PQ03XrrSKWnp/m6FADAHyDIAL9z6tQpZWVlymazafXqTJ06dcrXJQEAziHQ1wUA/qasrFR2u02SZLPZVFZWqnr16vm4KnNZrRZZrRa32wkMtFaY/v08V9hsdtlsdrfbAeAbBBkANcZqtahJkxAFBLgfOIKCnMNGkyYN1ahRQ7fbLS+3KSenkDADGIogA6DGWK0WBQRYlfrmRh04kutWW2WlxU7Tjy34WIFB9d1qs02LME0b3UtWq4UgAxiKIAOgxh04kqu9B0641YatzPlepX0Hc2QN5JIfUNdxsy8AADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLF4/BoA4Jc8MZCixKjQtR1BBgDgV8Ia15fdZlNoaAOPtFdTo0LbbOU6caKIMONjfhVkVq1apRUrVuj7779XXl6e2rVrp6SkJN10002yWP7/u1refvttpaWl6eDBg4qKitK9996r/v37+7ByAICnNKwfLIvVqj0rF6ro2K9ut1dYUuY0vePNpxUS7N6vvwbNL1RU4p2MCu0H/CrILF68WG3atFFycrKaNm2qTZs2adasWTp06JCmT58uSfroo480a9YsTZkyRT179lRmZqamT5+uN954Q127dvXtBwAAeEzRsV9VdHif2+0Ul5Y7Tx/ZL0tQgNvtwj/4VZB5+eWX1axZM8d0fHy8cnJy9Prrr2vq1KmyWq168cUXNXToUN1zzz2SpJ49e+qnn35SamqqFi5c6KPKAQCAL/jVU0tnh5gzOnbsqIKCAhUWFmr//v3au3evEhISnNYZMmSIvvzyS5WUlHirVAAA4Af8KshUZuvWrWrZsqUaNWqk7OxsSVJUVJTTOtHR0SotLdX+/ft9USIAAPARv7q09HvffPONMjMz9eCDD0qScnNzJUmhoaFO652ZPrPcVZ54HM+d/XnqkUC4x4R+MaFGyXOPz9Y0f3/M19NM6RcT8F36nt8GmUOHDunee+9Vjx49NG7cuBrfn9VqUdOm7j+OVx019Ugg3GNCv5hQo0n8/TFf+C9P/ezAdX4ZZPLy8nTnnXeqSZMmmjdvnqzW04k3LCxMkpSfn6/w8HCn9c9e7gqbza68vEI3qq6+kydPOk3n5JxUaanlHGvDW0zoFxNqlE7/tWrCgT4vr0jl5Ta326Ff6p6q/Ox4+4/kusbvgkxxcbEmT56s/Px8LV++XI0bN3Ys69ChgyQpOzvb8e8z00FBQYqMjHRr32Vl7h/I3NlfWZnN6zWgIhP6xYQaTVJe7pnvj36pezz1swPX+dXFvbKyMt1zzz3Kzs5WWlqaWrZs6bQ8MjJS7du3V1ZWltP8zMxMxcfHKzg42JvlAkCdZ7EGSDpz1snyf9OA9/jVGZmUlBR9+umnSk5OVkFBgbZt2+ZYdtlllyk4OFgzZszQfffdp7Zt26pHjx7KzMzU9u3blZGR4bvCARjN32/29ed3+lisgQpp0VGFR35USIuOslj96tcK6gC/+onbuHGjJGnOnDkVlq1du1YRERFKTExUUVGRFi5cqFdffVVRUVGaP3++4uLivF1unZGenqbVqzM1ePAQjR9/h6/LATyGd/p4RuPInmoc2dPXZaCO8qsgs27duiqtN2rUKI0aNaqGq4EknTp1SllZmbLbbVq9OlO33JKkevXq+boswCN4pw9gPr8KMvA/ZWWlsttP38hms9lUVlZKkEGtwzt9AHP51c2+AAAA1UGQAQAAxuLSkgusVousVvcHuaqLTzgAAOBJBJlqslotatIkxCOPa9bUEw7l5Tbl5BQSZgAAtR5BppqsVosCAqxKfXOjDhxx7yWVZaXFTtOPLfhYgUH13WqzTYswTRvdiyccAAB1AkHGRQeO5GrvgRNutWErO+U0ve9gjqyBPBEEAEBVcbMvAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYjCMDeImnXm0h8XoLADiDIAN4gdVqUdOmDWS1BnikvZp6vYXNVq4TJ4r8MsxYrAGSLJLskiz/Nw2cX4DV4vjJsVpOT6P2IMgAXnD6bEyA9qxcqKJjv7rdXmFJmdP0jjefVkiwe/85N2h+oaIS7/Tb11tYrIEKadFRhUd+VEiLjrJYOXyhaoIDrOrVNlSb9ufp6shQBXvgXXnwHxwJAC8qOvarig7vc7ud4tJy5+kj+2UJqv1nKBpH9lTjyJ6+LgMGuqFjc93Qsbmvy0ANIJYCAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGNVeWTfgwcPurSD1q1bu7QdAADA+VQ5yAwYMEAWS/VftPXjjz9WexsAAICqqHKQefLJJ10KMgBQV/CWZcD7qhxkRo4cWZN1AIDxeMsy4H28/bqWCvDQATQw0Fph+vfzXGGz2WWz2d1uB/A3vGUZ8K4qB5n58+dXu3GLxaJp06ZVezu4LqxxfdltNoWGNvBIe0FBzmGjSZOGatSoodvt2mzlOnGiiDADAHALQaaWaVg/WBarVXtWLlTRsV/dbq+wpMxpesebTysk2L0TeQ2aX6ioxDtltVoIMgAAt1T5N9KOHTtqsg54WNGxX1V0eJ/b7RSXljtPH9kvS1CA2+0CAOAJ3CODWsNqtcjqgadEauK+IE/dswQAcEaQQa1gtVrUpEmIRwJDTd0XBADwvGoNiGe1WrVq1SoFBQVVaYA8i8WiNWvWuF0kcD5Wq0UBAValvrlRB47kutVWWWmx0/RjCz5WYFB9t9q8PKa1br6+q1ttAAAqqnKQ6d69uywWi6xWq9M04E8OHMnV3gMn3GrDVnbKaXrfwRxZA+u51Wbr8FC3tgcAVK7KQWbOnDl/OA0AAOBt3IEIAACM5dbNviUlJXrrrbe0YcMGHThwQJLUpk0b9evXT6NGjVK9eu6djgcAAPgjLgeZQ4cOaeLEidqzZ4/Cw8PVrl07SafHm/n888+VkZGhxYsXq1WrVh4rFgAA4GwuB5mUlBQdPHhQzz//vK6//nqnZatWrVJycrJSUlL08ssvu10kAABAZVwOMl999ZUmTJhQIcRIUkJCgn744QdlZGS4VRwAAMAfcflm34YNG6pZs2bnXH7BBReoYUMGEQMAADXH5SAzcuRIvffeeyoqKqqw7OTJk3r33Xd10003uVUcAADAH6nypaWPP/7Yabpjx45av369EhISNGLECMfNvnv37tUHH3ygsLAwxcTEeLZaAACAs1Q5yNx1112yWCyy20+/h+bsfy9YsKDC+ocOHdLMmTM1ZMgQD5UKAADgrMpBZsmSJTVZBwAAQLVV611L7jh16pRWrVql3r1764ILLnCrLQAAAMmLryjIz8/XQw89pF27dnlrlwAAoJbz6ruWztxTg9Ms1gBJZ94gbvm/aQAAfO/dd99VTEyM/vOf//i6lD/ESyN9yGINVEiLjpIsCmnRURarW6++AgCgzuE3p481juypxpE9fV0GAABG8rsg8/PPP2vRokX67rvvtGvXLnXo0EErV650WicpKUlbtmypsG1mZqaio6O9VSoAAHCRzWZTaWmp6tWr51Y7fndpadeuXdqwYYPatWv3h6GkW7duWr58udP/IiIivFgpAACeV1BQoCeeeEIDBgxQ586dFR8fr4kTJ+r777+XdPqP+cTERO3YsUNjx47V5ZdfrkGDBikrK0uStGXLFo0aNUpdunTR4MGDtWnTpgr7+OGHH3THHXeoW7duiouL0/jx47Vt27bz1pabm6s//elP6tu3r7KzsyVJJSUlevHFFzVo0CB17txZ/fr109NPP62SkhKnbWNiYvTYY49pxYoVGjp0qGJjY/X555+7+W354RmZAQMGaODAgZKk5ORk/fe//610vdDQUHXt2tWLlQEAUPNmz56t1atXa+zYsYqOjlZOTo62bt2q3bt3q1OnTpJOB4opU6ZoyJAhuv766/Xmm2/qr3/9q2w2m5588kndcsstSkxM1KJFi3TXXXdp/fr1atSokaTTJwzGjBmjhg0b6o477lBgYKCWL1+upKQkZWRk6PLLL6+0ruPHj+u2225Tbm6uMjIy1LZtW9lsNv3lL3/R1q1b9ec//1nR0dH66aeflJ6err179+qll15yauOrr77SqlWrNGbMGDVt2lRt2rRx+/vyuyBjtfrdSSIAALxmw4YN+vOf/6zk5GTHvDvvvNNpnSNHjmju3LlKTEyUJF199dVKSEjQzJkztWzZMkcYiY6O1u23366PP/5YI0eOlCQ9//zzKi0t1ZtvvqnIyEhJ0ogRI3T99dfrmWeeUUZGRoWajh49qokTJ6q4uFgZGRmOAPLhhx9q06ZNWrp0qa688krH+hdffLFmz56tb7/9Vt26dXPM37Nnjz788ENddNFFnviqJHnx0lJYWJiWLFmizp07e6S9LVu2qGvXroqNjdXYsWP19ddfe6RdAAB8KTQ0VN99950OHz58znVCQkI0dOhQx3SHDh0UGhqq6OhopzMqZ/69f/9+SVJ5ebk2btyogQMHOkKMJLVo0UKJiYnaunWrCgoKnPZ1+PBhjR07VqWlpXrjjTeczqJkZWUpOjpaHTp00PHjxx3/69nz9EMsmzdvdmrrqquu8miIkapxRub99993aQcjRoyQJAUFBbk9OvAZV111lYYPH6727dvryJEjWrRokSZOnKilS5cqLi7O5XYDA8+f6wICOGPkKZ78LukXz6Ff/BP94p9q4ru87777lJycrGuuuUadOnVSv379NGLECKfg0apVK1ksFqftGjdurFatWlWYJ0l5eXmSTl8eKioqUlRUVIX9RkdHy2az6ddff9XFF1/smH///fcrMDBQmZmZCg8Pd9rm559/1u7duxUfH1/pZzl27JjTdE3cy1rlIHP2Ka6qslgsjiDjSXfddZfT9DXXXKPExES99NJLWrhwoUttWq0WNW3a0BPloYpCQxv4ugRUgn7xT/SLf6qJfhkyZIiuvPJKffLJJ9q4caMWLVqkhQsXat68eerXr58kKSCg8gFUzzXfnQFpr7vuOr3//vtasmSJZs6c6bTMZrPpkksu0UMPPVTptr8PVvXr13e5jnOpcpBZu3atx3fuKSEhIerXr59Wr17tchs2m115eYXnXS8gwFqnDigBVosskuySrJbT056Sl1ek8nKbR9qqa/1Sk+gX/0S/+Keq9IsrfyS3aNFCY8aM0ZgxY3Ts2DHdeOONWrBggSPIuKpZs2Zq0KCB9uzZU2FZdna2rFarLrzwQqf5Y8eOVdu2bfXiiy+qcePGmjRpkmNZ27ZttWPHDsXHx1c4Q+QtVQ4ynriz2N+VlXnmIFGbBAdY1attqDbtz9PVkaEK9uBp1PJyG9+5H6Jf/BP94p883S/l5eUqLCx0XBKSpObNm6tFixYVHmd2RUBAgHr16qW1a9fql19+cVzq+e2337Ry5UpdccUVjqebzjZt2jQVFBRo7ty5atSokW699VZJUkJCgjZs2KC33npLN998s9M2xcXFstlsCgkJcbvuP+J3Ty25orCwUOvXr1dsbKyvS6mVbujYXDd0bO7rMgCg1jt58qT69eunwYMH69JLL1VISIg2bdqk//znPy7d4lGZe+65R5s2bdKtt96qW2+9VQEBAVq+fLlKSkp0//33n3O7Bx98UAUFBXrsscfUsGFDDR8+XMOHD9eqVas0e/Zsbd68Wd26dVN5ebmys7OVlZWltLS0Gv/d7FaQOXr0qP71r3/phx9+UH5+vmw251RqsViUnp5erTaLioq0YcMGSdKBAwdUUFDgGOSne/fuys7OVlpamgYNGqQ2bdroyJEjev3113X06FG98MIL7nwcAAB8qn79+ho9erQ2btyojz/+WHa7XW3bttXs2bMdZ0HcdfHFF+uNN97Q3Llz9corr8hut6tLly565plnzjmGzBkpKSkqLCzUww8/rIYNG2rgwIFKTU3V4sWL9cEHH+iTTz5RgwYNFBERoaSkpEpvKvY0l4PMjh07NG7cOBUXFysqKko//fSTLrroIuXl5enw4cNq27ZthZt8quLYsWO6++67neadmV6yZIlatWql0tJSPffcc8rJyVGDBg0UFxenlJQUdenSxdWPAwCAzwUHB+uBBx74w3WWLl1a6fx169ZVOn/nzp0V5l122WVatGjRH+5n5MiRjrFnzrBarZo7d67mzp3rmBcUFKQ777yzwlg3VanDE1wOMnPnzlVISIjef/991a9fX1dffbUefvhhxcfHa9WqVfr73/+uZ599ttrtRkREnPfDnu/LBwAAdYPLd25+++23uvnmm9W6dWvHaLxnHu9KSEjQsGHD9PTTT3umSgAAgEq4HGRsNpsuuOACSadHIQwICFBOTo5jeUxMjOMFVwAAADXB5SATERGhX3755XQjVqsiIiL05ZdfOpZ/++23To+PAQAAeJrL98j07t1bWVlZuvfeeyVJo0eP1pw5c7R//37Z7XZt2bJFEydO9FihAAAAv+dykJkyZYqGDh2q0tJSBQUFafz48SosLNTHH38sq9WqqVOnavLkyZ6sFcD/qckRlwHAJC4HmbCwMIWFhTmmLRaLpk6dqqlTp3qkMADnVpMjLgOASVw++o0bN87pnpjf++qrrzRu3DhXmwdwHjd0bK4510Ux6jKAOs3lILNlyxb99ttv51x+/Phxff311642DwAAcF5unY/+ozdd/vzzz2rYsPpv/AQAAKiqat0j89577+m9995zTL/88st66623KqyXn5+vnTt3qm/fvu5XCAAAcA7VCjJFRUU6ceKEY/rkyZOOUX3PFhISoltuuUXTpk1zv0IAAOAXkpKS9Ntvv+mDDz5QcHCw07K77rpL3333nTIzM716RaZaQebMK78lacCAAfrb3/6ma6+9tkYKAwCgtrPZ7LL6aPgEV/adkpKi4cOHKy0tzekp5c8++0yrV69Wamqq128rcfnx63O9ZRMAAFSN1WpR6psbdeBIrlf326ZFmKaN7lXt7Tp06KDJkydrwYIFGjZsmCIjI3Xq1Ck9/vjjuvbaazVw4MAaqPaPuRxkztiyZYvWr1+vgwcPSpJat26ta665Rt27d3e7OAAAarsDR3K198CJ86/oJyZNmqSVK1cqJSVFaWlpWrBggX777TctXbpUhw4d0rPPPqvPP/9cRUVFio2N1UMPPaTOnTs7tl+7dq1SU1O1Z88eBQQEqG3btrr77rvVr18/l+pxOciUlJRo5syZWrNmjex2u0JDQyVJeXl5ev311zVo0CDNnTtXQUFBru4CAAD4meDgYD322GNKSkrSSy+9pLS0NM2cOVMNGjTQjTfeqJCQEM2aNUuNGzfW0qVLNX78eH388cdq3ry59u3bp7vvvltDhw7VzJkzZbPZtGPHDuXmun5GyuUgk5qaqk8++US33XabbrvtNsebsI8dO6bXXntNixYtUmpqqu655x6XiwMAAP6ne/fuGjlypF544QV16tRJSUlJSk1NVV5ent5++201b356oM74+HgNHjxYixYt0gMPPKAffvhBpaWlmjVrlho1aiRJ6tOnj1u1uDyOzIcffqgbb7xRDzzwgCPESFLz5s11//33a8SIEVqxYoVbxQEAAP80adIkSdLEiRMVEBCgjRs3qkePHgoLC1NZWZnKyspktVp11VVX6T//+Y8kKSYmRgEBAbrvvvu0bt065efnu12Hy2dkjh49qi5dupxzeZcuXfTRRx+52jwAAPBjZ24dOfP/J06c0LZt29SpU6cK67Zt21aSFBUVpQULFuiVV17R9OnTZbVa1bt3bz366KNq3bq1S3W4HGRatWqlLVu2aPTo0ZUu//rrr9WqVStXmwcAAAYJCwtTnz59dPfdd1dYdvaYM3379lXfvn1VUFCgzz77TE899ZQeeughpaenu7Rfl4PMiBEjNG/ePDVu3FgTJkxQu3btZLFYtHfvXqWnpysrK0szZsxwtXkAAGCQq6++WitWrFB0dLRCQkLOu36jRo00ZMgQbd++XStXrnR5vy4HmSlTpmj//v1666239PbbbztG+LXZbLLb7brxxhs1ZcoUlwsDAADmmDBhgj788EONHTtW48aNU+vWrXX8+HF99913atmypSZMmKBly5Zp27Zt6tOnj8LDw/XLL79oxYoV6tWr+mPanOFykDl8+LBmz56tCRMm6LPPPtOBAwckSW3atFHfvn3Vrl07HTp0yOVrXgAA1AVtWoTVin02bdpUy5cv1/PPP69nn31WOTk5at68uS6//HINGjRI0umbfT/99FM99dRTysnJUXh4uIYOHVrp5aiqcjnIXHvttXrmmWeUmJioSy+9tMLyzMxMzZw5Uz/++KPLxQEAUJvZbHaXRtj11L7deT1CRESEdu7c6TQvPDxcTzzxxDm3iYuL0yuvvOLyPivj8uPXdrtddrv9nMtLS0srfaEkAAA4zVfvWfL1vj2pWmdkCgoKlJeX55jOyclxvJrgbHl5ecrMzFR4eLj7FQIAAJxDtYLM4sWLlZqaKkmyWCx68skn9eSTT1a6rt1uZ1RfAABQo6oVZHr16qWQkBDZ7XY988wzGjp0aIWBbywWixo0aKBOnTopNjbWo8UC3mCxBkiySLJLsvzfNADAH1UryMTFxSkuLk6SVFRUpOuuu06XXHJJjRQG+IrFGqiQFh1VeORHhbToKIvV7ZfEAwBqiMtH6OnTp3uyDsCvNI7sqcaRPX1dBgDgPHisCAAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAABAlcybN08xMTEaM2ZMhWVPPPGEBgwY4PWaCDIAAPiI3WYzct/ffPONNm/e7MFqXMcAGQAA+IjFatWelQtVdOxXr+63QfMLFZV4p0vbhoSE6KKLLtJLL72kHj16eLiy6iPIAADgQ0XHflXR4X2+LqNapk6dqilTpujbb79Vt27dKl3nwIED+sc//qGNGzeqvLxcV1xxhR544AHFxMR4tBYuLQEAgGrp37+/LrvsMsf7F3+voKBASUlJ+uGHH5SSkqJnnnlGJ06c0NixY/Xrr549+0SQAQAA1faXv/xFX3zxhbZv315h2bvvvquDBw/qlVdeUWJiogYNGqTXXntNZWVlSk9P92gdBBkAAFBtgwYN0iWXXFLpWZlvvvlGF198saKjox3zmjRpoquvvlpbt271aB0EGQAAUG0Wi0VTpkzR+vXr9f333zsty8vL0wUXXFBhm+bNmys3N9ejdRBkAACASxISEhQVFaWXXnrJaX5YWJiOHTtWYf1jx44pLCzMozUQZAAAgEusVqumTJmitWvXaufOnY75V1xxhX766SdlZ2c75uXm5mrTpk264oorPFuDR1sDAAB1yrBhwxQZGek0QN7IkSPVunVrTZ48WR999JHWrFmj2267TYGBgRo/frxH9884MgAA+FCD5hcavc+AgABNmjRJjzzyiGNeo0aNtHTpUs2ZM0ezZs2SzWZTt27dlJGRoQsv9OznJcgAAOAjdpvN5RF2PbFvi7V6F2ZmzJihGTNmVJg/atQojRo1ymlemzZtNG/ePLdqrAouLQEA4CPVDRK1Zd+eVDs+BQAAqJMIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAY/ldkPn555/16KOPavjw4brsssuUmJhY6Xpvv/22Bg8erNjYWN1www369NNPvVwpAADwNb8LMrt27dKGDRvUrl07RUdHV7rORx99pFmzZikhIUELFy5U165dNX36dG3bts27xQIAAJ/yu3ctDRgwQAMHDpQkJScn67///W+FdV588UUNHTpU99xzjySpZ8+e+umnn5SamqqFCxd6s1wAAOBDfndGxnqedz/s379fe/fuVUJCgtP8IUOG6Msvv1RJSUlNlgcAAPyI3wWZ88nOzpYkRUVFOc2Pjo5WaWmp9u/f74uyAACAD/jdpaXzyc3NlSSFhoY6zT8zfWa5KwIDz5/rAgKMy35+y5PfJf3iOfSLf6Jf/BPfpe8ZF2RqitVqUdOmDX1dRp0SGtrA1yWgEvSLf6Jf/BP94nvGBZmwsDBJUn5+vsLDwx3z8/LynJZXl81mV15e4XnXCwiw8oPrIXl5RSovt3mkLfrFc+gX/0S/+Keq9At/JNcs44JMhw4dJJ2+V+bMv89MBwUFKTIy0uW2y8o8c5BA1ZSX2/jO/RD94p/oF/9Ev/iecRf3IiMj1b59e2VlZTnNz8zMVHx8vIKDg31UGQAA8Da/OyNTVFSkDRs2SJIOHDiggoICR2jp3r27mjVrphkzZui+++5T27Zt1aNHD2VmZmr79u3KyMjwZekAAMDL/C7IHDt2THfffbfTvDPTS5YsUY8ePZSYmKiioiItXLhQr776qqKiojR//nzFxcX5omQAAOAjfhdkIiIitHPnzvOuN2rUKI0aNcoLFQEAAH9l3D0yAAAAZxBkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMZWSQeffddxUTE1Phf88++6yvSwMAAF4U6OsC3JGWlqbGjRs7plu2bOnDagAAgLcZHWQ6deqkZs2a+boMAADgI0ZeWgIAAJAMDzKJiYnq2LGjrr32Wr3yyisqLy/3dUkAAMCLjLy0FB4erhkzZujyyy+XxWLRunXr9Pzzz+vw4cN69NFHXW43MPD8uS4gwOjs51c8+V3SL55Dv/gn+sU/8V36npFBpk+fPurTp49junfv3qpXr57S09M1ZcoUtWjRotptWq0WNW3a0JNl4jxCQxv4ugRUgn7xT/SLf6JffM/IIFOZhIQEvfbaa/rxxx9dCjI2m115eYXnXS8gwMoProfk5RWpvNzmkbboF8+hX/wT/eKfqtIv/JFcs2pNkPGEsjLPHCRQNeXlNr5zP0S/+Cf6xT/RL75Xay7uZWZmKiAgQJdddpmvSwEAAF5i5BmZ22+/XT169FBMTIwkae3atXrrrbc0btw4hYeH+7g6AADgLUYGmaioKL3zzjs6dOiQbDab2rdvr4cfflhJSUm+Lg0AAHiRkUHmkUce8XUJAADAD9Sae2QAAEDdQ5ABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsY4PM7t27NXHiRHXt2lW9evXS008/rZKSEl+XBQAAvCjQ1wW4Ijc3V+PHj1f79u01b948HT58WHPmzFFxcbEeffRRX5cHAAC8xMggs2zZMp08eVLz589XkyZNJEnl5eVKSUnR5MmT1bJlS98WCAAAvMLIS0ufffaZ4uPjHSFGkhISEmSz2bRx40bfFQYAALzKyCCTnZ2tDh06OM0LDQ1VeHi4srOzfVQVAADwNovdbrf7uojq6tSpk+6++25NmjTJaX5iYqLi4uL0+OOPV7tNu90um+38X4XFIlmtVuUWFKu83Fbt/dS04KAANQqpp9KTebLbyn1dTqUs1gAFNQyVzWaTp3766Bf30S/0i7+obf0SEGDkOQNjGHmPTE2wWCwKCLBUef2wRvVrsBr3BTUM9XUJ52W1ev4/bvrFffSLf6Jf/FNN9Auqx8geCA0NVX5+foX5ubm5CgsL80FFAADAF4wMMh06dKhwL0x+fr6OHj1a4d4ZAABQexkZZPr27atNmzYpLy/PMS8rK0tWq1W9evXyYWUAAMCbjLzZNzc3V0OHDlVUVJQmT57sGBBv2LBhDIgHAEAdYmSQkU6/ouDxxx/Xv//9bzVs2FDDhw/Xvffeq+DgYF+XBgAAvMTYIAMAAGDkPTIAAAASQQYAABiMIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi8/drPxMTEnHedp556Sm3atNG4ceP0r3/9S7GxsV6oDFUxb948zZ8/v8L8iy++WCtXrqx0m+TkZP33v/8953K4ZsWKFVqyZIn27Nkju92uli1bqlu3bvrrX/+q5s2bV7mdzZs369///remTJlSg9XWfp7qD+D3CDJ+Zvny5U7TN998s5KSkpSYmOiY17ZtW+3atcvbpaGK6tevr/T09ArzzmXq1KkqLCys6bLqlIULF2ru3LmaMGGC7rrrLtntdu3atUsffvihjhw5Uq1fnFu2bNFrr71GkHGDJ/sD+D2CjJ/p2rVrhXkXXnhhpfNrUnFx8R/+8sW5Wa3WKvXXme+4bdu2NV9UHbN06VLdeOONSk5Odszr16+f7rjjDtlsNh9WVjfRH6hJ3CNjuLy8PM2cOVNxcXHq37+/Fi5c6LQ8KSlJkydPdpr3448/KiYmRps3b3bMi4mJ0auvvqpnnnlGvXr1Unx8vFfqr0vO9R0nJyc7nXGD+/Ly8tSiRYtKl1mt//+w9/7772v06NHq3r27rrrqKiUlJWn79u2O5WcuFRYWFiomJkYxMTFKSkqq8fprm6r2R0xMjBYtWuS0fPHixU6X3Ddv3qyYmBht3LjxD499qDs4I2O42bNna/jw4UpNTdWaNWv07LPPKiYmRn379q12W0uWLNHll1+uJ554QmVlZTVQbd3x++8vICBAEt+xt3Tq1EnLli1TRESErrnmGoWHh1e63i+//KIRI0aobdu2Kikp0UcffaQxY8ZoxYoVioqK0qhRo3To0CGtXLnScbmwUaNG3vwotUJV+6M6PHnsg9kIMoa77rrrNGPGDElSfHy81q9fr9WrV7v0H3NYWJjmz58vi8Xi6TLrlMLCQnXq1Mlp3tNPPy2J79hbZs+erenTp+uRRx6RJEVERKh///6aMGGCIiIiHOtNnz7d8W+bzaZevXpp+/bteu+99/TXv/5VrVq1UqtWrap8uRCVq2p/VIcnj30wG0HGcL1793b822KxKDo6WocOHXKprb59+/IL1gPq16+vjIwMp3mRkZGS+I695ZJLLtHKlSv15Zdf6osvvtDXX3+tpUuX6t1339Ubb7yhjh07SpJ2796tf/7zn/r3v/+tY8eOObbfu3evjyqvnaraH9XhyWMfzEaQMVzjxo2dpoOCgpSfn+9SWzw54BlWq/Wcj8TzHXtPcHCw+vXrp379+kmSPv/8c02ePFmpqamaP3++CgoKdNttt6lZs2ZKTk5W69atVa9ePT3yyCM6deqUj6uvfc7XH9XlyWMfzEaQqeWCg4NVWlrqNC83N7fSdTlTUPP4jn2nT58+uvTSS7V7925J0rZt23To0CG98soruvTSSx3r5efnq1WrVr4qs874fX9IlR+v8vLyvF0aDMNTS7Vcq1atHANQnbFx40YfVgTUvN9++63CvOLiYv3666+64IILHNPS6b/kz/j222914MABp+2CgoJUUlJSg9XWflXpD+n08ersYCNJmzZtqvH6YDbOyNRygwcP1r/+9S89/vjjGjhwoL799lutXr3a12UBNWrYsGHq37+/evfurRYtWujw4cPKyMjQiRMnNH78eEmnx2wKCQlRSkqKJk2apMOHD2vevHlq2bKlU1vR0dEqKytTenq64uLi1KhRI3Xo0MEXH8tYVekP6fTxKj09XbGxsYqKitKKFSt0+PBhH1YOExBkarm+ffvq/vvvV0ZGht577z317dtXKSkpmjBhgq9LA2rM9OnT9emnn2rOnDk6fvy4mjZtqpiYGC1evFg9e/aUJF1wwQV64YUX9PTTT2vq1Klq3769UlJSlJaW5tRW//79deutt+rVV1/VsWPHdNVVV2np0qW++FjGqkp/SKdHuT527JhSU1NlsVh08803a9y4cZozZ44Pq4e/s9jPvuYAAABgEO6RAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADoFLz5s1TTEyMr8sAgD9EkAEAAMYiyAAAAGMRZAAAgLEIMgD0zTff6KabblJsbKwGDhyoZcuWVVjnnXfe0bhx4xQfH6/OnTtryJAh+p//+R+ndR588EH16NFDpaWlFba/7bbbNHjw4Br7DADqJt5+DdRxO3fu1O23365mzZppxowZKisr07x589S8eXOn9d58801dfPHFGjBggAIDA/Xpp58qJSVFdrtdY8aMkSQNHz5c77//vr744gv179/fse3Ro0f11Vdfadq0aV79bABqP95+DdRx06ZN0+eff66srCy1bt1akrR7924NGzZM5eXl2rlzpySpuLhY9evXd9r29ttv188//6w1a9ZIkmw2m/r3769u3brpueeec6y3ePFizZkzR5988okiIyO99MkA1AVcWgLqsPLycn3xxRcaOHCgI8RIUnR0tHr37u207tkhJj8/X8ePH1f37t21f/9+5efnS5KsVquGDRumdevWqaCgwLH+ihUrFBcXR4gB4HEEGaAOO378uIqLi9WuXbsKy6Kiopymt27dqgkTJqhr16668sorFR8fr3/+85+S5AgykjRixAgVFxc7ztJkZ2fr+++/1/Dhw2vwkwCoq7hHBsB57du3TxMmTFCHDh2UnJysCy+8UEFBQdqwYYMWL14sm83mWPeiiy5Sp06dtGLFCo0YMUIrVqxQUFCQEhISfPgJANRWBBmgDmvWrJnq16+vn3/+ucKyPXv2OP69bt06lZSU6OWXX3a6BLV58+ZK2x0xYoTmzJmjI0eOaOXKlbrmmmsUFhbm+Q8AoM7j0hJQhwUEBKh3795as2aNDh486Ji/e/duffHFF07rSdLZzwbk5+frnXfeqbTdxMREWSwWPfHEE9q/f79uuOGGGvoEAOo6zsgAddyMGTP0+eefa8yYMRo9erTKy8uVkZGhiy66yPHEUq9evRQUFKQpU6bolltu0cmTJ/X222+refPmOnr0aIU2mzVrpj59+igrK0uhoaG65pprvPypANQVnJEB6rhLL71UixYtUtOmTfXiiy/qnXfe0YwZMzRo0CDHOh06dNCLL74oi8Wif/zjH1q2bJn+/Oc/a9y4ceds98zNvQkJCQoODq7xzwGgbmIcGQA1Ys2aNZo2bZreeOMNXXnllb4uB0AtxRkZADXi7bffVmRkpK644gpflwKgFuMeGQAe9dFHH2nnzp1av369/va3v8lisfi6JAC1GJeWAHhUTEyMQkJCNGTIEKWkpCgwkL+XANQcggwAADAW98gAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGP9P33D0q/3s4knAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Multivariate views on complex datasets" + ], + "metadata": { + "id": "TbEcUDW57EMb" + } + }, + { + "cell_type": "code", + "source": [ + "penguins = sns.load_dataset(\"penguins\")\n", + "sns.jointplot(data=penguins, x=\"flipper_length_mm\", y=\"bill_length_mm\", hue=\"species\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + }, + "id": "pEPLrl_J7Bg1", + "outputId": "e422cff9-c568-494e-c291-e4510c1bbbae" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAJICAYAAABi/uBYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV8m+e99/HPDWLLzLHjOA4zQxtom1LKDOvaYXe2nXVnfM6o2xk9W7ezwtYO2o6p7Uprm5UhxTRJG2Z0wBijWDc8fyhx4hoSxyDL/r33yproElyXJUtfXajYtm0jhBBCCDFMqcmugBBCCCFEMkkYEkIIIcSwJmFICCGEEMOahCEhhBBCDGsShoQQQggxrEkYEkIIIcSwJmFICCGEEMOahCEhhBBCDGsShoQQQggxrOnJrsBgUVfXmuwq9JiqKmRn+2hoCGJZqb2R+FBqCwyt9gyltsDQas9QagsMrfb0tC15ef4BqJXoivQMpTBVVVAUBVVVkl2VXhtKbYGh1Z6h1BYYWu0ZSm2BodWeodSW4UDCkBBCCCGGNRkmE6IP1TeF2bSvgQO1AUJRE8Mw8XudjMxPY1pFDtnp7mRXUQghxAdIGBKil2zbZt2uep5dVcnOg82oCuRmesj0uzEMk8qaVlauO4Rlw4SRmVy0oIzJ5dkoinSfCyHEYCBhSIhe2FvVwl9f2MGewy2U5Pm4eGEZY0Zk4HXr+P0eWlvDmKZNNGay61Az7+2s4+cPr2diWRY3XzCewmxvspsghBDDnoQhIU6DYVo8/voenl1VSV6Gh+vPHkNZYderQVxOjcnl2UwalcXuwy28/N5BvvPgu1x7dgXLZpdIL5EQQiSRhCEheqiuKcyvntjEgdoAi6YWMX9iwSmvGFEUhTEjMhhZkMbKdYf524s72V7ZxMcvnojHJb+OQgiRDLKaTIge2LKvge/9YTVNgSgfOnccCycXntbSWaeuce6cUq5YVM7GvUf44Z/XUt8U7ocaCyGEOBkJQ0KcolffP8TPH1pHXqaHm88fT1FO7+f7jCvN5MPnjSMcNfjBn9awt6qlD2oqhBCiJyQMCXEStm3z6Gu7+dNz25k+Jpdrllb06ZBWboaHm84dS5rHwU/+9h6b9zb02X0LIYQ4OQlDQnTDtCx+98xWnnl7P2fPHMF5c0r7ZUdZr9vB9eeMpSQvjbseWc/qbbV9/hhCCCE6J2FIiC7EDZN7H9/E25truHhhGXMn5Pfr4zl0lSsXj2b8yEx+/eQmVq4/3K+PJ4QQIkGWrwjRiWjM5J5HN7DzYBNXLimnojhjQB5XUxUuXlCGU9f4w7+3EY2ZnDe3dEAeWwghhisJQ0J8QDhqcNcj69lf3co1SysYWTCwp0krisJ5c0pw6ip/f2knkbjJpWeMGtA6CCHEcCJhSIgThKMGP39oHQfrglx79hhG5PqSUg9FUVg6oxinQ+PxlXuIxU2uWjJaNmcUQoh+IGFIiKNODELXnV1BUU5ygtAxiqJwxpRCHLrKM2/vJxozufHcsRKIhBCij0kYEgKIxAzufHjwBKETzZ2Qj66pvLDmADHD5JYLJvTLijYhhBiuJAyJYS8aN7nrkQ1U1ga47qwxgyoIHTNzbC4OXeHfqyqJxS0+cclENFUWgwohRF+QMCSGtbhh8cvHNrK3qoVrz6qgOElzhE7FlPIcdE3l6bf2Ezcs/uPyyeiaBKLBxLRM9rceYH/LQWpD9bTGA1iWiUNzkOFMp9BXwKj0Uop8BTLcKcQgImFIDFumZfHrf21ie2UjVy+poCQvLdlVOqkJI7PQVIV/vbmPex/fyGevmIpDl0CUTJZtsbVhB6uq3mPTka1EzSiaopHlysDr8KAqGoZlsKtpL83RFmxsMpzpzMifyoLC2YxML0l2E4QY9iQMiWHJsm3+sGIb63ce4YrF5ZQVDuzy+d4YW5LJlYtH88Qbe/jFoxu47eqpOHQt2dUadqJmjLcOv8srB17nSKSRXHc2M/OnUuYvJc+bg6Z0fE5iZpyqYDX7WipZU7OO1w6+SZm/hGUjlzAzfxqqIsFWiGSQMCSGHdu2eeSVXby1qZqLF5YxZsTAbKjYl0YXp3P1kgoeXbmHu/+5gc9fPQ2nQwLRQIiZcVYeeovn979CKB5mfFYF5448iwJv3kmHvpyag7L0UsrSS1k8YiH7WipZV7eJ323+G3l7nufi8vOYXTBdQpEQA0zCkBh2nl1VyXPvHuDc2SVMGpWd7OqctrJCP1cvHc1jK/dwz6MSiPqbZVusqlrLU3ueozUeYFL2eOYWzCTddXq9iqqiMjpjFKMzRlETqmNV1Vr+sOXvPL//Fa4cczGTcsb3cQuEEF2RMCSGlTc3VvHIq7tZOLmQWePykl2dXisr8HPVktE8+toefvnYRm67eprMIeoH2xt28c+d/+JwsJqxmaO5ovgiMl1916NY4M3jsooLqQpW88ahVdy7/kEmZo/jmrGXUugr6LPHEUJ0Tt41xbCxYfcRfr9iK9Mrclg0tTDZ1ekzZQV+rl4ymm2VjfzqyU0YppXsKg0ZdaEj/HrDH7hn3W+xsbl+3BVcVH5enwahExX5Crlm7GVcXH4ehwPV/PDdO/nnzn8Riof75fGEEAnSMySGhb1VLdz3+EZGF2dw3pzSIbesuazQz+WLynni9b08+MxWbr10EuoQa+NAihhRntv/Mi9VrsSre7iwbBnjsioG5HWjKApjMkczKr2M92s38MahVayufp8rx1zM/MLZQ+61K8RgIGFIDHk1jSHufHg9uZkeLj1j1JDdvbmiOIOLF5bx1Fv78Ll1bjpvnHxw9pBt26ytWcdju54mGA8xp2AGswum41AdA14XXdWYWziTidnjeP3Q2/x568O8efhdbhx/FcVpQ6dnU4jBQMKQGNJagjF+/tA6nA6Vq5aMHvLzaSaMzCIaM3lu9QHSvU4uW1Se7CqljOpgLf/Y/hg7m/ZQkTGKq8ZcetqTo/tSmtPH8vJzmdw6gVcPvMn/W30X545cyvJR56LrrmRXT4ghQcKQGLKiMZO7HllPKGJw03nj8LqGx8t9+phcQlGDJ97YS6bfxZLpxcmu0qBmWAbP7X+F5/a9hN/p54qKiyhLL012tToY6S/hQxOuYW3tOl6qXMl7Neu5efK1LMyakeyqCZHyhsengxh2DNPi3ic2crg+yA3LxpKZNry+QS+YVEBrKM6fnt1Gtt/FlNE5ya7SoHSw9TB/2PIPakK1zM6fzrzCWejq4H1b1FWN+YWzGZdZwUsHVnLn2t+wsWkxl5ZdgI4z2dUTImUN7TEDMSzZts0f/r2NrfsauWJROYXZ3mRXacApisK5s0soL0rn3sc3caA2kOwqDSq2bfPi/pXcseYe4maMG8ZdyRnF8wZ1EDpRljuTq8dcyjkjF7Fy3zt8763/Y2fjnmRXS4iUJWFIDDmPvLqbtzZVs3z+SEYVpSe7OkmjqgqXnjGKzDQndz2ynuZANNlVGhTCRoSfvfkbHtn+L6blTub68VeR581NdrV6TFEUZuRP4dNzP4xbd3P3+7/myd3/xrTMZFdNiJQjYUgMKSve2c+zqypZNmtESu8u3VecDo2rlowmbljc8+gGYvHh/UFZH27gx6vuYUPNNi6ruIAlJWegq6m9a3eWJ5Nrx1/KwqJ5vFj5Gj9/7z6OhBuTXS0hUoqEITFkvPLeQf756m7OmFLI7PH5ya7OoOH3Orly8WgO1Ab4w7+3Ydt2squUFJWtB/npml8QMaJ8ctYNjMkaOivtVEVlbuFMrhl7GQ2RJn68+i42H9mW7GoJkTIkDIkh4c2NVfz5+R3MHpfHmVNkD5YPKsrxsnx+Ge9sqeHZVZXJrs6A29W0l7ve+w1pDh83TLiCXN/Q7DUs8hVw4/irKPDm8av1v+Pfe1/EsmVHciFORsKQSHnvbKnmdyu2Mq0ih3NmjZCNBrswsSyLBZMK+Oeru9mwuz7Z1Rkwu5r2cu+6B8nz5HDlmIvxOjzJrlK/cutuLh19IfMKZ/P03ud5cNNfiJqxZFdLiEFNwpBIae9srub+p7YweVQ2F8wdesds9LXF04oYXZzOb/61meqGULKr0+8qWw9y3/rfke/N5bKKC3Fqw2P5uaIoLCiawyXl57P5yHb+b+29NEaakl0tIQYtCUMiZb25sYr7n04EoQvnjZQgdAoUReGShaPwuHTu+ecGwlEj2VXqN3WhI9y77kGyXBlcOvrCpBypkWwVmeVcO+5yWmIB7ljzCypbDya7SkIMShKGREp6+b2DPPjMVqaOzuHCeSOH7Hlj/cHl1Lhy8WgaW6Pc//QWrCE4oToYD3Hv+gdxqPrRHqHhF4SOyfPkcP24K/DoHu5c+2s21m9JdpWEGHQkDImUYts2T725l788v4PZ4/O4YG6pBKHTkJPu5uKFZazbWc9Tb+5LdnX6lGmZPLDxzwTiAS6rWI5HH9pzhE6Fz+Hl6rGXUOIv5jcb/sjrh95OdpWEGFQkDImUYVk2f3thJ4+/vpdFU4s4Z6ZMlu6NMSMyWDS1iCff2Mv7O+qSXZ0+8/juZ9jVvJeLRp1Hpisj2dUZNByqg4vLz2N63mT+sf1xnti1QlaaCXGUhCGREqJxk3uf2MjL7x/kgrmlnDGlUIJQH1g4uYBxJRnc//QWDtcHk12dXltT/T6vHHiDJSMWUuKXA2o/SFVUlpacyeIRC3mh8lX+sPnvxM14sqslRNJJGBKDXnMwxh1/e49Nexq4cvFopo9JvaMTBitFUVi+oIw0j4N7Ht1AMJK6H4zVwRr+uu1RxmeNYVru5GRXZ1CblT+Ni0adx7q6Tdyz7n4C8dQPwkL0hoQhMagdrAvwgz+upq4pwo3LxjJmhAx7nMjGxo6FsVrrMRsOYNbtwazdjVm3F6vhIFagHtuIYNP1JGmXIzGhuiUY41dPbMK0Um/oJGbGeWDTX0hz+jindIn0Gp6CsVmjuXrsJVQFq/npml9SE6xNdpWESJrUOKJZDEsbdtfz6yc3k+518uHzxpDuGx57xHTFtk3spmrMpsNYzTXYLXVYwQY4lWEO3YWaloOanoeSUYiWWYySnoeiJL4PZfldXH5mOY+8uouHXt7Fh84d18+t6VuP7nqKulA914+/alivHOupIl8h14+7kn/teZafrv0ln5j8YSbmpNZzL0RfkDAkBh3btnlh9QEeemUXFcXpXLxwFC5Hah+mebqsUBNmzS7Muj1YRw4kgo+ioaRloXgy0LKKUJ0+cHrA4QJVRyHxM8SKgxHHjoWwo0HscAtmfSX2gY3EbSsRkHJGouWPRsuvoKwwnXNmlfDimoMU5/o4a8aIZDf/lKyv28Qbh97hnNLF5HqG5jEb/SnDlc514y7n2X0vce/6B7m8YjnnjlwqvWtiWJEwJAYVw7T447PbWLm+inkT8lkyvXjYLZ23gg2Yh7dhHt6G1VoLioqano82YhJqegGKLwtF7X6Eu7ufmG0Z2IHGRO9Scw3xTS8Qt59DzShkatFE6stz+ctz28nL8DC5fHCHi6ZoM3/Z+ghjMsqZkjMx2dVJWS7NxaWjL+TtqtU8sXsFe5r3cfPE6/A6vMmumhADQsKQGDRagjHu+Ot77DzYzPL5I5k6OifZVRowViyEeWgr5qFNWE1VoDpQs4pxjD0TJasIpQ+HfhRVR0nPQ03Pg9Ip2EYMq6kK68gB4jte5wzTpNG1kHsfXcfXb5xGeVl+nz12X7Jsiz9u/geqorJspMwT6i1VUTmzeD5FvgJe2P8qP3z3Tj4y6XrGZY1JdtWE6HeKbQ/B7WdPQ11da7Kr0GO6rpKV5aOxMYhhpN6k1xPVNYe56+H1NAdjXLGonJK8tGRXqVc0TcHv99DaGsY0O/8Vs20Lq24v8QMbsKp3AqBmFqPmlqFmF6OoA/9dxTYNrIaDhGsrebRqJHF0/mdmPWOWXkDIU9xlW5LhxcrXeHzXM1w55mJG+ktO+Xan8tykiv5qS0uslRf2v8rBwGEWj1jI5RUXDsjmlUPpPa2nbcnL8w9ArURXpGdIJN2WfQ3c9/gm/D4nH7lwPH7P0J4obYUaMQ9sxKjcgB0NoHiz0EfOQM0bheJwJbVuiqaj5Y0iLW8UV5UG+fvaIHevz+S/dn8Hf14h+qRzcIxdiKInt54HWg/zr93PMit/Wo+CkDg16U4/V425hPX1m3nr8Lu8X7uBy0ZfyIKiOWjq8Jy/J4Y26Rk6SnqGkmPl+sP86bntlBX4uXn5ROKxeMp/W4eO39hty8Cs3omxfx3Wkf2gOVBzy9DyKxJzgAbpEM+RoMlD77Ywwm/xmbxV6HU7wenBMWEpzinnoqYN/FBmzIzx49V3Y9kW1427Er2HH87SM9QzgViQNw+/w7bGXeR6cjhv5FLmFc7CqfX9l5ah8J52jPQMpRYJQ0dJGBpYlm3zz1d38+yqSmaMyeWCeaVkZHiHxAcUHP+Qaj5cSXTfeowDGyEeQfXnoeZXoOaWJmUY7HTUtJo8vLqFijwHn12goh54H+PABjDi6OVzcE67EC1/9IDV5x/bH+ftw+9yw/iryDmN1WMShk5Pbaie1dXvsat5L27Nzaz8aUzPm8y4rIo+C0ap/J72QRKGUouEoaMkDA2caNzk/qe28P6OOs6aOYI54/PQdXXIfEDZZgy7ahvmgQ3EjxwE3Y2WNwo1fzSqN/U2jVRVldqgzV/fOsL4AiefPTsb3Y4nhvr2rcUONqIWjMU1/SK0sultexf1h/V1m/ntxj9yVskipued3i7TEoZ6pznawpYj29nRtIumaAuaojIirYgRacXke3LJdGfgd6Thcbhxa25cmhOn5sStuU46xJaq72mdkTCUWiQMHSVhaGA0B6Lc/c8NHKoPcsnCUYwtSYSDVP+AsrGxGw9jVG7AOLwFTANHTjFKbjlkjjjpUvjBTFVVvF4nWyoDPPZeCxMKnXzmrGycupKYBF6zC2P3aqzGgygZhbimX4Q+dmGfroADaIw08aN376TQV8Al5eef9tBiqr/WTpTMtti2TWO0iQOth6kJ1dIQaaQp2kzUjHV5G7fmIt3pJ8eTTaE3n1L/CMZmjSbbnQWk5ntaVyQMpRYJQ0dJGOp/B2sD3PXIeuKGxZVLRlOYfXwPk1T9gLJiQcyDmxKToQNHUFw+1LzROApH48vKJhSKYaXg8RYnOhaGQqEYe+uiPPF+KxV5Tj57dhYe5/GQZzYcxNj9LlbNThRPBo6pF+CcdDaKs/erkEzL5K73f0NdqJ4bJ1yNR3ef9n2l6mutM4OxLXEzTtiIEDWjxKw4cStO3DSIWjGiRoRgPERzrLUtPAEUevOZUzCDM0vnUVE0ImXe07ojYSi1SBg6SsJQ/9qwu55fPbGZzDQnVy0Zjd/bfo7BYHxT74qNhVW3H6NyPWb1DgDU7JLEZOiMAhRFaRcghlIYsiyLg41xnng/QEG6xueXZZPuaT/0YQWOYOxehXlwC+gOnJPOwTH1fFRv5mnX4YldK3ix8jWuGXsZxWmFvWpPKr3WTibV2xI2IhwMHGZP0z52N+/DtAzml87kvJKzKfAUJLt6vSJhKLVIGDpKwlD/sG2b5949wCOv7KJiRAaXLCzD2cnRGqnwpm5FA5iVGzAq12GHW1C8mWh5oztdEj+UwxBAbYvB4++34tJVPr8si6LMjkNidqQVY88ajMr1YJk4xi7EMW05WlZxjx5/Xd0m7t/4JxYXL2BWwfRetycVXmunaii1JWbG2N60k/dqN9IcaWZu4Swur1hOpiv15tmBhKFUI2HoKAlDfS8WN/nDs9t4Z3MNCyYVsHhaUZfzPAbrm7qNhVVfSXz/+4mNERUVNacUrWAMSlpOl+0Z6mEIoCVs8vj7AQJRi1uXZDJ1ROdDV3Y8ilG5DnPvWuxIK1rptMQKtOKJJ533czhQzc/W/pKR/hKWjzq3T7YgGKyvtdMxlNoCifZ4fU7e3vs+bx9eg2mbXDZ6OUtKFqL248T8/iBhKLVIGDpKwlDfqm0Kc+9jG6k6EmL5/JFMLMvq9vqD7U3djkcwDmzE2PcedqgRxZuBlj8m0Qukn3wZ8XAIQwBRw+bfGwPsqYtz6fQ0Lpqa1uVZcrZlYh7eirFnNXZLLWrWCBxTzutyE8fWWICfrvkFiqJw7dgr+uw0+sH2WuuNodQWaN+eYDTCW1XvsrF+C6MzRvGRSdeT60mdI3okDKUWCUNHSRjqO2u31/K7FdtwOzUuP3MU+VknP+xxsLypW83VGPvewzi0BWwLNbsUrXAsij+3R70SwyUMQWIo9J09Ed7eHWZcgZOPL84ky9v1EmrbtrGOVGLsXYNVsxucbhzjFuOYeFbbEFrMjHH3+7+hNlTP9eOvJN3Zdx8Ug+W11heGUlug8/YcChzmhf2vETEjXD/uSuYXzU5yLU+NhKHUImHoKAlDvReNmTz08k5eXXeYcaUZXDhvJG7nqW0smNQlwmYcs2o7xr73sJoOJ1aE5VegFVSgOE5v1dJwCkPHVDbE+ffGAJYNN87LYF65+6QB0go1Ye5fl9iUMhZCLRiDNu5M/hTawZbWSq4acwmFvr49KHYoBYih1Bbouj1RM8ZrB99ka8MO5hXM4vrxV+JO8pEwJyNhKLVIGDpKwlDvbK9s5HcrttLYGuPsmSOYMabr+TSdScabuhVsxNi/DuPA+sTu0BmFiV6gzBEoXQz1nKrhGIYAwnGLl7aG2F4dY8oIFzfOSyfPf/JAbJsGZs1OjAMbsOr2YSjQkl+GOnou0cIK7FMYmjxVQylADKW2wMnbs61hB68ceIMMVwafnPJhSvw9m4w/kCQMpRYJQ0dJGDo9LaEYj766m9c3VDEi18fy+SPJTu95b8pAvanbZjxxRljl+sQZYboTNa8crWAsqqfv3oyGaxg6ZldtjFe2hQjFLM6fnMaFU3y4Hd1PgDUskxV7X6CucR9na/nkNR9BDzRgazrR/NFEiscSLRyD5U3vVXuGUoAYSm2BU2tPY6SJf+97kcZIE9eMu4xFxQsG5dl+EoZSS2ocjiQGnVjc5KX3DvL0W/uwLDhvTgnTK3K7nDybTDY2VsMhzEObMA5tBSOK6s9HH7MANSd1zghLJWPynZRlO1i1N8zzmwOs3BHkwilpLB3nxdVJKArHIzy99zlqQnXML1mA05dPM6CGW3DWH8B55CAZa1egYGP4c4jmlxPLG0ksp7TX4Uiklix3JteNu4KVh97mH9sfZ3vDLj404Wq8jpPPTRSiK9IzdJT0DJ2acNRg5frDPLuqktZQnGkVOSyaWojX3buVPn39DdfGwm6swqjajnl4G3akJTEXKHcUal55n/YCdWa49wydqCVi8s7uCJsPR/E4FM6e4GPpeC8ZRzdrrA3W8czeF4iaMRYWzyHH3fnhq0o8iqOpGkfjYRxNtWjhFgBMdxrx7GLiWUXEMwsxMvIxvRmQYts4nI6h1BboeXt2Nu3hpcqVeHQ3t0y8nvHZYwaglqdGeoZSi4ShoyQMdc22bSprAry+4TBvbaomFreYPCqLBZMLyfL3zSTGvnhTt2NhzCP7sGr3Ytbuxo4GweFGzSpByytD8ecNWHe6hKGOmsMma/YlQpFlw/QSF/m51RyMvUWm28/8otn49FP/dq/EwugtdTha6tFaG9ADDahGFABLd2Kk52Kk52H4czD8OZj+HIy0bDSHPmQCxHAPQ5DYguGF/a9wIHCYJSMWcnnFcty9OK6lr0gYSi0Sho6SMNSeZdnsq25l3a561myrpbohRJrHwdTR2cwYk9vhOI3e6umboI2FHWjAaqrGajyM1VCJ1VoPgOLNQM0oQs0u6fGS+L4iYahrkbjF6somNhwME4l6cOgGE4tVxhcqlOeB+3RfWraNGg2hBRvRgs1ooSa0UAtaqBnVjCeuoiiYvkyUrHyi3ixiaUdDUnoulsvX67YNNAlDCbZts75+M28dfhev7uGacZcxM29qUucSSRhKLTJZQgAQjZtU1rSy+1ALOw82sb2yiVDUwO3UqCjO4MyphZQXpg/4nCDbjGOHm7EDjVihBuzWBqzWOqzWOjj6Aad40lH8uegFY1DTC1BcMndgMLJtaIg2sK1hF7VmDRUjfeQ5x3Ck2cf+ethQqaBgU5ABI3OgOAsKMiAnDfSuty06TlGw3D4st494Tkm7B1ZiYbRwK1qoGT3SiiPaiqu+Ck+4FYXEh67l9BBPz8PIyMNIz8fIyCOekY/dBwfNiv6lKAoz8qYwOqOM1w68yYOb/sLojFFcOeYiRmeMSnb1RAqQnqGjhkvPkGFa1DWFOVwf4vCRIIfqAhyoCVDdGMK2QddUinK8lOanMarQT3GOr98CkG3GsaNB7EgAJRbAaUcINzVghVqwwy2JEBQNHr+BqieCjzcj0fvjzULxZaM4+raXqi9Iz9BxESPKwdbD7GuppDnagsfhYaS/hHxP+1671ghUN0FNC9S3Qks4UaZgk+GFLB9keCDNA2ku8DoTvUhuR+KPywEuHRxal9OFjrZHwet1EQpFsQwDLdyS6EFq601qRgs1oxx9azTdacQzCzAyCohn5mNk5GP4c0E9lYTWv6RnqHP7Ww7wxuFV1IePMC5rDOeNXMqE7LEDeqSH9AylFglDRw2lMGRZNg2tEWobw9Q2hqlpDFHdEKL6SIi65giWlXjK3U6N3Aw3uRkeCrI8FGZ7yc30oPUy/Ni2lQgxkVasSOD438MB7Ghr2+XEI+1up2g6OL0oTi84PSguX+KPOw3FlZa4bBAuoe3McA5DUTNGY6SZ+vARakJ1NEWaQFHIdmdR5Csg25V5Ss9jzIDGIDSHoTUMgQiEYhCOQTgOptX5fSjYOPVEMHI5EoHJ6wSPA7wu8LkVstN1nIqBz2WT7k5cr12VLDMRkoJN6IFGtGBT4s/RcG4ramIuUkZeYl5Sel5ijlJa9oCGJAlDXbNtm11Ne1hTs57acB257mwWFM1hVv40Cvp4I8/OSBhKLRKGjkqlMGRaFi3BOM3BGBHTZv/hJmobw9Q3JcJPfUuk7Y1EVSAjzUVmmpNsv5vsdBfZfjc5GW58bv2Uw4WNDfEodjSEHQsmenSiIYgGsaOBRLiJBLCjAexYKDEmcoyiojg94PAkdnR2elCcXhSnJ3G5043mTsPr9xEOx1M+PMDQD0NxyyBshAnFIwTjIQLxIIF4gOZoM+GjIdehOch0ZpDtySLbnYlD7ZuzxSDx8jIsiMYToSlunvDHgNiJfzcgeuxPHCJxhbjZ/v4cmo3fk+h5Sv/AH78H/O5EoFKNaFsw0oNNbT1JajwxcdtWFExvBkZaDmZaFqYvE9OXgenNwPSkJ+YlqX3XOyFh6ORs26YqWMOmI1vZ1bSXuBUnz5PDhOxxjM4ooyy9lDxPTp/3GkkYSi0Sho4yzb77wLJtsI79WI/+94M/5OPFx8ttO/Fv206Ej2P3Y1tg2RaWDbZld7gvSIQeVVFQ1aP/VWj7g3KsAifcsl392v/dPrHMthLlXb1KlKMPoChtf1eO/V1Rj5ZxtBLdU5T2GSrVJaM9iVdH++er6yqc+Fqyj78ksI//1z7h37bNsf99kHLsf4qCqqhtfx+sFEXBsuzE75QNtq1gcezvYHXxQ1M4/lJXlWP/thP/xUbBQrHtxN9tq20+kvLBn9kJvy/H/p74z9FrHitr+zsd/m5z9OeuKm3vG+0qCkd/B1OLqqr99gXCBgzLSPyxTU78+FMVFU1RUdv+HH9NH/sfinLCO5ly9L2265+xpqmn/Nmiaan3XA0lEob6wZHmCHHDPPkVhRDiKBWLLDXUp/cZ0hQifdgTJTrK9WahDYL5Y6J3JAwJIYQQYliTrwxCCCGEGNYkDAkhhBBiWJMwJIQQQohhTcKQEEIIIYY1CUNCCCGEGNYkDAkhhBBiWJMwJIQQQohhTcKQEEIIIYY1CUNCCCGEGNYkDAkhhBBiWJMwJIQQQohhTcKQEEIIIYY1CUNCCCGEGNb0ZFdgsDBNi4aGYLKr0SOqqpCd7aOhIYhl2cmuTq8MpbbA0GrPUGoLDK32DKW2wNBqT0/bkpfnP63HScXProF0qj9X6RlKYaqqoCgKqqokuyq9NpTaAkOrPUOpLTC02jOU2gJDqz1DqS3DgYQhIYQQQgxrEoaEEEIIMaxJGBJCCCHEsCZhSAghhBDDmoQhIYQQQgxrEoaEEEIIMaxJGBJCCCHEsCZhSAghhBDDmoQhIYQQQgxrEoaEEEIIMaxJGBJCCCHEsCZhSAghhBDDmoQhIYQQQgxrEoaEEEIIMaxJGBJCCCHEsCZhSAghhBDDmoQhIYQQIkXZto1lW8muRsqTMCSEEEKkqIZoE0/sWpHsaqQ8CUNCCCFEirJtm5cOrEx2NVKehCEhhBBCDGsShoQQQggxrEkYEkIIIcSwJmFICCGEEMOahCEhhBBCDGsShoQQQggxrEkYEkIIIcSwJmFICCGESFFe02JsMJrsaqQ8CUNCCCFEinJbNh+qaUl2NVKehCEhhBAihXksO9lVSHkShoQQQggxrEkYEkIIIcSwJmFICCGEEMOahCEhhBBCDGsShoQQQggxrEkYEkIIIcSwJmFICCGEEMOahCEhhBBCDGsShoQQQggxrEkYEkIIIcSwJmFICCGEEMOahCEhhBAixRmWkewqpDQJQ0IIIUSKi5jRZFchpUkYEkIIIVJc1JAw1BsShoQQQogUJz1DvSNhSAghhEhxEekZ6hUJQ0IIIUSKCxvhZFchpUkYEkIIIVJcVIbJemVQhqHHH3+cK664gqlTpzJ//nw++clPEolE2spffvllLrvsMqZOncoFF1zAo48+msTaCiGEEMkVNWPJrkJK05NdgQ/61a9+xf3338+nP/1pZsyYQWNjI2+//TamaQKwZs0aPve5z3HNNdfwjW98g3feeYdvfvOb+Hw+LrzwwiTXXgghhBh4MoG6dwZVGNqzZw+//OUvue+++1i6dGnb5RdccEHb33/1q18xbdo0vve97wGwYMECDhw4wD333CNhSAghxLAkS+t7Z1ANkz322GOUlJS0C0InisVirFq1qkPoueiii9i9ezcHDx4ciGoKIYQQg0rMiie7CiltUIWh9evXM27cOO677z4WLlzIlClTuOGGG1i/fj0AlZWVxONxRo8e3e52FRUVQKJnSQghhBhuYjJnqFcG1TBZXV0dmzZtYseOHXznO9/B4/Hw61//mo9//OM8//zzNDc3A5Cent7udsf+faz8dOn6oMqGJ6Vparv/prKh1BYYWu0ZSm2BodWeodQWVVVwODRgaLRnoJ8bwzZS7jNsMBlUYci2bUKhEHfffTcTJkwAYPr06Zxzzjn85S9/YdGiRf322KqqkJXl67f770/p6Z5kV6HPDKW2wNBqz1BqCwyt9qR6W+qCR9hUs5311VspTi9g0cg55PizcenOZFet1wbquVF1UvYzbDAYVGEoPT2dzMzMtiAEkJmZyaRJk9i1axcXX3wxAK2tre1u19LSAkBGRsZpP7Zl2bS0hE779smgaSrp6R5aWsKYppXs6vTKUGoLDK32DKW2wNBqT6q3RVGglRb+99U7aYkef19/dMsKvrTwVsaljwVLSWINT19Pn5veBplQNEpjY7BX9zEUnerPdVCFoTFjxlBZWdlpWTQaZeTIkTgcDvbs2cPixYvbyo7NFfrgXKKeMozUezMBME0rZev+QUOpLTC02jOU2gJDqz0p2xaHwQNr/9YuCEFilOCed37HT8//Ng4jtXu9Buq5MUwjNV8Dg8SgGmA8++yzaWpqYuvWrW2XNTY2snnzZiZPnozT6WT+/Pk899xz7W63YsUKKioqKCkpGegqCyGEOE0RO8LW+l2dlsUtg0MtVShKavYMDTTLkiDUG4OqZ+jcc89l6tSpfP7zn+eLX/wiLpeL3/72tzidTj70oQ8B8JnPfIZbbrmF7373uyxfvpxVq1bx9NNPc+eddya59kIIIXrCtM1uy8NGBEUB2x6gCqUwzTKSXYWUNqh6hlRV5be//S0zZszg9ttv50tf+hJpaWn89a9/JS8vD4A5c+bwi1/8grVr1/KJT3yCp59+mh/84AcsX748ybUXQgjRE27NTa43u8vyUZmlWJYkoVOhm90HS9G9QdUzBJCdnc1Pf/rTbq+zbNkyli1bNkA1EkII0R9cloePz7yeO978VYeyc8rPwK2k9nyhgaRLaOyVQdUzJIQQYvgwDIuRvpH879lfZkJuBQ7NQYEvl0/Nvomrxl+MEh9039cHLYfMGeoVeaUJIYRIGsXQyNcK+dzsT2ApJm6nEzXuIBqVOTA94ZSJVb0iPUNCCCGSyrJslLiOy/KQ6UlPyT2Tks0pP7JekTAkhBBCpKhj/UFOW9JQb0gYEkIIIVKcW7JQr0gYEkIIIVKUfXRPSpkz1DsShoQQQogU55Sl9b0iYUgIIYRIcbK0vnckDAkhhBApTsJQ70gYEkIIIVKcLmGoVyQMiUFLUUDTVDm1WgghTkJ6hnpHdqAWg46iKHiVMHagnnjtfpwZeWg5JYTwyaGNQgjRCc2Sg1p7Q8KQGHTSlAB1//wx8foDbZepnjQKbridkKtAApEQQnyAZsrxJb0hw2RiUHEqcRpfeLBdEAKwwgFqH/4hHoJJqpkQQgxeqik9Q70hYUgMKlo8SHj3+52WmcFm7Nb6Aa6REEIMfor0DPWKhCExqNhGjOOn7XRkhlpkQrUQQnyAasaTXYWUJmFIDCqK04Pi9HRZ7sguwpZt54UQoh3pGeodCUNiUInrfjLPvKbTMs/omZhO/wDXSAghBj/FkjDUG7KaTAwqhgWOCYvJ0h00v/EIVrgVRXeSNu0c0hZcQcBwJruKQggxqFhIz1BvSRgSg07YdKKPXUr+6DlgRlE0BzHNR8CQuUJCCPFBpgKqhKFekTAkBiXDsDHwgupNzKeW33MhhOiUqSiy6WIvyZwhIYQQIoUZgGqZ2LYcyXG6JAwJIYQQKcw8tt2IDJWdNglDQgghRAozj02nlL2GTpuEISGEECKFHesZsiUMnTYJQ0IIIUQKa+sZMiQMnS4JQ0IIIUQKM5Ceod6SMCSEEEKksOM9Q7Gk1iOVSRgSQgghUpihHusZkjB0uiQMCSGEECnMVhP7JxvRYJJrkrokDAkhhBApTNEcAATCjUmuSeqSMCSEEEKkMEVPhKFQuDnJNUldEoaEEEKIFKZqTiwgHG5KdlVSloQhIYQQIoUpKMRVhUhEeoZOl5xaL4QQot84HBqKomCaFqYpB4n2F0PViEdbk12NlCVhSAiRUlRVQVEULMvCtpNdG9ElzSaqhlh58D2qArVMzZ/AuJwKnIYHy5Inrq8Zmo4RCSS7GilLwpAQIiVoKnjsIEbtPoyWejyFFZCWS9h2SygaZBTNZk9wLz9/+7dYdqI3aOX+VWS40/nO0i/ittOw5UnrU7bmgFgo2dVIWRKGhBCDnqaCO3iI6oe+jx2LtF3uzB9F7tVfo9X0JrF24oNiWoS7Vz3YFoSOaY608MB7f+ezsz6KEpePn75kOVw4Yi2YlommasmuTsqRCdRCiEHPYwepefiH7YIQQKx2H82v/QWXJnNRBgtFUTjYUkW8i3OyttTtIGpHB7hWQ5/idOOzLBqjMon6dEgYEkIMaoqiYDYcwo52PgQQ3PoODlN23h0sFAXCRqTb65i2OUC1GT4Upw+fYdEQaUh2VVKShCEhxKCmKGAEmrq+gm3Jad2DiGXZjMoo6bI815uNW3MNYI2GB83jx29aNMgu1KdFwpAQYlCzLBtnQVmX5ZovAxzuAayROBmP6mVp2YJOyz424zpclmeAazQMuHxoQGtrdbJrkpJkBpsQYtCz3Zm4SicRPbClQ1nm0g8RVX0gy7UHDSWuc+3ESxmTM4ontz1PY7iJiuwybpx6BfnOfAxD5nj1NdPlAyDaUpvkmqSmQRWGHnvsMb7+9a93uPzWW2/lK1/5CgA333wz7777bofrrFixgoqKin6voxBi4IUsF9mXfJ7Wdx4juOEVbDOO5s8mc+mH0EqmETMkCA02SszB3Jw5TF88BRQb1dbQTAdWF8+VoihomgxWnC7LlVhRabXWJbkmqWlQhaFjHnjgAfx+f9u/CwoK2pXPmjWL//7v/253WUlJ12PUQojUFzDduBbeiH/e5WDGsXUXEcVHTHY1HrRM00IznW3/tugYhBRFwXBEqArUsLNqL4X+XMZmjcahubFNZSCrm9JshxtDVdGDTcmuSkoalGFo8uTJZGdnd1menp7OjBkzBq5CQohBIWYoxPAlZjtaHPs/kaIUBWKOEP/v9V9QE6xvu9yhOfj6os9R5CzCkoVnp0ZRiDg9eMOyC/XpkD5JIYQQSWHrJn9c/0i7IAQQN+Pc8eZ9xLTul+iL9mJuH9mRKIZlJLsqKWdQhqFLLrmEiRMnsmzZMn7zm99gmu2/Grz77rvMmDGDqVOn8uEPf5jVq1cnqaZCCCFOV5QI66o2d1oWMaJUBWpQFBkqO1WGL52CmEFLtCXZVUk5g2qYLC8vj9tuu43p06ejKAovv/wyd911FzU1Ndx+++0AzJ07l8svv5xRo0ZRW1vLgw8+yMc+9jH+/Oc/M3PmzF49vq4PymzYpWOTDYfCpMOh1BYYWu0ZSm2BodWeVG9L0DKwO5lHdExrNIAjTU3Jg10H8rlRlMQBxnF/Dt5Du2hpPYzuz+33xx1KFHuQn5b3k5/8hD/+8Y+8+uqr5OfndygPhUJccsklVFRUcP/995/249i2Ld9AhBBiAB0JNfI/L/yY5kjnPRk/u+BbjMwcMcC1Si3RphpWPfoj8mYvJ9x6hMyVjxE453qmLbwu2VVLKYOqZ6gzy5cv53e/+x1bt27tNAx5vV6WLl3Kc88916vHsSyblpbUOvFX01TS0z20tIQxU3xFzVBqCwyt9gyltsDQak+qt0XXXHx46pXcu/qPHcpmF03Fq3ppbEzNo1Z6+txkZflO+7EsyyIUimKpXgKaQqRyB40TUvPn1tdO9ec66MPQQErVjcBM00rZun/QUGoLDK32DKW2wNBqT8q2xYCJ2eP54sJb+duGx6kJ1uNxuLlwzFksG7UYO6pjpPiKwYF4bmybo0OJCnVOJzl1B1Lz9ZBEgz4MrVixAk3TmDRpUqfloVCIV199lalTpw5wzYQQQvSWEtcZnzaeby76AhYGTocDh+kiFk18mKtqYvpCKs4bSoZ6j5eyxiPYsTCKU449OVWDKgx94hOfYP78+YwfPx6Al156iYcffphbbrmFvLw81qxZwwMPPMB5553HiBEjqK2t5fe//z11dXXcfffdSa69EEKI03Fsc0aX7ibL56OxMYjtiBM0g+xtrMTn9FKaMQKnKRsxnkyDLw21oRHz8Db0Ub1bVDScDKowVF5ezqOPPkp1dTWWZTFq1Ci+8Y1vcPPNNwOJ1WbxeJw777yTpqYmPB4PM2fO5H//93+ZNm1akmsvxNCnKOBWYmjxAFY0iOpOw3T4iFhOBvdSDJFKDD3KH9Y9zJrD69suc2gOvrzwVkZ6yiQQdcNw+wg4nDgq10sY6oFBFYa+9a1vdVteVlbGgw8+OEC1EUKcSFEgTQ1x5Ol7iB7Y1na5e9RUspd/llZTuuRF71mWxeuVq9oFIUhsxPjTN3/Nz86/HafpTVLtBj+3w8Nhrxv//vewrVtQ1NTcdmGgyU9JCHFKnHaUI0//ol0QAojs20jjc7/FrcWTVDMxlDRGWnhmx0udlpm2xfqazSm3J9xAcmkudro07HALZvX2ZFcnZcgrSghxStRYgOiBrZ2Whfe8j27IUl7Re5Zt0Rrr+rVUEzwie8J1w6O7OaRZ4M0kvuPNZFcnZUgYEkKcEivafdixo+EBqokYypyag9KM4i7LJ+eNS8k9lQaKV/eAomAUjsHY8y52TH4vT4WEISHEKVHdad2UKigumcchei/D7efmaVd1WpbnzWZk+ghZZt8NnyPxe9icWwJGnPjOt5Jco9QgYUgIcUpMhw93+fROy7zj5mLop7+DrhAnKvWV8KWFnyLHmwWAgsKsoil8c8l/4TDcSa7d4ObR3SiKQoNiohaOJbbpBWxbetJOZlCtJhNCDF4xXGRf+Gkan7+f8O73jl6q4B03j4xlHyNgytuJ6BuqpTPeP47vLPkSUTOKpmq4cKPENSzZw6FbqqLic/hojDShj55L7K2/Yu6XZfYnI+9eQohT1mp6SDv/s2QaQexoCMXlxdB9vQpCDtXGZYcwW+rANtEzCogqXmKWdFwPZ4ZhoeHCiwvMxGUSg05NujONI5EGtNIzULNLiL7/JFrZDJl43g0JQ0KIHomYOigZ4M5IXGCe/n05VQOlajPVK+7DjkcTF6o6WefcjHvsGURMR+8rnOI0TSWmhgmbYSxsfLoXp+nGNCUaiM6lO/3sbzmAbYM+9kxiqx7CrFyPXjYj2VUbtCQMCSGSxhlrourJu2j3nd8yaHzx9xTkl6H4y7GH8bCIokF1vIp73/09daEGADJcfj45+0OMTitHpn2KzmS5M9nWsJPWWCv+3DLUnJFEVz2MVjpNNmHsgvxUhBBJ4dShde2zdDX40fzWo7jU4b2RY0QN8sOVd7cFIYDmaCs/f+u3NJuNyKiH6EyOOzHx/HCwGkVRcEw8C6vpMPHtK5Ncs8FLwpAQIikU28BoONxludFUi2IN3zCk6wqv7nuLuGV0KLOxeWzrvzHVXoxRiiHLpblId/o52Jr4/VIzi9BGTCa2+lHsk+wXNlxJGBJCJIWlOHAWj+my3FlQjqW6BrBGg4upmOxq2Ndl+b6mgxj28A2Lonv53jz2tVS2HaDsmLgU24gRefefya3YICVhSAiRFHHDJm3aMhStk0nSikrGGVcN6xVlGhoj/IVdlhf4ctEVmfYpOlfkKyAYD1EbqgNAcftxjF+EsfVVzJpdSa7d4DN832mEEEkX1jIo+NB30LOOf+hr/mzyr/kfYq4chvHcaYy4zXkVS7pcDn3VpIvQLFltJzqX68nBpbnY3ng8+GijZqFkFhF+7UFsI5bE2g0+8rVCCJE0hgW6v4SC67+FHW7Btm1Ubzox1UfMkO9qaYqfLy64lftW/5GIkdh6wKHq3DTtSgrdBcN6pZ3onqoolPqL2dawgzOL56GpGoqi4px+IdHX/0hs7RO45l+X7GoOGhKGhBjCHBq4rCB2pBUUBVx+Iqpv0OxR41INrH1rOfTs/XBsorCiknHmNXimnkd4mO8zZBsqY9LG8JNl36Qx2oRpW+R4snBaLuy4Ku/golvl6WXsatrLrua9jM9KzM9T/Xno4xYRW/9vtLIZ6IXjklzLwUF+lYQYolyqgb3/Papf/B12LAKAlpZJ7mVfIJZRhmEmf122HmmgesWv2l9oWzS/8TD5I8ahZo0d9ody2ibopps89ehQYkx2YhanJt3lJ8+by9rq9YzLHNO2FYNeMQ+rZheRl3+D75ofoDg9ya3oICD90EIMQaqqoLUc4siK+9qCEIAZaKLmoR/gMVuTWLuExD5DK7osb3nrMZyKzGvoCU1XMJ1R4o4wliOOpiU/8IrkGp81hrpwPftaKtsuUxQVx8xLsCMBIm/8KYm1GzykZ0iIIchJjObXH+q80DQIbnwVx6wriMeTd5q1YhuYTbVdlhutR1AsAxjeQ2WnynbFeeXAKp7Z8RKBWJCS9CJumnYlpd5SFENLdvVEkuR7csn15PDm4VWMSi9tm5CvejNxTDmP+LqniZdMwTHuzCTXNLmkZ0iIIUi148QbDnVZHqvZg2ond8M+S3HgKp3YZbmreOyw3meoJ0wtzp82PMJDm/5FIJbYVO9gSxU/eeM+drXskh6iYUxRFKbmTuRIuIFNR7a2K9NLJqOVTCHyxh+xmqqSVMPBQcKQEEOQpThwZI8AQPX48VTMwlM+DUV3Akc3NFSS21sQN2x8U89CcXQSeBSV9IVXEjXlLepUBIwA7x5a12nZn9Y/SkyLdFo2EHRdxenUJJAlUbY7i7L0Ut449C7BeKhdmWPKeSiuNMIv3jesl9vLO40QQ1AMJxlLrifngk+Sc/7H0dOycGQXkX/FF8g842p8U85K6hDZMSHFT8FN38OZX9Z2mZ5VRMGNtxN1ZCWxZqllX9OBLssawk1EzOgA1iZB0W2ijiCvVb3BP7Y/xubmrRjOCKraeShSFLosE703NXcSKvBS5cp2+3cpuhPn7MuxmqqIvvOPpNUv2WTOkBBDkGXZaBn5NL/xCJH9m9oub1n7HOlzL8bSPTAIjrUyLQi7C8m66huo8RA2NrbDS1TxYprJD2upwuf0dVmmoKCr2oA+34pmsy+4j5+99RssO/E8vrT3TbLcGXx76Rdw2762D2RFAdMRozHaxP7ag+QFsyn2FeLQ3FiD4DU6VLg0JzMLpvH24dVsrN/MtLzJbWVqej6OSWcT3/QC2ohJOMrnJLGmySFhSIghSNMUIrvWtgtCx7SsfgbP+IUovpIe7/CsKOBWomjxIFa4FdWbjqn7iNjO094t2rJsQrhAOzpcZrX9X59yaSYOM4TV3EA04sHt8hNSvUNi6X6pvwiX5iRqdhzmmF44ERfuAa1PXItw5zsPtAWhYxojzfzu/X/wmZkfhXhimNZwRvn5279t17vlc3j5xuLPka3lSiDqQ8W+QkZnjGLlwbco8OZT4MtrK9PKZmLWVxJ57UG03FGo/twk1nTgyTCZEEOQ0w7TuvbfXZYH3n8Oh96zIQlFgTQlSPO/fkbVg1+i5m/foeqBL9L8zJ2kqSG6ODXitKiqgkeNkWY14YvX4VND6L2Yc+LVokTXPEbV/f9FzV+/w6HffY3av3wTT7gKbQi8C7rw8OUz/gNNbT8PLNebzUdnXDegq8kUReFQazVxs/NDZDfVbidKYg6T4rD428bHOgzzBeMh/t8b9yZ1rtNQNS1vMhmudJ7a82y7+UOKouCcfiGK5iT80q+xh1kKlZ4hIYYgFRsrGuqy3IoEUXq4dZ/TjnDkqXuIHt7Z7vLoga00PPtr0i+4jbDd+2XwmqbgMRppePoXRKt2A6B60sg65yO4S2cQ6eF5XLquEt+1mtbVz7S73GxtoObv36XwYz8jQFqv651UlkKpu4T/O//bbKjZRm2wjom5YylNH4HDcGMN4LEdigLBWLjb6xiWiQuIEmFVFxO/A7EgNcE6Spylw/qMur6mKSoLiubyyoHXeXLXCq4ZdznOo4clKw43jpmXEHv778TefwrX7CuSW9kBNAS+EwkxtB3rJfEpITxq7NQmmWo6nlFTuyz2jp0NPVxNpsYCRA9t77QssncDmhns0f11xWMHqPnr7W1BCMAKBzjyzL0oR/b0eFWSywrS/NY/Oy2zYxFih7ajDYHuIctUcMS8zMudw2XlFzHaW4EWcw34MKBl2YzKLOmyPMebhfvolgkxM97t+WrNkZYuD6oVp8+juzmjeD6N0Wae2fM8xgm9QFp2CfqYhcTe+xdm7e5u7mVoSf13ACGGMI8Wx1m/labH/x81v/8SzU/+BFfjTtxq50MQx9iGgX/a2SjOjnNF9MwCHNnFx88CO0Xd9TQB2NHuewNOhaYpxA/vwAq1dFre+MpfcNk9GzpRbBMz0NRlebyuckitYjJNi3jcTOpcKI/qZdHIuZ2WfXTGtbjsxPEPbt1FWjeTv0vSi4bEnK7BKNOVzsKiuRwMHObfe1/Aso7P79LHnoGSUUD4ld9iGwO/EjEZJAwJ0QmHQ8Pp1ND15O3F49Qs4ttWUvfPHxOr2YsdixCt2k3tQz/A3LcaRzdVsxQHrVvfouCqr+AdOwdUDcXhxj/9HHIvvJVI1R7MHv76q+7uhpIUFFfXH2qnStNUoge3dVkerz+A2sNlUZaioWfkdVnuLKqQlWt9TInr3DD5Cj4y41qyPBkoKJRnjeTbS/+L0WnlGEbi5+2yPFw3+RIAyrNKOXPkXKYVTERTVCbljcXv8CezGUNevjeX+UVz2NtSyTN7X8A82kOkqCrOGRdjtx4huuaJ5FZygMicISFOoGs2HrOV0Ma3iNXsxVk8lrRx8wmrfswBnk/otEJUr+x834/Gl/9M4cenE6fzABK1HaRNXkLNwz/CP3Up+Zd9HtsyCe1cQ81j/0fRR39Cq9Gzb9ymIw1P+QzCe9eh+XPQ/dkYrUcwWxvwTpiPoXt7vXzbsmz0nK6HWDR/NhY968WJqT4yl9xA/VO/6FCmetNxFFYQld6HPqdEHZyRP5/ZBdNAAdVW0Uwn1gmvO9OwmVs4g3HnjWZ99Rb2NFZSnF7A1ZOWk+PJQYnIUSz9rdhXwIKiuayqWsPTe5/n4vLz0VUNNS0HfdyZxDc+i2PMfLTcUcmuar+SMCTEUZoKzuZKDj/0fTATQ0ih7atofuMRCm78DhFfyYD1ICiKghVqwu5iRY4dC2OHW6GL3hjbtjHSishZ/h80PPcALWufBUDPyKPg+m8S1tJRrGPXPbU6xXCSddFnyGiswmg8TLyxBkd2EXpmAWrWCFrjvX87MQyLtPIZKJqj07ZnLLyKqOKjJ0vvDcPCUTKVrLNvpumNh7HjiW5/R14puZd/ibCSxmA7B/7YNJlUnzhsGBYax3cYtz7wc1YUhaAZ4oev3UNr7Pics+d2vcZ/zf844/zjsM2hM4Q5WBX7CjijeC5vV63hiV3PcOnoC3HpTvTRczEPbSHyxp/wXv4tFGXoDiZJGBLiKA8hap74v7YgdIwdj1L/5J3k3Ph9Qv24X4umKbjtEHawASvUgpaW0f0N1O6H8KKWjqdkGkUf+X9Y4WYURUPx+DG0NNxGALO5BkwTPbuYqOIhZnV/f6qqYIcD1D7+f1jh46fea75M8m/8DqreN5N1I1oa+dd/k7pH7zhhnpJC2szzcFbMJXgagTRsOnFMOIfCcQuwowF0pxND9xKy3FjmIEocukVMiVAdqEXXNPK9uThM95ANBJYe5/41f2sXhCAR5u9994/89Pxv4zA9Sard8FLgzWdR8QLeqnqXh3c+yZVjLiLN4cMx5Vxib/8dY9c7OMaekexq9hsJQ0IcZYdbupy4azTXocRaQe+fMKSqCp5oHbWP/AiztQGAvMs+j+pN77ROekYeuNK67SDxqDGi61+k9s1/wtHN79JmnIt7xDhqn3vg+DlEqkbW0g/hHr+k22XrTjOYCCgnBCEAM9hE/ZM/J/vqbyU2T+wlw1Sw00dR8LGfYrXWY0Uj6FmFxDUfQfP037LipkIcH7rXjzfLR7Ax2G7SaLLZDoPXD77NI1ueadus0Kk5+MzcWxiXPhaMofetPGpH2H6k8xVLccvgYEsVoz0V3a44E30n15PNWSPO5I3Dq/jHtse4vOIi8nJGohaMJbr6UfTR81C0oRkbht5vlxCnyTZPsrqqHycNeQlS84/vtQUhgOZVT5F7wa0oWvuAojhc5F7+RSJK1xOWVVXBrt9D8xsPtwUhxeHCN3YO9c984EBGy6TxlT+jNB/sfhlztBWjqabTonjdAdRY4BRaempMCwKWj5CvjGjOeAJKBlFraL4JQ+L5Ohg8xEObn2q3a3PMjHPPO78jaLcPoIqS2LAwrAQ41FJNTIv0y/YAqqpgOeKEtVaijiA4zD5d6m7a3YfRiBHt0808xcmlu/ycXboIh+rgkZ1PsLd5P44Ji7EDDcR3vJHs6vWbPnt3sSyL1tbWThN8ZmZmXz2MEP1G9WV2OVdFcXpQPP7+OCUCRVEwG6s69ADFavbS8t5zFFz730QO7yJesw9H8Rg8bRO6u66Mi2iHvXW8Y+cS3PJml7dpefsx/Mv/i0gXvS/H5tp0xTZj7d5RFEXBpcbQ7Tg2CjHVQ7xnq/kT9zsMOgVMLc5jWzvfMdzG5sU9r3P1mMsw4haqqhDVQ/xlw6OsrdqIbdvk+3L56IxrGekb2We7TSuaTZ1RywOr/05l8yEAJuaO4eOzbiDNyuiTIVG36iLPl0Nd8Ein5eVZpVjxYfACGGQ8upslJWewuuY9/rX7WRaNWMCUwrHENvwbx4QlQ3LuUK/CUDwe5/777+fRRx+lurq6yy7nrVu39uZhhBgQMdVL5pIbaHzlzx3KspZ95OjE3b6nqgpGc22nZZH9m6jev5niT99LdNrFWBYEDLPLVVtep40WD6GoKnpmAdHDu9rKNF9Gu40MP8hoqkWxDLp6W1C9GaCobT1N7Wg6iuv4MmiHauEM19L06p+JVG5FdXvxz1pO2rRlBMyBPScrFViY1IU6DwQAVYFaLExAIa5H+OHr97QLELXBeu5481d8a8l/McJZ0idBJUAL//vanW3LrQG21u/iu6/8nB8u+28csd7P5XFaHj4x8wZ+8sZ92B+YXH3u6MW4kflCyeJQdRYWzmXTkW28cegd4p4iplfXYB7agl4yJdnV63O9CkO33347TzzxBNOnT+fcc8/F75c9IUTqipkqnvGLycsZQfPrDxFvrMKZW0LGkhuxM0cS6adRMsuycOWWdlmuun1Ytk0s1nUFHLqC12ik6Y2niezfhOb2kT5nORnzLuHwn74NloHRWI2roKzLfXycRaOxNCd00Xtj6D78sy+kdc2KDmUZ8y4lpiWW1quqgjNUQ/Wfv9kWnKxwgOY3HyGybyNZl36BoJWcQKTrKk7VwjaNQTX8ouGgPLOUxnBzp+XjcypQbRVU2NtysMuelL9seJQvz/8Mag+PLPkgxWHz+JZn2wWhY4LxEKsOvc+y0sUYpgmWgtnNJHTdoWJhotpa2/5Cx5imRamnhO+d8xX+sfFJ9jRWkuXJ4IoJFzIpZxzEkrfPl0j07k7NnUiGy8+a6nWUO51YW18hQ8JQe88++yyXX345P/7xj/uqPkIkVdhyouZOJPPKr6PaBpaqE7X790gD2wYlLRdHbgnx+oMdyjPOuIqYlgZd7AukquCJ1nHoT9/Cjid2ZzaAuqd+iXfCAgqv+zrV//g+od3vU3j9N2ld/0r7OUMAikrGwqsJml13f8dtnbR5l6H7s2l+50mscCuaL4OMhVfhHLeA4NEJvi4lSuOLvwfbQvNl4Mgb2bZhZPTQNuzWWpS0kQM6/KWqCj6CRHavo2XHKgLedPyzl6N7cwlbzoGrSBcUQ+WaSRfzftXmDj0kLs3JopFzMWI2DofGptrOj0QB2Nd0EEsxUTl5GFJVBU1TsSy7w5BrnBg76vd0edtNtdvw6C7er97E0rKFVGSOQos72z2ntm4SsFp5YedKaoP1TM4bz4KSWbhMT/uT6E2NHCWfz876KKZi4nY5UWM60ejwOih0MBvpLyHNkcae4CtM3P8eext2U55dkexq9alehSGPx8P06dP7qi5CDAqWZRPGCTiPDkf1/6d2yPaQd83XaXzufqJVu1BdXqxomPR5l+Acv4hQNxsketUYDS//qS0Itbvfbe+QMe+StlVprZtWUnjjt6l/5lfEGw4DoKXnkrP800SdWZ2OgB2jqmDWHSSybyM5534ExeHCjkVo3bQSR/4otIxRmKaNZsWIHzlI3iWfBUUlcmgnmieNrMXX0brxVSJ73kefVU48PnAfdj67lZq/3d5ugnpw8+tknHE17mkX9vjw175m25ChZfG1RZ/h/rV/oyHcBMAIfyGfnXsLLtOLRWLJeZ43p8v78Tt9KHb3XV6qmhhq29NykG11uyhIy2Nq/gRclqdtCb+GSqYnnSPhxk7vI9Odztb6XbxftZn3qzYzOmskX1zwKdRoIlgqmsXGhi38es3xIeeNNdt4cvtzfPesL5GuZrX7gmHbNsR1XLqTTLePxnDfnHMn+k62O5OMUQtxrX+BP799Lwtm3sjC4s6PXElFvQpDF198Ma+++io33nhjX9VHiGHJtm1Cqo+sC27FaqrCCDTgzB2J7ckiYHbfc6GaEcJ7N3ZZHtq1lqKP/RQrEsRy+IioHrKvux01Hkp8CDm9RBTfSTeUdBoBav51N1a4lfDe9e3K4kcOkXfTDwniAUUl74ov0PjKX4nV7j/hWgo5530UJS0HcwC7hVyaRfPKh9sFoWOa33qUoolngNZ1wBgwpkq5p5zvLv0yISOMpqi4VTe66WrbC8kwLGYWTeGvGx9vt+rsmIvGLcNluzG6CPCKAhE9yA9W3s2R0PGgo6s6/73os4xwjcA2FXTLyWXjz+fOt+/v9H7ml8zkF+/8vu3fexorWVO1noV58zFNi5ga4f61f+1wu3A8wv1r/8YX5t6KkuQAKnpOyyjA0hzMVtL5y7ZHOBg4zFVjLkE7yZ5nqaBXU8K/+tWv4vf7+Y//+A+ef/55NmzYwObNmzv8EUJ0T9PAHaqm+o//TfU/fkD90/dx+A//Q8NTd+HXuj+YVFEUupsAo6g6UdVHQMsmZLkwDIuQ5SagZRPUcwhank6DkKoqeNUo7mgdkUM7UMJNHfYYOsZsbYBooszSPYR2rPlAEAKwOfLCH3Dljugwd6Q/Oawwwa1vdVke3rkaXe/n1TEOk6gjyBG7lqDWjOWId7pE3TRttJgLv5WJ10xHjTs7DNG6bS9fPuNT6Gr777Kzi6ayuHQ+xgm9iIqS2L8orLdyxK4l7gzz+/cfaheEAAzL4Gdv/Ya4Fm2rR0VGOReOOavd9RRF4fopl7KhZitRs/1Q64u7XyeuRlBVhf3Nh7pcNr+rYR9Re3gc/jnkKApmWjYTFC9nlyxi5aG3+eX6BwnGuz/EORX0qmcoFoth2zYrV65k5cqVHcpt20ZRFFlNJsRJeOwgNQ99HyvSfnggenArLW8+jHvRh4l2semeqXnxjptDaPu7nZZ7x82jNdqzNe2qquAzm6h74mfE6w4ACvlXfbn7Gx1dTaoYYQIbX+3iSjahPevQxy8b0ECE1XX7bSOG2o+zqW1XjIc2/4s3Kle3zQcqyyzhCws+idvw9Xg+mm0olHvL+dn532Zf0wGC8RAVWWWkaWko0eO9LYoCpjPKGwdWU5JeiIWFy+Ekw+1HVdQOPUtRI8rhYDW57mxURcWtuFhQOouZxVPY13gAn9PDiPQiXtz9Bm9Wru5Qr7hltLXP6ObnDXTaqyVSg+nxowUamZY3mSx3Jiv2vshP1/yCz0z/OAXerg9EHux6FYa+8Y1v8OKLL3LRRRcxffp0WU0mxGlQFAWz4XCHIHRMYNNK/AuvIkrnp8aHzMQO0tGD2zGD7Vcjpc+5CMXlJ80KgKIQVzxEu5kkfYyHELUP/QCjpe7oJYkvNorD1el+Q6rLi3p0HybFtjpO0D6BGWpBH8ClXIbqwlM+vcPQ3jGeMXMJGf0zf0nV4cmdL/J6Zfugur/pID95416+uei/UGM9n8BtmwoO08OkjIlkZnppbAxixNsHDEs3qArWUBc6wmNbVhC3DByqzpJRC/jc/I/yy1V/6BBKqltreWDt3zkSamRy3jgun3gBD6z9O7qikZeWw0zT6DQIAZxROhun7ca0bEZldb06sigtH7fq7vWhviI5bIcL9ej7Qql/BNePv4Kn9jzLT9f8gv+Y+hHGZqXmxOpehaE33niDD3/4w3zjG9/oq/oIMeyoqoLRUt/1FSwD24hDF8PylgUhPZuim39AcOvbhPesQ/WkkT7nQvSMfOpX/JLI/k2gavgmLCRj8Q1E9XR0IxG+4qqHE+cyKwrYLbUnBKGE1vUvk7XoWhpe+UuHOmSfczOKquK1Qyiqhm/8fILbV3VaX0/5DMID2CsUtXQyz7mFyJ++0SHIecbOw/JmdztxvFePrYR5aU/nu/ZWB+pojDaRo+S3u1zVIa4k6umy3e2GvT6ou2MqTDXOK3vf5u0Da9sui1sGL+15g4gR5fwxS3h256vtblPoz6fp6PL+zXU7qArU8pEZ13Dn2w9QFajl7PIzKM0o5kDz4Xa3y3JncPaoMzFjifq4bQ+XjDuXp3e82L5tisonZ38Ih+XG7I8dTEW/szX96H5kCZmuDK4bewXP7H2BX6x7gFsmXsecwplJrOHp6VUYSktLo6ysrK/qwmOPPcbXv/71DpffeuutfOUrX2n79yOPPMIDDzzA4cOHKS8v54tf/CJnn312n9VDiN7QdRWnEseKhlHVk/eAmKaFO7/r3yPVmw66q9tFbYZh0Ywf17QLyZxyFig6SjzEofu/dLyXxjIJ79uAf9rZmAdfo2nDK2Bb+CaeiX/WhQRJw7LsxGqjxsMdHiO0ay16ViH5V3yRlveeI95QhSNnBJmLrwXLpOHZ3xCt3oPuzyHzjCtxjRhHw8vtN7B0FlWgpBdg9+NWBR9k2xB25FD0sTtoWfVkIiy600ifdymOkVMJmr0/T60rUTNGvJsho9rgEfLSC7AsG01TiGghnt31CqsOvo+uapxdfiaLR85Di7l6vBVBzIrxzoH3Oi1768AavrboM+3C0Jziaew6srfdXJ+GcBMhI8J1Uy6hJRrgX1uf54Ypl7Kn8QBvVK7GtEzOKJ3DsvJFOA3P8VPpDY0Ly89mfG4FT2x7loZwE2Ozy7lq4kX4lYyTTtYXg5htA+3f11y6i8srlvPSgZX8fsvfaY0HObt0UXLqd5p6FYauu+46nn76aW644QY0re9mkz/wwAPthtwKCgra/v7MM8/w7W9/m09/+tMsWLCAFStW8LnPfY6//vWvzJgxo8/qIERPKYqCTw0R3f0+TZtX0qw78M9ejjdvNKGTbDJo+7JxFo4mVt1xb5fMxdcTVX1wCqerx+M2tu5FwyD45sMdhqtyL/wUR55/sG1ZPUDLu08R3PI6BR/+Ia0k5rC4soo7vf+W1c8Q2rWWvMs+T+zwLmzLwGw5Qt2/fsGxtBYLtVD7+M/JmH8ZWWfdROOrf0VxuvHPOJ+02RcRSMKGi6YFrWTgPvNm0hZeh8vtJGg6CfZwLlVPuTQnDs1BvJMjXgDyfTltc4YiWojbX/kZLdHjk9Qf3vwU7xxcy1cXfgY11jG0HZv43dlk7FA80mHPomNs227bUNHv9LGsYhGl6UU8vOlp5o6YTsSIsqVuJ6Zlsr/pIAoKB5qrOKfiTFpiQTLdGXx70RewbAsnbsyYfTwIHaXEHYzxjuGLc/8D0zZxKA4w1C574TRNxeFI/VVJQ50Sj2I5O+4Mrqka5408C6/u4Z87/0XICHPRqHP79Cy7/tSrMFRRUcFLL73ElVdeyZVXXklhYWGnoej888/v0f1OnjyZ7OzsTsvuueceLr74Yr7whS8AsGDBAnbs2MG9997L/fd3vgxUiIGQpoao/cf3MBqr2i6L7NuIp2IW6ed9qttAFLbc5F75FZpe/Quhbe+AbaF60shcdD366LmETxKEFEXBp4QwavcQ3rmatCmLiezb0O46zoJRGI3V7YLQMWagieDGV3FMv5i4AUp6PnpGfqfHhHjHzKb5nScJbV9F7kWfpvHVv9NZt1XzqqcY8am7cI8/AxSVqOKhNcnzRKKGgql78fp8mI0938tGVZXEHK9T7Nlw4eHc0Yv5986XO5QV+QvIcmVCDDQdVuxZ2S4IHVPZfJgdjXuZnD6p7XFt3SRoB3hu97s0R1uZVzyD0vQR6PHjPUgevfvQme/L5e4LvgeqzaNbVlCaXsRlE89nW90usj2ZXDT2bNZWbSTDlc47B99jf9NBNtduZ3L+OG6d/SGUqAMNMLvpsrQsG8XS0dG7vJaqKsT0MJuP7GJT7XaK0wuYVzwTl+YFMzU+SIcTLRrC9KR3WqYoCotGLMCluVix9wVMy+TS0RekRCDqVRj64he/2Pb3n/zkJ51epy9Xkx04cIB9+/bx1a9+td3lF110EXfccQexWAynM/m7yYrhx6ErBNe/3C4IHRPe/R7+OYdQs8Z0uXLItqHV9OI96xNkLL4xcVis7iKqpRHuZs7IMWlKkLqHv0+8IfH4jpwRqG4/ZqCp7Tru0omEdr/f5X2Etr5J1tRlxHETxkv+9d+i/smfE6vZl7iCouKfcS6eUdOoeSSx67zm8XeYW3RCq4jWHSBeMLVfd/AeCIpuE1PC7GrcTyAWZFzOaNJ1P0q8+71yrDhcPGYZkXiYV/e/0zbHZ3TWSD4//+NocRc2NjElyqqDXT83K/e/w6TpE8BMBKF3qlfzlw2PtZW/tu8dStKL+O8zP4saTfQgeRQvozJL2NfUcVfziuwyvIoXJe5A0xUuGncO97zzOw631rRd57ldr3Ht5EuYWjCehzb9q+3yzbU7ONxaS7m7vNfPq6IohLVW/vfVu2iOtODSXcQqYzy86Wm+fManKPeWt20EKQYHNdxMvHh8t9eZWzgTTdV4bv/LOFQHy8uXDVDtTl+vwtCf/vSnvqpHO5dccgmNjY0UFxdz3XXX8clPfhJN09izJzGEUF5e3u76FRUVxONxDhw4QEVFas5kF6nNYYZo2fhql+WBdS/gPXcM0ZN0KERNjSj+xGRpmy6P4DiRS7NpeeuxtiAEENz6Jv6pS9tNdrYtE0Xv+sM7UZb44LEsm4CSQdaVX0eNB1GsGDh9xFQftm1SdOud2NEw2km+fCi6I+VPnVc0i52tu7nnnQfbzaeZUTiZT878ULvl7J3ePurg2vGXc+n48wnGQ7g1Fx7Vgxp3toUjVVFxqF2/HTs1J6qiYGETJtguCB1zsKWKFTtf5rLRy7EM0Awn/7Xgk9zxxn1UBY738BX7C7ht3scSj4+Nrdi8vPvNdkHomEc2P82EvIoOS/Ff3L2ST00bRU/nQCsKmHqckBWiOdJChtvPwaYqLhxzFuVZpbRGA3gdbpqirfxlw2P895n/icOUw1oHC8WIoYdaCGQVnfS6s/KnYVgGT+99jjSnl8UjFg5ADU9fr8LQvHnz+qoeAOTl5XHbbbcxffp0FEXh5Zdf5q677qKmpobbb7+d5ubEKof09PZddMf+faz8dPX7xmt9TNPUdv9NZaneFsUC2+5mDMg2UVUFXe+bb7kO1UI3AtjRECpO4t50FKcbO5bYoDFWsw9t7sV4KmYSPtobFNr1Htln3UR4z7pO79M/60Ishw/9hCGgGB40r4/0dA8tLWFM08JUdOKqCxzgIoKzsJxY9d4O96doDhw5JRiqwgcnXCZTT19rQSXIXe880GHl1rrqzbxe+Q7njlxKJ+eZtmer+PDj04/OhbQ5ujpQOVqssahsLo9sfqbTmy8qm4OmqehuhVf3r+vyYV7e+ybLx56D6+hp7z7bzzcXf57GaDN1wSPk+XLIcmXitNzYWmIibFQN8+q+t7u8zw3VWxmTPYodR47PZ7NsG1VTTnr0x4kUBSJqmHtWPciuhn1tl1dkl3HLjGv4yev3EYqHAShIy+MTs26gLnSEMs/AnmPXVwbyPU1ROKXFGr2lH+0FNvNL0bSTP96C4llEzDAPbX+CPF8OU3In9HcVT1uvwlBfW7x4MYsXL27796JFi3C5XPzxj3/k05/+dL8+tqoqZGX5+vUx+kt6+tD55pSqbbFNF2mTF9P8zpOdlvtnnIcv/eSvL8uIYQabwDRRHE50f8djIoxgE83vPEnd6n8nhtMAz+gZFFz1ZWqfuKttv6K6Fb8he+kNZMy/jEjlFlSXB1fRaDwVswjvbr/KyFU8Fs/IiTi7+fl3/tz40C69jcN/+hZ29MRdaBXyLv0czowc3N30RiXTqb7WXt/2VpdL2FfsfJmzR59Bdnpmt/dh2zYN4SZiZhxd1cl0+3Fox38ujeFmyrNGUp5Vyt7GA+1uO3fEdEzLwuVOnN0V6ma336gZQ9dUstq91rzkk8P4vNGd3qYuGCXWxQRvgLARwam1fw6XVSwi09/5vlddaYkGuO+NP7QLQgC7G/bztw1PcMn4ZTy86WkAagJ1/Gb1X/jqov8gMzM135ePGYj3NFVV8Xr7b1XkMVprDZYvA2/RiG53vT/RJZOWETSDPLjxr/z4/K9TmDY4N2bsdRhas2YNjz76KAcPHqS5ubnDm4aiKPzrX//q4tYnt3z5cn73u9+xdetWMjIyAGhtbSUv7/gPtKWlBaCt/HRYlk1LS2ptKa5partv7KlsKLTFN/MCAptf73AGlqt0ImruSBpPMmHXQ4jWVU8SWP8SthFDS88l66wPo5VMIUZiOMqh2kTXPkPzO+1/p8J71mGGWshacj1Hnv9d4kLLoOGVv1B4y49wzLocTbFpeu1PeCtmkDbpTEI7VmPbJt4xs1FUlYZX/oz//M8Ss49/8GmaisMM4tAU4rZG1HZ2+B1XXbkUfewOwttXEancjCOriLQZy4i7MmlujQFdb8CYDD15rem6Rl3gSJflrbEgMcPo9rk1tTib6rfy901P0hhuxqU5WTZ6ERePXYZuJD7AFE1jc812Lhp7DjEzxntVm3GoOnNHTKM52ophxImGTMJWkFlFU3lmR8cJ2QBT8sejmNpJX2snUlSVSXlj2d90iKXlCxidNZKIEeXtA++xuXY7E3PH8Hbl8b2KxuaMojyjtEePAdBKC9vqd3datr1+N1dMvKDdZUfCjYTikR4/zmDR0/e03nwZtyyLUKifjzixbdKr9xEpnUQg0P0RQR90bulZ/G3rY/zs9d/yP/NuG9CzzE7159qrMPT73/+eO+64A5fLRXl5ea/CyKkYPTrxzWbPnj1tfz/2b4fDQWlp17uenooBPR6gD5mmlbJ1/6BUbktQ9VFw0w8IbVlJcMubKLoD/6wLcY6cRsBw090EC68a5cgz9xA9sKXtMrOlnvp/3UXuJbdhl85N7EekBGhZ/XSn9xGr3oO+6JrE0iQzsWTcNXIStjeHSMTArRnE6w8QWPcCmi8TT/k0FEWl6c1HMZrr0DMLsI04hp14o/JpUWI711L39hOYwSZcxWPIXPph4r4CYlb7N7MYaegTz8c3cRmWotIatyBOt21OtlN5rVmWzdSCCTy3+7VOy0dnjUS11C7vR9MV3qvZwB/XPcK8kpkU+wtojQV4s3I1h1uq+eSMmxKTsA04t2IJ33zpJ6Q5fUzMG4Npm/xx3aO4dRffWvx5oke3Acj35DE2p5ydR9oPTWqqxk3TrsKOaRg92EVSUXQ+NuN6GiKNrNj5Ci/ufh2fw8uSUfO5fML56KpGpieDXF82C0tnU5iWh2X1/Pc0ZIe7Le9s+4H6YANF+oiUnoA/EO9ptk2//4z05jq0SJBw8QTMU9jm40QOxckFZefw8I4neGb3i1xUfl4/1fL09SoMPfjgg8yaNYtf//rX/XYUx4oVK9A0jUmTJpGXl8eoUaN49tlnOffcc9tdZ+HChbKSTCSVZdm04kWfspycyWcn9rIxHAROYS8bJdzULgidqPHVP5N300SCeLHjke6Pugg0ofmywIzjn3MRnklLCBzdVNBUHDiLxhA9uA0z2ERgU/vzBJ35o7BUJ5jgUWO0vv43gpuOh4BI5Raq//xN8q//Jlr2uA7fdg3DJNHS45drmoquJi6JxwdvMOqKZdmMTC8h35dLbbDjLuEfnnY1munssMfOMVElzLrqLXx10Wd4ff8q3j6wlmxPJh+ZeS37mw4StIJkORPbiKiGlx+c8zUe3bKCtw6sRVc1zipbyPKx5+CIu9seQ405+fy8T/Da/rd5fvdKgvEQU/MncOOUy/ErGae1oaVhG9zx5q/b9h6Kmc08ue15ttfv4aJxZ7OgZBaWbfH2gbXsbTzAzdOuZlHhwh59yPuc3m7L/a6Ow25FaQUpHYSGElftHkx3GrG8kad1+0JfPnMKZvDsvpeZUzCTfG9uH9ewd3oVhsLhMJdeemmfBaFPfOITzJ8/n/HjE8v2XnrpJR5++GFuueWWtmGx2267ja985SuMHDmS+fPns2LFCjZs2MBf/tLxiAAhksEwbNA9eL2ntpeNpinEajputniMGWgCMwqqF0V3garR1YxdPW8keR/6XxITY70ETliNFjds/DPOo/W9Z9t6jo5TSD/jakLW0Umf8UC7IHScTcPzD5Bz/XcJ0fU+Nqqq4CVI7MAWQjtWoXozSZtxLqY7m4g1OOcQdUWPu/nm4tv4+6YneffQOizboigtn4/OuI4CVwFWNyv+DNtk6aj53PHGr9oOLz3YUsWGmq1cOfFCWqKtPHvgVVQUzilfRIaWwYcnXcN1ky5FURQclgsrSoewpUadnFtyFktHLkR3qInNDGOJDQ01TW3bC6m74zqOsfU4f37vsbYgdKJt9bu4YOxS/r3zFQKx46/ldTWbOaNoHj2ZGO/UHMwunsrawxs7lM0unobrA/OSSjOKyXRlDLZR1uHJNHDW7iM0Zg4opz8hfG7hTLY17uLJ3Su4deotfVjB3utVGJo/fz47duzoq7pQXl7Oo48+SnV1NZZlMWrUKL7xjW9w8803t13nkksuIRwOc//99/Pb3/6W8vJyfvnLXzJzZuqdhSIEJM4Wc6RldX0FRUU5uuw6rnnxTV5EcGPHoKJn5IEvh6B1dMJmJ9+ow5qfghtu58hTv2jbH0jzZZK9/NPE3TnY1tFN8A7u6rI6RmM1ihEGtesw5CNA7d++224PosC6F8hc+iFcE88mmgKBKDE/VMG2bfSYh1smX8f1ky/DtC1cijNxvtZJekZ0TeHvG5/s9BT3J7Y9x4KSmbx7cB3BeIiX9r7JdZMvZcmIhehG4mfb3b2bho1Td5Pl9dHYGMRSLWJamE31u6gNHmFc7miKfAXocXe3ochQDLbUdf0+vrVuJ6MyS9hUu73tsix3RmK5fXdnxJxAVRUaI62cXX4Guqrz7qF12Hbi8N95I2awqGwuR0JNbdefnDeOT82+qW0fJpFczvpKVCNGqLx3n7MO1cH8wlm8WPkahwJVjEg7+RL9gdKrMPTtb3+bj3/84zz44INcffXVZGZm9qoy3/rWt07petdeey3XXnttrx5LiMHCtm303FIUhxs73nFiom/iQuKaD0yIWRpZi6/Dam0kfMIO03pmAQXXfI2w6u00BB1jWCp2+ihyP/Q9iAYBG1xpRBRvu3kASifb7Z9I6WYCpEu3aH79kU43Y2x67W8UjZ1LVO0m/CWbZhPXIlS11mDaJiP8RThtF3Zcw8nxoZ5TOWg0Zhqd7t8Dief9YEs1Ts1B8Oh0mYc3P8XcEdPx0vkOv8eoGsS0CFWhenYejFKUVoBhx/n28z8jZh2fe1OQlsc3Fn0OR9zT7fL07o4Mcesu4lb7svMrlmLGuw8pmqYQ0yI0RBppDrWSn5ZDTaCOXG82Xz3z0xiWga7qbKjZyt1v/47vnfNlfrTsf/A6XThtN8S1U+rZEv3PfXgH0fxRmGmdnwzRExOyx7Kqai2vHHiDD08cPJ/jvQpDRUVFXH/99dxxxx387Gc/w+Vyoartu9AURWHt2rVd3IMQAiCs+Mi/7hvUPvzDdierO/LKyFh6E61m4vfKpcY58tyDuMsmkTH/EoxAI5rHjxlqofaJu8i9+n+I0/3qCdO0COIBx7EeJDjxOA3LsnEUlCeOT++kR8M9ahqG5oEu9tZxWGHqN3d+UjtAeNca9EkXDPhEeadm47RC2MEWonEXLt2HpbrbzUmxdZMtjVv57dq/tfXmqIrKdZMvYdGIBSjxHr5lnuSzPGpGO/R8rDm0nnNGnIVhdP4DVjQ4FD3E/731G8LG8fB85sg5fGL2Dfxq9fHDcWsCdfxp/T/5+LSbIN758IbTdrO0bAEv7nm90/JJeWN5ZvtLicdG4UPTriBTz8TuZiqcpik008iPX72Xxsjx/d8m5o3l0vHncudb97c7wDbbk0malobL9pCVnujp6skkcNF/tEADjpY6Gicv7Zv7UzSm5E5kTc37XDP2Mtx6/28JcCp6FYbuvvtufv3rX1NQUMCUKVP6bRK1EEOdaUI0vZTCj/8f8erdGK1HcBWNQfHntzvYVDdChHe/d3SfIAXF5UmEp6PzPcyWWpT08l5vUhdVvORe9nnqn7iTEz/RNV8m2ed9gkB3w1y23WmIaiuOhVEH+KwijxYjtuUVqt98tG0CuiNnBLlXfJmQ4/hhqQGrhftWt99Z37It/rHpX4zOGkmpq6xHE3rdqofSjGIONHc8D05VVLI9mTRFWtpdHjai3W7hEtNC/PiNezsMvb1ZuYZifwETcsewrf74MOd7VZv48LRIu16tdu2Lw2XjzmNz7fZ2O1UD3DTtSvK9udw07SocmoPJeWNx2R4wul8aHdXC/OjVX9L8gbZtrdtJtieTRWVzeWVvYqNHl+bkCws+icN0Q2ruuTqkuQ9vx3T7iZzkCI6emJA1lrerVrOpfgtzCgfHFJdehaF//OMfLF26lPvuu69Dj5AQomdMUyFAGmrRDNQRCmHT6nDCt91uKMP+wEaHYIUDKBlKr4cX4paKs3AyRbfeSWjLGxiN1bhHz8BZMpEgad2uWDJUF+6yyUT2b+603DNmDqEuej36g66rmPs30PTa39tdHj9yiJq/3U7BR35CAB+aQ+G57a92eT9PbHuW/5z1CbBOfY8Ul+rkIzOu4Sdv/KrDMNQ1ky9i5b53O9xmTvG0LnuFdF1lTc3WTucgATy/+3VumHpZuzA0KqsEFBvDGUGxVZyWu8NKQD3u4euLbmNf8wFWHXqfTHc6i0fOJ01NQ4nrnJG/AADzFFYEKgrUh450CELHvHPwPb539peJGnEqssqYXTwVl+nFMu0B2UVZnDrFiOGq2Udg4pnQh5/x6S4/eZ5cNh/ZPjTCUDwe56yzzpIgJEQfsiy7694HhxfV48cKdzzdHMCRW0K0j5YixyyNmJKJe/YV5Pg9NDeHCMRMTjb2E7WcZJ3zUar/9I0PhDfwjJ6J7c3pEPJ6Q1EUbN3AxEBDRzH0dmHQaQWpf/0fKJoD58SFWCMqUKJh7M1vEq87QLxqF2rRDFAtqjtZPn9MXagRmzgKpx6GQlaIx7c8y9cWfZpVB99nb+OBxInw485h7aENvHVgTbvrTyuYRJYrC7uLFVSKolDVxRwkgOZIC17H8Z7Em6ZdgVNz8qPXf9l2HMf1ky9lQta4dkN+tm2jxVyM9Y1l4qQJ2LZNPG62zeDuyUaoiqJwJNzYZblpmThUJx+b/KHEfkUxaxDvRjW8OWv2gm31euJ0Z0r9xexo6nqhxkDrVYo566yzWLNmzcmvKIToE1HVR+ZZN3Va5p2wENPRsyMSTsWxuT2nOjxk2zYRVx6FH/sJ3okLUT1p6FmFZJ3/STIv+DQhqw/nCOgmtWYVv37/j/zvyp/z2/V/pt6qAf14z4pqmyi+DLSbvslT+en8v6q3uTuwg92LLsZ92X8Sq9mLpqk4UZiQ2fXGrRUZJbh7eMZa1IyxuW4HP155L82RVqbkjyfN6ePJrc8zrXASC0pmkeb0UZCWx8dmXMenZt6EGut6CNI0LcbndH0Y9Yj0QuqDiR3Qzxw5l2A8zO/ff5i6YGIX7brgEX757h94/dDbKHrH59OybGIxIxGETpNl2RT7C7ss9zo8uFQHsZjRbt6YriugWV32eokBZtu4q3YSLRqL5en7KTBFvgKaoi00RXt3pmhf6VXP0Oc+9zm++MUv8t3vfpdrrrmG4uLiTnuJervKTIihwOFI9CgYhnnac3oM08ZdNovcy79I02t/w2iqQXX78M+5GO/UZQTMwbFk3bAgqGXjPetW/FYEFJWo4iHQw51ru6NqsK5hM79Zc3yPsSPhRtZXb+Fz8z7GlIxJmKaNreqY59/C7aseIGokJqfXhxq4r+kg8wqn8NGJ52NZFqatsGTETFbseYOo2b5rRlVUrhi9BKUHQ2SQmA/jUHXilsHqQ+vblW2t38UPzvkqN06+AoWjw1exrvtIjr1+xmSNItOdTks0wLic0bh0B/ubDtEUaeHayRfz5LbnATh/zGK+/+o9nd7XY1v+zRklc9Dpn3OzMpzpjM4ayZ7Gyg5lV0y4AJftaZt/r2oQ1UK8UrmarfU7yfflcH7FWaTr6SedmyQgaLnZ3lLA7D6+Xy3QgB5spGXmBSe/8mnI8yQ2XawK1CT2k0qyXoWhCy+8EICtW7fy0EMPdXm9rVu39uZhhEhpHjWGGmkktOFtbMvEO34B+HJPu4ckYjnRimeSc8M4VMvAVjRimpfAIPtCbdsQNVU0zZeYU92HQQgSS8v/sO6RTst+9/4/+H/Lvo5uuglpTv6+65W2IHSid6s3ccWk5WRaNqYNWZqXb8/9KL/e8hQHW6oAyPPlcOvES8jV3MRxoqrdDGN+gAs3Z5efyfOdHOeR6fLjUtxo8cTO+V0t1bcdBq1GC+/sew/DMphXMpPvnfNl6kMNvF+1hVA8zKKy+ZSkF5KpZfKF+WVYtkVrvLXLXpa4ZdAcayWnn8KQFnfyhQW38uf1/2RN1QZs28atu7h8wgWcMWIux7Kmqio02w1898WfEzn6/GwGXtn7Np+afRPTc6aCIdMwuhOzdf5dNbnPw5CrZg+my0e0oOueyN5Id/rRFI3qUC0Tc8b1y2P0RK/C0H/+53+iDPCqECFSiYsIgXcfJfDec22Xtb77FN7x80k/5+MEzdMLRKZpETr2QWYDgywIAdiOOAEzwN6GA/hdPkrTi3GYHuw+mjvdEmvtNOAAhOJhArEAmbiJ2zHW13T9hWx11UaWjzyPeNwkpngptjS+XDiP6PhcwMYVbCVd8xPw+Khs3kEgFmJ09kh8RycXd8eKK1w27nwCsSBvH1jbtoy+NKOYLy64FYfp6nbjQtth8PTu53l216ttlz2z82VmFU1hfulMntr+AgAv7XmDUZklfHnhp9GjiTlDmtL9wdOaqvbb0XG2DVrUxUen3siNU68gZsZxay7ceDFjx9trajF+8+5f24LQiR587+/83wXjcPRTYBtKLFROuo9DT9g2zrpKImVT+nTi9IkURSHd6edIpOHkVx4AvQpDt912W4+ub1kW1dXV5ObmyjliYliwGw+1C0LHhLavwjthIVrxrB5NTk0VtivO79b9nfeqNrVd5tQcfPmM/6DUXYpt9v5LlHqSYwEURU18PiigKgpmF2OTuqq3DVvGLQ0ro5zs9ALscDNYFlZpGdsC1dz5/A/a7Y0zb8QMbpl2LUq0+6FJJergpklXc/XEi2iNBfE43HhVD7rp6raHSVEUaiJ17YLQMe9VbWJywfh2y/b3NR3kud2vcEn5hZhxG4/DTa43m/pQxw+bfF8uHt3d/0ddxFVc+HABWGB+4AM7YkfZ28lQGoBpW+xvOsi4tHFyPtkA01vq0WIhwiUT+/Vx0hw+mqKdrzocaAPa/9jQ0MCyZctkE0YxLFjxKK1rnumyvPXdp3DaHXecTnWarvDq/rfaBSGAmBnnjjd/RUzr/vTyU5XmSCPN2fkGk5nudNIciTKn7WJByWwm5Y3ltgUf40tn3MpXF32aqyctx+/0Mad4erul7KYJActL0FVE0DOCZiz+763ftAtCAO8eWsdbB1ej6acQ7OIabiONPLWANDMDNe486Qe86oDndr/aZfnKfatYUHJ8lY9Ld6EqKiGllVa1CYfm4DNzb06EnhN4HG4+Met6XEryN7uzTrKs0OyrbkTRI46Gg1hOD/Gckn59HJ/DS3NkCEygPh2yvboYLmzTxAwHuiy3oiH6dI15L7l0G4eZqJOpuojSfc9FV6JKmH/vfKXTMtMy2VS7nTk5s3vdI+Y03Xxu3ke5481ftftQ1VSNr5zxaRQg5gihonLTtMt559D7/OG9h2k9euDohNwx/M+S/8Sv+bscutN1lXeqNmF28Tw9veMlFhTPRqPvg4Vlm+0OR/2gUDyM6+juvT6Hl9sWfIzndr3Gl5/9PjaJOTofnnYVt5/9BTbVJDZULPYXUOwvwKt7UA1H0pe0e1Q3RWn5HTZ7hMRu16MyS7FOcuyH6HuOxmqiBeW9OpT1VPgcXurDR/r1MU7VgIchIYYL1eXBO34+0YPbOi33VMzG1NxJn++jKAppSpCWN/9J/aaViROqC8vJOvfjxNOKsXvYgWxjE4x3PV+lNliPmqdg9vJLv2XajPSO5I7zvslLe9+gsvkQ5ZmlnFuxhL2Nldy96kHqgkfwONxcMGYpZZklhE44vmJb/S7+783f8t2lX+4yzKiqQm03ew+1RFuxlf75sFYtjXkjZrK5tvNDVKfkj2N3w34Abph6GX/f+CT7mw62lUeMKA+893dunHo5+b5cWmMBbMumwJeHx/LRySH1A85hubl19k38cOXdHQLnZRPOx2V3fRiw6CemgR44QmjsvH5/KK/uoTXe9RfGgSTT9IXoJ4qi4Bk3H62TE+lVl5e0WRcQGwQTn31KiLqHf0Bg/ctgJioUq95LzV+/gzNU0+NFEhoaI7rZZ2Zi7rg+mydlGwoew88Voy/iP2d+nMsrlrO1bid3v/Ng29464XiEJ7Y+x8p9q7hy4oXtbt8QbmJ/y8Eudz42DIvJ+V0fQzAqswTV7p/l36ZpM6NgMtmezA5lHt3NGSPn8O6hdTg1Bxluf7sgdKIntz1PRVYZF5YtY0nRGbjjaX0yZ6svmKZFoauQH537PywomUWuN5uxOeV87czPcF7ZUllanwR6oAHFtollF/f7Y3kdXqJmrNMJ9ANNwpAQ/Siq+Sm46fv4pp4Fmg6KinfCAgpu+X8EleSf5aeqCkZ9JfGGjmdnYVs0vvxnHHbP3qgclpsPT7+q07ICXy4j/IV9PiHWiNvYcZWQFeJvG5/o9DrvV22iIrsM7QNd/zuO7EHTOn8rtCybURml5Hg7BlqAD0+7Gt3suBhE11VcLh1d791brNPwcPvSL3L2qIU4VB1VUZk3YgbfPedL7DqyD6fqINOdQX2o6x2fQ/EwESOGHVcxjME35GQbCn4rk1smX893lnyJry/5HGP9Y3p+KK7oE1qwCVtRMNLz+v2xjs3ra44lfxK1vNqE6EeWZdNqp+FZfAvpZ14HQFxxEbS0QTFdSNdVIru7XtAQPbgNrauzIbpgmhal3lK+sPCT/HndoxwJN6IoCrOLpnLztKvR4+4OJ7X3lYgZpTXadbd7daCODHc6DeGmtsuK0vK7DWcOw823l3yBP65/hHVVm7GxyfVm89EZ11LkLsQ6IWCoGkTVEG9VrWdPYyVjska1nb1lW6BpavfHrXyAZdk4Yh6uG38FV064CBsbJy5iRLBsi0/MvgG37uq2905TNZyqDoNgWKwrtg3EFZy6mzSnl8Zg13OlRP/Swq2Y3szEl7d+dmwBRGOkiQJv/4ev7kgYEmIARA2VaBenhveGotCrE+ptGzR/dpflqseH3cMjKAAUQ2NC2ni+s+RLRK0ouqrjwg1xtV8XUThO8gae5vASNY6HO4fmYFLeuG53frYsG2fcwyen3UR0WgTTMnGpLly2p91xEqqqUGtU84OV97Qdyvr2gbX8e+fLfGPpbTTGWthTu588Xw7lmSNxGm6sUwzEVlxpm9dkAQ7Fw1kli4gRxVYtNDQyXH6aox3PrFs8ch4uPEmfLC1SgxoNYvoGZkdovyMNBYUj4eTvNSRhSIgU5FFjaEYQo7kOzZsOnkzCeHo8/BSPm/jHL6Bp5UN0tmmbf/ZFGHrny9dPxjRtNNOFFxeYfbolXJdcuJleOIn11Vs6lHkcbpy6o21yt9fh4atnfhqXefKgkOi50HBx9GdhgvGBW8X1CHe9+UC70+k9uptPzb2Jn735Gw6fcMCqW3fxjcW3kafnn9ZE5mP18eppZKX7aG4O8Y0lt/Hj1++l8YSlylPyx3P1xIuxooNjjpAY/NRYBCNjYHppNFUj3emnJlw3II/XnQENQ16vl8997nOUlnZ9GKIQontpWoTGZ39FZO/xs670zALyrv06IS2rx4EoqqWRc8l/cuTpezkxsrhKJ+Gddg6RQTy88kGKofGxGdfzo9d/0W4VmFNz8N+LPkuGM50vLfwUaW4fua4sdMPdIYxomkpMDRMyw9jY+HQvTtONeZLjRALxII3h9numnDP6DP6985V2QQgSK71+8sZ9/GjZ/6Cbx1dMaZpCVA0TMkKoioqn7bG7j2uWZZNBFt9d+hUao000R1ooTMvDp6WhROU7rzh1ihnHcgzcHlTZ7kwOB6oH7PG60ie/JYFAgMOHD9PS0tJpF/jcuXOB42FICHF6XJpFy+t/bxeEAIymGuoe/iG5N36PYA+PLzBw4CseS+GHbid6cDtWNIhrxHi0tCwMS02pZRa2DU7FwWfm3UxtsJ7KpkNke7MYlVlCrjsbNeZkQvo4MjN9NDYGMT4wTqVoUB0/zL3v/oG6ozs3Z7j83Dr7Q5SnlXd7TpZhd1waOCl/HCt2dL7nUjAeoiZYR4mzNNHTo5tsb93Dg+/9g5ajw135vlz+c95HyT+FHiTTtNFNF3lqAfm+QmzL7rfjNsTgEzPA2Ref6JaJrQ3cgc95nly2NuzAtu2kHu/Vqx9dY2Mj3//+93n++ecxO9k05Fjj5KBWIfqGwwxSv+WNTsuM5jrsYAN4RvToPr12gOo/fRMrEsSZPxLF4aJl3UvY0RB5V38NtWhqX1R9QKg6PLf3NZ7Y9hwZ7nQK03JpObyJqkAtZRklfGXBZ9Dsrr/1RtQAP1h5T7sDTpujrfzfW7/lB8u+RpaS0+UcrTSnF4fmaDdMZlomNjY53izOKT+T4vQCWqMBVu5bxa6GfbRGAyiuxAfAEaOBO9++v9191gbr+cHKu7nj3G/iNE99ztmJX0o1TSWuRrAVG8VWcViuIXkEzHDXGoacPligqthHz7AZIPnePN6teY+maDNZ7swBe9wP6lUY+va3v80rr7zCzTffzJw5c0hPT++regkhOmEbUbrrIjBbjqD6Sk55qEzTVGKVW7EiiRVYsdr97cqbXvsbOdd+G/ph8nd/OHH36+ZIC82R40t29zcfpDneTJ6e3+ltdV3h3/ve6vSkdxubx7f+m49P/RDEj/cOqaqCpRmYtomqqFw54Xye2fEKZ5bNIceTRborjUvHn8vo7DKe3v4ij25ZQbYnk/MqFrNs9JmUpBclniuHyaPrOz+6JW7GWbn/HS4sOxcj3rMQYzsMtjfv5eHNT1EVqKXIn8/1ky9jdPooWbo+xDT1URiyFXVAd8Yv8hUAsLtpL3MKZ57k2v2nV78Nb775Jh/5yEf42te+1lf1EUJ0Q3G4URwu7Hjne//oWQVEezBnSNMUooc73+EYIF5/EDWFzoeKmjGiZtdbAdQE6sjPKui0zNKsth2dO7O/+RCGEm9b1WU7DA6EqvjX9uc5Em5iXE45F449i5mFU3hkyzNsrN5GS6SVcbmjufPtB9rupz7UwN83PsnisnlMzZsIUTAx2N98qMvH3tW4D6vMpCff2BXd5s3D77bbd+lQSzU/f/u3fHjaVZxRuIBORvZEilGOzvNr6qvdCFQVxRy4F4bX4SHbncWOpj1JDUO9mg3gdrsZMaJnXfJCJJOuqzgcGkkcmu6VmOYjfc7FnZY5Cyuwe9jNbFk2ztyuFzTo6XmJb4opwqk50NSudy3O8WZ3ubRfVRQK03K7vG2+L7dtToOtm7xc+To/ev0XbKrdTlVrDa/te4dvv/Qz6sONHGqppipQS2lmMX9c989O7+/1/e8SMROhVkWnwNf1Cp4R/kLUHr5dx5QIj2x+utOyhzc/RVztmwNzRXIdeyur77irwmmxNQfqAO8IXZJWzLaGnQP6mB/Uq3e5yy67jBdffLGv6iJEv3GpJml2M2x7CfP9x/EEDuBTk39ivKLQ5VEQnYkZCp4ZF5A+/zKUtkmOCp6KWeRe+WXC3cyH6YxhWLhHz0DRO+6iDJCx6BrielqP7jOZXLaHJWXzOy3L82aT3U1YtE2FJaMWoHTR+3LBmCVoR4/eiCkRHt/6bIfrGJbBw5uf5vyxS4HEQZQnbvD4QZXNh1BVBc3UuXriRZ1eR1EUlpUvwujhgaUtsVbiR4f8XJqTHG8WzqOvmZgZpyU2OM6EEn2jrq/CkO5A6aLnub+UpZdwJNJAbSh5S+x7NEy2efPmdv++8MILWb16NZ/4xCe4/vrrKSwsRNM6fiubPHly72opRC84VQNr37tUPfvbtsua33oMV8kEsi/9AgFz4A+D1FUbtx3CbDyMFQ3hyC/D0HxErJOv4giaLpyzrqBw+vnYsRCKw4Wh+whY+mltwBhW08i/4dvUPfZTrNDROTaKSvq8S9DLZhBLocm2tqFw9YSLaIkGWHt4Q9vlhWl5fPXMz+Aw3F1+BbQMG5/Dyyfn3Mif1z3adl6SQ9W5atJysj2ZKIaOosKexv1d7qJ9oPkw+d4cINHb1B237sa2ExOeizyF/H/2zjuwrrL8458z7k5u9t7de6R7D0YpFEopZS8RERkqKj8HiqKoqOACRGUoU5BdWWV07733SNKk2Tt3n/H74yZpb3NvmjRpOjifP5Se94z3ntx7z/c+7/N8n9uGz+f1HR+05i3ZZCv3jb0DhxDVaZ8mkygTa3Vy/ZArsZttVLtrSbDH4fK7eXPnh8iC3DPmTwY9Qnn9qffpCJpsRvT3bNQwMyoDSZDYVb2P5LPkRN0pMTR//vw2pW8tIefVq1e32d+oJjM4FzArjSFCqAVf8V7cOxZjGnYFgdPo2WSWNMyaG93TiCCb0M1RHTI+NIkacs0hyt57IiT3xzF0OtGTb8Slnjq641dF/ESBuTlq04W0HkUV0KOzSL7tcXDXoQV8SM5EAqIdtyohn2d5toLPzJ1Db+DGIXOp8dQRbXbgkKMwqRY0TY8YidN1sOPAIpq5d+xtaLqGputYZQs17jpiTXFo/uDxYoSlQ4ts4Yp+M0mNTuLnMx4kymTnkenf4c+rX2gTiTFLJjKiU9D9wfeLoMiMTxlDftowqj01yIJMrDUGs2olTE73KYk2R/HA+K/x/Mb/UNpU0bo9LTqFb4//WrAVwtnvj2nQDcSY3NT77DR4dJydc9Zogy5bEF113TKvjmKWTGREpbGzag8zsib36LVb6NTX3G9/+9szNQ8DgzOCySTh3tpWqLfQuOljkofMINBJbx675Me7bRHV6z5o7fRuik8jcd4PcJsi550AWDUXx95+vE1VmGvHUsypvZH6TDtl6bNJBrPqgoAXQTYTkB342vHAORWqCi7sYLWDlWDE4PzJm25LQMZGNBmm6OBrCYDWgTCIoMgMiO2PX/Cyv+owqq6S5Uwn25GF4A9+XWqaTl5sFoIghOQfWWQLD074Oh/tX8y7uz9p3T48dRC/mPk9frH4j62CSBREvjv+LkyqNWRWuiJiwkaq1JyL6QdEAd0UwKt70HUdq2jFpJ3aiBFd4JWt74QIIYDSxnJe3/4+D4795invh8H5QZzZTX3AzrFaui6GTBYEf8+nEOQ6s1l1bB0+1Y9FCr9sfybplBiaN2/emZqHgcEZQRBAdUXu6K153a3VGB1FkkQCRzZSv/qdkO2BmlLKX/85Kbf/Di/ha1xlWcSzd0PE8viGte+R2nskmiCgCTI+oa3zsV3y4du9gvI176L73CBKOAZNJmbKDTSqXfwmvIARRQFVCuAVFKrdfmTJDGEiLoISbLsxIn4YIKAqbUWHWbdx67D5vLzteHL0lf0v5sN9X7KzYl/IvtvKdvPS1rf52Yzv8uHeL0iLTmZsxkisuh1daX8ZTZSgXq/hH+tf40htERCM7NydfxMp5tR2j3WrbgrqisOOHaopxKO6sWPYoVwI2CU/drNOcQ0MSO/auTSTBTHgCYZKe7DSJNeZzfKS1eyvPcjQxEE9dt0WupRAfdttt7FmzZqI42vXruW2227ryiUMDLqEomjY+oyOOG7NHoQidM5t1aq7qF8VvkJI8zQRKDsUcSlGFAUCNccinlttrCFQWUjpP+6j5p3HMNccwCIef2KbZPDtXkbd0leDQghAU3HtXEbNR09jk4x1j7BIGhVqOX/e8E++8+kjfPeTR3n/0CdoFn/E73tV1UOiL7IsopkCKLIPURAYlzqKX818iAmZo+ibkMewlIFthFAL28p2IwC3DLyOGenTsAQc6IqAZNUJmD2oFi/mMPbBPsnDL5b+sVUIQTCy89jyv9BEQ5v9T8R7ioqgU40bnF8kOaGouuvn0WUTgq4jKJEtKs4EsRYnMWYne2oiW32cSbokhtavX09VVVXE8ZqaGjZs2NCVSxgYdAlN05ETczAlhLGAEERiZ9yKT+tcSFbQVdTGyF2WAxWFmEUNze9tzbETRQGrrCHpCtacIRGPNafkEagO+s0EKo9S8eZjCBX7kOXgR9WiNlG/5r2wx3qLdiF5239AfhURRYFqpYpfLH2SgzUFAPgUHx/t/5I/rf0nqunUX/q6OcCm6i38bs3T/GLFE/x3/wf48JAkJ3Hb4Ov47ui70U5hVOfyu/HrPnRBRZLBY2rgtV3v8OiyP/KH1X9nXeV6NOtxgSLLAiuL1ocVLaqu8f7eT0E6qZ2IAJIJMKlEWxwRK+MEQSDKfH4YaRp0jGQnHKuFQBeXt1tacfS0GBIEgczodPbVHOzR67bQZQOR9nqJFBYW4nCcXsdrA4PuwqXbSVrwMFEjLm0tIbek9yP11l/jtyZF9J2JhC5ISFGxEcfNCWk0fPEc5e/8AblyD07JhbliJ02f/JmGD5/EnJgZ8fiY8VfRuPXLkG21X/wbixZ0VNMDXvR2Kj0CtaWdKtX/KqBJfl7a9lbYv/Ph2iIqPJXtfo9p5gDPb32df256jeKGUmo99Sw5spoff/k7GmkILnUFJOym9pcobSYrT216gdf2vE2VWskXh1ayonA9tZ56jtYf4/lNb/DC5jdQLUHxowoquysj/0o+UH0Ev37CA0tWqdGreGXPWzy16QWKG0qZnDMm7LFTc8Zj6WSenMG5TYoTNF2gOPLvtA6hN/t09aTxYgsZjjTK3BW4A+4ev3an60Tee+893nvv+C/TZ599lv/+979t9mtsbGTfvn1MnTq1azM0MOgiuq7TqNuxTLyR6PFXg66himY8uiVi5ZcgCMFWC5rWplzdJzqImbSAmkXPtTlOtEYhWuy4mvuHRQ2aSPXaD/AWHbelqHjnDyTPfZDa5W/iPbobACkqjrjJC/AW7UapC+1wrjRUguIF0RYUc+3Y5UuO2E45UF/IBD2cRHyi0q6z9Nay3WTnZeP3t/1JLQhQ7a1ha9muNmM+xcebOxfy9WE3I6oSdtnK4OR+7KpoK2CGpQykyl3D3qqD7AVWFK3npmFXMyl7NAV1xXgVH9XuWraW7aLGW0uKlIqARJIjESrDm9HF2WKRhOCDSxdVNpVv5cUtb7aOH6g+zLfH34ndZGPx4VUENAWTKHNx7ylc0edidN/5Y6ZpcGriHGCRdQqrIK8r1ektlZJnwXk+1RFslVPUWMKA+L49eu1OiyGPx0Nt7fGEVJfLhSi2/VDZ7XZuuOEG7rvvvq7N0MCgm/ArAv6WHlsqhDNZEUUBGy60ulKUmjIsiRkIzhQ82FuFk6Jo2HuNxjm+kob1H9JS9yzHppA46+tUL36l9d+6ooQIIQh2mC9/70mS5jxA7KT56IofKSqW6s9exHcszINPEBHE4Ec1IDmw9xuLe9/aNrtJUbGI0Ylf+U7lggCqyU+Nt5aimhL6J/XCIpkjtulwmKzN32Ftv/xlWWJ90Zawx+XFZTEtdzxHGo9Q7a6jV3w23xx9M//Y+FqIIBqaMoDbR17Lo4v/dPy8oowAXNZ3BjvL9+Iw20m0x/Px/sVsKNnG/L5ZeDwBZvWexrKC8HmZVw+YhUkPRjq9ePj31rdCxlVd4y9rX2TugEv5w6U/xaf4sUgWLLoNzUgXuuAQBEiOgYJKYGC3nLE7TtIpYixOJEGi1FV+7ouhm266iZtuugmAmTNn8vDDD3PRRRd1+8QMzm8kCay6Gzz16AE/UnQ8ftGBTz13f42KooBdqaHijV+iNh0X/HJMMsnX/5QmIaZ1qcWtWrCMvJK04RehexoRZZlARRFVi15ojezYe4/EtbetaAHQ3A3ULHmFqIETqF3+JikLftSmSWoLtj75BCQ7qOBTJWJn3o7SUIW/9PjauuSIJfm6n+IRHHzVnfQUs48nVv+douZeX+Mz85mcM4YvD69qs6+AwNCUgVQGKvHrfmIszqCvzwm6yCy1TbDPjc3k2kGX8/T6l/AEjpchD03uzzdH34JX8eEOeHCYbVS5anl0yZ9by+oFBB4YdwdfHF7Ja9vfbz3WJMrcNfpGNE1Haxa0TimGb4y6iRc3v4HaHA0UEJg74FKyo7JaBXpB3dGwOUuarvHenk+ZnDWWKC0WtK+8Vr6gSXHClkJQVJAjd6VpF6H5za9LPW8wJgoiTnM0Nd7IFcBnii692sWLF3fXPAwuIGRJx9xYTMWJjsaiRMz4q7EPn4Vb7XkPiY5gxUPVu78PEUIASn0FVQv/TOzVP8KjH5+7T5XwEQ3WaOyCh5plr4cmVgsCejsd5tHU1pB0/foPSZx9N5UfPRtSdi/HphB30deoViTcXgWbRUaS7SRc/QMEdy3+6mJkZwJiTApuok/tPXOhY9J4edvbrUIIYEPJVn4w+R4O1hRSeEKpuYDAbSPmo+kaj3z5O1RNxW6y8cC4r5FtywFVIBBQGZ+Zz/t7F4VcZt6gy/jb+ldChBDAjop9vLb9PZyWKD4/tILvT7qbJ1eFGn4OTx3E/uoj7CjfG7I9oCn8c8Nr/H7Ww/h8geAcFYkRCcN4clZ/CuuKUXWV3NgsLLoVAlLrN7hyiiWNSG7ZBhcWKTGgagLH6nSyE07vHC2J07rcudY+3YVNttIU6K6usx2nS2Lo2LHIJcIQzLuwWCzExcW1m6BocGFh05oofeNX6CdWI2gq9avfwZSQgZQ5+px8aIu+RgI1pWHH/GWHkQJNIMWHHQ9INhyDJtOwbmHrNk/hTqKHX9RmmawFe7+xeAp2AOAt3IkUHU/GN/6I5/B2lPpKLNmDkRKzeWlZKR+vKQxWxkkCv7trOPHFK2ja8hmixY7mdWPJGkjcJXfSJNhPqyXHhYIPD5tKt4dsU3WNp9b+i9tGzCfG6mRL6U4cJjsDkvpQ465lTfFm1GYB6g54+MOqv/P7Sx7G1uwVFSVGM6ffxXy4P9iHMdrswKv4cEVI8txQso0HJ97F54dWUOupJy0qOcT4cFLOaP69+a2wx6q6xs7yfYxPGovS4m/UbMTYL6ofAFqYHmXZMekICGFFT4YzFZMkh/VUMriwiHMEf4wWV3PaYkgMeNFFCd10dsSQLEqtPfV69LpdOXjmzJkdEjkWi4VRo0Zx7733MmrUqK5c0uAcR5ZFPPu3hAqhE6hb+RYJ1w/CTc/3AzsV2ilcV3XFBxFCzwEFnPmzcO1a0RpZClQeRY6Ox5yc02YJTI5JJmrYdJT6Smy9RmAfOBFz1hCacCD2nYYsCPg0nX98sJO1O8taj5s4OBlHwXIaNrwfnLM3+AvKc3AjmruO2LkP4T6pnYcoifhUDUEHiyyek0K0uwioStiqMXfAw983vMqDE+5iRt4EfAE/giBQ4arm4/2hEW5N11hyZBVX9bocJaAhKDKX5c1kTPpwPju8PPhl3U6lTbCNR/Aef3pgKdcPvZKn1v6rdZnLLJkiCimASndNm+9V0SQQwIsOmEVLm/YcjT4Xl/WdzicHloRsl0SJ64bMQdW0rn3ZG5wXiAIkRtGlijLR60K1Rfeo4eKJKJqKWeyc91t30KXPx69//WteeeUVSktLufLKK8nJyQGCJfX/+9//yMjI4JprrqGwsJCFCxdy++238/zzzzN+/PhumbzBuYcoivgqCyKOK3XliOdo1oLoiCGYNBgmtCLKCNboiOk4ggC6qpA05z48h7fiPrgZQTahNFSTNPc7eAp20Lj1C9A0HIOnYh80BZfgwDrjGwi6hqJLNKla0CeGAKKi4MfMht2hlWVX5Mfj/+QTkGQc/cZiik9D9TTi2rMa37GDCN56MAUrMkRRwK3ovPPlPtbuLMMki1wyJptLx2UjQ6ctBc4HrJIFh8keUWw4zHZ+vfRprCYL0/PGkxObgUmU2/wSLWo4hoZKSxKpEJBJklK4bdB1aLpGrRo5pyHaEoVfDS5zHWssZ8mRNTw0+VusKFzHwZpC/KpCVkw6R+vDR9YHJfZrFayCIKCYvSw6vJxlBWtRdJXxGflc2f9iLMpx2xKbyYbTEsW3xt7K0iNrqPHU0ysum+l5E1h8aCU3Dcnu8D00OL9JiIKjXTBflDwNKFGnGVbqBtyKhyhTz1vydEkMVVRUEAgE+Pzzz3E6Q23d77//fm666Sa8Xi8PP/ww9957L/Pnz+eZZ54xxNAFjKpqWNL70bQtfD6ZKTEDNVJ45SwTkOw4hk3HtX1Jm7Ho0ZcFk5gjBATMokbd0jdx71mDrddwoobNAE2hafdKar58icR5PyDpukfQdI2AYKMxoAE6qgrBB66GTfQjNByjYd0HqE21mDMH8tTd03nm0xIEUSIhxkKMQ0bI6Efs+Lk07V6F+8BGZGciiZd9E1/JPpSaMsS0FDRNx6PoPPTUClyeQOs831p8gDU7S3nkznEXZKTAotu4dtDlvLStrUP4oKS+HK4toingoing4u1dHzMwqS83D5/Hv7eELlv1ictFREI7QbjrOih+HRCINkUzILE3e6sOtbnO3AGXsuTw8X5428p2s6/yEL+f9TCoAmbRTMywaH6z4qk2x6Y4EsmMTkNrbt6qmLz8esVfKW+qbN3nyyMrWV+yhV/N/D9sWvChEWNysq1sD5WuaibljCba7KC4oYwnV/2DW4fPx6LbUI28oa8E8VGwq0TA7dOxn8ZKl9RUiz93WPdPrAMEtAD1vgZSzkLn+i6V9rzxxhssWLCgjRACiI2NZcGCBbz22msAxMXFcc0117Bz586uXNLgHEdVNczZQxEt4d1tY6fdhF8495bIAHyqjHPyDcRMmIdgCs5RtNiJnXojjlFXttsIVdK8+Ip2ATqew1upXfoatcvfxF8afFi6ti9mxZ4anv7wCAdLm1BPCkFbRAXfri8pf/0XeA5twV9eQNOmT5A2vM7PF+TywIBibrEuwV5zgLhJ11L21uM0bV+Cv6IQ98FNVLz3JKLVgSkxA1EUMJkkFq44HCKEWiiuaGJfUS2SdO5W9p0uqqIzJjWfr4+8gWhLFBCs0pqRN5HL+83ko31f0ic+l0xnGgB7Kg8Qa3WGGCaaRJkpOeNAp9X5+2REXeL2kQuYkjMWudn2IMYSzc3D5jEoqS+VrtCf5sNSByKpJqSABdUnkGFL56GJ95DkCP4CFwSBsRkj+MmUB5ADwfeeJInsqtwXIoRaaPS7+OLwCiRT8H0kq2buH3MHw1MH8fH+Jby2/X22lu7i9hELGJk0DFUxhNBXhbjmr96Kxs4fK/pcSD4Xgfgwjv09QGlTOTo6eTE5PX7tLv04rKurw+OJ7IbrdrupqTm+eJmU1PNqz6DncQsOUm56lKoP/tTah0sw24ibfjMk9m7TePRcokmxYBoxl9RhF6OrfpDM+CUHruaI0MmdylvQBQnR5kR11Yc9r26LYfP+alZuL2PF1mMM65PIAwuGIzWfy6y5qVoRal5qTsnDOeJiSv/9f9Cco2LLGULVJ/9o/feJ1K58m4wB49F3fYpgj2HO8Dzq6hJZs6dty5xlW0oY1it8Mvj5jhCQGZM0imHTBxHQAkiSyMJ9n1Prqedr+ddxuLYIh8lOTmwGnx9awb6qQwxI6sOeigNEme38YNI9aLrGqvK1qJrK0JSBRElRCIHjX5c+wcMjXz7JhKx8vj3+a0Cw19fiw6tZWbSBS/tM47Xt7yEIAuMyRnLz0GvAd0JEVJHo7ejDzyZ/F7/mRxIlLFghILa+vzRRYdXRyO2M1pdsZXTGMPYVHWJQYl9ihTgW9LuKq/pdiqIpmERTMCIUJuHa4MIl2gaioFPVCLmJnTtWbrYF8SdmnYGZnZpD9QXEmJ2kOVJ6/NpdEkNDhw7l5ZdfZubMmfTv3z9kbO/evbz66qsMG3Y83Hbo0CFSUnr+RRr0LJoGbksy8dc9guh3oasKgjUKn+jA2/Ompp0moEIAB4iOYI6QAjbJj+RrRKkvR3LEgj0uxIjRL9hwjruK6o+eCXtOte90NrxS0Prv7Qer2HGomlF9E9F1HV/xAU5OSIoZdyVVi54LET5ydHzkRq+aiu/oHho2fBi0NBBE7pj1AKKYyKpdoYLIZpEj9q26EFAVHRkrMlYUycfojGG8v2cRB6qPtO4jCiJfz78em8nGuMyRzOo9lbToZJYXrOft3R8dP9mO95ieO4FrB8xB8JsQRYEjdUUE1ADLC9axvGBdm+vfN/Z2BiX2w2ayBttehHF7VlUNSbVgwwJq23Q0ERFLO+XNFtnMnsoDvLnzf0BwGfDe0Xdg8tkwAagYS2NfQSQRoqxQ09T5Y801JQRiUtCsUd0/sVMQ0AIcqDvExPSxZ6X6vEti6Kc//Sm333478+bNY8SIESEJ1Fu3biUqKoqHH34YAJ/Px/r165k1a1bXZ21wzqNperBiTLYG32U64Qx+zwuiJS81Hz2Nt+j4Eq8ck0TSgp/gluPRtGB3c2v2MOwDJ+HeE2ruZ554I4v3+/Cd1O7ho1VHGNY7ATnC5140W4/7NJ0OuoZ30VNcP/83bcTQZeNzLpyqMpOKV/fiUTzYTbbmCMvxKIxVtLCrfF+IEIJg1dfzm9/gd5f8hB9//jhW2cLdY24KFULNLC1Yw4jUwQyI7o+un9q3R0QklgRou0rZYXRVYFbvaWw6tj3s+OTsMawtPu6OvbvyAIsLVnJp1kxjWewrTpQVajtr1aOpmKpLcPWfcEbmdCp2V+/Dq/iYmnF2rt8lMTRgwAAWLlzIc889x4oVK9ixI+iZkp6ezk033cRdd91FamoqECyvf//997s8YQODnsQiqdQvezVECAEo9ZVU/vc3JN70S1zNDS9dqoWoabfhHH81voLtCGYL3vh+fL6jHqdd4o93DgDgUIWft1aV4vWrQbdhAcxpfQitZBPQ1bbqUWmsxpSQ0drZPgRRQnYmhgooXUMu201eupMjx4Lbr5rai7wECVmpB3RU2YpPt0bs03Yuo1n8vLztLTYe246OjoDAuMzgspToa25VoXpZfGR12ON1XWdr2S6yYzPIikljddEmYqxOLu41mby4LHR0ypuqWHRwGf/b/zl9xvRCVExkx2SEXTIVEJjddwayJOGiDpNoxi46ULydv7eappNmT2VK9lhWFK0PGeuf2ItkRwJHaotCtn96cCnTcyYi0X7mrCQL+AQPAS2ALMpYsKIFLtxI4VeNKAvUdbLXqammBFEN4M3sll4encKv+tlQtoXRKSNItJ2dSrYuF5SkpKTw05/+tDvm0gaXy8Xs2bMpLy/n7bffZujQoQDceuutrF+/vs3+H3/8Mb179z4jczH4amJS3VTtCf8gVRoq0V01YDuebOjRLGBKwjJkFk6njZVbipg5wI6++iX8G4L9qoak5DL0mjvYVW/HYhJRFY2A5CB26vXULX+j+Uw6giwjSCZ09Xh4oWHjJ8TPuIXy9//UJm8obvICGrcvbTNPq9LI+CH96J0Rw5WTckkzNVCz8Al8JfsAMKfkEj/rbnyONBT13H4gSrKAX/CCAKIg8MKW19latrt1XEdnbfFmdF3jtiHXByNEgo5X8RFjiWZGr4nkxWbhU/2sLtrEtrLdNPgasZus2E02BES+NeYW3t39Ke/s/hiAnNgMbhsxn3VHt6DpKpJgot7bwNwBl/L+nuPO1IIgcN/Y2ymuL+VHn/8Wr+LDJluZ1WcaF/eaguDtvPO6GDBx3cC5XNRrCksKVqGoCmOzRtDkd/Pshlfa7O8OeE4ZtdJNChsqt/PWro9o8DUiizJTc8Yxb8BliL6zY7Rn0L04LJ0vr7eWHSYQm4ISk3xmJtUOa0s34tP8XNX7sh6/dgvndHXt3/72N9Qwv44B8vPz+eEPfxiyLTMzsyemZfAVQg/4InaIB1AbaxAdmW2iKi1LUKOyTJT96zF0//FCA395ASx8jClfe4KmZpdhnyZjHXQRKZkDW0vrFVc9cdNuoGbx8YdeoKaU+o2fkH7br2ncthhfyT7kmCSihs3AW7gLVxjhZs8dyhVJOegaWJV6Sv/9M3Tf8Z+N/vICyl57hLSv/YEmMe607lNPoFsCrCrZzP/2f069t5GfTnsgRAidyPqSbVw35CqsRCEKApf2nsqItMH8b98XfLD3M+wmG9Nyx3NJ78kIgsjeykMU1RVzy/D5/GrZX0LabBTWlfDnNS/wyPTvYhLMaJpOtDkKXdf5zoSvs7xgHbWeOq7odxG7Kw6w+MjxZVKP4uX9vYtoCriY328O2ml0ihcDJpKlFG4ZsABBgCNNhfxp4/Nh9+0Tn4ukR7aukGSBteVb+ffW48n6iqaw+MgqypoquTf/doRAzxveGXQvdgt4AgIBRcfUgae84HNjqimmYUTPi5GSplK2VO5gXp8riLeeve+fLouhQ4cO8c4771BcXEx9fX3bsLEg8NJLL53WeV9//XV++MMf8vOf/7zNuNPpZMSIEac7bQODDiGYrQgmS1AUhUGOS8EXYXlJ11TcO5eFCKFWVIXGDQuxTrwVX3M0xquZEKJzibr0fgRdQRHMyARIjs+gbsWbBGpLMSdk4Bw/j4AlHvP4G7FpPpDMCHVHadjQNtfFlJSNEJuG36ciyyKuXctDhNCJ82lY9wG2ybe3zudcQjcpvLbzXdYc3QQEl6Oa2nFx1tHxBDzNYkhiYvYofrn0L63O0C6/m4/3L2Z/1WG+OeZmLLIFAdhcurNNvzEAVVP54tAKbhl8LaATK8VwpPYoi4+sZnxmPnlxWfSKz+ZvG14OO58lh1dzed+ZWDi9xFRdB39zzlmKI4m06BRKG0MNOQUEbh0+H0k1o0WIDvkED2/t/jDs2O7K/TQqTTg5dwWxQcdwNAch6z2QGH3q/a3H9qOLMp6cIWd2YifhUTwsKlhMr5hcZmZN6dFrn0yXxND777/PT37yE2RZJi8vL6zf0Om63D722GPccMMN5OXldWWKBgZdwi9F4Rwzh/rV77QZs6T3RbfERGwDrvm9eAvDJ78CeIv2YB/vgxNak+i6jlcVgeC3WQATYuJAYuf9CFFX0QQZH5ZgJEoDsIAG5ugMUm54hJovXiRQVYwgmXAMmYZz4nyatGBOk6T78RTuiDgfX/FeHFrofM4V3JqrVQhBUOyYpfaXnayyFZRgovRr298P29X9YE0BNe46fIqPPgm57KrYH/F8e6sOsbd2P18eXsW4zJHcNeoGVhZt5IO9n+FTfAxNHhDx+07VNRr9Tacthk5EROJbY25h0cFlrC3egqqpZMWkM3/QbGIsTvR2Sum9qg+XP7KILGksJdYZf17mjxkcx9H8Ea53d0AMqQrW0gN4coejm3rus6/qKp8UfImGxp2Db0IUzq7vWZfE0NNPP83AgQN57rnniI/vPs+STz/9lP379/PUU0+xa1f4Jpfr169nxIgRqKrK8OHD+c53vsOYMWO6bQ4GBgB+BRzDLwVdo2HDR8091wTs/UYTe9HXaNIi51gIsgk5OoHwMSWQo2LRRemUVXaapuNpSYjVW/8ndJ6ahBrXm/hrf4ao+kCUCIh2Gk+M8ggyUnTk5ETJ0bH59DSiKHD4pERhgMK6Yvol9GJ/9eE2Y0OS+2MTgiJQ0/U2lWQnsrNif7BfmN9NvC0m4n6xVicFdcVsL9/D9vI9JNjjeGTad5mUOQZVU/Hpkf7SQSySpcv3VhCg2lfDr5b/lYlZo1o9jqpcNfxnx0JynOncMfRGCIR/sJgkOaJXFkCM1XlBtmn5quEwgyDo1HYgidpSfhgh4MXVd+yZn1gzuq6z9OhKjjWV8sCIu4mzxvbYtSPR5XYcd955Z7cKIY/Hw+OPP86DDz5IVFT4X1Fjxoxh7ty55ObmUlFRwQsvvMDXvvY1XnnlFUaOHHna147kNnuu0uIgfCE4CZ/Lr8WHDcuoq0kbdjF6wI0gW1FNdjy6CSlCeoYkiYiymegxc8Lm8QA4J8xDEa3IQvc9fPyCDcTjbsryCZ9wFYgefTmu3SvDHhszYR6q1HY+Z/tvIwgCDnNbR/OFez/nOxO+ztu7PgoROwMT+/DN0bcgK2aQQRUETJKJgBq+zt1pcXD3qJvRdWjwN7CqaGPY/Wb3ncGaouPRqWp3LR/s/YwbBsxFR0SUBTKdaRQ3lLY5Nic2E5tsRe7ir19ZFll/aCsBNcCygrUsK1gbMl7hquKW4ddikW1hj5dEO2PTh7OuZGubsSizgxR7IpJ29j6DZ/u91p309GsRxOM/fCQRopu9hsT2Lq9p2Ip348scALGJPdYoaXXJRnZW7+X2wdczMKlPD121fbokhvr3709FRUV3zQWAZ599loSEBObPnx9xn29/+9sh/54+fTpz5szhb3/7G88999xpXVcUBeLier45XHfgdIb/4jsfObdfS6g478i7xZKUQfxFt1Pz5cucGNGJGT8XW0ZfJHv4tiVnCtWWSfzFdwTnc8KyUcz4q7Bl9mt3Pmfzb5MnZ7ZpqOoOePjrmhe5M/86vjn6Zpr8bpyWKJzWaJyW438rv2pmRt4EPju4POy5x2QMJ92Zgk/xs/3wbhYMvoK3d38cEiG5qNdkvIqPXvE5bDi2rXX7isJ1LBhyBQnOOASPyrfH38nvVvyNas/xRq6J9njuH3c7dpONGGfXv2NMYuRHliiImGSJuHauc/vIBZS7qimoO9q6zWGy8/C0B0h2Jpz15Qo4178HOkdPvBZBELBaQhPf46MVqprAbo+8nCyWHETyNBIYfTHR0T1zz9cc3cza0k3cOHQuVwya3iPX7AhdEkM/+tGP+M53vsPUqVPJz8/v8mRKSkp48cUXeeaZZ2hsDDZWcbvdrf/vcrlwONp+yO12O9OmTWPRokVtxjqKpuk0NHTSmOEsI0kiTqeNhgbPeW+gdyG9Fjj+elx+Cbn/VNL7jMJXsh80DUtGf1STgwafBL7OOqN1HbnfFNJ75+MrOQCaesr5nAt/G5No5bsT7uLJ1f8Myf2xyGZ6x+Vi16OINsWCBqobat2hr+PKfpewu+JAm6jNXfk3YtHt1Na6QNLYULKNOFsMP5x8LyUNpSiaSk5sJtvL97Bw72dc1GvS8WtLZmb0mogn4KOgphirZMEqW/jB5G9S56mntKmC9OhUYqzRWEULnoCXWk89ZsmETbAjIuHBjVfxIosyNtGKpJk41SrV2Ix83tsT/rtucvYYREUOvp4IyIKFH0y4hxpvLYX1JSTa40iPSsWGnfq6yO2VeoJz4b3WXXT2tXTlx7iu63h9oZHPWBvsOQZNLh9iuJoIXSf6wBZ8qb1psMZD45n/22+t2MniopVcljeTaamT232fdhcdva9dEkPPPfcc0dHR3HzzzfTp04e0tDTEk2JygiDw7LPPduh8xcXFBAIB7r777jZjt912G8OHD+e///1vmCO7B0U5Pz98qqqdt3M/mQvptUDw9fgUCXAiZo5BEKBR1UGBiJnXZxgFCS9OxMzRnZrP2f7b5NrzeOLSn7Hx2DbKmyoZkjyAXnE5mBUbAa39eUmqhf+beC8ljaVsKt1OrC2G8RkjseJA8wtoaEi6yLSc8Tyz4SVWFK4nxZGIKIiUu6rQdI3L+81kd+UBAOwmG98efydfHlrJ9xf9El3XsZmsXDNwNuMyR1JSX46IiMvvIT06hVXNidYexYsoiNyVfwOyJPPatveo9wV/+A1O6sdd+Tdi1aLaJDALJo2A4EfXdaJNDmb1nsaiQ8tC9omzxjBvwGwUH5zqbylgIlFMJjkhFU3T0f06gbP0fgzH2X6vdSc99Vr0k94zSdGwNSBQXqeTEiYVzlRVhOyqo27s3B7pF7mtcidLi1cxI2syc3JnNV/z3MlP65IY2r8/WHmRlpaGy+Xi4MGDbfbpTI+RgQMH8vLLoaWpe/bs4be//S2PPvpoq+niybjdbpYuXRpx3MDgXOBcq9A51+ZzSlQBi+pgWtpkRFFAUTQ0vx6xjPxEdB0kv4VcWx79BvQlOtpKba0r5CGlqhr9E/qQ5UznaMMxyl3HW5jE2WIYnjqIT/YvAeCGoVfx5s6FHKk9vtTkCXh5bft7iILIlLQJCAjo6Cw5uoI3di5s3S8tOhlRFPnb+tDvul2V+3ls+V/5+bTvIfmDCfOiKOCVXPx310LWlWxF13WGpgzgayOvY2zGCD49tJQmv4uxGSPJTx2KWbF16H603JPzPfpiEJmkaJBEnUMVtBVDuo6taCe+xGwCidlnfC6by7ex4thaZmZN4Zo+c85K77FT0SUxtHjx4u6aBxD0Dho3blzYscGDBzN48GA2btzI888/zyWXXEJGRgYVFRX861//orKykr/85S/dOh8DA4Nzj678ytY0HUWJXNIlByw8NOlbrDm6kcUFq1E1lUlZY5jZayKHagrJcKYS0BRSo5JChNCJvLvnE0anDkcOWAmYgqaLJ3Jxr8ks3Pt52GOrPbUUNhTTx94HTdMJyB5+sfSP1HuPt1jZXr6HH33+W353yU/4xvBbMFslFI+Oz6d2WAgZXPjIEqTFwp4SmNg3dMxUW4qpsZrqkWfWZFHXddaXb2Zt6UZm5czkyl6zzkkhBOe4A3U4kpKSCAQC/OlPf6Kurg6bzcbIkSN59NFHGTZs2NmenoHBWUUUBWRZQtd1AoFzrEb+HEAUBUymyAnIug6Sz8K09MlMyBgNgBkrqk9ncMwg+kzohSgK7KzaG/EcLr8bn+ZDxopP9bUxcUywx3HsJMPEE9lXdZD+ef0QBJ21pdtDhFALPtXP//Z9wXUD5mI32aht6vncM4Nzn7wkWLFPoKpRD/EbshXtxB+Xhj/5zPn46brOymNr2VyxnSt7zeKy3IvO2LW6gy6LIVVV+fTTT1m3bh3V1dV8+9vfpn///jQ2NrJmzRry8/NJTEw87fOPGzeOffv2tf47JyeHF154oavTNjC4oBAEgYAOR4rrWbe7nLhoC1NHZhBlkRG+Ar4xgiAgikIw/yXM6229PyUNrNtVRly0lWkjM3BYpLD3R1X01mananO0RVE0JMwIAsS344siiRJm0QQqmCUToiCGJH17FC/RZgeN/vACJiUqOdjAV1TZXBrZtHN7+W6u7n8ZJ1c5Ghi0kJ0AVpPOhsMwe3hwm9xQiam+nNoJ1waNq84Amq6x+OgKdlXv5dq+VzEja/IZuU530iUx1NDQwF133cX27dux2+14PB5uueUWIFjh9dhjj3H11Vfzve99r1sma2BgEJ6ADr94fi3Hqo4/YN9ZcpBvzhvK2AHJF6wgEkWBgOzhWFM5xxrLyXSmkeJIxqxYQ3KiAsCjL6yjpLKpdds7Sw7wjblDGD8opVP3R9eDLTGiLVE0+prajE/OGoMFGxpgwcqEzHxWHT3uXbSiYD0X9Z4c0uS1BZMoMyS5P6pfQxIFos2RhU6UJQqRs18Gb3DuIonQPw22FMDk/kHvIWvxHpSoOLwZ/c/INVVNZVHhYg7WHeG2gdczLm3UGblOd9OlT9ITTzzBgQMHeOGFF/jiiy9CfpFJksSsWbNYtmxZO2cwMDDoKoIk8vaSAyFCqIV/vLcDzwW6XCaKAi6xgUeWPsHjK5/h5W1v85sVT/HosifxSI2IzfXEoiTw7pKDIUKohec+2Hla98es2Hh4ygPEWEJ7HQxK6su1g+agBYLX1gMiNwyZS//E3q377KzYR25sJhOzQh8SNtnKjybfh0UNej1pClzWZ0bEOczpexFmjC7zBu0zMD0oipbuBtHbhLmyCFe/8XAG/KQCWoAPj3zG4fpC7hp663kjhKCLkaEvv/ySW2+9lUmTJlFbW9tmPDc3l/fee68rlzAwMDgFfkVjyabiiOOb9lYwY0T6BVOq3EJA8vHntS8wLnMkw1MHoWgKsiizpXQnT637F98bdw+iZsKn6izeGD7ZGWDD7nIuys/o1P3RNJ0YMZ5fzniIak8Ndd4G0qJSiJKjEH2h5neS38L9o+6kSWmktKmCWGsMCdY4+g7uzbyBsymuL8VhtpNiT8KsWdGatZmuQ6IlgbkDLuWDvZ+FnHNC1ij6x/c5/yoCDXocswzDsmHDYZhoLibGZMaT0/35tT7Vz/8Of0qFu4p7h9/JgPi+pz7oHKJLYqixsZHMzMyI44qioKoX5q9SA4NzBR0ItPMgd3kC52wFR1fwqG6uHzKHVYUb+cOqv6PrOqIgMiErn6sHzcKjuXEQE+z43s79aTrN+6NpOrLfSqqcTlp0RlCYhOn4oesgBkw4iSc2OgFd19Gb97PjZEB0TOu2k2cpBGQuyZ7OpKyxbC7djqKp5KcNIVp2IvhN52EJjMHZoH8aHC6Htw+n8618CV1uv8lxZ/EqXj449Al1vga+PfIb9IrJ7dbz9wRdipNlZ2dHbKQKsGrVKnr37h1x3MDAoOuYRIEBOXERx0f2T263nPx8RZIkFh9ezdriza1L9JqusapoI6uLNiE1G8CaRIFBuZH7J44a0LX7o+sd92wKJngH/1sQAJNKQPaiyD4kObwgExQZh+pkRvpULsmcSYyegBgwhd3XwCAcogBT06qoUqNYWDuwW8/tDnh49+CHNAaa+G7+N89LIQRdFEPXXnst77zzDh9/fLyPjyAI+P1+/vSnP7FixQquv/76bpmogYFBeCQBvn7VEKQwnvtDeiWQGGM9ZYuH7sAs69hEHxZJ7aFIlM6W0p1hR9YXb2397+D9GRz2/gzKiycp1tah+yOKAphUNFMAqYsRGUHSaRTreH77a3z/81/y82VPsPTYSnSLP+IxiqKFiDZRFNAkhQZfI+20KzMwACDFXcTEmGI2H1TZsa9t/tzp4Aq4effg//CqPr478h6yojO65bxngy59pG+//XYOHjzI9773PZxOJwA/+MEPqKurQ1EUrr/+ehYsWNAtEzUwMAiPpukkRJv5wwNTeOWTPew4VEWU3cycyXlMH5mJeIpWFV1FFnWsSh2Nqz7EV7If2ZmIc8I8tOg0vNqZi2C4T/LvOREdHU/Ai5VoNE0nPqrl/uxlx6FKomzN9ye/Y/dHNwc4UF/IRwe+xB3wkJ82lBm5E7Eo9k7n7QiCQJ1Ww8+W/AG1OUGoVq3njZ0fsL18N/eN+homzKCDooS3Cmg7nyHMyJ10WvMxuPARFD9SUzW9e/empNrKJ8uriYmWyU63nvY5XQEX7x78EFVTeXDkPaQ4krtxxj1Pl8SQIAit5fOLFi2isLAQTdPIzs5m9uzZjBkzprvmaWBg0B6aTpzdxP3XDqOlw4JFEs54uwVJEjA3HqX09UeD5U9AoOoonsNbiJtxK+b+0/FrZyZsYZOOf5EnORKIt8VS7a6lyl0DgFW2IiOh6xqqqhNnl7l//lA0wGSSkAG/XznldTRTgP/seo/VJ5THH60/xpeHV/LLGT/AonWuwaYmB3h18zutQqgFq2xhWt54DjUUsLJwPSbJxEV5k0m2JiKcsCymN89n1Unz+eLwSn414yGsuqNHIoEG5w9yfdDkM5Cczeh0Ky63xjuLKrjpylRSEjufPxSMCH2Iqml8N/8eku1J3T3lHqdb0u9Gjx7N6NGju+NUBgbnDC0mfmeS4GqSEPbXf2fRdR1BP/6hPrH5YnDZSu/2h6RF91Dz8d9ahdCJ1C59jbS+Y/ETHebIrmMTbUzIHMXEnFHUeuopb6pkSs4YnJZoNpRsI6ApfFbyJSlRifRL6I1FtSGoOhZZJC7G1qGO2YIAdYG6ECHUQpPfxVu7P+TWQdehBzq+LKiitDZ8PZF7x97GB3s/41BNYeu2VUUbmJQ9hhsGXo0YMCEIUBuoCxFCLbj8bt7a9T9uHXwdBAz/IYPjmOorUWJS0Mw2JGDK6BgWr63ljY/KuenKFJLiOy6I3AEP7zVHhC4UIQRGLYKBQQiiKGDDA+5alIYq5JgkdFssHt3WLYKlBUEU8Ks65TUe3N4AWcnRWE1it5sj6qKAL6BRXNGISRZJS3RglgToJpEnBNwEakojXFxDqSpCSBrSrfeuBVkzM3fgpfxq2V9w+d2t26MtUTw89QGeWfcSRxuOAUEn6B9PuZ9UOa1z15Al1h3ZEnF8ffEWbhx8datbdYcQwCSZCKjHS8/6JfSiqP5YiBBqYVXRBmbkTiTdlIksi6wr2Brx1OtKtnLDkKuROf3lD4MLDFVBaqrB3fu454/JJDJ9XBxL1tby+v/Kuf7yZFKTTv0e9ipe3jv0EX4twIP537pghBB0UgzNnDmz04mRgiDwxRdfdOoYA4OzgSAIOLQGKt/+LYGaY63bzck5JF7zfzTRPcsPgihQVOni8Zc34vEdj6hcOi6H6y7qg9hNQkUTBLbur8JhMwWdmlWdPQU1xDos5KRGdYsgOuW3wRkwdmshIPn444rnQoQQQKOvib+ufZHL+83k+U3/AcCvBvj9qmd5/KKfYNXsnbqO2N53niB0ujWqWbMyLWc8Xxxe0bptdMYwlhxZE/GYzw4t4+tDbg7Op527LgDCqf8qBl8h5KYaBF0jkBCa3Gwxi8wYH8eydUFBdM2sJHIzbBHP41f9fHDoE9wBDw/m30PKBSSEoJNiaOzYsRekX4mBAYBN8FL13hMhQgjAX1FI9YdPE3Plg3jUrvtzeBWdX724DkUNfYx+tq6QXulOJgxK6XKujygKVDb48PpVXvxwF25vUHQlxFi566oheAM61m5I5dFMDkyJmQSqwpg+ihKmxEy8ZyiBxaW6qHBVhR071lhOVkxoFMgT8FLuqiTXntPhawQCKuMy8lm4L3yX+YmZozBp5k4JIk2Bq/pfyq6KfZQ2VQAgixJ+NXIlmU/1oaGhBXTGZo7kg32fhd1vfNYoTLq5jV+RwVcXqbEa1RqFanO2GbOYRWZMiGPlxnr++3EFl09LYEi/ti1gFE3hf4cXUeer5zv53yQ9KrUnpt6jdEoMPf7442dqHgYGZx3R34i/ou0yBYCveA9SwAVi18SQLIus3HasjRBq4e0lB8jvn3xa69eiKKDqoOg6EgL1jT6eXxhael5d7+XJ1zfz23snER1r7XJney9WEi6/l/LXfo6uhjoOxl/8NXyiHc6QxZFX8bU7Hm5prsnvAnvnftDFmJzMyJ3AkoLQyI3TEs01Ay9vky8kyyJ+wYsmaAi6iEW3tnG3lv1Wfjz5AQrqj7KuZAs22cbYjBF8cmBJ2DlMyR6PoEmARowcw4y8iSw5srrNfK4ddAWa3/jBanAc2VWLEhd5edgki0wbG8uG7Q18uKSaqtoAU8fEtraz0XSNTwq+pNxdwf0jvkF2dGSj5fOZHs0ZqqmpYcGCBTzxxBOMHDmyJy9tYHBKNJ+n3XHd76WrqRiiKITtkdVCVZ0XvQNxBkEARJGAqiEJAqIIlfU+XvxwF3sKannsnoksXHk47LGKqrFq+zHmT++6Iaqm6fjs6aTd+QSNWz/DX7wXKSYJ59irUOxJ+NQzZ4ATZbYjCSKq3jYOIosyDrOd20dcS4OviRWF66ly15DpTO90/pIQMHFN/zmMy8znkwNLaAq4GJM+nAmZozArdrQT/l66KcC2mv28tet/VLprSHYkct3gOQyI6xtaEabrSH4LfR19GThoALquMzCxLyuLNrRp/poRnUq/+F6ofq15PjLz+13BuIyRJ81nNBbVhtrphTuDCxVBCSB5m/DEtF/2LooCY4c7cUbLrNvWQHm1n6tmJmK1iHxZtJyChiLuGXYHfWLzemjmPU+PiiFN0ygpKcHrjewPYmBwthDtbcPIrQgigjVyB/GOoqoag/MSWbS2KOx4XrozmKPS3gNbEKjzBHjrywMcOFpH78wYrpzSi5/9fTV9s+O4fFIeFpNEcUVk0VVU1tj+NTqBokGjEINpzAKso/zoogm3KhBGo3QrZtHMzF6T+fzQ8jZjs/pMRdN1Ptz/JfG2WK4dfDkmUcYu2jkdrSAGTORYc/nmiNvRdBUZE6pfDxFCgqyx5Ohq3t79Ueu2ClcVT6//NzcMuYqp6ZPQldCojabpreX9VsnOr2Y8xMcHvmRt8RZMosyMvIlMyxmP5LeETFtons+9+XdgsoqoXgG/TzWEkEEIkrsOAOUUYgiCOZMDezuIdcqs2VzPi2+X0ntkBfv8+7h90A0MThhwhmd7djGqyQwMmlFkO/b+43DvW9dmLGrYTAJS15d8VFWnf04csVEW6praLvPcfvkgTO0Ue0mSSGFlE794bm3rPrPG57Bw+WF+euc49h+tY/fhaoorGklPdFDXGH4pKTfN2e1l9gEFApjbNtg6Q0iaiRGpg4izOVl0YBn1vkbirDFc1nc6mc5UFh9eRbW7lmp3LQeqjzBv4GUMiOl/2tfTNB2TJIMgh23q6hd8vL93Udhj39nzCeMzR2EicoKqquqYVBvX9JnDFX0uRkDArFtRfeFjhZqmI6oiUWYHta5T2wQYfPWQXPVoJitqJ37IpSVZmDUlgcXry9m6Mo4RI2YzOuXCX8kxxJCBQTNe1UTMzK8hWqPwFu3GFJuMv7YMe59RRI2ZS1M3LflYRPj1PRN56q2t7C2sBSA2ysLXrxpMZpKjXW8jn6rxzNvbQ8RSVmo0fbPj+NN/NreKn5LKJm6/YhC7j9S0OYckClw0Jguli/lCZxtJk0mNSuJo/TFuGj4Pm2zBHfBQ720kyZHIwZqCkP3f37uIKdnjkPXTcMWWVdy4WF+8lUZfE/lpQ0lzpCAFzK2issHfiBLGbwkgoAZo9DcR344YakEN0Foab0R6DLqC5GlAiU5oMTTrMA1aJf70zaS5RrB1q8iTtVv5+hUDiXdeuJYNhhgyMDgBr2AnduI8lIETCdQcIyYxEzkmmSZsdFfIQ9N07CaRh27KxxNQURQdm1XCKouo7XRXB/D4VMprQkvJYxxm3l92OCQKVF3v5XBJPbfOHsh/v9iPr1n4OB1mvn9TPnaTiH6et23wiR5+ufTP5KcPITMmDVVXcZjt7Kk8yKKDy7hx6FyeWf9S6/66rlNUX8KgmE42qpRVNlZu5V9b3mzd9OnBpeTGZvH9Cd9E9AWT6k1i+1+nJlHusaiZgQG6juRpwB/fueWtGk8t68o20zsuhyvyR1NU1sQn64r42QvrueWSfowfnHJBVpUbYsjgnMQqBZAVN5q7AdFiRzNH4dGtZ8S8rwVZFrEHqih949eojdXHt8elknrdj2kUY7vNkVrXdQTALoutn8JTCSGgtcLjRBRVZ/3usjbb3192iLGDU/n1tyZS1+hD08EfUPAGFDQ64BF0jtOkuKj3NbLkyJqwHj02U9tfsbIo09mkIQ/uECHUQkHdUT47vIwrci9FDeg4ZAeJ9vjWdiAnkuJIxC45DDFk0GMIig9B8aNGxXf4GHfAzZrSDSTZ4rks5yJERHJTndxx2QC+3FzMcx/uZsPeCm6d1Z+46E4YjZ4HGGLI4JwjSvJSv/hfIbk75uQcEuf9AJfoPGMtMmx6IxXvPhkihACU2jIqF/6VhKt/QGMHljlORhQFAjp4fAq6DjaLhEUST8tLyGqWyE1zUlDa0Lqtye2PeE/W7yojMzmKfQU17DphyezP352K03p+f/y1U2RonyycJVEi05nWqcRuk0liWfHWiONfHFrBJXlTkbBg1qx8b8I3+NWyv+BRjheJ2E02vjvhG5hUS0jCtYHBmUTyBgso1Ki4Du0fUAOsPrYes2Tiqt6zQyKdNovMnAm59MuM5fONR/np82u5bkYfpgxPb9+U9Dzi/P42NLggkCQRr6JTWu3CJio0rvpvmyRmf0UhlW/9lvjrHsF9ploNeJsIVJeEHfKVHkLwu0DqpBgSBCobvfzlza2t1V0p8Xbuv3Y4mYn2Ti9VmQT49nUj+Mmzq/D6g0tf+4rqGNY3ke0HwhsQ5vdLZkBOPHOmaGw/UMXSzcUsWlfEjRf3QQmcv6GKaHMUFtmCL4zfkN1kayOWvpF/EybV0umQWIOvMeKYRzluhaCqOnFSAo9f/GN2Vx2goPYoveKyGZDYB7NqQ4vgLWVgcCYQPU3ootyh5Gld11hfthmP4uOG/ldjl8N/z/XLiiUrOYolW0p46dN9rN5Zxm2XDSAjsXPNis9FelQMmUwmxowZQ0xMTE9e1uAcRhMFVmwr5Z0lB2hw+fnzNwYj7FwWdt9AzTEEdy1YO9dfqsNzOYXPkOb30tnAkMun8vCzq/GfsARWXuPm58+v5U/fmUq0pXNJ2ZqmE+8w8ZcHp3O0ohFV05EkgWkjM/jhMyvx+UOToicOS6Oi1s1f/7s16CUyKIUf3z6GpZuL0c5fHQSARbVxx4gF/GPjq23G7sy/Hk/Ay+Dk/iTbE7i0zzScYgwoYqe+9RRFIz9tKJ8eXBp2fFBSP2T9+Ak1FWTVxsi4EYxKGImm6ah+zVgdM+hxJE8jqiO2Q8nTO6r2UOGuYG6fy4m3th9JsllkLh+fw+DceD7feJRfvLiey8ZlM2diLhbTmfMVO9P0qBiKiYnhlVde6clLGpzLiALvLzvMh6uOtG4SFF/wiRIBpbEawdZ547yOIEXFEgwbhDm3KCHaOtZ9XZJEVB1c3gCfry8KEUItaJrOO0sPcuflAzodMVB1qHf5+N/Kwxwsricxxsodcwbxx+9M5YPlh9i6v5Jou5krp/RC1TSefntb6zXX7ixjf1EdP71zLKJw6hQWQQj+T6PLjyCKnEtJL5oKQ+MH84vp3+PdPR9zrLGCTGca1wycTYIpARmZYQlDEJFQAzpoIMkCqhjAE/B2KAlU13XSHCnkxmZRUHc0ZEwSRG4ZNg9BMbUxylRVDfX8LtYzOM8RfS6U2JRT7ldYf5QDdYeZnjmJnOisDp8/JzWaO2YPYN3uchatL2LNrjJuurgfI/smnpcJ1kajVoOzhlfR+Hj1kZBtAcEU9HJRw5coy85EfGcoiVqT7TgGT8K1a2WbsegRF6GaoiAQ5sBmRFHAr8GanWUs21LC1JEZ7Clom0zbwoGiOvyKjtyJj5QkCRw41siv/72+taTb5Qnw6PPruGZ6H268pB/XTu+DJAl8uLqA95YeanOOmgYvB4pqSRzU/helJghU1nt5f9khquu9DOmVwKXjc7CbhHNmyUdQJJKlNL454nYUXUEWTAiKhK7oKOiAiIoe/NvIbpYUrWdL2U4cJjtz+l1Euj0dIdD+16AUMPP9Cd/ks8PL+OLQCjyKl0FJ/bhl2DxixXj0c+ReGBi0omuI3iYUR/u+WjWeWjZXbmdwQn+GJw3u9GVkSWTS0DQG5cbz5aZinn53B0Py4rnpkn6kxneuIfLZxmjUanDWaKlwOpFF2+qYP3gmvu1tG1Gak3PQbbFnLDjRpJiJm3Yzks1J47Yv0QM+BLMN5+jLiBpxKQ2B9kPAfh1+9s81raXvaYkOEmMjr6slx9uQpHYcFsPgU3X+/t72sIaJ7y07yMVjsrBKwQ71SzaFaZ7azPrd5UwYnBqMYoVJ5NYFgeXbjvHyx3tatx0sruOTtQX89luTiHeYzlgie2fRdR0CEjLBv8/JURpBAI/UxCOLnwj2Jmtme/keLu41hav7zm5XEOk6iD4zV+ReyiV5U9HRkXU5GBEyhJDBOYjg9yDoGqo9ckqKT/GxrmwTSbYEZmRNQehCfWlctIX503pxsKSBJVuK+dnz67hkTBZXTszFZjk/UpONRq0GZw2rue3b78stZUy+aQYpWgDfrmW0lP5YMgeSMOd+mnQbp9VPoYPUKzbs4xcQPeqyoBgyWQiYnTS03xMUSRL5dG1hiAfQup2lfP/mUazYGj4p+9qZfQm23uw4bp9KVV34dja6DoVljQzIjEEk6CkUyYE6NtrCwWMNHKt0MaxPAg6LjHCCwvIpGq98sqfNcT6/yjPvbOPHt45G7MS8zyqyxhs7P2gVQnaTjYAaIKApfHF4BRflTcbJqStu1ICOxPFy4o70kDMwOBu0VpI5YsOOtyRM6+hc2WsWstD1XB9BEOibGUNuajQb9lbwxcZiVu8sY8H03kwYknrOV52dH5LN4IIkyiaTFGejsvZ44rKm6Tz6+l5uv3Q6s79xDbrPhWCyoprsNGnmM+oz1ILbLwDO4KdDB04hhCDoDH1yJMbrV9mwu4w7rxzMyx/vQWmOwIiiwK2XDSAt3t7p6IoUxmfoRKxmCdAxSyJXT+3NX/+7Nex+Ywel8odXN+HxBZcjLxufw7Uz+iDqwSWlg4V1Edt1HCquxxtQgx5J5wEBwc/G0u1c3m8mw1IGUuetxyZbUXSVhXs/Z1Ppdi7NmkngPHfkNjBoQfI2octmNHP4yPSemv1Ueqq4pu8cokzdWwlmkkUmDkllSF48S7eW8MJHe1i8uZibLulH7/Rzt3iqU2Jow4YNp3WRMWPGnNZxBhc2FkngJ7eP4af/WIPLczwZx+kwkz84C7cooVmak5bP9eeUHj5S8Nm6IsYOTuWXd4/H61dRVZ3M5ChsZhFF1Wn0qyiKRpTNFHSgPoX3kM0s0TszhkPF9W3GLCaJtEQHuh5M4B3WO4FJw9JZtf1YyH7XzuzLnoKaViEE8OnaQvL7J9MvI9isVusB0dmTfGPUTeyu2M/vVvyt9e8UbYni7tE3Ue+JXDpvYHA+EswXig1bSVbprmRPzQEmpo0hKyrjjM3B6TBz1aQ8RvZtYvHmYn798iYmDknl2um9iY069wwbOyWGbr311k7lDOm6jiAI7NnTNtxuYKCqOnF2E3/89lQOH6unqLyRvHQnOalOLCLnTE5KR7CYRKaNzOSdJQfbjK3fVcascdn0SYtG04LfT/WuAE++vpmi8uCD2G6Vue3ygYzpnxyyXHUycrPP0Msf72HKiAwsZgl0WLOjlInD0rBIQqt3kajr3HHFQK6Z0Zst+yowmyT6ZMaxfEsxn64tbHPud5Ye5P9uykfQdfpmxSIIbRvbCwLMmZyHLIm4AhpmWeyQiDubWEUrdZ56VhSuD9ne6Gvi6bX/5reX/IiA/1xX2wYGHUf0ugjEpbfZ7ld9rC/fQlZ0BqNTR/TIXLKSo7j10v5sP1zNyu2lbNpXyVWTc7lkdBaydO5Elzslhl5++eUzNQ+DryiapmMSYGheHJNHZFBX5yYQUM87DxxV0bh0XA7Lt5RQWRfqVzSibyJ5aTH4mgWDrsPDf19N0wnRMLdX4e/v7iD+jjH0z4iJKC40TSfKKjN2UCr//nA3dU0+LCaJS8Zm0yczFv2kGyfpOnE2E5eOzgJB4PevbWLn4fAVbg1NflRdRwasssj1F/fjjc/3t46LAnz7+pGUVrl48M/L8fgUHDYT10zvw/SRGei63hxRErDKQtjO7mcDn+rjkwNLI4z52V91hBFxw89pQWdg0GF0DdHnaus8retsLt8Ous6snBmIPZj1J4oCI/okMiA7lpU7ynh76SGWbzvGLZf2Z3Bux9uFnEk6XU1mYHAmaIkC9URO0JmipRv9qu3HWL61BLMsMW96b/LSY/jv4gMs21xMeqKdi8bkhAihE3n1k7387GtjOTGdURCC1V2KpmMxSazYXsrzH+xsHfcFVD5cdYTSahffmjcUMcw9VBQNSRIZ3i85ohga2icBsySiqRqCrnPJ6CwG90rg3aUHqa73Mn9GH3YdruazdUWtx7g8AV75ZA/1TT4cNpk3vzhAYoyVa2f2Jb9fUti59DQaWrsu0iWNZeQnjDB8gQwuCESfG0HX2yRPFzWWUOIq44q8S7o9T6ijWM0yF4/KZHjvBL7YVMyTb2xldP8kbry431nvdWYkUBsYdBOaFoyqzMzPYOqIdGxWMy6Pnx8/u6q1AizeaeNQSV3EcxSVN6Kht4ohXRCobPTxzuIDFFc08c1rhvKfRXvDHrtpbwUun0K0OXxliKpqTBmezgfLDrURY2ZZZO6U3mgnREcEXScz3s53FgxHNsk0uvz85Y0tYc/98eoj/Oj2MWiaTkWth7+9s51LxmZzw0V921326wlEJFIciZS7wrcr6ROXa0SFDC4YxOZKMuWEsnqv4mVb5U76xfahb2yvszW1VpJibdwwsw+7C2tZuqWEh59byzVTezEzPzNsM+qeoFNi6Mc//jGCIPCrX/0KSZL48Y9/fMpjBEHgN7/5zWlP0MDgRERRwGyW0XUdny+8MeOZvLYkicEWC80PT0EQkGURXddbl4U0VcNmkYmym1i6+WhIKXxNo5e+2bERr5ESb2/2+whWdW09XMOfTxAgbq+Cyxv5dZdUNDEoOzZivpVVEnj8vkm8sHAXW/ZXAjAwN45vzB2K3Sy26ZWm6zoSAjFRFoorGiNaIimqjqKEDn6+voirp/bG1kFXSVkWEQSh26u6zJqVG4ZcxV/WvdhmLMbqJC82C81/9iNYBgbdgeRpRDPb0M3Hezhur9qNKIjMyJp0FmcWiiAIDM6Np3e6k2XbjvH6FwdYu7ucr10+8Kz0OuuUGFq3bh2CIKBpGpIksW7dulMeY5g0GnQHogh+XeBYhYutByqJjbIwZlAKNpPEmU4wCjpL6xQea2BvYS1piQ6G9k5AFATKqt1sO1hFbLSF/H5JmGWR2kYfGzcUYzFL9M2K5YpJeXzU3HLkUHE9t1w2ELMshm3Tcf3F/ZrzbfSgweK720PGZUkMm9jcgtNhaXepUdN0HCaR+68dhl/R0XUdi0kM+h2dImHdFsYX6kRMYUrtC8saGJIbh6pqEeesCwKNXoUNW0tQVZ3RA1OIdZi7bYlNVTX6xvThzpHX88bOhbgDwZyu3vE53DvmdkyKzegmb3DBIHmbUO2xrf+ucFdytLGES3OmY5PPUJPrLmA1y8wak83g3Hg+XV/EL/61nnlTenHZ2OwejRJ1SgwtXry43X8bGJwpArrIb/69noLShtZtL3+8m+/cMJKheQlnTBAJAngUnZ/9c3VrhEeWBH5yx1he/XQPh0uOz+fBG0ayclsJG/ZUhJzj6mm9mTe9D+8tDVaaHTxay8N3juPJ1zbR4PIDQcE1e0IuQ/sktkaY6l3+1s70Lew6XE1+/2Q27Q29BgRLWaMdJiL2V2tG14NLYBaR4L6a3iHjR4dVJiMpipLKpjZjeelOiiva5uVYzDK7i+qwmmXSEuyYT6h2g6AQ+nB1Ae8tO9425I3P9zNlRAa3zx7QbYJIUGTGJo1i+MxBuFUvFpMJKzbwyxecjYDBVxvR58KXlAsEzRW3Ve4i3Z7CwPh+Z3dipyAzKYo7LhvAyu2lvLP0EFsPVnH3lYNIjOlkd+zTpFtyhvbv38+yZcsoKQk67WZmZjJ16lT69Tu3b77B+YFkknjzs30hQgiCXSz+8sYWnvrBDGzS8V8Qoiji1zQa3AHQIdpuwiJ3rJ+WIIBVDCAFXOh+D4LFzvZDTTQ0+Vv3GT80jTU7SkOEUO/MGGoafW2EEMD7yw7xm29NYlBePJqmk5bo4MOVh7lr7hAsJgmfXyXaYWbNjmN8uaGI2WOzI+awLFpbyA9vG01FrYej5cfFh8Mq8+3rR9Do8uM8Q/b3FlnkR7eN5pF/rqH2BGfrpFgbd8wZzJ//szl0f7OEomo8/vJGINjt+uE7xpCZEDSbFAQoq/OECKEWVmwtYdzgVIbmxqJ2U8sLVQEZG/Gygzing9paF4p++iJaEARU2Y9Hc+NT/USZHJixQuDcKRc2+IqhKYg+d2slWUFDEQ3+Rq7Iu6RL7TZ6ClkSmT4yg94ZMXy0tpCfv7ieu+YMYmTfpDN/7a4c7Pf7eeSRR/jggw/QdR1RDH4JaJrGk08+yZVXXsljjz2G2WzulskafDXxBFSWbg7f0kLTg4nDM0dm4PcrIAocLm/kz29saY26OKwy984fzoDs2HaTeQUBokQ3NZ88i7dgR+v2/r1G8djt1/PTl3bjVzQmDEnjr29uDTl28vAMvtxQRCQ+W1eIomqs3HYMh1Xm1ssHse1AFUs2HUUWhdYlsyibiZmjMpGBGIcZh1UOyRHy+BT++Ppm7po7hBiHhT0F1STE2HA6zLzx2V5+cPPoM1aRp+s60RaJ3903mWNVLoorm8hOiSY5zsbvX90YIpAkUeBb1wzjfysPh8z90RfW8dT3p2MWQJREPlx5JNylAPhg+SEGZI86ZQGwKAl4Azq+gIrFLGGVxZBE8DOBKAp4pSb+su4FCuqCzuOiIDIjdyLzBsxG8JnO6PUNDMIheYMtZ1R7DKqmsLtmPwPi+pBiP/NiojvJSo7ijsv688m6Ip56ZwdXTMhh3tReZ7SlR5fE0B/+8Afef/99brrpJm655Rays7MRBIHCwkJeeeUV/vOf/xATE8PDDz/cXfM1+AqiacHy8UjUNflac9NcPpXH/rU+JP/F5VX4w2ubeOKBKSREmSLmrlgFPzUfPY23aHfIdt/hTThFkWunzOL1JUVIothmPjaLTJMngNNh5qIx2fTPjkPTdTbtLWfFlhIa3X7inNbW+fz93e08/LWxrNtZGlLZ5fIG0JuXucySwLevH8nvXt4Qkrjc5AlGvN5avJ9Gl59Gd4CaBi/3zh+GWWwnoagbaKmYy0lykJcShabpiCL88NbR7D5Sw45D1WQkOeiTFcf/Vhxm56HqkOMDisaOQ1WM7Z+MqtEqWMPR6Paj6Xq7YkgTBd5ffoRP1xTgVzQsJonLJ+ZyxcQ8xC5EfU5FQPby2xXPUHFChZqma3x5ZCUOs53ZORej9Wx+v4EBoqcJHVAcsRyuL8Sv+hmfdn52gLCaZa6enMf6PRV8vKaQY1Uu7r5qMBZT1/uohaNL8dyFCxcyd+5cHnnkEXr16oUsy0iSRK9evfj5z3/OlVdeycKFC7trrgZfUUySQF66M+J4fv9k3P4AyCIfrToSMRH4rcUH0Nv5ZSEprjZCqAXfwY2M7xOscCitdtErI7THzqHiOi4ek82DN+ZzuKSe372ygT++vpmAovGTr41lzKBUDhXXhRyzaG0hU0eG2uEP7pWAJAoE9GDWT78MJ396cBqXjMumf04csyfk8IcHppCW5CA7JRqrRWZQXjw/uWMsbq/SqaavJyPLIioQ0INRm/bQdb05KVpHVXVMQH6fRO68fCDT87P4xXNr2LinPOyxpVVuRFFAFmHs4JSI18jvn4y5vXmIAq9+upeFKw63RtZ8AZX3lh3irSUHgi6RZwBBgGpvbYgQOpFFB5fiEzxhxwwMziSirwnNGoUqCOyvO8SAuH7EWiJ/d57rCILAuEEpzJvai51HanjijS24veE92rpKl8SQoigMHz484vjIkSNRDSczgw4giAIubyDsQ9giCXztysHh2uzQJzMGTdP58bOrWbyxmCMn5RWdSFF5I0o7FVOap21i8HF0JCWYQP3pmgIWzOwbMp+1u0qZPCKDx1/awLYDleg6KKrG8i0lPPPWNgblxXPkWOjcSiqaSIw9nhwoigK3XDaQp97ayo+fXc1z/9tNvUfBaZG55eJ+/N9N+Vw7sy+/eG4tP3x6JZV1HgbmxmOSJf70n838+6PdNEYwczwVmiiwZncFv/zXBn787Gpe+3w/XlXvVDWHqmr4/QqaqpGWELk0dmBzdZmiaIwbnBa2T5HVLDFncl67y13egMayLeGXTz9fX4T3DDlgC4JAeWPb3LAWfKofvxY54mVgcKaQvC5URxxHG0vwKT7GpER+Pp9P9MmI4YaZfThW5eIP/zkzgqhLYmjy5MmsXLky4viKFSuYNOnc8TUwOAcRBJr8Gq9+tp9fPr+WN748gFvREE54CCuKRmaCnV/ePaE1ImM1S1w1pRe3XDaQ3760gao6LwWlDWQkRUW8VFZyFKZ2Hu6iLfKxABZHcNztDaDpOr++ZyK9m+czaVg67y45EHY5r7LOw9b9leSmhf5Cy0h2UNsQFFgDsuP4xV3jeXvxAbYdqKKmwcuaHaV8/y/LKavzAjqCrtPoCgSXjzSdDbvLeX/ZIZZsOtradPVYlavT5aiqIPDM29t59t3tHC1vpKbBy+fri/j+X1fQdBo9u8ySwO1XDAo7lhRnIyfV2Rq9s4jw23snMXl4OqIoIAgwakAyv79/CvYwpfon0ugORFwR1DQdl/vMrFPpuk5KVOQcDItkxiwaeZIGPY/obUKxx3Cw/gi5zmzirHGnPug8IS3BwfUz+lBR5+HPb2/H381+ZJ3KGaqrqwv593e+8x2++93vcv/993PzzTeTnZ0NQGFhIa+99hrHjh3jT3/6U7dN1uDCQhQF9h9r4PGXjufE7D5Sw6drCvj518eTnWQ/Xkmk6eQkOfjxbaMJqDqSKLD9YCW/enEdavPB63aV8ZM7xrJ009Gw5oALLurXbj5NQHZgzhyIv7htY2FL79FYYuJ49v9mIooCVhl0jdb5CAL86G+rIp5724FK+mTFhlTEXX9xf2KiTFwxKQ8I9iurrveGHKdqOs++u51H7hyLCJhNImKwGj4s8U4LgiAgdrDRrSAExVqLAeOJeHwKry3ayz1zh57yPCFzVjX6pDv57g0jW/unAQzvm8Q984ZiFo87IWhasMT/63MGcetlA9ABsyQi6Nop52+1tJ87YIngxN1VdB0SbPEkORKodFW3Gb+09zSs2FEN7yKDnkRVEANeGswy9d4GZmROPtsz6naS4+zMn9qbNxYf5F8f7+HuqwZ3m5dhp8TQ+PHj21xY13X279/Pl19+2WY7wJw5c9i9O3wehsFXG5+q85c3trR5sCuqzp/e2MLj904MeYMqioYESCIous7ri/a1CiEIJucuWlvIt68fyQsLd9LoDoZS7VaZe64ZRnyUud1Kq5IGMI+/E8u6f+M/uqt1uyVvBE3DrsPVpBNnA9BRm4MOIsHohkqwEqzuhIqqE4mym/E2R29sFpl7rhlKfLQZQdORZIGNB6pahZAggCSKKM1LREXljXj8Kg6TiNUkMX5IGqt3lIac3ySL3HnlYMwmmTV7yolxWMhLd4Z0sQ+HLEus3l4acXzdrnK+NmdwxPFICLrOyD4JDLx/El6fikkWscgiInpYkaOrGqaWrxatYxaIDotMTmo0hWVt/Y36ZsVit0hnLJncpFj58eT7+fPa5ymqDy7VCYLA9JzxzOo9HdVnCCGDnkX0BSvJClQX0aYosp0Zpzji/CQ90cHl47NZuKqAPpmxXDQqs1vO2ykxdN999xmO0l9xBFHAp+rUNHiRJZGYKAsWiQ55+JxMvcsfsbVETYOXJo9CrC3yWzSc4/HanaXUNnp56JbR2K3Bth1Ou7lDPkM68JOX93DT9PmMGHszouJFlW2sOeLmjZf38OtvTYx4rEUWuWpKL/72zvaw41dMzMMkwdypvdrMR9fBJEkkxdlYMLMvcU4rXr9ClM3M9oNVLFx+qHXpS9A17pgziIpaDwebE7JFIVjN9eGqI/zjveOWACZZ5Me3jyEvJapdQWSOUJ2RFGfj+ov70eQJsPNQFU6HGZtJjByWOglV0TABppYIjq53a6xEFuCHt43mly+so6za3bo9PdHB92/KR6I968muoWk6NqJ4aPy9QZ8hxYfD7MCKDd1n+AwZ9DwtYuigUsvQlOE92pW+pxmQHUdxpYs3Fx9gUG5cuzmKHaVTYuiBBx7o8gU7g8vlYvbs2ZSXl/P2228zdOjxcP1bb73F888/z7Fjx8jLy+PBBx9kxowZPTq/rxqaILBqeymvfLK3NWoRZTPxg5tHkZPsaPeBG/Z8p/jV3l4Ux2oSuWRcDq992rZp6b7CWkQBEhzHI0EdEWsOqwlJFHj+04I2YwkxVhw2E3UeBatZwnqSKFAUjfz+yYwemMzGk4wXr7u4HwnR5hCPoxPno2k6A3LjuO/a4fzj3R2UVrtaxyYOTeOnd45rvZ4uCLzy0R5mjs5iwUV9KWuubNuyv5KtJy11BRSN3/x7PU99f0az23RbAgGVycPTebfZHbuFlHg735o/jH+8t4PSquPzmToig9suH4h4hlugdARN07HLIr/8xgSqG7yU17hITXCQEG3F1MFlwq5eX9RMOIjBIQCBMye+DAxOheR1EZAtuHWV/nF9zvZ0zjjThqdzpLSBlz/dx//dNLLLgZpzWjr+7W9/C1uN9tFHH/Gzn/2M2bNn89xzzzFixAjuv/9+tm7d2vOT/IogigJHK5r414e7W4UQBD1vfvXiOtyBzj8cY6MsEfM6nA4zUbbISaiKojF9ZAY5qdFtxqaOzCAl3t5p80GLWeSuuUORTkpAliWR+64dzhOvbuR7f1nOfU8s4R8f7EIVhJCKMlHTuOfqofzuvsnMn9GHmy8bwF+/N51Lx2SdunO7Dn99c2uIEAJYvaOUrfsrkJsNTb0BjZXbj/HP93fw5Gub+GjVEeqb/Hy6piDsaRVVZ8fBKqR2StSddhNXTQntZH3zZQOC86kKnc/yrSUsXHH4lKX3PUXQ90gnNcbCiF4JJEdbkCIsxRkYXMiIfjeNZpl4SyzxF1DidCRMsshF+ZnsO1rH1gPhbS46w5nx7e8GDh06xOuvv84Pf/hDfv7zn4eM/fWvf+WKK67gu9/9LhDMZdq/fz/PPPMMzz333FmY7YWPosPrn+0LO6ZqOos3HuXqybkEOiGKLJLA3XOH8NRb20K2CwLcO38YVllotxWDjM7Dd4xl/9E6lmw6isUkMXtCLqnxdqTTyBWRgWi7zM/uHMf63WWUVrnISXMyaVg6L3+8h0PN7Td0PZisXdvo5f9uHoV4QjxA1HWSnWbmT+tFdLQt2PLhFCXeggBl1W5qGrxhxz9dU8jsCbmYBfAHjjc89SsaFbUeJEnA3U4n+4o6D6IoEMnlQtR1rpqcx8ShaXy8pgBF0YiymiLOZ9HaQi6fGJzPuYKutx9JNDC40BF8HqpEjd6xuWd7Kj1Gr3QnOSnRvLfiMCP6JnYpOnTOiqHHHnuMG264gby8vJDtR48epaCggIceeihk++WXX87vf/97/H6/0f7jDKBqOuU17ojjhWWNaHrn3oi6pjOiTyKP3zeZt77YT0lVEzmpThZc1Jc4hzlif67W4/WgIBqaG8vQvDgEAdTmTuySJKJowRwVkyic8lwt88lJjqaywUe03Yw9U2bisHQe/tsqPGFKzPcX1dHgDrTJa9J1TimATkQURcpOigidiC+g4lc0zCYRm0Vq06KjstZDVkp0SK+yExncK/6Ur1/UdVJiLNx1xSAQYf3udnx0Air+gIr5DFVrGRgYdB7R56I2ykRfZ9bZnkqPMn5QCm8uOciewloG5caf9nnOjVj3SXz66afs37+f++67r83Y4cPBXkcni6TevXsTCAQ4evRoj8zxq4YsCmSntF2SaqF/duxpGf4Kuk6K08IDC4bx+/uncO81Q0hwmE69rHQCqqqjKhpKQAN0VEFg+5EaPllXyKfrCtl0oKp5SevUE2yZz6yx2Vw6JhtREMIKoRbKqtv6+oiigGyS0HU9rFHkyWiaRmZyZI8ju1XG3JwsbpVFrr8ktAHyorWFzJ8RPkcgLdFBRmJUh5aNgiJORQ2opCdFTki0WeSISdcGBgY9j6jpiJqKy2QizRHZ1f1CJDslisQYK0sjGLB2lHMuMuTxeHj88cd58MEHiYpq+4Cor68HwOkMNbBr+XfL+Okgn8Lk7VyjJQ+kvXyQ7kIQBG6aNYCfPNvWS8dikpgyIgNd10/7HkqSiNNppaHBg9qF56xf09l5uBqTJFFZ60HTITM5mj2FtQzMicMSZn6yLCKKAoqicmJesCyKqHpQ3EQSEwkxNkRRaBVEflXnSFkjSzYXYzHJXDI2m6RYKybh+N8pXJQmOdZGWqKjTY4OwLxpfYiySq1J15OHpWOSJf7z2T4aXH4qa93ous6Pbx/DCwt3UlEbXBabMCSN2y8fiM0koHcyatfufKb3DpnP+UZPfm7ONBfSa4EL6/X05GuRdBUEsEYlY5bPucf6GUZgWO8Elm87hl/RsFtP7/Wfc3ft2WefJSEhgfnz5/fodUVRIC6u6+V5ZwOn03bqnboBk8XED27O5+/v7mhtLpoSb+ehW0aRkuBA7oYPfVdfy4GiWtbsKGP9rrLWbSu2ljCkVwLpiQ76Zce1Roh8vgCV9V5276uiotbNwLx4MpOiSDmhTNPqDTBleHrYtg9JcTZSEuzExQTnXF3v4fcvr2d/UV3rPl9uKOI714+gb1YcWw+UoWkaI/slkxBjI9pxfDnX5fbzo9tG87d3trOvsBYIJm7PGp/D1JEZxDjtIdeePTGP8UPS8PoVTLJEXLQFr1/hkbvG0+QOYJZFnFFmYqOtp93Y8Jd3T+CPr29iT8Hx+Vw5JY/ZE3KJibae1jnPJXrqc9MTXEivBS6s19MTr0XSNBAhKTmb6OgL5951lNGD01i8uYQDpY1Mzz8936FzSgyVlJTw4osv8swzz9DYGMx/cLvdrf/vcrmIiQm2P2hsbCQp6bglfkNDMLm1ZbyzaJpOQ0PknJhzkWA0xRaMpnQgJ6Y7GNE7gT9+dypNbj+iKBJllbGaRBobTmpMKYA3oFNR58HrU0hPdGA3SxGX0rrjtQiCSHFlU4gQamHn4Wr2FtaSGGNF1HUQBY6UNvHYv9YROCG/JzM5ip/dOQ6bfHyit84eSG2jj+0Hj1cspMTb+dmd45DRqa11IUoCyzaXhAghgOsv7sfhYw385c2tJ2zdzaXjsrn+4n6tRoNNfo2f/3MtV0zKY8FFfQkoGrIksnp7Kc+8tY3v3jiizYdVAhwmEdCpbfDyxGub2NsspCAo8P/vllEMzI7ldNIKrRI8dPMo3D6VgKJht0rYTBK6olJbGznH6VznbHxuzhQX0muBC+v1dPa1dOXHuKCqKCaIsaXQ2PjVaxIsAanxdlZvLWZ4XmglXUfv6zklhoqLiwkEAtx9991txm677TaGDx/Ok08+CQRzh3r1Ol4OfPjwYUwmE1lZp5881pmk13OJlqaXPYUMxNpMwX/oOv6TcmoEUeBolYvHX97YWuUkCHD5xFzmTeuN2E7+SldeiyALLNkUOWdsyaajjBuUgqTr+HX4zUvrQ4QQQHFFEy99tJu75w5GaxkTBGaMzmTu1N7UNHhxOsz4A2rQCVsJto1QVYFPTipvj7abyE6N5g+vbmozl8/WFTFqQAr9M5zBtiRHa6lr8vHaora+SQAen4pNCi9pJFnkw5VHQoQQBAX+71/dxNPfn441wrEdwWmViItzBivjurkf0Nmkpz83Z5IL6bXAhfV6euK1iOi4JJEEa2K7FbgXMrmp0ew8UkMgoJ5WVdk5JYYGDhzIyy+/HLJtz549/Pa3v+XRRx9l6NChZGVlkZuby6effsrFF1/cut/HH3/MhAkTjEqycwCPovPLF9ahnPCh1HX4aFUBuWlOxg1IPjNfDrqOr51kZ59fRSD4i+1wUV3EfdfuKuOWywZilQBR4OWP97J8awmiKOCwynh8KoqqkRRn49ffnIBMsNru5PONG5LGiq2Rk/reXXqQ/7spH0mgtVVHJBRVAyn8cpc3oPHp2oKwY5qms/VAJZMGp573v7QNDAwi45EkUs3nZ6pHd5CVHMXa3eWUVrtJT+z8fTinxJDT6WTcuHFhxwYPHszgwcEeSQ888AA/+MEPyM7OZty4cXz88cds376dV199tSenaxAGWRbZsPVYiBA6kbcXH2R4n6Qz8saThKDh4u4jNWHHJw5LxyQKSJLQ2i0+HJqmE1BVrJKEVwmaHLZsb+l3BsGS9ppGH8nRFkySSP6AZNbsKGXGqCwG90ogNsrCtgOVbNxTHvZ+NLj8qLpOIKAzoJ2S0PREBzaLHNJnSxQFAnpwk6rreNsRgbUNvnZ9hgwMDM5/FLMN4bQWxC8M0hMdCAIcLKk//8VQR5kzZw4ej4fnnnuOf/7zn+Tl5fH0008zcuTIsz21rzyiKHK0vCnieGVtx/KyBAEQRQKqhiQISMKp2ysoikZ+v2RS4u1tPJFioyxcNDqrOToi0jc7skNrQoy1tXTc51fbvW5NvZfUGCu6AFdO7sW0kZn8b8VhPllTgEkWmZ6fyU/vHMdf3thC7UlNXIf3TcIsiWiqRpRVZlp+Bss2h0aSRAHunjcUmywSaF6i0gWBggoXL328myPHGrh73lBy05wUlDaEnePQPokXzJKDgYFBBCxf3agQBKuaE2NsHCltYOrw9E4ff86LoXHjxrFvX1vn4wULFrBgwYKzMCOD9lBVjcG94vliQ1HY8Zw0ZzCJuj1dIwrUexTeXryXA0frSIq1cd1FfUlPdASTn9vBLMKv7p7AJ2sLWLzxKJqmM2VEBldN6YVVAkEU0XSId1oY0iuBnYer25zjlssGYjOLaAENm0XGYpYiLqmlJjiCYkkMLr/95t/rW6M0Pr/KorWFbN1fyX3XDmftrjJEAbYfrKK20cdVk/PQmpeuRE3n1ssGMjgvgQ+WH6amwUvf7FhumTWAxBhrqxCSJJEdBbU88drxPKTlW4q544pB/OL5tW3ml50aTWpC51uTGBgYnF9I1q+2GAJIibNRUBbefPZUnPNiyOD8QlU1BuXG43SYaXD524zffvkgZCFy43NRFCiucPGL59eSFGsjNcFBfZOPR55by62zBzBjZEa7XdODvarg6kl5XDYuBwSwNLtRl9R4+GRNAU2eAJOGpfPAdSNYsuko7y87hNevkppg5/bLB5GW6EBovoRVFpk7pRf//fJAm2v1z4nDaTc1d2MXeGfxgbDLVeU1buqafFhMEmXVLhZc1I9BefHYpFD/IlHTmDQklRF9E4Pu2pIY7LN1Qq6PT9V4fuHOkPOP6p/C7iPVfP/mfN764gBF5Y2YZJHJw9OZOjKT2kYfydFmDD1kYHDhIludp97pAicp1sa+orpgE+VOugAbYsig27HKIr++ZyJ/eXMrB4vrgGDj1a9fNZisJEe7y06+gMYbn+/joVtGUd/kp+BYPUN7J3Db5QN5d+lBJg5Nj9iB/URUVWstW1c0nfeXH+bDVUdax7fsqyQ5zsYPbh5FVmo0kiBS1+Rj4crDfOuaYa2GgpqqcenYbDQd/rfiML6AiijA2EGpfP2qwUgEW34EVI2tByrDzCTI2p1lxEZb2LS3gk17K+iXHcdDN+dzckq0z6cEP5QCoGmcvLjl9qnUnbTclpkSxe9e3kh6ooPZE3NJig1GgtbtKuPX/1rPvGm9uWpSbmt0ycDA4MLDbDHEUFKMlYCqUVnvISXOfuoDTsAQQwbdjqpqRFskfnTrKDz+YOWV3SJjlcU2FU2iKODXgo1KtxyqITnOxj3XDONPr2/myAk5MCZZ5MEb86lp8JAe17lln3q3P0QItVBR62HRuiJ8AYWVW4+1bv/He9v53vUjW1MRRV1nzoQcLh6ThdurYDVLWE0iNPc+g2C7ErtFbiNUWrBb5ZCltv1FtWzeV8GEQSmdyueRw5TIa5qOWRY5VuXihYW72oxHO8zGMpmBwQWOxXZ6HnsXEvHOoBlsWbXbEEMG5waapiPSbApoCt+GQhQFXAGNXzy/lsra40ZhGUlR3D1vKE++tql1qS2gaDz91lYev28y7ScchWIySaxYXRBxfOW2Eu67dniIGNp1uAafooV482iqhlkAc0tT1pOiW1aTyOyJuWHFCMCEIWk89dbWkG2frClkVP/kTjUItJklhvZKoFdmLMP7JuILqCTF2piWn8nn68PnaY06U1YGBgYG5wxWY5mMaLsJSRKoqO288eT53wDG4LwloMFvX9oQIoQASiqbeH3RXq6c0itku9urRIy8REIQwNeOEFBVDSnM2rJ2UiRFkkT8OjT4VHyajnBS6xFvQCM1wcGQXgltznXZhFwKyxpaDShbUFStE7IuiKjD/dePoLLOza9eXMfvXt7Ij55ZxfT8zLDNXu+7djjWDvSLEwQBXRTwKDoNPpUAwgXRH8rA4KuCxRBDCIJAjMNMdTvWKZEwIkMGZw2XN0BxRfgy/H2FtVx3Ub82293eAGCno9GhQEBj8rB0PokQHRo9MIVdJ1WU5aRGY5Gl1mtoosAXG4/y3tJDeHwKoigweXg6t142AKlZNKm6zj/f38H1F/dj3vQ+bNxbjtUsMWFoOhv3lPHG5/vbXHvc4FTMsojaiVweQRR4f/FBVm8vbd2mqBqPv7yB+xeMQJYENuwuJ85pYeLQdOxmCeEUS2QtEbq/vb2NXc0eTXHRFu66aggDsmM7PDcDA4Ozh2g6//sFdgfRNlMbG5OOYPz0MzhruE/huuxX2oqEzOSoTuW/6LpOcpyNEf0S24zZLDKzJ+axZFNx6zZJFLjnmmEtK3tIksjijcW8vmgfnub5aprO8i0l/OmNrWjNtu+yJDIjP5N4p5VFawuoqHFTUNrAJ6uPMLxvEkmxoc0TE2OtjOiX1K5jdjg8AS3sclijO8BvX9pAXLSVWy7tx+XjcnCYxFMKIQC/Bj/9++pWIQRQ2+jjD69t4milq9NVGQYGBmcByYhtANitJupdnRdDxt0zOGvERFkijkmigOmk5Z0ZozKxmiQ6WyMu6Tr3zx/O5v2V/G/lEdzeAGMGpnDV1N5U1rpJT3JQ2+BjQG4811/Ul2ib3Frx5lE03l16MOx5dx+pptETwGkzIQoCk4Zn8NBfl+M/aVlu+8EqfnTbGJ58fROapjNucBqjBiSzbmcZ187sg9aJyJDXrwRbc0SgtNpFvMN0SoPKFiRJYNeR2oi/pF76eDc/vWNsh+dnYGBwdvgqu0+fiM0sUV7b1tblVBhiyOCsYTWJTB2RwfIw/btmjc9hX0Gw8WhslIV503szaVg6onZ6icCirjN+YDKj+iej62CSQFU0cpMd/PjW0WiaHhRfmoZ+gpDw+JR2W10UlDawanspw/smcuBoXRshBFBd72VPQQ03XNKfRrefbQeq+M2/1/Gzr4/H71eRO/EdZjXLmGSxTYPZFpLj7B0WQhCMfJ28THgiR441oHbifAYGBgZnE5Ms4T0NGxFDDBmcNQRN57bLB+KMMvPZ2kL8iobVLDFnci9mj89BR+ey8TnoBAvS1C5URGmCQHWTn2VbSmhw+Zk4NI3slGgETUfUg20v9BMiLoIgIIoCNrOM2I5JpNkkseNQFaMHprD9YFXE6287UEmc08oX64vISonmezeNZtOecq6a3As6IfCsJpFZ43LCWgVkpUQTG2XucOSsJUE6I0zidQvxTivGKpmBgcH5giQJp1U9a4ghg7OKqGlcO603cybloWo6siRgM4n4AjoVdR4OH6snJd5OTko0FlloNUPsDLogsHRLCa9+urd12+KNR8lNjebhr41FOiEZW5IEfCqUVDRRXNlEdko0P//GBJ7+71Yq60Kr3uKdVgKKhs+v4vEpRNlMEavdYqMtzBqXw5iBKVTWeXjp4918a95QRPQ2xortvhZV4+ppvfD4FJZsOtoq0vplx/G9G0cic+rUcl0Q8Coauw9Uomoaw/skcc2M3ry75FCbfefP6IPNbKQWGhgYnD8Ip/EDzhBDBmcdTdWwm0Ti4hzU1rrw+DV+9a/1IZVmDpuJX949nniHOWQZqyM0eZUQIdRCQVkjn6wpZO6kXFRVQxQFGrwqP/vnmhBRkxRr48Eb8/n9qxtbt8c7rXz7uhH8470dABRXNHL5pDz+2fzvk7l4bDaPv7yB6novogA3zhpAxincuCMhajo3X9qf+TP60OQJYLXI2M0SEpwyuVwTBJZvO8Yrn+wJCSBdPjGXu+YO4fkPjrf6mDk6i/GDU1FPQ4AaGBgYnA1UVUM+DVsQQwxdwAhC8OHn9Wv4Aip2a9AFWmsnAfdsowF/f29nm5J7lyfAL19Yx+/vm9zaZqMjmEwSKyKYEQJ8uraAy8bnIBOsqvrNvze0ie5U1nl4fuFOfn3PRI4cqyfOaaWqzss/3t9BabULgIG58ditJkYNSGbT3oqQ4+dN701ZlYuf3DGGyhoP2WnRQe+fk4SQIICGgDfQgb+XFjSFtEaZg//W9VNGhAQBqht8vPzxnjZjH68u4Cd3jOE335pIbaOPnNRorCYJQdNANCJDBgYG5wfe5u/OzmKIoQsUQRDwaTpPv72VnYeCCbIWk8Q1M/pw0ajMNt3fJVnEF9Dwq8eXqrqSo9MZJFnEq+iUVDahqhpb9leE3a++yU9VvZe02I77aQgCNLkDEce9fhUNcCs6AUVpFTcnc7ikHlXVGZITh4bAu0sOUlp1fN+0BAd/emMzcyb34tJxOew+Uo1JlhiUF8/GPeWs2l7KmIHJJDjMwWhQGyEU/Hst31pMZnI0ghA0mVQUldEDUoKipIuIksj/Vh6OOP7u0oM8dFM+6XG24ByNFh4GBgbnGU2eADEOc6ePM8TQBUpAh1++sI5jJzywfQGV/3y2D6tZYvqI9FaxowkCm/ZW8vqivdQ2+rCaJWZPzOOKiTmIZ7iSSBNF1u8qJ6BqxERZ2vjxnEyDy096nC1kOUiQRALN0ROzFBpJURSN8UPS+HRtYdjzjeibyGdrC3h/+WEeumVUu9f2BVQ0s4gg6NxxxSB2H6lp9R7yKxrD+iTx7w93Y7PI5KU7UVSd95YeRNV0vjV/GLqmR1wWU3Uoq3FTWevh7S8P4Fc0kmJtXDOjD4UVjfROiW7TzqSzqJpOTYMXSRQYNySV0QNTEAWBbQeqWLmthPpGP6qmGwW6BgYG5y31TX5yUqI7fZwhhi5ABAEqaz0hQuhE3l58gPGDUzEJwYqiVTtKQ3pqef0q7y09SGlVE3ddObhNFKnbEAUOldQhiAKfry6itNrFj24bjd0qt2ld0UJGkqNVCImSgMuv8d9Fe1i3qwyTLHLx2GxmT8jFRDB/RtN0MhId9M6Mwe1VmDg0DbNJYn9RLTsPVXHllN48+VrQ/8dikiJWjsmSSJTNBAQDJtFWiT9+ZyqfrDnC5n2VHKtsYt60PqzZUYrHp7D7BAPDtEQHQ3snRsx1EgTwBFT++8X+kOMq6zz8470dfGPuEHJTolEAsySga/ppBW1kUWDC0DSuu7gfq7cH/+aapjN2UAo/u3Mc2w9WYpLEkKo6AwMDg/MFRdWoafCRkejo9LFGMsAFiCiKFJU3RhxvdAda/XA8isZ/PtsXdr+1O8tw+zrv13AqTCYJ2SQiiCL7i+p49p3tFJU3ElA0Pl5dwDXT+4Q9bszAFOyW4/rdHdB46KkVLNtSgtev0ugO8N7SQ/zyhXUEThALsqDzo1vHcP3F/dh9pIbV24+RlRzNk9+ZxtLNxTR5gstom/dVMC0/M+y1r5zSC5vp+MdFU3UsIsyf1puf3zmWCUNS+WJjIT+6fUxQcMkiDpuJyybkcvfVQ9ldENnLRxRFGl2BECF0Im8vPkCTV+Gxf23g+Q/3UudWTqtcQlE0xgxK5W9vb+OzdYW4PAE8PoVlW0p44rVNXDwmG1kSkE2S0ZfMwMDgvKOsxo2m6/RKj+n0sUZk6AJE03RS4+0Rxy1mqdXd2eNTIkZhAEqrmuiXEdOpFhiR0AWBRq/CFyuOUFHnYUS/JAb1SmDNjtLWKFZ5jZsbL+2PJIl8sOwQdU0+LGaJGaOymDUuu1W9C5LIe4v3h517cUUT+4/WMjQ3HlXVUBF48cOdrNlR1rpPYVkjizcd5fs3j2LtjlJ8AZWPVx3h29ePJCbKwmfrCnF7g+Xy82f2Ycqw9LCJzKqiIQEBRWPZphIWrSlkWn4mD1w/AkXRWberjF+9uI6R/ZIY0y8p7H0RBJ2i8oaI96220Yc/oFJU3khReSOrtpfwo9vGMCAzplNLZ7Issm5XediOzpeOy6G81sPKLSU0uP1MGpbOgJy4TiWrGxgYGJxNCsoasVlkMpM7HxkyxNAFiK7rpCc6iIkyU9/U1pZ89vic1iols0lq91zRDnO3CCEEga0Hq3jqrW2tm9bvKiMmysyDN+bzx9c30+Dyc+XkXjzx2iYSYmzcfsUgrBYJXYdV247xf0+v5K/fm45FDObobNhTHvFyyzaXMCwvAUGAqgZviBBqocHl5/P1hUwZmcEX64vQdPjLm1sYOyiFJ78zFVXRMMki1g4kk4uCgDPKTF2Zj0VrC1l0Uo5SYqwVURTQBCE030kATROId0ZOChdFAd8Jjqq6Ds+8vY0/3N+5yjpFC97Hk5k3vTdev8LP/7mmddu6XWWkJTh49Bvjaf8dYmBgYHBucLCkniF58UinUQFrxMIvUCySwKPfmEDiSZVXE4emMWdyr9Yoh1UWGdE3fMTC6TCTGNN+QnNH8ak6z7yzvc32+iY/7y45yCVjs4GgOWFZtZtdh6v5y5tb+N3LG/n9KxtZtf0YAUWjpLIJQRAQBLCaIz+mHTYTCMEluZVb2wqAFtbuKGPECREbXQeLWcYqidhNIiahY87XZkmIuLwHcOm4XA6W1HOgtAGf1pz0rcPRag97i+vISonGZgn/22Ti0DRWntSypMHlb13e6yhimHtmlkUG90rgw5VtHa1Lq118sPwwgmFBbWBgcI5TWeehotbD2IEpp3W8ERm6QNE0nTi7zG/umUS9y0+T209SnA1bi3dMMyI691wzlEdfWBdSKu6wyjzy9XGYxU51i2ilxcnZ7VVAgMKyhoiVVNsPVjFncq8OnTeYKqNjlUUun5jHi//bFXa/WeNzqG70o2kak4anc/hYfdicHFEgxLI5L83JLZcNQO/ki1ZVjSG94pmen8nSzcUh873jikEs2Xi0tYXGyH5JXD4pjz++vrm1Gq1fdhwP3TKK372yMaSTfU5qNBePzea3/94Q5l50UqToOnMm92LjCT5IA/Li2bq/MuIhX2ws4uppHfvbGBgYGJwtth2sIspmYnifhNM63hBDFzCqqiMDCQ4TiVGmYAXSSUteug4WUeCX3xhPeY2bgyX1pMXbyU1znnb7C1ESqG4K8PtXN1JW7SYjKYqLxmS1e0yLUKqu95KRFEVJZVObfWRJICMpCl0PJgNPGJLK6u2l7C0MFTmzJ+Syv6iWf324G4Bou4nbLh9ESrydJZuKQ/admp9JQoyVO+cMok9WLEmxNmRObWAY9nVrOrfM6s+8ab3Zcbgam1mmf04c7yw5yJJNR1v3mzu1N4/9ax3KCfd2f1Et//1yP7+9dxJlVS6q6jz0yYqlvMbDH17dFLJMBsHmtQ5b5z6+mqaTkeQIEWyyKOJvp6lh4DQaHhoYGBj0JG6fwo4jNcwel31a7tNgiKGvDO2l/ei6jgRkxNvIbm4RoWn6aQkhAK+i8/DfV7dGPcqqXeSmOSPun5USjTPKxNSRGdgtMg9cN5yf/WNNm87s35g7FLMotL4YSdf5/o0jKalysWxLMdbmROst+yv490e7W49rdAf4x3vb+c23JjFmYAqCKHC4pJ71u8q4dkYfrJJARnw6qqqhd8DJuT1EXSfaIjFjRDpWu5mn/ruVpScIsL5ZsewpqAkRQi3sLajlN/9ez+/uncyQ3Dh0dOpdftze0OUwURT49vUjsEidF6uSrnPzrP7MnpDD4k3FyKLA2MFpfLYuvEt3/oAURGOZzMDA4Bxm494KBOCiUeGrgTuCIYYMWmmJuHQFSRLZtqeiVQhB0Oxv95Eapo7MYPmW0NwXURS4Z95Q8lKieeiW0TQ0ePAHVP784DQ+WV3AvqJaUuLtzJ3am/gwHdkldHKTHfS5YhCiJPDmlwf4YHmoy7LDZuL7N+WzZHMxSzYexetXGdIrgW9fP7LVaft0eoTBccNHURAwiUJrdZeqagQCKuXV7pD9Y6IsVNW3reZqoarOi6JpCM1/hv6ZMfzpu9NYuPwQRyuayE13cuWkXkRZpdMWq5Kuk+y0cOul/ZBliQPF9QzKi2+zjGgxS8yZnHfa98bAwMDgTNPo9rNxXyWzxmYRbe+883QLhhgy6FYkSeTA0do2299dcoBvXjOMvlmxfL6uiNpGL/1z4rjp0gHEOkytyzGqqqFrOjZJYMGM3gRUHVkU0DUtYlWbpun4/Qq6ILCvqO21vzF3CC99tJvCsuPeSzsPV/N/T63g9w9MIcFh6vQDXxSDho/vLd7PtgOVRNvNzJ3ai8F58a2u3VazzMDcePYUHBcZpVWu5oTto2HPm5fuRBZFQEcSBVRFw2mRuP2yAQS0YKsUTdHCO0N2Al0Hv19FVTUaXH7mTO7FsL5JLN10FLdXYVifRC4Zl8OXG4q4ffbALl3LwMDA4EyxdOsxbBaJ2f/f3n2HR1G1DRz+zdb0HgIklCSQEEhCCB1C70UpgoKoqFQRFHhVUBSVD8uLvr3Y0x4AAFTQSURBVKIgUgUFFRs2BClKF0Q6SIeETkJI71tmvj+WrCxJIEDKJjn3dXHpzpw9e56dbPbJmVNa1rmvekQyJJQoWZYJ8veAPbZf9rIC81cdpllYNV59qgUoli92SVEsKzMXcivGbJJRQbF7QDRqidp+rpw4929C5O3ugFlWbBIha/2ywudrjzHx4Si45eaYWq1CrZYwm5UCa/lIkkRqjokpH++wjuVJTMlh9soDxDSuyfDeYWhu1NGtRW3W/BlnLXc5MZNqnk54uOhJzbTdEBbg8V5hrP4zlrOX0oms5027KH8cNJYeJxUgm0q2l8ZsVqhfy4OX5u2gurcTfdsGoddZVuh++7O/mfp4M/QacZtMEAT7E3c1nePnUxjRJ+yeNme9mZhaL5Qok0kmOtQXfRHT3js0CUCvltBIwD1uK1EUs0mmT9tAa17l5+VE09BqHIsrevXnf85cx3hTsqVSSRgU+PvENb76/TT7T1/HqGAzbkaRYNmvxwoMagbYcegKaVn/ru3krFczc2wbat20V87q7Wd5c3RrGtTxtB7zcNHz/CNN2HviGj9tjeXI2et8uf4kkz/aRlqO+e5njt0FnQreGtsGCVjyyz/M+/4Qe44l8OygxtSu5iJukwmCYHdyDSbW/X2BsDqetAmvft/1iZ4hocQ5aCRmjG7Nf5fvJTk9F7Ds7fVwl/qE1fG87w1Hb8fVQcM749qSYzBzMSEDtUpFvQB3dBo1v+06V6C8k4OW/F4hlUoiMcPAawt3knvT9HZnRy1vjWmDh5PGckvOrHDodNHT0fceT+CBNnUtDxQFX1cdrz/dguw8E4oCjnoNDhqJF4dFk2MwYzIr6HVq5n5zkGPnbMftZOeaWPDDIV4YGl1qG6jKsoKTRsULj0aTY5AxmWUc9WocNPmLTYqeIUEQ7IeiKGzYcxGTWebp3mEl8seiSIaEEiebFfzc9Lw7rg0ZOUaMJhl3Zz0OGqnIzUpvpUgSOUaZjCwDTg4anB00aFQqcowmUjMN6LVqXBw16G/cyrI+T4FTF1JZ9utRm2E1fWMCGdazAV+uO2HzOt1b1sFJp8ZoMGOQ4Z3P99gkQgBZOZZlAvJXY5awJE5F9ZjoNLa9YrKsoAJcrL1lCiaTZXd4J40KlU7icFxKgUQo3/FzKeSaZBzVpZeUKIqCpICTRoIb7S/OYpPC3ZNlGbO56C1w7q4uidxcNQZDns3noKKqTPHkxyLLZsQfFCXr4JnrnLiQyth+jfB2L3r1/rshkiGhVMiyZY0jzxs7vQPFToRklcSnq4+x68hV67G6NdwYP7gx7y7fw/VUS2+Tr6cjrwxvjqeTZQC0JMH1jDw+LWQhxl93xDFxSBO83R1ISrM8v16ABz1a1bEmNRk5BmtP1q2uXM8iK9eEm16NTqOyrApdyNYWAM3C/O6q9+vW7TYKY5YVuCkZUqlV5JpkcvJM6LVqHLTqe1sdUygziqKQnp5MTk7BNbTux/XrKuRKdO0rUzz5sTg6uuDm5lWqt7uriovXMtm0/zKdo/3vebXpwohkSLAriiTx9cZTNokQwLmr6cxeeYBHuoYy73vL/maJKTm8umAnHzzfHq1kmeb+y/bYwqoF4Pe/LzBmQAQHTiXSPMwPN2cd7y7fw8tPNEMDGIy3/wVsNMmgV6OYZYb1aMA/sUmkZtgOgh7cuT5ODmqyjTLG5Gw0Kssq1Hda5ynIv+hdlutUd0Wn+Xd4n6ySWL/7Aj9tO0uewYxKglbhNXiqb0PLgpEV+w/qSis/EXJx8USn05fYF6P6lt7Riq4yxaNWQ3Z2LpmZlkkd7u73tjqyYJGSkcfPO+II9ndnSJf6JVq3SIYEu5JjMNus1nyzy4mZuDnr0GpU1gUZs3JNnL6URngdD8yycts1fJLSc5Eky1Yjn/16jAsJGTe297DsyeHpoketkmhQx5PBXUJwcdKSmpnH1xtOcvFaJm5O//ZyOWok/vtsDHuPJ7D7WDweznr6tK2Li5OOD746wLFzyahUEq3Da/BYzwY4aoq+rWY2Kzjo1fRoVafABq8atcRjvcLQqiWQFdQaFRv+vsg3v5+ylpEV2HnkKsnpubzwaDSq+1o2UigNsmy2JkIuLkUvQHovNBrVfa8PZk8qUzwajQqVyrL2TWZmCq6unqjuYRPRO5G0JbOHpD3LyjWyautZXJ20jB8Ycc8rTRdFJEOCXck1mC23hIqQnJ6Ls6PWpkfmQnw6jYO80KggrK63zdT6m4XW9iQ5PY/vN52xHqsX4GHdn0ynkZg1IYbE1Fy+WHeCq0lZBFRzYVjPMFydtOg1KusGt7KsoAViwqvTJrw6Kgkyc01MnL3VmqjJssKfh69w/Fwy74xrg7aQNuXTq1VE1vOhXoAHv/9tWYepfi1PurWojV6nRiNJmFHIMcr8tOVMoXWcOJ9CerYRj7vcpkMofWaz5TaoTqcv55YI5SH/upvNJmtyVGIkCXWN0JKt087kGkx8v+UsJlnhpUeicHG83W/TeyOm1gt2xUGnvm3G7+XmQGa27fYUgf7umM0yeUaZFg39Ct39XaNW0bVFbXJybQeuPtmnIY46NTqdBrVG4uDp67z7+R60GhVNQnxRFHhzyV+cvZyGWlOwXWazjGKWkWX45vfTBbYQAUsCd+j0dTSFPD+fSlEIre2JWZZp3tCPvjFB1PJzQauRqObuYB2DlJtntg7wDqzpRtvImkQE+1iXE7ialCW2z7BjYsxI1VS6111CcnApxfrLV67BxHdbzpKZY+SFR6Ko5lE6vWDiT0jBrjjpLLeL1tzY4f1mdWu4kZyei+mmwcluzjqCarpZBmxrVBw4eY0XH2vKyg0nOX0x1fq8od1D+ftYvHVOh5+XE5OHNsHZUctP2+O4mpTFoz0acPh0Im+MbMXRuCSuXs8iOtSXod1DWbX5NI3r+aC75XeaJFkWV8w1yRw+c73IuHYfjadlWLXbxq6SZVqH+ZFntuyPppZAI2Fze02nU1HLz4Un+zTifHw6sZfTCPJ356FO9Vi76xxebg5iXSBBECqFrFwj399IhF4c2oSAaqWX9IlkSLAvisKADkEYTGb+2HPR+sXeMNCLkf3CeWvp39aitfxceemxpjjcGHApm2Vahddg5rK/6dWmLoM6WwbYJSRns3T1UcYPboyvhyNdm9fGQa/m5LkUpn7yJ4oCOjX07xBMz9Z1eeuzv216eBx0av4zrCk5eSZ0N61yapYkUjLyOBaXTFigF67OukJXlQZLj1Zx/jg0m+V/P5RKwV03nLRqxj3UmHc+30P6TYs7rt4Ry3MPR+Hr4XDfW3UIQnkZP340kiQxd+7C8m6KUM5SM/P4bstZzLLClEejSzURApEMCXZIJSsM7VKfgR3qkZVjRK9T46RXo1FJvDW2DZk5RrRaFc56DRoJ68wTRQF3Jy3DejZg/qrD1h4ktUri8V4NqOnlhKQo6LQqDGaF2V8fsM68MpjBQa9h4Q9HCtzqyjWYWfLzP0wf0cp6zCxJzP76gHVz087NavFguyDrTLdbdW9Zp0TW7THJCktXH7VJhMDSezT/h8PMmdSxsJ1NBEEQKowr17P4YXssLg5apgwrvVtjNxPJkGCfZAW9CvTOWutjs6ygU4FX/jFFKdAJIikKTep58/ELHbmSmIWsKPj7ulhWU1YUMg1mTCYZtVpF4/q+7D95zfrcnFxTkT07CcnZGIwmHNUa1GoVv+yIw9VJx8vDmyMrCj4ejjg5aOjULIDNey/ZPHdQ5/qo1RJqjRrTHdYTupNcg9l6++9WeQYzV5IyqevrXObT6yWV5VZhVq4RB50GR60KlZjmL9yl2bPn3XZsnVD5HY1LZv2eC9Sp7spzD0Xe1070d0MkQ0LlIyvoJAj0cwYkJAlSc4x88NV+LiRYNmx1ctAwqHN96tZ044fNZyyzwXKMt6/2RuaVa1Jwd9ah16qZvXK/dUBzkL874x6KpFN0LQ6cSkSnURFax5PDZ65z5XoWTnoNZllBr1EVGAtUXKY7PCc3L3+127LLQmSVip+3neW3Xecw3eila1zfh3EPNUYniYRIKD6tVlupptYLxWeWFbYcuMy+U4m0Da/OEz0boC3DxFgkQ0KlZfkSVjDIMG3BTrJuSnayc00sX3ucCQ9H4e/rwuXETMsgbLXKZoB2Pke9xjqdU62W0GhUfLP2uE2Z2MtpzFz2N1OeaE5UfV9MZjOHzyTSuH41vvvjlPWWWr0AD8YOjMDbRVfsVbnzOenVeLk5FLpStiRB7equKGWYfajUKtbsPMfqHbYD3g/dmJX3ypPNUYt1j+xOdnYWixcvYPv2LSQlXcfZ2YV69erzzDPPERragPHjR5OWlsq0aW/y4YfvcerUSby9vRk27An69x9kU5fBYGDFimVs2PAb164l4OnpRdeu3Rk58hl0Otu/6tevX8v3339NbOxZtFodwcH1GD58BC1aWG5BFzZmqLj179nzF0uXLiYu7ixmsxkfH186duzCmDHPltr7KJSM9CwDq3eeIz45m2HdQugc7V/mMy9FMiRUamq1iv2nEm0SoZv9vPUs3VrW5rNfj7Fl/yX6dwjm+02nC5Qb3ifMus6QWVb4ZVvhK12nZuQRfz2L7/44RVpWHm+Mas3ri3aRfdOU/jOXUnn5kz/5cFKHu95vTK+WGNM/gneW7ylwrnebQBw0qtsvd13Cck0yv+4oOPMPIO5qOmmZhn9vawp247333mHLlj8YOPBhAgMDSUtL4/Dhg5w/H0doaAMAMjIyePHF5+ncuStdu3Zn06bfef/9d9FotPTt2w+w7LM2depkDh8+yIMPDqBOnUBiY8/wzTdfcfHiBd5553/W11y6dBFLly4iIiKSESPGotVqOXbsH/bt22NNhm5V3PpjY8/y0kuTCA6ub6378uVLHDlS+Bg+wX6cvJjK+r8v4OSgYeqwaIJvsxp/aRLJkFCpqdUSp84XvggjwMVrGQT4uqDXqknJyOWRriHUC3Bn5YaTXL2eRS0/Vx7r2YDa1VysCy4qikJiatErXcdeTsPTzYFqXk78eeiKTSKUz2iS+XHrWYZ1C0G5i33MQMLVRcuUJ5rx87azxF5Kw8fDkV5t6pb6bIvC5BrMt91XLT45Gx9XDzHd387s2rWDBx7oz4QJk6zHhg0bblPm+vVExo+fyJAhjwHQr99DjB49nIUL59GzZx80Gg0bN65j796/mTt3EY0bR1mfGxgYzPvvv8ORI4eIiGjMpUsX+eyzJbRv34mZM/9rswrz7Xoyi1v/3r27MRqNvP/+HDw8PO7vzRHKRJ7RzKb9lzgSm0zTEF+G92pQKospFpdIhoRKTZYV6tQoevuDap5OBNZ0Y+HUziiyZSf5ujXcGd6nIWC59VTT15kbu2EAlpVK3V10pGUaCq3Tz8uJfScSaBbmx8nbJGJHY5Mw3jyVvhhyzQrvrdiHJEl0a1GbXq0DScvMY9Pei8RdSWfeC51w1JRd97Jeq0ajlqxjhW7l4yHWPbJHLi6uHDt2lOvXE/Hx8S20jFqtpl+/h6yPtVot/foN5P333+XEieOEh0ewefPv1KlTlzp16pKammot27RpcwD2799LRERjtm3bgizLPPXUyALbUdzudkhx63dxcQVgx44t9O79YKlseSGUnAsJGfy2+wK5BjNP9mpAu8ga5b4gqUiGhErNZJKJDq2GTqPCcMugzKgQX4b3aci+49dISMmmUaA3vp6OvL74L5sxOVqNihmjW1PT0xGzWUavVTGwY32W/Xq0wOs56jX4eTvd2OXeiIdr0dsveLrqUReyi6skWb4gCksicvJMpNzYiuTm/cnyXYhPJ6x22fXEOGolOkYH8PuegvvJ+Xk54eXqQFkO5haK55lnnuOtt95g4MA+hIY2oFWrtvTs2Qd//wBrGR8fXxwdbac016pVB4D4+CuEh0dw6dJFzp2Lo2/froW+TkqK5Y+BK1cuoVKpqFs36K7aWdz6u3TpxurVP/HuuzNZsOBjmjZtTvv2nenUqYtIjOxIntHMtkNXOHD6OiEB7jzdt2GZTJsvDrtKhrZu3crixYs5c+YMmZmZ+Pn50bVrV8aPH4+rqyXznzp1Kj/++GOB5y5evJj27duXdZOFCsBBI/HGqNa8u/zfhQoj6/nQs1UdXpyzzdqrsWrzGWp4O/PcI1H8d/lecvIst7eMJpkPvtrPW2NbowHMJpm2EdWJT8pi/V/nrD1Gnq56nh3cmJUbTgLw1z/xjB/cmF1HrhbaroEd69n2OKkk8swKiSk5pGTkEVDNBVdHLaqbkiXNHcYYOThoynQAtWxWeKRrKOnZBv4+mmA97u/rwitPNkenAllMDLI7Xbp0o3HjJmzbtpk9e/5i5coVfPnlct56axatW7ctdj2yLBMcXI/x4ycVet7Pz+++2lnc+vV6B+bNW8z+/XvZtWsHu3fv4o8/NvLLL8354IOPUavV99UO4f7FXU1nw56L5OSZGNq1Pl2aBqCyo+1p7CoZSk1NJTIykscffxwPDw9Onz7N3LlzOX36NEuXLrWWq1WrFu+//77Nc4ODg8u6uUIFocgKNT0deH9CDKmZBvIMZnw8HXn+f1sK3N65mpTFmj/j6Nysls2WIImpOWTlmnC/sQK1SlEY3DGYB2ICuZ6Wi5ODBkWBud8etE7fz8oxcupCKoM612fV5tM2HUAPtguiTnVXUrKNGE0y7s46jAaZV+b/abOgYkSwN889HIX6xpMdtGoa1PHkRCG33xx0amp4l/0aQ2pFZky/cJ7oFUZSWi6uTjpcHbVoVfe2fIBQNnx8fBg4cDADBw4mJSWZp59+jOXLl1qToevXE8nJybHpHbp48TwA1avXBMDfP4AzZ07TrFmL297mqFkzAFmWOXculvr1i7+paHHrB1CpVDRr1oJmzVowYQIsX76URYs+Yf/+vTRv3rLYrymUrOw8E5v3X+LouRTC6ngyvFcDu+kNupldJUP9+vWzedyyZUt0Oh2vvfYaCQkJ1r8CHBwciIqKKocWChWVLCtoAB8XHSqVxIlLaQVum+XbdzyBqcNbFNgfzXzrF7ui4KCWCPCyfLDNkgqXWxYI+3HLGZ5/JIqPX+jE8bhkzLJCoyAvkCReXbiLhORsAHQaFf07BPNAuyC+XHfC+vwjZ5P4dtNphnUNQTbLqIHxgxszbcFOmzFLapXES483Q6+W7nq6fkmQZAUnjQonb6cbRxTRI2SnzGYzOTk5uLj8O+De09MLHx8fjEajTbmff15lHUBtNBr5+ecf8PDwpEGDMAA6d+7Grl1/8ssvP9Kv30Cb18nLy0WWFRwdHWnfviMLFsxl2bIlhQ6gLirRKW796elpuLnZzkKqXz/E2m6h7CmKwtG4ZDYfvIIEPN07jLYR1ct9bFBR7CoZKkz+zADxAy2UFEmSCmxncTNZKdij4eygwdWp6JkOKpXE1eRsOkT707N1HQ6dTkSrURMdWo2zl1IJre1J81AfQCLHJDPpw23W23AABpPMt3+cZuzASOpUd+V8fIb13Oa9l3ioYz10kuUXjKtezazxMRyPS+bw2SQCqrnQqlF1HLWqckmEhIolOzubgQN707FjF+rVq4+joxN79/7N8ePHGD9+orWcj48vX365nPj4q9SqVZs//tjI6dOneOmlaWg0lq+OHj16s2nTRt5//x32799LZGRjzGaZCxfOsWnT73zwwVwaNGhIQEAtnnjiaT77bAnPPjuS9u07o9NpOX78GD4+vowdO77Qtha3/mXLlnDo0H5at46hevUapKQk8+OP31Otmh+RkVFl8K4KN0tKz2Xj3otcSMikVUM/hnSpj5tz2awkfa/sMhkym82YTCbOnDnDvHnz6Ny5MwEB/w7sO3/+PE2bNiUvL4+QkBDGjRtH166FD7AThFuZzTL1a3kUed7X05GMbNtkaVT/CPRqCbmIWVNm4Mv1JzgWl4y7i47QOl6YTHn876t95BnMKIrCA23qIMtw+Mx1m0ToZr9sO0vvNoEs+eUf6zGTWcZgktFpVTfar6AFmtTzoVloNWRZwWQyi0RIKBYHBwcGDBjE33/vZuvWzSiKjL9/Lf7zn6kMGPDvgoqurq7WRRd/+eUnvLy8mDTpJR58cIC1jEql4p13/sc333zJunVr2L59C3q9AzVr+jN48BBq1aptLTty5Fhq1KjJqlXfsHjxJ+j1DgQH16NHj95FtrW49cfEtCc+/gpr1vxCWloq7u4eREVFM2LEGJseMKF0mcwyfx1LYPexBLzc9PznkSgaBXqVd7OKxS6ToU6dOpGQYBmM2a5dO/73v38X7goLCyMiIoJ69eqRkZHBypUrefbZZ/noo4/o2bPnfb1uRdsTR61W2fy3IivrWNycdTQNrca+m/Ymy/dkn4YcOHkNDxc9AX4uDOvRgOqejqgkUN0ybV11Y1q5okikZVlmeaVlGvj7aLxNubOX00CS0OlUnClibzGwbFDo7e5QoK0OWjWaQqbMyzfuRd3tz65KJWFWAAXUdxjbU5l+zqB84pHl0rk1kH/HoZBJiUXSarWMG/c848bduWyDBmEsWLD0tmU0Gg3Dhg0vsE5RYfr0eZA+fR4s8vy8eYtQq1WYzbI1nuLU37Rpc+t0e3tx87XJl796fUlTSZa6y9O5+AzW/32BtEwDfVrX4cGYQHTaijNw3S6ToUWLFpGTk8OZM2eYP38+Y8eOZdmyZajVaoYPt/1AdO7cmSFDhjBnzpz7SoZUKglPT+f7bXq5cHOzv8Fo96osY3luSBN+2xnH6u2xZOWaqOXnyogHGtGgrhdNG/jx1AMyGpUKpyIWAktIzmbHvsv8fTQeNxc9j/dqyIX4dL5af7JA2eAAD9zdHJEkifq1Pdnw94VC66zh40zSLVttPNojlGrezqhLaDv65PRcjp1PYe3OOMxmhe4taxMR7IP3HQY1VqafMyjbeHJz1Vy/riq1L8OSTuwkSUKSSqetxVFZEm+wxKJWS6hUKtzdnXBwcLjzk+6GBDq9FlfX8vl8ZuYY+W1XHAdOJtIw0Iv/G9OG2tWLXtvNXtllMtSggWU5+CZNmhAREUG/fv3YuHFjocmOSqWie/fuvPfee+Tm5t7zD5osK6SnZ99Xu8uaWq3Czc2R9PQczHe1irH9KY1YVDeSh6J6PSSgb+s6dGlW68a+ZBIOOhWpGbnsP5lI3JU0Qmp7EFnPFyed7XicLIPM1E922Axi/uvIVXq1rkv/DsH8tPWs9bhGLdEx2p/UVMvPV2SwN456TaG3ygZ2rMfanZaB286OWoZ0C6FFmB/paSXzs2mUYc63Bzl05rr12JGz1wms4ca0p1qgK+Q7qDL9nEH5xGMw5CHLMmazUqKbkEoSBXpSSoKiKChKyba1OEornvJwcyxms4Isy6SlZZOTU/iK7ff8x7gChjwjGRlFr4pfGhRF4UhsMpv2X0aSYETfMNo1rolKkkhJySrTttxOcd9Xu0yGbhYaGopWq+XChcL/ki5JFXWnZLNZrrBtv1VJxKJIEnkmmRPnU5BlhQZ1PXHUqpGK+O2qBtSSZWXpS4k5TF+8i7wbO9FvvLFnzswxbfBy1loSK5XE8t+OF7oC9W+7zjF9REt+3RGLyazg4aLnP8OicbppJ269WuL/xrTmv8v3Wrf10GpUPNw1hCYhvjQK9MJoknHQqXHQWH6ZFj7C6O6oVBKnL6XZJEL54q6ms/toPDHh1YtMECrTzxmUbTzmIsaa3a/8H+mKnjjkq0zxFBZLSSfD+WSl9H7GCpOamcf6PRc5H59By4Z+DL0xQFo2K8gVdJFVu0+GDh06hNFotBlAfTNZllm3bh3169cv+e5HocJRJInth6/w+drjNr+EBnQIpk+bujYLGN7KIMO7y/dYE6F82bkm3vtiHzNGtUINGM0Ku28ZE3Sz2CtpzJ7UAZNZwcVBY1lv56ZfVLKs4Ouq562xrcnMMWEyy7g5625Mi5dxUEs43FgkriR7LhRJYt1f54s8v373eVqEVaPi3OUXSsvHHy8q7yYIdkhRFPadSmT74au4OmqZ9HBjIoK8y7tZJcKukqHx48cTHh5OaGgoDg4OnDhxgk8//ZTQ0FC6du3K5cuXmTp1Kn369KFOnTqkpaWxcuVK/vnnH+bOnVvezRfKmSRBYnoen605XuDcj1vPEhHsQ1B1lyJvm2VkG6xbXdzqalIWWbkm3BzUKNx+c0mzWcHLWYebmyMpKVmF/iVovrEnmYfjvx/B0p4NpnD7gdKWcxJi+wxBEG6VnJHLut0XuJSYRZfoAAZ2CMJRb1cpxH2xq0giIyNZu3YtixYtQlEU/P39GTx4MCNGjECn0+Hs7IyLiwvz588nKSkJrVZLeHg4ixcvpl27duXdfKGcSWoVv2yPLfL8qi1nmDwkiqKGIRe1CGM+o1kG1OjUKqJCfDlwMrHQcs3D/O65R0elVpFnkjHJClq1CgeNVGLd6mqgS7NaHC7kNhlAx+gA9BoJk0kkQ4IgWCiKwsEz19ly8AoeLjqmPNqE0Nqe5d2sEmdXydDo0aMZPXp0kec9PDyYP39+GbZIqEjMskJSetGDCH09HDDJCiiWFZ+RbQdperroi9yB3UGnxu3GoouSIvNUn0Ycj9tO7i231DpGB1jL3XX7JYmftsWyfvd58gxm/LycGN4njNAAjyLHO91V/WaZsLpeBNZwI+5qus25ap6OtI/yr1RjggRBuD+ZOUZ+232euKsZdGriz8Od6qHXVc4b6XaVDAnC/dCoJBrX8+XEOdt9uxx0aiYNjSbuShqvzN9Jdq6J6NBqDO0WgrNebb09pddIDOpcn683FtwNfljPBug1lkUXFQXcHNR8MLE9v+6I48CpRFyddPTvEERIgMeNcUl3Nw1eliTmfHuQI2eTrMcSkrOZtWIfkx+NpnGgV4mMH9JKCq882Zy/jyWwYfd5zLJCx6YBtG/sLzZVFQTBKvZKOmt3n0ejkpg4uDGRwZVjbFBRRDIkVBpmk0zHpgH8sj3WZtr6iAfDWbX5DKcu/Jsk/Xn4CnuPJ/DehHa46lUoimXMTtdmtajp48LKjSeJT8oioJorw3qEUs/fvcAgaAeVxMOd6tG/XRAqlYRWde8zOtKyDTaJ0M0++/UY745rUyIfVkUBNQox4dVpEVYNkG7cGpNFIiQIArKssP3wVXYfTyA8yIuRfRvi5mTfW2mUBJEMCZWKo0bi3WfbsuCHwxw/l4KHix5HvcYmEcqXZzTzxbrjjO0fAYolE1ApCo2DvGgwshVg6d/RqaUie2Vks4xGAhQFc+HLh9yRWi1x9lJakeeT03PJM8potCW3EJ35xqavoIgxQoIgAJCVa2T1znNcupbJ4I7B9GhZG5Wdbqxa0kQyJFQqslnBTa/hhaHR5JpkHHQavt90usjye09cw3RjR/t8+TO9/n1cyrO8FPBw1Rd5XqWS0JTzUvuCIFRuCcnZ/Lg9FgV4cWjlHCR9O5VnzXNBuEFRFCRFwVEtoVNx2+mfeq2a8p5KLssKtf1ccShiYGLr8BroK9i+eULVMHz4UGJimnHo0IFile/ZsyOffrrwrl5j//69xMQ048SJY9ZjMTHN+OqrFXdVj1C005fS+OqP03i66nn9yeZVLhECkQwJlZzRaKZ9E/8iz/doWadEEw21WsKowPUMA3FX0jCYlWLts6RXS7z6VEvLLLeb1PZzZXjvMMsSs4JgR2Jjz3L2rKXXdePGdWX62gsWLKN7915l+pqV1YHT1/lpRywRQd5MfawpXm5Vc/FicZtMqPRcHDQ83DWEb3+3nSUWUM2FPm3rYi6h6eSKJHEoNpmFP/1DVo4RAF9PR/4zNBo/D4fbLqqoyAr+3o58NLkjpy+mcD01l5DaHvh5OaFBqRTbEwiVy8aN61CpVERFRbN58+9MnPgiGk3ZfKWEh0eUyetUdruOxrP98FW6Ng1gSNf6VWZ8UGFEMiRUeipFoXvzWrRs5Mfvf18gI8tITFRNgmq6o6FkbpJJkkRCai4frLS9XZCYksP0Rbv4cHJHHO7QQaTICnoVRAZ6oVJJNzarVMR60EIBiiSRYzSTnWvC2VGLg0ZVImtRFfv1FYXff19PdHQzBg8eypQpk/jrr53ExLS3ltm+fQvz588lPv4qwcH1mDx5SqF17dy5g2XLFnP27BmcnBzp1Kkr48Y9j6Nj0buwx8Q0Y9y453n00ceLrKdjxy48++zE29ZTle04cpWd/8TTPyaQB9rWRarCiRCIZEioIlSKgqejlmHdQlCwTMOX5ZLrcVEk+HLDiULPGUwy2w5confL2sVa1FCWldtumyFUbWZJ4pNVhzlw6t8V0JuE+jJuYCTqMkqIjhw5xNWrV3jyyZG0bNkad3d3Nm5cZ02GTp8+yauvTqFlyzZMmDCJK1euMH36yxgMRpt6Nm/+nddff4XevR9gxIgxJCVdZ8GCj0lPT+PNN98pdnuKqicjI/2u6qkqdh2NZ+c/8QzqGEzvVnXKuzl2QSRDQqmRJMv2EopimaJekpuO3iuD4R7nv9+ByaxwMSGjyPOnL6Yit6hdKq8tVB1KIYkQwIGTiXzyw2HGD4wskx6ijRvXo9Pp6dChMxqNho4du7B+/Vqys7NxcnLiiy8+o1q16rzzzvuob2w6rNfreffd//s3FkVh3ryP6Ny5G1OnvmY9Xq2aL5MnP8fw4SMJCgq+Y1uKqsfb24cXX3y+2PVUFQfPXGf74av0bxcoEqGbiAHUQqmQJYmrqbksXn2Mj747xJ5TiZiQUKkqZ1esSiVR3du5yPN1qrtV2tiFspNjNBdIhPIdOJlIjrF0kv2bmUwmNm/+ndat2+Di4gJAt249yc3NZdu2zQAcO3aUtm3bWRMhgE6dutjUc/HieeLjr9K5czdMJpP1X5MmTVGpVJw8WXDD5cIUXU/0XdVTFcReSWPj3ot0aRrAA23qlndz7IroGRJKnCxJ/LD1LGt3nrMeO3AqET8vJ/5vdOtK+UOnkWBIt1DeXPJXgXNqlUTnZrUwlcEXlVC5Zeea7njeyaV0Vwves+cvUlNTaNu2PRkZlt7QoKB6eHv7sHHjenr27ENS0nU8PW2nZzs7u6DT/bueVmpqKgCvvPJCoa+TkBBfrPaUVD2VXVJ6Lqt3niciyJuhXepX+TFCt6qM30tCOUvNMtgkQvkSkrP5eVssgzsFI9vBLbOSJMsKtX2dGfFgI5avPY7xxtggF0ct/3k0Gmed6razyQShOJwcbv8r+07nS8LGjesBePvtN4E3bc6lpqaQkpKMt7cPKSm2q75nZWViMORZH7u5uQMwadJLNGoUbj2uVqswm2V8fHyL1Z6i6slX3HoqM6NJ5pc/4/Bw1THmwUail7oQIhkSSpRWq2bbgXNFnt+07yL92gdVyh88SbHs+dU8zI+UjDx0WjWuTlrLBqilvIq1UDU4atU0CfXlwMmCt8qahPriqFVTmusw5Obmsn37Vtq168jgwUNsziUnJ/HGG9P4448NhIU14s8/tzNhwiTrrbLNm/+wKV+nTl2qVfPjypXLPPTQw9bjGo2qWBMN7lSP8K8tBy+TmmFg+pPNbrsIbVUm3hWhREkSGExF3w4yltCaPvZKkRV0Evh7OeLp6UxKStZd/WIXhNuRFIVxAyP55IfDNglR/myy0h48vX37FnJyshk8eAjR0c0KnP/qq+Vs3Lie//xnCqNGDefll19gwIBBXLlyma+//sLmNpkkSYwfP4k335xGbm4OrVvH4OjoSGJiPDt2bGf06GepXfvOA3yLqic+/iq7du0odj2V1fn4DA6cvs6wbiH4+7qUd3PslkiGhBJlNMrENPZn3a7zhZ5vFV4drVpCET0lgnBP1IrC+IGR1nWGnBy0OGrLZp2hjRvX4+dXnSZNmhZ6vmfPvsyZ8z+cnV2YMeNdFiyYy7RpLxIYGMwbb7zNf/4z3qZ8585dcXV14fPPl7Jhw28A1KhRkxYtWuPl5V3sdhVWT/XqNWjZss1d1VPZGE0yG/ZeJLSWB52ii16JXwBJUcTatmCZ9p2cnFXezbgrGo3KLnsfzJLEx98f4tDp6zbHHfUa3p/QDkdNwfvV9hrLvapM8VSmWKB84jEaDSQlXcXbuwZabckOcL7b20r2rjLFkx9Lca6/r6/rPb3GteRsPv35CDERNQqcy19PaMaIFtS4zWzXyqy476voGRJKnFpRmDCoMftPJfLrjjiy84w0C6vOg+2CcNJKYvyMIAhCKcvONbL7WAKdowOqbCJ0N0QyJJQKlaLQKqwaTer7oqCgU6uQzbJIhARBEMrA38evoVJJ9G1TdcdL3Q2x6KJQakwmGTUKGqh0U+kFQRDsVa7BxMEz1+nSNABXp9Jdd6qyEMmQIAiCIFQih84mYZYVujarVd5NqTBEMiQIxaCoJLKMMheuZ5OaY6rUW4sIglBxKYrCoTPXaRFWDXdn0StUXGLMkCDcgVmSWPDDEfaduGY9VtPHmWlPtcBZqxI7zAuCYDcuXsskNdNAhygxlf5uiJ4hQbgNSaVi5YaTNokQwJXrWcz4dDdGMRRKEAQ7cvRcMr4eDtQPcC/vplQoIhkShNvINclsPXC50HMJydkkZ+YVek4QBKGsmWWF05fSaNnQT2zEepdEMiQIt5FrMGG+zW2wpNQcMXZIEAS7cOlaJrkGM01DqpV3UyockQwJwm046jXoNEV/TPy8ncSYIUEQ7MLZK2m4O+uo7Sf2ILtbIhkShNtw0Kjo0zaw0HPB/u64iTU8hCpqx46tTJr0LL16daZjx1YMHvwgs2a9xYULln0JY2Ka8dVXK25bx9q1q4mJaUZqamqJtm3//r0sX760ROusCM4nZBAR7C1ukd0DkQwJwm3IZpk+bQN5ICYQjfrfj0uTEF+mPN4MDaJXSKh65s+fy9Sp/8HZ2YUpU6bx4Yef8OSTIzl3Lo7XX3+52PW0bh3DggXLcHEp2Z6MAwf2sWLFshKt095l5RpJTM2lYR3P8m5KhSSm1gvCHahkmYc6BNO7TSDZuUYc9BocNCpUKIhtjoXy4KgyojZloRiyUemdMKmdyZG1ZfLau3bt4MsvP+fJJ0cycuRY6/GoqGj69HmQP//cXuy6PD098fQs3y/vvLxc9HqHcm1DSbh0LROA0NoiGboXIhkShGKQzTJ6FeidbnzhKIroExLKhas6h5R1C8iJO2Q95hgYhWfPMWSYHUv99b/++ku8vLx58smRhZ5v27ad9f8VRebTTxfy00+rkGUzbdu2Z9Kkl3B0tLRz7drVvP32m/z66+94eHhw9eoVBg9+kNdem8HRo0fYsGEder2Obt16MXbseDQay1fWtWsJzJ07m4MH95OVlYm3tw/t2nXguef+w6efLmTZssWA5VYdWBK1jz9exKefLuTrr7/go4/m89FH/+P06ZOMHPkMjz76OPPnz2XXrh1cvXoFZ2cXGjduwoQJk/Hx8bHGM378aJycnOjUqSvLli3m+vXrNGzYiJdeeoXateuWxttdbJevZ+HlpsfTVV+u7aioRDIkCIJQQTiqjAUSIYCcuIOwbiGuPZ4t1R4ik8nEkSOH6NChszUxuZ1Vq76lceMmTJv2BhcvXuCTTz7C09OLZ56ZcNvnLVr0Ce3adeD//u8djhw5zNKliwgICKB//0EAzJz5OtevJzJx4gt4enqRkBDPyZPHAXjggf4kJl5j48Z1fPTRAgCcnf/dtd1oNPLmm6/y8MOPMmbMs7i5WdbjSUlJ5vHHn8LHx5fU1BS+/vpLxo8fzRdffGsT68mTJ7h8+RJjx1piWLz4EyZPnsBXX61Cpyu/MYTxydkE1xRrC90rkQwJgiBUEGpTVoFEKF9O3EE8TFmg8ii1109PT8NgMODnV71Y5b29fXj99ZkAtGrVhlOnTrBlyx93TIYaNgxn4sQXAWjevBX79+9l8+ZN1mTo+PGjjBnzLF26dLc+p1evvgBUq+aHr281VCoV4eERBeo2mUyMHj3O5rkAr7zyuvX/zWYz4eGRDBjQm/3799KiRSvruZSUZD7+eBG1atUGICQklEcffYi1a1fTv/9DxXpfSpqiKCSk5NAmvEa5vH5lIAZQC4IgVBCKIfu+zpeU4s5Wat68pc3junUDSUy8VkTpf92cfFieF0RiYoL1cUhIA1au/IIff/yeS5cuFqstN2vdOqbAsV27/mTs2Kfp0aMDHTq0ZMCA3gBcvHjeplxgYLA1EQIICKhFvXr1OXbsn7tuR0lJycjDaJLFlPr7IJIhQRCECkLSOd3X+fvl5uaOTqcnISG+WOVdXFxtHmu1WgwGQzGeZ/ulfuvz3nzzHZo2bc6iRZ8wZMgAHn30IbZu3VSsNjk4OODkZPs+HT9+lKlTLeODXnttBgsWLGPhws8AyMuzbW9hA749Pb1JSkoq1uuXhsTUXAACqolk6F6J22SCIAgVhFnjjGNglGWM0C0cA6Mwa5yhFPfL02g0REQ0Zt++vzGZTMUaN1QafHx8eOWV15FlmZMnj/P5558yffrLfPXVKvz9A2773MJ6tbZt24KLiwszZryLSmXpI4iPv1ro81NSUgo5lkS9eiH3EEnJSErPxcVRK9Y9uw+iZ0gQBKGCyJG1ePYcg2NglM3x/NlkZTG9fsiQR0lKSipyUcNdu3aUehvyqVQqwsIaMWrUOMxmM5cvXwKK3wOVLy8vF41GY5MobdjwW6Fl4+LO2tyau3TpImfOnKZhw/B7jKJkVPcu3V7Byk70DAmCIFQgGWZHXHs8i8ct6wxlmMtmnaHWrWN49NEnWLp0EefOxdGlS3c8PDy4cuUya9b8QlZWZqFjckpKZmYmkyePp0eP3tSuXQeTycj333+Li4srISENAKhTJxCz2cy3364kIiISZ2fn2059b968Jd9+u5LZs2fRvn0n/vnnMOvXry20rKenF1OmTGLECMsaS0uWzMfHx5fevR8o8Vjvhp9n6S+rUJmJZEgQBKGCyZG1llljDh5oNCpMplK8N1aIceOeIyIiklWrvuWdd2aQm5uDr281WrRoxdChj5fqa+t0OoKD67Fq1TckJMSj1zvQoEEYs2d/jIeHB2BZ62jAgMF88cVnpKQk07hxEz7+eFGRdbZuHcMzz0xg1apvWbt2NRERjZk160OGDh1YoGxoaAM6dOjM/PlzSEq6TsOG4bzwwsvlOq0eoJqHSIbuh6QoYg1dALNZJjk5q7ybcVc0GhWens6kpGSV+S/DklaZYoHKFU9ligXKJx6j0UBS0lW8vWug1Zbsl2Z5JEOlyZ7jyV90cdasD4tVPj+W4lx/X1/XQo/fSUJyNiPf2sjIvmFian0hivu+ijFDgiAIglBB5fdneLpW/C1FypNIhgRBEAShgvNwETPJ7ocYMyQIgiAIxXC7cUflzd1ZJEP3w656hrZu3cpjjz1Gq1atCA8Pp0uXLrzzzjtkZGTYlNu0aRMPPvggERER9OjRg1WrVpVTiwVBEASh/DnqRd/G/bCrdy81NZXIyEgef/xxPDw8OH36NHPnzuX06dMsXWpZ02Lv3r2MHz+eQYMG8corr/DXX38xbdo0nJ2d6dmzZzlHIAiCIAhlr7hbpAiFs6tkqF+/fjaPW7ZsiU6n47XXXiMhIQE/Pz/mz59PZGQkM2bMAKBVq1ZcvHiROXPmiGRIEARBEIS7Zle3yQqTv26E0WjEYDCwe/fuAklP7969OXv2LJcuXSqHFgqCIAiCUJHZZTJkNpvJy8vj6NGjzJs3j86dOxMQEMCFCxcwGo0EBQXZlA8ODgYgNja2PJorCIIgCEIFZle3yfJ16tSJhIQEANq1a8f//vc/ANLS0gBwc3OzKZ//OP/8vdJo7DI3LJJarbL5b0VWmWKByhVPZYoFyiceWS6d8Rz5w0QkCSrD8rmVKZ6bY8mnVkul9j1T0b6/7I1dJkOLFi0iJyeHM2fOMH/+fMaOHcuyZctK9TVVKglPT+dSfY3S4uZWeZZhr0yxQOWKpzLFAmUbT26umuvXVaX2ZVgeierOnX/y3Xdfc/z4UTIyMnFzcyMsrCE9e/ama9fu1t3f70Vh8WzdupnExEQGDXr4fppd5tRqy3VXqVS4uzvh4FA6iyNW1O8ve2GXyVCDBpbN9po0aUJERAT9+vVj48aN1KtXD6DAVPv09HQA3N3d7/k1ZVkhPT37np9fHtRqFW5ujqSn52A22+fy9cVVmWKByhVPZYoFyicegyEPWZYxm5US3WpCkizxmM1ymfakLFw4jxUrltG+fScmTXoJb28fkpOT2b59C2+88SrOzq60bNn6ruu9XTxbtmzmxIlj9O8/qERiKG03x2I2K8iyTFpaNjk55kLL328yk5JSsbaTKivFfV/tMhm6WWhoKFqtlgsXLtC5c2e0Wi2xsbG0a9fOWiZ/rNCtY4nulr3uh3MnZrNcYdt+q8oUC1SueCpTLFC28ZjNpZOp5CcMZZkI7dy5gxUrlvHUU6MYMWKMzbnOnbsyePAQNJp7+2opj3hKS2GxlHQyfLPK9NksD3afDB06dAij0UhAQAA6nY6WLVuyfv16hg8fbi2zdu1agoODCQgIKMeWCoIglA1FayZXySbHmIOT5IRe64hkVJfJa3/zzZd4e/swfPiIQs83bBhu83jnzh0sW7aYs2fP4OTkSMeOXXj22Yk4OlpuU+7fv5fnnhvL7Nkfs2bNanbu3I6rqxsDBw5m2DDL7/m33nqD3377FYCYmGYA9OrVl2nT3gBg69ZNLFu2hAsXzuHq6kbXrt0ZPfpZ9Hq9tR3x8Vf5+OPZ7NmzG7PZTGRkFM8+O5Hg4Hol+v4IFZNdJUPjx48nPDyc0NBQHBwcOHHiBJ9++imhoaF07doVgGeeeYYnnniCN954g169erF7925+/fVXZs+eXc6tFwRBKH1mfR5L9n/F4YTj1mORfmGMjH4UdZ7+Ns+8fyaTiSNHDtGxY5di9f5s3vw7r7/+Cr17P8CIEWNISrrOggUfk5GRzptvvmNT9r333qFHj968++7/2LJlE/PnzyU4uD6tWrXhySdHkpqawvnz55g+fSYAnp6eAOzYsZVXX51Cly7dGTt2PBcunGPhwnkkJMQzc+YsALKzs5gwYQySJPHCCy+j0+lZvnwpzz47is8/X4mfX/USfqeEisaukqHIyEjWrl3LokWLUBQFf39/Bg8ezIgRI9DpLPuuNGvWjLlz5/Lhhx/y/fffU7NmTWbOnEmvXr3KufWCIAilS9GaCyRCAIcTjrNk/1eMjnqiVHuI0tPTMBgMVKvmZ9suRcFs/ncsjEqlQpIk5s37iM6duzF16mvWc97ePrz44vMMHz6SoKBg6/GOHTszYsQYNBoVTZo0Y9euP9my5Q9atWqDv38AHh6exMdfJTw8wua1ly5dRKNGEbzxxlsAtGrVBr3egffee5uzZ88QHFyPNWtWEx9/lRUrvqVu3UAAmjSJ5qGH+vLttyuZMGFSib9XQsViV8nQ6NGjGT169B3LdenShS5dupRBiwRBEOxHrpJdIBHKdzjhOLlKNo64lno7bt36YcuWP3jttanWxwMHDmbQoEeIj7/Kc8/9B5PJZD3XpEk0KpWKkyeP2yRDzZu3sqm/Tp26XLt27bbtyM7O5vTpUzz77PM2x7t06c57773N4cMHCQ6ux6FDBwgKCrYmQgBubu40a9aSw4cP3lXsQuVkV8mQIAiCULQcY87tz5tySzUZcnNzR6fTce1ags3xpk1bsGTJcgCmTJkMWPaaBHjllRcKrSshId7msaurbbu1Wm2BmcO3yszMQFEUvLy8bY67uLig0+lIT7esPZeRkYGnp1eB53t5eREXd/a2ryFUDSIZEgRBqCActbdfG8lR4wCm2xa5LxqNhoiIxuzbtwez2Yxabbkl5+bmhptbQ8CSxFiOWZY6mTTpJRo1Ci9Ql4+P7323x8XFFUmSSElJtjmemZmJwWCwtsHNzY0LF84XeH5ycjKurm4FjgtVj1iyUhAEoYJwkJyI9Asr9FykXxgOklOpt+GRR4Zx/XoiK1bcfiHcOnXqUq2aH1euXKZBg4YF/t1tMqTRaDEYDDbHnJycqF8/hC1b/rA5vmnTRgAiI6Os/42NPcOFC+esZdLT09m7929rmYpMrRI71t8v0TMkCIJQQUhGNSOjHy10Ntmo6EeR8kp/en2bNjE89tiTLFmygNOnT9K5c3d8fHzIzMzk0KEDJCcn4eTkjCRJjB8/iTffnEZubg6tW8fg6OhIfPxVdu3awejRz1K7dp1iv27dunVZu/YXNm5cR61atXF396BGjZo8/fRoXn75BWbMeI3u3Xtx4cJ5Fi2aR8eOna3T5vv0eYBvv/2KF1+cyKhRz1hnk6nVah5+eGhpvVVlQq9VM6JP4QmyUHwiGRIEQahA1Hl6Rkc9YVlnyJSLk9YRPY5lkgjlGzt2PJGRUfzww7d88MG7ZGZm4ubmTmhoA6ZOnU7Xrt0ByyKMrq4ufP75UjZs+A2A6tVr0LJlmwLjfO6kb99+HDt2lA8/fI+0tDTrOkMxMR34v/97l2XLlvDyy//Bzc2NBx8cwJgx463PdXJyZu7chcyd+wGzZr2NLJuJiGjMvHmLK/y0ejdnHa0aVewY7IGkKJVhrc/7ZzbLJCdXrOXMNRoVnp7OpKRkVfjVRytTLFC54qlMsUD5xGM0GkhKuoq3dw20Wl2J1q3RqCrFdclXmeLJj6U419/X994GvlfE766yVNz3VYwZEgRBEAShShPJkCAIgiAIVZpIhgRBEARBqNJEMiQIgiAIQpUmkiFBEARBEKo0kQwJgiCUETF5t2oS193+iWRIEAShlOVvW2Ew5JVzS4TykH/d1WqxtJ+9EldGEAShlKlUahwdXcjMTAFAp9MX2Pn9XsmyhNlceXoeKlM8sgzZ2blkZqbg6OiCSiX6H+yVSIYEQRDKgJubZdf0/ISopKhUKmS5cixSCJUrnvxYHB1drNdfsE8iGRIEQSgDkiTh7u6Nq6snZnPJbC2vVku4uzuRlpZdKXpTKlM8+bFkZRmQZbGRqr0TyZAgCEIZUqlUqFQlsyWHRqPCwcGBnBxzpdjCojLFc3MslaWnqzITNzAFQRAEQajSRDIkCIIgCEKVJpIhQRAEQRCqNJEMCYIgCIJQpUmKWBoTsKwQKssV761Qq1WYzZVjcF5ligUqVzyVKRaoXPFUpligcsVzN7Go1ffWN2E2yyQnZ93Tc6sCX1/XYpUTyZAgCIIgCFWauE0mCIIgCEKVJpIhQRAEQRCqNJEMCYIgCIJQpYlkSBAEQRCEKk0kQ4IgCIIgVGkiGRIEQRAEoUoTyZAgCIIgCFWaSIYEQRAEQajSRDIkCIIgCEKVJpIhQRAEQRCqNJEMCYIgCIJQpYlkSBAEQRCEKk0kQ3bk/PnzTJ8+nX79+tGwYUP69u1rc/7SpUuEhoYW+i8iIsKmbEZGBq+88gotWrSgSZMmPPfcc1y7dq0sw7ljPAA5OTn873//o0uXLjRu3JgePXqwYMECTCaTTbnyjqc4sRgMBt577z1iYmKIjIxk0KBB7Nq1q9By//3vf2nbti1RUVE89dRTxMbGlkUYAPz2228888wztG/fnqioKPr168f333/PrXs2f/fdd/To0YOIiAgefPBBNm/eXKCu8r4uxYll7dq1TJgwgfbt2xMaGsqnn35aaF3lHQvcOZ7MzEzmzp3LoEGDaNasGW3atGHs2LGcPHnS7uIpzrX573//S58+fWjSpAnR0dE89NBDrFmzpkBd5f2ZgeJ/bvL9/vvvhIaGFvq7oryvjVCQprwbIPzr9OnTbN26lcaNGyPLcoEPWbVq1fjmm29sjimKwsiRI2nVqpXN8YkTJ3LmzBneeOMN9Ho9H374IaNGjWLVqlVoNGVz2e8UD8CMGTPYsGEDkydPJjg4mIMHDzJnzhxycnKYNGmS3cRTnFjefvttfv75ZyZOnEhgYCA//PADo0aN4ptvvqFRo0bWcjNnzmTt2rVMnToVPz8/FixYwJNPPsmaNWtwdXUt9Vg+++wz/P39mTp1Kp6enuzcuZPXXnuN+Ph4xo8fD8CaNWt47bXXGDt2LK1atWLt2rWMHz+eL7/8kqioKGtd5X1dihPLunXruHjxIh07dizw+blZecdSnHiuXLnCN998w0MPPcTEiRPJy8tj6dKlPPLII6xatYrg4GC7iac41yYrK4vBgwcTFBSEJEmsX7+eyZMnI8syDzzwgLWu8v7MFDeefLm5ubz99tv4+PgUWld5XxuhEIpgN8xms/X/p0yZovTp0+eOz/nrr7+UkJAQZe3atdZj+/fvV0JCQpTt27dbj509e1YJDQ1V1qxZU7KNvo07xWM2m5XGjRsrc+bMsTn+0ksvKV26dLE+tod47hRLfHy8EhYWpixfvtx6TJZlpW/fvsrYsWOtx65evaqEhYUpX3/9tfVYSkqKEhUVpSxatKgUI/hXUlJSgWOvvvqqEh0dbY2ze/fuyuTJk23KPPLII8rIkSOtj+3huhQnlpuvXUhIiLJkyZICz7GHWBTlzvFkZWUp2dnZNuczMzOVFi1aKDNmzLAes4d4inNtCvPII48oTz31lPWxPXxmFOXu4vnwww+VYcOGFfq7wh6ujVCQuE1mR1Squ78cv/76Ky4uLnTu3Nl6bNu2bbi5udG2bVvrsaCgIMLCwti2bVuJtLU47hSPoiiYTKYCf9m5urra9LzYQzx3iuXEiROYzWabNkqSRExMDDt27MBgMACwY8cOZFmmZ8+e1nIeHh60bdu2zGLx8vIqcCwsLIzMzEyys7O5ePEi586do1evXjZlevfuza5du6yx2MN1uVMsULzPlT3EAneOx8nJCUdHR5vzzs7O1K5d2+Y2iz3EU5xrUxgPDw+MRqP1sT18ZqD48Vy4cIFly5bx6quvFlqPPVwboSCRDFVgRqORDRs20K1bN/R6vfV4bGwsgYGBSJJkUz4oKKjM77PfjlqtZuDAgXzxxRccPnyYrKwsdu7cyc8//8xjjz1mLVcR4slPEHQ6nc1xnU6HwWDg0qVLgCUWb29v3N3dbcoFBweXayz79u3Dz88PFxcXazsCAwNtygQHB2M0Grl48SJgv9fl5liKy15jgTvHk56ezunTpwkKCrIes9d4Cosl/4+i9PR0fvrpJ/7880+GDRtmPW+vnxkoPJ633nqLfv360aBBg0KfY6/XpqoTyVAFtm3bNlJTUwsM0EtPTy/0Prq7uztpaWll1bxief3112nVqhWDBw8mOjqap556iqFDh/LUU09Zy1SEeOrUqQPA4cOHbY4fPHgQwNrOomJxc3Mrt1j27t3L2rVrefrpp4F/2+rm5mZTLv/xnWIpz+tyayzFZY+xQPHiee+995AkiaFDh1qP2WM8RcWya9cuGjVqRPPmzZk2bRrTpk2z6QWyx88MFB7Ppk2bOHDgAM8//3yRz7PHayOIAdQV2urVq/Hx8aF169bl3ZR79v7777NlyxZmzpxJ3bp1OXjwIPPmzcPNzY2RI0eWd/OKLSQkhGbNmvH+++9To0YN6tatyw8//MCePXsACvwVaC/i4+OZNGkSLVu25Iknnijv5tyXyhQLFC+eVatW8e233/Luu+9SvXr1Mm5h8d0ulsjISL7//nsyMzPZtm0bM2fORK1WM3jw4HJq7Z0VFk9eXh5vv/02EyZMKPSWmmDfRDJUQWVlZbF582YGDx6MWq22Oefm5kZ8fHyB56SlpRXoai5Pp06dYunSpcyfP9865ql58+aYTCY++ugjhgwZgouLS4WJ591332XixIkMGTIEAH9/f8aNG8fcuXPx9fUFLNcmMzOzwHPT09PLPJb09HRGjRqFh4cHc+fOtY6tyW9HRkaGtd355W8+b0/XpahYisueYoHixbN161amT5/OuHHjGDBggM05e4rnTrG4uLhYlwZp3bo1ZrOZd999l4EDB6JWq+3qM5P/uoXF8/nnn6NSqejTp4/1s2I0GpFlmfT0dBwcHNDpdHZ1bYR/idtkFdTGjRvJzc21mX6aLygoiLi4uALTv+Pi4mzGFZS3M2fOAJZBiDdr2LAhBoOBhIQEoOLEU6tWLVatWsUff/zBmjVr2LhxIw4ODvj6+uLv7w9YYrl+/XqB7vDY2NgyjSU3N5cxY8aQkZHBkiVLbLrt89tx6/iF2NhYtFottWrVspazh+tyu1iKy15igeLFc/DgQZ5//nn69+9f6C0Ze4nnXq5No0aNyMzMJDk5GbCfzwzcPp7Y2FjOnz9P69atad68Oc2bN+fXX3/l7NmzNG/enFWrVlnjsYdrI9gSyVAF9euvv1K7dm0aN25c4Fz79u1JS0uzWfAvLi6OY8eO0b59+7Js5m3lJwhHjx61Of7PP/8gSRI1a9YEKk48+QICAqhXrx5Go5Hvv//eprs/JiYGlUrFhg0brMfS0tLYsWNHmcViMpmYOHEisbGxLFmyBD8/P5vztWrVom7duqxbt87m+Nq1a2ndurV1kLg9XJc7xVJc9hALFC+eM2fOMGbMGFq1asWbb75ZaD32EM+9Xpt9+/bh4uKCp6cnYB+fGbhzPKNGjWL58uU2/2JiYvD392f58uXW3m97uDZCQeI2mR3Jyclh69atAFy+fJnMzEzrF1KLFi2s96GTk5PZtWsXo0aNKrSeJk2aEBMTwyuvvMKUKVPQ6/XMnj2b0NBQunfvXjbBcOd4wsPDCQ8P5/XXXycpKYnatWtz+PBhFi1axEMPPWSdQmwP8RTn2nzxxRe4uLhQo0YNLl++zLJly9Dr9TbXqXr16gwaNIhZs2ahUqnw8/Nj4cKFuLq6Wm+vlbY333yTzZs3M3XqVDIzM62DvMHSK6fT6ZgwYQIvvPACtWvXpmXLlqxdu5bDhw/zxRdfWMvaw3UpTixnzpyx9kKC5fbsunXrcHR0pEOHDnYTS3HiycjIYMSIEej1eoYPH84///xjPe/i4kK9evXsJp47xRIbG8v7779Pz5498ff3Jzs7my1btvDdd98xefJk6+KD9vCZKU48wcHBNoteAvz4448kJCTQsmVL6zF7uDZCQZJya1+dUG4uXbpEly5dCj23fPly6wfqyy+/ZMaMGaxdu7bAhy9fRkYG77zzDhs3bsRkMhETE8Orr756z38534vixJOYmMhHH33Ezp07SUpKonr16vTt25dRo0bh4OBgLV/e8RQnlqVLl/LVV18RHx+Ph4cH3bt35/nnny8wDsBgMDB79mx+/vlnsrKyiI6O5tVXXy3yWpa0zp07c/ny5ULP/fHHHwQEBACW7TgWL17MlStXCAwMZPLkyXTq1MmmfHlfl+LEMnfuXD7++OMC5/39/dm0aZP1cXnHAneO5/Lly0UOpm7RogUrVqywPi7veO4Ui4ODA2+//TYHDx4kMTERV1dXgoKCePLJJ+natatN+fL+zEDxPzc3mzp1Kv/88w+//vqrzfHyvjZCQSIZEgRBEAShShNjhgRBEARBqNJEMiQIgiAIQpUmkiFBEARBEKo0kQwJgiAIglCliWRIEARBEIQqTSRDgiAIgiBUaSIZEgRBEAShShPJkCAIgiAIVZpIhgShCIcPH2bIkCFERUURGhrKuHHjCA0NtSnTuXNnpk6dWk4tLFmPP/44jz/+eHk3447mzp1LaGiodSNPQRCE+yX2JhOEQhiNRiZOnIhOp+Pll1/GwcGBI0eOlHezqpQFCxZQr169AlszCIIglDSRDAlCIS5cuMDly5eZOXOmddf5CxcuFCi3bt06JEkq6+ZVCQsXLqRHjx4iGRIEodSJZEgQCpF/C8bV1fW25XQ6XVk0556ZTCZkWbb7dgqCIJQnMWZIEG4xdepUHnvsMQCef/55QkNDixxLc+uYoR9++IHQ0FD27NnD9OnTadmyJdHR0bz00kukpaUVeO6YMWPYsWMH/fr1IyIigt69e7Nhw4YCr5Oens5bb71Fhw4dCA8Pp1u3bixatAhZlq1lLl26RGhoKJ9++imfffYZXbt2JSIigrNnz97ze2EwGJgzZw7dunUjPDycDh06MGvWLAwGg0250NBQZsyYwe+//07fvn0JDw+nT58+bNu2rUCdu3fvZuDAgURERNC1a1e+/vpr6zigm+vLzs7mxx9/JDQ0lNDQ0AJjszIyMpg6dSrNmjWjadOmvPzyy+Tk5NxVfFOnTqVJkyZcuXKFMWPG0KRJE9q1a8eXX34JwMmTJ3niiSeIioqiU6dOrF692ub5+dd77969zJw5k1atWtGsWTOmT5+OwWAgPT2dl156iebNm9O8eXNmzZqF2BtbEOyP6BkShFs88sgj+Pn5sWDBAh5//HEiIiLw8fFh//79xa5jxowZuLm5MX78eOLi4li5ciVXrlxhxYoVNrfVzp07x6RJkxgyZAgDBgxg1apVPP/88yxZsoS2bdsCkJOTw2OPPUZCQgJDhgyhRo0aHDhwgA8++IDExESmTZtm89o//PADeXl5PPzww+h0Otzd3e/pfZBlmWeeeYZ9+/bx8MMPExwczKlTp/j88885d+4cn3zyiU35ffv2sWHDBh599FGcnZ1ZsWIFzz33HJs3b8bT0xOAY8eOMXLkSHx9fZkwYQKyLDNv3jy8vLxs6po1axavvvoqkZGRPPzwwwDUrl3bpszEiRMJCAhg8uTJHDt2jO+++w4vLy9efPHFu4rTbDYzatQomjVrxgsvvMDq1auZMWMGjo6OzJ49mwceeIDu3bvz9ddfM2XKFKKioqhVq5ZNHTNnzsTHx4cJEyZw6NAhvvnmG1xdXTlw4AA1atRg0qRJbNu2jU8//ZSQkBD69+9/V20UBKGUKYIgFPDXX38pISEhym+//WY9NmfOHCUkJMSmXKdOnZQpU6ZYH69atUoJCQlRBgwYoBgMBuvxxYsXKyEhIcrvv/9u89yQkBBl/fr11mMZGRlK27Ztlf79+1uPzZs3T4mKilLi4uJsXvv9999XwsLClCtXriiKoigXL15UQkJClOjoaCUpKemuY37ssceUxx57zPr4p59+Uho0aKDs2bPHptzKlSuVkJAQZd++fdZjISEhSqNGjZTz589bjx0/flwJCQlRVqxYYT02ZswYpXHjxkp8fLz12Llz55SGDRsWeG+joqJs3tt8+dfh5Zdftjn+7LPPKi1atLirmKdMmaKEhIQoCxYssB5LS0tTIiMjldDQUGXNmjXW42fPnlVCQkKUOXPmWI/lX++nn35akWXZevyRRx5RQkNDlenTp1uPmUwmpX379jbvsSAI9kHcJhOEUvDII4+g1Wqtj4cOHYpGo2Hr1q025apVq0a3bt2sj11cXOjfvz/Hjh0jMTERsAzSbtq0KW5ubiQnJ1v/tWnTBrPZzJ49e2zq7N69e4Gelnuxbt06goODCQoKsnndVq1aAZbbXTdr06aNTe9NgwYNcHFx4eLFi4ClB2bXrl106dIFPz8/a7k6derQrl27u27fkCFDbB43a9aM1NRUMjMz77qu/EHyAG5ubgQGBuLo6EivXr2sx4OCgnBzc7PGc7NBgwbZ9PhFRkaiKAqDBg2yHlOr1YSHhxf6fEEQype4TSYIpaBOnTo2j52dnfH19eXy5csFyt06G61u3boAXL58GV9fX86fP8/Jkydp3bp1oa9163o7AQEB99l6i/Pnz3P27NkiXzcpKcnmcY0aNQqUcXd3Jz093Vo+Nze3wHsDBd+v4qhZs6bNYzc3NwDS0tJwcXEpdj16vb5A8ujq6kr16tULXBtXV1drPLdrS/7A+1vfE1dX1wJjxwRBKH8iGRIEOyfLMm3btmXkyJGFns9PnvI5ODiU2OuGhITw8ssvF3q+evXqNo/VanWh5ZRSGjCsUhXesX23r1dUu+8mnqLaUtRxQRDsi0iGBKEUnD9/3no7CSArK4vExETat29foJyiKAUGVQP4+/sDloHD2dnZtGnTpvQbfpPatWtz4sQJWrduXSJrKXl7e6PX6zl//nyBc4UdEwRBKCvizxZBKAXffPMNRqPR+njlypWYTKYCydC1a9fYuHGj9XFmZiY//fQTYWFh+Pr6AtCrVy8OHDjA9u3bC7xOeno6JpOpVGLo1asXCQkJfPvttwXO5ebmkp2dfVf1qdVq2rRpwx9//EFCQoL1+Pnz5wuNzcnJqdBbUoIgCCVN9AwJQikwGo08+eST9OrVi7i4OL766iuaNm1Kly5dbMrVrVuXadOmceTIEby9vVm1ahVJSUm888471jIjRoxg06ZNjB07lgEDBtCoUSNycnI4deoU69ev548//iiRAdO36tevH7/99huvv/46u3fvJjo6GrPZTGxsLOvWrWPJkiVERETcVZ3jx49nx44dDB06lKFDhyLLMl988QX169fn+PHjNmUbNWrErl27WLZsGdWqVSMgIIDGjRuXZIiCIAiASIYEoVRMnz6d1atXM2fOHIxGI3369OHVV18tdLD0a6+9xqxZs4iLiyMgIIDZs2fbzK5ydHRkxYoVLFy4kHXr1vHTTz/h4uJC3bp1mTBhwh1Xyb5XKpWKefPm8dlnn/Hzzz+zceNGHB0dCQgI4PHHHycwMPCu6wwPD2fx4sXMmjWLjz76iBo1avDcc88RGxtLbGysTdmpU6cyffp0PvzwQ3JzcxkwYIBIhgRBKBWSUlqjGwWhCvrhhx94+eWX+f777+/Ya9K5c2fq16/PwoULy6h19mvcuHGcOXOm0NW3BUEQSpsYMyQIQpnKzc21eXzu3Dm2bdtGixYtyqlFgiBUdeI2mSBUcsnJyZjN5iLPa7VaPDw8yqw9Xbt2ZcCAAdSqVYvLly/z9ddfo9Vqi1w64F5kZGQUSLpulT9AXRAEQSRDglDJDRo0qMBijzdr0aIFK1asKLP2tGvXjjVr1pCYmIhOpyMqKorJkycXWC/pfrz11lv8+OOPty1z8uTJEns9QRAqNjFmSBAquX379pGXl1fkeTc3N8LDw8uwRaXvzJkzXLt27bZlynrdJkEQ7JdIhgRBEARBqNLEAGpBEARBEKo0kQwJgiAIglCliWRIEARBEIQqTSRDgiAIgiBUaSIZEgRBEAShShPJkCAIgiAIVZpIhgRBEARBqNJEMiQIgiAIQpX2/9EOajoozX5KAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.pairplot(data=penguins, hue=\"species\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "LzHe-JD17G8G", + "outputId": "626cfe37-1e5c-450f-cd1f-489fcaeea3e1" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGEAAAPXCAYAAACLpFbUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XWcHOX9wPHPyLqdS/zirsQTkuAuxQIUKNICpbSlXn6UulEDSikt0tIiJbgkaALEQ4S4+yXnui4jvz82t8lxe9HL6fN+vZDbkX1md2Zn5jvP8/1KpmmaCIIgCIIgCIIgCIIgCKeV3NYNEARBEARBEARBEARB6ApEEEYQBEEQBEEQBEEQBKEViCCMIAiCIAiCIAiCIAhCKxBBGEEQBEEQBEEQBEEQhFYggjCCIAiCIAiCIAiCIAitQARhBEEQBEEQBEEQBEEQWoEIwgiCIAiCIAiCIAiCILQCEYQRBEEQBEEQBEEQBEFoBSIIIwiCIAiCIAiCIAiC0ArUtm5AZ6XrBjU1oeOeX5YlsrJc1NSEMAzzNLasdYnt6lhac7tycz2ndf1HOtHjsSPrrPtmW+kqn2drHY/t5VjsKt/rF4nt7hjb3ZrHoyxLHeZzaU862j7VXnTEz601r1eFrqPT94R5/fXXueKKKxgxYgQTJ07kjjvuIBqNpqYvWLCAyy67jBEjRnD++efz6quvtkk7ZVlCkiRkWWqT9z9dxHZ1LJ11u7oS8R22LPF5dk5d9XsV2921tvt4iM/l5Ih96uSIz00Qkjp1T5i///3vPPnkk9x1112MHj2a2tpali1bhq7rAKxatYpvfOMbXH311dx///0sX76c//u//8PlcnHBBRe0cesFQRAEQRAEQRAEQehMOm0QZvfu3Tz22GM8/vjjzJgxI/X6+eefn/r/v//974wcOZJf/OIXAEyaNIni4mIeffRREYQRBEEQBEEQBEEQBKFFddrhSK+99ho9evRoFIA5UjweZ8WKFU2CLRdddBG7du3iwIEDrdFMQRAEQRAEQRAEQRC6iE4bhFm3bh0DBw7k8ccfZ/LkyQwfPpzZs2ezbt06APbv308ikaBv376NluvXrx+Q7EkjCIIgnBhFldAsUWJqGN0SQ1U77WlGEIROSFEkDEucmBpGs0aRLW3dIkHoXGJajKgcJm4JY1o0kR9G6JI67XCkyspKNm7cyPbt2/npT3+Kw+HgiSee4LbbbuODDz6gvr4eAK/X22i5hr8bpp+KE7n5UBS50X87C7FdHUtn3S44seOxI2vL71BTY3y4dwnv7viYcCJCtjOT64dfztDsQSh6x7yT6czHRFtpD8diV/1exXYffbsNWWd/aD/PrnuFg/4yLIqFmX0mc/mg87Bo9tZoaquSDt37drX9oSV01WPpVEiSRFQO8fyquSwpXoVu6BRl9uLW0deSZ8tDMsRnKXQdnTYIY5om4XCYRx55hMGDBwMwatQozjrrLJ577jmmTZt2Wt9fliUyM10nvJzX6zgNrWl7Yrs6ls62XSd7PHZkrf0dBmMhnl39GkuLV6deqw7X8thn/+b2cbM5p+80FFlp1Ta1pM52TLSV9nYsdtXvVWx3euvLtvCbRY+l/k7oCT7ctZCdNXv48fR7yHD4TncTW5V0KArTVfeHliA+u+NXHa7l1wsepTxUlXptT+1+fvbJn/n1OT+gX1bvNmydILSuThuE8Xq9ZGRkpAIwABkZGQwdOpSdO3dy8cUXAxAIBBot5/f7AfD5Tu1Eaxgmfn/4uOdXFBmv14HfH0HXjVN67/ZEbFfH0prb1Zo3Yid6PHZkbbVvBqhvFIA50v/Wv8Wo3KHYDGertaeldNZj/Yta63hsL8diV/lev0hsd/PbnVBi/Pvzl9NO21NbzEF/OcRUTPN0tjSptY5H0zSRJKnL7Q8toaseSydLliV21O9pFIBpYJgGz697nXvG3Yqst79b0/b04EDoPNrfnt5C+vfvz/79+9NOi8Vi9OrVC4vFwu7du5k+fXpqWkMumC/mijkZmnbiP8q6bpzUcu2d2K6OpTNuV2fbnmNpze9QkiRKwuXNTg8lwoS1CIrRcbvzd8Zjoq20p8+xq36vYrubSkgJDvhLm112c+UOunXv3qk+t4aAUlfdH1qC+OyOj9WqsqpkfbPTt1TuIGEmUDQxJEnoGjrtnj5r1izq6urYsmVL6rXa2lo2bdrEsGHDsFqtTJw4kffff7/RcvPmzaNfv3706NGjtZvc4RysCvHnOWu5+0+f8r2/LeHlT3YSjmpt3SxBEFqZaZq4rUd/UmQR2S0FQWjHZGSsSvO/Uxk2b6v0ghGEzsg0TbIdmc1O99jcII4voQvptEGYc845hxEjRvDNb36TefPmMX/+fO666y6sVis33HADAHfffTdr167lZz/7GStWrODRRx/lnXfe4d57723j1rd/+8sD/Po/qyipCjFpaD59Cr18tOoADz69gn1lgWOvQBCETiXbkdlsIGZo7kDsUsftBSMIQudnw87MPpPTTpMlmaG5A8WwE0E4SYmEzpReZzQ7/cIBZ2E1xXWC0HV02iCMLMv885//ZPTo0Tz44IN85zvfwe128/zzz5ObmwvAGWecwV//+ldWr17N7bffzjvvvMOvfvUrLrzwwjZuffsWS+j87fUNZLit3HTeICYOzeeccT24/aIhWC0Kv39hDbtKTr26lCAIHYdVt/PDqXdjU22NXs91ZvG1cTcgaZ129KsgCJ2AnoBLB55H38xejV5XJJn7Jn8VmykSsArCqXDi4mvjbkSicUnqkXmDmdrjDHRNdIURug7JNEXnytNB1w1qakLHPb+qymRmuqitDbX7saVvLd7D20v3cuuFg8nyNo5axxM6r3y6i9pAjAduOYPuue4Os10noiN9XyeiNbcrN9dzWtd/pBM9Hjuyttw3ZRliaoRdtfsoC1bQL7M33dwFWDQ7htExTzWd9Vj/otY6HtvLsdhVvtcvEtt99O2WJNAtcaqi1Wyp3EmG3cvQ3AFYDQemJjW7XEtrzeNRUeQutz+0hK56LJ0q2WoSl6OsK91MKB5meP5gMqwZyPH2O2S5Na9Xha5DPJoUTkgkpvHeZ/sZMyCnSQAGwGpR+NKZfXnuw+089uoGfn77hDZopSAIbcEwwBJ3MNQzhOG+oRiGiRE3McRAb0EQOgDTBDluJV8ppFv37pgm6HHxCyYILUU2FAp9ebhMD7puoOsGZrytWyUIra/TDkcSTo/F60uJJwzGD85rdh67VeXyqUWU14Z55ZNdrdg6QRDaA8Mw0TSjw/Z+EQShazPNZBUvkQNGEE6PhqpSYjyG0FWJIIxw3EzT5NN1BxnQw4fHaT3qvLkZDqaOKOT9z/az60Bd6zRQEARBEARBEARBENoxEYQRjltxRZCSqjDD+2Yd1/xnDMoj22vn6bc2neaWCYLQkVkVA7cUxBkqxhUtwSWFUcTZSWhnDu+n+3FFS3HJYj8VhI5OVUzcchhXpARnqBi3FMSiiB5QgiCcXiInjHDcVm6twGFT6VPgPa75FVlixuhuvPrpbrbsrWFAj4zT20BBEDochxwnsXURpQtfBF0DQLa7yb3iPhKZfUnorZcMUxCa45DjxDctoHTxK2Ac2k+dXnKv+C5xXy80sZ8KQodjUQzUqh2Uv/UIRiwMgKRayZj1Zez9JhM12m+yWEEQOjbxDEc4bqu3VdK/mxdFPv6LzQE9fBRmu5i7bN9pbJkgCB2RLEtQvZfaj/+bCsAAGNEg5XN+i13zt2HrBCFJUWTMiu3ULfxfKgADYIT9lL/0Sxx6oA1bJwjCybIl6ql45fepAAyAqcWp/fAZ5PoDyXOUIAjCaSCCMMJxKa8NU1YTpn8P3wktJ0kSk0cUsmFXNZV1kdPUOkEQOiIbMeoWv5R+oqER2rQQi0Vp3UYJwhdYzQh1i5rZT3WN8LblYj8VhA7GYpEIrv0IzPRDj+oXv4xVEmV7BEE4PUQQRjguG3fXoMgSvfM9J7zsyP45WC0KSzaUnoaWCYLQUcmmjlZb3uz0ROU+ZPRWbJEgNCVzjP20fA+SeGAuCB2KbOpoVcXNTk/UlSEf0fNNEAShJYkgjHBcNu2poXuuC+tJPO2zWhQG9vSxfHM5pqhFJwjCIbqkYsnp2ex0a7eBGIgeBkLbMlCw5B5lP+0xWJRjF4QOxkDFWtiv2enWnF4YssgJIwjC6SGCMMIx6YbB1v21J9ULpsGQ3plU1EY4WBVqwZYJgtCRxbGScebstNMkiw3n4MkkEqInjNC2YtjJOPP6tNMkqx1Hv3FomqimIggdSUIzcI2YhaSkD7T4pl1LTCTmFQThNBFBGOGY9pcHicZ1euW5T3odvQs8WFWZtTuqWrBlgiB0ZIZhonu7kXPpvch2V+p1NSOf/Ot/Slg++cCvILQUwzAxM3uTfeHdSDZn6nU1s4D8G35OWBL7qSB0RBHFQ971D6J4c1KvyQ43OVfcR8KVJ3pvC4Jw2ogS1cIxbdtfh6rIFGQ5jz1zM1RFple+h417arhkSp+Wa5wgCB1azLCg9hhH/i1DMKMBUBRMq4uo5ETXxQWw0D5EDQtqn4kUfGU4ZjR4aD91E8EhhiIJQgel6RKmpze5N/wSYsFkkl67h5jkRBOdMAVBOI1EEEY4ph0H6uiW40RRTq3jVJ8CDx9/fpBYXMdmFXkeBEFI0nQI4oSGXgYGgLixFdqX5H7qAtuhXltiPxWEDk/XDUI4wOJIviBGFgqC0ArEcCThqEzTZOfBerrnuI498zH0zHOjGya7SupboGWCIAiCIAiCIAiC0LGIIIxwVJX1UQLhBN2yTz0Ik+OzY7cqbC+uO/WGCYIgCIIgCIIgCEIHI4IwwlHtPtRrpTD75PPBNJAkiW45LnaX+E95XYIgCIIgCIIgCILQ0YggjHBUe0oCZLhtOO0tU6avMMvJnlK/yDgvCIIgCIIgCIIgdDkiCCMc1Z4yPwVZjhZbX0G2k1BUo7I+2mLrFARBEARBEARBEISOQARhhGYZhsn+8gD5p1Ca+ovyM5PrKi4Pttg6BUFoP1RVxrDE0a0xTIuGLEtt3SRBEIS0JAmw6OjWGLolhqKK3ytBaI4sSxiWBLo1hmFJnHLVVEHoykSJaqFZZTVh4gmDgsyWC8K4HRZcdpX95QHGDcptsfUKgtD2TGuCz6u28vrW96gO19I7ozs3jLiCfFsBktb+y9LbFBOLEcKMhZEsNjTVhYa1rZslCO2GTTGw6CHMeATJaiehuIjp7f/YTkdSTPxmHf9b9yabKrbjtro4v/9MpvUcjxQTx72QnqpI2IwQUiREXLNgUx0Ysh3D6NzD7E1VY0+omJc2vc1Bfxn57hyuHnoxA3z9kBLidlIQTpQ4aoRm7a8IAJDfgsORAHIzHBRXip4wgtCpqDpzd37Euzs/Tr20q2Yfv/z0Eb416XaGeAaj6+33ItWlxAiteouqNe+DrgESjn5jyDrvq8CpV4cThI7OrUQJLHmJqg2fgmmAJOMaMgnvjJsJ6va2bt4JkWWJGqOaBxf8Ad00AKiN1vO/jW+yvnwLd4+7GTkuAjFCYzY5gbl/HRUL/o0RSV7HWnJ7knPptwhbczttIEZWYVXVep5e87/Uawf9ZTyy/GmuGXYJs7pPw9RErxhBOBHiiBGaVVwexOeyYre2bKwux2fnYGWoRdcpCELbiklR3tv5Sdpp/177MjG5/eaBsqom4TVzCayceygAA2AS2bWGqjf/hBaqb9P2CUJbsyk6/oUvEFz/cTIAA2AahDYvpe7Df+KQE23bwBOkKwn+u+6VVADmSJsrt1MTrU0OVRKEQ2RZQq7dR/Xcx1IBGIBEZTHlL/wUp9l5Hy7G5SjPr3897bTXtrxLXI61cosEoeMTQRihWfvLA+RmtPzTrRyfg6q6CPGE3uLrFgSh9UmSxEF/GSbpnwLWR/1E9Egrt+r4WbUQgVXvpp0WK9mJHqxp5RYJQvti0UOENi9OOy2ycw2K3rEerGgk2Fq1q9npa8o2oqodc5iVcHrYiFH36fNppxnRELF96zttjpRgIkRUSx9o0Q2duqh4UCEIJ6pz/loILaK4MkRuRssORQLI9tkxSeacEQShMzCxW2xHnUOV2+8NjZmIYOrNP8nX6irEU3GhSzOjocM9YNIwwoFWbM2pk5CwyM338nVbnJhm5xxaIpwcGY14RXGz02PFWzptEEaRjn7+tsiWVmqJIHQenfPXAnjttdcYNGhQk3/++Mc/pua56aab0s6za1fzT0e6Cn84jj8UPy1BmCxP8mZNBGEEoX1RVAnNEiWiBtEs0eOuFGKakOfMwa6mD8T0zeyFXWq/OSMkiw2k5k+HiicLcT8mdGWS9ejXArK9Y+VNsmJjeu+Jaaf1zujOGd1HEsBPwhJBtoiDXwATGUtG8wUlLHm9Om1OGJfiJN+dftt9Ng8eq7vRa7IKCUuEiBpMVh3rpMEpQTgVnT4x71NPPYXH40n9nZ+f32j62LFj+eEPf9jotR49erRK29qzhpwtub6WD8I4bCpOm0pZtQjCCEJ7YVoTLCpZzZtb3ycYD+Gw2LlowFnM6jUVKX7sp1xW3c63J93BH5b8vVGeBbfVxd1n3IyiWzGaGa7U1hKqC9eQKWmHW6gZ+aiebNDSLCgIXYRucWHvM4Lo3g1NplkL+mJYXNB8R5l2x0hIXDH4AjZXbqcsWJl6/ey+0xieN4jfLvobFaEqFFlhas8zuHroJahxmwjGdmExyYl36tVUv/3XphMVFceACQS1zjnMXtVtfGvibfzy00eIaIfzu1kUC9+e/FUsui11+Bu2OG9s+4BP9i4lYWhkOTK4YcQVDM4cKKooCcIROv3RMGzYMLKyspqd7vV6GT16dOs1qIMoqQqhyBKZnqMPMThZWV6b6AkjCO2EZDH5cO9C3tj6fuq1SCLKq5vnURup46qBl0Li6N2RDR16OXrxh/N+wooDazgQKGNY7kCG5Q7Cqjna9RPCmKbgnXEjethPdO/61OtqZiF51/wI1ZMFtR0r54UgtKSoYSHrgrupfusvxEp2pF635vUm5/LvEDTt0E6DrM1R43bun/ZN9tYXs7JkLb19PSj05vGHxU+k5tENnYX7VrC3rpjvT/66qJjUhem6ga3HCLwTL8f/2dup4Xmy3UXuld8jKns6VCDyRBiGSaaSzW/P+THryjexvXoPRRk9GVc4ErvhxDgUezKsCf628l+N8i3VROp47LN/c/f4mxmVOaKNtkAQ2p9OH4QRTs7BqhBZXhuyfHoSIWS6bZTViiCMILQHcSK8s31+2mkf71nGJQPPxXYcZZpNXcKmuzi7x0wkSULXDfS40W57wBwpqDvwXvANMhNB9EA1stOLafcRVVy034FUgtA6TBOCOMm47HvI8QB6sBbFlYFh8xI07R0yf4ppmihxGwNcAxgyZDBxKcKvFj+adt799SWUhyvpZunRIbdVaBlh3Ypt7GUUjj4Hva4c1eYAZyZhnOidNADTwNDBojuYlDuBKfmTMAwDLWE0ijv5E/5mE16/uOENBs/oj910tk6DBaGd6/RBmEsuuYTa2lq6devGtddeyx133IGiHH6i+9lnnzF69Gh0XWfUqFF861vfYvz48S3y3qp6/GMgG8ZLtpdxk6VVIXJ8DhTl1IIw8qHtSf738E91ptfG7jL/CX1G7Ul7+75aSmfdLjix47EjO5nvsE4Loxnpx9uYmNTH/HSzetJOT7uMaWKaJpLUsT73BHYSNjvYclKvKYcC0Z3xmGgr7WGf6My/dUdzqtsdxwF2B9jzaEhlnbyiat+Zq4+13YZhEJcSlAbKm13Htqqd9OndG70T3W03JBzvasfBqdCR0RUfSl4mdq8Dvz+CpBu0g5+1VmMYyWPgyN9yWZbYW3mg2WXqon4SZgJXF/3tFYQv6rRBmNzcXO69915GjRqFJEksWLCAhx9+mPLych588EEAxo8fz+WXX06fPn2oqKjg6aef5tZbb+W///0vY8aMOaX3l2WJzMwTT1Tn9bZ8DpaTUVoTZvzQfDyelmmPy9l4WFNhrofQulIsdituR8fNqt5evq+W1tm262SPx47sRL7DUP3R+3o4rY4u9/l9UWc7JtpKezsWu+r3Kra7KT0Uw6baiDVTijfbldXpPjfpUBSms21XaxKf3WHZIV+z02RJxmax4nUnPy/xuQldXacNwkyfPp3p06en/p42bRo2m41nn32Wu+66i7y8PL75zW82WmbmzJlccsklPP744zz55JOn9P6GYeL3H/9wG0WR8R6KqLf1U5bAocpIHrtKIBA5pXXJiozLaSMUjmEcsV0OS/LEv31PFUWF3lN6j7bQnr6vltSa29WaN2Inejx2ZMf7HZqKRsSMEElEcdmcFGX2Yk/t/ibz5btycMpOartoTpSTOSYkSUKWJQzD6DCJPFvreGwvx2Jn/Q0/lobtDgQimGby++gKw2uO5/tWFRvn9J3K3O0Lmi4vKwzK7kudP4TZCrlXW+t4TPZYlLrccdASTuQ3RJJAluVOc7yZik7ECBPRojhUOw7ZiaQrdHMVYFdtRNMEMif3GIvVsOH3Rzrcb297enAgdB6dNgiTzoUXXsgzzzzDli1byMvLazLd6XQyY8YM3n///TRLnzhNO/EfF103Tmq5lnSwInmzleGyoeunerJIbouhG43W5XEkk9uVV4fpmetOu2RH0B6+r9OhM25XZ9ueYznad2jY4jy/4VVWHFiLiUmmI4PvTL6Dh5c/TXW4NjWfz+bhu1PuRNVsaEbX+vy+6HiOCUWRcZhBtOpiEtUlWHN7omR2J4yzXScmbm3t6VjsjL91RyNJoAVqkKsOEivbgyUjDzWvDxHJhd45C7s0ctTvW4ML+p3Frpp9jfJaWGSVr42/kefWvcawvEFMKBiDlOi4PXiP1BAP6GrHQUs62mcnyxIOwhj1ZcTL92LJzEfN6U1E7rjHm2mL8/zG11l+YE0qiDelxzhmD78CS8LOj6bdw28X/61Rj7I+GT24bvjlaDFATX5WYp8TurouFYQRjk9pdQgJTltlJAC7VcFqkamqjx57ZkEQWoxp0fnX2v+xpnRj6rXaSB0PL3+au8ffhGGaFNeX0M1dQDdPPjbdgS4CCMckyxKOeCXlL/4cI+xPva54ssmf/SBBOaNTPAEVOi5JAoceoOSFX6HVlqZel21O8mY/SMRRQBePtSLHrNwz7jbqtFrWlW3GbXWR78ph7vYFbKzYxurSDXhtbkZkDBc3kMJRSRK4zAAVL/0Sre5wriHZ5iTv+p8SsRd0vOC8RePZdS+zsmRd6iXTNFlSvArN1Ll52LXkSwU8dM797K07QHWklr6Zvci2Z6HErR0gRb8gtJ4ulRVp3rx5KIrC0KFD004Ph8N88sknjBjRtUuoldWG8bmtWE5jljFJkshw2aisP7XhToIgnJiYGWkUgGlQHa7l15/+lTxnNlPzJtPb3gc1bm+B3nBdg4Mwla8+1CgAA6AHqql662Hskgg4C23LJiWofv8fjQIwAEYsTMXLv8FB2w8Taw9U3Upt2M9nB9Yxd/sCfr/472ys2Jaa/tKmt4mJ41k4BrucoOa9JxoFYCB5vFW+/BscdLwhvlEz2igAc6TPDqwlSgRDBzXuYKB7IFPyJpGnFCDHrR1maK4gtJZO2xPm9ttvZ+LEiQwaNAiA+fPnM2fOHG6++WZyc3NZtWoVTz31FOeeey7du3enoqKCf/3rX1RWVvLII4+0cevbVnlNmAz36esF08DrslBVJ4IwgtCaAvHmL/xMTALxEBZECckTJcUCTS62G8TL96AkQqCc/t9VQWiOqoeJ7lmfdpoR9mMGqsDVq5Vb1f4oiszOmj3srz+YdnplqBoDHSXtVEFIUrQQ0X1NH3gA6KF6zGANODvWuTacaD5Qa2ISTkSwk0wxkOzlIyIvgtCcThuEKSoq4tVXX6WsrAzDMOjTpw/3338/N910E5CsnpRIJPjLX/5CXV0dDoeDMWPG8POf/5yRI0e2cevbVml1mIKs039i8LpslFZ3vCcBgtCROS1Hr0jgUO2Qvlp1lyOdQNVdI370J+OmFkfctQltydTiR51uRIJIbqnJsDlJoks9xTYMk+7ewman++xe5K7VkVw4CaaWOOp0IxpEch0+3jrCcWZXj15JUVw/CMLx67RBmAceeOCo03v37s3TTz/dSq3pOAzTpLIuwtDemaf9vbxOC5v2xFKJvQRBOP2csoP+WX3YWbMXAKtiYVjeIKyKBVVScEhdu2xkMpFiCEK16NEQlox89IgJHP03SnZlHJqn6VW0pFiQ7G7xUFBoU5LViWRzYsbSP81WMwuIHnFD6JBiyPEAWqAaxZWJafcSMR1tltvIYlGQJAldN05rVRVdNxic3a/ZctVXDDofq2lHFwe0cBSS1YlkdWDG0/f4VjPyiUvgkKJI0Xr0UB2qJwfd6iZq2tpNQEZRZBRFxjRNHDgZlN2PbdW7msw3JKc/9i5+/SAIJ6JdBmEMwyAQCKQ90WdkZLR+g7qQukAMTTfJOI1JeRt4XVZiCZ1wTMNl7xyVBgShvZM1C/dOuI2HVzzF8LxBDMrpy+elG4lqMSb3PAND0lEktd1cALYmWQZnrJyKl3+LHjxcJco1dBq+WTcRoPnfxYTixD3qbILrPmoyzTvhUuKyEzpoNQyhc4jJLjKnX0vNR/9uMs0xcAK6xQ1GMgDjlsNUv/UwsYPbU/NYcnqQe9UPCUre1g3EKCZRKcTHxaspCZQzPG8Qw3IHYdOdpy0YY9Wd/OTMb/GHpU9QH03meZIkiXP7Tmd84Wj0eBf8gRROSExxkTHtGmoX/KfJNOegyRgWDy69nspXf0+i+vDQN1vPwWRf8i0CetsGNBRFJqaEWVu5lU0V2+nuyWdSz3HcO+FWHl7xVOpBDkD/rD7cPf5m5LgqQpOCcJzaTRAmkUjw5JNPNhpClM6WLVtauWVdS3ltMmKf2Ro5YZzJMtXV9VERhBGEVmKaYEnY+c6krzJ/z2L+uOQfqWlL9q+it68H35tyF3LM2oatbBtOM5SsbhRtPEwytHkxakYeltGXkWimq3VMV3FPuQbFk0Vg5TsYsTCyw4NvypewDpxKWBfDF4S2ldDBNXAqOVYHtQtfRA/WIVnseMaej2vsRQT15DFvkxPUvv9kowAMQKLqAJWvPUTWVf9H2Dz6sISWIikme8J7+NPSf2KYyevCpcWr8FhdPDjzPlyS77QEhAzdJFvO4Zczvk99wk80ESXbmYUNO8TFuELh2BIaOAZNI8tqp37RHPRQHZLVjmfsBbjGXIhpak0CMACx4q3Ufvg07nPvIqq3zW2aLEsEpDp+vuAvBI/II/fqlnf57pQ7uW/i1whqIeqjfnx2Ly7ZiRy3dMmHN4JwstpNEObBBx/kjTfeYNSoUZxzzjl4PJ62blKXVFkXQZLA5zr9N2CehiCMP0qvfPF9C0JrMU0IxkO8sfX9JtP21R9g/p5FXNDrbPQuNLZbliW0yn1NAjAN/KveJX/E2SRwNbuOkG7DMvIi8obNQDI0TNlCTHER1sSVqdA+xLCRMfosLL1HghbHlFUSiovgEce6qoWJ7P487fKJymLkeBCOkRuipcSVKI8sfzoVgGkQiIf456rn+db4O5ASp+chjmGAYtjIIhcswNFTfAhCExHditp3Krl9RiPpCUxZJS47CeoS7kRFkwBMarmdq8mYFQLJ18otTtKVOE+s/G+jAAyAYRo8uvxpHjr3Ady6D7fFl+zhqYvRtoJwotpNEOa9997j8ssv53e/+11bN6VLq6yL4HVaUZTT/9TWZVeRJYm6QNMx14IgnD5Wq8KiXZ81O33+7sWc1XsaylGG33Q2siyRqC1rdroZjyAZ2rFSw5DQSAZqGtLDiACM0M5IkkxUcqFJjkP7aOPpZuLoSab1sB+8OaevgYdIEpQFK4jr6aMfO2r2EDNj2BE9aYX2S9NMNJyHzwl6ct/Ww/6jLGViJmLQRh1So2aUXTX70k6L6XHKQhX0tPYSPV8E4RS0m/7RDoeDUaNGtXUzuryK2gg+d+v86suyhMdpoUYEYQShlUmE4s2XmoxqsWMGGzobXTex5vVpdrri8oHS9YZoCR2LJIGqysjyyR/AktUJcvNDbhT36U/cD8kcLNE0iXGPpBki0ZLQchRFRlVP/62RaYLizmp+BllFtrVdThj9GMdVNBETBTUE4RS1myDMxRdfzCeffNLWzejyKuoi+Fyt9/Tb7bBQ4xdBGEFoTZqmM6nHuGanjykcjmp2rafLkgSWzHxUX17a6d4Jl2JG6rEop68qiyCcLEmScMkRHIG9mJs/wFL6OW4piKKc+KPqhOLEM3JW2mn2opHoluaH5LUkwzDp6e3W7PQsRwYOpXWGRQmdm01O4DbrkHcthG3zcWtVOOSjl3Q/VbrFjb338LTTPCNmECveiktpm+tju+Ig055+KJSERE9fNwxDdIMRhFPRboYjff/73+f+++/nzjvv5KqrrqKgoABFafokZtiwYW3Quq6jqi5Crzx3q72f22mhNnD0rs+CILQcWZbQlTjdvHkUZfRkT11xo+lWxcI1wy4Brd3E6E87SQKXGaDqrUfJueguahfNIXZga3KaxY5v/EVIQNl//4/C2/5IQm6dngCCcLzcUojKl3/dKMeEZLGRd90DxNw9OdEiQq5h0zANneDGRWBoIMk4B56B74yLWrXIl11ycF6/M/lg18Im024dcy2KIhMnjIKK1bCf1tLVQudklxMkNi+gauGLjV53jToL95TrCOun58FkxLCSddE91C14lvD2z8A0QFbxjJiBvfcwKt9+DM/4i7CecRVxrXV7nTglJ7eOuZY/L3uyybTz+p2ZTFAtCMIpaTdBmHg8jmmaLFy4kIULm55sTdNEkiRRHek0isQ0QlGtVZLyNvA4LOyvCLba+wlCl6YalMcr+NeqOVSEqrh34q1sq9rFJ3uWEdVijC4cxjVDL8FleuhKD7lscoKad58gVrKd8I5VeMecizz5csxDmYmDGxcS3r4SgMDqd7FNvoF4F0paLLRvNkWnbv6zTZJ8mokYFXN+Q8GtfyR4lITSX2TRQ5S++Cs8I84k/0vfwTR0JEUlsmc9ZS/9hoJbfgfKUYZStKSEwmUDzqdvZm/e2Poe1ZE6ijJ6cv2Iy6mN1PO9D35JRIuS78rhhpFX0s9ThKS1m0tboZ2TJFBCFVR+IQADEFq3AEffsSgFI9D103NCDOgOMmZcj2fkDExdQ5IVQttXUvn2Y2AaBFe/T8GYC4jTeg9HTVVjS/1OdtTs4b7Jd/DO9vnsrTtAtiODKwdfyLCcQaJCmCC0gHZzprr//vv56KOPuOiiixg1apSojtQGquuTPVJaNQjjtFIXiKWCbIIgnB6yLFGRqOLnn/wF81Adgz8sfoKRBYO5efTV9M/qg8WwgSa3SABGUWQSUhRTAqtpQ2+FBLVW1UTRoyCrxLEe94WzqoWJ7t0IgOLyUrf0tWarViTKd+Mw4rRZxkRB+AKLHia8YyWSxYZ76FQs2T3QIwFCmxaj+SvRaw4iZQ067lLOZjwChkZg3QIC6xY0ma6H6sDbSkEYQIpbGJM1iqFTB4FkIksScza/zcJ9K1LzlIeq+MuyJ7ln/C2MyBh+QjfNsgUSZhxZklANm+hN04nIsoSNGJg6hmwnpje+zrSqEFg1t9nlAyvewHfZQCKn6fdeliXiZfupeuNPaaebeiKZKFttnSCMosiUxispD1Wiyipzt89nZP5gzu8/A0VSGJI1ED0qrtUFoSW0myDM4sWL+fKXv8z999/f1k3psirrIwD43K2bEyauGURiOk776dsdPzmwhE8PLCXbnsnVAy6lwJV/2t5LENojXUnw/OevpgIwACYm68q2sK5sCz+adg+97X0wTrHcgaJCXI2ysmQDH+1ejGZoTOl5BjN6T8aqOU54HHlDbPZozVJkcBr1+Je+TXTvBhSHG8/Ey7EXDiJs2I5ZwcHUDo/91wK1qJn5zQZh1KzumLIFmrlPk6Sjt1UQWpqpJ3AUjcQ34RICa+fjX/0eiieTjOnXoIfq0MP1SNlN90tJktIGZiSLncOlXJpSnN6jtud4jtkTpWkGyqEb4aBc1ygAc6TnNrzOL2f2RzmOISSyIhGRg8zbsYD15VtwW51cPPAcBmf1QzcMYkYci6xgxY6Z6DrDMzsLpxJDL99B/fI30UP12PsMxzvhciKKF804tJMaejKo2Aw95Ecyjx6U++LzwxM5BxiGierNbn4GWUFS0+/LLX2ukZTksfXR7sVsr95Nht3LzKLJxLQYi/at4Mw+k6hP1GOz2LDjoJmiZYIgHKd2E4Rxu9307t27rZvRpVXVR1EUCddpDIZ8kduRTP5ZG4ydtiDMkpIVvLz9TQZm9KM8XMGfVv+d751xD/nO3NPyfoLQHumSxvbqPc1OX1e+mb59+2KcQrUR0xanJFLJf1e+zp7a/anXX9vyLh/vXcrPZnwXNX58Y8mtso7NDKPVloEso/jyiclOEnrjmyFJknDEqyj97/3Jkp6AVldO7I0/4x5+Jp7xF4PFSVxxEtcbd6FuqCKjWHzINhdGLERo8xJyL76byM41aVol4R1/McE04/PtcgJVD6PVlCLbnMieHCI4TzgXhyCcKMnmwjv2PMrm/BYOHb9afQWxA9vwnnERjgETiB8R/NRDfuyxGrS6ChRXBjgziOBMBUg11YVjwDgiO1allpEdbhy9hqNk5GHavKRLDGOVDaxmGL0uWepdySggJjlIGC03dEGWJfbVH2h2en3UT1SP4uLoQRhJgqBUzwPz/0DsUAWmihD8dcUzTOoxlsE5/fj32peRJZkJ3Udzw4grUOOO4+5NJLQtuxwntOxlgms/Sr0WXLeA0KbF5H/5Vxj2fAzDRJdU7P3GEt2/Of16+gxHl22p/V2WpUPVkyRUM0a8pgSl8iAWmwPVm4upxUlUlyI73EjubCK4jv3gwZmJmlmQPNd9gWvYdBKqK1VGXlHAYYYx/JUY8QiWrG7EFScx/dSun2VZokav5Gfz/0zCSL5ZZaiaHdV7OKfvNM7tdyZ/X/lfQvEwVsXC2X2ncXH/s5FiokeoIJysdhOEufbaa3nnnXeYPXt22oS8wulXXR/F57S26rAgjzMZhKkLxuie0/IVF0KJMK/tmMvQrEGc23smUS3GnO1v8MzG5/nBGfeiHKUMpyB0JhISTouDcCKSdnqG3XdKNximJcFrW+dRlNmrUQCmQW2kngV7lnBh73OOOTTJLifQti2k5NMXUjeVkmol+6K7sXUbSeyImzqbHKd2/r9SAZgjBTcuxDVkMhVv/BTv+ItxjDqfiG5FkSWcZoDItpVED25Dz+tDwQ0/ofbjF4jsXU94zzqyzr6F2k9fTPWSkax2si+8m7gtu0kvGJcSI7h0DsF181OvyXY3uVf/kLinB5ouum8Lp49pQs0nh4+VI/lXvYtn7Pmpvx2EKX/t0UY3nWpGPrnX/JiwkolhmER1lcxzbseMR4kWbyFr5o2o3mzCO9egB2sxaw/gyuhGyDgcULXJCYw9n1H60b9Ab7hjVMk+93Zsfc4gZrRMtTXTBI+1+eHqEhIW2ZI2SNRoParO8+teSwVgjrT8wBqm9R6PTbUR02IsP7CG/fUH+fHUe5Hj4qazI1ATgUYBmAamFqf2w6fxXfY9IljQNBPPoMn4l7+BEWmcn1BSrXgnXE5Al5AkcEpR9Op9hDcuRLI5sAyaSLBkO3WLXyPv8m9Su/KdVO4wAMXlI/ea+4k68tGPsj9GcJJ3zf1UvvYQiarDAUbHgDPwTptN8FCSfFUxsdbvo/zVhzBi4YZW4h53Pu4JVxI6hQTCuhLn6dX/SwVgjvTR7sWc0X0k0UQyZUFcT/Dujo+pDtdy8/DrkBLiOloQTka7CcL069eP+fPnc+WVV3LllVc2Wx3pvPPOa4PWdQ3V/iieVswHA4d7wtQFTk8ZvqUln5EwEkztNhEAu2rj/D5n8dK21/nkwBLO7nXmaXlfQWhvrIad8/qdyRtb328yTULijMKRaNrJd9sIGxGQJNaUbmh2niXFKzm7zzSUozyllmUJqa6Y2o//2+h1U4tT9dajFN72B2JqTup11YgR3bex2fVFi7dize1J/dJXyS3oi6VwBNZQKaXP/zQ51h5g63LqlrxC/lU/wFQUAms+wDFoIoU3/PRQUlIFHJnEFCeqHsWq1wMmhsWJprqJbVnaKAADYESDVPzvlxTe/mcCrZhUUei8JEnCLsVQtHAyabTVSUxxIcfDjW7eGjOJl+5E7n4GFkmj7uP/NHnqr9WVUznn1+Rc/wtCOIBkwlDvhd8kmxh1n75AzYL/pOYPbVqEvc9IMi78OiHdjiSBGiqn7P0vVFLRNarf+wcFN/ch7ihskaETpmnSzZOHXbURTRNAGVM4HOsxesEAJIizrqz5Qg+bK3dQlNGTrVU7ASgJlFMWrqC7pafoDdPOKYpMdFfz56HYwW3J3GEkrz9DuMn/8q+om/8sWl053jMuxJJZgOzyYSpWFEnGQZjq1x8iXrY7tZ7g2o/wjDqL3Eu+TvTAtkYBGAA9VE/Fiz8n/9Y/HDUxtmGYhGQfWVc/gBwLoEdDKO4MdMVJUD98TW7Xg5S+9KvDQU4ATIKr38Oa2xu179STPofHzTi70zw8abC7dj/dvAUU15ekXvvs4FquHXYpDkQOT0E4Ge0mCHPfffel/v/3v/992nlEdaTTq6o+itfZukEYVZGxWxXqgi0fhDFNk0UHlzMwsx9OiyP1er4zlxE5Q5m750MmFIzFYxU3SELnp2sm5xRNZ3PlDrZXH76QlJD4+oRbsJvOZpdVLTI6OgoyWiJNDglJoixYgWEayFLzT8WOp+eZVUrgX/pqM1NNAqvnYZt6c+PqRJKcLO+ZhqSomIem1S95hZwvFVHx5l8OB2Aa6BqVb/+Vwlt+i3GWgSkrRBUXJjKZmS78dUEs/oNUz/tbKl+MmpFP/tU/pGz5G+lbq8WJ7t+I0meKSPYpoCgSFknHlGTi2onlc5BlCadeS83cx4mVbE++5vSSdfZXkAqKjr6wlHySb9HDhLcuTzuLVl8JoVpwHD5XxrBB9V5CW5Y1mT+6dz2J/RtQek1ERcO//M1m397/2Zs4Z32NmN4yeVWsuoMfTL2b3y7+G4kjElPku3O5ZdTVSAmlmWw2h0mShCxJ6M18CfmuHDLtXnJdWawu2UA4EWFb1S569eiF1gpJxoXjZ1ElZDQMVBKHvhtJOdrtjXTon6RkECQD74X3IPtLqZr7OImaUuBQL7Erv0tk99pGAZgGgXULcA8/k+qPn0v7TkYsjFaxFzlv+FGHJRmGSRg7WOxgOTRU/ohThqrKRLet/kIA5jD/0tfI7jMG7WRLRzfTWVNCYnj+IPpk9CAQDVEWrGx0zFWFa+hl84g8aIJwEtpNEOY///nPsWcSTqvq+ig9c1s/IOFxWKgLxo894wkqDhykOlrDmd0nN5k2sWAc22p38P7eBVw98LIWf29BaI+kmJV7x99GTbSWDRVb8drcDM8bjM10gNb0BklWICqH+Wj/crZX76HQncu5/c7EI3kxj5jfNE28NjfryjYze/hlrC5Zn/b9zyqaitW0ox/lFkk2teQNYTO02jLspkbD6UtSVJwDxjV5CtnAOXACphZHqy1LrjcWSjv2HsCIBNDDAUL2wmROUg3UQ2dJa6Ke0hd+innEBahWV06ipgQ9VN9sexPVB7H0lY7aHV3o3GRZwkmQ6M41BHZ8huLw4B53IaY7n4hxfA8+nAQpf/5BjLA/9ZoR9lP19qN0/9rD2Ar7ESvd1XRBScaS05O4STLwaBpYsgrxjD4HNSMPIxIksP4TYge3oYdqkZzdUz09LLJOYPW7zbYpsPpdMnqOwsREq69odj6trhzJ1GipimKGDgXWbvzh3AfYXr2LilA1A7KKKHTnoybsx9VTxWJamdBjDMuKVzd6Pd+dy1fGXMNBfxlry7bgtbm4c/yN7K7ZT44zS9xstiNW2cCaqCO46gMS1QewFvbHM2IWEbzYeg9vdjlH0Sg0xd5oyJppghwPUvrCzxsFOrS6cuIHtxH4/INm1xfY8AmO7oMIbUsf4EzUliIXjDjhpPRHkmWJWLO93UDzVyE3ly3+OFixMyx3IJsqt6de65fVm+uGX8q6si3M3f4xOc5MvjP5DpYf+JxP9ya31W11iWNCEE5SuwnCTJgwoa2b0KXFEzrBSAKvs2XGbZ8Ip8NC/WnoCfN55QYcqp0enm5N39PiYGzeKBYeXMZZvaaTZc9s8fcXhJMhyxKaEiOsh9EMDZfVhc1wkGao9smtP24lV8nn3B7J4QF6Iv2FmyxLVOuV/GLBX4gfCjxsqtjG/N1L+MbErzDEOwTziIvYLHsmhmkS1xOMKhjSpKt/T283pvQYhx47+hWbLlmxFvRt9qbO1n1QsjqRbuKSo9Qt+DfesRcQPbCt0Q0qkEyiu2EhidoS8q64j+D2lWnzZhzJ1BM4lBhKPISpxZFlN3pcJfj5B40CMKn2BmpQMwvRakvTrs/efRBx0QumS3OZAcpfeBA9UJN6LbRlKd6Jl2EfcwnRYwRi7BbQ9m9tsn830ANVZJ45m/LX/5wsL32EzBmzQZJQJBPJ6sA78TJsub2oW/EmicpiFE8W3rHn4Rk1C9WXR/TIOyrTaNpj7AhmIgamgaHYsBb0I16xL+181sIBGLK12YpizVFUiZgcIZQIIUsKTtWBVXeg6wamDhbdwciMkUiZUvK1uNmo+tvRmAmZa4ddyubKHdRHk5+rQ7Vz+9jreGzFs/hjgdS8y4rXcPHAsxmaOwA9Jo7l9kCVQa7cSulrf0z1gozu20hg5Vzyrn8Q3VtIxpnXU7fwxUbLyQ43Ged8hZChoigyNjOEpMdQLRbqV7yftqeJpKhHPQ6MWATF5Wt2ujW/L9ETKJmejq6b2HoOIbiuaZ4bAGteL3ROPDeLrEJcjhBJRLhlzDX8/OO/EEqEyXVmcdXQi/jT0icb5U36dO9ybhlzDYFYkH11B/FaPCCqJAnCSWk3QRihbdUeysnS2jlhANx2C7WnIQizuXobvTw9kKX0XaBH545gXeVG5u75kJuGXNvi7y8IJ0qWoZ4aHlnyNKXBZBDCptqYPexSxheMRUq0zE+2aXLMseOaEuPxFc+mAjCpZTH5x6rneOjcB7DjSg2zsWh2fjTtHh5a/DeuGnYxk3qOY0Xx5yQMjRl9JjE4uz9K3HbMW6S4IeObchXh7Z81GWIkqVac/cYg6QF0xYteuZfw1uUkKvaRd+m9RA9sJVq8BdnhwT10KvGKfdQtSQ5tiu7bRLebf518YmhzHpHY8AiyisXto+K13xEvT1aSkhQLuVfeR+zgtrTt9a/9kIzJl1M174km0xR3Bmp+X6Kn8ARU6NhsikH9ojmNAjAN/CveonDYDFCbL1HrVGLo+zYQ3b+p2XnqV87DOXAC+V/6HpHda4mV7kLxZOIeOo14xV7iZbvA2An9J2DNKqTyncdSy+qBGmo//R/u4TOw9hmdqsICoGHBOWQq0eL0w8CdgyaiKXYSGnjGX0Jw46dNg5yyimfcRQRPMIhsqjrra7fy77VzUsnEc5xZ3DvxNgps+cSNePLcbkjH/C2TJAlT0fHHgkiKlNpGu+biFzO/x6qSdawqXc/UXmfw4c5FjQIwDeZun8+sPpNxnOxwD6FF2QlR9vZfm5wjTD1B9duPknP9L7AMnUVB7+EEVs1FD9Vh7zsG56AphCQ3smRiDx7Av+od3EMmE6ouIV6yPe17RUt34+w/juCGT9NOdw+ZghEN03SvSQ5nkjMKMU/xHKDrBo7ug5Gd3rTB2IyZNxLDTnNl5dORbTr7gwfYXLGDpQdWY1dtfHfq19hWtYtcVzYvbngzbeLq59e9zven3UmGLQOLbsc4kfeUJUxFIxALIh9xLApCV9SugjCrVq3i1Vdf5cCBA9TX1zfpUipJEm+99VYbta5zq/Yno/ytnRMGwO1QKatNc0N0CgLxIAeCJZzXa1az81gVC+Pzx7Dw4DLO7nkm3dwFLdoGQThRcTXKL+Y/3KiCUUyL8ey6V8h2ZjHQPbDVcotEjCglgfL07dQT7K7bh64byeBKwophmGTIWfxsxvcoDZUTiIW4ceSVOFUHqmZHix1tENJhpglxWzb5195P1btPoPurALBkdSPrrC9T88kLGNEQudf9hNrPk0mGEzWllL30a1zDppMx5UqCm5ZQ9e4/MaKHq12YWpy65W9gLehLxrSrqZnfdAhsxrSrqV81LxWAgeRFfXjbCtSMXGIlO5osk6gsxjQMsi+4k9pPnk+9p63bQLIvvocQLk7kwljoXCxmlKrNS5udHt6+AsuoS0kkmvbQUlWZ+NYlhLcswdFvbLPriJfvI2vWlwluWkS8pgRrfu9Dw4w+xjv2PCrefBgjEqT7HQOo+fTFtOsIbvwU3+QrcBPHVFTispOEZuLoOxbVl9ekZ5rs9OIaeRaBQzdRMWsG+bN/QvXcx1Pzqhn5ZF98D1HVd0K9YGRZojRWweMrn230elW4hl8tfISfz/oOT61+Eati5YL+M+mX0afZqkWmJUFJpJy5mz6iNupneN4gzimaht1wY+gmatzOtILJTC4cT0KO8fSa/zXbrrVlW5heMPmUEpgLLcMI1jbp9dVAq6+EeIiomoPk7I7jrK+BoaNLKgHNBNPEIwUo/d/Pyb/q+5S9/Dvcw6aj+HIhzZA+SVHwjDyX0LbPmrynJbcXakY+JiaFN/8KPVhHePtnBLcsxd5jEFkX3E0IJy1xDojIbvJv+DnV7/w1lZ9GdnjIOvsWjKyi4x7uJMsScUuEhfuWs6Z0A3bVzhWDz8MwTX716aOMKRjGGd1GNkrCeyTN0NANgwwpE+0ErkdMa4LdgWLmrV9AKB5mXLeRnNlrIjbdJXKmCV1SuwnC/Otf/+Khhx7CZrNRVFSEz9d81z6h5TUEYTxtMBzJ5bDgD8YxTbPFymPvrEveRKUbinSkETlDWVe1kdd2vsM9o25v1fLcgnAkRZFZX7m92RLS/9v4Jj+eci+y3nKBUkWRURQJXTebXASZzSS6bRDT4zy39jUK3Ll8a+IdKHEbhmGiGnZ62fogOyQM3cDUQEM/6ns1cCgJFC2EEfCjujPIu/I7GJEAGDqav4rq+f9NDfuRtChfTLQiSTL+NR8Q3r4SSbFg7z0cSVGJle7CiASI7FmPc8AZxA7uIPeyb+JfNY945QEsmfn4pl2LJSOPkme+36RdoW0ryLv824SauZlWs7qTyOhDXu9REA8hKRZ01UnQtJ3yE1ChgzPNow+BSzPErYFND1Kx7DWMSJDMM2eDojYZLuEcNImsGbPRI0EcfUbiGTETQ4uj+6uIFm+l/LU/pW4cNX9Vs0OaAGIHtiaDNIaOd/wluIafRdh0kXf9TwmueZ/gxk/AMHAOmYJ3wmWE8NBwc5nQZQxfX7Jv+AWKqSEhoaESkxwnfIOlKxovr3077bSEnmBZ8WocFjubKraztWonYwuHc+vI2ciJL/w2qjof7VvYqCLcvroDfLR7Mb+Y9V28crIkt2GYWFQLCTN21HwyiaN8V0IrO8aw0obppgmxBICCLINLDiNFAxgRPwXX3o8eC5N36b1IqgXJ6sAzYgaB9Z8Q3rYitSpbfh+qFzxP/lXfI7BuAeFdnyNbrLiHTsPeZwT1q+Ziye5B7MBWTC2BJauQHl97mDh2goZ61HPA8ZwXG+i6SVjNIuOKHx6ukGZzEZNcaCcw3CmmhnhwwZ8a9fjaUrmD8d1Hcf2Iy3h+/RtcMfSCo7fFOLFj2rAkeHnL2yzcdzhvzt66A7y/81N+Met72PTmq0cJQmfVboIwTz/9NGPHjuWJJ57A4xHlzlpbrT+Gy66iKi1TveBEuB0WErpBJKbjtLfMLrm7fi8+q+eYlY8UWWFat8m8s+d91lZuZEzeiBZ5f0E4UYoisbNmT7PTSwLlmNLRL7Rki0lcihKIJZ92NTufIhFTwqyt2Mae+mL6Z/ZhcE5/bLojdW1rt9jIcmRQE6lr2lZJJtPuJZQIs6t2H9trdjHcNzx1EWmaJvqhi0JZgZgSYU35Fvb7D9I/q4jB2f2was5GT+7cSoS69/9BZPfa1GvWgiKyZt5IxTt/S908Ku5Mss/5ClpdOc7Bk4jsPZwE2EzEkG1OfBMvxd5rKJE9GzD1BJ4RM9GjQfyr3sOS1Q3/ynmEt68k/7r70WUbhqSA1YlRtYvMmTcS3rGq0fAjMx4lvHM12RfdRfX7Tx2+EZYVMmfeiOHtRkIzSeAEy6EqUwaIHjCCJttw9B1DZPeatNMdAyYQ1tLfUEpGAiOS7FlVt+It8i75BpXv/iMVVPGMPR/X4MmUPv/Tw8mhZRXfpMtw9B5O/RcrFh0lwCDbXViyu5M57Rq0QDWBtR+SqC3FOf0mAroLy7gryRtzIUiQkO0ENKnJ+qxmBClcS2DrUiRJwjl4MlZHNpETTMhroHHAnz7HEsABfxk5zqzU32tKN3LxgEoKLT2QJNCVBAY6CeKNAjANYlqyx8vXJ9yMgsJ+fxlryzYypttwhuYOYHNl0x5vAKMLhopeMO2E7MlGUixp83TJTi+S3dOo95UiS9jDJVS+9hB6sBYAR/9xeEbNour9J1PHmaRYyJhyJZbMguTxIyuoGfnogWrKX/497mHTyDn3K5i6RmjHKvR4lIxJl5OoKUOvr0C2u3H0Hk7g849wjL4A00x/TavI4DSDRPdsIF6xF2thPxw9hhKWPMesohTBBrINZE78PGPXeG3Tu2mH3K08uI5pvcbjsNiJJWLkurKpDFU3mU+SJDIcHj6rWs2IvMGNrhua40/4GwVgGgTjIV7e/A43Db0GM9H69x+C0JbaTRAmEolw6aWXigBMG6kJRPG0wVAkAJc92fumPhRrsSDMzro9FLqOb3hRX19v+vr68NK21+mX0QevVeyDQuszDJPeGT2bnZ7vygEzfWBFUkyC+Hlz8wdsrd5Jht3LFYPPp6+vD1Lc0ujpbkPC3V9+/EhqvPdHLMJpcfDgjG+TqWahacmnctePuJzHP/tPk2SXlww6hyX7V6X+nr9nCUPGDoYvlKCVZajUKvj1gkeJ6ckKaB/uWoTL6uTBGffhlTMwDBObolP/yX8aBWAA4mV7qFnwXzKnXk31h88gWR3kXvINqt59Aq2+krwr7sOS24tE5X4AwnvWUnj9gwQ3Lab85d+n1hP4/EPsPYeQe8nXqV7wH7Iv+CpaXQVIEoZqQ9WjhFa+RmjLUiRFxTVkChmTLqPinb9hHsodE9q8BPekKym842H02lJMw8CS3Y2Y5CRqnHhCRKFriBkqGWd9mWjx5ibJPR0DJ2K4sholuD6SKatINifW3J54hs9AsjspvOkXmLEIiZpS7D0Hc/Dp72NqR1QXNDTql76GJbsbzoHjG1UN08P12LoNTJW4buAaMgX3iBnUrXiLePleLL48smbeSKL6AKoWBslHQpdI4Eje76WJQzjlGIGF/yW8eXHqNf+Kt3ANPxP39BsJ67bj+rwkSUKRVPLduQRqQmnnKXDnctDfuMLZx3uXcvPIa9hWs4s3t76PTbUxtnBYs++zvXo3xf4SSv0VlATL+WTPMpYfWMNdE25iR83eJr1epvUcj0cVSUjbi7jsJOOsm6j98Jkm07IvuJOIlBwGKkkSpmniNAOUvvjzw8egJOM74wLK5vyuUa8aU09Qu2gO+dfdj2vYdCTA0DU8Z1xI7fxnCaxbQGDdguQDglk3IVvtVLz+FxLVB1PrqF/+Jlln34IUq0eyOpr0rpJlCXv4IKUv/qLRb4Jsc5J/488JW/NOqZISQEOn7iPf2rDFOeA/yLID6QPCAOvKtzA4px9RLcbXxt7AbxY/1qT9Fw04iwW7l/DxnmXYFCsPzPgWOXLzbbZYFD7b+3mz7/nZgc+ZPexyVJFvSehi2k3YceLEiWzfnj4plnD61fhjuB2tPxQJwOVIBl7qW6hMdUJPcDBYQoEr/7jmlySJs3pOxzANnt74HImWKkMjCCdA0wxG5g/BpqQPhl419GJsZtOLFFmWqNIq+fH837GkeCXV4Voy7F4UWWFH3S72RHeRsIZRDy2aUKL8edk/iWtxhuUNZHrvCQzJ7U84EeHh5U9RRy0JWxjN1FhVsp4fTLuLcd1GkO3MZHBOf+6ZcAuqrLBo32fH3Ka4EuVPS/+RCsA0CMXDPLriaTQlGQSy6CHCW1ekWwXxin2oGbkgyWSffRP+Ne+nSlhXvfckWTOuJ2PqVViyu6P68jB1Df+qeU3WEy3eQrR4K2gJInvWU7f4ZQ4++R0Ufwnlz/0f9cteT5acrj5I3eKXqV38Cjnn35Fa3jvhUmKSk6DpJpo5gFj2YAKmh7gIwAhHYZoQUbMpvPUh3KPPQ/XmYs3vQ/Yl9+I7+zYiRwlOxBU3uZd9E9fgydR8/BzlL/2Gkmd+SP3Kudh6DCK0bUXjAMwR6pe+jnf8xam/7X1GYO85jKxZNzSq5GIr7Iez3xjK5/yOyI5Vh4Yxbaby7b+CJGPGQhxrlK4sSxgVuxoFYBqENi7EqNp71J55AKgGcUuYPZFdHAgd5M4zvsyogqFNZlMkmTGFw9hQsbXR6z6bh+LAQRbtW8FBfxl10frjOpe/sOENJvUYgyzJ1McCvL75Pb4/9S5m9ZlMjjOLosxe3DvxNmYPuwIp0TbXSEJTcV1G7TeZ/Bt+hr3XcBRvDo5+4yi45beY+YOxmyGc4WJslRvxSAFi+zc0Cng4ikYS3rmm2WFNdYtfIbx1GQef/h7V7/0D54Bx2Hol90fJ5iRr5pcJbl6Mf80HjQIwDWrm/wfJSA7D/SIHISpf/2OToKwRC1P1xl+wk35I8vGQFIOENcK+6D72RveSsEZAMVBUiWUHVhFJk2j3iyyKhTx3Dm6bi9+e8yMmdB9FtjOTQTl9uXvCTbisDj7eswxIDkv+09J/kFCjWCwKFquMqrabW0tBaNfaTU+Yn/zkJ9x22208/fTTXHXVVWRkZLR1k7qUmkCMgkxHm7x3Q0+YulDLVEg6GCpFNw3ynbnH3waLkwuLzuH1nXP55/pnuX34jdhVEZUXWpdNd/DAmd/kT8v+Sd2hsqmKJHPZ4PMYmj0ILd70EbSmxHlq5Yvohy4mZxVNpqevG39e+iTaoZsQWZK5auiFTO45jmgiRqEnnzvHf5mN5VspC1YyMLsvVwy5gNc2z6MqXMOjy//Fz2fdx57aYjaUb+WKIedzwYCZbCzfxosb3mwyROnsomkohor+hUfkgUSQ+jTdngEO+suIGBFcWDHj0SZVLo5kRAL4JlyCNa8PVe89dfj1aJDyV36PrcdgPCNn4eg3hvoV6XNJAPjXvI/vjAuJV+5H8WTh9OUS2rwEPVjXZN54+R5MXSPvS99FtjpQcvrgP3S/m3wwKIYaCcdHN0wCeLFNuR7XxCsxJZm45Dhm6XLDBDMaouajfx9+0TQIb1uBs/8ZxCuLm102UVuG4kj26nQNmYJz4HgS1Qeo/ujf5FzwNTR/NfGKvbhHzqLi9T+Tbn+uW/Ym3YdOO9ooJgCsUoLAyneanR5Y+Q7uC/sTa6aErmnR+KR4Ca9umZd66m5RLNwx9np8Ng8L9yUDtG6ri1vHXsu87R+n5mt4TULig10LsVts3D3hJvbWHaBPRo9m2zQwuy/76pI3z5srdzAgu4htVbvYXr2bPyx5gm9Nup0vDb4YyZRQDRt6mt9eoW1FDQuytwjPxd9CMXUkWcKUJKzhasrn/AY9VAeAo98YVE/jCmSqJ5tEbfrE85A8ftwjZgDJHpml/76fbl/5HYlANXqwFv/qd3EPP5PKt/7azBpMIsVbkIf2StPwQNpqaQCJmhLkeBBO4vrTVHXWVm/gmc9fSl0PKJLMjSO/xPhuo3h/56cMzx/EhO6jGvVkPdLogmHYFAt/X/lf9tTu59uTbiffncsVQy7gs4NrmbPxHarDtY2W6ZfVm6gRZcH+xRwMlDE4uz/juo1MDVNKJHQmdB/Dm9s+SPueE3qMwWJaxRlV6HLaTRCmsLCQ6667joceeog//vGP2Gw2ZLlxNFWSJFavXn1c63vttdf48Y9/3OT1r371q3zve99L/f3yyy/z1FNPUVJSQlFREffddx+zZjVfUaezqg3EGNC9bZIh2ywKFlVusZ4w+/0HkCWZHEfzZT/T6e4u5NK+FzBvz4f8buUj3Dj4agZk9muRNgnC8TB0yFHy+cXM7xNMBInpcXx2DzIypmmiyFKTLr8xM8b++uTNhE21Mb77aB5a/PfG6zUNXt40lwJPHoXuPM7tN40/LH4iFaQBeHfHx9w76VYsskpMi/G3z/7DneNv5DcLH+OF9W/w/al3sqpkfZMATL/M3gzK6pf2JiWuH/2YThzKrSJZHcnkMYaOZHOiujPRw/5kUl7AkleEmlGAFqhpEqxRMwtxD52KJasQ09BxDZ6ULMtbvrfp5xsLI1lsWLJ7ED24Hc/oc/CvnNts+0Jbl6NmFhDatAj38DPxjLuYEK5T7ioudE1xTSLeMKQnzZgeWZaQJCmVW8luhqn85Pm064rsXY+toB+hTYuaTFM82WROvxZMk263/h7Z6qDyncfxTbwErbaM8lf/gCWrEFuPwcgWOzkXfBVMEyMWpn71e8QbKsQYGpq/Cikj86iBGMnUMWLphw7BoePO1CFNEEaWJfYGD/DK5sbHYUJP8MTK//K7837EWUVTUWQZr83Nvz9/mbVlyXLdkiRxz8RbeH7d641yyCzcu4Jz+k0jpsW5YMBM3tvxSaN121QbVw69gH+sfA6AcCLSqAdiQk+wo3oPA90DSCT0JsFlof0wDBNZMdFKtlK/9BUyz5xNxbv/wIgEUFwZyHYXeqgeR5+RjZbT6iux5vcmsqvx0BxLdvdkz8rMApBkut/2EInaMmoXzaF+1bvYJl6L1ZtH1VuP4h4xI21OmgZmLJL2XNFc77XUdF074bszSYI6rZYnV7/Q6HXdNPjPulcoyuyJLEksLV7N96fexYbybU3ywkzuOZZMh5cnPnuOg4HkcD+LauHtbR8xILuIN7Y0za80JLc/E3uM4Ucf/hbj0Ll55cF1vLJlLg/OuI8MOQvDMPFZvJzZe1KTvDBuq4trhl4i8sEIXVK7CcI88sgjPPHEE+Tn5zN8+PAWyw3z1FNPNVpXfv7hISpz587lJz/5CXfddReTJk1i3rx5fOMb3+D5559n9OjRLfL+HUE0rhGJaW02HAmSyXn9oZYJwuwLHCDHkY0qn/gwgd7eHswedCUf7v+Uhz//B+Pzx3D1wMtwW0TmdqF1GIaJYlioDNfw7NqXU0GPnr5u3DP+FnxKZqMe1PIRYwXO6Day2SdcAAt2L+H2sbN5Zs2cRgEYSJadfvbzV/jR9K+TYfdSXF9CRbCKh869n3nbP+ad7Qu4fexsiutLWLhvBbIkc3bRNIblDEJJpH+KlWnPQJbk1MXZkeyqLXlcJSChuPCMvQBbfm9ki41EbSmqJwdJtSSHXNg81C96GUffkaiZBWi1yQtEe88h+CZeSs2C50jUJMtpKp5ssmbeQGj7Z40qXAA4eg8nVrEfZ99RJKoOgGGA3PxpUFIUzHgEIxLAv3IuoW0ryL/hFwRwNruMIJwoVTGxGyG0in3oYT/2wn4Ydh+SFm/2iXlo0yIyp15F7SJHo7K51rzeZM36MjUfP0e8Yh8AistH5vTrkB1uZKcXI+xHtrtwDZpIxVuPJI8FQPFkkTVjNuHd6wk1DC1SLMfsCaPJNhwDxqfe74ucA8ajybZk154v0JUEr219N+1yJibv7fiUUDzMyoPrGJY3kNvHzWbogQEsPZBMCrqpYlvaJL4f7VrMuG4jGZE3mFEFQ3lvx8fURQMMyO7DhO5jeGnjW6nehoNy+rHywLpGy48uGIomaShWGSNhHvMzENqGTdGIrJmLf8WbyE4vZjyMmpFH5kV3oUcC6KE6LNk9sGTmo3iz0f3JRLORvRvwTboM/+r3U0ERe58R+MZfTPWH/0KrS/aSUX25ZJ11M9nn3U5wy1IsZiQZUJRlEjWlWAv7HQ5afoG9aBRhvelwJ8WVmXro8EWSxZZMKnyC+5ukmryzaX6z09/c+gGXDzmfp1a/yNNr/sc9E29hY/k2NpRvwWFxcH7/GdgVK0v3r6Z/dh/qYn5C8TBua/LaV0LCplibDC2+aMBZ/O2zZ5uc4yOJKI+vfJYfTLoH2bAgJSxcO+RSJvUYw9wd8wnFw5zRbSTTG0pUi0Cn0AW1myDM//73P2bMmMHjjz/epAfMqRg2bBhZWVlppz366KNcfPHFfPvb3wZg0qRJbN++nb/97W88+eSTLdaG9q42kBwG1BblqRs4bSr1LRSEORAoIcee/js/Hpn2DK4ZcBmba7ax+OBydtXv5d7Rd5B3AsObBOFkybJEebyCvyxr/BtUXF/Czz/9C789+8dY9MNDB23YGJzTn61VO/HZPeyqSX8jBFAVqiEQD6WtjABQFa4hGA/xjQlfwW6xEdPjuKxORhYMoSjWg/JgFaPyhzIufxQYEqppRY8bzV4vWrFzycCzeWvbh02mzR5+OVbTjgHEjWSSxPI5vyFRc/iGSnH5KJj9EzTZguavwL/mfTKnXZPKV5Ex9WrKX/l9oyeLeqCaynf+Rv41PySyZ33qBlVSrXjHno9paFTP/w8A4Z2rcA+ZTN3S19K23zVwIjVH9ETQ/VVEdq5EGTDrhMvuCkI6qmxiqdlF2asPNdqP7UWjyLnwTiSLDTORfqhuPBKi8IYHqXjzkVRgMmvWl6l44y8YhxJKA+iheqre+yf5V/+ArJk3UjXvCTLPnE35q43zUuiBGirf+Tv51/yAyJ61mFoC2ZN7zBvChAae4TMJrHk/1Xutgez04hw6nYBmoigycTmCKZlIpozVsBNDpyqUPtAEyd+kfHcOJibF9SUc9JfR3VvAWUVTGZY3kJ8u+FOzy64p2YjTYiemxblp1NUsK17F/voSfrfob6mbxqLMnmiG3mjY5MDsvsiSxF9XP4XX5ubC/meRY8tGSrSbS2bhEIsepuqz5BBUxenFMHQyp3yJircfaxSctBX2o3D2Tyh//c+HErmb1C1/i/xrfkTl3MfRg3VkTLqCsjm/hSMeUGj1lVS8+TAF1/4Yz/Azie1chbPvKFyDJxFY8yHZ536F8tf+1KSHpq3nYHDnph1lG5cd+CZdQf3SV5tMyzhzNjHZCceoNvRFuqlTEa5qdnpluJqhuQOxKBbKg5X8buHfGJ4/iDGFw7EpVvpn9Wb+7iXURf2M7zaSiwbOIpKI4rW6KXDn8cne5Vw2+Fxe3nS4x5pNsRI3EkSbyTNTXF9C1IjgJHlvIcUtFDn6cu+43lhsCkZMIh4zRABG6LLazRklkUgwc+bMFg3AHE1xcTF79+7l+9//fqPXL7roIh566CHi8ThWa9tUC2ptdakgTNttr8veMkEY3dApDZXTz9fnlNYjSRLDsgfT09OdN3fN49HPn+RHE74lesQIp52uJJizLn1ek0giyuqS9UwrmJwqlapIKrNHXMpDi5+gNFBBn4webKtK/2SuT2ZPIonmk/45VDs+u5ePdi1i/u4lRLUYA7P7ctngc1lTupE1pRsB+MaErzDUNwRdN5AViYQSJZgIYZombosLm+lA10xIyJxfNJNunnxeOZRvptCTz/XDL6OvtwjjUE9uu5ygau7fGwVgIHnzWP7y78m98RdYCwcQXPshkT3rybvyO0SLtxLeuSp9127TILB2Pu4RMwis+QBHvzFkzbgeE5PKV/6AVl8BQHT/ZnwTLm1UYSn1WfQbixGPpMqZNghvWYK3/xR0RJJO4dQ5zCAlL/+u0Y0fQHTPOgJr55M568vUfPB0k+Ukix2LK4NYyXYKrv0xRjQEqoXY/i2NAjBHqlv2Jr6Jl5J/3f1E9m1skhg0ycS/+n3cw2dg7T6IqOQ8rqfyYdlDwU2/pn7xHEJbk0MOXEOn4JtyDWHJjWmNs7piE69umUdNpI58dy6zh1/GgMy+FGX2orZ0Q9r19snowe7aYiRJ4u4JN/OvNS9RHkrebP78rO80eTJ/pIgWoS5az8qD6ygNVnDpoHPYUrkL0zRxWOyc23c6Z/Wdyr/XzCHbkckVQ8+np7cbsiThUO3MHnEpoXiEPfX72anvYlLhRKSESMTdXkgSaDWlqQCI5q/GXjiAkv/+pFEABiBWuovaxa+Qf839aNEg6Bqyw4Nh81Jww8/A0PCvfrfJcQiAoRNY/wmO3sOIV+wFQ8M7+lwq9m8msOET8q/6PnXL3yB2YBuy3YV37Pk4R59HQEuf1yWmKzhHnY+aWUj94jlo9RVYsgrxnXk9csFgIvoxklinYZEtDMgqavYhTL/M3rgkJ7866we8uOF11pVtYXvVbrp7CphZNJlfL3yM/lm9mdBjNG9t/YA9tcW4rE4uHDCT7039Gg8u+BN9Mnpwx7jrmbttPqXBCvJdOVjlo58HdVNHliU0JUZYD5MwNDymC7eSQegoQ7kEoStoN0GYmTNnsmrVKmbPnt2i673kkkuora2lW7duXHvttdxxxx0oisLu3bsBKCoqajR/v379SCQSFBcX069f18gHUnMoCNOWw5FcDguVdSefEb5BebgS3dTJdZ5YPpjmeK0eruh3MS9sfZWXtr3O7cO/3CLrFYTmGOjsrTvQ7PSt1TuZ3m1y6u+oGeFfn7/MtybfzpaKHYwuHMaCPUublFiVJZlZRVMwTAOLYmkyHeArY67hr8v/xe7awwGJ7dW7+fPSJ/nOlK+yp66Y2kg9/1j9PH849wEs2NkX2cffV/4n9STZbXVx57gb6evpi6TLuHWNkTs2M7DnmUiuDMz6Kuzb1uEa15PgoVOQooWI7t+cdnv1UB2SFsM38VJk1UJw82Ki+zeTc8k91C2e0+znFC/fS+7ky3EPm47hKSCgKTjlGPbeQwmur0jNVznvCQqu+zHxst2Etq5IlqgeOhUjFqb6w383Wa9ssWNKYvy6cOoURSa6Z1P6Gz/Av/pdut36ELZew1Edbix5PTGiYaIHt5N7yT3odaUkynZBPILqyyFauotEM0OCIFlpzIxHiZXtTpszKTVf+V6yzvkKUdmDZhzfDaGuJ5MPO2bchvfMGwBISHYCuowk6by3+2Pe2f5Rav7yYCWPLH+am0ddzY0jr+Dz0o2YX4j22FQbI/IH8862+YztNpzPSzemAjCQ7OkypnA4Kw6kL387In8w/9vwFgDryjazt7aYB2Z+k4pgNREtypCc/khRG3eOvYWgEeDhZU+lSl9bZJXz+s8g25nB/N1LuGX01SSkGFYxFLFdkdTDDw9lq41ETUmTAEyD0Nbl+KbPJmHNxKYHiZftQrU7KZv7OO7hM4iX7Gz2feIV+7D3HIzq8hFY8wHqjOvIueCrxCv2E9i0CO+Y87CefwdGIo7kySWQOPpDzbBuRe09geyew5ExMJCJSc6j9rCUZQlD0ZLncKzJBx2HGKbB5J5jmb97cZOqYIokM7NoMpph4DF8fHXUTWijE0hIWGUrT699AUWSGVkwhEeWHQ74huJhXtk0j62Vu/jZrPv4eM8yqiN1fHn0l8hz5SAjEdYiqTLgX+Sze3GqToJGfZNj64oh5zOr1zTQRFBT6LraTRDmG9/4Bvfddx8/+9nPuPrqq+nWrVvaXjHHWzUpNzeXe++9l1GjRiFJEgsWLODhhx+mvLycBx98kPr6egC8Xm+j5Rr+bph+Kk6kTFtDGbt05exON384jsOmYLe1/I+hfGh7kv9t/uTidljYdbD+lEvblUWS43jzXDkoyok/TUgnw+FhZs/JvLf3Y84O7KN/ZlGbfl+nU2fdLjix47FNSTI5zqxUst0v6u4pQJFlzEO/3hFTY1/dAX678DGG5g7AZXPyw2l38681c1LJ9XJd2Vw/4nI+3LWIvpm9uG7YJTy3/vVG6/XY3Hhs7kYBmAaGafDm1g+4oP9MXtzwJgk9QWWomgyHl4eW/L3RePBgPMSflz3Jb875EYWKm+q3HyVWvKXR+uKAHqzDPes24qYKkfRPs+19RpAx6XICn71FtGQnqjeHnAu+iuavRlJUVG/zQwRVXy7hrSuw5vdB9eajqgox04Fv0pW4Bk8mUXUQxZOF4s6gbtHLJGrLcPQbg3PwZPRgLdVvPZp2vZ4zLkZXrKiSSBJxstrDsdgefutUVSbur2x2uhkLY0oKORd+jcDqdwltXXEov8u1RPdtpPr9w5XCUFQKrrsf9ObLMqu+HKz5vVEyCzBj4WYL4aq+XDTVhYGFE/2qdGR0yX3ENkJEDjNvx4K088/Z9Dbjuo3gh9O/zpOrX0hVXunp68ZXx13PC+vewMRkbOFw5mxsXIHpvZ2f8sCZ97K2bDOxLwyJ6JvZi27ufL4y5hokJNaVbWHxvs+Yv3sJpYFy1pVt4U/nPYhbsRMjzi8/eaTRMM2EoTF3+3yuH3E5bquTx1Y8yw+n343H5u1UQxEbUop11HO+6stHstox41Fkm6tJb8pGDA30BBxYT8n7T1Nw3Y8pf/n3mHoCPVSH6ssj1kx+F9WXAyR7ZyZqSoge2I4lq5DI/s1YMguI7F1PcNMiMs++lZjkQFWP7/wQlw8H9SSa/23UlDi7/ft5Z/tHhOIRxhQO46w+U3HixjBMdDnBov0r+eak23hh/RuUBpMPGvJdOcweeTmL96/kSwMvQlUsYMqoZvKha5QQq0rX85Ux1/Dqpnlp33tjxTYqQtVUhKrJdmawcO8KJvYYi02x4LY5uXTQOby1temQ41vHXIOqyDzwcdNj6+VNc8mw+5iYNw5dF+dSoWtqN0GYCy64AIAtW7bw0ksvNTvfli1bmp12pOnTpzN9+vTU39OmTcNms/Hss89y1113nVpjj4MsS2RmnvjQFa+39ctEh+MGPrcNj+f0vbfLaTvq9OxMJ4FIAq/PiSKffPCkprgar81DbmbGSa8jnQnuUXxetYGPDnzK+L7DU6+3xffVGjrbdp3s8dg2XFw97CL+vLRpXipZkplRNKnRsWqE4/jsXuqjfjZX7mBz5Y7khdeIy8h35xKMh6iJ1LFw3woGZfcjx5WJz+blR9PvYc7GtykNVtDdU8DsEZexuiT9kACAHdV7+NoZN7Bgz1LKg5W4bE7e2/lJ2qS7JiZvbX2frw27tEkApkFoy1KyZszGlVVIQvIgqdZGQ4vUzEJ84y6g7OXfpW4sE5X7iexaQ9asmwhsWoxr6BSCGxeSbryEZ/TZ1C6ag73XEKpf/S05538Va35vElUJyl95CNWXi2Sx4Ro4Ac+Yc5IVKXQd2WLD2nMw3omXoVUfJF5ZnBq+5Bw8CXv3/qhu8TT8ZLW3Y7Gtf+vCvYemzQ0BYOs5BCkepOQ/D6TywiQqIbp3A56x5+Mdf/Hh6l66Rt3S18iaeSN1y95Im/TTe8ZFRA/uoPrDZyi47v/wr/kgbWn4zOnX4szMoqW+pdKKkrS/EwBRLUYwEWJPbTE/mHY3cT2BLElISHx2YC0z+05ma/UuZElG/8I6YlqMZz6fw4+mf50Fu5awpnQjdouNmX0mM6nnGP6x8nl21uxFkWTO6D6K7079GmvLNiNLMlmODFw2B5lOFysP7Gg2T9a7Oz7muhGX8Y+Vz1EWrGRA76K083VU0qEoTFsfByfL1G3kXfldyuf8Fs1fjSW7e7PzKq4MZEWh+r1/4igaSWT3ulR1o9DW5RRcdz+hrcvSLuubeBmmrlH7SbL6kH/lXLwTLyf34nuSwR1ZRrbaURweTry49NEFYkFeWPsWn+49XFlof/1BPtq1mF+f8wPyfDnURqJM6D4a3dT51pTbCcRCRLUo9dEAr2yay5DcAWS4PViVxj3eK4IRTNMk0+6jLNh8QLgsWInL6mDxvpV8ddz1VIaqeGvbRwTjIW4ZfTX3TLiZt7fNpzJcTW9fDy4cMJMD/jIM02z22Hpl01zGdRtBljejRT4nQeho2k0Q5p577kmdDE6XCy+8kGeeeYYtW7bg8yXLMQcCAXJzDz9N9fuT2fIbpp8swzDx+9OPy05HUWS8Xgd+f6TVn7KUVQVx2lQCgVMfDvRFsiLjctoIhWMYR9kulWT1geKDtfjcRw/YHM2uqv1k2jJOy7aMzhnO+3s/YdvBfRR68trs+zqdWnM/bM0bsRM9Httaf18RVww+nze3fZDq5mtTbXxr4m04TBe1tYfLwcoWmSsGn8eza19JvVYequKR5c8wLG8gd4y7nupIHSPzB7Nk/yp21ezj9+fej8fq4t5Jt7K9ejeVoRre3fExvXzNX8DaVBuVoRq+MuYa/rj4CVwWJ3vripudf7+/hEg8Xc6JQ0yDRCREsDaERXbinXgZ9UsOb4PvjAup+fj5tE/2az55noJrf0Rw8xKyz7uVmgXPHQ7gyAoZk68gUVtO9tm3ULf4FeKluyj5z/9ReOtDYHMj212pRKZ1RwzfkFQr3b76MFo4hGxzILt8ZAyehMWXi6lYwZVNIGGB2ubL8XZUrXU8tpdjsS3PuUdyZHRHzSxEq236BD/r3Fupeu/ptIl5A2vep+C6+/GvejcVSFGcPiK715F78d1Uvf8UZsPxJ8l4x56LqWsoNifoGoHPPyTngjuo/ujZw+uXZHyTrwBFJVpVQtziRT/O4UhHYzlG3ghI9rZ74KOHUkMpnBYHt4y5Gq/VTa4zi40V2xnXbUSjG1GAPbX7+e3Cx/j5rO9y7bDLkCSoj/n5wQe/Sf126qbBigOfs7e2mO9M/Rq/+ORhZg+/FMmQ8fsj7K5t/nesLurHZ0tW2Czxl7fa/tJax6NpmkiS1ObHwalQcwbQ7at/IbRpMZIsYyvsT6y06dCizJk3Et67PrmMN5d49eHeppaMPIxoiKyzbqb20xcPl56WVTKnX42pJ1C8uRiHjinZ7sI9fDqJqv0Et65AcfpwDZ1CJKqTOEa+MEkCCwkkPY4pW0hItrTDeRpUG9VN9nuAUCLMsv2r6Z3Zg8dW/JvwoXxvyeE+FxDTY7y19UMsioXvTv4aIX+cEI17ncqKytDcAUhIzVYyBFBlhd6+7pzZeyKrDq7jvZ2fpqY9u/YVCj35fHnkFVgUC1sqd/Kvz+eQ784llGj+t742Wk8kEWt0PfNFsiIRNZPbZZccGG3Ua6Y9PTgQOo92E4S59957T2h+wzAoKysjJyfnpBLo9u3bF4Ddu3en/r/hb4vFQs+ePU94nV/UkDjzROi6cVLLnYpqfxSP3XKaugQmt8XQjaOu325N7orV9VFc9pPPTVMSKKOnp8dp2Zb+vn58LC9l6YFVXDEw2XOrLb6v1tAZt6tDbY+mcm6vmczoPZnSYAV21UauK4uEruHX67Erdqy6A0PWCGsh/LEg35p8OxISkgSKpFAf9ZPtymJt6Ube37kw9ZRrRp9JKLJCcaCU4rqDfLpvBcX1JUiSxLn9zmy2SWf2nkBcT1ASKOPOM27CJtno4SlsNhFgN3c+NvVoAVUJyWJH0ww0wDnyXGSrg/plr2FEQ6i+nFTZ6SZMg0R9JZE969DDfvKuuA9MEyQJ1ZuDaRpoNaXULvzf4bK5hk79opdwn3sn2RfcSeVrf0RSVGSnB1PXkWSZ7AvuJFaynao3H6Ghd01w3QLUjHzyr38Qv27jaMMqhePTno7Ftv6tC0oO8q57gLpP/kt422dgGijeHLLO+QqSaiN2cGuzy8ZKd2PJ6U6iMhlE0AM1mNndCaydT96l92IkYphaHNWTTWj7ZwTXzcc1dCqQ7IlmRIIUzH4AMxFHC1SjujMIbl5K2Qs/R1Is5F33f2jePpzovXnDAzXTNJFlCbfVSYbdmyoJfaQe3kIAXt7UeKhROBHhHyuf5yczv8ndE25C03UynRmUh6qY1ms8XpsbWZLZU7ufPbXF1EbrkZDxqG7+u+6VtDe15aEqDvhLuWnUVZQGyglpYTySlx6+wma3xWvz4LYme7719HUjkdAx0pTa7qgaPqa2Pg5OhQZE8WEZfRmaBNlXFlG/6CVCmxaDoaG4MsiYeQNqnzEEPklWxtMC1ViyuqWG5DmKRlK37A0Uh5u8L30HIxICDGSnj+D6jwltXUHG1C/h7D+WWOlu8i7/FpVv/ZVE5eHzX/3SV8g851aU/lOIGU2vY2VZwkIcJVhG/eI5JKoOYMnqjm/6Neiebo2WkSwGMaJohkZCjzM8bxAbK7Y1Wp8iKxRl9eKhxY2HBCeH+7zDNyZ+hVEFQ7h26KW48BCTosSMKLIkY5PsKLoFdJWbR13DJ3uXMq7bCFYebFyqveF9huYOoDxUhcPiYMGepr2FSgPl/Hnpk3xv6p28vuU9ACyKhSnucc1+bz6bB9lU0u53siyRsET4eO9SFu9fiYzEzD6TmdprAmrcftSglSB0FO0mCHOiampqOPvss3nmmWeYPHnysRcA5s2bh6IoDB06lNzcXPr06cN7773HOeec02ieyZMnd5nKSJCsjlSY1bbd61325K7oD598haS4nqA6WsPovBEt1axGVFmlf0YRK8s/5/IB55+W9xCEFE3BipMiRxFxNcy/Pn+Jz0s3YZLsOnzjqCuJa3E8djeqrFIdquHNrR8QiIeQJZkJ3Ucxq+9UrIqNLEcmLquTSwedS7/M3vx77cv0zujOsv2ruWTwOTy56gVM02TJ/pV8edSXeG5d45LNvXzdGdttBJqeYFvVbmaNnYYelbhowFks3LeiSUJNgMsHn48sWZt9KukcOB5NdaVKcYZ1G5YhZ5M3cBLoceRmnsg1kJDAhMiuz4ns+hzJ6kCSFWSnh8zp11H55sNNlokWb8arxdHyh9D9aw9jRAJIqooe9mPGIliyCjn45H18cXiTVldO7SfP45x5BzG9Y+ZOENon0zQJmC6cs76K78wbMQ0NVDsx2YWqHSM3nUSjXTVavJXsC75K/dLXKX/1D0gWO5KiYkSDAORcdFdyqNIhkb3rcQwYR2jLUhJVB1PzAZh6gsrX/kj+Vx4ieJzJaK2yjs0Ik6g6AJKEnNeLA4kAb2z6gK+Ou55HV/y7Ue4Wt9XFNyfdyivN5KIwTINl+9fQy9eNJcWruX3sdVw5+HyeOaJC0qCcfnxlzDU88dl/KfaX8tB5/8e2qj3NtnFT+TZcVidvb/uIWUVT2VC7Cbtqw2V1Eoo3fWp/fv8z0Q0dl9VJka8XRlzc/LVXiUTyZBLHgWPazXinJHuwoNiIKS4iOjgGjie0aSGRPevxTbg4OSTP0FLHUXjHKsI7ViHZnEiQqjRmLShCUm1kTLsaIxYhtP2zRgGYBrUf/YvCPiOJyZlAsteLQ44hRevRastQHW70QDVabTl6sBY9WEv0+Y1kX3gXlj4T0QwJzRrjfxvfYPmBzzFMA4/VxSWDzmFo3oBGeZFGFwxlVcm6ZnuvfLRrEd8YfyuqYaE4coCn1ryQehgzMLuIO8begIcMfFIG5/ebSVgLs7++hPIjhiVJksQdY2fzwvo32VCxlak9z+Dbk2/nkWVPN6lMpptGo6TAlaFqsg9de6Q7tq4YcgE2046e5vohoUb4+ad/SeWIAnhp09ss3P8ZP576DZT4yfeYF4T2osMGYYCjRkJvv/12Jk6cyKBBgwCYP38+c+bM4eabb04NP7r33nv53ve+R69evZg4cSLz5s1j/fr1PPfcc63S/vbAME38oXibVkYCcB7q/eI/hTLV5eFKTCDLntEyjUqjX0YRm2u2UR6uJCvLfewFBOEUJdQov1n010ZVQWqj9Ty24t/cecaNyKaETbU2CpwYpsHyA59TFqzk3klfIZyIENGi1EX8xL0aqqxQHqyiNFhBXaSeK4dcwDvbPmLRvs8AuP/Mb7CrZh91UT+jCoaSYffy4c6FDMsfRJY9A1lXMTBwS17um/xVnlj131RXaLtq446x15OpZhLRFbIv/w7Vbz1MrGR7qn2OotFknH0rAb3xKSihQQIXyC48ShhLTo/kDd0XyQqWnB7oobrUS2Y8gglkzphN4PMP0n6WitOHKctYzSh1y17H1X8clfP+jhkLY8nqhmf02WlzZACEty7Hd+YNxBDHvdDyYrpCDA805LA3DHTZhr3X0GYrh9kK+lG78HCFMHuvIUgWO3mzf0LVG39CD9VjJkBSLPgmXYbmr04Nw2tgzepGzYFtX1w1AEY0iBGoBtexgzB2OYG2YwklH/8XDB1JtaLc+it+9unD6IZOfSzAtyffTnF9CeXBKgbn9GNgVj9USWFHdfNBk9JgBXaLjYP+MsKJKL9b9HijoO+2ql38eemT3Df5dg4GyonrcSb1GMvyA2vSBoddVic7a/Yyrdd4SvylPLr8GXp4C7l34ld4es1LVIaqgcPV5DIdPoKJMD8589tYNQfG8dTrFtpcTJeTv9UyyQDLoUpClvx+qBn5aHXl1H82l9xL76H6w38R3rMWz6iziR1I9jwzY+FG37R7+AzilfupnfM8uZd/k8Da+c2+d3jbciwjLyGR0HHLEarf/BOxIyovKd4cci+6k6p3n0zlG6v56N8U3DaCmGrl4eVPNkqQH4iHeHHDm9ww8gqG5A5gS+UOADIdPsqDVTSnPFiFYZjU6nX8etGjje6Ztlfv4eef/IVfn/1DLHEHVt2Jw+Li/un3ctBfwoaKbfjsHvpk9OSjXYtYW7YJgIX7VlAZrubqYRfx/Po3mrynKjc+p7+08e3ksbX6f1SGaxiWN4jJPcfSzZNPvisXI9r0eFJViYXFKxsFYBqUBsrZWLmVcdljOmzPLUFo0KGDMEdTVFTEq6++SllZGYZh0KdPH+6//35uuumm1DyXXHIJkUiEJ598kn/+858UFRXx2GOPMWbMmDZseesKhOIYZtuWpwawqDI2i4I/1LRs7vEqDyUrI2XZMluqWU308nRHlVXWVWxiSI/OlaBPaHsNXZAjWhSHascuOSgOljUKwBzpza0fcO+kW/nH6hfSTt9bd4DaiJ9XN88jqsUo9OQzLG8A1eFaJvccy5L9K3l501wm9xzLfVO+SsJIoEoKEhKTeo5lefHnPPv5y4QTEab3nkCuK4vz+89ASxy6+NFlBrj789uzf0wgHsQ0Tbw2DxbDjnno4WIQJ77Lv4cSD2LEwsgON7rqIqAf/TfH1DWyZt5Axet/OTw+/5DMaVejuDLwTb2GwKq5GLEwakY+GTNvxJbXu3HVmCN4J1wGkkLNvEfJmHQ55a/+MZVLRrLYUk890zfIAMNI9j4QhFYQNW1knnM7Zc890KTsrm/SFUQPbgfTQLLa8YyYiaPPCMJ7N0LRJHJv+i1EA6BrKA4XdQtfSpt0VLIc/YmymYgiSYeHrTRQFJm4HCGsH2qXJGEc3Ib1kjuJurw4XJm8uWcJ+qEEwTtr9vL7RY/T09eNTLuPQncudtOBjk5PXyG10fS9fooye7GvrpiZRZOYs/HtJoGV/ll9uHb4Jby55QPWlm3GrtqY1XcK35t2J4+t+DeRxOG8VBISw/IGMX/3Er427kb+sOQJAA74S/nX5y9zxZDzybT7SOgJ8t25rC/fSk24nlF5w5Hjlk41DKmrCpku8mY/SP2SOYQ2LcGIBMi9+G5khxfZ7sJa2J/4F3puWnJ7Ye81hJJnfgiApKiYiebznRmRAApgVzRqP3q6UQAGQPdXUfXBM3gv/QZ+I0rU0HFICho6dfG6tBUKAd7ZNp+bRn0pFYQJREP0y+rNhvL0QxZ7+rqhygqvrH8n7UPrUCLMqpL1TC+YDIpJhBDBeIh8dx5Fmb14bMW/eWlD02NuS+VOLh10LoqspI5vSFZurAxVk2H34rG5qQrXUFxfwvLiz7l7wk14bV5WHlzLq5vmEUqEGZE3mGuHX4YHH+YRecRjxFhSvKrZz/fTfcsZlTMcEOWthY6t0wZhHnjggeOa75prruGaa645za1pv+qCyRsQt6Pth1+57Cr1oaYJCI9XWbgCl8V5jDwUp0aVVbq7CtlSs+O0vYfQNZm2OC9vmUtUi5HtzKA6XEffzF5EtOYv9sqClUjQbPUBgH11B7jrjBt5ePkzWGQVq2LliiHn47G6cFjsRBJRlhWvYVnxGiQkFFnh1+f8gP/76KFU7xaAeTs+5vPSTfx4+jfgiMPU0EHV7WRiTwYo4o0H85gmRHQrKFngzAJAQcamxEGSSRhK+psbQ6d+xTvkX/MjQluXESvbjerNxj38TKLFW4lVl6COuoS8EbOQDB1DthCTnGDGyDz3Nmo//BdHtsQ5eAqWPqOR4kH0sJ94xf5G1ZgSNSXYCq5u9nO05PTEUGwiJYxw2qmKhEoCU1KIytkU3voQwXXzie7bgOLy4R42HT0cQALyvvRdTF0jtHUZ5a/9iexLvoGmm4QMJxzKZWKTE1h7DiW0dTlfPCZkdxay3d1oKFKKJKNk5DcJwEiKSWn8II+v+k+q50i2M5OvTb6epcVr+HTzcmaPuIxt1bubrLK4voTi+hIiWpRp3cdjmhIXDjyL9WluJC2yyvC8Qby97UNmFU0mGAtx0cCzMA0DSUp2cRjbbQQPLf478UOB2pge540t79M7owe3jrmWxz9L5gCRJIlbx1yLPxrg12f/EAmJkkB56r3Kg5U8ueqF1LyXDDyb3hk9UGWVhJHAKnXay+VOSZLAqphIpo4uWUgc6gnTMPzPMf0WvFOuBdNAV2yEzWRy3Nwr7iO6Z22y6p5p4ho4AXvvYVS9/0xq3fGy3UftoeYYMJ6oZmAzwkR2rG7aNtWK5byv8OzB5Sw9sBrTNFEkmcsHnUeWq/mHiP5YAJ/dQ9/MXowtHMGM3pOQJEjoCbZW7WqSn+3qoRejmwY7a/Y2u85NlVuZ1usM9tYX83nJJpYdWIM/FuCH07/OpsrtzS5XHa7Fa3Wngqc+u5dvTr6N+qif64ZfSk2kjm7eAkzTwGdLVl56ccNbjXq9rS7dwLryLfzyrO/jk7JSgSJJklDl5gMsFllFQhJ90oQOT5xVuri6YPJuyu1o+13BaVdPaThSWaiCLFtGyzWoGT093fisbA1amqotgnBSLDqLiz9jcq9xLCtezY7qvRR68hiU24+acC23jb2ODLuXUDzMJ3uXs61qF5CsICJLCqqsohnp90enxcHBQDnju49iRN4QrJKVj/cspSpcyzcn3sp/1r1G6aGbEbvFxj0TvsKHOxc2CsA0KA1WsL16N8N9w0+qkoYsSzgJEd25iuDWZUhWB57xFyNl9iCsNw6e6qoLIx6hbM5vcA44A2ffUejhAFXznsBIxCgceyFBzSTekK/CSP5Lx4K13xS6FY0mum8jRiKKo/cIdLuPkG7FlahFcXjR/I17F5mJGInaMhx9RhI5VEHjMIms824nJtlJVw5bEFqCLEu4zADhzUvx71qN4srEc8bFaJ581LFX4ht9EaoiUf/hPwlvX9l0BZKMtXAA8S8ENWOGBVu/KXQrGkV0/0ZIxLD1Ho5u9RKW7GSedTOBVXNh3LngzYZoCNYswJZfREJ2Ngk8hqUgv1r0aKOn4NXhWn6/+Al+OP3rLCteTSAWIsvhS/22fFGOIxOLpBDT46wv28Lt42YzZ8PbBOLJSim5zixuGn0Vr295j7OKppLjzCaqxTkYKGNAdhFndBtJdbiOD3YuTAVgjrSv7gAui5Pbx8xGkRWG5A7AZbUjJVTiMQPdEsNlcaat3mKaJm6rize3fkBxfQkWxcL3p9xFD3sPTF10hWvv7HICJVxJYOU7aIFq7L1H4hk+g7DsRj+0y8Y0mVhDEXYdGn7X/boLZ7/J5PQeiVZfgR72I1mdaFWHK2j5184n95J7iB7YnswncwRrYX9kXyGmYWJqMdKdL6yTL+PZA8tYU3Y4iKObBvP3LOHmMVcjITGyYAjTeo3HplqpCFXz0a5FVIVryXPm8J0Jd4FsciBQwvs7PyGqxxjffRRfGnIBT63+H5qhcdvY2WRZssE0yHT4qE/zoCbflcO1wy/lk73L+LxsE26rk1tGX0VluAbDNJAkqdm0DwWeXK4fcRnVkTp6+3rQw1tIVIvy8LKnG1079PAWctvY2dhVW9phh5qh8cKG17lr9M2QSN6HWE0b5/Y7kyeb6eF7Xr8ZSLqSdrihIHQkbX/nLbSpumAMCU6pIlFLcdot1J9KECZcQY4juwVblF4PT3cWl6xgZ80+8tWC0/5+QuenyXGyXZn8ftHjqSR726t3k+vMotCTz9xt8ykPVZFh93J+/xlM7z2Bp1f/j1lFk9levYfpvcfzcZqKBU6LgwJPHs+ufYVvT76D7q5CwlqErVW76Ontxke7F3NB/xn0yehBKBEhYSTQjASrSzY029bF+1cyfNwgiJx4V2AXQcqffxA9UJ16LbJrDa6RZ+GaMpuIcbhHXgwb2Rd9nbLnHyS8bQVH3iplX3LvoV4v6d8nbqjE8aL0nYYkQVAzUgmAJZuLhL8S97BpTZar+fRF8i77Jrbu/fF//hFGOICt+yCyz7mZhKsAXRMXfcLpIUng1Gspe+4BjMjhXinhbcvxTbkay8jziRpWJFPCd+YNRPdvadJ7Jevc24inCZoAxAyFGF6s/afj8zmprQ0dyqlgohSNZn+Gmxc3z6V8RyU+u5crzjiLST3GEYs1vkyUVXh/56eNAjANDNNg4d7lXD74PHbX7GdW0RQ2VaR/mj6t9wQ21Gynf2ZfKoJV7K7dz61jryPT4UNCojJUzZyN7zAifxDdvQU8MP8PqWW3Ve3mg50L+dXZ3+cfq5rP4be8eDW3j7qRaFRDMiDD4aI2mgzyWE07Fw2Yxcub5zZZTpVVemd058UNbwLJngYPLfk7fzz3ASx62xYxEI7OKmto2xdRueA/qddiB7bhX/kOBTf9irAl55jDysIJGfCgZPogEyRiWAv6Et23EQAj7Me/ci75V3+f+s/eIbpvE7LNgWfsBThHnUvIsAMkk8Wr1kY9LgG03kNYs/wfTd63PhbAIqvcN+UOdlTv4d9rXyYUD9PT142rh11MXE9gMx1oaPxv0xss2X84ELulcie5rmwenHUf8v+zd9ZhclTp275L2mXck8xMfOLuSiBBgiQQCBpYXJfdZWG/ZeG3LOwCu7DG4u7uEkgg7u5uk4x7u5V8f/TMJJ3pCUkIyQB9X1euXFN1qupUd5ec97zv8+giJs2CquhIkszUorP4cud3aLrOnvr9qJqKSTJy3aBLeWThU7gOcS1bXbaR8YUjyHVkMSCnV9x3gWSzE1fQw9sbP+PP436LUbES1gM8OP8/LSZvStzlbKrcSlBp/d1+Y+U2FEFBbhySKopGn4wedE3ryI7Dsun6ZhUlBLIT/GxIBGF+4bi8YWwWA6J46md3bGaZ6oaWs+9Hg6ZrVPtr6JLc6QT3qiUZljQMosyO2t1kZSWCMAl+OIqu8Nq6D2NcDgbk9EIQRJ5Y/nLzsoagm3c3fc74whHM6DeNNGsyJe7yqMikp5LtNXtIMjsZ0X4gqZZkijI6o2gqISVMijkJKWJEl0NcO2A6O2v3YjNaybJnoOoaf1/0NACX95mC+QglfWbZxOqKDfRN642gHP0jxCiDe+mnMQGYJnwb5uDodwaCJae59EHTdALmDHKu+Qf+bUsI7d+ElJyNo/9EIsYUwtr3uxTFy9aJSDasHfsjmm1IjrTY/qgKVR//k6zLHyCrz0TQNTTRgDkllUB91LI0QYIfA5Oo0DD7tZgATBOuJR+Q02MkITEFXdfxy6lkz3iUwM7lBPeuR3KmY+8/CcWcQkhrGRw1ShqSFkETZTQ99rqRZIEVVZt4ae07B48XdPPqxk8o9dVwQZdzECIH96kKCrvr98Xsw2IwM6L9INKtKSiaSqeUfIJKmFxHFhcUTeLTrbOaZ61FQeTCHmezqWo7M3fO5Yo+U7mszxTumvVgc4Zfp9R8xhUM5+Jek2mflMtd3zzU4pzCaoRSTyUm2RQ3EwbAbLCg69H7gCzHnreq6IzNH8HehgOsKjuY+WaSjNw4+Ao+3x4rvKpoCltrd9E/pd9xZQEm+PERBAGzEMavhLH3Gotv29LmAIgeDlD39fMknfc7AhzdpGPT96wJRpLHXEbF6/fSFPkP7N1AqHIfzgETST/zBhRkwqIF7yGJMWHRhnPwObiWfnxIJ0U86hHK7nWYu28Ja8s3Ny864Crjf8tf4XcjbkBCojJUFROAaaK6MWPm3IJJzRMGihgh3ZZKUUYXdF1nao+z2FS5jZAaZu6eJTEBmCbm7l3C0Hb9mNh5LO6Ql2x7BjmOTNwhLxsrtnFlvwt5bd0HtE/KRdIN6LpOjb+2OYvtcLbW7KJHRtdWT9koGaJuh4cgho3cNvhXFLv2M2ffEiRBZELH0bSz5yCGT718QoIEJ4KE1+YvnAZvCFsbKEWCaDnS8WbC1AUbUHSVFHPSCe5VS0RBJMuWyfaalvXuCRIcD4FIEE8odvA1tnAYn2+fHbf9vH1L6ZbRER2dvjk9+PviZxnarj9/Pf1ubhx0OaXucubtW8o3u+ZjkGRG5w/FKBpRjWGeXfU6/132EjN3zuWDzV/y6GFuIytK1zEqf0irfR3arh9vb/yMCH6kY3iCGDQ/vk0LWl3v27wAgyF2AKmq4NHtCD0nYTvrTkwjLscrp8cdaB4tIVXENnQqoZpSMibfgrlDj+Z1otVJ2jm3ojly8apmvJqVMAkrzAQ/PrIWJLBnbavrg/s2IDVecJoW1bWg++nYzvo1ppFX4TNmEtJiB5eyqGPX6gkuep36Dx/E9/V/MdTvQT0k0BMSA7y96ZO4x/xuz2LCxGpSyUhk2TOa/x6dP4Tbhl6NK+hmUfFKihtKkCUZd8jDH799lAxrGo+d+Sdm9LuIa/pfzN2jbqbMU8nMnXMBeH/Ll0iCxB9G3UpGo2bU7rpivt2ziGxrBmXuqrhZNwAL9i1jQuHIVj+zEe0HEA7H3xZACBm4uvclPHrGvdw86Cp+P/Imbh92DbN2LWBzVUvHqLpAA8Kpn69KEAezGMHi3Ufd18/h3bwQXVPJuuhuLB37NbcJlW5DUo4gvt4Kuq4TsWWScdE9SI6D2dayMx1b0QgCcjI+zULksIrgsCpg6XcmSSMvihHAtpmdcY/TM7MLKZakmADMoby67gN0g8r8fUta7ev8fcsICdEgj2aM8PaWj/jjt4/yydZv+HTbLB5d+BSiIHJetzNYXtL6/WZj5Ta2Ve/kugHTERBYXLyKcncVV/W/iBJXGZ1SC7h+wOUIERlBEOKWOzWxo2YPA3N7t7p+XMEIjHrL56wUNtLZ1oUb+1zFdX2upMBckAjAJPhZ0TZG38eB1Wrltttuo3379qe6Kz9p6r2hNlGKBNGSKG8ggqbpx5yZU+mvBiDlJGjCAOTYsthRs+v7GyZIcFTE/70HlfgzZrquU+Iq5/nVb/Hr4dcSUkIUN5TiCnr4dNtBe+ZSdwVLDqzmnlE3Y5dtfLHrW3bW7ovdFzpBJdSsK7Ozdi+Tu06gS1phixruMQVDqfTV4A37KKnaRZ+kAnxyWqt147FnKLRq/wygt6JpA6AoOkqz1+gPx6eaMPY+E0Hzk3rWTVFhX1VFN1oJCTbCaiLVOcFJRtc50u9b19QWAQBF0Vq9LiRJwOg5QPlbDzTrVkRqSgjsXU/K+CuQe4xHQcIf8cc4CMUcE50qXw0dTLaDGWqKwOSup7P0wGqKMrrQLb0Tjy16tjmQW+qpYFXZBq4dOJ0afx3Pr36Le0bdzKLilTQE3dQGYm1nQ0oIVVPp7OjEA2PvwhPxIYkiJsGMQTNRqbVuwbuufAuX95nC2opNFDeUxqw7s8s4Ui0pKKHWgzAAQsSAnST6JCejymH+uug/lHur4rbtltYJNXFvaHMYRRVlx0LqDylBitSW4tu2lMzzf43iqiZS2/T7OL7vL6zJyJk9yLj8IQj7EUQJ3WjFlJKGvz5+Bgg0Pmv6Tia717io05hswmcyUZjSnr31B2LaTik6i83VrZs+1PjrUDQFRW/9N602rpMkke31u+O6DH2+/VsG5PTGYrTgDcXvu91oo0NSHn/89lHUxud2qaeC9ZXRa+7SHhcgqQZEo4imaeQ5Ws8KNxvMhNQwU4rO5OOtX8esy3FkMbnr6bSWHKRpemMCauK6S/Dzo80FYbxeL2VlZbjd7rgv9oMHDwYOBmES/DAavGGSbG0jsmwzy+g6eAKRY+5Tlb8aSZBwGO0/Uu9iybZlsLJiLa6QG5t0co6Z4OeLw2BvdipqQhaOnO1hlk0omkqZu4L85HYMbz+QRxc91aKdqqm8uu4D7hl5C7P2zI+7r+Ula5nUeQxf7pgDwFMrXmNG/4uY2GkMGyq3YpAM9MvuwQFXOe9u/BwAq2yiYe6rOCbdRuB77KYBIoIJa/dhrWbD2HqMIRA58oDpRBJWBMJNwowC0adh4mUvwSlCFc1Hdlwp6BPVNjpKTHqAuq+ebiEcClA/7y1yuw4liANZPPJroFk2x7gj6Toky8ncPOhKzAYTz656M65A5tsbPuXGQZezuWoHX++cR5f0Qr7eOS+mTc/Mrpzb7QzWVGykzF3BsPYDybKnI2kyBt2Iqmq0c+a2KhCaaU9nZ91eJnc9HUVX2VS5DbNsZmzBUAyiAYNiPuqrWdN0ZNXEFX2nNltXH0o7Zw5Z1gz0hBZFm8Ok+ymbG0cbSFOpm/c2SUPOofabFzBmFaJKluOuKo0GPS0gWwCQETkahaCwAmHsIEffFYWwwK+HXsfjS5/lgKsMAKfJgS/sx2a0tLofQRCI6Apj8oeysHhF3DYj2g3CqJtQxDBf7Pi21X19vWseU7qfyevrP4y7vn9OT/699MXmAMyhvL3xUwbl9WF91Vr21BfTKbWA/tk96JNVxIbKrS3aT+46gY+3fE2uM4uHz/gDC4tX4Aq6GZo3gIKk9shhc0JkN8EvkjYThKmvr+fBBx9k1qxZqGrLF3Fd1xEEga1bW17gCY4flzdEbprtVHcDiArzArh9xx4YqvLXkGxKQhROToVdljWajr3fXUJRSveTcswEP1+MqpnrBlzKmxs+JqJG8IR9VPvryU9uR3FDSYv2SSYHITWMpmssLF7BzYOvZEfd3lYzUkrdFYTUUKsz3gv2LefesXfgNDn4bNtsfBE/r637kMldJzCh40i+3DGHp1e83myXbTNaSVF0AnvWk6wGAQOCICAItCp6GFJFkkZcRGD3mha6F5ZOA8GReaREGUySikH1o6thkC2EJBtKQig3wc+EoG4k5fRfUfH6veiR2Glhe9/TUY3OmMGjLAuYVC8oQQTJSESyElIPBm7FiJ9IXVn8g+kaker9iJm9sIgWOqZ0YE/9/hbNHEZbtMT38CphRaJ3ai/q1Nq4LmoA/kgAUYw+j91hH/1s6SSZnc0aFJ1S8zm902geW/wsadYUrh0wneUla1lbvglZlDmtcAQj2w/GqJm4pOe5vLPps5j9S4LI9N7n8cHmLyl1V5BmTaFzagF1gQbMkhkHSbRSxdQqqqqRb8vnt8Nv4PX1H1Dtr0MSRIa1G8glvc5DChsTQ8U2hiAI0SyXVh4eSn05sj0FJJnUM28gwNE73EmSgEkPIEYCIAhoBishzD9YE0jXdYwRK3cPvwVvxEt90E2mLY3d9ftIs6RgEGUicYKnA3N6s2T/SlKtyfTK7Mamw0rmnCYH53Y7HRQBTdTwhlsvvfKEvAzK7cMHW75s8V4wrN0AACq81XG31XSNLVU7+WjrTNwhDwuKl/O+0c5DE+7iq51zmLt3KRE1QpLJwTndJqBqGhsqt2KUDCSJyVzY+VwcDjMul59wWE0EYBL8YmkzQZj77ruPuXPncuWVVzJo0CCczvg1kwlOHJqu4/ZH2oQ9NUQzYQDc/mPXhanyV5NsOnm/GYfRjtVgpjgRhElwAlAFhfykPC7rcwGyKJHnzMYT9HLT4Ct4eMGTuA+ptzbJJm4fdg0bK7eRZHJweZ+paGg4TY7vOYoQ122gCU3VGJ87mmG5A4loEQySAUkUuG/OY9QHXc3tDJKBu/pdij7n3eheBXDgIVK9H3QdOSOfiGiNq9viE5PIvuoRvOtmE9i5otGiejKGdj3wqfG1VwQB7KKfhu9exb9zJegaosVO8qhLsHQaGuOolCDBTxVd1wmY0sm55h+4V35BcN9GJKsD57ALEDM74VcP/s4tUpjIzmVULXwv6pAkiFi7DCb5tBl4dWtj5sr3lPQKAroOkmrk1sFX85cF/44R6TRKBn4/8iaMqjlu4oCuCAhHIZAytmAYkzqPpdpXy2V9LiDF7GTOniUMbd+fF1a/jaZrXDtgOk8ufyVGV+KdTZ+hoTO0XT96ZnbjD6Nv5Yvts6n219M5NZ8xBcP4euc8St0VQNQiu9ZfT7LZiVkyox2n0aKgSHRzdOW+0b8hrIWRRRkjZvSQkBgq/kQRTFZyfvUYQTkJ7SjLyQyijsFzgLqZzzSXMhkz80k78wYEWypB3YT+A2Q1dV1HDBtxkkqSORVdgYKk9ny1aw6/Hn4t/1ryfEwWSqYtnfOLJrJg3wpWl2/izC5jGZzXl3n7lhJUwgzO7cNpHUdS7avFFy4hPzmPqT3O5JmV8d3DBub0waLb+NuEPzBr13zWVmzCZrRyWuEIBEGk2l93xP4LAjHBE2/Yy98W/I//G/tbTu84igpvNUElxNy9S9havYtMWzpX9rkQImJzOdX3uVQlSPBzp22MvoHFixczY8YM7r777lPdlV8MXn9Uf8VuaRuaMNamIMxxiPNW+qvpmFRwgnvUOoIgkG3P5ICnlZnGBAm+B0kSiYhBdFFjb8MB3trwMZW+qP6BSTJy3cBL2bp/FdcPuhRPyEeJq5xcZxZd0zqyYN8yqv113Dp0Btn2jGb7alEQYxyWmshPzsMsm7iy71Tun/t4i4yZ9s5ccuxZRMIaMmZkzKCCKAo8NO5OdpZtYaennBxLCj0cOejzPyBSsQdzYR80Tw0V7zxE87SzIJI89lLM3ccRPEwoVNN0PNgxDJxCSr+zQBAJC2bCR5hZtIpBqj94lEh18cH9BLzUzX6RVNmAXDg8kRGT4GeBqoIHJ6Zhl2IdMhVdEAljihk4yrKAsmcV9bNfOrihruHfsRyloZLUqX/Ap5vRDFYMGe2JVB9oeSBRwpDRgaCmo+tgxcGD4+5iT8N+dtXtJdeRTY+MrphUyxGzSRwGOw6jLa4rir0xiybTlsa93/29+Z4jCSJX9buIHFsmvrCfwXl9WVm6jqASYkLHkfTI6IKiq9gMVtZXbuGurx9CRyfFnMSo/CFc0vt8Us3JvL7+A9aWb2px3Cv6TMUqWAj9ACczRdGQMGHBBGqiQLEto+s6hrR2Ue/0ONkjhrQ8xORcPEr0uzxaTEo95W/9mUMvgHBVMRVv/4Wsi+5B8NQh5w84AWdAc7mfQ3YypmAo3+5axO9H3cye+mLqA256ZnahU2o+FZ5qBuX1YWBub+wGC7ViA4Ny+9AuKRd0uOubh1AaPwMBgak9zuTSPufz9oZPY46XZHIwKLcviq4gChKTu57BOV1Opy5UjzfkxR32IosyeY5sSj0VLforiRIpluQWZgJVvho8YQ9OIYX2DiMbqrbSKSWfc7ueQTtHLgbFjHYU+nEJEvxSaDNBGLPZTF5e3qnuxi+KBm805bmtCPMaZQmDLB5zECasRmgINZwUZ6RDybSls7u2+PsbJkhwCKIsEJL8VAddhNQQxfWlbKjcwoU9z6a4oZQvd3xHSA3zzMrX+f2om3l04VNk2tK4Z/StfLD5S15Y/XbzvpaXrOWqvhdR4i4jqIS5qOfZvLfpi5jjGSUD03ufz+vrP2RK0ST+OuFuGoJuAkqQ73YvIs+ZzXldJyKFTS0GG5qmY1KMFNW7Kdi7E9XnIlwdLVsQTVbSTruqUfjzkLdbXaNh3ptk5XZBcBTGLZGKKBDB3Di6aX2wJAige2piAjCH4lrwNhkd+qAcVWV+ggQ/DcKqAM3XR+z1Y1J9VC14J95mhKv2oftqEax5aJKRtNOvpvL9R5tteptIGXNJ46A1+rem6UhhM93s3eiRVISm6ahh7XvDGLIgM6P/NJ5c8WrMdS4IAlf3nwa6zvubv4zZRtU1FhQvp1dmN+4aeSMpliRMkpGzuozng81f8eyqN5FFmdH5QxiU25cVJetxBd3UB118vn02X2z/lr+fcS9X9ZlGnjOHmTvn4o8EyLFncl73MzjgLqPEXc6EwtHR8qHEmO9nT0iwkjrxWuq+fjZmuSAZSDv7Vnza0ZcgAZhkHfeCT4gXgdQjIfw7VxKpryQ5swCST9x7Z4Qw/176Ip6Ql6UlqylIbsf4whFk2tL5dvci5u1bhjfsoyi9M9N7n8fcvUvZWr2Tu0ffQpmngt+NvAGLbMZiMOML+akJ1JFhTWNUh8Es2r8SURAZktePS3qdi6orvLbhfdZXbsViMDOx0xi6phfyxPJXMBtM9MrsxhX9pvLPxc+1KI26uOdk5u1dGv8cNAUdMKpWhmUMRsgUUFUNLayjJcKZCRLE0GaCMOeddx7ffvstl19++anuyi+GJjvotpIJA9GSpGMNwtQEatGBZNNJDsLY01lesoaQGsYkJUoiEnw/ukFhacVq3tv8RbPzUWFKBy7tfT4vrH6bMzqNpndWdzZWbkPVNbbX7KZzWgEAy0rWsCSO00G6LYW3Nn6CoimcZR7Pb0dcz6LildQFGihMac/pnUazqmQDYwuH8Z9lLzXXeTtMdn7V/xK6pXRGD0mtvh6FNAOWbqMx5nTGs/JzRIMJc2E/7L3H4l7zNVogvjWle+nH2M68o1mnwiiDqEXQRAPh1o2QYhBFkUjV3lbXqz4XqGEQE0GYBG0LWRaQtTC6KBHRpBOXeq+G0PzuVldHqvYhdmyPHHFRt/B9si66B9+O5YQr9iA50rD3HE1w/2ZUVxWCvUNMkELTdLRjEFLxKj5WlKzjnlG3sHj/Sso8leQ6shjZYRBBJcw7mz5vsc3w9gPpl92Dv8z/T3P5U4Ytjav6XkhD0EVYjRBWI3yzaz7ryjdz7YBL+OeS55u319GZs28xF3Q8h4ntxzOqw2BK3OXUBRr4aufcZqHTteWbuWv4TQlL218AYU3EVDCY7BkFeFZ8juKqwpjXDUe/iQSkpKO69kRRwCAoCOhIukqotHWXolDFHsy5XfCsnYU587oTcg6CENU2PDS7ZL+rjO4ZnXll7ftsPcQ1aVPVdu6f8zi/HXE9PTO7omoKX2z/jsrGZ3uSycElvc9lX30JkiBxaa8LuKhoMoIgYNSNeFUvf/zukebgiifk5cMtX1GY0p4Z/S/imZVvsLB4BdW+On4/6maWl6xlX8MBMq3pnN3tNBYXr4xrb22UDDiN9mYNKeUYhMQTJPglcsqCMJs3b475+8wzz2TlypVce+21XHLJJWRnZyNJLTUFevbsebK6+LPnYCZMm4nFYTUbjjkIUxWIlnCc7CBMli0NHSj3VVDg7HBSj53gp4csi2yo285rh7kR7K3fz1MrXuWaARfz7Mo3uXHQ5Wys3AZAXaABp8keLUEqXo7daOO0jiPonFqAjs7Gym2Igticgjxz51zm71vG0Hb9yLJnUOapZHv1brpndOLvi54mpB68tjwhL/9Z9iIPjL+LDDHriDbTAc2I4CjAesYtCLqKLpnQVR+2wr6YswrxbllEYPc6Dp1tVDy1iFoEowjGcD3upV+g1JZizO6IfcCZhAxJRNQj19Truo7kzGh1vSAZECQ5US+QoM0gigI2vPi3LsO9YwWiyYpj8DkIKR3wH6N+kVHWMagBBDRU0UhINyEIBpBkUONHMiVnOoqmoythQiXbqHjvb1g7D8DcoSeq3031l0+hh/wYc7shOPKPyl6+NUJqiBWl61hbsZnBuX3pkdGVukA9jy95nrtGXE9toCGmvdVgYXT+EP6x6JkYPYlqXy3/XfYSvx91M9tqdjeXVFb6aqj21dIhKY/9roMW1BXeahB0VF3l7Q2fsKNuL6d3Gs20nueg6Rqryzay7MAaDnjKKLQUJrQn2gCCIGASw8iNYj0R0ULoe+7/x0JIkwmbc7CMvx5BU1BFAx6Fo3JCsklB1MrdeFbPRFcVUsZOR3akodSXx20vO9JQAx5Ubz26Gjkh/RcEgTp/rH1794zOuILumABME5qu8enWWdw4+HL++O2jhA/phyvk4blVb3HXyBt5dtWb/HH0bSTpqeg6aAaVtzd9Elf4d2/9AQRBIMWcRH3QxbaaXTy68EkG5Pbmmn4Xk2HMQNN0Ui3Jcc9hWo/JGDRL4nGcIMFRcspG3xdeeGELUbeml4ElS5a0aJ9wRzrxuLxhLCYZSTo5jkJHg9UkN2foHC3V/hqMohGr3Lq1349Bhi0NgDJvZSIIk+B7CQlB3t3ccmYYoCHoxhvyYTVYmu+LA3P7MKnLWOr8LmxGC/nJeVhkMx9s+YrPts1GFEQG5fYh05ZGYUoH9ja6m/gjAeYekip8QdEkVpauiwnAHMp7mz7jlgHXQCQa9BZFgYgUwqf6iKgRnCYHRs2MroCqi1h1P1pDOWrIjx4J4dk4H1NmPo7e46j6/InmwaEprysYjIglmyn/5J80RUpCZTvxrPuWrEv+hJbcEfUwoURRFJAkMVoSoWrIae0RTVa0UEunB1uf8YQlGxxlZk2CBD82Nt1D5Zt/QvU2NC8L7FmLre9p2IZPjxGSbnb8CnoQZCOa0U4QC7quYxcDeJZ/Rt3679CVMMacTqSefg2aIwd77/F4181ucWzRbENOa0dQ0xEMZgSjBT0cwL9jZYu2hrRcQj8wOGEzWKPuNGqkRZZeUInQMaUD5Z7K5mUjOwzm290LmwMwNoOVc7ufTn5yO8JqGIts4r5xv+YfC5/G3+jEtqFyK13SCmOCML0yu4EmoIgRFF3lhkGX88nWb/hg85fIoszw9gP4/aibWFW2gS6dOxM+2tS7BD8KsgjmcDX1371MsHgziDK2HiNIGnkxPsFxwoJkoiiiCQIqItpR6IRJkoBN96DWVSCgkzT4bDzr51D92X9JPe0qgvtbag4B2HuOouqzJ0gaPgXBYATiO4QdC5qmk+fMiVmWa89ic9WOuO3bJ+VyQY9JuENebht6NZIgMm/fMlaWrm9uM2vXAkbnD+HTbbOY0fsSInoIBYX1FVta7ceWqp10TO3A6rKNSILIpC7j6JvdAw0Nl+rGIloYmTeUTFs672/+gnJvFTmOTC7ueS6dnIXoJyYmlSDBL4JTFoR5+OGHT9WhEzTi8obbjDNSEzazTJ0n9P0ND6HKX0OKOemonBpOJAbJQJLJSYW/8vsbJ/jFo6FScwTHgRJ3BRm2VCRB5LzuZ2A1WHhgzr+agycp5iSuGXAxSmO5gKZrrChdx/baPfy/0bfwh9mPtNhnh6Q8QkqIA674M3oA+91lKESQkRBFaKCOfy16nqpGkWBZlDm/+0RO7zAC6cBWyr5+Fr0xICJaHKRNmIFv50rCtSWkjLqI+vnvgCjjGHwuRAJUfPUkLVJVNJWaL54g4/K/4iMaPDUZRUyKm3DlXkLluzGk5WFpV0RIspM5/T6q3v1r1AmmEXN+LxzDpuJVTu51nyBBa5hkDdfCD2ICME341s/B0X8SGLMAsEohguu+pmb5582ConJKNhlTf49uclDzwaOEq/Y1bx8u303FG/eTc+WDOEdOQ6kviw5oGxEtdrIu/hMBwQZASLKTNGIKDfPeatnPvG7oluQfHLw0Y2FM/lDm71vWYl2Nr5azuoxjWcka1MZ7VrY9nXUV0T7bjTbuGHYNH2z+inc2HrSfHpLXl79MuIs/ffcYQSWIWTYTPiSAbDVY6JtdREgIIDQOEv++8KlmJxlFU1hYvIIdtXu5efAVJNLkTj1mpZ6KV//fwawRTcG3aQHB4s1kXv4g3h+o6SVJOhbNR7h4C5G6Mky5XZAzC/FjazXAI0s6Jvd+Kj79F6o3moEiGEwkj7wQQ1oekbpSkkZeiGvJxwftr0WJlDGXENi7AQBrUdRJ6ESRbEyiU0o+u+ujGmgH3GUMyu3Tol239I5M7nY6L65+h7rGbDOjZOD87pNo58zh461fR7d3lTEwtzdryjZSGazg4YVPce2ASzDLZnyR+PbVVoOFukADoiBy27BrWFGylkcWPNkcOO2Y0oE7hl5LkbOIP4woQBd0BF3EoJlQI4nyowQJjoVTNgKfMmXKqTp0gkZcvhDWNiLK24TVbGBfRXyNidaoClSTZDw1luap5mQqvFWn5NgJfjpIBoiIUR2Wwx0FmsiwpVLuqcQb9lOQ3J7/LnspZn190MUTy17mrlE3sa16V/NLkSvoZlv1bu4Yeg0vrnkXX8SPIAgMzOnNGZ3HMHvXQjIbs7bikWlLQyKaBROWgzz43b/xRw7O7CmawodbviLDkky3lV80B2AAtICH6i+fIvvi/0flh//AOfBMDBn5pE66jqCcjNFbih4Oxj2u6qmDkBfRZMUmBMBbT+Un/0L1HEzxFgxmsi69n5A9l6wZf0d1VaD6GjCmt0c1OfE22loLAgkBzgSnHIMWpGbLolbX+7cuwTDoInRdI7JrFa6lH8esV+orqHzr/8i54i8xAZhmdI26b18h47w7sBWNJGnwZCL1FUhWJ4JsQFPCCLoGiEQUHWvROJIB19JPotetIGIrGkHahKvwqGaOqlbjCOgRkWlF52I1WPh2zyIiagSDKDOmYBg5zkysspk7h13LWxs/pdxTSX3QRaYtjWpfLRf2OIu3N37K3vpY96YVpeuRRZnrBk7nf8tfYXj7gc1i5J1S85nW8xz+u+xlfGE/D5z2O77aPifGyreJSm81DUEPWVJiYHgqMUkq7kUfxi3bUT21hA9sRuowFPUIDnlHQhLB5Cmh4p0HYwSoJXsKWZc9gFdIQtf1aNaZFgBNQZNMSJpC+TsPxvRLj4Son/cWGefeTv38d7D1GEnetf8gXFWMFg5iSErHs34ukYYKsi//CyHZifl4+iwLhIQAES2CQTRg0i2oio5BN/Dr4b/irQ2fsLx0HTtq9zCj30Uttp/a42weX/xsTAlSWI3w/uYvuGnwFWTbM6jwVpNpT6Mh6CbTls7yknWElBA7avZy27CrUVQlWl1QvZO5e5c2P/PHFgxD0MGvBFh8YDVLD6yJOfae+v38Y/HT3DPyNqRD9JbUH3gvSZDgl0ibSYO46qqruPnmmxk+fHjc9cuWLeOpp57itddeO8k9+/nS4A1hb0N6MBDNhPEEImi6jniUmS1V/hq6p3b5kXsWn1RzCntd+0/JsRP8NNBNET7d9S1l7krO6DSaj7bMbNHGLJvIsWfSvVdnTLKRp1bEv89FNIXNVdvpntE5pk58ZdkGLu55Dn+ZcBdBJYhJMmKQDLy85l02Vm7j7tG3MHv3wrj21VOLzsIiW0ASWFOzJSYAcyjvb53JvQNOh7Jdh52ghnfLIqxdBqH6XKRNu5egbkJVdYzfNwut69jwotSUIBqMpIy6GEE2gCjhXvklwQNbqfrgEbKuegSvbkVI6oiQLBDWdEQEbGIAgi40vxvJmY5qsBFQE0KcCU4hR4gG6o0ZISbVT/WS9+O20QJeQuW7kZOzUBpaZlmGynaiuKqp/fo5kGRkWwpa2I8W9CFIBrKv+xde7AD4VSOGHpPI7jYSPRJEkI2oRhuyMwnqW9pKHw9CyMB5hWcxqfNYyjyVqJrKitJ1PLb4OVItydw5/Fqu6T8NRVMwSAb6ZBWxpXonWfaMFgGYJpaVrOX8okmMLxxBqiWJ34+6CbNsZE3ZZp5d9Sb1ARcZtjT8ET9baloXUF1Vup6ePXokypFOIZIWIrBvQ6vrA9uXYS0YjHoM9tGHYsFP5QctHcBUbz21Xz5J+nl3ovnqUF3V6BY7gX0bUTz1GFKyWtVzca+eScq4y6if/zaSLQn/rtU4B56JaE/FOeoSVIMVv25CPI64g26MMLdkOV9s/xZfxI/FYOacLhMYVzicT3fMYWHxckZ0GMTdI2/GZrTgMNq4dsB0XlwTdUTrmtaRbdW7YgIwhzJz5zzGFQ7nnY2fcXrH0byz8TNuGnwFL655l0G5feid1Y03139MibscAYE+2UXcOfw6nl/9FuMLRmAXnQgRCZPJ1KoDUqmnAnfYTQrpx/4BJEiQoJk2MwJfsWIF06ZNa3V9XV0dK1e2rGtOcPy4fGEKc05NBklr2CwGNE3HH1SOyrUppIZxhz0nXZS3iTRLCmsq1xNWIxiltpVVlODUoxsivLjubdaWR2vLh3UYwJiCoSzct6I5kyXJ5ODOEdeRYUnFpwRxBT2UeVovcSv3VJFuTYlZ5jTZ2VVXzOuHiP6mWVP4/cibGJM/lP0NJdwx7BqeXfUmgUg0M0USJSZ3nUCppwJZlHCFvM26MvGo9deDLf51Fqktw9y+O4IlCb9qatb3Em2pCLIx5gVZkI3YeozE3L4IyWKNzoaW76JhyUfNlqCC0UL6xGsRzTb8O1eBvx7MVnQ9qg8migJWtZ7q9x+OGahaOvUneeKNeNXjmZ9MkOCHERHMWLsNxb+1pa6dYDDh6DcBTfUgocQtWWreT00JsiM1bhBGMJqjrmAAqoLirm5ep6sRIlV7EbP6NJdhRBSdCDaQo2VKsnbiNeAkQWRd+WZeWRcbWKrx13H/nMf5/cibMEpGStzlUbeW3hfgbiUjEKKlloqmcHbX8eyqK+btDZ9yVpdxaLpGfcBFli2dawdOp7ihFLvBSr3qirufFHPyDxIeTnACEEQks71VRy/RloSOyPFmZWmempgy1UMJlW5HqT1A5Xt/a15m6z4c56CzcC3/LO42AJG6ciRHCqkTrsKz/juCxZsIFm8iddL16J1GN7r+RJ9Dx4Jo0Ji9fxGarnFZn/OpCzQwf99yPtjyJbWBemRRxhP28c2u+Xyzaz5D2/VncrfTKfNUcu/Y29lQsZV0axpbquPrxACUeypJs6YwtcdZVHirOL3TaDRd47ahV6FoGg/M+1fzNaGjs75iC/sbSrl//J3IyBhUAwoaQTXcLPgfj2p/LWn2jITodYIEP4C2o8gKR9T0KC4uxmazncTe/LzRdT2qCdPGypGanJqOVpy32t/kjHRqgkkppiR0oLrRoSlBAgwaIYMPr9iAX/c1B2AAnlv1JjaDlXtG38KtQ2bw4Gl38dBp95BnykPSDVT7apptXlsjx5FJzWEuCmPyh7bIsKn11/Pwgv+RbEliR+1ean313Dvmdn49/FpuHTqDu0beSG2gnrc2fMLjS54j3ZpyxLKlNGsKeOMPdgxpeSg+F3Jau5hBT0i0kDrxoIWnMbsjWdPuQVci1M19g8q3HyRUthNjRoeoy1EjejhA9ZdP4Rw4CQQRLeTHptZhx4NJVrHgp+rdh1oMUgO71+JZ/C5mWTvmF+RTiSDwk+rvzxmTpGHHg02pxS74MEhHP8gIqSLJo6cjmu2x+8zrRvb0P+Fa8iFVr/2BcOUeJHtyq/sxZhWguOPrRzn6nYFvW/wZagDN7zmp+mi6rFCv1bKgeHn8/ugaH22dycbKbbyy9n0+3/4tPTO6kJ+c1+o+RUHEHwnwl7n/ZnHxSm4YdBnVvtpmfYxpvSbz9MrXmbdvKWMLh7W6n1H5Q4hEjjPFIsEJISxacQw5t9X19n4TCR+nloggCDHlsfE4PEPGt20p4er9GDPat7qNITWXYPFmBMlAuOrgxIRv41xkLX557aGIotB8Tz/0UgyLITok5bKtejfvbPyM9RVbuaTXuZzffSLz9y1jQG6v5vO6buClnN99In9b8AQzd87lkYVPsa+hhLpAPe0OE/A9lFxHFp1TC+iT2Z1OqQXsqS/m4YVPYpCMfLTlq7hByfqgizVlm3h53bssr16FbopgkozIYuvz9BnWtEQAJkGCH8gpzYT5+OOP+fjjgzXRTz/9NO+9916Ldh6Ph+3btzNmzJiT2b2fNcGwSljRsB1FtsnJxNoYhHH7wuSlf3/Q7VTZUzeRYk6O9sNfQ5699Qdjgp8/ggCKIcjrGz5kVfkGkkwOpvY4K6aNruvM3DmXmTvnYpJNPDDud4ghI6qksaZuA8+vfot0ayqX9DqXJ1e82uIYBslAz8xufL7t2+Zl53Y7nT31xXGF9lwhD96wj77ZRYiCyONLnsMT8iEJYoxbUliNsKN2Dx1TOmA1WOKWJE0rOhthQZzZQ0HE3mMkuigTFGzNOpiCICCKInLHgeRc83dcSz8hacBEKj54pFknRvO7qZ/zOqZ23Ug7fQY1M5875MPS8O9ai6WwD4IgUPHib6OaFj1H4+w3AdUdP/Dp3bSQpCHnolXsxZCaC9YU/LqlTc6Ii6JASNUpq/bh8oUoyEnCbpYR22Bffwk4pACu+W9Ss3UJ6BqC0UzS0POx9pqA/yjL3HxiEtkzHsG7/lsCO1ciO9NJGTud8jf+r3lA6F41E+egs6mPI5orWuzIjlSSBp9F7bevcqiwrDGnE47eY6n88B+tHt+Y2xnfceprHCuiBGtqN1Htrz1i4EcUBDRdaxxcTufvi5/hzuHXxri6HcrQdv1ZWboeT9jHpqrtbK7awY2DLwfAYjBjMZipD7ioD7iY2HkM3dM7s60mtkzy6n7TsAn2FvtOcHJRFA1b4QAsnQYS2L06Zl3ymOmolrTjliayiQGwtP4di2Z7c3blodTNe5u8GQ/hWv5F3JKk5FEXUTP7JQL7NuDoPYaGJY3jFEEEWv+dW8QwUshFuHo/gtVJxJZJTciM027CYhTYWLOTZ1a+0dzeU+dj14p9TOt5DoNy+xBp7MsF3SdR4ipH1dXmzFVVU9lYuY2Nldv4f2NuwygZ4pYkndvtDCo81fxr6fMx62v99Wyv3dtq33fU7sEsm3lp7Tusyd7I9QMu47TCEczavaBF2zxHdlSH8diMTBMkSHAYpzQIEwgEqK8/OKPr8/kQxZbJOVarlenTp3PrrbeezO79rGnKNLG1OXekaFDIfQyZMCbJhFk6NeUHFtmMSTJR6a/+/sYJftaohjCPL32OYlcJAEElhN3YeiAxrIQxigbQICQFeK2xlKjGX8d+VxnTe5/Hx1u+PuiOZEni5sFXYpAMnF80EU3XKErvjN1o4745j7V6nFJ3BRaDhXbOTOoD0UyWeEnG1b5aanx13DHsGl5e8x6Vh7gjXdB9En0yijAOhcjMZ5vtokWLg/SzbkRKzcWPFaXxfdcqhtAbSvCunYWuRrD1GkfKhBnUf/dyXKHeUMl2nAMmIdmSDpZaAIqrCmvXIfh3Nb686xrB4k2Y846gAaUpROrKqP3iCQAMGflkXHg3XmxtSrxXEAXK6oM8+NJyAqGD38jA7lncPLU3opYQOjyZWKQQtV/8l9CBrc3L9HCQhoXvkqTrGPuczdFIi2iajgc7hgEXkNL3LCQJ6mY+GTMjHyrZjr1oBM5BZ+NeM+sQd6Qc0if+ipqvn8eY0YHsS/5IsHQHWtCLpbAvuhKm5psXSB4xhZqvnmlxbHNhP3RLMkqjY5hZFhpLJ34cwo33rWx7BqM6DGJ3XXHcduMLR/LF9m/pn92TNeWbcAXdPL3iNe4ZfQvPrXqT7TV7ABAQGJTXhxHtB/KfQ4TJdXTe3fg594+/kzuGXoMrdFC8/3/LX+WKPlM4s8tYttfswSybGNFhIBbdjqBIP9q5Jzh6fKoJ5xk3kDSyjsCu1QhGE5ZOA4kYHAS145sItIhhGr59AWNqLrYeI/FtWdyiTfLwC/Cs+67FcslsQ/E2kHH+HdTOfjkqEk9UCD555FRUvwdLXjcCxZuQbAdLf+39ziAimIgXNbJLQeq/fobg3nVIjlTkgRMhM0JSUg5fLSll4ugcXlv3YYvtAD7Z+g13jrgOAQFJlOia3pGPtszEIMV/P/9oy1fc3vicPtQd6ZJe5+E02Xl00dMtSoncIQ/JJgeVSnz30WSzkwpv9D12XcVmagP1nNd1IoFIkEUHVjZPYnRKzef2Ib9CipiaS6oTJEhwfJzSEfhll13GZZddBsBpp53Gvffey4QJE05ll34xuLzRG7GtjZUjGWURWRKOOghTFagh2XTy7ambEASBFFMyVYkgzC8aQYD6UENzAAaiQRho3RGpb3YPLJKViBDGHXYTOuTl6PPtsxmY25vbhl2Nruskm52Ue6t4ff1HVPlq+ePoW3lv8xd8uWMOtwy5CpvRii8cPy07y57BG+s/4r5xd5DjyKK8Fb2Z9km5fLNzPhurtnNe94l0TOmAoqo4THZMmhktLKDm9CXrmsfQA24QBESLk5BoI9CYTi4IYBcD6O4q1HAAR59x+HetJVK+C1NaDvaeo3D0GU9g9xrca7+NmaUM7NuIKbdLVAOmEVNOZ2RHKrVfP9+8TPO7ke2xmjgx34XBxKHZA5HqYuq+eRbHmbcTVA/e7yQpGvA/HleOH7JtEyFV54EXlhE6rFxi9bZKZi51cN6Igh+0/wTHhhTyxARgDsW9/DOye44lzNGXREcUiGDCrvoI7m0pTFo7+2XsvcaSc+UDaH4PosVOpLaMmq+fR3FVEakpwbd1Kcacjlg7DUB2pqG4qkkeMQVEidxrH0PzNaCFg1Exa01DF0Qqqhv47XObSHGamTquM0N7Zv9oAT1P2EdICVHcUMIFRZPomNKBPYdltnROLaB7ekc+3BKmKKMz3+6JDparfLU8suApfjviegRBIKAEsMgWFu9fyX+WvdRiEFkfdNEQdPOfpS9x+/BrmpdH1Agvr30Pm8FKh+Q8RARG5w9BiCQCMG0Jv2ZCsOQg9z8fXdfxKtoPMueSVD+BnasICCIZ59yEISUb99rZ0edDSjYpY6YTrtrXQhTYkJqDY/BktHAAyZ5KzqX/hxYJoqsRRIMZ75ZFuJZ/Tuq4y1D9biKNJa+m3M4YO/TCG+eeLIs63uVfENy7DkPvMbh7j+TtXd+xc+1ckk1OJnedgCfiaFX0PqIp6LpOjb+OHHsme+v3U+2rZULHkXHbb6/ZgyjM5U/j7qDMXYkoiDhNdvbW7+evC56Iu02Ft4qJXcbw+rqP4q7vl9OTxxY/2/z3qrINTC6YxPSiqUwpOgtv2IdFNmMRLYgRY5vMLE2Q4KdGm0mDmDNnzqnuwi+KpkyYoxG/PZkIgoDNbMDtP8ogjL/mlOnBNJFsciYyYX7hiKLI/vqyFss/3vo1Nw++kv8tf6X5BUxAYGzBUKb1nExdsJYnlr/MFX2ntth2ddlGVpdtBOD3I2/krQ2fMrRdPwbk9GJ5yVouKJrEPxY9w4J9y5nUeWxc16UcRxZhNUxdoAFdh0t7n88/lzzXop3DZCfdmkp5o936+vLN9E/vg66JED74rqyo4MUKJmt0gQqohwZg/NR9/czBQaco4eg3AUtBb0pf+gPoarNNbub5d1L16b8PivHKBnT14MBLMJoxd+hB+Rv3x/RVVyMo3nqMWQWEK/e1PJd+p+PbHDsrGty7gVTVT5AkLGIYMdRAaPdmBKMFa/sehEQbYe37B226IBCIqGzYVoWuQ+9O6VhN0jGXD0mSwI49dS0CME18tWQfE4d0wJCQiTkpCIJApL6i1fV6JIgeDoDhOHTpBAEkGdSWaTTeTfMxpGQTqtiN6vdg6zYExVV16JFx9ByN4qmj7NV7sXTsh7P/GQgGM75NC3CvmtlcTmHK60raGdfgDIRw2k3UuoI8/+kmdhxo4MpJ3X6UEjdJOJi5/NzKN7lu0KX4w36WHliDIAiMLxyBLEqAyG9HXI875KG9M4fKxhn3an8tf13wBDcPvoL/LX+VXw28hM+3f9vK0cAfCRBUQ9QHXLRPyuWA6+A91xfxs7V6J+d2OwOD0GZebRMcgq5zwjR6mrJX0DWqv3gKc4eepJ12BYLRiuqtw5Tbhfp5bza3t/UcTdLAMwlVFaOF/IjGdqAqVLz/MErjtS+a7aSMvhhH39PQVYWkwefgWv0N6efdiSG3Gz7NErcvBsVHzbrZGDI6UNVjMP9Y+TL9c3pyXrcz8Ib9fLztG349/Nojnk+S2clHm2eiaioG0UBD0I1JMpJmSaE2EK0YSDEnMaRdP8yyia5pHYkoChXeat7c8DGSIHH3qJuQRAn1sBIsURDpnt4Fd8jD4Ly+rCxdH7Pu8r5TWHpgdcx2JtkYzRxVREzYMAm2xuc9iQyYBAlOEG3mSVVW1nIAcyiCIGAymUhJSTllWQ8/Jxq8YQyyiFFuU9rMQFQX5liEeXukdfuRe3Rkkk1JbKqNP4Oa4JeBpuktHIsADrjKeHfTZ9w85EoEBPyhAJ3S81l2YA1V/hoeWfg0ISVEIBIk2eykIdjSQSLZ7MRhsnNF3yksKl6JN+yjKL0z6dZU/nr6PWyr3kWuMwt0nS92fNdcB94joytX9buQhxf8D0kQEXSRjo4Crh0wnbc3ftocFCpIbsdlfS7g5TVRPS6DZGBar3NBObZ7g0UIUfPx44Qrdh/ywah41swCXcfecyTeTQtA1/BtWQToOPufjnv1NwBYOw2g6uN/RvuQlkfG5NuonfVi3GPVz3+H3Bl/pXb2ywT2rANAkAw4+k3AmNGempVftdhGDYewWUK457yEf/shIqKCSNqZN2DMH0RYa/2RqGgwa9UB3p0d60xxzsgCpozpdEyDXEEQqKxrXVAyEFJQNR2DlHjWnQx0XUeyJbfeQBARDMdnfR4RLdh6jMa3cW7c9ZaOfTHldaN+/pvomkbyyAtxrfwSPRzEnN8LLRLCtfwzbN2HY87viWvVTExZBS3cXUKlO6j65N9knHs7D13RjQfe2Ul1fYD5a0q4cFxn7MYT/6y3GWwH71tCdEBnkIwMzO0NgFk2kWFLY0PlFhbvX4mAyLjCYQxvP4DnVr9NSAnhDftYVrKWq/pfhN1gxSQZY/SqmmiflNtcLvHuxs+4fdg1fLZtNpuqtgPR+9bpHUfRKbUDwhGu4wQ/D6TDtGCC+zcT3L+5+e+cG/qTOf1+ar94EuegSQiCQNkb9zcH/bOn30vFh4+hRw5moGpBL7WzXyLr4v+HYHWiW9OwnXEzCgZCR8hK1FQFPRJCGHIWc8rX84fRt7K6bAObq7aTZHZy3cDpiIJImjUl6jJ4GA6jDX8kwLUDL6HYVUp+UjsEQeCNDR9z05AreH/TFwzO60uS2cni/Svxhv3Ioky6NYVUSzJ/Oe0u9tUfIKIo/HHMbTyz4nWq/dEgVaolmesGXsrCfctZWrKGC3ucxfjCEZR7qjBIMpm2dObuXcLykrUxfRqc2w9FSYhaJ0jwY9JmnlSnnXbaUQVXTCYTAwcO5JZbbmHgwIEnoWc/T1zeEHazoU0GtGxm+ajKkQJKEE/Ee8pEeZtIMjnxRnwElCAWOWGN+0tE13Vy7Flxy4KKG0pZV76Zi7uej9fuZdau+YzOH8LW6p1k2tJINjtZsn811w+6jH8teSEmDV8WZW4cfAXrK7by4ZaDgYXddcXM3beUP4//Le6gh30NJRgkmduHXoOGht1gQxJFVpdtYEBubyKqggkLekRgcPpA+kzogS/iR5YkXAE3C4tXkOXIoGtaRyZ3Ox277iSe8YEsiwiC0FwmI0kiuq6jKBpiyBUbgDkE74Z5ZF5wZzQI04hv61KyLrob9+pvcA45Fzm9A9lX/hVECd1oQxFNyClZhMp3tdifIMsoohHnmbeRGvGgumuQHKm4ln1KzVfPwmEzdYJkALOD8O6VsQEYAF2jduYz5Fz7OGGpdXeoyoZAiwAMwJeL99G/ayadcxxH7RahqjpdO7ReUpWVakWWxBbnkeDHQ7CnITlSD86wH4K16xAiUuNM8DESUgSSRl5EaP8mFFdsxmTS0PNRXNXUzn4Z5+CzMWa0QzTZsPUYiRYJIZltlL12Hwgijr6nUfHu36I6FoeU5x2K0lCJ6q5BWPQ+/3fJnTwzqwxRFCiucNO7IOWEupmIEqjo/HbE9biCHjLtaXyzcwFz9h7MQvvdyBv43/JXqPbV0ik1H03XeXHNu+Qn5XHdwOk8uTwqPr6voYRu6Z3IdWRz85Cr+M+yF2PKHSyymct6n89La94FomVQ/176IhM7j+HyvlOo8tUgCiJryjaRa8/GoJsQDNFywYSDy88T3eTEkJpLpK4MQ0Z7ZHsKkYZqlPpyzAW9UEUzQd1I6nl3IvjrKHvtT6BHn1umdt0J7t8SE4A5lIYlH5N83u/wK02Z4gcDMIIAsiw16otFf1uqKCM50tCSMjgtM4f1FVvon9OTHpldMIgGqn21RFSF24dew18XPNEswAsgiRJXD7iY9zZ9zrSe5/D+pi+5ou9UZvS7iFfWvs8Ty17hliFXsrJ0A29u+KR5u911xczaNZ/bh/2K51e9xT2jbkHTdN7Z9AlTepyJw2QHPZohtmDfckZ0GMjiA6t4f/OXJJmc/HXC7zFIBu6f81iz/lsTF/U4B6tg/cHf0eE0vT8kSJAgSpsJwvz1r3/l9ddfp7y8nHPPPZf8/Hwgak39+eefk5eXx9SpUykuLuazzz5jxowZvPDCCwwb1ro94aH4fD7OOussKisr+eCDD+jdOzpTc+WVV7JixYoW7b/66is6dep04k6wjeHyhducKG8TVrPhqDJhqk+xM1ITTeVQNYFa2jtat91M8PPGqFi4d/QdPLzofzEaML0yu3NBt7NQNI1STzlGyYjNYKVLWiEAlb4a2jlzSDI5+Mtpv2Px/lWNNtWZDMrri91o5dGFT7U4Xvf0TnjDPswGM8aIn06p+ZhlE96wnzJvJa+t/QBFU7l/3K9Jt6Sjh6IvP6qiI2MmCTM6KqJFIMeRiTPiYEB2L8yiGe3wy0/SCIkBllVsos5fT5+sbuSZktHXLUK2JmPvNAA1powiFl2NoOuHzSTqGoIokX3l3xDtKSieGgI7VyEYTFi7DUUziCSNvQLFXUuoZNvBrtiTybzkPgJYsWpeyt/8PzS/m+RR01D9buIFLoz9zkQH3Cs+b7WPvo3zMA65mHC45Ug7FFb4dH78ABPAx/N389vp/Y7gm3HYqes6uWk2ctJtlNf4Wqy/6uyiRlHVxADyZBHASubFf6LqvYdiAjGm3C4knzYDj3r8GiM+7GRc+gCRA5vxb1+GaLZj6zaEYPkeBElG9TVQP+8tRIuDtNOvhoYKgmW7MCRlknnubQQObCWwfzOgI0hyszB2PCL1FQiCgHnHN9w1qhfB0h3Yk5MwCBZ8mI77HJoQBMCosrNhD8+seqM5o85iMHNZ7wu42HYuoiCQYk6izFXJqA6DyXVksbl6BwICk7uexu76/eiazhV9ptA5rZD9rlJKGkuLemd15x8T72Xe3qWUeirpnt6RwpQOvL3xs+bZfYiWJn2y9Rv6Zvdg/t5l9MzsytSis1BUhaWVy6j21dIjoyvtnXkYlMTkyM+NABYyLv4jWkMF4cp9RBoqsXYehCE1BymtPR7VgK7rCFoY/561zQEYAENKFuGaklb3Hak5gKBGgNhyfasYBG919DllNGPrOhQ1AAHBhmHoxWBLQgt7cIc8PLro6eZAYp4zmxn9LsIkG/n9yBvZWLmNEncF2fYM+uf05Msdc9hdV0xIDdMQcpNsdlLqqeDP43/LouKVSKLEd3sWteinJ+zju90LuX7gpQQjQfY0HGDxgVUsPrCqRduOqR3ont6JkR0Gk2XP4Ovd87HKZn438gbcQS9f7ZyDw2TnjE6jSTYmI4RO4PhA0giKftaUb6Ih6KJPVhH5pjxEoW3JISRIcLJpM6PwqqoqIpEIs2fPxumM1fi47bbbuOyyywgGg9x7773ccsstXHjhhTz55JNHHYR56qmnUNX401gDBgzgnnvuiVnWrl274zuRnwgN3hDWNibK24TNLLO/0vO97ar9bSMIk9R4/OpEEOYXjabppIhpPDT+HmoCtbiDHnKd2dhFK4QM6KYwpe5K2jmzqQnU8dji51A0BYtsxh9Zgs1o5Y9jbqPOX4/TZGe/q4ydtfsoyujc4lh9s3swKK8vD877D9ohL5dZ9gyuH3gpz6x6g0hjRk2Vr5Y8Sx5+gx9FUzCIBky6BYUIKypXN7syAXyx/Vu6pXfi9sHXIIQayy8knZ3eXTGz01/unEOOI4t7ek7B884jMO8tsi/5f61/OIKIILZ83IhJmeiymbqZTxHce7BO3bXoPZJGXYzQ6wySz/0NQtCFUleOZE9BcKQTEGxRMc/ty9H80RIu19JPyLzgTiRbMt4ti0BVEIxmjP3OpjJjCMnoMc5Lh6O6q2ntjhhRdOq98WdNIZpZqGk6xzJMlwX4v2uH8tLnm1m5tRJdh2S7iRnnFNGtffKP6mqToCWapuM3pJFx+UPonhpUbz1ySg66OQmv9sOCF5qm4xOsWDPzEfdvRo8Eqfr8CfRwEGn8FVg6DyC4dyOZ599B7exXiNSWHtxYEMme9ge825dF/9Z1BIOp1Vl82ZmO6nPh27KI9PZFuNZ+SWjtl5g79CTlnNsJ8gNmuGWVeqWBYCDIv5a+EKMNEYgEeXHNO9w/7k7e3PAxozoMIcOeytIDa3h746fN7WbunMvYgmFk2zPomdWNP8/5Z0z5kdPk4L5xd3BBp3NQdRVVUvjNN3+OES5vomtaR6p9tThMduxGK6Xucv6x+BnUxnvilzvnkGFL497Rd2DRjkPPJ0EbRkfzu6n88DH0yEHHPdHqJOuyPyPIFiRJIFyyG9UXW+areuoxZLRvdc9yciaaIMXE8+1SkPqZTxE8ROjXtfBdUsZOx9ZzAhukfApNVjaVrGJhcezEbqm7gmdXvsk9o2/m4QVP0iOzC+nWVErdFXy9a17zczXdmsb/G3YXJa4SPt7yNd3TO2M3WdlStbPVvq4s28DI/MHs8hezonRtq+2WHljNb4ZfzzMr32BL9cGMzvc2f8HUorMY2q4/a8o38dD8/zKj3zT6pPY65pLkuMgaWxu28+SKV5rvF1/u+I4OSbn8fuTNiJEfHhhOkOCnSpsRBHnnnXeYNm1aiwAMQHJyMtOmTePNN6MiWykpKUydOpVNmzYd1b53797NW2+9xe233x53vdPppF+/fjH/TKaf942hwRvGZm4zMbgYbGYDnkDke9XXq/w1WGQzZvnUfldmyYRJMjUHhRL8ctE0HTlsItecQ8eUDriCbkr9FUSMAXRBZ9au+RSmtOf1tR9yRd8p/Gb4dVzW53zuGnkjF3SfyMtr3mN8x5HM37eMjZXb0NHR4lwHZ3YZxwur344JwABUequZtWsBo/MHNy/T0fnuwELu/vYh7pr9IPfOfZTFFctQpHBMAKaJ7TW7Wbh/ObIczeuISAH+u+ylFtdjuaeSD0tWYuw5Cj0SIFJfgZySE/dzsXUfhn/3mphllk4DUGUbwZ0rYgIwTbgWvYcUqMWvmvAZMonk9CNg74BPs6KqOpIeIdBkXU0026by438BkHXBb8i66B4c0//Ge1VdSc7IQBdNmNsXxe0fgLnzYFQ1/j3HYpIY0C2z1W17d0rHIB3b41TXdUwi3HRBL568azz/+c1YHr11JAO6pP8oIqoJvh9N0/FpVvy2DkRy+uEzZuLXTCfE2lySRIK71+LdOA/ftmXNVu1189/G3n04GVN+i2fjgtgADICuUTPrRawd+wHRMj5Hn3Hxj2FLjmbKBDxRFdRDUv+D+zcT3L4E6Th1hkQJdnn28PXuuczZs7hVcc6ZO+dSkNwOURAIREIxIqBNzN+3DINkYH3Flhb6L+6Qh6dWvEYAH0pYh7DEb4ZdFyMCDJBkcnBRz7N5c/3HzN+3jCx7Jo8vea45ANNEta+WNzZ8hC4l9C1+Tlh0P9Uf/j0mAANR97zaz/6Dmehy1e/CnBub1R4o3oS1U7/ojzoOSaMuJsTB7ClJEgnuXB4TgGmifv47iP468jtkE9I05uxdEneftYF6NF2jKKMLm6t2MH/fMjZUbm1+rnZJK8QuOXnx/WL8wQg6OnP3LqEguR1HKkvV0bEZrdT46+K+KzSRn9SO5SVrYwIwTXy0dSZ2k4015ZsIKiGeXfUGQVrPtjsWQkKAJ1e+0uJ+sd9VxqfbZxFnbiZBgl8MbSYI09DQQCAQ374NwO/3U1d3MBU1IyPjqPf90EMPMX36dAoLC39QH39OuH3hNueM1ITNLKOqOv5QSzeJQ2mypz7VCIJAkslJTaCllkCCXyCyyrrajdw160H+tvAJ/rbwCe6a9SBrKzYxKn8wQSXEFf0uZOaOuTy2+FmeW/UWf1/0NEsPrGFqjzOxG6387fR7OL/7RNo7cxmc1ydm95m2dCo8VS0cEJpYVbaBvlk9mv/Otmfy3ubPmwV7vWEfr2/4kPn7ljG0Xf+4+/h61zxCQhBJEtlas6tFsKeJJWXr0LtHAz71C94ha8pvMKTFZoNZOvXH0W8C3g3zmpeZO/QgZeL1oCp4Vn3Z6kfpXTcbY6OgqKbpsYNhQUK0Hha01xS8G+dR+eE/aFj8Ae6IzCUTu5NklgmqEsljLwWh5WNPcqRibFfUqiW0JImM7Z8XN3BtMkicO6oQ7TjspHUd0HTMkoDDJGEQQE1kwLQJTrSWiK6DGE/8V1Op/uJJREnCt21p3G2VhkpkZzpycha+7csxt++BrVtsFrCclEnGubdSvzCqm2LrOoTAYcFN98ovMSgty9+OhrAU5PnVb5FqSabM03rpYbmnilRLMiAwb1/88wFYsG85Siv3sL31B/Cr0fdBXYUOlg48Nuk+pvU8h9H5Q7iq34VcP+gyXlrzLq6QhxRLEvWBhubsv8NZXb6BgNb6+2WCnyBBF6qvIe6qcFUxYsSHomiYO/QEUcaQmnuwga7hWvkVGZNvRTQfkiElyiSPvQwho3PM9W/SfXhWtRR7b8Kz/lvsZhnQ42ZsNbGn/gDTep3TXIrcRKfUfC7uNRlB0EixGylwFgDR7JVydxV9s3u2us+BOb0xiDKBiJ8x+UNabTe6YAhf75rX6vo1ZRvpnXnQ5GJN+UbkH2jcIUkiG6u2tTqhOn/fMsJCMO66BAl+CbSZGGTv3r157bXXOO200+jWLdbtZtu2bbzxxhv06XNwMLJ7926ysrK+d79ff/01O3bs4IknnmDz5s1x26xYsYJ+/fqhqip9+/bl17/+NYMHD47b9ueAomp4AxFsbbQcqalMyuUNH7GPVf7qNhGEAXAaHdQEak91NxKcYgQB6pV6nl31RsxyRVN4ac27/H7kjZhlE8+teosyT2VMm111+/hqx1xm9L8IGZnxBSN4fcOHbKvZzcgOg1m8fyUQdRzxRVofUGi61jzrdEH3SSzevyruS9BXO+Zwx7Br2NdQgjvoIaAcfBnyRQLoQvR8vIfo2xyOqqnNWqWqp45Q9QGShp2PZHWgBf1IVgehqv2ItlSyZzyM6ncj2ZJRDXa8mhELfrRg6/vX/C6EVl7gwio4Bp2Nv5WBq3PoeaipKUQiavMLdciUTtblf6F+9gtRe2tBxNplMMnjr8CHjSPNONpMEo/cOooXPtvM+p1RgdUeBalcf0EvrEYRrZUsmgQJICoSa2nfIxoEjBPUFGRTXBvrJoKlO8i+5I/UL3yXqi+eJGnQWWRf9n/oSgRBklBc1dR8/QJKQyWi1Ym9zzgq33skZh9ayMfxpvX4Ij68YR81/nrynFnsrd8ft12eM5saf330PhVufTbdG/ZhEOUYC95DUTUVURSiwVdVwCiaGZzXjy93fMt3uxdT6jloKd47swjvEe6Juq6j6olMmJ8TWvjIg3ddiYAEqjGJYPlc0iZeg2f9XHzbV4CmoDRUISVlkHPVQ2gBL7qqIjrSCYlWAmps8EHQdbRg68FLzedC1zWMohGLbI55lh5KujWVJ5e/yqTOY5ja4yy8YR92g5VSTyX/Xvoifxh1K7de1I9tJVWcUXgas/fOYVP1Dga368vw9gNYeiA2m9RqsHBRz3MQgOHtB6PqKvnJeRQ3xGbT5TqysBtamgYcijfsx3RIVrkr5P7BIrqCIMTo4x1ORI2gkZh0SPDLpc0EYf70pz8xY8YMpkyZQr9+/WKEedetW4fdbufee+8FIBQKsWLFCiZNmnTEfQYCAR555BF+85vfYLfb47YZPHgw559/PgUFBVRVVfHiiy9yzTXX8Prrr9O/f/xZ4qPlWKLIUmMqu3SMKe3Hg9sfTf912gzHnZp8tIiN5xP9/+hutk5bNPDiC0aO+BlW+Wvol9nrRz+HeIiieMj/GilmJ7sbin/wzMGp5mT+Dk82J+W7kXW+2PBtq6u/27OEab3OocRdHnf9hsqo1bkVO7VqDavLNrKmbBNX9buQXpldWVC8HBGRPlnd+WBz/AySbHsGmq5z75g7cJhs/GH2wy3apFlTmN7rPIySgQkdR5JhSyOshHln42fUB130yuyGsVE0r3tGl1bPJ8+ZjdxQ3RyIMWYWoIX8uJZ+jOprwJCRT9LQ84iYUtBFCdWejoaEqkT1U3TBgqWwL74ti+Pu31o0Al0QkeVWBo7ObJKGT8W19KOYxbaeo5Fzi1B0PeZ71xFRkvNJvfCPCEoQQRBRZSsBXUYERLHlvaTpWhAFgWSrzJ0X9yWkaOg6mAwiBlFA13VEOeH6cLS0hfvkqbjXKYKdjCm/o/rjx2MCMcbMAiRnBoaM9kSqD8Td1pjbFZ+Ugm389SSNuQxd09BlE5IoEi7Zimf9HASDieQRUzF36EHN1y+gH+LCAmAp6INuiJZZHOt5C1r0972ydB2/HXFD3OCugMC4gmH8Z9lLXNn3QnpndW8RbG5iUG4f8hzZnNf9DLLs6czft5ylB1aT48jikl6T8YX97PevJ8+ZQ4opGR2dJxa/xOV9p+I0ORErRMyyiZEdBmEzWkgxJ7fa9wxrKmbp+M77507TOPun9rnIzvTWA5pGM6LFgSyKRDDjGHw+SsUujFkF2HuPRTSYEC12PJsW4hhwFkFHrCuefNjISBPNmAv74N8ap9RIkpFHTaVOrcMdcnNWl/F8tHVmi2YZ1lSSzQ5q/HXNLkdGyUBEVZonTSRBxChC34IsuumnMzCvB+srN7OtZjfd0zvTK6s7C/etwBfxM6HjKPplFxFUwhxwl6NqKu2ScvjN8OtZUbqOpQfWoOsag/P6kp/cjsUHVtMzsyuryzbG/Tx7ZnZl5o65zX/3z+kF6D/oXi0IOr2yuvHBlvjvKgXJ7TCKxjbxPEiQ4FTQZoIw3bt357PPPuP5559n4cKFbNwYvVHk5uZy2WWXcd1115GdnQ1Ebao/+eST793n008/TVpaGhdeeGGrbe64446Yv8eNG8fkyZN56qmneP75+DaQR4MoCqSkHLsQnNNpOe5jHi3VnmgQJjPNjsPx4x8PwGY9et0Woyk6+FNo/TP0hLz4lQC5KZkn7RziYbNFzysrKY1VFetxOE3IUpu5rI6bk/E7PJkc7/V4rHhCXip8rWsDuUJu3EeYGYLo7BBWFXe9hwxrKtX+Ol5d9wEZ1lRG5Q9mSLv+FDeU0DOzG5urtrfY/ur+F9MjozNmg5mdtXtbrE+xJHHjoCt4btWb1BziNpJlz+CWoVfx1IrXuLzvBaQ5o1lmYjCDHpld2VLVspZ8RtdJaLOiWl3W7sMwJKUhWQowZxeiK2EEo4WIAC5fLbN3LeSAq4zOaQWMLxxOhjUNWZIxjr4Y/46V6EqsNoSclIk1vyey80hCojbMIy7A0XsM/l2r0VUFa+eByM40JKuT1n/Fsfs8ml/Gz+2aOFWcrGvxaDnZ36tm64/55ifw792A6qnDUtALQ2oesiOF9InXUv7mAxyekWVq3wNTShZWe9PnFluGZ04aia1jX9A1dE2j7LX7UOoPC/RKMqnjLsXYqLt3rOet+cOkmJOoD7qYs2cxNw++ktfXf9Q802032ri8zwUs2r+SoBLCG/YxtF1/FhavaHZQaiLJ5CA/uR2PLHwSAFEQubjXZPKcWXRJ68hTy1/FFToozp+f1I7fjrweSZR5dOFT9MrqxtB2/VE0hdm7FlLqqeCeUTczMLcPq8ta6nZcPeBiMp2px3XeP3eash1+ap+LFhJxDj4b94ovWqxLHXsZpuQ0zM3vYjY0mwM1u5CIq4qIpw6jJJM89Dxke/JReYYZx1xCYOeq2OeUIGKddjcv7JzFmvJNCAjcOPhyTus4kvl7lzbrExUkt+PyvlOo9NaQZHI0/7bDhwRJ7UYbyVYnKdama9xKdnIKPTI78/7mL/h8+7dk2NIY1q4/BcntcJjsrK/cymvrPowpTT6t40iGtetPUAkhAOsqtvD+5i+xGMz8Zvh1bKjY2qJsL9uegdNkp9wbLTMsTGlPu6Qcki0n4D4dyKJrWkd21O6JWSwgcM2AS8hwpvzwYyRI8BNF0L9P/fQnSmlpKZMmTeLJJ59szmhZvXo1N910E6+99hq9evXCZot/g3nggQf45ptvWLIkvsDW0aCqGm730dcgS5KI02nB7Q60qktwolizo5p/v7ee2y/s/aPrwoiSiM1qwucPHbVmgq7rPP7ueqaN78yZQzvEbbOnoZhHVzzBlT0uIsOafiK7fFSIoojNZsLnC6FpGsXuEj7c8QUPjvoDmaegPyeKk/k7PJkDsWO9Ho8XQYL3d3zG7N0L4q4fVzCcyd0mcNc3D8VdLwkij0+6n511e/l02yym9TqHJ5a9gtL40nRWl/FU+WrYULGV24ZdzY6avczbuxRfxE9+cjuu7DuVdrY8Uh1O3O4Afnz8ed7j1AUamo9xTf+LmbV7AaXuihbH75Saz61DZmDDAdrBzA5FDvHt3oV8s2s+/kiAwpQOXNF1IsnrF6DuXo9zyLlYe40joMdawQoi7PLs5h9LnomZNTeIMn8a+2tyTbkIuoYhWEPDnNcI7N2AIMnYeo0lacRUwgYnqqodVQVF00zuD/ndRvehxwj0nsxr4lRysq7Hk3Utfh+n+nuNZnAKaNrB37eMgugqoX7Oq4TLdyOYrDgHnomt30QC3+NqJIoCghDdn1nz4l72Cb6N89CVMOaC3qScdhURSwaI8nGdtygKFAf28/CCJ1B1jc6pBZzVZRxG2UiSyUGS2cmnW2cxZ280q2184XCsspW+OUV8s2s+a8o3ISIwtF1/xhWO4MU171DprY45xt8n/pFHFj4Vc79qom92D87uMp6HGwM3h/OPiX/CKluYX7yUr3bOxRv20SEpjyv7RO+JBsH4k7qOT9b1qGkaoij+ZD6XQzETJLR7Ja7FH0TdzJKzSBl3GWJuD8KthFaanhOHXndHgyToGALVNMx9ncDe9QiSgaTTrmCWWeWjrV83txMQGN9xBINy++Aw2jBLJqwGK4qmEFLD1Acb+Puip2MEpEVB5Pcjb6KTvWOLxB5RFNjq2sY/lz7f2A+Re0bfiqarPLrw6bgC2TcPvpIvdnzHgUbb9yaKMrpwWZ/zeWfjZ2yu2oFBMjAmfwij84fwryUvEFLDTOg4irM6jz+htu6KHGLW7vnM2r2AgBKkU2o+V/efRqYp88Q4MJ0E2tLEQYKfDz/9KftWKCkpIRKJcMMNN7RYd9VVV9G3b1/ee++9H7UPx2Mxqqraj25NWucOIghgkqVW3UBOHNFz0VTtmI5lM8vUe4KtfhbljcKADtl5Es4hHo3npUXPyy5Hy90qvTWkGlNPQX9OLCfjd3iyOSnno8CkTmOZs3dxC+FcURA5p+sEzKKFPllFzaVHhzK+cAQG0cgn276h1F3B7F0LuXvUTawp38S++hKGtOvHX+b9G13X+feSF+mTXcTV/adhko2Ue6owSWYEJer4oKoaRt3M3SNv4a8L/9s8Y51hS4sbgAHYXVcc/e5VnZjZeMXAme0nML7DSHRBR0LGrukII/PQR11OSLTiiegcXnKoGII8seLlFmULEU3hieUvc/+Y3yBFTITldOxn3k6yFgJBwI+ZRbsaqHU30LMwjfQkMxL6EV+af8j3qwkCnkCE9TtrMBpE+nbOwGwQY/Rofo7XxKmiLX2Op+p7VeLIvyiIiI58ks+/B4kIOgJh0YZHaXltNSMIBFWNTbtr8QUi9O6cTrLNhnn4ZdiHXoCg6yiiCZ9mQI/oyHJ0P8dz3rnGXB49416+3bOIfQ0HqPTWMrz9AAyCEYNi4oJuZ9Ersxtz9i7GFfJyesfR/G3h/xjVYTB3Dr+WFHMyW6p38PiS51oImBokA7WBhrgBGIANFVu5pNe5DG3Xn+UlB614RUHkxkFXYMUGQYnT8sYyqv1QdHREXUJWjWhhHfUHnPfPmaZb3E/xc/FiROo4mozCAQi6hiZIhARro7h5/HM53nNUgLAhI/qc0kNENKjVdWYu+ntMOx2dOXsWM2fPYm4ceAX9U/uhBjVkDMhYSLIn8cgZf+Tb3QspdpXSzpnDxE5jcYoOIuH4fctPak+y2UlD0E2PzK5U+2oodpW26lD22bbZXNnvwuZMM4gGhzqnFrCpcjtd0zpxdf+LKXGVsbV6F1urd3HtwOlENIXCpPYIQSPKidRqUQycVXAGEwpHo6NjEGTSnSnU1/t+cr+5BAlOJG0qCLN7924+/PBDSkpKcLlcLeuNBYFXX331qPZVVFTEa6+9FrNs69atPPzwwzzwwAP07t077nZ+v5958+a1uv7nQJPgbTz9g7aCzWzA7Qu3ur7KX43dYMMgtQ1xYYfRjoBAbcIh6RePVbfzp9F38PSq16lqLE1Kt6Zy4+DLaQi4eHX7B0wpmoTVYGZ56Tp0XUcSJSYUjuK8rhNRVZX6gAuATVXb2Vq9k345veiW3hEBofm+qKOzvmIL6yu2NB/710OvJSv5oGC5quokiSk8NP5uyr2VVPlqvtfSPaiG4s65K4qOdMjsYlSm0BCN1bTiJOMKuwlE4osU1vjr8Ct+HJjQdZ2gKiMIBnaVe3j0tfmNgaAo3TqkcNflA5COIJx7vGiCwBvfbGfempKY5VedXcTYvrmtbJUgwY+DpukEMALGxgVH+M0LAmt31/Lk++timg3snsnNU/sQ1hqvZBWOJDp9tOiqgAUHUzqdTVgMsqVmB8+sfB0dnXEFI8g1F/LRJ366FIwB4Jv5ddw06Bpe2fAW3+yaz5V9p/LdnsVxHWTMsglX0N36sdGp9teS58zmnlE3s6+hFJNsoF92T0yatXlGXT3sPqX9CPeMBG0HVdXwNRWe6nC02oPHg67r+HUDT3+0jdXbqvjD9T1bfb4BVPlqENMFVBUEWceHh6+2zuGAu5QheQMY3X4k23cF+PP/NvF/1w7DaRbjurIZFQv3jb2Tp1a+it1oI6Iqze8I8agPusixZ/L4mfeztXonQSVEO2cOK0vXsap0PZf3ncJLa95ha/WuFtue3eU0Luh4DpHIiRWyViMHr0spoQGTIAHQhoIwn3zyCX/84x+RZZnCwkKcTmeLNsdSOeV0Ohk6dGjcdT179qRnz56sWrWKF154gTPOOIO8vDyqqqp4+eWXqa6u5j//+c9xn0tbx+UNYbO0ma8+LlazTIO39SBMZaCGlDbijAQgCRIOo53aYEuXhwS/LHRVIMeYx59G30lAiboRmA0mPtr6NfMbLVu31+7mtMIR3Df2DsyyGaNkRNd1FE3BKBrpnFrQnCmj6hqryzawumwDhSntj+i+kOPIanGf1DQdOWymg6mAAkshftETDebEGZxIgojdYINIi1XHhdqKtXVz3w7ra1DVeeTVlaiHvYhu31/Ppwv2cNG4TsdlBd0akiSyaU9diwAMwGtfbaVPp3Qyk45ezypBgpOJL6zyxHvrWixfva2KRevLGN8/90exPA8LQT7Z/g19srszudvp6OgICCwom8tFk0bw8AsHxT+373Vyz4w70cQQZtnInvr9VPtaOgn6wn5y7JmtHtMkmxAQ+GjLTCRRItuWQURT6JXeHZOWGNQl+PGRZJGF68pYvS2aiV1bHybHntmspXI43dI7oaoaglHFo3ko91QypF1f2nlz+HTrLN4KfczVvS+nQ7aNh19byV+uG4YUZz+apmPRHfxm8A2oosJ+VykdU/JZWbo+TmvonFqArBmRIxJD0gcSkUJ4wj4mdRrH+d0m8vfFz7RqDhBWI/xAU6QECRIcJW1mJP6///2PoqIinn/+eVJTT045R0ZGBpFIhH/96180NDRgsVjo378/DzzwQIwd9s+Nhu+xfm4L2MwGalyt6wZU+qpIs7Stsh+n0ZHIhEkARGfnJNWIHSOiKLDLtas5AANR8d1SdwXukJd/L30Jd6NQn0GUuaTXeczodxF3ffNQi0DJypL1XFA0ibc3ftrimD0zu2KXbK1OeOt6VOvEJJoZlT+EhcXLW7Q5vdNoTFhO2NxxiikJgyi3EAIEcBht2Aw2aIy1SpLIxp1VLQIwTcxeuZ9zRxViOIEviGFV5+P5LWcDm/hyyT6unVx04g6YIMEJwmCQWLAivpMSwGcL9zCid/YJf8mTJJEyfxUdU9rzzMo3mjMBzLKJS3ufj2j00KV9MjsPNACwr9zNyx/v4vYL+6CHdc7vNollB9a0CNCaJCNmg4neWd3ZWLmtxXEndR7DouKVQNS+utRTQYYtLep6lKhoSHASCCkany44KDD7zcIKppw/mefWvdSibZY9g1x7NooQ4tX177HqEMHo/OR23Db0ap5c/gpvb/2AW8bezt+e24QvpOA0xQvDRJ/fQsSAjIEOznYYZQMOow1PONY6WxAELul5LoIio6MTiWgQMeAgObpe1GjvzGk1CDOi/aDoNgkSJPjRaTNBmKqqKn71q1/9qAGYoUOHsn37QTeR/Px8XnzxxR/teG2VBl8Ix48syPtDsVlkdpfFz4TRdI3qQA2dkgtPcq+OjNPooCbQcoYvwS8cSWfO3kUxiwQEzu8+kUcXPd0sugtRrZSPts6kR0YX/j7xj1T5a2kIuPh2zyLSzMlMKToLi2RGFmQ+2joTX8SPJEqMyR/K1O5nI4QMzXd1VYoQJIAOmAUTkmqMpjpHJC7pcR5Ok53ZuxcQViOYZBNndx4frdkOnbgoh1E3c3mfKbyy7v0W664dMB2TZkZtDPkIQlSvqomsVCuXjM6hIFVCEEU2lwTRT/AMnabruI6QcdfgCbbI1kmQoC0gCMIRJyrcvhAgcKQyJEEQMIthJCWArmvoBgshzEfUWVPFCAjwwup3YoLEQSXEy2vf4w+jb2Vo39TmIAyAyxdG1XUMBjAKRh46/W5q/fXM3buE1WUb6ZSaz7UDpvPJlm+Y3vs8MqypLChegaIpWA0Wzu9+Bu2Scvls22zyHNlM7DKGFHMSWfYMZMEAgnBMmdIJfv6YJA2D6o/atBtMhEQbivJDfyNC43UVZX+lhz3bk/lVnyv5eOdn1AdcCILAwJzeXNnnQgwYeWvLRzEBGIDihhJeXfc+F/U8hxfXvIMmBZAlgVBYhUOCMKJBJ0SAiK5gkGTQBURdxKLbyLZl8psR1/Pepi/YVhOdSMiyZ3B1v4twmuwIEeJrqCkiF/WczLrKLS1KqfpkdifDkoYeTlxLCRKcDNpMEKZbt25UVcVP6UtwYnF5w+SkHtlp4VRjNxvwBiJomt5Cu6Yh5CKiKaSYkk9N51rBaXKw39OyrCHBLxtRFFq8DBVldGZbze6YAEyWPYO+WUWc1nEkH2z+ktVlG7EYzFzRZyrXDphOfcBFUAlhFEyMzhnOoJy+hLQQRtGICTNaY/BEEGF/QynPrXqTHY0W1fnJeVw34DLSpHR0VUAIGTi3cBJnFI4hrEUwigbMugW1pVTDD0JXBAZl9afdmFw+2voVFd5qOiTlcmHROaQa0lAPeSlWVZ1endJh9g4GdknlhjFOtMUvEa4qBmBgXldS+9xIwJiGeoLK1U2yQJ/OacxbUxp3/cCiLKREanaCNoiiqAwuymLu6vjPnKLC1Ohvt5XxlCgKmMO11M98nuD+qK6UIb0dqZNuIOJoR6SVEh9REpi3Zyk6Og6TnR4ZXRAQ2Fq9E1fIw7e7FzIi88yYbQZ0zUA0Rfhi1xxmNQZ+LQYz53Y9nav6XoSkyRh0E5f3vpAlJStRdJVfD/sVFoMFp8lGnb8BBPjb6ffgi/h5ac17lHsqAeiV2Y1r+l+CTXOcIpH+BG0JQQC7GMC18B1qtiwCTUWyJZE85jIsBQMIqMc/ASkJ0KMwjQ27apqXfT7/AF33JjNtzK9on2vGbjJhxIwQEQnKfhbvXxl3X6XuClIsSUhiVOlMFAWcNiOSJCCYVIJaiPc2fcGyA6tRdY0ks5Pzu59BSImQaUuje3JXMq0ZXN1/GjrRUuZKbw1vbvgET9jHX8b9Djnc0nZc18Gq2vnbafcwc9dcVpdvxGqwcGbncfTN7BmdyEmQIMFJoc0EYf7whz/w61//mjFjxjBgwIBT3Z2fLbqu4/b9BMqRLAZ0Hdz+MMn2WE2GSn/U1jK5DWnCQDQTxhvxEVbDGCXjqe5OglOMKAqE5QC76vczvP0A1lVsbl7XPimX/a7owN9htPGrAZfgDfvZVLWdb3bNY2zhMDok59E1rSPvb/6C3XXFzdtm2zO4e9QtWFU7smoGNTYb34+P+757LEY3prihlAfm/YtHTv9/WHAAoEbAgAUDFlAbtTuPEkEQMIlhJD2Cjhh1pGhFq0WIyOQZ23HrgF+hoCBjQFBE9MMqlHRdJyvFQtf2yVw/IYvgB/fBIUGqcOkOKt64j5yr/45XcKALAhFVQxDALIstXBYkWSQUicpyGiURXWvZP03VuXB8FxZvKCdy2PZJdiODu2cmBnYJTgiCAEZRRdZC6IJAWLR+78x8028YQJYEBP2gQ5im6XRul0xWqpXKuqj2VJLdyITBHWif6aBL+2QMkoiixL+yTYqbijfuQwt6m5dFakqofPsBcq5+FMWQHncmXdN0qnw1XN1/GmmWFJaXrkXXdH418BLcQS/f7VlEux4WenZKYfPueqxmmTNG5PHWxo9YfODggDQQCfLe5i8IREKcVXg6iqIRESO8s+kzNF0jz5GNK+Rh5s65zVkuJsnIjP4X0SEptzkIs6lqO3+Z9y/+Mv730fthgp8k0etDQdbC6MKRnylHwiKEqPnkccLlB8tMVZ+L2plPk3b2LcgFQ487I0YEZpxdxO+fWBgjhL1jfwMNX4Z48MYRCBEdSRJRdY2gGkI7gi5aWA1zRZ8pFGakc/8NyVgt4FYbcLndvLnhY/Y1HAywuoJuXlv3ITP6T+PrXfMwdDVgM1p5cP6/4+571u75nFt4JmocFzZNA6NmY0rnyUzufAYCIkbdhBJKlCElSHAyaTNBmOeffx6Hw8Hll19O586dycnJQRRjZ2IEQeDpp58+RT38eeANRFA1HXtbL0cyR3+aLm/8IIwoiCSZHKeia63iNEb7UxesJ9uW9T2tE/ycEQQISj7+Mu9f1Add3DzkSrqmdWRHbbSe3G60YTfaWF22kVuHzuC1dR9S1jioAJi7dynndjuDKm9NTAAGoMJbzeOLn+WukTdiwoquHkzVkA0ic/eviCvcq2gKn++YzfRuU9Aix5/eYRQVDP4qGha8RahsN7IjFeewKZg79Manxhex1TQdNAm5UXawtVdgGZ37ZvTHP++lmABME3rIj2/LQgJdJvH8Z1vYVlxHssPEheM6069LOqKuIwigIDBr+X5mLd+PomlceWYRPTumEgqrmI0yZoOA3hhcsZskHrllJM9/uoltxfWIAgwqyuLqc3pglhNpMAl+OLKoY1bqcc19l0DxRiSzDcegs7F3HY63lcCBJgosWl/G54v24gtE6Nslg0sndsNhktAbR4BGEf5y/XDenLUNTdM5d3RHAiGFUFilpiGAxyiSmWxBOExnSdd1AjtXxARgDh5YxbXofawTbiCkttSnkHSJS3qfx9c758WUWSw+sIq+WT24su+FfLPnO84/sx95qxxMHtURVQjEBGAOZeauuZxWOBKTYKXCU4Wma2TbM7CbbC20r0JqmOdXv809o25hVen6Zl0ZV8jD5urtDEjtf1wD9wSnFoOoYQrX0rDwXYLFm5GsThxDzsXWaXCrz5TWEPy1MQGYQ2mY/xYpeT0JYMMki8cs8q7rOik2I3+9Ofq82FPqQhIFRvTOZfLoQv7y4jIUNXodDuuRjVkyIYkSqtYyEHphj7OQRZn5+5bx3qYvGFMwBL/clWdXvckNgy6LCcAcymfbZnFxr3N5c8NHXNHvwlb7uuTAaiZ1HB/jFHY4WoTm9SfUkjpBggRHRZsJwuzYsQOAnJwcfD4fu3a1vIkKCcnuH0yT45CtjQdhmoJELl8IiA22VPmrSTElIQptyxGhKQhTE6hLBGF+ociygCqoiJLAO+s/pT4YtZF8afW7XD/oMoa178/SA2sIqxEG5/WlzFPJqrINMQGYJj7fPpvfj7oprrBtqaeCMm8lKaYkUsT0ZltLhQgbq1qKWjaxrWY3kW4RJI4vU0uSRKS6fVS8+1eaQimR2lJqv/wf9n6nYxl+CcFjSPeWZBFVA0kEVdHQdTCoIZTS7a1uEyreyJy6TqzdES1fDYQU/vfBesYNaMcVk7qh6fDXV1ZQXOFBlkTuunwgyzaV88xHG1A1HVkSmDC4A9PGd0HUNXRNJ81u5PeXDSCkaIiigFESEXQNVdWRE4GYBD8AQRAwh6upePWPUX0KQAn5qf/uVcy71pB01q34tdhAjCoI/PfddWzcfVBjbOnGclZtreQft40mySKj6zqapmMQ4Ppze1DvizBvTQlfLd5LMKwiCDCgWybTz+hGmsMYY3WtK2GCe+M7qwCEyrbj0MJAnHIGVcAfCbTQuQBYX7mFMYVD2VO/nzVlG3lg0l3IEYnyQEOrx1I0Bb8SwCybkcRo0GdMwVC+3b0wbntd11lTvpE+2UWsLT+YXbi+cguDMvqfsFLFBCcHURQw+isof+M+aAxWKOEA9bNewNJlPY4J1xHQji4QI0ki4cp9ra5XfQ1UVtZx/7truPKsIgZ2y0A8Vi0hXScn2cwfrxpERNXRdJ0vFu3h/ueWRjVdgBc+3cSabVXcfkkvxheM4Ns9sb/l4e0HICDwzyXPNy/rn9OLxxc/R7YjkxJ3RauHrw+4sBksVPpqsMitfy6SKCGIIElCIpszQYI2SpsJwsyZM+dUd+EXgcsbFX2wm9vMVx8Xqynav3g21RW+qjZXigRgM1gRBZG6hE31Lw5RgpAUYO7+FWyp3kGGLY0xhUOxm2x8t2cRITXM/5a/QvukXAbk9GJgTm8MgsyUokn835x/trrfDRVb6Z7ROa5biC/s5+sd87ix/1UIWvR6kZBIt6TQWggj2exEimuCeXSYdB+13zxPvFwW77pvcQyeDELy9+9IFPCHVWYt3seeUhcFOU4mDcvHbpLQBAnJnoLiiq8RJtjTqPe1HGnNW1PCtAldKK5wU1wRdZs6d3Qh89aUsGzTQScIRdX5ZlkxoYjKVZO6g6ahaToCYG4SgNG0E+YQleCXjUkIUz/n1eYAzKEEizeS5K1BsLVrLv0RBKhuCMQEYJqIKBqvfLmFO6b1QRQEInr0SgyHVBavL+OjuQcnr3Q9alVd6wryhxmDYsKugiQjOTNa7bNkS0EXxLgpa4JB45td81vd9uud8ziv2+n8Z9lL+CI+nLoJq6FlMCfmvLQwT6x5kUv7XIBBMpBkclDja91psNpXh/OwTNhMaxonXLk7wY+OSQhRN/vF5gDMoQR2riRp5EVgPLpJLU3TMTiOYO4hyqiCjDcQ4emPNnDX5QPpXZByzNlTmqYjAiaDyGNvrWHL3pa/1TXbq6ipi3BBtzOJaAoLipc1l9Wd3mk0jyx4srmtw2THFfQQ0RR8YT/JZmerxzaIUdcjk2zCJttbbTeywyBm71lIx5QOdEouQIoY4wv1JkiQ4JTRtkfiCU44P5VMGEkSsZrk5qDRoVT6q+ncxpyRAERBjDokBRM21b8kRFHApdfx52//SVBp/L1W72T+vmVc3mcKQ9v1Z3nJWgAOuMpo58zGIBswiUY84aiGUGuE1DCyGP827TTZ2Vi1DYUIhsZbuabAWV1OY/GBVXG3uaDbJERV5nhDDIISRGlombXTRLh8N2K7Qc2ZOfEQJYH91X4eeGFZsx31pj21fLV0H/ddM4ROOU6cw6dQ/cEjcbe3DjiLEb4kdFFm7uoDMS+WNQ1+Fqw9KLLbu1M6n8xvacUNsGBNCRef1uVg4CVBgh8BWQ8T3Lep1fWBXauQB+YTiUQHobIssXJL69fYup3VRFSoavBTVu2jrNbHxCH5fLFoT9z2+8rd1LqC5KVYmq9LQZRwDJiId93suNs4h08lLJiJF4VR9Agh5Qj3LCVMjiOTy/pcgKJHz8lmsJNlz6DSW92ifZe0QrZU72RL9U4+3PwVV/SdQoW3mvzkdmyqih9OLkhux5bqnc1/CwiMzh/W/Bkm+OkgqSHC5btbXR/ctwG5x6QWml/x0HUdOa09gtGCHm7pHGbqPpKZm13Nf78+cysP3jDsqAdCogxhMYg37EUUJSyilU55SVwwtjOapiNJAtX1AT6ev4vq+gArt1ZQ6wpisvTi7sGjsdpV/GE/iqrEZLfKokSg8d2hLtBAstmJWTYdfJ84hOEdBrKqdAPj8kdQU60yILsvaypis9pyHVl0z+jM3xc+jY5O59QCfj3kWsTwsZV2JUiQ4MelTdVzqKrKl19+yf3338+tt97abCft8XiYNWsWNTU137OHBN+HyxfCYpKQpTb11cfFbjHQ4It92QsqIRpCrjbnjNSEw2CnLthwqruR4CSiSmGeXf1m3BemdzZ+yvjC4c1/X9nvQvKcOdw/53HumvUQITVE3+yere57YE5v9hymCQPQO6s7u+v2R1OODynT1HVINaYwo/+0FuWb53U7g/b2dkcMkHwfwmElgKLViXPgmSSPmoat+3BEY/wZb0GIWoZaxBACGv/7YF1zAKYJTdP51ztrCSgqQnpHnEPOO2wnIqbRV/LJGg8Pv7ICk0Hilgv7xjSRZQmL8eArdSiitjr7p+ngC7TMTvghSJKIJgggCi1c3RL8QhEEBMkAokzSyIvIuvgPZE75Laa8bgCIRkvMb1TXwXKETFWjLBKKqPztlZXkpNno0ymdshovvmAcBc5GSqu8LX6PqjmV1DNvjNqpHYJ94JlIOV1bLWEwCEYG5PRu9VgDcnuxp24/npCXlMYZfYNi4vcjbiLFEpvBmm3P4NLe5zNzx1wA1lVsZlftPvrl9OS8ookItLyGLLKZ7hmd2V4THbhLgsgtQ2ZgE1rPCkjQhhHEFr/BQzn8+vg+QpKd7Ol/QjDFOoDKOV3wFU3muzUHS30q6/wcbRKMblBZV7eBP3z3N+6d83f+37cP89eF/2LoEAtfLNrNI6+t5K8vr+CrJXu59cK+tM9ygCCwv9LDVwsP8Of/baChTuDfy15qUV7cEHSTbT+YmfbJ1m+4dcgMLHJsmWKXtEKGtRtAfcDNGZ1G8+pnu+lpGsvN/a5nYE5vemd157qBl3LT4CsRgYt6no0gCOyq28em6u3Ictt/70+Q4JdEm8mEcbvdXHfddWzYsAGr1UogEOCKK64AwGq18tBDD3HBBRfw29/+9hT39KdNgyfc5kV5m7CaZVyHlSNVBaIzaanmlFPRpe/FaXJQG0hkwvySCOoh9tbvj7tO1TWqfXWkmJPIsKZikoy8vu7D5vX/Xvoivx1xPZuqthE+rFyha1ohec5sRnQYxLe7FxLRFERBZEheP0YXDOE/S19kRLuBGDRTzHy1pBk4rXAE/bJ6sqt2H6qu0iW1EBNmhMgPu+WrkgVT+yJCB7aSPPJCjOnt8Wych3pgK6aczhjTclAEDe2QwZNRVDAGa3At/QSlvhxDVgEPTz+TVxbUsHBT7My42xfG449gsBoxDTiXnL4TCJXtwBfUiKQU8NGqGmY12knPXLqPi07rwsDumazeVoUoCqQ4TEwcls/cNVFRQ6N85NIrs+nEPAJFUSCo6ny3tJhV2yqxWQxcMKYTBdmOY9ccSNBmEUUBkxBCUkMgCEREKyH1yAObsGAmadwV2Dr2wbthDvXz30E02UgaMhnJfgWY7HgPcTBSFJVhPbN565v4WSDjB7Vn1opienZMw2ySePj5ldw5vT+yJKK0MqLMSrO1KLmIYEAsGELODb2iQqZKBGNeVxTJhv8Iuk5aRGBIu758t3cRtf7Y0tsUcxIjOwziqRWvccBVzoTC0RiIBmF1YEa/i4hoCjW+erLt6Y0ZeUJMtt/C4hUsK1nL45Pu43cjb+DFNe9QH4hmL7RPyuWWwVdhls3cOPAKzLKJwpQOGFQTKIkB5k+RiGjB2m0o/m1L46wVMBf0xnOUkRK7FERvKMe7YwWZF/wGLehDC/lRktuzsULnqde2ElE0TEaJiQOyGdsziVTRgyYaCWFudYJCFAVKAuU8u+qNmOXV/jr+sfQJfnvmb9jwv2j5YEmVl8ffWs3tF/fHIIt88N2O5vazF1UyZfBkQkoIp8mBOxQtm9V1nQ2VWxlfOJy5e5eyq24fn2z7hluGXoU35COiKRSmdCCiRggpIfrn9ODpVa9y+ojzeO79Hfzpuv6MLRjGpurtfLNrPgdcZQAMazeAXw24hBdXv8PsPQvold4Dse0M+xIk+MXTZq7Gxx57jJ07d/Liiy9SVFTEiBEjmtdJksSkSZOYP39+IgjzA2nwhdq8PXUTdouBBk9sdkGlLzpoSzG3PU0YAIfRzj73gVPdjQQnkSNZUEJUmNNqsHBRr8k8s/L1mHX+SIB3N33OXSNvYs6exayv3IJVtjC6YAjd0jvy36Uvc0bn0dw//k7qAy4kUWJd+Rb+veQFks1OLupxDno4zmyxwYxVU+mVFM2y0Y7TkvNwgrqJ1Ek34F0/G11VqPr0383rwlXFeDcvJOvyv6BZcqL1+aKOWLqe8s+fiGnHpoXcMPVuKhqS2FniijlG04twSDMQFpOocvbln1+uobJuM4czc+k+bpram9Xbqrhmcg9Kq310zHFy5rB8vl5WzIEqD53aJbH7sGMAFBWkYDPJGGUBTdOPKt09HoIAvojGPf9bhPeQzJpNu2uZMLg9l57eFVHXo5blmo7bHyEUVkl1mjHJQoxgaoK2i9kAkqeEulkvEq7YA4KItfswksdchk9wtDqAU3QRe8c+lL8eawcd3L8ZW8/RJI+5NNYfXhAwGiUun9SdN7+J1YLKTrMyZWwnbntsHmePLGDLvjoCIYUVWyoY3S+PuatbPnuSHSayU63NehSHEtYkwjgQcwcgCOBVdb7PJEWQdNxBL3cM+xWLGgMm6DqD2/VjbP4wvP+fvfMMjKO62vAzM9t3taveLatLLnK33I1tXDAlVNN7DyWBBEIICYSQEJIACUkg+ei992qKce+927IlWb3X1fYp34+11l5rZUrABfb5gdHUu7tzZ+a+95z3+Fxkx2ZS2VFDt89JgmDGL3l5YPG/afN0YDVYsBtj6PR24Ql4GRibycmFM3hpyzuhcwSUAG6fh3xLPvdOvQ2P4kEUREyiGZ1iQPVrjIwfjqaB6o/2n+MZnyISe8JF+OrKUJzhPkjxs6/CL9q+8poEsEgBvDsW07H4FQCc6z5BsjqQLA7iTrqGz7d04vHJxNtN3HtBPvot7+J7bzWNqoIhJYe4WVcRsKUTUPuKeYoU4PXtH0Q8r18JsKNjO0NyE9heEWy/0x3A6fbT2NaDqkF6opX0JBudTh+dtQkUjLRyzegLeGTV08j7o2I+KVvIlaPOozgxn/d3fU5ddyOflC3igmE/obargX+tehpJkGj1dBDYP2Fz6nA9eRkO7AkB7ln4RJ+2rardwKDkfNJiUpBVhagpTJQoxxbHjAizYMECLrnkEiZNmkRHR19j0+zsbN55550Ie0b5JnQ4fcdNJIzNrKe+zRW2rMndjFVvxSgdO7mtUk8HlsqNaKJEQnwcroALn+LHKH27CjRRji/Mook0WzINPX2NZAUEBicVUJI4GFWQaY9QJWRPWyUPrXic68dcxBmD5lDWVsGqmg28u/NTAJ5Y/zJz8k9gRNoQNjdsp9vn5LoxF1MYn4deNh3W3+V/ST2KhKZpePTx2EfOpu7xW/uul/20z/8/Ys/8NR6MmHDRMP/xCAdS6fr0v9x48m+45fEDAonZqMNhPdBvRFGkvK6LpnZ3xPa4PAHiYkzcfdU4lm6qJy7GiITGOdPzmT5mAMs313PdGSX8+43NVDc5Q/tlp9n5+Xkj2VbZzo7KNgam2RlRkIRZL6B+w0oSmiDw4vwdYQJMLwvW1nDyxGwSrAZaun3c/9xaOvYLy6IocPrUPE6ZMDAaLXMsIwr4ZQ19VwMtL/0OekVXTcW9cwW+ujKSL/wDPVgi7m6WZDq+fDliOWjX9qU4xp4MhuC+qijw5pd7+Wx1FadNyeWuK0pZu6ORHneAicPSKRwQi4aGqqr4/Qr76rsBWLyhll9dMpa2bg9b9hxI2463m7jj0jERknrC+Sb3CRmZV7a+y6SBpYwfMCqYmiSAQdJT01XPFxVLGZsRTBPUS3pQwRnooc0TfK9z+d24/Af6c1VnLecOPTXsHLEmOxa9BcWvISlGbL1ldhVC97toxZcfDi4hhuSL7sNfuxPvnrWIMfHYhs0gYIjFp349I3md6qZpyWthyxRXF4qri/ZPHufGub/gun+1cvuZOYif/Q1f14EoTH9TJU0v3U3qZX9GNqb2ESwVFOoOU7Go3lVDUlxq2LLK+i563H7uvGwsLZ0eKuu7yc90UDQwHlNAT1psEn+d/RuWVa2ntruOdGsmSbosvlzRxpSsc8jMt2C2+3lw2f/R5XP2OadO1JEWb+O3V47hhR2v9tu2xZWrmDhgNCadCT0GlKjlfJQoxwzHjAjjdDrJzMzsd70syyjR2oP/M109fpIch69UcKxgM+vpcvnRNC3kb9Hoaib+GKqMpG+pxrH45eB0uKoyTqdnRaqZNk876bbUrz5AlOMevWri2tEX8cclj6AcEhVzevFsjKoZURDxCTIOk50ub3efY/hkH17ZR4zBytMbXuuz/tO9i7HpLcwrOh1V0VAUDcWvfmuD3f8FTQNvQwURS6cQfKEVZQ+IRrSedrRAX68cAKWnkxRL+D396tOHYtQdEEJUVSM90dpvW8xGHbKicv+zawA4b2ZBqHJFqsPIGSfksq28lfNmFWIy6vB4A6Ql2rCYdPz+yVU0th0YDBr1EvdeO55URz9h6YKAT4WArGDUS5j1IrKsElA1Vm/r/wV91bZGZo7N4nePr8TrP/B5VVXjnUV7SU+0MK44+VtH4kT5/hBEgX1NPeypaGBq1wcHBJiDULpbCdTvRsoYHbHKiqR4cO9Z3+85XLtWYSo9l4CisHBdHfNXBT2g3ltSwfyVVQwvTMJhNVA8MBZR1UAUmXdiAaOLU9i+vyqLrGg8+OI6zp1ZyBlT82jp8BBnNxJrM9Lh9OHxyeQk25A1jR6fQk+TE4NOQC+J37gyjISOVFsyz258nRijjSFJhQgC7GjZS5e3mzHpw2j3dJFkiceqNyMGBLx+72GPKR/kkSEgcM3oCzEopuiA8UeCqmr0YEEaMBZT9lhAoMevfK0IGNhfmrq+ImL/BAi01pBkUrj/pxNJc+2iq6uvQTSaSueil4iZezPeQ9LxJERSbEn9ph2nmNMo6/IxOCeO2ZNTMVsgyWFFj4k/PrkhbBJBJwn87spxxFmttLXJbF4WS4I9hc2dXl6pDJZ9X7whuO1/fjeebn9f8RZgUtZY4kwxKKoS8Z2il15vpmHJQ1CiUWNRohxTHDMiTFZWFtu39w0372X58uXk5eUdwRb98NA0jS6XD5v5mPnZD4vVrEdRNFxeORS90+BqItmSeJRbth9PD/Zlb6BYY+keOgNBCWDfNJ/zG7toj4owPxoURSXFkMqfZ97Ju7vms6etkjhzLGcUzyHLNgBVVHhz1weUJBczt2Aar259v88xLHozBQk5IOu4fMQ8nt30Rtj63LgspmVPwuvp33zzyHL4ufVeQ81IKRAHI6rZzmkAAQAASURBVKKRFGcmM8nGuTMLSXaYwiJRNC0owsTFGEMRJAczqzSL+SurUDW48ZzhSKIAmoYggNOncPu/luHxBb8znSRgMen56dnDeGn+rjABBoImvg88t46/3jSpz4OxtdPDcx/tZOmmOhRVw241cP6sQkoHpQS1KEHoN9Q7LsbE1vLWMAHmYF77oozh+UnHzsM4SgifovHAC+u485x8/Nt39rudZ89aTFlj+HbzRAIKUF7v5J1Fe8PW+AIKa7YHBb4xxckUZToQBI2RRSnc+dhyfnvlOAw6Eb+s4pdVXpy/C1EUsJn1XDx3EC9+sovGNhcP33ICTp/MY29tCZXTTUu08tOzhpGZYPlGaQpqAE4pPJFl1Wtx+npYVbshbP30nAk8veE1rh59Ac9vfpMzB80l3hKLIAgR7wcGSY9VbyHREk927ADOGjQXhxgbjXT5EaIo6rfsQ18HgfmrqrjYGrlyIIC3ZgdxWgA4RIRRDMwbfAp/Xf6fPvvoRB0lCcMhu4v4Ad28Wv4UXd5uBEFgdNpwfnrBSTz0zHac7mCkpKxoPPD8Ov5xy1QAREFAFEUEQejzGFF9Bm4svZxHVz+LdpAgmRaTwtmDTkb2aeh0OkalDQurFnYwg5MLGZlWgugzHJVJmyhRovTPMeNkds455/DWW2/x8ccfhx7UgiDg9/v5+9//ztKlSznvvPOOciuPb1xeGVnRsFmOjzSZXuGl1xdGURVaPK3HjCmvfs18BEXGOXgq6PRoRgs9hRMZ6JPRKvt/0Ef54aEpAjbVwSWDz+V3U27lZ2OuJsecC8D/rX+RhZUreG3b+wxPHczMvMmIB1WDSLDEccuEqzGLZgiIjE0exd9m/5Z5Q07lpPxp3DX1Z9w67lok/8FpOgKaXkbW+1D1fqQjWO1MVTUMaXn0J8QYUnNR9MFoO8nqQNCbIm4n2eKQzDb+dO0Ebj5nGKkOE0KkQZoIf7h2AmkHRcQIAswYM4DSIalkpcTwuyvHsXp7I7urO4LfjSDy4vxdIQEGgi+/3S4/Okmktjny7GJnj49ud3haUUCFvzy/lkUbakMVnbpdfh5/dxtrdjZh0ouMH9K/4DqqKCmUNhKJ1k5v2At2lGMDQRCob3Hh8yv0eBUkS/8RmJI9sV8dQ5HMWArH9LuvtXgcv39iJf6AGjGlrZea/RWO/Cr89+0tKKrGGwvK+OVFo4mNOZCeKwpw4tgsnC4/1U1O/LJKdZOThjY31Y0H0hoaWl38/omVdLj8CF+Vr3QIMaKDn0+4CvNBfdukM3LtmIuIMdr41ZQb8KsB9JKOPy7+B5IgcWLO5IjHOrP4JDKs6dw95VauLLmAWOLhK8yOo0Q5GEVRMaTm9ltlSZ+UhRcDXT1+VHN8v8eRLHZUrW9nUFWNLNsALh52NvqDTKRjjDZuGXc9qzd2kjTQxQvbXwlFpWiaxrr6Tby46zmuODM/7Hgen0xTh4d4h5GcdAdur0zxwDjuuWo8g7KD7UuKNaMXdQyyF/HPuX/g7mm38LtpP+f+mXdw1+SfofMH+54sq4xNH47dGNOn3QZJz+lFs8Gj/85Tk6NEifK/c8xMvl122WXs3buXX/ziF9jtwbKGt912G52dnciyzHnnnce8efOOciuPb3pnkmOOI08YCA6MMpNttHraUDT1mBBhpK4WpLL1eApK0Q4qy6vEpVJrNpFYthZt7CV9ygRH+eGiaaAFBKT9/gUqGi562NYcNNdscrXyUdkCZuZOYXzmKJx+FwZJj0HUkxGTCl59cCguS1iwMytzOhB8ydL8Bw3TdSpN/mZe2fgelZ3VJFjiObP4JAYnFCH4j8wt3S9aiD3hAjoXvxy2XNAZiD/pOjyaEdDQdGbiZ1xM26dPhh9AEEmYeTmyZEGnAeqBzycIAirgCSj4AypWk45Yi54/XD0et1+mvduLgMCe2g6WbaqjtcvLG1+WoWlBwUMQBAKKxpodTRHb/lUz7F6/ApYD98jOHh+7qvr6lAG88tluxhQnc9FJxWwtbw3NdvYyuzQLo16kICsWlkc+X1qC9Ss9O6IceQQBXN7g7/nRhjZ+NuwkWPZCxG2tQ0+gJxB5Ct+j6Ig/4UK81TtQPeHin61kGj69nfK6nbh9AWJjjKFJh9gYI6dOymFgmh1ZUUlPDJZg9gUU9jUEB3oVdV0sXF/DfddOoKHNjayoGPUSSzbWhkXVNHe42bynhVsvGMUfn1mNpgWrDyY6zLy3tILL5hZHFED7RRYpshXywIm/odvXDULQ/0XVVD4vX8Ka2s0gQGnGCG6deC3Lq9dwZvFJJFsTeH/35/T4XcSZHJw9+GRGJJWgekUkjFEpMsq3RpYsxE27kI6F4RWMBElP4knX8sUeD9srWlFnjIf1faNRAexjT8MvWSCCkb0Q0DEhdRxp+jwCuJFECdVvoGGfypzJifxt9SMRj1nnbMBU4CM5zozJoKPL5aOrx4/T7eefr22ktSuYqrd6O3y4rJJfXjQa9/ydXP2ToRglEVkXYF3DFj4qW4DT18OgpHzOG3o6DjEWlOCTw6iY+f20X/DK1ndZ17AFTdMYnFTApcPnYVZtXzerK0qUKEeYY0aEEQQhVIb6008/paqqClVVycrKYu7cuYwdO/ZoN/G4p7Mn+HJ3vBjzWk3By7NXPGp0B41P402xR6tJISw7loHZhi+9oM+6yrh4ptTXo9TvRJcx+Ci0LsqxgCgKfcx6l1WtZW/bPmblTyXREkeaLTn4kuTpu38gwqBOkgT29FTy0Ir/Cy1rcDbx2NrnOCl/GqfmzQHt+59F9qs6TIOmkZJZTPfq91GcbRizBhMzcg5uKSaUUuTWTFgHDiVl3q/p2bKIQGcThsRMbCXTkGJT6FH1HOwtI4oCblnj369vYse+YNqExaTjhrOGkT8gjsY2N41tboblJzA4J4G9tV0MzUvk3JmFLN1YS1FWHIqiIiAgiUK/s39moy4sSqYXSRRw2MIjjqoa+5oi9uJ0B/D6FewmHX+7eQqLNtSydkcTNoue06fkkZViQ5NVirPisJn1ESMdLjqpGOO38OaI8v2iqhrZacEJoZ37OmiePISknFEEKg9OvxGIP+la/HpHv/4VqgouXTzpl92Pc8siPBUbEU027GPmok/J4bXlQSPdBWtrOG1yLi98spOpIzM4dXIuT7y7lRfnB0Vcq1nP5ScPYkhuAmajjktPHkRsjJHaph6qm5yYjTreXLCXsprOPm3ISonhhY93kpUSw6Rh6YwsSsZkkKhr6SElzoKsBj2RBFX72tehqoBOMREvmFB1AZr9zfxr1TN0HuRPsbByBZsat3PTuMtRZTghbRLj0kejaAo6QcKgmlEC0es+yv+OW9ZjK55CanoB3Ws+QHa2YUzLxz7mZPyGODKTPciKxgcbOjl9xjX4vnySg5895rxRmIon0qMJSJIQ1g8kSUQBfAGVF9/fx4ShaeRkOKiu78Zk1KEJcp9y7QfT7KvjhnNGUlbdQYLDjMWoIy7GSHt3uFeSL6Dw5HtbuffaCZgkAVn08fSmV9jQsC20zabGHWxt2sXvp/2CRCkFVQ16xJlUK5eXXMBFJWcBoMeAIOuiETBRohzDHDMiTC9jxoxhzJj+Q3ejfHt6Z9h6xY1jHZ0kYjHqQuJRo6sZo2TAootcheJIIXqcmKq3oxSXgij1KTHrjonHqW9Bt3tZVIT5EaOqGg5T3xDhxp4WXtj0FoIg8NDsu1G/gc2LX/Ty9MbIlRA+3buY2XknoOfIiKxe1YBgG4h11g2ImowsGnDKhJXbVRSNHjEOS4KBmHGnofnciKYYMNvpwdrnBdGvwt2Pr6C188DLaWZyDHq9xK3/WIysqNx52Vgee2sLew4abJqNOn5zeSlWsx5RBD0C00dn8tnqvkaKX6yt5sI5RTz1fl8PspMn5QR9ZfajaRoJjgMpF0aDxLRRmYwoSAIBdlS0YdCLwRQtAeaOy2LmmEwkQURAC30+i0HirzdPoaHNRVunh8/XVFPT5OTCOcUUZ8VGBZhjFPP+33vRhlrue2Un1839CUNG/AQadmK2xWDLHYZPtOBXD/9MlWWVLuyYRp+BZfgsNFGHTzPiVyE5PlgBcHtFGyeOyeTBn01BVTXuf3ZN6JkNwUpg/31nK//85Qk8+LMp/OPVjX36wC3nj+TNL/eELR8/NI2y6g4UNRgd9utLx/DgSxuoOahaWIxFz+0Xj8HtCZCb4UAvfLWf08EYdHq21ewOE2B66fB0sbNlL5kDM5C9GjqMoRdPJTpHH+U7pEcxIsYMxD7npwiKH1Uy0+0HApAWb6EgK5Yur0B34nAyrvw73qpt+N09xBWOwCnE8Ne39uDzq8wYk8mQnAQMooZfFdha0caCtTVIksDPzh3J61+U8dKnu0Pn/XXiEIySAZ/ij9gum+TgP29tCRn02q0G7rxsLOlJtj6psc0dHrw+GaNJR5faHSbA9KJoKs9sep1flF6PsP/eo2lAQETPgcjsaJprlCjHNtHE2x8RHT0+LCbdEfWP+F+xWfR09gQfbA2uZuJN8Uc9xcdSsQFECWVAUcT1VoOVvRYj8r71aHLkyjBRfhwkmOJxmOwR141OG4aRb1apzKN46fB0RVynoVHTVX9E+4emafgUEY9qINCPmKSqGj2qBY8lE39CEW5zGi7NgiiK6PUSer2EKAqIokBNszNMgDHqJS4+qZh/vLoRj09m6sgMFm+sCxtkQjDH/k/PrKaty0ub04+gaZw9rYCk2L7fb7zdRFqClRvPGU5mcjDFIyXewnVnljCqKAmdeOD+qGnBdCGbWU9agpW7Li/F6fbz4Evr+dsL62jqcKMowYgZAEVWETXQVDUkwGiCwIY9rdz75Crue2o1ry8oY1ZpFv/85TSmDkuNlqc+hhE1jYtPKubqnwzBbjXy6IcV/POLDlx5MxEKp+LVxyEazIji13umen0qPYoZV0CPpgUjgEcUJFGSl8ignHgyU+zMX1lFdZMzTICBYCTMXVeUsquqk9e+KIvYB/7x6kYuOqkYCKYznT+rkAklaby+IGjaOWVEOs9+tCNMgIFgRNfDr2zAL6v84enVHNyVRVEI9dH+8CsyGyMMFnvZ2LCNgHKsmIpH+aEQ6doUBAGfasCtWXD7g1EsOp2EQYLbLx5DnN3E3U+v5+KHNvBCeTKB4tm8t13hmodXs25nM1vLW3nktU388Zk1+DWBPz+3lr+/spHd1R0kxZpZt6uJFVsbwtqxbH0bkzLHR2yjUTIQq0sJq5DU7fLztxfXc86MvpHUEJy80OnEUCpzJCo6qgkQWfSJEiXK8cFRC4mYMWPGNx4sCILAF1988T216IdPp9N33PjB9GIz60PpSA2uxqOfiqSqWCo24k/JAb0BIpTftegt7DYKjOzyIdduQ589+ig0NMqxgF42cefkG7l/6b/p9h0Y+GTHDuDS4eeA75sJolI/xoO9GHUG+isdfbRR1WBkiCIItHf72VjWgtkoMTgnAb+skJ5gDQ0sRVHggllFFGTF0rm/xC7A2EGpPPhS5HK/Xr9Cl8vPsk11XHbyIDRUfn/NeLbsbWX19kZsZj0njMpkX303f3xmDZnJNmaPG0hSnJlOp4/EWDOp8RYMYjCFBAgJ1n+5aQpur58/PbM2FJkHsGZ7E9vL23jwZ1MxRvhpRFFkwcY6XvjkQGWd1k4vj721hXkz8pk7fuB38M1G+T4RVZWpw9IoHZwCCIgC6HUibp/Clr2tNHW4GZwTz4DkGIyigKp+RXSHKOCTNXaUt5CaaENRVE4sHcCA5Bh2V7UTG2Mg1mbkxnOG8/QH20PX/jWnD+XZj3Zw0ZxiVmypj3hoj0/G51f47ZWldHT7WLi+hlc/LwutH16QxBsLIldR6XT6kCSBlg4PizfVcdLYAbj9Kvvqu9lb28WAZBuFA2LDSsiHPhICRp0x4nEhOBAVos5HUb4jRFHAp2iU13Syr76bnAwHBRmxyKrGrvI26lvdFGfFkZ5so6yyjdpmF1NGZPDwS+upbDgQrbVoQy1LNtVx52Vjw/yYIDgBuHRzPdVNTi6ZO4gBKTEYDSL/fn1zn/as3NLEHWPH0+huZEfLgf5m1pm4fuTVvPFRTZ992ru9GPVSqLpZLxaTjhhLUKQ192NqD+yPtoz2qShRjmeOmghTWlp61CMafmx0OH3HjR9ML0ERxouqqTS5m8l1HN1Bi7GpHMnrxJU+lf5eOa06M906CdUah7xvQ1SE+RGjqhoOMZ77pt9Ok6uFdncHmY407EY7sqqg6j0YMaEGvt690CSayYsfSHl7VZ91RslAmi0Z7QhE+Ot0IgbVhaj4QdLhk2z0+IInNujEYDRIhAgPVRT552sb2VreFlomCHDpyYPZUtZCenIwfeu6M0rYvKeFpZvqmDQ8PbSthoZ8mNSd5nY3Z08voNPlp7Pbx1uL9hCQVQoGBL1iLEYdb+83LK1t7uHpD4IpSXmZDn51yRiMQvA3EwSBALByWyML1tUgCDB9dCbXnVXCv1/fhMt7YFbf5ZX5dHUVZ07O6ZNW5FVUXvt8N5F4Z3E5J47NwhB9DB7zyLK6/2VJQ5REKhud/OmZNQT2D57eXhgs+fz7q8cjAAFZQ68TMOlE5P3bSJKIUXMT8Hpo6/BSkBbHY+/tIDbGxMiiJG7/55KwzNa8TAd/vXkK7y7ay7aKNlRNo7rRiappyIcxl+5wetm6t5XlW8Jn681GHSaD7rDVqHvcAcxGHZ+vrqZ0cCpLNtbx5pcHRBuLScd9104gwWYISyWUVB0n5U9nd2t5xOPOzZ+OqOhCJXJFUUCRAvjxIwAGjAiy9E0qZUf5kSKKAp0emTe+2M2cYQ7GZYkogofWLgP3PLEa30FeaklxZm6aN4LXv9hDeqI1TIDpRVU13l1czk/PGhZaVt3kxGLU8cnKffz07GGs2dHEC5/s5LaLRtPh9PY5hqJqPPjMNn556RmcUaCwr6OWVEccGfY0/vH8DsqqI0evenwyJqMOv3wgouWqnwzFqAt6hA1NLkZAiJhWVJo5EqNoiib0RYlyHHPURJgHHnjgaJ36R0u700d8TP+zVcciNrOefQ1O2r0dBFT5qFdGMlduQrbFodj6L3No0Qc9a9zxaYhVm9A0FeErIhii/HBRVQ2d30SmYQADrAOocVXz6JrnaOhpRhIlJmeN5exBp6DzG79yECIpeq4ffQn3Lv47PX5XaLkoiNw87kr0iqm/ytHfGSbRj1azndZFL6I42xD0RkxDZ9CVNZ27X9hB/oBYbj53BHaTDllWQ8KETify6braMAEGgik/z320g7uvGocoCuRlOlA0jRVbGzAbdWSlHvDVcXtl4u2mPoaGvQxMs/PZmipOnZRDu+bl3BMLKa/r4s0v9+DzK+yt7eTOy8buN9BtxGTQcdKEgZwwIhMJNRQBIwN/eGp1WL5+eW0XOel2bjhnOH97MTwaZ93OJk6ZMBDpkPY43f6wWc6DkRWNzh4fycfZPfnHjjeg8ufn1oYEmF4aWl08+f420hOtvLekguQ4M5efOpiizFiMgozUXk77F08TaKvDIOowFk/kp3NOo1uwcc/jKxEEgZLcBMwmHZX1XZTXdvHB0gpyMhycPCmbT1YGhVevTyEuxhiKED2UzOQYxhankJvhYP7KKrx+mdLBqZw9PR9JFPo1pQZIjDXT7fYTrzOyZW8rFpOO8UPTWLUtKOi4vTJ/enYtD9wwCYMo4FU0Orp9aEBuUjaj0ob28bAYkz6cbMdAVH/w5iZIGh1qO8+ue42ytkoEBIalDuKSYWdjVe1RI9Eoh8WvanS0tHBJVhWBhR+henswmGPQjzqNm38yiAffOiAatnR4eGNBGadPzWVHZXu/x9xe0ca5Mwt54Lk1DMpOIDPZxphBKWwsa8bjk1mzvRGA6kYnhVlxEY/ll1VaWlW++KQGn1/B66/n/htyqW7s6bNtL7mZDlLiLSiqRmayjQtnF5GZaEVVVFSjn53Nezi/5Ce8svW9sP0SLfFMT59Jj0vDqhei4mWUKMcpx4dDawTa29uZN28eDz74ICNHjjzazTku6OzxkZViO9rN+EbEmPU43X5qncGH4NEUYQSfG1N9Ge7cUcHp+34wSSYEQaDD5sBW40JtrUJKyjmCLY1yLCKKAtWuau5f+u/QMkVVWLxvFRXt1dw+8QYkv+EwRwgKOjbRwZ9m3MHW5l1sa95Fhj2ViZljMGlWNEX4Xu/qOp2AWrWZto8eDS3TAj48Gz/B3lbDr8+7BMEcw8J1tbR3exmSG8/gnAR0Inhkja17W/s99qayFgKyyq3nj+SR1zYBwZnCrh4/eZkOymu7+Gx1FWdNz+fJ9/r6T+RlOoi1Gfh0VRWjipJ5b0k544akkppg5Y/XTeSex1dSWd/NH59ezS8uGsX5MwtB00Kzjr3vsZIksmJrQx/DRIDK+m7aurwMTI0Jq5pkNesRBYFD34b10qGyTDgG3eHXRzm2EEWRfbWd+PyRy1Gv39nErMtKeW9JBc0dHv76wnp+e/lYhtraaXrtvgMbqjLeHUvQN+4l6eRfMX3MACYNS2fznhac7gDnnliIySjx/Mc7GVaQyPyVVcTtF+s+Xb2Ps6bnRzSWzs+MDfq+oTFzVCZThqUHy0frJPwBBYNe4tyZBTz30c4++44sTKKirgtV1SgdksbWva1s2N3MHZeOCYkwEEyj8AUUdjd08+ibm4Ml3Qka/v/+hrM4tXAmi/etAgFOGDiBJFMCov9ABK5HcHHPwgcJ7Hck19DY3LiDve37+NOMO9D7v5lPVpQfF5IaIK32S3xbPgstUz1OfMtfJn/kKZw0dijz1x64XreVt3Hp3EHE2U1kp9mprO9iyaa6sD5sNeswGyRuOX8UG8ta8PhkWjo8XDJ3EP96fVNou8/XVHH9WcPYua+9j/ARbzeRFGcOlY+HoLfLWdPzefnTvtGQpYNT0FSN8UNTcdiMtHR4iLMbETQN1RDgX2uepqytguk5E7ljyg1sbNiG09fD8JQhOMjg78/tCk4KnFXyzcrLR4kS5ZjhuJ2eV1WVuro6vN7IM6JRwpEVFac7QIz58IO8Y40Yix4NqGxpwigZsOmtR60t5prgS68v+fCCiigIWPUWmo0S6IzINVuPRPOiHOMERD8vbHkr4rqa7nqaXE1fK0WzN7JmbOIorhp6EXMGnIhJtoHy/ee1GFUXnYtejLguUL2NwiT46wtreX1BGV+sreaR1zZx+7+WUtfm5l9vbGJUcTI/P28kOqlvW51uP4mxJnSSSLfrQHj2c/t9MKaOzKC8tpNOp49rTh9KvD2YL6+TBKaOzOC6M4exdFMdRr1ESryFkrxE5q+q4tkPt7NgXTX3XT+RjCQbfllly55WzHoRnUCfFCK/orJgXd8c/l5WbWtgRGFy2LLTp+aii/A0tZp0pCdGvmclxZqxmY/beZAfFYIo4lPBHVBwuvuWGe9F1UA5xBPG1d1Jx4JnI24faK/H4mkiPzOWPzy1mveWVPDluhoefXMzr35Wxg1nD0cviXy5roaJw4Jpebv2ddDV4+eqnwwJCTM6SWDaqEwumFOExaTbX7ZWRScK9Hhk/vP2Fn792HLuf24twwuSuPaModitwXcBg05k9rgs5ozP5vUFZcTbTZQOTmHtjkYCsorLI2MyHBALzUYdXr/CQy9vCAkwEEzLu/3hNRj9SVw8aB4XF59Lqi4NMXBQyXe9xodln4cEmLDvye9mVe0GJF00Py9K/1jw4Nsa2RvSt/lT5gw/MFEnigI3zRtOTVMPL36yizcWlOH2yvzm8lKG5CaEtrvl/FF8uqqKPz+3lvkr9/H5mmruf3YNz320gzOn5Ye263D6WLqpjlsvGBW6rwsCjC5O5p6rx/P8x+HipqKqDEiJ4cI5RaH+ZtRLzB43kDnjs1GUYCrUv9/YzJfrazDpg8+DTn8nZW0VQLDM+0PLH6epJziBsaR6Na2dXtq7vWzY3UzgMKmJUaJEObaJvgH+SOg1k4yxHF+eMDGW4IOrpr2deFPcUfURMu/bTCA+Hc1g+sqMD7NkpsvvRkwYgFK3A0b95Ii0Mcqxi4JMTVdkQ02AHa17GJiVTSAQeZb9UOR+0ly+VwJeFFfk/HaA7ppyHDYjHl94JYgXPt5J6ZBUnv1wB6OLk7l47iCe/XBH2L6ji1NobHfx5pd7GJyTEKom4fHJ/Pm5tUwdmcntF48h3m7CEWMkJ92O2yejk0REUWB3VTtvfrmXX140in+9vimsesz8lVWs2NLAbReN5g9PrWJ0cUq/ZaEFQTjsfSa47sCL7+QR6RRkxqJEeBnWi/CrS8Zw139X4PIcGLybjTp+fekYjJIYLU99DCMIICPw0vydLN0UrDx252Vj+90+3m7qk+qTHqvH31TZ7z5yzXZWluf3WV7X0sOSjbWMH5qGomrUNDm59ORBPP/xTt78cg/F2XFccvIgYm1GEhwmdlS2YTZKeLwyRrMeURTY19zDvU+uCnnNdDh9/OIfS7jxnOE8ePMUfAEFv6yybFMdL87fyckTsxlZmMyjb24O7XNoT5hQksYHyyr6/Tyvf7GH684Yiqb0vY8F8LPtIOPSQ9nStIOpGRM4jucHo3zPCD4n/RqfqTJG1RP684LZRazb2RwWybV8Sz1rdjTy60vHUt/SQ1ZKDHpJjCi8b9jdwtjBqWSn2UMRLss211PV6OTUKbnkpjvw+WU27G7muY+285OpufznrS2h/SVJ5G8vrKMkP4mrfzIUg17CZJRoaHXx8YpK5p1YiNcvYzH1Pg8ARMpbwj3fZFVmc+OB5+Xs9FOD38U3/fKiRIlyTBEVYX4k9OaPH4/GvACNXd1kDjh6qUi67hYMHQ04B5/wtba3Gix0+bqRErII7FqCJvsRdMdXFFKU7xZBEDDpjHj7KVseb4o95v0QBEkPgtj/S7DZjtvb2WfxnppOzp1ZCMD6Xc3MHjcwzJsiLdFKvN3Egy+tRyeJ/O6qcazYWh8KGQ/IKgvWVrNuZyO/umQMPp/M3tpOFBVcngBLNtbS3OEhOc6MgNCnfC8ExaDFG+s4ZVIOWSm2fr9rvQizSrP4v3eCEWzxdhMzS7MYkGLD6QqQmmCmvtXN2dPzmVCSRqzV0G+ZaVXViDXrePhnU9hV3RH0lUmzMygnHpNOiAowxwB+RUMlGMGo22/M3IuCwMOvbGTnvl4PCI2qxm5GFCaxqaylz7HmnVjA/JXhAyirxYBstKAdJEyGYYnF7Yns0bJscz0TS9KJtRlxWA0kxpp59FfT2VbeSl2zi7gYU7CqS4+fsupONpa1Mn5IKiV5CaBqPPbWlpCYIgowZnAq44akopNEBEHAqhexmXXEO0zMGDOA7RVtvL+0IpRqYdCJmE26sIiXUUVJvLu4fxGmvtWFrGh9/JEARCQcxhhaXG0R1kKsyYGIyNeToaP8GBH1h/fQ0qTgO+PQ3ASG5ibw0vy+ZZ4DsspbC/fw2ytLEQUhrILYoXy2uorJw9NDIozZqKMkLwGH1YDJIPHml3vYsKsJVYNpowYQazPS2eMjN8OOP6CgarB5Twtev8wFs4rYsreVmkYn6Yk2jAaJ3105nuQ48/7ngYYoQqzJ3m97JFECLSi/jBmUgkE6qJxflChRjit+NCKMy+Vi7ty5NDU18eabb1JSUhJa98Ybb/Dkk09SX19PTk4Ot956K9OnTz+Krf3u6RVhjrdIGJNBQieJdHT7GG5KO2rtMO/bjKo34k/I+FrbW3QWGnqaEDMGgiqjNJejSx/0PbcyyrGMUTUxM3cyH5Yt6LNOFESGJhehBI7tl6mAZMFSMBZ32eo+6wSDGacugW5Xc8R9D65qtKOyjdwMB7urOpg0PJ15Jxbw+8dXhrZ78ZOd3HHJGN5bXM7mva2IosDYQSn8ZGouRr3E3U+s5KrThrK3tpPPV1fh8sqkJli4ed4IPljWf9TBup2N/PWmKejov5C3omiMKU7mszQ7A1JjmDQsnfeWlPP2wr3E242cNT2fiUNT0YtCMGrpK/LxVVVDL8CI3HhG5SeGUkUOLfMb5cgia7BofQ2vfLab5g4P2Wl2Lj15EBkJlpDHQrc7cJAAE+TlT3fzywtHMSAlhgVrq3F7ZdITrZw9o4B99d2UVXeEn0cXg6FkFr514eaaAAgiQtZwyt/pW/YWgoNFk1HHTfOG8+bCPeys7CAuxsic8QMZWZSMQSfw2eoqPlmxL7TPmu2NZCTZ+NUlo0PRZHargVvOH8m6Xc08++F2/AGVsYNTuGBWETE6gdwMB/c8vrJP1aVrzihh5db60DHOmpbHkNwEtuxtZW9tZ8Q252bY0Ut9y1hD0Fj8tMJZ/H3VExH3PSl/GhEylaJECSHrrejj0wi0N/RZp08cQEUH/Py8kSAEBf/+2FHZTofTj8Oqx+3t/6Jze2VGFSezqawFX0Dh4rmD+GRFJf98bRNGg8QJIzP57ZXjeOjlDWwsa2FoXgIOm5EzpuYiKxo6SSQl3sI5Mwr483Nrw6o3fbyikt9eUYrxoP6iqhrZsQMwSHr8St/Ux9L00azZ0oHNrOeykwcjaGq/z7IoUaIc2/xoRJjHHnsMJUJ47EcffcTvfvc7rr/+esaPH8/HH3/MTTfdxEsvvcSIESOOfEO/J9q7feh1Ikb98WUEKQgCVotEj89IgvkoRcKoCuZ9W/AlZ4P49b4/q96MT/HhtzhAb0JpLIuKMD9yFBnm5E1nb/s+dh1UylUSJW4dfw1GzXLMv0z5FInYGZcSaK8n0HogfFvQG0mc9xv+8F7kdKtYm5HAQQJTjMXALy8YiV9WkSQBp8tPa9cBf689NZ3849WNzCrN4oxp+STHmZFEgW6Xn+c/3klHt4+HXl7PqKJkrjtzGAa9RKfTS7zDhD6SOct+9DoRgcjlsw9Gh8bvrhzH3rou/vzcmpDO0tzh4b9vb2XXqA4unlP0jZImFEWL+AyKchQQBD5YVsk7iw/0w721ndz9+Ep+ceEohufEo2laRHNmWVH524vrGF2cwv0/nURjm5uAomIz6/i/t/eFbZuTZsdgNNCVOYmYxj0Eag9KwRMlzHNuplOx9KvjFWbFYTZK3PP4ilBES0unhxfn72LMoBQumTsoTIDppa6lJ2xgee2ZJTz9wfawz7Nscz3rdzXz0M+mkB5n5h+3TuOj5RXsqekiLdHK6VNzSYgxMjw/gXkzChCFYMltJaBw2uRcFqytQTkkmkwU4IwT8lH7ifBSVY282GxOzJnMgsplYevOG3Ia8fp4tKgIE+UwNLr1mE+8Genjv4Slxkq2WIxzbqbAmsILn+ykvtVF6eCUfo8jCsGU3p37Ohg7OIWt5ZFN40cUJvHR8kpK8hOYUJLO7f9aGorQ9AUUPlhWwZa9LVx3Rgm7qtq57JRiUDRURUWvF5kzfiBZqTE89f62MAEG9pe2fnkDD/9sCvqDcosMiplfTbqBvyx/jMBBQsxARyYzM2eyw+3ioZ8VB8WbYzx6NkqUKP3zoxBhysvLefnll7njjju45557wtb985//5JRTTuGWW24BYPz48ZSVlfHoo4/yxBORZ2uORzqcPmIs+qPqqfJtMRhUCBhJMPVfFvr7xNiwF8nnwpfaN2+/P6z7y1Q7/T3Y4zJQGvoPd43y40H0Gbhx9BV0+DvZ3VaBwxhDQXwORtWMJh8ffbNHs5Jwzl1o3U34GvaicyQhJefSjZXMFC+7qvt6xpw7q5D5q/aF/i4dnAqKikEAVA2jvu+jqNvl562Fe3lr4V5+c3kpC9dXc97+cG4IBqCs39UcNtv5iwtHMXVkBks31UVs+6zSgZh0ArJ8+BdXTQsOtp/+YFvEAfKiDbWcPT0fqz7qXXE84lU03ltSHnHdk+9t48GbJ6MXIN4eOfVB1WD97mbOnlHAA8+vBWBITjz3XT8BURBRVQ2zSYfNpENDYP7mLkbknk/BGAWaysAUQyAhj6eXNnL+XAODsuP7RNyIosCVpw3h+Y92EmmctW5nE2eekIdBJ0Ysg76nppO8DAcen4zT5Y8oKHl8Mm8t3Mslc4qw6ATOm1GArGroRAFNVdEUFR2gE4P3pt70OZtB4p6rx/HIa5to2y+exsUYQ6XpDxcdJvj1nFl4MnPyT2Bb8250oo4hSYUYMSPIx9ckUZQjjygK3PdWDTed8mti5RboqIe4DDqkRP78aiW/uDCeZZvrEUWBS+b2P/FVOiSVLeWtfLy8kn/cegJJsWZaOj1h21jNeiYNS+feJ1cxqzSL178oi1gZrarRiS+gMHvcQLSAErr8NWDy8HRkRaWxLXI6ossToLPHT1LMgXR1TYEMYwYPzvotezuqaPd0UhCfTYI5ASFgIGNMPIqsRgWYKFGOc34UIswf//hHzj//fHJywqva1NTUsG/fPm6//faw5SeffDJ//etf8fv9GAw/DB+Pdqc3ZHJ7vCHqA9BjxaI7OqUrLeXrCcQkoti+vghk1QWd87v93cTGZyLvXYmmKghfM5Imyg8XMWAgUUwmJTUVTdNQAtoxHwFzMJoGLs2EEDMQKTaHgKrh12BffTeTR2SQlWrnw2UVtHZ6yE53cMbUPHZVtbOjMjjIPHdmIRajBJqGJAn4FA2/ovKH6yZgM+vx+hW6e/wY9CL7Grqpbe5BEGDtjiYumnP4aLKObi8DC5OZNiqTRRtqw9ZlpcQwsigZn6Kh61tNug++gNLvizNAWXUnowsSwl6EBUFApxPRNO3oGCdH+UoEARpbXRGFDQiKfz0emVizjqRYCw6bga4ef5/tJpakkegwkZpgoa3Ly1nT83F7FVRNJhBQ8ckKsqISvz+N596nVuHyyKQnJuLxydS3bue0ybks2VjHvBML2F3VwfxV+3C6AwzNTeDyUwZjNevY0s8MPcCuqnbSk2xhZXF7+XhFJXdcMpZPVlayeU9f/5pe1u5s4rwTC4J+OIqKCF+ZKqdpGgOTrPz5p5NweQNoWnDAapKIaFB9KEJAhxUHE5PHA6BE+0qUr4nNpMNq1rO5TmFoXgHYCtE0ja3lreRlxrJrv5ipqhqrtzVwzowC3vxyT9gxYmOMXDx3EK2dHtA0rCYdf7x+Iu8tLufL9TXIikbpkBROGp/Nk+9vY1h+IidPyuGOfy+L1CQg6PsyfkgKgYOMuQNqUOg0G3X87spx1DQ7eWfR3j73E1lREcVDolpEia27PCzZ6KfHo2eZ1MAFs+1kJhqi/SVKlB8Ix60Io9frGTt2LA6H47DbzZ8/n7KyMv71r3+xffv2sHUVFUFzuUPFmby8PAKBADU1NeTl5X3rNuoOExZ/KJIkhv37XdPe7cNhNSBFKA37fSLu/zzBf7/dg0OVvOA3f6Pv87tCcrZjairHVTwRUTzw3fX+/8HLDsZsMCKJEk65B33iAORdixG66tAlZR+JZn9rvu/r8GhyNK6fryI4aP9u++SR/A0FQQBRQNWC3hUL19cSH2PkzGn5JMaaSbCbKKvuoKHNxdSRGUwZkUF2WgwARqOOpg4vf3lhHW1dXm67aDQfLatkzY7GkEAyKDuea04fytqdTfzx+okgQFZqDNWNzj5tsZn1jB2cyqNvbGLc0DRGFSezamsDvoDClBEZ5KY7uOu/y4m3m/jdFaUYvuJ7l75iltFq1iFJIqIY3M6vQlO7m01lLdhtRkYXJWExStE6LxE42n3RaDi8GK7XiaiigEUncu81E7jniZVhA6eCrFguO2UwRkngvmsn4PQE8PoV/u/tLVTtvzZFUWBWaRZnT89nV1UHv7pkDBV1Xaze3kh6ko1LTh5EZV03K7c1UJKXSHOHmytPHUJWqh1fQGbNjkbGDEpBFOhXMLJbjfj7qaaWnxlLgsPIhbOLeO7jvuakvZiNOgRRiFg2/qsw6cBkC5/c+Tb3syNxPfyQn23/C73B0cfL9yIIArddNJpH39rMa18ciDAeXZTEDecMD0VKAsxfVcUZJ+Rx52VjWbG1gW6Xj9HFKaQlWmnt9PCnZ9Zw7omFSKKAUYALZhZw5rQ8NA2cbj9vLdrLSeMHkpvhQFZUTAapT/WzXmIs+mAE2f5rOaDCq5/tZtH6mlD/zct08IsLR/OPVzaEfBp1kohBL7Gjpov8DAdmo0iPV2HNxjpaOj1MHZmJUS/x1PvbuOeJVfz2ilIGZTm+lth5rBLti1GiBDluRRiHw8ELL7xw2G08Hg8PPPAAt956Kzabrc/6rq5g2LzdHu5E3vt37/pvgygKxMVZv/F+dvv3E+3R2eMjJ91BTMzRiSaxWg7vaH84/JITxZ+MxWI64iKSfss6NIMJXXYROqlvdzGZ+o8uijHa8ChuHNmj8IgShu5qHIVDvs/mfmd8X9fh0eLb9sfjme/7N+x2+amo6+SNBXto7/Zy4znD2V7RyqUnD+bBl9aHtsvLdOxPi1Cob+lBVlR2VrRzYmkWd/13BR6fzMkTs1m2pY7V2xvDzrFzXzuPvbWFqSMz+PWjyzl/ViFXnjqEPzy9uk8o9s/PH8lDL6+nvLaL7ZXtOGwGRhUlYzXrqajvIjPFhtMdwOkOUNfmZlRR8mE/n97tZ3hBUsQoAp0kkp8ZS2xsMO2wtdPDX55fzZ7aA8+MpwW49YJRTChJw2Q4bh+13znHQl8MIGAx6SIacvaWo33tizIKs+I4a3o+//jFCdS3uGjr8jIgJYZEh5nYmAPPNLnJyf3PrqG184CvkapqfLqqCotJR21zD4++uZm8DAejipOZWJLGvU+uorPHz52XjeXhl9fj9StMHZnJ31/dEBIZ7VYjYwen9ukXEPweh+TGs2CdgfpWV9g6s1HHBbOLiNt/DzhlUjYL1/ctwQtw8qQckuOt/U4o/ND4oT3b/ld6U9SPl++l2+XjsVc3sWVPeITY+t0tPPrmFi6eW4wkCiG/oncXl/PpqipGD0pmZEESAJ+vriIuxkRAVnnp012kxFuYPmZA6FitnR6qmpzkZ8YyNC+RFz7eiayoTBudyTuLIqcxzh6Xjc1mAsAfUHju4x18eUjZ6/LaLv7v7S1cdFIx/34jaMZ91rR83l9awdJNdditBu69dgJ/eX4djW0H+nRKvIVbLhjFX55fy5Pvb+MvN04hPs70P36TR5/j5ZqLEuX74qi9Gc6YMeMb+5MIgsAXX3zxtbf/z3/+Q0JCAmefffY3bd7/jKpqdHf3H8p+KJIkYreb6e72fOdlS2VFpdPpw6gTcDo9X73Dd4goiVgtRlxuX79mfYdDVhXcaieQQkNTD46YI3fJip4eEnavwztgCF6fAgcVzhRFAZPJgNfr7zcv1yyZaOlpp8ejIDpScVZsR82beoRa/+34Pq/DQzmSA7Fv2h+PZ47Eb6ho8Mnqal4/aCbyxfm7uOikQbR0uJk+OpOF64PpQOW1XZTXdjE4J57xQ1P56wvr+PMNk9m1rz00qziqOJn7n10b8Vx7azu5YHYRogCvfl7GH66bwO+uHMdHyyvZU9PBqKJkThiZSWKsifKDRJCuHn+oDaIoMGlYemjd6m0NFKTbkeVgn9bpgiV7FeVAnr0gwHVnlnDXf5aHZi0haOj4ywtHoRcFOjpcCJLIu4vLwwQYCKY7/f2VDeRnTMdmlPZHzQih6kjHGkeqPx4LfVEvwK8vHcsfnloVVhHIZtZz2SmDefTNTbR2eqlt7mHxhlr+cO0EslOsDEyyoqoamizT0RG8diVJoK61J0yAOZhPV1Vxw9nDWbujifK6LsrrumhsczNmcCpb97bS1u3F6Q5w4tgsKuu7SE+04fMrNLW7cdgMnDI5h4q6rjC/CkGAK08bQrfLz/mziti1r52F62vx+mVGFCRx4tgsduxrw2HWo6oq8TFGfjIll/eXhpeWLsqKY3JJGl1dP/x745F8tn0XHKn+qGkagiAcN99Lt1fuN71uw+5mzptZyDVnlPB/72wJRVR6fDI7KtqZVTqQpz/YxhWnDuEvz68L7ffyZ7vIy3QgiQI6SeTep1ZT0+TkytMGs3VvK2t3NiEIQcFyy55WyuvC7/VnT8/HYdXT0eFCFAVcfpX5+w2zs1JiyEi20e3ys7OyjfpWFzazgSE58ZxYmkVTmzvkYdbt8vPwyxs4dXIOT763LXT8pnY37y8pZ1ZpFu8tqaDH7UdQj1+T9+OtL8KRfV+N8uPhqIkwpaWl36tJbF1dHU8//TSPPvooTmdwVsntdof+dblcoVQmp9NJUlJSaN/u7mB+9VelOn0V38YTQFHU79xLoLXTg0bwBfPIhzAGP4uqqN/q3C2edtAHB0AdXQFsliPnqWLdvhRNEPGkF6H1I7SoqtavCGPVWWj1dqAoKkJsKoHGPceNT8T3cR0ebX5on+er+D5/Q4+i8caCcLPp7RVtmAwSZ07LJyfdwdSRmaza1oBfVhldlIzbG+Cfr21C06C1003FQS+ystx/PwLocvkwGnR4fDKfrNhHXIyR0YOSuXB2EWt2NLJoQy1DchO464pSnvlge5/IAFXV6Og+IKTExRiRZZWAotHjk1mysY4Op4/SwSnkpjvQC8HBiUUn8JcbJ7OrqoP1u5pIS7QyeXg6Fr2EIisgCDjdfj5bXRWx3ZoW9NyYPCydZdsaKKvuIC/DwZhBKZh0Qr/3lR86x0JfzE6x8ujtM1i2uY6qRidDchJIijPzzIfbwwQVRdX41xubuO+aCUhoiJKIT1YRBDDpRFQVGg653g7G7ZXRHRJ2v3JrPbddNIbGVhf1LT3MHpfFnPHBaBWjQeKsaflYLXpMBh3/fG0j15xeQmunh93VHThsRkYWJrFkYx0+v0xlfTft3V5OnZyDQS+xu6qDPz69GotZz/C8xNBL3k8m5zB1ZAYL19fi8QWYOiKTjCQrgqpyDPwcR4wf4rPtf6FXqDhevpcez+HLZ3U4fWwrb+Xuq8azrbyV1k4PQ3ITGJASQ2ObmwtmFfOv1zeFpRU1trkJyCo/e2QJ58woYOrIDF6av4u8jFie2C+GaBo8/PIGrj2jBA2NzXtasRh1zB43EIdFj6hpeBXYU9tBjMVAgsPMlT8ZQkOri/K6Lgqz4jhnRgEfr6jEF5AZV5LGa5+XhcrI91LT5CQl3tLnc23Y3cyc8dl8sKwSSRKOi9/qqzherrkoUb4vjpoI88ADD3yvx6+trSUQCHDttdf2WXfppZcyfPhwHnroISDoDZObmxtaX1FRgV6vZ8CAAX32PR5p6w6+UNqtx58xb5unHfTBXPzuniNXu1LX1YSlfB3u7BFo+m+XSmXVW6jsqkLTNMTYdJTK9aiebkSz/at3jhLlGEUUBfbs64hobLt+VzMbdjfz1F2zKKvqYM74gSiKRm1LDx8uqwyV6Ozo9pKX6YDVwf10OuGw3hcOqxGfP9j/nW4/g3PiMel13PavpSHxZtGGWhw2A/dcNZ4n3tvKzn0dB9oshHtVTChJI6CorN7ZxOPvHphx/HJdDemJVn5/zXh0BMUbk05k+pgBjC1OCgo3ASU0cnH7FRpaXf36BEBwUPCfd7aybmdTqJ0vzt/FH66dQIrDGK1wcbTQID3JxkmlWQBUNffwm/+siLhpY5sbt19Gr5N4f1EZZTWdSKLIlBEZTCpJJSsl/J5elBXH3InZmAw6dDoRu1WP3Wqg2xV8lsmKRmqChdOn5mI26tld3cEvH1kS2n/xhlrSEq3cfdU4ZEXjz8+tJTPZRlZKDFWN3Xy8vBJF1fjN5aUs3lBHdZMzZHzdi+r2Q7AgOwCiphFv0XPRrEJiYkx0drqD13KUKMcwoiTilVW8fgWjXiIuxoheJxLoZ/Bu0Iss21zPiq0NnDIxm7GDU1AUFY9P5s0v91DXcqBKWFyMkZMn5ZCX4UDTNK4/axgfLa/k1Mk5pCVYCSgqTvcBLyiPT+aR1zaS4DBRMCCOlDgz6ck2fG4f7oDG7x5fSUuHh7uvHMf1Z5Xw91c20tlzQPx/b0k5N88bQWZyDI/9Z3nESksQjF4/FE0DRVUZNyQVSRIRNPUrzeWjRIlybPODTVQfNGgQzz//fNiynTt38uc//5l7772XkpISBgwYQHZ2NvPnz2fmzJmh7T7++GMmTJjww6mMtH8GOMaiP8ot+ea0etqxGUy4DQJdzv/thVF0d2Gp2ICupx3F7MCbUUQgIfOAM91+BNlP7Op3g9tkHr4ay+Gw6K0omoor4MISlwGA2lyOOHDk//Q5okQ52oiHiWLMTXfQ1ePnjS/3hMK2UxMsXHzSIJZtrmPVtkbi7GasZj2lQ1KItRlpanMzoSSd5Vvq+xwvL8NBfWtPSKAZmpvAwFQ7f3pmTR8Bo6vHzxPvbePK04by2hdlIeFj4rB0NuwOhrDfeM5wzHoRT0AJE2B6qW918fbCvZx/YgFowcgHWVYPCDD70ekkPlu+jxirgYIBseyp6Yz4feRlOli0PrxSky+g8JcX1vHADZN+uA/h4wRFUUODtMMhILCvoZsZY7PITLFj1EvExhh5Z3EFp03JJcFhoq3Ly9wJ2WSn23n+4520758AGZqbwC8uHMVjb26mucNDeqIVb0DhqQ+2c9flpbzwyc4+52todfH6gj1cffpQHnxxPbXNPWFlpuNijGQm26hu6mtSDTA0LxG9JKAdEoHam4KnRUdwUY5xNFHk8/W1vL1wLx6fjCQKTBmRzu+vGc8fnlodEjF0ksDIwmRK8hNo7/YiCEEBfdGGWkqHpPL3VzZy99XjQv0RgmlCV5w2hJc/3cVL84PG1clxZi6cU0x1o5NTJ+fQ0e1lWH5iKK21l7YuL21dDQwvKMFi1OH1+Hjhk120dARTBl0+mU9WVIYJMBBs03/f3sI/fnFCvyKSUS/1iZwDiLeb0FSNOeMH8uL8XVw+txiOk1SeKFGiROaovf+tXRs5//+rGDt27Nfazm63M27cuIjrhgwZwpAhQYPUm2++mdtuu42srCzGjRvHxx9/zJYtW3jxxRe/VfuORdq6vZiNOgy64688cqunDYchBszS/xQJY2zYQ+zKt0AQkW1xGJr3YStbiT8unZ5Bk/ClFYIoInp7iF31NlJPB90j5sD/UFLapg+GlHb6urHa0sBoRWmuQBcVYaIcx6iqRn6mo9/IlSt/MoTf/Gd5n3Dvh19ez2+vHEdXjw+TQUKvE8lKjqGivhuTUceFc4qQFTXMhLRoYBwXzC7iof1Gv7E2I0NyE2ju8ISiag5l5752Ont8nDIph23lrYwsSuaME/LYWdnOo7dNx6QX0UsCS7Y09PsZl22u56zp+VQ1dPPF2hoEAeaMG0hmsg1p/+BVRaOm2UltUw9Xnz6UB55f22dmMifdTkBW+7yMA7R3e3F6/MSZjz9x/IeGpkFGkg2dJIR5xPSSmWyjtcvDgrXV5GY4GJyTwHMf7aC+pYdrzyzB7fPzh2sn8NT72xmUHc/Dr2wI239bRdAL4tozSnjg+bVcdupgVm2tJ8ZiYP2upn7btWxTHadNzmH2uCy+WFsTEh0zk23cfvFoArJCeqK1T/qdJAqcPjUPWdU4/p76UaKApBOZv6aGVz7bHVqmqBqLNtTR1uXlxrOH8fArGxk/NI054weydkcjm8paGZgWwz1XjeeVz3fT7fKTEm8hzm5EL4nccekYHn1zMy0dHi4/NWgg7/IEQsdv7vDwyGsb+dNPJ+H2BFi4voazpxewYktDn+dNvN3E8IIkunp8eP0qK7cdeJ6YDFKfyLRefAGF+hYX584o4NUvyvqsP31qbh/RHuDSkwdhNur4+ysbcLoDXDCrEMOPw0s7SpQfLEdNhLnkkku+kSdMr3nYzp19Z4z+F0499VQ8Hg9PPPEEjz/+ODk5Ofz73/9m5MgfzkC5rduL/TiMgoGgCDMgJgPZLNHl/HYijL69jrgVbxCIS6eneCKazgCahr69HnPNNuJXvIGqN6FYY9F1t6JJEs6h01Fscf9T2637RZguXzeZMemIjlSU5oqv2CtKlGMfk07kslMG88yHO8KWjx+ayo7K9ohRBaoGn62q4sZ5I6hpdPLA86tCYdcbdjfz+eoq7v/pJC4+qZjOHh82i4Gqhm4eemk9Lq/M5OHpXDSnGKNBpNPZV9Q4GEXRWLyhmj/9dBKSKLBmRxPTRmVg2D9DKggirsN4C1x7Zgn/eG0TOyraQstWbWtkVFEyPz2rBEnTEAmKRBt3t7BoQy2/umQMb365h/LaLox6iWmjMjlzWj6/fGRxv+eR5Wg0wrGCQRS47owSHn1rS9hyvU7kkrmDeOK9bTS0uli/qxmLqZLbLhrNv9/YzGNvbub+GyaTbNfz07NK+FM/BtPt3V66XD7uuXociqIxeXgGpYPT2NSPyShAQFZpbvcAAv+49QTcXhmDXkRAQBQEPlm5j2vPKGHxxlqWba4nIKsUZ8dx9vQCPlxWwXVnDEWURDwBFbc3gMmg4wjaqkWJ8rXpTTtyeQIY9BJ6Dd5ZtDfitlvL27jqJ0P59y+nUdvSw31PrQpNCFQ1drOjsp3zZhUSazGwvTK4bXltF4lxZu65ahzd7gB7azrDBJheNA1e+3w3F88dROmQND5aXsnvrhrHGwv2sHlPC5IoMHFYGnMn5PD7J1YyLD+ReScWhkVlflWKqccXYPb4LOw2A28s2EOH00dirIkLZhczPD+RL9ZVY92jx+UJkJlsY96JhdQ2O/nHq3tCx1BUDY5wtdAoUaJ8txw1EebQVKEjwbhx49i9e3ef5fPmzWPevHlHvD1HitYu73HpB+ORvbhkDw6jA69ZorXd/9U7HYoSIHb1u8jWOJyDpxyIbBEEAgkZBBIykJxtGNpqEf1u/PEZ+FLzvrUPzMFIgoRZb6bTHzR6FmPTkPetDwmKUaIct2gak0vSKB4Yz3tLy2nr9DKqOImZY7P41/7Sm5Eoq+lEFASeeG9bn7x3s1FPfasLi1FHRUM3aQlWctLt/OOWE5AVFYNORFNUkFVy0vv3VUpwmHD7Auyp6WRbeSuCILB4Qy1vL9zDQz+filkSkGWF0cXJvPnlnj77Z6fZ6e7xhwkwvWzY3Ux5XRfFmQ5kWeWEEZm8s7CclVsb2FvbyUnjs5k3oxBZVRmYEgNoyP28kOskEb1eRBUExGhqyNFH0xhVmMSDP5vC+0sqaGp3UzQwjtGDUnjji7Iw8123V+aVz3Zz8sRsXpy/izU7Ghk4LR9VU9jX0N3vKSrruygeGM+/39jEnppOrCYdN80b0e/2RQPjqGrs5rPVVSTHmZk9JhNFE9he1c6zH27ngtnF/OnZNUwals6tF4xCFAT2NXbzn7e2UJgViySKvLO0go+W7wv1t+EFifzs3JEY+mY8RIlyVFAFgUUb63jti7JQitHvrhqHtx/PFIDGVhd5mbE88tomVC2YtnrerCI6nF7aOr14vDJJDjPPfriDwgFxxDtMNK5zUTAglrYuH25vXwGml721XVQ1dPPS/F1cdspgyms6mDshm7kTstE0jY1lLdz71Cp8foUv1tZw4tgsigfGsasq6EPW4wmE0hMjkZ1mB1ll8tBUxhQno6ogisHJDVlWmTs2iynDM6hp6qG108ObX+6h5qC0w4GpMRh0IlFTmChRjm+OanWkKEeGti4vGYnHX3m1Vm9wEOQwxtBjFqnoUb6xgGHdswbJ1UnX6FP7TS1SYhLwxCR8J20+FJvOQpcv6IshxqaB34PW3YTgSP1ezhclypFC0DSS7QauPW1IcFZOEPhoeSUJDlO/+yQ4THh8clhuPgRNw39+/kgee3NzWLWIGIueP1w3kTizLqzEvVkvMXvcwIhVic6fVcQnK/aR4DDR7fIjKxrD8hPIHxBHh9OHPs6MURRIdJgYkpvA9kPElnFDUlm0oW84eC8fr9hH4bkjAA2TTuC+6ybw91c30tDq4oVPduKwGbj+zGFYDBKSAJfMHRRWbrSX06fm8s6iciaWpDE4K/a4KdX5Q0bQNBKseq48dRCKAq1OD795bEXw+j6EPTWdnDuzEIDmdjeqqiAAsTHGfiO1UhOsvPDxzpB/kMsrgwBD8xLYVh5+HYqiwOWnDuahl4KpTQkOU6iM+kvzd9Ha6UUSBTKTbSzaUBt2zRp0IpefMpiPV+7jvSXh0Zeb97Tyx2dW89vLS4lOBUQ52uh0Iqt2NvP8x+FR7qqqHd6sPcZIS6cbj08mO83OBXOKePjlDbi9ByIcM5Js3HrBKN76cg9xdhNOl5/mDg8uTyBiBaJeep8dHU4f/3xtI3++cTKPvLoRt09m9riBjCpKZmRhEht2N7NkYx2fra7ixnnD+flDi1A1+GTFPi6YXcS/I0xIzCzNwqyXQNOQZTU4CNsviPZWClIUFaNOZMG6atbuCE9XFAW49owS9If5bqJEiXJ8EJ0L+YGjaRpt3V4cx2EkTIunDUkQsemtWC0SsqLh9nz9gYoQ8GHbtRxvWgGK9X8rN/5tsRqsdHoPEmEApaXyqLQlSpTvCr1eQq+X0LRg+XlB0+hy+flwWSUTS9L73W/2uIFh1SbSE60MK0jk/FlFvPLZrj7lOp3uAPc9tRpXQCWgCYhi8JElaBrnzijgp2cNIyXegiQKFGbFcfvFo9ld3cGemk5mlQ5k8cZaBufGk5kcw4uf7OS3/13Brx9dzppdzYjAreeP4OKTiomNMaKTBEYVJTN1ZAYBWWFYfiJ3XDqGOy8by52XjeX2i0czKDsev6yETE01VSPFYeQPV4/nH7eewMM/n8rfbprC4KxYBC1YdnvikFTuuGQMA1NjQoPmn541DJNRx9JNdbzwyU78EXxIohwdNA1UWUUSNFo7vH0EGKtZz9C8BIoGxoVKjA8vSEKWNYw6gbOn50c8riQKjChIwi8rFAyIRdyvgJiNOk6dlMPZ0/OJ238dDi9I4q7LS6mo7SIvw4HRIDFgfwUm7/6KXABPvLuVi04q5rQpuditBnSSSOmQVB78+VQAymo6GJqXgPUQ36HK+m46viKlL0qUI4FXVnn1877eKFv2tjJ6UErEfeLtJhIcJgL7hetzTizgn69tChNgAOpaelizvZEpIzIYmptAY5uLvAwHm8paGDMo5dCaDCFOGp/NwvW1GA0Sg3ISaGjp4baLR3HHJWMYlB2HX1Z4d/FePH6Z31xRil4nEmvR85ebpjA0L4F9DV1UNTi55+rxFGXFoZMEUuIt3HD2MM6fWYDwNSJYRE3jujNKuOLUwSQ4TOgkgaF5CfzlpimkxZmjVfWiRPkBcNQiYe68804EQeC+++5DkiTuvPPOr9xHEATuv//+I9C6Hw5Od4CArB6X6UitnnbshhgEQcS2P5G90ylj/ZpJ7ZaK9QhyAG/W0O+zmYfFprdS11OPpoFgMCNY41CaK9DnTzhqbYoS5duiCgKdLj+rt9cgigLjh6QSY9YjAc0dbvyyyvIt9Vz1kyE899GOkMmpIMCZJ+ThdPuJsQSrCZ07s5Cmdje1zT2YDBJnTy/gpfm7+qRztHd7qW3u4b9vb+Fn544gO8WGpmpIgkbpkBSy0+20dnqobe7hmQ+3097l5fSpubR0utFJIjaznj8f5NPR3u3l0be2cP6sQuaMHcDsMZlMHRGsXqYTBXRiMJqmy+XnX68feLG3mfVccdoQHDYDekkI+bkoStD81G7svS9pKAeJKnpJoLbZybTRA0iKM9Pe5eXD5ZWh8PL6VhcqUQPVYw1V1chOtyMIQWHGoBO54rQh2K0GdlS2YzbqiHeY+MmUXIblJ4QimSYMTWNPdSdLNtWFjmU0SNx+0Wjc3qDHg81s4KI5xWze28remk5enL+LYfmJXDinGLNRR3ldF4+8tpGArHLzvOHMGDMAQQxOqkiSGGqTyytz/zNrGFmUzGWnDMaol0iMNWEzSTg9CgUD4vD5FeZOyKbL5efZD7bj3z/b3tDmIjEmLjqYi3JUkRWtT2QkwGerq7jjkjF0dvvYU9sZWh5vN3HP1eOoaujGEWPEatahaVqo/HsvYwelcPKkHMqqO6ht6cFs1HHzeSPp7vERYzHw5boarj9zGE++vy2sUtHscVlomsbUkRlkpcSwq6qD2hYXNquBsupO3lhQht1q4OrTh7JofS3/fmMTv7tyHIqskmgzcOt5I/YXLdIw6yV+ddEoFC1YLN6oE0LRLl8HUVWZNiKdCUODE3iSCKIWrWwWJcoPhaMmwqxevRpBEFBVFUmSWL169VfuE/XR+Oa0dAVL5h2XkTDuVhyG4Oxfr/DS5ZTJSPkafi2aimXPWnzJ2ajG/sNOv29seisBRcYte7DqzVFz3ijHLaog8Pz8XSzZeGBw+drnZZwyKZszp+YRbzcD8OW6GkqHpHLnZaW0d3sJyCppiVZsFj23/3MpM0Zncs0ZQ/nDk6vp2W+MOH8lWE06fnnR6JABai9mow6vX8HrV7jvmTU8cusJ2IwStW1uvlxXw8yxWWQmxwBB8aQwK47PVlexc187d10xjt8/sTLi53lr4V6mjcrEoGoHHoSqhqJBUpyZv7ywLmz7Hk+AR9/YxMO3nPCNXqRVVcNhNfLY21sirk9wmKJpId8xkiTikVUCctBLyKQTQyJJr4DxdTDpRE6fmse7i8u59cJRfLisMix97c0v93D5qYPRSyIoKpIksr2ineR4C3dfNY6mDjcJdjOZyTbeWbiHz9fWhPYVBLjm9BKM+mB015a9rWzZ29qnDWlJNhavr2F2ykCcPhlRFLni1MG88MkuArKKqsH6Xc2s39WMThJ49PYZLNlUz7MfHUjv+Gh5JUNyE7j1glGh6zopNjqbHuXoI4kCVrO+j0muz6/w4Evr+eP1E9FUjfoWFwkOE7F2Ew+9vJ7y2i5OGJXJmSfk43SH7zuyKIkJw9K47+nVYdd4WqKVu64o5ffXjOfxd7eyensj998widZODz3uAImxZjbsakanE2mo7QmVru5lxpgBXHbKYJ79cAf/eGUjv7tyHH94ejUVdV2MzEtAVVUE7cDAKhAIpijq999zvo0Ru9KbsgSgQrTHRonyw+GoiTBffvnlYf+O8t3Q2hmcYXDYji8RRtVU2r0dpCcEvVMMehGDXqCz++tVSDI27EXn6aZn0OTvs5lfiU1vA6DT1xUUYWLTCOxeiqbKCOJR635RovSLTiciiiKqqiHLQWNESRLYXd0VJsD08tHyfYwbkkZqvIW0BCsNbS7WbG9kzfZGYm1GJElgUE48k4cHo00G5STw91c2hgSYXlxemf++vYV5Jxby6JubmTw8nRljBtDt8hNrM3DrBaP4ZEUln6zcx0+m5OH1K+gkkXufXIVfVhmYGsNJE7LZW9PJnHED+XJ9DY2trn7NEQOyitMVIMEWnqoh6XVsr2hkaG4COyrbwvLuVQ0+XFbJxXMKUb+mEKMoKsMKEjHqpYhlteedWIhREqOeMN8RqiDyyaoqPlxWiccnYzXrOXt6PlNGZNDt8tPl9BLvMBMjfXU2tqBpnDYph7GDU9i6t7WPfxDAsx/uYERBEokxRhTg9QVl1DT3IIoC8XYjw/OT2KCXwgQYCA7KnnhvKw///IR+vS+yUmPwBxRmjhtIa6eXlk4PVrOegWl2/nDdBO57anUoUksU4LYLR+H2Bnj2o50YDRIleYnodSJ7ajrYXtHGkNwEBufE09LpCXo3RWfUoxxlTHqRM6bm8tKnfYtmCIDFqMMoQrIjAb+q8dv/rqShLSjSL95QywWzCykYEBu232mTc7n/2TV9RMaGVhcvz9/NNacP5rYLR+ENKHT1+Hn6/e3cfO4I3ltSzqmTc1E1DWNBEpNHZPDF2mpWbAmWn/5yXQ23nD+SeLuJ9m4va3YEK+at2tZAaXFyn3u4Kgh4/AotHW7sViN2qx6DKETFzyhRogBHUYTpj7KyMhYvXkxdXfBlPzMzk6lTp1JYWHiUW3Z80trlwWSQMBmOuZ/6sHT4ulA0FYfxQBUUm0Wi82uWqbZUbkK2xaN8T4a7XxebIRiF0+ntIsOWihCbBkoAtb0OKXHgUW1blCgHI4oCXkVj5dZGdlW1k5vuYPzQNMx6AVmFd5eU97vv+0vLufyUwVx/9jAef2crdS09AHT2+BhRmMQJIzMRhKBpaXa6PSzS5WCaOzzExhg5c1o+RoPE/c+uCaU0GQ0SV5w6BLc3gMcX4IOlFWGRA1WNTv7vna1cfFIxRqPElBEZeH39V9cA0OsPDMRFUcCnaKzd3sie2k4KsuI4Z0YBHy6vZN3OA+aIVY3dyIr2jQzVTDqBe68dz5+fW0tXTzBsXhTglEk5jClOigow3xWiwMuf7+bLgwQPlyfA8x/vpL3bi8sTYOH6oIFtcXYcv7p4zGFfgkRRwKMo2K0GPl9T3e92X6ypJjHWTGunh0tPGczuqna6evwUDIglJ93B7/5vRcT9NA3W725i4rB0lm2u77P+kpMGEWc38fT721m1rSG0PN5u4ufnjeThn0/hnUXlJDjMTByWTqxFz6sL9nDOjAIKs+JYt7MRn1/hgtnFSKLA2wv3cua0fIqz4zDrRfyHqT4TJcqRQJFVZoweQEObm4Xra0K6YLzdxI3nDOeF+Tu5dO5g1mxvIj3JGhJgennlszIsJj2jByWzfmczKfEW6ltdoefGoaza3sC8mQWYDTr8AZWPV+yjpdNDbbOTicPSeeC5tSGxXCeJnDezkKRYc8jgevHGWsYPTeXjFfuob3WRGm9hvy99+OcSBP7z9lY27G4OLUuJt/DbK0qJMUpRISZKlCjHjgjj9/u5++67ee+999A0LWTAqKoqDz30EKeddhp//OMfMRiOr4iOo01Lp/e4i4IBaHUHB1cHizBWi0RnV/9lBXsRfG6MDXtw543+3tr3dZEECYveQoevEwDRngwIKC2VUREmyjGDJAm0Ov389v9W4vEFhc6lm+p5+bPd3HvNeJJizX3CxQ/G6Q7g8ck88upGzp1ZSILDhMsTwG41sKemk7+9sI77rp/IFacOoesrDEElUSA3wx6qCtOLz6/wf+9s4f6fTkKvE5kzfiBzJ2ajk0S2lbfx2eoqPD6ZdxeXM6EkDYNewmzUkRJv6WP4C8HKGSaDhLjfIbXbq3DXf5eHhba/v6Scm88dgccnh6IgstPs6CUB5RuElquKRmqsib/eNJmuHj8en0xynAWjLlri4rvEG1BZuK4m4rr5K6u449IxIRFm174OHntrMzedPSzi9pIk4FWg2xXAqJf6RG4dTGePjw6nj+Vb6vlweSXnnlhA0cA4nv94Jz87b8RhS+32uPxcOKcYBFi1tQFZ0UhLtHLuiYV0unzsWLEvTICBoK/R315cx/03TOL0E/Kwm3T4/QoaGvmZDspqOrn/2TUAjB+aisWow6CX+OVFo7GadaTEW+noiCyERolypFFUlZR4C3dfNZ6uHh9mow6PT+aZD7dT29zDpGEZPP/xDm4+d2TE/Z/7aCe3XTSajEQbu6raD9tXVVWjqc3Nsx9t5/aLx+D1BTAaJJLjLfzx6TVh28qKykuf7uL2i0fjsBno6vHT4w5gSg8OnTKSbDS2uTh7ekFYiqooCbz82Z4wAQagqd3NvU+t4v7rJ4UGX6Ik4gmo+PwKJqOESSeGVQKMEiXKD5djRoT529/+xrvvvsuFF17IxRdfTFZWFoIgUFVVxQsvvMArr7yCw+HgrrvuOtpNPa5o6fTgsH4ND5VjjBZPO1adGYN0QECyWSVqG766ooO5Zgeg4UvK/v4a+A2w6a10eDsAEHQGBHsSakslDJp2dBsWJcp+/Ao8+NKGkADTS0BW+csL6/j7z6cyqiiZ2uaeiPtPG5VJosPMqOJk3lm0l5YONwa9FBp82q0GnG4/f39lA3ftryYRiJDOo5MEMpNj+PfrmyKeR9Pgy/U1jClO4bE3N+PyyggCjCpK5o5Lx/DwyxvodvlxeWTcvgDPfLCd684s4aGXN4SJSL3Gin96Zg13XDoGk17ikdc39vEWUFSN/769hVsvGMX2ijZEAaaPHhCWxaHTi6hqMLLlcF4xqqKhBxJtBugVxqMCzHdKZ4+v3wwbWVHDDJMh6KXi9imYpPBpbE0Q2FPv5L/vbKG108tpk3MZmpvA+l3hg6pehuQm8P5BpaBfX7CHu64oxeuTqajrojArjrLqjoj7jixK5q8vrKVgQBy3XTQGDY1Op493Fu/l5+eN5On3t0fcr8cToKqxmyUb67h07iBshuDgLSXByj9e2wQES9m2dXn45+ub8PhkRAEmlKRx9elDo0bQUY4ZArLGK58F05GMBinodaRqDM1NYGhu0PR6QEoMkiSgk0TkQ0QKWVF5+JWgf8zg3ATiYoy8+lnf9CaAtAQrHU4vjW1u3l9azomlWVhMepZGSLXt5fM11UwdmckHSysYmpfI3tpOdJLA2MEp7KxsD1ZqOijV1BPQWLQhshjc2umltctDWqwJGZGXP9vNwvW1KKqGQSdy8qQcTp2YjRhNFYwS5QfPMVOi+v333+f000/n7rvvJjc3F51OhyRJ5Obmcs8993Daaafx/vvvH+1mHnc0d3qIPQ4jYZo9LWFRMBBMR3K6lH7DTHsxV28jEJeOZjB9n0382tgNNtp9XaG/o+a8UY41XF65T5h3L109ftq7fcydkI3FFK7b63UiPz9/BElxZh57ewtdTh9nT8/vM2N5zokFiPvjtZdsrOPUybkRz3XqpBxaOt00dfSNXOmlocXF1vJWXPu9MLT9xqRPv7+dS08ehCCAKMIHSyuoanTy3Ec7uOX8kVx7RgmnTs7h+rNK+PMNkxCFoB/L2p3NePwK5bVdEc/XawqcEm/h5nNHsmZHI/L++HOnX+HVBXv5xxub+WRNNT6VUGRNlCOPyXj4eSWd7hCxRQOvXz5kG5FWp48/Pbsm5Kn25bpqTpuciy6Cj0xaohW71dCn/2zZ08KEYWl8uqqKc2YUEOmyyM2wYzLquOyUIWyvaOOB59fyl+fX8dT727lwTjGSJPQRRg+mpcODqmq8OH8nmiAiSSKLNwYjfUqHpNLe7eWthXtDx1A1WL6lgQeeX0cgKgBGOUbQSQIGXbBv+fwKWSkx/P7q8RRnx9PU7mbL3lbOm1VIa6eH06bkRDzGSeOzqazrQi+JdLl8lORHTkU/b1Yhn6zcB8DyzQ2kJdhIS7Id9pnT3O4mwW7CbjUwPD+RmkYnv75sLFaTnonD0rDow+8L/sDh31NbO71ogsgT72/li7U1KPv7ol9WeXdxOe8sqUCUos+RKFF+6BwzkTCyLDN8+PB+148cOZKFCxcewRYd/8iKSke3l9jCpKPdlG+EhkaLp41s+4Cw5THW4OXa1S2TEKePtCuipxtDWw3Ooonfezu/Lja9jYqufaiqiiiKQXPe2m1osg9Bd/xFKUX54XHozOKhBGQVs17grzdN4cX5O2np8KABl8wt5v0lFWwsawltu3ZnE0UD47hx3nBe+XQ3Z07Lp77VRXJs0B9p6aY6LjtlMFeeNoQPllbQ0ukhMdbEqZNz0YkiyzbVk5UaEzGFCGBgmp3Gtr7rqpucmI06Jg1LR1E1Nu4PBa9qdPKnZ9aQmmBhZGEyWSl2nv5wOxt3t2DUS5wwMiMoqhwGvU7gitMG887CcvIyY9HrBLZXdvC3l9aHIi82lbXw9qJy/nT9RBJthmjO/1EgxqQPmUMfSn5mLNWNzrBlkihgNh14lqiCSHWLm9cXlIVF1Li8Mm8t3MtvLh/L2wv3sq2iDb1OZPLwDE4YlcE/XtnY53z+gMpZ0/KJjzGxYG01d1w6lrcW7qWsugOTQWL2uIGcNiWX6oZuHn9vG2eckEdSnBlZ1kiINbFkYx1enxxKg4hETrqDdxeX0+MJcOVpGgaEUCrGtFGZ/KufiLLdVR10uQLEmo+ZV8AoP2KMOpEZYwcwf2UV8XYTl50ymL+9uC4ktEMwGuXK04ZQMCA24rMjOc5Ce5eX+55ejUEn8osLRzOiMJlNu5uprO8mMdbMOTMK2FjWHLoPyIpKS6ebsYNS6OrxsWtf5Gi17DQ7wwuTGFWUjNPt59eXjSUl3oKmaiTEmunsDH8eGQ0SJoPUbxpiWqIVt19hzfamiOs/XbWPUyflYDxmpsmjRInyfXDMPIEnT57MsmXLuPDCCyOuX7p0KZMmTTrCrTq+aev2omocd5EwroAbj+zFYXSELY+xBgOoO7oD/YowptrgjGAgcUDE9UeDGIMNVdPo8ncTZ4pFjE0DTUVtrUZKLTjazYsShRiLPpSHfyg6SSDObkRVNMx6kQtnF7N5bysx5uD2Bwswveyu6uDEsVmcP7uINxfsobrJyW8uLw2tf+6jHVw0p5g/3zCRtm4f1Y1OvlhTze7qDiwmHb+8cDTrdjb1SS0x6ERKh6Ry75OrIn6OhlYXp07Ooa3Lg14XXo2oq8fPuKGp/P6Jlfj3pw15fDLzV1UxvDCJ2BgjnRH8agQBLEY99z61CkkUuPnc4Xj9Ko+8tqlP+3x+hUde28TdV5ZG0z2OAnoRfnP5WO5+fCUdB/2WyXFmLjl5EH9/OdxnaFZpFhaDhBJQ0ESBNxbsoSArlvK6vlFRW8tbqWlycunJg7hgdhGiKLCrqp0/Pr0mTMTU60QuPXkQeRmxLN/cQGqClVHFySzeWMu8GfkY9BJWs57kWBOyX2FAagwBWeX/3tkKBM1A77xs7P7UhwROm5zLi4eUyoWgyaeiqHS7/JgMEgLBdLipIzJYtqkeUTh8FE1tSw/x2XFRsTDKUUdVVM6els+++m5GF6fwyme7wwSYXp77aAd3XVHK0k11zDuxgOLs+FDfOX9WIc9+FEzdyx8Qi04nEGPWM7IomXNOLMCo1/H4u1uoqOsOHa9oYBzltV28t3gD9147gc9XV/eZkBAFmFmaxZ6aDhasrWF3VVCoSY4zc991ExEOdeQFzPpgafvXvijrsy433U6szRBxIqEXWdFweQMYLZHfc6NEifLD4KiJMJ2dnWF///znP+eWW27hpptu4qKLLiIrKwuAqqoqXnrpJerr6/n73/9+FFp6/NLS4QEg1nZ8RVu07DfljTOEizBmk4gkQUdX/y+WptqdBOLS0HTHjvBkN8QA0O7tIM4UixCTCKIOpaUiKsJEOSYw6kSuOGUwj729pc+682YVBUsoaxpvLyrn4/2h3KdNyaWyPnIKD8Bnq6oYVZRMdZOTnHQ7Da1BPxmdJDBjbBbTR2eiKip/e3FdKO0DwO2VWbi+hp+fNzJU1QaCufw3zRvO6wvK+h04DkyzM39lFYqqMXlEBgvWHqhoM21UJvNX7gsJMAfz7uJyrjptCA8dMkgHmFU6kLU7m0iOs/Dz80YQY5TY1+yOWG4aoKbJiccnYzNEZZgjjapq2E0Sf7lxEnWtLupbXGSlxJAcb+HtRXvpdgWFGZ0kMKs0i/NnFyMowd/RG1D5dHUVyfEWEvcbSx9KZ4+P8roulm2uZ3dVO7dfMiYszUgQ4BcXjuKj5ZU8dZCXiygKXHP6UOLtZrZWtDK5JA1VVvFrsGZHI7+8aDTPfridPTWdFGbFsnV/1a9t5W2MHZTCvBML+GBpRWhmfUhOPJecPIi/vrAegBPHZGGQBFRFJSfNTk6aHVEUEA9TDtdxnL0XRPlhI2kav7hgFD2eAC992ld0hKBHV1O7m7YuLzVNTvIyY7GadHT2eGnt9CArGsXZcZwyKYe/Pr8u7F6flRrDry4eQ32Li4a2Hj5bXc15Mwv59xubcftkymo6+PVlY3jyvW0hgSTBYeLSkwfz+ZpqWjs9jChMCokwzR0eNpW1kJ5k69tOWWVW6QBkReWDpRWhdowqSub6s0rQoWH7CoHFFH1+RInyg+eoiTDjx4/voyBrmkZZWRkLFizosxzg1FNPZceOHUesjcc7TR0eJFHAbjl2BImvQ4unDYOox6I3hy0XBIEYq46Ofiokid4eDK01uAonHIlmfm2MkgGDpKfN20keIIjSfl+YyqPdtChRgOBM5OiiJO65ahwvzt9FdZOTtEQrF8wqpCAzFgGNfY3OkAADwVSOw6UxyYqKJAlYTDp+du5IrCaJkrxEzEYdZn1wwKhCRIPeZZvraWhzcdO84egkEV9Aob3Ly9qdjQxIiUHdv0tZTQe+/QNTq1mPpmrMHjcQRVWxWw00t7vYWh6salSYFcfj726N2NbdVR2cMDKDP/10Ii98tJPy+i6SYs2cO7OQooFxyIrGmSfkohcEVFVFVg5f2leNFrc4aiiKhg7ITrKRmxKDqqpomsZ5Mwo4fUouXr+C2ajDapSIs5vo6HAhCAK1TcEZ8oXrazh5Ug6Pv9P3WhEFGF2czJ+eWYOiarz6+W7+dMMk3l64lw27mhkzKIXuHh96SSQx1hQSF1VV4/F3t/KvX06neGAcPR4ZnU7g148up8cTINZm5NTJOZw3q5A4u4llB5mEPvPhDsYPTeWW80cBwUib5DgzrV0eXN4AaQlWTj8hN1RRRYfGby4fy966LsYPTWXFloY+nyN+v79FlCjHEgZJwH2Y6C0I9qXrzywhL8MRNK8V4IazhlHXEkxBPGtaAQ+9vD5MgBEEMBl0rNhaj9cns2F3C9ecMZS4GGPIE8rnV1i8oZYzp+UTF2NC04LRKO8tKaeirovsNDvSIZ5Qq7Y3cMKojIjtFFWN0yZmM6s0C7dXxmiQMOtFBE1D08Bm0pOZbItodj8sPxGzXqJfl/EoUaL8IDhqIsyNN94YMYwvyndHU7ubuBjjcWcU2expDZryRrg+YqwSbZ2RRRhT3W4QBPyJmd93E78RgiBgM8TQ7j2QbyzEpqA07z2KrYoSJRxB08hJsXHnpWNQVBAFDYMkoigqiiDw9qLw63VbeRvjh6b2m0c/bmgqCQ4Tf75hMnEWHbKshjwo1P2mhQadyMSS9JBR4sGU13bh9sns3tfOJyurUFWV688aRk66g6VCHaqmcerkHKobnXy4vIJfXDiaji4PL87fxaxxWXy4rJLbLx5NfWsPyzY34LAZsJgip1wB1DT1cMLwdG67aFTY5xcEiEsOlvTtrX6UnmjrN8ogwWHab2AcfYE+mmiaFl4NSVUxSQKmXh+UsAGOFvKGqW3uQZZVTho/kE9XV4U2M+hEbr1wFHF2E7ecPxKjQWJgSgw6ncjpU3M5afxA4h1mlm+pIznewsRh6ZhNOp56bxsdzmDVpkUbatlW0UrBgDjqW3pC/i2dPb5QypHFpOOuy0t5Z3F5qHWrtjWyalsjEJxNH5ASQ1l1O3+6fiJ2iwE9B642TQMJjaIBcWQk2ejo9rLzoD4abzfxs3NHYDPpoqlIUY4JREnEr6iIqkZKnJn0RCv1rZGN4oflJ+Kw6vH6FQRRQNAgK8lGYqyFBIeJTqc3JMwDTBqWzszSLHZUttHW5WV0cQoD0xw8/PIGbpo3nOvPLEGSRIqyYjEaJP7zVt9oUIDJw9P7LLMa9egkkciOTcHJDYMAht57jqqF+qlehDsvG8t9T68OS03KSbNz4znDEdGiT5AoUX7gHDUR5uabbz5ap/7R0NThPu5SkQCa3S2kWpIjroux6qhu8EZcZ6zbRcCRgqY/NqoiHYzdYKPN0x76W4xNR6lcj+rpRjTbD7NnlChHDlXVECGUYqHsn11XVK2POeje2k7mnVgQ8YU5Kc7MpGHpdHR78fplAiYdUgTRQlVUfjI1l+Vb6ul2hR+/YEAsoiDQ45G5+6pxdDh9bNzdzGMHvSR/uKySaaMzufuq8Tzy2kYumlNMU7ub5DgLTe1u7n1yFQ/+bColeYl8sbaa6aMzefPLA2KSJApYzXrc3gAzSwfg88l9Pr9O19cd0agTuGBWIS99Gl4GVRDgp2cNwyjBVwTLRDmG0DRIiTOHfJGe/mA7J0/K4Z6rxtPQ5sJq1jNoYByKqvHpqipWbWvEaJA4ccwAkuMtpMRZqGtxce9Tq0PX+KdUkRJv4ZYLRvHAc2vx+GS6enxYTXqG5CTw0bLIFfLcXpmAojKqKIkNu8P9lkwGiZ9MzeXBF9fT4wmgauCXFRRR3B9ddqB/SWh0O/1MKEnnrOkFNLe7iY0xIisa1c1OBqbY0L6i0mCUKN8noigQAKqbewjIKnqdSIzFwE/PHsY9T6zq87w4aUI2nS4/7y+tYMveVtITbZw7s4Bkh2m/D0suXQc9RyaUpDE0L4E/PLUqJKZ+uqqKzGQbv7hgFC/O38Xtl4xmxeZ6/vbien57RSlpiVYaDnmeJceZyc1woGpamHfaSROyMRp0uF19vcS+ClXVsOpF7rtmAu1OL61dXlLiLTisBnRo0SCYKFF+BBwzxrxRvnsa2tzkpB1fA3yv4qXb30NRXGSvFLtNosel4A+oGA4qCyj4vRib9+HOG32kmvqNcBhiqOmuPVAhKS44q6K2VCBmjTi6jYsSJQIGg4RGUCgRERhekEhdS3jo9GNvbebn541kV1U7izfUoWkaE0rSmTUuixc/2cmqbY2kJ1oZNySFkyfmYDLq0BQ1FFEiSSK797byy4tGs2JLPet3NWHU65gyMoPsVDuPvLYRz/58/UvnDmLRhto+7Vy0vpaSvEQ8Xpmqxm5S4i2hdU53gIq6Ljw+mZfm7+bOy8ZSmBVHXUsP588qJDXBSke3l/REGzEWA6LA14sOUDVmjM4kN8PB6wv20NLhITfDzvmzioi3GsIjMKIcFxgkgV9fOob7nl6NrGh8vLyST1ZUMiDFxq8vGYusaNzx6LIwsfCpD7YzNDeBa88s4T9vbelz7TS1u/loeSXTxwzg4+WVDMlNQFZVBiTbsJp0OD2Ro7L21nRw8dxBjB+axofLK+lxByjJT+TEMQN44ZOdoQiaDbuaWbWtgdpmJ1NGZHDh7KLQAE5RVNITzFgtOl5fsIemNjdmk8QZU/MYM2gAil/m8IkfUaJ8fwgCeGSN7ZVtvP5FGc0dnmC636AULppdzJ9vmMRbC/eyt6aTBIeJWaVZeHwyXp9MfYuLwqw42ro8/OY/y7nxnOGMKkymODsOTRN4af855owbGCbA9FLb3MOiDbUMSIlBllWe+3gnAJv3tvKzc0ewflcTSzfVo2kaU0dmMG30AN5bXI7bKzNxWDoL1lYzZ/xAUhMs/C+oqoYEJMUYSXGYgvcPLRoBEyXKj4WoCPMDJSCrtHV7GV10fJWnbu415TU5Iq6324KXbHtngNSkA1E+xoY9CJqK/xiqinQwdoMdRVPp9HcRb4pDMDvAYEFpKkcXFWGiHENogkC3J8CCpZV0On1MGJZGQWYsp07KYcG6mrBQ764ePw+/soHfXz0em9lASV4isqpy56PLkCSROy4Zg9PtZ/OeVt5ZXM6EknQCskJ6ohWTJOBXNF79ooyWDg8TS9L4zWWlbN7byurtDbz62YEok9FFyXy4rH8PpcUbaplQkkaMxYDDZqC10xNaV9XYHcrl//srG7j2zBLyM2P552ub2FvbGdouM9nGXZeXYpKEkA/Z4RBUjbzUGG6/cBSKqqGXRARN/Vr7Rjn20FSNgUlW/vnL6azd0Uhtcw9DcxMoHhiPySDwwqdlfaK1IBhxWtXQ3a8/0rodjdxx6Vg27mpmYKqdN7/cQ3ltF3dfPYGGNhcPRzCDzk538MnySs6bXUSPJ4BBL1Fe28l9T68O81CymfV4fDKyorFwfS21zT386uLRSL3DOE0j1qzjmtMGE1A0dKKAUS9itxrp8EclmChHD0ESqazt5N9vbA4tUzVYu6OJ2qYe7rx8LClxZobnJ+J0+3lnUTkjChMpyU9kSF4Ctc1OBuckcO6JhWyvbMPpCbBiSyPF2fEMzonH5Qmwt7aT/jT1ZZvrue2iUQiCgN1qoNvlx2LUsa28jew0Bw6bEU2DTWUtvLdkMRfOKUaWFTJTYjhpwkBirQYM32EJ6WhqYJQoPz6iIswPlOYON5oG8THHXmrO4Wh2t6IXJGx6a8T19pigY3xrR7gIY6rbRSAmEdUYeb+jjcMYrJDU6mkPijCCgBiXjtJc/hV7Roly5NAEgaVb6nn2o52hZcu21JOWYOW+6yfwwA2TeOK9beyoDKbWDS9I4qzp+fzr9U1UNTr51SWjqWpwEmM1cMclY2jt9GK3GhlVnMyHyyr4eMU+zptZyPpdzcwYnYnDZsDlCZCT7mDyiAwCisqw/ESG5SfQ4wmwamsjX6ytxmTQ4fJG9oIC6PEEsJh0JMeZOWVSLs99fMDAPTfDgdsbwGrS4bAZae3wsGhDbZgAA8HZ0QeeX8tvr/j65aXD0rdUNTqDeZyjqhomEaaPSEcUBRRFQ1FUfH6NFVvqI+7jsBkjijOhY2pBn5fbLx5NY5uLySPS0Uki63c3YzHq+Nl5I/jna5tC258wKpOy6k4+X1tD6ZBU9tV3sWRT33OPH5JKSX4iCbEmdJLIjsp25q/cR6fTR4LtgOmupgX/oxeC/0YHe1GOBfxy0Ng6Eg1tLmqbnfhllSfe24bDZuDCOcXkpNm587HlYRMB7y0p57dXlvLP1zZSXteFceU+brtoNNWN3fhlhXNmFOw3V1dRVY0Fa2vYsLsZWVGxW418saaaOy4dQ2V9FznpDgx6iepGJ1+uq6Gy/kA56+c+2sHvrx5PQaYDnzewv2MdX36LUaJEObaIijA/UBr2G33F248vT5gmdzMOkwNBiDzFoNeJWM0ibR0HDcjkAMbGvXiySo5QK785RsmISWeizdMGcXkAiHHpyOVr0FQVQfwOp1SiRPmWuP1KmADTS0ObizcWlDFvRgEji5K58rQh6CSRDqcXp8vP+bOLeO3zMmJtRra52/jpWcN56OUNVDc6AUiKNXPx3EGs2d7Ia1+UcfdV43j4lY38/upxnDezCItZx+PvbqWtK+j3lJNu55K5gzAZJH51yRg+X11FSV4CFXWRS2KX5CUyPD8JURJ46dNdoZx+h81AdqodDfjpOcNpanMzsiiJlz+L/PJf1ejE5ZWxG6PlQX/MyIdU7NKEoH9QJDRVIycjcuQmQGqChdgYI5t2t/DGl3tCgs2g7HjOn11EgsNEXqYDs1HHtFGZIU8agP++s5X7rpvIvkZnqC8BXHnaYAKyyq8fXYbHJyMIMKIwiTsuGUN1s5NkR1LIzylKlGMRRdXCrulD2b2vg0tPKubMafl09fgQgAdfWh8mwEAw6vvvL2/kytOG8PArG/D5FR54bi0nT8pmzvhsHn93K29+uQcAq0nHGdPyKc6OY8WWBmwWPdsrWhlVnMxnq6v7PK9Wb28Iqy726eoqBqYM+e6/jChRovwoiYowP1Aa2lyYjRIW4/H1Eze5W0jpx5S3F7tNR8tBIoyxqRxRkfEnZn3fzfufiDXaaXa3hf4WY9Mh4EXtrEOKPzbTqKL8eNDpRFZHmHHv5ct1tZw1LZ9B2fH89+2tYZEkNrOeX1w4iqQ4MyeOzeKu/yzHe9DLckunh0de3cBdV4xj054WdlS2YzUHK1wUZMXy60eXheXtV9Z38+BL63ngxsmUVXdQkp9IYVYcX66rwekOj4iJseg5acJAGlpdPPjSetzeYJrFgJQYfnXxaDTgt/+3gpaOYIpSRpLtsN9Dj9uP3Wj+mt9alB8DJp3IiWOyeHdJ38jFDqcPo15iRGESm8pa+qy/ed4I9tZ08dR+YaWXnfvaeeTVjdx52Vhuu3A07U4fX6ypYtGG2lBfaOvyIolw3ZkltHV6Ka/rZEhuAk3tbl74ZFfoWNr/s3ff4XGU1+LHv+/MbN+VVl2WLNuy3HvvNmB6M50QCCGBQBJCEtLJL5eUm3ZT7s29EEICCaTQEkgggOkGDO69N7mr97Z9p/z+WFm2rF1X2ZLs9/M8PIl3ZmffXe3szJw57zkWrN9ZR0NzhG/cPumkpsQpquDQrqopon1K3Qk/XZJOiaoIPE6NYCT5tLiCPC/BqM4v/rKafVWtfO+z06htCiddtzkQxdl+rjuqOJOLJhcxtMjPT59aRVXD4SK7wYjOs2/t4O5rR/PALePZvLueO64cyU+eWpnyeLWxtJ5gew2m6oYgumGdcKakJEnSsfStK3TphFU2hMhKc/apNuDh4xTlPSTdp1FVd7gavatsG7onA9Pdu4sQpzvSKGs7fJGr+PuBUDCqd8sgjNTjhBAdAYxkErUoBO+sONBlKk8gHOc3z6/j11+Zx8qt1Z1OaA8xLXhj2T4+dcUIigvSGVmciaoKnn1rR9KLvlBEZ+nGSloCUS6Y1J8sn4P/+tIcnnlrByu3Jtr1zhidz9VzBvPTp1dRUpjOLx6YSzSqY9MU3A4NRRX86I8rOwIwAJomUraXBvD7+lb2oHTmGbrJVbMGsXxLFTWNoU7LRg7KBCyumDGQ4oJ03l15gEA4TnFBGjfNH0q239Wpo9eRGlsjVNQFWL+zNjFFb0oR//WlObQFY8QNE4ddRVEU+md6yE5LdGixaUqnOhpHOljTRiiqk+Y8/mWiEII4gpcX7eaDteXEDZOpI3O588qReO2qnLYknVEOVXDN3MH8/d1dXZapimDS0Bye/PcW9lUlpgQd+j7aNYWrZhcztiSbmG5g11S27K3HMk0evG0i1Y0hXvt4DzfNH9YpAHOkVxbvoX+Ol5qmEK3B2DGPVxdO6s/CpYl6ZEOL/NhVBUO2vpMkqRvIIMw5qqIuQGZa36oHUxNM3EXMdPqPuV56msaOvaFEhyTFxFFVSqRwxFkY4enx29PZGd9NKB7GbXMhNDsiLRejphRGXdTTw5POc7puMGVkLv/6cHfS5WOHZAGwNEVtjPlTBrB1XwO7DjalfI19la3ccOEQfvTHFYSjOl+6eXzKKUYAeytb8LrsfO/xpfzsi7Px++yke+x8645EF7SNpXX8+E8riMQMymsDDB+YyezRee1TMSxaQzoHazqnvK/ZVsMFEwv5YG3XTkuTR+TisqnIVADpaHYFfnzfTDaW1vHRhkqcDpX5k4uIGyZ7K5rpn5tGRW0bn7tuDE67RmV9gI/XV1BSmN6lq9iR9pQ3E4kZBMJxcjPcrNxSzetL9hJrnxJVXJDGN2+fjMeuYBOCYNw4Zg2aA1WtFGTkHXc6UkQ3efgPyzplF6zcWsPG0nr+56vzcKp95waO1PcYhsmlUwdQerCZdTtrOx63aQrfvWsqcd1k9faajsctC9I8dr586wTeW3WQf3+0B8tKdFmaMjKPy6YP5IV3drF4fTlD+vspq0k91amxNUJMN4nFTQ5UHft4NWl4IjNbVQQXTi5CVv6SJKm7yCDMOcgwTaobQwwv8vf0UE5KdagGu2JLWZT3EL8v8bWta4gz2NiHoseI5g46CyM8PRntwaWaUB3F6YmpU0pGIUZ11ztBknS2WRbk+l2MK8li056GTss0VeGGC4bQGoxiJLlDfqgmxTsrD5DtTz2VJ8fvYtPuesLRRMZNSyBKtt/V0XK3y/oZbmoagpgWPPnvLXznzim8v6aMt1YcSLp+XqYrcYffStQcUFWF4QMz2Hng8In2O6sO8rVPTkRVFT5cW45umCiKYM74Au68YgRCBmCkJEzTQgOmj8xl8ohcVJHIJtENC01JLL/72tHsONBEWW0bRbk+nHaNitoA6V47LYHkgZP8bA+b9zQwenAW0bjRJQi6r7KVh59Yzs/vn4WNxEWqXVM6gjRHy810n1AWy+Y9DUmnd0RiBv9avIc7Lh2GJevKSGeQYprcf+NY2sJxSg824/PYKS5Iw6EKmkPxTrHw91Yd5GufnMQbS/d1Cc6s3laDZVkUFyRqM7UEo8c8DrkcGrppdhx/UsnJcNESiJGX6eauq0exeF05N184RE5HkiSpW5yzQZjFixfz5JNPsnv3bgKBAHl5eVxyySU88MAD+HyJTjUPPfQQL7/8cpfnPvnkk8ybN+9sD7nb1DaF0Q3rmAeX3qg6WJcIVBxnClW6T0MIqG2MMbpla/tUpNSFEXsLt+bCrto7BWHUzP4Y+9diBptQPBk9PELpvKUk2kU3tUa48+pRWKbF8+/uYPu+JsaWZHP17GJe+qCUy6YPxOe2JanLYqe2KcSa7TV8966pLFp9MGkyyZWzBvHs24drWXywtpwF8wbzeJLpGoqAqSPz+MlTKwHYU9GCYVpcNn0gry/t2q7a67LRP9fH26sP8spHewmG42SmOblu3mCmjcrnb28mCg6bpsWfXt3KDReU8NtvXkg4ouOwq7hsCpacgiEdx6GivUdOSDgUD1GE4K9vbMPttFHfHCbd6+De68Zw/QVD+MvCbV22ZdcUCrK97K9q5SufmMBfkxTFhsSd+/LaACOK/NgEXDS5iLdXdg1E+tw2CrI9x60JE43rKTPaANbtqOXWi4agyWQY6QxTLIt0p8b0kblY7d27LNPC5dDwue1cPmMgowdnEYwkfs+PDMAcac32Wq6aVQxAXVOYzDQnbqeWdIrtxVOLWLKhgrU7avnuXVN5f03y49XN84fidKgMLkzD73WQl+nCrgkM/fjHCUURaJqCaVpdCn1LkiTBORyEaW5uZty4cdx55534/X5KS0t59NFHKS0t5amnnupYr6ioiF//+tednltSUnK2h9utyusS82Bz0vvOdCQLi+pQDcVpxy+uq6oCv0+jpjaMs3EXoV7cFelIQggyHH6qg4dPIpSsRC0Yo3oXSsn0nhqadB4zhWDx+gqef2cXevudb7/XwYOfnMg1sy3W76rll8+sIRTRURTBTfOH8ufXO19QxnUTn8tOXDdZvL6C+64fy9Ovbe24W68IuPXS4dQ3hzvVZ6moCxCO6lw9u5g3l+3jUAzEYVP50i3jWb65siPzRlMVFAHXzyuhujHImu2HU9j9Xgffv2c67606wIvvH84kaGyN8PTr27j1kmFMG53PxtI67r52NC6Hxvb9jby/tpzZY/vh0GQARuoe4ahBY2uU/rlePrdgDI//axOfvGw4cyYUsOSIwtcep8YDt0zo6NzidthoDkRTbZa9FS2U1wUwTYsF8wZT2xRi/RGFgP0+B1+5dQK1jUEG5HiPmQ2jKgoely3lcrdTO969EEnqVkdPn3NqCj+8dwYvvLuzYx956NNTj7mNWPzwNv7+7k6+9slJPPqPDZ2m700dmceo4ix+/cwaTAsWr6/g8zeM5alXOx+vbrhwCA0tYdqCcZ59ewcuh8Z/f3UexnECKooiiJmwt7yFjbvryctwM21UHk6bAvIYI0nSEc7ZIMx1113X6d/Tp0/Hbrfz8MMPU1NTQ15eHgBOp5MJEyb0wAjPnLLaNrwuG25n6pOs3qYl2kZEj5LpOLFsEH+aRm1VG0LTifWBqUiHZDjT2ddysGMus3B4EJ5MjKqd2GQQRjrLVFWwq6ylU6cVSHSb+OnTq/jeZ6bx+pLDWSebSuuZP6mIz98wluff2UlrMIamCqaNyqN/nhe3U2PxunICoRjfunMKgVCcuG5QmOMlN9PFD55Y0WUMf359G1fMGMivvjKPuuYwhmHicmis31XHmJJsfG47//xgNxdO7o9DUzANky9cP5bQlTqV9UHSPHay2gPORwZgjvTax3t58LaJXDS5P68s3tNpetI/3tvF7ZcPZ/6k/ihyKpJ0Ghyq4IqZA3n5wz3ccfkIfvPCOloCMR75+3quv3AIP/jcDGoaQ2SlO8nwOfjDy5spLWsGIBo3kmaZHZKd4SY/080fX93CC+/s5Af3zuSm+UMprw3gc9swTIunXtvKNXOKGZjrg2PUrtBUhatnFfPR+oqky6+dMxiHpsg7+FKPsYA3l+1n9bbDN63sNuWYzzly+Z6KFp59awf3XT8WTVOwLAuHTWXXwSb+57m1HfGQxevKGTUok/958ALKa9sIhnVyMl00tETISndSpyVuGoSjOotWH2TB7EEpAzFCQMSwePiJ5Z1uNvz1ze089OkpDClIk4EYSZI6nLNBmGT8fj8A8Xjyk5xzRVlNgBx/38mCAagKJrqdZLpOLAiT6bexvlwhVNwP03nslrO9SbYrkx2NpTRHmztqxChZReiVydPQJelMihnw3Ds7ky6L6yZb9zUwclAm2/c3djwejunMHduPScNyiMYNbJqKTRP8eeE27r95PP/7/HrW7kh0e/G4bGT6HHzn01OwqwrXXVCSdOrRB2vLuXJWMY//cyO6bnZqW3rbZcO5Zk4xC+YMxmy/W6pYFl67yvDCdCzLQgjYX5e8EwYkTqALc72s3FLdKQBzyHNv72TKiDz8rvPqkCh1M8MwuWrmIPZVthCMxDvqwJgW/OuD3bzy4W58HjuaIvjBvTM7aiMBfLi2jCtmDuLFRaVdtutz23A7NP7zTyv5zqen8Ktn1vLw75fxvc9O44V3dhKO6UTbO7wM6e8/blFegBy/k+svKOGVxZ3bbk8Yls3k4bkyACP1qEjc5IO1ZZ0e23UwMT128576LuuPHpyJ12VDVURH9uT+qlaeem0r37h9EnabwsbSel44qhtTcb80RhVn8utn11LXHEZVREfmTLbfybfvnIoQ7W3gd9Vx5fSBpAoFWULw1GtbOgVgIDEF9pd/W8tvv3khdplhJklSu3P+jNMwDHRdZ/fu3Tz22GPMnz+f/v37dyw/cOAAkydPJhqNMmzYMO6//34uueSSHhzx6TtYE2BYUe+vkXKk6mANPpsXu2o/ofVzXDFMFPZ7RpB3hsfWnTKdiSBTZaDmiCDMAIyDGzFDzShuf88NTjrvmEB1fergRVV9sCPLBBJTHiYNzyUW07EJsNkTJQqFBZ++chR1LWF++sVZbN/XSHVjiNHFmQwbkIGmQDRuMn5INtfNK2Hh0r3oRuJE2e918M1PTeaZt7YnLV760qJSHv3mhdhE16ZFh2pfWBZ4jpP5pwrBG8u61pI55L3VB7n9kqHEkrQrPV2KItAtMCwLRQhsAtkC+BylYfHVWyfywbqu3bdMi47veHV9kNsvH4HDprJmezXpXgdzJxTS3BZl0eqDHTfMczNcfPGm8Tz92lbCUZ3XPt7LJVOL+PdHeymvDeByah3TmMYMzsLvsYNloWoK0Xiil4tdU7oU2dUEXDtrEBdMLGTJxkqicYNZY/uR43ehWDIAI/WsSEzvUgT+3x/t5dt3TsEwTbbtO3xjYOSgDL76iYl8uK6c/7h7OjsPNNLQEqG4MJ1Mn5OqhiAfri2nX7aH798znS17G4hEdaaNyqcoz8fKrdXsb2+FfaT65ghLN1YyaXgua3fUku6xoygiZTZLJG6mrFmjGyZ7K1sZ1X5ufuh4oAqBJo8HknReOueDMBdddBE1NYkfxblz5/Lf//3fHctGjhzJ2LFjGTJkCG1tbTz//PN86Utf4v/+7/+44oorTvu1Ne3YqZNHUlWl0/+eqtZgjKZAlH7ZHtRe0GJSaX8/if9NfWJXEawmy5XBib79fsG9qORzQBTQTzn771Npf03lJF/bodjxO9OpDFUxTh0JgMgdRBygZifa0JndPNKT013fw97oZPbHvuxk/oaWBUV5PvakaBM9sF8aq7fVoAiYNjqfu64ahceuJD1hVIGBOR4URWFAjgcLaA7G+NOrW9i8pwGv28a1cwZz9exBTB2ZR3Mwil1TcdhV0j32TmnnR9INk9rGEIU5Hpw2FdO0Ova7I8fh9znI8DloautaV2P4gAxURSQt0nhIayCGoipoWuf3drr7hG7BvpoAz761g/LaNvple7j9shGUFKadt4VPe8O+eKZ+64QQKAoMLkh9IyTNYyfL7yQSNVi0+iDhmEFLMMbSTZVcPbuYS6cNoLY5jMOm0hKI8sTLm6lqSARL1+2s5ZJpA/j3R3sJR3UctsQ+dPn0gSyYOxiHClFD8O6qMt5ecYBITGfqyDxuvWQYaU6tY99R24/JWV47N10wGBAYhtEe6Dz3vpjn8rHtdByq/dPTn4uiCEIxk2Akjt2m4nRo2DSF+BEZWeGozq+eWcNNFw3lvuvHUt0QwmFXaWgJU10fZP7kIt5cvp+dB5tw2FSq6gPMHl9IQ0uELXsb2LK3gffXlDFiUCbfvH0SmgBLwMqt1SnHtWpbNZdNH8jaHbVcN68EmyqwlM7fpUP/a+p60gK/hwTDMYSqsLeylWfe3kFFbYCCHC+3XzacwQXnz/FA7ouSlHDOB2GeeOIJwuEwu3fv5vHHH+cLX/gCTz/9NKqqctddd3Vad/78+dx222088sgjpx2EURRBRsaxWy0nk5Z2eh2N9lQHABgyIBOfr/dMSfK4HSmXRfQoDeFGhmUX4zrGeh0MHXt1KbnODCpavLjdPVf7xuk8scydI/Xz5VLRVnn47+NzEvPnotTuJGNa78jCOt3vYW9zqvtjX3aif8M7rxrJD5/sWqvFaVeZN7GQCyf1R4hEB6STqTO1p7yZbz7ycUex33BU56nXtrJ2Ry1f/cQEcrPcqEKQ5rVTXhM45rbawnF+8vRqvnTLeDK8Dra0p6OPGJiJ3+fA47RhWRbf/9wMvvf40k7Blmy/k6/fPgm/z8HEYTks21yV9DXmTizE5039m3kq+0RcN3hvdRm/e2ljx2P7Klv56Z9Xcfe1o7lqdjEO2/nV8LS37Yvd9VtnGCYNLREOVLXS0BJh9OAsstKdNLREuqx79exiTBN+8OTyjowwgGWbqghFdOyawj8/2J20HbyqiI4LvSkj85g/uQhFFWT4HNi0xAXpz/6ygr0Vh+/sL15fwaptNfzmwQsozPV26/vua87X952KaI/C9OTn0hqM8eG6cp59a3vHb/ftlw/n8iSd8EIRnY83VOByavzp31s67SOfv2EsF03pz9wJhcR1k72VLbyz8gB7yg/fZDBMi237GtBNi+wsD9GYjnaMG5aamrjpsGDuYIYU+Un3dj1HPfTZWa0R8jLd1DSGkm5r+MBMVm2r4bEjpuTurWjhJ0+v4nPXjeHKmYOwn0fHA7kvSue7cz4IM2LECAAmTpzI2LFjue6663j33XeTBlkUReGyyy7jV7/6FZFIBKfz1IMYpmnR2pr8hzgZVVVIS3PR2ho+ofncqWwurcVlV9EwaWsLH/8JZ5iiKnjcDoKhaEc9h6PtazmIBaSpaYRDqbtDHGKv3A3xKFkZGntrTILB6Fnv5KAoAqfTTiQSO+k00gy7n+2RUsrrakl3pgEgMgcQ2L0BtTHQcVLUE7rre3gizuaF2Mnuj33Zyf4NB+R6uf+mcTz9+raOGhX5WW6+ecdk3O0FDQGi4RjRcNfpQskYFjz5780dAZgjbSyto64pTEGmE8uyCAejuJ0a+Vluqhu6/o2cdhWbqrC/qpXv/W4p37t7Oo+8sB6zvbj1bZcO59KpRWgCsn12fvPgPPZUtFJR20ZJfz9FuV6cmkIkHOOTlw1n9faaTndXAQpzvAwuSKOpqevUrNPZJyK6xdOvbU267G9vbmf66HxcveT259naH3vLvtidv3VCgYqGMD/648qOfSgnw8U3bp/MH1/dwt72TDObpnDFzEGMHpzFn17b0ikAc8jCpfv42Rdn848ktWEAZo4tYO2OWiYNz8XvsZOoRWoRaIugKILdZS2dAjCHhKM6z7+zg88tGI3/LP3G9yZn89jWHc7W/pioqSV67HNRFMGqHXU8+crmTo+/8M5Ovn3nFGLtgexD51ljBmdxyyXD+PUza7oEKf+ycBtf++QkfvHX1Tx8z4yk9ccAJg3PxaYImpqCKIrgypmDWLujNum6F08pYsaYfOyqghnXaWo6HOA/+julqQr3XT+GHz+1qst2ZozOx2lX+WOK48FfF25j6shcXL0gS/BM62v7Ipzd81Xp/HHOB2GONHz4cGw2GwcPHjwrr3cqhe0Mwzytgni7y1vIz3JjmnCs7ghnT+K9mIaJkeSEE6CstRKnasejeTju77Fl4jiwBSM9l7x0G1uqoK7VItvXzcM+QaZpnXQQJtuRBQj2tRxkrG0UACJrENbeNcTqK1AzCs7ASE/O6X4Pe6Nz7f0cz8n8DaeNyGX8kGzawnFUReBx2nCoEI+fWn2UmAXb9zdR0j8dTUkEUKJHbGvN9hoWzB6Ericec9tUvvqJifzgieUdbUIhEWS5Z8EYFrbfDY3pJqu3VTOxfY6+ZcHz7+xkzOAsCjJcWLqJDRhVlM6Ygf6O/fPQ+/A6VH795bn89c3trNtZi92mcum0ASyYOxiNY39HTmWfaA3GOxVfPVJcN2lqi2DznUD23zmmN+2L3fFbF7foFIABCIXj/OvD3Tx420QaWyKEYzqaqrBkYyXBcJwd+7sWiIbE96K+JczVswexcOn+Tssy05xcNn0ApWXNfPLSYQjT5Mih2+0qi9d3rUVzyKptNdxxxQj8nJu/8SfifH3fqRzKquqpz0W34Nm3d3R53LTgl8+s5ddfnsMNF5QQCOu4HIkske88tpRguGuDjUh7PS/TguWbq7hnwWiWbqqkqj7YUYspzWPns9eMxjIM9Pb3PjDfx+QReazd0XlKbElhOnPGF6CYJhy1rx3p0Gen6yaD8nz85POzeHrhVvaUt5DutXP9vBLmTiikqS3aUUD7aDHdpCUQw+Y9+ezqvkrui9L57rwKwmzcuJF4PN6pMO+RTNPkrbfeYujQoaeVBdNTLMtib2Ur40qyenooJ6WirYpsVxYnks5irzuIGm4l2H8EuQ5QhMXeWnosCHMqbKqNLFcG+1sOMjY7EYRRsgeAomGUbeoVQRjp/GIaJjYBmR1T+yyM06hPqwjBf9w9jR37m9ANk5vmD+VgdSvPvbMT07RwO7WODBtIBHv6Zbr4zdcuZNGag5QebCYvy82ssf14f20Zm3Yf7oaxv7KVQQVpnV7vX4t388ANYzvizqmCo5ZpkeZU+dKN49Dbl9tVgWmYZyRkfby6XDY5J77PUxTBgcrWjgCMw6Zy1zWjyPA62HmwiU276ynM8bJ0YyVLNlYCMGNMPpoqkmbCQKIg9g0XDmHO+EIWLt1HazDGlJF5TBiWQ0VtgJqGING4gcd2dH0mccwpg067eg5We5H6Mt20kk7Zg8Tv+LqdtVw2pQhHey2jprCeNABziKIIxpZkM2NMPjWNIcYPyeG6uSXYNIUDNW0MLkhnw65aZozOR2n/1Vctiy9cP4aDtYN4c/l+DMPk4qkDGFbkR7VO7tggLIv+WS4eunNKIluTROv6RKbMsfc+WSNFks4v52wQ5oEHHmDMmDEMHz4cp9PJjh07+NOf/sTw4cO55JJLqKio4KGHHuLqq69m4MCBtLS08Pzzz7NlyxYeffTRnh7+KalpChMIxynIcvf0UE5Y3IxTHa5lXPbo469sGrj3bUD3ZWO4/diA3DTYXQPTSs74ULtVvjuXnU270U0DTVERqg0lawD6wY3Yx51+UWhJ6immEHy4rpzn3u7c+nrGmHzuv2kcv31xI1NG5nW5A2bqJi4VbpxXwqK1Zew40MTP/ry6y5SmnAxXRzeYQ5paoxgmKVuHHsmyAMvsOPiZKS6Eu4PHaSMnw9WlZSkkCgn7erCeldQ9hBAdF5FCwNdvn8Qri/d0ausuBNxz7RgURfDR+grW7qhlxth+LNlQmXSb00fnoxgmhVkuLpxUyNoddXy8oYKnjpjKsGZHLT//4qxOJ3HxuM4lUwfw9ooDSbd7xcyBuOzyQk/qPVRV4HFqBFMUTe+X7e0UaPS5tJQF2HP8iRojl80Y0OXY0T/Xy5duHs8P/7iCaMxAVRVmjc7DaD8OqViU5Ht54MaxQCJ4YhjmMQvtpmKaFiqJYvVARxa4x2kj2++kvrlr0CkzzYnPZaN3ZLBLknQ2nLNH43HjxvHWW2/xjW98g/vvv59//vOf3HLLLTz33HPY7XY8Hg9er5fHH3+ce++9l+9+97uYpsmTTz7JpZde2tPDPyWl5c0IoDDb29NDOWGVgWpMyyLXnX3cdZ1VpSjhViL9hnQ8VpgB++sglrrpSa9U4M1HN3XK2g6njqt5JRhVO7GiqVsGS1JvJgQ0tkW7BGAAVmypJhzV+cqtE3DbUxcf1HWT3Aw3yzdXJa0pM2d8Iau3dk4bHzM4E1svqa1yJIcq+NYdk3Ec9X5tmsK3PzUZey/oYCedHtM0OzohTRqey7Z9jZ0CMJAI/P3ptS1cNLkIRcDH6yu4dNpAcjO6Fqa8Z8FonO11IcIxk//7+wbeXL6f0rLmTus1tESoqA92qiFmWZDhtbNg7uAu2y3ul8b8yUVnNOgoSSfLqSlck+T7CuByaAwpTO8UhLGrgm/fOQXbUbVTHDaVz103Brum8Nt/bOxy7CivDfDvj/Yyf3IRAH9/bxeRo28EmBamYbZPn+/+aTKJ48GULsXYbZrCN++YjIyPStL55ZzNhLnvvvu47777Ui73+/08/vjjZ3FEZ96usmZy/K4uJ/y9WVlbJU7Vgc927MCREgvj3reeeGYhpuvwVIQB2bB2v6C02mJ08llmvVKa3YfP7qO0aS/F6QMBUPKGwJZ30cs2YRvSs62qJelUqKrKG8v3p1y+aHUZ3/vMVMQxbi/GDIPqxiC3XjyMf35Q2lF80a4pfOaa0SzZWNmpvozDrnLFzEEddzQPj0UhaphggcOmdFl+NhiGSW66g//92gWs3FLNroNNDO6fzqyx/XDbFHlBfA6wLMhMczCkfzpzJxTyx39vSbnelj31jBiUybZ9jfzxlc384HMz2FvRwootVWSkObl4ShEelw1VEZiGRdwwaQulnnpRVtPG4Dxfp3primWxYE4xcycU8t7qgwTDcS6YWMig/DQ0LM7F9tNS32XoJpdOHUBlXYCPj8gMS/PYefju6ThU0SkIYxoW/fxOHvn6BSzbXMWe8haGDvAzYmAmryzezaQReZ2OD0data2a79w5hTeX7yfH78KyQCdxbEnVOKI7HXk8WLGlitKyZkr6pzNrbAEuTZx0fUFJkvq2czYIcz7acaCZQfl9qDgKcKCtLJEFc6x6MJaFu3QVIIj2G9ppkc8J2T6LTWX0qSAMQKE3n90t+5hvzkVTNBRXGsLfj/jeNTIII/VJpmXRnCRN/JC2UAzr0ET5FDRFsKm0gTSPje99dhpNbVFURZCZ7sSuKby/pqxj3aFFfr5w49hOAQ0hQEewbHMVby4/QCxuMHNsP66aNQiXJlIWCD9TTMPCIWD+xAIunlwIVqIGjgzAnDs0LL5z5xRqmxNTglMJR3U+e/VoYrpBtt+JQxGMK85k/NBsDlS18dhLm2hqizB+aA43XTQEp0095lSN/jm+pBduimWR7bVx52XDsbAwdBPTtE5paoUknWmKafKZK0fyiYuHUdUQwuu2kZnmwKEkD0yYpoVDEVw2pQimFmGZEGvPSGsNpu7gd2gf+OanJlPbEOInT68iEtOZNiqfa+cMPiuBEMu0cChw8aT+XDKlP5YJum7IAIwknYdkEOYcUdscpqE1wrzx/Xp6KCcspIepCzcwNW/CMddz1OzFUXeA0MBxWFrXyvGDc2H1XmgNQ1rX7O5ea2BaETsaS9ndvI8RmYngkpo/HL10KVY8grD1veLQ0vlNETBtVD4bdtUlXT5+SA42TcE6xl1HYcGtlwzlu79byuL1FXhcNkzTIhzVyc1w8aP7ZnYEMBw2BU10rusStwS/fm4duw4e7j7z6sd7+XBdOb98YA72HkoEkF0gzl2Wlagp0S/TxchBGWxP0flo8ohcctPtHYFA07QwBTz18maWbarqWO/9NWUs3VjJLx6Yw60XD+Pphdu6bMvvdVCY6+1U4ProMcX62jxd6bwlLAu3TWFIP29HsPB4gYkju/cpwGXTBtAYiPLsW127LUGiZkxWupOnX9/Ktn2Hpwy+sWw/i9eV86svz8V5lqaIHuoMKEnS+UvOQDxHbNvXiCJgQG7fyYQ50Jq4o53rzkm5jhpowrNrJbGMAnR/ftJ1SnJAU2Dl7jMyzDPGa/OQ48piU/3hE2y1YAQYcfT963pwZNL5TtUUdAQ6gCJOpHEZkAg0TB6Riz9J22W7pnDjRSXHDMBAostbbrqTL98yHqddJRhOtHn2umzcd/1YHIrApSX+U6zOXZAURXCgurVTAOaQ1mCMVz/eiyI7UEjHoKoKOhBHYAmBopz4RZliwWevGU2ypxTmeCnK9XXJxGoOxDoFYA6Jxg2efn0bcyYUcMWMgZ222S/bw48/PxNn35l5LEnHJIQARSHWPkVI007+d9oyTNLddsYNSV5j8JZLhtEWinUKwBwSjOj8Y9EueXyQJOmskZkw54hNexsoyPb0qXow+1oOkOFIx6klz/gQsQi+LR9g2l1E+o9IuR2bBiMKEtkw04f0rWyYwenFrKxeQ02wjjxPDoo7HSWzP/FdS7ENndXTw5POQ6ai8OG6Cl5fso9gOM64IdncccUI0l1aYirRcTgU+NkXZ/HMmztYsbUa07QYU5LFPdeOxmNXT2gbwrKYNDSb//3aBbQEYiiKIM1jS9QHOMY0HlVVeH9tecrlSzdVcv3cwfTCGr5SL2AKwcbdDby4aBf1zWEGF6bz6atGkud3HbOOUcfzTYtsn4OffmE2f3x1C3sqWtBUhQsn9+fW+UOxCTpNCdI0lTU7Un9fN5bWEddNbp0/hAXzBtMSiOG0q3icNuwKZ31qnSSdCUIImkJx/vbmDrburSfd62DBvMHMHNMPxTy5DELFsvjKLRNYuGwfb604QDiqU5Dt4a6rRzEg38dL75emfO7yzdV88rLhyJ51kiSdDTIIcw6I6ybb9jcyY1ReTw/lhJmWyYG2cganD0q+gmHg27oYRY8RGDINlGN/VUcXJlpVL1wPt808domZ3qTAm4/X7mFl9VoWlCRaU6v9xxDf9DZmoAHFm9XDI5TOJ4YQ/N8L69myt6HjsdXba1i/q5ZfPjCXDLct5fSHQ0zTwqUK7r12FJ++aiQANkWgwAkFYA6xTAu7gBzf4SmIJ1JHxX6MO6g2TWn/cZAXr1JnliJ45aO9vL5kX8djOw408f8eX8Z3Pj2FUUX+E+uYYln0y3Dy3U9PIW6YKELgaC/82XXXsbBrqW+cqIey0EwLpyJwpjk6nneS16aS1CspiqC6JcL/e3xZR1ZjXXOYP726lY2l9Xzh+jEoJ1nMSLFMrp9TzBUzBmJaFqoicKgKqiqOub9pmiLLVkuSdNbIvLtzwLb9jcTiJkMK03t6KCesLFBB1IhR6Ekyxcgy8e5YgtZaR2jQeCyH+7jbs2swcwiU1gg+2EafKUCoCMHIzGHsazlARaAaALVgJGg24jsW9/DopPOJEImT3yMDMIfohsVTr2/lRK/7LOtwEMUuEpktxwvedAddN7l0+sCUyy+dNgCHTIORkojETRYu3Zd02RMvbyZ6ElknpmmhWInioTZBys4rum4yZWTqmyezxhVgV+RpmnTu0i148pUtSeu/rNleQ/MxCu0ei2GY2AQ4FIHW/u943GD+5NQdHC6eUoTjFKZBSZIknQr5a3MOWLuzjsw0B1lpfaeQ6+6mfXg0F+mOtM4LLAtP6WrsdQcJDxyL4ck44W32z4TJgyyW7BK8sRH6St2zIm8hGU4/75d9hGEaCM2OWjia+PYPsYzUnTYkqTtpmsrq7bUpl2/Z04Deyzs4WJZFnt/FvImFXZYV5fmYP7moR1pVS72bEILy2raUwfumtiih6Jn5LfY4VG69ZFiXxzPTnNx+2XAsmfIincNihsmeipaUyzeV1p9SfZhkLAsyfA6umNE1UJ+f5eaa2cXy+CBJ0lkjpyP1cXHdZO2uWiYMyU4UNusDTMuktGUvA7z9u8wbch3YhLNyJ+H+o9DTT3561ej+YNcsVu6Bika4eRpkertr5GeGEIJJueN4v+xjllSu5IL+s9CKJxM9sB69dDm2EfN6eojSecCyLDyu1IcEu6Ycs7V0b6FiceflI7hk6gDeXL6fSEznoklFjBiYgYYlJyJJSVg47cc+HdLOUEaKsCwum1rE5BG5vLlsH82BGNNH5zN5eC525fgdYiSpL1OEQFUERorvuduldWtms2JZ3HzREOZOKOSNZfsJReLMm1jI6OKsLjWbJEmSziQZhOnjNu6uJxw1GDnwxDNGetrBtgoiepQiX0Gnxx2Vu3Dv30g0v4R4VuqU0eMZmp8IvHy0A578ED4xHQalbsDUK/gd6YzLHs2G2s1kONIZlzMaJW8o0Q2vow2bjVD6TsFlqW/SdZPpo/J55s3k7T3nTyk6bmHc3kLFoijLzReuG41lJWJHRtKaHJKUuPDKy3TjtKtEYl1TKIf09+O0q2fsCk2xLHJ9du6+ahSmZaGIxP4ok2Ckc51DVZg1roCPN1R0WSYEjCvJPrFaTCdBsSwKMlzct2CUPD5IktRj5HSkPu7jTZX0y3KTnd53WgJta9hFmt2L33G4ho29rgzPrpVEs4qI5g4+7dfI8sLVEyDTA88tg/11p73JM64kfRBD/MV8ULaENTUb0IbOxmqtRd+1tKeHJp1DbDYVu11Nmjnntqt89ppRXR7vl+3hxguH9IkAzCGWZWHoJqZhdvtJvHTucaiCb94xuUtLap/bxlc+MaHbO2ol9kOt4/UsC3TdwDRMdDklQjpPWKbJHZcPJyej6znsF28ch0NTUFUFu13rtmlJII8PkiT1PJkJ04fVN4fZsreRy6YV9fRQTljEiLCnZR8jM4d1TEXSWurwbvsI3Z9LtHB4t7U2smswfxS8vw3+vgI+dyFk+bpl02eEEIJx2aNRFY2lFSupSB/AJflDia5+CW3wVIS97wTapN7HFNASivPh0v1EozpzJhTSL8uNesTtP2FZzB7bj/FDc3h/TRlNbRFmjS2gpDBdpmpL5zTLtCjp5+PRb1zIko2VlNW0MW5INuOH5uDozmlBQhCMGXy8ppyG5jBTR+UxuODQ/iV3MOn841QFP/38LHYebGLVtmqy011cNLk/aW4bUd1kU2kDW/Y2UJjrZcbofFw25aQ67UmSJPVGMgjThy1aV47DrvapqUjbGndhYTIwLTHdSA21kLb5fQx3GuEBY0F0b3KWqsAFI+DNjfDiqkQg5hgdCnucEIIxWSPIdPpZX7OJl0SMm6JBwqtexD3n0z09PKmPMoXg1SX7ePXjvR2PvbPqIKMHZ/HgJyZ0CsQolkWaQ+XWi0oAkbg7b1oyACOd86z29upXTR+AEALTNLt1WpAlBBt21/Poixs7Hlu0poz8LDc/uncmtu55GUnqU0zTQgPGFWcwcUg2lmWh6yZtEZ3vPb6M1iM6JD371g7+4+7pDMr1yECMJEl9mpyO1EcFI3EWb6hkfEk29t4cVTiCicnGuq0Uevrh1JwosTC+jYswVY3woAndHoA5xK7BvBFQ3wYfbD8jL9HtCjz5XDbwIrIzBrHKZ8fY9j7bNv9b3imVTpoQ0NAa6RSAOWTr3gZWbqtBVbvue7GYQSymy8Kg0nknHk9897t7WlBUN/ntSxu7PF7dEOL5d3eiqH2g8rUknSGGYRGL6cTjBgbwyN83dArAABimxS//toZYH5oaK0mSlIwMwvRR76wqQzcspgzv5RVnj7C35QAt0VaG+IsRegzfpkUII05o8CQs7czeA8zwwPgBsKIUKpvO6Et1G5tqY3zOGPqNvIJat5vMla/w1IpHqA839PTQpD5E01TeWnEg5fKFS/YRlXPiJemMUlWFTXvqU2aULdlQQUSXF5aSBBCJG5SWNSddFo7q1DSFu2vmuiRJUo+QQZg+qCUQ5e3VB5k0NBuPq28kMFvAyqq1ZLsyybSn49vyIWqoldDgiVhnqdbJ6P6Q4YXX1tOnuk74HF60CVej2VxcvHMLjyz9NcsqV8usGOmEWJZFIBxPuTwc1ZF9myXpzBICAqHU+6FuWJjyN12SgMT+cCzhSJxEXyNJkqS+SQZh+qAXP9yDqghmjM7r6aGcsNLGPdSFGxjlH4pv20doLbWEiidiutLO2hgUATNKoKYFVnWdmdGrWTYnofGX4Rc2vlDeyLsbn+ev2/9OzEh9Ui9JkCimO3d8Ycrlk0fmYu/GrhOSJHVlGCbjh2SnXF5SmI49ybRASTofuRwqfp8j6TIhoH+eT96IkiSpT5NH/D5m+/5Glm2pZu64Apz2vlFXOW7E+ahiBQXuHIoP7MDWWEF40HgM79kvKJztg+H94INt0BI66y9/WkyXj9YJl+OyuflqRQuOncv4nzW/pSnS3NNDk3oxwzAZMTCDgmxPl2Uuh9beeroPpYZJUh9kWZDhczBhWNdAjCLg3uvGdHsbbEnqq5yqwucWjEm67PLpA3HKGweSJPVx8lesDwlG4vxp4XaKcr2ML8nq6eGcsMUHVhKKBJjfEMBef5DwwLHoaT1Xy2biQLCpsHBD32u5azq9tEy8gnj+EK6qa+W27dt4692fsLehtKeHJvViNgE/vHcGC+YOxu3U0FSF2eMK+PWX5+KxycOAJJ0NimXxwM3j+fRVI/H7HCiKYOyQLH755bnkpjtlEWxJamcYJiMH+PnPe2dS0j8dRUBeppsv3TyOm+cPQfS1kzdJkqSj9I1UCgnTsvjT69sJRXVuubAE0UcqkpW1VbJm3ypuajFwhZsJDxrfowEYSHRLml4CH2wXbDhgMXFQjw7n5KkawaHTiOQPwb1/PVdXVRL/188oyysmb+gFaAUjEGm5feY7Ip15lpVoAXrTBYO5ZnYxADYFsCx54SdJZ5FiWlw8sZA54woAUBVQLOTUCkk6irAsBuS4+e6dU9rrJQmcmuj2rmWSJEk9QQZh+gDLsvjH+7vZuLueG+cNJt2bfJ5sb9MSa2X5toXcXB/EhSBUMhnDc/anICVTlAVD8ize2gT9MyHn7JWm6TaGL5PQ2IsJhVtp2rcSX8MBItVPJ0rVObyoucWoOYNRc4pRcgejnMX6O1LvZOhmx4++Jc9jJalHGMbh/RBT1sWWpFRM00LhUNq+hS47iEmSdI6QQZhezrIsXlq8h3dWl3HJ5P6UFKb39JBOSEu4iR1rX+Dy5hYsdxqh4gkYmrOnh9XJ1MFQ3wYvLIe7LwRP34htdeVKI2PUpZS1VfBezUbyYyYT7NlkRwIYW96FWKL4jUjLQysYgVo4CqVgBDVGmLK2CqpDtbTFAhiWgcfuZmBWP/Js+RS6C1AVtYffnCRJkiRJkiRJ0rlDBmF6sVBE589vbmfNzjrmTyxk0rCencZzIizLpGbPUsTuFYzRDcK5A7AVj8aMmdDLpj3YVLhoFLy1Ef62BG6fBWlnp1v2GVHkKyTHlcXm+u38s60ch9PB4NzRFGoefMEA9rY67PvX4NqxGAtodmhUuu2U+TNo8WagKApRM8bH5cvRTQOX5mRM1igm541jZOYwNEX+XEiSJEmSJEmSJJ0OeVXVC8V1k+Vbq3n5471EogbXzSlmeJG/p4eVkoWF1VpHy8F1UL6VND1Oo8NJc/EkNG8mNqECvXPug88Jl46FRVvhiffhyvEwqjDRArEvcmpOpuZPZETmUPa3llEZqmVnrA3TMkEVuPPSyVXyGRS3yA+FmN/aiNJUgWlvJJpbTDy/BHVYCbsjEfa0HGRP8z5W16zDrbmYkDOG8TljGJZRgl219/RblSRJkiRJkiRJ6nOEJavBnRHWCRS8NEyLWMygLRyjoSVCRV2QrXvrWb29hkAozpjBWVw+YyB+Xw/Ok7EsLEPHMuJYegw9EiIWaiEabCTaUo/RXIPaUoemx4kLqHU6Ib+Y7JxBHZEMRSiJIEAvFo5ZfLzN5EB9oj7M2AEKA7IFWT6BzwlOe9eojKIomGbvfl8AWBaGZaIKpWt0yTRRmmtR6stRGyoRLfUIy8KyOTAz8zHTc2h1OtmvB9gVrqdaD6FrGv0yBzAwcyD9/P3J8WaR4UzHY3fj0pw4NDuKOH7HHVU9e115TmR/PJeoqoIh2053m/Ph8zxb+2Nv2hfPh79rMvJ9935nc38UQvSZz6W36Uvfqd6kr31uZ/N8VTp/yCBMD9mwq5aH/7D8mOs4bD1Xj8OyTCw93mOv31PiKZLDrvesZLZz11kezdlnP8Wfgw/8bt7O9nZ67C83/gaXrXfVAZIkSZIkSZIkSepJMggjSZIkSZIkSZIkSZJ0Fsj8KkmSJEmSJEmSJEmSpLNABmEkSZIkSZIkSZIkSZLOAhmEkSRJkiRJkiRJkiRJOgtkEEaSJEmSJEmSJEmSJOkskEEYSZIkSZIkSZIkSZKks0AGYSRJkiRJkiRJkiRJks4CGYSRJEmSJEmSJEmSJEk6C7SeHsC5yjBMGhuDJ7y+oggyMz00NgYxTesMjuzsku+rbzmb7ysnx3dGt3+kk90f+7Jz9bvZU86Xz/Ns7Y+9ZV88X/6uR5Pvu2+877O5PyqK6DOfS2/S175TvUVf/NzO5vmqdP6QmTC9hKIIhBAoiujpoXQr+b76lnP1fZ1P5N+we8nP89x0vv5d5fs+v973iZCfy6mR36lTIz83SUqQQRhJkiRJkiRJkiRJkqSzQAZhJEmSJEmSJEmSJEmSzgIZhJEkSZIkSZIkSZIkSToLZBBGOmepqkLMgraYQcwERZVfd0mSJKlvEgJQBBHDIhAz0AFNk8c1SepNVFUh3n7uGTVByHNPSZKSkN2RpHOSqQjeWXmQf3+8l3BUx6YpXDptADdeUIJi9Y1q7JIkSZIEiWKWYd3iDy9vYkNpHQA5fhefu24MQwrSEPK4Jkk9zhSCVdtreO7tnbQGYyiKYPa4Aj595Qg0LORuKknSITI8K51zFFXh9aX7eeG9XYSjOgBx3eSNZft5auE2LFmRXZIkSepDoiZ87/fLOgIwAHXNYX7+l9VUNoZkpxFJ6mGqprBuZx2//9dmWoMxAEzT4uMNFfzX39agI/dRSZIOk0EY6ZwTjpu8vmRf0mXLNlURiZlneUSSJEmSdGoURbC7vJnG1kjS5X9euA1d3mGXpB4ViZs8+86OpMv2lLfQ1BY9yyOSJKk3k0EY6ZwTjMTRjdSBllQnspIk9S2WZRHXjZ4ehiSdUZqmsGl3fcrle8pbMGUQRpJ6VEw3aQnEUi7fX9mKKuvDSJLUTtaEkc45Trt6zOUel+0sjUSSpDNl+4Emnlq4jYbWKNNG5nLP1SOxacfe9yWpLzJNi35ZnpTLM9OcZ3E0kiQlo6kKmqqkvAmY5XdiymipJEntZEhWOue47CqjizOTLuuX7cEngzCS1KcdqG7jf1/ciMdlY/7EQtbtquOvb+3s6WFJ0hmh6ybTRuWhpqj7csOFJTg0WW9CknqS06Zw4aT+SZd5XDb653ixZGVeSZLaySCMdMoURWAKgY7ollaZiiKw2rdnIE45bVOxLL5y6wT653o7PZ6V7uR7n5mGTX7rJanP0g2TP76+jUyfg5vmlTBlRC4XT+rP0i3V7Kls6enhSdJpURSBpSrELEEcsDkS2V0uTeG7d03FftRxdu6EQmaN6Yehy1pnktRdFFVBB/T2/39CTIvbLh3Gf3x2Gp+/YSwjByVuBnpcNn74uRkyUCpJUidyOpJ0SiwhqG6J8NeF2yktbyYzzcnN84cwcWjOKbWAtoSgvCHMX9/czr7KFnL8Lm69ZBhjijNPenuWBXZF8IO7p9PYFqGiLkhupptcvxO7ImQ6qCT1YUs3V1FRH+TTlw/H1n5BOnZwFmt21fHWioN86caxPTxCSTpFqqC+Lcbf3tzBtn0NpHvtXDWrmLkTClFNk5J+Ph75xoWU1bQRjMQZXODH41ARpgzASFJ3UBRB1ISX3y/lo/UVAMybWMj180pwqsc4fxSCxmCMv7bvu36vg2vmFPOlm8djUwUOTWAa8txTkqTDZBDmPJLIVBHop1nIUlUVdle18eOnVnY8VtMY4qnXtnHLxUO4eHIRRvz4r6FpCkIILMtiy/4mfvnM2o5llfVB/veF9SyYO5jr5xQnIisnwbIsVCDH5yAv3YllWVgWMgAjSX2Ybpi8tnQ/Iwf6yc90dzyuKIIJQ7L5YF05zYEofq+jB0cpSSdP0xTKG8L8xx+WdRyn6psj/PWN7WzeU8/9N45HNU3sAob0S0OIxGFR0xRM00IIECJxfD90uDx0zDcM42QPoZJ0Xoqa8NBjSzp1Mnpr+QFWbqnmv740h2ST2RVFUN0Q5j9+v7SjQHZdc5inX9/Gtn2N3LtgdJcAjKYpaJqKrhvoMotNks5LcmLGecAUgkDM5L11Fby56iCNoTimOPW0yKhh8fuXN3X8W1MV7r52NF/9xERaAjHeX1dOMG5ipXgJSwjChsVHm6t5bfl+yhpCRGJG0oK6ry3ZS+Q0D1CmackTUEk6B6zZWUtjW5TpI/O7LBs1MAMQrNtVd/YHJkmnKWpY/OnVLUlvFKzfWUdToHN727gJ++sCvLp0Pyt31FLfFmPljlpqWqMYQhDWTT7YUMkbKw9Q2xo7rWO+JJ0PVFXh4w0VSVtJN7VFWbqxIuk0+ahu8cQrm5N2KFu5tZrWULzj35qmELNgw95G/vHBbtbtaSBmnf50fkmS+h6ZCXOOM4XgndVl/OO9XR2PPf/OTmaPK+CzV488palDkZhOXVO4499fuXUCH6wtY/0RFz9/Wbidu64ayYUTCzs/WRFs2tPAI//Y0BEY+cd7pQwbkME37pjMz/+8qtOBzLKgoi7AkH5psqCZJJ3n3l9bzsA8H7kZri7LXA6Nojwva3fWMT9FcURJ6q1iusmeitQ1jdbvrOWamQOJRnViFvzojyuorA92LNdUwVduncizb+3EwuLq2cU8/fo2AF54dxcTh+XwpZvHn/H3IUl9Vdy0WL65KuXypZuqmDehsMvd66husL+qNeXzNu+p56IJBQA0BuM8/IdltB0RmPG4bPz48zPJ9tplVowknUdk6PUcJgQ0tEY7BWAOWbqpkq37G0+p+O2Rzxla5Ke2KdQpAHPIX97YTlMw1umxcMzsFIA5ZNfBJjaV1jN5RF6X7TjtGiADMJJ0PquoD7K7opXxQ7JSrjO0MJ2dZc1EYvpZHJkknT5FESm7H0HiQs2yLFAEf3lje6cADIBuWPz2xQ0smDeYLXsa2FPewrgh2R3L1++qY9nmKlRVZsRIUjKKEDiSZGQf4nJoJEsoU4RAOca+63basCyI6Ba/emZtpwAMQDAc5xd/XUNYl+e5knQ+kUGYc5iqKixcui/l8lcW7yF2CoXCnJrCmJLEhdDcCYUsWlOWct13VhzoSK/WNIWVW6tSTg1atOYgcyd0zpxxOTRyM1xyOpEkneeWbq7C5dAYWpiecp2B+T5M06K0XHZJkvoWp01lxpiu0+wgcUNl4rAcYjGDqG6xYnNl0vViuklDS4Rsv5NFq7seT19bspdwTN5pl6RkFCyunTM45fJr5hSTLESjqYKpI7veQARQROJmJVgEI3Eq6gJJ16tpDBEIx5MukyTp3CSDMOcw04KWozJRjtQWip3SFB8F+MIN4/B7HbgcGoFQ6tdoaotitr+GEILGJHNtDwlFdOy2w4c4VRF861OTscs7d5J0XjNNi+Vbqhk5wH/M7L1MnwOfy8b2/U1ncXSSdPos3eDOK0cmnWr3+evH4rAlvve6YSatPXFIWyiG067RForhcnSecR4IxY/5XEk6n5mmxdD+6UmDoTPG5FNSmJ60ZlNcN7lqdjE5/q777meuGU1VfRAhBNH4sQOg0RNoaCFJ0rlD1oQ5hwlg2qg8NpYmL1Q5YVgudk3BNE7uzphlWfgcCr94YDb1zRFGD85ixZbqpOvOHJuP1n7RZBgmk4fn8vqS5Nk5IwdlkOaxMXdCAQPyfMwaV4DbpmDJs0ZJOq/tPNhESzDGqEGZx1xPCEH/XC+7yprPzsAkqRu5bQo//vwstu9vZO2OWjJ9DuZPLcLr1BDtx0GHTSUnw9WpLtuRBuanUdsYYvTg7C41ZsaWZGHX5E0NSUpFsSzuuXY0C+YO5v015QDMn9KfHL8LNcVNS5um8Pd3d3LPgjE0tITZcaCJdK+dScNz+XhDJSMGZmAYJmkeO5qqoCc551YVIbv6SdJ5RmbCnMMMw2TKyDwyfF1/2B02lRsuKDnpAMzhbVvYgP5Zbu64fERHoOVIOX4XowYdrt9gmhb9c70MyPN1WVcRiTsGRdkePr9gDFdMG4BLFTIAI0kSK7fX4Pfa6ZflPu66BdkeDtS2EZcFDqU+RtdNbFhMHprFl24cy22XDMVnVzsCMABOTXDPtaOTPn9sSTaV9QEM02LB3MEsWn2wY5mmCm6/fARHJpbKhkmS1JVqWfTzO/nMlSP4zJUj6Od3pgzAQGKK/s3zh/Jff13Nm8v3Y5gm5bUBfvr0Kmoag2T6HFgWuO0q189LPt3p6tnFuGzykkySzidyjz/HORT42RdnM2d8QUfhsPFDc/jFA3Nwd8MPvmGYeB0qv3xgDqMHJ+5Sa6rgwkmF/OTzM7scVDQsHr57GlfMHIi9vSXfkP5+fnb/bHJ8DuJxg1hMJ34epmU6FB0vrbha9+CJVOJRQihyD5XOc7phsnZnHcOLMhAncNVYkOXGMCwO1rSdhdFJUveLx01CoRjhJDUidN1kaGE6D989nf65XgDcTo1r5wzm6tnFrNlazc+/NJuD1a2EIonnjxqUyS++NId0p4ZlgRFuwxVrwNm8B0+sFo8SOWZhUUk631gWxGI6sZh+3JqEpmkxMNfLj+6dgaIIlm2qYueBJq6dO5iv3zYJj4jiNZtwNOzilklOfvflyQwuSNQ2y/A5uGdBIvPGOsWbopIk9U1yOtI5zjQtHArcc80o7rxiBBZgUwQKdFuWiWVaZLhtfP0TE4kbFkKAQxOYhtWl5oxlgYrFbfOHcsO8EkwLbKpAEySda3u+8KgxAiv/Sf26dzjUCUr1pJNz03eIuAsxzuPPRjq/7TzYTDCiM3yA/4TWz81wo6mCvZWtlByjiK8k9VXCshjSz8cP7p6OblqoikBTBbG4yddum4gqIGdCIbPG9sNqP8aq7cdYF2FqX/kD4b3rO7Znyywg56bvEFT95/VxWJJOlbAsBuV6ePgz09BNC0UInJrARZCmNx8nsn9Tx7q2rEL+69PfoYl0LCx8DpVo9Py78ShJ5zt5n/08YRkmNgF2kThYnEpB3mNu37IQloVdAYemEDMs4oiU+c5m+3gcSmIO7qETP0URmEKgI9DhlFpo9yYO1cCrhPAoYewpQp6aJoiWLiew7m2ObMVtBFuoef4/cVnyjr50/lqzsxa/105ekoKlyaiKIDvdJTNhpD5JCIF15DFQS34MNAwTlcRNFg0LDBNne72XmAm6aeHUFOxK4phvmhZO1aRl8bOdAjAA8cZKal/8GS5Cpz1+h2rh6TjmyYCOdG4QqnIC+6TVsU/ahIVGnNbFf+sUgAGIN1RQ/9LPSVfC2AFdtzBI7PPGcdpdA9g08ChhPEoIh6rLaYWS1EfJTBip2yiKIGpYvPL+bj5cV45lWcwaV8Btlw7HbTuBo4QQ1LRE+csb29h1sIkMn5PrLyxh+qg8lD52d05VwW200LL4RRp2rUJoNrxjL8I35SoCpqdTEMxhhKhb/nLS7VjxCLHy7agDpmPIVFXpPGOaFut21TFiwIlNRTokN8PFARmEkfoaRdAYiPGXN7azbV8DaR4H180bzOxxBSjmcX7/haCqKcJf3tjG7vJmMtOc3HjREKaOyEO0P1czggS3LU36dL25BkLN4DyxYGeXoSsCj9VG67KXCW5PvIZn1FzSpl9HUPhkho3UJymKIBQ3+fvb21mxpRpNFVw8tYhr5gzGdpxjks0IUr99RdJl8cYqRLgZy9mPDXsb+Pu7u6htCjEwP407rxxBUY4XcdTNUiHAo0QIbXqf2nVvYUXDOAePxz/vk0RsmeimjMZIUl/St9MMpF4lZsL3/rCMN5fvJxzVicQM3l9Txjcf+Yhg7NgnkKqqUFYf5KHfLWHbvkZ0w6KuOcyTr2zhzwu3Y/WxUL/baKXqL98luG0Jlh7DjARpXf06tS/8Jx4R7LSuwMAINqfcVry+TM7Xl85LuytaaAvFGdb/5KYV5WW4qGwIyeK8Up+hKILa5gjfevRjNu2uRzcsGlsjPP36Nh775ybMYxwDVVVhX02A7z6+lB0HmtANi9qmML//12aeeXtHx/HTikfASr1PGIHGkwp2HslDgJpnvkdg4yKsWAQrFiGw4V1qnv0PPAROaZuSdDZomoLNpibNKAnrFt969GMWr68gGjcIRnRe/Xgf339iOZHjHF+sePQ4+1sT760t5zfPr6eyPohuWOypaOGHf1zJxj0NqGrnAblFmIZXfk3Lkn9ghlqxjDjh0jVU//khnLFGmREjSX2MDMJI3cJmU1i1vYb65kiXZa3BGO+sPJAyhRMgZlj8/uXNSQugLdlYSSCid+dwzyi7ZtG66jWsaNfUbr2pOpHZcsQ0K1OoaOm5qbdXMFRmwUjnpXW76vC6bBRke07qebkZbkzTorI+ePyVJamnCUHEsPjDK5tJljCyfmctzcFYyqdHDZM/vLwp6bIP1pYTiiXqTQi7C6HaUm5HTc85panKmiYIbv0II9jSZZkRaCa0YxmabI0t9TKWEATjJu+ureDVZfupbY1iHBHJUFSFVz/eSzDJ+Wd1Q4gtexuOuX1hd4GaesKBmpbDS4t2JV321GtbieiH90VFEZhNlcSqdnd9H0ac5g+fxaH0nfNkSZJkEEbqBooqaA7pLNtUmXKdlVuriempT+6icYOqY1ww7TzQ1Gfqw2hGhPCetSmXh7YvQVMOB1WiwoP/gtuTrqu407DllchUbum8Y1mJqUglhWknfXc+O90JQEW9vAMv9XJCsPVAE/ur2thX2ZpytU2l9WgpbmREYga1TeGUz91d3oyiCGKqB9/ky5OuY+83BMt5aoWsbWaU8K6VKZeHdq5AM6OntG1JOhMsIfhwQwVf/u8P+dub23lxUSnfeWwpv/vXZsz2tpQxw2T19uqU2/hoQwXRWOrAR1zx4Jt4WdJljoKhBHATN5Kf2wXC8U7BH01TjrmPhfdtQLNSB2olSep9+sZVrdRjVE0hZkFb1CBiWJBkWkzMgEVrynCmqjwLOO3aMVMlVVU55nK3S+v2YsJniiUEis2Zcrni8GBx+M0aholSMIqMSz6buHPSzp5XTN7tPyLEyWUBSNK5oKIuSH1LhKGF/pN+rsOmku6xU1EnM2Gk3i2im/zm+XVAoqh0Kh6XLWWr3GPdoJg6Mo/ignRawjptMfBMXUDalKtAOXy8dg2eQPZ1XydsOk7pPVgoiGMd8+wuEPJ0U+o9mkNx/vbmji6PV9YFqGsOE4ybROImd1w+gn4pMjE9ThuKkvp7HTUEnqnX4Zt8xVH72ySyFnyN+uixy3IeOR3JskBxpj4XFHZnp/NKSZJ6P1mYV0rJFIIP11Xw0vulhCI6iiKYNbaAu64agYbVcULY2Brho/UV3HnlSNbtrE26rQVzi7EpAiNF1N+hKUwansvaHV2fryqCIf37TuvMmHDjnXwlTe/+Kely78TLCR+VFRQ27diGXUB+yRSsaACh2jBsHkI4+8z7ls68QCzIzqZS+nnyKfDm9/Rwzqj1pXXYbQoD8ryn9PysdCcVcjqS1ItpmsL67dWYFqzfVcv0Mfks21TVZT0hYGxJVsppqU6bwrgh2WzaXd/p8c9dN4aWQJTv/m4p4WjiGD53QgH3XfMJCiZfhRkNImxOdM1NwEwd5DmeGDZ8U68hWt71ohbAN+VqYpaNI7v/SVJPsdlU3v1wT5fHRxVncsOFQ3j8X5s4WJ0o7N4/18tdV43izeX72Vha12n9q2YNwnaMafYAQcOBY9qteCdfjRULte9vHgKmht8r8LhsBMPxLs8bkO/D7dA4tFPG4wbekbNpSdHEwTfhUmKKC+TMdUnqM+StCSkpVVP4aGMlf31jO6H2lEjTtFiysYJfP7cOoz3iLgSEojqNrREC4RizxvXrsq0pI3IZXZz6BBJAWCafWzCGzLTOd9OEgK9/chJ2te9E+A3DxDlkKo6iUV2WeSddjuXLTXqyG9chYHkI2vMIqJmETYcMwEgdDraV86MVv+Sprc/x01X/wxv73u3pIZ1R60rrGdwvDe0UpyFmpzspr5PTkaTeSwhBSyAxTefDdeVcNn0geZnuLus9cPN4HMe42FMsi8/fMBa/73Amy9SReTS3RXlxUSnh6OFj+OJ1Ffzkb+tpFWmJY41IJ2KcegDm0Ha1/KG4hk3vssw9YiZK7mB5LJN6leZA5+lxqiL4xKXD+dXf1nQEYADKawP8+tk13HBhSaeAyxUzBpKfZF9NJmooBPAdsb9pWBY4FHjo01O6HOM8Lhtf/+Qkjm4qGrenJ526bssZgHfSFcRlSRhJ6lNkJoyUVCRu8tL7pUmX7TzQREsoRkZ7enRephsh4OnXtnLHFSOZO76QdTtrMS2LScNzGTYgA5sCxyokb1ng0gQ/v382Ow80sX5XLXmZbuaML8BtU0larbAXCxhO/Fd/BaulitDWjxE2B54xF2C6Mgmb9p4entTHxIwYf9z8N3x2L58YfgPbG3axcN+7ZDkzmd5vck8Pr9s1tkY4UN3GNTMHnvI2stKcrNpeSzRu4LCp3Tg6Seoeum4ybmgO/1hUSjRm8H8vrOfe68fSEoiy40AT6V47l0wdgNdx7GOgZYHHpvCL+2ez/UATG3bVceWsQfzwyeTtcbfva6QlFMPv7L5TwKDhIG3+3aRNu4bglsUIoeAePQ/Lm0PIOLVpTpJ0JpimxYwx/Vix5XC9l6mj8li+qZJYkhNV3bBYurGSexaMpqwmwIWT+pPhtXO6taZN06J/lptHv3EBK7fWsL+qlVHFmYwbko1TFV0Cl1HThmPkRfQrmURwy2LMcBuuETNRswYQME+ttbwkST1HBmGkpCIxoyMDJpmK2iBZxRmYpoVTU7h02gDeWXmQv725HbdTY3RxFooiCEd0sv0u2lqTFw0UoiPbEtO0sAHjB2cyaWg2lmURjxuc6i26I7fdE0KmEyV9MI55QwGLYMyQqaLSKfmwfClN0RbuHHkraXYf0/tNpiXawoul/2ZU1nB89lObstNbbdhdjyIEgwvSTnkbh7LqahpDDMjzddfQJKnbWJZFXoaLkv7p7Clvoaktyi//toZ+WR6GDfRzyZQi0hxq0iwSRQHziOOJaVrYBEwsyWLKsBwaAtGODJhkKmoDZA7K6NYMlZDpQHiKcMy5C4Bw3DhWh15J6hGGYTKqOIOcDBd17QWt++f6Ok03OhS4j8YTncV2HmjitkuGMWdMPvG40V6j8PQztC3TwqEI5k8sQJncH8MwMQwT07SSnsNGTRtRLRvb1FsRQhDTDZllJkl9lAzCSEnZbWqiJV6KH/fMNEdHoVxhWdw6fxiFOV7+9eFuWgIxDta0ceeVIxg1MLNLqqWiCKKGRVP7SWJehhunpnQcbQ4dhE6FogjiJrSGYrQEY2Snu3A7VJSzGI1RFIHLCkK4GTMSRE3PRdfcQOrWoJKUimEafFC2hFGZw/A7Dncvmdt/Fnu3vcAb+97jE8Ov77kBngHrdtUxIM97zGLfx5PZPjWjWgZhpF5Mw+KhO6fw2pK9vLe6jMtnDGTyiDwiUZ1IzMBp17C3H4s1TWA3gpiBBoxYBFdGHrrmIaofzvQ6dPy0a8pxjuHOM1Ls3rIg1t4SW5J6E0URxEyLxrYo4ajBDz83gx0Hmvj9vzbREoiSle4k05PNLbNzccdbAIuI3c+/VtQRjCdCLmfqu63rJmCiKAIdaA3GaQ3FyPW7cNlVxFH7ajwu9zFJ6utkEEZKymlTmDO+gI/WV3RZ5vc6yMlwdYrQK5bJhRMKmDkmH9MCVQjsqujS8UgogqrmCD//y2pag4l2ekLA1bOKuf6CwSinEdFXFEEwbvLTp1dReURBzglDc/jSzeNQz0IgRlEE7mgttS/9HKOtseNxz+g5pM27k4BMy5ZO0taGHbTG2hiXM6bT4y7NyeTc8SytXMllAy8kw+nvmQF2s1Akzo6DzVw8qfC0tuNyaHicGlUNoW4amSR1P8sCFYubLijh2jklPPfODv7j98s6lmf4HPzH3dPJS7OhNO6n7pVfYYbbax0JBdfEy0mbcQMhvfM0V6emMGtsAUs2JjmG+w4dw+UddOn8cKxzz8e+dVFiX4hH4eB6oq99n7ieWEdTbXxq7p2IQdMQlnVGS0sriqAtavCTp1dR03j4uDVtdD73LRiDItPKJOmcIgvzSklZhsmdV4xgxMDMTo/7vQ5++LkZOJK00jR0Ew2wi8RJZbJslohu8cMnV3QcBCFxEvr60n2s3l6LpSqIUyzEGTPhP/+0slMABmBDaR1/e2tH0vba3c1NkJrnf9QpAAMQ3LqE0MZ3sJ3uJGLpvLO6Zj05rixyXFldlo3LGY2mqHxYvrQHRnZmbNzdgGlaDClMP/7Kx5Hhc1LdKIMwUu+nKoL315bxwdryTo83tUX5/h+WYYu3Uv+PnxwOwABYJuF1bxLevQaHo/M9Ncu0uOuqEYwYmNHpcb/PwY/vm4nbJk//pPNHRLf4wRPLk557rttZh1NV8FvNRBb9Hks/Yh0jTvTDp0g3GjjZ7l6KIjBFIrNF59it5CFxDvuDJ1d0CsAArNpazUsflp7yubEkSb2TzISRUtKw+ObtE2kNxamoC5CR5iTX7+xIjT5ZqqqwaVdNxxzbo724qBS7TWXngUZuvHBI0sJkx9IciHY5eB2yZGMlt10yDOcZ7LKkKAK97gBmJHlHltY1b5A3dj5xPGdsDNK5JW7qbG3YwaTc8UmXO1Q7o7NGsKRiJVcVX4pD7ftFn9fuqqMgy43PffrvJcNnT/mbIEm9hakoVDSEefWjrm1zAfplewntWYdldG1lCxBa8TLOwZOAzt0FE8fwSbSGYlTUBslId5Kb4aJftpemJtm+XTo/aJrCqm01SYvuAry4aBezRmXRtuq1lNtoXf4ynsu+2Gnq37FYQlDeEOYvb2xjT3kzWekubpo/hCkj8lDMruMQAmobQzS2RpJub9HqMq6bW4JDxmEk6Zwhd2cpJctKtL70uzTGDsqgMMOJBqcUgNE0BVUVlNWkbhnb2BrB47TxzsqD/L/HlxE9icxLIUTKgxckxpwq+NNdFEUQb6pKudyKhRGm7CEonbjdzXuJGjGK01N3CRqXPZqIEWFtzYazN7AzJBo32LK3gaH9/d2yvQyvg5qmsJx2IfVaphD87wvraWqLEkxRDD/D58CoL0u5Db21DiVJ1ffDx3AbY4sTx3CPPXERefRUYUk6VymK6NR2+mgNLREUM45+jPM3vbkGxUjsn0KAzaamzGxRVUFpRQv/8YdllJY1Y1pQ1xzm9//azAvv7sRMsvMJIahtSt7AAiCum8R0WQdGks4lMggjnRDTtE6+05AQBGMm//5oD//4YA+7K1u5eOoAfO7kBWr753qpb04chBpbIyzbXImqndhX1LIscjPcKZfbNQWX48wmfhmGhT039cWy6knHUmRxXunEbW/chdfmIduZmXKddEcaA31FLKlI3o62L9myt4GYbjK06PSnIkHi4jUc1QmEk2cQSFJPEgLqWiJs2dtAMBLv6Oh1tKqGILbCESm3Y8spwuTYd+gNC9qiJm+sOMBfFm6lojGS9GJQks41hmF2mVp/pP65XkzFji1/SMp17HnFmKodUwiqW6K8smQfb648yMHqVoyjOxgZ8OS/tyTdznury4gkKe5rmhaFOam7HLocWkfHJkmSzg3n7HSkN998k1dffZWtW7fS2trKwIEDufPOO7npppsQR5x4vPjii/zxj3+ksrKS4uJivva1r3HRRRf14MjPEYpgZ1kLv3pmDYcSZ15ZvIeiXC/f+tQUfvLUyi6podfNK+HVj/d2/HvZpirmjis44UhhmtvG0AF+Sg82d1l21exinJqCeYpdl06EZVmo/gK09Fz0ltouy9Nn30JU9YAu78pLJ2ZHYyn9vQWdfrOSGZ09gjf2vUtloJoB/oKzNLrut2ZnHTl+F5m+5BejJyujvUNSTVO4W6Y3SVJ30jSV9TsTx4p3Vx1gwbzB/Pn1bV3Wi8YMnEWjUVw+zHDXO/q+ubejq67OPauPYAnB++vKefbtnR2PvfT+biYOy+FLN42XBT+lc5phWAwfkEGax96pJswhd145EstS8E2+ksDGRXB0xrJQSJtxHa2Gwv/9YwOb9zR0LHrmrR185upRzB3Xr6ODUSSm09CSOjN7f3UrYwZ2bQ+f6XMwIN+XNGvnhgtLcNkUjBRTqiRJ6nvO2UyYP//5z7hcLh566CEef/xx5s2bx8MPP8xjjz3Wsc7ChQt5+OGHufLKK3nyySeZMGECDzzwABs2bOi5gfdmiiBiWEQtiJjQGjWIWWApCq1Rg4hhgaIgBER1i189u5ajZy6V1QZYvK6cn90/m+99dhpXzBiI32vn01eNpKYxRFnN4YOP22lDOYliuioW37pjMlNG5nakWmuqwoK5g7lmdnG3BmBURaC31OOM1uGlFacaRwgI4Sb3todx9D9811LYnPgvuB3bkOnYrBheqwWP3oBHCaHJQr1SCqF4mMpAFf19xw+qDE4biEtzsqJ6zVkY2ZkRixtsKK1neJG/27bpbw/C1DbJujBS72NZFl6XjcEFadx73VhmjM7nrqtGdsraHDEwgx/dNxPdnk7u7T/qlG2pOD2kX/55lNyhxOMmNk3gFUE8egNeWnGoiTvuzcFYpwDMIet31bFqew2qqqCoCjErcVyPmiAUBbtm4RWBxPZEAIcqLwCl3smhmnhpa/+uBrEfdYvZqcFPvzCL4oK0jsc8To37bxxHSUEahmES1dLJu+1htPScjnVUXxZ5n/geUWcmSzZVdQrAHPLnhdtoOyLb8tA0pWmj8/n2nVN46NNT+d5np3H17GIcNhWXQ0uaWe5RDX71mRH8/vMj+K+7RjJ7TB52TeHm+UOZP7mIYNSgNWoQt45f5FeSpN7vnM2Eefzxx8nMPJx+OHPmTJqbm3n66ae5//77URSFRx55hKuvvpoHH3wQgBkzZrBr1y4ee+wxnnzyyR4aee8jBMQtwdOvbmPuxELW7azlw7Xl6IaJTVO4aHIR44Zk8z/Pr2P8kEQ76K376lLWjlm8voIpI/P49bNrmTOhgB9/fhZ/e3M7q7bVdFpvwdxiFMtKMtM9OcsCm7D44g1jicRNIlEDt1PDZeveDBinEsfcs4LyD5/tuCvpLB5H5mX3EcRHgDTSr/k6qh7C0mMIh5uY5kONt9D49h+IHNgKgOJOI3P+XWj9xxEx5TQlqbO9LfuxgEJvv+OuqyoqwzKGsLp6PTcPv+bMD+4M2LKvkWjcYPgAf7dt066peJwadc2p70pKUk/RdZNZ4wqYMiqfx/+5ic176pk+Op+vf3ISHpcNj8uG16mhWBbRqI7hyMZ/0/9DRINYRhzF6SOueYnGTdxqjOi2j6he9k+sWBiEgnvoVDIu/gz/WledcgyvfbyXySNyeW/VQV5dspdozMCmCn75ufH4yxbTuObNRLcYRcU75gJ8s28lYHRPppokdQevGqb1o+eo37YULBNhc5I27Ro84y4laCQC8YZh4XOofO+uqYSiBnHDxOvUcByRIR03BWZ6Mdmf/E+IBRPNkBweDrQolO9q4vWle1OO4b3VZdx28RBiMQOnTeEbt0/iQHUbj/5jA+GojiISQZmH7ppKQba7S50ynxqmZfEzBLcvB8vEbXPyuekL+NJ1FxOyXDz6jw1s3F0PQJrHzl1XjWT8kGwUWe9MkvqsczaUemQA5pCRI0cSCAQIhUKUlZWxf/9+rrzyyk7rXHXVVSxfvpxYrGvK4vlKtwQ//8tqcjPdLN1YyXurDqIfOmjpJu+sPMDq7TVcOXMQ63fV8sdXt9IaSP356YYJAgzTYvG6Cp58ZQvDj5qvO29iIQPzfCddBNiyQJgWLlWQ4dZwKJx2AEaIxF0WpxLD6RBYVVtpePP3ndLCI/s2Ufv3H+MWIeyKjoUgbMskaM8lYHmxG0Fqnv9hRwAGwAy10rLy32iRBtyaIe9sSJ3sbTmAR3OTbk87/srAiIyhtMba2NG4+wyP7MxYtb2GHL+LrBR1MU6V3+ugrjl1wUNJ6kmGafGDJ5ezeU/iAmvl1mp++udV/L/Hl3Kwpg2XXem4YNN1k7DhIKRlEnbkEbTcxOImNg1iu5bS/OEziQAMgGUS2rWSupd/xSVjUtdYCoRj1DSFeHnxHqaPyObOiwfw5RtH4N77Aa2rF+IeOoX0mTfgHT2H4PZlNL/3R1yKPD+SegeXGqPpjccIbv0Y2qfVWfEILUtfIrzxHeza4XNI07RQLAuvXSHDpWETh88PVVXgVHVsRIkqHoJaNiF7NhVBGw/9bimKEARCXWuLjR+SyafmD2BoP1fHtGGbolDbFOal90sJRxNTm0wLVmyp5vl3dqAeleHtVmKEti5GS8/FM3w6qBpWPELrkn8Q27yIf72/oyMAA9AajPHoixspLW+R542S1IedV3vv2rVrycvLw+v1sndvIqJdXFzcaZ2SkhLi8ThlZak7EZxvGtui7KtqZfzQbJZtrky6zsfry5k8IheAjaV1jBiUugjagDxfRwFegE176pk4PIerZg7iqlmD+MUDc/j0FSN6RYTfqcRxhcoJLfoDrf/+BdGVL6J50nEUDuuyrt5cg1l3gND7T9L66i8Ru97Hp4TQNAW9bj9GW2PHusLhJvf6r+EbdyGN7/2Z5ld/hXpwFV4lLLtWSADsazlAnif3uPVgDslz55DhSGdV1bozPLLuF40bbNhdz4huzII5JN1rl9ORpF7JZlPZV9lKXYquKM+9tYO2yPE7otiNIC1LX0q6LFa9l35aC7+5dyzZ/q4BzgnDcqmoaubRe4dze8YGZlc/z8iqhfiHTqDgzh8jNDuR/Zuw9Di5138V1elB1eX+JPUOaqyNyIHkRXBbV72G3Th+K3aPGkGr2kjbwv+h9dVfIfZ8jFcNg6Lw9/d2YVqwu7yZMSXZHc/pl+Xh/+4bwxeGVjCn9gVG7HsBpWY7bjVKKG7w0vulSV9r18FmWo6oS2NXdNRwA/HaA0T2b0LYneTf8h1cgyck3sPKV7lghC/ptv7yxjZiR1cFliSpzzhnpyMdbc2aNbzxxht85zvfAaClpQWAtLTOd5kP/fvQ8tOhnWBnHzg8v7O3RbUVRXCwphVIFAd0O7T2Vnmds0tMi44W0OGojoXF6MFZbN3bdf7srZcM47m3d3R6rLElwqcuHw6A3tGGr2ejEZrQ0bd/TNP7f+14LFq1h7Z175B7w9epf/uPGK31nZ4TObgVI9BEtLKUaGUpratfp99dP6e1bHun9XKu+gLNy14mVrPv8LbLd2DPH0z2jd8mTOpOT5DIzjkTMare+j3sDiezP/Y00zI50FbO1PzxqOqJ7geC4ZlDWF+zmZgR71N/wzU7a4nFTUYXZ57E+z0xGT4HW/Y2nvLf/1zeJ3pKb9gXe8Pf1enU2HGgMeXyqoYghmnhsh97jCIaxYykvtiMVe3BVbqG73/iHr725BaM9gxTm6bwycuGo9WVEn7pF4cLklbtIbRtCZmXfAYj3Eq0ag/Rqj0Ety8j67J7QA9j82SekWPQmdIb/t690aEYf1/8XIQAvbFrE4RDLD0G8TCaM63Tc4783jqtME1vPkZk/+aOx6IVu7Bl9iP7E9+ntKwZgA/WlPGtT01hw646VFXwH7cUw7v/TbytKfE6QGTfBrzj5uOe8YmODJhkKuuC5JZkoWJgHdxI5WuPHn7tqj0EtnxM7oIvo7c1Eq87iFMk7+5X3RBCNy0cx/l96G3kvihJCedFEKa6upqvfe1rTJ8+nU9/+tNn5TUVRZCR4Tnp56Wluc7AaE5PXqaHa+cMpiDHy90LxrQXFbP414e72VN+OFhl1w63z2sLxfnWpybz+tJ9LFyyj3BUp6QwnZvmD2Xllioq6zufMGakOfF1U0eU7hJvrKLsg2e6PG7pMZo+/jvpk6+g8ajlaloWRmlrx7+N1npC25ZgzzpcXNWeV4zeXNspAHNIrHov8YNbyBifvEOX3taIEWjCCLagpWWjev2o7hObrnIyeuP38HSc6v7YUypbq4kaUYqz++PznfjfYnLRGFZUrWVD1Vam9Z9w5gbYzdbsrKcoz8eAAn+3b7tfjo+lm6txeRw4j67WeBLOtX2ip/S2fbGn/679slN/Fl6X7YQ+r3hTABSta1eXdqo3g3h9Oc49HzBn7BgWb6xm/NAc7lkwmkwtQsOHTyR9btOHz5F7w9cI705k1ylODxYWiqJir9+ZOP54M9G8/hN/wz2sp//evc2hTMu++rlEghnHWCrQHC7S0900tkaoaw4TDMfpl+XB73PgcdkIlm7vFIA5JN5YRXjrYmaOGcrCZQcIRnT++cFu/t9npuKwwuQ4wsRn3YRic4BQaFn1GtGKXQQ2vU/+pMtxObSUgZhsvwu/3028uZbyN//QdQVTp/H9Z/DPuYn6N5/AVJLXDPS4bDgdGhn+vvm366vfOUnqLud8EKa1tZV7770Xv9/Po48+iqIkIq/p6Yk50m1tbeTk5HRa/8jlp8o0LVpbTzxlV1UV0tJctLaGMc5gG+VT0S/LQzAS58HffNhxB8HrsvGlW8bz2sd72bavkaFFfvZXJT47p12luJ8PxTS5cd5grp5VTCxusOtgE39+fSu1R6Ve52a4SHPbaGo6ftro2SKEQKnc0zHH+Gix6n3YZt/c+Tk2B7aMPPSmqk6PNy9/mYI7f4JQbVhGHNfg8QR3rkz52q3r3kYZMIEYh1vqCiFwxhupffHn6E2Hiyw6B44h8+oHjps5c6LO5vfwbF6Inez+2NM2VSVSmX0inba2E69n4sBFrjubJQdWMyJteK/7LUmmLRRj7Y4aLppUeFLv9UQ52zuQ7d7fQGGO96Sf35t/m7vT2dofe8u+2Fv+ruOGZGPXlC7ZpQBXzR5Emls77rHRprjwjplLYNMHXZYp7jSEqmFGAkS3f8wX77qWT18zFk0BBQsRbkRvqUu6XUuPYUbDCJsTFIXc6x+kcfELNL7z1OHXziki96bvEFbTenVmTG/5e5+os7U/WpaFEKLPfC5Hc7rS0dJy0Fu7foddQycTU10cPNDIT55e1ak99cVTi/jslcMIr3sn5bYDmz7gkzfPYeGyAwBs3lPP5RMzGRRYQdXqNzrODxWHm6wr7iVgdxLet4nQjuXcNH8az7y5o8s2M3wOstKcNDUFsTfXdmTRHE1vrUN1+XAPm8a7uwNJ17lu7mA0YfWqc+cT0df2RTi756vS+eOcDsJEIhE+//nP09bWxt///nd8vsPzKgcPHgzA3r17O/7/oX/bbDaKiopO+/X1JCdVx2MY5ik970xRVYXV26t5f03nGjmBcJzfPLeOh+6aylOvbeVTV47kv59di9dl4+F7puNQRMf7yM7w0NQUZPjADNK9jk5BmBy/i4fvno5NnPjnpWoKUT1xtqeKxH8nW8D3eBRFIE7gjFLYXfjGXYhzwGhsGfkEti8DRQXziHn8loURCZBz7QPUvfF7QKQM7rQ/AdM00c3D63iUMLX/+Bl6c+cOUpEDW2j+4K+4L7yHqKEevaFT1tu+h92hL72f/c1lpNvTsAk7xknO+R6WUcKqqnUEh4XR6P1dt1ZsqcayLIYX+U/6vZ4InyvxGdQ0hsjLOPVg5bm4T/SU3vQ59vTf1W1X+f49M/jZX1YRihy+cz5jTD8umzaQSJJioEfTbALfxEvRm2qIlG3reFz1+Mm55n4aFrVPqbUsFAG5mW6amoLEdfOIUH8K7cfB9KlX07zsFWJVezotjteVUffKf5Nx/UOETMcJveee1NN/797m0GlOX/1cQoqbnFv/H7V//wlG2+Hp7/Z+Q8i45B4aYyrff2IJkVjn2kqLVpcxd2wuBRzjmGNZOKwId101kr+9uZ2B/dIooYy2Va93Ws2Mhqh77THyb/kO4X2bwTK5dOoA1u2oY9u+w2PK8Dn44edm4LIpRHQT23HOMYVmwz//LiY1KSxcWUXwiN+H2eP7MX9KEfHY8WtG9VZ99TsnSd3lnA3C6LrOgw8+yN69e3n22WfJy8vrtLyoqIhBgwbx1ltvcckll3Q8/sYbbzBz5kzs9uOempwXoobFS+8n77YS001qGkP88N4Z7K1o4Vt3TCY3w4VDFUmDIjYsvv2pybSGYlTXh8hMd5KV5sCuJF8/GVNR+Gh9Ja8s3kNLMMrwogw+c80ocv3ORGGabmKaFvb8wSTq0iR5LzkDsOUOot+nfkTzkpeofeU3CNWGd9Rs8m/9LnWv/RYj2AyAZ9QcWle/gd5cQ841X0JoNjSvn+hRJ7OHeMZfjK444YggDKGmLgGYjkU7VpA+9zaidP+0JKlnlLdVkuPKOqXnDs8sYUnFSjbXbWNizvhuHln3W7almkH90vA4z0zAyOO0oSpCtqmWeiUjbjAgz8X/fHUelfVB2kIxBvZLw+PQUMxjX6AIATqCYHMD4X/+lIx5nyDjojuIVe1BdadhWSYN7/2FeEMFAPbhs4gqLjpNArB7UH1ZnS5gO7av2hJTkOIRHAVDaF7yYtJxxKr3ocQDoPb+IIx0bjFNi5CWSc4dP8YKNGC0NaJl5GM5/YSFk+37G7sEYA752zu7+fGVl3RMtzuaZ/g0Als+5rJJ1zJ9dD6aHiD+6s9SDEQnUrYNR/9huIfPJBTX+dptEwiE41TWBclIc5CV5sJhE2ze18izb+/kGwsGoLVnSB9N9WWiZhTSZrrI8wv+58F51DSGaQvFKMr14XGoiOP8PkiS1Luds1WRfvSjH/HBBx/whS98gUAgwIYNGzr+O9R++stf/jKvv/46jzzyCCtXruQHP/gBmzZt4v777+/h0fceFhaNrakvXipqAzgUwbCCNIqyXbjtaspiW5YFqmWR4bIxeqCfvDQHGieexWIKwROvbObPC7fRHIhiWbDjYBPffXwpZXXBbi/yFVPcpM+9tesCVSPryi+CIqj62/cJ7VoFpoEVj9C2cRH1bz1J1uX3JFb1ZpA+5UqCO5YTrSyl9l+/pu7f/4fmz8OW3TXbypYzAMegCZ3uDgghMALNqQdqmVjx6Om+XamXsCyL8kAV2e5TC8KkO9Io9OWzpmZjN4+s+9U0hthT2croY3RTO12KIkjz2KlvkW2qpd5Jj1nYBZTke5hYkk2aXUU9gUxMHcFPn15FoC2IFQnS+M5TxGr2ESnfSd2bv6fu1Uc6AjCq148+4lIiemJ6nqIIbDYVw+4j+8r7QHQ9fmZcdAfx9uLzqaZNHGJGUk8xEyLRCcpm675sTUk6xDQtgqabkLuIeL8JBO15hEwHQihU1CafygOwp7wFLbc4abdLLT0HV/F4QjuWo5pxnKrA79JSTt0DiLfU4R46FcWT3nG+m+7UGD3QT2GmC69TY31pHb98Zi0VdQH+uaIW+9w7u25IKGRddT9B4U1sRxG4bSoDc9yMHuDHa1dOKFNbkqTe7ZzNhFm6dCkA//Vf/9Vl2aJFi+jfvz/XXHMN4XCYJ598kieeeILi4mJ++9vfMnHixLM93F5LEYL+uV7KUxzIhg/MwDRN4hbUt0RZubUap11l5th+eBypv16nMn2oNRxn1bau2SCWBU+8soUf3jOd7jrFE0JgI45jyGSceYNoXfsWelsjzqIReKdcjeVMp3nxX7HiXQNUenMNeqCJrCvuwzFoPIZQURwuzHDiMzSjIepe/y05V32RWH0ZwR0rQYB33MU4SiYTNDsXK7MsCy09p8vrdIxVsyPsrmQJO1If1BJrJaSHyHaeWhAGYFTuMD7Yt4yIHsGp9a6C10dauqUKh01lSOHp1eA6njSPnXqZCSP1coYBcPzpBYoi0BHsrWhhf3UbIbMQn8ONFQ3R8N6fybnyPpxFwwls+RgzHsU9fDqtBdN4YUk9912fj95SjyjfRax8B84xc2ne/BH5t36Xtk0fEKsrQ0vPwTf+IiIHt+MZOQtbdlGiALxQUk6lVdzJ2+i6lChKqJHQrpUIRcEzfAamw0/YlNnGUvc78tzSMEyGDvCnXDc3w0VIeMicfyfRilKC25diGTruIZNx9B9O3RuP4+g3FEOxgwEGCvbcAcSq9ybdnrNwOIonHb25BpE2GMuyUBSBmyDxqt1Ey3cywp3L/907ij++V8nSrfXk+wu55PrvIzYvxGypxZ5XTNqM64jaMzBMCBsWa7ZU0tASYfzQbIpyfdiEwJJBGEnq887ZIMz7779/Quvdcsst3HLLLWd4NH2XXRHceeVIfv6X1V2WpXvtDBvgJ27Cb1/ayMbSw+2aX3h3F7ddOozLpg3olnGoqsKO/albeVbUBYjqBu5uan3qVYLU/eOnxBsqUD1+PCNn4SwagaNoNFHVhyseJLxnfcrnR/ZuxHvlV2iLWmiaIH3WzTQt+nPHcjMcoOafv8I9fAbZN34L3dKIK04CKebHmo40HIXDiFbs6rLMN/kKYqoXUndElPqQikCi8HK269SzQ0bnDuXdPR+xqX4b0/InddfQupVpWSzbXM2IAX5sZ7hlcbrHTm2zzISR+j4hEtOE/7V4N9H2aRavrWngMxOvIbriH2Do1L3+O2xZhbiHTUP1ZlDhHc13/7CRn98/G0+8iYrnvt+RXekaMILQ9qWES1fjGTkL76hZGMFm6t/8A2Y4gHPwRDJufhhLUfCMmUtw8+IuY3INnYKhebrEjzxqlNYP/0po+9KOx1qW/QvvpMtxT7uRcB+oISP1XaZpMSg/jcw0Z9KM7k9dMRIFEK50gtuX4SoeD4pK5OBWmpf9C4RC+uybCJqJ23tRnPgv/BS1L/xnl20pTi+2zH5Uv/AT0qZchTZ9CLpu4jaaqX3uBx3T0yFx4+yBa77Nr+Mm/1xawdvrbFwy8TIWLCjC4XQR0AVYgp0VLfzqb2s6Ztq/+vFeCrI9/PBzM87dizdJOo+cs9ORpJMjBFhCENYtWqM6cUugqgqGYVJSkMb9N43D4zpcs6Gkfzo//cIs3DaVldtqOgVgDnnh3V00th1/moyqKqAoRE1oixm0Rg0MITpNL7IsC68rdc0IRYCqdM/X2aFZtCx5sSON2wg207rmDZo++jvVz/0QlxXEaK5BcaRuryc86SiWjpdWHJE63EMnk3Pdgwjb4ZNO58Ax+C/6FAHTQ9i0H7NAWdhykLXgQdzDppKoU5OYr++bdi3uSVcTkwGYc0ZloAqbYiPNnvzO8olId6ZR4M1nbc2G7htYN9txoInGtihjis/cVKRD0j32Y06rlKSe1PX4S+ppvULh6YXbqG0K4XZqZPgcjB/oxTtqNumzbkJoiQyTeEMF4ao9NPlH8uhru/n6JycxwK/QsPCxTtNbhZK4nLP0GIHNH9L00d9pXft2R+amsDmJ4sAydTLm3IJv/CWJ4vOJJ+MZNQf/JZ8jbNhQVQW3EsFrNOKjFaN6Z6cAzCGBdW9Dc0VHe2RJOlPsCvzk8zMZMeBwK2u3U+Pe68YwalAGum4SVtLIuORuAtuX07zkRSIHt6H6Msm5+Tu0qhmgqHiUMG4RxJ6RR861D6C4Dh+f7bkDyb3uqzQs+gsAiivRhc+pRGlc+GinAAwk9rXYW7/hs/MLgESji1eWVdActxNtny4Y1S1+/czaLqUOK+uDPPv2DpRunn4vSdLZ1+uCqatXr6asrIzW1tYu6XZCCD7zmc/0zMDOYYqSOPl77J8b2LInUZzP57bx6atGMXFoNoplMX1kDuOHZBOM6Ng0BZddRRMQjpu8tiR5aibAOysPMLQoI+VyoQjqA1FaAjH+/Po2Dta0AZCX6eZLN4+nf5YbLAvTtBhalIGqCIwkU5mmjc7HYVOgG9rd2YwQ9ds+Tr7QMons30S0Zh/eMfNo+ujvXd+Tw03GjOtpfPfJRL0Yy0TYnKTPuI7Cz/0PeiSI0BzompuAaTuhtFLLgjbDjefiz5N+4Z1Y8QjC7iamuAka8mB8LqkK1pDlzDjtC5ThGSV8VL6cYDyEx9Y9Lcy709LNVWT6HBRkn/nWj2keO8GITiSm47T3usOedB471vF30tDsLrUforrBqq3VqKrCTRcN4dpxLsSSP9GwcjeeETPJveFr4PBi2j20mS5My8YP7pmBbpg0N9QQr9jZaXvxxkrseYOI1ezvOjanBzU9F1egkoaFvyXeVI1v3IXk3/IQwulBOLzENA8BXUVTLOxtB2hY+Dv0pir8s24gvH9LyvfdtuZ1PJc9QFSXxy/pzDFNC5em8M07JhGOGcR1E7dTw6UpHe2RdRMsbyFZn/gBSjyIrpvsbdD5zcIKirJ2cMdEjbjeiup0U/vu09gy8sm67G4UhwvVk0GsZh91b/y+o7i1u3g8YQvUeIhoZfLGFmYkSIYSxGFXicYMsv3O9huNFqoq2LGvIem5LsCSjZV88rLh2GUMU5L6tF5zNrp9+3YefPBBDh48mPKiVAZhuoeqKcSNxFxVxbKImfD9J5ZTd0S6flsozmMvbeTbd05m9KBMdN3EqSnYXO1fGcvCtBLBgWA4dQvNlkAM8xhBhkDUIBY3+cXf1nSkVkOiYOcP/7iC//nqPNKdKpYFDk3w9dsn8d/Pdr47kJvh4jNXj0KYJhaJu4p21UKYcUzFfgpZIiYYqZ9kRoLEa8twDxqHs2gkkbLtnZbnXvcgda890unga8UjNH/8dxAKypjLieucyNT/LiKGBqSBLS1RA6bvdieUUqgK1pDpTB24PFHDMkv4sGwZG2o3M7twejeMrPuEozprd9YxfVTeWbkbnu5JZAc0tEQozPGe8deTzk9CCFAEhmFiUw9f5B3LcY+/AzIwDBOHQ4F4BLvdxt1XDCEWi9Hfa9L2ws8xQ60ABHcsJ7hjOQCOBd/l4X83kua289BdU/nmIx/z808O6vL6LasXknPVF6l99RHMcNvh96LayLnx26BHqXnuBx2Feds2LKJtwyIQCv3u/hXR9kpsTr2Zqud+BGbi2ClsDsxo6mK9ZjiAMA1kQrZ0plmWhQL4HCo2p4WwYhjC0en0yTAsQjgJWXYefGQxRXk+LhidySVj0wmveAn7lCuoeuYHiXXbGokcTLSCVxxucq9/sCMAkzH3VmKNVWgZgwg2HXsKrBULcfGUItI8duZOKMCuJJpiCiFoDaYuhG2YViJAo8oojCT1Zb0mCPO9732PxsZGfvSjHzFu3Dh8vlNPxZeSUxRBxLD4cOVBVm+vweeyc/P8IURiRqcTwCP99Y3t3HnlSF5ZvIcLJhYybVR++4EiEQWxqwoThuXy8YaKpM+fPa4fWoq0SVVTIW6yeltNpwDMIaZp8dKiUu65ZlSiGKBpMbLIz6PfuIjlW6qoawoxYVguJYXpHWNyKDpaqJbWla+it9RgLxiGb/KVRNQ0dPPETvaEomDLGUC87mDS5c7+w4k1VBCt2UfmJZ/BaK0ntGcdwubAO2ouCFLe/WhZ8Qr5I+cQ58zf/Zf6HtMyqQ7WdksdF4/NTX9fAatr1ve6IMy6XXXEdPOMdkU6Upq7PQjTKoMw0plhCkFNU5hXFu+hsTXC2CHZXD59IC5NpCxEryiCg1Vtxzz+/uwLM/GKNlpWvIen3wAEgqnV72PGwrBrErkLvkz9239Cb6ru/OTV/+D66Xfw5Fv7qW4I8u1PTSGst+Jx+ToFW4y2xkQx32vuxwi1ESnfiS1nAM6SSeg2H+HVLyfvjGSZtC5/BdeFn8VC0LZsYUcABiBatRfnwNEd03qP5ho2DV2x02W+hSSdAW4lhtV4gLZVr2FEAriGTME3Zh5BfB37p6IqvL10Pz+6YySZgd2I0hcIVEPW5Z+j8b2/JN2uGQ0RrdlP5qWfxZaRT2jXarSC4VTWB4kFwOf0YkaSN7bIKBxIYFsNOw80UdcUZsG8EnwOFV03GVWcujB//1wvdlVBdmOQpL6t1wRhdu/ezVe+8hVuvTVJS2DptAkBwbjJQ48toS10OHMlphsMG5D6rnt1QwhFEZSWNVNa1sxrS/bx4/tmdnxxLNPkE5cMZeWWKmJH1TTJy3Qz8hgXWRHdZMnGSnYdbEq5zq6yJuKmefiLalm4NMFlU4pQFNB1E9O0ME2wKybm/lVUv/XE4fdXvY/AxkXkffIHWL4BGMYJHLQsyJh9E7Wv/C9HH+Qc/YdjmQbpM64jtGMFlU9/B8WdhqNgSKIg4hu/wz/j+tSbjoUTHZU0GYSRumqOthAzY2Q6/d2yveEZQ1h0cDFNkWYyummb3WHZlmoG5HlJ85ydDilelw1FCOpbZF0Y6fQJkcgCPcQSgkVry3j+ncOF0/dUtPDW8v38/P45ZLi1pIEYVVXYcSD18S8SNfBE66l+5nv4Z91IaNdqgjtWdCyPVe0h4EknZ8FXqHnxF52CJdGa/QyclKhbtru8hZVbq/jcgtHYZ36SyPtPdHqdeEMFgZ2r8c79FI7imZimRUA3cRo60fIdKccXrdqNx4hhCUGssrTTslDpGvJv+x7BrUu6ZMSonnTcw2fSpsuLSKl7iSSdg1xKjODyfxDY+F7HY7HqvbStfYP8O39GQKRhWRA3LC4c4cH58WPEavcf3oChE6vZl/I1o5WleMdeSM1Lv8KW3Z/9+fOJaVHeWl7LF2feRuSDP3Z5jnvcxby9sZGP2m9g7qlo4YO1ZfzH3dMZnO8lw2tn3JBsNu3uWm/x3uvGYFfFiZ3PSpLUa/WaPNCBAwfKIm1nkCUEz7y1vVMABqA1GCPDl7pDgddl6zJN6L01ZShHdDPx2FV++eW5TBqeixBg0xQunzGA/7xvJs4UXU9UVWHRmjIq6gNk+1MXuM3NcKMpXb8Xum4QixmdTmztVojGd57quhFDp/GN3+GwTqw7imlBcM96cm/4Oo5+JUAi5TRt6tX4Z1xHvLEK9BjNS/+ZWD/USnj3OsL7NqG31HUURkxKKMdeLp3XaoJ1AN0yHQlgiH8wqlBZXZ26k9fZ1tQWZceBJkYO7J73eCIURZDmsdEggzDS6VAEUdNib02AyqYwcStR1yyim50CMIdEYgZ/eHkTqa6VTNM6Zk2kW+cV0PTunwCwZRZ0CsAcYgRbaNv4AZ5Rszs9rqVl0xhIBGUy05yU1wR4Z2UZu5ViHFd+DVtWIQCqx0/GxZ/BN/sThOIKsZjRUSTeFBqaPy/l+LT0bCxFA2H7/+ydd5gV1fnHP1Nub9s7sOyydJbeQZqCICqKvfckJtGYaH6JKSbGRE1iEk1iNIkl9l4QFFGk9947yy7L9np7mfL748LCsncBFWXR+TyPj+zMmZlzy9xz5nve9/siudNb79Q16j/9HxmX/DhuKC+IcYPT3mPJvPYhAhgRaQanhyMl2+sDUfZWevFGVDRBOLwdCDW2EmCOoIX8NC1+BbMYn+NazBLupt0oxwowgBYNIbnT2r2+7MkkWl2KfeAUtIl38dg7e5Ekgc1761nckInl/B+1ut8sY65DHHwpry082Po6OjzxxkYiqo6o69x1RX+uPLd7S1GMIwUx8tIcp5TqaGBg0LHpMJEwP/zhD3nkkUeYPn06mZntD/oGX4yYqrNqa1Wb7eU1fjplurCYJCKxtilBU0Z0YdGG8lbbFqw7SLc8DwU5HkRNQ9d0PFaJH8wsJqZpCMTTlDRVa9ffJ6JqLFh7EG8wyk+vG8LC9eUJ210+qQgRONlwIwigNFS0Coc+llhDJWIsCJL1JGeCqOREdqVSP/9/uAeei2fkJfHKEduX4tv8GRkz7omnG+lte6VHw+hqDMmZjOpvu8Lp6D2amNS2lKeBAUBVsAZZkHCZT88DikUyU5jUlRWVazivy/gOIXSv3VmDKAr06JT0tV7X7TBTb1RIMviCaILA7GUHmLV4X0sGjc0i88tbhlFVF2j3uJ2ljUQUDWsC/wZV1ejdNaXd8Xd4kQf/yu3YuvYndGBzu9cI7lpF+oU/wL95Qcs2ccCFvL+6jiSnBUkS8IdirNhSQY8ufXjokwgzR95BTrKFtBQHotNDINp2PIup4Bp6AYFtixNe1z3yUsJa3EzUPWIGob1rWx9fW0b1O4+Rc8Mf8Ey8Ob5NsOJTRSMNyeC0IIoCgajG755bRVX90Yir3l1TueuK/rw0dyfXZrYfzRXctRrP+BuIYMekBgnuWNimTfPqOSSNuJjaD/7e9gSCiKv/BHZURLB2SuZn/1qJquls3F3LsD7ZvLzgIIszXcwceQfZSRa8IYXPtjcz3B4lnCANv8kXIRBSSLLJiJrOtOGdmTSkEzo6kiAgC7Sb3mhgYHB20WFEmMmTJxOJRDj//PMZMWIEWVlZSJLUpt0vf/nLM9C7bzZvzN/N/TcN448vrW1lsjuyXzZdst28s7C1v4lZEpElkQZvmCSXBZMgoGsa6BpHikhrp6jSR6Iqy7dUcttFfXl+znaUw8eJosAN03qRl+Ekqh7xnxHQvobwy5ii4+x/HrH6QzQueq1lu2h1knX5z2haPQd7fr92j29c8iZZV95P1RsPo/oaWrZbOvXGc8418QmogUECqoI1JFmTEIXT9x3pldKD9/bNocRbSoEn/7Sd94uyakc1XbNdX3uVIpfNbETCGHwhJElk2/4G3lu0r9X2UEThqXc2c9HYwhMe396oJUkiJuCxH53D/kPNLFpfzvpdNeg6nDMgF6fNhB/iqwwnPH/rKzgGTkHp3J/0XQe57vxePDMrXqXoyJpIeY2fJ2b5uWRcIdOys4kmEGCOtFesqaROu5P6j/991LBeEEkafw26Jw/98AOh5swk+dybafzsBdAOP1yKMsnjryUiO4lopoTXMDD4MkQ1ePDZVVQ3tE55215Sz3Ozt1PcLQ3hJEHQEipOMRiP1kpwt4b2rccz8mLcQ6bhXftRSxtBNpM2/QfM2+rn3x/u4/6bhrVUNPp0dRk/vX4Ijb4wu0ob+dt7cR+mtCQrv7xlOI/8b027/Tl28VJVW6fjG/qLgcE3hw4jwqxevZrf/OY3hEIhFixYkLCNIAiGCPMFMUkiw/pksTJBNMzOA41IksAPL+8PxJ3Xs1IdrNxayd9e29Aq9z0zxc491wzmgyX7Wba5AtAZ2S+Hq8/rjt0knrJCb5FFxg3K463P9jB/TRlDe2fysxuH0OyPoqoafQvT0DSd/7y/ldXbqzFJIhMG53HJ+G5YxLYrAboeD9dGlI5OAI9BTs5CM9lPHlJzGL9qxTnxVjxjriDWUIFkcyG604mKdpIm3IiohuMDdoJoGEGWiVQdIG3qdxDNNmKBZkzJ2agWNz7VSEUyaJ/qQA3JFs9pPWdnVy4es5sl5SvPuAjT4A2zv8LLBSO6fO3XdjvMHKpLbJBoYHAioqrO6/PbphsBHKrxk5/tbvfY7p2SsMhiaxMZAFGgqjnM/+ZsZ8eBBhxWE1NH5XPz9D6Ajs0koYhRzLk9CJfvIn3AJHzr5yW8hrPXKKTkbFJm3EvQmsG8LU188uxmLhxTQCSqUHk4UmfcwDzys1384uZh5KU7McsCwknG7IgmY+o8mOzb/haPNtU1TKm5REQ7YfXoQllYM2EuGkNO4aC4Ga8gYErJJSLYiZyiKb6BweelORBpI8AcYc32Ks4fkY/LOYLI2vcStrEXDcG7bi7etR/hGjIVZ/GEhIUVql56gOybH8U18DyitWUIsgUxOZuoyU0mAR68I4OsVDuFeR72lTcTian8+eV1XD25B5dNLKK2KUTXbDepbiuiGK8cmgiP04zTbgiWBgbfBjqMCPO73/0Op9PJE088Qf/+/XE6jXzh04mga1x/fi+27KtvU1J67IBctu2v59V5u7BZZDxOC7+4aSg7ShraiB3fv6w/v39uFY2+SMu2JRsPsWFXDX++ayzmYxbsTCYJqZ3KSKIgMGV4ZxZvKKemMcSa7dVU1QfpnOkiPclK34JU7vv7EkKR+MpbRFOZu7KU9btqeOg7oxJ+cSOijeRJN9L4yXG+MKJM6rQ7iQh2TlmFAUKqCaQUhIxUQI/rLRpEcWCzWEmZcC0Nn70IgGC2Yc0pAlHCPWgy9Z8+j9JUjWhzkXn9QwQED7qRgmRwEmqCdXRPPvGq+udFEAT6pvViVeVaLi2aftpSnb4I63fXIokChbntP7R+VbgdJpr9URRVa7dim4FBInR0atspN6vpsP9QM1ecW8Qbn7Y2p7WYJL57aXE8heCYoVSWRQ41hPjFv5a1bPeHYrw5fw9b9tbx42sGIeg6Yd1C2nk3U/nyb1Aaq7F3H0Zw9+pW1xDtbjyjL6fEZ2HWuka27N9Nky/+gPfChzsY0TebyycVMW9VGReN7YrdLNK9cwqNjYEW75eTEdMkYjgRUroDAmFdT5hSG1UlorgQUnsBxNsZK/cGXxGCILSaix6PpkOSy8LGQypde55DbGfrtDrR6sQ9aArV7/wZdA3fmjlkzLwPU3oXYrWlrdqa0rtQ2iTwu9e2kuS0Eo4GqWmsIDvNwYO3j8AsgiRJ3DmzP/c/uYxITCUUUXj2g23IksB1U3uR4bEi6DoiInfOLOaxV9a37o8AP7x8ANZjytvLsoggxMveG2lIBgbfLDqMCFNWVsZPfvITRo8effLGBp8bXQeHWeSxu8Yyf00Za3bU4LSbmDC4U3ygOByuHIoohCIKs5bs4+opPaiuD/LxqlJiisaFY7uyt7wp4aDnD8X4ZHUZF43OR1F1/GGFZWvLCUcURhXnkO6xIhDPq/eHFVasLUcQ4IHbRrCrtIG0ZDtllT4O1foZ2COD9xbvaxFgjqWmMcSWfXUM6Z7expgsqkpYC0eSlVVA84r3UJprsOR0xzX0AiJy0hc2MkvkaxPTTbgHnIspuwjNV4dosREq2QKyjCBJuPqNo3HJm2ghH81LXsc+/jYiRhqSwQkIKxGao16SLUmn/dx9UnuyqmodSw6tYFrX8077+U+V9btr6Zzp/NpTkSBeplonbgycfgIzcAOD4xEFga7Zbna2U8lP03XOH96FPgWpvLdwH42+CL27pjB9TFccZgn1WLFDEAgpOs/M2pYwtWBnaSO1TSFyk62YCdG08n0yL7uPwK5VOHqOwFE0BN/mhWiRALaiIZh6noOiabj2fsy1KQG0/gMoCzv523v7CEdVVm6t5JLxhUwY3AlLgoCcz0P82JOfoD0vOAOD04mu62Qk29vdn+yy4A9FeeytXdw941z6dR9GbOOHaOEAtq7FOPuNI9pQ1Srdr27Ov8iYeR+hmnJCWz8DwFE8CW9yT37z3DYCoRjewNGFzMq6ADtLG+mc6eKT1fspzPPwlx+dw4fLD7Btfz3JbguXju9Gdood4fB9oWkavbsk89hdY3ln4V7Ka/x0zXEzY1w33FY5PlcVBEKKxtqtFdQ0BulflE5+lhuTYNxfBgbfFDqMCNOtWzd8Pt+Z7sY3Gk3TMQswfVQ+U0Z0Ye2OGl77ZFfCFb51O2vJz/bQvUsS157fk6376gmGFFZta5vOdITV26uZMrwLn649yBufHg3dnrVkP8XdUrnrioHMX1vWqorEgnXl3H3VQH7/7CoC4bjokpfhZN3Omnavs2xzJYN7pCfcF9ZMCPY8nOfdCXoMTbTgV/g8ATCnjGRzInoy8a//mMCOZS3bvStn4egzhpRJN9Aw/3+E9m/EPS5CBOPBz6B9akP1ACRZT286EoBNttI7pQcLDi5jYqdzsMrtV0T7qgiGY+wub2bSoNyv/dpASzns+uawIcIYfC5kAa6b1otfPrW8zT6HzcSQnhnsLW/mqfe2MKpfNj26JFNW5eOhZ1fzwK3DMR8WP3RBYFtpI2ZZYm95U7vX27CrhvyxhciRZoI7VxDcvRp70ZB4ZT5BxNqlL6AhdRmAf9dqwktfPnrwprl0yi7it9fdzs+e24quQ0VtgEy3BU3TERNUGzQwOFtxWmV656ew/UBDm32XTujG+l01aDrsOhSgtzmAJasQwWwhUrWfQ8/8FHNGZzIuvpvqNx8FXUML+6l5+094pzzA7uxMslLt5OZkcf+Ty9pEkR9h2eZKxAECGvD46xsxyQK/umUEM84pQBLjKX/HCyeCrpPiMHEKoFAxAAEAAElEQVT7hX2IqRqmw8Us0HUEQWD3IS+PvrimRaids+wAmSl2Hrx9ZMvviYGBwdlNhxFh/u///o97772XsWPHUlxcfKa7c1YiigKKDqGoiqpq2K0ylmPCGo+gKhpmWWJ7SUO7IdYOm4lITCUcUXng3yvQdZg2Kh+7tf2vjN0qE1W1VgIMxEtWd8l2E4wodMny8PMbh7J8SyWLN5Rz6fhu/P2NjS0CDEAkpmK3tl9O1mk3ISK0q6voOoRVEbCcNvHFIquYlCB6LIxgtqGK8ZQOpXovos1J5mX/h66pSFYHSCbUQBOmpAyyb/g9WsSPGAtiN4mEsRohpQYJqQ3VAZB0mj1hjjA4sz9b63ewqHwZU/InfiXXOBFbD6c3FuZ8Na/vZLjtcRGmwWeY8xp8PjRNJzvZxn3XDuY/728lElOZMqILA7un47KbUTSdhesP0tAcZvbSklbHPjdnO3dc1Bd0jaiq87dX13PvdUMwySKxdtKBkpxWBFEHQYp7j2kqwV2rCO5adbSRJJNVMLC1AHMYpXIPGbVruHvmIJ7+YA8Om0wgppIkxzBFg0QbvNg1HU2JgGwmJjmIqG0LIXxeJEnEogcQY/F5hWayExHsRjldg68MCZ17rh7Ic7O3s3JrJZoOZlnkkvGFjB2Qy+INh5BEgQsGJBF869E2x0erDxDatx570WCCu+NmueasAjKcEq7OFkDFI4XplpdEIBzl6jGZ5LgFHHYrIaxUBgTMEriFEAOHO7huRH9iKnhDXqyCjKKZ2hVMdB10VUOidTGLiKbzp5fXtomUi0RVdh9spGuOh5iiYrfKrVKXDAwMzi46jAjz7LPP4nA4uPLKK+nWrRvZ2dmIYuv0DUEQ+Ne//nWGetixEUWB5rDC469vZP+hZiCeC/udGf3onudpCYM8gqqqTB2Vz+KNhxKe78IxXRlQlM7anTUtA8jKrVXcMK0XG3bVJjxm8vAuLFzXutS0xSRx73WDWbj+ID/66yI0Tccki0wa2pm7rxyIw2ZqMQ08wrLNFUwYnMcLH+5IeJ2pI/NR1a/PYMUlhWle+BJ1O5aDriHIZlyDpmAZfiGSxYYW9FL99p/i+yQTzuLxWPN6cOi5n2Pr2g/PsOlUvfIbJGcSqRf8gLA1q8VB38DgCDXBOqySBZt88jLqXwS32UW/1F7MK13IqJxhX7s3zJb99aQnWVsiUr5uTLKI3SJT723fQ8DAoD0EXadv12T++MMxqJrOf2dt5f3F+9D1eKnqaaPyue2ivvz3cGrvEVZvq+LGab2wmyS27Imvyq/eVsWY/rksWHew7XUE6JTlYummKkb1SsHeczjBHSvatLPl92styhyHf8PHDJ9WQMFNvQjJMlJzBd7F/8U95HwCNWX4Nn6KrkRBELF3H0bSxBvxa7YvvMJuEnVM3hLq5zyJ0lQNgJycTeoFdxJ15qIY5rwGXwG6HhdibruwD9ed35NwVMVpM6EDj7+6gYvHFdIzPxnx4Lp2z+Hbspi0828nuHsNtq7FuIZdSMOHf0RvjEd++5Oz+OlFPyZUV0lo0WNE/I1EAHNGFwqn3U3k4HaCy16jNhw3frfk9SRjzOV4F71P0rhr8OM65RQiURTYc6AR5bhKoFmpdr57aTGvfryLXYfTIt0OMzdd0Jv+halt5vgGBgYdnw4zKu7evZtIJEJ2djaBQIC9e/eye/fuNv8ZJCas6tz/r+UtAgxAky/Coy+upbop1CYEWRRF0jxWfnr9ELJSW+fUDuyezqAe6VhlAV/wqIN7gzeMNxDlnIFt0wmG9s4kxW3hYLUPkywybmAuV53bnV/dOozZS/ezbFNlSwRITNGYu+IAOw40tKxOH8u+8mb6FKTSvyitzb4pI7rQ7I8cLiXYPoIAgiRiknVsUhSLpJ2symdCbFKUho+eJLB9aUslJF2J4l39Aaqvgebl7xHYueLoPjWGb8MnhA/uwNnvHEL7N1L/6f9ImXAtsdqDVL/yAHbdSLszaEttqO4ri4I5wvDswejovLt3zld6nePRdZ2t+xvIz/r6DXmPxe0w0+g1ImEMTg1JFtEEQBSRTBIxVUcUBP74wlrW7Ti6QBGKKLy9YC8xReWOi/tyxbndGdE3G0kU0HRQVR1BAG8gPp4u3VTBOQNzyctoK4TePL0P89eU8eQ7m9ly0E/SuOuQkzJbNxJELENmoAS87fZdi8QjN+VF/6SzPUr0gz9gSs0hWnsQ79oP4wIMgK4R3LWS+g8exyYkrtjS7vsjieiCgCYIWNUmql99sEWAAVAaK6l+5bdY1fb7aWCQCEkWUREQRAHhVCZvmoZVEkiyyQjAg8+sYsOeWj5bd5ALxxQihtufd+nREIJsQpBMJI2aSc2bj6I0VrXaL/pr8c/5K6r/GF8oQYSqHfjn/xctfLTyXqR8J7VznsTZcwQ1r/0OuxBENkkogoAoS4gnmL4KQut59xFunt6Hv722oUWAgfjvyRNvbKSkytduEQwDA4OOS4eJhPnss8/OdBfOWmRZZPW26nbzVV/8aAf3Xj2I+FxSIKLBwvXlLNtcidUic8O03rgdZlZvrWJkcTZpHiuipqPqOv27pfHqvF0t53p+9jauntyTn984lE176hAE6FuYSnVDkOdmb+fq83owdWQ+izaUs3p7Ff2K0ti0py5hv+avOcj0MV2xmCQisdaRLaGIwvA+2Uwe3oVNe+owySIDuqezq7SRP720jn/cOx5Le7ntgkA0FsUcbiC46UO0ulLk5GzcIy4mZk0jqp36116K+gkf2JzoIuhKhFDCfeDbvIjMmT/Bv3kBsbqDiBY7gtmGHg0R3LEMue/UU65MYfDtoCZYh8fy1YoUNtnGmJzhzD+4mMGZ/emT2vMrvd4RKuoCNAei5Ge5vpbrtYfTZqLOEGEMToIoCkQ1WLyhgiWbDmExSUwY3AmXw4TNLFNS2VZUuPLc7qQl21m47iAN3jDdOyfz69tGMHd5CRazREjRKOqUBICiavz11fV8b2YxAgJrd1bjspsp7pbGovXlLN4Qj1B9fvZ2un93FOlX/4ZI5X6C+zdg8qSjdx2GLgjYC4oJbl2Y8DXYuvQlWrkP0WQhun8NeiSIs/doat5/PGH7SPlOxKgX5LaLH8cjCKAgsH53LZ+sKmNQUTIT1SWgJYhQ1RR8az/CMvJqom299g0MWiGIAqGYxkdL97F1fz0pHiuXjutGZrIN8RSiPQQhXsDhUG1cFFm84RBuu4m+fYcS3vRxwmOsnXujajpJVz+Eb8snoLX+ojqLJ9C8pu3ChWvAJJpXzkp4TtVXHxdC1RhqUyVvbBbYtr+ejGQ7M8YVkp4Un2e3OU7V6NkludW27FQH9d4wTe1Ugvrfhzv49c3D+PIJhQYGBl8nHUaEMfjiCKLAln317e7fX+FF0XRMAkRUnZ//azkNxzyIbNtfz/A+WdxxcV9EXWsJmxQEEY/TQo8uyewqjavvmg4vf7wTu0Xid98dzZxlJfz9jY2omk63PA82i8zvnl2FqunYLDLVDcF2+6WoGr5gjNsu6ss/397Ust0si3gDUf793hZcdhNFnZJRNI1PVpUSPSxcBMIKFrsp4XtRVu0nK1aKd86fWyJUotUHCO5cQdr0H2LqNIiYevKVFUGID6QJ95ktKM2JxaX4G6WgH5MypXhrMaXmEq3cS6R8B46+k1EwDBINjlIXqqdnStFXfp0+qT3Z21TCi9vf4OfD7sFj+eqFkZ1lTUiiQF76mSuPDfFImKr6wMkbGnyriWjwi6eWUdd0dJzcXtJA/6J0rjyve5v254/MJxRReOzloykPJRVeFq4v56HvjEKSRH78l4Xce+0QhvbOZMveOryBKHOWltCnMJVGb5iKWj8frzyASRYRD5e0rm4IElU0/KINPasfs3baEOsFrsyP0PDKr0mb9l1MaXnE6o5JAxZEJGcynmHTqXnvb9iLhhAt3wnEI9JaImCOQbDYEUQJpakaMSMDTTvxAoGiCzzy4lr2HY68HdvLjXJob7vto5W7sWlR4MykIhqcHYiiQH0gyv1PLm9ZmCup8LJuRw3XTunBxEF5J027EUWxjUj6yZqDXDhkIKasAmJV+487QMIz4Qb+vcRLj6wQxZVHy8yL1vh4ZUrJxrd+XptrSQ5Pq8iv44nWlGFKyiR4aC87DqRSUuGlpMLLqm1V3D6jLyN7Z0GCe81tNzOiTxY7SxvxBqNkpzk4UNF+NNnBah8auiHCGBicZXQ4ESYWi1FdXY3X602YQ9mnT58z0KsOjg55me0/3KQn2RAFAVESeO+zva0EmCOs2lbFRWMLyEu1EVGhyR+h0RfGZjHxnUuKWbrpEB+vOEAgrNCjSzKXju+GqqocqGzmzsv6A5CRbOdPL61t8TuJxFRcCdKNjiUcUehTmMoPLuvPWwv2UFUfJMllITMlniLlC8ZYv6ttpSRbOyVuo6oO4WZiS/7TIsAcS/3H/ybrlr8Qw3HCfkE811i0t41MsOQU4RlxEZIzOcFRRxFkE45eo3D2G4euKrgHT0GyX06suQ5NkPhKSjYZnJVE1SjeqI8k81dvWisIAud1Gc+ru97muW0vc9fAOxBPkt73ZdlZ2kh2qh2TfGZDpt12E9tKIuiHK1AYGByPJInMWlLSSoA5wqY9tVw4titJLkvLqrQowPA+Wfz2vyvbtI9EVf7z/lZuu6gPk4d3weM0M2FwHlOGd0HVdBatL8dlM9PkjzBzQhGaphMIx8hItrN1Xx2frimLpzQJEIkqTB3VFV9jA/5Pn0RXotR/8iwZF91NcN96/NuW4hl+IZacbmhBH7oSI/W8mwkd3I6cnA2AIB02+j08Ntq69sc9+Hy0cABdUzCnZiMFywAR7MmEsLcxkpckkU1761oEGIAan4LgSoOa0oTvqezJRBc63HTToIOh6PDk25vbREYDvDJvF6OKc7BJJ/7d1nWdzOR49bv8LBe3nZdLqhTA5ivDPPVOlKZqGj56Ej0cwNypN+Kwq5i7Q6G4Wzq1tc1IngwcKdk4iyegBuLfcXN6Z5zFE/AeFw2jxyKINidayN+mHwCyJ43Q/o04UrPwB1svSD73wXYGdc/ActyQKEkCigozxhdS0xDCaTfR6IvQ3E4UDMRLcQsInEr5eAMDg45DhxkVvV4vjz76KB988AGxWNu0miOT5h07Epu1fpuJxVTO6Z/Lm/P3JKy8c/mkIsySQETRWLyhPMEZ4qzdWY1nSGcefGYlNcdUTeqZn8yN03rTNceDLAmUVfl4+t0tXHVed66d0ovHX9+ANxDl5zcObVVtSdN0GrxhctOdLaGhxzKwRzpb9tWjqjppyTYeumMkqq4jIiCI0DnTRVl12zze/kVpWE2Ja/Q1B6KkWGKt83aPQY9F0PwN4Di5CAOgW92YUrLjpUEBa5e+uAeeR+2cf5Ey4VpMKTnEGiraHGfr2h89FsWc3pnqt/50NLxVlEmdfDOCGqUD3X4GZ5i6ULy85ledjnQEh8nO+V0m8c7e2cw9MJ9pXc/7yq6l6zq7DjbRryDlK7vGqeJ2mInEVEIRBbu1bSSdgUFE0Vh4gnFy4fpyRvTJYu7KuOCQnebkQIL0pCPsLmvEZpWpbQrxo78uatnusJn4v+uHkJ5sJT3Zxt/f2Ij/mJTiUcXZ/OKmYZhNIk+9u4WVW6sQRYEnv9uHSOU+ALSQn6o3HyHl3JvJueEh6j5+hsaFr7ScQ3KlkH7B99FdaXjXzCFUshl70RCCu1fj6D0aW+c+1Lz316PRMYKIZ+gFiDYHvk0LSL/8foJSUqt5haLpzFtV1uo1LthYw9Qrp8G+xOan7uEXETSMeQ1OQjimsq+8OeE+XY/fSwMLU09YYVLTdDpnuuhbkMwPJ6YQnfsI0aCXI/FflqJhJF/zMIfqAqwvD/L+qwfxBaM8+J1RdM5ykWS6mvC+tW3mbSkTr8M9ZCretR+1XMu/dQmuAefSvOK9Nv0QTBYsmV1pDDRh8mRgs7T+TVFUjUN1frplOVuCYSRJoCmo8NtnVrVaLB1QlM53Lu3Hq5/sSlhRbebEblhlAUUxRBgDg7OJDvMU+LOf/YwFCxYwbdo0+vfvj8t1Zr0DzjbsZpFf3DSMP720lnA0voogCHDR2AL65KecUgm7AUXpbQQYgJ0HGnl/8T7Skmytym92y0viF08tx2KSuGJSd7JSHfz4mkEs31zJ6u1VaJrOG5/u5q4rB/LU25upPCYNoKhTEheNLeSPL65lYPd0slMdiLp22Ck6LsT87MahPPTsKiqOqZ5UmOvh+zP7I6In1PztFolk0cwJEoU+F2HspM/8GTVv/gGlqZqkERdT9fafsBcOQLK7yZh5L8F9G/CumnV01SS7EM+Ii9CiERoXv9b6hJpC/dz/kHVDAVFb9heuRGHwzaI2FE97+zpSg46Q58phaNZAPir5lL5pvejsyvtKrlPVEMQfip3xVCSgJTKvwRsxRBiDL4YOU0bks3p7dcKoUoAkp4XJw7vQNdcdf2jS42m/N0/Op0eODYtJBkkiGm7GKUo8P3t7KwEGYPnmSgpyPDgdJlZujZuEappOMKy0TjvQVKLV+4lV7T/qXybKOHoMw9F9GLoSIaYJ2C74Mf75T5N+4Q9Qw35c/cZR9frDtFo91zWaV39A2gXfA12n9q2HSb3yAYLYTviW+IIxFuxVmTj2RiLLXm798Dr5FhR7RqLAVAODL01LWXQ0NCQigh0RnV9cUUTt/36KHmkdgRLZsxpzSg6+5JF8uLaa4qI0hvfJwmkzEY4q6IRRmqrJuPguQCBUugX/1sU0fPo8WVf9Ev+2pWih+OJguHwXKROvR2mqIbBjecs1RKuT9Ol3oksyGRf9kOaqg3AK6edhBR7478o23i8b99SyckslD9w2goefX00gfNSz5rxhnRnRJ9vwGDQwOAvpMCLMsmXLuP7667n//vvPdFfOSnRNpyDLyd/uGUdNY4hwVCEv3YlFFltyaM2yyDkD8/hoxYE2x5tkEZNJaiPAHGH1tip+ftOwFhEmK9VOea2fnvnJTB9dwDsL9/LG/N3YLDLjBuXxy5uH8djL66hvDvP3NzZw9Xk9yE5zcrDaR4rHSnV9kD+/tBZRAI/TglkC9RgvNE3TscsCv7ltOM2BKA3NYdKT7bjtJiT0hOKFU44g7lqE4ElHciYnjIYRTBZEZ8opR21qmk5ASiLtqt8gxEJEy7eReelPCO5dT+3sf6JHw1g79SZz5n0oQR+yKxlBNqMGvfg2fdrueb2rZ2GfeDsRxVgdNID6UD2yKGOX7SdvfBoZljWIkuZSXt35DvcN+cFXkpa0t7wZAchJPbXos68S92EfqXpvOGFlGgMDiywyfmAe7y3el3D/kF6Z/Pu9LXznkn44bCb8oSi5aU7+N2c7EI/wPH5MvO2C7vz9pny8n/2PyNpdCGYbrn7jsBUMoGnuy/xmxiW8utbBwk2tU2/fX7yP2y7u12rbrsoIA7MLW6JhABzdBlP93l+BeAptxkU/JLBjBbVznkRXYti6FuMefx3c8Ci6t5q0ad/Dt+ZD2hsIfRs+wdnvHJqWvoUQ9oL5qAgjiwKTh3dmx4GGVse8saScmv4Z3HzDnzEH4q9DSskhKtiJGFEwBqeA1SRRmOdJGA0jCNC9c3KrKBi7FEUpWUfdsrdQffWYUrLxjLsGKbsXWu2BNgLMEfwb5tJvRi8ev7ErC/drPP7aBmKqxo8v70vXbA0tHKTm/SdA17B3H0LmzPuo/+Q5mtfPI/2GRwhWlGC2WjEnZ9Cw8EXMqXlkXXk/SnMdosUOgkDj0jdxD5pCYPcaYgNmUla9q1UfZEkkN+1oFIwgQE1DsF3z3Zc/3smTP53IX+4+h9qmEMGwQm66E6tJRDiJh5OBgUHHpMOIMElJSXTp0uVMd+OsRtd0zAJ0SrUBQtxT5xi1QlM1ZowrZNW2qjYreGP65+ALtP7x75rjJtVjo6YxSFmVD0XVcDvM9C1I5cKxBTR6w0wfU8AfnluNqum4HWa65SVRUevnlY+buPXivjzx+kbqmsLEVI0Plu1n+/56IlGV7p2T6ZmfcjhP3oQabZsDrGk6MpDqMJPmtLS8nkTTRpsUpenjfxPatw5zVldSJl5P7Qf/aMl9lz3pmNI64R4ylYhohwRFHNpD03QC2DDbnJhSc2mY/wLR6gMt+8MHt1Px0gNkXvZT1EiY6ufvJ3n8NSjNte2eU2mqRtAUDKNCA4C6cAMes/tr9ymRBIlxeaN4a88HbKjZwuDM/qf9GnsONZOebMNiPvO2gQ6rCVEQ2o1gMPjmIEkikiSgqvopRYIeQVU1po7KZ+nmQ218YfoXpROOquwtb8JhMzFvZSk1jUHuvXYwl07oxvw1ZUwfXcAfnl/d4o1ms8j0TQlT+9KDLeORHg3hXTeX8KHduAdNpu7d33H9zF9S3KM/siSyaMMh1u2swReMYTHF75uMZBudMl1sKgsxcPRNCO/9DsmZjCk1FyRTyypG2uRbqZ/3bEsKLUCoZBPhsu1k3fwo4eRC7E6ZWGMl7aE01yHZ4/5UaqAZwZLZMpVQVY2+BakJH5ZLqkNELclolqT469QxbCoMThlZgLuuGMCr83bT7I+wq7SBI5rLNZN7YJXjaeiSJGKRVEKrP8C7+oOW42MNldS9+xjpM+454fxLj4bRVQXfklcYNfZG5qXHUwqLc01Uv/kQWvBoemFw12rCpdvJmHEPDQtfoimk89O3muiW5+HuCzRCu9cQYg3NK99HtDnRY1H0WPx3I1pThrVgIDsb4pHju48pL33zhb2xyGKLMa8gCNQ2JV4EBVBUnVBEwWWWyEm2IQht5/gGBgZnFx1GhLniiiuYM2cOV199NaJorJp8GeK/yYl/mC0iPHLnaJZuOsSyzZVYzBIXji2gKNeD/3CIY1GnJK6e3IOSCi8VdQH6FKTSNdtFWpKde64exJrtVazaVsWEIXn8572tyJLIHTP6YLfJbNlbj9kk0r8oHZfNxLnDOjO0VyZN/gjnDe3M4B4ZpHpsbNxdS1RRsVlkKmoDeBxmrCapXef7RCbNxyKGmwkdzkePVpUQ2LGcrCt+TmDPGuyFg9BCfsKHdhOpKsHmzkCQnES1U38olCSwaEHUaKSVANOCptK88n2SRs8EXSNWU4olI59Y7cHEn0NOEZpoNrx5DQCoCzbgMZ+ZFMxcZw6dXXnMPTCfQRnFp10I2n+omezUrzfCpz1EUcBlN9FwApNDg7MbURIIKzobd1RzoMJLUadk+hSkYJWEE3pJHItFhD98dzTLtlSy9HCJ6olDOuGwmti4p5Zf3jKcOctKGNk3m5iqUVrlZVS/bMb2z+WZWVtbBBiAS0Zmoa18JaFRfLRqP4JsxjVoCg6zwMDwKhRfEwPHDEKcMYLHPyghqqjce91ggqEYuw82keS0ELRmknfLn4lV7iZStgPRake02BHtbtSQr5UAcwRdjdG85HWc534HQbZjyetFaP/GhK/fnJlPrDGeAiW7Uwkf97bJ6Pzs+iFs3lvHx6vK0HWd84Z1ZmD3dOR2IlUNDE6EIMTLwlfXB0l2WeiS7eKaKT3YWdpI7/wUMpNtSAKENdi6u5aB2eBPUDYaoGHBy6Sef0e715KcyZiSMjGnd0bbMpffTh9GpZ5PbO+qVgLMEbSwn+Detdj6jKc6KnL15B6kJ9uI6TqyJwOluQZ0rc2x1i598Lq6sn1FJUN7Z3DDtF5s3VdH/6J00pOsrSojaZpOpxNEZzqscosgCyefExsYGHR8OowI8/3vf59oNMrMmTO5+OKLyczMRJLaPiRPnjz5DPTum8OR6JJJg/I4Z0AOoiAioqNpOk6rzLiBeYwZkMMfXzzqLQNw/41DefLtTWwvORqC3KNLMtv21/PT64bwwdL9rfbNXlrCjHGFzJzQjednb2PVtmoun1SEomr8482j5ag/Wn6AXvkpXHROAeGIQv+C1M+t7EuSSPTA7lbbgnvWEi7fRdYVP6fm/cdblRFsWvwaaRfdjSm7L7FTEGIkScAWqqJp+dvIrvbNRcNl29GHXwxAYNcqMi+7D/+O5aAdF3YjyTgHT8WvJDiJwbeSunA92Y7MM3b9wRn9eXffHPY2lVCUXHDazhuKKFTWBykuTDtt5/yyuOxm6o1ImG8koihQ0xzhV/9eQeTw+DV3ZSkOq8xD3x1Fst10SkKMpumYRYHCHDfBcAzx8Cp1jR7CH4zxu2dWomo610zpyd9eW98SEfLrW4ezraS+1bmKsm1E1+xOdBkAIhV7sXXuTdWrD7ZsC26ah5yay71X/IKqsJXfP7ea6oZ4aoXdKjO+u4XaWX9C8cZX+xV/I+4hU4k1VBIu3dbutUIlm/CoEQRBwN5rNM0r3m1ZtT+KgHvwFGpn/xNrl36oJlebxQJdBwmdId3TGdAtDR0wSwKKohmBLwZfiKim88B/V1JVfzSF6A0BfnLNYLJTbIhAYzDGL59aTlTRePyarITCJoDaXIPoSkVOykxYQjpp9Ezq5v6HyKHDKUIbPyVn0k0ES9a2279Q6VYyLp2KJjrJSHGiqTo2i4Rj4nXUvPuXNu0lVyoVZPCTvxytmiaJAr+8ZTjZyVY0te2dkuSy0DXb3abENsDMiUXYTCKq4f1iYPCNocOIMNXV1axatYodO3a0WwHJqI50+lDVwya4ugaSSFTXCUdiXDOlB/96exO3z+iH0xb3T7DbZGxmmYvGFnLJ+G7sOdjEh8tKiMY0+helUVrtayXAHOG9RfsY3DODmy7swwWjCzCbJH72z6VAvPLDJeO6xcvxKRoWs8zyzRUUdYrn/NosMtGYGq+mqUM0pmI1y1hlEf24/Fdd1xHtbaMIHL1G0rTy/baDsK5RN+txcu54nBgnjz6w6kFq330M2Z2KkJLdbjvBbEOLxE2EdSVK8+o5ZFx8Nw0LXm7pg5ycTeoFdxKWPZ8rJcrgm4uu69SHG+mRXHTG+tDJlUuSxcOKyjWnVYQpq/ahQ4eJhAFw2U3UNxsizDeRqAYP/29NiwBzhEBY4c8vr+c3tw3nVOMfdT2eAjB7aQlTRnShT0EqqqpTmOtBEOIC4+IN5a1ScnzBGDaLTPAY40xF1RFMFvRY4ugryemhefXsNtuV+kM0LX+H+q4X0jnLxU0X9EYQBPJSZEzLnyHsPZpuEdq3HntBf+TkLCLlu9qc6wiixYEuCETDYXRRIuuaB6j78F/EauPVjiRXCinjrsa/dSm2rsV4xl2PT20/ZVZVNQTilqNGZRaDL4ogibw0Z0crAQbi9+BfXl3PP++dgMUk0uiL8MMrBsYXxqyNtK2jegyaRtr5d9C04l3CpVsBEC12ksZchhbyHxVgDqM2VyNa2vctEy0OwoIVVdOxSCJRTaOmOUxqRk9Szr+DpoWvoIXjVUCtnXsjjr2F37zYWnxVNZ1HXljDX+4eh4COx6JjUgJo0TC6yUpUdPDLm4fz7/c3s3p7NboOVrPEpRO6cU7/HEOAMTD4htFhRJj777+fbdu28Z3vfIfi4mKjOtLXhCaIfLSilFlL9hOJqTzy/TFMGNKZFz/aTl1TmOun9kJRNd5btI9QJD6x7FuQyn3XD2HR+oNcNLaQp9/d0u75F60/hKbHKzo4Dos6N0/vTb9uaTwzaxvb9sdXDW0WmSvP644/FEXT4NnZ27hgdFcWritnxdbKeASPJDJ5eGcuHd8N8bgwTnNmAYjy0aoMgL1rf6rfeSxxx3SNyKFdSJ2GoiZYkWhFxI/SXIPirSNp1CU0r3w/YTP3wHMJ7FzR8ndo/8b4MSMuxpSai2B1oZrsRATbya9p8K3BG/WjaAruM5SOBHGBu2dKEeurN3NVj0sxS6enclBJpQ+TLJLqtp6W850O3HYzew8lLoNqcHbjDUZpbCfV7FCtn2BYwWU5NRlG13VyMxz87IYhzFqyn/cX70PXwWKSOH9kFyYM6cSvn17R6phlmysYP7gTHy47WkVw3qZGru49geimuQmvY+vSj8ZFryfcF962mB7DZrAzx8MTb2wkFFF47JZeqHvbloKu/+Q57L1GkTT8QnwbE5vCS33PI6qJ+Ba/TnDDXCSHB/eQaZgzuiDaXEQFM+ga7pyexCQ7PvXM+zgZfPOJKBrLNlck3KdpOjtLG6hrDvP6J7tRVA1RgL/cUYzs8LRUpTwWU3onlEiQhvf+gmvgZDzDLkBXVUSzlWhDBY3zX2hzTGDXKlLGXUOoZFObfQBC3ync+/R6xg3MIyfdwbMfbKPZHy98PXVEZ66+9mH8Tc3EdBHBncRPnl6PNxBtc55IVGV3WQOd3RrmXbOo27Y0vhgqylj6jEftN53bL+7HjdN6E4nFU/Ztsvi5fK0MDAzODjqM+cq6deu4/fbbueeee5g0aRLDhg1L+J/B50eWRTQBNCH+7yNIssgna8p487M9RGIqDpuMJAp8traMiUM6c8eMvridZl6dt6tFgAHYur+eJ9/aRP+iDJLdllb7jscfiqLrOhaTSCgco1teEn0KUnn0hbUtAgzEVxWfn72dg9V+5izbT88uyXy4rIRlmytawscVVePD5Qd487M9CMf5BoUFO+mX/BiOqe4SNy1rf+DSQv5T879QD6+36Br+HStIHn9NmybmzHzsPUZgyenRanusrhzvhnkI7gx8UgpBzWoIMAatqA/Ho8jcX2N56kQUJRUQ1aLsaGg/deLzUlbtIzPZhih+vYbDJ8LtMNHoj5yyP4jB2UMsduIHldjnfJCRBIEXPtzBup01LVmykZjK+4v3s2prFX0LWqen7jvYyKQhedwxox+jirORJYFlW2sIdpuEKSO/zflTJt1ItK683XFKV6KAzuuf7m4ZZwVdpT3Pt+CO5QT9fqwjLm+zz5TbE1uv0cQ2ziGwZha6EkVprqVh/v+oevVBauf+h/ogXPvYBsoC1s/lmWZg8GVQVf2Ev8f1zWFWbKlEOXz/ajo8PqsE+7R7EEyWVm1FmxPTpDsJ1lbg7HsOgiTj37KYmvf+hnfDPKKH9iTug68BNRzAUTyhzT5T95HsjaSjaTq5GU7++uqGFgEG4KOVZdz5j41UqEnc/d+d7K9TEwowR+iUJOHc9BqBrYuP3vuaQmTLp0ib3mNvSRU2k4THKmMWMAQYA4NvKB0mEiYtLQ2Px3Omu/GNQhBAQWDN9mo+WR03iD1vWCcG9chARicU03j/mDKc00Z1RdU0CvOSWLO9CotZYvzAPH54xQD+9fbmlgEQaMlPX7KhggHd01m84VDCPhR3S+fD5SVoms70sQXYzRKV9YGW44/nlY93cvOFfXDZzbz2SeKHwU9XlzHjnAIsxzzYxTQR0nuSc/vfCO1di9JcG6+IlJpLrD5x3yydehE4hfBOweZGkM3oShT/5gU4iyeQdeX9hCv2ovobseb1RNdUql7/PY7uw8i68heESreix6JYi4YgJuXg12wnvY7Bt5OG0GER5gxGwgCkWJNJsSaztW4H/dP7nJZzHqjykdOBUpEg7gmjaTrNgSjJLsvJDzA4a0hyWZBEoZUx7hGsZqklxfZUaQpE2ddO1NR7i/bx8xuHsnxL3MD26sk9yE518OJHO2n0hulTkMrDd45hd1kjfhxI4+/C7K/CVLkZsysJa34xkfoKJHf7PmOWnG5UNbdOrar2aXRux+sCIKBbWegvYsZNf8a7bTnEguidBmFJzsBBmMp1HyU8LlaxmzRTBJMk8uonu/j+pf2MyisGXwtmk0inTBcHq30J93fOcvPmZ63Fk5JKH3+aK/HLG/5E7OBWItUH0NIK8LvyKalWGZqRim/PMhR/E9acIrKu/Dne9fOwdumDf9uShNcJlW5FHnMDpsLxmMrXgaYR6zSYLdXw9Lt7uHpyD2Yt3p/wWH8oxsFqP/nZbkIRhRS3td0qfDkujdq9if1nItsXk93zfMKKhqXDLJMbGBh8FXQYEebmm2/mtdde47LLLsPhaD8v0+DUURD4/XOrOVB1dGDbW95E12w39980lHBUaTHflSWB0cU5PPjMqlYDx84DjQzsns4tF/Xh38elHR2s9lHbFGTmhCJWba0iEms9WcxOdZDsslBeE8+TTXJaSHFZWLuzpt0+N/oiuB1mvIEoSS4LkajaJtJG1XQCYQWLvfWEOqaJxHAj9zwXkyAQ0nVSJt9G9asPcvzKobWgP7o1CbS4WNVS0jsBUdGBZ8xlNC18BQD/5gVx490Z99C8Zg4Nu9egBpri+7YsxL91MZbc7qRe8H38uNGNFXeDE1AfbsQqWbFIZ75ceRdXHtvqd6Lr+peukhSOKlQ3BBlY1HFMeSGejgTQ4A0bIsw3DKsscOmEbrw5v+1q97VTemKV4t/pU4mCEkWBilp/u/tDEQWX3dSSJusPxfjLq+tb9pdW+Zi/5iD33zyMv7+xkbqmEMkuC/k5fchMtnN+10xeXF3Pd6amY8rpQaziOC8XQcQ98Wb+8l7rh77XllZz/3nXo8z5M4gSks0V95SIhTEVDGHTIYU3FpdT2DWbD/Z0wSSLTM1wkrfwGWxDphyOrklMrLGarFQH+w41E1N1TB0ngM3gG4xZhNsv7ssD/1nRRvcb2D2dqvpAG58ngB2lTawqU8hKGcTeQCHzFpUyuLCJ8927qFnwbku7WG0Z/m1LyLjkx+iqgimtE7G64ypXSjIMvIQf/nMDiqbz46vPY/mWClYvPohJFnFYZbJTHRyobD+V9UBFM9lpDj5acYArz+vOv97e3KbNmP45RP0nSIfVNWQlRCAcazPHNTAw+GbRYUSYaDSKLMtMnjyZqVOnkpWV1aY6kiAI3HTTTWemg2cZsiyyZntNKwHmCCWVXjbuqaNfYWrLquGIvtnMXXkgoXK/YXctE4Z0wuM0twrBzMtwMqo4B5fdxJ/uGstLH+1g7Y5qTCaJiYM7MbJfNn955eik9Ol3N/P7740mPbn9qBCbRcZhNeFxmLny3O44bCZMksjbC/ayt7ypVbv2UI6JbhE9ncm87nc0ffYCkYrdiHY37iEXYOsznrBuxikEUJur0KNh5NQ8FMlOWGs98EVVAVuv8aS5M2ha8jpKYyWS3Y1gtiYu8alrRMp3omsaumAIMAYnpj7ciNvcfmnKr5PO7jw21G6hJlhLpiPjS52rvDaADmQkdawoMLcjfn/Xe8MU5hrRl98kdE1nyrDO5KQ5eO2T3VQ3BMlNd3Ld+T3olpdEtTdCQ1OIjFQ7SY4TC3C6rpPqaf+7K4kCVrPMn344hmBE4Rf/Wt6mTSSm8tJHO5gyvAsvf7yTRl+Exl212Cwyl03oxuXn9uDfH+/m7gvvIrx1PuGN89DCAcydeuEedx21QgplVXtbnbO0ysf7uxxce+OfkKNeYvUVSA4PkiuVoDmFnAadi8YKmGWRHQca8Dgt5MkSsbItCMOnxVN220l/kl3J1DXvJy/DhSwKRiSMwdeCqurkpdp5+HujeX72dnaWNeJ2mLlwbAHjBubygz8vaPfYnDQHyS4rVfXBeHXPrhLRN95t005XojQufRP3+d9HPv/HSNs/IbL1M/RYFFt+MeaRV/H3edWEoipDe2XSJctFVZWVmTf2QPJVIggijkyYOjSXD1aWJ+xLboaTPgWpPD97OyWHmvnFzcN45eOdlFR4SXFbueicgngZd61tIYtj0WQLNnOHeTwzMDD4iugwd/mjjz7a8u+XXnopYRtDhDl1oqrOp2vK2t3/yeoyBvdIZ+yAXBauL2dA93T+N2d7u+3X7aimT0EqyzdXAuCwynTvnIzVJIKq4TKL3Dy9DxMGd0LRNA5UeNlf0UyT/6hJYrM/ynOztnLN+b1wWGUC4bZeMheMzmfLvjpe+PBoFSyHzcQPLx/Ae4v3svNAIwOK0uPXPYXVzKgmoTg74bn4XiRdQUcgItqJaBqmxn1Uvftn9OhR4ck58DycIy4joLaeoIdUM1LuIFKv7ImMQrhkA0pzbbvpTrbCQSiyw6iAZHBS6kMNuDqICJPjyEJAYHfTvi8vwtT4EQVI9XQcU16IG6uaZdEoU/0NRdR1Bhel0bdrKjogCvEKy7/694pW1VcKcz3cf9OwdqM9dB3SkmztphWMG5SLzSTgsppZvq2p3f7sOdjEZRNbVz6bNiofkyiQl2rj2ik9aVBE3IMuIq3/uQAoyDzwwhbSU5qZOLRzK6NfSRQ4p08a3kUvET1w1ERUcnhImXk/c1fUYbdbyEixc87AXHRNQ96/iBgQKtmMvftQgrtWtemn7EknJLsJhhWuPLcISTilIdbA4PSg62QlWbnv2kEcsc2zygIxTad/t3TW7GibfpeX4STNbaOkspkn3tjImP7ZnJfqo71Yr2jlPuq9EX70zE5G9enDd2+8gPqmED7BREZqCndcGq9+aZJF7IQZZ99N89uvohwWLZskmZnn3oZANrNWVrY6tywJFHVK5uHnV/P9ywbw8aoD2C0yd185kCZfhNqmEAvWHeT52dv5v8t7kJ/ZlWh1SZs+mjv14YBXoHv6qc1xDQwMzl46jAgzf/78M92FbxQniyIWiK8aXjulB42n8jByTGpCktPCD67oz59eWkv3zslcNakIXdWIxFQeffFonuv3Li1m0tDOfLa2rGVBbVdZI067iR9fM5i/v7GxlUgzvE8WQ3tn8d6ioz41AIFQjL++up77rh/M6/N2c+fMYkRdb8easDUWWcekBUEHRTAT0WR0RceFj4o3H2lVTQnAv+ETzJldkbqORlV1RFHAQhSJGKIgoutxVSVaW05o/0bSzr+D+nn/JdZwdEC25HQjdcqtRA6ndLSX5mRgAPFImDxn+6XPv07MkplMewb7mg4wNnfklzrXwVo/qW4rstSxEtsFQcDtMNPgTVxFx+DsR1G0llLUqi7w22dWtSl/u+9QM/94ayN3Xda/1XZZFrCoQQQ0dFHmD98bxa+eXkFtU6ilzYCidK4+rweaqqOLAtpJfuOPTe0b1S+bqSPz4+WdBZG1O6t5eW7rVKTeXVO4bFJ3/vHWRr53aTGKolGQKpKfYcVmMeFu2Ib3QOtUBzXQTP2bv+NH1z9MSZUfi+Ljpmm9mL+mDLzxNr6N88m49CdoQS/hg0cXOmRPBikzf8aDb+3nmsk9yM90GcbVBl87mqYjcPTBRFHif98+oy/eYJRdpY0tbbPTHNx/01CsJoHCVIFHbuqFPyIgCIl9ZY6gHDYBXra1mpmTevLxpioum9iNWETFBFgkDYsQhmgAS0oW7kHn4duyGD0aAlWh+eOnuPTqP/DJhhpCkfh80GaR+d7MYmYt2Yc/pPCXV9fz13vGUVLRzHuL9rURkOZuqOdnl9xN4/t/JlZ3NKrGlNkVYeytdHOlnvIc18DA4Oylw4gwubm5n6t9MBjk2WefZcaMGeTl5X1FvTp7MUkCk4d3Yc/BpoT7Jw/vjCwKqKrGDy/vj6LpnDMwjznL2irzAJOGdKLBG2ZM/1wUVeOFOTsoq/ZRXuPnknMKMYtgt8hkJNuoaYxPVp96dzMXjO7Kr28dQX1ziPRkO+lJVnaUNPDOgr3ccmEfZFkkEIqR6rGy80Ajv3tmFd+dWcyKLa1XGSIxlWZ/lJ/fNARB1U4aJS2KAg78eJe9Td3WxaCq2AoGkjTxOqLWNILb1rQRYI7gXf4uqfmDiIlmzKEafOvn4uozlsZ1HxHcux4EAUeP4aRNvYPGJW/gGX4hkt2DGmxGcqYgOZOpeOFXmNPzSJ5wA2FzGqfg/2vwLUTXdRojTfRK6X6mu9JCtiODfc0HvvR5Dlb7SOtgqUhHcNlNRiTMtwRfKMahdrxdNuyqJRhRsclxkcQhRYjsWk7tyvdQA82YUnNJnnA9f7lzCJVenWZ/lIwUGw6LjHh4EIrFNPoWtO971KNzMtlpdn5x0zCyUu3YzBKiFh8QFEVjSM/MNiLM9pIGojGN+64bQpJFY+AQieYF/yO6sgTR6kAonkjGpT+h9v3H0Y9U7yNe8U+t3I3zsxcIaRqmYRdywZDxqPXnEtq5Al2JUvPuX0kecxmekTNQffXInkz0pBxKm0XuumIAFtkIgTHoWJjQufeaQQTCCrWNQZLdVjx2M245QnTPCoLL38Lma8CVnI39kntoii8ztj1Pdje2VcbF94E9MrBbZS6f0A1Biy+4OYUAWqCRptWzCexeDbqOvWgwmZfeS/2nz7f4yMQ2z+WJe25i875GzGYJWRKZtXg/Ow7E04xiisaO/fX0KUxrlZIP8L0LCuhvr6RpzhO4h0xFdqWixSJISVlEzW4ioh1J141MQAODbwEdRoT5vASDQf75z38yePBgQ4RJgKJoDChKoyDHzf4KL/nZbtKTbfGwah2Ku6W1lL0TdR2zABeNLWDVtkrqmlo/nAzrk4U/FOXNT3eT4rFitchkpTnISnNQ2xgkqmiYzSIWSeCuKwbyyIurKeqUjCgILFhXzuylJfzoqoGYRHh+znY6Z7opq/bxl1fXY5ZFLGaJQCjWMu+TEpSztZglRMBmkgifQrk+OwGqX3kA1VvXsi20fz3hg9vI/c4TNDUkrpgEoHjrENEwh2upeulXZF3xM2reeQwtcnglVYfAjuWEy7aRPv0HVL3+exBlRIsNa5c+WLIK0fwNhP0N1NT+gawbHiIsu4gmMJYz+Hbji/lRNKXDeMIAZDsy2VC7heaID88XLJut6zqHagMM6fnlUpq+Ktx2c7uVKwy+WfiC7RvRAkRiCjbZhFWK4Vv6KoEtC1v2xeoPUfPWI6RO/wFZnYaS7rLEIxuPe0KymkUun1TUxhDYapb47qXFpDjMpDhMLdGVug6xw0b2LpuJaSPz+XDFgVbHVtUHsJhE7N4D1H5wNF1bCwdoXv0B1uoSksdfQ8P8/7U6Tg16EW0uYnXlNC16BXvVfpIm3oCtcBChfevRY2EaFrwEgog5vTNpM39KRHKSmxoXlI43kpckEUkS0DS9ld+agcHpRhQFZFlsdX9A/HaT0HFbJDzZbnRdxyLFCKyZhW/N7JZ2SmMlvvUf4xk9k+bl72DJLUKyuYjWlaP6GxFH38jbrx/EYZW5eXpvzMJRscOBH7Wpmpr3/4YW9LacM7h7DeGy7WTM+HF8rqdrqE3V6JEIz83ejsthJi/diSyJyJKAcjiX6lBdgG6dklr9VIwfkEl/fRuR+W8CUD93f8vc0TX4fOR+UxFVIwLGwODbwlkrwgBGmscJEEQBRdG4+6pBaJrOln11lFZ5Ke6WxpCemZhE0I7TBCwi/P67o1m5tZKlmyqwmCUuGN0Vp81MWbWX+64fwurt1dQ2BundNYWMFAdlVV5MJhHxcFRNVoqNX90ygkXry1E1nXtG5pOT7sRukdi8t56CXA89Oqfw1uFyg1FFI3rMxC7FbSV4jFeMIMBN53VhaCcZS/kCQktj2HuOAlcGQS2x14Qsi0RLtrQSYI6gxyLxMoWd++Df9FnC482Z+SCINC14EXvhQAK7Vh0VYI5BDTQTqdyHc8C5KI1VOPuMQVdi1H/yHIJsJmXSDYhWB97l7yBY7Dh6jUa1JhPWznwVHIOOQUM4Hl7tOsPlqY/liBdMme8g/Sy9v9A5Gn0RQlGVtBMYm55J3A4z+yq8J29ocNaT6m7fk0iWBOzWuFGzrARaCTDH0vjZC2Tc0JuAnrjcuqjpTBnWheJuaby3aB9N/gh9ClKZOLgTgiAwZ2UptY0hBnRPJ9llYXdZE4N6ZOCwSIi6zqXjCxnWJ4v3F+/DG4wyuEcGfQrT8DfU417zQsJrhku34hkyFcFkQY8dTa0zZ+ajBo55iNy1Es+Yy/FMvgNH1V786z5Ej0Ww9xyJvdsgNH8dsd0focei2HuOBHcWQc2KKApEVJ31u2vZXdpIl2w3g3pkYJUFo+KfwWlFEARiOpQc8rJuRzVpSTZG9cvGZpYQjpvnH5n3m7QQdWs/bHMu38b5pF34Q3Jv+SP+nStQvfUkjZqJKbcHLy2rY+LgTkwa2hmrLKAdXtCTZYHIob0o1ftbCTBH0MIBgnvXYu82iOCetZhyeqCZLdx/RXeSlBqk8vXoFhfqpKHM2+zj/ZUV9MpPwWaRMctiyxz3wsGpRGf97biTK2ghH83L3yWrzzgUyYWmGveXgcG3gbNahDkZpaWlPPPMM2zatIk9e/ZQUFDA7NmzW7UJhUI8+eSTfPjhh9TV1ZGVlcUll1zCbbfdhiyfnW+PIAocqPHzn/e2ctvFfXns5XWtTHBf+mgnD94xkkyPpVXet6bpmIDxA3IY1S+b3Qeb+N+c7WSnORhdnMOP/7aoJVrlk9VlpHqs3HXlQH751HLuv2kYSQ4Tr32yp5Uh8McrSxneJ4vvzOiLomoEggrN/gjZaQ4q6wJt+n7V5O7MW1Xa8vd3pnal2L+M2LufciTo2rduLtaCASRN+S4Bte0EW0IlsGtFu+9PYPN8XNc9hOTwoAbalgpMmnAdgiAQLt1G8rgr8W9d0u65gvvWkzrjJ0T3r6dp6dso3loA0i+4E++GeYTLjpode1fNwj10OrbBFxEyhBgDoCHcBNChImFcJic22UqZt5x+aV9MhKk4fG+ndTBT3iO47Wb8oRiRmIrFJJ38AIOzFqtZYnDPDNbtrGmzb+rIfOxmCVXRUOraj47Ugl6IBMGUWIQBEHWNTql2vn9Zf5ZtqiASU9l5oIGn39vSshr+yeoyMlPs3HlZf376jyXceEFvhvXMQNR18jMc3HV5f3Rgzc5qfvOfFTx2c89WfmPHE6kuwZScRbQmPmaa0johiBKS3YUWOvowGa3aj9JpGEJWMakX5BPYuji+QLDmQ3wbP21p51v/Mdb8YpKnfZ/KgMz9Ty0nEDqa7mSWRX57x0iyk63Gg6LBaSOqw2/+s5LK+qNzwlc/2cXdVw6kuGtyosyi+CJbgipftoIBoMY49OxPW/b7tyxEcqVy1ZUPMGujlwefXclvbh3R8gAk6zHUYDPhsm3t9jFUuhVnz5Fxc+v+k6jzNpK08klitaUtc1PWvsfUMddjHdeZghw3ZknkwrEFvL0gXuHMpoeIHZM+2ApNobG6hqDLSorDZHgyGRh8C+hYjomnmT179rBo0SK6dOlCYWFhwjYPPvggr7zyCrfccgtPP/00l1xyCU888QR///vfv+benj6iqs6jL6zlwrEF/Pf9rW2qEEViKg+/sAZNEFAAb0TFG1FREBBlCX9YpckfRRJFCnI8TB9dwFPvbGmTJl7fHOa9RXsZOyCXp9/dwsHaQMKKTKu2VbGtpIHcDCcfLN3P87O3891Li+lflN7SxmEzcfuMvgzqnsG5QzvjsptwO8wUp8eIbf20zTnD+zcSObAJXRKRjjP+1AUR0eZu9/0RrU4U0ULGNb/FknPUi0NyJJF28Y/QkjqjaRqi1Y4eiyBaTjDxtjlRRQuR6gMtAowlpxuxpupWAswRvGtmI/hrjvU5NvgW0xBuxCyasEgnLpf7dSIIAhm2dMp87T+UnoxDdQFkSSTJ2THFRtfhMtVGStI3H1HX+d4lxUwcnNeS6mqWRWaMK+TySd0PpxbpCCf4nQcQZNPRfwugCwIhRacppBDVQZREBEFg1pL9PPPBNgrzkvj3+1vbeDtUNwSZu+IA4wd34ul3txA6nHahaTq6qiELEAgqeJwW0lOcILYvEopWJ1osAgjYCgeSeu4NxBoqD287pp3Nha6DmTB17/8N75o5SFZHKwHmCOEDm4nsW8ebn+1pJcBAPHL14f+tIdKOACNJIgrCMXMK2ozPBgbHIkoCr36yq5UAA/Hb8onXNxBWWn/XBEkkoukgJxb43UOmUjf3v20EGtVXj3/B/+jX2cnN0/tQ2RAkhoAkC/F7TBAQLY72+2lxgGwm5coHiJhcOPYvIFZb2qZdZOmLXDIsFZtJIqZqdMtL4sKxBVhMErp44oVdTTTxp5fXETOy/gwMvhWcnaEep8jEiRM599x4ycef/exnbN26tdV+TdP46KOPuPXWW7n22msBGDFiBCUlJcyZM4d77rnna+/zl0UQoLIuSDiqkpZka1mRPp6uOW7KawP8482NLUa66ck2bruoL/NWlbJuZw0Ws8TlE4vwh2Io7fiwbNxdy9SRXQlHVWYv2d9uv2Yt2c+McQUANPkj/PGFNUwZmc/0MV1RVA1RELBYJIJhheG90ikuHIskaOiL/0076wb4185ha3MGXsXC+IG5R40SFR3XoCkEti1OeJx76HSiWFBFM56L7kVSguiaAmY7YcGBquposjl+jp0rcA+9gEjFnsTnGjKdUFTAUTwJ3/qPAXD0GIFv84J23wv/hrlYx99ONGasdHzbaQg34TK7WlVP6Qik2VLZ15zYpPtUqKgLkOaxdrjXdQS3PS4O1XvDZKe2P/E2+GYg6hrXT+nJ5ZO6E44q2CwyDotEkttKY2N8jFQdaQgWO3qC1FNzbg/Cog30uEgZ1eFfb29m457DwrtJYsb4Qs4d0omPV5aSm+6ktMrb7mr2qm1V/N/1Q5i74gCrt1Vz7uDcFr8VRdEYXZxNQZ6HZkXEUjScyK7lCV6UhK1LX2R3KoIoEz64ner3nyDjwh+0SsUVZDNyaifCuo4UCxKp2IujzxgCO1e2+3751s6hf4/bWLqp7T5vIEqzP0racQKrIAqU1gb4+5sbqT08p8hMsfPDyweQm2ozUpgMEhJRdJZuTCz4azps2VfPiF4ZqKqGJoi8/uluPltzkF9f3YNURxJqoKmlvexOR2mqabfoQmjfejyDruAX/42b5TptJm68oDdDe2WgufNw9rESKknwpQfcw6bjdXdl5U4vo7v7CCUQMI8Q3r0KqXg6oajKH19ay+jiHO65ehAWN5CchdJY1eYY2Z1OuU+gsi5AIKzgthoRmgYG33S+0UsUonjil6frOoqi4HK19mNwuVxnrd+MIAgEw3HZIpFwkpliZ+aEblw/tRcfLiuhrvnoSnBtY4g/vriWi84pxCyLRKIqn6092GY17Fh0PV5pJD/LSTASH/gsJomJQzpx7ZSeTBuVj8tuIhhW0I7pTiCs8M6Cvfz+udU8+sJannhjI/VNYX7x1DJCMQ2TAHYJ9HDbCXHLtSMhzJLAS3N3smp7dcuKm66D5kjHPfKSVu0lZxKpk2/Dml+MiIqu64Q0M34xiYCcRkCzo6pHhRx7/8kIFgeCIGLvMazN9V2DpiCn5MRXRR1pZF75C5JGz0T2pCf0kDmCFg4gGNZrBkBjuBGXueOJAOm2VJoizQRi7X+PT0RFfYAUV8eJ7jkel92MAEaZ6m8RuqZhEcFjlTELHCcKCJQ2iVjO/xGCZGp1nORMRh99C03R+EORAvz++dUtAgzEo0tf/2Q3izdV0KcgFbNJbOVtdjyapreUtfYFowiCgMUiY5FVLGIEu1XkH29uojmsYx1xBXLycSXsBZG0qd8hsHcdsbpyIrVlCFYnWZf9lPDBncBh8VOUSZ/5U8JiPMpHV5XDmy1o0RDtoUWC2Mztz5+isbYm876Iym//u7JFgIF41M9v/rsCv2FKb9AOqqa3mNkmwh+KxiOHRZGX5+3kk1VlqJrOc/MPYZpyN4IpHhEj2ly4BkxMmKJ0FB2nGUb2yUAUBfyhGP98axPNwRhhcxJSWiec/c5pc5S99xiUtG488PwWUpJs1DcF0WPtR1FqoXg1NlXVOGdALl2y3GzdX8cf39yDNOkHiNbWY75gsSNPvovn58fFqNgpFJ8wMDA4+/lGR8KcDEmSuPTSS3nppZcYNGgQhYWFbNq0iffff58777zzTHfvC6FpOp2z4qKSKAhYzRLhqIoowK0X9cVskli4vpw1O6rpW5DKA7eN4LkPtnGgMp4/rmo6izeU84PLB/CXV9dT0xgkK7X9MO3MFDv1zWEavBFuv7gfs5ftY0z/PD5be5AlGw+RcTj/XVU17BZTu+fpX5TGrtJGfMEYW/c1MKR7GoogYus5ktCBzQmPEbsMYGNp/CHx9U93M6RnBqbDc8+QZsbafxrZvcYQ2rUCc3YhgijiXT0H7/qPsXbqhWvIBYRkN4qaeLU+oFlJufhetOYqnK5U3IOnEtq/CUQRW34x0ZoDNHz0JJ4RM9AFgcaFr4AgIDk8ZMz4EdVvPppQjLH3HIWiiYAx0H7baQg3kWTxnOlutCHNlgrAIX8l3ZMTp3K2h67rVNYFGdwj/eSNzxCSKOC0m1qJ0AbfXnRdJ8lj58l3Atx6yUOYanYgNlehZRThteXyzOxD3HtdJhBPYSur8iU8zzuf7eHeawfzyItr6ZaX1O71Ome6qD9chXBIr0xkLUSsYi+htbNRwz5MXQbw1PfOI9JcSWDZHFInXY+mxAgf2k3UkoTcZSCyw0xk7YdYO/dEi4Twb15IYPsy7EVDyLnpD0TqDmHO6UFEdB4d48x2RLubSOVenH3HEdq3IWH/rIWD2X4o8b0higKpxxlui5LIrPl7URNEuyiqzpylJVw1qajFCNXA4AhmWSQ/290yBz2e4sJ4Jc+worNofXnL9gNVPv46T+S7F/2WFNGPWVDxbvgEz+Ap7V5LTsrE7DvEDVn7uG7sOB6fc5BrzsnGeWgNsa2f0KAoJE24Fvfgqfh3xH0F5cJhlIdsrFtdw7nDOvP+4n2M6pHEqE59iB5M7CFjKxpCRNORpHjRiiUbD5HqsXLROYWsqwoz7tpH8JZsRawvRUvpTDi5kMfnHKSiLoDVLOG2tz9XNjAw+ObwrRZhAB544AEeeOABLr/88pZt3/nOd7j55pu/9Lll+dQDjY5EcZyO/Gm7JHLusE58urqMmROLeHnuTq48rwc7ShtYurGipV1ZlY9F68u57/oh/PWV9chyfPVuX3kzI/vmMH5QHgvXl7OvvIlR/bJZvqWtQeBV5/Xgrc/2cKDSy57yJi4aW8Dvnl3VEoZdVu1j7Y5q7rikH0kuC7npTg7V+ludw2KSmDIinz88vxqA7QfqGdU3k1hMxdq1fzzE1Fvb6hjBYkfvfR5L/x0fBL2BKDFVx26TACEe5YQF0erGnNON8MHtBLYtRYuG0SNBYnUH8W9ZSNZ1DxJx5LYb+RTBjpBSgCSJqAg4nMk0fvIc3tWz0ZV46dNQyWY8wy7Ekl2Ib+On1Fftx5yRT9oF36PmncdanU9OysTSuS8h4fN9P74sgiCcUnTX6fwedjS+zvf7VGmMNNHFk4cknb60nSMRgPH/f7GHnlS7B1EQqQ7V0Du96HMd2+yPEIwopCdZT+vrOt14HGYafZGTfi++yffEmaIj3IvHf652CbLS3Nz17210zXHjcfahclOA6obt/OSaQTgsEuhQXuMn2WUhpmj4j4sSDYQVktxWVFWjss7PgO7pbNx93NglwBXndeeVuTvp3imJ/FSJ5iUvE9m6sKVNrPYgoS3zybzkx0TKd1K9dx2SJx1bfjGWviOJ+hqofv1+ksdfg3/LolZiSnNtGb6Nn5J9wx8ISW5AQBbjv/2K6CLl3Juom/UEpuRM5KRMlKbq1v0zWxGLp5JfrsOqtmkiM84pxGYWW4VRxzSdveVN7b7Xew42oeln9nM37uPEHMkYPVPviygK3DGjL798ankb38H+RWmkuC1IokAwEGmzf2dZM++tsnBDUT2NC54DwFU8Hnv3oQR3r2lzrdRzb6J57UdED2xG2L6A317/MA1zn8ZfftS/r+b13yMnZ2O75Je88Fk5ZRuruPvqQcxdsY3vXtqfsiovMUVj7MVXw6HftEl9Mmd3Q07OobQxxC+fWt4S5VNW7WPD7loum1jEkr0CsVhX1h9yUr89zMHqo2LOdef3xG6Wztpo/FPBuBcNDOKctSJMSkoK8+fPJz39y622/vnPf2bhwoU89NBD5Ofns3HjRv75z3/idru57bbbvvB5RVEgOfnzpxm43aenpOuN03qzfHMlgXCMu64cgMdp4dV5u9q003QIhGLcd/0QSiu9eFwWHFYTO0sbGD8oj4JcD7npDob2zqJ752RmLdlPoy9Mt7wkLh3fjdXbq1tWMMb0z+Wfb21KmAf/3AfbuP/Godx2cV/W7qjms7UHicRUBvXIYPqYrrw8dyeRwyHLXbLcOJ1HTNccZF//IM0r38O3eSG6qmLpNgR94CX88b3SlgGuX0EyGeYQemM1WtiPOb0TkiMJxesDVypC5z6YXGmINieCKNG04l2i1Qeon/s02Vf/Csl+8mgEJdBM1Xt/balEcSzNq2eTdeX9+DbOB3SiNQfQIiE8wy6kee2HCJIJV/8JeEZcjMmTztdRM0bXVBRfA0pjFWrQ1/KeSPaTl0M+Xd/DjsIXvR+/SsJKhEAsSLo7GZfr9L/fDseXSwdKd6RQH6v73O9beUM8HaFTdtJX8rpOFykeG83B6Cm/vm/aPXGm6Gj34rGf63VTe1KY5+HN+fGFhfxsNw/eMZLunZNx2EyEfV5G5ov0nGZFMFkIWtJ4eXEVG/Y0AGCSRZw2E3++6xxe+mgH5w3rTK/8FD5afoDmQIQeXZK5ZFw3Vm2rZHRxDucMyEEM1rcSYI6gR4I0r/mQzCt+QbS2FNmVgtJYjUX3U7f0eQSTGdmZnDCaRQt6aV7xDu5BU1C9dZjSOyM5PEhWO2rREOSrfkXTyvdIO/92AjtW4N++DF2NYSkcjD7wUl5eUsf10/uQ4rHywpwdHKzxkZFs5+rJPRjSKxOPs/VvSziqkJVibzeaITvNgdtlwWI+81NO4z5uzRHfrjP5vnS3mfnjXefw7Kyt7DjQgMtu5qJzCjhvWBdSDpeYD7TjVjtjWDq+9/4W/0MQEWUzjp4jMWd0wbfxU1R/M5acQjzDLyZcsQdbfl/CBzYjWuzoNftQytsWUFAaKxG2f8ItwwcixlQslgAXDM8l1a7z9zv6oNYfRNJjZF7/EE2LXiFSuhXRYsM2YDKpw6biw8E/3lyWMM3qnQV7eOxH4/A4zSS7rbzy8S4EAXLTndwwrRd9C9JwOTqmof3pxrgXDb7tnPkR8Riam5uZPXs25eXlNDc3t1GCBUHgD3/4AxBf5c3Nzf1S19u9ezfPPvss//rXv5g4cSIAQ4cORVEUHn/8ca666iqczi9WOlbTdLzeU/dTkCQRt9uG1xtCPU0hu6P7ZhKKaThsJt5f3NY01yyL3HvtYN6Yv5tdpY0t21PcVu6+cgDpyXZe/3Q3Ow7EJ5i9u6Zw95UDEEWBnQcaeeaDrdQ1HQ1ZdtpMrf4+lpii4Q3G+Pe7mzl3WGd+e8cIahtD7DzQyB9fXNuSPy9LIkN7ZbaYJcZxYB15DfahMyipaGb+7mbmPbOT8GHRpl/XJO6dnETVc/e2MlW09x5DyrirqJ/3LKF961u2izYn6Rd8n8albxKt2k/M78MbOfmtYI15EwowcXSidQeRkzJaVhZ9mz4j5eKf4Bg8DR1QJTt+TYDGxGbJpxNRBFNzGTVvPowWPno9W/dhJJ97KyESD35fxfewPb7OB7HPez9+HVQF4iVzTZoFn699f4bPiyiKOBwWAoEImvbFP8MkcxIl9eXH3YsnZ3dJPaIAFlE/ra/rdGM3S+w91HzS1/d13hNnkq/rfuwo92J7n+uoPpkM7B5f3BFFAYskEA1HIezFu/xtQhs/bmlrls18d/L3ecGcxrJtdZw7tDOyJDBvVSmdstwIgsDY/jmkeqy4HWbsVpkkp5X+RRks3lBOp0wnNt/advsY2rcB98BzkV2pNC19k0jFHjJn3ke0aj/2oiEE929s99jA9mXYuvSldtYTALgGT8Ux/BIUyY67cABRdy4lVY1IhVOhYArRmMqCfT4+fm439103GBmdnnkefn3rMHQ97jJjM0uoMYXGxtar/4IAl07oxsptbQ1HIR49EwxECAbOnAfT2XYff133o67rCIJwxt+XTLeFe68ZhKLpCMR/n1VVbfl9tsgifQtT2bqvvuUYh1XGEqkjejgaRU7KJFpTSsOCl7B26k3yOVchWhzE6sup//R5VF89mTPvA8DWpc8JzakD2xaT1Wc0h555AESJCyZcjxDz0fD244COHwi5Ukm68B6U4TdQ2xyhS9dcfIqINxShvMaf8LyaDtX1AdKcZgYVpdGrSzI6xMdMWUSJxmiMtu/D+E3gbLsX4eudrxp8e+gwIsySJUu46667CIVCOJ1O3O62JYZPd6WNvXv3AtCrV69W23v37k00GqW6uvoLizBAS7WDz4Oqal/ouPaQAF09agJ4LJOGdmb+mrJWAgzEc94ff30jd185oEWAAdhe0sBn68qJxdSEqUknQyDuOfP+4v1kpjg4WOPj4xUHWkJMHVaZn90wFKsstHkPFEAU7ViSTCzdur9FgAH44fQuNL/+85b0oJbraQretR+1EmAgbppWMyteRaL67T+hc4qflX6S758gcmw9UkEQUTSBsHpY8FDjpVC/DpyCn6rXfod+XKnS0O7VmNM6IQ24iJjSfl9O9/ewI9DRXk9tIH5vOSRHiyH06SH+OjVN+1LnTbYksaVu++d+3yrqAodXyoXT/LpOLy67iQZfhGhURRRPPrZ8E++JM0VHeh8Tfa4tdUlUnagKZrNMeN+mVgIMgK5ECX/0ONfM/D0xXeKyCd1YsaWSD5cfAOIPVg99dxRmk4Smgd1q4tEX13KwOu4pM3ZAztF8kEQIArqmUfv+X8i4+G6q33r0mIvrJ54TCUKr8ci37iPMOd2gS9xkXpPtNGsx/vrC+pbxVBIFrp7cg84ZTqKHtx2bMBCJtG82nOqycOfMYv7z/lZih99PkyzynUv6kew0d5jP3LiPW3PkK9JR3pcjDyXHf9cEAX54+QD+/NI69pQ30b1zMlNHdsFlr+eoLKPH52FA+OB2wgfbRrkc2/TE956IrqlY8noSKd9J4/znybjkJ4hWB1r4sPGur576V3+N+bLfIzmTEXUBRdVOaZanqhqxmH70/tJpuee+LXSU75yBwZmiw4gwjz76KOnp6fz973+nR48eX8s1j0TSbNu2jezso9UHtm7diiAI5OTkfC39+KqJRGKM7JvNm/Nbl1ke1DODh//XNm8W4kKMLxTDZpEJHTMYbtlbxw3TeiUUYbyBKBnJtpaS18dilkXsVrllsvfv97bwl7vHctGYAirr42ZkqW4rFklot6ynpukk2008fOdomnwR/KEoeelO7IdWEzpOgAFw9BxJ7ZwnE55Lj4ZQAk3Yi4agm+xxleckqLIVc3Yh0cp9bXcKIubUXJTmmpZNzoHnEcPM123AK4oC0Yo9bQSYI3jXfURmv0nEaN9w2eCrpzHcDIDT1DFXWFIsSQRiQfzRAM7PUcGpqiHYoSsjHcFtN6NpOk3+SEvIu4FBIiTFj3fVO4l36hr2ynXcdfkMghGVtz6LL+5YTBI/vmYQa3ZU8/HKUoJhha45bq48rzvrdtSwYN1BXpq7k3/cOpTAstcTntpeOJBw2Tb0WBiluTa+0l97EEtOEeGDO0ib9j18mz5LeKyjxwiCx6UqeZe/Q2peX8COAHTPc/P4PeOobQoTU1SyUh1YZIE25hungKDrDO2RTvFPxlPdEEQQBDKSbZilL3Y+A4Nj0XUwCzr3XT+YUERle0k9L83dSZfLC5AkGVQFpbEac3on4kt+bb9zlpwiorUHAQiVbiFtyu0Ed61KeD1Hj+H4tiwmaeQMqt98BAD/1kU4eo3Et+GTYzqmYT24koKhlxM9PFe2miQ6Z7kSGnhLokCXLHe781wDA4NvDx3GFam0tJTrr7/+tAowoVCIuXPnMnfuXA4dOoTf72/5u6Ghgb59+9K3b18eeOABXn/9dVasWMHTTz/Nv//9b2bOnInN9s3JV3TbzUwe3rnVNlXVTzgQNPki2K2tdboGbxhN07nqvO4M7pmBzXJ0//LNFfzwygHICcw4b7moL3XNR8WZIT0z8DgtWCWBrhkOsjxWTAKt+iOKAmazhMnUsi6JpumY0El3mSnIdGI3SyiN7UTliGK7QgSA6m0gaczlxMRT+5wjWEk9/zsIprYPmEmjLsG/fVnL35ac7phye52RUEtRFFAaE4eFQ9xrQNBPQXUy+EppDDfiNDmQROnkjc8AydZkAKqCNSdp2ZrK+iDJZ4MIczjvvt5rVEgyODGCrqF469vdr9QfQpYEdOJjJMD1U3sxa8l+3l24ryXd1h+KsWTDISYOziM/201dU5ig5MQ2oG1FF9HmxD1kGr4ti+LX8NUj2V14139M0pjL0DUNpakae49hbY6VXCk4+4wlsKt1uoXirUc4ZlFA13RMAuQkW8nPcGAR+VKCia7pmAXonGanU6oNs/DlzmdgcCy6DmZRYPGGcp5+dwv1zWHeXlGDc8ItR1oQ2LkSz8iL2xwrmKwkjbkM74Z58ZZKFFNGF2z5xW3aykmZ2Av6E9y1CtFydLFK8dYh2dtG6SsNFXBM6q9JjEftmBMYUd9yYR8sX8Cw3mSSMJvlU4raNDAwODvoMJEw+fn5BAKn1yujvr6eu+++u9W2I3+/8MILDB8+nKeeeorHH3+cp59+mvr6erKysrjtttu4/fbbT2tfzjSirnH5xCJG9M3mg6X78QdjJLksbSJdjiUzxU6z/2iEiSyJ3Dy9N2aTRJM/QmaKnWmjutLgDeMPRunXLQ1BEHjou6P5ZHUZZVVe0pNtTBjciTXbqzh3WBf6FqYybVRX3A4zb87fw8h+2eSkOpA4No0HFF2gtNrP8i2VOG0mzhmYi8tmQjwmvFrX4+GM5tyeCfuvRYJIzmRUf2PC/dbOvVCiYRTLqYWAappOyJpB9s1/wr/pUyJl25BcqXiGXYiuazQuegVrp144BpyHObc3Ae3MrK6rqo41p/2KNrInHU0wfV2ZUQbt0Bhp7rBRMABJlvhkszpYQ7ekrqd0jKJq1DeHGFiU9lV27bRwRISpaw5TlHeGO2PQodFEE+asrkTK25rbA8id+hKMaEgC5Ge7qaoPkJ5sY9v+uHDjdpi57eK+RKIq20saWLOjmu9f1p9PVpdxx1+W89x9l+LqMRTfmtloYT/WTr2wde1P/SfPtvicmdM74du8AC3opWnJG2TOvI/ggc04eozA0WMEvs0L0KNh7EVDsWTlU/fRU6AeV7kls2v8tz8Bp7MYyze4sIvBGSYc03h/8dFoZF8EQtkDSLvuDwTXzSZacwDnsIvJuva3NK2eje5vQM7rjbt4PL6N85FdKci9JuDoew7L9oQYMeYy7D2HE9i+HF2JYu82GHNGF2pnP4kluxtK89HqZubMrsQa2i76Wbv0a6U1appOmsvM3+4Zx9yVpew40EB6ko0Z4wpJdVk+3w0iCASiKkvWllPfHGJIr0wKczyYBL7RFZQMDL4NdBgR5u677+bBBx9k+vTp5OWdnhlxXl4eu3YlnjQdIT09nYceeui0XK+jI+k6hVku7r58ADFVw26RuXRCN16eu7NN2x6dkzGbRJRjIjl+cHl/Fq4vb1Vy88PlB5g4uBP9uqVy7xNLEAS4/aK+dMp0kuQ00+SP8JdX1hOKKIzom83FYwt45oNtVNXHJ5ZzV5bSs0sy914zGFGPX0tB5JEX17DvUHPLdd5dtI9rpvRg0qA8hGMGHk3TkdI6IbnTUL11rV6Db+N8ksZeQf1HT7d5faaUbNSwHzmr++cKC1VV8OHGOuwykkdfSiiqE4gJiKKIe/q9IAjEMOM/g2Zjuq4jJucmLD8KkDTuGqKSA4xc3DNKY7jpc6X5fN3IoozH7KYmWHfyxoepbQqh6ZwVkTAWk4TNIlHfbETCGJyYGBbc51xL7Su/brNPtLlocnXjd39fwiPfH81NF/TihY92sq88Pn7JksA9Vw/imVlbW5l1zlqyn2vP78n4QZ25/uFl/Oun40kZdSmhveuIVpfQvGo2R5RyOSkTENCC8epDkcp91H/6HMHxP2bj3gYUJETPDDxOmdE9Mqh58T60UFtj0KTx1xITOv69aWDQHs2BaEvVoaJOSUwZ0YUf/WM1JlnkvMHjKR7gwW524jBZWeWchuhQ2XswxO6Vuzin7wCcGYPIy0jjvTf2s7u8kTf+bwjeec9g69IXQZIJ7l1H4+LXQBBJGn0pVe88Fr+wJOPsPZqqNx5p1R/R6sBaOBjfcfMpXdOxSgIzzykgNqYrshj3d/o8wokuCGzcV8/f39jYsm3+moNkpdr57e0jSSynGhgYnC2cMREmkfCRkpLCtGnTGDVqFNnZ2UhS2zD9X/7yl19H976xHEmPMUkCoajKOQNy0XV4d+FeQhEFURQY3ieL84Z1pqouwBXnFvHBkhIykm14A9FWAswRPlt3kOKiNJJcFpp8Ef47ayu/unUEv/1v61Boq0Xmybc2ceGYAjJS7KiqTkxV+Wj5AZZsOsTEQbmgw9xVZa0EmCO88vEuhvbKxHNcilQIB5lXP0DDx08TPrAVANHuxjngPCz5/cm5+dF4GLYoEi7fRaz+EJ5h0xEcKQRwcGxIiCSJWPQAQjQQX62wOAkL9jYGo4oKkttFLBxA1zVUVUNtGRLPvLgRwk7Glb+icd5/CJVsAuIPC0njrkHI6WOYoXUAGiJN5Dgyz3Q3TkiSxUN1sO093x7Vh8tTnw2eMBBP0zTSkQxOhqpqSO5cUi65j+ZPn0H1HS5JnV2EMOYWHn23lAZvmH+9vZkfXFbMNZN7UFkfwO0w850Z/Vi9rYqsZCs/mNoJhxRFF2V2VsV4dVEJP7pqIIO7p2OSZbymdKxJmUQ2zeewcyi2rv1JmnAdde/99XBvBKyFA7GMvZEHn99BVUMQQYDBPTOZProrv3tlBz+afj/CsmeJVMT9aSRXCimTb0NxZhmr5wZnNSaTyNSR+QzqmYHTZiIYVpg8ogvzVpYya3k5s5aX8+AdI9mxu5wLBiYR8Prpn+/gg7Ui8zdUc9nEIjplepgxvhtms0gUkYzp30fxNaBFQ4TLdyF7MkidcivBA1vQfPWYUnNJnfY9NE1Dcia1LPiZswtJn/4DwrIb2jHVVVUNEdC+gEl9RNH4x5sb22yvqg/y6ie7uOn8Hl/ovAYGBh2DMybCvPTSS+3uW7hwYcLtgiAYIszpQBTwRzRe/ngnq7ZWMrR3Fj+8YgBOm4m0JBtmWSQYjpGRbMNhNTFpcCdUXeexl9e3e8plmyoY1juLeatK0XTYf6iZzpkuyg5XgXA7zFhNEjdP78Nzs7e1rAi6HWauntyD2sYQESVePWjuigPtXmfR+kPMHFdALHZ0wNM0Hb/gwnX+3SSrQXRVAZMNQZLxr52Nb+1H6Gq85J+t6wBSz7+NqGAjrMrox0TByKKO2XuA+tl/bwlBlVwppE79HkpKATGtY3p3JCL+njhxnv8DkpRQ/PWbbEREB2Fj0D7j6LpOU7iZHkmFZ7orJyTZ6qEi0Daaqj2qG4PIkojTdnas0bkdZmqbOm4ZbYOOQ1STMOcWY5/5W3xNTSBIbDgU5q1X9tPoi3uPbdhdSySmUZTjplOmiy5ZbhRVI8cFMzLricx7Cu1welG/rAL6XXs7e71RCnI9PPriWr53QQFmk5XUKbcjiBKCJBFrqkGXzVgv/hm6t5moLvHZHj8HP63gl7cOp7zajyQJbNlbx6MvriUUUbj/lRDXTriesdM8oKlgtrcsJiSwqTAwOGtw2Ez4QzEe/t8aNE1HFGBUcQ73XTeYP7+8jq45HvJdUdIPvkHd8m0AWGQzNw2/mOsmjePJ2SVkpTp4+7Nd3Dctg6a3niZWfwiIL96lnncLZBQSk6xYXelkdRuKTzXz67f3EFM0rh7zI3LcAilJdkSLE0tyCsHG02ulAPEFwc27q9vNXFq68RBXnds97rtkYGBwVnLGRJidO9umwBh89QgCBGMaz3ywlQ274kLDqm1VrNoWN3KdMDiP66f0xGmOCw66omISQEAgeILylKGIQtYxBrqhiIL58N8Wk8T9Nw1D1XX+/PK6Vh403kCUp9/dwv9dPwTxcBGFIyaGifAGownLcuo6hHUTCB6QwSyBsvEDvKtmte5nyUZq3nmM5Ev/D11vLapY1WYqX30QtKPXV30N1Lz5MNk3/5GY3PF9Lo5F1yGsmkAwxe90ncNlsg3ONCElTFSL4jQ7z3RXTojH4mFL3Q40XUMUTv70Vt0YIsVtOXHp3A6Ex2GmrKZt2oaBQSIURWNjeYwn3tjTfhtVR1U1BAT++dYm7rysmKEpDYTn/a9Vu2jVfqQ5jzD4mj/w/SeXM6x3JslNO2ia1zZ9VnJ/QNKVv+XhuTXsOdiEKAr87IYhrN1exfNzdrRp3+iL8NScEop7j4+LLhoYJmAGZz2iyIuzt7N0c0XLJk2HpZsqiCoaF44tYHBnM/73H2nl3aIrUXzL3sSiy0hiNroOP7ygM+H3f40ePRoJqQW91L7/NywX/5L7367mFzcPR9N0fvqPJS1iyO9fj0dpW0wSf7tn3FdWY1IQwB+MtbtfOVJY4wuY/BoYGHQMOsyaSEVFBeFw+2Hh4XCYioqKdvcbnBq6INLsj7YIMMezaH05kQSpKhZZZHjvrHbP278onV1lRw1wB/bIoF+3NL5/WX8e/8l48jMdbN1X164J8AdL9yMIArIoMqhHervXGV2cg6Kc3EjXrAbwrpmdcF+0ugQh2NS6vQz+9R+3EmBa0DW8K9/DIhkpPAanh8ZIEwCuDuwJA3FzXlVXaQw3nVL76oYgSc6zIxUJwOO0UO8NoxkpGgangKbpdMvztLs/M8WO1SwiCAKV9YH4/SBFUNe8lbC9GmgmVrUXi1nispHpBJa/kbidtw698RDjB+Vy+8V9+cdPxtM9Nx5t0x6DeqQjix1mimdg8KUJx1SWbUn8HLB6WxX9u6WRIvgSmucCxNbP4spRGei6jql8fSsB5lj0dW8zfWgWu8saeXXezoTRKJGYyqIN5V9ZqWlV1ejfrf2Fv8JcT8LqSwYGBmcPHeYOnjRpEp988km7+z/77DMmTZr0Nfbom4miajQH2i/brOkQCLVV31VV4/yRXRKmGaQlWcnPcbP7sAhTXJTGoRofSU4zB6t9lBxqRtNhV2lTu9c9UOlFUTUEXeOGab3o2SUZp611oFbXbDedM51tylgnjIyJhREtdiRH4gmz0liJJB39+otajGjl3nb7F63aj6jFK0UJQuJrGqUDDU6Vpkh8Nc1p6tiRMEmW+P1TG2q/PO+xVDcGSXaav8ounVY8DjOqqreqAmdgkAhBiP/GOywy00blt1TXOpbbL+6LRRKRJIEDVV5SPVa0WBSlserwSUQkVyqi9eh9H63YTUaKHYukt1vJDyBSVcK5QzpxTnEWVklAU3U6Zbromt22ZK5JFrnu/J6I6N+ocenIZ/BVEJ9LfCWnNjhN+EOxkxQWEtAaDyGYbUjuNJBazyG1cICsJBP7yxuQ6/ch2lxIrhQQRES7O/5vBJS6MjqlmZElkQOVvnavtrO0kegpLAp+EfTDBvcDurcVYkQBbru4L/Jp+L62N4c+leMMDAy+HB2mOtLJzOJisRiisarzpZFE4aR+DbJJJKaDRRJaBA9RFJB1ePjO0bz52R5WbKlEEgXGD85j3MA8/vrqepJcFs4d2pmCXA9/eWU9V57bnW3765m/pox/3jeRzplOVm5NfM2M5Pgk1CkEcajN/OocBdGZi09O5vHZpfTKT2XKiC7I6PGgalklIoQpbS7HJMrkuXMwqRZQRSyigiRLJI26FEGSkFyp+DbNJ7hr9dHX6PAg1GzHnpZHRLCjiSbklBwiFYnDzOWkTARJwqX6idWWga4S07pilhxEzFEawo3U+xvJdKbjMbuRYmajTKdBuzSGmxAQcJi+qmDm04PL7ERAoCZYR8+U9sueA8QUjUZvhOSeZ6Y0+xfB01KmOnRWVHQy+PoRRYGoBjWNIVySQqZD4doefq7omUqznMpLiyrxhTRuuKAXWUk2VFXDJsU4t7uZIVaZZJdAgysVV/8JWHO7E6uvQLQ6EC12mlbOQk7rRNOWCIouIlrsLZ4xRxAkE0ljr8DapQ+xfauQ7R4snkxCggNB17n/pqF8vLKUuStLCUUUBvfM4LbpPUmSQij1h9CjYUwZ+SiSnbB2dng1HY8kCUSlMHWhBhpDTWS7MnGZXEgx05ceZ3WTQlALcrC5AqfZTpYzA7NqRftqnq0NvgQ2y4kfWaxmgbSivqgpHtRAM6akDJSmGhoWv4YeDSPIZnxhnawUK55Ol2AvOgiqiiW3CDUUIFZXhiklm0jlfvx2M3VNGpkpdhraMW/PS3dikkS+KlcxUdf5wWX9WbyxgllL9uMNROndNYWbpvUmxWn+UlE4uqwQJkRZ8yFsso0cVwYm1YZ+gu+9IAiopghN0WZqvHWk2VNItiZhUqxfWUSQgcE3mTMqwvj9frxeb8vfTU1NCVOOvF4vH374Ienp7aepGJwakhA3oyzM9SSsQFTcLY3lmyr5cHkJv751OBnu+INJfSDGb/+7kkgsXlHp7isHkuSKCw0bd9dw4wW9CYYVFm0o563P9mCWRQrzPLz8cdz7p645xLhBeby9YC9qgh/r78/oiVNtov7j/xIu29ayXbS5eODKXxBx5hCLauiAborxaeli3t8574gkgyRK3DH4WgamdCe2YR51y9+mJQdelEmZcA2SzYVv4/x4OWtfA7Wz/wGiTOqU2xC6DME19AICWxclfN+SJlxLdP8aquc9w5HZmeTJQLziXh5e9Sx1wYaWtl08efx45B2YYlZDiDFISFOkGYfJfko+K2cSSZBwW1zUnUIkTF1zCB1Icp09kTBHohnqmsIU5Z3hzhh0OERRoCmk8Jv/ruS2yZ1JrV1E9dZPW/YLspl7Lv4RakZPVF1C03QcUgTfkldaxhJfp15kXvpjmla+T9PSo2lJgtlK+rTvIWUXUfvOWuZtbuLcwRcQWP7mMR2QyJjxI7zrPqZx4ctHN1udZFxxP2F7LpKmc+HofCYP7wwI2GUNsWo7VbMeR1eORng5B03BMXwmUc4ekRTiAkwzTTy88O80hY/OF7ul5HP38FsRI19cPNUtMV7a8jYry48WHbDJVu4d/V2yzTknfCA1+PqxmSV6d01he0lDm31jirPpYvVR+/rvUQNNLdstud3JmHEPNe88hqXfJA75NUYm11H1yhOt74++52Dt1JOq1/6Ae+g08nNCpCVn4LDms+NA2+uJAkwZ0aVVRPVXgajpTBqYy5jiHAAkEUT95AvXJ0I3x3hr52wWHvh/9s47PI7qfNv3tO2rVe+SJcuWe+/dxmA6ptqU0EsgQAiQL50kJL9ACJBCICEQQu+9G2yDce+9d8uSrF5W2j7l+2Ottde7MraxsWTvfV1cWHOm7u7MOfOc933eRZFlZsnET0bdQhdrFwwtNspFECCkeHl04dOUuw+ke2Xa0/nF2Dux4kgIMQkSHCUn9Q3ghRdeYPLkyUyePBlBEHjooYcifx/83yWXXMI333zDlVdeeTJPt1MjiOHoFr9m4LQq3D1tIEWHhDGXFiRz68V96ZLjpHfXNH7/38X4NYOAZvC7Zxbh9gQJBDVmLi3jsVdX8J/31+NymBlYmomqGSxat4+dFc1cPKErf7l7HKIgMHV8CQ6rgtUsocgif/3JBO68fABd88JpDqIocOWUUopTBZqXfBQlwADovhaq3/gjFrU1sv6e1nI+2PxFRIAB0HSNfy97icZQM+6lHxFlQqirNMx+CVv3YSjpBWScdweN896KtNV//jSyvx7VnEb6hT9GkA96iZRkUs+5HTSV+hnPcPD0mDTuUv6y7MUoAQZgT3M5z658FUNOjOASxKfR34xD6dh+MG24TElHlI5U3RieD0zpRJ4wZkXCZpapa05USEoQS0A3ePC5xYzql0M/yz6CBwkwEDb8rH3vMcyqG103kGWBwLbF0WK+JOPbtS4qEhPACPqp+fifCLrGg7eO5IulZQg9JmDpPT6yjr3HCLw7V+PbvTZqW93fSvUbf8RqhPtFwwj3eLphYAo1U/v+41EvmBD2PFP3rkNWOrbweyhByc/D86IFGIDtDbt5dd17CMqxebVJssC8ssVRAgyETdP/PO9JglLimdDRkDD4yZWDYnyZuua5uO3sAureihZgAAIVW2ldO4fUydeRNGIq/XIVat//a+z9sX4uut+LKacr7mWfojdW4ghUUZSbxNVn90A+yADXapb52bVDSbJ+P/PYmqYjYyBjIOjGdxJgJElkZfXaKAEGIKAFeWzB0/hFb9ztdFnl38tfihJgAGo8dTy+6D+EpPZtDhIkSBCfkxoJM2bMGGw2G4Zh8Oijj3L++efTp0+fqHUEQcBqtdKnTx/69et3ks608yKKAn7N4LXPN7FgTSWabjCoNIObL+rDr24cRosnRFW9h8wUG3uq3PziyfnoBkweVsA90wdRVtWCzSLTeohPzAVji+nRJZW/vLyc8ppWHFaFC8YW88NL+vHyjE3c94+5GIbB4NJMHr5zLCs31/Du19tpag2QlWrj6rN7UpjlwGKScVhl9ObdeDbMj3sNut+DVr8XIbUnmhTig80z2r3eL3fM48Jug/FvXhzT5tmymLQzb6Dus6dR3dHGxC0rPscy7gaM/EFk3/w39JY6DENHSspAl2245zwfvTNBxOtKo3pzfIPj9TVb8Bs+LHRsz48EJ4fGQBOODm7K24bLfGQiTE2jr1OVp27D5TBR29S+KXyC0xNBgNoGHzdf2Jccu4rnq2fjr2joeDfORxk4FZPWSu3i96OanX3HUz/7pfjbaiqtO9awYF8+N1/Yj71ukcIx15A85jKCjdVYUjLY9/zP4x826EOt3Y2e2Y83Zm3l6xXl9C5O486SHWDEFybcC98laOuKmpV5xJ/DyUQQoN7fECPAtLGkYjXT+0zFdAw1agKCn0+3fRW3LaSrbKzdyuDUQWhawpC/o6AhsHl3I1NGdOHKKRZaPCFy0u2IgoC3ZmeMANOGZ8sSpGGX8/a8Ki5JXtf+/bFqJq5h51O/bwfu1TNxDpyCOTubVKeFv907kZoGL1azRFqSBZMk0BldUYKijw83fxm3TTN0llWuYWLOWNRDCnT4dB+b63bE3a7CXYVP9+Kg80TBJkjQETipIsygQYMYNGgQAD6fjylTplBaWnoyT+mUQhQFBFni9c83snjdvkga0Kqttdz/xDz+es/4sABiGDz1zmpy0h10yUli0+4GPpm/i50VzfzgnF64W6MV7h5dUijMcvL4qysiy6wWmd37Wpi9fC/FOS7mrw6nleVlOvjwmx3MWlYWWbe6wcvfXl/JLVP7MrZvNoJhYIQCGNphyvG5axHTexFCo+GQykYHU+1rxGjPjLepFu+2ZTECDIDWVINgqAQ1mRB2cOx/QTbAoquozTVR6wuKidZQ/BmDNgJaOPBbEEDZX647FNISKUoJaAw0k2vPOtmncUS4TElsadiOYRiHNfCr2W/K21nKU7fhspuoaUrMeieIRhAEFEVi7uoKzhvoQnG3L0Sq9ZXIAggYaK1N0fsxWdB97Zt7Gu4qBKmAv7+xkgHdMyjJS+a80V2Qs9MgUB8zYx913OYanlm4jqUbqwFw2RVEd1X767c00Oj28M6iddx0Qe921+soCIJAky++AAPhlIygFjwmEcZApzXoASDDnkZRcj5+NcDG2m1oukZVaw1iuoCWCGg94YiigCxLGIZBKBT7gUuSiKJILNlcwxNvrsIwwulAFrOMP6By2RndOTvTTbuxGIZOs9tDqsuC2ljd7nmo7npEmzPyb0GS2LGnjsy0DH7z7wU8cvfYiMxg6PtPorMhQIOvqd3mqtYaZFlEFMWo7yOgHT7SxRv04ZCSj+OJJkhw6tNh4lLvuuuuiABjGAb19fXU19d/p7C70xVBABWBnVWtvPDZJqwWmf937VAunlASWScQ1Hj/mx1IkojTZmLSkAJMskjPolR+e/NIhvXKYuOuBkRRICPVGrX/c0YW8cbMrQA4rAr3XTWYaZNLsZgkWr1BBnRP58KxxUwaUsDkYYXMXl5GPF6dsZmAqqPrBoLJhmiLrfLQhpJZhK7rKCiUpHZpd71eKV2griJum6WgJ6GG+ANUc0FvdCH+DL4mKFgKogesRtBPqqn9KBdZlLHJFnQlRLVWxRtb3+fNre9To1WhK+2LTQlOfQzDoMnf3OErI7XhMjsJ6kFaQ57Drlfd6CO5E5rbJjvM1CZEmASHoOsGZkVi6YYqdlX7UbK7truuubg/mg5BQ8SUGd0/qe56lLS8drdVcntRlG7miZtLua1gK1NCMxHKV9NYW0OdR0dypLS7rZhRzIaD/DHKaz2EMnu1f6ysruyqCTB/TSUev9rueh0FXTfIdrQftWOVLZilY3vmiEh0T+vKj0fexNSeUzDLJvKSsvnp6NuY3HUMPdJKElEwJxhBEFAR2FLezHOfbuT9ebtoCWgY+4V8SQqn0S/bWsszH22gvLqF3948kiE9M9EN8PpVdAM+mrcTa2ZBu8cRzTY8mszG3Q1YCtsXH83ZxYQaKvf/uyu6qrK1ys/8NZX0KUnjq+XlJ9wD5kQjGiJFKfE/qzRrCud0m8Ca+vW8tOkNZpTNwiu7QdaxKzakw3jYJVmcJ+qUEyQ4Zekw1ZEAtm/fzhNPPMG8efPw+8Ph4RaLhXHjxkWJNAkOj4rAn19exs6KAzNIMxbtZur4rlw8oYQPvgmHFO6saMIXUPnb6yujSrR+8M0OfjxtIP6gxpayRiYMzKU4N4ldleH9WcwSDW4/oihw39WDeeGTjZRVH5jp+2zhbu69ahDBkMauyuZ2Iz98AZVWn4oiyAiOVFzDL4wyH2zDlFkEjnQMDQRV5NJe57K8ci36ISGlVtnC2KIR+D57PWYfgsmCtWQQsisT367V0W2KBXu/CbSo8U80pBo4+52Be/lnGKEDswFy2RYGZ/ViZfWmmG3O6TYBWZR5Yc1bLK9cE1k+a+d8RuYP5pq+lyIGE6GbpyN+zU9QD3aedCRTWByt8zXgPIzwWNPoo0tW5xCWDibZYaapJUBI1VHkzj3ATnD8EEWBvfv7tY+XVjP68iug/I+x69mSMHfpx9JdDbz+5WYeufRa6t/+v0h7y6qZJI+aSu0n/4rZVnKmIaYX0s+9itZ3/kdEnl//DXJKDsIFvyBp3JU0fv7vmG2VtDxa5RQ8vp2RZTsrmvGd2wfF6owbfSMOu5yP3gp7OuypaqFvl+QOb6bpVBz0TC+JmwpxUc+zMGND5+ivwaRb+OHQa3h8wX/Y13og0nXGtjlc2e8iCl156IGO/dl0dkIGPPjcEipqWyPL3puzndsu7suo3tm4/Sq/fnohbs8h49Ppg/AHNTbsDEenBYIaHtGBklNKaN/WmOMoQ6by4bJ6CtNMWAp7I9qS0L2xEVauERdRP+t5EESShpyDZk/jy/c3keK0cMbQAhasrWTK0IKOM3t9DEiaiWv6XcL/zf1H1HKrbOGOEdfxl/lPU+9rjCx/f9MM7hx+Pb3TejC561i+3DE3Zp8j8wdj6WSG3wkSdAQ6jAizfPlybr31VnRdZ/LkyRQVFQGwa9cuvvrqK+bOnct///tfhg4denJPtIMjSSJfLC2LEmDa+HDuTn5943A+X7ibQEjj4vHd+Nc7a6IEGAjPPv37vbXcf/UQahq9+AIa90wfRKsvhGEYpLms/PL6YeRmOJi5ZE+UAAPhSByX3cxDLyzhvqvD31dJvosLxnTFZgn/5Fp9IT6auwPTfpNAj2bB0WMkAM2LP0T3t4IgYus+lJTJ19Oihx/whgFO0cWvxt3Nsytfo7o1nFpUnFLAD4f8AKfoIPm6/0Nz1yGIIggCuhpEsqfQMPN5kkZciLW4P75dYaNDU1YRaef+CK+QxOHyhLySk6xr/kDDZ/8iWLMnfC6bFnHLtJ/zztZZfLNnCZquYZZMnNf9DKZ0ncCWhh1RAkwbi8tXMq5wOF1tJUc9ABYlgZDox6t5ERCwSjZMuuWYZ+wkWSAg+vCGfIiCiF2yAZ1DHOisNPrDVck6izFvkjk8w1Xvq6fYVRh3HU3XqXf7Gdgt7fs8teOCy2HCAOrdfrJTO3bJ8ATHF48vRGtAwxdUsZkVrIqIvv9ZahhGxN+owe3nvTV+pl34U3zfvIDmrgPAnNeDtPPuoMlw8rfXZzOiTzbrmp10PftuQgteQWttJFRfgebzknbh3TR99XLEt8LcpR/aiB8gC9D61f9izk1t3Iey+kPqe12AbcKNBJe+je5rBQTMJUOQx16H3STwr1u64XRYMUSZlhYPfkHCdslvCH7zP4IVWwCQktJRxl7Pu6t9NLWEJxKcNqVTRBoLQYU7h93Imxs+ZOHeFeiGjlWxMLXHFMbmj0APHts1GKLO51u/JseZyVX9pwLhKouV7io+2/o1Q3P74xfcmCQTVsmCHLKi64nImOOFKIm8N3tbRIAZ2TeHSUPyMQyQZYGQYfDEW6ujBBgATTf497truPeqwRERBqDWL+MYexu29e/h3bwYDB3BbMM0ZCo7LH0Y3k1jXKkNrbWRnKt/T92M/6B5mnENvwDZlYFotmFoKub8nthLh+OX7WyrlcjLcCAKAr6AitOmIIoCdHDh8nDoukG2JZt7R93KC6vfotEXHo9c0ed8ZmydEyXAABgY/GvZSzx+9m85t/skJncdgyCIuAMtqLqGJ+ClR1oJBI78dVIUBZr9bpoNN5qgYVNsmHUrWjsToQkSnKp0GBHmoYceIjU1lVdeeYWcnJyotn379nHNNdfw8MMP8+67756kM+wcBDSdzxfubrd9xaZq+paEX5QKsp1s2t0Yd71AUMPjC1KQ5WD+2kqq6j0EghpDembx+GsruebsnjhsAWYujU01Kshysr28iaBqEAxpTB5aQL9u6bz02SYa3OEIp4xkKzdP7YvNLIMeTklqEZKw9T2DnB4jMEJ+BNmMqjhxhw6Zd9BE8s0F/HrMPfh1HyIiFtGC1RARaneiehpp+OplNE+4c5FdmaSdfROCYsa9/HPSLvoJroAPQRDQFBtew/KtYoimgc+STcqlv0JUvYCBYk/Co5m5onQqF5ZOIagFMUtmzIYVXdP4fHt80z+Az7Z/zZ2DikA/ijkVWWdH626eXfkazfuNCjPsadw57HoyleyjL6cpa2xyb+d/q96kJRAeCGU7MvjxyJtIlxPl4E8UTYHw79LZSdKRzJIZi2Shzh9bprONencAXTdI7kSVkdpoq+ZU0+hLiDCnCYIAAc3giVeXs3xTOApCEgXOGlHI5RO7IRoGhgG56XasZhlfQEW22NgYSsEx+j5SzBqGKLKpwaBr0EldsxtNNxjZL4cn3l1LYZaD6WPuJ8Wik52exMw1Daxd7+WCcf+PZLOGIcos2O1l7axqftwvvrk7gH/jPPxFZ/Hi+mQum/QrnIqKISr4ZBPWjV9Ru+ozDDVIA2DO70H62Cuo//JfaMMuwXnePbS4Wwj4g+zzCrzxdTU7KsLPHqtZJifN3ilEGAAxYOLqXpdxWa/zCWpBLJIZMza0YxRgAIKCn3R7Cqk2F/9a+hJ+NSxOFSXnc8fwa1lTtYmFe5ezo2EPXVMK+dHw63CKyTGGpQmOjYCmM3v5XgCuP783Xn+Iv76+kkAwPJD5/a0j2ba3Ke62/qCGP6hhs8h4/SoZyVaSHWZk0UJD36uQe1yIZIRITU/h1blVXDRQRpj3HFULdgEgJWeSceGPEUWR2o//SaghHB0mWp2knnkjjfYiHnl7GwZw1Vk9cHuDfDh3B7de1BcRg87+CxBUiR6OUh4c/1N8mh9ZlBBFgZfXvhd3fd3Q2VCzhTRbMvPLlrNovxgqIDA8bwClaV2P2KRYFAUatHr++fXzkUpLdsXGNf0voX9aHwS1w7yWJkhwwukwv/bt27dzzz33xAgwADk5OVx11VU8+eSTJ+HMOhsC/kD7ud6+oIbVInPe6GJqGg5vLCuIArOX7cVhVXB7g5wzooj/e34JI/rkUFHbisOm4A/GHsskS/j3d6Qfz9/JDy/px8/+OS9q8qC2ycdjryzn7/dOwLY/BcAwDDxBCUgCeb8/TDv2KZqmI2km7Ptt0kRDQHTvBi1I7cdPcXCJarW5hpp3Hyfril/Q8PUrqLqIT0rdvyOi1j0cum7gxQyiGVkWsTrs6I0edFXAhC1sDqiDDuhmNTKoi4df9aOjIxxhYKsgQJPWyOML/xNVmrvWU8//zX2Cv5z1a8zakUdWCIJATbCWfyx+Lmp5VWstD379Nx4569coWNvZOsF3oU2EsSud54XfZXZS72tfhKlpDD9LOqMI47QpyJKw/xo6XyRPgqNHQ+Dx11ey+aBJCE03mLFoD5IocMXEbuiajkkS+PUNw/jXu2vpWZTC46+ujNmX1byTh380BgBFFvEHVbaUNfGHsiYAfnHdMP735W6AiODTRu/iVPRA+/2woYWwmSVWb6tn9bbwrP+QHunc2q2SwLIPotYNlG+h7ovnSBlzKbWfPIVz+q+Rkkv509MLqW084HmkyCIP3DwCiyKghjqHCANghMSoflY7hhSkg5FFCZti5flVb0Ut391UzlNLX+K+0beyvDIcMbuzsYw/zf0nv594H7Ka6BePB4YBIVWnV1F4LPb27G1R7W1iTHv4AyomWQIL3HFZf+qbfXwyfxc9uqTy8ufhFPHhfbK54+x8PO/8NsowW2uqgZCPfe8+jhE6UBlP97VQ9/ETmKf+mlZfCFGE3Aw7vnKVfiXpFGY5Onz63pGiaQaSZsaBGXTwy62HFWWTrUnM27OMhXuXR5YZGCypWI1fC3LrgB8ghL79lTIoe3lw9t/whg48kzwhL8+seJVfjL2TLpaiU+YzTpDg2+gwqY25ubkEg+1XAQiFQmRnZ3+PZ9Q5kSWBwT3bN7Ib3juLq6f05OsVe/H4Q6QmtZ/HmZlsY/7qCnoXp5GX7uCLJXswDBg/KI8vFu9ha1kT/bqlx2xXXtNC94JkALrkJPHenO1xozdVzeCzhXuQjoMPg1kIENy3FffKmcQTVQwthHfHCpzDL0AVT3zuqo5O38ye7baPyB+EbBxFKV9Z571Nn0cJMG2ousqc3QuR5SN36jfkEG9t+CRuW0ALsrh8RaSiU4LjS1OgGbtsQxI7z+ebZHJSdxgRprbRhygIuOydz+dIEARcDnOiQtJpRKtfjRJgDuaLxWX4QvtTknSDvDQbv791JB/N3Rl3fV9AZf3OeroXJMftE3dWNtO7ODXutnv2ubF1HdjueZpyS5Es0WLtxcPSCK36OO76auM+BElBNNtomvMaSWKAP/1wNL++YRiXTuzGnZf355/3T6RXl9QjnXs4ZdEMjU+2zIrb1ux3U+dtwBs88Exo9DWzp6kcOeEbdVxQRIHeRamcObyQj+fF3lu+gNqu0bsgQHGui8vP6M69Vw3mjS+34PVrrNxSQ1HOgQIPuyqa0Wp3x1QsM+f3xF+2KUqAORhjxbtcMDyTgaWZrNxaS6/iFKadEY6QO1UxCWbynO2/Y2XY01hUviJu25qqjfiNb+8/JUlkfc2WKAHmYF5f/yGq1P57YIIEpxodpje58847efnll9m0KdbkdOPGjbzyyivcfffdJ+HMOheCrnPN2T0xxRkoFOcm0aMwBZMksLO8mc8X7uaqKT3i7ufMYYUs2VBFaZcUfEGVnHQ7tftnuwUh3EHOXlbGxeNLkA9xi/cHNbwBlcE9MslOtVFW1X55zu3lTajad+/YRENDkE2Eave2u06weg+Wgt6EDsk7FUWBo6mqG17/8BvUehron90LlznWMT7F4mJY7oCjyn9VUdnTHL/qE8C2ht1owpHnI2lo7HVXttu+pX4nhtDZg247Jk2B5k5jyttGksl52HSkmiYfLocpnC/fCUm2m6hpTIgwpwOCAHWHEdxUTcd3UDSpoRtgGIftxzbtamDcwNy4feKXS/Zw2aTuyFLsvVGQ7SRgSUPJj1OxRZQQR14NJjvZqVak/feWXTHQ/e1XKgs1ViE5UwnWliEYKjIG3XOTuGxCV0b0zMSmiAkhAdANg1pv+8+0nQ1l2E3RUS87m8o6fXWcjoIkwM0X9cFuVSJp6gfz+aLdXDOlJ1mpNuzW6AmrycMK2VLWwGcLd/Gn55fS2BqgptGLqhlsL29iZN+wmJCZaiNUFWvorKRkEaxrf6yo1u2lOMPC+IF5zFy8G1kUEA0DURQ6bR/3bSi6iRsHTUeIk1g0KKcPrUHPYSNlWoKt7ba1IUkiW+pjv4829jZXJsadCU4rOkw60po1a0hLS+PSSy9l0KBBdOkSLvO4e/duVq9eTffu3Vm9ejWrV6+O2u43v/nNSTjbjothgMMs8fg943n1i82s2FyD1Sxz9sguTBleiGToSLJEVpqdhWsr6ZKTxM+uHcoH3+xgZ0UTaS4rF4wtpigniQ27GvjxtEGU17TS6PZzxeRSdMPAZpaRJRG3J8h7c7bz6xuH88n8nazZVofdKnPuqCK657uwKBKCCFmpNspr4j+g8zLsyKKA9h2FGB0RQw0hJ2eiuuPn2CtpeQREO6AjCGAVAwi+JkJ15UjOVMSkLHyCvd1QSEHWCYh+ypoq0A2drlIhJtFMPC3Tabbz10XPctfIG5i7ewlLK9YgEI6AGVM4DIGji4KQkMiyp1PrqY/bnufMQkJCPcLpTRGRTHtaxAvmUAqSchAMgdN+uvQE0Ohv7lSpSABJ5iSa/E1ouhY3gqem0dcpo2DaSHaYKa/99kFkgs6PYUDKYUqpiwJYTNG/cYFwP3aoCX0bRblJTBiUhySKzF5WFtUnGoZBbaOXP985jte+2MTa7fU4bAqThxbQtySNpTs9FA6+npT8FWjrv0TztWIq6I1p5HQahVSa6j1Mn9KTdJeFjbvqMUQZQTFHVeo7GDkpHc3rRknOxEDEJgYQfI2EyitQnGlIyZkYRud6/pwIREPEZXbSHIj/naZaXazaF13gIM+ZnShbfZzQdYNUhwmrWcZuVfD4DuSeW80y4wbkkZ1uY9qZpZH7cdayMgZ2z8BskvnP+2sjtRRavSFSXeEI5zdnbeX+qwfTuziNJRuqMFyxFgdaayNKevslrWVXJgW5qfzx1fVkpNiwyxpKqJVQ5S4EWUHJ6IJfsGJ0nHns74ymGeRYcvjDGT/l9XUfsKV+Jy6zkwtKJ+OyOAmqh49QUSSFer2GFHMyUsgcV7DRdZ1CV167+8i0p+0fdyZIcHrQYUSYV155JfLvlStXsnJldO711q1b2bo1uvScIAgJESYOhm7gMIncdlFf1AvCAwazJKJp4UKOqqZz1vBCFq6tZNbSMlZvreGs4V24aFxX3J4gvYpTCQRV+ndL5+9vrGTr/tx2CFcS+dkPhnLxhBLe+Wob63fUs6vSzeShBUwcko+hG/QtSSMU0nnynTX0Lk5l6vgSVmyuiXuuZw4vRNWNIzb1ao+gYEVJyycpKR1/2YbYFQQRx+CzaQ2GPw+H6KP+o78RqDjwmxJtSWRN/w1ec1aMEGPIGitr1/DC6rfQ9pfGFhC4rPd5TCwYE5MLaxNtWGQTf5n3b0YWDOaWIVeCAaurNvLl9m+4sd9VR3V9oiZzSa9zWV+zJfbSEDirZMJR5fdLmonLep3HXxbElj4VBZEJRSMJhRKDzRNBY6CJDGvn8h5xmZzoGDQF3KRZU2Laaxp9ZCR3Xq+EFKeZ1dvr0HQdSTx1BtYJ4uO0mcjPdMSdHBjVLweLIsFBlXBMksj0s0p59JXYcHxZEhjTLwctqDF2YC7FuS7cngBTRnThzOGFeHwhFqyp5O3ZW3nozrHs2NuEJIm0+kI8+N8l/Oam4fzx1ZWUFuRy3sj7sZkk6r1gbnXw9zeWRnljjBmQw7kjehMccBae5bHppJLdhSAr6F43qZNvQJZF6t77C4HK7VHrZF/1WwTz6W2+bjIsTO15Ni+teSemzSKbyXFmUdlSHVlmVSx0TytGDST6xeOFoRvYzRIXjy/h1S82A2CSRX56zRDemrWV/350IGUwyW7igZtGsGzTPp7/ZGPUfnwBFbMskZFspbbJx6OvrOBPt4/GZpZxFCk0mSwYwQPRNr7d63GNuBD3ihmgx0YQm4dfyoOvbWBPVQvP/bQvwRUfUbfkIyKTUqJM2rk/RO4y5Ph/KCcTVSRNyOTOwTeGI6sNMItmnlv7GnlJ2fTL6sm66s0xmxWnFLKlbjsvr3mPvKRsfjb6DpSQNabgqKrqDMnpz5vrPyKkx/pJXtb7PBTdgtbprY8TJDgyOsxoc/PmzUf9X7zUpQRhDAPQdWTCStvBszeGAdvLG7nlor6YFYm6Jj+vf7mFf761GlXTWbGpmgZ3gE/m7YwSYACaW4P85ZXljB2Qy9BeWUC4zOdH83by6ozNdM1zYegGggh/vG0UO8qbWbKhiuvP7x2VImU2Sfzwkn7MWrqXstrWSIinJInYRD8OWrCLXpQj9DnRNB0hoysoZlLGTwfpgCgimCxkXHIfQVNy+NiSTvM3r0YJMAC61031m/+H1YgemAsCNKtNPLfqjYgAA2FTsnc2fkqFtzImRFVSzdw78jZynFnM27OUp5a8yFNLX6TB18T1A66A0NFFwoTLCmZxw8ArkMUD12aRzfxk1M04hdi0p2/bX6GjgCv7To2KbLAqFn429g4cR7m/BEdOc8CNo5NURmojybS/THWclCTDMKht9pHs6LyRMKlOM5puUO9u30w7wamDSYTf3Dicgqzo59yA7unceEEfQppOQA8b+Er7JzB6FCQz/czSqGe93arw25tHYlPCfZsvoFJW5Wb11loeeWkZj7y0nCffXsOOimbuumIQmsfNoDyRFNFDToqJycMKeOPLrdx39WD2VHt4+K1tPPDKZlypyTz+6ooYc9IFa/Yxe2UlSSMuwtxjZFSbnJRBxoV30TjvbVyjLkEp6EPj7OejBBgAzdNM1et/wKyf3pFfmmowPGcQZ5WMj0rBcFmSuH/Mbby78bPIsmRLEj8eeROS0Hl8vDoLmqozaXAeZw4rQBBg4pACvl65ly1l0Z5Nbk+QP/5vCWMH5Ec8B9soyXdRmO3kJ1cNYsqwfB68pgd2rZnBXcy8Mb8G8wW/RLIftI1h4KkuJ+3SnyGaD4oKEyXMI65gcY2DyloPd08bgLV5F+4lHxIVFayr1H/6FNJhUnQ7K4ZhQEhGCpqRQmbUAFzb/3L2NJVzfulkStO6Rq3fJTmfq/pN5YNNXwBQ4a7i6eUvo8vxC4SYdRu/HHdXVEq2KIhM7TGFXqmliUizBKcVgtFZahR2MjRNp6Gh/bztQ5FlkZQUO42NnhNeAlGSRFZtr2PemkrOHllEUN2veJskvly8h6G9s8hOtfHgc0vaTc158NaRpLrMYAjUu/04bQpOq4lNexp48dNwKerexanceEGfcDnQoIbTbqKmwYs/pGGSJT5fuItVW2vp2zWNe68ciIUgYv0uGr96kVB9BYLJStLQc7ENnEKremRmumZRwywEIORHbW1EkGREZzo+wYaqhQdaDlrY9+w9YMT/nDOv+h3+pOKIii8p8PKmt1lQtizu+n0ySvnR4BtjhBVBENDkAB7NgzvQSrIlCZtoR1TlmBmCI0WQdYJigHpvA6IokWpJRtEsR1+eug1ZJyQGqPM2IIsyqRYX6c5UWpr9J/x3mJHx/Qk9R3s/niiCWoh7v/k1U7pMoldq6Qk5hiQJOJ1WWlp83znNrw1VV3lqzXP8oNc0RuUMjWprbg1w75MLuGRcMd3zk4/L8b5vmj1B/vPRBu6dNoB+XaOjlL7PZ/PJ5Pu6HzvKvagoEoYoUt/so7k1SJrLgtUsM3d1Be99vZ1WX4isVBvXndeLngXJCIYBokBANaht8mGSRVKSzJhFIdJPirLEC59twmKSGNE3h+bWABaTTLIV0rVaQgtfJli1C0E2Ye83CfuIqTSoVtyeIA6bCXdrgEBIo6LWw38/XB/3vJPsJh67eywOSUUKtaK661CsdgSTBd3nQbC7CIo2TJr3sP1c1jUP4nN0Oea+qLPR7n0sawQEP3XeBqyKmVpvA7Wt9XRJyacl0IpFNuNT/Xy4+Uum9jib/sl9j9tz9XB8n/ejJIkn/flmiAL+kI6mGdz792/Q2hl73nvVYDy+IFmpdlq8QZw2E9UNHnLS7RSnAFu+oWX5p+h+D3JKNsmTriWYXoqo+jGrLRhBP3JSOn7Rhk8XUVsaEbyNyIKONS2bfR6RfU0qNouMlQBpS/8dI2S24Rh4Fhnn3EqT+8SPl042hqLiN3xohoaBQbPfjYHBvtZa3tv4eUxq+2NTHsCqxv8NKyYRVQ5Q52kkoAVJt6Vi0i2gdpi4gBi+z/FqgtOHDpOO1Mbq1atZsmQJ9fX1XH311RQVFeHz+di5cydFRUXY7Z3L0LIjomk6fbqm8fmiPTz0wlKS7CZ6d01FQEDTDYb0yKS60XfYMnHNrUG6ZIT9U+xpNgRR5LPFu3n7qwOd1cZdDfy/f87jl9cP4/NFu1i9tY5kh4nexWnoRrhqBEB9sx9BFBCqtlLz3qOR7Y2gj+aF7xGo3EHKeXfhx/ytHZ0umfALZlTDjp60vyLFIZsIooC9xwhCjVUEq3fFfj4tDQiurpGcVg2NOm98LxaAel8jmqEhHeLzYhgGYsiEExNOJSVcDlv7bi4rhiqiYCVb3p9XG/yOri3795ezf3+yLiJ3oqo9nY228tQOpXM9x2RRxqHY45apbqsq1BnLU7eRtL9MdVWDN0aESXBqYhgGKUkW0DRcFhlDEHjxs03MXX3AAL26wcujr6zgzssHMLxHOppmYJUFumY7AYNgUIvqJ3VV48qzSvnlvxYwY/EezCaJZIeZP1ySief9P9L2tDbUIK2rviBQvpm0y36JxWnBrxk88J9FDO6ZSUmui9H9cwiGdARAUUR2lDdT3eDF7QmiG+DXZBCTITmZSPyWLSV8CA0UNdiuAAOgtTQiOIsOa7Z5WqBKmLGTp9gJKl4eWPxYpMksmVB1NRIBW+OpQ0hJeKUdK6IoIMsSYBAKaREBsG25RZHwhXT6d0tn3Y66uEUbmlr8fLZwNzWNXvqVpOFymDl/TDGiFiC0Zibe5Qcqh6mNVdS99yjpF9yNVjgUr+qEtvk8PZxm+K+ZlazfUYckigRC5ciSiChAUNX51bRSXC3tR7tozTUYWqjd9lMJISRj5YAQ4RN9/OGbf8St2AkQUANR6x+MoUO6PRUpaEYVdEgUREpwmtJhRJhgMMh9993H7NmzMQwDQRCYNGkSRUVFiKLITTfdxA033MAdd9xxsk/1lEDG4KfXDKaxJUiLN8ji9ftQVZ2zR3ShpsmLYYDdIuPxxw8pzMuMNrD1qzrvfxPf9Xzm0j2UFqYwqnsS/TI15J0LwNBRB49kl8fOyj0+7LqHulkvxN3ev3sNRuNeqK/EWTwQr+hAOyTywyyGUILNeFZ/g+ZpxNp9BEp2NzyGLTLIVCQds9qCd+MiEATsvUaRMuFKGr5+JaqqkpKeT/Cga5MMmV7p3dlSF79EaffUYhRBSWSxJvhWOqsIA+A0OWnwx5b1basq5OrE6UiCIJDiMFPd4D3Zp5LgJOENalECzMG89NlGBnQbBwjsrWph3upK7FaFM4bk47KbokrX2hSRh+8cy8K1lSzbWM2lo7IwFv+XeC/uodo96E2VkNwNdJ2SfBfTR2WQHqxA9a9AcqZi6z6MQM1uWnvbqVe68Pq86nClpG8RTwTFgmC2YQTi/6aVtDwCh5loOR2RkMm0p1PjqQMgoEW/HZamdf1eomBOReyiH72xHO+GeQgmM/a+k9DtabRoZvZWtZBtCWJx74Y9K7m9SwraxJF8strNZ0v3Re2nd3Ea2akWipwhzO692FId+HZ/RaiuHFNGPs5pv6Rx7hsEqw5MsDV+/TIZ1/ZCJdqQWhCgb9c0Vm+tRd0/qFQPSofxqCLmnG54W5bGvSZzlz4Iigk4/SrrJZmT2hVgJFHCptjg9NCnEiQ4ZjqMCPOPf/yDOXPm8Pvf/54RI0ZwzjnnRNrMZjPnnHMOs2fPTogwxwnDCHdAs5eX8cXiPZHlX68sp1dRKj84tycXjO3Km7O2xmzbs0sqLpspahDY4g22W2p65eYafnJxd9zfvExo0fwDz+X1cygu7Megc+8E1d9uVSOAQOVWWtfPo2nOq2Rf/SBeywHzXJOoom1fSN2s5yPrezbMR07JJnP6b2kxbMiigdywg31v/zlixObZtBDR4iBz6j3UfvZvtJYGzHmlGNbkcNTKfjTVYELRKD7fPoeAGu0ZIYkSF/Wcgh5KOLon+HY6swiTZHJQ54uNCKtt8uGwKpjkzh1BlZJkZl99QoQ5HREEgYrDVMdq9YXQgUdfXs6OiubI8k8X7OKySd04d2SXiBCjqjom4Kxh+UwYlEeS0ULlF+2XZfXvWsW2zAw++GY7D0wrwf3u/9HcfKAvdC/5iNQzrsVUtYW0qp38evqvUEViJiIOJSDZcY26lKY5r8S0mfN7YlhdEH+O5bTFpFu4ut/F/H3xf2PashwZZNuzMIIJEeZocUh+Gj76a5QPX8vKL3EMOYfNzjEUZ5jh80dpPeh3z4qPuWjizYTULGauDBskdy9IprrOw6C0FtzfvIJ5+Pnse+33oIV/yJ5NIJhtZE69h/ov/4faFN5O8zRB0AdytAijqTpjB+Ty3pzteA+ZcBRFga5dMnEVX4F32/KYqDLBbMPWczSC0HFTaE4kZsHKyPxBLC5fFdM2pWQ8FqyJickECb6FDvP0+PTTT7nyyiuZPn06Lpcrpr2kpIS9e/fG2TLBsSAIAtWNvigBpo1NuxuoqGllRN9srj+/N3ZLWKuTRIEJg/O47+pBtPhCNPtVVMIeMyal/RewZKcFsWkvoc3zY9pCZevQy9cjSjIcpjMTLQ70oA8j6KPuo79hOWjmwaS10niQANOG2liFe9E7mCUDi+HFvfxzMi/6MZmX/pSsy39O2tm3IFodNMx5DdfQ87D3HkvaRffi02PTKiyqjd9NuJei5PzIslxnFg+Mvwe74QybNyoBWsRG3EIDquJHkhLCTIJomgLNmCUziqSc7FM5apJMTurjRcI0dW5T3jZSnRb21Z98r5IEJwMDh7X93/DA0gzmrCyPEmDaePfr7TR7oiMmREnE69doagkAAoIpvqeZrXQ4jl6jKTI38f8uyEFqLMPQYpWRhq9ewdlvAqGGffhXfIz0La83oijgVwXE0rG4Jl57wHxUlLD3HU/WJfcR4Mh81jo7giBgKCotNLOzoQy/6EGQ4wspmqbTzdWVHw27Dpc5nEohIDAopy+/GnsXcqjzplyeLGRZwL9lUUwhBIDWFTPol6Fh2vQ5anPsJFxgzv+YOjQNSRIY3T+Hq6b0wCl6afzoryQPO4+6Gc9EBJg2jICXhlkv4hp+/kFLBQQ5ts+VJIEU2c9zd/bmP7d156HretK/JJXcdDuP3DkGq1mhUUgm48oHkFMOlLo255SQfc0fCMhJx/7BnGREGVTFT7NQT6vUjK4EYwpMHA4hJPGDfpczpWQ8yv5iEWbZzMU9z+b8kjMTE5MJEhwBHSYSpr6+nh49erTbLkkSfr+/3fYER4ckC3y+aHfctqG9snDYTPzp+aUU5SRxx2UDMCsSmak2BMHg1/9eSO1+H4iMZCs/uXIQ2alWctLscV9izhmWQ+tBebqH0rLiU0xd+mPrMRzv5sUx7YJsQk5KQ9ufmxtq2IcY9IBsQZZFfJtWxmzTRuv6uThHXQYhD/auA6ib8Qy6P3yOckoOaWdeT9P8d7CWDELsOYkWLb6YpOuQIqbx0xF34DfCv8MkiwMhKBPSVPYFK3hq2YvUecPnmGR2cuuQq+nqKO7QZmMJvl+aAs04O2EUDIRFmOaAG1VXoyp01TT4cNk7/8tJWpKFptYgvoCK1dxhusYE3wOGARkpFuxWBY8vNoZ+yogu/Of9de1uP3v5Xq4+s3vYI0YQWLyhipc/34wvoPLGL0fi7DcB94ovorZJmXg1RijAvld/jxEK4AcCWUVkXHAndV/8F7Wx6uAzJFC1EyWjAM/ar3EMn0rwkNSKNkRRoMET4rFXV1BZ52FYz0wuO/sBclwSVpsNTbYjJyVB46kvOIqigF/y8NSyF9jesBsARVK4sPRMzugyFiEY+2IuhGT6p/Sjx8RuBPQAsihjxoIQkhL+OceASfNRv3JGu+3axq+Q2vUuMrA3befBW0cxf3UFj7y0nL9dX0TI0wyihO6LH70WaqhETjpQgt1c1J/N1Sq52UIkYk0SweLdR91Hf4/ca06Lg5+ddRPkD2VrlZ+HXlhGY0uA/EwH10+6i955FhRFRpOteA0zYicN9TBkleV1a3lt3Qf4QuHxbF5SNncPvwmXmHJYP8iDEQIKl3Q7n/O6TSaoBzGJJsyGFT3h8ZIgwRHRYd4Oc3Jy2LkzvucGwMqVKyksLPwez+jURjeICb8EUGSRC8YU8/irK6hv9rNicw2PvbqCP72wlHv/Noe6Jj9u74EnbG2Tj989uwh/SOfn1w3FYY0e1DisClOG52OE2hfQ9IAfTdNJnngtSmpOdKMok37e7TQv+SRqsaGHz10QBIxAeDCppOZiGnc5ypnXYu49Oiz1ayqCIKB7mqmf+XxEgAFQG/dR88E/SBl/JZqmowsSVsGPVQwgy7G3hq4bCCEFq+rEiYtkaxK6buATPfxp3j8jAgyAO9DCXxc+Q5PWiJCYEEiwn6aAG3tnFWHMTgwMGv3R0QA1TT5SnJ1fhElNCl9DdWMiJel0xCwK/ObG4ZgPierMSLZSnOPCH2g/d6dlf58oSSLbK5p55oP1+Pavr4WCWLsOwpRTcuBYud0QJIWmBe9ihA6kuAard1P78ZOkTrom5hh60IcoKxhqMFypqR38msGvn15IZV24r1u3s4G5G5tZtsNDQ0BCEzpfFN7RIIoCKCqaEiCk+Hlo/j8jAgxASAvx3qbPWVy5AkmO3zlrqoEcsmDXXJhDdghJp00VqeOPcdjxnxH0xo1SacPX4ubFTzcyY/EeAiENNA1BlDDUw7/pC7KCoFiQXZmow6/hkdfX883qSiQpPLazGS1Uv/a7KLFT97dS//ETiM3l/OudNTS2hO/N8ppW/vTmFq77+1qqVSc+zXTEQkVHQ5IE9njKeG7lGxEBBsKlpf/4zd8JykfX/+khASVkxa65UEJW9HYek5IUjkjTlACC1Dk/uwQJjjcdZrrvggsu4Pnnn2fKlCkUFRUB4RdsgLfeeovPP/+c+++//ySe4amFYMD4Qbms3FITtXxE32y+WVURtzygbsBXy/cydkAus5cdSA1TNYMvFu/hioklPP7jcWyvaGZ3pZui3CS65yeTmmanuedo/GUb456LrccIVMmKX4O0ab9Fb6wkUL4RUbFgzupC85JP8JdtiKwvmm0IFifooKoa1pLB+FPS2WWR+XTvUlpbvPTPKeGcob9BWT0XQxBpmvdW3GMbIT/+ym04B5yBb+VHtGxehCCbcA45F0fRQFq1w4dsS5LAV9sXoMbpeQwM3t80g5v6XQWhDqN3JjiJNPqbcJocJ/s0jokkUzg8v97fQIYtXEHIF1Bp9YVOjXSkpPC9vq/OS1F25w0zT3Bs6LpBdrKFf9w3gU27Gqis89CjSwqFWU5MksDQXlnMX1MZd9sJg/JRVZ2QAS9/vjmqraIxRPLqGSQNnIw44iL8FVuxlw6n5qMn4u5L8zSh+1qQktLR3HWR5Zbc7riXz8DSpS+qaI7yLWtDlkUWrNkXEYCG90zjpgkZsPYTtI07oDwNadRlaEoJHWgO7rhhKCq7W8v5YMsXBNUgl/Q+l1pP/MqGH2z+gmE5A5FPk7Ssk4UmWrB2G0Lrmq/itiulowltX9L+DnJ6s3f2gbR5v2hDBiSrA0Qp4vF3MKLZBqJE1tW/p8pn4sHXNuPxq7z39TbG9s/BZpLwblgcJYAejHvua5w/bBovzopO19d0g08X7uKqM7qjaZ0zDCYkBnlj/Udx2zwhLxtqtzI4ddBxvT7DFGJz0y4+2TqLlqCH/lk9uaDHZKxC55yQSpDgeNFhRJjbb7+dNWvW8IMf/ICuXbsiCAIPP/wwzc3NVFVVMWHCBG644YaTfZqnDJqm07sojZx0O/vqDkSHZKfaWb21fYPcsqoWxg7MjVm+vbyJkKajCNCnMJn+xalomo4oCgiCgKVkMLIrIybvV7Q6cQw4kxY1LPp4DCtCcjesmSWEtiyg6s2HYo6VcsZ1BIRwKLZhQMCVzjtlc1mw5YBB2MzWWuZVrOL/Jt2HYUCwrrzdawrW7KFpwXu0rPoSAMFkpXnR+8ibF5N89u149NhBWptAqKKysynWV8dldmKSTVS4q1CNEBKdP1IgwXenKdBMjj3rZJ/GMeFUwuJRvf9AxFdbZaRTIRLGrEgk2RQqE74wpy2GbmASYHD3dIb2yAhHSOoGhm5w5VmlLNtUTSAY/dJXnJNElywnum6gE2vw++Qnu3n06mlUvfxbRLMFU3oB1q4D0FriiwMAwboKFFdGRISxFvcn1FiNoamknHEdHl0hXrUlQRTYtCd8f+ZnOrh5lA3/uw9EXlTVpmpqyjaSMv5KlL5TUDuxECPLIoZB5GXRkFW+2P01H2+ZCUCX5Dz2NLXf77cGPYSM0GFFGFkW0XXQ9c75wt0RCGgCSSMuxrNpEUYwuoqQkpZHjSkfV+9k2LosxvzW0nUw6+sE/Afdcx8sq+O60VfQunEhrqHn0rw0OkoaIHns5TQvfB/fnvVYLvw5DqtCg9uPx68SVHUcJgF/ZaxHTRuhunLye8WfWNhR3oyqG3TWAGdD0Clv3tdu+7aGXQzLGIxhCBgGkRQ8URQwDCNuRJgghMfE8aKDDEXlrU0fMXfPAaFtZmstc/cs5Y+TfopDSE6k+SU4bekwPbDJZOK///0vDz30EAUFBXTt2pVgMEiPHj3485//zNNPP40kde7qGx0NRYAHbxnJxRNKcNoULCaJNJeF3Iz21emsNBsN7tjZg/xMR7hsJuEZxVBIiy5hLTrJvOr3OIedj2ixI5gsOAacQfa1D+EVnVH7MgwDbwDkrsNIv/g+lPR8BEnBlF1M5rRfI3YZQuigcXBDyMOCiliHdr8a4JV1HxKURJTkzPY/h7Q8Qg2VSM5UzFPvxnPpXWwbfyENI87CY/iiU5Mkg5DJx2b3FubuXkJICJDrPPBS3TujO/9v7O1M73chU0rGc8uQKxGlDnObJTiJaLpGS7ClU1ZGgnAlMKfJQYPvgDlvmzdUsqPzizAAaS4LFbUJEeZ0R9P0qD7MMMBhknjs7nGM6Z+L2SThcpiYdmYpv7phGLKw/0UFyEixRu2rrLqFt1d4ybnuT5hzSwns24Hu9yLa2o+2UlJz0XytSM40ksdNwzlgMr7yzeTc8Ah+c3r7Ly1GWBQCuGpcNurc/8WNFGic9xay1jl/54Y5hFdpZmXDKja2bCRo9iCYdAL4IwIMQJO/hQx7arv7schmFCH+PKRhDuCWGlhWv4Lt3m2EzF46oZd6h8ErJZF9/Z+x9x6HoFgQrU6SRl5MxrTfYHGlM69MxHLZg5iL+iPIJiRnGimTryf5nB+SnZdFz8IUFFkkN93OoF652PpOwtp9OHJaHmln33LQGLErGRfejequx7d7LRg66tz/cdW4bADMJglFFtERUdLbtzeQkzOpaY5fXzkv48BYtzMiGAKZ9rR22wtdubQYzaxtWktFsAzN4qeR2vDfoXI0kz9i4CuKApoSoEqtZG3TWuqNGnRTMDJJCdCiuqMEmDYCaoBX1r6LYUoYyCQ4fekwkTAQVlKnTp3K1KlTT/apnBYYhoEMXDK2mPNGFQEGZkWitDCFuasq4m5z5rBCnnhrddQyQYDzRhejqe3PFhmGQYtuxzTsCuxDLgBAFSy0aAK0U9rap5uQcgaScnkpEjoaMgHMUeKOLEusLG/fMHFN1SZ86LjGTqf2vb/EriDKWAt707rma8TL7uHhNW9R4zkQAp5lT+eX4+7CJNgxJI3NzVv417KX0PYPbBVR5neT7uWrnQvpn92TcV1G8I9FzxHUDnTgI/MG8YP+lyMEEqO40xl3sAUDcJg6pwgD4ZSkuoMiYaobvZgVCYvp1BDI05Is7KluOdmnkaADousGDpPILRf25vrzegJglkQ0TY/EpJhlgelnlvLk22uitn1nbhmLNzt47LY7SNUDCJKMa9QlNM5+MeY4gtmGpXgASvEgBEHEECXQQthz+uDR5UODBaIIhTTG9M/lzVlbyXeJqI3tzHgbOqGaPYhZ/TqVt4VuCfDuxk+Zs/uAgb8sytwz8iY8oegoi2a/G6tsIcnsxB2IvafP6TYRMza0QyKKdEuAZ1e8xtrqTZFlFtnM/WNuo8BSgBb/3TzBYdA0aBVcWCfeiHP81WBAULLRoho4zXDGsGI0A6zn/BiTEEI3BIKiDY+qk5ci8NNrBqMbIAAmScCv6UhZfTAZfmRZICO3O6H6CtTmGhrnvonafCDNXm2qJjcpLAqcO6oIiywSCmk4+4ynefEHcUVK55hpfPxeTcxygIvGdUXvpKlIAIpu4fLe5/PUsthnjyIpdEnO574v/oBZNnPvqFv426Jn2dV4wH4gyezk1+PuJllOpRU3D837J/XeAxMzuc4sfjbmR5hCViRJZHXFhpjjtLG2ejNV3hqybJmJ8XGC05LEFP1piiAIGKJAQAefqiOL4cgYLaSRYle47+rBUS9WZkXi7mkDMZvCHVgbVrPMz64dSpLlyPS8oAoe3YpHtxLQvn02QdN0fLqFVt2GT49nhmYgCe2/ALYp8kJmN5LHXxU2692PaHGQNe2XuNd8hTT2Yp7Y+GFEgClw5XLj4GlcPeBiylv2IVt0gqIPWZK4afB0SlK7AOHoAE3XuHXoVZxfOpl/L3s5SoABWFyxioXly9o1AUxwetAYCBvaOpTO6QkD4ZSkOt8BEaZ2vymvcIq4T6e7rNQ1+cMGkAkSHIJhgKHpyIRnsA71TVBVnYHd0rl4QklUuVeXw8RdVwzAb5hw6w6aQxbMpaNxDDobhAPDMMmRQtZVv8MjOPDoNlo1C56Qgke3EdDkqFQASRLREPDrBiGDiOGoVRH53c0jEcRvGd6Jncts1mSSWVezKUqAAVB1lU+2zCLXmcl9o2/l3lG3MKl4FCZJ4Y31H/Oj4deRbjsQESMgMK7LcM4sHo8Wiv4AFKvAzB1zowQYCEfV/mX+0/jEzhk91FEIqGJ4/GdYCakHoszQDSTDIKjLtGpWvLoFdf+knq4biIaBjIGEEbnnNM3Ap5tpDZkJtTZR+9ETNH7zRpQAE0GA8YPyuGBMUURA8ctJZF7xS0TLQZMiokzyhKuRsrpxxRndo0y6LSaJ+68eTLK9c4sFmqbTK62UqT2mIB707HGaHdw/+jbe3hBO7zqjeDQzd8yNEmAgXHTioflP4pc8PLbw6SgBRkAgy5FBZWsVfsWDLqvI4oHPUBZlxnUZzk9G3cy9o2/h6v4XE9JDifFxgtOWkxYJc9111x31NoIg8OKLseptgqNDEAWafSr//Wg963fUI4oCI/pkc+25vbDJ4bzO/kUp/P3eCTS2BDCMcOUQsxR+SD5x/0Tqm/1IokCK04xJEjBO0myaquoMzu3LmxviG40NzxuIYpjw6SKm3meS02s0eksDgqSALRlVsaMkr8ebkceeHZ8CcF7pGeQnZfPh5plUt9ZiVSycWTKO0rRi/rn4BVwWJxeUTmZIbj8qW6r5YvtcbIoFXygQiZA5lI+3zmJk7pCEN8xpTFNEhOnEkTBmJxUNB2bXqxt8p4QpbxsZyRYMoLLOE0nrSJDgaBANg4vGFHH2iC7UN/vCXkN2M2YZ9IOiPj2aGcuIK3AOOx+tpR7RZAGrCx/2qPXiYQgC2yrdPP/JRipqW7GaZc4ZVcT5o4oQdZ2CdBsmRJozuxCsifUsQ5RRMgrwd6IoGK/QyidbZscsH5jdh7NKxvLi6nfY0bAHSZQYkTeIn465naeWvsjzK9/kuoGXkW5Lxa8GSDa7MGOBwIGXQ0EAzRSkwlPHzB3z4h4/pIXYVLuNoWmDCYU6byTEqYZhGMipeSCFq2EeipJegCszgxvOLQhXl9hPSBPQU7uRdcOjGJ4mDC2E6EwjKNrwqSKDu6fzxH0TqHcHEARIdYbHwJ0pcqw9hKDClC5nMLFoNA2+RkyyCafZzj+XvMCO/ZXE+mb14LEFc+Ju3+x3U+9rpOGgSomSKHHX8OvZ3rCHJ5e8gDfkI8eRxV0jb4B14Qjgu0bcwMK9y3lqyYuEdJWi5HwK+11ERUsVwTx/Ynyc4LTjpIkw8XKaq6qq2Lt3L06nk4KCAgDKy8txu90UFhaSnZ39fZ9mp0EQBJT9qn0opB3W6Mob0vn5k/Mjs726brBo3T6aWwP8/NqhKEbY08UkQFbSgYdim9BiEiAn2RKz/GRhFxxcUHomn2ydFbU8yexkWp8LQQ2r/UFdQhWTkFOTgf2fU9DAOfAsalvC6Vfd04rJsqfzzPLXIvvxhfx8vHkmA7J6c+fw61hVtYGt9bsYlNMHp8nBwr3LaQ0qcWwSD9ASaMUQOn/nneDYaQo0o4gyZqnzihYuUxItwVaCWgiTpFDd6KVXl5STfVrHjTSXBYFwSdKECHP6oigSghDuG9XDpNm2i25gFiE34g9joGvhanptESvBoEZAlwmQBM79vzU9vO7hkGWRDWVNPPLS8sgyX0Dl/Tnb2VHexI+vGAC6QVC0kHrej6h+9bcxVWDSz7mFkGTff7zvl3ifbdsywwgLIiAQCqmHROoYNPqao/blNNk5u/sEHpv/NNr+PC1N11i4dznbG3Zz25CrWVK+iiJXARbdTnKajcZGT8x3qilB/rb4GS7udTY+tf1yyjWeesQMkZPywZ0GSJIYLmVsEBVx/W0EBCtp5/yQ+k+filouyCakCbewriJAr0JrpOqnaX+Ut6rqtOo2sIYLPWAQqTpm6AaKANmuA2PgU0GAiaCKmLCRLYev3ae1RgSY/KQcXGYn/TJ7sqF2a9zJxSZfM/0ySzFJZuq8DQzI7sX8smWsqDxgD7CvtZqFZcu4qMdZFLhyeXnNu1S4D5QE391UziPz/s19o289ZaJpEyQ4Gk6aCPPyyy9H/b18+XJ+9KMf8cc//pFLLrkEWQ6fmqqqvPfeezz22GM8/PDDJ+NUOzyaIFDd4OWrFeUIwBlDC8hMsSLFEWIESeT9r7ZGhdtnpFi55aK+VDd4eeaD9WSl2pg4OA+7WaIz6AaCKnNO8RkMyenH59u/xh1oZUhuf4bnDsSsWdEMIzzTpQTZ01LBgrJlWBUrE4tG4lJSaFXtJLmyEQSBM0vG8vraD+MepynQTIErl3pfE9vrd1PurmJcl2EIwIebv2RE/kBi5+nCFLhyEY1TwzcjwbHR5G/GoTg69WCjrUx1g7+BFFM6Ta3BU8aUF8AkS6Qkmdlb0/rtKyc49RAFfEGdL1fsYW91K/27pTGgewaW7zgDLggCIQM2lzWxcO0+UpLMnDGkgCSrgnCUOUF+1eB/H8X3WVi7vY5mb5AUq4KuG/gtWeTc+Bie9V/jL9uInJxJ0tDzMaXl4vYZfJ9igiCBX/Qwt2IVe5rKKU3ryuCcvoiCyJyypextrqQ0rZiS1C6sq95Mv8xepJlTEULh9A8Zma6phWyoOVDVZmLxKD7b+lVEgDmYGk8dPtWP3WTj022zmVA0CjmQHnteAtT66tnZWEaT302WPZ3qg3zhDqZHWkkiCuYEIIoCQR3W72xg6YYq0pOtTBqSj8MiH9H9EdIlyB2A6bI/Im6aieGugaxS9G5j+cfn5VTWlfPIXWOQBYFmb4iv5u2iyRNgTL9cSvJcKEL8ieHTCZOg0C2liKm9p1DjqeeTLbPJcWZybukkFpYtZ96epVHr5yRlUZxSSFlzJX0ySxmeP5A1VZti9vvp1q+4Y9i12E3WKAGmDQODDzd/yT0jbjlh15YgQUelwxjz/uUvf+HSSy/liiuuiFouyzLTpk1j586d/PnPf+btt98+4n3u2bOH5557jjVr1rBt2za6du3KJ5/ElrNzu9088cQTzJgxg+bmZrKysrj66qu56aabvvN1nWg0QeDp99ezYnN1ZNns5XsZ1Tebmy/sg3hIxxJSddZsO1Am2maRueuKgTzx5irqmw/MAL03Zzt3TxvIoJLUb5uY6xAIIZksOZeb+l6Nho5kSGhBI2K6p5mC/HXRf9jVdCC/ddbOeZzX/QzO7XomCnYmdhmFVbbQ5HfH7D/NlsJV/aby268ex3uQAeCnW2Zx/5gfkuXIwG6ykWZLicqRbeMH/S9F0U0xJoAJTh+aAs2d2pQXwGUOz9jX+RpQveFrORXKUx9MhstKWUKEOe0QRIEd+1p46MVlEcFlwdpKHFaFh340hiSzdMxCTMiA3/13MfvqDniKfDxvFzec34tx/XOPSogJhLRIVbJ4bNvbxKheWWiajqZDC06UgVNxDjgPQ5DxI2K12MD3/fmbiJJAZbCCh+c9iaqHU0YWl6/krQ0f8+ORNzF3zxKqW2tZXL4Sq2LhxyNv4smlz9M3qyeXlZ6PEFIQQ2am9b2Q33/1V4z9/WhRcj4zts1p97ir9q0npKksrVjNF9u/4Yo+5zOpcCyoByZEJElk476wsDNrx3wu6nkWz654PWZf2Y4M8pzZ6IGECHO88WsGDzyziNrGA7/rD+bu4I5L+zG0R+a33h+iKLB2l5d/vbuT0X1GkeaS2L03wIpZ6yMZSJpmMG9dJa/M2BzZbv7qSvIyHPzulhEd52XoJGE2rNw67Gr+PO+pqIizL7Z/w3UDLyOohVhSHq5C2jujOxXuKt7e8GlkvU+3zubukTfy5rqPKXdHG4IvKFtOXlL7mQzbG3ZjHM5xPEGCU5QO89zZsmXLYasi5efn8/rrsR3j4di2bRvffPMNAwYMQNf1uEq31+vl2muvRZIkfvWrX5GWlsbu3btpbe34g3BJEti4uylKgGlj0foqJg0toDQ3KWrgKIoCSTZTpLObPLSQj+ftjBJg2njq7dU89f/OwCyGB1EB1aDVF0KWRexmGVnoWOGZhmHsr1wgRokdkizwTdmSKAGmjc+2fcWogiGkCRlc1ut8GgKNCAiRQV4b55WewatrP4gSYAA0Q+efS57nT5N/xstr3uOHQ3/AJ1tmsa56MwYGqdZkrht4OXnWPDT16D8rUdHx48er+rBIZsyCBVGVO5WhYoIwjf6mTu0HA2BXbIiCSJ2/gYAnPKv8fUfCGCE/Wu0u9KZKDG8zhq4iSGZERwpiah5iamHY8+kYyUyxsnxLLYZhdOqopQRHR1AzePTVFTF9WqsvxD/eXMUvrx0at5KBKIkEVD3cN0oiNrOMIh7oG0VJ5L3Z26IEmDZe+HQTQ3pmYVeOvEaCLImIYvuROckOc8xYJ2yCGh7uySdh1BeU/Px90bMRAaYNvxrgpdXvcEHpZJ5b+QYQTv99dc37nFd6Bi+ufodxhcPJlvPQdZ10JZ2fjb2dF1a9TbWnDp8awGG2x6QpteEw2dnXcsCo9e0NnzIktz8uORldDd/bhgHJlrC4XNZcQWVLNb8Y9yMMwyCkq8iiTEAN0C2tGDlgRU+kIh1XBEnklU82RgkwbTz9/jqe/OkkbCYJf0jH4w9hNclYFBERIzIOMgwDp13BH9T4alVsRTBFFglqepQA00ZFbSsfzd3J5RNLOnXVo++KKqi8tfbjuPfSy2ve4+djf8TyyrWMKhjMmIJhMWPkoBbihZVvc9fIGwhpIeym8FihJeDBJCtsrdvZ7rGtioVw7asECU4vOowIk5mZyWeffcb06dMjqUhtqKrKZ599RmZm5lHt84wzzuDMM88E4Be/+AXr16+PWeeZZ57B4/Hw0UcfYbOFcyNHjBhxjFfx/aLq8MmC9h9sH8/bxb3TB3JwKIsiCkydUMJfX1sJQN+SND5tZx+6ARt31TOoezpz11bx2heb8QfDaUwFWU5+es1gXBa5Qwkx8QgKfmbtjG+2BzBn10Kml15KKABp1hQG5vRh1b7o30qWPZ29zZVxt/eF/DT5Wri5/1UECHLToCvRDQ1N1zGLZky65ZgEGMMU4oPtXzJrx7xIuHWv9G7cPvRalJDttA+f7Ww0BprpZi0+2afxnRAFEZfJSb2vAV+jF5MiYj/CymjfFd3TSGjbQrSKjWBoCGYngtUBgoTh9xCq2wXbFoJsRi7sj1wyAtF89JWoslKs+AIqdc1+MpKt375Bgk6PIEBVvZdAML4PxY7yZnxBLUYs0QWBpZuqefHTTfgCYYEhL8PBT68ZTIpdQdcMAqrO7OWxEwBtLNlQxZSh+UfsPWOWBUb1zWHB2tj+yCSLFOUkdbg+2R100xKMH3lT1VpLitUVtazcvY9MexoAX+6Yyw19rgpPsIQkujm68avxP8av+rEoFnwhH6+u/SDuvgfm9GHWzvlRy77etZCi5AL6pfdCCCpomk6fjB6Igohu6AzO7cfGmm18vGVmpNJhl+Q87hpxI0miFf30fU8/IQRUnYXr4pdSFwSBQEjjw7k7mLVsb+R3PaB7OndeNgBFCAsxhgG5aXasZjlyHx7MhWO7sridYwDMXFbGReOKO84L0UkgiJ+V+2LfkSAscjX4GvnF2B+xcO9yHl/4DLcOvQq7YsMT8kbWq/c1RsalL6x6m231uwBQRIXfTvpJ3AlOgLNLJoTHyYlI8QSnGR2mRPUtt9zCihUrmDZtGm+//TZLlixhyZIlvPXWW0ybNo1Vq1Zx8803H9U+xW8r0Qi88847XHbZZREBpjOhGwb+QPvmZf6gGvOirmk6/YpTuffKQdx4QW9cDjOK3L5XiSJLbCpr4n8fb4gIMAB7q1v4zdMLCXxLFYeOgAEE1GC77Z6QDwQQFYOPNs/k3O4TyXJkRO/jW0IlA3oAs2DBErKjBK2YQw5sWhJSyIx2DJ+RpMAXO+fwxfZvovLdN9Vt57FF/0FTAofZOkFHQzd0moNu7J08EgbAaXJS52ugutFLqtNywqNFDEMjtGUe/jnPotfsQCrohzJ4KqbBF6D0mojScxxKnzMwDbkYpf+5SJldUcvW4J/9NKHtCzGMoys3nZUS7gv2VLWciMtJ0CER2hVg2tAOefuWJIFdVS08/d66qBe/itpWfv30Qvz7hXdJErhkYjduvKA3k4YUYJKjxyUev3p095BucP15vcjPjBYYZUnkVzcMj1Qx7EiE4lStORg9Tv+q7x+7+FQ/xkHRJ8Gghhyw4NCSkf0WRuUNo39mz5jtr+o3lWUVa2JMRYNaiJX71rGockWkLK5Jt/KTkTdzWa9zqXRX8+7GzyICDMCepgr+9M0T+KVEierjjWG0H1E9aUgBXy3biyAIXH9eLy6d1I00l4U12+p49NUVaAdFT5glgQduGh5zf2Wn2bhwXDEef/u/wWBIwzjNIzF0Q48rkLTR6GvmpTXv8vWuRai6SlANIUuxspVdsfLcyjcjAgxASA/x2davuHXo1THPutK0rkwuHndME5UJEnR2OozwO336dERR5O9//zsPPPBA5EY1DIPU1FQefPBBpk2bdlyPWV5eTm1tLSkpKdx+++3Mnz8fm83GlClT+OUvf4nd3rFfmMyyyOj+OezeF+thAjB2QC6yJEQ93HRBYGd5M58t3E1Ta4Bd+9w8cPMI3pi5hfU76mP20a3AxR//tzRmOUCLN8TmskYGdk1D68BhnCZMDM7py7yy+NcxpnAYmqrjl3zM2jmXxeUruHbgZeiGzr6WGuwmG1mOTJxmBy2B2DQ1QRCwyhaW1i6nf1ZvRP93T8/w4+OLHXPitu1trqQ56CaFWJPBBB2TlmAruqHj7OSeMBD2hanz1SN9D+Wp9UArwWXvozfvQ8rrjZTXC0GM320JgoBgT0a0D0TK641WvpHQlvlolVswDZ6K6Eg9omParQpOq8Ke6haG9jy66MsEnRPDMMjPdEQq9BxKapIFm1nh4KjSkAavxklvAPD6VdZsq2Noz0y2lzexemstza0BenZJ4dc3jeDNmVvYuKsBgOG9s1DVoxMKFQF+d/MI9tV72birnoxkK326pmGWhJNerTAeqdZkJFGKW2XFplhjJoucJjuh/alLYwuHIegS7ZkISyETNw+5impPHWurN+EyO+ie1pXZO+fHmIkCDMzpjdPk4JMtsxieMxAZC2gCXZOLyHCk8Zd5/457nCa/m91Ne+np7HlsFbMSxEWRBLrlJ7O9vCmmbfKwAvxBlS8Xl7F6ay3pyVauPbcXlXUe3pq1lVa/SpI5PImo6wY5KVaeuH8im3c3UtXgoUdhCnkZDkRdZ0TvbD6eFz/qe1BpJoooRJWwPp0QpbA3Un5SToyfSxvFKYV8sOkLAAQEMh3puP3RExXJ5iTcQQ/VrbUx2y/auwJZlHjkrF+ypmoTfjVA/6xepJpTEQPHnj6cIEFnpsOIMABXXHEFl1xyCevXr6eyMhxqm5ubS9++fWNSlI4HdXVhB/xHHnmEKVOm8Oyzz7J7924ef/xxvF4vf/3rX7/T/mX5yAON2spWtv3/SJkwKJ/PF+6msSU6MiLNZWFUvxyEg85DNeCDOTv4ZMEBhbq6wcv81ZX87NqhVDd4o/JyR/fPQRLFuLnsbWwra2JYj0zam8g71us6VgRBiJS/jGDAJb3PZVnlGvxq9OdU6MqjyFWAqAn4NT+aodMcaOHJJS/gsiRxXvdJqJqKO9DC9L4X8t84hn0XlJ6JSTLxv1Vv0SejO7cOuQaTemRpDIIQPucYHwI9GDUTdyg1njoyk7OOe0rS9/19fZ8czf14vGnxhIVSl8WJdIJnqtsiAMP/P/4vCymWJLY2bodGL72LUk/Y9eieRoILX8dQg5j7nYXoPArR0WRB6joYPbOI4NYF+Oe/gGXIVJTsbke0eXaajd1VLciyeErfEyeLk3kvtnHo92qVwmkLH8V5Ubvt4r7YTGLUczqgGZRVtx8tZbXIvP3VNmYs3hNZVt3gZeG6ffz8uqFUN6wlN91OZrKVY/lpSUBxlp2SHCeGYRw4N/Hw9+PJ+D1LWLms17m8tSG2MMJlvc+NSRm6vM/5zNwxjxxHJj3TuiFo4d9MvP7SK7bywOxH0XSNAlcuFtlM36yeLN5vInowJaldSLEm84ev/869o27GQEeWRTQpxBsbPmRY/gAa/fH9ZQB2Ne2lf1pf4PCRPZ2JtrHbyXq+iaLAbRf35Rf/WhD1vXbJdhIIqvzfc0si2kh1g5cNO+u5bFI3Jg0poK7JR1p+UpRwahMFhvZIRxAy0HUjMkbKTrPSuzg1In62ocgi15/XC0UC4wii5w+mo/UN8ca/4v7nQXvRRoIAjXoDTy58gcv7nMc/Fv8vZlw5JLc/NZ46zLKZUFDlzJKxrN63ISZy5rI+57Knqbzd85u3ZynD8gYwv2wpTpOdUQWDMRtmjA71JpogwfdHh/vpy7LMwIEDGThw4GHXa2ho4IorruCxxx5j0KBBx3QsfX94cXFxMY888ggAo0aNQpZlfvOb33DvvfdSUFBwTPsWRYGUlKOf9U5KOjoPghTgL3eP4/052/lmVQUCMGlIPlMndCMrNTrFam91S5QA04aq6bw5cws/OKcn/3p3LckOM5dO7MaofjkYQEaytd1qDMW5STidluN+XUeLqqk0+JrZ21yBO9BKcUohqbZkLLKZJl8zDa2N/H7SfXy8ZSYrKtdhls2c1XUck0vGkGZLASDQ4kUQhEgH1Ox388a6j/jdpHupaq1ld9Ne7hl1M59t/YqypgrS7alM6TaeHEcmG2o2MzxvIIv2rqDGW0e/rNjw6EOp9zZS1VpLdWstuc5sshxppFiTAQi2+tqdOQTIdKSRnHziUuhO9Pf1fXOs9+PxYqsnbHydnZKG3fT9fLZ2+4kxzM32p+Pfo+FvDZKb6cTpPP7Xo7Y0ULfgNQRBwDXiAkTL0Xu7AGDLRk+9kNYN8/EveQfTsPNx9Bj+rZsV5bpYsLYSl8sWGcSeavfEyeJk34uHcvD3Ou3MUroVJPPWrK3UNvnompvE9ef3oTg3CZslera2scVPdqqNyjiTFLIkkJ1mj3ivHUxI1Xl71jZ+cuUgCrOTSE369v7zRPB9/57PtkygIDmXt9Z/Qk1rHfmuHKb3vQizZOLrXYswSyYKXLlc3uc8RFHkmv4Xk2pNJt2eimEY1PsaqXRXU+dtoNCVR7otBati5bUVX9C6329ma/1OziwZy6Kylfy/Mbczc8dc1lZvxiZbGFc0nNK0rjT5mjHLJt7d+Dn3jb6VFIedXY17mVe2lH7ZPduNeAXIT8rBbjefsGfryaAt6vxkPt+sNjN//cl4Xv5sExt21uO0m/jR5QN4/NUVcYNT3v9mBw/cNIJkp5nk5CN/lvzs2qF8vaKcT+bvxOMLMbA0kx+c25O8dMd3EoZPdt8QCAVoCrjZ0bCHkK7SPbUIm8mKLxRge8NuBAS6pXbBZUnab4J7gAZvEy8ufpu9zZUsKFvO/xtzO59t/Ypt9btIsji5oHQyvTO7s7pyIzcOuoJsZya6oVPhrqJLcj5VLTXkODO5rPd57HVXkmlvf7LEJCkYhsGepgoAXlz9DveNvhW7qfPZQSRIcDzocCLMkaLrOhUVFfj9sVV9jhSXK2wGd6gR78iRI4FwdaVjFWF03cDt9n77ivuRJJGkJCtut++oU3vMIlw1uTuXjC8BASyKiKEbNDYeGByKosD6HXXt7mNHRTPd8pN58v6JCIT3oWsakigw7czuPPXO2phtLCaJvl3Too5zPK/riBEN9njKeGzh01HRI4Nz+nJ1/4v55cxHCOkhzJKJsV2Gce/oW8hxZGE1bOgBaAyEz98kmRmRNzBqBu2GwVdQ3VrL3N2L2Vi7jZWV65lUPJopJeNp8ruZuX0ehmEwqeto+maWsmjvChaWLafE2ZVAIH4kiyAItNDEn+b+kwZfU2R5tiODX4y9C5thxySamVg0itmHzBACZNrTcZlch/3cj5Xv5fvaz/f5Ina09+PxpryuGkmQ0PzQEmi/vOzxQBRF7HYzHk8gIjQfT8y6BcMfHjTZTCItLcf3evSAF9/cFzEMMPWdjF83gbd9T6cjQeo2BkOy4l72CQFPK6buow67fprThNevsnlnLfmZzu/tnjiZfF/348m+F9to71k3pHsavYtGoBthI3tZFAj4ggR80b9BURS4akoPHo8jtBTnJLGtrLHdY28payQ92YqgaSfkOX44vs9nfDQCPZ09+MWoInQ0ZFHGq3v574rXuXHwdAxDZ3PdDp5d/jr1vkZEQeTmwVcyNHMAjaEm/jTvn1HiSFFyAfeNvjXGRL9PRilPLX2JL3d8w/iiEdw8eDpBLcTivSv5aPNMJhWPpjStmFX7NhBUVdxuH6sqw/uYu3sJZ5WM472Nn8ecvV2x0S216Hv7vr6v+7GtCtzJfr6l2RXuvnwAIU1HALwBlZo4FZMg/AxpcPspzLQf1fchAmcNyWds/xwATJKIgHHMfdjJu5cOoIsqK2vX8tzKN6K8laaUjCfLmcHLq98FwuPOq/pOZVzeCEQ9LCircoAqTzUba7cBsKxiDZtrtzOxeDQTi0dRkJTDR1tm8vyqtyL7dZod/Gj4dSwoW8GogsH0z+rF+pot6IbOnF2Lmd7vQlKsrrhVliYUjWJx+YHn5brqzbh9rQQ9HT8NrCNNHCQ4dei0IszxoKCgAJOpfU+DQOC7mZ8eS96wpunHnG8sARgQimMwKEkC0reEKQuAtD8KJHjQPgZ1z+CSCSV8OG9nJKQxxWnmV9cPwyyJR3S+3+W62kOWBfyCH5UQjf4milMK2VK3I9K+ct96cpyZ9M0qZdW+DQS0ILN3LmD2zgXcOHAaIzKGR3ecqsA1/S7DG/KztnoT+Uk56IbBjsY9SGI477jB18S7Gz9DEkSG5w/isj7nYZHNZNrS0ND54dBr8AS96Hr716srQR5b8J8oAQbCVSL+texF7hp+A6qmc3HPs2kJtLK0YnVknTxnNveP/iFyyIx6Ass0nIjv62RzMq+nzteI0+TYX1njRA84wtep6/oxmUJ/Gw7Zie4PD0iS7abjegxDVwksfgc95EfpexaGbMY4Tr9zsctAJEkmsHEOOgJK1/ar4GXur4q0tayJnLTwtZ6K98TJoiN9jod+r6oaflkTAUMzCB3GrqVXlxSmn1nKO19tQ9vfN7ocJu64bADb9ja1u50gAIZxUj+H7/p7FgQwZI0QYXFKwYSgykeQIisjIhM0+3h47lPIosS+lupIqq+AwKCcPowtHIYiKfjw8fq6D2OiU3Y37eXl1e8ysWgUC/YuY0rJeHKcmWTa0zmjeDRzdi/iy+1z+ZK5kW2y7OkMze2PSVaYWDQKRZLRVB1JCPfv62u2MKZwKBOKRjJ3z5LItaRZU7h/zG1YBCu6bnS46lPfhbavq6M83w6UiTj8eDXZYUbiWJ4leuQY2lF6MbXHyfzsAiYfTrOdn4y6mQp3FTN3zKPB18SXO+Zyy5CryHJkUN1ai2EYvLbuA3pn9CDF5CJoBPEEPJgkExbZHEnVbwl6+HjLTM7tPomFZctjKia1BFp5eunL3D78WtyBFgRBINmSREVLNT8d80Oa/W5+Oe5O3t7wGcsOGruOyB9E74xu/HPJC5Fl4cjzjtUfJEjwfXJaizAmk4kxY8awaNGiqOULFy4EoE+fPifjtE4ImmbQsyi1XePBviVpmGUxbqNoGFw4pogpI7rQ4PZjNkkk2RRMonBCZtqPBMMUYm7Fcj7a8iUtQQ/JliTO7T6J4fkDI8o/wNe7FnHT4Oms2rchavuPts5kUFZ/JC1ahJNDZm4ZfCX1/iZkUeKZ5a8RVINc2PMs1lWHTRgtspl7Rt7E0oo1/HvpSwS1ELnOLC7pdQ7l7n3kOrPwaj6Edm6vVtXDvtaauG1b63dS0bKPR+b/m/ykbH407Dqm972QJn8LdsWKXbIja+ZTahB4OtDkb8ZxClRGAjBJJpRgMigGFtPx7UKC62eiN1eh9Jl87ClI7SAIAnJBPzAMQhu/RjDZkfP7xl3XYpJJd1nYVt7MhEF5x/U8Epw6iIbB2cMLmDg4nwa3H5MikWRXMEsCfUvS2t1uYPeMcBWXTvocF0UBj+jmlTXvsqZqEwYG/bJ6cl3/y3GQRDtZtFE0B1qo8zZweZ/z+WrnAgAkQeRHI65nd+Nenlv5Jt6QjzRrChf0mExpejFvb/g0ah/L963l4b6/pHt6Ee9vnMHOxrLIBMlPx9zOv5e+FPF4GZk/mFEFg3lrw8fsaapAFmXGFQ7jkl7nMTC7D6+uex+AZ5a/xlndxvHzsXfgDflxmOykWJN4efV7NPqbuX7AFeRYckDtGD4gpyo2s0RBlpO9cXyXFFkkL8N+Wo+DRFEgqHh5c91HLKtYg27odEst4uYhVzJj2xzWVW/mq50LGNdlOO/sv28GZPfCq3p4fvUb7GjYgySIDMsbyK/G38XfFz0XNTHYN6sHM7bNiXvs5kALAvDO+s+o9zXy45E3omohHvz6b3hCXtKsKVzR93yu7HchDb4mNF1nQ80WnlzyQlS0zrDcAZgwJwpTJzhtOaV7EZ/Px4wZM5gxYwYVFRW0trZG/m5oCJtz3XXXXWzfvp3777+f+fPn8+qrr/LII49w4YUXUlhYeJKv4PhikUVuOL93zHK7Rea2qf0O/2PQDcwi5CRbSLUpyLRv9HWiERSdj7Z9wavr3qdlfy54k9/N6+s+pMnXzKiCIZF1vSEfJkmhwJXLmMKhDMrpgyzKNPmaQYg9f8Gs8snW2by65n32Nu+j0ddMtacOWZTok1kKwDUDLuGdjZ/x9a6FkfSnypZqnlr6IoXJeXy+bQ4LK5ZyaPU+WRYxmSR86uFDX4N6eJ/l7ip+NfsvlLuryDfn49RTEEOm03rg0Vlp9DedMiIMgBhMQrEcn1nENtS9a9HK1iAXD0V0tv8C+12RCvohZpYQXPMZekP7JoJ56Xa2xanYkSBBFAf1jWl2BQXQNQOLLHLtubHeYA6rws0X9UE8zqbq3ycB2cvvvn6c1VUbI+ac66o388DXj+KXvj3VTBSJRLY4TfaIUHJhz7NYsncVH2+ZhTcU7ifrfY28uPodREFiQHb0+MWh2NB0lb8t/C87G8sA0AydRXtX8OyK17hh0BVAOJJlTOFQ/r7ouYgfhaqrfL17EX+e/yQW2cwlPc8BwMDgy+1z+fO8f/HKmvcA+O3sx1lbvYm9zZX8ae4TVAeqI15RCU4MsgD3TB+IWZFi2u68fECHLMX+fRKSffxhzt9ZUr4qImxsb9jNXxc+y/mlk7EqFhp9zaRYXaRYXEwsGsnUnmfzyLx/saMhbBauGTqLy1fyj8X/4+YhV0btX9O1w5asrm6tQ9VVLugxmUV7V/Lephl4QuF7v97XyNPLXmHx3lXUtNaxpmojH2+ZhXaQAJNkdnJVv6kJMTPBac0pHQlTX1/PPffcE7Ws7e+XXnqJESNG0LdvX5599lkee+wx7rjjDlwuF9OnT+fee+89Gad8QhEMg7H9cuhdnMrH83fR4PYzsHsGYwfkYpFiK/R0VPz4mLlzXty2Gdu/4Z6RN7Fo7woA+mb2IN2eyoSikWyr30W6LZX7R9/KrsZyROOgwFfZwC94mLtjCU1+NwNz+lCcUkBJaiFrqjbx3Mo3uWnQNMYXjcBhskc6sUP5YOMXnNN9Iq+t+5DheYNQsCKKAgHZy7KqDWys3cpFPc9q99pkUUY+pATvy2ve5bfj7kXi1DEDPN1oDDRRklx8sk/juKH5bIim4+cFo7fWEVz3JWJmCVJW1+O233gIgoBcPBTV5yaw4n3ME25CjFM6PC/Dzpod9bR4g4l88ARHjWAYTByYR7+SdD6Zv5MGd4DBPTIY0z8Xcyfqbw9FkgW+2rMk8sJ1MH41wKyd87iw6Gy0wxQQ0nXItIeF1nJ3FSUpXVjhW0fP9G6RMriH8vGWmdw69GrWVG2MLDur2zjeXPdR1Ox6G7WeegJakLGFwxiY05sPN38Z96WysqWacncVZxaNZ0B2H2Zs/xp3oIWBOX0odOXx/Mo38akHvAcNDF5e+w73Db894q2R4Pij6wbpThN/v3cCXy0vY9PuRrLTbJw/ppgkq9IhS7F/X0iSyPr67dT7Yn2nNF3jy+3fML7LCBq8TfRK78ZNQ6bTGvDy8eaZUUJIG/XeRloDHq4feDnLKtbgNDvIdWZhlS1Rv/2DybCn0RL00DujlI82z4y7zidbZ3H70B9gUyzcM+pmFpWtoDXoYXBOP0YWDsasWgkax3cyJ0GCzsQpLcLk5+ezZcuWb11v1KhRvPvuu9+63qmAYBikO0zcfH4vNB0kETRV71QDwma/u92885AWigzIrLKFawdexp/nPRVlEjZzxzxuHnwlIiIGIEgGZd49PLrg6UgHtbRiNXN2LeKeUTextnozIS3Ef5a/ypDcfhQnt2/WvK+1hhSri4AawBvykSLaaBGaeHD23yKD1ixHBiPyB7EkTgnNScWjWFq+OmpZnbeBoB7EmhBhOiW6odMcbMGhHN/0mpOFYRgEPWbk9IZvX/lI9qeFCK74EMFiRy4efFz2+W0IoohcOobg2hkEV3+GefjlCId4EBRkOgHYureJwryU7+W8EpxaCIZBhtPEzRf07rT97aGohFhVtb7d9rXVmzinaBIi7fvtAVglK4Nz+jF/z1LuGXUz2+p3Uedt/5niDfkQheh7dEB2bz7ePKv9c6naxA39p+PRvDzZ8GL769VspMTRlUwpixv6XAWizrKqlfx53lNx19/VuBcNFZGECHMi0bVwlNkFo4s4d2RR5P6Jm1N/GiFKsLxyTbvtW+p2MixvAOO6DOeFVW+ztnoTdwy/lo1129vdZuW+9eQn5dAtrYgxhcP4bOvXnNN9Iu9vmhGzbu+M7pS792GWTTTEEYLa8IX8CILAuxs/x26yMTS3P9f0vwQ7DpLstu/dlDxBgo5GIg6ssyEK+HWDBk8Ir6pjCALCUUZlGsb+jkzXw//vZJjlw4sRkiiRak3ml+Pu4u31n8S4tBenFIZLV2uNNAv1hGR/TKgkhMWP+XuW8bOxd5DjzAKg0l2NPc6seRuKeMCYUBEVNCnIv5a9GDVr+NnW2YwsGMxZJeMwSeFBnFW2cGGPMylOKWDu7iXR1yOIMdExCToP7mALuqHjNJ0aIkyrV0PTBDS5Fb927NXp2ghtnove2oDcbTTC9/g7F0xWlJIR6DU70Mpiq7+57CaSHSY27W5/kJkgwbdxaH8rigK6INAS1Kj3hAgaIHSi1ApREEkyO9ttd5rsiEJsCsmhCAETNw2ezg+HXoNJUrhv9G1kOzIOu40ihvtLh8nOFX3OxzDAYW6/P061pqCHBARdwKa0X0Y4xeLCMIzwdxUyEDTpsMb3FtkcKe2c4MQiSCKegEZ9S4AWv4ohHv2Y95TDEEixuNptdpjtdEsrRhZlAlrYcNcX8pN0mLFrktnBzsYychyZvLjqbb7atQC7ycblfc6PlJCWRZkzikdzfukZvLPhU4Ja6LD3Vds2AJ6gl7l7lqDrxgkpGJAgQWek077ZKYrCsGHDImWmTwd0UeCNmdv4asXeyExav25p3H35QBTBOG0mBxyynXRbatxZs0JXHnmObH4//n50QWfFvnVR7UNy+zGqYAgvr3mPZr8bCJfcu6b/xSRZnJE0pja+2P4Nw/MGcE73CRQnF+BXA9hMNiRRQovjPjiyYDDLK9dSktoFq2jBr/vZ3RTtO6EZOv9c/Dwj8wfzp8k/A0NAlmXeWPchn2yZHRMyPbJgCGYsdD65LAGE/WAAnKdIJEx9Y9izSDD7aPQ3k2O3HPO+tNpdqLuWIXcZjGhPPk5neOSIKbmIGcUEN36FmN0tJi2pINPBht3HJ+InQQJRFGgNajz26kp27wv3P4osctmkbpw5tKBz+MSoEueXTmZ11Ya4zReWnoWoyejfYrcpCKDpBrN3LmBdTdj0/scjb8JpdsRUQgLold6N/KQcHj3rATRUXlv7AetrtjCpeHTcktIAYwuHEwppmGQzZ3ebEHdWX0BgSG5/1NDBFbJ0BmT3RlgrxI26PatkPGbDipawFD2h6KLAW7O2MmvZgTFvn+JUfjx9ECaBI6jEdWoSCmlMKh7Dlzvmxm2fWDSKp5e9TE1rHVf1n0qGPY2FZSuYWDyatzd8En+b4lE0+dzYzbZIyepX1rxH/6xe3DRoGoqkICCQZHby1vqPI36Imq6RZHbiDsQaKPdI7xrxagIYnjcQM8c+XkiQ4FSj00bCuFwuXn75ZXr3jjWaPRURJJF3vt7OrGVlUaHM67bX88jLy9G+pZzfqYRJt3D/6B9G1Pk2XJYkfjzyRqyGHSlkRtP1qE5aEWWmdJvAv5a+FBFgIGwQ+J9lrzK+y3AscaJsPCEfq/dtZF9rDQ/NfZJZ2+Zy/+hbI2Wr2+iSnMfowqFsrtvOncNuQFRNaO3ku+qGzsK9y6lurcOuuzCrNiYXj43ZZ35SDtP7XIgeOn2+31ONxkA4EutUiYSpb1IRBUAJ0BRo/tb128MI+giu/hTRlY2YU3r8TvAokbsMAkDdHDug7ZLlpKLWQ4P7u0f8JEgQ1OGB/yyKCDAAIVXnjZlbWba5Bknu+EMywzDIsWZzfunkmLazuo6jwJl3ROlWuhzin0v+FxFgAD7c/AW3D70mph9Ot6Vy69CrUYIWkqVkdjWWsbZ6E5tqt1OQlEPfzB5R6wsI3DL4KmzC/vLyKkwuHkfP9JLo9QSBO4dfj0WPHksAmHUr94y4CVGI/k66pxUzpesEtNDpKQB8XwiSyAff7OTLJdFj3g27Gvjzi8s4jOXQaYFTTOK6AZfHLB+Y3Yd0ewo7GvbQEvTw7PLXGV0wlHL3PrId6fTP6hW1voDAjYOmsXrfRh5d8DRuf7SYsrZ6E/9c8gJ/Xfgsjy98hqqWWm4efCXO/RMWH2z+kh8OvRqrHC2upNlSuKz3+Xyxv8JSrjOLa/peghHq+M+4BAm+L05aJMwZZ5xx1OGcgiAwa1b7+b+nMv6QzqylZXHbdlQ04/aGSLZ22sCmo0LTDJLFVB464+fsbiqnvKWSvKRszLKZ51a8QVFyAWd3m4AZE12S8yLVEIbmDWBh2fK4Jn4GBl/vWsSogiF8vWthZHmS2Ul+Ug6X9j6HdVVb+NW4u8mxZ2ESTPz93N+zoXoL9b4muqcVYZJMBEJBHhh3L4pqQTcMrIqVFIsrUv3hYAQEcp3ZGCEDNMi35PPolN+wtW4H9b4mStO6kmXLQAqaEvNtnZgGfyOKqGCWDu+R0FmobwyS5JQxFEskyudoMTAIrvsCQwuilIw4qaH9gmJGzu+LunslcvEQRGdmpK0oO5x2sWpLDYO7nbiKTQlOfURRoGxfC40tgbjtb87ayuAeGZ3CZUQIyZxbPJkJXUaxtnojhmHQP7s3dtGOEDyycYhH97CtYVfUsj1NFby3aQZ3j7gRn+qnwl1Ft9Qi8l05WFQ7OgYeWumWVhTZ5qmlL3FV/6mc3W0CW+t3YVOsDM8fgEW3R1VeUVQz942+jaqWWtbXbMFpdtA3oxSTYY1foUUT6e7szuNTfsvG2q00B1ronVFKmjkFMXBqPMs7Mv6QzhdL4hdA2LXPjdsTJMXWGe6WE4OgSgzPGsKAKb1ZV7sZd6CFrimF7Gup5ullr0TWMzCYvXM+YwqH8q9lL3Nl34s4q2Qce5orcJrs9MvsidmwoosavTO6AwZZjgyqW2vjHrcktQs2PYn/O+PnlDVXUOauwCyZefisX7CrcS+VLdV0TelCrjOT3Y17Obf7GZSmFZNly0QKmQ9bcSlBgtONk/bWPnz48ERO7VHgD6qoh8mjrGv2kWJLOm3CM3XdQA5a6ZZSzKa6bby0+l0afE0AbKrbztyyJTw8+RfcNOhKHpzzN3RDJ9Oexvqa9o2aK1qqGFM4NGrZjYOmYdOd2EQnk/Oy0TQDI2ggmiSyHOlYdTtgoKo6giCgSwZ60IiEYps0CzcOms5fFz0Tc7zzSydHhWYamoBJszEgZQBCKpFjnR7f6KlLk78Zp8lxyjzvahtDJDkkdJODhkDTMe1Dq9iAtm8zcvcxCObYWejvGzGrG0LVVoKb5mIZfmB20WZRyEmzsWJzQoRJ8N0QRYFdle1HjjW1BNA0A6WT+MMIIRk7SYzLHg2EU3g4wkInghB+LsZjR0PYJP/RKb9hYGp/VFVH8+uo6IRMXh746lF+Pu5HTCoexde7FqHqKi+vfheLbKbQlcuV/aaSLKbgD4ZjJSRJiKRqJ1uTMPwSWXnZ+/1fviXJVxMxaTaGpA0Op09pOkboyK4xwXfDH1QJHcazsKbRR6rddNqMeeMhqBIWHIzKGcpbmz/kn4ufJ6AFY9arcFdRmtYVTdd4de37FCTlcuOQaczZsYhhOQPDwqkqkSXloCgSNw+6kofnPRkjmJxRPBq7ZMcIGchBC93s3Sh1dkfXDfSAQU9HT3on9Yr83cPZg55JPQ8ay56+31WCBPE4aSLMn//855N16E6JxSSHDf3aCfNNTbKcdp2RIAhUeqqZsX1OTJsn6OWdjZ9yZa9L+NPkn/Hm+o9oCbSS7chot7x0jiMT3TCwyGaKkvOZ1uciMs2ZaGrb52qApBOU/JS31uPSHNR66mn2t1CcUkiSnBRTslLTDEqcXfn9xPt4Y/1H7G7aS7otlUt6nUOPlG4QjDUw1LSE+8upREOg6ZTxg4GwJ0zXQiuqYj+mSBjd1xQuR51ehJReePxP8BgQRBEpvy/q9kXozVWIruxIW0luEis3V6Oe2+Mwe0iQ4PDoukFBVvuGtkl2E5LYOQSYg1GPwdzfMCDJ0v5nIQgCkigSCISFFFEU0E0BPto0k5agh9/N/iuPnvNruqUV8+mW2TT6milOKWBa3wtxKHZa9BZkk4xH87C9YQ92xUpxcgFBzXRM55zok79/LCYZSRTQ2hnzpieffmPe9jC0sNAYT4AByHZk4Al6cZmdjO0yjKG5/dnRUMbIwsGsqFpLktlBF1cBJs1CMKiRZ8njj2f8P97c8BHb6neRYk1mas+z6JZazJKqFWTZM8hxZmHT7YQOEjJ13Yh6Rwkb8Ca+owQJ2uP0yF85BbAoIuMH5jFnZXlMW36mA5fNxOn2sFMUiQU7lrbbvqRiNZf3vACH4qAopYC8pGyy7OksLFsRV5Gf2utsUpUUxuWPREJC0hR09aD1ZI0NjZv5etcCzuk+kb9+/QwB9UBoee+MUu4Yel1sqLIqkiXncPeQm1DREBFQdAtaMDGwOx1o8DXiOkw1kc6Ez6/h9eu4nDJBk5Pd7r3ohh7jm9AehqETXPUpgqQgFw/99g2+R8T0Lgjl6wluX4RlyCWR5d3yXcxfV8W2vU10z08+eSeYoFOj6wbFuUk4rAqtvthwiksnlmBVxGMSNTojkiBR6MqjrLkipm1Y7gAEIyxIiaJAE/XsratkacVqADQ07pvxBy7oMZl7R92CJIpous6i8pW8t/Fz7hpxA8sq1rCkfFVkn7Io85NRN9PN2RVOIw+9zopFEZk0pIBZy2LT8HPT7STbzZxuY9720EIG53SbyNe7F8YVps7pPonWoIdp/S5kn7saQRDZXLudV9a8F1lHFmV+POImujm6YmgiqUIGtw+8Hk1QMQSNV9a8H5Xm5DI7+dX4u0iW006bZ1aCBMebkybCLFu27Ji2GzZs2HE+k86Boelcc3YPvIEQSzdUR5YX5STxi+uGIgucstWRBAEMWSdEAAMDBROSpgDGYUs3y/vLZGpofL1rEc1+N3ePuJHbhl7DS6vfwaeGzTbNspkr+13EsvLVnFk0HjkUNgXUMRBFAU0KEjSCqIT417IX+dnYO/j7ov+SbHFxVu/zyHKkY2CwpmoTM7bP4YLiKeiHuMbpugG6jLz/ltMStY5OGxoCTeQ7c0/2aRwXahvCL48up0xAcqAbOs1BNynm5CPaXt2xBL2hHKXPZAS5Y+XzC4KAlNsTdedydG8joi0FgOxUGy6HieVbahMiTILvhFkU+L8fjuahF5dS0+gDQBTgnJFFjB2Qe8q/zEiyQEDwoRkaoiBy29BreG7l6+xq3EuKxcWZJWMpTetKksUZvh8lgYDs5eGvnuKGQZfHGNd/smU2n2yZDcC4LsMJaiF6pndjX0tNlAADoOoqjy98hsen/BYz7ZfqTdAxMDSdK88spdUXZPH6qsjyLtlOfnHdMBQRDlNF/JRAUiCAH83QkAUFk25pNyrLLji5b9RtvLTmHUbmD6Z7WhGiIGKWTKyt3szHW2YC0CujG70yurO8cm3U9qqu8rfFz/LYlAewaI6wmBOSEM0a/17xGhtqtkat3xxo4S8Lnua3E34CgoBmaEiCjNmwHBQ9/t0QBAFDDhEkHOFjwoygSqfsu06C04+TJsJce+21R+WRYBgGgiCwadOmE3hWHRvJMPjhRX257txeuD1B7BYFmyX8Wn+qhmVKkoBX/P/s3Xd0HNX58PHvzGxf9d5lSbZkuci9dxsbML33EAg1BAgJJJBGfm9IgYSQhNAh9N4xYBtcMO69d1m9975tyvuHbGFZK3er+X7O4XA89c5qZ2fmmXufp4m3t33CptIdGBhkhKfx4xFXE6KHMCV5HN/mLPe77rR+47Fio8JdzviEESzMXobdbGNJ7kruGnsjEhIGBrIks+jAcraW7WZcwkhCOFiZwaRT5inntQ0fEGYPJcIRSrQzgvLmKobFDGJy8hg+2bWA/LoiFElmbMJwJiSMxCd7UOhYZUk4+3g1H82+5j4zHKmyxocsQaBTwaq3HlONu/a4gjB6XQm+vctR4jORgyLPcEtPjhzZDwq2o+ZuxDL4HKD1RnBQSjjrd1dwzcz+yH0kt4/Q9XTdIMRh4rE7J9Lk8uH2qoQEWrGZZDiOikK9mWHx8V3RWubtW9Q6NMIWxAXpM/nR8CuRkZAkmTe3fsyHO79CkiRGxgzhuqxLqW6qocHTiCKZmJg4ivn7l/rd/si4oby88V2uz7qUj3Z85b8NhsG6ki3MiJ2Kqh5nAhuh28iGzu0XD+bG8wbS0OzFYTPjPHjPezwVuHoz3epl3v7FLMldgVfzER0QyY1Zl5MSkIyk+nl0U2XSA/vzq8l38eaWj/ly7yIMDDIjB3DJwDnsrNhLTm0BM1ImtgVkjmQYBuuKtzAzblrb+eHW3R0CMIdUt9RS567nX6tfptbdQLAtiCsz5zIieiiS99RessgyNEi1vL7pQ3ZV7kdCIismk5uyrsCpB/X5v79wdui2IMwbb7zRXbvu1STDwGGScQQfTOhq9O1UVx6lhUeXPkmjp6lt2t7qA/xh6T/466yHCbOEMiNlYruKRgBRzgjO6z8dNAmX6mZGykQK6opRdZWdFfvYWbGvLQh4KIAV6QzHJCtYFAVd12mSWliUu4IWr4uk4Hjq3A04LQ7cPjfT+43nH6tebFtXM3RWF24ip6aA30z9Wdd8OEKPV+uuBfpOeeqqg5WRZFnCJtmwyGaqXbWkBaccdT1D8+HZNA/JGYqSMLSLWnviJNmEEp2KWrgd88BpSErrjeSQ1HBWby8lu6ie9MSQ7m2k0KvpuoEJWqsZHqpo2AceKMxmBSQDDAmf74gAh0nn073zWZy7om1SvbuBd7Z9xkUZs5mSPIbfLnoC38EupIZhsLF0O/tr8tqup27VzfDYwWwu3UHZEZVbxieMpKq5mmZvCwFmB3XuBjpT0VSFLKrk9hqSfnbd8wLoZh/PrH+VPVUH2qaVN1Xy5KoXeGDC7QwMzPDba84ltfDo4n/S4nO1TdtduZ+c2gIenHQHn+1aSHJIAnurczrdd0VzFRaL8kMQRvWQFpZMXGA0DZ5GdpTvRTuswmiDpwnp4HDkencDr2x+j6sGNzEzYSr6KSSxdinN/GHxk21D/lt7m+8iuzqPP8/6NWav/eQ3Lgg9RLdWRxKEozGZZNaUbGsXgDnEp/mYt+9brs24jMvTL2By4hgWHFiGy+diUuIYBkdmoBgKpd4SVhSsx6N5OW/AdOICYzArZnyary2A4jDbuWXk1Xg1H5/sno9NsTI9ZQJ1nnpUXeXSQecRZgshv76YXZX7GRyVwTvbPvPb+6i8uYr8umIGONNFpF6g5mDi2r4ShKms9hEcePCyIUkEWQOpctUccz3fzsUY7kbMWech9fAnIDmqP1rxbtTiXZiThgGQHBtEkMPM2t3lIggjCIeRFXDLzXxftIkDtfmkhiYzPmEkdt2JfjAW45FcLMld6Xf9hdnfMTJ2cFsA5nANnkZ2Vuyjf1g/ihpK2ViyneuzLqWyuZotZbuwKhYmJY2h1l3HW1s/BaCooYzUsKROE/APjR7Y54d9Cb1bva+uXQDmcG9u/Zg/THmgQ29rxSSxJH9tuwDMIR7Vw4bibVyfdSmarpEWmkx2TZ7f7fcP68dXOd8wKm4YIaZgnJKDkbFDyKsrIjYwmvMHzGRp7qq24X6RzjDqXO2Dnp/vWcikhDGYOblAiWKGBdlL2+VcPKTZ18LKwvWcEz8N9TQNexKE7iIS8wo9liapbCrb0en8nRX78KZ7MalWYs0J/GToDRiGjmwoeA0PH+yZx7L81W3Lry3azKWZ53LBgBl8tucbACQk7hl3Mx/s+JL8uh+SHi/LX8O0fuNJDonnpQ3v0C8kgXvG/Ziv9y3BrJjYW+3/AgmwpWwnmRkD8XpFd+ezXY27FgmJAEvvz0FgGAYVNV4Gpv1wLMGWIKpc1UddTyvbj1qwBVPqGGR7z09QLNucyCGxaAVb2oIwsiQxqF8Y63aVc+3MAZhNPTuQJAhdQZYlyn1l/Hn5f/Bpra+9N5Rs49Pd8/nN1PuIMcWi6wa1rrpOy9N6NR9NvpZO97G1bBfjEobzxZ5vuWvsTfxj5QskBsWREZGKWTZhN1v5z5pP2ra/JGclPxp+BU+tfrnDtsLtoaSF9kP3iIc3oWdSFJnsSv8BRICqlhq8hg/7EUEYFR9bynd2ut7Oin0EWQNZnLOC20ZdxxMrnuuwTJg9hECrk5c2vsPi3JX8YuId/O37Z2g+7PxcmL2M20ddR4vPhUU2U+uqRz8ix2HrMOwWQk4yCOPFy/aKvZ3O31K2k2nxE5HEI6zQy3XbN/iRRx5BkiT+9Kc/oSgKjzzyyDHXkSSJv/zlL13QOqEnUFAItQV1Oj/QGtBWlcUwDDQvyCYJt9xCvbeesQlZZESmUNpYQWbkAFRdxSSbiHSG47Q4qXHVMT1lAhuKt7YLwByyLG8Nf5zxAL+fdj8ezYssSfxh+v3IkkyQJYB6T6PfdoXZQ0XiMAFoDcIEmJ0oUsdS5L1NfZOG12cQGvTDZSPYGkhufV7buXUk3duMd9t85NB45Ki0rmzuKVEiU/DtX4neVIUS3Jq/ZmhqGGt2lbM1u4rRA6O6uYWC0P18ipt/r3y5LQDTNl1X+c+aV/i/6Q+ieK3YzbajbseqWDqdF2wLYmRsFsNiBqMZGv834xfYTFY8qo8GTwNWk4U/zPg5L6x/ixafm3MHTCPUHswfZ/wCj+ZlTeEmluWuac0nMfxyJEA2G+i+1uHIksnAK7tp8jZjlk04FAcmzSp6sgrdwjAMQo5y36vICrIMut0NukSzz4Wma4SYg466XqA1AJfqosZVx+rCjfxy0p28teVjypurDuZbGcgF6efw4oa3ATiv/3T+t+n9dgGYQ+17bfOHPDbrIewmG/l1xfx6yk/ZXbmf+fu/a/stsChmOMn3kAoKQdYAShvL/c4PsQWhSIoobyH0et0WhFm7di2SJKHrOoqisHbt2mOucyKJfIXeT1MNzu0/nRUF/itpXZQ+G7NuQTv4Bswwq2yo2Mbb2z/FfbAb491jbgLgyVUvoh3sG90vJJ5fTLyDL/YuYm/VAZbkrPK7fYDFOSvxaj7WFm3GJJuYmz6T0fFZzEiZ0Nab5nASEmMShrXtSzi7Vbvr+sxQpIrq1goFIYcHYSxB6EC1u4ZoR8fAhHf7Nxi6hjl1TK/6/ZbC4sFkRSvcgTl4BgARIXbiIpws21IsgjCCADSrzdS66v3Oq3XX0+xrJggrAeYAwh2hVLfUdlguJTTxqEGa8YkjqHXX8f6OeeyvzgVAlmQmJY1meMwgXtv8EbeOupqbh19JuCOU59a/xTvbPgNAkWRmp03l8XN/w3e5q/n94n/g0byc338656XOBAOWFa3m0z0L2x4e4wKj+fn42wiUQ0QgRuhyum7QLySxbdj8kcbGD6e8qRKrycpz696gsqV1OHCkM5xbR1zNxpLtfrd73oBpvLHlYwCW56/DYbLx22n34la9VDRXsbsym3+tfrltOFNCUAy5tR3Lg0NrT5fihjKCrIE8t/5Nmn0tjIgdws8n/IR/r36F+KAY7LL9pIMwsmbi4ozZ/L2TIVlz+8/EUGVEiXKht+u2IMySJUuO+m9BMAwINYVyzeCLeH/nvHbzpiaPJz00Fc3b+iMsyxL5zcW8svm9tmWGRg+ksrmaeXsXtVs3NjCar/ctZdGB5dw++no8mrfTNnhUL+aDyTlVXeWLPd9gN1kZGp3JgZr8dl0mJUniR8Ou4Ku9i7ls4HlYtN4/BEU4NdXumj4VhLFaJOy2H4biBFuDkIDKluoOQRi1dA966V5MAyYiWXpXEj1JVpDDk1CLd2IMmd42fVhaOPPXFlBR20JUqKP7GigIPcDhCTr9UY3WpzCLZuOhiXfxp+//TbP3hzfrofZgfjT8SgIsTsYljOhQVvrSzHOxKhZe2/whRQ2lbdN1Q2d5/jpsJivXZ11CZXM1Q6Iz+dv3z1DRXNWufQuyv8OsmChvqmx7wPxy32KSguMxDIMPdn7Zbp8ljeX8adm/eGzmrzF5j96DRxDOBItm56GJd/H3lc+1y5WUGBzHtH7jkSWZx5c/2+7etbK5mpzaQi5Mn8WX+xa32960fuNJCIpr93KwqLEck2bFLBmsLdpMalgyF2XMZk3RRvLrirGajl7hUzN0vtj7LZcPPp83t3zM5tIdGIbB5ZnnMyZ+OIpmQT/JIImuGyQHJHJO6hQWHVH99NKB5xJpi8TwiQCM0Pv1uAF1+/btY9myZRQXFwOQkJDA1KlTSU9P7+aWCd1BUk1MiZ/I2PgRbK/YjU9TyYrJxCk725XAUxVvh0DNBemz+O/a1zpsc3ziSJ5Z+zoA+6pyGBYziJWd9LYZFpPJ53val/NbsP87Bkb0Z3rKBOb0n0Z2TR52s42U0CSW5qxiTdEmIp3hzEmYKRIAnuWqXTWkh/aeYThHU1HlJSTI3K5HiyKbCLQEUO6qYshhyxqqG9+Ob5FDE5DDk7q+saeBEpGMr3w/WlUhBGYAMDAplO+2FLNkUzHXzhrQzS0UhO4VaHZiVSx+X2RYFQtBlgDwgqYZBMth/GXmw+TXF1HcWEZySDwezYtdsfLKpvfJjOjPtH7j2Vedg9PsIC0smdWFm3D53O0CMIf7Lnc1o+OH8dHOrwm1hbQLwBxu0YEV3DH6ejaUbGubphs6H+70X8q60dtMTm0+AwMHit4wQpczNEhyJPGX2b9mW/ke6t0NJIck4NV8fLVvMenhKX7PuQ93fsn1WZfyp1kPsqV0J7phMCQ6g0ZPM+9v/4JrhlzMCxveAmBy4hgUFAxJByS+3LMIp8XB1H7jmJvuJMDqJMweQo2rrsN+JCQSg+PYXbGfc/tPQ5IkDMNgS9lObhp2OQ4t8JTPG8ln5tIB5zMnbSrbyncjSzJZ0ZnYJAeSr/cP7xYE6EFBGK/Xyx/+8Ac+//xzDMNAPlhBQ9d1nnzySS666CIee+wxLJbOxw4LfZOkKtgIYHzkOCSJ1sDGEd0cdXRKGsoIt4diM1uxyGaCrAE0eZv9btN7sJvnqsKN/Hry3Wwu3dEhq3xySDxWk7XDjV29pxGLyczrWz7Gq3mJD4rBq/l4b/sXbcvk1OZjJIoAzNlM1VUavA0EWXp+MtrjUVblJS6649uxUGsIFS0V7ab59nyPoXoxp4zqVcOQDicFRiBZA1CLdkFKaxDGbJLJSg3n+60lXDI5Bbu1x1xCBaHLWQw7N2Rdxv82v99h3nVDL8Wi29ryNkgSWDU7A5wDGBiUTqG7kCdWPMcTc35LcX0pO8r3YFbMJAbFcsnAOfxr1cuYFBPxQdGd7t+nq3hUDwYGRQ1lnS7nUt1t95SH2C02ql0dh0cdkltXwOCQQehiaLHQDSRDYn3xNpbnr8VhsbMkZxVN3mYmJI6iuMF/rhSAj3Z+xR2jbmBjyXYkSWJVwUbm9J9CcWMZs1InERcYTZQznJGxQ/BoLh755m9tAZ1qVy1vbf2E4TGDSQqK55ohF/Hc+jc77GNW2iTq3A04LQ7qPY3YTFZcPjcALT43Nk7PPY/kM+EkmCkxEwHES02hz+kxd5B///vf+eyzz7j++uu58cYbSUpKQpIk8vPzefPNN3n33XcJDg7mt7/9bXc3Vegmmtb5D7BJknlw0p2UNVXS5G0mM7L1LXWwNbBDAl0JqW28rU/z8caWj3lk6j18m72cTaU7sChmZqRMJDUsqa3HzOECLU68mo+YgEj2Vef4LYWZHJyAjIwmUoedtWrd9RjQJ4IwLrdGQ5PG4PSOl4xQWwjbqnaiGhomSUFvrEDN34ySNAzJ2nuH7EiShByeiFq6B8P44UFsZHokG/ZW8t2WYs4fl9yNLRSE7qWrMDJqGNGTI/lg1zxKGyuIDYziqkEXkuCIR1clDJOKBzf7qnOQJYkB4alYDRtOc+tvg0/3ERMYSa27Hp/mI6e2gIL6YqIDI8mvKyLUHtzp/k2yCUmSqPc0EukM63Q5q8mKcUS2fLfPQ6gtmFq3/5w2ScHx6Lq4fgvdQ9cNEoJiKW1q/4KjxlVHZmT/TteLCYii2lVL3sFiE0OiMqhx1RETEEVUQAT3T7gV3TBYXbwRm8nKY+c8xIbibby/44ee5FvKdnLDsEvZUbGPX066g/n7lpJXV0S4I5Rz0iaj6zoe1UOTr4UgawAe9YdeOQ6THTpWmz8lIvgi9FU9JgjzxRdfcMkll/CHP/yh3fTU1FQeffRRmpqa+OKLL0QQRuhAUgwKmkp4ctUL7cbPDonK4KHJd/H7Jf9odwO2rngLU5PHsjhnJQAF9cX89ftn+O20exkYmYaqayQFxfHkqpc69I4BmN1/Kt9mf8+c/lPZV53TYb4iK0xJHofPJy4cZ7Nqd2vCvCBr7w/ClFe13mSFBZs7zAuzhaIbBpUtVcQ4o/DuWIJkDUSJyejqZp52cngSWsluPGW5EBAPQKDDwqB+oSxcV8iskQlYzKJrtHD2knwmkmzJPDDmDjR0FBQUzYyuGhhmlW/ylvLF3h+G9EpIXDvkYiYmjiY5JJ73t3/BZZnnsbvyv23LfJe3hmuHXswza1+nxesiJiCSsqbKDvuelDSaDcXbaPa2IEGnwydmpExgdeGmdtM0XeeyQefzv03vdVjeYbYzIOyHnHOC0NV03SA5OIEAi7Ndj+59VTlcPuh8vtq7uN397iHnDZjGvD0/5EGcnTaFVza9zy8n3YFH9fD5nm9ZXbixbb4iydw26jpuGXE1r27+oG16YV0JFsXMyxveZVrKeKb0G0eDu5Fv9n+PbuhcPHA2sQFRVDXXoB/MDTU0eiA2SeRREoTjJR97ka6hqirDhg3rdP6IESPQNNEttK+RTaCa3bhNzWhmD4py/EMXFJPUuq7SzN9XPd/hgrSjYi8bSrZxY9Zl7YZEHKgpYG76TCYmjkaidXqLz8XK/A04zQ7e2/4FL218l3vG3UyUM+KHtkoyc9Kmkh6ewurCTeTXFXPNkIvaEvdCaxnAhyffg13vG8lYhZNX7apBQiLQ3Pu/C6WVXswmiQBnx4BDsDUQRVIoaS5Dr8xFr87DlDwcSe4xl5eTJjlDkawBuAt2t5s+flAMjS1elm0t6aaWCULPoesGks+MWbUhAW6lGc3ipqiluF0ABsDA4N0dn1PjqePn42/jgoxZhNlDuH3Uda1lbYHqllrKGiu5adjlfLJ7AbeOvJak4Ph22xkTP4yRcUNYkb8OgPd2zOOuMTcRF/jD8CUJiWn9xjM4Mp11xVtap0kSM1MmkxU1iJFRQ7koYzaK9MNvVbgjlN9Pux+LJh4mhe5lUe38ftr9XJA+kwcm3sYDE2/jlpFXU+Oq41dT7ib4sBc8ZtnEFYPmUuuqp7SpAqti4cZhl7OvOpfrsy5F01X2VuW0C8BAa4LdFze8Q3pEKhb5h/fypY2VXD7wfDIjB/DFnm95Yf1bvLv9cxRZ4dZR17CmaDM3Drucj3Z9DcDgqHRuH3kDktpj3u0LQo8nGUf20ewm999/Pz6fj2effdbv/LvvvhuLxcK///3vLm7ZydE0nZoa//lI/DGZZEJDndTWNveprndHOy7D6mPBgSV8e2A5Hs1LuD2Ua4deQmZoOpLv6D/khtXH8oI1bCnbxYi4we3ysRzObrbx0KS78Gpe3KoHi2KhxlXHvD3fMiFxFFP6jaXB04RVsWA1WbApNjRdo9pVi1fzEmwLotHThFfzEekMw6N6kSQJu9lGs9dFoMWBhEyDpwlFUgiwOLFodnStR5xWJ6wrv4eRkV3XQ+REz8fT4fMD81lTuoFbBl/fpftVFInAQDuNjS600/Q9/GRhBfWNKjMn+u/y/33RKoLMAcwuKQVdxzR4Vq/NBXMkrWALelUBjnPv5fDRCV+vzaegrJHH75qI1dL7e8N01fnYHeeiP331mnssZ+q4ZUWikTpe2/IBuyr3c2HGLA7UFLC7cr/f5cfEDyPA4uC73DVkxWRy07DLMckm8uuLkCUZn6aSU5NPZmR/JEki1B6ChESdu4EIRyjf563lq/1L2lV8CbeHcn3WHZUc1QABAABJREFUpcQHxeD2eQmyBmCT7KiGiktvwat7CTAHYDGscDC5p2TS8Uhu6j2NWBUzTpMTi247bb+dJ6srz0dFkc+68+B0ONO/IZIEmsXLp3u+5vv8dai6SkxAJDcNv4KkoHhKmspRNR+qruGw2AmyBCJJEi7VTYDFgaqpWE1WNpZsIzUsiefXv025nx5lAHMHzMRqMvPp7oUAPH7ObwjQQ8Cs4TZcNPqasJmsKLKCbMhYFDNe3UejpxmnxY5dciCrJo7nibI3/vZ25f2qcPbotpBlXV1du3/ff//9/PznP+dnP/sZN9xwA0lJrRU18vPzefvttykpKeGpp57qhpYKZ4Jh9vHyprfZUr6rbVq1q5Zn1r3G7aOuZ1T4CDS1k19zk8ane+azOHcFmZEDqHM3dLofl89No7eJp1a93JrjAYkh0QMZGNmfvLoi5ijTCLQGo6kG+sGux06bg1VVG3h/xzyMgyX2DmV/l5AwMHjq3EcZGJnWdhEJlw7mvvBy0mX5hL6l2lXTJ/LBQGtPmISYzktWRtjD8JXuQ6+vwzxoZp8JwAAo4UmoxbvRagqRQhLbpk8aHMPuvFq+WV/ARZNSurGFgtD93Eozf1j0D9yqBwCn2XnUa3Odu4HogAgMDLaW7eJATT6PzniAf616pe26C63lpA9dd3858Xb+ufplxsQNIz0itV0AJjYgisyoAQwIT8His6PJBvjAABQshJhshEZ0fPAzVBkLDiJlR+vCPtDENVw4RSaTDJKBhIzPd3K9+DWzlydXv0BeXWHbtLKmSv6+4nnuGfdjPtu9gDpXA1kxAzHJJrKr87hv/K1EStEYB9O0qLKbL/Z8y6+m3H3U87HaVcvAiNZcMxdnzMapBIAO+FoLY9ikgNaCGIcORQUbVmxyQFsOmCPPGrNZwUAHQ+o1wRZB6ErdFoQZP358hxt1wzDYt28fixcv7jAd4MILL2TXrl0IvV+z1twuAHO493Z8wZDpAzHhvzuwR3KzJK81n0tpYznTU8Z3up/4oBiqW1orIIyOy2JW6mQ2l+6gqqWGzMg0qlzVrC3czMCI/vQLSUTVNVYUbiYuKLrdjeCh76CBQbQzArMsqnQJR1fpqibQ0vuHIjW1aDQ2a4SFdMwHc0ikLZyw+ka0gDAsQVFd2LozTwoIR7Y6UUv2YT4sCBMcYGXEgAi+WpPP5Kw4QgM7D1IJQl+mmCUW5SxvC8AAFDWUMiC8H6WN/iu59A/rR2H9D6Wnm7zNbCzZxsDI/h16zxgY2ExWbCYbhmGwrngLAVYnv5p8N1vKdjIqLos6Vz0bSrbx8c6vmJU6hVBLKLKv898sQTgTFEXCo7jYWL6TreW7iXSEMSNlIgFSEKjHP0RXklrvIQ4PwBzuk13zuW3UdTR4GtlQvA236mFuxkzqPY0EO0PA27ovMxYywlOpbqljQFg/dlTs9bu9IVEZ+DQf/zf9l4Rbw4/ZG/2oFI1mmlhyYBWVLdVkRQ9kePRgrJrzqAU2BOFs021BmHvuuadPvS0Vjp8sSxQ2dJ5LodHThEf3dBqEqXc3tAVF6twNKJLSaeK+64ZewrcHljM4Kp2RcUN5fMWzbetuLNmO3WTjvgm38srG9wi0OLli8Fze3f45d425kYSgWIoaSjts84asy7F10jZBOKTKVUN8QGx3N+OUFZe3PlhFhHb+QBPj8RHi06iIjiCxj/2uS5KEJTIRT+leTINmtuWRApg4JIZdebV8+F02d1w0uBtbKQjdx2d42V6+p920dUWbeWjy3awu2NghX5vNZGVE7BAWZH/Xbvq2st1MSBjpdwjTZZnnEWYPbeuVuiRnJSvz1/Pbaffywvq3KW78oUT1svy1zB0wk/NTz0E+lYdJQTgBkiTRLDXyx6X/pNHT1DZ9QfZ33DX6JoaGDT7uQIyiyOwpy+50fmtw0+Dfq19pm7a+eCtJwfE8OOlOlEP3qKrM5YMu4Ol1r3Ln6OvZuXRfh0phwbYgsqIHYtOdaKqB4Tv+Y+7YcJ0ddbt5bv0bbZM2lmwj0OLk0em/wCEFncLGBaFv6bar07333ttduxa6mWEYR60YIyG1lp7UQTepuA0XbtWN3WzHhh2b1P6N8xtbPuZn427m2wPL2ViyHd3QiXSEccOwywl3hPKTkddS1VLD48uf7XDxcalu3tn2GecPmM6bWz/hQE0+mZEDeHPrJ/xy4h00e1uQZRlVV7GZrFhlKxHWyG4fLy70bC7VRYvaQrCl999wlJR7cNhlHPbO8544ivfQbDKTg5vETpfqvSxRybiL9mDUVyAF/5D402YxMXVYHAvWFTAlK47M5NBubKUgdAGzhhsXmq5iNplp8bqxS1aCre17/fl0lU93z+fnE2/jo51fk1tbAEB6eCqXDzqPd7d/5vdhcGzCcEoay1mSuxKv5iPQ4uTyzPMZEzsCWVP43dT7+d+m9yhuLGNI9EBWFW5qF4A55Ov9S5iUOIYQws/cZyEIh9FNKv/b9F67AMwhL258myfn/AELDjBreAw3uqRjYOBRPdhNrfe3+BQkSUJTfITaO79/sChmGvzsp6C+mOX565icNAbV0HD73FhlC7ePupaC+hIenvJTXt/8ESWN5UhIDInO4McjrsKmBaCqOpJJxyu7afY2Y1Es2GUHJs2Crh/fPa9XcfPChrc6TG/0NvO/ze9zz8gfgyF6kgsC9KAS1cLZwzAg2hmJw2z3WwJ6ZOwQbNhQLR5e3PhWW/dJCYmx8cO4PusyIh1hVLa0lgBu8DTy5KqXmJo8jl9PuRu7yUZhQymf7V5Ao7eZ+8ffilv14NG8fttTWF9CTEAkACsLNnDegGnUuupQdY33dnxBcUPrDZ4iK1w4YBazU6Z1HPwqCIepcrV+N4OtvT8IU1zmIeIoQ5GUlnos1UVURyVQ5arFp/naVQzrC0yh0WCyoJXvRz4sCAMwNDWMHbnVvD5/D//3k7FYRclqoY/SrV5e3/ohsiQxOj6LN7d+QqOniVB7MNcPvZTtRwx12F2ZTUVzNQ9MuI0GTyOSJGNTrPx7zSt+81OMTxjBe9s/5+rBF3Fe2gxUXcUsm7EZdlRv6wDheEs8D0/8GR7Di0mR+d3iv3fa3u8L1nBl/4vxekVlTeHM8+JmZ+U+v/N0Qyevvoj+of14Z/snTEsZz1f7lrTrQTY6bhi3DL8Gt+bhP6tf4abhV6DISrvcR4dMSR7H+qKtfve1OGcFWdEDeXzFc23lrdPCkrl91PU4zQ5+PeWneDUvsqRgk2zIPhOqrmNYfHx9YDELsr9DO1h2OjE4jp+Pvw0HgccMxMiyRG5tQVvJ6iPtqtyHx/BgQgRhBAF6UIlq4exi0Wz8evJPsZra92qJDYzmR8OuxMDgmXWvsaNiL8HWQC7KOIcfj7yKmMAovstfw4OT7iLQ4mxbz6N62FCyFQmJf656iZc2vENeXRHVLbWtif6OkbJdPzjfbrKSHBLPveNvZX91Ds3elrZlNF3j873fsL5sC/IJlNIWzj6VrmqAdiUkeyNVMyit9BAR1vlNk7VkH4bJgikyFTAoafafA6I3k2QFJSQOrbTjDbYkSZw7NomaRjcfLzvQDa0ThFMnSRKYNVSzB8OsIstHXOPMGm9u+4ht5buYmTqJ59a/2fbGv9ZVT42rjlmpkztsd2TsULaV7+aJFc/z+PJnya8vYkh0RoflLsqYTU5tAd/lrWHevkWYFQWzbMGiWPFIbjSzF8UkoWkGss+CXQ1A0mV8WudjJ1w+NyCu1ULX0PWj5zsJsQXy6pb36R/ej8/3fNthCN+Gkq0UNRbz8qZ3mJEykUCzg19OvANFbh/Y7x/Wjyn9xrK2eLPf/Xg1H4UNJW0BGIADNfk8suhvuHxuTG47Dl8wNm8AeEzoOigmiRVF61orjh0WRCmsL+HP3/8Hn8l9zOOXJPCq/l92HqJ1EqARhLOR6AkjdAtdgyglmifO+Q05tYVUtlSRFppMpCMSk89Ks1zP3uoDzEqdRFZMJt9kL2d5/jqiAyKZ038qTrOdx2b+msLGYnJrC+kflowBvLThnQ5v2GrcdYTYgtrGkh8p1BaMS3Vz3oDpDI0eyEc7v6aksYK4wGh+POIqdldmszB7Wdvyn+5ewKiYLIJxnOmPSeilKluqsCpWbErvzh1UWuFB0yEyrJOeLZqKrSwbb1g8VpONQGsQRU0lJAcldG1Du4AcnoBv7wp0Vz2yPbjdvPAgG1Oy4li0oYistHCGpIghEEIvYtKpUWv4aOuX5NUVEekM54rMuSQ449sSdLoNN+uLtzIxaTQrCtZ1uJa+u/1zLkifxaPTf87+6jxMiomU0ATWFW3lgx1fti33+uaPuDTzXB6d8QDZ1XmousbQ6AwM4PHlz3LV4AuJcITy5vZPmJ02hTWFm9hYsh2LYuac1CmMix+J4rVgGGDGyqi4oawq3Oj3sCYljUFVRS8YoWtYZSvxgTF+h8cBBFidhDtCGRSZzptbP+kw32l2EGB1ct3QSyhsKOW5DW8R7Yzk99Puo6ypksrmGhKDY/GqPmqaa/32kAEYE59FaUNFh+mGYTA/eynXpF/KkbFLj+Ri3t5v/W6vxlVHWXMFCZako77Q1DSDtPB+nc6PC4zGJltFT3JBOEj0hBG6ja6DyWtnYGAG02InE2uOP3hzZVDvaWRwVDpJwfE8tepldlbspc7dwN6qAzy95lU2lG7DrFtJDIpjSFQ6Xl3lX6tfbhuidKTsmnwuGDATk2wiPiiG6IPDjwCuHnIhObUFRDjC+PuK59ldmU29u4Hdlfv51+pXiAqIYFhMZtvyDZ5GNKP14tfhbaEg0NoTJtQa3OuTjxeVeTCZJEKC/MfrrZX5SKoPb1hr0CXaHk5ZcwWew6qk9BVKSCxIMlpZx6ShAKMzIukXE8jL83ZR39T3jl/om2RFIqcpl98v+TtbynZR525gf3Uuf1vxDCuK1yKZWt9cu1QXBgYRjlCKG/z3dvtq32Je3fwhDoud/mHJvLzhPebvX9puGQODT3cv4P3t8+gXksDqwo38Y+ULfL57IQ9NuhOP5uXFje8wK3US/1r9Ct8eWN76ENhUyVvbPuGpNS+imVvfths+iSsGXYDN1LEy2YDwFOKcMcedy0IQTpVNsnPX6Bv9XvdnpkzEMAziAqMoa+oYIAG4IH0mFU1VLM5dyYsb3ia3tpA1RZv449KnmLfnWzIj+/Pp7oU8u/4NNEMnOSSBaGcE8UExmOTWa7TDbGdy8liyYgahSB0f8fLrilBRO0z3GSrNvpYO0w8paijt9H5XkiQURUaSwI6DmSmT/C7zk5HXYdZ794spQTidRE8YodvputHhRinIGsDstCm8tOFdv+u8s+0zhs8ZjGEYvLH1Y8YljCA2MJr8uiK/y9e56xkTP4xxCSPYWbkPi2ImJTQRCYlVBZuYkDSSvy1/1u+6H+34irvH3sTWst0ABFqcSDKszN9Ag6eJ9LAUAk2BSKIcpnBQRUslQX0gH0x+iZvIUHOnN1+2kv2ogeEY1tZeYZGOCLLr8yhoLGFAaEpXNvWMk0wW5OBotLL9mFNGd5wvSVwwPpnXF+7luc928OB1IzAp4j2H0LN5ZTcvb3oXw8/r6Q93zmN8wkjM2LGbWx+ealx1xAVGtSXaPVJ0QAS5tQVYFAsxAZGd9gqIDoigpqWOKwadj0t1U9VSi0v1MCCsHzP6TWBVwUa/CU5zagvIayikv6M/um7g0AP4y6yH+XzvN2wq2YbNbGNO2jQmxI9E8ojcE8KZpype6tR6ssvzCLIG8OS5v2dZ3hoW56wkxBbEJRlzyAxPx4eXD3Z8yX0Tbu2wDUmS6B/eD93Q+S53dYf5xY3lvLb5Q2amTuSNLUVsLdvFPWNvZl91Do2eZlJCE3H5XARYnby2+UMGhKcwNmE4qws3tdtOYlAsJkwc2YfGLJmwm20Hh/B1FB/YMaDZWo7bTWlTGWVNlSQExRJljuDKgReQGdGfL/Z9S62rngHhKVw16EKC5RA0TcdkEtdFQQARhBF6KLvswGqydhqZ92o+CuqLsZtt5NYW4vK5uSTzXF5Y3zEru1kxMzFpNB/t/Iq1RT+MoZUlmdtHXc+4hOEoktzp23uX6m5XlvbCjNn8b9P7bCvf3TZtROwQfjL8OiSPCMQIUOGqIjMsvbubcUo0zaCozMPgAU6/85WWekwNFbQkD22bZpbNRNjCyKnPpX9ICr28I1AHcmgCat5GDJ8bydzxjZ7Tbuaiif14f0k2HyzN5vpzevd3QOj7WrQW6v0kyYXW/A0VzVUkWBKxYWdk7FDWFW3hgYm3sapgo9/AzfSUCfx37WtsK9vDPeNuZmPp9g7LSJLERemzqHbV8d91r7cLtkQHRPKLibfx79WvdtrmZXmrSc8agO410DWwak6uzbiUKzLmAhIWw4rmET1ghDOvxlXHcxtfbysgAWCWTfxy4p3MTpmKoUuYdSuaV6dZqseluimoKyYjIpW9VTlt60TYQ6lx1dPgaex0X0UNpUQ6wpmSPJbUsGQe/vav7ZLgjksYwai4LArrS2j0NHHFoLntgjASEucPmNVhKBKA1bBzYfo5fLjzyw7zQmxBxAZEY3h/OKdkWaKBOv689D/UH9bmSGc4v5lyL1mhQxk4Ph0DHQUTkqpgiJGBgtCOCEcKPZJZMhFiO3pPAkmScB8MnLSOl63mikFz21VmCbEF8fDku9lWtrtdAAZas9W/sOEtnBbHMYeoSpKELMmcP2AGARZ7uwAMwObSHawu3ohi1fGaW3CbmjHMPjFc6SzkUt00epsItYZ0d1NOSWmlB1U1iA73/zbZWnYAQzGjHlEtKC4gliZvMxUtlV3RzC4lh8aBoaNVZHe6TGJUADNHxrNoQxErt5d2YesE4cTJx7gNVGQFwwB8CrcMv4aBkf1ZlreWO0a3VloBGBaTyX3jb+VPsx7ColhID0+lsqWa4oZS7hpzI3bTDwFLp8XB/eN/QrPq5sUN73To7VLeVMmrmz5kRsoEIh1hXJ91Kb+YeDu/nHgHF6TPxGG2Y1HMqIoHr7kFyawjSaD7JBSfFcVnQVNFAEY48yQF5u9b2i4AA63l2f++6nl8uorsM6NprYGSQ+faZ3sWcvmguQyM6N+2jmpoWBQzJvno1fVkSWJS0mje2PxRhypEa4s2U+OqJS0sGbNsahckdZodPDDhdgKl9vfViiKjmb0008ikxNHcPeYmrKYfrvmxgdH8bur9mNX2Lx18ipt/rHqhXQAGoLK5mv+uexWf5EX2mVF8VvAd/A0RBKEd0RNG6FEkCTSLl0/2LCAzqj9h9hBqXHUdlguwODHLJnZW7GdIVAY7Kvbyya75jEsYwZ9mPohLdeFRfTR4GqlsruHbA993us8luSuZkDCKIGug37cQwbYgYgOi+Oe5f6CksYy/r3yhwzKRjjBSwxJ5ees7bCzdjmEYJIckcOuIa4gwRYIm4p1ni8qWKgBCrMHHWLJnyyt2YzZLhAb7uUwYBtbyXHwhUXDEuPNgSyABFif7ag8Q7YzsuG4vJlkdSAHhqGX7McUP6XS5EQMiqKhz8dqCPcSEOUiL793fBaHvcih2YgOiKPWTp8JqshJhD4ODBU9kj4U7ht2Iy3Ch6RqPzXoIMFhXvIVXNr1Hs7cFp8XB7LQpjEsYzksb3uWCjFn8+Zxf0ehtRkbCaXEwf/9SsqIzqXbV+m3Tnqpsbhp2ObGBUXy862tyawuRkMiKyeTnE25DMzQe/vYvNPlaGBU7lBuyLsemOkX+F6FLuXG1K9pwOE3X2FW5j1HhI9uCMAFmJyG2IOrcDfxr9ctcnDGbSzLn4NW82Ew2opzhlDfZOy0ikRnRn4SgWBblrPDbCw1gSc4qzk+fgdvnZkTMYP408yEkSSLQHIBFs9Eul69JI99VwGtbPqS0sRxFkhmfOIonZv+GJk8LJtmEQ3Fg0qwdzq0mtZmK5iq/bThQk49Lb8FB7x+SLQhnkngyFHoUzezlX2teYnHuCj7f8w33jL0Zs9z+IVCRZG4ecSUOs4OVBeu5eODstnLVIbYg5u9fytNrXgMMXt38AU6Lg3p35108692NbC3fxS0jrupQClCRFX427mYceiAOI5CtZbv9XvxuHnEV/137GhtKtrVdPPPrivi/756iwajvc8MyhM6VH+wBEtrLgzC5hW5iwi1+e3OZ6yuQPc34QuM6zJMkifiAOCpaKqlz13dFU7uUHJqAXpGDcZTSuJIkcc6oBGLDHDz9yXZqG0WiXqFnMmlW7hn7Y6xK+x5vkiRxz5ibMWtHDLvzmbCrgQToIdgkGwuyl/Hu9i9o9rYOHW72tvDZ7oUcqMlnZupEDtTkY2AQbgonjCjMkoXi+jJafK6jtkuSYGPJNqxKa9JdA4OtZbt4Zt3rhNiCaPQ2YxgGG0q28f++ewqf6ejbE4TTTTf0tt7Y/lS7atpdPy2ajfvG3UpWdCbjEkawuzKbv694nqfXvIaMjKbrqLrKdUMv6bAtp8XB1UMv4rM931DZ7L8ABUC9u4FwewiTE8ciu22EEUmoEYHJ2z4AI8sSZe4y/rr8v5Q2tiba1gydlQXr+duK5wi0tJ7jss/iN7jpOsb56z3K9VEQhFYiCCP0GJIEtZ46DtTmA63dJ8uaKnlo8l2cP2AGWdGZzOk/lV9N+SmrCza2vk2LyeTVzR9yz7ibuXLwBYxPHMn3+WupcdXxXc5q/jTzQUyyQv+jlM3rH5bMppIdfJe3ml9PvpuLMmaTFZ3J3PSZPDbrIaIdkaiKB13XGRI9sMP6icFxlDVVUuvq+MCpGzrv7/gCwyQGw54tylsqcZpbcxr1Vm6PTkmFh+jIToYileegW+xojhC/8yPtEdhMNvbUdD5sp7eSw+JB86FX5R91OZMic/GkFAzD4NnPtqNq+lGXF4TuoOsG4UoEj8/+DVcOuoCs6EzOHzCDJ875LWmBqUfN4+Ay3Cw6sNzvvKW5q5mdNpUpyWNYlrsas6l1mLDitXD36JtJDum8jL1FMePVVOrcjQyMTOORqT8jJTQJaH3I3Fq2q+3fALXuenZV7UcRibCFLmSSTMQHxnQ6f2DEAFT1h999HYNQewjpEanUuxtJCI7l/2b+gsdmPUi9uwGP5mFjyTYGRQ7g99PvZ3q/8QyLyeT6rEt5aNKdNHta2F+dy4Cj3M8OCE8hJSQZxXv0+w9V8fLGto/9zittLKe4seyow+lD7SHtciUeziyb2oYqCoLQuT59xcrPz+cPf/gDl1xyCYMGDeLCCy886vKLFi0iIyPjmMsJZ4Ysy+yvzm37d1JIHKsKN/LX5c9Q3FBGpDOMyuYanlj+LJtKd7CvOoek4DhKG8v52/Jn2Va2G03XMAyDUHsw01Mn8oclT/LMujeYO2CG37KBIbYg4gKjKagvZmvZbv62/FkGhPWjX0gCxQ1l/HbREzy7/jXyG4vxKW6SgxKIdIa320ZScBz7DkuwdqS9VQf8lgQU+qaylopenw8mr9iFYUBslJ8bOV3DUpmPLySGzrp4yZJEYmA8xU0lNHg774XWG0n2ICRbEFrZvmMuG2A3c/GkFHJLGvl42YEuaJ0gnDhdA7PXweyE6dw9/MdclnoBDi0I1KPfIjZ6m9AM/8FF3dCpaqnhxQ3vsL1iHz619c24YYDstRCoBDE+YaTfdc/tP535+5eyuXQHn+1eyFOrXuLqIRcS6QgDYF9V67X/cJvLdnCMdBqCcFpZDRs3j7jS77y4wGhindFtPaMVRaZSLedX3/6Zj3Z+xebSHXy9bwl/XPJPihvLWVO0iZyaApbmrub/vvsXiw+sJC0smUGRGWws2cYflz6FhkZRQynRAZGE2jr2tJUkiYsGngM6x8zBoqN1Wk0UYGflnqMGNa3YmJw81u+8C9JnYTVEKWpBOJY+HYTZv38/y5YtIzk5mbS0tKMu63a7+ctf/kJEREQXtU440qHgySHNXheZEWncN/5WZvefwvDYwUxNHtvWqyXYGohHbR2s7rQ4GB2XhdPSGn0/t/80PtgxjxafiyZvM4tzVnL/+FtJCIoFWrPED48ZxG+m/gyTbOLXk+/mhqzLCLA4cWseFueuZGvZLnRDZ09VDmVNFeyo3IPVsPO7KfcxLn54W1DHqlgId4R2elxBtsBO3xgIfU9ZczmhtpDubsYpySlwERygEODo+FRjqSlBUr34Qjt/AwgQ7YjEolj7XG8YSZKQw+JRy/ZhdPIAerj4CCfThsexcF0hO3Kqu6CFgnByVNVA90n4fMf+XiuKRKDFyS8n3cEvJ93Bzyf8hMzI/u2WkSWZQZEDuH7oJdRr9dRL1WgWD4oigVfhxqGXc1H67LZeg4EWJ1cNvoAwe3C7RPpu1cM72z7jvPQZAATbAjsMZwo/ypt5QTgTdN0gPTyFByfe2fZyTpFkJiWO5uHJ97QmpT3Iq7j4z9r/4TtimI5m6Ly26QOmJI/FabZzQ9al/GLCbYxPHEGEM5xadx37q/OQJAlFar0ev77lI3467keMiB3S9p2PD4rhkSn3UNxQ7jefzJEkWcJhtnc6P8wRevTt+BSuGXQxlw48F9vB89dpcXD90Ms4p99UdFWci4JwLH06Me/MmTM555xzAHj44YfZsWNHp8u+8MILxMXFkZCQcNTlhDNH1w1SQ5MxK2Z8mg+TpBAXFMPLG99tG28eYHFyw7DLCLOHMC5+JP1D+zEmdjhm2YzVsOOVPEQHRJIQFMt7tV+0bXtDyTaKGkqZ038qEY4wopwRFDeU8f+++xdNB7edEprIfeNvwav52vZ3yMqCDUxMHIUHF2afnVuyruPG4Vfg9fkwSxZcuov5+5f6Pa6L0s/BathQEcMR+jrd0KlsqSI95OhB357MMAwOFLhIjPX/JstSkYtmC0C3BR51O7IkkxgYx4G6PAaHZ/Sp7slyeBJayW706gKUiH7HXH50RiS5pQ288tVuHrt9HE6bKGUv9GImnQPNeTy3/k2avM1A6/Dh67MuIdwRyor89W3DNCYkjeKp1S+3BU0CrQH8dMyPSLYngcfCBf1mMytlMqqhoqPz5taP2V6+p8MuC+tLiHa2viQbHT+Mf61+pd38MfHDzuQRC4JfDouDgcEZ/H7yA3gNDybJhAUbhkdqlz+wRXVR3eI/EXWjtxmTbCIuMJp5+xaTW1sAtAb8JyaO4p5xN7OmYFPbeVHZXE1RfSnXDLmQ2WlTUHWValcdb2/9lGkpEzBJpmNW/FQkhekpE/h635IO82RJJj08BY4R1JQ8Zs5LmsWM5In4dLXtPlzzigTZgnA8+nRPGFk+vsMrKCjg1Vdf5Xe/+90ZbpFwLBbNzq8n/ZRAawDjE0fw9JpX2wVEmrzNvLj+beakTWVAaCqSx4JdC8Tks6GpBmbNyoMT7/C77bKmSt7Y8jH/XPUSeXWFvLXtk7YADEBubSEvb3y3w5sKAJ/mQ5YkDFq7eUqaQnRABAEEofgsBEgB3D7q+g5DnsbHj2B41JB244KFvqvSVY1qaITZO+8Z1dOVVnppdunEx/gZiqSpWKqKUEOiO87zI8YZhVkxsbe2bw3FkZyhSFYnWumxhyRB6830+eOScHs13lu8/wy3ThDOrGajkX+seqEtAAPQ7Gvh5Y3vMSlxNDEBkdw68mokSeKVje+167XS6Gni7yufp1lqQjV78Eoe7IYDhxZIVXON3wDMIbqhc0PWpWwp3dl2nZYkiRuyLqWgvuSYD56CcCZomo7is2BXAzH77KBKSGYd1exGN/swmWT0oyVXAqwmC0+tfqUtAAOtL0RWFmxgT2U2lw86j+/y1gAwIKwfw2IG8fvF/+CJFc/xz1Uv8frmD8mvL+aNLR9R2Fx81HwuAKqukhnRn8zIAe2mK5LM7aOuo7C+5LgKSmgqmHz2dvfhgiAcnz7dE+Z4/fnPf+aSSy5h4MCOSVeFrmVoEGeN56+zHubt7Z/6rURkYLA4ZxUzUycSZYtE8ra+VZZk8JndGBrEBEQS6Qynsrlj938JiTB7CHWuhg7zypoqMTCwmqx4Dst6PyJ2MDIyFqz++7OoCsPDhvLPOensqcrGpboZFDmAACWgrX1C31fa3FplINzWe4Mw+/NasFokIkI7fm8tNcVIuoo35OhDkQ5RJIW4gFjyGwoYHJbeq5MVH651SFIiWtlejCHnIEnHDvgHOixMGx7HN+sLmTw0loyk3vsdEc5eshm+2rPY71AFA4NleWt5aNJdVLtqWXJghd9t6IbO1/uXoEgyW8t2MT1lIlOTxhFrju60PG+oPZjEoDjC7CEMjOhPpDMCidbE+N/nrWVy0hg08bJD6GaSyaBBr+eT7V+xtzqHaSnjGRE7BFVTcZjtfquCmRUzwbYgShrL/G7zu7w1zEydxGUDz2VgZH+iAyL5LmcVPt1/rsEPds7jF2PvBG/nj3gmw8zS3FWMjR/G3AEzyKktIMDiID4ohoXZy7hs4PmoqigoIQhn0lkfhFmyZAmbN29mwYIFp33bJtPxdzQ6lACrr2X3P9nj0nWJoobSTucXN5ayvXwPde51XJVxESbDjEdx0eRt5O1tn+NRPVw75GL+u/a1DoGcuekz2ViyHafFQbgjlHp3A3XuHwIy1S21BFmcVB4MwoTagxkaPZAoRwSyLiObOjsuGZNhZnTkCCRJQtN0MOhVZ1lf/R7CiZ2PJ6vcVYFNsRJodfpNBN0VDvUAbP3/iT2UGIbB3twWEmKsmE0d22+tzEezB4E94LizL8QHxFDYWERuYyGDwtNPqD09waEOla3//+E7ZIpMxlO6B+qKUCKSj2tbI9Mj2JFbw9uL9vOn28aiHGdvzb6mK87FY+nLv3VHc6rHrUo+ChpKOp1f1FDKjoq9yLJMUYP/h8pDy2VEpFLZUsO3B74nr7aQH4+4iksy5vDZnoXtlpWQuGXENVgVCy9seJvypkqCbAGomkZxYxmpoUkkBcUja1KnPQDO1r/3sRy6TInP5cQd+Z2SZYkidxF/WvZvrCYLI2OHkhKSyP9b+i8GR6Vz7dCL+d+m9zts57LM86hu6bzstE/zoUgK56fObC0XLdFWRdSf0sYKfJIXu8l/dUMACZlrh1zCb5c8gSzJxARE4lE9lDVVMjxmMOG2UBTtzHwnxLkoCK160ePh6efxePjLX/7CvffeS1hY2GndtixLhIY6T3i9oKDOE2X1Zid6XB7VTGJQLIX1/m/2YgKiqHbVsrl0J5dmzqHCVcGBmgLC7MFcO/RiPD4PLtXNQ5PvYmH2d+TUFhJmD+HKQeeTEprMnqpsBoSnUNpYToQzHIfZxgc7vqS4oYyE4FjMsplQWzBj4ocxLWU8wbYgIh1hHR6sxd+rdzjZ8/FEVXgqiAmMJCio+/OfOJ0n3uukvNJDTZ3K6KxQ7I4j1tdUzNVF6HH9sVmPv3eXDTOxgTHk1OUyMn7QcQ8T7WlstvY3tIY9Fp89EKliH4Epx9+L8pKpaTz3yTY27q/h3PHHF7zpS7rqXDxefe237nid7HF7VS8JQTHthk0cLj4oBo/qobKlltjAKEqbKvwuFxsYhWHAAxNvo8XrItgWSL2nkayYTJJC4pm3dxFVLTUkB8dz3oDpbCvfTUZ4Kj8d+yO+2Pst64u2YDVZuXHY5UxOGkOYI+SMHndfdeieRnwuJ+/QZ1fvbuCtdZ/wk5HX4LA4qGyuodnn4sFJd/DZnm9IDknggQm3MX//dxQ3lhETEMmctKmUNVbg8TMM/hCzbMKsmFhfvoVaVz39w/tx/oAZbCvfjdfPerGBURTWlzAybihmpfPHvADdxhNzfsPHO79mW/kenGY7t4+6ntHxWe2KZJwp4jsnnO3O6iDM66+/jizLXHDBBTQ0tPaE8Pl86LpOQ0MDNpsNi6XzSPLR6LpBQ0PLsRc8SFFkgoLsNDS4WntQ9BGnclwXZcxmdeGmDj1ZJCSm9hvH8+ve4t5xP+bx5c9R0ljeNt9utvGzcT9mffFWJiSNJCEoljHxwzHLJjLDMmhSm3h/x7x2Q5UCLU7uGXczX+5dTLwzlt9MuRcNDbNsxqSbMbwSdYfljxF/r1PXlQ9iJ3o+nqzc6kJiA6JpbOzY5biryLKM02mludmDrp/Y33D9tlrMJonwIAlXi6fdPHNFPlZNxR0Yie7p/IbRnxh7FMX1JeyvzCcxMP6E1u1ustwagHG7vRz5ccrhSbjydiAPnIl0nPVxQxwmBvcL4835uxiWGorV3DPq6nbV+dhV5+Kx9NXf8GM51ePWZR9z+k9lRcH6DsOGJCTmps9gV0U2qwo28MtJd7CptGOhA0mSmJ02hRavi6fXvsbVQy5kZcFGVhasByDaGcHUfuPJjEyj3t3ECxveptHTxKyUyYRIYVyVfjGXDJgDSNgkO7rHoNbT3GE/p/O4u1pXnY+GYSBJUq/5XHqSI79TzTRz1eALeXf75+3KP1tNVu4Z+yNafC5e2/whU/uNY3LyGGpddby34wuqW2q5c8yNxAREUtZU2WE/s1In8dmuhSzLX9M2LTNyAPePv5UnV72EfkSVvvP6T+ez3QvpF5SIRT96oMNBIDcOvgrvIA8yMjbJjubWqXUf/Xw6Fb3tXISuvV8Vzh5ndRAmJyeH/Px8JkyY0GHemDFj+OMf/8h111130ts/mWSsmqb3ySSumqajaQaGScWDGwywSFYUzdzavfIwJiu4cWGTrdw/4VZe2vAuzb7Wm3anxcGNWZexPG8dU/qN4at9S9oFYABcPjfPr3uTW0dew5bSXVS11PLVviWMih3KkIhMXt/6EVOTx9IvNBEMKGwo4dsDy3lpw7v8fvr9KD4rum5gonU0ka81HW+nx9VX/1597bjO9PF4NR8VLVUMCc9E07ozOV3rceq6fkLtMAyDXfubWxPyShJH3hvZy/PQ7EFoZjvoJ3Z8TpODIGsQB2ryiHfGntC63a+1546u0yGoJYUlYRTtxFd6ACVmgL+V/Zo0NIaXv9zNN2sLOP8s7A3Tk35b+uJv3fE42eOWLDKarnHn6Bt4c+snbYnzHWY712ddiqbryJKEzWxF0zV+MvJa3tn+GS6fG2itcHjbqGtxmB00eVv42bibMcsmPtz5Vds+ypur+HDnlwA8OOnOtrf9MnJrm1WQae2p5+XE8lacrX/vzhyKo4nP5dhkWUJVvHgND7IkY8cO2Ns+O5PVzLK81e0CMAAe1cOz697gN1N/Rq27ns/3fNNh2x9sn8fvpt/P02v+R97B9SVJYkrSWDIi+/P0mlfbLb+7cj+poYlMTR7LhpLtzEydSHp4KkHW1vLtJsWEgXR8f1MVlIPnkwf/eWbOBPGdE852Z3UQ5vbbb+eyyy5rN+3FF18kNzeXv/71r/Tr1697GtYHybJEA3W8uukDdlW2VhRJC0vm1hHXEqqEY2itFxzN4mZHbQ4fbJ9HeXMV942/hd9M/RmN3mZ8ug9V11i4fxl7qrJ5aPJdfLW3Y3k9aC35p2OwrmgLNw67jI0l25idNhWf4ePc/tP4dPcCPt41H4D+Yf24Y9T1fLJ7AU2eFsx0/1ASofcpbS7DwCDCHt7dTTkp5dU+aupVhmYEdJgnaT4s1UV4olNPevuxzmj21uyn2duC09I3zjHZGYLkCMVXvOOEgjAhAVay0sKZv7aAGSPjsVnO6kux0IvIEnyxZxHNvhZuG3ktpoPDHXRdZ2H2MiRJJit6IBMTR/HJ7vnIksJdo29ElmSQwKJYAINn1r5GzsEhTYMiB/CzcT/mra2fdBiCvLZoMyNjB1PUUIZNtnOCMRdBOC0kk0G5t5z/rX+PgvpiJCSGxQzilpFX45Bbr5maobGuaIvf9d2qB0VWCLUFU+uu7zBfN3SskoVfjrsbl96CW/MgSxLNPhdPLH+2Q28XgMU5K3ls1kNckDGLNzZ/zBd7vgUgJTSRG7IuQ0fFpFg4RmEmQRC6SZ++83O5XCxbtgyA4uJimpqa2hLwjh07lrS0NNLS0tqt8+mnn1JeXs64ceO6vL19WQtNPLr0yXaZ4Q/U5PPHpU/yt3N+g40ADKuPfdU5PL32h4j/29s+487RN6BIMs9seIdGT1PbPE3X/FZPOqTJ0wxSa+b5sQnDiQ+Iw4uHf69+BZfqblsuuyaPp1a/zEOT78Llc+GnKIwgHFNhY+uNWYT99OaX6io79zdhs8rERHYcgmmuLkbSNXzBx1ea2p8IexjZikJeQwGDI/pOJTo5sh9awTYMrwvJcvxj3McPimZ7TjVLNxWflb1hhN5J1TTq3PXk1Bawt6pj6fnE4DhUXcVhdlDnbqS0sZydFXuB1mvxQ5Pu5IkVL6AeVtllV+V+8uuKuW/Crfz1+/+22169u5G4wGguGj0Hk2ZBF4WohS4mSVCv1/H/lj3VFgwxMNhStpM/LHmSP814EAUbqqah+QmWHJJXW8QtI6/mP2tebff9V2SFe8fdgqJa0DWwWW28sPEtTLKJ9PDUTrfpVj0YGPy/pf+i8bBy8bm1hfx1+TP8avLdRNjCsNHxxYogCN2vd2ZIPE7V1dXcf//93H///axbt47S0tK2f+/fv7+7m3fW0HWdlYUb/Jbm8+kqX+5fhMkCjb5GPtk9v9386pZa3t3+BWbFzCNTfsa1Qy9hROxgZqVOJi4oGqe58zfqUc5wgqyBRDkjuCJzLjZsLM9b2y4Ac4hX87GqYAPRAVGnfsDCWamwsZgwWygmuffFtnXdYOf+ZpLirH6ri1jLc1EdQRjWk+/BokgKkfYI8hsL/Zag7a2UyH6AgVq864TWC3JaGJwSxoJ1BXh94lWl0DtYFQuDIjvv9ZUZ0R+zYsIkywyK7N9u3oTEkSzLW9PuAfSQZl8Luyr2MTiqfQW1wVHpXJQ+m1A5vMPQZUHoCoZJ58Od8/z2Rql3N7CjYi+KImORLYTaOk9oG+4Ipbqljr+c8ysuyjiH4TGDuXTguTwx+7fEWxPQtdYcZDXuWg7U5FPaWEFqaGKn25uYOJrNpTvbBWAO0XSNJTkr2VOdjWwW540g9ER9OgiTkJDA3r17/f7XWU+Xv/3tb3z55Zdd3NK+za162Fa+u9P5uyr3YygGHtVDsZ+Slrm1Bfxx6T/JrS0gNiCSrOhMmr0tvLP1My7MmOV3m0OjB5JXV8yVg+ZiYLCxZBuq7GV7xZ5O27GvOvfED04QDipoLCLKEdHdzTgpOYUuWlw6KYkde3JIqhdzTTFqcMwp7yfGEYXL56aipfrYC/cSktmGHBqPVrDlqD3z/BmXGU2Ty8fK7aVnqHWCcHp5NC+j4rOwm2wd5lkVC+MTR1LaWEFJYwUTk0ZjVn7oWpoUHH/U6+y+6lwSg+Pa/h1ocTIhYRS4zejdmmdLOJupeNlbldPp/M1lO5AVsOp2rht6qd9lBoSnoBs6Oyr28JtFT5BfV8yFGbMYmzAchx6AfjAObzIpZB88Rxo8jfh0lYQg/9fe2f2nsKN8b6ft2ledgyxJ+DixRPqCIHSNPh2EEXoGk2I66tuBYdGZ6KgosozN1HlZXbfq5qNdX/P6lo9YU7SJTaU7MDD4ychrCbEFAa03geekTWZu+kxiAiIJc4Swo3wvdrMNTdKO2o4QaxCK3vt6MQjdz6erFDeVEu2I7O6mnJSte5oIDTIRFtxxLJ6lqhDJ0PGFnHoQJtAcgN1sp6Cx8JS31ZMoUanojZUYtSXHXvgwoYFWMhJDmL+2AO0EK1kJQncwKQprCzdz/4SfMDDih54u6eGp/Hzibby7/XOW5q5mae4qPtgxj19MuI0B4SkANHtb2q7V/gRbA2n2tiAhkRWdyaPTf4FF7Rv5o4TeS0ImyBbY6fxweygSEpqskhGRyj1jbybcHgq0lpee1m88l2Wex7/X/I+NJdtRdZVt5btp9rbw+PLn8CpuJElCN/toppHQw8qtv7HlY24ZeQ2Tk8agSK2PbNHOCH469kcEWgIIO0op6WBrIJqhI4tHPUHokcQTp3DGWRQz56fPYHXRxg7zpiSPJSMilYe++TOPTP0Z0/qNZ2H2sg7LKZJMfFBsh6R9H+z4kgvTZ3H/+J8gSxIBVicg4dW8bKrZwYsb3ub+Ca3zfrf4CW4efiUbSrb5bedFGbORNZMYcy6csOKmEjRD75VBmKZmlex8FyMH+7/JtFTkojpDMSwd33yfKEmSiHJEUtRYzHB9KOZeOHTLHykkFskagC9vM9bQEyvBPTYzmjcW7mXj3krGZp58zh1B6Aq6AYOiBvDcujeYlTaZCzJmokgyARYnT616uV3S0b1VOby48R0emXIPte56JCTig2LY30lvmLnpMwg0B3L5wLlYsCKpylFzbAhCV7AaNi5KP4cXN77td/6MlEl4cPPVgUUsPLCMlNBErhw8l/jgWNw+N9/nr+XJVS+i6T8MOw22BeHVfdR7Gqj3NBBkNfjP2lfIqS3giTm/wapY8GhemrzNPL78WWalTOaxc36FSVYwySassgWzZmNO2jS+y1vTSbsmEuUIb61CKu5rBaHHEeFRoUtEWsK5dsglSPyQb8JutjE9ZQJPr32NZl8Ln+1ewKzUSWREtE+WbJJN/HLSnczf778S0lf7l2BWTHy062t+ueBP/HLB/+ORb//GJ7vn86MRV+JRPawoWE+du4GC+hIuSO84hOmC9FkkOOPFmHPhpOTWF7TlPOlttu5pQpahX0LHIIvsdWGuLcUXeuq9YA6Jtkeg6RqlTeXHXriXkCQJOaY/Wslu9MOShx+PmDAHyTGBzF+T36dy5Qh9k25o1LsbmZw8hk92zefJlS/yxIrn2VmxjwlJozosPz5hJBbFQqg1hP+ufZ0GTyPT+o1vt4yExNVDLiTcForF58Dic4BPQZwOQk+gqjpZkYOYlDi63XRJkrhz9A0EmwNZWbyO+dlL0Q2dAzX5vLDhbR7//lkUSSa7Oq9dAMZpdnDX6Bv4bNfC1u0bKv9c/WJbtbBvsr/nl5PuwHJwKJ9X8zE/eykvbngbq2LF4nFiuMx4vRpBSjA/Gn5lu3trgElJY4gJiCTWGSvuawWhh+obryGFHk/WzUyJG8/Y+GHsrsxGM3SGxWTy7rbP2pbZULINA7h15NU0e11kV+cR5gghOSSBvNpC1E666xuGgWTI3DniJup99eytOoDdYic1JBGzYub9HfNYW7QZgE93L2B22hQennIP+XVFOMx2MiMGYMOO5BOng3BycuvziXJEoMhKdzflhGiawebdTSTH27CYO8bkLZX5gIR6ClWRjmQz2QiyBpHfWEhS0In1GunJlMg0tMKdaHmbkTOmnNC6YzKi+GjZAfYV1pGRFHqGWigIp86kW9ANHa+m8vCUe8irK8QwWsviNvta+NOsB9lz8BrfLySBTaU7+HDnV9w89Gr+NOMhShrLSQiK5fwB09lblYMkSQyKSscu28AtShMKPZPkNXPdoMu4OGMOu6uysZmsZESkEe4Moa65kXl7F3VYp9nXwn/Wvsb/zXiA3NpCihpKCXeE4rQ4eGf75xQ3lmGSTQRaA8iKGUhBfTEAi3JWAPDYrIcoqC+hxlXPgLB+hDvCMHutHH4nLKkmxkWNYvh5g9lTlY3L5yY9IpVAswOTbkXyivtaQeipxNkpdB1VwUoAo8JHAuDV3BQ2tk9IubFkGxtLtpEYFMeI2ME4zHYeWvgYgdYA7hl7M/uqc/Bp7ZOMjYrNIsQSjEm3ECZFMjEqClmWkGWJr/K+aQvAHPLtgeUsyllBXGA0D0+6B9nTeR4aQTgWwzDIrsslLaRfdzflhO3La6GpWWPyKP/jyq1lOWiB4RimjmWrT0WUI5Ls2hzcqueoeaB6E8lsQY5KwZe3EVP/cUjK8X9mKbGBRIbYmL+2QARhhB5N03RGRA/l631LWJSznLjAaCQkPtz5JaH2YG4fdR3L8tZiYPD+jnkYhkFKaCIezY3JayPFkYKiyKiqzuTYKAwDPJ6O1ZIEoaeRfGYCCGF85FjAQNIlbCYrqlFLk58KRdBaPSm7Oh+rycKGkm00uJvaDdm7ZOAcPtn1NckhCYyKG8rGku1AayBmUc4K0sNTuXfsLZh8VnQ3+H0VqSpYcTIydASKIqFpBpq3/ZKK0vqSRdPE8D5B6CnEcCShy2majqbpmCUziUFxfpcpbCih3tPA7qpsABo9TXyyaz4PTbqLCYmjCLYFER8Uwz1jf8zNw6+krKWC5WWr2N+8D4/SgqZr+HwaycEJfrdvGAbN3hbEcHPhVFW7a6n3NhAfENvdTTlh67c1EBVuJtRPQl6luR5TYxXeUP/n6KmItIeBBEWNJ5bItqdTYgeC6kXN33JC60mSxOiMKLYdqKakyv/NvCD0FCafjd9OuZ/LM8/Ho3pxqW7mDpjBHaNv4MUN71DUUEpxQ1nb8Lr4wBisig3V4uZAczbLSlZQ6MmnWW/GJ8qzC71M6z3sD0N8TJKJAIuz0+WdZidpgancOuJa4oJiCLYGMiA8hXvG3oxu6Kwu3MSnuxYwI2Vih3VzaluTth9P3nZN0/F6tXaBFsOs0qzUs6ZyHeurN+I2N2GYxDknCD2B6AkjdBtDlbg4Yw5rizZ3KO0qSRJTksfxxIrn2qbtq87hHyufZ1LSaH407AoywtLQ0fnrimcobfwhv4TdZOM3U+8lQokkJSSJQIuTRj9vKa7InIvVsKP6f7cgCMdlf+0BAOKcpy9vSlcoKnNTUuFl6pgQv/OtZdkYJjNq8OlPNmyWzYTbQslrKKB/aMpp3353kW1O5Mh+qNlrMCWPQFKOf3hFZnIoy7eVsnBdAbfMzTyDrRSEU2MYBorXyoSEUQRYnZgkmX4hiTy69J/oR7zZkCSJSzLPpdZby2Pf/4fGw3ImhTtC+d2U+7AaASIfktBr2SU7l2TM4e3tn3aYF2ILIi4wBsMrY5HNpIYmMj5hBLXuet7b8QXVLbVAa+n3I88dgJkpE7FiO6m7VMPi47N9C1iUs7zd9GuHXMzkuPFIqngEFITuJHrCCN3GMCBECeHnE27Daf6hDGWgxcmDE+9kW9kevEcMPfJqPpbmrubbA8uRkPnf5vfbBWAAXKqbx1c8i1dxY8HC76bfT0zADw+SJtnEZQPPY0T0UFRVBGCEU7O3NpsoeyQ206lXD+pKqzfXExygEBftZ9iMrmEtO4A3JBakM3OZiHZEUu9poMHTeEa2312U+MEYPjdq7oYTWs+kyIxKj2TVzjLqmjxnqHWCcPr4NB+vb/6QVza9z4Ls77ht1LU4LT9cywMsTn4+/idYFDP/WPl8uwAMQHVLLU+vexXd5O3qpgvCaaNrMCF+NBcMmNVWRhpae4D9bur9WNQf7g3m7V3EK5ve45Nd89sCMIdYDxvCKkkSU5LGcnH6uei+9kl3j4csS+TU53UIwAC8t+MLanw1SCe+WUEQTiMRBhW6laHKpAcM4C+zHm4dUytBgNmJHQcuX+cPIuf1n45H97C1bJff+U3eZipdVczf/x0FdUVcNHA20QERWBUrIdYgLIYdwyuuQMKp0Q2dPTX7SQ9NO/bCPUh5lZcDBW7GDw9C8nMnZqkuRPa58YWducS5YbZQTIqZvMZCsqyDzth+uppsC0CO7o8vew1K0jDkwx5Kj2V4/wjW7Crnm/WFXD2j/xlspSCcOqfZSYgtiDp3AysLNlDdUsdtI6/FpJiQJZnYgCi+2rsYk2KisqXG7zZyagtw6S4ciKS8Qu8lec1ckDKbc9Km0ORtxiKbcSgOTJq1rTqR0+Qk1B5Mrau+w/rB1kDsZhsPT7kHs2wi1B6MzXBgeE7uJYim+Phi77edzl+Y/R03DbqaI95zCoLQhURPGKHb6RqYvDZCCCfECMfkteHz6gyOSOfGrMuZkjy23XjbYdGZpIX0w6f5OgxjOlxJYzk5tflUttTwv03v89fvn+FP3/2rtXeNKgIwwqkrbiql0ddEclBidzflhKzYUEegUyE53n/vHVvxXlRnKLo98Iy1QZZkou0R5NcX9bkSmqaEIWDoqHs7voU8GqtFYcSACJZuKqbJJe6OhZ7Notm4f9xPMMmt7/P2VGXz7zX/49+r/4dP8/GfNf9jWf5a3D73Ubfj1X3IZgOTSVyXhd7LUGUsXgdhRBKghyD7LO2ubWbNxn3jbsUst3//bZJN/Hjk1by6+QP+tvwZ/rTs36wu3IRknNwjmixLGLJO/VF6mda469HFUHxB6FaiJ4zQ40iShGp2s6NyP9sr9uAw27lrzI14NS9Os5M4Zwyy14LNouO0OGj2tvjdTqQjjAZ3+4uQZuh8sns+Pxp8NfhEDFI4NdurdmFVLL0qH0xxuYf9+S7GDw9Cljs+9ChNtZjrymlJHnrG2xLtjKK4qZTSlnLiA3rPZ3gsktmKKWEoav5mTElZyMHHn7R5VEYkG/ZWsmhDIZdOST2DrRSEU6NpBtGWWJ6Y/VtWFq4np7aAlJAEBkb254s935JXVwSA0+JEQvL70sSsmFENlee2vEZ6eAoTE8dg153oIneo0MfoukG0OZbHDztfYgOjGB4ziHl7F5FbW9i27Od7FjIpYQxm7Ce2D4uX/MYSSirLGBiRRmVztd/lhkUPQjYUtKO8yBQE4cwSQRihx1Etbv68/D+UN1W2TVtduJHZaVO4pP/5SN7Wr61Vt3PN4Iv43+b3O2xjeMwgcusK0fwkOttTlY0PHyb6RmlcoftsqdxBcmAiiqx0d1OOi2EYLF1dS0iQieQE/71g7EW70M021ODoM96eALOTQEsAOfV5fSoIAyDHpCNV5uLdOh/rlJuRpOP7jjhtZob3D+eb9YWcMzqRALsYpiH0XIYGVs3JnISZkGTQoNXxq0V/aZdod1v5biYlj2ZF/voO689Jm8rC/cvYVr6bbeW7+WLvt/x+2s+JVKLaVaARhL7g0PlybuJMauKqeXv7p8zfv7RDYmqv5qNFdRF8AkEY3eLlpc1vs618N2bFzEOT7mJN0WZ8R4w5clocjE8YieYV55cgdCfRFUDoURQTLMhe2i4Ac8i3B5ZT56tr+7emGoyMGsZdo28i1BYMgNVk5cL0WVyWeR6f7Frgdx/BtiBk8dUXTlFFSyXFTaX0D+k9vRX25LRQVO5h+KAAZD+5YGR3E5byXLwRSWcsIe+RYgNiqGiubM0J1YdIsoSp/1j0xirUfatOaN1xg6LRdIP5a/PPUOsE4fRSVR3Va6AZRocHygX7v2NYzCAuyjgHh7n1oTLQGsDVgy8k0hnGqsIfklh7NR/PrHsNryySUwt9l8+no+oa28v3dFoZzHIC1fVkWSKnLo9t5btbt6/5+GTXfH4x4TYGhLdWIJSQyIrO5P+m/xKrevy5ygThTLrpppu46aabursZ3UL0hBF6FI/k4bu81Z3OX16wliv7X4zX29pXWfKZGB46jMxp6aiGD0UyYTVs1Gk1qLrqdxuXZMzBrFvRxHhY4RSsL9+CRTbTL7h35IPxeHUWr6olIdpKbKT/XmD2gp2gKHgjErqsXVH2CHKUfLLrchkeNaTL9tsVZGcYSvwgfNmrkCP7oYQd33fFaTMzOiOSReuLmDUygbCg3lV5Szh7ORQHsYHR7aoW6obOs2vfYE7/qfzlnIfRNA1D0nl184fsrNjbYRtlTZW49BYC8FO5TRD6iCBzIOH2UKpdtR3mZUb0xyYdfy8YQ9FYeGBZu2l7qrKp2FjFOWmTuXLQXKKcEVgMG5KqoIuS8ILQ7UR3AKFHkSTwdRI8AfCqXqD9G3xN0zH5rNjUAMw+G7oKgUowt464pkPll1kpk0kPTUPTRABGOHm6obOmdAP9Q1Ixy71juMh3a2txe3RGDvGfbFdxNWIt3Y8nMhnkrovPy5JMnDOavIYCPFrfK1WrxA9BDojEu/Fz9CNK9B7N2MxoLGaZD787cAZbJwinl1mz8ssJd7T1Tj0kzBHCuWnTsXgd2NQAal0NfgMwh/S1ZN2CcCSLbuNXk+8m0BrQbnp0QCR3jr4JWT3+67CBgeonkVKNq44PdnzJ29s+w2RYwKcg4i9CT/LKK6/wyiuvdHczuoXoCSP0KCbDwti44aws7Dh2HGBS0hh8vmNn7JNUhVGRIxg6J5N91QfwaioDI9OwS462nDKCcLJ2Ve+lxl3LOUlTu7spxyWnwMXmXU2MGhKI0+E/N4k9ZzOGydI6FKmLxTljKWoqIbs2l8ERGV2+/zNJkiVM6RPxbV+Id/0nWCdch3Qc3cytZoWpw+KYv7aAqcPiyEwO7YLWCsKp0XUDJ0H83/QHKWuuoKSxnPigGKIdkZhVW9sb+Eh7GIqsoPl5cAy2BeEw2UEUCBP6ME0zCJJDeWzGryhpLKe8uZKk4Dgi7OHtzpXjYTLMTE4ay77qHL/zJyWNwWxYRCJeocexWM7eHo+iJ4zQoxg+iSsGzcVu7tj9flDkAKIdUZ2On+1AlbH4HAwLzWJMxCgcahCSTwRghFO3uOB7oh2RxDjOfPLaU9XYrDJvaRWxkRYG9PPfvdlcU4K1Mg93bP8u7QVziEUxE+uMYX/9ATxq38sFIVnsmNKnoDdU4Nk8D8NPwnB/hqSEkRDp5LX5u/F4RbkYoXfQdQPFayXBksT4yLHEmxNQvNb25XoNG9cMvsjv+j8ZcS1W/cSqwghCb6TrBiavjWRbP8ZHjiXGFNfhXDkeqqozPHowMQGRHeZFOMKYED8STRUBmLNZU1MTf/7zn5k5cyZDhgxhwoQJ3HLLLezcuRNozc1y4YUXsmPHDq699lqysrKYOXMm7777bodteb1e/vOf/zB79myGDBnCtGnTeOKJJ/B6O/Zm/vzzz7nyyisZNmwYY8aM4YYbbmDFihVt8/3lhDne7a9cuZLrrruO0aNHM2LECM4991z++c9/no6Pq0uIJ1Khx7FrTv4y62G+3r+YjSXbsZmsnNd/OiNihiJ7Tjxi2lphQVx8hNMjuy6XfXUHmJsyu8Nwt57G69P5eEElkgTjRwT7ba+kenHuXY0aEIYacvyllE+3pMB4yloq2Fm9l5HRWd3WjjNFDgzHnD4R394VeDd/iWXEhUjHSH4sSRLnjU3itQV7eXfxPn58fmYXtVYQTp1hGJ1XOFJlJsaNJSk4nk92z6eyuZrkkHiuGHQBYaYw8cAonFWOeq4cJ5PPxm+m3MfygrUsy1uDYehMTh7LjH4TMfvs6OI++Kz26KOPsnDhQm688UbS0tKoq6tj48aNHDhwgMGDBwNQX1/PHXfcwfnnn88FF1zA/Pnz+eMf/4jZbObKK68EQNd17r77bjZu3MjVV19NWloa+/bt4/XXXycvL49nn322bZ///e9/efrppxkxYgT33XcfZrOZrVu3smbNGiZPnuy3nce7/f3793PnnXeSkZHBfffdh8ViIT8/n02bNp3hT/L0EUEYocfRdbB4HVze/yIu6j8HkLAaNlSPyOMidC/d0Pl4/zyi7JH0D07p7uYclaoZfPptJVV1PmZNDMVm9fPAbxg496xG9nloShnRmpSpm5hlM/0CEzlQl0tSUAIR9rBua8uZIofGY+4/AV/2ajyaD+vIi485NCksyMY5oxJYsK6A1Lhgpg6L66LWCsKZJflMJNv6cd/o29DQMGFCUhWMztPCCYLQCcMwUDxWZsVPY0rCOAAshg3NY4gAjMCyZcu4+uqrefjhh9um3X777e2Wqaio4OGHH+aWW24B4JprruHqq6/mn//8J5dccglms5l58+axatUq3nzzTUaPHt227oABA3j00UfZtGkTI0eOJD8/n2eeeYbZs2fzn//8B1n+4R70aCMajnf7K1euxOfz8dJLLxEW1jvvF8VwJKHH0n2g+KwoPguqKgIwQvdbWriCgsYipiVM7NG9YDwejQ++Lqeg2M2U0cGEBft/0LfnbcFalY8rcTCGtftLVsY6Ywi0BrK+bDM+rW8+ickRSZgzpqBX5uJZ9Ra6q+6Y6wxNDWNYWjhvLNzL1uyqM99IQegium4g+UyYfFaRNFQQTgNNNQ7eO1tFjzKhTVBQEFu3bqW8vLzTZUwmE9dcc03bvy0WC9dccw3V1dVtw5YWLFhAWloaqamp1NTUtP03fvx4ANauXQvAokWL0HWde+65p10ABjjq/fPxbj8oKAiAxYsXo+u98xlR9IQRBEE4Dvtrc/j8wNeMiBxKXEBMdzenU5U1Xj77toTaeh/TxoUSHeFnCJ9h4MjdjL1gB+7YdNSQnpHbRpYkMkMHsKlyG6tL1jMpfhyK3PfeFcihcZiHnIO6dznuZf/DMvgclMShSPi/MZEkidmjE2nxqPz3k+3cduEgxg3qGX8zQRAEQRB6tgcffJCHH36Y6dOnM3jwYKZNm8all15KYmJi2zJRUVE4HO1fyPXr1w+A4uJihg8fTn5+PgcOHGDChAl+91NdXQ1AQUEBsiyTlpZ2Qu083u3PnTuXDz/8kN/97nc8+eSTTJgwgdmzZ3Peeed1CPr0VCIIIwiCcAx7avbz4vY3iAuIZVLcuO5ujl8er866rQ2s2VJPUKCZ86aGEeDs+BMve1pw7luDpboId2w63qh+Xd/Yo7CZbAwKG8iOql2sLF7LuLhRWJW+lz1fdoZizjoPNW8T3q1fI+dvwTxwKnJEst9gjCxLXDyxHwvWFfDCFzvZX1THFdPSsFvFZVwQBEEQhM7NnTuX0aNH8+2337Jy5UpeeeUVXnrpJZ5++mmmTZt23NvRdZ309HQeeeQRv/NjYk7tJeXxbt9ms/H222+zdu1avvvuO5YvX87XX3/N+++/z//+9z8UxX8l0J5E3L0JgiB0otHbxML8JXxXuJLEwHguSJmDIvecH3bDMCiv8rIru4Wte5rwqTqZaQ7GDg/D5/WhHdZDU2mpx1qaja14L8gyLSkjUIM6VlLoCUKsQQyJGMSumr18m7+MIREDSQqI7zVvN46XZLJg7j8ePTIFtWArnjXvIQdGoCQORYlOR3KGtAvIKIrM3PHJxIY7Wba1hHW7K5gzJpFJQ2MJDbR245EIgiAIgtCTRUVFccMNN3DDDTdQXV3NZZddxvPPP98WhKmoqKClpaVdb5i8vDwA4uPjAUhKSmLPnj1MmDDhqMOKkpKS0HWdAwcOkJl5/EUFjnf7ALIsM2HCBCZMmMAjjzzC888/z1NPPcXatWuZOHHice+zu4ggzBkiyxJhYc4TXi8oqG+WZRTH1bv0teM61vloGAZFDaU0epqodddT1FDG3qpsdldlI0sSU5LGMiFxJFIXptHSDYP6BhVVM/D5DDxeHZdbo7FZo7beR3mVl6JSN16fgUmRSEu2M6i/nUC1HqOiCJPbhdnThNJUj1JXgeRuxpBkPBEJqLEpGIoJqQcn6wu1BTIqaijZNXlsLNnKVmkHMUHRhNtDCDA7sZsthNpDUY5RYeh08Hp9KDJnbmhUeCzW8Bh8NeV4S/bi2rkMdi5DtthRQmMxBUegOIKR7QEoVgdjkiwMjI7n+z0NfPJ9Dp98n0N8pJOM5DASogKIDLETHGDFaTNhtSiEBtpw2o+eALirnOy18Uzpa791x0sctwCt5yOIz+VUiM/u5IjPretomkZLSwuBgYFt08LDw4mKimpX9llVVd5///22xLxer5f333+fsLCwtgpK559/PsuWLeODDz5olz8GwO12o+s6DoeDc845h3/84x8888wzfhPzdhZgOd7t19XVERIS0m7+oWCPv1LZPZFkHC1FsSAIwllg4f5lvLLpve5uRju+wnTU0tTubobQB9gsCh/85YIenUxaEARBEITTr6GhgWnTpnHuuecycOBAHA4Hq1atYv78+W3VkG666Sby8vLQNI25c+fSr18/vv76azZu3Mif/vQnrr76aqB1uNBdd93F999/z9y5cxk5ciSappGTk8OCBQt4+eWXGTp0KAD//ve/efbZZxkxYgRz5szBYrGwfft2oqKi+OUvfwnATTfdBMCbb755Qtv/85//zIYNG5g2bRrx8fFUV1fzzjvvIEkSX375ZbuAU08lgjCCIAiCIAiCIAiC0Md4vV7+9a9/sXLlSgoLCzEMg6SkJK655hquv/56oDUYUltby9/+9jcee+wxdu3aRUREBD/5yU+44YYb2m3P5/Px2muv8fnnn5Ofn4/dbichIYGZM2fy4x//mICAgLZlP/74Y9566y2ys7Ox2+1kZGRw9913tw0XOjIIc7zbX716NW+++Sbbt2+ntraW0NBQxo4dy7333tuWTLinE0EYQRAEQRAEQRAEQTgLHQrCfPnll93dlLNG38pyKAiCIAiCIAiCIAiC0EOJIIwgCIIgCIIgCIIgCEIXEEEYQRAEQRAEQRAEQRCELiBywgiCIAiCIAiCIAiCIHQB0RNGEARBEARBEARBEAShC5i6uwF9labp1NQ0H/fysiwRFuakpqYZXe87nZPEcfUuXXlckZGBZ3T7hzvR87E366vfze5ytnyeXXU+9pRz8Wz5ux5JHHfvOO6uPB9lWeo1n0tP0tu+Uz1Fb/zcuvJ+VTh7iJ4wPYQsS0iShCxL3d2U00ocV+/SV4/rbCL+hqeX+Dz7prP17yqO++w67uMhPpeTI75TJ0d8boLQSgRhBEEQBEEQBEEQBEEQuoAIwgiCIAiCIAiCIAiCIHQBEYQRBEEQBEEQBEEQBEHoAiIIIwiCIAiCIAiCIAhCpy6++GIyMjLYsGHDcS0/evRonn766RPax9q1a8nIyGD79u1t0zIyMnjllVdOaDs9naiOJAg9hCSBblJxGy68mheHyYEVO7qvu1sm9EWSWceNC5fqxm6yYcOO4RNxeUEQBEEQOifuH85O+/fvZ+/evQDMmzeP0aNHd9m+33//feLi4rpsf11BBGEEoQeQZQmPqZnnN7zJnqoDAFgUMxdlzGZG0iQkr7mbWyj0JbrVyzs7PmVN0SYMw0CWZCYljeGaQRcheSzd3TxBEARBEHog3erlvR2fsapoI4ZhIEkSExNHce3gS5HF/UOfNm/ePGRZZsyYMSxYsIDf/e53mM1d83wyfPjwLtlPV+qVYcv58+dz9913M3XqVIYPH84ll1zCRx99hGH8UG/+8ccf54ILLmDEiBGMHDmSK664gq+++qrDtrxeL48//jiTJk1i+PDh3HLLLeTk5HTl4QgCPpObvy7/b1sABsCr+fh419esKdmIYhKl/ITTwzBrvLrlfVYXbmz7zdQNneX5a3l3x2dg1ru3gYIgCIIg9DxmjTe3fsjKwg1t9w+GYbCyYANvbf8YzFo3N7DvamzxUlTRyN78GooqGmls8Xbp/g3D4Msvv2T8+PHccsst1NXVsXz58nbLLFq0iPPOO4+hQ4dy5ZVXsm3bNr/b+u6777jqqqvIyspi/PjxPProo7S0tBx1//6GI53MdnqSXtkT5rXXXiM+Pp6HH36Y0NBQVq1axe9//3vKysr42c9+BkBzczNXXXUVqampSJLEwoUL+cUvfoGu61x00UVt23rsscf4+uuvefjhh4mOjub555/nxz/+MV999RWBgYHddYhCN5PNBj7Dh0kygSpzKL5nMsmosg+f5KXRA4oioapHrCtL6IqKjo4FCxoaqqFilszovo7BFEmCKlc15c1VHeaZFTNlTRV4lBbMkhVUpV2w8XQwmSS8eJEkCVmyntZtCz2Px3CxqXS733m7KvcjmTR8kherZMHwyeg6KDYDj+7BLJuRvCZ0vf130GSS8UoeAKxYURUfPt2HVbaiuUUAURAEQRB6I9kMPsOLWTHhxUuII5gAi5MmbzNOs4OJSaMItQdT2VyNT/JiMVvR0ZAVBVVVsUgWND/D6jXFhy7pmA0Lmnp672v7mso6F09/sJnNeyvbpo3IiOTeq0cQGWLvkjZs2rSJ4uJi7rnnHiZPnkxISAhffvklM2fOBGD37t3cd999TJ06lUceeYSioiJ+/vOf4/W2DxYtWLCABx54gMsvv5x7772XyspKnnzySRoaGnjqqaeOuz2nazvdqVcGYZ577jnCwsLa/j1hwgTq6up49dVX+elPf4osy/y///f/2q0zZcoUsrOz+fTTT9uCMGVlZXz00Uc8+uijXHnllQAMHTqUGTNm8N5773H77bd33UEJPYNi0EwDX+z+lty6AqKdkVwycA4RlnB0SWdD5S4W5axANzTGxA9nZOwQgmwBKF4bum5gWHzsr8/nq/2LaPa6GBE7hDHxWXy2eyF2k42LMuYQKAeB+kMnNFmWKawv6dCUodEDuSjjHL7PX8sTK58jwh7GJQPnEGWLQvKd+qkryxI+k4vlRRtYWbgBi2Lm3LRpDLMMopf+NAjHodHb7Hf6jcMuZ2Bkf17f+hFFDaXEBERx6cA5BFgcfLRjPnl1hUQ6wrl44Gyi7JFIHjOSBJrZy7qKnSzJXcHExNEkhcQzf99SKluqSQlJ5OKBswmUg9C9vbLjpSB0KY9PAwOsFqW7myIIwllMUgyapUa+3LuY7JpcIhyhzEydTHJIPEOiMnCrHuxmG0tzVrGrcj8XZ8ymylVNdUstZsXMkpyV1LrryYzoz/n9Z+IwAtA1UBUPqwv28OW+xbhVD2PihjEteTxWzYGmiWDMkRpbvB0CMACb91by9AebeejG0QQ6zvwwsC+//BKr1cqcOXMwm82ce+65fPHFFzQ3N+N0OnnxxReJjY3lmWeeQVFar19Wq5Xf/va3bdswDIMnnniCuXPn8uc//7ltemRkJHfccQc//elPGTBgwDHbcrq209165ZPW4QGYQzIzM/nggw9oaWkhICDA73ohISE0N//wALJixQp0Xee8885rt8ykSZP4/vvvRRDmLKMoEgXuQv624hl0o3VIRnFDGZtKt/OTkddS1lTBV/uWtC2fX1fMivx13DryGqIdkciGifd2fcbKgvVtyxQ1lLIkZyX3T/gJT616iVVFG/nVpLtJsae0XWx03SA6ILJdW2IDo5mdNoXHVzyHpmttbdlavovrh17KpNjx7QI5J8NrcvH/lj1Ftau2bdqzNW8wKCqdn466GUkVeWj6Ioe541uTGSkTiXSE8ftFf8eg9XtZ3FDGxpJt3DziKpq8zRQ3lFHcUMaWsp3cNOxyxseOQUXln2teIK+uiImJo/FqPv76/X/btlvcUMbqwo08PPUe+tn74fWKrsqC0JldeTU88+l2VM3g7kuGMHxARHc3SRCEs5CiyJT6inls2b/RDrsf3lq2mysGnc/uymzSwvqxvngrm0p3MLXfOMqaKtlfk4tFsfD1YffKxQ1lLMtbw6PTf0GoJZRXt37AhpKtbfML60tYlLOC/5vxSyyao8uPtaerb/J0CMAcsnlvJfVNnjMehFFVlQULFjBt2rS2USIXXXQR77//Pt9++y2XXnopW7duZebMmW0BGIDzzjuvXRAmNzeX4uJifvOb36AeNoxg7NixyLLMjh07jit4crq20936zKvJjRs3Eh0d3S4AYxgGqqrS0NDAZ599xsqVK7nhhhva5ufk5BAeHk5wcHC7baWlpYm8MGchr+Lm+Q1vtgVgDvfGlo8YHJVBsC2IIGsggRYnAGVNleyuzGZb+R4a1IZ2AZhDmn0tfHvge6b0G4thGLyw4S28irttvmEYxAbEEGT9YfjbeQOm8e72L9oCMId7b8cXeGV3h+knQjFLLMpd3i4Ac8iuin0UNZYgy2IYSV/kkO30D+vXbtqc/lN5ZdP7bQGYw723/QvOSZvcbto72z/HJ3nYVbWPvLoiAKb2G8snu77usL5m6Ly84V1aJP89cARBAJdH5cUvdhIRbCch0smL83bS5BKl8QRB6Ho+2c0LG95qC8Ac7tPdC5mcNJZ3tn7KjJSJAExMHM0Xe75lTPxw5u9b2nF7usrLm97BbbSwsbRjnpAGTyNf7FmIbBY9YY7UfIzrwLHmnw4rV66kpqaGGTNm0NDQQENDA+np6URGRvLll18CUFlZSXh4eLv1AgICsFp/SHNQW9v6zHHPPfcwePDgtv+GDRuGpmmUlpYeV3tO13a6W6/sCXOkDRs28PXXX/PrX/+63fTVq1dzyy23AGAymfj973/frtdLQ0OD37wvQUFB1NfXn3K7TKbjj3Epitzu/31FbzquJs1FjavO7zyfrhJocfLIlHuoaqnBp6k4LHZW5K9jXfEWrhx8AWuLN3e67Y0l27l//K18k/09de4GWtQWQk0/9Eiw4OB3U+/j8ZXPUt1SS5gthNLGcr/b0g2dooYSMgIzTjo/jFdys6JgXafzl+Su5I5hqX1qnO6JnI+92bHOOQkr9427lafWvERubSEAmq7R4Gn0u7xH9aDrOpIktX3fNF2jtLGc1UUbAXBaHNS66v3esAGUN1fhUlsINfW+t1y96Test+gJ52JP+7uu2FBKs1vlpnMzUBSJ5z7dydLNxVw2NfW07qenHXdXOVuP+1ikg+9axOdy4vryd6rBcFPW5L/3hW7oVLfUYDfbafa1EOkMp7KlmghHKIX1JX5f5gDk1RXh1jz8evJP2Vt1gC/2fNPunmFl4QYuz5yLxdQ1OU56C6f96L3SjzX/dJg3bx4AjzzyCI888ki7ebW1tVRXVxMZGUl1dXW7eU1NTXg8nrZ/h4SEAPCHP/yBrKysDvuJioo6rvacru10t14fhCkrK+OBBx5g3Lhx/OhHP2o3Lysri48++oimpia+//57HnvsMRRF4aqrrjrj7ZJlidBQ5wmvFxTUN398esNxNdbVdTpvZuokChtK+N+mD1D11q5vsiRzycA59AtNbP03nfccOXKOosiEhrT/fgTj4M+zfkWt+9gBQEWWCQk5+QfamhYf0tHaK0k4nVYUuW/kJTjZ87E3O/o55+Q3U39GvbsRA4N6d9NRtyVJ/hJKH/aNN/wvc+Q2evPfoDf8hvUGPe1c7Al/V8Mw+H5rCUPTIoiPae2ZOyw9kpU7yrjl4iHHPLdORk847u5wth53Zw59t8TncvL64mfXXN9w1PmSJGFgtN73GgaKpGBw7PuAGlcdT658kbHxw/npuJv575rX2oI2kiRjMimEBvWc60NPEBxgZURGpN8hSSMyIgkOOLMFNVwuF4sXL+acc87p8JxdVVXFL37xC77++muysrJYunQpjzzySNuQpAULFrRbPjU1lZiYGAoLC9uNTDlRp2s73a1XB2EaGhq4/fbbCQkJ4emnn0aW20ejAwICGDp0KNCavFfTNP72t79x+eWXoygKQUFBNDV1fPhoaGjoMETpROm6QUPD8ZfJUhSZoCA7DQ0uNK3vlIjtTcdlVWxEOsKobKlpP91kZXTcUJ5Y8Xy76bqh8+nuBfxq8l00e1oYlzCCz/Ys9Lvt0fHD2Fa+G4Awewg22U5tbcfhGRJmwqQIVMVDQlAsRQ0du9QpkkxcQKzf9Y+XoliYljyeT/cs8Dt/VupkGhs8p70S0+G68kHsRM/H3uz4zzmFECWMzVVbQYIQWxB17o43XnaTDaDdd8Esm4gJiGRy0li2lO2i2ddCsDUQk2xqC1IeLjYwGofiOKXvbHfpTb9hp6Krzseeci72pL9rQXkjxZXNTBoSQ2OjC4D0+CA27C5nw45S+iec2v3I4XrScXel3nbcXXU+GoaBJEm95nPpSXrbd+pEWBQr8YExFDeWdZinyAqh9hDcqgebyUplSw1pYcnUtNQSHxiDhOS3N0xaWDJF9a3bW1e8heiASLJiMtlatguAKUljUVRzj7xP6M4XB4EOC/dePcJvdaT7rh5xxvPBLF68mJaWFm666SbGjRvXYf7LL7/Ml19+2Vbk5p577uG6666jqKiIV155pd1wJEmSePjhh3nwwQdpaWlh+vTp2O12SkpKWLZsGQ888AApKSnHbNPp2k5367VBGLfbzZ133kljYyPvv//+cZWTHjx4MK+//jo1NTVERkaSmppKVVUV9fX17YIuOTk5pKaeehdgVT3xH2VN009qvZ6uNxyX2bBx95gf8eflT6PpGhISWTEDuShjDsvyVne63tf7lnLnmBsxdINZKZNYnLuy3fwgayBXDDqf0sYKDMNgYuIYzKoV9SgXbVm3cNfoG/m/Zf/Cd0Rtv5uHX4UsyXhkF2bD4rfs9TGpMCNlEisLN1BxRGnsETGDiXPG4PP0rSSqPf37d6pkWUJTvHjQUV0eFCzHPGav5OaT3fOxmW3cNOxynln3RrucSBISNw67jIXZ37db78cjrsas28gI6096eCr7qnNYkruKa4ZcxPrirUxPmUBMQCQWxUyzt4VQewgmScEjtyAZMmbd1utuWnvDb1hv0ZM+x57wd92wuwKrWSExKrAtYXtcuBO7VWHzvkr6xRz7/uZE9YTj7g5n63F35v+zd97hUVT7H35nZvtm03sCKRACoYYSSuhFBFRU7NeOWFAvdvl57beo14JdufbesaMovffekpCEENJ73zYzvz9CFpZsKEqQMu/z5IGcNmcmMztnP+dbWrR17br8cc6ka9e8jnCBoHLLgKv55+IXcR22sXJ1r4swSQYeG3kXu0qzMOmMNDgamNJ9EqvyN3Bht/F8u8t7g8+oM3JJykTe2vCZp2xhzgqu73spW4p3EmQO4PwuY3E5VGjDnelsJizQzP1X96em3kFDkwurWU+An/GkZUWKjo72KcAAXHjhhfznP//Bz8+Pl156ieeee4477riDpKQkZs2axdSpU73aT5gwAX9/f958802Pm1NMTAzDhg0jNPTYg9GfqHH+SgS1Pbe62wm3280dd9zBpk2b+OSTT+jcufMx9Xv00Uf5+eefWbNmDTqdjuLiYkaPHs0TTzzhcVGqqalh5MiRTJ8+/U9lR5JlhcrKY1dzdTqRoCArVVUNZ8yHOZx+5yVIKo1CPQtylpMa3Z2dZVkA7CrLIqPcd7DmCL8wJiaN4v1NX3Fz/6sIMNn4bc9S6pwN9I/uRffwZGav/5iS+nIGx/ZlSspEjG4rinLkR0+QwC42sCBnGbsrsgmzBDOxyxjyawp4d+MXiKLEsI4DmJw8HoPbctTxDqc5RbWdTSXbWb5vLQZJz7mdRpIclohq17X73yss7MR/sWiL430eTzskmRJnKR9v/Yacqn0EGG2clzyGwTEDEBxt+wvLBgf3/v4kLtlFv+iejO88ghX71h9IUR3GOZ2G42e08nPmQvKq9xNqCWZMYjqxtmjUJp0nRXVG5R4W5Kzgil4XsLcqn+93/0ZlUzUdAqK5IHkcdreDaP8IPt4yB4fbyRU9JpPoH39CUq23N6fbZ9gf5WQ9j6fKs3gq/V3//eF6dJLI5KHeO3c/rsyl0SHz2PUDTtixTqXzPpmcbud9Mp9HSRJPm+tyKnG63VNHRadQ5izl461z2FO5lxtSL6NrWGfmZy8lpyqfEHMQ45NGohNFHl80i1BLMBd1O5dOwR3JKM+hsK6E7mFdqHM24G/0Y0nuairt1XQOjqd/TC8+3/YD2ZV5XoecOex29tcUkRbdB73bfNzr2JPFyVyvapw9nJYizCOPPMKXX37JzJkzSU1N9apLSUkhJyeH5557jnPPPZeYmBgaGxtZvHgxX331Fffccw8333yzp/2jjz7KL7/8wsyZM4mIiGD27Nnk5eXx888/H5N1TVtoIkwzp+15GV28vv4DdpRl0jeqB2HWEObtWeKz6cDYVCx6M4tyVwIQZA5getp1RFhD+XDz16wv9I4EH2C08eSo+9A5j82PWNILuFUX6GUeW/Q8FY3VXvXB5kAeG3EPOqfp+M+TZpNaWWyOEaMX9AQEWE7K30sTYU4MkiSS25TDM8tfb1U3ILo31/W8DMHlW4hR9W5eXv82mRXNAqNe1NE/pjdh1mCqmmqIC4hlVf56Qq0hRPiFUmOvo4N/NMMih3jdH5Ik4tY5+DbjFxbkLG91nOtTL2Vj4XbO7zqWZ5a9gVtxc32fyxgY3h8f3kunFKftZ9hxookwfw2Ndjd3vrSUc/p3oHdn7927rdkVzFu7j1fuGo7FdGIEy1PlvE82p9t5ayLMqc/pdk8dCUkS2WfP46llr6Ki0iUkkaFxA/hg01f0je5JlC2cWkc9a/Zvom9UT4LNgfyY8TsA5yePY2ynocyY+xgWvZmBsX0IsQQRYg4iwi+MnzMXsKloR6vMo2HWEB4ZPgODbD7lk0BoIoxGe3Dqb0P6YMWKZnePp59+ulXdggULCA0Nxd/fn9dff52ysjJsNhuJiYm8+uqrjB071qv9ww8/jNVq5fnnn6ehoYG+ffvy3nvv/SkBRuP0RhCgwlHNjrJMADYX72TmsNtZmLuylWuQKIiMShjCrFVve8qqmmqYv2cp0f6RrQQYgBpHHav2b2Bk9LBjevHILhVJp+O7jN9aCTDQHOhsS8kO0kL7e0zZjwdZVkBuDqqm6E7tF6FGa1yinfc3femzbl3hFqakTMJGoM96SdZzRY/JPLlkVvNYiptV+c0Zj/wMVoZ06Ed21T6yq/YBYNIZuWjsBNxO78WULCs4RIdPAQZgzs5fua7PFJblrWVQh1SW563j8+3fkzqmBzr+mHiooXEmsKegGlWFjhGt1xyx4VZUYE9BDb06hbTurKGhoXECcIl23tv8pSeWy7jOw/h4y7fIqsK6gi1ebVfsW8f/Db+DnzLno6oqczMXMDphCJ2D49lTuZdFuQfd92cMupG86oJWAgzAVT0nY5Qtp72ApaHxRzktRZiFCxcetc0LL7xwTGMZDAYefPDBVumtNc5eJElkZ2Gm53dFVfhm51zuGnQjn277noLa5sBiYdYQruo5md+zl+JwO7zGiA2IbvXiOpR1hVsYGjMI4RgfQRcONhVtb7N+TcEm+of3BfnEZ9HQOLVxKA5KDovrcyh7KvfSP6SvzxgsiqISYQzn7sHTeG/TF57AvIlBHZnW70o+3vKtp23HgBhuG3ANRtmCcpjPtiAIFNb6TqkOUOuoQyfp2F6Swfldx7E8bx12t4MGdwMBmgijcRaTkV+Nn1lPoF9r3/4gPyNWk46s/dWaCKOhodFuOFUnRXUH3+FGyUCNj0D9LZTUlxFgtFFtr0VWFSrt1cwYOJWPtn7DusItqKqKUWeksrGGf4y4k7fWf8bOAxubfgYrV/acTHJgUqsNHQ2Ns4nTUoTR0GhPVBWsBu9I6Bnl2Xxor2VC0khCLcGEWYLRSzpmrXqH/JrCVmM4ZRcWfdvuRla9GRHxmMOPCYKIRd/2l1Wr3oKIwJkVSlfjWJBEqc1sBAB+BsuRs1y5JZL9knly5P00upvQCRIm0YQBE7f0vYYmuQlREDGJZnSyAcWntZWK+Qj3J4BOkLDozTjdzoNlog7tptU4m8naX0NMmLWNNPAC0aFWsgtq/oKZaWhonC1IgogoiB6LFUmUjtjerDfhPMQy3CgZEB1Gru9xBVf0mIxTdmKSTJhUM4oTbu97PXbVjktxY9GZCbMFUVtjx40mwmicvYhHb6KhcXYhywrdw5JaLYpL6st4f9NXrN2/mUBdEGa92WdKX4D8mkImJo1q8xjndh6NIB/5JXcoesXIhKTRRxhvJIpbs4I5GzFgom9UD591OlFHfGCHowa7k2UFyWnEpgRilm0ILj0ul4zkMuKnBGKR/RFd+jbHUVUIs4S0KcQkhSSQV1PA8PiBrN6/EYAYWyRm8djiImlonIm4ZYW8ojqiQ9pOfxoVYmFvcd0pG7BSQ0Pj9MeAiQExvT2/51blkxzqO0usSWfEJBlpdDUBEGjyx2bwA0B1iRhdVmxKEHqXGdl9IAOXS4fJ7YdNCcSomI8q8mhonA1oIoyGhg8MqpnpA65DwFvYiPQL45Juk0AWCTIFcN+QWxiTmM696Tdz95CbuHvwTYyIG8RVPS8kMSCewR36tRp7eNxAOthijmtRLcsK3UO6+PyyfU6nEYSbwo5s7aBxxiK4Ra7uPYVQS7BXuSiIzBg0FYPsWxgR9SoufRP1YjUufRNS20mUjgmDbOLewbc0W7ccQoDRxqXdzyOvuoAQcyC5VflYDRb+PuhGdLLxzx1UQ+M0pqCsAZesEB1iabNNVLAVu1OmqOKvD2asoaFxeqPTicgGBw1SDXZdParejSAIqC6Rq3pcSJi12e3xtz1LmZIykQCTv1d/SZSY1v8qfsqcDzRbwNw9+CZMcttCsoaGhm80dyQNDV+4RVICknnunEdYW7CZSnsVfSK608E/Bp3LBBKIokiIORhVhRdXvYOsyBh1RiYmjcKqs4BDz99SLmZi0mhW5W9AEAQGx/YjUB+A4Dz+b7yC08ANva9gctcqVu/fiE7UMSS2Hzad/2mR6lejfVBVMLmtPDr8bnJr9rG9NIMIv1D6RvbEqJhRfcQJUo0uvsv8jYW5K3ApbgySnnM6DefcTqOPmNL6SCgyRBujeXbcw2wu2U5BbTGJwXHE+kciiRKTuoxmRd56bhtwLV1DOmM4hdNRamicDHKKahEFCA9qW4SJCG62FssrqSMmzO9kTU1DQ+NMQ6eQ07iXdzZ+TnljJQBdQhK5ud/f8FMDEN0WHhl2F3k1+9laupOS+nKeGHUP2ZX72FWWRbQtgj5RKRTWlRBji2Rwh370jkzBrFhxuzS3Ig2N4+W0TFF9OqClqG7mTDgvnU5CFMHtVjxfGnU6Eb0FXlvzARuKtrXqc16XsUxKGIfiEhCE5jEA3G6ZP/vEHTqey3ViA2qczL+XlqL6xCOKAgaDDpvN1PbfUC/z6c45rMhf16pqbOIwLu48CdX954wkdToRURQQBAFFUXG7ZSSpuUyWVZ9Bgk9VzoTPsGNBS1F98nlv7i4y8qu5/tyuR2z31k876Z8czpVjk/70MU+F8/4rON3OW0tRfepzOt1TgiBQrpTw2KLnW8WPsxms/Gv0g+iczVazoiig04kH3t0KkiQgSQd/NxgkdDoRt1vF6XQf91xOp+vWgpaiWqM90LbPNTSOgtvdLHRIkoigb/6/TpKosld7CTDh1lB6R6YgCgLbSzMYmzAMPWZU9cSKJSd6PI0zB1EUcKoOnEeIN2THzsr89T7rFuauYFKXMZgMJgRVQna1VgwlSUQRmxdegiz5tGbxtbA6XRZbGhoni73FdUQEHT0uUnigmbzitjOVaGhoaLQgSQKKKAMCoiIhywqKzsXnG7/3EmCSQhLoHByPU3aSUbGH3kG9cLsVRLE5W5Ik6BAEDmycHFxzOp0yTufB3yW9gIwbCZ3PNYOGhoZvNBFGQ+MoCAK49Q52VWazq3wPw+PS2F6aSZQtHAC9pOfGvpejKDKr929CURWGx6ehCgqCwJ+2fNHQOBqiBA6piUX71rKtdDch5iAmJo0mUBeI4Pb+mK9z1LeZSUlRFYobSmlyNWHSmQg1B2MVbOAWvZ6DRXtXIQoCYxOHkRgQh+hsnV5XQ0OjbVxuhYLyBrp2DDxq24ggM2t3l6Kqqs8sShoaGhoAisFJVvVeFuQuR1FVRscPISm4OcBudtU+AELMQUztdwW5VflsL92NWWfCqDcg61y4RCdL8tezpWQnwaZAJiSNIlgf3GodAYCkUE8d8zIXU1BXTGJQR8YmDMOsWn26QWtoaHijiTAaGkdBNjiZtep/VNtruWXA33hq2Ws4ZRf3DpkGwI2pl7E8by07SjM9fXaUZrIkYDX3Dr4VyakFH9VoPwRBoI5qHlvwPE0uu6d8Zf56ru41hcER/eEQy5ijpZJGVXl59XsMjE2lU3AcUX4RdLZ2wq1rfg5yq/M9TbeV7CYlLIlb+12HpAkxGhrHTGF5A4qiHjEeTAthQWbsTpnyGjthgVpGMQ0NjdYoBievrX+f3eV7PGU7SjNIDOrIXYNuItgcSFlDBbcMuJrZ6z6moqnK025j0XZGJQwhyhbOlzt+9JSv2r+BK3pMZlj0IHAfXEeIEmTV5zBr1VueTZ2M8mx+y17KQ8PuJFp/fMknNE4fFixYwCeffML27dtpbGwkPDycoUOHcsMNN5CQkEBycjIPPPAAU6dObXOMOXPm8H//93+sWrWK4ODgNtsdL2vWrGHTpk3ceuutJ2zM9kTLjqShcQR0OpFNxdvJrc7nnM7DmbPzF+xuB6qqUuOoIyUsCQXVS4BpIa+mgPVFW5Ak7THTaD8UnYt3Nn7uJcC08Mm2OThE73KLaKFDQLTPsVpSSQOs2b+JCGsoH2z+ElXv9jwHh7OzLIuc6r1IkrbzpaFxrOwrqUMAwgKOIorS7I4EsL+0vp1npaGhcToiSSJZVTleAkwLOVX7yK3O56Ku5zIwNpUV+9Z5CTAtLMpdSZRfOCad98bhF9t/wCE0eZU5JTtvrPsQUfRe38qKzOtrP8AltV6PaJz+PPfcc0yfPh0/Pz/++c9/8t5773H77bezZ88e7r777mMeZ+TIkXzxxRf4+/sfvfFxsHbtWmbPnn1Cx2xPNEsYDY0j4MTB6v0bubbPFJJDOxHjH9mcwk9Vcbpd3DLgat7d+Hmb/RfmrqB/ZB8kWbMS0GgfnKqDjIrsVuUCAuM6DcOpOKmWazHpjPjprBhVM/cMmsbTy1+jpKHc0z7aFsHN/a+izt7AU+NmUmOvRVYV7hh4Aw7FwYLc5W3O4fecpXRJ7QyyJjhqaBwL+0rrCfY3YtC3Hb+pBT+zHrNRR35pPaldwk7C7DQ0NE4nZNHF7znL2qz/bvc87hl0M6HWIJ5Z9nqb7XaUZvCP4XdSUFfM97t+o6i+FL2ko8ZRh78Raux12IxW9IKOu4ZMpd7ZiEVvZl91Ad/tnkeTy05FUxUNciP+aFbgJxK5qR65oQbF0YBosiJZApDMJy9j3pIlS3jrrbeYPn06M2bM8JQPGDCAKVOmsGjRomMeKzg4+IRawPwR7HY7JtPRN0HaE02E0dA4AoIocGn3iXyw+Ws+3PyNp7xXRDfGJ41gR14WstJ2wFFZVWgj/IaGxgmhrfguN/e/ioyKHP5v/tO0JMELtQRz35BbCRKD+cewGVQ6qiisKybUEkxFYxUfbv6Gc5NG8sry96hqqgFAFETuGTINRT3Cfa4obc5DQ0OjNfkldYQGHJtrkSAIhAWa2F+mWcJoaGj4RlHbTtigqDLIAiHm4CO+yx2yizm7fiW/ppCb+l3BF9t+5JIek/h+929sLt6BWW/irsE38c2OuWRW5Hj6JYd2Ysagqby06h2a3Ha0xLsnFndtOWU/vU5T7hZPmTmxD2GTbkPnH3pS5vDuu+8SGhrK9OnTfdaPGjXK839FUXjllVf47LPPkGWZ0aNH88gjj2CxNLvfHu6OtH//fsaMGcN///tftmzZwo8//ojRaOT888/n3nvvRadrliuKi4t56qmnWLduHXV1dYSFhTF27FgeeughXnnlFV599VUAkpOTAUhLS+Ojjz7ilVde4d133+WDDz7g3//+Nzt37uSuu+5i6tSpPPfccyxZsoT9+/fj5+fHgAEDmDlzJuHh4Z7zueaaa7BYLEyYMIFXX32V0tJSevfuzRNPPEFiYuIfvqbatqWGxpEQFN7b9BV7q/d7FW8t2cWS3NWIoki/mF5tdh/WMQ0jf63SqnFmYxCMxAXGepX1jOhKaUMFi3NXeS2Gyhsr+efSF7GLjUhOI1GmKKx6C8+tmM3s9Z8wIWkUr6w+KMBAc7DeuZkLGdKhX5tzGJUwBEnRn/iT09A4A1FVlf1lDYQfQ2akFkIDzORr7kgaGho+0Kl6RsQNbrN+eMdB6DFgUIykxaS22a5XZDcyK3Iob6zklTXvc33fy1i6dw2bi3cAcH7yWL7b9auXAAPN8WB+2P0bk5LH4G+0YdUdPdaVxrEhN9W3EmAAmnI2U/bzG8hN7f9ecLvdbNy4kUGDBqHXH32t98knn7B3716efvppbr/9dn788Udef71tC6wWXnzxRURR5MUXX+SKK67g3Xff5auvvvLUP/DAA2RkZPDwww/z9ttv8/e//x3lwEb4pZdeyiWXXILJZOKLL77giy++4LHHHvP0dblc3HvvvVxwwQW89dZbpKenA1BRUcEtt9zC7Nmz+cc//kFBQQHXXHMNbrd3+vUdO3Ywe/Zs7r33Xp555hlKS0u56aabcDqdx3QNfaFZwmicMUiSiFNsQgX06MEt/unMRHWuBvYdiJFxOOsKtzAyYTB2t4O4wFjyDhNqwizBDO0wALdTS82r0X7oZAM39b2S51fOJr1jf2L9o4j1j+LTrd/5bN/gbCSvJp8kaxecipOvd87FKbuIsUVSVFeC3e1o1WdnWRYXdhtPhDXUy4UJoGNADN1CkpC1+1xD45ioqnPQ6HAfsyUMNMeO2ZRVhtMlH5MLk4aGxtmD263QI6wrsf5R7K8t8qqL8AtjQEwfZIcKCExJmcjmkh00OBu92vWO7Ea1vdZT3uBspKKxityqfQSZAhiRMIjekSl8uf0nn3PYWZbF+V3HMa3fVRgVM/Ih1rHN63M7KgqSqLkpHQ9yQ00rAaaFppzNyA017e6WVF1djdPpJDradzzBwwkLC+P5558HYPjw4ezcuZN58+Zx3333HbFfr169ePjhhwFIT09nzZo1zJs3jyuvvBKAbdu2cc899zBx4kRPnwsvvBCAyMhIIiMjEUWRPn36tBrb5XJx9913e/UFeOqppzz/l2WZ1NRUhg8fzurVqxk6dKinrqKigo8//pj4+HgAUlJSOPfcc5kzZw5XXHHFMV2Xw9FEGI0zAtXoYk3RFuZmLaTe2Uj38C5cmnIeVvw5goXmEREEqLHXtn1MVcWluHh7w2dMT7uOkoYyFueuQlZkhnVMI73DAPRuM4rmpqHRjiiKSog+hPuH3sqX235iUe4qAk3+jElMZ2h8Gm9v+KyVafD+2mKSbcmogkJxfRkAwZZAiuvLfR0CgNfXfsjDI2awPG8t6wq2IIoio+OH0D+6N5LTqN3lGhrHSItbUVjgsVtJhgWaUVUoqmgkLtLWXlPT0NA4TdG5jDyQPp11hVtYlLsCVVUZHj+IwbH90DlNHpdhs+zHv0c/yPycpawv3IpZb2Z4XBoWg5m31n/mNWZhXTFjEocSaQvjl8zFdAqKO+IcLHozoeYwZPfBFYFqcLG2ZBs/Zy2g3tFA97AkLut5PjYx4MRfhDMQxdFwlPrGI9afSATh2BIwDBkyxOv3Tp068fPPPx+136GiR0u/1atXe35PSUnh3XffRZIk0tPTiYs78v14OCNGjGhVtmTJEt544w2ysrKorz9oVbR3716v+SQlJXkEGIC4uDi6du3Kli1bNBFG4+xF0bt4Z9OnHnNJgLUFm9lYtJ1/jr6PACHkD/mnqioEmQPbrJcEEZ2oo9HVxPe75zEifhCDO/TFZvSjX2Qv1CadJsBotDuSJFBgL+ZfS1/y3OeNriY+2jKH9I79mdz1HL7bNc+rT3xgLIqiIgoisf6R5FblU9ZQQb/onm0eRy/p2VWWRVZlLsPi00BV6RGejM5lQtH8vzU0jpmCsgYMepEA67EHbA85kEWpoLxeE2E0NDRaoaogOYwMjRhEWkQfVAEMqhHZoXrFbFMUFb3TzHnx4xmXOJw1BZtYkLOilQUNQHxgB5pcdmatfBuAC7udc8Q5+Omt4DoY6ULVu3h3y2dsLNruKVtbuIWNxTt4ctR9BIkhWirroyAarUepb3/Xr8DAQIxGI4WFhcfU/vCsR3q9/pjcdmw273fb4f1mzZrFrFmzePHFF3niiSdISEjgnnvu4ZxzjnxfApjNZqxW72u5detWpk+fzpgxY5g2bRohISEIgsBll12Gw+FtFR4SEtJqzJCQEMrKyo567LbQYsJonNYIAlQ5q7wEmBbcipuPtnyDqvP26xNFAZ1O9PrXFzqdSKDen7SY3j7rh3TsT1bFXuIDYzmvyxjm7PyFL7f/xDsbPiezIkdL2avRbkiS6El97hIdvLvxc59C44p96+ka2glJOPhRH2jyJ9YWjaKo6BQj1/e5jACjjeL6MkItwdgMB19SOlFHXGAMMf6RTOoymoW5K9hRmsnn237g8+0/8sb6j5ClP+4Pq6FxNrK/rJ6wAPMx7yoCGPUSAVYDBWVH3hXV0NA4uzh0PQDNrkmi24DkMnhZpByO7AYLflj0Zp8CTKDJnw7+0Xy0ZY6nLKM8hz6R3X2ONzJ+MH6Sn+dzTRCg2lXjJcAARPmFE+Mfyefbv0OWXMd1rmcjkjUAc2Ifn3XmxD5I1va3KNLpdPTt25fVq1e3ipVyMgkPD+epp55i9erVfPXVVyQkJHD33XeTn59/1L6+3rfz58/Hz8+PF198kTFjxtCnTx9CQ30HOq6oqPBZFhb2xzMWtrsI8/3333PttdcyevRo+vXrR9++fb1++vVrO9ijhsbR0OkknwJMCzvLsnDR/CVRlMBtsJPduIdlxSvY59hLqVzCPnseboP9oBijV3Abm9jblMui/BUM6difR0bOICkkoXkcQeSy7udxfvJYAk02BsamYtIZuSjlXEy6Zl/XZfvWIGhu+xonGFXvpkGqYXXZGtZXbMChr8ctuCmoK26zT151AeF+zS+JuMAYHhlxF0bFjNtgJ6cxh8yKHG7qfyV3D76JeVlLuGPQDcT6RzElZQL3DpnGgOjejE0cSlJIAh0DYrzGzqnahxNtEaWhcTzsL2vwWLYcD6EBJgrKNRFGQ0MD0Ck49A1srNzEytLV1IlVqPpjex8rehfVQgVLC1cSHxjLJd0noZcOBlxtXivMwOl2U+uo85T/nLmAczoPp190LwSa18wdA2J4dOQM+kX3ZNn+1RS48pENTnQ6iS0lOz19+0b1YOaw6YzpNJS+UT0Y12k4iqitH46GZPYjbNJtrYSYluxIJytN9Q033EBZWRlvvvmmz/olS5aclHkAiKJIr169uOuuu3C73eTl5QHHbnHTgt1uR6/Xewk0P/74o8+2WVlZnuMA5OXlsXv3bnr39r1Rfyy0qzvSs88+y7vvvktERAQ9evRoZWakofFnUVXVI3z4QhIlBAREUaBSKeffi1+m0dXkqY+whjK135X8Z9nL3D14GgGGQGqVWl5Z8Z7XzoBRZ+T/ht2ORTJj1BspbijhH/P/i0s5qAh3Co5jxqAbeW7l/zDpjAdeUJqZpcaJQTW4+DbjFxbkLvcqv6rnZCZ1GcPPmQt89gs0BXBdnynIqkJxXRkNzkYUvcK/Fr1EzSGLqyBzADOHTafB2cQ9Q6bx3a55fLPzF0+9gMAl3ScyvvMI5u1pftkKgoCIZvGloXGsyIpCUUUDXWKPf/cyJMDEnv01R2+ooaFxZqOT2VS+lXc2fu7lajS4Qz/+1v1iBGfbGWxUY2sX/sEd+vHE6HuotdcjqzIl9eVUN9ViM3p/wXfKLmateptzO49g7NBbCTA1u538e8krNLgOxiaJsIbyf8PuxGZo7j8gpjd9orrz7PI3kQ9Jkd0jvCu39rsGwaFlVzwSOv9Qwi+8G7mhBsXRiGi0IFkDTpoAA83xVG666SZeeeUV9uzZw6RJkwgKCmL//v1888031NXV+Yy5cqKoq6tj6tSpTJ48mYSEBFwuFx999BH+/v6kpKQAzTFk3G43H3zwAampqfj5+R0xhXR6ejoffPAB//znPxk3bhybNm3i+++/99k2JCSEW2+9lb///e8AvPTSS0RERHDxxRf/4XNqVxHmq6++YuTIkbz22muIoub5pHHicbsVUqN68Om273zWp3fojwEjTqmJ/y5+3UuAAShpKOe7Xb8yuGM/nl3xJo+Nupuvtv7UyjTT4XbwzPLXeXrMQ6CqPLd8tpcAA5Bdmcfq/ZsYFJvK2MRhuF1athiNE4MkCeyu3ttKgAH4dNv3PDj0NhbmrKDJbfeqEwWRAJMfTy87mBpwWr+r+DHjdy8BBqCqqYbX137IuZ1HkldTwNK8NV71Kipf7fiZ+9NvYXHuKhyykwFRvTCgBeXV0DhWSquacMvqcWVGaiE0wMTaXaU0OdyYjVpIPw2Ns5U6pY63N37WqnxV/gZ6hHelf0gqbnfrNaikE1i6f10rC/JV+RtYnb+RB4dN57kVs1FVFUmUeOHcR4mxRXpZ27pkFz9mzGd+9nKeGjeTxxa94CXAQPPa+n8bPubm/n9DQGBM4lCeWf56K7fp7aW7WZy3grGxo47oOqXRbBFzMkUXX9x///2kpqbyySef8NBDD9HU1ER4eDhDhw5l6tSp7Xpso9FIly5d+OijjygqKsJkMtGjRw/eeecdgoODARg1ahRXXXUV//vf/6ioqGDAgAF89NFHbY45YsQI7rvvPj7++GPmzJlD3759mT17NuPHj2/Vtnv37pxzzjk8++yzlJWV0bt3b5544gkMhmOP7XY47f4WHzFihCbAaLQrZqxc1fPCVkJMmCWYKSmTUAWZqqaqVl86W9hZlsV5yWMpqC3GpbjYULTNZ7sml51KeyXljVWtBJgWVuZv4P+G3U64OQz1kJhOkk7AIdhxqy4kQYdRNdHGEBoarXCLTn7M/K3N+pX5G0jvOID5Ocu8yq/ufRELc1Z6lUXZwj0ZkQ4nr7qAaP9I3t34eZvHWlOwmT5R3cmsyOHKXhd5BeHT0NA4MoUH3In+mDtSs3BTWNFAp2gts4iGxtmIwSCxeM/KNut/yvid7kOTUPQqJqE5K5JDcSAIAnpRx5K8g9lmYv2jGNd5GEGm5s+TRlcTPcOTaXTZGZOYjlN2MmPwjczNXMSyfWuRleZ0o5IgMrXfFVTba9vMIrqzLAtZkbk97XoyK3LaTJDxy57FDO84GAlvq3ZRFJAlF061ee4GjAhu3R9KtKFx4hg7dixjx45tsz4jI6NV2fXXX8/111/v+f3iiy/2siCJjY312e8f//gH//jHPwAwGAz861//OuLcdDodjz32GI899phX+Z133smdd97ps8+0adOYNm3aUc8BYMqUKUyZMuWIczge2lWEGTlyJBs2bPjDqZs0NI4FwS0xJCqNnuFdWZi7gmpHLWnRfUgOTaTKXktpQxnuoygefgYLIZYgCutKjvgBX+9qorKpus16l+zCrDdhUI04aX5ZqXo3G8q38+WOn6ix12LUGRmXOIxzO41EcPxxBVXj7EFWFWrsvkVEgMqmGq7udSFh1mD2VO4l1BJM3+geLM9bx9qCzZ5296ff6mW67Au34qb6CMeqsddxQfI5/K3HRc0p2LUFkYbGMVNQ3oDZKGE1Hf/yK8TfhAAUlmkijIbG2YqKSkVTVZv1NY46dlXsYene1VzU7Vy+2P4j2ZXNsSx6RnTluj6X8OHmb0gM7kjPiK7M2fELRfWlSIJIWmwfrulzCTtLM/lqx89UNlWjl/SMih/Mk6Pv5cfd8wkyB5Aa1Z3FuasY1OHIcT2dspteod3YU5XbZpsGZ2OrdYkoQbVayXvrPyezorlvSlgXbuhzGX74c0AL0tA4rWnXLcxHHnmEwsJCnnzySXbs2EFlZSXV1dWtfo6XX375hdtuu43hw4fTp08fJk+ezNdff+358lxfX88rr7zCJZdcQv/+/RkyZAi33nqrT2Wrrq6Ohx56iLS0NFJTU/n73/9OaWnpnz11jZOM4NbhrwZzadKFTOt5DX1CepFTtY/9dYW8vu5DgsxtL1jNOhNO2cWvWYuxuxwEGNuOXeRnsBAf1KHN+ghrKKh4zEAlHawt3shbGz717BY43A5+ypzPB1u+QtVr5jAaR8cgGOgW2rnN+i4hCXyw+RtW79+ISWekqqkGnaDzcilKi+mDUWfAJbvazMqiE3XoRB1dDgSh9kVqZA86mjsiOU1aakkNjeOksLyBEP/jy4zUgl4nEuBn1ILzamicxSgy9I3s2WZ9l5BECmqKuKjbBJ5d/qZHgAHYVrKbl1a/y/Wpl5Ia1YPX1nxAUX3zdx5ZVahqqmV7SQbvbfrSs+Hokl38lr2Uj7fMIb1jf/bXFvH0stdZlb+RKL+2M8OYdEYsOjOyU6BXeEqb7RKDOiKp3pksmsQGHlv0nEeAAdhZlslji5/HITUdPoSGxmlJu4owZrOZ1NRUPvvsMy655BLS09MZPHhwq5/j5f3338dsNjNz5kzeeOMNhg8fziOPPMJrr70GQGFhIV988QXp6em8+OKL/POf/6Suro7LL7+c7Oxsr7HuuusuVqxYweOPP85zzz1Hbm4u06ZN+0tTcGm0RhAE9AYJvcF3SmlBAL1BBEEFFZqERuyyg+92zUNVVTIrcukX3cvn2BelnMvczIUALMhZwQVdx/ls1yO8C3ur8ql3NJAQ6FuIuazH+YSagz2/O4Qmvtr5k8+26wq30KQ2+qzTOHvR6yV0egGTWYfe0Jx6UnEJTO46Hr3Yevfcz2AlObQTu8v3kFuVz7K8tazev5GNRdvoG9UDOJDRq8d5fLr1OzYWbWdE/CCfxx7XaRhLclczrtMwJLF1ei9/o43UyB44ndrno4bGH6GgrIHQP+CK1EJogCbCaGicbej1kmc9IMsKKWFdPC5EhyIKIucmjcAhO1myd7VP1/kGZyMZ5dlsLd7Vqm5MYjrf7frV5xx2le1BFAR2l2ejqAqDO/TFLFkYFNvXZ/sp3SZiUM0oikqsLYrINgSba3pPQZIPWoVLepibtRCn3DpzUqOrieX71iDptIQAGiePjz76iNmzZ5/wcdvVHenJJ5/kq6++onfv3vTu3fuEZUd64403PEF4AAYPHkx1dTXvvfce06dPJzY2lt9//x2z+WDgu0GDBjF69Gg+/fRTHnnkEQA2bdrE8uXLeeeddxg6dCgACQkJTJw4kd9++42JEyeekPlq/DkUvYsyezkLspbjVtyMiBtEB1sMorP5Q1vVu6hwVrE8cy39Y3tT56jHz2jFojdT1tCc1/373b9xx8DrCbMGszh3FXa3g0CTP+d3HUdScDyfbv0OgN3le+ga1okbUi/jh92/U9FUhUHSMyJ+EGMSh6KoCnWOem5Nu5pfM5ewbN9a3IqbcGsoV/WaTIOzkbc3fcbIuMHE2qJpcttpctnbOjWK60rpZAnQfFw1ECSwiw3kNZQiCiKr8jfQ6GpicGw/OgclYFVsPDHqXt7d9AV7KvciINAjIpnzk8fywaavW423vTST2wZcQ4DRn7TYPkiiRE7VPnKr87m1/9UEGG3Mz15Og6sRm8HKxC5j6BXZlYcXPEuQ2Z/HR93Dexu/IKdqHwICvSK7cWn3SSjICHoZ1aXlYNfQOB5kRaG4qpGucUF/eIwQfzOZ+dUnblIaGhqnLKpOpk6pZeGeFVQ1VdMvuhcpoV0wKRYeHXE3n2ybw4aibaiqSnxgLFNSJjJvzxJSwrrwW/bSNsfdXppJXGBMq3KDTt9m/ESAgroSov0i6BvVnTGJwxHseq7uOYVIvzB+3bMYu9tBgMmfS1Mm0Se8J4qzeW2rc5n4v2F38OWOH1mdvxFZVYi2RXB96qVEGCNQXAfXwE6c7CjLbHMOW0p2MarDMEBbg2ic3rSrCPPLL78wefJknn766RM67qECTAvdunXjyy+/pLGxET+/1tGjrVYrHTt29HI1Wrp0Kf7+/qSnp3vKEhMT6datG0uXLtVEmFMAxeDk8x3fsSJ/vadszf5NdAlJ5M60GxFkkV9yFjB3zyIeSL+VDzd/zf7aIu5PvwUVFb2ow6W4kRWZl1e/S//oXtzS/2+IokiYJRR/gx8Vdm/f2u92zaNTcBxTuk/AarAQbYvA7nLwj/nP4G+ycduAa/nX4pcZGT+YJ0bfg0HSU1pfzpc7fiKvusAzx66hnZjW76ojnp+f0aoJMBqIokCJq4hNxdtxyE5+zVrsqVtXsIVIvzAeGvZ3gpRQ7hpwM07suFWZjPI9vLz6PeqdrXfGA4w2qu21DItL459LXuK58Q9jNVhocDby5rqP6ROVwo19L0Mn6XDKLgRVJNwSxqxzHseAEb2g546B11NYV4yqwu7ybJ5a+hqN7ibuHnwTSf5JKM6TeJE0NE5zyqrtyLJKqP+fsYQxsWaXg0a7G8sfiCujoaFxeqDqZNaVbOSDLV95ytYXbiXYHMijI+7C5LZwY8+r+FtPOyoqeTX5fLjlG8oaKogP7ECA0ebZiDycQJM/Lrm1lYwkSIiCiKL6zu4ZZQvnku4TWbp3Dfm1BcSZ48Gh59y4sYyKS8etutEJeoyqCdl5cG2rSC5W7tuASWdkxuCpqKhUNdXwY8YCbkq9Eh0HPxMlJAJNNorqStqYewAiElr+UY3TnXZ1R9LpdPTu3bs9D+Fhw4YNRERE+BRgAGpra8nKyvLKF56Tk0NCQkIr3+zExERycnLadb4aR0cUBYoaSrwEmBYyK3LYWLwNu9rEz1kL6ROZwtaS3Z7U0jvLsiitL2dwx4NBw1RVZV3BFl5a/S6vrvkAi86MYDcQqA8g0OTvNX52ZR7/W/8pv2YtZlX+RvbVFhLjH0VVUw2/Zy9lcMd+/Jg5n+dX/I+cyn08u2K2R4BpYXd5NjWOOnpFdPN5fv5GG8GmP74jqnHm4NLZeX3tBySHdvISYFoori/jl6yFIKoILh0CAk8vew2TzuRTgAEYFp/G62s/wKm4UFSFjIocxnUaBjQH9ttUtINX1rzPrJVv8/raD0kIjsVZr6J3mVFdInahkVmr3ua5Ff/j+ZX/4+fMBTS4GlFVldfWfohD0FzpNDSOh5bMSMF/UoQBKKrQXJI0NM5knEKTlwDTQmVTNZ9v/wFVUlBdIgaXBYvih9Vg9YguK/etZ2RC2+EexiSm+4x/uLVkF/2ifcebMetNoMLzK//HusItvLz6XVxSs6W37FLRuUyY3H7oXMZW6aYb1Aa+2PEDC3JW8MLKt5i18m3e3/QV20p28WPm7xzqaS3KOs7v4jssAMCkpNGomke0xhlAu26jTJo0iUWLFnHllVe252FYv349c+fO5cEHH2yzzbPPPosgCF5zqa2t9ekiFRAQwPbt2//0vHS6Y9e4JEn0+vdM4c+cl6hT+W3nkjbrf8teQoglEID+Mb35ctuPABglA0adiV6RKfSN7klBTTHZVQcDk+klPQ8MvRWzaAadiB4LDwy9jX8vfYVwawgTk0Zj0hsRBZFwawgfbZ7D5qIdDIjpxb6aAjYUbuOuwVP5bc9SUqN6sHr/xjbn+Pm2H5iedi3PLHvdE/wMIMgUwMMjZiCrbuqFCiw6E2bRjCD/tTubZ+p9CMf3PJ5sat0NhPuFsqV4Z5ttFu5dycSkMZhEM9vLc6hsqqaiqYpJyWOYm7GQ4fEDSYvtg1txE2D0xym7UFSVwtpiwqwhvL3uM2ZNfJQ9FXvZXtocpDzCL4zzk8cSFxiL3e1AZ9BjFiyoMtTITeTXFPqci8PtoKS+jHhz2wF8D0WRXDQqTdjdDiw6EybRjPgX3+vHypn8TPxVnArP4l/xdy2pasRkkAjw0/+hwLwAYUFmBKC4spHkP+DWdLbez2freR+NlttQuy7HT3veU5Iksr54d5v1+TWFuEQHdsmBrMhYdRbcjW4mdRnNz5kLKWkoxyW7GBE/iCV7D6akFhCY0n0ifnoLCcEd6BaWxK6yLE/98rx1PD76HorryyioLWZUwhD6RffErbgJs4awp3IvVr2FBlcjTW47lfYqog2t3ZoORacTWbR3c5v1S/JWMzn5HAwcDCER59+BCUmj+CVrkVfbS7ufR7gpDEnR7leN0592XQVPmDCBf/3rX9x8881MmTKFqKgoJKm1D1/37t3/8DGKi4u5++67GThwINdee63PNt988w1ffvklTz/9NJGRkX/4WMeDKAoEBVmPu5+/v/nojU5D/sh52d0OHHLb/g7NXzKbDRJ1ooRTdmHUGblr8FTmZS1hzs65mHUmrup9IZeYJ1JYV4K/yZ8gkz/f7vqV+MAOTO52DoEmfxpr6/m/YbdT66jnf+s/ofpAJiOb0Y+rek5mf20RugNS/aFmmi3HbYtaRx1WvZnHRt9NUV0puVX5RNnCifWP5J0NX7C5eAfQ/GIc3LEf1/aeQvABYemv5Ey7D//o83iyqKgoQyfqfJoHt+CSXeh0IgEWC87S5nvu820/8M/R9zEybhALc1fywsq3kA/kbuwUHMcdA6+nqK4EnahDRuaR+c/y8KgZ2F0O9tcWEe0fwetrP6Kkvgxozmbwt94Xkd6xP3L9kY19nYrrmK5peWMV/1v3ycF7XRAY0qE/1/S++JS414+VM+2Z+Ks41Z7Fk/l3La91EB5kwd/f8qfGCQ4wUVHv/FPX8Wy9n8/W826LFjFQuy5/nPa6do4C3+vfTsFxTEmZyL+XvkJpQznQnOXzku4T6RQcx8xht5NbtY9Gl53xnUcwOmEIO8uyMOmMxAXGNq81VJmXV7/HlT0vYGKXUeRW5WM1WIixRTBnxy9c2+cSAk025mYu4rkVsz3r3uTQTswYPJVX1rxHnaMet+o+ps8hu9x2bES37EaSRIL8Dx3HymXdz2Ncp2HsKM1EFEW6h3Uh0OSPxaDdqxpnBu0qwvztb38DYNeuXSxbtqxVvaqqCILArl2tI3QfC7W1tUybNo3AwEBeeeUVRLG1MrpkyRIeffRRpk+fzkUXXeRV5+/vT3Fxcas+NTU1BAS0ndL4WFAUldraYzfXlyQRf38ztbVNyPKZ4+n4Z85LFAWGdUxjW4nv3YDUyO7N5pHA7rJs+kSlEOsfxc8ZCzw7/U1uO+9s+ByzzsToxCE4ZRevrXkfgB2lmVj1ZsZ1HIlBNAANPL9iNvIhIkudo57/rf+UR0fd5cmg1Ck4joLaZl/V3eXZDO3Ynx2lvoOIDYztCy4JQZaIMcTQIaoDThy8tu49rz4qKiv3rUdQ4ZoelyLIf03AsZN5H57ML2LH+zyebKw6K/trCpnQZRQLc1f4bJMa1R1RlqiqaqBLyEG3ymp7HXsqt7baMcquzOPtDZ9xX/rNfLi5OXBvjbOe++f9m1BzEPek38yTi1/E7nZ4+tjdDt7Z8DkhpiA6BsQQaPL3CJKHIggCMbZIqqqO7BIhSy5eXf8eOw/ZaVNVlRX71gEq13T/6+71Y+VM/Ww+nJP1PJ4qz+Jf8XfNLagh0M9AXd2fS7EabDOyJ7/qqM+fL86W+/lwTrfzPlnPY8s6/HS5LqcS7X1P9QhP9ll+affzmLXqbRyHvLub3HY+2jKH2wdex7ubvsAgNlvbzdk5FwSBq3peyL6aQprcDjoGRJNVkUuXkEQ+3PwNRp2RSL9Q7G6nZ0Pm3KSR/LZnKYtyV3odO6M8m4+2fMNl3c/jvU1fEmYOPernkCBA/6je/JSxwGd978huCAfWNodjxZ9B4QMAUGQVR4OCo+Hku2KeShsHGmcO7SrCPPXUU+02tt1u55ZbbqGuro4vvvjCp1vR5s2bmTFjBhdeeCEzZsxoVZ+YmMiqVas8L6EWcnNz6dKly5+eo9t9/B/Ksqz8oX6nOn/0vLqGJNEpKI7OIfGEWoKpbKpm+b51QLMLUkVjFZ2C41ixbx33D70VRVH4asfPrcZpctuZm7mIB4bd5ikzSgaq7bU0qg2YMLJk72ovAaYFFZV5WYvxN9qQRImLu53Luxu/BCCvej+Xdp9EpF8YxfVlxAfGMiCmDzpRYn9NIaPjh+B0HDqmQqOuoU3RZuX+DUxJmYTR/dd+4J+J9+GpfD4GnYm/9boYk2QgObQTja4mBsamYpD05FcXYjP4MSJxEG7cCLKIVefHsI5pLNu3FkGgzSwIpQ3lVNtrMelMNLgOfvG1mWxklGd7CTCH8vn2H3hwyO1c1+dSXlr9Tqv687qMwSgYj3pNG2nwEmAOZWX+BqZ0++vv9WPlTHwm/ipOpet4sv6uqqpSVNFIXKQNWf5zwdiDbSYy91f/qXmfrffz2XrebdGSF0C7Ln+cE33tRFFA1bkxigau7T2FL7b/6LEKTwpJIKsi10uAOZS5mYuY1vdKfsyYz7aS3aioBJkCiPGPZF7WYu5On8Zraz6gxlHH7WnXkV2ZR2pUColBHbG7HazO30Sg2R+DpGdx7iqfx8ivKSTQ7M8lKZMwqibcOiduxdW8memUUHxcihBTCD3Ckz0bpC3oJT1X9bwI1SnibiMYsIbGmUq7ijCHW56cKNxuN3fddRc5OTl88sknREREtGqzZ88ebrnlFgYNGsQTTzzhc5zhw4fz+uuvs2rVKoYMGQI0CzA7d+7kpptuape5axwfkqrnhr6XMWfnr2wq2kGEXyjT064l0OjPy6vfpdJewx1p15FTtY+5uxdyXre2g3mpqDgPvMh6R6YwsctoFuWs5D/LXmFC0ij2Vu9vs29eTSGXpEzgnM7D2Vu1HwSwGaz0iepBiDmIh4bfQbW9lozyHJbvW4vD7SQtNrX5HCTBa9Fd56hve46qSqOrCSOnxxdTjROD4obuoV35NuNnbky9jD2VeczPWUajy07fqB4M6tCXz7Z8h6wqXNRtAuFSGJenTKZ7eDKiIB4xDXphbQnT+l/Fd7t+payhkrjAGK5LvaTNXSmAgrpiZFWmS0Aij4+6my+2/8S+6gJCrcFM7noOXYITwa4/6nnV2ttOdamqKk1uu3ava5wVVNU5cLhkQv5EUN4WWjIkNTncmI2nR2wlDQ2No6Pq3eQ1FPDt7l+pbqqhc0g8D4+cwYLs5awr3MKAmN7kVO5rs39BbRGNbjtxgTGc33UsO0oy6BHRleyKvdw5+EZq7HUU1BajorIqfwP/HHMfv2YtYn7OCqx6M+d3HUuXkEQK60pwKW27RzvcTkbGD6KwvpDvds+jpL6cDv5RXJhyLsGGIHB6fy6JTj239LuG9UVb+DVrEfWuRnpHpHBxtwlYVRuKliT0tGHJkiV8/PHHbNu2jbq6OgICAujRowcXXHABEydO9OmV8meYP38+JSUlHu+aM4nT8u39xBNPsGjRImbOnEl9fT2bN2/21KWkpFBXV8fUqVMxGo1cd911XkF2/fz86Ny5MwCpqakMHTqUhx56iAcffBCj0cisWbNITk7mnHPOOdmnpXEYogQZtXt4cdXbnrLShnK2lezm6t4XE2kLo6i+lOdX/o9uYUmkxfbBoj/yAtcgGYiyRTA6YQj/Xfa6x/IlqzKXCL9QsipyffaLtoXTLbQLu8v3UFRXzAXJ49CJErvLs3l04XNM7XcFS/euZWfZQQuXH3b/xuLcVTw56j708kEfVj9D2186BQTMOjNokd/POlSXwKAO/fh02/deAXp/yVrE0r1rmDF4Ks+v/B9PLpnFjamX0z+0L32CemPXNWDUGdvcGQv3C0VW3VzT+2JqnQ3srcrH4XISH9iBZXlrffaJtIYhqAK49ERIMdzR/3pcuBERMSlmXPZj27GyGX1nq4OWe90EbYdU0tA4YyiqbLZEOxEiTMiBDEmF5Q10ivlzrtMaGhqnBqpOZn7eEr7bPc9TVtJQzur9m5g5bDq9o7pR1VhDpF9om2NE+oVTXFfKjxnzWZm/gcdG3oUqi8R0jOLXnIX0i+5FhF8otY560jv259EFz9HkPriJ8+a6jxkUm8plPS5AEiVPjLnWxwljQ9E23tn4uaestKGcjUXbmTH4RlICuuFyeq8TRIeBwWED6R/ZG51eRHTrcDvQUk2fRrzwwgvMnj2bcePG8eijjxIWFkZ5eTnz58/n/vvvJyAggGHDhp3QY86fP5/t27drIswfoaCggG+//Zb9+/dTU1ODqnrLnYIg8MYbbxzXmCtWNMdMePrpp1vVLViwgIKCAk+sl+uvv96rPi0tjY8++sjz+4svvshTTz3Fo48+itvtZujQoTz88MPodKelPnVG4RTtvL3hM591X23/iTsH3cCusj3YDFZyKvPIKM/mhXMfpUtIIpkVB1OM60UdgSZ/UsKSKG+oYELSSD7f/qOX69G6gi3cPWQaK/LWo9Jakr+w67mUN1YiiSLf7f7Nqy7IFIAgCF4CTAu1jjp+ypzPlKTzUQ582bSIFjoHx7Oncm+r9n2je2AS/vwiXeP0QhAEVFVFRWV3eTZhlmBqnQ0eYaXB1cj87GUMj0vj9+xlfLTlG3qdk4LeacaoNzA6YUirmDAAQeYAQq3BzPztKU9gPavBwuj4ofSN6sm3u37FrDNS66j3CoJ9SfdJ6BUTMgqKooBDj55myxfXcSyZzKKFTkFxXtnJWugX3Qsj2r2ucXZQVN6AJAoEWA1/eqwQfxMCUKCJMBoapyWieOCdf8hy0ynY+f6w9SWArMi8v+krxnYaxkdb5jBz+O38nLnQY6kSYLShE3VU2qsZnzTCY+Va0VjF0r1rGRs7ElyQFJzIOxs/59ykkdQ7GpibuchLgGlh9f5NXJpyHiPiBrLwsJgw0CzA2IxWPtzyTas6FZV3N37Jk6PvwyCYEQQB5RAzF1lWMAgmgizWAzFgNAnmWKl3NFDjqKPR1YRFbybAaMPPePIsiRcvXszs2bO54447uPPOO73qJkyYwHXXXad9dz5O2vVq/fTTT8ycORO3242/vz9+fq13Rf9ImsaFCxcesT42NpaMjIwjtmnBZrPxn//8h//85z/HPQ+N9qXB3Ui903cALj+jlTBLMLcMuJrKxirCrCFE+IVhVCzckXY9r659j/yaIi7reT5RfmHU2OsINAdgM1gxSnre3fiF13hO2cWyvWuZ1v9KPtoyx+PeYZQM3Nj3cnSiRJW9moxDxJ0WuoZ1YnNR26mFV+/fyPlJ56DDCIDo1nNn2o28svZdLyGmZ0RXru99OThO7UClGicOQVJxSnb21xbhb7TiVtxMH3AN5Y2VhFiCsLsdfLHtR6rsNWwo2sYdA6/n9+xluBQ3lU1VhJgEmlxNdA6OY0iH/qzK3+ARESP9wrix7+VklucQYQ2lqL6UUEsw96Xfglm1YpcauGfITeyt3k+IOYhGVxNf7fiZMQlDSQrohOz684sjya3n7wNv5JW177W616/rfYl2r2ucNRRVNhJsMyKKfyw19aHodSKBNiOF5Sc/QKWGhsYfQxAEZL2DKkc1JTVlhFlDCDYFoXc3b0bkVO3zuQkIUFBbTKg5CATYX1PI/w2/g9+zlzEsLo0qew1Ot5POIfHU2usoriv19Fu2by3DOwxCchuJt8VxRY/J+Jv8EAWRb3b+0uZcl+9bx5Ruk6h3NrK2YLOnvENANPcMmka1vQ5XG5lBax11NLgaKHNVUG2vJdYWiZ/Ohug6uguzhm/KGyt5c+3HbC05mMimd0Q3bkm7mlBL8EmZw3vvvUdYWBi33Xabz/pevXp5/b548WJee+01MjIysFgsjB8/ngcffBCLpTk74Jo1a7j22mt59913mTNnDgsXLiQwMJCrrrqKadOmATBz5ky+/fZbAJKTmwNVX3TRRR4jjN9++43XXnuNnJwcAgICmDRpEvfccw9Go9Ezj4KCAp555hlWrFiBLMv069ePBx54wDPeX0m7ijAvvPACCQkJvPzyyyQkJLTnoTTOQNoS6ILMAdzS/2qeWzGbssZKT3mMLZIH0m/D4DLz9/43IUtuXlnt/eUvwGjj/mG3EmOLpKDOOzPWyvz1VNtreHzkPThlF6qq4me08OX2n3hj3Uf0CE8mxr91inNFVdH7SL3egiSIHHomqgp6l4m7BkyjUWmiwdWAzeCHSTAjODQV+WxB0Clk1mbx2toPMOvN3DtkGm9v+IziA9kJoFlIuS3tWl5b8z6NbruXJaEqqDyy6FluHnAVr639kAlJI3lw2G00uewYdUYqmqqYvf4TLuk+iWv7TEFBxeF2EqgPoE6p5pklb3jSWwJE2yJ4ZOQMzKqVI2SGPy6a73UzMwZMo0m71zXOYorKGwg+Aa5ILYT4mzQRRkPjNEEQwKlv5NkVb3itPcOsIfzf0Duwqjako8TSCLeG8MI5j3ksSNNievPCyrdwHxK7ZVTCYK5PvZT3NjUnj5AEEdQDK1BBZUPhNubnLOPuwTchCgKy6lv0EQURvWziuh6Xc3n3C6h11mHRm7GIFnSykWq1ddbEQ6luquXZFW96fu8WlsT0/tchOv68JeDZRr2joZUAA7ClZBez137MjMFT290ixu12s3HjRsaPH39M1i6//vord999NxdffDF33nknZWVlPP/889TW1jJr1iyvto899hiTJ0/mtddeY/78+Tz33HMkJyczfPhwpk+fTmVlJTk5OTz33HMABAc3i04LFizg73//O5MmTeLee+8lJyeHWbNmUVRUxMsvvwxAfX0911xzDaIo8sQTT2A0GnnjjTe4+uqr+eGHH4iKijrBV+r4aNdVcFVVFVOnTtUEGI0/hFVnIcgUQJW9xqv8om7n8sGmr7wEGGgOJvrG+g+5o99URCQ+2TanlctPjaOOZ5fP5ub+V/Hs8jc5nIzybAySAT85ELfRzsMLn6HugDVOZkUOE5JGMm/PEq8+O0ozmdr3cpbnrfN5HiPiB2PAhHzIDoeqguDSY0WPVfTXYsCchTTSwEur30VF5fKu43h/81deAgxAcX0Zn279lvO7jmNfTQGbiprjW5l0Rppcdmqddeyt3k/n4Hh+zlzIz5kLkQTR42onCAJBpgCeXf4GsqpwQ+pluHDx4qp3vAQYgMK6El5b8wEzBk5FxMiJQlVB1O51jbOc4spGusUFnbDxQvybMyRpaGic+ig6F6+v+6DV5l9ZQwXPr5rNg4PvICGwA6IgelyHD6VTcBxW0Ybg0qECTbo6Xl79XivLmUW5q7g+NZYOAdHk1xQyJmEoRkyoEmytyGB+zjIAtpbsYkBMH1bv3+hzvgNi+uByyYCECT9Moh/IgAzKgYxLZr3JZ1KAEEsQdU7vBBS7yrKYs3sul3WZTBvGPhptUOOoayXAtLClZBc1jrp2F2Gqq6txOp2tRAtVVZHlg3GDRFFEEAT++9//MnHiRP7973976sLCwrj55puZPn06SUlJnvJzzjnH4940ePBgFi9ezLx58xg+fDgdO3YkODiYwsJC+vTp43XsV199lT59+vD8888Dzcl2zGYzjz76KBkZGSQnJzNnzhwKCwv5+eef6dSpEwADBgxg1KhRfPDBB8ycOfOEXqfj5cSGMD6MXr16UVRU1J6H0DiDMcgmpg+8rlnJP4RQS3CrF1kLu8uzsatNOLCzZv8mn21q7LUYRD239L+ae4ZM45YBV9M1tDlY8w2pl2NQTAgClDaUUedswGb0Y0rKRP4x4u9E2sJ55pyHOLfzSML9wpiSMpGb+19FuF8Y1/a+BEn0toiJsIYyNnEYskt762gcRK+X2FmWyc39r+LuITeRHNqJ3Kp8n233Vu+ng38UQzumsTp/IwIC0/pdya9ZiwH4PXsZF6dMwHwgKLWsKhglA2MSh/Lk6HsxSHrGJ42kW2gSfSN70eBqJL+m0Oex9lTupUm2I+pANjhw6+2oevcJcaHQ0DhbaXK4qa53Emw7cZYwoQEmquqaMyRpaGj8dQiCgKp349bbcRscSD62t+2q3StW4aEU1BbTpDSil01c3+fSVvUWvZnbB1yPLLlwGRvRWRWW5K1q03VpfvZybhtwDQ8Om86gDqnIsoJTtPPtIQF/l+etY0yndAJM/q36T0wajZ/kHT5CkkQUvROXvglZ78AqWLml/99aWaxLosQ1vS9mbmbrGHXL8tbioO1Mjhq+aXQ1/an6E8nhf+958+bRvXt3z8+//vUvcnNzKSgoYMKECbjdbs9PWloaoih6JcsBGDp0qNf4nTp18sR1bYuGhgZ27drF+PHjvconTpwIwIYNGwBYv349SUlJHgEGIDAwkCFDhnja/JW0qyXMQw89xLRp0+jRowfnnntuex5K4wxEllWCTYE8MGw6a/dvpqC2mGj/CPTSkf1KHW4HOlHnczehhcqmahblriSzIocAkz8Tk0ZzY9/LKKwtQZVkRFGkrKaS5NBOXNp9Et/tmsc3O+eiE3UMjE3lgq7jSI/rz8db5vDNzrkYJD0j4wfz7Dn/4OsdP1NtryW94wB6hnVD5zS1+bLUODtxSw7ssoM5u36h2l7Lfem3HLG9SW9kbsYiBnfsx7C4NGrt9WwvbY57VWOvJbtyL0+Muofleesob6pkQtIo5mYu4vGFL6CoKqlR3Zna73L0soFGV/kRj9XktrOrKotPt36HQ3bSOTiea3tfQqguFFVuV91eQ+OMpPhAZqRg/xNnYRbakiGpooFO0VpwXg2NvwKHy0GRs5APNn9FTtU+TDojYxOHMr7TKCSnwRN4t63shS00uuz4iYH0DetDpzHx/LpnEeWNlfSK6MbgDv34JWsRS/auxu52MCVlYiur2UOpbKpmX00Bs9d/Qr+onlzZ40JMopHKpuqD85advLX+M24dcDV7KvaysywTP4MfEzqPJNwUhuA6+PVQ1bvZVZPN59u+p6ShnACTP5OTz2FQbCpPjZ3JvKzFFNWXER8Yw/CEQXy29Xv21RS0mpdbceNSXJi1PZ3jwqI3/6n6E0FgYCAGg6GVODJ48GC+/vprAE+smKqqKgBuv/12n2Mdbpxhs9m8ftfr9dTV1R1xPnV1daiqSkhISKuxDAYDNTXNHhS1tbWEhrbOJhYSEkJWVtYRj3EyaFcRJjk5mbvvvpt77rmHf/zjH0RGRrbKHy4IAj/88EN7TkPjNEZC4qVV75ASlkRCUAcqm6pR2kiZB83+r1aDBVSxTVNJAD+DhZyqfUDzl9jPtn1HcX0JBsnAvD1LubHv5QQYbUxJmcAzy9/wBCBzK262luxieFwa/z3g4gHNgX1/y17KztIsHhw6HUnRI6k63E5FE2A0vNEr/JD5G7/uWewpkkTJkyHpcARBQFFVgi2BVNtreHX1B1yfeomnPj4wlmBLEA/+9hQ9IpK5vMf5PLtiNjX2gz7bG4u2s6tsD/8ZOxN/ow0Bwed9KQoija4mIvxC0Ut6HLKTPZV7eWzx8zwx8l7CpAivTAcaGhpH56AIc+IsYYIPZEgqLD8zRJiMyj1sLttGQkAcAyJS/1DSBg2Nk4koCuRU5/P4ohc871O728FPmQvYXZ7NjLSbEJ3NMVAseouXq/Dh+Bv8wA2CWyJICOFvXS9BlpwUNZTyypr3yK48mGFwc/EO+kX3ZF3BFp9jJQR1pKC2BFVVWV+4lZ1lWfxnzIMkBcexvfRgFs/ShnKeWfY6yaGJXNr9fDpaY3E7QD3EclvSwdrSLby76WAyixp7LR9u+ZrCumIuTJrElSlTcKkujIKeoqYStpXs9jkvm8GKQTRo7kjHSYDRRu+Ibmzx4ZLUO6IbAUabj14nFp1OR9++fVm1ahWyLCMdiIMZEBBAz549ATAYmu/1wMBAAB599NFWwXoBwsPD//R8bDYbgiBQWekdlqKurg6n00lAQIBnfrm5ua36V1RUeNr8lbTrtuYnn3zCQw89hMFg8Ph1BQYGev2cChdB49REEAT8JCvndRnL+sKt/JK1iDX7N7GjLJMBMb199hmVMASrwYJVtHBRt/Gt6v2NNiZ1GY1JZ8IgemuQi/eupm90T3aVZ1HaWI5Bp2dhzspWEeBHJwzhh4z5Pl+m++uKyK8tRJAl3G4t9d7ZhiQJGAwSOl3bH61O7MzL9o4rtLloB0M69G/V1mb048qek8mvKWR+9jJW5W+kxlGLUWekg380AOM6D2fOjrmoqDhlFxuLtnsJMC00ue3M27MYP72VQR36+pzbsLg0NhZu49esJVze4zxSo3oQbA5EVVU+3voNsuQ7G4KGhkbbFFc04mfWY9SfuGxgep1IgJ+RovLGEzbmX8Xa4o28svl/bCrdxgc7P+fb7J//6ilpaBwVp+Dg/U1f+tzQ2FO5l3J7BS1aohEzYxKHtmoHMLhDP0zCQWsGVQXFDVX2Wuoc9V4CDEB2ZR4JQR0JMPnTPTyZPpHdPV/EBQQmJo1k8d5VnvaNriYW5K7g+tTLEGgtbhbWlhBuCQFZRFVVRLFlHSPhEOws2ruS1KgedAqOO+wc8xB1KooLcEg47AqBxgASAjv4PM9Lu5+HUW1/q40zDT+jlVvSrqZ3RDev8t4R3bg17ZqTlqb6hhtuoLS0lDffbB1P81ASExOJjIwkPz+fnj17tvqJiIg4ruPq9XocDm9LMqvVSrdu3fj111+9yn/5pTnjV79+/Tz/ZmZmkpNz0BWwpqaGlStXetr8lbSrJczs2bNJTU1l9uzZrcyNNDTaQhBA1jspaihh/d4tpMWmcnmP8/kh43eaXHZ+zVrMzGG3E2DyZ0nuKlyKG6NkYHznEfSN7skX23+gV2QKg2L74XA7+SVrMbIic22fS7AZrWwr2c3Gou08NOJOyhsqeXH1O0BzgKlaex1GyUBWeS4JQR3YUdo61XlCUAd+zJjf5vzXF24hKbkzTmfbFjsaZxaiKODUNZFR1WzWG+EXTr+onpgUC6rsveipaKpqZfHye/Yybh94HRa9icV7VyMicG3qJQQYbWwp3okkStw15CYyyrKpddQT4x/BfUNv4ZPNc7AZrJ4g1YlBHdlZ2raJ5abiHfSO7Mb4ziPwN/qxMGcFLsWNQdIzKmEInYPj2VmWxblJI8kozybQZCOtx3noBIn3N3+FjBtd+742NDTOOEqqGgmynThXpBZC/I3sL68/esNTmCp7NZ/tnkPXoCTGxY1iU9k2FuxbSkpwMl2Dk44+gIbGX4RLdbUZyw1gW8kuojvE4nbLqC6BC5LGY9IZ+XXPYpyyC72oY1RCOhd0OQcc3gKtJIkUVpewt7qNWHFV+Tww9FZW7FtPk8tOetzFgICIwPJ966lzeH8ubCraTr/ontybfjPvb/qK8gNrhuSQTtzQ9zKW7FuDoMLA2D40uuwsy1lDXEAs3SO6MDx+EHur8kkM6sCl3c9jQ+FW+kb1IK+mgK93/kynoDi6hydjlM0ILgN3D7qZT7d/y5qCTaiqitVg4ZKUSfQN74XsUtHpNCu34yXUEsyMwVOpcdTR6GrCojcTYLSdNAEGYOTIkdx88828/PLL7N69mwkTJhAeHk5dXR3r16+nrKwMq9WKIAjMnDmT++67j8bGRkaOHInZbKawsJAlS5Zw9913H1fCnk6dOvHNN9/w008/ERcXR1BQELGxsdxxxx3cfvvt3HfffVxwwQXk5uYya9Ysxo8f70k/ffHFF/P+++9zyy23cNddd3myI+l0Oq677rr2ulTHTLuupuvq6jj//PM1AUbjuJANTl5a87Yns9Fv2UvpF92Th4bdgUEyIIkSv+5ZhFt28/dBN+JvsqETJX7cPZ8nFs1CRWV+znJibJFMT7uW2IBoEgI78Ma6j8goz/Yc5+fMBVyQPI57hkzjhZVvAWDUGXArbsKsITS67VgNFk92pBYcbidWvblVeQsBRn/ayPqncQYiCNAk1fPPxS96ZfL6fNt33Jd+K3HmOC8hxqRrnaJRURVeXfM+Qzr045lx/4eiKry94TN2H3K//pq1mMldz2F4fBqfbPmO0oYK7ku/Gafs8rgy2d2OZne8NvAzWMiq3Mt3u+aR3rE/Dwy9DbPeREVTFavzN7GjNJMoWzhPL3vN02dR7ipi/aOYMehGfGyiaWhoHIWiinYSYQJM7CmoOXrDU5i5ufPRiRIjOqQjCAKpYT3Jrs5lzp6f+L8Bd2luSRqnLCIieknfylq6BX+jP4f63ghOPRPjz2F0/FCcihODaMCIGcVHuBhVBaNowKpv/T6f1GUMja4m/jH/v56yRbkrSQpO4NIek1iV3zrgqNVgYWPRNrYU72Javysx6YxYDGZ2lmbx1NJXqXE0x+D4eufPXNlzMjpRR4QtlCcWzfLUQbPr9P3pt/BzxkK2lTa7HS3MXYFZZ+KRETMIFkORnEau7X4Zl3e/AJfiwigaMapmLUHFn8TPaD2poosv7r33Xvr168cnn3zCE088QX19PQEBAXTv3p3//Oc/TJo0CYAJEybg7+/Pm2++yY8//ghATEwMw4YN8xmj5UhccsklbN26lX/+859UV1dz0UUX8fTTTzNmzBheeuklXnvtNaZPn05gYCCXXXYZ9957r6evn58fH330EU8//TSPPPIIiqLQt29fPv744788PTW0swiTlpZGZmbm0RtqaBxA0gksylvZKrX0hsJtbCjcxtNjH8KAgQ2F26hqqmHpvrU8NXYmD/72n1ZjFdQVMz97OV3DOrEyf72XANPCDxm/88Toe/A3+Hkt9joERLGtZDcjEwbz+TbvmEUr8zcwPH4QP2cu8HkOQzr0P5DaT+NsQNHJvLvp81ap1GVVYdaqt3h23MPo5IMmuDajHwEm/1YuQ6qqsr+2CJPOxNK81V4CTAvf7/6N1Kge7CrLos7ZwFc7fuaKHhfQN6onGwq3sqFwG9elXsKGwq0+5zo8fiC/Zi1BURWW5a1lWd5aLu1+HpuLd7Cnci8PDp3uJcC0sL+2iLX7N3Np8gVahmkNjeNAVVVKKhvpFN06C8mfJdTfxNpdpdidbkyG089CrdZZx5ri9QyOGoBRahapBEFgUFR/5uz5id2VWXQL6fIXz1JDwzcmwcTohCHM27OkVZ0gCPSK6Ibb5e2WLrtU9JjRYz6Q7tk3sqzQMSAGk8HoFS/OIOlJCevMsytmt+qTVZnLjtJMuocnt7LiHhk/iG93zaO0oZynlr3GoyNm8EvWYhbmrGg1zmfbvufpcTN5d+OXXgIMgKzIvLjqHW5Pu84jwkCzu/OsVW/xyLC7kWQjqkvEgAUDgAyyFgjmjGHkyJGMHDnyqO3S09NJT09vs37gwIFkZLT2Nnj99de9fvfz8+OFF17wOcb48eNbZUg6nJiYGF555ZWjzvevoF1jwjz++OOsW7eOt956yxMtWePsRRQFFL2TBqmGerEGWe9AkrxvQadgZ1720jbHWL5vDWbBwv1DbuXcziN4ZMQMGl1N3Jt+M8PjByIels56ef46OofEs8DHi6aFpXvX8rdeF3Jb2jWUN1RyY78r+GH3fBKDOhJmDaHXYX6YW4t3MbhDX7qEtDanuyH1cizCX6tUa5xcnNg9mYpa1ckuCuqKvQQ+RVF5aPgd3DvkZu4feitTUiZiM1ixGf24qtdFONwOFmQvb/N4S/auZnLX8dwzZBr9onvS6LZzfeoldPCPotZRR2l9BaMTW7/4+kf3QifqKKor8SpflreGQbGpdA6OZ3f5njaPuzRvDQ71yBkeNDQ0vKmud+J0Kyc0KG8LIQcyJBVVnJ5xYVYWrkUQRHqEeL9jY/2iCTOHsKRg5V80Mw2No6PKAhd2G0/HgBivcgGB2wdc12b8E1Gv4tQ3UidW4dQ3IupbCxSSBAadHqvews39r/LEcukRnszGou2t2rewNG8NV/S8gPjAWE/ZoNi+hPuFUtpwMDOirCosz1vb5jgO2dVmSm2724Hd7WiVlaessZJG+fT8LNLQ+Cto162TiRMnoqoqL7zwAi+88AJGo9FndqRTIVe3RvsiiFDhLuONNR9SUNec4izMEszN/a8m2hgDB9w1VIE2MxoB1DkaAAF/o40mt4N/LX4JWVXQiTqGxw/k9rRreW3th5701C7ZhSiIRxyz3tlAQnBHNhRsp09UCt/snMv6wq1c1WsyFQ3VnJc8lotSzmVT4XZ0ko4+kd2x6izMGHwTpfXlbCrajp/BSt+onpiwgPvEBV/UOPVxy0e2DWl0NSGYDwTbMznYXryLz7f/SIOzebHSNbQzD424k1p7He9v/JJ702+m0d32/drgbCTYEshraz7AITsRBIF+UT25f+it7K8pYltpBgNjUhnXaRhr929GVhW6hyWxt3o/72z43Mf87MQFxiKJEmUNlT6O2IxTdvnM3qShodE2nsxI7RIT5kCa6vIGEqJOvKVNe6KqKquK1pMUmIhR531tBEGge0g3lu5fQa2zDn+D5tKucWoSYgnigSG3UdRQytaSXQSa/EmN7IFRMYO79T63anQxJ+NXFu5diazISKLEiLiBXNx1IoKj2VVZkkTsunreWf85SSEJhFtCeHDYdLIqcgixBLGtxPemDzS/z8sbKrko5VzqHY0EmGxUNFaxp2Kv9zxofqe3xdHWNU1uOwZJT6OryavcpWi2shoax0q7ijDjx4/X/Hk1AGignieWzPLynS1rrOSpZa/y1JiZ+BEIgE7V0yuiGxuLtvkcJy22Dy4cvL/5S9Yf4nLhVtwszFmBW3EzOnEI8w9YEnQOjqfe0UCP8GTWFmz2OWaP8GReXPUOtw64mjm7fmV94VYSgjpgUI3EGjscsNZRiYmPRZJEZFlBVVWCrFb0LiMx8bGoqqplQzpLMUkmgs2BVDZV+6yPC4xFcauYTHo2VezknY1feNXvLt/Dc8tnc3Wfi6l21NLoaqJ3RDdW+vDrBugb3YOvtv+EQ3YCeNJQVttrmZQ8hlj/SHaWZTI3cyGdguO5IfVSMity+Wzb9z7H6xmRTEZ5DrnV+Qzp0Ha0+K6hnZC0oLwaGsdFSWUjogABfidehDHoJQKsBgorfMcnO5XJq8unvKmCYTGDfNYnB3ViacFKNpRsYVQH31llNDROBfSyiRh9B+Li45rXgi7fa0FBr/D5ju9Ztu+gBYqsyCzMXUmT28HVKZeAS8Kpb+C/y96gsK6E3Kp8buh7Gc8se53E4I5E+oUzMLaPz7gvAD3Dk9ldvoff9izl/4bfwRtrP6R/TG+qD3OXVlWF5NBEMsp9W7tYDGafbtMthFtDW7kq6SU9NoMfONu8VBoaGofQrivqp59+uj2H1zhNkBWZRbkrfAYvU1SF7zLmcW3KZSguAcEt8reeFxLuF4pR0pNTtY9tJbuJskUwKn4QHf1jkHF7CTCHsjxvHfel38L87OWIgsiF3cbzzobPuW3gNWwq3tFqDlG2CPwMFgrrSpifvRyzvtn/9ro+l6IXDbhdKopyML6LyyUj6kAVZZxuF6oKbrcW/+VsxqCYuL7PZbyw6n9e5R0CojmvyxjMkhlJFalXa/ly+08+x6hoqqLJ1cSVPSbzw+75TEoezfrCra12qqL8wjHrTBTVl7YaY0/lXgyijtc2fYVbcRNji2RoXH8qm6pJCe9ChDWUkkPMkQGMOiMjEwbz3+Vv4pJdpEZ1p1NwHJWN1aTF9sGkM5JTtY+dpVlc02sKkqxH0Xy7NTSOmeLKRgL8jEhi+2xIBfufnmmqN5ZsxaqzEOsX7bPepDMRZ+ugiTAapwWqqh41FqCdJpbnr/NZtzp/I5eknIdVslLUUEFhXQk2g5WBHVIJNPkzIWkUv+xZhKIqhFhGEGOL9FiVt6CX9JzTeTizVr6NisrczIUMi0ujb3QPNhZuZ1KX0Wwq2oHD7TywPj6XZ5e/6bEch2YrtHM7j0RWZG5Pu45X1rzXKtPSiLiB7CjNaGUZO6XbRIyKGYXmhAWCTkVWZXSCXgvKq6Hhg1NqW7O8vJxhw4bx7rvvMnjw4L96OhonCIfbSUYbvqUAOZV5uHAiYUTRuyhvqKKotph6VyM9w7txXZ9LyK7cx+K9K1lXuJWhHQdwb/rNvLX+M2oPU+IVVcGtuEkJS2JS8hgWZC9nb81+fs1awr/G3MdnW39ga8kuDJKe9I79GRDTm9fWfghAdlUek7qMYWjHAawr2Ey9YyUTu4zGT/AHt4goqTQI9fyWvYQ9lXuJ9AvjvC5jCdAFai5IZzGyrJJoS+Dh4TP4ZNsciuvKuC3tGuqcDSzMXcnC3BWMik8nOSzRyyf7cIrryojwC2V94RaaXE38c/R9fL79B7YU70J/4H6dmDSKJxe/1OYYlfYaQsyBXNFzMna3gyV7V6OoCsPi0nhg2G38nr2MRTkrcSlu+kX15LKe57O5aAc6QcItuNlYuJ0Zg6aytzqf+dnLaXA10iM8mRtSL8Oq2nBrCykNjeOivdJTtxDsbyK/9PRKU62qKpvKtpEYGN8qjtuhJAUm8tu+RVQ7agg0BpzEGWponHgaXI1tuvSqqDQ4Gwg0B5Bbks9F3c6lY0A0S/PW8unW70gJS+Kfo+9nc9F2FmSv4Jo+F7OpaAdL9q7GITvpFdGNCUmj+GbnXJoOuDPnVe/nutRLyCzLZlf5HnSixHnJY+gSksjq/M2MiB/Iv0bfzydbv2VnWRZdQztzTZ+LWZ2/kfc2fUmA0Z87B95AQW0xH2z+imBzIJOTx9MvuieZFdlE+oVRXF9GpF8Yl3U/ny6BnVBcoOrclDkr+GnX71TZa+gWmsSYhHRMshVFMxjX0PBwSokwgBZz4AzEIOmJsIb6zE4EEGYNQUKHqnfxbcYvLMg9GJR0bKdhvLPxc3aVHQwYmlWRS5QtgtsGXM0zy9/wOd7fel/M88vfpPKACeai3JVY9WbSYnszKmEwbsXN2oItPLv8TeQDuwBhlmBsBguvr/2Q6gMmmEv3reG+IbeS5NeJAkcB/1r6MvIBy5icqn2szN/Arf2voVdwD1S35np3tiK4JWIMsdyTdiuqJPPSqnfIrsrz1GeU53DvkJvxM1ipbyO1eaDZn58zFwJQ66xHL+mJ9Atn5KCD92tJfVmb/QE6+Efz8Ii/89raD7yyK2VW5BDjH8nModOZ2Hk0IKBT9OAWGRGbTlpMHwAkQeK73b8yP+fgM5hdmcfCnBU8Meo+TIJVS7+uoXEcFFc0Ehvm127jh/ib2JhZhssto9edHpsBBfVFVNqrGB4z5IjtEgLiEAWRrWU7GR6rbcxpnN6YdEcWY006I263SnJoImsLNvPS6nc9ddmVefyevYxHR97FjtJMnl3+Jpf1OJ/70m+hwdlIZkUOr6x+jwbXQau4UGswW4p28f7mLz1lu8r20C0sien9r0O0GwgUTNzW9wYQZRrlRh5d+Dx298EA/BuLtjElZSKvTPgnqipgkE3IdoUU/+78I70TqqAiqAJ6xYTsUkCnsKJwDZ9t//6wuS/l8VH3EigGn4hLqaFxRtCu2ZE0NAB0ko4JSaPbrJ/cdTyirKPOXeclwIRZglFUxUuAaaGoroTd5dl0D/dOX9kzvCubi3awLG81KYfVLchZgb/RxqxVb/PKmvdZs3+TR4ABGJkwhP9t+MwjwECzKPjW+o9pEht4Y91HHgHmUN7Z9DlOse1AqhpnB4qioleM7C7b4yXAtPB79jLOTRrhs69B0hPlF05FUzU6UcfFXSdgptlN7tD7dXtpJgNienv1lQQRk85IiDmIMHMI2ZX7fKa3LqgtZu3+LRhlC5KjOYWkqoLLrqBzmNE5zNQ56r0EmBaa02H/CLozdxtLC1+mcaKRFYXyGjvB/u1nCRPib0JVoaSq6eiNTxG2le/EKBmI9Ys6YjuTzkiMXxRby3ecpJlpaLQfRp2BJB9ZNQESgjpi0htxu2UsBgs/ZSxo1cbudvDB5q9Ii+2DCny942dcipsXV73Dz5kLvQQYgEldRvNz5vxW4+wqyyKvZj+i2Jz6WnBJCIrIuxu/9BJgWvhm51ycsgvJaUCWm9cAsqwgugxITiOi62C5Q2ji8+0/tBrDITt5e+OnyFLbwYA1NM42TjlLGI0zkyBdILcNuJa3N3zqiZ4uCiKXdz+fKHMkEiJr92326tMrshvrC7a0Oeba/ZsZnTiEHaWZdAiI5vIe5+Nv9KPJZSfA1JwpYlhcGl/vnEtWRS5NbjuZ5TlM7XsFH2z+GveBeUiCyFW9LiTcGoJJMtDi4BRji+TCbuMx6YzUOxvadCVxyS7KGiuI0cdqVgJnObLo8hISD2VbyW7O6TycwR36eQXVs+ot3JfebCVzU98r8Df6EekXjiCLTE29klmr3yLEHMiU7hNxul34Ga3UOuqoaqrhopRzsejM2N0OEoI6ICCwaG/baV0X7V1JWmQqIoZWdXq9xPp9vmMtAawp2MwVPS5Ex4lPtftXIYpgoRG1oRrF2YQUEIZLsuCQtVejxp+nosaOrKgEtUNQ3hYOTVPdnhY3J5Kt5TvpaGvOyHY0Evw7sqJwLXa346iWBBoapyJm0YnkbqDI7ubS7pP4aMsc8msKPfUx/pFc2XMyjY4mAiULWW0Ey4Vmq1qn28m96Tfz8ur3WJ63jhv7Xs6HW77xxDwUBIHJXc+hxl5HWaN3xsMR8YMY3KEvTW4HJXIRQcZADLKJJhzsLm+94dnCrvI99A/p6xFbfCGKAtmVeahtxI3LrszDodrR+1h/aGicjWgrTY2TgqBI9AzqzrPjHqG4oRRZVYi2RWBUTKguEfS+XNEElCOoGgoqvSO7E+kXhs1oY9bKtzzR2gUEhsWn0SM8mUu6T0RRFZxuFw7ZSZPLwX/PeYjcqn04ZReB5gCW7V3LvD1LmTF4Ki+vfg+z3sgVPS7gf+s/pcpew71Dbj7i+WludBottHUrqKh8u+sXLutxARd2O4fsyn2YdEYi/ELZVrybL3b86LmP/AxW7h1yMzHmaG7tfzUO2cnTy16nxl6LUWfk+t6XEBcUy/Mr/kdFU5XnGEM69GNil1FsLdnl855UVRX1CBYfCm0vsNpaWJ2uSKKAqbGA0m+eQW5oyRwh4Jc6Dr9BU2iQtS98Gn+OFuuU9owJYzHqMBt1FJ0mGZJqnXXsq9vPuI4jj6l9vH8cSwtWkVG1h95h3dt3choaJxibZKfyl9ex792K66r/45UtX3Bp90kEmQOobqol0OxPtb2W19a8z/3ptyGK4FaPbHFa3FDG3MxF/N+w22l0NaGqCv8Z+wCFdSW4FZlIvzAqG6v59LCMiFf2nEyto47/HhKM16I3c9egmwi1HNlNSD3KnDztjrCG0NDQ8EYTYTROGqpbQI+ZjsY4QEB1Hvxa53LJDIjuw3e753naby/ZzXldx7KleKfP8YbHDWRz0Q46Bsbw1LLXcBxiRqmisnTvGsIsISzdu4bJ3c7hxbXv4Fbc/GvMA3y3ex4bCrchIHjF2Ji18m2u6TMFnSjxypr3aXQ1L6LrnQ2EWIKoaKxqNQ+dqCPcGoqqpeU765EUPaPih5DZRiDqtJhU6hz1fLLlW6rttUTZIhgQ06uV+W69s4H/LH2FZ895GINOz2OLDvppO9wOLAYzTy19lbrD4sOszN9AiCWI/tG9WOfDimxE/CAMqhHZh6Dicsn0j+7Nt7t+9Tn3AVG90KuGM0aKMav1FH/2JKrrUFdClfpNv6EPiUbXZRRu95lythp/BSWVjUiigM3Svju/If5GiipOjwxJuyoyAYjz73BM7YNMAQQZA9hZsVsTYTROK4ySTPXiD7HvbbYwtTqdKKrCuxu/QCfqsOrNNLiacCtuzHoTNr0fdqGJCGtIm2N2Do5nX3Uhu8qyeHzRC1zZ80IyyrPZVLQds96EJEpc0fMCdpdlMyCmFz/s/h1otuy2Gix8dpgw0+hq4pkVr/PC+EfpEpJAZkWuz+N2C0tCdh9ZYFEUlc7B8QgIPjdt4gNjMQpGzphFhIbGn0SLCaNx0lFV35YjAXp/hnVM8/xe0lCOUTLQOTi+VdswawhD4wawLG8NBXXFXgLMofyevYxhcWlsLd5NYnAcvSK74ZCdrNy3gQZnY6sgpxVNVZh0Rmod9R4BBuCXrMX8rddFPjM5XNf7EgyKtmuu0ewn3TO8K3EBsa3qYmyRDIpNxWqwsK+mgFpHHUM69mXeniU+x3IpbjLKc8gqz/Xy0w4w+dPotrcSYFr4PXsZoxNaB7yM8AtjUGw/5CMICwE6f4Z1HNiq3KI3c3nPyeA+M14ZkiTi3L/rMAHmILWrvsWonB5fajVOXUqqmgiyGRHbKT11C8H+ptPGEmZHxW4iLGFY9ZZj7hPn34EdFbs1i1ON0wq93EDj7tWe39XVP3NzygUICLgVNzWOOo9b/LR+V6HX6ShuLGVj0XbO6Ty81XgGSc/FKROYn7PMUzY3ayEDYnujotLoaqLOUc9ve5YSbYugR3hXIqyhAIxIGNTmWkNWZNYXbOHG1CswSPpW9ed1GYtJOLbn1aiauajbua2vhajjpr5XIcmaK5KGRguaJYzGKYPg0nNZymTSYlL5OWsBDa5GSurKuHPQDewq3cPvOUtxKzLDOqaRFp2K0+XAZvSjrKGizTFrHXWY9SbKGiroHtYFBQWH7PC8+HxRba+l3uG9oN1XU8DyvLU8MPQ2luWtIa+6gAhrKJO7nkOwIbTZpUrjrEc1uNhelsHlPc9nX00Ba/ZvBlRGxg8mNaInBtmIdIiQF2jyp7yhss3xap211Du9xYBAk+2IfexuB+F+odzc72/Mz1mGrCoMjxvEgKje6JymI7oVCS49l3e7gIGxffgps/kZ7BvZg1EJ6RjdliO6B55OiKKAq2J/m/VyQw2C2joIt4bG8VBS2UhgO8aDaSHYZmR3XhWKqiKewhGmFVVhV2UmPUK6HVe/OFsHNpdtp6SxjEhreDvNTkPjxKK6HHCIG49r/25id4fyr0HT+GnfGvLrS4m1RTIheTTrC7by/e7fSO/Yn1+zFnN5jwuYMehGFuSsoMZRR+fgeAZ36MdXO36iqqnGM2aNvRar3ux13LKGClLCkggxB/GP4TNYV7CZML9gSo+wVs6szGV4zBCeHvsQv2UvYUdZJgFGG+cnjyPGEo3gOsbMa26J0R2H0S0siR8zWlJUd2Z855GYFT8UWW13UVpD43ThlBJhTCYTF110EeHh2kv2bEV06uls7cyd/eJRUNCrBmS7Sp+g3vQY0A1VVdFjQHaq6PQKVfYahvj3b3O8MEswNY464oNiMeoM2PR+WPRmTDqjzyjwALH+EdTrWgcf3Vi0ne2lGYxOSOeB9NsINNuwN8i4XJoPrAaoejef7fyOFfvWAdApOI7UqO4IQGJgHAbZjCwrBJkCPX1K68uJDYjyCtJ3KKHmEMIP7GS1UNFYTZSt7c9Im8GKWW8iLbwfvUK6owoqBtWI26kcU1wXwaWnk+WwZ9CpopxBNsSyrGCM6txmvS4gHEXQaWbTGn+KkqpG4iP92/04wf4mnG6F6joHwf6nbuDsvNr9NLqbjtkVqYUYWxSSILGrMlMTYTROGwSDGSQdyAc3/Vzbl6PLXM9lKekY028mo2Y/Ty97jSaXHbPeRNiB2CxfbP+BxKA4pva7Arfi5pfMRTyz/PVWGTrDraFeGT0BOgZEE2YMRbVLSMDQyME4JTsdA6LJasPdKDmkE4oMRreVyYkTmdRpHCISoiyhuI7vRSi4dMQaOnBrn+uQkdGjR3Zpr1MNjcM5adv3DQ0NFBUVUVhY2OqnBT8/P5566ik6dep0xLF++eUXbrvtNoYPH06fPn2YPHkyX3/9tZep6ty5c7nzzjsZPnw4ycnJvPPOOz7Hqqur46GHHiItLY3U1FT+/ve/U1paemJOWuOYkCQBnU5ErxfR6UQURQWXhOjSe1wnZFlBcOkQ3c1lkiRiES2kRffBZrR6siEdzqTkMazIW0+fyBRW7tvAzrJMrDorYxKH+mzfISCaIGMQseZggs2BreqdsouOAdFYsGLSmzxBWEWx+Rx8Kfw6XfN5aZzZNCoNHgEGmjMBzNn5C9/s/IXX1r2PqndjNOqwiFZ6hCcDsDBnJZO6+E7fbjVYSAyOIz6wA4GH3N/1zgZUVW0lzrRwUbcJBJsCm58Ztw7Rpcd9FF/uw/H1DJ5sJKn5ufkzG/ttPXuKoqKLSESyBvrsFzjiSpzisbtLtCAIzceUJO15P9txywoVNfZ2DcrbQsgB4aWo8tR2odtZmYFRMhy3kKIX9cT4RbGzIqOdZqahcey0vFcO/Zxv+exv+dHrRTAHEjxuKgCSXxDGmGR0gRGoTjtSYy2qTs+8PYvp4B9NiDmIJpcdFYjya34+cqryKG+owKwzUWOvJTGoI1aD93vpvOQxLMhZ4VV2efcLENwH99jdbgWdqznZhC/MOhN9o3p61gmKG0SXHlwH1uN/AEVRUV1i8xpCy0qtoeGTdrWEcTgcvPrqq3z99ddUV1e32W7Xrl3HNe77779PTEwMM2fOJCgoiJUrV/LII49QXFzMHXfcAcCvv/5Kfn4+I0eO5IsvvmhzrLvuuos9e/bw+OOPYzQaefHFF5k2bRrffPMNOt0pZSh0xiFK4JCa2FmZQ0lDOXEBMQSaA7DozBgFE4Kr9fUXRAGHrLIzq5yy6iaG9RvKuuJ13J52LZ9t+4Hcqn1A80vlvOQxAFzd+yL8DFYu63EeO0uz2FuzjzGJ6ciKzIKc5Z6U2T3Ck7mh7+Ws3L+ehKAOPDT8Dt5Y9xHZlXkAGHVGpnQbT++wHshy84tJFMFPaMBVnI2rogBDRCK60A40YsWIA9FejT1jM4LegF9CH1ySFYfS2udW4/RGkgT2VO71WTcyfhCTksewtWwH5Y1VDIjpzdR+V/DJlm/ZULiN/bVF/K3XhXy7a54nDlGHgGhu6f83Msqz6RrWiX+M+DtvrP2QnKp9BJkCsOhN3Jd+M+9s/JyMA+ksDZKeC5LPYWB0X0Tx9BUBBEHALqts31NKZa2Dnp1CCAs0o0M95hTwBtGNQW7AnrkZ1eXAmtAbxRREk9Lsjy6KAoIoEXH5Pyif+zrO4ubdQcFgJnD4FYjR3XEcp3BlkexQV449bzuS1R9zx544RAsu5RjNuDXOKCpq7Cgq7ZqeuoUAqwFJFCiuaKR7/JGznPyV7KzIoIMtxmdstaPR0RbDmuKNuBQ3elFbm2mcfMxiy5puC+iMuGN6sKNIR8dQI4amChpEqBBV0OlpdDaSXbWPkMBAut75GjV1ZWwv3k1CQAwxIXHsqy9lb+5KxnUaTpg1GLvLQaA5gLL6cu4feitvbfiUXWV72Fi0nQsCohgal0ZJfRkTkkZhd9v5evtczus6BpfiJq+62bXWZrByfeplhBnDUQ7bPFEUlQhjJHekXc/7m7/yxEOMsUVyx8DrMcpmLa+RhsZJpl3fZI8//jjfffcdY8eOpV+/fgQEBJyQcd944w2Cgw8uNAYPHkx1dTXvvfce06dPRxRFXnzxRc8XkbZEmE2bNrF8+XLeeecdhg5ttoxISEhg4sSJ/Pbbb0ycOPGEzFejNaIIxa4inlr4Ks5DZPIIvzCm9r2CnaWZjI0b4SXECKJAXmkD/3pvLW65+XUxZ5HIc/emUadUM63flYiCiEtxYZAMSILIvppCjDojL69+zytjTbQtgnvTb2Fc5+E0uZow6YzsLs/mkQXPer4IxwfGctuAa6myVyMgEGEOwr+xEbcsogrNwYUN9UUUf/YEquPgDqRkCybyyseoWfMj9Vvme5134IirMHUbhV0TYs4oVLVZ+Duc9A79GR4/iIfnP4tbcXNv+i3MXv8x+TWF3NL/ai7sNp7Kpmr8jTbuT78F14EsCZnlOby94XOu6nUhjy16Hj+DlWv7TCHAaEMn6njqgPnyuUkjmdx1PLIiE2WLwCbYQD59BRhEgcyCWv770XrkAztwnwGdYwN48Jr+SMdg0GwUXchZyyla8MHBwiWfYu6SRsCYqTSpJixyFSUfPw6Af/9JBA27DFVR0IfE4DAE0nScmc78JDuVP8zCUXDITr0gEnrBDAxRPXEqp/HfROMPcTLSU7cgigJBNiPFp7AlTKOribzafEZ18G2FejQ62mJZXriG3Jo8ugQd2VpaQ+NEY5Uc1Mx/m6asg9auiBIJ1z1F5U9vIA6/hNey5nFpz/P5YN0nFNQVe5rpRR3T064lv6mKpOgUHl3yErWOOk+9zWBl5vA7+H7Xb6TF9ubJxS8xJnEIl/e4gFpHHQ/M+zfyIbFlEgI78Pjou9lYuBUEkfvTb0FRVQw6Ax1tMShNvoV/wS3RPSCFf496kEZ3I5IoYRbN6GQjiqw5C2lonGzaVYT5/fffufTSS3nyySdP6LiHCjAtdOvWjS+//JLGxkb8/PyOaSd46dKl+Pv7k56e7ilLTEykW7duLF26VBNh2hGnzs5/F7/hJcAAlNSX8XPmfGL9oyluKiZa38HjZuaQVf79/kEBBmB4vyi+y5zLyv1rWx1DL+p4aPgdLMxZ0SplcGFdCff9+k+eH/8INp2NRxY/6/VSBNhbvZ93Nn5O78hufLXjZ27qfgEpaxcTesEMmqQA5LpKSr9+2kuAAZDrKin/8WUsya2zzFQv+ZTI+F5gjDy+C6ZxSqMoKgmBHZAE0WuxdEG3cTy5+CUcspOBsalsKNxGdmUeekmPWW/i4QXPetqKgsgDQ2/j0QXPo6JyZc/JfL7te6qaaqhqquHfS15hctdzyK7M8wSj/nrHz57+Vr2F/4yZiYnjd6M5VXC4VZ75aH0rE+g9+2v4bkkOl47qhCIfeb9OZ6+i/FAB5gBNmWsxd0rF3GkAFd++iFxfDUDV4k88bSRbCGF/+xcOzK36t4VeBw0bf/UWYABUhfIfXiJq2os4af+4IBqnFiVVjUiSgM1ycgT3IJuR4lM4Q1JG1R5U1OOOB9NCqDkEi87M7sosTYTROKnodCLO7PXeAgxg7ZJGw+bfEYIj+a5oIwkhcfyevcxLgIHmTIdvrPuIJ0ffy8ur32u11qxzNvDy6ne5e/BUHl80C7vbwTc7fyEpJIGXVr3jtaYAyK3O55udv+BWZC8XaIBre19CesSgNl2QFRl0sgl/TCADMmdUvDcNjdOJdhVhBEEgJSWlPQ/hYcOGDURERODn53fMfXJyckhISEA4LOhAYmIiOTk5bfQ6do4nDkiLb+mZFkvA13kJAhQ0lNHk9p0edmvxbi7qdi5uRaZRqsUg6REQaLI7uPzcBH5ZVkBFTXPf/j0DeWXbBp/juBQ3ZY2VbC/17UfeNawz9a4GjDojdw68HqfsREFFQCCrItcj3kzudg4Ac/etoVuPdBz5u9AnpeOurUSur/I5tqMom8Chl/qsq980D8uIG3GdgjsPZ+p9CMf3PP4RJMHC7WnX88qa91BRCTIFUG2vo+FAdqOBsanMXvcxAD3Dk9lQuNWrf5eQRHaUZmDSGxmdMIQ+Ud2JsoVT46jjtz1Lya8ppEtIAt/v/s3n8RtcjZQ3VtLRz0JpfQUOHOgNBsyC5bTY5RJFgfU7Str0QZ+/bh+ThydiOsLfUacTqV/3e5v1dWt+JLxjd5wle33Wy3UVCPZadBarp+xoz4RRbaBq4zzfB1QV7NkbMKaMQz6KeHQ2cSrEyGrvz7ryGjtBfsaTdq4h/iayCmqOery/6jM+ozqLYFMgQeY/KkgKdPCPIaMqC53u+DfIzuR325+hZfmrXZe2MaqNlK/9sVW5NXkgZXPfQHfRDJZv/pgZg29k1sq3fY7hlF04ZTeFdSU+60vqy3DKLtyKzIj4QQztOICS+rJWAkwLK/M3cHvata1EmLlZCxkQ1QeDD8vcP4IoCTSpDTgVF3pRh1mwoMp/LruR9ixqaDTTriLMmDFjWLlyJVdccUV7Hob169czd+5cHnzwwePqV1tbi81ma1UeEBDA9u3b/9ScRFEgKMh69IaH4e9/7DuwpxOHn1d9TX2bbVVUnP/P3nmHx1Fdffidsr2od8uWq9x7b2ADxlTTTQsQSiAQSsoXAmmQAqQnEEgCIYEQQu8Gm2Lj3nuRe5MsWV3a3qZ8f6y19lorY4Mly2be53HIzr1z585q79w7557zO2qM3yx6BlXXyLClMaPvNBqCTZQpO7nnG1fw2vtVbC/3gKC3Uos/Em/Ej0DrCWPmwEsQBZHfL3mW0uweTOg6kjc2f5jYwRiQ24d7x36Tf619LZHO2hfxg8WG5veQ5rQSrDu267eupk6DrfqbsNtkRJP5mOefSs603+GXHY8nykjHYP6Y+TMW7V9B9/RuSTtekigSUeNxLjaTDW8keQzYTFZUXeO74+7gox3z+NEnj6Ojk+fI5soBF7KpZhvKMdImWyQzaTYnr257lwX7lqNoCm6Li2sGXszY4uG4LcdvoD5VNPlSZywDiMRUhC/4O2qqQqANwyiAGvIitLGoTaBEUl6jrTERaw6iR0Nt9ynQTMYZNp6+Ch01Fo+X9nrWNXgj5GTYcbk65m9fmOtixdYaHE4rZtMX6xB15DNe13W2Nu6gZ1bJV/o++uR0Z9b2zzA5wGn+cr+hM21u+6q0bEIa30vbKN4wWsjXukCS0GMRNEFA0RQ0XUM7xvwSVY8d5xrTYnxv/B0sq1jDm2Uf0Sere9t11VirDWSIr1Nlk0iG/as/Y71hH0vL1/DGlln4ogFMosyUHuO5ov8FKRNXnCjGb87g685JNcIcLb57991388ADD/DTn/6UmTNnUlhYmDJMKD09/Utfs7q6mu9+97uMGTOGm2666Uu3c7LRNB2v9/jjsyVJxO224fWGzqgd07buq8hV2OY5bosLT8SX2AFoCnl4Yd0bfHP4NVAHT655mu/NeIBHnt6Ex6uS48hKhGccTUl6F9aYNyUdG5TXFxB4ZdN7OM0OpnYfz2+X/D0pu9aW2h1UeA5y9+hvEFHiE+eArJ6IB/di6TcRrzeENS0HEEiVeE8wWVNOkAC23qPwh1RUf+dzHe/I32FHvoid6Hj8KthxcXH381lXvzHpRaHW30DXtCLKPZXsbz7AlB7jWVW5IVFe7qlk5sCL+d2Sf9AQPGxIqAnU88zK//DdcbcDAk6zIyGqdyRXD7yYf619jbK6nYlj3oiPf655BUVVmVAwmmPYK085ggCDembxShvlXfNdiOg0NbU9biRJxNZ7FMGdq1OWW7sNRJctCLIZXUmxIBZEBEdG0jW+aExYEDHn9yBandp70lIymObmYNLzpTPSUeOxI8fisWjvZ92BWh8l+S58vrYNdCcTu1lE12H73nq65LRtcD0Va43aYD31wUYmFI7+St9HnjkXHZ1VezczNHfgCZ17uq2xOmo86rqOIAinzfdyKjALMtauAwjuSA57V5rrMOd2A18j+c4cgrEwWbYMGkKpNwLcFheSKKXcOJQEkSxbJs+s/A87GvbgMNmZ3uusNvtU5MqnMdjc6ni/nN6giMecJ48HUYIFlcv578a3E8dimsInuxZS7avjruHfQFK/3Ebi6TYWoWPXqwZfH06qEWbs2LGtXjx1XaesrIw333yzzfNONDtSC16vlzvuuIP09HSeeuqpE84I4na7qa6ubnXc4/GcFBHhE00LC/FUzF/mvM5Oy33JJhFNA5fsZETBINYc3NSq7ox+0yir3ck5PSYQUaLYTFZ6ZnQjpsWYOfASdjbuQ7JEufWSvsxbVs0V02fwj3X/AuJGl56Z3QgrETxhH7WBBi7qM5VtdfF4dICzu4/j32tfB+CskjHM3jk/5QuSN+Kjxl9PMBZCEiUuL5kA89+A0bmoqoZkT8MxZAqBDfNanZs+4Up8mxe1Oi4507F0H4o/ktpLprNwJv4OO/J+IkKI/218l7O7j2VE4SDWVG3is92LuG7wDP687HkOeA+S58jirJKxOE123FYXZslERInRL6cX66q2EIglv6i+v/1Trhs0gyv7X8CL65Ofp7Io0y29iP9ueJtUvFn2IcPyBiIryS7KsklEQ0VEQomd+r93TrqNnkVp7K70tCq7/ZKByMKx/46KouHsOhDJlYnqa0wuFGXSJlxDGCtp46+geeGrrc53Dj2XqGBLeY22xoQmWsg45xZqXv45RxtkTdnFiOlFxGKd2Pp1CuhMz5b2eNYpqkZ9c4ghPbMTmfTamzR7/IWosjZAfsYX60J15DN+c+02REGk0F7wlb4Ph+wk3ZLGlrodDMz8cqHuZ+Lc9lVoWfoY30vbqIJI2qSZBHetxZSRh1TcF0FV8G9dSvqEK2la/AY3TrmKd3Yv4rL+5/P8mlcpze5BF3cB/miQ9Qe3MLXHBGJqlG8Ou4YX1r2BoimIgsiQ/P5k2tLpmlZIIBZkb1M5o4qG4La4MIsmumd0TWT9PJIr+l/AW2UfJR2TBJFrB16KHhVRvsjjMwWyLKIJKiIiQS3EW1s/SllvY81WfEoAp/rVXiGN35zB152TaoS555572tz9P9mEw2HuvPNOfD4fr732Wsqwoi+iR48eLFu2LLET0MLevXvp06fPyeyugQAhVefzlfvYfcBDzy7p3DRxJl3TCpmzewGhWJhcRzZXD7iQQnc+MTWGqmqMKR7G/uYDLK2I675M7ZFB36weLClfxfg+I+hb2g2rZOPHk+9DQ2NfUwVldTtxmh1c2f8CGkMeMmxpPDD+dt4u+4j9zZWYRDnhSdDFXcD8vcvb7Pbm2u2c13MSvzv3QWy7t+C4+F78mgVJAsnqwD1hJqb0fLwr30cL+ZFcmaRPmomp21CsJUNQAx4iB7aCIGIvHU365BsI4CSV94zBmUNUj9EQauLdrR9zz5hbKHDmku/MJc2SxsOTv8Oaqk1YZAsOk53miIexxcM54K3mna1zsJms3D7yOqq8NbyxZVaizT2N5YiCiFky8+1R3+DNLR9SF2zEbrJxZb8LaA552+yPPxogokWQiRthBEknJASYv3cZ5d4DdE/vyuRuY7FqDo4R8dTuyOj86KaRvD1/N3NXlRNVNLrmubjt0gEUZdu++AVOEKhX7Diu+CnR5W8Q3rEcdA1LUSkZ536TsCkdRRGwDZhKpj0Nz+LXUf1NiDYX7jEzsPabROAEF5aapqO4isi7/uc0ffZvorX7ESQTjoFn4R5/JX7t5MTmG5w+NHgPpad2dVzIqd0qYzaJ1Dadei+jo9nWuJN8ey5m6at/H12chWxv2vnFFQ0MThK6DhFzFq67/sTW2u0sqdmCRbRw7uBrMLuKsE++iS4Ht3Nl90nUa1F+M+1hVlWuZ2fDXtKtafxsygPUB5t4fcss8hw5/HzKA+ys30tRWgFrqzZS7a8jz5lFIBrie+PvYGXleuqDDexs3Mvdo7/Bior1vL/9E6JqjCJ3Plf0v4B8Rw7dM4oTujE9M7txy9CrcQvpnKj9RRQFonKINTVlrDm4gXRrGuf3OotQLLVuI8BBXw2lzvQ2NdwMDAy+mJNqhLn33ntPZnNtoigKDzzwAHv27OHll18mLy/vS7UzefJknnnmGZYtW8b48eOBuAGmrKyM22+//WR2+WuNrutU1AX5+XPLUA69RK3bUcf7C3fxxD2TmHLOBBRdRRZFNHQe/fxP5DqzuGXYNTy35n9sr9+daGtN1UYG5PZhWs/J/GrBk8wceCkFzmy6Z3Tj0fl/ojHUnKi7pHwVF5eew/7mAyw/sI7zek7iyv7Z5DqyEQQBXdfxR4OkW92tvA5aSLe6mb1zPvWBRh6c+G184eR0o2FsCAPOJ7fvRARdRRdlwoKDqKohWvNIu+R7SGoEBIiJNvyahG5MWmc8siBhEmVimsJTy//NA+NvZ0XFWnKd2ayq3MDA3FIeX/g0giDww4nf5skV/04KqVtWsYapPSZweb/pvLN1DgBuq4safx3Prfkf3TOKuWrARXTPKMYsmbFpdspDB9rsjyAImEQTqHGhvYpwBb9Z/HQi5G9D9VZm7ZjLjyfdS76p8JQtrHQdJHRmTu3FZZN7oOo6JknELPKFBhhRiqe3fuLFVZhNEtNGnMWESy5BFsGdlUHEYk/suoVUM1L3CeR0G4qgK+iiRER0EFC+3H1HNQnF3Z2MKx5G1KIgiERFG77TOV24wZemprElPXXHGeAEQSDTZaWmkxlhNF1jR/NuBmcPOCntFbsK2dywFU/ES5rFyDpm0DFE5AhPLHmOSu9h7/nlles5q2Qs1/SfQVpOVzJFnVohws8//1NCkB9gwb7lXD/4MuwmO5/sXsje5gou63c+vz2kewjgMDlwW1z8/ZB4P8Tn5Y93L+T/JtxFj8xiMm0ZbK3byZtbPiIQDfL98XcwustQRERqA/VkmDPQoye2ES4IEJYCPDr/jzSHD2/kjO4yFAEh4UF+NGkWV6cPsTUw6Oy06wrxoYceYsOGDW2Wb9y4kYceeuiE23300Uf5/PPPueuuu/D7/axfvz7xLxqNx/nv2rWLOXPmMGdO/AVmx44dzJkzhwULFiTaGTZsGBMnTuThhx9m9uzZzJs3j/vuu4/S0lKmTZt2wv0ySE2DJ8zvX16TMMC0EFV0Hn1+JXrUhiXmQNasvLb5A5rCHq7ofwFb63YlGWBa2FK7g4gapcCVx+tbPiDXlcNbZR8lGWBamLV9Lv1yetEYaublje/wx6XPsaR8NWOKhgGwuHwVU3uMb7PvwwsHsalmGxXeKhbuX4kkt57gFEUnoNvx4yKg2RIxrpqmE1JN+HHi151EVAljzvp6YMHGWSXjAEi3uQkrYWwmG3P3LGZgXil/X/1fNF1jdNFQllesSalpNG/PEnpmdsMsxVPcntNjAgv3x2PS9zZV8LdVL/FW2Wys2FBikGvPaVOsckzhUCyHvGCiUpinVvyrVdYFRVN4auW/iclt7351FJqqYRLAKgpIun5cIQwRRedPr6xD0yEcVXl/WSUPvrCV7/9rKw//ewORowwsqqoR0G2Hxq0d5UsaYBJ91nSCmgU/Lvy6g6hhgPnaUtsURBIFXLaOSU/dQrrTTHVjx2jQHC8VvkpCSphiV9FJaa/IGdeT29nUem1gYNAeSLLA/H3LkgwwLSzYt5y6UB0h3YJXMPH8mteSDDAtvLrpfc4qGQvAhb2n8LeVLyXNwZO6jeKfa1qHyIZiYV7a8DYRJcrcPYt5cf2bHPTVMKbLUD7a+Tl/WvpP/rD0WXQdZO1LeJrJGq9sfjfJAANQVruDoQWpQ/7cFheZtgxjPWtg8BVp11XiO++8Q3l561jGFg4cOMC77757wu0uWbIEgCeeeIKZM2cm/autrQVg9uzZ3H///dx///0AvPvuu9x///08+uijSW39+c9/Zvz48fzsZz/j+9//PiUlJTz77LPIcrsmjvpa4fFH2sx64vFH8QXjhrOYEGHFgXWIgojDZGdZRerU0wDz9ixlROFAdF1H0zSWVKQW4gQoq9tJz8xuADjMdsZ1GcH1gy6nJL2Y/c0HsMoWxhePTDpHFERuGnolyyrWJLIjzd27mKhw6l5QBQFsYgSn2ogjXIUTL1apc2vLfF3RYjCjdBql2T0Zmt+flQfWMzi/L+uqNoFOws13ZOEgllasbbOdjTVb6Zvdi2EFAyly5bG1LtkNf1XlBiJ6fGyZFQsPTfoODlOyHkRJeheuH3wFeiz+uPdFffhSCPsCNIaaCSidayf9eKn3hAm1obV0sD5A8Dh0mKySglP3xseX2ohNitJBEbYGZxC1TSEyXBZEsWN/PBkuS6cLR9retAuTaCLfnntS2nOY7GRZM9jRbBhhDDqGqBBm3r4lbZbP3bMYs0UmqofZWr8rZR1N16jyVZPryEY+IiQe4kaNxrAnsdY8mr1N5eS7clmwLx463y+nF0Py+yeE/UcXDWVs4QjUIzYSRAkUU5hmGmimAcUURpJaP4+iRFhV1XqzfO6eJZzf62yK05KTaDjNDn408R7MipHZyMDgq3JKLQ21tbVYrSfurjtvXmsh1KO59957jys8yuVy8dhjj/HYY4+dcD8Mjg/tC8zlLaEPuq6j6RqSKKHpepsTEsRT+UnC4TScmtZ2EKyAwKWl5yGWTqfQlYdZtaJH4ftj76Qp0ky5p5KLS8/hsn7ns6V2OwgCBc4c5u1ZysrK9Yl2FFU5ZUougiDgxEfD+38hUtXyIi7g6D8R91k34FcN3YnOhhix8J2RtxLVI7y4/o1Drr0kpZkWRemYv3NN07hp6JWsrFzPMyv/07pc1xIuwZoGmVIWj5/7Iw4Gaqk7lI0pw5KOFDUnfrvHSqEZb+f0FJFVvyCE6otCrJxSBO+C/xIoW0yLZpOlsDfZlz4AGJkRDI6fmqYg6c6O04NpIcNlodkfJRJTsRxHmuqOYEfTbgod+UjiyetPkbOQ7YYnjEEHoRNf/7VFVI1hijShpzByHElMVZBFqdUcLIniMduH+Lx905Cr6JHRFafFwd7GCm4bfi29MkpwSA6E6BFed7LGDt9unl39ciLU3ml28O2R36DEWQLK4f13HT1lWFFYifDXFS/wgwl3IiKyv7mSHEcmBc48zIrN0IIxMDgJnHQjzGeffcbcuXMTn19//XWWLl3aqp7P52Pp0qUMHHhiaQYNTj/SnBZsFjnlLrXVLOF2xBerJsz0z+lDWd0OdF1nWMFA9jZVpGxzfPEIlh9YB8QV4Qfn92VDdeosW6MKh5BrykdVdfSoTsv0J0bNZIu55Gblo2k6ggZdXIU8u/bllOEhY7oMw4KFU/GKahNC1L31W2J1R3qW6QTKFiGYLVjHXU/ECH/odIhREw7JwlklY9nTVE7vrO7YZCuyKKNoClvrdjIsfwCrqzamPH988ShiqsLrm2elLO+f0weLaE78pjUVLIKdYQUD8HiCxGIqejRZBjrNEs/EFFVjrdqzm2w4zU5Ikb25s5ObYUMShZTGmHSnBbvNRFuC2BZZw7f0TQJlyRnNIlU7qX3rCQqufwTo2NASg9OXmqYQXXPbThPdXmQ445pldU0hupyC6x+Nqqns8exjZN6wk9puF2cBG+u30BzxkG756pksDQyOhVm3MLpoGHP3Lk5ZPim7L/VvPoHjuh/TxV3AAe/BlPW6pRdR7a9DFiVMkonYoTm4OeQlz5nTpgZLniMbt+xmZNaIeLh7GPo4+yAIQvzzETYdQYBmtZk/L/tnUlv+aIDfL/sHT5z7EE7SD98bZvpm92RbitB/fzSAWTSTTia52fF1cnwNbRhgDAxOBif9rW337t0JLRZBENiwYUPic8u/jz/+mPXr1zNq1Ch+8YtfnOwuGHQyMt0WvnVZamPbrZcMwHJIZ0VQZG4achUmycRHO+cxsnAwOfbMVufkOrLplt6FnQ17mdRtNBWeg1w14KKEdsaRDC8YSIYlA0XRUlr7dT2uDREPa9LJd+TiSqGr4TI7uLD3VFK8t7aJKArYxCh2IYRFUr9SWIMQ9hxlgDmMf+N8TGrq8BKDU4+qavTO6MGO+t1c2vc8lpSvYkbfuObUon0rmdZrMlbZ0uq8gbml5Nqy0XSN4QWtx49JMjGj33lJnjVHoml6yphts2blG4OvTHnOLUOvwaKdnm7GZkngxul9U5bddcUgrEftUgqCgFVS4uNT9ePf+HnKc2N1FSi+1kZZA4NUqJpGvSdMhqv1mG5v0g9ds7OI81b4K4moUYqcBSe13cJD7e1s2nNS2zUwSIWmwMWl56bUXOuV0ZWimEasoRJpXxm3D78OSWj9anVWyVi21O5A0zU+37uMmQMvSZTp6Kyp2sS0XpNbnScIArePuB6Tak3oDUJ8fj/yc6K+rPP+9k9SGnN0XeejnZ8jHrFUFlUTNw+9GpPYek9+bJfhuGVX0jrZwMDg5HHSPWHuvPNO7rzzTgD69u3Lr3/9ay655JIvOMvgTEaWJIb2yuaxb4/nlU+3c6DGT1GOk2unlVKQYUNTD4cjpYnpPH7Oj3h/+ydsq9vFDyfdzYK9y1hxYB0IApO6jWZE4SBe2fget4+4lpL0Yip91by07i1+MOEuFuxbTlntDhxmO2eVjKFfTh9k1YLK8eXsk2Jmvjv2W6ysXMenexYSVWOMKRrG+b3OxqLYj3sHwCZG0et241n2FoqvEUtBL9ImXE3EkklMOzG3bEEQUL31bVfQFPRYGEwnnqbdoGOQYxa+PfJmyup2MLXHBBqCzdw79pt8smsB72/7lIcmf4cFe5exrnoLdtnG9N5TGJY7ELNuZU3lYkZ3GcqA3D7M37ccfyRA35xeTOk+nrfKPuSuETdh5vhDHzRFYFjOYH46OY+3tn5Ela+GLu4Crup/EdnmnKS48tMKTWfSkEJKCty8NncHNQ1BSgrSuG5aH7JdlqQFq1lSMPlr8Cx+g2h9OdkX3BlfabeB6q1HsOV3xF0YnObUe8Jomn5KjDB2y6E01c2dQ5x3V/NeTKJMri37pLbrMNnJtKSzy7OXUfkn18vGwCAVds3JY1N/wEfbPmVlTRkWycy5RcMZ4cgn8u6TAIT3bqSwx2geO/dHvL11Njvq95Buc3NJ6XmIgsiL696gd1Z3RnUZQo49k4cmf4d3y+Zw0F/LQV8Ntwy7hoG5pby77WMagk30yizhyv4X4RbSUhpcUhHTY2164gBUeCpRURAOvf5pmk6alMnj5z7Eu9s+ZkvtdlwWJxf1OYcBWaXJYU4GBgYnlXbVhNm2bVt7Nm9wGiEJUJBu44FrhqKoOrIoIAmtdRo0FWy4uLb0CmJCFEmQuLjXNM7tMRkRAatoJaxFuGPEDZiQ0QWdxxb+lWAsxO+W/J3xxSO4rN/5hJUIS8pX09XdhUzL8b9U6jqIETMT8scyqmAYuq5jxoIW5bgNMBZRIbxhNt5l7ySOBX0rCe5cTd7Mn6Bl9DruCTXeJx3JldV2BVFGMFvbirQw6ATEf1cWhmQOJipEyLPFRSr7jOoBugACXNXvYi4rvQB0AYtuRYlqqKJG1/Qi/rz8n3RNK2JC15HYZCt7myv4/ZK/YzfZkDhxrQVBkSk0d+Hu4beioiAjIygy+ulqgDmEqOt0z3Pyg+uGo2o6siQg6iTt4MmSgHCwjOp3/3j4RE0FUW7TECO5s4me3l+NQQdR23QoPbWz440wgiCQ4bQk+nCq2dW8l3xH3knVg2mh0JnPLsMTxqCDsKkehF3rudCrcF6XyQhqDNYvJ1y5PVHHXNATXQGXls7N/WcSE2KIiJh1M4qo8vOzfoAkioiArgmYdDP3jLgtaQ7uZXfz3VHdUNEwYQJF5Atk3JIwCSa6uPLbNMQUuwuRkJO2JfVD6+4b+l1BtF+8zybNgho9gQsbGBicMEYKIIMOQ9d1BB1MAogCxwzP0RUBmfgiVgVMxEMkYoB06LhOPHXgxX3O5fUtHxBTYyzYtzyhIJ9hTaPAmYf+Jd6eVEVHOuRdcKLTkEkNUL/s3RQ3pdEw5x9kX/soYcmWSLvbkkHjWEJnui0dU04xsbrWGjnOQWcREx2cErEagxPiyN8VwJFDQAekQ49khcNpzrund8VhtlPuqaR8U2VSezcOvgKLbkvUPxHiOkgS8iEjTir35c7A8YyPI9E0HZH4Mwat9V1Z9AC1Hz+bdCy4czXOARPwb1rQqj1TdjGyKzP+8DEw+AJqGg+lp7Z3vDAvxPWPOoMRRtd19nj2MSArdYjgV6XQWcDmhm34YwGcJkM426D9MMs63qUfEKnYQtroi6if/WyrOoLJgq3ncHzKoblYERNrWAUdQRCxijY0JS6EKxCf5wXic7AgxOc6XdeRNTNiG+HEX4SuCFzSdxorKte3mtMFQeDCPlPR2pjLtJh4xLrbMMAYGLQ37WqE6du3L8IXCGFYLBby8vIYM2YMt99+O127dm3PLhmcagSBqKaze38z4ahCn64Z2M0SwpeMNVUVncnFY/FEfHy6e2FCdb7Ilc93x92BSbF2qIiYKArEqstpyy1Faa5BDDUh1q7H3qUfggDhA/GUhuaCXkQlB1Gt9bAM6TZyrniQhvf/RORgi4CagKP/BFzjr8ZviPKesZgVGz+b/AB/XP4cNf46ACRR4uLe5zA8bwjKGbpbpQsC4ZjG9vJGZEmgd3EGZkn40s+KBGE/WsifdMi3aQG5Mx5Aj0UIbFtBIjtSQU9yLrkXxdeETbYSEW0px6eBQQs1TSHST0F66hbSnWZ2VXpPybWPpC5UTyAWpMCR1y7tFzniujC7m/cxJGdAu1zDwABAVkM07ViOFvSi+JpIn3AlnhUfoCtxBXvJlUnu5T8gKLpabYYJgoACNHjDlFf7yM2wU5BtxyIKaJqOJAlY9QBa80FUTw2mjAIEkxUNAWzphHTrCRljdB3S5QzuH3srz675H8FY3CDrNDu4a+SNOAX3SfpWDAwMvirtupq85557mDt3Lrt27WLSpEl069YNgH379rF48WL69OnDmDFjKC8v5+233+bDDz/k5Zdfpm/f9tk5MTi16ILApr2NPPX6+qQMJueO6sq15/ZG/JIvV0LUxIye05ne8yz8sSBmyYRdtCOrlg5Po6frIEjHHlZqoAnNW0dgYxWeFR9w2GAjkD55Jtb+5xDWkuNwdV3HL7hIm/EgUsyPHgsjWJwosh2/arwUnslomo5bzODHE+4nqAaJaTGcZgcWzYYePTUveu2NJgjMWrqPdxccztggCnDbpQMZ2z/vqxliUm0MaCq17/2FtJHTKbr998SaqhEkmVhdBVUv/RRTVhHpY2egNijqUaMAAQAASURBVFZh7TO51fg0MGihpjF4SkKRWkh3WWj0hVFUDVk6dcb5vZ64kHy+vX2MMC6zE6fJwV7PfsMIY9DOCIl1XfPiN3CUjiX3su+iayqCKIEkE0vrghpJ3hARBIjq8Kt/r6Sixpc4nuY08+gd48hymrCE66h99ZeogeZEuSmzkKxpt9H42QtkX3Ivfhwn5hWjiJS6Snn8nIfwRf0IgoDT5MCsWo8lfWZgYNDBtOvbW25uLk1NTcyePZvi4uKksv379/ONb3yDXr168eCDD7Jv3z5mzpzJH//4R559trWrn8HpTyCi8JfX1rWaTD5bVU7/7pmM6J19QlopR6LHRMw4yORQWI56/BouJxNd15Gzi9vUlzDndyfWXIs5u5ja9/589Nk0L3yVvOL+CM5urZTodV0npJtByiQhA2KEIH0t0DQdSTPjagllip65EkCiKLC7ypdkgAHQdHjuvc2Uds0gy2n6Uq7aAFicyO4cFG9d8nFNwbdhHpYupdS+/YekosiBbQR3FqHFwlgK+yA4ir/89Q3OaGqagpTkn7rd5nSHBV2PCwTnZ9pPWT/2ecvJtGakzPx2MhAEgQJHHrub97ZL+wYGLcQkG87BU/EseROAwPblBLYvT5Tn3fhLoik8UnVB4O9vbUoywAB4/FF+8fwKnv7OMOreeCLJAAMQa6yieelb2EsG0PTpv3BO+zbhE9xs01SQVSsZHNILjJ54aL2BgUH70q7bJM8//zw33HBDKwMMQLdu3bjhhhsSBpeSkhKuvfZa1q1b155dMjhFyLLEvNUH2nxxeXv+LqLqmfFWExHsZF14V6vjgtlGxuRr0UI+fJvmt3m+d8V7WETDumLw9UTV4a35O9ssn7VkL+JX2OEPCw6yLr0f4eiU9oJI9kV341n5Ycrz/FsW4Sgdg2/lLMzSmfGsMji5KKpGwylKT91CS5rqulOcIWmft4I8e067XqPAkU+57wCKsb1v0I7EFHAMPgdTVlGrMsfAsxDceSnXtqGoxrodtSnb9PgjEGhuvRlwiHB5GZbC3oR2r0VWO0fKeQMDg5NLu3rCVFdXI0ltq+JLksTBg4cVvLt06UI0Gm3PLhmcInR0qhvbnkiavGE09C+R56XzEdNELF2GUXDr7/Gt+wS1uRpLUSnWLqU0zn8Ze8/hqP6mNs9XfY0IugInkHbYwOBMQdV1mryRNsvrm0N8SYe5ePuqRtTVhYLb/kBg8wKiB3ciZxfjGnou0foDRA6kzuqnK1EQRFR/I4KmAEZIkkEydc0hNP3UZEZqwWUzIYnCKRXnVTSFSv9BJhWNbdfrFDjyUHSVCl8V3dMMPUGD9sOv2cm++ifEqrYR2LwAwWzFNXw6ltyu+KIyqfxMIrG2N9PMJgkl5GuzHEBXFUCPzz1G1LmBwRlHuw7rXr168corrzBjxgyys7OTyurq6njllVfo1atX4lhFRUWregZnCDoM65PD8s2p0+b16ZqJSRRBOzMcJiOaRETOxjL+BiQ0BG8V1S/9GABTWh6Wwl5Ea/enPNfStT+qaDZ8Rw2+lpgkkX4lGdS0YbQd3DsbWQTlK4wPRQUfbkxDZ+AYqqAJEn5Fx2b3t3mO5M5GC/mwdB1waHwa3jAGydQcMnxkuk+dEUYUBdIc5lPqCVMVqEbVVXLt7buey7FlIQkSe737DSOMQbui6zp+3YZUNAJHl6EgiMQQcDgcEA2kPMdulbGYJSLR1saYcFTBnJ7b5vUE2YwgCAhmG4LJdubGHxsYfI1pVyPMgw8+yB133MF5553HueeemxDm3b9/P5999hmKovDYY48BEIlEePvtt5k8eXJ7dsngFKGqGkP7ZJPmNJPptlKQ7aDZF2HrvkYE4MbppQh650iSK8sioiiiaRrKoTc9k0lCEARUVWulWyOKArIsIUkCqqonnReN6YCA05GJnJaL4qklsHM1+TMfwr95UUJdvwVBNuMadj4+w7va4AgO/yZ1FOXMDlXTVY0rp/Rm8YYqlKNCFO1WmclDixLj62haxqKu68SOsQvZQkzRiEfl6giCgJxVhGvEBfi3LMSa3xPRYidaV06ssYr0cZfh27yQrAvuxqd0hieVQWejpjGISRZx2k6tl1Sa00ztKTTCVPgqERDItmW163UkUSLXnsM+Tzm0jno3MDjpqKqGigDoyHJc5N1qNR2am7Wkuccmi1w5pRf/+3h7q3ZG9M1FNTmw9xlDcMeKVuXuEecTqS0n+5J7iZlcENUS61BFUTs86YSBgcHJp12NMGPGjOHVV1/lySef5NNPPyUcDgPxtNTjxo3j3nvvZcCAAYljixcvbs/uGJxi7CaRJ+6ZyKqyGnYdaKZ/9yyum1aK1SyR4TC3EqLtaEQJIlKQ5Qc3s6dxH70ySxhWMJB0RSe0YQFKUxXWkqHYivsRFePCi1Y9iNpUSXDrIgTJjKN0NLogYnXnEBadKGp8kg5iJ/e6n9E09wVCu9bStOh1cq/4AU0LXyVavQcAc34PMqffSVBqnebQ4OtJ/DcZYm3NVrY17KZbWhEjC4dg1RzoZ/BvxGmW+PVdE3jmrQ3sr467bPcryeCuywdjlQW0o4wzgiDgEALEanYT2rEK2ZWJc8Bkoib3caWUdohhtOYqPGWLsBT1oWDIzwmULUHxNuAeeQGWot5EavaRee6tBEW34QVjkJKaxiAZLgtCqgxcHUiaw0L9KTTCHPBVkWFNxyS2vzEq357DXm9qr1IDg/ZCFAUcug9/2XoCO1Yh2Vw4B05GUxQsFhsxk5uIamLq8C5YTBJvzN2JPxTDJIucN7orV5zVi7CqkXbON5HcWfjXf4auRBGtDlzTbiWY342llRuoadrCEItOr4wezF/dTHmNjzED8ulZlIZJ4JSvmw0MDL48gt5BI1jTNBoaGgDIyspCFE9d6sSOQFU1GhtTuyimQpZFMjIcNDUF2tzlPR1pua/m5iCNgRgP/20JgVDscLkk8JNvjqFbrgP9FL7YiKJAnVrDrxb+hah6uH8WycyPR96MY84LxBoqAZAc6eTd8CiyzUHN278nUpGsIeEcPAVTRj6WrgMIOYoTOxaCAGZRxaQG0TUFwWxHR0SIBkEAVbIRoePTah9JR/4Oc3Jc7dr+kZzoeOwMiKKAh0YeXfAnQrFw4rgsyjw08R4KLV1aGSPgzHmWiKKAokM4piIIAlZZRBJIOT5cYoDaV3+B0lyTdDxz+rcQSsYQ1dpWm3JKYRo/fJJIeRmOvmOxdOlL42cvJNWR3NmkXfFjXl/ZzKWTeiCdgQvfjhqPnWUstsc4+e3/1qLrMGNi95PS3pdl5dYalm2p4ZnvTW5lEOqI58PvVz+NWTIxveScdmn/SHY07WL2vrk8MfFnuMzONuudbs/FjhyPkiSeNt9LZyFNClDz+mOJdWEL6ZNmIqdlo0UjCD3GEtVkJFkkHNOIKBpmWcQqi2hHeFSbJR2zFkBQY6gWCxs85fxl+b850jc8w5rGXUPu5Df/3EogFCM/y86jd4zD1Cn8x0+M020sQseuVw2+PnSYJUQURXJycsjJyTnjDTAGrYlqOn96ZW2SAQZAUXV+89LqU54ZKSaF+fPyfyYZYAAiapS/bHoTYcKMxDE10Ezjx88Rqa1oZYAB8G/8HFNGPvUfPoONw7oWug4RVcKPi4CYgV+xEFBM+MU0/EIaIc1suJgaJFCkCE+t+HeSAQbiopd/Wv5PouKpzX7S3miajqjr2GURmyQg6HrK8WGRNDyLX2tlgAFonPMcZvUYOi+SQGT3aiLlZQC4hpxD49z/tKqneusJLHkFSY+xv9qHKJ5aTweDzkl1Y/CU6sG0kO60EImp+I6abzsCTdeoClS3eyhSC3n2uK7Gfm9Fh1zPwMBuBs/y91oZYACaF72GOacrjfP+g1mNG5tVRcMkgNMkYhZIMsAARFUBv+7EJ2bgEQSeWvkiRwfnN4U9zNr7AdPGFQJQ3RDk9c92fKVMgQYGBqeWdtfb9ng8zJo1iwMHDuDxeFq5zgmCkNCFMehYJEkkouoEw3EBErtVwiKJrTRPTgbBsMK+g97E51H98pg6qhgBAVkW4jsEZimla6UkCVj1UFz8TNfA4iQs2FFPouEmoARoDDWnLGsINhF2ZSQslpIrE3uPoUhWO7lX/AB0Dd/6zwjt3Xi4vR2rsOR3h7APzLaT1k+Drw9BLUilrzplmT8awBP1kiVYO7hX7Y8gCKiAquk4CSIpgbgejslBRLCjqhqiJBJWNIJhhQJbmEDZUuy9RuAcfDYgIEgy0dr9eFZ9SGTfBqReZ6d8rpm1EE1rZgNgyiqKi2XrqZ9/kV2rmXDp5by8ZC/3XT0EQynR4EjCUYVmf5RM16kfk2nOeGa9+uYwbnvHZtlrDDcTUSNkWzM75HpuswubbGW/t4KB2f065JoGnRtBAKsQQ1KD6LEIgsVBVLKjaCKKDsGoiqJoOKwylqO8UiC+NrbqAYgGEADV7KAxZkVRNOwWGVnx4d+8oM3rB7avwD3kHMJ71iGXTj1ubw9RFNjbVI6qpY413ly7jfOGXcg78+KfF6yr5OpzemM29gQMDE5L2tUIs2jRIu677z5CoRBOpxO3292qzqmOnf7aIgqU1wd48vX11B3K6JCTbuPeq4dSnGM/6aFByhGT3A3n90XVdZ58bT2hSNwA1Ls4ne9eOwy7SUza7ZYlsPgrqZ/1JEpT/IVUcqaTOf1OpOw+xwwzOKH+fYHAhqKpmAFTZiFZ075J4+f/o/Hz/wIgWuykj78Cc153PMvfA0CPhhDtblA7fifS4MxA/YJMYRH1zEtbKYoCwZjGojX7OLvQT9PCfyXSucvpeWRfci8hZxc+WVXBW/N3EYmq/O6bfcmbdBW6plI362n06CHtscLe5F56P5H6A7Q1zQjoaIfqC7IZLXoM7yJdQ0AjFFbQNR1j5jI4kprGU58ZqYX0Qymya5uD9Chsve5qTyr98QyIWbaOMcIIgkCuLYf9vgMdcj2Dzo0gCDjx0Tj7b4T3b4kfk824x16GPOAcfvGfzeyp9ADgsMrcfGF/hpfmIB7aADRJGqbmvdR9+DSqtx6Ih6Oazr6DF5eHKa8L8dc7B6DHIm32QQsHEK0OtLAf8QRmCkGAkBJus1xHRzvC+K+oGno894OBgcFpSLv6sf3mN78hJyeH9957j9WrVzNv3rxW/+bOndueXTBog0BE5ZHnlicMMAB1zSEeeX45vvDJV/x0WE24HWZ6F6djtUi8+sn2hAEGYGdFMz/5xzIiRxl/bKqXmlceSRhgAFR/M3Vv/hZTqK7Nl6sTxWV2YpJSiwiaJRPOQ7Nc5tQbqX3/KaI1exPlWiRI4+f/xZRZgCmrKN7v7kOIVu9BsKednA4afO1wmOw4TPaUZaIgkmPvmJecjiSi6Tz24irO6ikR/uiPCQMMgNJcQ83/HkUKNfLqZzsSaT/rgwKixU7zojcSBhiASNVO6j58GnuPIW169ymiFVvvkQDEGiqxFPRss2+mnK7sb1CYMKQAWTJWvQbJHDykc5PhOvVGGItJwmaRqG9u+4WuvTgYqMEimXGaHB12zTx7DuXeA4ZIqQF2IUTdG79OGGAAdCWKZ/HrBDbPJ8N5eJ0XCCs88/ZGdld5kQ6F9ViizdS89quEAQbi4ajhWb/lm2fl0OAJs6s6jLXbwLb70HsEge0rsPUYhqoe/3paVXV6Zpa0WZ7vzKG5+fC6uW/XDEzGXGRgcNrSrkaY/fv3841vfIPS0tL2vIzBCSJKIh8s3oOawttF03TeX7TnpMeZ2s0it88YyLQx3Xhv4W4AMt1WLp3Ug2unlTJuUAEef4TyI/QWTLJIYPP8Vmmc4+h4lr6JWTw5BiOzZuWa/henLJvZ+1xYOxdTZiFKcy1a0JuynmfFB7iGnospswBzYS/Sz7oBzezEJkaxirHEJH8sTLKATYxglRRDd+JrjkWz8Y0hV6Ysm9F3Gibt1Ic9nExEUaCixs/IXmmw4QNShfvoaozAxs8ZNyCX2y4u5Te3D6VfkYPmZe+lbFP1NRJrqkaWU4+9qCrgHnUxosWOrkSJNVRh6zG0dUVBRBp/E59ubGTsgALUY7iXCwJYZA2bGMEiGy+FXxeqG4I4rDJWc+dwT0tzWKj3dLxuVHWghkxrZod6Oefas/HF/DRHPB12TYPOhyCA7qsj1ngwZXl0zftcNqq1VtFLs7cSVTXMMvhWz4JU4UCairD1U647pwdVjWEyp34DpNZj3VLYG8nmQnZmojuyabELmmX90NpOS2wepporHKKDCcUjW98bAlf2uZwP58fvTRIFbpsxANlYJhoYnLa062qhpKSEQODUZ0EwSEbRdHYfaHuxsutAMzFV4+QE+sTRNJ0B3TLwR1Tqm8N844J+ZLqtfL62Ao8vQr+STH52+1iqG/yIYjqapiKhEKzc0Wab0Zp9uLUo8NU1V3RFYFzhKPKdObxeNouDvloKXLlcO+BiumMhWD0bU25XovVtuzzHGiqxFPXGWtyXhrn/QTRZcA/XUL11+DcvxDliOtYuAwiorV+eE+kO183Fv3ttPE3h6EsQc3oQVE/9zqpBx6MqOgMz+/HQxO/w6pb3qPAcJMeRxVX9LqQ0ozfEzixBPlEU2XWgmW7ZFtRNbaecFep3c/8l5+NZMYvYojJs59yEx9fQZv1IeRmmcABXUT8COJLCHe1iBMXbQN41D+FdPZumpW+Tc+FdWLsOwLtmDmrQg6WoL+Koq9nUYOG7M3tjFqGtSDGzqGAK1eNd/i6xxirMuSW4x1xK1JxJVDuz/l4GycRFeTuPYTTNYabuFHjCVAWqybSmd+g1c+05AFT4Ksno4GsbdB5EUSRW37ZAsxYO4DC1NowfqPWjAZIWJXpwd5vn63V7mTZpHL5F/yNkmkzRzY/RuOBVwvs2xddsQ8/BOWAS/r0bybjoHvyKBZOkYYk241s+i8jBXchpuaSNuwycORBsOjxX5HTFPXYGUTGT6wZeTml2Tz7Y/ilNYS+9Mku4qt8lLFru42BDgOGludw4vS/pDpORzMHA4DSmXY0w999/P7/4xS+4+OKL6dKlS3teyuAEkEWBgmwHuytTG2Lys+zIkoh+kgV6BV3HZpa4+pze1DYFeWn21kTZ/mof89ce4Jd3jU+4FGuChCmriPD+zSnbM6XlookynKToKSEm09vZmx+OvQdN0BB1EZNmRhAEsq57FFGSiOxc2eb5kisTLeSj5s3fJcQ9Q3vWkzb6Ysx5JTR88BSW4v5kXHQfgSO8GAQB7Goz1S89jBY+bLQMl5fhGHQ2jgnXE9I6VlzRoHMgKDJdrd34/ui7UAUNURcwaVbU2OmR1vFE0DSNohwnVVX19EvPRfHUpqxnyizEu+g1glsWAaAGPIg2J1oodRYk2Z1N86LX0dUYeTf8Eh/xMAmbGMW/9DUCG+chyGacAyeRff7t6EoM+8DJmPtORARigomYZGV0gU4sqrZpgDGJOkLlRqo/eDJxLFZXTqBsMTlXPYiU3fekiokbdC6q6gNkpXUuI8zug6m9NtsLTdeoDdbRI62kQ6/rNDmwyzbKfZUMzhnQodc26Dxomo45PbfNckE2pzSGZ6VZEQBNlJEz8uMC7SmQ03KJ7lpBtGYf0Zp9+NJyyLrgTrLOuQldU9BiCrGmgzhKx+KNmpEkEZNnHwdf/WXCuyZWVw5qFEf/SdR/+HSi7VhdOYGtS8m58ofIOf0YnT2KobkDQQBRlzBh4YpJKpdP6oNJFBF07aRrNxoYGHQs7bo1t3z5cjIzM7nwwgu56667ePTRR/nVr37V6t+JMnv2bL797W8zefJkhg4dyowZM3jzzTdbxQO/8cYbnH/++QwaNIhLL72Uzz//vFVbPp+Phx9+mNGjRzNs2DDuu+8+amtTL/7PFHRN47LJbWsfXHF2r7a3er8kLe6XFllgVP88Pl7eepILR1VemLUF5dDEEo3pOIdNoy3VMfeEq4jqJ9c4oao6YsyEHLUgxkyoqo6iaAQ1G/6YGWv3IQhy6mu6R15E85K3W2VX8az8EEef0YBApKIMtX5/UqiRWVRpnv/fJANMC4FN8xEjzSfxDg1ONzRNR0j8Js3tkr2sM6BpOr2L06n2KqSNSh0aCAKOfuMIbl+ROOLfvBDX0PNS1zbbkNNyUJprUH2N+Nd9jOnQ1oMYaSawMZ5mQlei+NbPpe79J6n74CkaP/4nqmDGr9lQBTNZaTb4Ar0Jix6kYc6zrQt0jcaPnsGqGV6hZyqarlPTFCKrE2RGaiHNaaHJG/5Cge+TSVPYQ0xTyLSkd9g1IS7GmmPLpsLXOmWwwdcHXdeRMgrjSRFSYB50DnM2NLc6fvU5fbBIIlFVxD3msjbbdw06C//WZYnPiqeOmld/ReTgLqpf/RUHX/wRNW/8Bs1bBxyaEz58ulV4k3v4+TR8+nyKG9Bo+OgZbHoAVdWQYhakqAUhJqPEVGTABKBpXzQdGRgYnAa0qxHmv//9L9u2bSMajTJ//nxeeeUV/vvf/yb9e/nll0+43RdeeAGbzcaPfvQj/va3vzF58mR++tOf8vTTh63KH374IT/96U+54IILeO655xg6dCjf+c53WL9+fVJbDzzwAEuWLOGRRx7h97//PXv37uWOO+5AURTOVHQdMpxm7r1mKOYjtBJMssg9Vw0hy2U5KQ94URQIqzplexvYWu4hENMAgZ0VzW2es2VPI2FFg0NGiqg5nZzLv4dgOmJxK8pkTL0JPaO4Q1wxRVHAIYZwhA+i+hvIn/ljRJvziBoCrhHnI1qsRKp2pmhBJ1pXjpyRB0Bgw6eYpMP9NmlhQrvWtHn90I5VmEwnMzjMwKBzYpUEbj63K7GGCjImXQPiYWdNwWQhZ8Z9+Dcm60SF9m7EnF2Eo//EpLYkRxq5M+6nafEbiWOBLQsxqSFMJonQztVt9iO0aw0mLR7Koeiwv9rL1nIPtb4ICgJSCjFEPdiMHksd/qEGPBBJ7aljcPrT6AkTU7ROkRmphXSnGU2HJm/bWVxONjXB+AbWqQgJyrFnGUYYA0KCk7zrfo7kStZ+sZeOwTXqUtbtakwcEwS4aEIJI0tzUA9lGlLsOWRd+O2kzTZBNpN5zs0E96xHjwRbXTO4ay3Wroc9sAJbl2KzmRCifhRP3VG1BXRdSxKRPxIt6EUP+77EnRsYGJxutGs40rZt29ql3b/97W9kZh7ODDJu3Diam5v597//zd13340oijz55JNcdNFFPPDAAwCMHTuWHTt28PTTT/Pcc88BsG7dOhYvXszzzz/PxInxBXz37t258MIL+eSTT7jwwgvbpf+dAUHXGd4riye/fzZ1zSF0HXIzbFgk4aS4OIqiQJ0vyi//tQJv4PAL02Vn9SAnI3XGlxYq6wJ4/BGG98kmqkrIeQPIv/UPaL56dE1BTssjItoIq+1vmBBFAYfWTO0bjycyNJnzu5NzyX0IJguqpwbJkYFgdXDwxR8fo6UjXtoE8dBnvVVR6lMN5TWDrweapmOXJRo3zsec2428q/4PLeQDUUJ25yCardS995ejztKpm/UMaaMuovC2P6A0HABRRFdiNM5/mVjdkRoBAghxw0o09sVxjKog8Pe3NrJm22HvyEy3lZ/dNoZ0m3xiRmBjHJ+xVDXEX8yy0r66PtnJIs0Rf4ms84TJTu+YftUE65AECZfZ+cWVTzK5tmxW16zHF/WfkusbdA50XUcQRDKn3ogom1HDAWRnOjF/M2ZZ4Lf3TKLJFyYUUcjLtGM1iZD0HNeRbG5yL/8e2iGDiym7C56VswhsXnh8nTj0rBfaXNx94aLv+K5jYGBwWnNaKgUeaYBpoV+/fvj9foLBIBUVFezbt48LLrggqc6FF17IsmXLiEbjRoGFCxfidruZMGFCok6PHj3o168fCxce58P2NEbXdMwCFGXY6JJpwyxw0mJMI6rOz55dlmSAAXh/0V56d0lv87yBPbPYUd7E029uoMkXRRBA0UT8uoOgsxshd098upNoBxhgAKyEqHvziaQU2dHqvdS8/hjoOg3zXqb6tV8T3rcJS0GPNloRMOcWozTVAOAcci5Hvv/FBCv2PqPa7IO99yhix/HCaGBwJhAVrTgGTyGwdSk1rz9O/Zx/0jj3P6iBZoI7V2Ep7N36JF3Ds/IDNNmMaHVS+95fqHv/yaMMMOAYOAlVdvDXNzegFg1tsw/23qNQZBtvfb4ryQAD0OgN88hzy4kcpe8i2NMRzKnDUSRnOlg6LmWvQcdSVR/AJIu47aYvrtxBuB1mBKC+ueMyJNUG68mwpCEKHb+0zLFnA3DAX9Xh1zboPNgJUP3yz6h77y/UvPNHGj57gerXHqfhw2fwrXgPh0kj122hJNeBVRKSDDCCAHKgjtq3fkPNG09QP/sf1M/+B82L30Q0t23ItPcakaRd6Og7nlAohmZ2IKfnHVU7fj2hjfYkRzpYDCOigcHXgQ7Jpbh+/XpWrFhBQ0MD119/PSUlJYRCIfbs2UNJSQkOx1dfnK5Zs4a8vDycTidr1sRDO7p3755Up2fPnsRiMSoqKujZsyd79uyhe/furVIp9ujRgz179nzlPrWVFjUVLemLjyeNcUciigIxDVRNR9V0JFHAKotomoYoCkQVHfVQ7JLdLMY1VUSBbXubCEVah3Rpms6yzQe5ckov3vp8V1KZzSJz5ZTe/PnVtQC8u3A335ox4KhdipN7byYthKir6IKILpkQlbjrdkyyo2gCYsjbZrpDz4r3yJxyA/UfPoN37cdkX3Ante/8ET2W7P6dNvZSAtuWAzrWkiFIOV0RERK6MCoi6WfdQLh8SytxUefQ89Bs6cgdZC/trL/Dk8GJjMfTmfb6G0qigEkNIKCjCiZigiWhw2USNSQ1hAAokpWYFjeSCoe8TpRDBgubWUQ7DnFae98JBDbMI9ZYhR4LYx84Cf+m+UQO7ib7wruofedPrUJ/3BOuQTc5QBCwde1PaO/GpHI5LQdHzxFEYyHWbKtlULGN0QPPIbZ5blI90eYk/ezraYyJfLYqdaaNZn+EmqYgvQrdBCMqOhCWnGRfeDd17/6JpPTagkj2RfcQk53IZ6aczwnTGcbiyRwnNU1BstzWTnFfLUiShNNuosEXSepXez7j60J1pFvTUobrtTeZtjTMoomqwEEG5fZtVX4mz21fhZbl75nwvUiSgBAMkn3Bt4g1HsS3fi5Kc02i3L9hLgWjLkaTXSnPNwkq3hXvJj63rOVC+zdTcN1PCe1ai+JNDi+y9RiKFgnGQ04Bx4CJhGQXFouMojvIvvg7VP/vUdAOr4e9a+aQPf0O6t5/iqPniqyL7iFmOrPnCmMsGhjEaVcjTDQa5Xvf+x5z58495CIoMGXKFEpKShBFkVtvvZVbbrmFb3/721/pOqtXr+ajjz7iwQcfBMDjiT8M3e5kca6Wzy3lXq8Xl6v1wzgtLY3Nm1Nn5DleRFEgI+PEjUtud+dxZw6GY1TW+mnyRXhz3k627W8kzWHhkkk9mDqimAN1fv71QRm7K5vJcFm5ampvJg4tJM1lpbqh7VTO78zfzTM/nMrQPjm8u2A3Hn+U0m4ZjB6Qz4sfluHxx71nqhuCyLKMy3HyMwNpkSCR6j00fPYigiiScdb1eFd/RHD3OgTZjGvoVNJGX0IsRfxvC6Hd60gffwV5Vz2If9MC/GVLKbj+5/i3LiVcXobkzMQ94nyUxoMEKneSe8UPsBb3RXZmtEqqret2im79Hb6N8wnuWo1kdZI29lIsed2RHGl09B56Z/odngy+7Hg8nTmZf0PF14Rv0+c0rvgALejD0qWUrHNvxpzTFTXgoWnRmwS2LAZdx9FvHBmTrkF35lBe4+ffszazeXcDTruZiyZ05/yx3Y4jbMNBwQ2PENy1Bt+GeZhzu+Or2onqb6J50evkXfV/BHesJFy1C8mehmvIFOT83pidDmo//RhHv/HYS8cQKFuCrkSx9RyGJb8n9R//E/flPwLgxc/247xkMv0vHI5Y9jF6JABdhpA+dAqW7ALUWj/KMUSQa5tC+EMx/j2rjPrmEN3y3Xz/mgEU3vpbvCs/IFp/AHNed9JHX4yckYdo6jx6IaeSzjYWT8Y4qWkKkZ/lwOXqXM/NrDQbnkAs5ffdHs/4unA9fbJ7nrLvId+VQ3Wk5pi/rzNtbvuqtGxCnu7fixJoJrhtBTVL30b1NmDOKyFj8kzCB7bhW/sJEBdgF3W1zd+Hv6kxyWgDYM4rIXPKjXjXfUbW9NuJVO0itCe+TnSPvADJ5qZh/svYSgbjGjEdj6WA95bV860rCgHQnL3pcscf8Kz+iEjlTuSMPNLHXoaclkvBrb/Ds/w9lMZKhKyuSIPOp0pMp8BkIs1+5mfEPN1/cwYGX5V2NcL85S9/Yf78+TzyyCOMGTOG6dOnJ8osFgvTp09n7ty5X8kIU11dzXe/+13GjBnDTTfddDK6fVLQNB2vt+0X+KORJBG324bXG+oU2U9EUWBXlZdAWOH3L69JCPU2+yO8NHsrm/fUM7R3DrsONANxF/1n393EjvImbrmwLz2L0tpsOyvNStneBsyyyIXjS9i6r4n9B708+tyyJKeX0q4ZqIpCU1PspN+bWLWRurd/h2CykHfVD6l58zeJXQ89GsK78kNCu9aSd81DbTckyWghP7XvP4mj71hkZzqe1R/hGDwV+6jL0AQJVZCRs0pI6zMBRTDji+nQ1FaWFAfy0IvIGHQuCBJRTESiOkQ7LqtKR/4OO/JF7ETH4+nMyf4bWgjTPOcZwnvWJ45FDmyj6oWHyb/+5zQt+B+Ryh2JMv/mhQR3ryPnG4/zf0+tSnjBeANRXvlkO+t31PGD64dj+sJNMCtSr0mkdx+FJAlEa/YQrdlH5OBuql/9NfZew7F3H4waDuDbv42V1ZlMHuHEUlRK/Ud/R87Ix9F7JEgyob0baV70BtaSgeiSGUkUUDWdv76/m0y3lbMHX4wzQ2Tz3iC3DXYSaw4iiwIOm4lAKPXzJyvNxm/+s4pwNB4quO+gl3v/sowfXD+ckVNuw6FG0UUzAU0AvwJ0brH3jhqPnWUsnqxxous6+6u9jO6Xh8/XcaE/x4PTKlNZ56PpiDmnvZ7xMU2hIdiMQ3Ccsu8hw5zBnvrypPttobOtsb6IjhqPLRukp8v3kgozUQJLX8W//rPEsWjNXuref5Ks82/HUlRKpHI7os2JKsgpfx9hRScc1jHn9oSWFNWSTObUb1Dz1u/RoyH8G+Zi6dIXa7eBCLKZUFoJuxs0MsfegcNhozxm4sG/LuH/bhyBxxM8rBkmZWAbfz12NYoumghpIloU5mwI0xieQH6BTGVTlEXPbieqaNx1xSAmDszvkMQTp4LTbSxCx65XDb4+tKsR5sMPP+Taa69l5syZNDU1tSrv2bMnc+bM+dLte71e7rjjDtLT03nqqacQxfiqPi0tbgDw+Xzk5OQk1T+y3O12U11dzdF4PJ5Ena+Copz4w0VVtS913vEgy1I8PEBRvzD7kYJATVOID5fsTVl33fY6Lp3UA4fVRCB8+CVl/toDXDmlFwVZDvIy7dQ0tl5sz5jck09XlHOgzs/v7p3En15ZR0mBmz7dMthV0Yyi6shS3EATi56YFoosiwiCgKJorVKWt+AQQ9QdSg/oHDAJ37rPWoUQAcQaDxKp3odj0NkENs0HQJBMmAt6IogStt4jiNYfQJAk/Bvj6c9Fu5u0SdcRxoISU9F1lUNJBYEvvpd4Uq7jr99etOfv8FRxpt3PF3Gy/oaWSGOSAeYwOo2f/RvnoLOSjDAAWsiHd/1nDOvTk1Vb4+7bXXKdZLqt1DQGqWkKUpBuTXq2CEL8GaXreqLf8f/KoIBz5EX4Ns6Pu3XrGsGdqwnuXA2ijPnqX7HikxpGDijC2X0kgvkNlKZqPCtnJfXLPPpqNMnKhRO6s7fSQ0zV2FnRzNuL4557I/rmYrdICIKA0ypy95WDee69zTT7kp8PJfku6ptDCQPMkTz73mZ63zsREybirubxmxRFAUmKh3KqxxGSdSbTmcbiVx0nTb4IoYhKpsva6f6uLruZin2NKe/vZD/jawP16Oi4Te5T9j1kW7PYWFdGMBLBLKXW5zkT57avQssz+HT+Xqx6IMkAcyTNi98kc+qN1FVuJ33CVSgmN2pUTVofyrJIbVOQcEylx5DpRLcvw5zXDVuPIfi3LkOPHjYqRg5sI3IgnnTELLv53zIrtU0hvn/9cJp8AXoWpdGrKJ3oUXND8tpOI6rD63N3pjS0/OejrQzrnYPpDNfnPZ1/cwYGJ4N2NcI0NDRQWlraZrkkSYTDqdO0fRHhcJg777wTn8/Ha6+9lhRW1KNHXCB1z549if/f8tlkMlFcXJyot2zZssROQAt79+6lT58+X6pfnRFdEPBHFFauryQW0xjVL58MlxnxGJaYUEQhzWGhvLrtVHl7q7z8+NZRrCqr5Z35h/Vddld6GNYzi0fvGMtf39zA5t0NADisMped1YtIVGV7eVPiOj/+5miWbTqILItcc04fdpQ3MaR3DnazeNxCwWZRxaz6CW9fhxL0YC0ZjJhWQFC3tjYiRYOovniaQkthLxrn/bfNdgNbF5M57VugRpHduViL+6KGfJizighXbEUJesmadht6NIxv80Kyz7+d0P6NqJ46bD2GgzOHoGaEIRicnsiySHhn26GZ0dr9yGm5KcuUPWsY2mMQTT43d08vxtq8B6F5J/qIEkymEGazk8gh3Si7GIFAPeHdaxBMVpy9RhIzuYhoh1+kInI6udf9jMYPn064jMvpeaRd8j3CMZW7e1dg2lyOWjKcrBsew/PhX4jV7gNAcmZgmnQz724Mc+FklQmDC5EPGUVmntuHlVuqMZkkLp7QnboGHzmWCErlJvoHmvjzzH7sD7v4wzt78AWjDO+TyzcvGcBDzyxOed/eQJRgWCHNGp9eRVEgours3N/M7koP3QtclHbNwCILx6WPY9C5qaqP76pnp6UWZT6VpDvNeAJRYoqKSW5fMfu6UHyeT7O4v6Bm+5Fty0JHpypwkBJ311PWD4OOQxCEVgLsR6IGmhHMNtLPup6mnGEsWLiHIb1zKMi0Iws6ZiGGOeqluGYVWjSEc8AkXDc+ciiUNYaj90hM7iyaFr0BerLBQNq/mlvP/waKZOOFWVsoKUzj4VtGIek6Whu2hZb5oKYx2KanSzCs4AvFyOxEQt8GBgYnn3Y1whQUFBxT4Hbt2rV07XriE6WiKDzwwAPs2bOHl19+mby8ZPXx4uJiSkpKmDNnDueee27i+EcffcS4ceMwm+OxlpMnT+aZZ55h2bJljB8/HogbYMrKyrj99ttPuF+dEU0QmLOinDfn7Uwce33uTsYOzOf2Swa0aYgxySKCQMJtPxV2q4nVZTUEwwo3nN+Xlz+O7w44rPHUrRYR7rx8ENUNQVRVR9N15q4qT8o2EgzF+OmzyxKf3/58F9eeV0peug29rVnsKMyiilC5gYMfHBY58y57B3NeCdlXPIhPTY47FY7YIdNjUUSLDS2cLIjbgmh1EdItuM+6mcDq9wlsXYY5txtVsx5Oqmcp7E3OJd/h4P8eQfXFDUyepW9jLRlMxgV341c73wLdwOCL0PX4GGgTUWolbJ4ostgwm8383/QcIrMeIXbEbqJqd5N+w6PEpEzsQojmj/9BaM+6RHnzgv+RPvk6rP2nEj5kiIlpAmFnN8qH30OR+1AKUJsD/5a5RNZ+CEAUYNlbmHuPRZ52P7FAADSNuojE/xZW4w000bt7M79/eW1SX7912SCG9snh9U+2cE2/GN45fzliwf0uOVlFPHvfj2lUbFhkkVpPGF+w7TBJ+ZDgoCgKeMIKP/n70qT6dqvMr+4cT5bT1Om8JwxOjMr6ALIkJFJCdyZa+lTvCVOQ1b7u9HWhBiRBwmk6dW772bZMBAQq/YYR5uuDjmg5traIlFHAP5bpLH0nnrTjrc930b3Qza++OQRl06fUL34dIK79snIW/k3zE+d6AEe/8WSddwsNn/wrqV3RbKO7WM3cchv7q30M7ZODRRKJRlOHnoqiQHNI4Zm3NvDNiwccs88mQ7TWwOCMp11H+cUXX8yrr77KunWHF9ctC/bXX3+d2bNnc9lll51wu48++iiff/45d911F36/n/Xr1yf+taSfvvfee5k1axZPPvkkK1as4Oc//zkbN27k7rvvTrQzbNgwJk6cyMMPP8zs2bOZN28e9913H6WlpUybNu2r3XwnQBCg3htOMsC0sHxzNZv3NrapTm6RRQ7WBxgzID9luSgK5GXaGdQrh09X7Kcg24HbYcYsixTnudB1HV0Hiyzx5GvreOI/q/jtS6uTDDDd8l3sPeht1farn26nwRumjXe71n3VAtR/cJTKPBCt2Ydv1QeYjzI1KrINa7f4BBjYthznwMlttu0cei6KoqF5qvGuno1zwEQa5/2nVb1I1U68a+ZgyUtOUx3et5HwzhWdKmuGgcHxoqoaluL+0EbKWUfpWIK716UsMw25gMIME7FP/pzkzg2gBb3UvfsnbEKEyO7VSQaYFpoXvoIUbkw6JgnweZmP+/61k5+8th8CDQkDzJFEdy5Hrd7J7z6o4v5/7+LR/21nZ4WH88d248Ml+1rV9waj/PWN9Vw6Movwx0+22vGMNVTiX/IqaWYdQdfJdFmwW1PvYfTqko7NHPc6iOnwu/+uaWWwCYYVHv/PKiJG5vnTnso6P9lptkS2u85EmjPuhVnv+XIexydCQ6iRNIu7TaNsRyCLMhnWdCr9qTMaGpx56DpIafkI5tQbXZaiUj7Z2MzSzbVJx6sbgsSaamg+ZICRnBlIzvQkA0wLga1LESRTK69PR9+xNM3+G6O6yljMEmcP79KmAQYgpsFvXlrN9HElNPsjpDlTG2675DrbnF8MDAzOHNp1lN91111s2LCBG2+8kR49eiAIAo8//jgej4fq6mrOOussbrnllhNud8mSJQA88cQTrcrmzp1Lly5duPjiiwmFQjz33HM8++yzdO/enb/+9a8MGzYsqf6f//xnHn/8cX72s5+hKAoTJ07kJz/5CbJ8+j8AJVnkoxQvHC28u2A3A0oySeWkLAJjBuQxvG8uuys9SdouggC3XzqQj5fvpyjHQZ9uGSxaX8mYAfmMGZCPRRISYUQ2k8jDt4zmZ88uI3ZE7KfLbuK2Swfy5Ovxl6+sNCsXju+eMOB4AlHysxyEYwqhsAoCWM0SVllEiR1+c5FlkdDO9RxtgGnBv/4zckdcjCI50Q4JgEU0M5nTvkXNK48QrijDPerChHDbkaSNuxzVloVJ1PCt/hBLUR9C+9sOzfBvWkDWtNsI7orvtpiyu5A+/gpM2V0QonXogohgsqDFYiCIxCQ7EbV9XcQNDL4qUdFO9sXfaWXolNPzsI67Gv+K91qdYy8dg71bf3Lqagj5W+uBAcTqyhGjXryrWhtRWvCv/xTbpJuQoj6IhRFMZr5zeT8erPEzuEca0ra5tOmPsuVjfn3jvTQ2+YlJFjSLG1kSKch2kJVmRdd1Jg4pQhAEcjNtLFh7ALtnH0Et/nyRM/JJGzEdOS2uKxZrqsFMhAg2zJLAj24axS+eX5GUQcntMHPfNUNRNB2zJBIKKxyoTe1lV9cUwh+OkW4stk9rDtT5O2UoEoDLZkIUBOqb218oty7UQJr5GF5zHUS2NZMDvqpT3Q2DDiQs2Mm94gfUvP5EUipoOT2P9Iu+w+DGIM/fMwDJZqfKL1PbHKa63ktsy2EdGUfpaPxbUoeYQlxw3tF3LJ4V7wPgGjKVWNNBtLAf866F3H/NJWS5LZhjPvRYCEEyoZqcqMgEYxqRmIokiQzqmYXbYeblOdv49hVD+OP/1hA9Ym3ssJn43vXDMQlwtBO6IMTlBcIxDUXVsJplLBKGN6WBwWlKu67+zGYz//znP3n//ff5+OOP0TSNaDRKaWkpDzzwADNmzPhSuybz5s07rnpXX301V1999THruFwuHnvsMR577LET7kdnR9PAE4i2We4PRePiZCn+BLquY5NFJFngpgv74Q/G2FHRhNthYVDPLD5fc4Dlmw9y/thu2Mwy/lCMWy8ZgFkkScdF13X6dsvkqe+fzeqtNeyv9tG3WyYDemTy5OvrqW8O07NLWiKcaffsePrw6WO7YZIl/v7ORg4eirnvXZzObZcOJDfdBmr8RUkQBNRAc5v3qCtRKqo9LN9XzwVjuyHqOrquE5DSyb3x18SqdhDct4nMqTeiKzEC25YjmK04+k9CsaQT1kxYBQU16EU0W9HCbWcq0iLBhFusvc8o3MOno6sx6j54KhGzbM7tRubZN9C09G0kZzrpU27Cr9m/UCjZwOBUEdUk5KIhWGc+gbZ3JVKoCaVgEI2mfH767BaunjCZkVedjbR/JWga9n4TwJlNSLPiMusc6/VPV2Jo4bZ1p+zdBxPb8hkNS95EiwRBlHD0n8Bf7rqOap8OC9s+Vwv5cYhRfJ/9DrPJijzpFv63TmH5tkamj+3GmAEF/OpfywlGVB66eRS3T++OObCOIGDtNpC0kRfQuOBVYvWHx66luB+S3YqqQnG2nae+fzartlZTUeOntFsGmW4rv3lpNVX1fob1yeW2SweQlWaloQ1PhEhUBcMIc9qi6TpV9UHGDcj74sqnAFEUcDvM1HWAJ0x9qIE8R2p9qI4ky5bJutpNrbT+DM5crEKEcM1+8q/5UVyrz9uArWQgli59afjsRfRda/DrGqLdTebYmewLFDKwew76hsOe2IK57bB0ADXsx1LYC9fw87H3GELk4G6aFrwGgBj2Mry7g/DOJdQt+h9a0AuCiK3XCMwTb+Tn/y6jpjGEJApMGFJIXqadqvoA7y/azY9uHsXOimZqGoMU57koznOiqBoKAuIRmx6iKBBSdP7xzkbW74yL3We6rdx+6QBKi9MRjEWkgcFpR7uv/gRBYMaMGcyYMaO9L2VwFKIAYwbks+HQA/tohvbJxSSL6G2kiNM0HUmAWYv30OiN0DXfRXVDkPcW7EpY6Pt2y2TllmouO6snVllATaF0LssidpPI5MEFiEML4/ow6ORm2Ni6D266sD9PvLiKUItIp1Vm9IB8Hn1+eZJw2c6KZn7x/HJ+8a1xZDkt6FpcWd1WMgTP0rdT3oM5vwdba8K89fleQhGFq8/uha5paJqOHztS0TAsXUcQ1nRUVcc8oTe6Dv6YCoduRRFM2HqPwrdqFs7+4/G1ocJv6dIX0Z6GaLHjGnYeALVv/wFdPbxXH63dT83bvyfvqgepfv0xlMZqMq/4EQG9c+6kGhgA6KKJj7YE2XWgK3ZrD8o3+ahp3ArAP2bvJXZxf84ddz2aphGKqYeieXQkZ2Y8lElv/VwQTBYEmwtryWCCW5e2Krf3GkGssZqmBf87fFBTCWxeiOKpI3/GDwj3GUW4fEvKPlu79se7cT6Z59xM3ftPonzwW66/8lHW7mrmvYV78AZinDW8mNnL9pFml8g8sBZzXhcEyUT6uMupfuNxUA/vqkZr91P98s8puPX3+HCjH9K9mjqsiJrmCH9+bR0VNYeNQmu311LxTx+3XTqQ3760ulX/JFEg3WmIdp/ONHjCRGJqp/WEAUhzmNrdE0bXdRrCTfTO6Nmu1zkecmxZhNUwjeFmsmwZp7o7Bu2MTYrSNOdvhPduAOL6fJIjDUE2U/P648QaKhN1taCXyLznGH7u3byyOsqt/UYT2hXXB4se3IO1uD+Rql2pr9NtEJH6AyhN1dS+Nz8po6Zz6LlE92/A8/HfD5+ga4R2rkJprOKOaXfzq1e3o2o6C9dV0uSNcN20Ul6YVcYvnl9Bry7pZLgtzF9TQXVDkB/cOIIVm6u5ZHy3hHh7VIOfPruU+ubDBtVGb5jf/ncNj9w+lpJcxxmb0trA4EzFEKo4g1EUjRF9c8l0t14gWswSl5/Vs00DTAuSAN+8eAB1TUFWldWwZU9DwgDTNd8Vd4/UYeyAAtBBEAVkk4QkiwiSmIiT1xDQgVhMQ1U1dFXnqqm9GVGay9pttQkDDMDZw7swZ9m+lBNKMKywYks1mgCIIqIkILjzMOcf1mIx53XHPeJ8XEPOQZ54E28vi6ch/3j5fsJKsgiDqupEo2oipXU0qhKLHZ1aUMdeOvbQi6SIKae49RcliGSefR2i1UHGlBuJ1OzHv2VRkgGmBV2JEtixEnvvEURr96EHGo5b/8bA4FSgKhrTx3Znb5WHVWU1SeGJboeZMQMKCIdjRKMqug5mGSySimay4x5xQco20ydeQ1R2kTbh6sNi2YKIrddw3CMvIG38FXhWpw5VilRshWAjtl6jkBzprcoFkxXngIn41n6CIIikjbsc5+CzEbbM4cJRcZ2rxRsqOXdkF66c2IVsU5jwyndRfQ24x12Of/OCJANMC7oSxb/hM0zy4QEbimqtDDAt1DWFUDWN/Ew7Ywbkc/HE7owbVIAsiVw6uScW2Rj4pzMH6uI75znpxxYGPZW4HZZ294TxxfzEtFjnCEeyZQFQ6TdCkr4OSFF/wgADcX2+8IFt6KqSZIA5EmXl61w5JotARm8kV/z3Etq3CVv3QYi21r9h0WLHNfx8vMveJbR3Q5IBRk7LwZRZiPfIzYIjiDVUUmjx4zoi09Gm3fX0K8nEekg7bNeBZlaVxT3FL5nUg8/XVPD+oj2ElfgaWJIE9lR5kgwwR/LCh2XEDPuLgcFpx0n1hLnppptO+BxBEHjxxRdPZjcMjsAiwq/vGs+rn25n8YYqNF1naO9cvnlxPxwm8Qst55qmk+2y8PjdE/nXB1vYXt6ExSQxeVgR4wcXsnhDJY/fPQFZFli7swG7XSYYUli4/gAuu5krp/Rm0aY9LN14EIfNxMUTSsjPtCPqOg6zxG0zBvL0G4cn0IIsB+eN7sYv/7WizT7tOtCMJ1DAv97fwtDSHCYNKST78h/i3zgXW0EPovUHCO3dgGi2IsbCXDe5kKc+2IOq6fhDMSxfIotFUHCSd+Ov8Cx7h6ypNxHYtjxuZFGiWAr7kDnlBoJ7NhCt3oNz8NlYu/an9p1FbbYXObgLe/fBBIFYzV7EnsWoX2AQMzA4ldhMAr+5ZyL/+Wgrq7fVIAgCYwcWcOP5pVjleISgWVQwR5rwLZ+N0lyNuUtfHCMuQHPlEFr1Lqq/GTkth/TJ16IVDOTVeXtA07jq2l+i7liIo+dwgjtXE63dj67EyLnobvybFxEoax2rH6mvZE51DjOufwTvwlcJ7FwFmoatxxDSRl9E4+cvg6YQqStHi4bQwn6c/SYw1ZnFrqoAt03Nx7LjA6b5d+NUryIQC9P4+csU3PgodbOebvN7iFRsxTIsQoz4c0TV9ZQGmBaCoRg/umUUc5btY1+Vl8JsB0/cM4EMlwWMMX9ac6DWj9Us4bR13lSy6U4ze6o87XqNhlBc98ltPnXpqVtwmhxYJQuV/moG5xw7A43B6Y0gCCjNNa2Oy+l5iTDSVKjeeopc0Fx9gIwbHqFp8RsEypbS8OkL5F31f3hWfkRwx0oAbD2Hkj76UlRVIe/qH9G85K2496Uk4xgwibTxV+EPRlB9DW13tH4vuZk5+IKHx2FlnZ/Hvj2eOcv388mKcnLSbVw6uQcxRWPpxriwdDAcQ7abCUZU1u9I7dEOsO+gF03XU+o7GhgYdF5OqhFG/xIxiV/mHIPjpyVV9C0X9uP6aaXogEkSEHX9+F0XdZ28NAv/d8NwFC0eZy1LAoqiceO0UlRN56f/WMaVU3vzwaI9bN7dgCyJ/PS2MfzqXyuoO8IVevnmg1wwrhtXnt0LUYsbYnIz7bCnAZtF5q4rB7N+Zy1ZaVYavamt/pluG7qus3lPA5v3NPDO/N08cfcECgZPoeaVR5Mn5Z2rKe07kbsuPJdnZu3BenSqpONEVXVU0UzayOkonnqcg6fgHHQWkt1NqLyM2vf/guqLZ3IJ7VlP5jk3I7syidWVp2xPdmaihuK7qJI7B9UYBwadHE3VcZpFvn35QGJq/OXGJAkIejyUzyRqCJUbOfjBk4lzwuVl+FbOwnnNL2k8qxSrBCanjUrsPPTbJaiHnkG7qjJ46MIx1Lzxq4T3WLi8DN/6uWRPvwMt6CW0b2NSf/zYKe2ayd5aDzmuDHJnPACCQKRyO7Xv/iUR3y/ZnAS3LSfWWEVwxyocw87nuxedQ8PLDxM75O2SNiYCCHFPly1LkJ2ZxOoPpPweJHcWumhKhCuKgoDLbkqZsrpnURrZGXa+/+eFiXvdvKeBz1ZX8ONbRtOzwJlwNzc4/ThQFyAn3daptUfSHGYCYYVQRMFmaZ8I9IZDWczcZme7tH8iCIJAti3L8IT5GqDrOpK9teFPC/qQnG2HogkmC7HmatILimj8/L+IFju5M+4HQSC0dzOWwl5kTLqaWGMV4fKtNK/4AHN2Ib5NC3APPRf3yAvi+n+Zxdzz1zV899ISHCZLkodMEs4cfEfpM1pMEj/++1K+c/VQJg/rgtUsMXvpPuauPmw8sllNzF1TwaqyWkb1b1t3Ks1pRkCgrQQVBgYGnZOTOiO/9NJLJ7M5g5OIrmqYWtaJmn7Cj2pN0xEBswCgg6pjEuLxbLNXVaDpOoqisXl3fDdgwpBC5q85kGSAaWH2sv2cO6orGXYTSkzlovElzFtdwZQRXfhoyV7Kq31cfnZPdlY0p+zL5GFFrNt+eFcgEIqxZEMF00xrjtoViU9KsW2LGXjp2QzpnRNPHfslDB6CIICvmuZVs5DduXhXf4hjwESsRaU0fPJ8q/qe5e+Sc/F3CO1Zn7I958DJ1M/+B4LFjpzVhbARy2twGqDr8f9J9Syx6EGqP/rb4cqHtGB0JUr4k6do6v8t/vTuLr573XD+/cGqhFEC4NKR2fjm/DVF+J5Ow9z/kHvpvfHMZLoGgohkd1GvOHlt4Q6mj+5CGmZ87/yhVX8F2Ywpq4hY4+EXssC6j3H2Ho4gHJY9DO8vw9ZrGKFdawlsXUzm1JtaGX1acI+6lKB6+KXbKgvMmNyT/87Z1qrupZN78tfX1yfuVTyU8ULTdP786lp+f++kw9+lwWlHeY2PomzHqe7GMTkyTXVxbvsYSRpDTVgkCxa5c2gcZdsyOWAYYb4eODKRXFmHPVEEEcVTi5yWg2Cyosdab+Y5B04muGst9h7DCG6Pe137N87nSCOGFvIRrd5LaN9Gci69j8bP/4sW9NJ8hP6gc8aPUFSd2esauX7AVCLrZ7e6lmCyEnIWUdtUlnj+Z7qtKKpOJKry1zc2cP/MYfz2pdXccdnAhBFmWJ9sFEXjlU92AHDD9L5IopA0b7Zw+Vm9sMgCqmKsIw0MTic6VVoGj8fDvffey49+9CP69+9/qrtzRiOKAmFVx+OP4rDLgIAvEMVmkZElEUXVsFtkzCJtesy0qLXPXVXO2IEFLN10MFE2sl8uf319Q8rzANbuqGXS0CL8wRgxReOPD0xGUTQe/tsSFFUnFFGYPq6EOcv2Jc6RJYFbLxlIhtPCuwt2J7XXM0sisGQ+QFxTYsg56LoWf9FSFaKNO/nZDdNQ/XVo0RCiPQ3F5ERSwhDxoStRREcGUdFOVD0slWSRVExaCD3kRbI6SB9/JVo0hKPPSASLg/o5/0h5f2rAQ8xTS8bkmTQteuOwMKkgkjHpGiJVOwCdvGt/SkhwGBsYBp0OQRSIqDrN/giyKOJ2mDCLIpqWQmRXALXpIKLVTtq4yzFlFqBHw4gWG6HyrXhWfkBJVnxc2Swyzf7kHcNeOTLBFG7lAHosjGCxUXhLPP2oFgkiubLwN4qcP0RheIGK1HUK3qYDhHavOdwns5Wci+7Bs+zdVm2G9qzH0qWU8L5NAHjXfUreld9H9TURrdlLrLGKtLEz8Kz4IHnsnnMzqiMnSWdYUTTOHt6FPZWepGegxSxRkGUnFFG4/vxSenVJJxxVsZol9lZ5efvznfiCMTIdnTeUxaBtIjGV2uYQQ3tnn+quHJO0Q+G39c2hdjPCNIQbcXcCPZgWsm1ZbKjbTESNYpFOPPzY4PRAECAoOMiZ+VNiFZuR03LQYxFEsxUlFCD/2h9T/frj6JHDGmbWbgOx9xhKYMdKwlU7ybn0PkRTPNGDIMv4Ny4gsH05ga1LyZxyIxlnXYsWCZE97TZ0TcO7+iPCFXFRerVsLqNKz+HTNQe54OazyWiqJLL/sPFesNhxXfpDVtQK/Pz2sYQiCg6biZJMkYi3iadvLkYzOTC7JaxmCYsp/krWNd/Fd64ZxrKNh+eT9xft5v6Zw3j6zQ1EjtAtnDikkIlDClMmxTAwMOjcdCojTCwWY+XKlXg87Ru//HVHFwRWbq/jhVll3HvNUN5ZUMnyzYcf9t3yXdx66UD++uZ6vn35YLJc5lYu86IkUOOJUFXnR1V1RFFI0jQRBAE1xcsaQFGOk4E9svn5s8sTAp+iANPGduPuq4bw5Gvr+fesMi6a0J2f3z6Wylo/sizSq0saZpPIO/N34Q8l75iLAqAquEdegOzOpvb9JxOuoaLVSfb0OwhuX07jx88BYCnqQ8aka6ib9VdUf/OhRmTSxl+BbdC5hFQzNilKZOMnNKyZQ96M+2n4/L+EK8oS18y/4dGU4p0t+DctJGfG/dh6jyRWWw6ShDm3BMXXiK7p2IdOJyQ4DFkIg06HLgis2FrLvz/YQvTQ4s5lN/H960fQLdeRlIY+gSCQc8l9NM77D9Ha/YnD9t4jybvsu9QcOufoENSrpvZOErpNiapS/+HTR7QrkDNkCt16jaD2xZ+DJJEx8WrSxlyM4qlDsrtA02he9i6Rqp2t709VEITDxlY9Fqb23T+TcdZ1yNndaKiqwFFcQt6As9EaKhBEETmnGxHBTlhrHXkvahq3Xtyfmef1YW+VF5fdRFGOk0A4xg+/MZK35+/ifx9vT9TvW5LB/9040rC9nsZU1QfQdcjtxKK8AA5rfGOlPcV5G8NNuDpBKFIL2bYsdKDKX033tK6nujsG7YAgxDMGPfv2Bu48rxB1/WdEa/Ylym29R+Gedid51/wYtakKNeTDlFlArL6S2vf+QvrEqzBlFVE/+x/xlNKAIJlIG38Z6VmF+DbNR0rL5uD/fpHwphEtdjLPvRnJkUZg23LQVCRRiGfbDKkUj5hO+ugLiDUeRLK5EG0uhPQM9m+s5+/vbMFmkfn1Tf0IznmB6BFZ/aQu/fjzt+6hImDmt9+ZSIbTglWC6BGJJNZtryMW0/j+DSPwBiIEwwpDemfjsMiIbay1DQwMOjdGdqSvGYIgUN0U4pm3NjJ2UAGrt9UkGWAA9lf7+PtbG7lgXHd+8o9lRFK4OIYVnZ89u4w12+Oxqpt21SfFrG7e3cCo/vkp+3Dj9L48/uKqpAwrmg5zlu2nuj7I8NJcAD5cspdfPL+c9xbt5vXPdtDsi1DTEGLNttpWbe6pV3EMnoq1uD+N815Kis3Vwn5q3/sL5sx8EON2x4yJV1Pz1u8OG2AANAXP4tfRKsuwWCTUik14lrxJ2sgLaF7+XpIBBiCwbTmOvuPa+KbBOXASYclNwJSLUjyKaP4wvKQTTutJOL0nft0wwBh0PkRRoLIhyD/e2ZQwwAD4gjF++a8VBKOtf7S6DqaMfBo+/VeSAQYguHM1ge0rwBwP29A0HYc1Pg5zM2x0yXUSUGUkZ3rqDknxusnt6vg3zCNSsRV7n1GgKjQteIXqV39NrKESLRLCt2l+SgMMgK37kFZlWjhA49z/UBUy84vPRe55fhfrqiX04uE4+40jJKURTWGASXxvuo7LLDG0RyY98lyYBXDZzQmdrCPZtq+J1+fuIN1p7NKfrlTU+hEEyE7r3EYYQRBId5rbNU11Q7ipU+jBtJBlzUBAMEKSzmBUBH7/8lrOGZSO8smfkgwwAKGdq/As/B+hmE7D3Bfxrp5Dzdt/oPHz/6KrCpbCXtS+86eEAQZAV2M0L3oDU2YBrmHT8Cx/PymcSYsEqf/oH7iGnIMgmxH6TGbd7mZGlGZT7F1Hw9u/pebtP+BdPYeGuS9S88YT1L78UyaX2gGYObkI2+qXkgwwAJEDW/HMeYYuaQLZTjMSOv6wSklBst7N5j0NPPbCSl6avZUdFU04rTKioSdoYHDaYhhhvmbogsBrn8VjTMcMyGfB2tQp/A42BLBbZDRdp2xvI2azjIpATAdJFtm4u55IVGX5poNMGlpEsy9Cboadrnlxl+QFaw9wwbiSxMtWC5luK5GYivcokbIWPly6l6kjD6eA1vV4mtc+XTPwBqLkZ9lbnStLIsP6F+IeeSHedZ+0ceMaga1Lsfcajjm/B5GDu9sUUWte9BrmmBfP4tcBsBT2Irx/c6t6vjWzsZeORk5vLZhmyirC1mMoUtSLSVBQVS0R1qVp+peRpTEw6BBUHV79dHvqMk3ns9UVyKbWxggl6GszJai/bAmiFvdeK6/xcucVgwGYOqorHy7ZiygIZJ59PXEdp2Qyz7oO34Z5Kdv1rp+Ls/+Ewwc0Bc+qDxEtdtwjpiNY7K3OMfcahZxdTMaUG8g675tYux7OoGKecD1vLYun4M7PdtCrS1qrrGUWs4hNCGETQljNrfsbH9/xAR5TNNa1kdWibG8j4aiKLIuJZyuiYKSrP02oqPGT6bJikjv/MirNYabO0z5GGF3XaQw34+pE4UiyKJNpzaDSf/CLKxuclgTCCnsPeuierrUpoh7ePB/B4kAqHoziqcWS153Mc24i76ofEtq7EbTUnsyeNXNwlI4muGNV60Jdw1+2GNfICzAX9qbZF2HGqCxi6z+Kl6sKiqcW7VDiBS3oJS1aR6bbyogSO9H9qbXGohVlSNH4OaIoUFHrZ0d5E5OGFrW+r4gaT25hrCMNDE5rOlU4kkH7E1M1DtYHgLiBQzmGK0aDN0y600xulp2lW6p5b+EefMEog3pmc8mkHgzqmc2m3fX87a2NPHDdMDburOeblwxgR3kTi9ZX8v7C3fzizvF8vqaCVWU12K0yV5/Tm+qGYJvXDIRidMlzMm1MNzbsrMNlN3Pu6GJKCtzUNoYQBIGHbx7FW5/votkfYUD3LK6Y0hOHWULRFZTG6rbvvbEac04x6BqxprYXZ0pTNQJ6QuRXV1IbjABq3/0z+df9BP+mhQTKloAg4Bw4CUe/CTR88jyRqp1Yi/uTNnEmEXMGMa3zL9gNvt4omk7VoWdEKvYd9LTSiRJFkYinvu1GNRVJi/L964fTr1sGggC//c5Emv0RZi3agxLyE9y9nryrH8S3/jOiteXI6bm4h09DkE00zkst+q5HQyAeNaZUBf2QZ0zeFd8nsHUpoX2bES125JFX4MjrEvds27Ua0WTBOXAy6ROvJqzAwn06FfX1XH9+KWcP74KMTothSBQFnFIQ76pPCZctAF3DUjqBtFEXEhZdKCli8gOh1hmTksrDMbbvb+Ldhbvx+CMM6pnNteeV4rJKqUO+DDoN+2t95KRbT3U3jos0h5nqxrbn3a9CIBYkpsU6VTgSHBLn9RmeMGcqnkAUu9UEwea2K+kaHo+Xqq4XMXT8ZUT3bcC79lNs3Qej+hvbPE1pqibWcJAk8a8jiDVWIw25nD+/tZOHbh5FnuwjHG57zqS5igx3DpIa5ljOz1okCPaMQ0YYH69/toM7LhvEgB5ZzF1VjjcQpV9JJlNHFmO3yEZ2WQOD0xzDCPM1wyQJFOe5qGsOIQhglsWkkIMjyU6zceGEHry3cDcrtxwWzVyysYoVW6p56OZRHKj1cbAhwC/+uZwR/fJwOcx0zXdy7zVDKdvbyN6qZs4dWUx2ug2TJFKU40Q9RkpWt8PM/oM+IjGFmy7sR0mBm4276vn725to8IT4/b2T6FPk5oc3DEfVdcySiKZq6JqOIEuYsotQvKl3nk05xSjeehRPHY6iPm1/R9lF6IKIKbOQWGMVoqntjA+xunJURUUeegnZA89GRCdUsZUDf783USe4YyXBXWvIv/GXqPai408NbmBwCpAlgeI8J82+1J5ivbukI4qgHQ5XR9M0bOm5bTcqyWRlZ+DIdcc9S3TIcZnJdFspznOiihYC25YT3LMe54BJuIv7owaaaFr4GukTrmyzWdHqQD9Kl0mQ4yE+0dr9VL/2GI4+o3EPn4bWdQTRaIz6l3+cEGrUgOYlb2Hes4HQhG+jSDEmDytiR3kTZw8rStJsMSs+6l59NCkDW3DNh0S2LyX3xl/hp3WWHIfNhCC0nZBN0+Cvbx4WMF+66SAry6p54p6JZDvNxrOik6LpOgdq/Yzp13ba2M5EmtPC5r2N7fLS1hhpAuhUwrwAObYsVtWsQ9M1RMHY/DjTSHda4kZuR2bblUSZmGAmHI3SOP91Yvviz9qYKwNLUR8ghacLcU9mLdq20VLI7saLn1eyZU8jv3h+Ob+/fRCS3Z0U2pREZhcaPB5U+dhGW8kan0NUVack342mwz/e2URhtoNJQ4uwWWX2VXn5y2vreOzb44/ZloGBQefHmJnOcERRQJLEhIu7oMO15/WhpMDN5t31TB2VWrSua54LRdXoXuhmVdnhl468TDtjB+XTNd/Jm/N2cv64EiCu6bKqrIYXPyzDF4jxyifb2VfloUuum3U76qhtCjFvTQXeQBRBFMh0p56MZkzuydxV5SxYW8nHK/azaEMV/3hnE/sOerlySi9sJhFN0xF0HRnQjhQDVqO4h09r44uQcQ+ZSnD3OqK1+zHndksZqgCQPvk6wqKLtMnXARCu2Iqt53AQREzZxZiyiuLpdwFbz+FosgNFhYDuQIuGafzw6daNaiqNnzyHhdQvtgYGnQVRh+un9U1ZZpJFzh5RjBJLYbi1p2PO7ZbyPPugc9BM8Zc04dDDSNdBRueG8/syr8yDpd8k9EgQ39qPaZz3HzwrPiDWUIlotmHK6YY5txuSK3nB7Ro2Df/mRUnHnIOnENi2LP5BUwlsW0agupwdNRG0de8nZcpoIXpwF9ZAJR8u2cN/52xj7MACrEeFmQR2rU0ywLSg+pvwbpyPxdJ6OrWZJMYOTK2NNbR3Nht3t/YeUlSdf767mWPYqg1OMfXNIcJRlZxOLsrbQrrTTFTR8AaP7Zn1ZWgKNwPgMnU2T5hsImqU+lDDF1c26DQIAkiSiCgeOy7TbpEY3jeXKr+EKa9HyjrWAWezYJufPulKwgADEC7fiq3bgITB/mjcIy/ElFmAKbs4sdZLIEpopVNYXhbf7FNUnX/Pq8Q8/NKUbUmuTIKWXCRRYPmuAJaeI1PWs3QfimqKG2F0Xacox5lYJ1fVB3jtsx28MKuM+WsPcOmknthOgzBIAwODY2N4wpyhiJJARNHZX+mlpilIz8I0cjJsCMQNM1NGdEGWRAb3ziamaHy+piKx69q3JIPvXDWUjbvq8Qai/Py2sew80MSwPrnUNAapaQxywdgSMlxWoorKq5/E9SMsZolbL+7PgO5Z5GTY8foj2C0y2Rl2ZFlk0pBCIjGV1z/dwX0zh/LCrDL2HYzvHMiSyPRx3RjeN5eXZm9lRN9cLprQnd++tBpZErl0Ug8mDi5M6fIP8Rc7pb6C0M5VZE2/g6b5r6CF4/G1kiuTrHNuRotFEtv3TQtfJ/+qB6n76G8oTfEQJsFkJf2s6xByexOLqdjyS8k452Y8S98mf+bDpI+bEU9NKIhY8rsTra/C3nskkdrdCM3V2At6gigi2pyJeOAjiVbvRVLDIBhinAadF13XyU2z8t1rh/Hsu5sIhOOeJtnpVr533QhsspAyVCaiW8i64oc0znqKyIFt8YOCiH3Q2WSMm0G0ZjtCYxXWnK5I6QUEsaMBORl2pg4rIN15BX5UAluXJtzA7aWjMWUVkXXuzYQPbEd2piHZ02ha8g7Wrv0wF/TEs+ydxLVcQ87B3ms4NW/8JnHM2nc8jnFXMVANUzdvTat+t2Dat4KBPSZTlOticM+spGdN2Oclsm1xm+dGdyzDPuhc4CivOU3j1osHICCwbPPBhEfMqH55XH9+Xx56JnWb28qbiKo6Kew6Bp2A8pr48z0vo3MYYTRPNcqBLeixEGJ6IXLxIATpcOrzNEf8d1nXHCIr7eSGUDWGm5EFCdsX7PJ3NDm2LAAqfFXk2nNOcW8MvghBAAWBJl+E7eVNZLqt9CxKwyoJKcJfBRRN58LxJeyv9lJ68XcJfPK3w8kTBBHHwLOwj7+S8LwqhAPrj7qaTtPiN8mdcT8Nn76Q8J4WLHZyL70fyZVBpGonrmHnYs4qJLh7Pd5VHyI503Gdfw9lXjOyJNCSvKi6IYSt30TMagDvyg8SWTPNud1Iv+S7zN8ZY+a5fch0W4larsMqCoR3roZDvpbWnsPJmHYHfvXwmDWL8MtvjeN3L69JWifPmNyDCYPz21wLGxgYnD60mxEmFouxe/du0tPTyc9PvRN4NKIoUlhYiNXauSbz0w1RFKjzRnnkuWWJFyhRgJ/eNpZ35+9iw67Du69mWeTX3x7PlVN6EQzHMJskDtYHeOiZxfgO7Zr1Lk7nxul9+cnflxKOHo5BKClw873rhvPM/00hGFFwOUxoKvzi+RVkp9s4f2w3fvDkwqRwp75dM7jpon48/cYGLpnUg4JsB6qqI0kCyzcdxCyLPP1/U7DIEqFojF/dOR6HzYTVJKIfM5WQjiCb8W/8HKW5huzpdyBIMggCWjhA87J3yL7w2+Rd/SN0NYYgmcFiI2fmz9GjAVAVBKuLiGgnpMZ3YEKaGVOfsynoMxrf6o/wrvow6YoZk2fi37KI5oWvJo6ZcorJnXE/NW/9IUlVH4jvqBhu0QanAYKuM6RnJn+8fzK+UAxJEHDYTJhF2gyR0TQIig7cl3yfWMCD3+tDN9ux2M0c/M/DaIHmRF05LYfca3/GhmoBNeChW+UcarYvwz38PPKufhBdiSG5c1BkGzVv/TZJeFGw2Mm95sd8skNFrlQZfOVjiFoUd0YG6yrC9LG7yLr593g9Xsx2J26nhdpXHiFjwlWIshk1hScMgGixcsvUAaBqaEel/BQkCbGNXVM4FAIliqC2LpN0ndsvGcAN0/sSDCvYLTJ2q8SKLTVJz9OkvhgCvZ2a8lofTpsJh830xZXbER0dZftiYjuXIFgcCGYbscoylD2rsIy+EtGZDUDaoSxc9c0h6JZxUvvQkp5a6GQ/WLvJhtPk4IC/ihF5Q051dwy+AOVQtqPt5U2JYxaTxE++OZou2faE4V8UBXwRlZ89u4ymQyGzb3wmc8t5M5l8vhtiEVTZxrsr6vj8b+u55eL+WLx2jlb2ixzYTmP4FdInXoU5uwtqJIApPR//5gU0L3krqW7a6Esouv0PCCYLNREbfXJN/OW7Z+MLRTGbJOxmCV0EYfAlZPefQsDTjNNpZ1NlhB//o4xGb3wtaLfKPHLHWLLPu4v0s/2o4SCSxYZqduJXkl/HNE3HYRb58S2jCEUUojHtONfCBgYGpwvtZoQRRZErr7ySBx98kJtuuum4zsnMzGTevNRZMAyOn4im88t/rUgYYABG9M1j7fbaJAMMQFTRePDpJTz9gylkOM2s3VHP00doFABcNbU3T/xndasXhn0Hvbz22Q5uvKAvmXYTuiDyhzfWcrAhwB2XDeTxF1cRO8pav628iZVbqulbksm/Pvh/9s46TK7q/OOfK+Oy7pKVZLMbd3cDAkFCcLe2QAuUGm35UW+hhdJSaEsFihYo7hIS4u4uu5u1rOv4zJXfH7O7yWR3EwLZ6Hyeh4fslXPPyL3nzHve9/uNtOk7f1wfbEYRTdVB17AZJGztLizHGnR0HeS4VATZiL98J/7ySDtpY0oOAHXv/Dks5gkgiKTd8Sc8cmL4TtDp8iNK1UVCjVVdAjAAzUtfJfmy+xHN9s6sm1B9BW0bPsExdDpt6z+KON7SdwSKZO72h1qUKKcbmqpjECDe2vFDU0c7xtxP06DaC997IuwA8ZOrChA+eTQiAAOgtNbT+N6fCRbdQq5WRmBXuKSobf1HnfdNzJiLCDbVdHG+0ANe6l//HX1n/oSfPL+/c7vJKPG9a0fyz49KGT84jZ2lCsOzvORtexy1rZFgQyX2wVNpXf1Ot313DJmOR1G61W8xWW1Yhp+P70D3zhaWYeehSZbOFdDu3hiLJGCxhd9LXdEYnJ/Y/bHAuEFpGCUhXOcZ5bSjrMZF8mlQiqTsWUZo30qkrKFI6UUIooDmc6HsXU5g5cuYJt2AaI3DZJCwmmTqe8Gmutnfgv00K0XqINmSSIWre8e2KKcPoiTy6uf7IgIwAIGQyq+eWcMT35tGhxFdSINHXljfGYCBsFPSU+8V8/46Bz++aQzf/dMSfIHws/jx/27kz7cNAV7tct1QQyX+su34K3biLd5E0rzvdAnAALSufS9cDhuThM2Zi6pqGARIdpqIi7PR3OwJZ6bIMn/76CDxDjMHG2pZvyuyfNXrV/jlv9bw2D2TMQgxYIkJ7+hx2NCRALtRAuOXmwtHiRLlzKHXluUlSSI9PZ1gsGdnmSgnHkEIWzofaeM8eVgGSzdVMmtMNj+6cRQ/unEUd1wyiMxkO5qms2lvHX5F47O15RHnjSxMRtP0zgHtSFZvr6bVHcBolPAGFHaWNpGWaKOyzt0lANPBko1VjB+cFrEtJd7K/Ol9wwGYw5AkkZAOPkUnRNgeuyc00UjC+Xd0yTYRTFbipl6Da+tiYidfQfIl95E8/3skzv0WodoS5KO0aSRE2+q3e9zv3rEcW/+xEdu8+zdiyRkS+TpsscRNv5GAFq0AjHLmI8siVtGHXW/FLngwGAQCGgR0qGn0EuswIQiQ6VBRWrsXyg4c3M/gdAP61q4BTgBz9kB8+7svH9J8bmJpw2Y+dD8FgirNLj+lB1tx2oxMHpZOvySp0zbbEJuMJXdIuM7/COxDpqN4XJjNPWc2GFLzMXZTz2/MHIAldyjBYA8z6R4wG0RunTewy/Z4p5kbzi9EiDpfnLaU17pJPsWlSErN3nAAJnsYcuYAhHYNDdHiwDBgBogSwXVvoavhjNYYu5H6Fv/RmvxKhO2pT88gTJI1HISJusicekRRwCIGsdOGHTcmSenM9vMrGovWV0Qc3y8rlrsXDOW7147AF1A652megEJlXddybwCXN0RZTVvEfFVRdZbu8WAdv6DL8XJMEvbB0/DsXImt/1hcGz7usf+ubV8QaqjALAbxqzpBHXRRoMXlx98+P/X6VSYNSWfc4DQ27O6qHwbg9oWobfZFMx2jRInSu5ow119/PS+99BILFiwgNja2Ny8VpR1BEGj1dA18Wc0y3716BIs2VPDYSxtQVJ3MZDtXzixg0946Glr8KIpGq/vQ6sKVMwtIT7JR3diz9Z6q6QRCGpoeXrUAsFsMtLh7FqANhFTSEm3MHJVFmzfIkL6JJMVZeWPxfuZP7YtJCq8AaILAwvUVvLOkGI9fIcZu5KpZBYwpSkHsZlKlqwqBqr2kXvVjvPvWo7Q2YEzJwZxVSNPilxHNNsyZhdR/9DR60IdkjyN2wmWYhAAK3f/4EnQF9YhV/IjX72nBEHeEQ4auhWuHh85E9bZiyuiPtXA8bhxR29koZzxmMYheuYOGL15CbWtAMJgwD55Ja9Y0HnphJ32zYrnnymG89vleCB79R5+ghVA9rd3u0zUV6Pl+0X1tWMxyRMZfqzuAzWxAVXWeen0TT96UTUcPRJON+vf/SsLMG1F9LnylWxAMJmwFYwg1HcS7Ywm2rCHdXwwIChZiZ9+BOvICfFs/B13FPHgmhsRsPOrxl9AKus7EQakMykvgkzVlNLX5GTswlcH5iZiOUvYV5dTS5gnS6gmeUj0YPegjtPVjxLhMpPSuItqCwYRcMInQtk9Q9q7AUDSNGJuRut7IhAm0kGI7PTVXkq2JrKnx0BJoJclwFBedKL2KLOqYvNU0ffYvgtXFIIhY+o4gbvqNeMQY1KAWsWi3YEY/4mPMvLZwL/UtPkxGifPG9mHepDyCoZ4Xdq1mubP0pwO7xcC4/nGYfWk4r34Q947laH435uyBGGKTqf/gKXQ1hGi2Eawp6bHtjnGqtr6Ve/6+BVGA0QNSuXp2AZV1bl75bC9V9W5kSeSh28b26IgH0OoKkJ1ojQYHo0Q5x+nVIIymaRiNRmbPns15551HRkZGF70XQRC4+eabe7Mb5xSaFg6uHInTbuQvr22hotbVua2yzs0f/7uR7183kniHCatJpn+fOGqbvAzOT8RqkfnbG1u5/9oRPV4vzmHCZpbRNT1cr2oMa8pcMiW/x3PSEsIK8L6Agt1i5LM15ZS392vz3np+9Y3xyKLAKwv3sfCwzJxWd5B/vL2dNk+Q88dkRzgjAaiSCU0JUvPaw1hyhyJZnfjKtneml8ZOugLXpk87y5FUdzONnz5DnKph6D+NUDcL2apowtRnEKGmg92+FnNGAcH6yBUc0eok1FyD6nMhmu0oriaCgrlLlk+UKGcasiyglW2h8TAHMD0UwLfxQ5wNFXzjgst58r0SHnlhPT+9eQwarYBAd8EUQTLgF8wYMgoJFK/vejFViSj160JsOi2ufRGbslIceAMhFFWjxRWgMWAIZ8bpGsH6cowJGdS9/ThyXBrmjAJ0NUTDR0+j+T3EnH8X6jHEDn2aCTG+H/Y5BQgIBBUN79cQSBR0nViLzPWzC9DR0TVQVe2YZV9RTh0dY1VyXPfueieD0J4l6FoIQ96oHrVYRFssUuYgQiVrkbIGEWs3sfuIco+vi6IpuIIuHKeZPXUHyZZwcKjcVUWSPRqEORUIAphDTVS/+H+gtU+ydA3fvvUED+4n+YbfEJRtpMRbqW3yMjAvgRi7kX+8ta2zjUBQ5d1lJZTVtHHX5UMRe6jUbGr10zczNmLbdy/Nw7j4CZoaKzAm5xA39Ro8u1fi2rqI0GFzt2B9OabMQgLVxd2+DnNGAUgyGw+EFyU1HSpqXVTVe3js5Y2dxymqRqsngMNq6NRVPJKsVEc0yB4lSpTeDcI88sgjnf9+/fXXuz0mGoQ58dhMMiMLk9mwuw6AWIeJmkZvRAAGwoPjwLwESg+2MmhSLoqiMXd8Dqu2VTN7bDb/emc7gZBKfbOPwpw4dh/oOoFbMKMfSXEWjJKI0QTzp/fl5U/24A8q5KQ5O1XdD+eGuUXsOdDE7rLmLqsWtU1eiqtayUlz8vm68i7nAry5eD/TRmR21gh3EFBEYidfA7pOsLoYX/GhgVE02zFnFtCy/H9d2mtZ/hqpfUcTwtb+vggYDAIgoCgaztEX4tn2BboSuQIjmKxY8obTujaynCJ27MW4Nn+Ov2x7WHfm5ofxRMuQopwFmDQP9V+8CIAxNRdjQmY4q+TANkLl2xgw6koMskggqLJ8SxWD+9joWzSZ4K6lXdpyjr2YZt1K3LgFBEo3ITviMWUUgKriO7AV9541xE2+gsbPnu1yrqHPELZWhVAOC2z2y4ql2RXggvG5nWWVm8r8TB4+G/fGT3BtXUzSRXfjK9uO0lyNu7m681zJHoclZxCeHoRyD0fXdRQtHFg6ciItSSKiJCAAwR7aslqN4TYUlVC71XcoFBWKOlMoq3VhNIjE2k+Ny53makAp34KcPRzBePRsHCm9EK2+lODOxcQmzKDVHSSonLjvWkugDR1wtFvrnm7YDFZsspVyVyUj0waf6u6ckxglldYvXjsUgDkM1dNCoHQLtoIp3HzhAB55YT1zxvbh2SP0AjvYsq8Brz/EBRNyOVDdRmKshaZWH5IoMKRvArkZscQ7TRT2iWd/ZTPjB6eRlyDhl8N6KsG6A6Ap+A5sR3VFWpf7SrYSf9v1uLYsOqQb2I5gMGEbOBHBFs/+bdXYLAY8vhDnj88JZ3wewWdry7l0al9e+GhXl33D+iVhN8scNVUGMBgkEEDX9KgTUpQoZym9+svw888/783mo/SAqOvcOX8I7y4r4ZPVZWQm29l7xArYkH6JzJ/aly3766mq97BoQyXjB6WRmmDlZ7ePIxBSO3VlXvh4F9+/biSrt1ezdFMVIUUjIcbM1bMLGNo3icYWPyVVrWzcU8eM0VnccckgXl+0j29eNoTFGypYufUgiqqTEm/lhrlFeH0htpc0csMFRSiq1hns6WDjnjrMJqnHMSqoaHh8IYzWQyVEJjGEIdBM2/rP0UMBnKPOR7LF0fjpvzEkZhE//Trq33uy2/b0gBc96AWDDasYgLYa3FvC5Qa2wdPRE7JJvf7XNH36LwIHwwOuOXsACXNuw7NvA4JsQFeC7eVN81G9bfjLtmNIyiZ+zu0ETIkdjrtRopzZhPyIJhuJF95FsK6MQPV+DHGpxIyei2vbEgJNFSTEmKlp9LL7QDPJcVbsOReQ4UjAv/lj9KAP0WInZtwlGOIzsG97HdPwOWTe8Tj+qj349m9AMJhIuvgeZGcCvvKdxM+4kda176K6WxBkI9YhMxGHzuXt/4Qn6gZZZNLQDKaOyKCu2YvFJLOjpIFpIzKZMDIXu5SGbIulbe17uDYvJPmy+2le9mr7KqiAKX8E8TNvxi/aOVYKiiYI1DT7WLi2HFXTmDkqm4wkGzIQ0mFHaRMrt1UTazcxe0w2MVZDp7aLJog0ewK8sng/Lm+IsQNTKcqJxyQKXdyYopy+lNe6SY61njI3oOCepQhGK2Jqv2MeK4gSctYQQvtW4IwfgQ40tPhJSXKekL40+1sATltNGEEQSLYmUtZWceyDo/QKkhrAX9E1GNGBv3gD1r4T6JcZww+vH4lBlo5azl5a3cYlU/JYtL4CWVC5dUoievEqQg3LwdAP2TmaB68fQqitntDupSgb6rEVTSRuytU0LnyOhk+fIenCu2hb/yHe4k2gaxgSs0iYdSOB6mJSr3iA5qWvdtpdmzIKiJtyFZItls92+5EkibsuH0Jds4+kOAvlNa4ufdy6r4GBuQl887LBvLZwL82uACaDxKwx2Vw6JR/xaBNCQcATVFm0qozqRi/DCxIZVpCMWRJQo6K8UaKcVfRqECYjI6M3m49yFERNY/6UPOZOyEEA1u+p69yXnxnDeWP78Otn16K0P9RXb6/m1YV7+dU3xpOTYqfNG0IQwsH6QFDlkefXMXFoBvdfMwIESE+0I8sCtc1e/vbGVg42hFM0V26rZnB+It+5cjiCoDN3fA4XTczFYjZQ0+jhv5/uoaQqXFu7fMtBBuTGc/cVQ/njYemcNovhmBNcY7trEoBJVFD3LKVh8Qud27x71iDHJJF23S/w7FuH4mok1NDzREyQjVilAK5Fz+Lds7pzu2fnCsx9BhF34T3EXPx9JDWcuaMZrJji4giZE0ktnAhqCF02octmjEE3lqJJaJIZP+Zo2mmUswZBNpEw51bq3vkzmu/Q5LNtwycknHcbgjMdrz/sZuS0GxnaL4nGVj+lyVNJu3QCGTEyoaYqXBs/pXnxSwA4CkZR98lrBGtKO9tzb1+CffBUDPFpeIs3k3LNz2jzKlhtFv75STlVr+/nihn9SIqz4rQZ8QcVqhs9pMRZSYy18OT3p2OWRTRVw6OYMAyeS8qAKaAp6AYz8QsehJAfQRRRZSteTUI7xmpjSINn3t/Jym2HMmiWbT7IyP5JfOOyITz0j1XUNh2yv/5o1QFuuKCQacMy0AX4dE15xKrpqm3VpCXY+Pkd43pQpIpyOlJW6yIr6dQEHbS2OrSavcj5YxHEL+erICRkIVTFYaveCPSlrtlHVznor0ZzoAXgtHVHAki2JrG1YWdUf+MUoQsiktWJ5u2aFQ0gOuLREBF1jUE5cbgDao/lRgB2i5EfP7WCpFgT98+w0fLirw5l2exZi2/NG6Rc9VNaP/wrSnu2o3fPWiRbDEnz7qHuncepffNRHEOmkbLgh8ixKYSaa2j89BlCTdVIthgcw2YRO3E+kjMBQZSpc+s88vzezszuJRsrmTQsncH5CZiNUhfnUID/frqHH94wkt/eORFV05EloXNM6hFRYGdZC4+9vKFzEXL19mqcNiO/vXMCNoMU/R5HiXIW0WvuSIdTW1vL+++/z3PPPUdNTQ0AqqrS0tKCqh5/amxZWRkPPfQQl1xyCQMGDOCiiy7qckwwGOQPf/gDkyZNYsiQISxYsIBVq1Z1e9wjjzzCxIkTGTZsGLfccgslJT2Lc51JaKqGUQCDAMP7JSG2uydcOjWfp9/a1hmA6SAQVHns5Y14Awomo8SI/smd+xRVZ8nGSh55YT1PvrYZgyyyZnsNSzdVdQZgOthW3MBP/7YCn1/lwadX8cMnl7OnrImXPt7dGYDpYGdpE42tfvIywlZ9ggBD+ibS2OonqQfhw/zMGCzGQ0EYg+Ki+bAATGefW+tpXv4/Qg2V6EE/orX71T9zn4FoshWt/kBEAKYDf9l2guXbCApm3IITt+AkSDgVPaQJuHUbbjEWj2bBGxRw48AtxODVTNEATJSzC8lA8/LXIwIwYXQaF/4HqzO2M4Nu+sgsHnlhHQ8/v47fPb+RjeVBmjd9Tt0bj+IrDVs9m/sMwl+1NyIA04F72xIM8RlofjetQYnX1rWxeLeXoC6yp6yZv/xvCw/9YxX3Pb6EB55awd/f2EZQ0Xji1c3IohAx2Q0pevg+FWLwKCa8qgmvGIMHB35F+lIaLKXVbREBmA6cdhP/+3xvRACmgxc+2o0noOLyKd2mrVc3enhj8T6kw4LKUU5ffAGF+mbfKXNGCu1fhWCyISbmfOlzBEFAzhyItaUYSYS65q7f069Ks78Fs2TCKJ2+YcRUWzI+xUe9r/HYB0c54QQFK86xl/S43z5sdmdZpqJomA0SYweldnus1SwjCtDY5ufGaekEPn2yS5mTHvLT8MFfiRlzYcR21dNKy+q3cQydiR700bb+I/zVJQRdzdS9/gihpupDx614g5pXfk3j7s2sKFW584n1XUrrl28+SEOrn7kTcrvtqyQKWEwG7vrDIkQRjAJHD8AAQVXnT69s6pIF3uYJ8rc3t6JFHZWiRDmr6NVMGF3Xefjhh3nppZdQFAVBECgoKCA1NRWv18uMGTO45557jlsTZt++fSxZsoShQ4eiaVq3keHf/va3vPPOO9x3333k5uby5ptvcscdd/Dqq68ycOChdaBf//rXfPjhhzzwwAOkpKTw97//nZtvvpkPPvgAh+P0FJvrCUkSCKrg8SsomobDYsDUHnk3G0QeuGEUv39xPSaD3MXCuoPaJi8un4LVLHPlrAJqm7wRdoBmo8SDt43FZJAY1i+JrBQHIwtTsFpkNE3HH1AR2237DtS0UpQTz7biBnaUNPKt+YNxe0PYLAYsZpk2dxC3L8TmvXWMHZjKgYOt3LVgKDtKG1m5pZo75w/h8f9ujBA3S4w1871rRiARlvqUZRHfro1dX0g7nl2rSL7kXpqXv0bShXdR9+4T6IFDk1A5NoX48+8kJMq4N3RvlQvg2vAhsZmD8WHEJGsYVTeB6hosogFFtuHXTdEViihnPyEfgcrd3e9TFVwHDxDvNHPB+BzG5poZe3M+gYBCjUckM9lO20uLIk6xFYyhdc174T9ECefwWVjyhqOrIQTZiOpzk7jgx7ywtJbRA1J4c9F+7rx8CFW1bjz+EPcvKCTLCXrIh2x1EJCsXDotH09AwWqS8QcUgoqG3WLAJAuR4tiiiD+k4vUrWMwyFoMYsfxqNMu4/SqNrQFcAY33V3QNFEHYIePx//b8DFq7swaHrecfqV9sqOTy6f2i2TBnABV1bnQ4Jc5Imq8FtXo3cs7IL50F04EQn4locRITDFLXfOIckpoDradtKVIHqdbwYlJJSxn9M/qc4t6ce6iqhjl7CNYBk/DuXH7YHoG4WTejmOLh8NiEpnHLhQOprPNE6BiajRI/uXkMz32wE1EUiJO8BHsQbVeaqzEmZ5NyxQPhsUSS8exajXv7UuImX4nsTMAQn47kTKJ5ycs9933HQuSh/RiQG8/cCbnIkogggMsb5N2lJSzZWMmNFxax80BjhGaiLAnctWAoqqrxp+9Opc0TQjHLWE0yBkGju7VnURQ4UNnaZXG0gx0lTfhDGhYpGomJEuVsoVeDMP/61794/vnnueOOOxg/fjy33HJL5z6Hw8GcOXP49NNPjzsIM2PGDGbNmgXAAw88wPbt2yP219bW8tprr/HjH/+YG264AYDJkydz8cUX8+STT/K3v/0NgJqaGl5//XV+9rOfsWDBAgAGDx7M9OnTeeWVV7jjjju+6ks/6YiiQIMryKMvbey0lLaZZW6ZN5BhfRMxCGHnkJ/dPu5YemA0tPj44383csXMfnznymHUN/uobfLitBnp3yeOrfvq0TX486ubqG3yMndCDpnJdl76ZA8eXzhgkhJv5a4FQ2l1BYixGxlWkMTDz63vrPWNd5q5dd5AVm47yMC8BIr6xFOQHUdTm4/txY1UN3p49v2d3L1gGLquU9PoISfdSUaiHeNh9q2CIKAFjjKp1BQQBEL1FTQvfZXki+5G8bSgtDZgzihATMrBo1sxaiG0UM91yHooALqOTQrg3fABDes/BDW8AmPKKCThom/jFhzRQEyUsxr9GOJGBj3EL24fjdNXReurP0NpqwfAabFjueYhWo6wFxUkGU0JgCiRfPE9ePato/b139MhomTJHUp81gDOH59Dea2Ly6b35eHn13Hj3AEMTxdp+vApGtpr9xFlrENnMmTMZdz4+yVkpzi5+aKB/O2NLbi8Ib5xySAG5cYj6DqaKPLix7tZuqmyM+4yuiiFb1w6CEnXQRTZUdrM397YSos7wCVT8gj0ILQrCkKEveqR+AIKFlPPQ21I1dCPYsUd5fShvNaFJAokOI/fkvzropRsAMmImNz9yvvREAQBKb0/zqYWaupaTlifmv0t2E9TUd4OzLKZeFMsJS0HgCmnujvnJB7VhH3KjcSMuxR/2TYE2YS5zyACopVAN6YFBgF+ctNo9le1UFbtIj7GTFKsBXSdfRUtyJKI3o3Q7+FoAR+1/3s4/Ick4xw+m8QL7gBdRzCYqXnl1ziGzQrP7XpqIxQgL93BVM3M029t7VwQTIqzcNu8Qewua0IU4Ka5AwgpGvsqW7AYZVITrCTFWvhwZSmfrS3vFJAfkBvPPVcOxyKD2o1bZndlTYejqhpI0azJKFHOFnq1HOl///sfl156Kffffz+FhYVd9vfv358DBw4cd7viMVaBdu/ejaqqTJw4sXObIAhMmjSJ5cuXEwyGfwgsX74cTdM4//zzO4+LjY1l4sSJLF3a1c3jdMav6jz49KrOAAyEM2Ke/N8WKhs8hDR44K/L+f0L64lzmpGl7t9Dq1lG03UCQZUXP9rNnrJmzCaJveXNeP0Kz3+wk8wUB7/412pqm7zEO80MzEvgH29v7wzAQDij5rf/WcvoAalMH5nFn17ZFCG21tTm5/H/bmTOmD48+95OGlr9PPX6ZuwWY6fQWUWti9+/sI78DCczR2SQk2RHPsKRRFFULPk9W2ibs4rCivhAsLaU2jf+QMvKt/CVbkGKTcKtWtA0nRBGrEWTemzHWjgBjGb82z+nbc27nQEYgEDVbupe+w1W4cStMEaJclpisCDHpvS4W0vog+htovX133QGYAA0nxvP1sVY+0beq/7KPVjzhuEYOgPv/o14dizncBVrX+kW6t/5M3FGhYxEB797bh1V9R6KUiUa3nyYQEcABkBT8G76BN/GD/nJDSMoPdjGn/67kZvmDsDjC/H4K5uoafYhSOEAzBcbKyN0B9btquWJ17YgiALNniCPPL+u85m160BzRHnm4eyvbGFwfmKP78noASnkpPcshDq0XxLGHp7HUU4vymvdJMaYkU7y56UrAZSKLUgp+QjiV1s7E5NyiJED1NSdOJvqJn8L9tM8EwYg1ZbC/pbuM9minBx8mhG3nAj9Z6LlTcKFk2APrpG6riOJAq8t3MemvXW8s6SY3zy7Fo9fwWyUUFSNoDEWergXRLMdPXiY86aq0Lb+I0KtDag+N6qrCXP2QPxVe7DkDeuxz1LuKDSjjec/2hWRkV3f7OOxlzcwdUQmT/5vMynxVhauK2flloO8v7yEyjo3C9eV89GqsggHv52lTfz2P2sJdBNr0TSd/MyYHvuSmmDFepRgfpQoUc48enUmUV1dzfDhw3vcb7FYcLu7Tyf8OnQEWYzGSAtJo9FIMBiksjIsHFlSUkJCQgIxMZEPvvz8/DNKF0aWRdbtqsUX6H5l4KWPd+MLqsydkMt3rhzO/opm5k/v2+2xV80q4NPVZTisBi6cmIvZKGEySKzZUUNWip1ASGPLvoZON6NZo7P5oIc0/UBQZXtJI3vKm7vNvlE1nWVbDjJ2YCpvLN7HNbP7U9PoiXgdl07tiyyEraK7yzLRddBtCZi7G0glmfgZ1+Pa3F4CIYhY+o7AOXw2zlEXIIiHBIBVVcOcPxI5pusPLckWi23QVKSg+1DpxBEozdXo7npOkWFGlCgnBZduxXret4mbejVxU64KW0q3Yxs6i53VIaSSlehqqOu525YQM+YiBIOpc5tn10rsg6dh7TcKd0Sq+iGCVbsRAy7eXV6MpunE2Y3I/tZ2d6OueDd9zICU8GphsyuA2xciO9XB3Im51DZ5Cak6G3bXdnvutuIGVAHeWLwvIkCzt7yZnHQnKfHWLues3VnDjRcWYZC7DqdD+yWS4Ayv4g7Mje+y3yiL3HThgKO7ZUQ5bSirdZ0SPRilYhuoClLKsR2RekIQZeJibDT6REIB/7FP+BK0BE7/TBiAdHsqB901eIInTg8nyldDUbQv5fIjCmH9wuLK1k69rYVry7liZnjM+WBDI6Yxl3V7btzkK2jb9FmX7a4NHyMI0Lr+QxxDphOqr8CYmEX8rJuJm3oNlvzhQHgSJ1rsaP1n8J8P9jBtRGaXtkKKxootB5k2Iou1O2u4cEIupdVtHGzwMKRvIh+vKuu2b+W1Lppc3Wff6HpYS+1IBAGuO6+Q6AQzSpSzi14NqyYkJFBd3VXIsIMdO3aQlpZ2wq/bp0+47nfr1q1kZh56eG7evBmA1tawOGxbW1u3ui9Op7PzmK+D3M2kvCc6Vta+ygqbbJAi6lEPx2KSuXxGP7aXNLJqWzXLNlcxdmAqk4dlkJ8Rw2sL93KwwUNWioMrZvQj1mGiqc3P+eNz+HRNGQfr3QxrXwEOhFSS460RdbrJ8RbKV3a16Oug9GAbmck9r5RV1LoYmJfApr11FOUm8Lc3tmAxySTFWZg3KY/hBUmE38aeB58gFuLPvxP/vjW0rfsA1efCkj2A2EkLcO9aRdKF38K9axX2gZPwFm/CvX0pgsGIY1gQe/4ofHp4Uh0QHCRf+3PcGz/Bs/0LdE3DNmASztEX4pedGP0N6MGes12UpioMsTlntBjv1/kenu4cz/14JtNbn6EgCBhUF67Knfj2rABBwF40nrhJV+B1ufAn9GPfumr6B7oPyuoBL82r3ibtpodpWvE6wZJNCEYLvqZabGm5oPWcih1qa6ShOfzDsV92HMGmnscVXQlGpJjXNHr41mWDeWPxfjbtrmPNjhruuWo4K7dWs3hD10BOIKh1azv6tze2cs+Vw1i/q5blWw6i6TpjB6Zy8ZR8Xv1sDz+9ZQwfrTzAtuIG7BYDM0dnM2NUFqb2j+G+a0awbHMVH686gNsXYmi/JK6Z059YmwE0neOU+TijOR3uxeO9TxRVo7rRQ2GfWKSTqMugA2rZRqT4LCTL18s6SUhNQa0LUbF+OYmDJx77hKMQVIN4FR8xJvtJfT++ClnOdHRgT0Mxfe3dL0Cdq3T8rj/dxvwmT4jtxY38+KbRvLushJKqVmqbvcybnMeDt4zh1YV72ZI2kBFzM1E2vEWouRZDUhaxExfgL96Av2x7lza1gBdd09C8bQgmK0mX3Euwrgz3jmXoShBL/nBixsyjtXgrodwJ/O6NUoIhjYH5Cd32cX9lC7PHZPP8h7uYODiVx+6Zwkuf7CKkaJ0Lld1RVe8mKzElwphEFAX2lzbRv08ceRlOPlldRlObn76ZscybnMeSjZX0SXUSaz3zs2HO5nlmlCjHQ6/ezbNnz+aVV15h/vz52O3hyUNH5sHy5ct56623uO222074dQsKChg1ahSPPvooaWlp5OTk8Oabb7Ju3bqIPvQmoigQF3f8K0RO51dbZcvLiGHF1oNdtn9r/hDeWLSPfRUtndsq6/YzIDeBj1cdYNzgNOKdZuqbvfzj7W0YDRLfu24E9/8pXI5ltxiY1h6ZNxkkmtp8ZBxmz9nU5ic1wcb+yha6IyvZjniU9zs1wdrZxobdtfTvE8+0kVm0ugNUN3iYMSorwo66Z2yYRs/FXjiOQN0BfPs3Emqpw7XpM9xbvyD1yh9T+7/foXoOBdcaP/4n5j6rSb70XmR7XPtWK6bp1xI79iLQdUSrE1E2YAJCuhlBNqIr3YsaG+PSsMR0XSk/E/mq38PTla96P57JnOjPUGlt4OCrv0Rprunc1lxfjiG5D+Ls+2gJGalrDaKlZABbu21DD/r4eGsrsZmXUDj6SkKqzhubmpll1wkHWrsPYMr2WJz2JiAc2DXO7Loy2YkkIx6WbZOV4uDPr27uXE2tbvSwZkcNd84fQn2zl+0lka4pJqNEWoItQpAcws+6Xz6zhpvmFvHzO8axr6KF7cUNHKx3s3zLQTbsrmP6yExuu3gQ/oBCRZ0Lm8WAw3ooI/OyqX2ZPCwDXdexmQ047SbONU63e/HL3ielB1tRVJ3cjDgcjpP3fPRX78ftbsJZOBaD1XjsE45CemocbK2jeOM68ibO+lptHWwLByqTYxNO6vvxVbDbzThNdnbU7WVE+uBT3Z3Tio758Ok25gdUD0s3VbJpbx2z2gPabZ4gyzZXMSA3gVFFKcg2Cxu8NkZf+EMOVjZR16YwIqjg3/BJt20KBhPoGqLJiuxMoPGzZyOE5kONVXh2Lsdy2UN856/bCIRUhvRLpKmt+8yV9EQ7O0oamDsxh1inlVinle9fP4qmVj+yJPYospsSb8XZja5UWoKNH/91BTlpTmaNycZhNVJZ5+Yvr23GH1C4+aIBp9Wz8+tyun3nokQ52fRqEOaee+5hzZo1XHLJJYwaNQpBEPjnP//Jn//8ZzZv3kxRURHf+ta3euXaDz/8MPfddx9XX301ABkZGdx111385S9/ISkpCQhnvHRXDtXW1talROl40TSdtrYvn/oqSSJOp4W2Nt+XStUUBCGiPGfC4DT+++meiId+WqINX0CJCMAA9MuK5UB1G5v21rNpbz1HsmF3Hf2z49hT3ozbF0IQwkK6JVWthEIqowpT+GjlAVRN5/N1FVw5q4C/vLa5SzuyJDCkXxL+HsqkBAGmDs/k9y+s5+4rhrK3rLnTgUQQ4I/3TsHj9uPp9uyeMGO2xtK24ROsrfU4h81CcTXStvGTiABMB/6ybfhry1CUI92N2n8cuYJAOOhiEK04Rsyhbe37XdqRHPHgTKa5+fh6e7pxvN/Dr8PJnEwc7/14JnOszzA85xaOS0RakgTUHcsjAjAdhOrKMFbvJjZ/PFX1XrRJk2HLJxHaLh1Yx13OW/89SFNbZDmETc5iRv+x+LqxiDckZYM5hksmx7F000HqW3wIjkTkmGSU1rqu1xg4jTYtPMG1WQzYLYZu7aOf/2gXd10+JCIIk58ZgyTA/Bl9Wbera8mSrusMyk/kN8+upb7Fx0UTc1m5LRz89gUUPlx5oPPYX9wxDjWo0ByILM0ytWf2qSGF5uaji0ueTE7W/Xi63IvH+6zbtjf8XbObRFyuk6f/5du5GtEaS9AYR8jb/QLAl8WIjijoHKxz0VS6FyE24yu3daAxnI0mKYaT+n58VTLt6Wyr3X1SxrYTwcm6H3VdRxCE0+Z9CQeFdEyywNQRmSxaX8HbS4qJsRvx+hXuvWo4f351U0TZetH90/jXZ1VUN3r49Q2FxNpjUd0tXdp2DJmOZ9dKYsZdQqjpYLdOf6q7heDWTxlbNJilW2tZMKMff3ypq/udKArMHpvNj59axg9vGE1LS8czTcdukZk+MpPP1pZ3OS8lPiza291cMbFdgPhAdRv/eX9nxL6LJuZilIQzfo4JJ3eeeaI4m4JfUU4fejUI43A4eO2113jmmWf45JNPMJlMrFu3juzsbO6++25uv/12zObecRnIysrijTfeoLKyEr/fT25uLs8++yxJSUlkZIQnHnl5eTQ0NNDa2hoRdCkpKSEvL+9r90E5imNGT6iq1uN5ggAKAm2eIAcbPCTEmEmMMWMUBcyywM9vH8vvX9zQaT89tG8ia3d0/dE0pG8ia7rZ3sGa7TWM6J/MnvJwidNLH+/mnquG8fwHu7jxwiI27qrjvquH8/Rb26ht8lLf7OXKmQW8+cX+ziCQw2rgjksH886SYvr3ieM7Vw7jH29v63QYsZhkbr5oAMu3VDFvch4NLT76pDk79929YCgxFsNxvYeiCFbCA2HSvG/T8Mm/sBWNx9xnEPXvPdHjeZ5tizFPLyAUOvq1FMA+8iJUdwuew/Qr5Lg0ki7/IV7dinaGDCjH4mjfwzOVs+31HIsjP0NBEAhoOpV1boIhlZw0J2ZZ5Jh2aYBBC9C6/Yse94v7lqFmDuOOSwfzyfZK5l7wXYKf/w2t3Q5ekAw4p13PQS2RSUNlPlhRitpethdjNzJkQBax8TejBXwEDmzpbNeYkkPCpd/HL1qItencf81wPlhRyu46jcIFP6H57T8QaqzqPN5aMIa4iZdR2RYkMdbMD28YxV9f7z4rx+MLRQiU52fG8IPrRoKqkxRj5u4FQ/nXu9sjnlnfmj+EpjYf9S0+Jg1N59Kp+ZTXuli/q65TmNwgi9w0t4jMRBuho6Skn8ucTvfil33WHah2Ee8wIYtit84mvYHma0Op2YecMwpd10+I+16sRaJBiMe3fTHGcdd+5XYaPOH5gVWynrT34+uQ7cjg4wOLafG1YRHPjozVE0HHV+pUj/maIOAJKJTXuIixm0iJt3DD+f0ZMyAFURSpa/IS6zSRlmgj1m7qDMLE2I2U17Zx5+VD+Oc723nqwwp+dsWPED79E0pLRyBdwFY4DnNmId7SbZizB9K2rutiWgfKvpVMnjCRfjlJmAwSl03L58WPd3e64NnMMvdcNZwNu2rwBzUWrasg+6IB7C5rxmE1kBpv5cpZBbR5ghFz7cxkOw/cOBqDLKJpWpfSdYMo8LPbx/Hb/6zlYMOhYEt4rMlDOYZ70pnGqf7ORYlyqun14kKz2cxdd93FXXfd1duX6pYOTRi/38/rr7/OFVdc0blv0qRJiKLIp59+2rm9tbWV5cuXn7L+Ho0QAr9/YT37Kw9ldCTEmPn57eNwmCQyE6z84duTaPUECSkaqQlW/vbmti7taGEH1h4RRQHtsMlebZOXp17fwrevGIpJlpg1JguLxcD3rhtJIKiiaBrJsRZGFiUTUjSMsojdaqSx1ceFE3OpbvTg9QX52W3jcPuCWM3hFP0Wt5/EGAtLNlWydX8Dv/rGeB6+ayJxDhNGSUA/Dm0VSQKzt4ba136D5nNhyR1C8rxvgyhhiE0BoecXLAhf3vLPrZqxTr2JmElXoHtbwGhFMzrwYjmjtWCinOWIAjvKWvjzq5s6J5KCAJdMyeeiCTmIX+LHnXCUewhRRAce/+9GrphZQIvTQcq1D2MIuggFQzSrFhpMTh54ahUzRmXx++9MxucPYTBIxNhN7Cxt4C+v7eXh2+8iTvUScrcgWx3oJgd+0YKiaAjAkNx4BuQksLeimQdfLub/rnkAq9KG0lKHZLHjr9hF1T+/S8zYS3n8rlnUeUQOVLf12O2EGDO//uZ4HDYjNpOMRHhlWNRhTGEyg/Kn0tjqRxAgwWlBFqGmycdTP5iOWRYRNI3cFDt/vGcyrZ4giqoR7zRjlASIPg/OKspqXWGb3JOIWr4FBBkxsc8JazPWJtGkpBPc8zGG0VciSF9tGtgcaMEqW5C/olvTyaZPTLisekfDHkYl92wYEeXko4ki/3hne8SiYbzTzK+/NYE3v9jP3vKWiO33XDmMp9/aRnWjB12HUEjjT69sYsHMfiTHWSj36/Sb/39IATdiyIvZGYuuqWjeVgzxqei6BmLP8z5BFBmYl4i1RaCp1c/4wWkM759MiyuAJInYzDKfrD7AR+3iu4Io8J8PdrJ8Szgr0mqWeeiWMdxx6SCuv6CIxhYfNqsBTdP50ysbaXYF+Nnt43CapIh5o6bp2I0iv7h9HG5/CI9PIc5pah9rouNJlChnGydt9GxsbKSqKrximZGRQUJC90JXXwafz8eSJUsAqKqqwu128/HHHwMwZswY4uPjefHFF7Hb7aSlpVFVVcWzzz6LyWTijjvu6GwnNTWVBQsW8Pvf/x5RFElJSeHpp5/G4XB0ljGdNogC/3p7e0QABqCxNaxT8JtvTkBGxyBAoj1cNy7qOheM78P6I9LqN+yuZfaY7B7FfCcNTWPR+sqIbfXNPv776V4unJjLjo0NePwKyzZXIQrhFfaOVe14p4l7rx7Bsi0H+Gjlgc7MmDiHifuuHsEjz68Pqz7oOqIodNr3XTo1n1ibAZsh/EPveAIwABbdQ+2rv0Lzh1cPfKVb8ZVuBUEkfs5t2AdPC1tLd4Nt6Ex8x7Fi7VcNKHIccX0yaW72tEfyowNklNMXt1/lsZc3RCS96Dq8vaSY/tlxDMiOOepqdki0YB82m6ZP/9XtfvvwOfisVlzeEP94Oxz4laXwap8gCKQl2rj9kkEALFpfwcWT80iPsyBJItvLmnni1XD2y00PrwAg1m6m1VPKE/dPw2Y4tFKmaToiOjnpMVQ3ePC1NNP65kMgyRG28W0rXiMmOZ8mLQO7xYDb19WtKdZuwm4xEm81dL4hh78DqqJiEiA70UpcnK3zXk+PMx96Awk/qw5/7oY7Gn0enE3ouk5FrYtRhd3blPfONTWU8i2IiX0QZMMJazfOKlHVZEcPeFDKN2PIHfWV2mkJtOI4A+ypO7AZrKQ7UthavzMahDmNkCSRD1Ye6JK1PXFIOv/5YGdEAAbC2lx/+d9mbrigiD+9sok2T5AYu4k2T4B/vHVo7OmYe+alO/nFNQk0vfQTaLetFq1OEmbdjGfniu771H8Kf35nP+v2NAAwsjCZ5Dgrn60pQ9M0jkzeGD0ghX+9c0gI2OtXeOifq3nie9N44cOdbN3fiD8YWXr6q855eySapiMBMWaZGHP73hOQARclSpTTj14PwqxatYo//OEP7Nq1K2J7UVER3//+95kwYcJxt9nY2Mi9994bsa3j7+eff56xY8cSDAZ58sknqampITY2ljlz5nDvvfditUamoT744IPYbDYee+wxPB4PI0aM4Nlnn+3WNelU4g9p3WoUQDhA0uwOkGSPFO3TNJ3sFAcj+iexcc8h7ZfyGhcp8VYK+8Sxu6yZjCQ7l0zNJzfNickoYTOHf7SU17ahtQ82kihw9awCslJsZCbbqWn0MH5wGpv21LF0UxVqu7NJU1sAVdVYtfVghD7N5GHpxDmN/Pm+CVg0P63uACv2tPDxuhrsViOjilLwB1VMsohF9yBoCggCitEJQQ+irqEJIgHB1qWGVBQFlMbKzgDM4RjiUkFVcI6YjXf36i4aEtbC8eBI6U6+4itjlMGoeUHXUUUjAd0YzZKJcsqQDRKfrTjQ4zzutc/38tObRnN4noskiQTUcPmDJApomo41fyTGlM8J1ka6H5myB2BOy0dVfdx1+RCeeG0zRllk8vAMJgxOJznOgs0iY9G8/PeBMfhVAZtVRAh5UXVITzBz14IhfLamvFO/qsXtx2aWKa910S8zFh0wSqC3B4rMBpEfXT8Mcc8bCLIR+8BJWPKGAQL+yt24ty7Gv/5t3HnXcdvFg/jLa5si4iKiKPCdK4dhNQoooei9GeXoNLb68QXVk2pPrdbuRw+4kVNPrJtPnE1ic7mOnpNOaO/yrxyEafafGfbUh9M/MZ+V5esJqSEM0okLbEX56vgVjQ9XHiApzsL8cankppjxhzRscQn8+K8ruz2nsdVPVoqDp+8diaaBzRji3/eNZGtJC81BiSkFVgySgF8B7PFQsrwzAAOgedvQvG1Y+47Eu39DRNtybArWobOZnKxy7QUDgLAYfGq8lQ27a6lpjNSzGj0ghTZ3sFMGoIOgorGjtInqRk+XAAyE5+0t7kBk8D5KlCjnFL0ahPnss8+49957SUhI4PbbbycnJweA0tJS3nnnHe644w7+9Kc/MXv27ONqNzMzkz179hz1mFtvvZVbb731mG0ZjUZ+9KMf8aMf/ei4+nCyCYTUowbDW90Bkh1HisuG/Uauv6CIiUMzWLa5ipCiMXV4BqkJNuZNyuOaOQa8foWXP91DRa2LGLuR88flMKIgmekjs3j6rS2kJTiYOzEHp1nG5Vd55bM9rNtRgygKjBuUxk9vGcNTr2/pFL9sbPV3Ws8JQtihSRTA4GuGzW/j3rsaSdeYkz+CS++8hjKvhb++sYXHvjEMsbGchi9eIlh7ANFixznyfGxFE6h67ifI1hhip16LMa0In3Zo4BIEAbW1q8Cwc9QFmFLzaVn9Dq2r3yJx7p2Emqrx7lmDYDDjGHUBQnwfvNqJcSgRBLCLPtzrP6Rp02foIT+mjELiZt5E0JpCSIva8UU5+eg6VDf0LObX2OpH1fT2rLaw7tS7y0v5ZHUZvoBCYZ84bp03kKQYKwmX/ZBQ1S7cWz4HUcQxaCpIElX/uh9DXCojJl3HU/eNw6MY+GhVKb97bh33XpJPoXiAxnVvobqakGNTMI6/DMXdSOvqd7EUTaOocA7aqCwmD8vgmfd2kJcRw00XDuD9ZSU89tIGRFFg0rAMrp5VgFkS0FSNvmk2fHtCpFzxI1ybP6funSdA17DkDyP5svtpWfshg3JieH5xFf932ziWba7iYIObjCQHs8dkk55oQQmcXTX2UXqH8nanrOTYk6clohzYiOBIRLTFHfvg4yDeJqHq0Jo4hNiST9F8bYgW53G30+RvIcV28jKDTgQDkvuxuHQl2xt3Mzw56pJ0OqBqOuOL4rlqhAV9zYsE1hRjNVmxDz+f39w8jode2NXF7vk7F+eTULcBgyygelpo2/AxqruFUZd9l1DjQVr/9wGatw1DYhZx065FSOzqptey5j1Sr/oJ9oGTcW37Aj0UwNJvNKb8kby7qZlBfVN48n9bKK5qZdzAVK6fW8SvvjGejXvqWbKpEpNR4sKJuTS0+Pnn213L/iE87jqO4mjW6g6Q1M28PUqUKOcGgt6Ld/+FF16ILMu89NJLnRbVHbjdbq655ho0TeODDz7orS6cMlRVo6npy6uYy7IYkfJ+JEEd7v3jki6DUQd/vn8qDmNkjasoiSzZcpBn399JSryVkUUpSILAtuIGBuQlkOA0EWM38eT/tnRpb8KQNIb2TaJ/nzheW7iX0QNTKMyO53tPLMXrj4zqxzlMfOfKYfzy32sA+M2dE/jr61uoqvcwd0IOIUVj7lAnhk9+20WxXjBakC/7BStKQlyU1Uzdm4926YslbxgxYy+m5r+/DF9v5s0IBVMJqWFrRUEAi6eS2hcf7DzHlNEf+6DJNH4SWT5hSsvHPnwOxtwReNWvnqHS3edlE/00vf17gjUlkQcLIqk3/AafNf20z4g51vfwRJKUdPKyzY73fjyTOfIzlGWJxZurePYIt4UORhYmc/f8waDpqAg8/OJ6io8oexQFePjuSWQkWJBqd4GmEXLV07b2Q5Tm6ohj4y/9AX9aqbFhdz3zxqUz17qV4OYPu1w3bvKVBGpK8O5bj5SQScOYu9hUEcTlDTJtRBa/e25dhAMGhPUAfnfXRAzoGGQBs7ea2tcfQXVHllYKRgupVz/IJ3s1DGYL/353O2MHppIQY+4U1R2QFful7seTeU+cSk7W/Xi63IvH87m+vayEhRsqufvSQZ2Wvr2J5m3Gv+hp5PxxSMm5J7Rtd0Dn6SXNfGeqjb7bn8Y0/hqMg45vIQzg/iX/x+iUYYxMGXZC+9dbSJKAw2Hh6bUvkWiO586hx16kO5WczPtRksRT93wTRdSa3Xjf/h1HlnUbMgop7nstj721v3Pb7JGpXJ64F6MSfoa4Nn0GQOzEywk2VOLds6bLJZLmfQdf+c7w4kE7yfO/R9OiF9E1FWvfkQiSjL9yN6H6Cozzf8EDLxZz/7Uj+dUzawgpGg6rgd9/ZzI2g4ii6YiCgAb89O+rqG7s/nn24K1j+Pc7O3rc3928/VzgTBxTT+Z8Ncq5Q68uzVdUVDB//vwuARgAu93OggULqKys7ObMKEdilkUuntK9Y9PQvonYTF2TmvyKxsufhjOGapu8fLiilPeWl1BW00ZJVSvjBqXx4sddLfoAVm6tJinOgj+osr2kke3FjXywsrRLAAag2RVgb3kzRTnx9M2MpdUd4NZ5gxhWkMSYgalU1bswV2/u1jJQD/oQdi/i0pExNH3+fLd98ZVsRjSaEY3hVciWZa9g0g6lhOo6CI7EsJVtO84Rs2lZ/nqXtgLVxTR++DcIuE9oQEQQBLSWg10DMAC6RvOi5zAJX89eNEqUr4KiqIwdmIrN3PUZIQhwzZz+CO0aTd6AgsUoI0uRPzQ1HZ55bwemUCsNn/4LBGj65N9dAjAAbYv+w3lDw6v3s4bEEdzycbf9aln9Lo4h0wFQGytJ1htYs6OG2WP6sHRzFb6Ags0sM6wgiSF9EzEZJJra/KzfVRvOtBME/JV7ugRgIPxccW9fSlmtG6fNiFEWWb7lIO8sLWH3gWb6Zny5AEyUKBDOhEmKtZyUAAyAcmAzyEbExKwT3rbDLGKQBGq9EmJyPqF93Zd8HA2f4iOgBrCfQZowHQxKLGRH4x4afU2nuitRAKvoJ7TiRbrT1QtV7SY/NoT1sLFr7vAEAhvex1YwBtfm9qCKIGLO7N9tAAagafGLOEee1/m3ISED1dWE0lKL2taAa+MntK37gGB1MboSRN/8LlMGJ7F4QwUTh6QD4PKG+HxdOUK76LqmaphkgZvnDej2mslxFvqkOJg0LL3b/UP7heftkiRiNEqd2eNRokQ5d+jVuz4vL4+mpp4HusbGxs4SpShHR1M1zhuTzdWzCzC3R84lUWD6yEy+c+Wwbt1N3N5Qp71qB2MHpvKz28YxJD+RpjY/La5Aj9esbvBQcrCVwfkJZCTZ2bCrrsdjtxU3Mn1kJt+9ZjgpcTa2FTeQmxaDouoMyLQhVmzu+bWVb0ZQ/F30Wg7HX7UXU1Z/APSgH93vjtjv1cwkXf4jrAWjQRARDCZUT0uP7QXryhDFEzehlmURX/HGHvcHKncjadEgTJRTg1kS+O2dE+mbGdu5LSXeykO3jSXeZkRBoLLRy8ery8jPjOEnN4/hwomRK/C7y5rRQz4EQSTU0HPwXGmrJ9GiI0sChkALPQku6SF/2KWiHblyI9mpTnRgZ0kjt84byLevGEZqgo3sVAffv34kV84qYPX2akI6NLe68e5d22M/fCWbGZBuZm95M5kp4VWsQfkJ/Pqb4zFG57tRjoPyWhcpJ8kZSdcUlIqtiEm5CL3gPCQIAokOmZpWBTljAFp9KVpLzbFPPIxmfzhTzmE484IwRfH9MMsmFpYvOdVdiQIQ8hOqL+9xt7FxH3kZMUBYyytG8odL0H2uzrFFsscRbDzYYxuquxl0HVN2WBzelJaPr2xHj8cr5dsYlGVl6/4G+mbFdm7fuKcef+DQmKWqOoPzE7n3qmHEHKbtMrwgiV98YzwGAc4b06fbefu9Vw5D0XTW7q7j5YX72LivgZDOCZ2XRokS5fSmVzVhfvCDH3D//fczePBgZs2aFbHvs88+49VXX+Xxxx/vzS6cVYi6zgVjspk2IjMsYmuQMMsiutb9jxyDHPlLY2RhMqMHpPDLf69G06Ff9pijXs9mMaDr4RWAQFDFZulZyM5uMZCfGcvbS4r5bG14QJUlgYI+sXiDOph6rqWXzDYQ5bCNdA8/2CSLA9Xr6vxbkCO/uroObmxYZ36TmGleRK1rxk5ke3ZCJ7AST9d1JGvPdfWC0RxOO4guvkc5BWiaToxF5oEbRuIPqaiqjtUkY5QEQho8/spGdpYeCpi/s7SEy6f3Zd7kPN5bFs7uMhslBMmAHgoiHuV+BgFdlFE1HUE+ut7S4fa4mikGf1BBFOCGuUUsXFvOht2HArPvLy9l5uhs5oztwwcrS/F5/Vxm6lkYVDTb8AR1kuMsDO/fn3inGatBQmx/P6JE+TJ4/SGa2gIkDTw5QRi1ejeEfEgpJ1aQ93AS7DLVLQri6HyQTYT2r8I06rIvfX5zoAXgjHJH6sAgGRiRPJTlB9cwOWM86fbUU92lcxpBlLq42x2ObrKzYEY/LpyYiySKCHIbuqYiGg6NLboSOMaYBKogsyLhMkaMvBbNZkbc1rMMgmi24Qtq2C0G/IeVxNotBiRJgMOcBB1WI6P7JzEgZzK+oIJBFrEYRARd73Tzu2Bs5LzdapSoa/Xzf0+vxH/YQqnNYuA335pArEWOjlFRopwD9Op64AsvvEBcXBzf+c53mDp1KjfccAM33HADU6dO5Z577iE+Pp7nn3+eb33rW53/3Xnnnb3ZpTMeVdUwCuA0SZhEegzAAFjNMpnJhyZJF07M5e9vbu10CdlX3sKgvO6twi0mGYtJJj8zhq37GzjY4OaCCTk9XmvysAxqm7ydARgARdVRVI2tpa2ohT3XnDtGz0M32rD2HdH9AZKMMSWXYHW4LtiQlIXWzQqcrkNAlXHjJGhwYO4zqNvmBKMZKS7thLr+KYqGpaDnoJZj2BwC4skTdYwS5Ug0TUfUdayyiMMkIaEjCPDFpsqIAEwHbyzez5C+iRjbg7lzxmajGawYk7KQHHEIcveCg+a+w1mz342uQ63fgGSP7fY4Q2IWoeZDjm9a7hjqmry4fSE8vlBEAKaDz9eV47AZWbujlpU76lELZ3U5ppOB57FwSyNpiXae+2AXFoOEoOtREcQox0VFpyjvyQnCKAc2IcakfCWx3C9LokOmulVBkAxIqf0I7V91XPdFk78FAQGb4cwc04YlDSbWFMOzO17Gp/hOdXfOaVSDDUvhpO53CiL+uH78/J+reeT59fz2P2vZ36AhOxLQQgEkWywAms+NZLEjGMzdNmPuM4gDTRovfF7Gd/+9m+/8fRtC4fQe+yQOmsNHm5uYPiqLFVsPZdhcODEXQzeZKpqmYxB0nCYJS3u50uG3k6pEztsDisbvnlsXEYAB8PhC/OHFDUQN+6JEOTfo1SDM3r17CQaDpKWlIUkSVVVVVFVVIUkSaWlpBAIB9u7d2+W/KF8fSRLRdbj/2hH8361j+ealg6lp9KAcFsH/aFUpC2b2IyEmcuCSJZF7rhxGWoINtzfET28Zw7VzChmYm8D4wWldrnXDBYVkJtuxmGR+essYrpnTvzM1883F+7nhgiJ2NJkwDJ7T5Vxr/3HIGUV4FAPxM29Cjk2JPECUSL7kPtzbvgj/aXGQePF38dP9YNtBQDMQf943kBzxR7wxMsnzfwCagl1twioGTlj6Z0hyEH/Bt7psN6bmYR95AaGjJ+dEiXLS6bAH7YkNu2oZ3DeR3HQn8yblEcBM/JxbcW1fRuIF3wAxUlRQjkkibuatYAzfn898XoXxvPu6TI5Fi4OEWTfSuvZ9AEyTbmDxLg93XT6UuiYfHx2lTx+vOkBRbjxtniBb6gyYhp3f5Rhj39FUiJmcNz6H5Vuq+O7Vw5GjWd5RvgLldW4kSSDBefQx50SguerQmquQknsvCwbCQRh3QMPt15AyBqC31aE1HPjS5zf7W7AbbYjCmVnXJ4sSc3Nm0ehv5rENf2VP0360HrJwo/Qu/iDETr4SQ0JG5A5BxDz7Tl5dWRux+T+LDiLPuYeW9R+ReME3OseWltXvkjj3m+GsmsOQHAnEzr6Nx98u7tyWGGshaI7HPPbyLv0x5QzG2m8UOWlOYu0mSg+2ATBleAYp8VZ8IY22gIonpH3lYInLF6Spzd/tvqp6N55utBejRIly9tGr5UiLFi3qzeaj9IAuCOwsb+Gf72zvfNBPHpZBYU6k1aXLG+Kp17dw+yWDaHMHqahzkRhrYVi/JAB+/+J6KttXAdMSbdx4QRETBqcxfWQmO0oaMcgSYwemUl7bxs//uZoWd1hfpjAnju9eM4K/vbGV0oNtvLVkP9fOKcQvXUjc4OnoJesQ0LD2H4tmicejhtNK3VIMKVc/RKiuFF/ZduSYJGz9RqJ43WiqSuLF92JIL8AnONDUo0+YdB08YgzJ1/0apa4Uf8VODHFpWPoMoGXlW3h2LAPCWTUJc+/Gb01F/ZputQFNwthnFGl3/AnfvnWonlYsfUcixqTh1np/Ah8lyvGi6+Dxh3rc7/Er3DR3ABaThCxCeb2X95ZV8u0LrkL0NZJ+w6/wV+xCaWvEkD0IPS6bdza2MmZAGoPyE9lZ2oTkjCH1mgcJVOwm1FKLKb0AU1oenv0bsAyeiZg7iiq3zMgsGyu2VpEQY8Ht67lPbl+IhJhwVsIXO1sYdtk8LAWT0UrWgaYg5IxCdCaRggWLJ8Co/smYpHD9fpQox0tFrZukGMtJ0WpQDmxGMFoQ4rta6p5IEh3hqV91q0LfpD5gshHavxop6cs5MTUHWs5IPZjDSbDEc0W/i/ms/Aue2PwP7AYbgxMHMC1zIpmO7sVUo/QOXmwkXPl/hOrL8ZVuRrTFY+s/mr9/XM7y7fURx1bVu/n9B7X87JpvE2yuIvXahwjWlBBqPIhucpBx+2P4ijcRaq7BlFmIlJxHudfM7DHZtHmCDOmXiMNqZM3+JiYOmoMjfzRi+QY0nwtL9gBUTytt7zzCjbNvZX1jkEum5jFhUDqiKFBW08bzH+6isTU8r87PjOG+q0cQZz2+n1LB0NHnryFFA9O555oUJcq5Rq8GYaKcfERRoLLJxyMvrI/YvmZ7NVOHZ3Q5vr7ZxyPPr2dQfgLXnV+ExxfAIEvc9/gX4YGgneoGD4+9vIEHbxnLH/+7kZw0J1fPLqChxcdfXou0uN59oJk/vbKJO+cP4XfPrWP3gWbW7qjhuvP6g66jJWSiaeBV1AgJGFXVaMOGnDoES9ZwNE2nNaAg2eMxjO2DomkEVB34citWmqbjxoqYPAhj+hBMwWaq/nlfhO5MqL6C2pceIu3Wx3Dx9S3ogppMUIhFHnAeBkHAr2jo0dreKKcpBklkWL9E1uyo7Xb/pKHpxFhkVFXD5dN46B+rUDWd1TtqKcyJY2CujEHqz7SRmawrbmDJ5/u5YmYB//f0ShRV455LCggt+w/V+9djSMpCtsfhL9uO6vdgHzufLaYiln9aS32zj0un5rNqWzX9s+MZ1i+JT9aUddunof2SWL+zFlGAa88r5L6/rkXXdAqycxFFgX3LygmESvnjvVPITrSiqvrXDrBGOXcpq3WRdBJKkXQlgFK5DSmtP4LYuxkmCXYZAahpVeiXYkRK649SvAZ97FVf6tpN/mbshp71mM4UEizxXFVwGQc9NZS2lrGjcTerq9dzad+5zMqeeqq7d86gaToezEhJhTgyB7GrvBlXeYhNxa3dHl9c1UaFx8S7q3QCSiOD8vKIjSlizdIarj/fwZK6XAQhj52LG9l1YD2CAP2y4rh0ah6p8VaeeX8nC6b3474n1/DwjYUYqvaCruHZsRyt3fSh/rXfMvamh6lpMfDk/zZz/QVF/OmVTRFlRsWVrTzw5DL+eN9UelZM7Eqc3YQkCqjdzA1NRgmn9XhaixIlypnKSQnCLF68mCVLllBVVQVARkYGU6dOZfr0nmsyo3w1VB2e/3BXl+1BRaOizs3IwuRutRZmjc7mb29sYdzANCpr3cydkIuiaqzdWUN9c7hmWlF1Fm+sZHj/ZJZsrGTCkHQ+WlnabT9aXAHcvhCXTevL0k2VXDgpF583iCQJqLqAjo4siqjdZLQoioaiHK5Ar32tH1GapiOoQVqWvdKt8K+uBPFsX4xh2CWElBMTMDm8/1GinK4IusZ15xWxcU99RNAVIDPZTm6aE1XVECWRN5fsjZg07j7QzO4DYXvoNm+QaSMzWS6JbNnfgK9dzDAvQSCwOBwQDtVXEKqv6Dy/bckL5F7ya57YXUd2qgNZEmlo8ePy1PDovVNZtqUK7xFp2fFOM5OGpuPyhK9XXNnS6QC3vaQx4tj/fb6Pb1w6EEnQUdSwBXeHWKIkiSha5LYoUY5EUTUONnooOMwhpdeuVbUTNBUpOb/XryVLAnE2iYOt4ftLSi9CPbARtWYPcnrRMc9v8reQ6+zT2908KQiCQIY9jQx7GuPTR7Pq4Hre2v8BDoOdsWkjT3X3zgk6nsc64PKFePTFDfRJc3LlzAL++c72LsdPHZ7B+l21rNkZXjzYvLeen90+joP1blzeIG9+URxxvNNmJDfdSVm1i35ZcQzJT2R3WRP5GTFIZWvwl27pcg10jeblr5Hd7ypGt2d8/+D6Uaiaxqery9hWHB5vPH6FdTtrmDIk7UvP+0yywPxpffnfon1d9l07pz8mWURTNQQBBFFE1XRkUeh2vhwlSpQzl14NwrS1tXH33Xezfv16JEkiKSlc5rJq1SpeffVVRo0axVNPPYXT2XsCdOcaqq5TUtX96sFLH+/mF3eMY0BuPO8sLaHNE6RvZizzp/dlT1kT37x0ME67kTXba9hT3oTJIHPVrAIUVeefb29D1XRKq1qZMTqLJRshxm6krMbV7bUAdh9oIj3Rxo9vGoPZIKFpOtsONPPx6gNoms6MUVkM7ZuIjH5CRXK7Q9SCBKuLe9wfqNiNfehcoslhUc4ldB0cZok/fGcyz32wi8376jAaJOaMyWbe5DwM7ccEVY195S09tlNc2cr4wWmkJ9ooPRh+/siSiOBv6/nimopRD3DhxFxGD0jh0Rc3hDPyzitk6cYKfnTjaD5cUcq6XbVIosC0EZlcMiWfHSWNFFe1UlzVyqSh6Xz/upE89fqWzsBPB/srW9hb0Uqcw8TiDZXUNHiYP70vibEWVm6vYfmWKkwGmXmTcslJdSBGBXujHEF1oxdV1UmJ691MGB0d9cAGxNh0hGO4vJwoEuwS1S3hsj8xLgPBEoNSvPaYQRhN12gJtJ6RzkjHQhIkJqaPwat4eXXv2xTGFxBj+voZslG6R5IE/Aos2ljJuh212G0G5k3K4/IZ/Xjho13kZ8Ry39XDefOL/ZTXuIh3mrlgfA7xMWae+t/miLZkSeS+q0ewuyxSZP7a8/qTlmhj6cYqSg+2IQgwdmAaC9eWkZ1kRqrrGgjpQKktIXe8kZzMZDbsruW9ZSXIksjssX24+aKB/N/TK/H6FbYVNzJ16JcvYdM1nfPHZpOWaOOVz/ZQ1+wjLdHG9ecXUpgVi6Zq6IJAbaufd5YW09QWYGi/RGaMzMJiENCipbVRopwV9Oovzt/85jds2LCB73//+1xzzTVYreHJhdfr5eWXX+aPf/wjv/nNb3jkkUd6sxvnGAJJsRaqGz1d9iiqxvrddQztm8B9Vw8nEFKpqnPz8ie7+calg9F0nV/+e01n5gvAln31jBmYyk0XDuCZ93aQGGthSH4iggA+v0K809yjwFhCrIWV26p57sNdfOPSQRTmxPPHlzd0ujPtLG0iO8XB/906BqmXvZt1UUZ2JqK0dF92IcemoAvRAEyUcw9d04kxS3x7wWAUTUdAwCgJ4Ylg+zGyKJAUZ6Gq3t1tG4mxFoyyRKsnSEp8+DmvqNpRrekBEpNiyWlTcHmC3L1gKMVVrWwrbmDngWbeX3GA6aOy+P51I9F0nVi7icdf2Uhx5aEg846SRvIzY7j7iqE8+uKGLn3adaCJd5cW871rR7KjpJGQqvHg0yu7POMmDEnjlrkDev05FOXMorw2vMjQ2+VIWlMVmqsBQ9HJyw5OsEnsqg7ruAmCgJReSKhkLaaJ1yGIPY+FbUEXmq7hPAuDMBB+L6ZkjKe0tYxPyhZxZcElp7pLZyWCAJ6QxgNPraDNE+zcvmFXHbPGZHP59H68vmgf6Yk2zhvXh+H9k9lT1syi9RXsOtDVzc9kkHjitU1cf/6hIOIlU/JocQV4+ZM9ndv2ljfz/vJSHrp9HB+vLEFzJvfYR9mRgM1u5Uf/WBMx9m0rbmBo30R++Y3xfP+JZWQkHf+9IOg6owoSGZyXgIaOKAgY27NddEFg0cZKXuqm3w/fNRGnWY66/EWJchbQq4XHCxcu5Nprr+W2227rDMAAWK1Wbr/9dq655hoWLlzYm1045zDLAgtmdO+sIIkCQ/om8ujLGzEaJB55fj0vfrybgXkJFFe2sGLLwYgfJx2s3VFDfIwZh9XAzNFZrNtVw7B+SfiDChdN6l7IT5YE+mfHsa+iBYDnPthFSNEYWRjpflRe62LNjhokqXdr4IO6Eef4+T3ud4y6gGBUkD7KOYqug6DpGAAZvYvwtaDDguk9O7acP74Pdc1eWt1+Zo3ORmjXMC1p1Lu6XrRj7jMI3WDHZjHy2MsbeeSF9by+aB+frC5j9phsfAGFD1eU8vsX1vP65/sormyJCMB0UFzZSlOrn5y0yIzK2WOyWbKxEkXVefb9HVx/QSGrt1V3+4xbubWa+lZfZ7+jRAEor3UTazdhMvSuSKZyYCOC2YEQk3Lsg08QiXaZVp+GJxC+16X0Igh4UKu6ljMfTpM/XIJ4NmbCdGCWzQxLGsyKg2vwhLynujtnJbog8OLHeyICMB0sXFtOYU4cBlnkYIOHZ9/fyZrtNSzbXNUl0wUgJ83JvopmKmrdpCbYcFgNSKLA0H5J3br/uX0hXv1sD7EOM3rBdKD7B79jwgIWb2vqdvFhy/4GGlr99M+OZcaoTEKh46+ZVxQNifC4K+l6Z7mRX9EiAjAd+AIK/3hnG1GJsyhRzg569ZevLMvk5vastp+Xl4csR7MPTiSKojG0XyJzJ+REbDcbJb5z5TA+XFGK2xuiuLKFb146uHOgctiMrNxW3WO763fW8p0rhhHvNJOXEctNFw4gNcFGjN3E1BGRP7IsJpn7rh7B20sOlf8EQir1zT7GDEzt0vana8sJ9nKtq6bpEJ9N7JRr4HBbTUkm4cK7CZriez45SpRzAEEATRBwB1UqGr20BVRUQUAQBHRdJy3eys0XFkW4xMiSwN0LhpKWYGPL/nruuHQw20sauOOSwRhkkWcWVsLMe5DjIu97Y0ou8RfchU+VKciK4bJp+Z0BkMZWP/XNXq6Z07/zWiMLk1m5tefn04qtBxlZGF7RFEWB+dP7UtPo6XSxqGv24bAe/Rm3cF0Fhl7+sR3lzKK81kVyL5ciaUEPavUexJS+CCcxCpjoCH/XD7aEVx8EZzKCLZ5Q8eqjntfkO/uDMACDEweg6zprqtcf++Aox01I1Vm9vefn8a7SJvplxWIySFx7Xn/694nj8ul9eei2cXzjssHEOcKumumJNu6/dkSnvsp/P9nFQ7eNY3B+YqdmWXds3FPHxKEZvL/ZhXn2nQjSYWK4goht/OXoibl8sKJ73UOAResruPfqETjMJ+53jCSJ7CztGmjqYEdJE8Go5mCUKGcFvRoBOe+88/j444+5+uqrkaTIya2iKHz00Uecf/75vdmFcxJR05k/LZ8JQ9KpqHVhMclYTDLvLS9he7uY2PItB3nghlEM759EIKSxv7LlqOKUuq5T1+zlt8+tAyDWbuIH14+kb2YsQ/MTuWJGAeW1LoIhFbNR5p2lxV1SRjVN73alOXxdAXq5FMCnGjANmEVa0QSU+gqQJOT4DAKilZDau5k4UaKczggCKAg8/sqmiAlgXkYMP7p+FEZRAF1nytB0xg5Ko6LWhSgIZCbbw/s0jatm9gdBZ0dJ+Pwf3TiKVneQfS0CQy97EM3dSKC5gfiMTHRzLG7dhK6DqOtcNCGH2aOzKa91YTJIpCXaMEkiU4ZlUFHrIiHGzNb9DT32X9N0xg9OIzneSnKclWWbq1i0viLiGF3nqM+4qIV1lMPRdZ3yOjej+if16nXU8rDw6Je1hz5RxNskRAGqmkP0SzG2lyQVoZRuQJ90E4Js7Pa8Jn8LJsmESTKd1P6ebKwGC7kx2ayu2cCM7CmnujtnJUcrqZEkkXuuHIai6vzr3e0RJUXZKQ5+fsd4VFXFYTVSWe+mxRUurVu9oxZNh29cNphVRwm663o4I2bYwExqJY3cmx5DdNWgKyGMSdkEJStuRTqqXqGm6cQ5TYT8oeN/8UfhWKVG0ZEqSpSzg14Nwlx88cX88pe/5Oqrr+bKK6+kT5+wmn5ZWRmvvvoqoVCIefPmsWPHjojzBg4c2JvdOicwigKVdS5eXbiXUEjFc4TLyKzR2RhEEDQwWWRc3gBjB6Xx+brybtsbWZjCM+8d+pxa3AF++cwa/vzdqYi6hlUW6J8Zy8/+vZrKuq6pm7IkkhJv5e2lXcVxZ4zMwigLqCfImehoBDSJAA6EpIGAjl+HaG5nlHMdTRD42xvbuqzAlVS18oeXNvCj60ciAWg6JgH6tZf+6LpOxyxV0jVEQWD2mGx+99w61u+qbU8LF2lxBzDKItecV8gMS1oXlwdB0zFLAv0zYqBdqFvXNEwi9Et3YjJJTB2R2VneeCTjBqXhtBn538K9NLR21ahKiDHjCyiMHZTK5+squmkBZo7OIhSKrjBGCdPY6scXUEjuRT0YHQ2lfCNiQhaC4eQGNSRRIN4mUdVyaG4gZRSh7FuBUrENQ273zkCNgWacxnNDrLZ/XD8+KP2UWm89KdbeDcadaxgkgdFFKazd2b1O39iBKRglkRc/3sXmvfUR+8prXfz+hfX8/LaxSLpOarwNURQ6g+xrd9aycU89P71ldI/XH9I3kW37G3h90T5mjMok54JCQkYnIBLUNFDBZpKYOCSdN7/Y320bM0ZmYrcYaT6BQRhV1RiQ23NmdkFWLCZZpNfdLKJEidLr9GoQ5vrrr+/897Zt2zpTbQ+P8t5www2d/9Z1HUEQ2LXr6DXJUY6NomiM7J/MBysOUFEb6WCUneJgRP+kQ3Z6msaowlTyMwJs2F3buaLQwZC+iXgDCi3uyO2BoMrW/Q2MLUxGVTVkUef2iwfxy2fWdFlxvva8/hgNImt31jCifzLjBqUiyyJVdW4mDU1HPcnplVFRsyhRDuELqmzc09W6HsIuQ96ggsN4KJuxp/tH03Ty0p0U9olnd1kTLu+hyWmMw8TEwYcCMKIooOigtltFG4RDmSqyLOJXdHR0DAIEAgpjBqTwyeqyLs+zrBQHmcl2lm6q5NJpffnXEZamogC3XzKI1z/fw5WzC9mwu67LM254QRJp8dbocyFKJ2W14cWE5LjecyvS6svQva3IuT3/WOxNkhwSFc2H7lHRnoDgTEYpXt1zEMbXdNaK8h5JH2cmBlFmS9125uScPNHkcwFB17lxbhHbSxrxHrFIOG1EJjFWI/6QysqtVd2eX1XvptUbJNZuxCgK3Di3iP+8v7Nzv6Jq1DR6mTO2D5+uKYs412KSuWxaXx7/70ZsFgPTR2YTUHQkHeDQXDQUVDlvXB+WbanqoiXWPzuOfllxX+9N6AGLQeLSqfkRJf0ARlnkm/MHIwtwlKTOKFGinCH0ahDmd7/7XW82H+UYyOg8dOsY1u6s5bO15QhCOANmzICUsC10+3G6DnajiDHBwoO3jGX51io27qrDZJS4cGI4Rfqp17d0e43yGhfjB6SgquF0/uwkG3+8dwpvLt5HycE2kuOszJucR4zdSJsnyKPfmcKSjZW8/OkeAkGVMQNTCKoaZpN0KCgUJUqUk4ovcPR0MLc3FBGEORqSrvO9a4ezZX8DH606QEjRmDY8g0lDMzCKoGnhzJvSmrAzW2W9m/REG9fOKSQ3zQECLN1awzvLinF5ggzKT+D684uItcr8361jWL29mkXrKwGYMCSNnLQY/vLaJlzeEN+7dgS//tYE3l6yn5pGL31Sncwem03pwVauv2AAOjqP3D2JxRsqWLm1GpNR4qJJuQzIiUeKBmCiHEZ5rQubWcZu6b1pUqhsE4I1FsGR2GvXOBqJdom1pX40PezOAmGBXmXfSvSQH8Fg7nJOo7+ZdNvJExA+lRhEA9mOTLY17ooGYU4wug52k8Qf75nCx2vK2jMnjVw6NZ/8dCeiruMPqkcNNpTXuKiSBHwBhcH5ifz6WxN4Y/E+Glv93H7xIKrq3fTLiqUgO5ZF6yto8wQZ2jeJScPSeW95CZOGZTB2YCr/fHsbP71lNN2NcBZZ4NffnMAXGytZsfUgBllk9pg+jOyfhKmXJMSE9hLdoX0TefOL/TS7AgzKT2TepFysBvGoZbVRokQ5c+jVIMxll13Wm81HOQa6DhI6kwalMqYoLFpplMSwBd4Rxyo6vPzpHvwBhQmD0xmUm0BlnRub2cCz7+8g1EOApCA7Fk07bJ+u4zRJ3HbRQAKKBoLAcx/sYOW2ar57zQieeW8HZTWHVrKXbKxi7Y5aHr1nMhYpak0SJcqpwGaWEY+yuhZj614foickXWd0QRLD+iai62CUwtabmhbOgFm9s5Z/vH0oY6X0YBu/+c9afnvnBN5YvJ8Nuw9l5azfVcemPfU8fPckkhxGZgzPYHhBMiu2VbNhV12EVsBjL2/kwVvHUpAdR/8+8dQ2eXn4uXX4gypWs8yj90zGgM4FY7OZOTITQRAwtNuCRolyOGXtory9JZarBdxotfuR+ww/qYK8h5PskAgoOg1ulWRHeDoopReh7F6CcmAjhn4TIo7XdZ0mfzOFcf1ORXdPCTnObBZVLMMb8mI19F5W1LmIpuoYRbhsUi5zx/dBEgSkwzIiLSYZWRJReng+O2xGfvfcOhZM78dbxfsZVpDEPQuGomg6z324i+VbDgKQHGdh4tAMrCaZ4f2T2FbcQG5aDPsqW/jFP1eRlmhH7EGXUFE0DMCF4/owfUQmghDOVAkGFXpyVToRiLpOboqd7141HFXTMEgimqqhRwMwUaKcNUTVSM8BVFVDAqT2f3eHJ6DwxYZKVm+v4b+f7eHVhXt5Y/E+Xvh4F5dNi7SmlSWR/MwYBucn0r9PHKqqI0kiRqOEwSAiCAKqoiKjI4nQ4gqQHGfFF1AiAjAd+AIKry3ciyiHlxUkSUSWo1/NE0XH+xm1343SE2aDxJThmd3uG94/CUs3S36CICDLYoRbUgeiKCAItD93wtabohg+PqjDcx92LTmNsRvR9LAWx5FNqprOv9/ZjqJDMKhiNkis2VbNnvJI94u0RBsub4CXP9nDSx/vZuHacvzBcJaP16/w5hfFSAYJgXDfxMNsQaNEOZyyGhcpvViKpFZsAwTEpJxeu8ax6Ai8VDQdVpJkjUGMzyS0v6tLUlvQjaIpxJjODU0YgGxnJjo6e1tKTnVXzlo0TcMsi8iH6boAmGWR88Zld3vOqKIU/AGFOIeJt5bsZ/rILN5dWowGePxKZwAGwu54b32xn5c+2c0Tr21GEkVe/nQ3tY0e8jNjuenCIoyS0DlX6vjvcIJBJTyn1fX2AEzvo2k6aOH5uxYdp6JEOes4oZkwP/7xjxEEgV/96ldIksSPf/zjY54jCAK//e1vT2Q3ohwnkiSwp6yZQXkJXDatLwcb3DS7AsybnEdI0Whq83PHJYN46ZPdXDQxj4I+seyvaMFmMYQzZGSJzfsaaGj10S8rjsQYM2ajhAzIAnzvupEs3VTJln31PfZhw+46bj2/L3bdTaBkO1rAh63PYDRLLD7t7HZh6C0MkoZZ8xAo343qbsaSVYRgT8Krm6OablEi0TSuP78QQYAlm6o6nczGDkzltnkDEQ6bGAuCgALUNHrZU95McpyFguw4TJKAAPhVneKyFqobPfTNjCUr2Y4DF0rdAUINlViTc3jo6gKeeL+M2iYvkihwx/k5jMySEaqX8sPRMlrqAD7c1MSH62o6r7u7vJmQqmESBWRB54GbRvPU61s6XZNkSeTKmf1Ys72Gnli7o4Y5Y7LZXtzI4L6JxNmNiNGbIcoRtLgDtHqCpMT3ThBGR0Mp24yYmN2jC9HJwGoSsZsEyhtDjOxzSIBYSi8itONzNF8bosXZub3RHxbudpwjwrwATqODWFMMe5r2MSxp0KnuzlmHKgg0tfnZUdKEw2ZkUF4CJinsxqdrGpdNzUdVdT5bW46q6aQl2vjW/MF4/Qr7ylu4enZ/7FYDTpuR8yfksmF37VEtnMtrXAzMsvOXOwYg1e3BqAewxaYiaeAr3Rouw8sYSH3QjGRxYDfL0TEiSpQovcIJDcKsWbMGQRDQNA1JklizZs0xzzlVabhRDqHrkBxr4YIJOTzy/LqIASw7xcGt8wZiMUn8+lsT+HDFAX79zNqI8y+ZkofJIPPa53sByM+M4aa5A0iJt2IBkuKszBmT3a1rUgfzxqUhHlhN9Sf/4vCUUEu/0cTMuh2PGg3EHA8GSUOq38vBNx8F7dCqjTEtn8RLv49L7T3HjyhnJqKmceN5/bliRj+8ASVsbW8QI2qUBAGCOvzy32uoqj90P5sMEr+5cwKapvOzf67GFwh/59ITbfziikxq3/kdmv/Q8TGOeH5+5Y/4yUv7ufuiXNKL38a7OvK5cvGkGzBPzODNFeEVTVkSDhN3B6Ogc8+Vw2hs89PU5keWRBpavJiMPQ9rZqPEvooWnv8onIkzvCCJuxcMRdSiq4xRDtGRsZka1zvPSa2hHN3Xipx3agR5DyfZIVPWFOnuIqUXEtrxOUrJWowDZ3Vub/SFgzAx51AQBiDTnsbe5q7OjlG+Hpog8vgrGyNc+URR4AfXjaR/ZgzoOqKmc9XMflw0KY+6Zi9xDjO/+NfqCKMIp83Iz28fx9tf7EeSRM4f16fHa84dnUpy63aaPvo7KjpBwL0MLLlDcAydSd3b/wTA0n8SZZnns7k8wBUz+kYDMVGiRDnhnNAgzKJFi47694mirKyMf//732zZsoV9+/aRl5fH+++/H3GMz+fjr3/9Kx9++CENDQ2kpqZy2WWXcfvttyPLh162y+Xid7/7HQsXLiQUCjF58mQefPBBkpOTe6XvpyOappOSaOO+x5d0WUEor3Xx2boypo/MorHGxcJuLKzfWVrCD28Yhc1iwOMLUVzZytLNVWQl25k2LAMAJaQyc3Q2C7uxhzXIIucPdtL04q+77PPtW4c5dyhS/pRo2cBxYNY8HHzzD6BFCq4Gq4txrXkb49irCarRAGiUSPR2q2iz1RDecET9uS6IPPve9ogADEAgpFLf4uNvb2ztDMAA3DYrg8CHf4wIwACoriakpX/nm3PvICNQTHB/ZAAGILD8BWZf/is+WCsRCKlMGpqOWRYj0rIbWn088NSKzr9tZplvXzGMJRsru319U4Znsmp7deffm/bWs2xzFTNGZJx0h7Yopy9lNS4sJgnncWohfVmU8i0IFucpE+Q9nGSnxLaqQKc7JYBgtCIm5xHauzIiCNPga8IimzFKpy5751SQYU9ne+NuXEE3jnPEGaq3kSSR91cciAjAQHg++ocX1/PkD6Zjbq9L1VUNoyzQ7ArwzHs7ujh1tnmCPPrSBuZP78ff39xKdqqzW40zWRK4fGwCTS//vkt/fKVbMWUUYM4agL9iJ6E9y8nJHMzLB0RKqtsoSHdGBXGjRIlyQjkjhTf27dvHkiVL6NOnD/n5+d0e88tf/pKXX36ZW2+9laeffprLLruMJ554gr/85S8Rx913332sWLGCn//85zz66KOUlpZyxx13oCgnp+bzdEAUBcprXASC3TukrN5WQ5zDzKJuAigdLN98kJ/fPpY5Y/tgMkgs21RFUpwVXyjcZkjTiXOYuGhSbpdzzxvXB3XP0h7bdq19D5PuPc5Xde4iSSKB8p1dAjAduLcuxqhF388ox49fUVm7o2u5j8kooWo6bZ5g5zZBgHS7iupq7LatYE0pA9Nk9K0f9Xg9cf9ShhUkkhxn4ZrZhZ0BGEkSURAIKho/vWUMP7hhJD+5eTT3XDWcpDgLF4zvuhKanxlDv6xYthdH9ufdZSVhEfEoUdoprWkjJc7aK5m6etCHWr0XMTnvtMgETo2R8QR0mjyR44WUMQCtvgSt5dD93uBvJMYYc7K7eMrJsKcBUNx64NR25CzCr2h8tOpAt/s0HTbtqY/QZTFJArnpzh4zqg82eEiMDbt5fba2jFvmDexyzLhBaYilXbWOOnBtWYRt4MRDG7Z/xE+uKaLVE0QXBCRJQBMEvIqGX9WJjhpRokT5OvSqO1JvMWPGDGbNCq/OPPDAA2zfvj1iv6ZpfPTRR9x2221cd911AIwbN47S0lI++OADvvvd7wKwadMmli9fzr///W8mTZoEQG5uLnPnzuXTTz9l7ty5J/FVnToEQaDZ5e9xv6rpaLpOqyfQ4zGtngDLNh/E6w/xwE2jeeylDYiCgA7sLG3kqde3UFHr4qpZBfzfbWNZu6MGjz/E5KEZFObEEvr0k56v721F0KPD3ZdFEEBxN/e4X1eCEH0/o3wFFEXr1kHJbJRwe48oaRBF9GDPzxUAAwqqt63H/aK3mcun5RPrsHTaW+uCwOaSRp77YFd7GZLApKEZTBmeQTCksnhDJfExFh64cTTrdtUSDCmMHZhGUFH50yubulyj1ROEHpwxopybHKh2UdQnrlfaVqp2ADpSUtcFiVNBqjM8DTzQGCLBfmhKKKX0JWQwE9q7HNOYBQA0eBtxnkOivB04jHacRgfFLaVRXZgThK4TkTV5JI2t/oggparqqMrRn9EdLp4rt1ZjMsg8dNtYtu5voKHZx8iiZIb3Tya0aHmP56veNkSjJeLvkrJGPtvQRFF2PG3eAH9/cxvlteFyxeEFSXzzsiHYTWfkenaUKFFOMSc0CFNYWHjcKzuCILBz587jOkcUj/7A03UdRVFwOCInCw6HA/2wus6lS5fidDqZOPFQ5DsvL4+ioiKWLl16zgRhVFWjb2Zsj/sTY814/SGKchKoaew+g6IoJ57dZU1sL26kotbFnZcPwesP4Q+o/PivKzrTOF/5bC8Wk8y4QanccfEgBE0jGNIJZQ6DPd2vUJizBqCKRug+sSPKEaiqhiV7AK097DckZKCJBqLLOFGOF5NRItZhosUVGZB1eYIkH6GfoagaqjmGngIcgmxEtjoxZg3Av69rORKAMX8UGYl2AgEFTQtnwGwuaeTx/x4KpiiqzhcbK6msc3PlzH58sKIUCNubDumbSEKMGVkSePSlzd1eY0BuPJJI9H6IAkCzKyzKm9oLorw6Omr5VsS4DASD+YS3/1WwmUQcZpHShkhxXkEyIKX1J7RvBcZR8xFEkXpfIwVx3Wcfn+2k2VIobik91d04a5AlgbyMGEqqup+pDO2XiHJEhqLdakCWBBS163giiQJG+ZCL3+INFazfXcMT90/DIEBQhcde2sido4bBzu4DMebMQoJ1ZYfazBjAziofB+vd1LV4+fWzayNKkjbtreeBp5bz+29POjNXtKNEiXJKOaHPjZkzZ5Kenk5MzKlNV5Ukifnz5/Piiy8yYsQI8vPz2bJlC++88w533XVX53ElJSXk5uZ2CRzl5eVRUnJu2RHG2owMzk9gW3HX0oGrZvVn2aYqLpiQw8qtBwmEIqMhDquBQXkJvL5oHxCup7dZDKQlWHnlsz1d6mh9AYXFGyrplx3HlCFpfLG+nCFpOVidiahtDZEXFyVip16DR4sOcV8WXQfBmYwxNY9gTdfvcdzMmwkIVqK/OqMcL2ZZ5Oa5A/jTq5EZJZoOTa1+Jg5JY8XWQ5orX+xsY9bA6QR3dNUHM4+8GLdgI3byVdQUb4wQkAaQHPGYc4bgOWy1NKDqPPdBV3trgP2VLai6jt1ioDAnnjiHiZpGL2t3HmBw30RS4q3UNkUGkUUBbpo7AFGP5sFECVNyMJyZlZbQC0GY1lo0Vx2GwiknvO2vQ1qMRGl9sMt2OWsIgfItqFU70NL70xpsI9Z07pUjQTgIs6xqFSE1hEEynOrunPHIAtw6byAP/n1ll33ZKQ4yEm2IkoAoiITa55xmWWDe5Hze+mJ/l3Nmj8lm9WF6XwBXzSxA1HQUXWf/wTa2FTfQOqkIZ0wySmtdZAOCSMzYedS//1T4T8mAMOQiFv97D+eN68P7y0u71YRpcQfYsq+esUXJXYJGUaJEiXI0Trgw7+9//3vmzZsHwI033sidd97J+PHjT+RlvhQ/+9nP+NnPfsYVV1zRue2b3/wmt9xyS+ffbW1tXbJlAGJiYrqUOH0VDq9nPRaSJEb8/1Rw71XDeXdZMZ+sKScQVElNsHLThQPISXPi8YVYvrmSh24by8uf7mZHSROCAMMLkrl4Sh7/eify/dpf0cKU4RnsOtDUw9Vg0+46Jg5OZfPeej5e7eHnV/8Q4+Y3Ce5bC7qGMS0fecIN+EyJSMLple55OnxeRyOAlcT5P6Rt1Zt4ti5GV0MYEjKIm3kzJOYh0P3383R/XV+H47kfz2R6+zMckp/AD64fyXMf7KSu2YfZKHH++ByG909ieEESGckO3l9egtevsGR7A7Nvugx7XDLe9e+j+d1ItlgsYy+nzFxAjEshNSaB5Ot/RevCfxM4uB8EEXO/0cRNv56QwYl8mBCv16/Q1NZziVNI0fjRjaNYubWaumYvfbNiuXx6X95fXsLPbx/HK5/tYfmWg6iaTm66k29cOpjkGBPtcqTdtnk23xOnitPhXuzpcz1Q24bDaiDWceId+UKVWxGMFqT4DIRTNKZ1JBKH/x/+Iz3WwIr9XnRBQBYP3QdiQgYhRyLK3qW0JobNCuItMUjSqdeyOV46MqjD/z/+H8sZjlRUXaPKe5C+cadHKdmJoGMN8lQ83zITrfzyG+P51zvbKa91IUsi00ZmcsXMfmzYU8fanbUkx1k5b1wfYq0GRAEumphDvNPE64v20eoO4rQZuXx6X/pmxvLb58IZlQkxZq47r5Bh/RIRBDAYZDbvrQfgD2+V8otrvo9p69sE9q0BTcWYmkvclKtxbfoMzduGMaM/wrjreOrT8KJjdqqDz9f3rIm4YU8dEwannpT37GwgOqZGiRLmhAZhzGYzfv+hCfLatWsjgiAnk0cffZQvvviCX//61+Tk5LB582aeeuopnE4nt99+e69fXxQF4uJsx32e03lqrYNvvmggl07ti6LqmIwSwZDKD55Y1qlGv3TzQeaM7cPNFw4kpGis2VHNH17cgMcXqQeRkmDDYg5PZA8X6zycpDgLdquJxFgL20sa+f4zu5gzajqT5l2CIOjsqg2weaWXe64247Cenm4Mp/rzOjo2jHNuIW7ifFBVBKMZ2R77pc48vV/X8fNV78czmd78DJMSbAzKTyQQVJAlkViHCUN7Kvg1c/ozc3QWZdVttLqDPPbmPpzWdC6e/mNsRoEGn4ZLt/D256X88IYUnLEOiHUgzX8APehDEEVEsx2Tzc6RryDY5OkxHX1gXgIGWeRn/1jVqVuzYXcdH64s5fvXjUSWBb59xTBunDsAVdexmmRi7F/+h/bZdk+cKk63e/HIz7Ws1k1WigOH48R+3poSxFO5E1NGP2y2U1+KZDYfGlNzU3W+2OOlOSCSlxx5T0gFo2jb9Bm+kZMByExMwW48c+8Fm+2rBddstkwMe2RqgjWMjjt7dGE6MsFP1fMtIc7Gb+6cgC+gIokCqq7zwJPLaGo7VPL60aoD3HPlMCYPyyDOJDNvcj6ThmYQUlQMskSc04yu6/zle9NRVA2jQSLeaY7Ick9NCD9zmtr8fP/ZXcweMZXJF81DFHTK2zSyjQnYxl6HPOIq1pe4eOvVys6Av8cXIs5h6jLP7SA5zorzBD8vzgWiY2qUc50TGoTp378/zz77LKIodmaYbNu2DZPp6IPenDlzTmQ32Lt3L8888wx/+9vfmDFjBgCjR49GURT+/Oc/c/XVV2O323E6ndTUdHX6aG1t/dolVZqm09b25R1oJEnE6bTQ1uY75VbMMiBLoKkq/3hrW4QdYIsrwGsL9/K/z/fy8N2TeHdZCfoRv4cMski/zBgEVeXy6X0j9BsO57yxffC4/Vw0KZcvNlbiD6q8u7KKd1dWdR7z05tHo4UUmpu7H/xOFafT53VsrOFF/hDQ7DnqkSfzdZ3MH2LHez+eyZysz1AAzFJY78V9hLC3zSCyv7KV1xbu7dy2YU+41FASBX56yxiMBgmzQaS58ztpBLn9h2EQvMGu31WjKDBtRBYL15V32XfJ5Dwef2VTF+HgQFDl2fd28ItvjMfnDWAQwCDQ/lw5tgvemXWvf3VO1v14utyL3X2uqqaxt6yZCYNTcbl8J/R6oaqdaCE/xOfg9Xa/MHEyEMVwAMbvD6K1f51jTSCJsLnERZLlCFv65EIQFuLdvASjZETzC7gCJ/a9ORmIoojNZsLjCaBpX+0+TrEls716L5NSej+7+2Tdjx3W5Kf6+WaWQNV1Hn91U0QApoMnX9/CgNx4rIb2LAoIZ2TpGm2t4edJeO4qgKbR0hL5jBlVmMx/PtiJpukEgirvr67i/dXhuebl0/vy2dZ9jCpMITHWwr8/2RZx7hcbK5k9Jptn3+9ev3LW6OzDxrEox+JMHFNPp4WDKGcPJzQI89Of/pR7772Xn/70p0A4wv7888/z/PPP93iOIAjs2tV9jf9XZf/+cL1oUVFRxPYBAwYQDAapra3FbreTl5fHqlWrOgehDkpLSykoKPja/fgq9aGqqh33eaIkEFB0XL4QAmHxMrMkfu2HW1CH9btru92n61B6sJVpIzJZvKESCIt2Xjoln/FD0nB5Q6iqzqC8BM4fn8PHh1kRigJ8a/4Q7GYZRdGIsxm5dd5Ann1/R0RA56JJueSmOQn2YJ19LCRJwKx7wO8GXUOwOPALVhT1xKVSf5XP60zgbHxdZ9vrORZf9TMURYGQBh6/QkjVcFgNmGQB/YjsE0EQUAFPQCEY1MLPHVlEb/+BM2dMNnvLm9i895DOkyyJfPuKoSzfXMV3rx6O0F6v320/2p9rkhbELvoh4EE0mrl1TjYNLV427zvUrsNqwGySe3TbONjgwesLIZmkbvd/Gc7Ge+JUcTq9j4d/rmU1LoKKRnqCDbWbbKuvQ7B0C6IjCd1k77xHTg3hH7GaRmcwQiTskrS3xs+MwiO0cCQTUlohCWU7iC/Iaw/cnIkKSuHXqmnaV/5sUyxJFLeWnlbf369Lx+P3VD/fBFHEp2hcODGXS6bkU9fk5a0l+2loCQf4NU1nX0ULg3PiOrVZRBGMQggp5Eb1+5AsNlTZjl/t+pw3G0R+dMMo/vDi+ohMyuEFSeRlxFBR5ybGbqK81sXFk/N4d9khPT2nzcSIwmT6pDkJhjS8/hDvLC2mrMbFt68YitMqn1XfiZPFqf7ORYlyqjmhQZjBgwfz6aefUl5eTmNjIzfccAPf+ta3mDBhwom8zDHJyMgAYMeOHaSlpXVu3759O4IgkJ6eDsCUKVP461//yqpVqzr7WFpays6dO09KydIJQRTYU9nGk//bjKvdItZpM3LPlcPIS3PQrZ/sl0AQBQJ+tUuWy+GEFI2bLijiwgm5lBxsZUBuAs9+sINXD1v9HlWUzJ3zh3LRxBx2ljRhNEr0z47DJAmdo7+g60wclMKowmR2lzWjqBpFOfFYjRLC0TpwFGRRw9hWQf07f0Jtt2sWjBbiZ9+KKWs4gajQb5QoXRBFgRafwiMvrKe6IbyyZ5BFrpzZj+kjMhF1vfM4n6Lz6EsbKG53txBFgfPH9WH+tL6ImoaoaXz78qG0eUPsKW/GbjGQkWxH0zQG5MS3W053f3/rgsC20mZi5QBJpR9Ru3Npp626Kb0vP1lwHxWeIvZWtBDvNNMnzcHB+qOvRKpf8VkY5dxhf1UrkiiccGckzdeC1liGnD/mhLZ7IsmIk9l1MNhlUQpAzhmBtXI7g33ntkVhii2ZDXVbaAm0nrMCxb2BJgh8tOoA7ywt7gyQZKU4+PYVw3j6rW2dY1EwpHZq2IgiWAUvTR/8lUB5hyahgLlgLHGzbsatHFHyp+n0y3Dy5Pens7+yBZc3RF56DJquYzHJ3DZvILsONBJvNzF1eAbnjevDrtImkuMtNLYF+NGTy/H6w0H+OIeJe68azv+zd9fhcVznAod/M7OzJFgxWWBLMjMzBxxmbsPUNGmSwk1TSNukbdo0baANNw03aZjBie2YmVG2JVmWZTFreWfm/rG27LVWRll43vvk6fUOnVnt0DfnfF+vpAhiIq24XV5R5kAQhBPW5k+iJpOJ7OxssrOzueSSS5g5cybDhw9v02243W4WLlwIQElJCU1NTXz99dcAjBs3jiFDhjBkyBB+97vfUV1dTWZmJps2beLFF1/ksssuw2YLjkMcOXIkU6ZM4Ve/+hUPPPAAFouFJ554gv79+7f5EKnTQZKgzunnL6+vDgmWNDh9/PnVVTxx33SiTvLNr8uvs3ZHObnpMezeVxd2nqE5CegBjbgIlbgBSTzzwSbW7gjNOL9mewXPfrCRuy8bxviBSRiGEXzwOiK4IhnBoQ2j+8YDUrAXz0kGYABsWiP733kEtENvxg2fm+ovniH5uoeRIrNCypULghCsPvSb55fRdNjYd39A561v8kiIsTH6QNlQn27w+3+vCKk2pOsGXy7bQ4RN5fyJWWgBHdkwiLGZmDQo+bD59APngfBtkCSoavSyfvt+rozdjHfr96Ft3L+bqvcfJf2K35IwKLn5nJKWEBHMKRAm2OKINBNpU+mab/CF9rKzuI6UODumNk4Yqe3dDIoJOT6zTdfbljJiVVYVeiirD5AaE1r9R45JpdyiMqKigo4bSNXxUuzB5MR7GooZkSiCMG1BMcks21TKBwtCKx4Vlzfy5NvrueOSofz1jTUA9M+Kbe7FZJF8VH/6FL6SvMOWMvDsXEGdYiJy1s14/Eccx7qBWYIhWbFIktQccAz2GjcYmXPY/aciMW5AIiU1bp56J3RIfW2jlz++spKnfzoj2APT1XL4lCAIwrGc1tTUjz76aJsHYACqq6u59957uffee1m1ahWlpaXN/961axeKovD8888zc+ZMXnjhBe68804+/PBDbr31Vn7729+GrOvJJ59k0qRJPPTQQ/zsZz+jd+/evPjii5hMXaCnhCzzwff5YWMVugGfLSlEPombSZMq8/3afXy1bA9XndkvOMb2CNNH9iLSeug7cnkDLQIwB63dUYHLp6Fpeqtvvg/SNOOUh1Gpqoxzy/chAZjD1S95F4vck28lBaElRZHI21sXEoA53H/n5uEJGMEgSZ2nRbnngz5fUojbH3oMa5re/N+xYp+GJPPuvJ2cMyIW3+bvws7jry4BV23IOcWiSFx7dv+w8995ybBg7ztBaIVhGOwsriM9sW3H/huGTqB4E3J8JpLSee8r0mJMyBLklbW8Nrr9HjbYVeIbalGr93VA6zqHKHMkkWoERQ2tV8oRTow3oPPe/F1hp9U1eWly+4l3WDlnYhY29dBLRcnbeEQA5hD3jmUovqZWt6nrRvO14/D7zSPvP/2awTvfht9GQDOYt6ZY9LAUBOGkdd47gqNIT08nLy/8ifGgxMRE/vjHPx5zXVFRUfz5z3/mz3/+c1s1r90ENIO95Q2tTi8srSegGyccadN1yC+pp7LOzWdLCvjNTeP5esUeduypJTrSzFnjshg3OLl5aALQ3E2zNU63H1tk+1Q4kg0Nd1lBq9P9VfuQdT+gtjqPIPQ0siyTX1LX6vTKWje6YSArEiVVrQ/9cXsD+PwaZvPJ9cIL6Dp7yxoxE42htZ6Q219XjpyW1hyEMXSD6SN60Ts1mv99t4vyGie9Ux1ce1Z/EqItXSYBoNAxKurc1Dt9pCdGtul69coCDE8jpr7tOyz7RJlNEqkOE9vLvMwYEBqIqvHWUWRV8dmiiNy2mNqp13RQKztesj2Rwvqijm5GtxHQDOqbWn8pVlbj5J4rRpCeGBEyPD3QVNf6Sg0dzesCa/SptU03KC5vPZiTX1KPP9Czh+gJgnDyumQQRghSFYmMpEj2ljWGnZ6ZHIVJltBPMAmdLEOftGjW5VWwaVcVu/bWMX1UOtec1Z8mt5+C/XVMHJwcsozdevSfUoS1/QIeuqSgJvfBXbgx7HQ1Lg1dUsXIBEE4jK4b9ElrvYt9QowVWQrOl5rQem8Bi1nBrJ58AlyTLJGeFIVfUlEVU6s92lRHEr4j3kLKhkFOShT/d90odN3ApMhIhiGGHgrHtKOoFlmC9KS2DcL4izYg2WORImLbdL2nQ2a8yoa9HjTdQJEP9Ryr8dSAJOPOHIwjbxlqzX78cWkd2NKOk2xPYm3FBnRDR5ZOa2fyHkGRJaIjzDQ4wwdi+mXEkpMahd8fGuwwRRxtOJiEYjn1vE6qItErMaK5VPWReqdGo5oUul6tMEEQOgNxBenCDF3n0hm5YadJElw0NQf9JN7+Bvw6s8ZkNA9DcnsDfL18D899uIk3vtrOzFEZHNmz36YqDO+bGHZ9k4enEWlrv3if368TOXQmyOG36Zh6JT7ap1eOIHQVmqYzsHdsqwHVq8/oj0WRMQxIirGRGGsLO995k/pgU+Vg+dCTIBlw5ey+zN1Yh2XwrLDzmGJToZWHWl03kA0DkwQcyD8jCMeyvaiWlHg7llMIIB5JdzegV+SjpOS2SHbbGfWON+H2G+ypCu2BVu2uJcocQSC5DwG7g6jN8zuohR0vNSIZr+ajzBl++LVwYmyqzGUzw9/HRkeY6R0mAANgWKMxp+aEXc7abzyaeuhFgSRJyPKJH38ycPWZ4Ye4KrLEmeMyQ4KVgiAIJ0IEYboww4DYSDM/v250yINThE3lgR+OIfoUAh92VeahWybgOGwIkcWscOelQ0mLt7fI7SJj8OPLhjEsN6H5s/6ZsTx8+0Rmjk5nTV4ldZ4AejvdiHpM0SRf+Stk+6HuqJJqIW7O7ejRvY6Zm0YQeiKLIvHHOyaFBFhMisQVs3IZ0TeheUiPWYbf3zqBzOSo5vlkCS6flcvZE7LYU97E6p1VVDX50CSJEznsDcMg0WFlYE4y1b1nY+k/CTi0AnNSFklX/Ao3bVvBRui5dMNg255aMpOijj3zCdD2bgTZhJyQ1abrPV1SHCZsqsSWktBEo1XuaqLNUSDJuPqMwFJRiKVsdytr6d6S7IlISBQ2iCFJbSEQ0Jk8NJULp/YJCZSkxkfwyB0TsbaS19BrmIm/6GeYe/UL+dySM4rY2TfiCSjIsoTfgILyRtbuqqLOfWL3oLpukBJr467LhmE5bHhtdISZh24ZH5IXURAE4URJhnhNeFpomk5NzdFLph7OZJKJjY2gttZJIHBivVdkRcIbMGhw+ZGAKLuKRZFOOdBwcL1Nbj+abuCIMB91vZIULDXo8gaT8Do9Af74yirc3kPDCUb0S+Duy0cgt1YapQ0psoQNJ4anEXQNye7AK9nxa6ceCDqVv1dn1p77lZjYtg88R3Oix2NXdqp/Q0WR8GrQ5PHj9+vB494kYRwZeD1wg+vyBPD4NGKjLLi8AX7/0grqmg49xPVJjebBG8eiYpxQwTNZlvBqBoruJVLygLcJ2WxFVyNxG9Z26+HSXY/1I7XX8dhZjsXD/667iut45LU1XDO7LxltNBzJ0AN45j2HFJOGmj2mTdbZFmRZxm4343L50MNch7/Y1ESTV+ehC4I9Ww0DXtj0KjkxvRkY1w8Mg6hN3yEHfFSedQd04mTDh1MUiagoG42N7uYKOyfrvzvep29MDtcNvLyNWtdSex6PiiJ3+PlNkmU8AZ0Gpw+LWSHCYkKVOep9rCwHqyRJviZ0rwvFGommRuDRVCRZoqzWw8P/WRlyDzosN4GfXHli96DSgWtRg9OHIktE2oL32LIs9YhrQ1vritfU9rxfFXoO0ROmG9A1A1WC+AiVuAgVVTr6hetE1xtrV0mINB9zvYYBkm4QocpYLSYefjn04gewYWcVny8pQDGd/p+ephs06Xac5mSc1jSa9Ig2CcAIQnemaQYmDGKsJhKjzJhlWgRgIHguUAyDKItCYpQZMHj45ZUhARiAwtIG/v3JlhPuBafrwfOPrFhwyQ5ctl40KfG4dIsYYiS0qS0F1ZhVmbSj5Do6Udr+HRheJ0pK3zZbZ3vISVLZVxugqil47Xb6m/BqXhzmA71KJQlX7hgUZx2RO5Z2YEs7TrI9iYL6PR3djG7F0HUsMiRGmYm2KCgYx7yP1XVwa2ZcShweezpOOQaPFsw/6NUMfv/yihb3oJt2V/Hp4vwTqhxqHChtnRBpJtbedvfYgiD0bCIII7Q5WZbYVVyHN8w4XoCvVxS1KGErCELXVt3gbTWB4ert5XjFMS90Uut3VdEnNbrN8jsYGAQKViPHpCLbj5ZAtPPpk2BGkWH93uCxXOmuBsBxWKUZLSIWd8ZgIrcvwVRb2iHt7EgpEUmUuypwB0RK1s5IliXy99Xj9YW/B/1m5V68XaQHhiAI3ZcIwghtTpYlKmpdrU73+DQ08RZBELoNSZKoP6IHzOEMg1aDsoLQkWoaPOwpayT3KJXBTpReVYTeUI6SOqDN1tleLCaJ3vEqa/cEgzAVrirMihm7EpqI2501FC0iltgVHyD5Wz/2u6O0iBQMYE99cUc3RQhDliUq6lq/B/X6NALiHlQQhA4mgjBCm9M0g/6ZrZfjTIq1oZ5k5RRBEDofwzh62WqbxYTN0jVyRwg9y5odFSiyRE6v6GPPfJz8u1YEy1I7kttsne2pf4qZgio/VY0Byl2VxFgcLas7yQqNA6cgu5uIWfkxJ5TwqYuLsTiwKlbyxZCkTknTdPpmtH4PmijuQQVB6AREEEY4IaqqYDabUI4yntYwDJJj7aS3kuDwhvMGYW2HnDCCILSfCIuJEa2Uqb9sZi62NjjmD51/xA200DaWby2jd0oUVnPbBAn1mn3o1XswpQ/uEmWpw8lNNKMqsLzATZmznDhrTNj5dHs0TQOnYCndRdTGb3tMIEaSJNIikkUQppMyDEiOsYVU7zvc9ecMFPeggiB0OHEWEo6PJOEOGHy1ci//+XI7Gwuq8SOFlBQ8nEmCh24ez8ShKRycJTbKwn1Xj6R/hqPLZEQXBOH4yIbBjy8fxlnjMzEdCNJG2FRuPH8QM0b2ai5vfVIkCVdA54uVRfzny+1sKqwlcJTzjyAcj/2VTeSXNDCod1ybrM/AwJe3KNgLJi69TdbZEVSTRL9kM0t2OXH5PcS2EoQB8Men48wdS+SulURuX9x+jexgqZEp7Knfi6aLYZadjiwR0Azuu2YkE4YcugeNibJw71UjGJgVK+5BBUHocKJ/uHBMkiyxY189f3tjDQeH0c5fU0xctJU/3TkJq9LyBZhhGJiAOy4ays0XDMHjDWBRFSyKdGoPY4IgdFqKYXDtGf24dEYuPr+GRVWwmuRTO+Zlie1FdTz+37XN55n5a4pJiLHyxzsmYZF7zAt4oY19u2ovVrNCbq+2yQejV+SjV+9FHTCty/aCOWhYuoWt+31ENyUSb219aAeAt1d/5ICPqK0LAYmmQVPbp5EdqFdkCkt1H/ua9pMVndHRzREOkCSJ7XvrePyttZhVhVljMvjlDeOQJMhIisKuSiIAIwhCpyB6wgjH5NUM/v7WWo7MY1bT4OHFj7dgSK3/jGQMUuIjcNhMmDBEAEYQujld0zFLEGlWUCVO+Zj3Bgz+8fa6FoGWqjoP//lsK0YXf9gVOoY/oDN3ZRFD+sShtsHQBEMP4Ns6Dzk6GSkmrQ1a2LFSHSaibD7qavphUSzHnN+dNRRX7+FEbf2eqM3zu31kNMmeiCqb2FVX0NFNEQ7j1YPXC90IFoH4ctke/vzqKv70yipe+mSzSMgrCEKnIYIwwlHJskTB/gYCWvgL14ZdFXhE1RNBEE6Dg+XuW6umtmZ7uSg1KpyUpZtLaXT6GNUvfB6jExXYvQLDVY/Se1SX7wUDwR4F0Y5S6hvjKa8/vmXcWcNwZo8mcsdSojd8060DMYqkkBqRQl7N7o5uinCALEvkl9S3er+6Lq8Cb6D7/iYFQehaRBBGOCpJApfb3+p0w0CUmxYE4bSQJAmXp/Xzj24Eq7EJwokIaDqfLd3DwD5xxDusp7w+vb4M/65lKGkDkSNiTr2BnYDb78ZkKcFu0fh++/Ev58kYRFPf8dh3r8ax5jMwum+QND0yjd11hSIvTCchSRLOY9yvBkRvbEEQOgkRhBGOStMM+mbGtDo9Jd6ORVXar0GCIPQYmqbTP6v1fBS9EiOxmMX5RzgxSzaXUlnnZvaYzFNel+H34F37CZI9BiV9SBu0rnMoc1UiSTAswyCvVGJv9fEv603rR9OAydj2bMKx6tNuG4jJjE7Hp/sobNjb0U0RCF4v+mW2fr1IjY/AKu5XBUHoJEQQRjimCIuJKcODY9yH5MRzxey+XDIjh7SECG6/eCgWUS5WEITTJMqmMnFoSovPJQl+dOlQzIqMLkkoiricCcfW5Pbz4cIChmTHkZoQcUrrMnQN79qPMXxOTP0mIcnd5zdY6iwj2hJFbrJCfKTBlxvgRDoR+JKzaRo4BVvxFhyrP+uWQ5MSbfHYTFa2Ved1dFN6FFmR0QBJkTly5F+U1cTkYS1zMkkS3H7xEMziflUQhE5CVEcSjkk2DG6+YDCXz+rLsk2lrM0rx6IqXHN2fzKSIkWyXUEQThvZMLjlgiEM6hPPxwvzqWv00j8zljsvG4bL7efZjzZTUetiQFYs503OJsIsY4ghkkIr3v5uJ/6AzswRvU5pPYah4V3/abAa0sAZyNaoNmphx/PrAcpdlWRFZSBLMCEXvtoIC7bBGSfQ2ceX1JsmwyByxxIMk5mGkXNo8dTchcmSTGZUOluqt3NhzpyObk73J0s0uAN8smgne0ob6JUYxSUzcoiNUDlYOUIyDG46fyCD+sTx0cLd1DZ46ZcZww3nDSLJYRX3q4IgdBoiCCMcF39A55H/rKS63tP82bbCGkYPSOLOS4aidMO3XIIgdA6yrjN9WCrjBwV7xCgyLNtcxsufbW2ep3B/A9+uKuZPd04i2WFBF4EY4QgrtpaxfGs5547PJNKunvR6jIAX77pP0Cv3oPabguxIbsNWdryypnJ0XSfRFg9AfCSMzIJluySSHQZDT6Aisy+5D049QOTOFehmG01DZpyeRneQPo4svt4zj1pPHbHWmI5uTrclKzK79zfw51dXNVfqLNzfwJKNJfz8utEM6R2DfiA/mKwbTBmSwtiBweNSkYL/iWuCIAidSffpOyucNopJ5oulBSEBmIPW7qigtNrVLapBCILQeQUCOiYMTBj4AgavfLGt5Tyazr/e34hfvOwUjrCnrIFXv9rB4N6xDO4Td9Lr0Zuq8Cx5Hb26GHXAdOS4U+tR0xntaSwm2hKN1XQoafGgXpCTbPDxWli/58TW503ti7PPSKK2L8a+e03bNraD9Y7OQJZkNlRu6eimdGvegM4/39tAuDjKM+9vbFH1SNMOXS8kwxABGEEQOh0RhBGOyRvQWbi+pNXp364qwqSKn5IgCKefJEkUlTW0elNdXN6I2xdo51YJnVl5rYsn391IvMPKWWMzT+qlgYGOv3AtnkWvgh5AHXoWckzLXEVdXZPPSYWzkpSI0NLdkgQTc6FvMny2XuKDVVDvOv71ejIG4+41gOj1X2HddwLlljo5i2IhKyqdteUbO7op3VqTJ0B9ky/sNLc3QL0z/DRBEITOSgxHEgRBEAShW6qsc/O3/67HZJK5bFo2qunEXxjozhp8G79CrylGTu6HqfdwJLl73j7tqivApKgk2RJbTDuYHyYp2mBNIWyfC/1TYVgm5CSB6WiFZyQJV84YZJ+bmJUfUW2JwJ946tWpOoN+sbl8UzSfKncNCbaT72UlCIIg9Bxd8i6iqKiIl19+mY0bN7Jr1y6ys7P5/PPPm6fv27eP2bNnh13WbDazefPm5n83Njby6KOP8t133+H3+5k6dSq/+c1vSEpKOu370VVYTDLTR/bi08WFYaefOS6LgOj/LwhCOzAMg6yUaGRZCtsbJiM5CpvF1C2rsQgnprTayeNvbwAJrp6Zi916YnlgDEMjkL8K/86lSKoVddCsbpf/5XAuv5vC+r1kRqcjS60Hq7KTICMedpfB7grYvkLCbDIYlAYje0N6XCv5dyWJpgGTido8n7il71A98wYC3eD7zHH0xqKYWV66mguyz+7o5nRLkVYTjkhz2N4wNosJR4S5A1olCIJw8rpkEGbXrl0sXLiQ4cOHo+s6xhE320lJSfzvf/8L+cwwDG699VYmTJgQ8vl9993H7t27+f3vf4/FYuHJJ5/ktttu44MPPsBk6pJfT5vTAjrnTc5m6abSFnlhRg9IIjXe3uJvIAiCcLpYTBI3nTcoJDEvgEmR+fHlw1AlwuYOEHqOPWUN/ON/G7GaFa6cmUuk7cQCMHp9Gb6NX6I3VKKk9kfJHNpte78ctKlyG6qs0Csy9ZjzqgoM7BX8r85lsKcS8itgw16JXrEGswZDn5adaUBWaBo8neiN3xK38C2qZ96AFhXf9jvTjlRFpX9sLktLVjKn92zUbv476QgWk8w9V4wIScx70I8vH47FJDUn5hUEQegKuuSVYtasWZxxxhkA/PKXv2TLltCEaGazmREjRoR8tnLlSpqamjj//PObP1u/fj1Llizh5ZdfZsqUKQD06dOHc889l7lz53Luueee3h3pQiwy/PlHk1m+uZTFG0uwqArnT+5D34wYURlJEIT2pRtMGpJC34wYPlqYT0Wti4G94zhvUh/sZlkkYezhthbW8K8PNxMXbeGy6TnYLcd/q2NofgI7l+IvWIVkcwRzv0R2/yEm+xpLKWnaT/+4vpiko40rainGDiOyYHgmlNQabCqGN5ZIDEg1OGc4RNlC5zdMZhqGziJ647fEL3yD6hnXo3Xx73h44hA2VW1jVdlaJqeN7+jmdDu6ppOdEsU/7pvOp4vyKSxtID0pikum5xAToYoAjCAIXU6XDMLI8omP6f7888+JjIxk1qxZzZ8tWrSI6OhoJk+e3PxZdnY2AwcOZNGiRSIIcxhdN1CBmSPTmDIsBVmSUSQDTVz4BEHoAJJhkOywcOfFQwhoBqoioWs6hgjA9GiLNu7n9W/y6J0SxYWTe2M+aqKSUFrlHnybv8ZwN6KkD0VJG4B0EvcbXU2dp4E1FRtIsMWTZEs46fVIUnAoUq9Y2FNlsKYAnp0H5w6nRVlrw2yjYdgZRG/6lvgFr1Ez7ToCjq47DDzOGkvfmGy+KpzHuORRqMrJl0AXWmEYRFsUfjhnQPM539DFOV8QhK6p+99dAH6/n7lz53LmmWdisViaPy8oKKBPnz4tKiVkZ2dTUFDQ3s3sErSAjmwAui4CMIIgdCjDAEPTUTDQNZGXqicLaDpvfbuTV7/awbDseC6dmn3cARjd04h33Sd4V76DZLKgDj8HU/qgHhOAWVyyHJtipV9c7klVjjqSJAWHIl04ClJj4KM1Eh+sBvcR6TwMi52G4WdhmFTi57+KuSz/lLfdkSamjqXe18DcogUd3ZRu7fBzvuiILQhCV9Ule8KcqEWLFlFXVxcyFAmgoaGBqKioFvM7HI4WQ5xOhukEqjAoihzyv92F2K+upbvuF5zY8diVdee/YUcQ32fba+tjsbzGxXMfb6GorJGzxmYwun+4ZCShZEVG87nx5S3Gu2slkqyg9p2AkpjdJoGIzupgXEmWoKiphLXlG7EpNoYlDkRV2vaW0GqB6QODSXxX7pZ4vgouGAX9Dk85Y7XTOPJsIrctJm7xf3ENmoJz8HRQTmxI1LEc7EEd/N/TE7BNiIhlbMoIvi6az+DE/uTG9jkt22lLB3/q4vx24sS14eSI700QgnpEEOazzz4jISGBiRMntts2ZVkiNjbihJeLjrYde6YuSOxX19Ld9utkj8eurLv9DTua+D7bRlseix5fgE8W5fPudzuJspu5/eKhZCS3fLFypICzFlfeGip2rsbQ/FgzB2HrPQxZ7RkVVmrddawp2cT+hnJSopMZnNTvhPPAnIhBGZCZaLBom8Z/lxkMzpA4d5SJxOiDD2EW9PFz0PI3Yt++DNv+PPzjzkHPHNBKmaWTFxFhOfZMp+DMflMoc5Xz3MZX+c30n5Ad17nLcB8MOIrz28kT393JEd+b0NN1+yCM0+lkwYIFXHHFFShHvFmJjo6mrKysxTL19fU4HI5T2q6uGzQ0uI57fkWRiY620dDgRutG3erFfnUt7blf7RkUOdHjsSvrrr/NjtJTvs/2Oh7b4lisqHWxbHMZ363dR5Pbz5j+iUwdnorZpNDY6G4xvwEYTTUEKgsJlOShVe8Fkwlrr/5IKf3AZMPjB/wty992F37NR6mzgj0NeylvqsSmWhmcOIAEWzwBn07gNPUOOcgkwcxBUFgJ6woNHv/Ez8BeMLoP9E4ERQbSBqFEp2LbtRrL3NcJRCfizhmJN30AekTMKW1flmUiIiw4nV50/fTu63l9zuLDXV/w23mPc1Hu2UzPmIz5BHPEtNfxaBgGkiR1+/Pb6dBTrg1trSt+bz3tJZ7QPrp9EObbb7/F4/FwwQUXtJiWnZ3N8uXLmy9CBxUWFtKvX79T2q4sSycV5T3db2k6itivrqW77dfJHo9dWXf7G3Y08X22jeM5Fv0BjU27q3B7Ari8ARqcPqrq3OyraCJvby3+QPDGvW+6g4uGWXFYPXhLd+MJBDA0H7rPg+51obsa0Jpq0Vz1h7Zvi0TtNQJzfAYeVQWfAb6WgZuupsnvxOl1oRkGASOAL+DHq3lx+l00eprwawEAVMVEVmQmcbYYpIBMY6OzXduZaIMzBsDuCpUdpSrbSoL3XgmRGsnRGrF2G5G2KUQo9UTW7SNjzXIS18/FkCT8sckEouLQIqLQLXZ0sxXDpGIoJvwxiWiRMUfdtt/jRUc/7dkQFTNcPPBs5hUs4f2dn/P+zs/pF59NdmwmiRHxDE8eRK/olNPbiON08N5XnN9OnvjuTo743oSertsHYT7//HMyMzMZPnx4i2nTpk3j2WefZfny5UyaNAkIBmC2bdvGrbfeekrblSQJRTnxbrTddYyk2K+upbvt18kej11Zd/sbdjTxfbaN4zkW3/x6B+/P33XMde3aV8+ufeGmWA78FwtkhU5yAlUA3gP/dSf245pr+2luxcmoalKoajq8t7IdSAXG8o/YN1AwMNeUYa5p2XsZQAN+k5OI0Unz+eysLmBndbDgw7yoJTx57u87tkEHHAzCiPPbyRPf3ckR35vQ00mG0fVyi7vdbhYuXAjAW2+9RXFxMb/85S8BGDduHHFxcQDU1NQwdepUbrvtNu67776w67rlllvIz8/ngQcewGKx8MQTTyDLMh988AEmU7ePUQmCIAiCIAiCIAiC0E66ZBBm3759zJ49O+y0119/nfHjxwPBAM3DDz/Ml19+SU5OTtj5GxsbefTRR/n2228JBAJMmTKF3/zmNyQnJ5+29guCIAiCIAiCIAiC0PN0ySCMIAiCIAiCIAiCIAhCVyMG5AmCIAiCIAiCIAiCILQDEYQRBEEQBEEQBEEQBEFoByIIIwiCIAiCIAiCIAiC0A5EEEYQBEEQBEEQBEEQBKEdiBrMp4mm6dTUOI97flmWiIuLoKbGia53n1zJYr+6lvbcr8TEqNO6/sOd6PHYlXXX32ZH6SnfZ3sdj53lWOwpf9cjif3uGvvdnsejLEtd5nvpTLrab6qz6IrfW3verwo9h+gJ00nIsoQkSciy1NFNaVNiv7qW7rpfPYn4G7Yt8X12Tz317yr2u2ft9/EQ38vJEb+pkyO+N0EIEkEYQRAEQRAEQRAEQRCEdiCCMIIgCIIgCIIgCIIgCO1ABGEEQRAEQRAEQRAEQRDagQjCCIIgCIIgCIIgCIIgtANRHUkQjkJSdXySl3pPA6qiEmmKQNWsHd0sQTiqgK7hlV000IRh6ERZorBoNnSto1smCIJw6mRZIqB4cekuPH4vkZZIrFjBr3R00wRBEAThmEQQRhBaYah+5hcv5eMd36AdeHqNtTn46cTbSTEld3DrBCE8Q9bZWLaVf614DaffBYDFZOHmEVcyJG4QBMRDiiAIXZcsS7iVJv6x/EX2NZQCICExKWMM1wy5GMmrdnALBUEQBOHoxHAkQQhDUWS21+zkg21fNgdgAGrd9fxx0dM4cXZg6wShdY16A48teb45AAPgDXh5bs0bVPurkCRRFlIQhK7Lb/Lw6OJ/NgdgAAwMlhav5ovd3yGLGIwgCILQyYkgjCCE4ZM9vL/ti7DTvAEvmyu2t3OLBOHYFFXim90LMQwj7PQPt38NJjEmSRCErkmSoNpTS6WrJuz07wqW4MXdzq0SBEEQhBMjgjCCEI5kUO6sanVyUd2+dmyMIBwfjQDFDftbnV7aWE4Afzu2SBAEoe1IkkRFU2Wr0/2aH5/ua8cWCV2NYRiUVDaxr6IJvZUXFoIgCKebyAkjCGFIhkRqVDKljeVhp+fE9m7fBgnCcVAw0Scmnbyq/LDTMxxpmFARt52CIHRFum6QEpnU6nSLYsYsm0F0+BPCqGvy8uxHm9ld0gBAarydm88dSE4vRwe3TBCEnkb0hBGEMFTdylWDLwg7zaZaGZTYt51bJAjHpvkNzsyZjiKFP7VfPGAOBMRpXxCErivOGktqK4GYObkzsBi2dm6R0BX4AxpPvLuR8ho3l07L5qqZuUiSxF//u45N+dUd3TxBEHoYcTcuCGFomk6uI5sfDLsMi2Ju/jw5MpGHpt+PjYgObJ0gtC5SiuRX0+8hxhp96DNzBPdNuIVYUyyi97UgCF2ZKWDhgSk/Jicuq/kzWZI5M3saZ/aZjh7owMYJndbXK/dSUunk0unZ5PZykJUSxdWzcumdEs0zH21mb3ljRzdREIQeRAxHEoRWSH4Tk1PGMzZtGI0+J6pswq7YMWkWDL2jWycIrdBlhiT155EZv6DR7wQMItRIzJpFPJwIgtDl6bqB2W/n/rG349bdeDUfEaodCzYMn6j+JrTk9Pj5auVeRvVLIDnW3vy5SZG5YFJv/vvdTp79eAt/uGkcFrPSgS0VBKGnED1hBOEo9ACYfDZiSSBSj0H2m9F10ZVA6NwkScKs23AYcTiMeEw+C7rIkSAIQjdhGAaSX8WuRRNLAma/HcMvAjBCeIs3luIP6IwbmNximmoKBmJqGrx8tLigA1onCEJPJIIwgiAIgiAIgiB0O4ZhsHBjCf0yYoi0qWHniYu2MnlICt+tKaaksqmdWygIQk8kgjCCIAiCIAiCIHQ7e8ubKK9xM7h33FHnG9M/EUekhfcXhq8uKAiC0JZEEEYQBEEQBEEQhG5nTV4FNotCVkrUUedTFJlJQ1LYuLuaPWUN7dQ6QRB6KhGEEQRBEARBEASh29m4u4rs1GgU+dg5gwZmxhIbZeGrFXvboWWCIPRkIggjCD2YZDLwm91U6uXUUoVXcaOJDK7CSZIkCV3106TUUaGV4jE1gSpKMgmC0IWYdHyqiwq9lHqpBk31oigi6W9XVNvoZV+lk+w0x3HNL8sSo/slsjavgpoGz2lunSAIPZkoUS0IPZShBlhZtpa3N3+C/0Dt4khzBPdNvIUMW0YHt07oamRZwmNy8o/lL1Jcv7/58zFpw7lh+BXIXnMHtk4QBOHYDLOfT3fN5duCRRhGsBJivD2Wn0+6kxg5TlRH7GK27akBOOZQpMMN7hPHwo37WbKplAun9DldTRMEoYfrlD1hPvroIy6++GKGDh3K+PHjufXWW/F4DkWk58+fz4UXXsjQoUM5++yz+eCDD1qsw+fz8de//pXJkyczYsQIbrrpJgoKWpaey8/P56abbmLEiBFMnjyZxx57DJ+JW3SJAAEAAElEQVTPd1r3T+gaJEnCZJJP6A2YySRjMnXKwyqELEvsc5bw+sYPmgMwAE0+J48u+hdOo7EDWyd0JiaTjKoqmEwy8lG6cwdMXh5b+lxIAAZgzf6NvL/tcyRVPLwIgtA2gtfmQ9daSWr52YlSTBLL969lbv7C5gAMQLWrlj8ufAqfyX1KbRba346iWpJjbdgtx//O2aIqDMiMYcnm0pDfgSAIQlvqdE+Lzz33HI888gjnnnsuL7/8Mg8//DDp6eloWnCIxJo1a7j77rsZMWIEL730Eueccw6//vWv+frrr0PW88c//pH33nuP+++/n3/+85/4fD5uvPFGGhsPPVzW19dzww034Pf7+ec//8n999/Pu+++y1/+8pd23Wehc5EkCd3sY59vL9+VfM/mui34zW4kpfVlDFMAl6mBJWXL+b50CY1yLYbqb79GnyBN8fP+ti/CTzN0FhWtRFU73elBaEeG6qdeqmFB6SIWlS6lUiunLLAfv9mNHCYwWe9roLSxPOy6luxdhRfxACMIwqnRVT+1VLFg/yJWVK7CY2pCt/ioMSqZv38RKytX41WdYNJPeN0+2cOneXPDTnP6XRTW7T1qIFrofHYU15GeGHnCyw3uE0dVvYf8EpGgVxCE06NTDUcqKCjgX//6F88++yzTp09v/vzss89u/v+fe+45hg0bxsMPPwzAhAkTKC4u5umnn2bOnDkAlJWV8f777/O73/2Oyy+/HIChQ4cyc+ZM3nnnHW677TYA3nnnHZxOJ//617+IiYkBQNM0/vCHP3DHHXeQnJzcHrstdCKSBH7VxV+WPENpU0Xz56qi8uCUH5NqTuPIlCmGGmD+3sV8uP2r5s/e3vwx07MmcMXAC5B8ans1/7jpaJQ3VbY6vai+BEMSb4B6KsPs579bP2RZ8dqQzy8eeDaGYTA2bQTxSkLzsSBJEjWuulbXpxk6Hs2LGftpbLUgCN2ZYfbzysa3WVe6pfmzeyfewoKCZWwq3978mYTELaOuZkTCMKTAUd6eHEEzNBq9Ta1O39dQysDoAWJIUhdR2+ilut7DlKGpJ7xsRmIkUTaVVTvKyU0/vnwygiAIJ6JTver+8MMPSU9PDwnAHM7n87Fy5crmYMtB5557Lvn5+ezbtw+AJUuWoOt6yHwxMTFMnjyZRYsWNX+2aNEiJk6c2ByAATjnnHPQdZ2lS5e24Z4J7UGSQFElJFU/6S7JhknnjU0fhgRgAPyan8eWPodP8SCrRvNbNkmCKm91SADmoIVFK9hdV9gpE/rJmEiPbv3GJDeuN5LRqU4PwmlmMslIqoHZIrOtOq9FAAbg4+3fMCR5AJ/lfYtPOTRE1DAMEuxxra9bNmFTrKel3YIgdH+KIrO2bFNIAGZgYi7F9ftDAjAABgb/Xvc2bpwntA2TZOKc3BmcnTud/gk5Lab3jkkXAZguJL+kHoBeCREnvKwkSfTNiGHtjkoxJEkQhNOiU/WE2bhxI/369ePZZ5/ljTfeoLGxkSFDhvDggw8yfPhw9u7di9/vJzs7O2S5nJzgxbKgoID09HQKCgqIj4/H4XC0mO/9999v/ndBQQGXXXZZyDzR0dEkJiaGzR9zok4kN8jBoMGpjGfujNprvzTFT4W7kq/yFtDobWJ02jDGpg3HZkSc0E2TCxdrSzeFneYJeNnbWMKyvatp8rmYnT2Z3Ng+zCtc3Or6Ptv5Lf3G52CSOldvGAmFK4acz8PfP9limqqoTM4Yg6EbXSK/zfHqTvtyNCd6zEmShFd2saZiO8uK1zCzzyQ+2/ldq/Mv2rOScekjCODHpto5eH/qUKLoHZPBnrriFsuckT0Zu2zD6IJ/g+56bu5IneFY7Kl/1666337Zwxe75oV8NilzDB9ua/kC5KDv9yzn/H6zUQJmZOno+63JPmq9tdR46mn0NjE4qR+XDJzDq+vfpaypEoc1mkxHOrImdashSdKBXelqv4fjUVjWiCPSjCPy5JLC989wsG5nJSXVTnqnRLeY3lWPpY4mvjdBCOpUQZjKykq2bNnCzp07+d3vfofNZuP555/n5ptvZu7cudTXB6Pa0dGhJ8OD/z44vaGhgaiolpnQo6Ojm+c5ON+R6wJwOBwh850MWZaIjT3x6Ht0tO2UtttZnc79avK6+HLHAj7ZcWgs97bKXXya9y2PzPoZKY6k416Xs77hqG89yhoryK/ZS4Wzis3lO8iOzeSaYRexuGhVK21zYlIlYqJP/Ldwupl9mdw9/gb+s+5dXP5gvo4Eexz3TryFpKgETPLxd+Pu7E72eOzKjveYq3TW8MiCp6hwVgEwLn0EDUfpkt/gbWRLRR6vrH+XR2b/nF7RKQemRPCLKXfwzMrX2Fa5CwBZkpnZZxKXDjqHGNvxV6fojLrrubm9dbZjsaf+Xbvafle7fC2GCtlNVpq8rfd2qfPU89bmj7h44Bwyo9OA8Pvt9Ln4LG9xSEBnW+Uuoi1R3D3+Rt7d8hk/Hn8DKdEJbbQ3nYd0IArT1X4Px6OovJHM5Ciiok5u3wbZLVgXF5K3r4GRA1vvOdwdv7v2IL43oafrVEEYwzBwuVw89dRTDBgwAIDhw4cza9Ys3nzzTaZMmdLBLTx+um7Q0OA67vkVRSY62kZDgxtNO/GEcp1Ve+xXvVEbEoBp/tzTwNubPuGGoVchaccXUFBllRhrNHWe8MnY0qKTqXHXNf+7oHYve+v3kxOXRX5NUYv5hyQNwPAr1HpOrFt0exkeO5S/nJFLk68JWZKJVCNJio5rl99hez6Inejx2JWdyDEnK/Bl/rzmAAxAUV0JAxNyWbFvXdhlBiTksmb/Rpp8Tl5b/z53jPwhsha8lKiSlbvH3Ixbd+MJeLGrNmySDcPTeY+BY+mu5+Yjtdfx2FmOxZ7ydz1Sl91vRWZQYl/Wlm5u/mhPXQkDEnPZXL4j7CL9ErL5aucCXlr9X+4bfyvxUTFh97uBurA9ahq8jXy7exE/nXAbJs1KbW37ncPa63g0DANJkrre7+EYdN0gf18dk4em0th48knhs1KiWLWllLPHpLeY1mWPpQ7WFb+3zvTiQOg+OlUQJjo6mpiYmOYADARzuQwaNIjdu3dz3nnnAYRUOIJgjxagefhRdHQ0TU0t3+Q2NDSEDFGKjo5usS4I9qg5cijTyQgETvzkomn6SS3X2Z2u/TKZZNYddlN2pJUlG7h6yMWYAseXj0JVrFw37FKeWfVqi2lDkwewr76UwGElnQEWFq5gStbYFkEYs6Jybr9ZBLwG0HnHFCtYcGABA0xasHtod/wddrf9OZbj+RtqkpeFe1aGfLa0aDU/m3wHa/dvCilfDhBjjaZ3TC/+t+VTADaWbcOre1EDh3crVrASiZVI8EEwd2/X/+674zHRUTrT99hT/65dbb8lTeaKwRewoWwrmhFs9/eFy7hr3PVsrdiJboTuS2JEPDGWaMqaKilrqsStBXNYHbnfJpPMxrJtrW53Tekmrht6KYZfa3Weruxgx9+u9ns4lpIqJ16/TmKMDU07+fuvrOQovltTTKPTh62VMtfd7btrL+J7E3q6TjUgLzc3t9VpXq+XzMxMVFVtka/l4L8P5orJzs6mqqqqxZCigoKCkHwy2dnZLdbV2NhIZWVli7wzQmclETiyXNFhDMM4oaRqmmYwMLYf90+8laSIYNdjm8nKOX1ncmbOVN7f2rKss6ZrjE0bzpi0Yc1dewcl9uPhmb/Arp94aURBaC8Gwd/v4byaj4+2f81PJ91G/4TgeVCSJMakDeOucTfwyvr3Dls++H+CIAink2FAtOTgDzN/Tt+4PgC4/G6K6kr4/cz7yY7NBECRZCZmjOK20dfy6uHnqqPcBxz5YiV0u+L81hUVlQVfzqbEnlpFvqzkKHQDdhbXtUGrBEEQDulUPWFmzpzJhx9+yPbt2xk4cCAAtbW1bN26lRtvvBGz2cz48eP55ptvuOGGG5qX+/LLL8nJySE9PdhdcMqUKciyzNy5c7niiiuAYO+WJUuWcNdddzUvN23aNJ5//vmQ3DBff/01siwzefLk9tpt4RQEAhojU4bw/raWwREI9l5ROf6kbLIJvPjJdKTzq2n3YOgGiixT7qzgz4ufCXtDNiVzHHYjkpuHXssPhnoBUFGRAuopV1JQTBJeyY1X92GWTZgNG0ag+yQFFE6Mokj4ZS8e3YssSVgkC4pmPqnfmaKCoUiMSx/Jwj3LkZAY02sYkzPHNCexvGPMDzAwKGkoY2vFTp5Y9hLuwKGqSP3jczBjabP9EwSh+5JV8OLGp/uxyCoW7Gj+lucuWTXw4jkwnxmLYUMLGBiaRLycyL1jb8WPHxkZFQuSJnPvhFsoqt+HgcGG0m08vvR5fJofgExHL6ytVGcLBHSGJw/inQO9+wD6xvfhjJwp2ExW7KoNs6yCdKjXiND57S1vIibSgsV8arntYiLNREeY2V5Uy/Dc7pcTSBCEjtOpgjBnnHEGQ4cO5Sc/+Qn3338/FouFF198EbPZzLXXXgvAj370I66//np+//vfc84557By5Uo+//xznnjiieb1pKSkcPnll/PYY48hyzLJycm88MILREVFcfXVVzfPd/XVV/PGG2/w4x//mDvuuIPy8nIee+wxrr76apKTk9t9/4WT41CjmZgxmuVHlNS1mCz8YNilSAHluN7VGxY/X+Z/z9z8hXg1Hw5LFA9M/RFfbf+eMb2GkR6dSnH9/pBlEu1xTM4YQ8BnADIqhxKNnWoPAUMNsKxsHR9s/xKnz4UiK0zJGMvlg85H9p5ctn+h65IUgzJ/GS+t+y8lDWUA9I3rw62jryFaieEoHcJaMCx+Psufz/eFy7hv0q2s27+Za4dfzL76Up5f/SaegBezojI7ewrn9p3FxrJtzCtYGrIOVVG5ceQVyJoJXfSGEQThKAyLn093f8d3BUvwa36sJgvn9ZvNzMzJSL5D1QN1i48P875i4Z6VBPQAdtXGxQPOZlKvsUi+4IsNSVcxE1wmONjXwKSbyasq4IudoRWUFFnh1lHXYDZaDxZHmaKYmjmOxXtXcW6/WSRHJPDOpk+p9dQjSRKjU4fxw2GXofptomdMF7G3vJGk2OMbhn40kiSRnhAhesIIgtDmJKOTXVFqamp49NFHWbBgAX6/nzFjxvDggw+GDFWaN28eTz75JIWFhaSlpXH77bdz+eWXh6zH5/PxxBNP8Mknn+B0Ohk1ahS/+c1vmstZH5Sfn88jjzzC+vXriYiI4KKLLuL+++/HbD61h1xN06mpOf4kbiaTTGxsBLW1zm41RrK99ssw+8mrzeeLnd/R6HMyPHkQ5/adhVWLwDiezaoa7+d9yoI9y5s/unnUVSzas5LdNXuIMNv50dgfUlhbzIridWiGxvTeE5iSMQ6T33rKPV6OpJhgcdkK3tr0YYtpgxL7cteoG5H8bV/2uj1/h4mJ7Vct50SPx87IqdTz4HePNudDOMhmsvLoGQ+i+oIBwGP+DVWNd3Z8zOKiYC6YtKhkfjLhJuYXLGNu/qIWs0/OGMs1Qy8iv6aIT3fOpcHbxJDEfpzf/0xsegSG1r17ZnXXc/OR2ut47CzHYk/5ux6pQ/Zb1Xhz6/ss37e2xaTz+83mvD5nofslDDXASxveZGN5yxwtVw4+n1m9pqG1PnIIQ/VT1LSPj3d8TZ2ngf7xOVw04CwijCgUSTnqfhtmPyXOUmo9dTy/+s0W01MiE/n1lHuRfe3zAqQ9j0dFkbvVcWAYBj95ajEj+iYweUjrVY2O14bdVXy3pph/3T8Nq/nQu+ueeg45VV3xe2vP+1Wh5+hUPWEA4uLi+Nvf/nbUeWbPns3s2bOPOo/ZbOaBBx7ggQceOOp8OTk5vPrqqyfaTKGTkXwqg6MH0X9cDrqho0oWdP/xp8P14uH7ohVYFDMXDjiTnLjeSBJcNugcqt11SJKEIsn0j89mTK9hOH0uMqJTwasS0Nv+IuKVPHy4/cuw07ZV7qJJayKK2DbfrtA5SarBR9u+bhGAAXAHPCwvXsPMXtPQAsf+xXvxsOSwkur7G8upcdczr3Bp2PmXFa/h4kFnkRPXm5+OuwPN0FAxBx+aTn6XBEHoITy4wwZgAL7evZDZfaZixo5Ld4UNwAB8kvctk9LHhvQ2PZLkV8m2ZXPvmNvQOeI8dYy7XSVgJjUymf+seyfs9LKmSkqd5aSbM0VvmE6ursmH0xMgKaZtSiCnJ0agG1C4v4GBvePaZJ2CIAidLggjCCdL03QkTUXhxGuxOH1OTLKJeyfewpc75/PeYQl4Mx29uHHkFTy1/GXqvcFqWkOS+nPbmGux0va9UQA8mge339Pq9P2N5QyMimvzHjhC5xTAx67qwlanb6nMY3r6FODYvVIavE0thsoF9ECLBL0HGRjsqy/jP+ve4a5xN5Blz0IXeYkEQThOde76VqcF9AAuvwuLFEF5U2Wr83kDXtwBz1GDMMCB4UomFEzHfR8gK1CrV1PbWEe5s6rV+XZWF5CVnkXgOILdQsfZVxmsjprYRkGY+GgrFlVhtwjCCILQhjpVdSRB6Chmk4UzsqewoHAZWyryQqbtrS/hlfXvcungc5o/21KRx9ubPkZWDUwmpbkqUpu1RzEfdZ0x1mjxNq4HkVGItTlanZ5gj0c+ztO5zXQoN0JiRDz9E3KItx/9xjLO7qDR5+RvS5/HRdPxNVoQBAGwq0evUGNRLBiGgcPaepd/CQmz0vpLD0kKDnMwmU78ttanePjjoqdQJBmbqfU8IokRcSI5bxewr7IJs0nGEdE2Q8ckSSI13k5+SevBREEQhBMlgjCCANhlO6NSh7Bm/6aw04vr95Ngj2uuGjMydTAz+kxiZdk6vimeR6l/H7rZR1vFYixYGZc2POw0hyWKBFu8uBnsQRRN5eIBZ7c6/eyc6WGrjIRjV+yMSh3Kzyffwfn9Z5MTl0Wls5pfTbub1MikFvOnRiVjPfBgohs63+9ZhkkVlw5BEI5PpCmClMjEsNMGJORglYM9FmIsDuJsMWHnG5E6GKsUvmeDbvZTpVfw7b4FLC1fgVdtAtPxZSqXZYmC2iJcfjeKpDC99/iw86myid6xGeLlRxdQUukkIcbapi/HUuMjKNjfIP7+giC0GTEcSRAAk2Ymwnz0ygeN3iYsJjP94rOZkD6Kvy15rjlHx4fbg8OWfj7pThTvqZfsNfwy1w29jEpXDQW1e5s/j7JE8supd6MGrKIiTQ+i6wZZUZmc3+8MPt/5XfPnsiRz04grcSgOOErCysOZDStXDDmPPy58GqfPBcCXzCfaEsW9E2/m2VWvU+2qBSDeFstNI6+g0lmDIslohk5xw370Ex7wJwhCT2XSLPx80p08uvhfVLtrmz9PjUrmzjHXI/tNGIBZs/LAlB/z50VPNw/9BchypHPjiCuRfC0rHRoWPy+tfYNNFTuaP3t9I9wy8mpGJQ6HwNFLFMuyTEljsNqcO+BhYFJfShrL2Vx+aH0Wk4U7x/6AgpoiRsWJYcCdXUllE/HRp14Z6XCp8XaWby2jusFDgqNthjkJgtCziSCMIBB8yLWb7c0PmuE4LFF4Al7m9J3B40tfaDHf3voSPtrxFVf2uwjdf+pvYEx+C/ePv516Xz376kuJs8eSHJGIOWATN4E9hMkkE5ACyEgQUDmn92xm9plEQc1eTLJC75gMzLoVAi17psiyhKQGf6OybkLTgv+/V/bwj8UvNQdgDmrwNvKfdf/jZ5NuZ0tFHgn2ODRD46U1/+WW0dc0/95z4/ogG3JIIEZRJHRZAyRkXWneliAIgq4bRBDN76b/lCp3NRVNVaRGJRNrjcXktzS//NA0A4cSw8Mz/49KVyVVzhqy47OIMNlRJAVJkUOqqSgmicUla0ICMAe9vP4d+p+ZQwQOJAkkxcDlc6MoEoHDAta6rtM7JgMAp9/Nh9u+4ozsKczpO4P9DWVEWiKJNNv5bMd3XNj/LHHt7eR0w6C02kV2WuvDd09GalxwSN2e0kYRhBEEoU2IIIwgHGAxbEzvPZH5YarE9I3vw76GMlIikyhpKGs1ieniolVc3H8OJk79LYxhgOwzE0si8bFJGIaB4UP0gOkBJEkioHpYX7GdpcWrsSpmzsqZQXpUGlZfJEMcgwHQWxmCVOuuJ6++gG8LFqEbOjN6T2RAXC6K34LT76TSWR12uZKGMuo8DcwrWEqjtwmX383gpP7k1xQBoCoqkzJHE9ADHBzNqpt97Krbw7zCJeiGwazek+gbl33g4artvxtBELoeXTdQfBZSTGmkxvZqvp4dmSRc0wxMmoV0SyZJkQlsKNvK8uJ1mBWVM7Kn0DsmA9kT7G3qkzx8uWt+q9tcsncV5+eeSZmrgq82L6DGU8ew5IFMzhiLJWBH1w103SAzOg2HNZoFBcs4K2cqb236GJNsIt4Wgyfgpd7bSIw1mszoXug+cVLrzKrqPfgCOgmOtu0JE2FTibKrFJU3MmZAy2G7giAIJ0oEYQThAN0vcemAc9ENnUVFK9EPvPkfkTKISwbO4S9LniU1Mokmn7PVdRysMtPWB5Z4+9azBMwe/rT46ZBqIevLtjIhfRTXDb4M/K0nqPQrHp5f+SZbDutOv7ViJ71j0vnZxDvwun1H3bZf91PeVImExMjUIZyVO40nl79MYkQ81w+/jH+vfZtZfaYwOGYgmuznmTWvsqNq92HbyiM7NpP7xt+O4mubxIiCIHQPhsFx5dXwqS4eXfQvSpsqmj/bWLaN0WlDuXH4lcheCwYGTUf06DtcjbuOvJrd/H35i82f5VXl88XOefxhxs+IkBwYhoEasPHQtPt4etV/ALhowFl8tWtBc6WkrJh0bht9DSa55XAooXMprQren7X1cCSA5Fgbe0ob2ny9giD0TCIII/R4iknCJ3lAAkU3cVX/i7iw/1m4Ax5sJgtNfhcmWeF3M+5DlmScfjcfb/8m7LpSo5JRpZMvW60oMj7ZA5KBbJiQAyaRCK6HUUwScwuWhC3XumLfOs7KmU6KKa3F70KSJAw1gDPgYmzaMDx+D7tr9jRP31O3j7WlmxmeMghZkpuDjIdTZROpkck8NOM+Is0RKLKMN+DjoRn3sqduH+9s/pSSxjJ21xTxxNm/Y1d1QUgA5qCC2r1srtzGmPhRIcMHBEEQDhd6zZNRNDOKGjwHHh6AOWjt/s2clTONTEsfTKgMTMhlU/n2sOse3WsYyHDbmGtZWbyezeU7MDBw+d28suFdfjzqJvArweHIRPHzSXdS7qzAJCtMyhxDrbse3dApaSjj70tf5MFpdxMpOUQPv05sf7UTs0kmyn7y92GtSYq1sym/GsMw2rwipiAIPY8Iwgg9mmHxs6RkHV/umkejz8mgxL5cPeQiHFIMFiMC3fDj1+rZW1/ClzvnU+ms5s6xP6RvXB921RS2WN8NIy5D1a1oJ5G41LD4WVm2ic/zvqXO20i/uD5cM/RiYk1xYXN+CN2TT/KwsGh5q9PnFy7h+kFX4/cdNiRO0anWqnl77cfsqtlDjDWa2dmTOTN3Ki+sfqs54DKvcAljUodzTt8ZfLGzZTf+8/rNxh1ws7FsG4v2rMTpdzEwsS9XDjmfZXvXNiew9Gt+mvxOvi1Y3Go7vytYwrCEwci0/c2wIAhdn6EG2Fq3iw+2fUmls5oMRxrXDLmYZDWBJUWrW11ufuEybh+ejdejcM3Qi9hakdciR1tyRAJR5ggeW/IcNtXGtKxxnJ07jX+ufBVPwMu2yp148WAhAgj2Ng0YAf606J+tvvhYVbKByRljsGh2DE08hHdG+6ucxEW3bWWkg5JjbTS5/dQ1+YiNOvUCDIIg9GziyU7osXTVz0vr3+LNTR9Q467Dr/nZWLaNX8/7K9VaVTCxqQLrS7fw77Vvs7+xHL8e4MW1/+WSQXOYkzsdixIcbpEencrd42+kV2TqSSUlNdQAb27+gFfW/49KVw1+zc/Wyp38dv7fKPWUoijihq+nMKDV5NDAgXxEhx4SFEVmv3c/D81/nG2Vu/Brfiqd1byz+VPWlmzmkoFzjlgWxvYawRWDz8dhiQIg1urg2mEXMyVrLG9v+pRPdsyl1lOP78Ax8dD8v3N+v1nN80MwoaVutF4GVjc0RN99QRDCUnW+LVrIP1e+0nxtLajdy58WP82O6t1kx2W2uqhu6BhScGiTQ4rl9zN/Rt+4PgAocrDM9C2jr+GfK1/Fp/mp9zTwWd53fLDtK24YeUXzelrEWgzjqD1P/Zqf59a8QZ1eI3pCdFKlVS7io09PgCQpNpicd2954zHmFARBODYRhBF6JEmCen89G8u2tZimGzqvbngXTfETMPx8uWtByHRvwMvfl76A2+/lD7N+xqNn/pKfTLiJJHs8mqGjnET/MqfWxIp961p8bmDwyvr/4Ze9QLAKjab6cCmNuE1NGKofWRY3g92JBQsT00e3On1G70logUMPCn7Zw3/WvdMiwSUE39zmxvdGkYNlWqdljUczAvxp4dNsrcjj2mEXc/+kW7lyyPlsKc+juKE07PAiTdf4NO87ZmVPBkCRZKIt0UzPmhgyn0k2MbPPRH42+XZuHnk1uqyhmCRk1cCvunEq9fhV90kdI4IgdB8+PHyW923Yaa9v+IBz+81qddlpWePRDiTINTSJBDmJe8fexhNn/55/nPUQmY5e/G3p89R7QvN3FNTuxSQpxFijyYnLwiJZMJsVAhY3jUotOjq/mfYTEuyxYbfbLyGbwtpi3tj4AbopEHYeoeMYhkFpjYu405APBiDarmI1K+ytaDot6xcEoWcRt8JCj6QoMptKwo8jB8ivKSKAn3JnVdjcGZqhs7BoBbNzJrNwzwoW7llJQA9gNVk4r99sZmZORvId3zAMRZHJqypodXpJYxlew4ddUSn1l/LS2v+yv7EcgD6xmdw++jpilFhaKdgkdDGaH87rO4uV+9ZR7w194zYwsS9pkSkhFTq8ujds7oSDiur2kRyRgF8PMCl9LLXeOvx6gG2Vu9hWuat5vsFJ/dlR2TIAc9D2yl2c03cGANcMvRgpoDAkcQDp0ansayjFrKjcO+FmlhWv48nlL6PpGjbVykX9z6J3bAZ/X/oCfj2AxWTh3NyZzO499biPEUEQug9JgkpXddhrK0CTz4lFMRNjjabuiEBK3/g+ZMWkE/AcWlbXDSTdhBkTmtnLW5s+bnXdWyt30i++DxcNmAOywfrqjfx308fUeRqQkBiaPIBfTrubf614hT11+5qXm5gxmsLaYvyan+1VuwngQ0WUKu5MGlx+3N7AaUnKC8G8a4kxNvaJIIwgCG1ABGGEHskwwK62fgN1sOfAweFGrfFpfuYVHCpp7Ql4+WDbl/g0P+f2PgPdf+xeKoZhYFNbv2mQkDBJCk1GA39c+FTIUJXC2r384ft/8OgZD2LW7MfcltA1mAN2Hp75cxbsWcbKfesxm8zMyZnBkMQByEdUHFJkBQmpuSeMRTHj0/3N3ertqo3z+53BkMQBqAErJjn8ad+v+bGaWu/GrSoqFsXCb6bdS4otBfwyJsnCA5PvYvX+jZhNKl/snB8S2HH7Pbyz5VMuHHAmI1IHs7pkI96Al492fI1H83Fh9tnHdYwIgtB9GAaYlaMHYFVJ5Q8zf8a8gqWsLtmA2aQyq89kRqYOQfEc/SHbYjLj9nvCTotQbVw28Fxshp1t9Tt4dtXrh9qFwaby7fx18bP8cupdPLHsZSLMVqZkjcMwDF5Z/26wbbJJDEfqhMqqg5WR4k7TcCSAxBibGI4kCEKbEEEYoUfSNJ1hyQNDHl4PNyl9dPBNnC2aCNWO09+yDGaGI4299SVh1//1rgWc2Wcqkqrg1Jw0ehtxWB3YZRtyQA0Zi67rBrmxvVutWDMydTAWxcy72z4NmyvEE/CydO8qzkyfJSrRdBO6bmDy2Tgn8wxmZU5FkiTMhoWAr+Xf14yFEamDyXSkMTCxL43eJuyqlQZfEw5LNMmRCVQ6q6nz1eOw6EQTicMa3aKr/u6aPVw++Dw+2TE3bJumZ40nMzIdw6dg+A8MBTBA9lqYnDyBOqOGf699O+yy3+xexF3jfsjqko3Nn83NX8hZ2dMwI4KHgtDTxFpjWr22pkenYjGZUQNWLsg+i9l9piBJEnYi8AV8eFUXNe5aTIpKjDkas2TGg4cGbxOxcjSz+kzmi53zwm53WtYEZI8Fl8XJO5s/DTtPpbOassYKrh9xGbIk0eRz8t6WL5oD21OzxmPWLSeRfl84nUqrXUgSxESexiCMw8r6XZV4/Romk8joIAjCyRNBGKHHMhtWbh55FS+vfyfk88SIeC4ffB4f7viCPfUl3Dz6Kp5d9XpzUlMI9i64Y8x1PLn85bDrtqk2AgR4csULIYGaQYl9uXPM9Sje0JsEi27lR2Ov59lVr4UEhWJtDn447DL8msauw8oNH2lb5S5mZUxDpHnqXgIBA4Vgz5dAK7f8UkDhppFX8sbGD0ICKIn2OH48/kb+vuRF9jcFh6/F2hw8OPVufjrxVv646J/4NX/z/KqiYjOZuXzwuby/9cuQbaREJnLhgLPQPTLhsu1qmkG5q6rV/fAGvEiEvjnWdA1XwC2CMILQA5k1K/dNvJW/LHmmxbX1uuGX8NjS57hmyEX0ieiNSQv2fPGobhbuW86H279sfiFxw4jLqfc0sqpkAzeOvII/LXqNG0dewcaybexrKA3Z5mWDziXKFIWhgWZozcN6w9lUvoPi+v1sq9xFrNXB7WOu5Z0tn+EJeLl4wNnoXtETprMpq3ERE2nBpJy++6DEGBuGAaXVTnLTY07bdgRB6P5EEEboUSQJFEUBDAIBGJU4nP5n5rBk7yoavU1MzhxHr6gUVu5bx7cFSwDIiunFH2b+lLyqfHbXFDEgIYde0anIkkyVq6blNpC4YeQVfLrjW2rcdSHTtlXu4tUN/+OWYdeBX0FRJGRZRtMkBsUM4LGzfs3SvaupdFYzInUw/eJyMAdsaEqAOJuDSmd12P1KtMejoBAQ5Wh6HNkk8c3uhawu2UiMNZrUqCQizBE4fS5eWf8uVww5j6dW/AeAWnc9v1/wD/565oM8dsavWVu6iYLavQxO7kemoxfvbP6EXtEp/N+UH7G3fj+arhFvjyHKHElJfSm5Ubn4fC2TDxmGQbQ1stU2Skg4rFEtPrcoZhD5LQWhy5NlCUWR0TQdXT/2dUjXIN3Si8fP/A1bKvOo9zYSZbaTFJnIO5s/YV9DKY8vf4HHzvw1dqJRFIl9rnK2VO7AYY2mxl1HhiMNWZb5eMc33DvhZp5d9Tp1ngb+tfJVbhp5JT7Nx9aKnUSY7YztNYLNZdvxGcFcLpIkE2G24/S5iDJHkO5IxRPwsqd2HwYGKZGJeAJeevvd7Knbxz9XvsrvZ96PVbZh8lnD9qAVOlZptfO0l46OdwQDgvsqRBBGEIRTI4IwQo+hm/3UemvZsH8rNpOVkalDsGInQnMwJ3smNd5a1pVupbCuiKyYdG4ccQUpUUkU1BaxrHgtg5P6kRWTDhhsr9xJpqMXyREJlDsP9QCYmDGaGX0mUly/H5tq5ZZRV+EKeHhjwwd4AsEKR+tLtxIY4Qezn+01hRQ37Cc7JpPeMRlEaQ7OzToLSZLQNB3Np6NjoGDi4v5z+GvVs2H37ezcGQT84qawJ/LgYtW+9dwz/kZsqo1oSyT5tUVUO2vJjOlFalQyGdGpFB94K+zyu9lZXcgQx2AmZ4ylf2I2G0u3sa++lDNzpmKSTaiyCQwDk6yQHZtFSUMZO6sLaPA56R+fg0WztUgEHWWJJNbmoNZd36KNI1IHt8hFMyAhF6skElsKQlcmyxI+k5uC2iL21BWTFZNBTmwW5oDtOIIxMrIsI0ng9ruJt8fi03y4/cFrpWEYzC9cysW55+DGSVFDCVkx6UzLGo9VteLyufhi53wizREEdK05ia/T5+JfK18l0R5HdlwWte56PH43n+Z9S5wtholJ41GJ4Lx+s4i1OjCbzOyu3kOk2c51wy4hoGtIQLmzirG9RnDNsIv5Ln8xJQ3lDIgcgH6UMtZCxymrcZOV3PrLgLZgURViIs3sqxTJeQVBODUiCCP0CIbFz7/XvxVSkvqtzR/xg2GXMiF9FC+te5sNZVtDlrl6yAVsLNvGVwdKVH+5cz4ZjjTuGncDcbZYPtr+DbeMvprnV79JjbuOyZljyI3vw18WPdP8luyrXQvIicvingk38fjSFzAMg9SoJBp9Tfxp0dMhyQOjLVH8dvp9RGrRLW5edd0gIzKdSwbM4eMd3zSvX5Fkbhp5FQ7FIXoU9FCarnHbmGuZn7+MCZkj+cOCJ/Drh34MifY4fjTueh5f+gIuvxuAksZSBscPYNX+9c3JJiH4ex2UmMucvjP5Ytd87hl/E39Z/ExIjy6LYubX035CoimpORAjSRLVzlruHPtDnl31eki+md4x6czpOyNkHb2iUvjRmB8i+03ifbIgdFGyLNEg1fHI/Cdp8jmbP48w23lo+n1Ey7GtBmJkGaq0Cv604OnmFxQAMdZo7hp3Pc8cOI9ousZ+dyl/XvyvkOGTCfY4fjHlTpw+N9GWSKpctS22UemqofJAb9UpWWMB2FtfwuQUCZ9XY2rWOP6x7CUKa4sBMMkmfj75dv676ZOQYcSSJHHrqKsJaAFkWTqunj5C+wpoOtX1bkb2TTjt20pw2Cipch57RkEQhKMQQRih21MUmeWlG0ICMAetLFmPSVFaBGAA3tnyGb+YfAfzCpbgO3DzV1y/n7m7FzI4qR8RZhv/XvsO1wy7CEVSSIlM5NffPdaim3J+TRGbyrYzKnUoa/dv4uKBZ/OPZS+2qN7Q4G3k6ZUv838Tfoyst6wcIflNnJE5nalZ49lTV4wiKWTG9MKsWyEgcsH0VBbVzNyti5jeewLPrHotJAADwQeRj7Z/zezsyXyW9x0Aw5IG0hBoCAnAHLStcjd947O5dujFvL/1ixZD6ryaj8eWPsefZj3QnKvBMAyizBE8veoVrh9+KQC1ngaSIxKo9dTz7MrX+M2Me7lr7PWkRCYRa4lB8VuaE10KgtD1BExenljyYkgABoI9Uf6x7EV+PeU+FD18hUGf4uHxxc+HBGAA6jwNvLP5U87pO4N3Nn/KlKxxPHpEAAagylXDGxve546x17GzuoD+8dlIkhT2nGJXbWh6MIdMv/hsNM1ANsEXO79vDsAAjE8fyfLidS0S7huGwcvr/sdfznxQBGA6qco6N7rBaR+OBJDgsLJjb8ugnyAIwokQT25Ct+eT3Xy5a37YaRMzRvHVzgWtLrtm/2aGJQ8M+WxJ0SoizHbOyp1GhbOKZ1a+xvyCpawu2djqOPFFe1YyMWMUEhKxtpgWD7YHFdfvx623rBbRLKBg8UcwMGog/SL7YfbZRQCmhwvoGjurC3D53S0eaA7aUp7HgIQckiMS+NX0e6jzNvB94bJW17lwzwoyY9LYWV0QdnqTz0mNJ/QmNNIUhc1k4Z8rX+Xldf/jm90L+efKV/jPuv8xOXMsUUQz1DGUeCkJ2WcWARhB6OJcARdlTZVhp5U7q3BprfcWaPA1UO8NX+q3oHYvmY5eOKzReAPeVstNb6nYidVkYVvFLtaVbea30+8lN653i/nOyp3G4qJVRKh2Bib2Q9N0fLKXeQfyvh00ttcwlhWvDbst3dDJqy4Qpak7qfKaYC/PuHYKwtQ1+XC6/ceeWRAEoRXi6U3o9gxo8abuIJvJSpOv9aBHk8+JVQ29qPv1AAn2WIrrS7ll9NVEmSOQJIlGX+tjhN0BD2ZFZWrvcRhhykyHrF879oVd1w3xRk4AIKAFMCtmmsKUej3IwEA3DH407oc8s/I1lu1dS8NRfq9NPldIxZJwXD43hz+PKAGV+ybcyrDkgbj8biqd1WiGztk50zk3dzaaH/GbFYRuxKcf/Vrla+VaJkngaiWwcpBhGPzf5B/hPMr1GaDR18TO6gI+z5vHXxc/y5VDzifeHguAKps4p+9M4u2xVDqr+cOsn2I3Ig6sX8er+ULWJUvyUa+/DZ5GRAymcyqrcaGaZCJtLXsRt7UERzCX2b5KMSRJEISTJ4YjCd2eisqQxP6s3r+xxbTCumIGJ/VlVUnLaQADE3OZX3Cox0BiRDwX9D8jGFDJGociKwxK7EdAC1Drqee7/CVh19Mvvg8ZjjSafC4Mw2i127RFMRNpjgBfmJUIPZpikvBJHpBAMUxIAROGYWCWzciSTFpkUqvLOqzRZDjS+GDbl9R7GthTt48LB5zJkqLVLeaVkDin7wzsqo37Jt7K7ppCFhQub/EwlBKZhHHYyCfDAJPPyu0jrsdrBAM0siwjI6PoplYKbAuC0FVFmSMxySYCesuEZIqsEG2JCrmWKYqMX/ZgSAYp5kRSIpMoa6posazNZKVXdArWQCTm6NYfqqMskQS0Q9v2aj7e3vwJv51+Ly6fG5tqxTAgoAcYPnkwFlXF7/chSSZMmOgTm0lh7d7m5Sud1WQ40iiu3x92e4MO9KIROp+KWhexUZZ26akUF21BlqBEJOcVBOEUiCCM0P0FZK4YfD7ryra0eLu/vXI3d427nnWlW1vcSCba40i0x7PvQFWZs3On0y++D5/vnM9rG94n0R7Huf1mYRgG72/7kp9Nup1MR68W48klSeLCAWfx2JLn6BefzZzcGczqM7lFV2iASwedg1m3iQdWIYRh8fF98Wq+3r2AJp+LQYl9uWboRTjkWCyGjeuGXUJB7V5GpQ5hXemWFsv/YNilqJK5uat9hbOKCNVGSmRiyHACi2Lm7vE3sre+hEcWPo3zwLbuGX8jX+ycz+byHQBMyxqPRbK2bKcBcsCEalb5evcCvt+znIAeYGyvEVw28FxsWgS6+HELQrdgNqxc0O8MPtrxdYtpF/Q7A7NubR6ga5gDbKvdzfvbvqDcWUV6dCpXDb2Agpqi5lxVB1055Hwsmh1N07Gpdiamj2L5vnUttnHxwLP57ojraGFtMQFNx2HEgy+YlH9D2Va+2DmPOm8D/eOzuWboxSRICdww/HL+8P0TzcOI5+Yv5uohF/DUiv+02FZuXG8SrHEY4gVJp1RW4yI28vQPRQIwKTKxURaRnFcQhFMihiMJ3Z5hQCTRPDLzFwxMyAWCb+kmZ47lh8Mv5aNtX/PLqXcxMPHQtEkZY3hg6l3srtmDxWRhYGJfekWn8M+Vr1JYuxdN1yhrquQ/6/7HvoZSJqSP5G9LnufGkVdwVs40VCX49i47NpOfTryNhXtWUNpYwcI9K/jbkueZ03c6Vww+H4clCoB4eyw/Gns9k9PGEealotCD6aqf59a8zjtbPqHO00BAD7CpfDu/nvcY1VoVum6QE5VNTmxvZmdP4YL+ZxCh2gFIjUziZ5PuYGBMPwJ6IKT31Svr3+OmUVcxNWtcsCQ1cOfYH/D5znm8t/UL6g/b1t+WvsA5fWfSKyqFSwbOYWb2JDDCv3EMqB7+tOgpvtw1H5ffjU/zs3Tvan4z/zE8pqMPLRAEoesw/BKze0/j1lHXEGtzABBrdXDrqGs4o/d0jEDwHCGZdBbsXcLTK//D/sZyNF2jqG4fTy1/mXh7LBPSRwHBFx83jbyS7LgspAPnF8lv4rqhl3HV4AuIMAfPaymRidw25lrq3A1sr9zdsl0HznOGGuC1je/y+sb3qXbXouka2yp38dD8xyn3VBBhtnHfpFvoE5sBQK27jkafk19Pu4esmF4AWEwWzus7i/vG34riD59kWOh45bXudknKe1C8wyrKVAuCcEokQ2RHPC00Taem5vij5CaTTGxsBLW1TgKB7vOquDPtlyxL6Iofv+THr/v4fOc8lhWvxa/5eXDqj9lVXUhmTC9kScYwDEyyjF2NQFVM2FUrv533OI1hcstIksQvp/6YRxf9C0VWeHjmz4kyR1DnbWBb5U6+y19C1YEymQddMnAOHr+Xs/tOx9BBQcFi2Dr8O2rPv1diYtRpXf/hTvR47CwkCar0Ch5a8HjY6X3j+nDv2NuQ/Kbmrv6yIuE3/OiGjiIp2I0IfD4dSdV5dcs7rCrZ0Ly8KpuYkDGKSZljSIlMoMZdzyPfPxV2W4MS+3LV0At4b8sXbK3Yyd/PfgiLPyJkHkWR2VC7kefXvBF2HWflTOPS3PM5jrRHnUZnOoedTu11PHaWY7Gn/F2P1Fb7LcsSAcWHR3djVlSQDvSEM+QW1zKf6uLncx9GC5MPzaZaeWjGfVQ4q2jwNjG/YBmVzupg9TXfod52JgsUOffiDnhIiUzi2ZWvU1S/r8X6ekWn8MvJP8as2XDKDexrKEWRFfJrivg2fzGN3uCD840jrmB58Tpq3LWckTOVlKhEdF1nVckG9tSV8NOJt6FKKhISFsOK1s4vR9rzeFQUuUsfBz6/xp1/X8g54zMZmh3fLttcvKmUrXtqeOvhc7r0d9cRuuK5tz3vV4We45SGIz344INHnS5JEhaLhZSUFMaNG8fIkSNPZXOCcEp03QDdRITZwju7PmThnhXN07yaj/e3fUmGI43rhl3Ce1s/J7+mCAjmgfnJhJvCBmAg+NatyefErtpw+d3ML1jCZQPO4+V1b1NUVxJ2mU3l27lyyAWo2qHy0gExCEk4gqIobCrd3ur0XTWFBPCjYkLXdTAZvLX5I1bsW49u6NhUK5cMmMOkXmOR/CpXDbmQLRV5uPzBShIHy1k7fS7e2/IFUZbIVre1rXIX9Z5GtlTkAVDaVEEfax8OD+MbssbyfWtaXcfa/Zs5L/dMTLTfG0tBENqWpBhUa1W8sPrN5vwpvaJSuH3MdSSakggckTel1lMfNgAD4PZ7qHBW8cSyf4d87vS7cHAoCOPVvTy5/GVcfjezsyczJLl/iyCMIitcNeQC1pdtwWGN4tUN71HrrgdgQEIu94y/kX+vfYcKZxVx9hjyqvMBeHvzJy3atWTvas7LOgu/X+PoKcqFjlZRF7yetWdPmASHlQanj0aXGJ8mCMLJOaUgzMqVK/F4PNTUBN/yOxzB7qj19cGLXlxcHLquU1dXhyRJTJkyhaeffhqbzXaKzRaE1kkH3si19plhQIT5iDf4UjAQct2wi/nnilfw6X7MiopP81PprKbBE76U5kHRlkisJgsuv5soSxQSMlZT6zcEVpOVjIg0DK8YESi0dOj3amBXWz9fmmQTEsFu+5rq59k1r7O9clfzdLffw383f4yExNTUSdi1SP48+wG+2r2ATeU7SIlMZFrv8fxp4T/pG9+HxIjW3yKaFTUkp5LVZG55nCFjM7XeXqvJ0jzMQBCErskju/jD/CdCKgmVNJbxyMKn+MsZD2Ij9K2xqhz9VtMkKdhMVjwBb3N+FpOscGT04+A1dl7BUq4acgF3j7+RBYXLqHHXkxObyRk5U/iuYAkjU4fwxPLQoM6Oqt08s+p1bh19NX9f+iKaoaPKpuZA9JEiVXvY5PlC53OwPHV75YSBYBAGoLi8kdSYlvnRBEEQjuWUgjAvvfQSt9xyC3fffTc//OEPm4MwdXV1vPnmm3z44Ye8/PLLJCQk8Oqrr/LMM8/w1FNP8ctf/rJNGi8IB8ky+BQPDb4GXH4PifZ4LFgxMHAbLmpcdURaIogyRSJrViZnjuHTvLnNyzf5XIxOG0q9p5G7xv0Qr+bHMHTsqo35hcto8rnIiukVtmeLXbVhGAYXDjiTWKuDaEsU5e5K5uTOJK+qIGx7z82dieRXm284BUGSQDP58eFFMzRcfhc+t58RqYMobZrKt/mLWywzJXMsZtmC1+ym0lXFGTlTOL//bL7LX8L6wxL0frTja8aljcSkW9F0nRp3HdOyxjM0uT9vbvwAgPyaIi4bdA6f7JjbYjsAkzLHsLpkExCsXpJgi29RxUsPwFk501kRJokmwNm5M7BgFb2+BKGLUlSJbwsWhS3lHNADfLVrAZf3u5DDq1dHm6OJskQ2DwU6XGpUMvERcdw48gqirVHsrSthVckGbLIdSdLxyV4qnVWouspPJ93G5vId9InNwKcFSIlM5MaRV+Lxe4i02Fm5byMZ0Wl8njcvbNvrPQ1UuWpJjUqm2lnDtKwJzCsMX9FwVOrQLjNUoqerqHVhVmXs1varNRIbFayQtLdMBGEEQTg5p3TGevjhh5k2bRp33313yOcxMTHcfffdVFRU8Mgjj/Cf//yHe+65hz179vDNN9+IIIzQpmRFokqr4PHFz1PvDfZYUWWV3874CR9v+4Z1ZYceRpMjEvjF5B8RpTi4avAF/G/rZwB8mvctP514Gzuq8nl6xSt4Nd+B9Zi4fPB52ExWbhxxBY8vezGkVK8iK9wy+mq2lu+if2If/rXyteahHrePuZbRqUNZW7o5pL0T0keRFZ2B7hMBGCFIksCvevg07xuGpQ7kpTVv03Rg+JskSczJmcFNI6/klfXvNi+THJnIZQPPYX3FJl7Z8G7zQ5FZUblm6EXE2hzML1gKgMvvxqt7MWGl0edkdclGXH4PI1MHUVBbDIBu6Kzct4ErBp/He1u/CGlfalQyEzNG89iS51Bkhfsn3oZZs7YIpRiGQZI1gTOyp/JdQWjQaFBiP0amDCHgFQ82gtBVBfCTV5Xf6vSdNQUE8CNzqLS0WbPw04m38edF/wzpeWJTrdw48gr+sfQlKpxVAAxMzOUn429GNiQWlizj/a2fNw9lsqlW7hjzA1aXbGJ8+ggeX/pC83IAI1IGc+2wi3ln86ettm9PbTH947MZkzYcWZLZVrmT0iPKZN844kosiB7bXUV5rZvYyPYpT32QSZGJjbZSXN7I+AGJ7bZdQRC6j1MKwmzcuJGzzz671ekDBgzgs88+a/736NGjmTs3/FtWQThRkgQmk4JbdvLHBU/jDXibp03JGsu3+YtDAjAA5c4q/rLkGR6adj/TMyYzMWM0q0o2UN5UhU/389La/4bM79cDvL35E/4w86dsrdjJj8fdwL6GUorqSkiMiGNgYl8+z/uOiweezWOLn6N3bDqyJFNQW8zL6/7HdcMu5px+M1levBYJmamZ44izxCH5VAThIN3k57k1r3HxwDn8fdmLIW+ZDcPgq90LuG3Mtdw08kp21xQxJm0Y2Y4s6rz1vLj2rZB1+TQ/r214n19MvoPle9diVlQyHGnBYU1a8EFGQuLCAWeyoyqfWFsM5QfKVC8oXMYZOVN4YMqP2FC2DZffzfj0kcTZYlhQuIwrB53PuF4jiZCjMDTQw2RLkPwqF/Wdw4zeE1m8dyW+gI/JmeNIsSdh1q1osh7MzyQIQpejoJBgj6Ogdm/Y6fG2GBSUkD6eugYpaiqPnfkb1pZuoqh+H33js0mLSuLNjR+GBFK2V+7m87zvGJE6hP9tCQ2muP0enl7xH/50xv/x96Uvtkh4v6FsK3P6TifW5qDGXRcyrXdMOhFmO31iMxifNgq8JgwDHpxyD0X1xazav5FYq4MpmWOxS5FIAeWUvieh/ZTXuIhpx3wwByU4rBSVNbT7dgVB6B5OKQgTFRXF0qVLufbaa8NOX7x4MZGRhxI9ulyukH8LwsnSVT/1/np2luVjNllCAjAAo9KG8OTyl8MuW+WqocZbQ4PHya6aQtKjU5iSOZa3t7T+9uzjHXO5esgF/PLbv5AZk0ZyRCLbK3fxyfa5DErqh9vv4b6Jt7C1ciearnNuv1nsbyjnzY0f0Te+Dz8bfweSpuD3axhdqDKM0D7cerCUc37NnrDd/AE+3vY1v5v+UyYlTyAQ0DAMnU9bGToEsKhoFb+YcgfVrjrya/eyev9GhicPwi7bmJI1lh2Vu9lQtpUzc6by5sYPm5f7Ln8J3xeuYFBSX+4c/QMkrxlJkriy7yX4JS91vjoW71+JLMmMSRtOpBKJ5A+9lMh+lTgpgctzL0SSJVxGE9uq8ihuKCU7JpPs2Cwsmg1NE8EYQehKjIDE+f3OCKmydrgL+58FAQWOGGqra2DW7ExNmcT0NJkGvY6fzX047DpibNF8sO2LsNN0Q2fp3tX0ik5pEYQB+Hj7XC4YcCavrX8PgJGpgzk7dwb5NUXUextIjkzErwUwGSYMw0DxWciN6MuAgQMwDAO/X6Th7WrKa10MzIpt9+3GR1vZXlTb7tsVBKF7OKUgzJVXXskzzzzDT37yE6655hoyMzMB2Lt3L2+//Tbff/89d911V/P8CxcuZODAgafWYqHHM8x+Xt/0Lqv3b2RQYl8yY3q1mEc39JAkokcqrC3m87x5VLuDF9CLB55N2RFdkg9X1lRJhNnOvRNu5plVr4XkhrlqyPks2buGubsXNn/21a4FjEkbxi2jr+bNDR/iDngx+UVFGCE8j+YlxhpNhbO61XkqXTXohoHPF+zOr8sBypyVrc5f4ayisLaYNw4LsEiSxM8n3cG1Qy/mzU0fUVhbzOzsKUzrPZ5Fe1aGzHdm9lTwKQd6rRgEFC/vbP2YJXtXN8/3/rYvmJM7g/NzzkTyh/buMgwIBHRqjCr+uPAp3AFP87QoSyQPTb+PSNkhesUIQhdiGBBvjufGEVfw+sYP0A8MFZIkiWuGXESSNQnD3/oxHQjoSJJOpbf1c12MNZrKo5wLSxrKibFGh522o2o3N4+6kqlZ46j3NDIhfRR/W/Jc85CmubsXkRqZxC+n3N1cAlvXD51Xha7F59eoa/IR045JeQ9KjLGybIsXp9uPRRU9pwRBODGnFIS5++678Xg8vPbaa3z77bch0xRF4cYbb2zOF+P1ern00kvp37//qWxS6OEURWZjdR6r928EoMJZzaTMMQA4rNGM6zUcq8lKlDkCq2LBowV7yDgsUYxLH4HVZGVPXTEJ9jgafIeSBO5vKCfDkcau6sKw2+0Tk44SMNMvqh9/O+u3lDSW4tcD9HakU+OpDwnAHLRm/yaGJg9gVOpQFMQFWmidXbVT4axmcFK/VufJcKQhGYeqaZkkEyNTBnFev1nYVRt7avfxcd43wVLVQG9HBvk1oUMGDMPg78te5J/nPMLgxH5IUjBYMzixH5MzxrK/qRyrYiY+Io5e9tTm6l2yLLGzfk9IAOagr3d/z5i0YaSpGS2qifhNHh7//vmQAAxAo7eJp1f+h/+b8GNkXQzNE4Quxa8wNmk0w88ezN66EsAg05GO2bCCv2XFP0WR0eRgDz9FV9E0nThbTKurr3HXk+noxdbKnWGn943vzebyvLDTrCYL+xvLibPFcMnAOfzf3D+3KI9d2lTB/7Z+wvWDr0TziWptXVlHlKc+KMERzBtUUuUkOzV8UFAQBKE1pxSEkSSJX/ziF9x8880sX76c/fv3A5CWlsbEiROJjz9U7tRisXDJJZecWmuFHs8ve/ly16HKB1WuGqIsEdww4nIiLREsLVqD0+9CkWV+O/Nenln5GtN6jyfBHsfSvatp8rkYmJBLUmQCSfZ4ShrLAFhbupkHpvyIhXtWtOhBI0kSF/Y/C90fvFlTNRt9I3OJiYmgtqmRb3Z/3Gp7F+5ZwR1jfoCiqeiiEpLQCitWekWnkBKVRKQ5ojkp7+GuHnIhqm5GO/A70mQ/w1MH8+XO+dR7GhmQmMtjZ/6KD7Z+yaqSDUzMHMXfljzfYj26oVPcsJ/suEy2Vu5ka8VO6jwNTMoYQ1HtPtaWbubusTci+w/9ZjUlwBc7w1ccAfhy1wJuG/YDDH/oA02jv4laT33YZYrr9+PWXUTgOO7vSRCETiIgY8ZOv8hg4FgP0/tFkiCgetlUlcf3e5YjSxJn9JlKv7gcIowIBiX2ZVvlrpBlZmdPYWhyf/rG9w4bhLGYLIxOHcry4vAV2M7MmcqSotXsrd9PSmQigVZKUK/Yt56LB87Brtpb9OITuo6K2vYvT31QXLQFWZIoqWwSQRhBEE5Ym9Rzi4+P5/zzzz/mfPX19dxzzz388pe/ZNCgQW2xaaGHMdBpOqw6EUBZYyU17jq+2fB+82e7qguZl7+E38y4lwUFy0KqJeyqLmR+4TJ+MuEmnlz+Mi6/G03X+CzvOx6c+mNeWP0mlQfGmsfaHNwx+jqiZAeHl4IxDPBrfspc5TR4Wz4wH+T0ubAqNlEJSTg6v8IPhl7Gt/kLuWfCTby18SP21geHvEWodq4ddjFZEZlogQO/I7Of+XuW8OH2r5tXsbtmD/Pyl/DQzPs4t98sPtj2VUglkoMGJubiCrj467fPNpdIz68pYknRau4adz1j04aTHtEr5KFKRwsbGDqo0deEZmhIR1xSjszV1GK3NTEEQBC6sqMNJ9TMPv6+7AWK6vc1f7a9cjf9E3K4e8xN/GjM9by28X3W7t+EgcHYXiPIcqTx+wVPMLPPRG4dfQ3/2/JZc2nr1Khkbh9zLR9u+4ofDr+MT3bMZWtFsEeMKpuYnTOFlMhEPsv7jkxHLxrClMRubrehU9pUzsbS7VzS71xkEYjpksprXZhN7Vue+iCTIhMfY6WksvVroyAIQmva9azl9/tZtWoV9fXh34wKwrGomBmWPJAFhcuC/5ZNZDjSeHvzJy3mbfQ5+WDrl8TaWr5pb/I5+WrX90zvPYGvdi0AYEtFHrePuo7fTr0fl+YGwyDCbEdGQTP8KKqCFFCbh1zUeRp4d8tnDErMZfsRb/MOGp4yCIthCVNDRhBCyV4zc/rMxi95uW/iLfj1AJquE2GyY9FthwIwgNtwhwRgmj8PeHht/fvcM/7G5nxHR5qTO4MX1rzVHIA5SDd03tjwAY/M/D/whQ6fMxtmRqYMZn9jedh1jkkdhgm1uZfOQbHWGCRJajFMCYJvtCNVO4hE1YLQ7SiKzJqyTSEBmIPyqvLZVVvIoOiB3DL8Gq4ZehEezYtdtfJ/3/wJgAWFy9nfWM6NIy5HVVRURSVCtfPN7u8ZlzESv+bnumEXoyoqFU2VGMDy4nW8tPZtAMqbKhmQkNNq+5IjE2nwNDG/cClnZE/FQdxp+R6E06ui1k1sdPuWpz5cUqydfZWtB/sEQRBa03LwriB0Yro/WJnBopgB6BObyfbK3a3Ov3r/RgYl9Q07bUPZVgYm5jb/+8zsqciaCcVvIUqPIdIcydLiNfxqwV+475vf8cy6V6gxKkEJdompctWwtXInufF9cIRJEmg1WTgndyatFLsRhBYMv4zJZ8PiiyQyEINDj8Pks4YEYFRVYWtF+FwJEExM6dG8XDJwDhItb0zNiorL7w67bL23kSZ/y7d6WgDOyJmGTbW2mBZtiWJC+uiQNjZvy7AyJ2dG2G1dPug8zIat1f0QBKHr8kte5hcubXX6dwWL0FUvmyq38diSZ/nToqfJrykK6b2XV1XAP1e+yj+WvcRfFz9LvbeBpXvX8M8Vr/C3pc+TV5XP1vI8TIqJF1a/ydLDclbF2WKIs8UwNGlA2O1fOmgOc/MXAbBy3zpUkVi1SyqvcRET0XFFD5Jibeyr6JggjG7obK/eycrStdR7GzukDYIgnDwRhBG6HLsWySOzfsGIlEHIkoSB3vrMBmEfRA+f5rBGc8PwK7iw79kHSmsGS2C/uPYN3tnyCfWeBnRDZ1vlLn674G9U+iuQ5UNv919d9y4/HncD49NHokgyEhLDUwbx8KyfYdUj2nr3BQE9TM+SEAas3b+JX0y5k94x6QDYTFbOzp2ONUwgJWTRVtZt1ew8MvMXjE4dioSELMlMTB/FH2b8FIvWSjAlIHNe7hncNPKq5momiRHx/HjcjUxMHU0r6RoEQejqpKOfpwwMdtYW8tya1yl3VoFBq/lbDq0yeC1PjUrmjrE/oMpVy6sb3uP19R/w4/E3AMHesWdkT+XBqfegeG3cMfoHXDJwDnY1eI7KdPTingk3sb1yN8X1wTyGIl9b11VR6+6QpLwHJcdF0ODy0+jytet2PQEvT69/kX9t/Devb/8fDy1/lFVl4fMkCYLQObX/IEpBOEW6DpGSg9uG/5AAPpyai8/zwicNHZk6mLyq/LDThiYPINYWzYNT7yJOTiBgaHhVFz7NhwkFu9mOhBQybMMwDF7Z8C7/N/EuEuxxqIpKubOKvy97kSmZY/nJhJtBguK6/dgUO/rRU2II3ZQsSwQUHx492OPEKltRdQuaduo3+36/dtQqSrlxvTErKlOzxpMUEc8F/c/EpCgEtADLi9cR0AJYTRY8YfK1RJkjiFQjwg4R0jWwS1HcPOw6rh/uAyM4PJCAjHaUhy3JpzIhcSwjk4agoyOjYDGsBPxHCZ4KgtClqYaZ6VkTeHPTh2Gnz+wzicLaYmZnT2Zk6hB0QyclMhFFVlokx4dg8DYxIp77J91Kjbueb3cvol9CNr+YciearhFrc/DceX/GpwUw61Z0bzDQI3nNzOkzk4GJubgDHiqaqnl3y+eUN1U2r3t8rxEEAmLQcFfjD2jUNno7pDz1QclxdgD2Vznpn2lul20ahsFr296hqGEfl+ScR5I9gUUly3l92ztYFAvDEwe3SzsEQTg1IggjdEmGAfgVFLOJRm8TEzNGs7x4bcg8NpOVywafx7z8JS2Wt5msnNd/Nn9Z/BzDUwZy7ZCLeWfLpywrXoNm6FgUM7NzpnDbmGt4ac3bIYGYorp9+HQfiRFx3DjiCl5a+1+8AS/zCpYwr2AJkiTxwOS7UAOWFjkyhO5PVqAqUM7zK99srr6VGpnEHWN+QJKajKGd2th1RZEJ6AHOzp3ON0eURjcrKjeMvIJyZxV/WfwMNpOVs3KnEWON5rUN7zOn7wzcfg/XDLuYV9b9L2RZCYnbRl+HxbC1+rsNHncyJoK9aY731x0I6ChYmgu1B47We00QhC5PCxiM6zWSeQVLKG2qCJmWFZOOWVEJ6H7Gp4/isSXPEtA1pmaO46rBF/DfzR+HzC9LMreMuop/r32bXdWF2FUbP5lwE9/lL+HxpS9gGAY2k5WLBpzNlPRxLXrYaV6JBFscv53/OE5/aGL/SRmjcagxGGLYcJdTWefBoGPKUx+U4LCiyBL7Kp30z4xtl21urNrKpqqtnNfnTDKjgz1dz8ycgU/z8cb2/5EV/TNiLKLqoCB0diIII3RZiioxv3g57237ghtGXM6QpP4sKlpJk8/JkKR+zOwzmedWv8GMPhO5fcy1LNqzikZfE8OSBzImbShvbPyQJp+TCemjeH7tm2wu39G8bq/m48ud85nTdwaTMkezdO+aQ9uVZGRJxqyojEocxh9mpvLJjrmUN1XSOzaDC/udSZQcHTZHhtD9ueUmHl74ZEhug9KmCh5Z9BR/PeNX2Ig6xS0YlNSXMbbXcIYm9+fLnQuo9zbSPyGHObkz+GbX94xIC74Jcwc8fLJjLpcMnMMZOVPJic3iH8tfYmafifx88h0sKFxOWWMFadHJXDJwDg45VvxuBUE4Jkk6EJQ9CpPPyoNT7mF16QYWFa1AlmTGp48kNSqJF1a/hcvvxh3wMjVrPAsKl7F47yrO6zebB6bexdzdi6hoqiI7NpMLBpyJKivUuOoAuGroBfxvy+cU1u5t3pY74OGdLZ+gyApTUyaGnMcMA6IkB38565d8u3sxa0s3E6HaOa/fbHIcvZF8ojJSV3SwPHVMZPv0QAlHUWTiHdZ2S86rGzqf5X9NZlQ6uTHZzZ9LksQZmTN4c8e7vLfzE24ben27tEcQhJMngjBCl+XBxad535Ib15tYqwNVMXHN0AuxKBZ21RRS56mnpKGM19a/R2JEPBPSR2FTLWDAmv2b2VO3D0mSSIyIDwnAHG5ewVJ+MuGmkCDMpIwxWKVgTwBZN5EoJ3PrsOvQjAAmSUX3SxjiRX+PpJhgbv6isKWhNV3jy13zuaLfRegn+NZVlsFn8lDnrcfldpMT35uff/MIvWPSuXDAWdhVK8X1pfxm3t8YmtyfLeV5zcvG2hwkRSQwOXMMT634DxCsPLJy3wYmZ44hNy6LKlcNlc5qImMiUA4MMRIEQTicJIFm8uPUnNS464i1RhNpikQJWMLmkjIMA8VnYWzaCDwBD7qhs7pkI/k1Rc3zLNyzgp9Ouq254uEXO+exfO9a/jDrpxCQm6+pJlXmrNxpVLmq6e1IDwnAHO6j7V8xLnVEc2+9g3TdINmRyAXZZ3NG1vTgyxRNRfeJoHNXVVHrwqTIRNo6NoiW2I5BmG3VeZS5Krii70UtpllNFqakTeCbovnsqi2gb2x2mDUIgtBZtGsQRpZl0tLSsFqPnhhSEI6HV/PSLz6b6X0m8MKat5orvkiSxJk5U8mJy6J/Qg5bK/KodFbzWd63ADis0dw/8Va+2rWAywedR/WBt2vh+DV/yM1lUkQClw8+H7RDD6kHh2jImMUgix4uIAXIqy5odfqumkIC+JE5/ptGWZGo0ir424LnaThQAWF02jBuG30NL675L08u/3fzvPH2WM7OncETy14CggGYH429nlfWv8s1Qy9sTkQJ4PK7+TZ/cci2FhQuIz06jTnZM8XbYUEQmkkSBMwenl75H3bX7Gn+PMORxs8m3oHZb281qXels4r3tn4Rdpqmay0S8tZ46mj0unAYcc3X1IBfZ1LGGJbsXcXO6sJW2+nyu/Hq3hZBmIN0DZRAsOeESMjbtZXXuYmL6rjy1AclxtpYsbUcwzBOe1sWlywnyZZIakRy2On9Y3PZULmZT/K/4mej7+rw70YQhNa1+etOwzBYvnw5CxcupKkpNDIcFxfH/PnzGTlyZNhlP/zwQ/r379/iv8cffzxkvvfee4+zzz6boUOHcuGFF7JgwYIW62psbORXv/oV48aNY+TIkfzkJz+hoqKixXzr1q3jqquuYtiwYcycOZMXX3yx1RsJoX1JkoSqKphM4UtHmhUz5/WfzbOrXg8puWtXbZQ0lNPgaeTSQXOA4MPo0OQB5MRlkWiPRTd0/n7WQ0zvNQmHpfXhIRISsTYHM/tM4qcTb+c3U+9F9dmaL2wmk3ygjaLngAAm2USSPb7V6Yn2OJQTjH37FBd/XPR0cwAGgpWPNpVv55HZv+CKweczs88k7hl/Ez8a+0Pya/YwOm0YqqJy26hrWFy0ilp3HS6/O2wp9YPi7bHUexv5fOd3bK/eiaKI37QgCEGGKcCLa98KCcAAFNfv56mV/0YztV4dJsJsP+q6zXIw4GtTrQxO6s+AhFwsptAhJooik19TxOd584izxbS6LkWSUeWWAeSD5zPxUNp9VNS4OnQo0kFJMTY8Po3qes9p3U6jr4lt1XkMiu/f6u9YkiQmpo6lsKGI7TU7T2t7BEE4NafUE+aJJ55g3bp1vPHGG0AwAHPzzTezYsUKDMMgLS2NV199lczMzBNa77///W+iog49GCcnH4r4fvHFF/z2t7/lzjvvZMKECXz55ZfcfffdvPXWW4wYMaJ5vvvuu4/du3fz+9//HovFwpNPPsltt93GBx98gMkU3O2ioiJuueUWJk+ezH333UdeXh6PP/44iqJwyy23nMI3I5wq3eyj0l3Fun1biDDZGdNrGDYikAKHAjIRSgQ7q1Y2V1IwKyo/GH4pkeYIdlTtZntVPlMyx/L7mT+lrKmC/Joioi2RjOk1nJXF65mVNRXJbyJajSIxIp5KZ3WLdoxIHUyCOZFr+19GIKBDAPyqh6LGUv6fvfMOj6M6+/Y9Zfuueu/Fsizbstx7xeCGMab3TuiQkEDIRxLeNy8J6SEFAoQSIIRO6NUYG3e59yar97qq22fm+2OttddauRO3va8LLu/MmZmzq2nnd57n9+hcMl7Fx/amPdj0FkanFGHCHChzHebcQRQFvLKLyo56ZuZOorh2U8h2Fw28YH+qz9EJvZIksLOtHHeISkarqzeyvXEvvzv/p+gx0E0X5fZq2l2dTMkcy7yBM1hXuwWL3sQ9Y2/E6XMzK2cK7+zsOyMtizI50Rm8vf0TAN7b9RmDJuUhKqf+BTdMmDCnHqfmZHvTnpDryu3VOFUHFkKbgVokC6m2pIBR+cEUxOdRZq/khuGXEWeOZmdTCQZJj1f1YpB9CD7/+5pXdPPhnq+4snA+qRFJRBpsdBwkTPcyMWMMRkwHolIlDbfooLhuB62ldobEDyTNloLsNYYn3M5wGu1OspP7n1j4b5EQ7S9/Xt3cTVyU6Ts7zqambSAIDDxCmlGGLY0kcwKfVyxmcGz+d9afMGHCnBgnJMJ8+eWXzJw5M/D5iy++YPXq1Tz44IMMGjSIxx57jL/97W/8/ve/P6b9DhkyhJiYmJDr/vrXv3LhhRfygx/8AIDx48ezd+9enn76aZ5/3h+Cv2nTJlasWMGLL77I5MmTAcjOzmbevHl89dVXzJs3D4AXX3yR6Oho/vSnP6HX65kwYQJtbW08++yz3HDDDej14QHIqUAzeHhq3T+DSku/teMjbiy6jLGJowIvZYIq0dDdEmhz79ib+KxkSWA7vaRjaMJA/rnx7aDqDCurN3Dv2BtxaU6QnJgEEz+d8gCPL/szrQ57oF1OdAa3DL8KzSPg0RQEATw6J08s+ys3jbicN7Z9GpTb/ub2j7h5+JWMThgRJBaFObsRBHDJPfxy2V9oddiZmzeDq4Yu4N0dn6DsNwcSBZFrCxcSb4xH8x79i78oitSHGLj00uXpxqN4cYtunlj2FE09LVxduIA1NRsDHgsAX5QsZVTKMG4afhmD4gfQ43XQ43XyZclSGrqbeWD8rVS01wTaNzva0ITwACVMmDB+QpW0PxiH14lFDC3CyIqBH028k9+ueJrGngPP7OyoDG4ecQUiAq9v+5BN9dsD6z7as4gF+bO4IGs6oldGReWSgtl8XrKEkpZyHp58F79f+Rwdrs7ANvlxuVwx5EI0tz9KQJA0SnvKeHL186j778Wf7l1MojWeR6fcj+wOp8afqfgUlbZOFyMHxp/qrmA16TAZJKqbuhmR9931Z3PzNtKsKZjkwws9giAwOnEEn5R/SWl7BblRWd9Zn8KECXP8nJAI09jYSGZmZuDzokWLGDBgAHfeeScA11xzDW+88caJ9fAgqqurqaio4OGHHw5aPm/ePH73u9/h8XjQ6/UsW7aMiIgIJk2aFGiTk5NDQUEBy5YtC4gwy5Yt44ILLggSW+bNm8dzzz3Hpk2bGDdu3Enre5ijQ5IFVtdtISsqjUFxuZTZq9jeuAcNjVe3vMeQC/KxEgWAqqoUxA1gZdU6CuLzqGivCRJupmSO5ZuyVUECTEH8AOYNPI9n1x4oH5xkjefO0dfzf9MfotnRht3ZTqI1HptsRfLoAxUgNFnh1S3vkBKRxM7mkiABppeXN7/N4AsGYuHUz86E+e+gyQr/3PRWQMD7vGQJE9JH8vDku2h1tBNhsJJmS0GvGcHrD4mXZAGf4EVEQlBEVDW04KEoKjkxmSHXAcSZY5BliZc2vkOLo40pmePIiEzhzW0f9Wm7oW4rw5MG83nJEuq6Gok1R3Pz8CuwGay8vvUDLh08B0EQ0DSNjMhURC2cjhQmTBg/Zp0pcH8IhU1vhb5+5IDfFNeElZ9O+T7t7g5anW0kWuPRSTpWVa3HrDMFCTC9fLTnK0anDCNWH4tekmhztrOreR8PTbqT59e/zo1FlyIIIp3uLuItsdR1NvLq5ne5pfAa8Ep4JBd/XvNCQIDppbG7mTe3f8gNg69A84bvc2cirZ0uVA2iraeuPHUvgiAQH2WiuvG7M+d1eJ2UtJcxNXXiUbXPicwkxhjNoqol5Ebd8p31K0yYMMfPCYkwsizj8fjzgHu9YBYuXBhYHxsbi91u72fr/pk/fz52u52UlBSuvPJKbr/9diRJoqzMb3iZnZ0d1D43Nxev10t1dTW5ubmUlZWRnZ3dJ2cyJycnsA+Hw0F9fT05OTl92giCQFlZ2QmLMMfiE9Kbr3y2+TAc6/fyyE6sBjN1DY04vE4Gx+cxP/98Xt70DvVdjaysWsfFufPw+fwpSIWJ+Vh0Ziamj+L9XV8E7asoaTB/Wf3igb4IIpcUzOX3K57Bq/owygYEBBq6m/nlt3/hiQt+QqIpnhRDiv9FUwMOCmhxCk52Nu/jlhFX8K8t/+n3O6yuWc/87Fn+9KUzjLP1PIRjux6PBQc9bG3cFbRsdfVGVldvJMJg4/5xt2DBigYIOnAKPXxTVczu5n0YZQOzB0wnzZqMFCL1R5JEYogi2hSJ3dnRZ/38/Jm4FTft7k5+MuVe7M4OFpet6tOul6UVqxmfPpL/7PycVoedP616nocm3UGLo43StkoGxmazp6WMawsvxiAYUeVwNMzZfE2cKk4HD61z9e96vN9bEs1MyRjLssriPutGJxdikkxIh7EZVEWFHl8Pi8uX0+7qYmbOJJZXrCU/PodvK/rus5cvS5eSZIlnZ8s+JmWM5t5xN9Hj6aGyo5a/Fb+MUTZg0hnpdHejqAoCAtcVXoJVH8HutopAuvKhFNds4qohCzDJlmP6Hc42el+Tz7TroLXT778SG2lAkk6Nz4+4/zcTJZHEaDMVDV3f2b2tpGUfqqYyIDrzKL+vwKjEYXxd+S0t7haSLAnfSb+Oh3P13hsmzKGckAiTl5fHRx99xEUXXcSiRYtob29n2rRpgfV1dXVER0cf9f7i4+O5//77KSoqQhAEvvnmG/785z/T2NjIY489RkeHfxASEREcZdD7uXd9Z2dnkKdML5GRkWzf7p9t6erqCrkvvV6PyWQK7Ot4EUWB6Ohjf7hHRHx3+aSnkqP5Xl3ubt7a+jnfHDSILG2rZGn5au4ffyt/XPUP2l2d2GwHQoibup38ZOo92J0d9BxkztuLctAM2MiUQoprNlGYOIiZuZNxeJ1omoZNb2FpxRo+2r2IyRmjGZIwEKPuwDGcXhcd7i7qOxr43qirSY9MCTICPpQOdxc225n9dzzbzsPjvR6Phu7D3Cs63V10uruISvYfu66rkW/L15Afl0ucORqTzki3t4fl1cVcMGAKVkPfPi7bs4+7x9zIOzs+oWR/VRCTzshF+efT7XGgaRqXD7mQP658jvNyJtHjcfTfV48Dg3RA7NHQ+HLfMn4w4XZaHG0MTchHRSUrKv2IZprnGmfbNXGq+C6vxePhXP27Hs/3vq7oEmRJx7flq1A0FVEQmZA+ihuKLiXGHNXvdl7Fx7razfx5/6TIpIzRJNsSGJ02DJvewnXDFvJ5yVK2NOzss22XuwejbGRXcwm7mksoTBzE5YMvDKx3+dxBqVIaGpqgERlppqex/3uhqqkgaKfVuXgq6J2sPNOugy5XI5IkkJIYiSieWrNli9lAZkok63Y3oTfqsXwHJbP3lZQSb44lNe7oxZSxlmGsqV/P8vpV3DHmupPepxPlTDvnwoQ52ZyQCHPvvfcGDHIBRo4cGfg3wLfffkthYeFR72/KlClMmTIl8Hny5MkYDAZeeeUV7rrrrhPp6n8dVdXo7Oz/BeBQJEkkIsJEZ6cTRTnzIij641i+V6vaGiTA9NLl6WFd7RbuH3cTCZZ4mjpbMWgmfwqHJPD6lg+4dthCChPyWV+3NbBdm7OdZFsi9V2NACTbEjBIBlIiEvnzqhfw7i+LKYkSlw++EAEob68hyZqIef/smSJ5+aZyBf/Z9XkgpPnSwXMZHJ/Xr0nh6JQi2tsdZ6Tp33/zPPxvvvwe6/V4LOglA9HGSOyu0GJMRmQqdnsPmqTQ0N1MU09LUNSWTW/hhxO/R7fHgdvtQ1LlQAqcIMCg2AGUtJVz0/DLkUWZbk8PPR4HSytW0+7qZGrmON7d8SluxUOZvYqhCQPZ3bIvZF+GJgyk3F4dtKy8vZqqjlpe2PAGgiAwL+88Ek0JeHrOvPP3u+BsvTcfyn/revwur8Vj4Vz5ux7KiX1vmavyF7Bg4Pk4fS6MkhGTaEJwS9jdPf1u5RYdPLPuNQAuHjQLWZT4yVe/DkyS9JrqRxisLK9cG7RtUVIBK6rWBz5va9zN3LwZRBkjaD/ID6aXaFMkOkGP3d7DgJisfvuUZI1HRofd3n+/TyX/reuxt6zymXYdlNe2E2010NPz3VYkOhyiJGIxG+hxuIk0+YdT2/Y2kp9x9JPPR4OmaWyq30lWRDpdXf1PAIaiKH4IS8vXMCv9PCINp0ea/Jl47z3Xxdow3w0nJMJMmjSJ999/n5UrVxIRERHwWgF/VMro0aODjHuPh7lz5/LSSy+xa9cuIiP9pm9dXV3Exx8wv+rs9D+Ie9dHRETQ0NDXzLKjoyPQpjdSpjciphePx4PT6Qy0OxGOJx1FUdQzMo3lSBzpe+l0EutqN4dcN2vAVPJis3lnx2dUttcQa4pmYcFsRiQUYtBMXF90GS9ufIOrChewuWEnvv3iyqJ9y7l88Fz+Vvwy4I9oKUwcxK++/Vtw31SFt7Z/xMOT72JvSxmV7TXkW/MRBCjtKOfdQ6rJLCpdzj1jb2RXc0lQpA1AekQKadYUvJ7QIdBnCmfjefhdfR+dZuTG4ZfzlzUv9lk3Pm0kJsGMz6siyAp7WkpZedCAAvwi429WPMODE25nb0sZ07LGo/eZUBV/Wdg2VzuLSpfzz01vE2+J5cKBM4kxReHxebm56EoURQn4E+1pKeWSgtkhBygmnZEJ6aP49bKnAsvSIpIZHJ+Htv881jSNT/cuJjMylWFRw86YF6T/BmfjNXGqOJ1+x3P173rc39sHOszoMIMK/ifd4ffToXWSF5OFRW8mIzKVvxX/M2i9R/Hyz41v8+PJd7GmZhNexUtmVBrpESmMSinkjUM8rr6tWMP8/PN57aC0YJveQlZ0OgsHzUbnM+JTVCJ0EQxLLOiTLgpw8/ArkX0GfOf4Pa5X8D/TroOGVgeRFj2KcionC/y/l6qoRFkNyJJAWW0nuSknPn44mBZnK3ZXO5NTxh3z9x0SM5i19Zv4umI5F+fOPan9OlHOtHMuTJiTzQkn5A0YMICbbrqJSy65BIPhgEFWZGQkjz766Ek1t+31b+n1demlrKwMnU5Henp6oF15eXmfSITy8vLAPsxmM8nJyX321bvdoV4xYb57QkWO5MflkGpL4uniV6jcX72l1WlnacVq2jxtrG/ZxIqqtczOm4ZR1vPo1PsYkjAQgCZHK06fh59Ou5/s6HTizXEsLV/d7/EX7VuOpmlo+8sHe0UP/9n1eZ92Xe5uPt+7hEen3c+guAGAfyZv9oDpPDzpbmRvuKrWuYSiqORF5PLI5HtIi0gG/AOCa4ZezPWFlyF4/Vq3R/PwdenykPtw+9y0OdsRBYHF5SvoEjpAr7C5ZRt/WPkcNZ31SKLEnAHTiDZGsLu5hIFxOehlfR/vq5c2vs09Y29ifNpIJEH0V0pIGcaDE27nX1v+g6KpZEdn8Mjku5mWNR5BEPCpKg9Pvov0yBQA3tv1OV7x1M0whgkT5uxA1XlRBY3UiCQmpI9icdmKkO00NNbUbGRB/gX8ZMo9TMkci9VgZk9LGY9OvZdES9yBtppGXkwWFw+aRawpmttHXcNto64mLSKZ3S2ldNGOJisIXh13jLyeywfPw6Lzp1dmRqXxs6nfJ92cFhaZz2Aa2xxEnQamvL1Iot+ct7Kxb9n0E2WvvQwBgVRL8jFva5QNDI0rYFnNapy+Y4uiCRMmzHfLCUXCdHd309XVRXLygRtDY2Mjb775Jh6Ph9mzZzNs2LAT6uBnn32GJEkMHjyY+Ph4srKy+OKLLzj//POD2kyYMCFQ5Wjq1Kn8/e9/Z/Xq1Uyc6HcSLy8vZ+fOndx+++2B7aZOncrixYt5+OGH0el0gX1FREQwYsSIE+p3mGPD61UYkzKcD3Z/GbT8/Nwp/GtzsAluWkQylxbM4VfLnsJ9UC64RW/msek/4J4xN+FTFQQN3KqHP676BwsHzWJgbA5JtjjGpY1AEkRqOhv4Yt/SgOFps6OVouTB5MRk0OXtQFNVZg+Yxid7FlPTWR/Uh62Nu4gy2rh//C34FAVBE9CpBlQ3hJM4zj0En0y2KZtHJtyHgg8REYNmxOc+6GzQ/FEv/VHdUUdFezW7mvfx0e5F3D/uFpJs8fxw4vcQBZFIg42v9i0LMoV+f9cXzM2bwaNT7+Pr0uVMzBiNIAgomsLo1GFMzBhFekQKBoyUdpRT19VIii2RK4ZcyF/WvBTkpWDRmbl//M28tPFtWsIlqsOECXOMSJKIV3ThVJwggEk28sb2D1hVvQGABEsszY62QHudKDM9ewLDkwbj0xTMsok4SwyPfPkEHtUbaBdpjOChSXfi8DhwKW6SrYlYdRZm507n/NzJPFX8SlBlxHd2fMJ1wy5lQtJoBLeO89NmMC1jAqIsgE9E9OlQfeH725mKqmq0dLoYmhN7qrsSRGK0mYr6vilyJ8q+9jLizXEY5OMTnUYmDGNL8w6WVq9ibvaJZSeECRPm5HFCIsxjjz1GTU0Nb7/9NuAXZa666ioaGhoQRZFXX32VF1544aijYW677TbGjRtHfn4+AIsXL+btt9/mxhtvDKQf3X///Tz00ENkZGQwbtw4PvvsM7Zu3cprr70W2M+IESOYPHkyjz76KI888ggGg4Enn3yS/Px8Zs2aFXS8jz/+mB/96Edcc8017N27lxdffJEHH3wwqGx1mP8OkboIpmSMZXnVgZxwg6Sn0x08s3DxoFm8sOHNIAEGoMfj4K+rX+InE+9D9hqRZYlvq9fQ0N1Eoi2esvZK/r31g4Dokh2dzp2jr+PfWz+guqOOzMg0CuJy+d3yZwLlqxMscVxTuIBllcVsqt8RdLz0yFQMignc/vSn8JzauY2iaIiKDhG/oOs7RI4TNYl4SyzNPa0ht0+LTGZtzWbAX17dq3p5eu0rgfM1KyqNqwsXUNFRQ3VHXWC7z0uWMDVrHLkxWTy37t84fS4EBIYlFXB14UXoNROaVyTXmsvvL/gZHtXDb5f/PUiAAejxOnhl07vMz5/JkvLV4RLVYcKEOWoESaPBW8ez6/9FQ3czydYE5ufPDAgwAA3dzWRGptLc04pe0vH98beyomodf1z1PKqmopN0nJ8zmdtGXc2z614LRKV2uDp5dfO7jEgewtvbP8EgG5g/cCbnZU5mRdW6IAGml39v/Q+FCYOwEYXi09DLJqItFuz2Hnxq+Gl9JtPW5UJRtNOiPPXBJMWY2VLagsvjw6g/oeFVEPvay0i3pR739hadhaFxBSyu/pZpaRMx68KGuGHCnA6c0Fv2hg0bmD59euDzhx9+SFNTE2+++SZr164lPz+fZ5555qj3l52dzXvvvccDDzzAfffdx6ZNm3j00Uf5f//v/wXazJ8/n8cff5xPPvmE2267jY0bN/LUU0/1iVz585//zMSJE3nsscf40Y9+RFZWFv/4xz+Q5QM3xszMTF588UUaGhq44447eOmll3jggQe49dZbj/9HCXPcCF4dVxYs4KGJd1IQP4D0yBQijcFGYgICsebofk1Qa7sacKiO/WUXNWwGCwmWOFRN5aniV4LK/Jbbq/nbmpe5bthCREFkwaALePzbvwYEGICmnhaeKn6ZOXkzgqrKGGUD49NHHlU4syAcKAMZ5tzFoJm4euiCkOuiTZFYdWZanXYiDTbGpg7n2XWvBZ2vFe01/HXNP7lu2MKgbYcm5LO1YRdvbPsQp8+fQqShsaVhJ39f+y9UwS8SaoqAzmPCpyi0Ou0h+1Hf3USsKYprh14csmR2mCMTvtbDnIs4hG4eX/YXGrqbARiXPoKlFWuC2myo3cbCgtkIgsDCgtl8XrKU1dUbA6b3XsXL5yVL2NdWwZSssUHblrSWkxnpH4i6fW7e2/kZS6pW0tDT3G+fllcVo9NJJ/NrhjkNaLL702qibaebCGNC06Cqsfuk7bPd3UGry07KcaQiHczoxOF4VR+LqpaenI6FCRPmhDkhqdZut5OYmBj4/M033zBq1CiGDx8OwMKFC3nqqaf62bovP/vZz46q3RVXXMEVV1xx2DY2m40nnniCJ5544rDtRo4cGYjkCXPqEb16cs0DuG9kFqqmIEoiA2Oz2bu/NK8oCIEXtv7wql7KnGUkWeMpTBqEw+vk3R2fhmzb43VQbq/mF+f9kN0t+0KW91U0laXlqxmfPpJvK9aQFpHMvWNvIt4cQ0dH/zm2BlFBpznwtdUjSDJSZCIuwYxPDY/SzkV8PpX8qDxuHXEVb27/KFDmPC82myuGzOf59f8GYHr2BD4vWRJyHw6vk9K2SgbEZLGvrSLQ/pVN74RsX91RR6urjQQpKWDA6FG8Idv2YtKZSNQnhsP1jxGj6EVW/Ne7aDAj2uJwYiZsOxHmbEYQBDD4+GzXNyjqAUN6g6Tv8zwdkTKUHU17uGfMjUQabby9/ZOQ+1xSvpoHJ9zGsorioOU+Ldjw/uM9X3Pv2Bv59hCxp5cOV2cfz6wwZz5NdieiABGW02uiIC7ShCyJlNV1MjA96qTss6zDb7qfbE08QsvDY9VZGBFfyDfVy5mcMp5Y08mt4BQmTJhj54REmIiICFpaWgBwuVxs2LAhqJS0JEm4XGFzxzDHhqpqoEqISOgEkTtG3cDj3z5Jx/60JJvBgiiIIcUYg6RHL+n4y5oX+MHE24k02BiamM/He77u93jl9momZYzpU7XmYCraa3ho4p1cmHc+JsmIEROi2H8gmUn04NmxmJYV78D+fgo6A3Hz70dMKsCjhGfnzkUEr8zY+NEUzRyCw+cAASrsNTxV/HIg7S7JlsCifgx8wX8uJtsSAiKMXtIdwWumnqS4lEDUVpQxAkkQ+1T26t1XrDEGPGf++SlKIh5FRUNAJ4KgaXxXVeMtkpvuVW/TvWXxgeMbrcRf/ggeWxo+JTwQDPPdI4oCXu1AxRuDLKB8h9VHBAG8Ogeb67cH7ke9lNmrGJIwkLquxsCyZFsCX+77llhTFPPz+/em8Km+Pvcnq96CckgakdvnDopQPZRxqSPx+c7sSoVh+tJkdxJhMSCJp9d9VRQFkmJMlJ9EX5iKjioi9DasuhMvkTw6cQS72vby9t73uWvYLWGBMkyYU8wJpSONGDGC119/nUWLFvHEE0/gdruDSlJXVFQERcqECXMsqILAuj0tPPN6KbcV3MXNhdcxLWsCIiIX5E4Juc38/JlomsYtI66kwl5DbWcDXe4eYs39q/5J1nhKWssPOzMQb47BhJkoMRqDZvILRf0gigK0ltO+/K2AAAOged00f/An9J7QqVRhzg0Un4bsMRKhxhCvjyUrOo2eg0SUTlfXYc/XOHMMHa4DPkmSKKGTdP22j7fEBJ2vetXIgvxZIdteNngeetV4LF/ntEMQBHyCwNtL9nH/n77l7t8u5tkPttPtUf3X5klGlgXce1cFCTAAqqubpjcfx6T2L5CFCXOy0ASB6lYHv3l1PXf8ZjE/fnoFSzfXoQrfnbeTKnt5et3L1HQ29rlnbajbxti04Zh1JkyykcLEQeglPXHmaPa2liPQ/7UoIKATg+cILymY3aeykiiIxFlikMW+84kptkQyI9MO+6wOc2bS1O4gynp6RcH0khxrobT25L3jlXdUkmiOPyn70ks6pqdNYnvrblbX9z/pGCZMmP8OJ/R0fuihh5Blmfvvv5+3336bm2++mby8PAAUReGLL75gzJgxJ6WjYc4xRIHPVlfy17c3s72slV/9Yxsff+ymaesAPC6Z3JhMrhu2MCCcJFriuHXkVcSZY0AQqO6sx6f6iLPEoJd0/Yo2oiAyJq2It3d8wqwBU/vtzsWDZtHua+ej8s/5tOJLWtUWutyh834NuOlY+W7oHWkq3Vu+RqcLm56ey0g68Bh6WFG3jp1Ne3lsxg8YHO+/d66p3si8geeF3E4QBMamDWdH814kUWJSxmhijFFMzgh9n7XqLSRbE4PKv2s+gZlZU7lz1PWBgVO8JZb7xt7MpJRxqL6T/GX/y3g1+J9/rOGzVRW4PQqqBmt3NvLQ35bT7Tn5UQEG1UHnmg9CrtN8HlxV25Gk8PUe5rtDlkVK6zr5+XOrAwPA9i43//xkJ698vgv1O5rxdmpO9raWs7p6A9OzxgetUzWV17d8wOMzH+aBCbeSbEvA7mxnwaALUDWVdlcnSdbQg8uipALK7FWAX0y5a8wNtLs62dG0N6jd+LSRmLHw+HkPMzTBX9BBL+mYPWA6P5nsN+gPc/bR2OY87fxgekmJNdPW5cbe5T5y4yOgqApV3bUkWU7eZHZuVDZDYvJ5a+/7VHRWnbT9hgkT5tg5oXSkzMxMvvjiC0pLS7FaraSlpQXWOZ1Ofv7znzNo0KAT7mSYswdREnH5VJxuHwadhFEnQoiZKrdP44NlwRUPapq6/f81d/PY3YW8uf0DLh08B5vBit3Vwc7mvcwZMJ1fLHky4Lfx/q4vuGLIhRQlDeb83MksLl0ZqLhgkPTcN+5mbHorj0y+m32tFVw37BLe2v4xvv0jUVEQuabwYpodbTy77l+Bvny45yvOz5nMJfnzwBd8GQmagq+jf7NAX1sdBk2Bw8wEhjl7kXTQ6GlkdfUGChPz8WkKPR4HswdM5/bR14KmUdfZyAW5U/m6dHngfNVLOm4deRU2vYUfT74bp9fJpvod/GLpk3x/wm20OexsadwVOE6kwcZDk+/EiIFDdRXBIzMydjhDpgxCE1QEbX9Jbe+ZbWAiSSLby9qob+0bfeL2KLz7zV5unjsIVTny7LgkiXgUjW6Hl053J0adhE4SUA7ZVtBUlJ7+Zz69rbXocgSUcFZEmO8Il0/j+Q+3h1y3fHMtV5w3AKv+8CmGQc9mvYxJFtCOEEXSW2Gt29PD3tYyrhgyn//s/CyQSnTbqKt5c9tHrKvdHNjmssFzuXTwXD7Y9SXfG30dL2x4g6aelsD6nOgMbh55JT0eB8OSCogyROJTfLxziH/MoLgBXDN0IapbJFKI4e4RN+MTvAgI6DUDipvAvTPM2YOmaTS1O0+a58rJJiXOnzZUWtvB6EEJJ7Svup4GfKqPJPOJ7edQpqdPps3dztObX+TuolvJicw8qfsPEybM0XHCNdR0Ol1IocVqtXL++eef6O7DnEVooshHKyv4ZEUZHp+KKMB5Y9K5ds4AVM2HrOkCs/CdPW7mTErDapaoqHHQ2Opk1JAYRBG27enA3a3n+mGXUtNVT4ujjSRrPKm2JP6w8h8BAaaXd3Z8ytDEQcwdMINZudNo6G4CQBJEPitZyq7mEsalDeeSgrlsb9zFjybegYaGpmqkRiTR5urg/5Y+2ef7fF22gnFpI0jTZwSFPKuiDn1iNs6yTSF/B0PaIBQkwkWtz01cohOHz0mHu+tAaVZRZlr2eERRICsynZyoTDKiUpiTN43azgZcPjdmnYkvSpbyz03vcNXQ+eTF5jA9ewLzB87E6XUxMqWQBQWzaHXYseoteBQPz69/gwcn3o6evvnkPp+KxIGQbt8pOB9FScSraOgkAfUkONgKosDKrXX9rt+4p5lrZ+Uf8cEniAI1rQ7++vZmGtv85qIpcRYeuGo4iZHGoMGpKkjI0cn47PUh92VMzccTducN8x3i8ig0t/dvEl9a28GI3Nh+U3NUQeDjFeV8urLc/2wWBSYXpXDDnEFIhzFSsujMftFjvy9VdnQGT1zwE3o8DkyykXZ3Z5AAA/Dezs+ZmjWOH0+5m9qOBr4/4Va8io9Whx2TzkhjTwuPLvotseZorim82J9yJMbzP9N+iN3dTrurgyRrAmbZhKhKiKLg/15eCRm/0BTWO89e2rs9eH3qSU9HUtpqUGq2IZgjkbPHIBwmxfdw2Mx6Ii169p0EEaaysxoBgXhz7Ant51BkUebinLl8VPYFT258hvPSpzA9bRLRxqiTepwwYcIcnpNSyN7r9VJWVkZXV1dQ2Hsv4ZSkc4feqOc+p4Eo8MmKct5fui+w6OIZGQzK1/Piltdoc9rJj8tlVu40zJIJj7eZtqiV1HgdXDNvIS0OO4vLF+FTFcZOG4nJ6sOr+Hhy1fOY9WauGHIh/9n5Od39GJSuqFyHJIjEmqPo9jhYVLo8SKxZXb2Rbo+Dawsv5ollT3Fj0RUMix6KV/PwxrYP+v2+n+39hjuKboSDKh65VZnIKVfiLNsMh8zECToj5oJJdH2HZolhTm98qpfP9y5h60FRK17Vx9elK1BUlfSIZMraK/mqdBlRxkgGxubw1kHVlIYk5JMWkcLishVU2KuJt8Qwb+BMBsbl8E3ZSuq7mjDJRiZkjGJ06jBK2yopjByK73Q65wSBTpePD5ftpaK+k4wkGwun5hJp1oWMjDuG3WI19/9ybjbK+70o+h5DEITA86vLrfDYP1ajHNSXupYefv7cav78g2mY5IOud8FM9PTraH7/D332KVmjkBNzcIV9KcJ8R6iCEHSehsJi0vVrSi1IIh8vL+PDZWUH9qlqLNtUS0e3m/svL0LsZ2MjJq4vuoSUiCSKqzdh1ZvZ0biH1TUbARifPpIfTLiN59b/G6f3QJGGZRXFdLq6mZY1jj+vfpFbR1zFv7b8hy5Pd6DCkqPDyV/WvMTPpt0Peg17TzsrKouZnDmWDXVbWV+3FYOsZ3budHKjshE9xzdoDnNm0WT3i+InMx3JV78bz4YPEQwWNI8TpbEUw/irj1uISYmzsLem/YT7VdlZQ5wpBp148s9tg2zg0gHzWde4iW9rVvF11bfEGWOIM8USaYggzhRDTmQWeVE5SOKZb9QfJszpyAmJMKqq8sc//pHXX3/9sFWQdu3a1e+6MGcHmijg9mnUNXejkyUSY0wYpAMDFYdb4ZMVB17ypo9OwpzSwJ83fBRYVtFewzdlK3lkyj28sPF1mnpauHvMDby14yP2tBzYtrStkhW1K/jBhNvxqj46XJ3oJR093v5nArs9fv+W0anD+PXyp4NKafayrXE3zoI5TM0aj93VDvjz2kOVrQ7s1+tA0RSEgy4lTQOvKYH4yx+h7ct/oHS1AaCLSyd2/n04hIgQKlWYcwWfqgQJMAezrLKYCweex5OrXwAgPy6XSKMtIMAkWxOYM2Aav1vxTCBlrqK9hnW1W7mm8GK6PQ62N+0BYF3dFubnz/TPVp9GVRAkSWRvbQdPvLIucBmU13WybFMtP75hNAVpkcdtpunzKswZl8HidaFz3edPykZ/UEqRKAq4VWhpd9Lj8pIaZ8VskHh/0d6QA1uvT+WLNRVcPi03UG1KUVR0iQOJmXMn7Uv/jery32sMKQOJvfBeerAQSvQJE+ZE0AQBj6rxr093khRnoSgvni0lfdNg9bJIRqIt5AQZgMur8unKipDrtpS04HD7+k1lElSRBEscv1v+DD+YeBuvb/2Qqo7awPqS1nIyo9K4Y/R1/GX1i0Hb9ngdRBhsjEop5Mt939Lu6pvS5/a52Vy/kxFJIv+39EkemXIPf1nzEm3O9kCbXc37GJk8lFuGXY3oPT3NWsOcPJr2R3xFWk6OCKM6O/Fs+QwxNgM5bwJadyveHYvx7VuNLr9/n8DDkRZvYfHGWtweBcMR0gAPR2VXNQknyZQ3FJIoMT55NCMShlHRUUWjo5lOTxdVXTVsbdnBp+WLiDFGc3neAorih3xn/QgT5lzlhESYZ599lhdffJGrrrqKUaNG8eMf/5iHHnqIiIgIXn/9dQRB4OGHHz5ZfQ1zmqIKAl+sqeI/S0pQNZAlgSnDU1k4LReTQabH5cXp9iEA541JYXRhDGlJJn6y+JU++/KqPl7Z/C5z8qbxRcm3+FQfZW1VTMkcy8iUQkQEdjaXsKyyGI/iIdJgo8PdRWlbJUPi89hYHzovfnD8QD7Zu5jzNC2kANNLq9NOakQiGRGpKIqKXjYwMrkwqMzmwYxNHY6MDuWQQZZHlZDiC4i/7lfg7kYQJVSdBSfGcLWGc5zeUtShUFQl4LMAUNNRz5wB0wKf5+RN5/VtHwYEmIN5e/vHPDz5LlZXb0An6ZiYPorcmCySbQn4VC+CIJ4W2p/Lp/HXtzf36YumwVNvb+ZP35+K7jg1I03zz5Befl4e735TErSuMDeW8UOTA+KJIArUt7v41T/X0u30Btr9+PpRlFS393uM3ZV2vKoW5GrvUvXIORNJyCwCTw+CpEORzXRrhiP6aoQ5e5BlEZdvv8AngCzwndzvVVHg5U93MaEwmVXb6rGadDx8w2hqmrpo7TgwISaJAo/cOBqD1L+/i9Ptw3eYdLmWdie2RGvIe4dHcvHs+tfIjk6noas5SIDppbK9hlaHncyoVGRRZnr2BCINNix6M6qqkmxNoLg6dOouwN7WMmx6C6NTiyiu2RwkwPSysX47F+Y1k6xL61dsCnN20GR3EmHWoZNPjtm5d88yEETknDEIgoBgi0NKHYx3XzFS5ghEo+2Y95kWb0VVNUrrOhicFXN8/VK81Pc0MjAq97i2PxYMkp78mAHkxwwILNM0jSZnC8X1G/jHtldYkDOH2VmhCwaECRPm+DghEeb9999n7ty5/OIXv8ButwMwZMgQJkyYwMKFC7n66qtZs2YNEydOPCmdDXP6IUkCe6s6AgOeKKuBH1w9guVb6vjx31bg9SmMHJTAbQuG8rO7CllWt5S3yvYxX39+vy9L1R11xFtiKUwcxO6WMh6efBfLK9fy9+JXUDSVEclDeHDC91hXs4Ubhl/GU8Uvs6yymB9MuJ1tjbvxHjJATbYmYNWbaexuPmJYpU1vxaN4iDfHo7lFFK/K3LwZtDjaKGktp9VpD7SNNEYwLnUEijv091AUjR5MoDP5F6gQnhE/x9EpWMW+/iwHc7CZZI/XQbfXwYS0UbgUFwnWOOr7EQQVTaXV2U52dAbXFF7MtxWrebr4FVRNZUxqEVcOuQizYkU9xVlJXU4PXQ5vyHU9Lh9dDi8xluMPvxY1jTnj0plclMLyzbV0O7wUDojD6fbxxZoKZo/LREbDrWj87/NrcHuDRdmdFW3ER5moaQpd/Swp1owsCn3MfX0+DR9m0Jn9C8LX+zmFKoos2lDDh8vK6OzxkJsWyS3zh5ASbTqpkY+iJPLe0lLcXoVNe/2RL91OL0+9vZnbLx5Ke5ebfTUdxEYYmT4yFZMsHlYINOglBMHfxdR4K0mxZtq73IEqSxFWQ7/d7/b00ONxUJQ7mLWHeL8czNqazVw37FIq22v4cNdXtDjaSLYlcvngucRbYok1R2MPEQkDkGCJBUGgKKmAN7Z9FLINwNLK1dxQcBVeT9gR5mymye4k6iSlIqmOdpTaHciZIxHkA88cKXkQSsMefGXr0Q+eccz7jYs0YjJI7KlqP24RpranHlVTv9NImMMhCAKJ5nguyplNccMGPir7ggi9jQkpYXuJMGFOFickJTc0NDB+vL8soV7vDwP1eDyBzwsWLODDDz88wS6GOZ3xKBpvLT5QNvLOSwp59v2tLF5XhdvrLw+7flcTDqWLZ7c+y8qaYrza0dfAnZE9gefW/ZvllWvxqj5UTWVD3TaeXPU8I1KGkh89gEcm30OcOYYPdn3BQ5PvYljiIAQEDJKemTmTuWnEFby06W0AtjbuYlhiQchjJdsSSbTG0eNx8O6uj9lk34xH38PWxp1EGKxcM+xi7h93C1HGSKZkjOXxmQ9h0g4/oA4TphdZFmnyNFHaVkmKLXTJyWGJg9hQty3wOdWWRKwpmhEpQ4g1RWOSj1ByVdO4pnABz6x9lZVV6/Htv2aKazbx829+j1vuP7XudOFkVDSR8M/8l9Z00Nzu5B8fbOPpd7fw7jf7+PWr61AQ2F7W2keAAX81mQvGZfS774un5qKdaiUrzGmFKgg898E2/vX5bjp7/O9ApTUd/OzZVVQ0dp/UEuUun8qi4kogWNtpbnfy21fX8+GyUtq7XOyqaEWWhCNGhph0ErPHZfLTOwqZP19PYmEZk2d6+Z97hjFleDIR5hP3oxiePJjNDTv499b3aXH403Pruxr5W/HL1HU1csXQ+SG3ExCYmDGa6o7+zbZ7CUfAnBs02h0nLRXJV7EBJD1iYk7QckHWIcXn4qvegqaEnjA4HIIgkB5vZU+V/ciN+6G6qxYBgTjT8Yk4JwtBEBifPJqhsYN4c+/7NDlajrxRmDBhjooTioSJiorC4fC/1FssFqxWK9XV1UFtOjs7T+QQYU5zVKDZ7s/RTUuw4vIqLJiaS2yEf7DY5fCwvayFTY3bAjNddmcHCZa4ICPMg0mLSKa5p5UOV6c/lNnZ90Hm9LlYWbWOq/IXkm3K5pGJ99Du6cCmt3BD0WWIoojL52F97RZ+v/LZQArSFyVLeXTqfXR7eiizH/CNSLTE8cOJt/P75c9S190babAck87IA+NuYWvjLr4qXUayNYFfnPdDjJqJaKsNuz20EXCYMIfikVz8a9172J0d3D32Rl7c+CaN3Qc8HHKi07l5xJX8bsUzXF24gNzoDCx6C08seypgOJ0elUKyLTFkNIwkiKRHprC1cXfIWWWH18mi0mVclD0H5eh10JNOhFmHzawLGQ1jMcpEHMZY93CIkojbp+Jw+9DJEqV1HZTVdQQGxb2U1XZS29KDvdMdcj8d3R5Kqtu59aIhvPLpzoA3jCyJPHj1cCItejrdPjQNLAZ5v8dMWJQ5l+l0elm3M3SE2vMfbuf/vjeew8VgCoKACji9CqIoIAoCzv3nsUknIqIFBBevT8XjU9lV3sbdlw3r43/U0OqgodXBrHEZ6CXxiFXHRDTmn5/A/337JF3uA9FfOknH/7vgPoyygM8XWuCw6i1EGKzoJJmpmeMobasM2W5E8lB++vXvQq57d8enPHH+I1w6eC7v7/oi8E6gk3TcNPxyoo0RjEwZikHSc/eY63lp49sBIedgpmdNxOcNX4dnM5qm0Wx3kp0UceL7Un34qrchxWcjiH2HQmJiLkr9bpSmUuTkvhVgj0R6gpWlW+rweBX0umP3hanuqiXOFIMcom+ngqmpE6nuquPtvR9w3/DbT3V3woQ5Kzihq3vw4MFs23Zg1nbcuHG88sorFBQUoGkar776Kvn5+SfcyTCnL7IgkJ0awbZ9rUwbkUqUVc+7i0uobfa/zCVEm/jhDUW8Xfpt0HYrq9axcNBs3t/1RdBynShz04jLeWH9GxQlDQ6KCjiULQ27uDhvDpJiQJU0Hv/2r+TFZDEubQQRRisvbXiLu8fegFwiB0QYl8/Nb5b/nV/OfBin10VDTzPRxkiiTZE8XfzKQQKMH6fXxUub3mbhoFk8v+EN6rub+M/Oz7m24NKT8fOFOYfwad6A8Pfsun9x2ZB52PQWOlxdxJgiiTJFoZd0/GjiHby1/WN0ko6l5auDKn59sXcp1wy7mL+u+WcfX5hLB8+lprOB7Y17+u3DhvptzM4+L6g09X8bgyRy/xXD+fWr64Jm8gUB7r28CIMkHLOPhioIFO9s5LUvdtOz399lSE4sP7puFH99a1OQTwbA2p0NTB2exr+/DL2/NdsaePyOCYwtSKS2xR/JkBJnwd7p5n+eX0Ndi/9vkhhj5r7Li0iLM4e9X85RJElkb2X/M971rT24fQrmfjwsRFHA4dN46p3NDB8YjyAIfLB0Hz0u//VdOCCWey4twiT7rwu9LAZEzNYOF2MKElm3K/i5FWUzcOn0AUdV9l2RPDxd/M8gAQb8nhR/Wv0PfnXeI8iEjsAzYeYX5z1EaVsFMcZI0iNT+kSt5ESn0+NxoGqh++LyuenydONRvDwy+R5anXZ0okyCJRa3z8vj3/4Vu9MvKqdHpvC90dfw5raPKLcfmPAbnjSERHM8mid8DZ7NdDu9OD3KSSlPrTSVgdeFmJATcr1oikCwxOCr3XlcIkxGog1F0dhXe3y+MFVdtcSZTm5p6hNBJ+mYnDqOT8sXsbuthEExeae6S2HCnPGckAhz5ZVX8v777+PxeNDr9Tz44INcd911XH/99WiaRmRkJD/5yU9OVl/DnIaIwPWzC/h/ZSspHBDPz59bhfegUrhNdidL1tVgTjQHbbe8ci0X5V/ADybcxrcVxbQ528mPzWF27nRMsonbR12LhsrispX9HtusMyH0ZtRpYNYZ2d60hxhzFPPyzqPD3cXb2z/hoUl3sLZmC3tby4g02Fgw6AKKazbx7s7PiDfH4Fa83D7yKva1VYQ8TnNPK1GmyMDnFVXruHTQPODYDdt66S8KKMzZiyAI6CQdXsVLm7Od59e/jk6UyYxK44qh81lfu4VN9dsx6UxMzhxDfmwO/97yftA+6rub+GrfMn48+W7W1myipK2ceHMsF+VfQJQxgr2t5Vj0pn77YNaZEIWTlxpxPCiKyoCUCP70/Wl8sGwflfVdpCfauGRaLlEW3TELMLIssrm0jefeDxZsd5S18tQ7m7nloiH84bUNQesiLHoSY0zERBhp6+xb2e+GeYPQiSBqkJ8WQWSkherGTn52yP2tsc3B/7ywhid/MBXbCVTBCHPmomka1sOk7IgCSGL/15xHhZ8/t4rYSBMmg8yLH+0IWr9tXyv/+8IaHr9jAjJg0olcdf5AXvhoB698upM7Lylk9OBElm2qxen2MaEwmanDUzGIR2cK7FSdVLTXhFzX7enB7uogQTIFPa8EARSdhw0tu1hcthINjTGpw3lg/C1sa9jDyup1CAhMSB9JnDkmyGw8FA6vi8HxeVTYq9netAeb3sqsAVP5zfKng9ITqzvq+POqF/n59O/z/IbX0Ut65g6YES5RfY7QWxnpZHjCKLU7EczRiObIftuIcRko1dvRFO8xl6uOizRiNsrsqrQfswijqAp13Q1MThl3TNt91+RGZpNgiueLisVhESZMmJPACYkwM2fOZObMmYHPAwYM4Ouvv6a4uBhJkhgxYgRRUVEn2scwpzGaphEfaeCJuyaybFNN0ACll+JtzdwzajIb6rYGLf94zyJsegs/mngnccY4ZE1G8YLmg1RdOj6Dk4npoyiuCV05YW7eDHSqAQUVvWZkdu503tz+IcsqikmwxFEQn8eu5hJ+vexpRiYPZXRKIT1eJy6fm492L0JRFRr2p4Mo/czS9XJwRSVFVfqd1TsckggmrQe1qxnV5UCOTcUnm3Ep4ZfHsxlRFPBKLgQEJqePYUnFqsA6QRC4cuhFPFX8clDVpF3NJUxIH8nVhQt4fesHQfvb3rSH3S2l/GLGD4k2RTI1YzySx4DmhmHRQ4g2RfQbQXZh3kxkVY/CKQ7b1zQijRK3zC3Aq6jIkgiqelzRJC6fyr++CF3yu9nuxO1R+ogtEwtTQFH55Z0T+Ns7m9lV4Y9ksJp03DivgPy0KCTNi1lw4muspadZwqCPZdygWFZsDy4DrKoa7y/dx01zCsJeMecgqqoxIDUKWRLwKX3P37FDkjDI/vP7UERRoLKuk9YOF9fMyueNr0JHsTW2Oahr6SEz3oLPpzJhSBIen8o7i0v4+3tbSYo1s3DqAEbkx2OSRXw+5agNuENVWjsYt9eBoX0XkjkSzNE4MeGTXfxpzT8obz8QjVLaVsnKqnVcX3QphZ5B5Mfl8k3ZStbV/od7x91EpDGCDlff9PTUiCQaupt5ZdM7/HLmw0xJGw+CxnMbXwvpD+X0udjRtIdHxt+HoqpIqowSjoA5J2jan/oeZT0xEUZTvChNpUipgw/bToxJQ6ncjNJchpx0bFH9giCQmWhlR0Ubl007tgpHDY4mFE0h3hx3TNt91wiCwOjE4XxWsYjqrjrSbSmnukthwpzRnPRkQ5vNxvnnn3+ydxvmdEbVSIw2UVYXurpBe7eb9iY9F+RMYVHZ8qB1+XEDiDXGInhkDrbIlCSB9Q076PE4mJE9kSXlq4K2G540mIL4AShu/5umqsCoxJFsqN1Gib2ML0uWcv/4W2noasLu6mB93VbW121FEiUmZYzG6Que/ZZFGVmUQ76Q6iRdUFWljMhU9OKxhcPKIui7qmh877eorgPpJZbC6dgmX0OPcnKM5sKcXoiiQLfYwW+WP02Px8mvzn+YvW1l1HY2ADAxYzRLy1eHLFu9unojE9JHYdIZcXqDz1dFU5Alia2Nu5mWNjGQ1uPzaiSbk5g1YCpf7VsWtM3olCLyYwageE4foUBVVCRAOwFPFZ+iBXypQlHV0ElCjCkgwtyxcChmvYSqaphkkYeuHYnTo+L1KZgNMkadgE714Nu3irpvXvXfXAAkmeun3kSsLYUPVwenXJRUd+BTtcP6foQ5e9HLAg9fP5rfvrqOg3XEhGgTt1w4GEFTQ9pNS5LInqp2AKwmfZ+0uYPZV9NOTpIVn09D0DRmjkhlUmEyDrcPvc7vHSNoGj7fsVUHMuvMWHRmerx9TbsFBGIVjeZ3fwOAHJ1M4tU/Z1VrWZAA00t1Rx1lbVVsa9xNTUc9iVZ/ZZePd3/N90Zdw9/W/BO3csCjyaI3c0PRZbyw4Q1m5kwi0hABLhlF56bcXtVn/73sbN7H1JRJ4BVQwhXIzhma7E4sRhnDcXisHIzSXA6KFzEm/bDtRKMNwRSJ0lB6zCIMQGZiBF+uq8Lh8mI2Hv1kW3WXv9T76ZSO1EtuVBY2nZVlNau4ruDyU92dMGHOaE6KCOP1emlsbKSzszNkisWQIUNOxmHCnMaIAiTFWthdETo3fvXmVu67ei4zsiexpmYDPlVhfNpIovXRfcKIRVFAkbx8W7GG0rZKFhbM5uHJd7GtcTc+1cfQhHy8qi/oXNM0DUe3xJToBczOdrOzdQclTVX8fPoP2Ntayp6WMmJMUeTFZuP2eZBEKSi6ZWXVOubmzeDjPYv69H1e3gxWVK4F/C+lNw+/Er12bKKJSeum/q1fovmCTUIde4oxDxiFMX0E7v1mn2HOfGRZRBQFnDj4zbKnaXX4r4vfrXiWH0y4jRZHG1vqdzI1axyPL/1Lv/vZ1riH/NhcNjcEpyjMzJmEV/FxbeFCJEXPwUM8WdFz1dCLmJ41kTXVwdeacBaG7EuigMWkC3jBHEp2SiRmo8yIgfFMLEzBrJcQ9l9omqYhaGCWBZD9j0NVAbG7HsfuVZiyi/C2VOPraAbFh3vJi8y55H/5aqOM031AsE2IMSGJ/uRIWRbRNPCGqLwU5ixF1chLjeCph2awdmcjTXYHRQPiyE6JRH+YtCBV1UiN81fY8yoKZqOMwxU6MiU5zhK0H0VR0QkQaZQDfdDwPz9lWURVNXwhIlMPxaCauHbYQp7f8HqfdRdkjkNXsxfdgJEo3XY8DeW07VnFN459/e5vbe0mRiQP5YNdX/K7WY+ytHw1VR21fLj7Kx6ceDsV7TU0drcwKC6XZFsiu5pKeHDC7UQYbIgu/3NVQCTOEkOXJ7TxfaotEUETgfA1di7RZHcQfTJSkRpKEMyRiKYjp5SLUSmozaVoqAfS34+SzCQbmga7KtsZlX/0paZruuuIMkRikE6dd1t/iILI4Nh8NjRt4YqBC9Cfhn0ME+ZM4YREmM7OTn7729/y8ccf4/X2fQHWNA1BENi1K3SoeJizB8WnsmByDks3hM4tv/y8PESvjkgthvlZcwDw+RS0g04bURTwqP7Snpp4QKz4YNeX6CUdA2NzEAWR56veICUikUFjg3NSo6wG/vDvSlwehdy0TIaMT2VvSznv7/6SZGsCVR21vLfzM2ZkT2R82khWVq0LbLuyaj3XDlvIzSOu4LO9S2jqaSHREsfCgtn0eJ18uPsrBsZmc92wy4jTxR2Tb4UkibjKtwcLMIJI9LSr0cWk4KzYilCzG3PBZFRzDE41HBVzxiJpuEUHq+q20OpqZ3RKUUCAAWjsbub/LfoNOdEZjEgeSrQp6rC7ExCYO3A6TT0t1HU1EmuKZk7eNCKNEZhkIybVghoiBcJmsOJzCP1ea2cTRlnk4qk5vP5l31QOo16iICuaUXn+sG6vV+FISqdJ8iAKGsb0AlRHJ5aBoxENFloX/ROlpx1h51dMHTaVL9cdiIa5fEYeGlDW0M263Y1EWfV9BJ8wZzmqhlESOG9ECqIo4POpqKp22LQgRVEpyI7BoJdYtqmWC8Zm8OGysj7tTAaZAamRh33u9D4/91W3s21fK4kxZsYOTsQki4f1H1N8GkWxQ3lo4p28se1DarsaiDFFcUnuNEYnFCDt24zHHIkxdSAx066h095wVD9HdnQ6e1vL+f6E21hctoL1tVv4w8p/sCD/Aq4cMh+doken05FpTae72w0HBQHpVD2XFszlj6v+0We/giAwPWtiWOQ8B2m0O0+4PLWGitq0DzEu66jai9HJKPW70DqbESISj+lYkRY90TYDOyvajkmE6a2MdLpSEDOQ4oYNbG7eztikkae6O2HCnLGckAjzk5/8hCVLljBv3jyKioqw2Y7fqDTM6Ysoibh8Kk63D70sYTykZGYvkRYd379qOH9/b2vAG0YSBW6eP5iUWHMg5SDUy5MggEvR+Pk/VtNsd5KbFsnUmWMCJS89ipftTQcGWedlT0KvmPAdNBOmF+Gx28bxfy8WMyjHSpu8j7aOVhq7m4NKAS+vXMuDE26j3dXJjoP2+WXJt3x/wm1cNngeRp0en6IwNGEQbq+HMcnDkTQZSdGh+rRjunJEUcDbVhu0LHbWrbgqtmNfemD2sXPdp1iGTMU69Toc4fSkMw5B0ijrKeNPq59H1VSijZEk2xJCti2zV1Fmr2JyxhgmpI9iWWVxyHYTMkaytHwV5+dOJtYcTZe7h60NO7m6cCFmxXbE0shn60BFkgRcPs2fiiFLnDc6nWa7k0VrD6QwRFj0/PSWsRhE4ah/B52ooNbuoPHDv8D+6KKuLd8gRyUSf9H9NL73O+hqIj7BfwOQRIGbLxxMQoyZ/3upmMqGA2llb3y1l7svHcaYQfEQrpx0znA00ScHY5QFfvG98fzqn2uZNiKN8UOTWLP9gNARYdHz81vHHbZqmCCA06fxs+dWBaU0/evzXfzm3knYzHqcbh8GneSP+jp0e5/MAEseP5l4H6qgolN9WLraaXz1MVTXgapJgqwn8cr/x8yYSPa09BWLAMamjqC6o5arhi7gmbWvcuHAmUzJHMv8/JlYdBbMmFEcAm5U3O7Qhr2KopFty+KSgjl8sPvLgIhkkPTcO/ZmTFiO/MOGOetosjspGnBiKTpaewOax4kYnXpU7QVbHIgySnMF4jGKMABZSTa2l/ctqd5v/zSN2u56hscXHvOx/ltEGiJItiSyoXFLWIQJE+YEOCERZuXKldxwww08+uijJ6s/YU4zVEFg+ZY63ly0NxB+PzQ3lvsuL8J4yEuhoGoU5cby7CPn0dHjQdM0oqwGIqwGnD1u+rP/k2QRr6KxvbQFo95/SpbWdHCFPJSMiFSqOoMFjKyodIbGD8LnDh5YqaqGVS/xq7sm0upr4K9rF3HlkPl9judTffxlzUtcN+wSbhp+GY1drUQabUQabbi8bsyykQRLHGbZjNfjQ68ZUXz+7xkqs18QQC+pCKoXTdDjVoJfchVFxZg2iK61HwMgRyYgSDI9e9b02VfPjmWYCyYixhUcc5WYMKcWj+Tiz2teDJg2d3q6iTNF99veIOkRNJFLCuayuWFnH1+YiemjMMlGFhbMwel10eqwkxWVzrCEAgyqGd8J+KicKUiSiHf/daATBRRFRRUEvt1cR3V9O9lxetodCo2dKjfMK+CS6bnUNHZjNeuIjTD2O3CVJBGPoiGJIAn+QR+AQXNQ/9Ff4ZDr3NfeSNemRViHTgVJz6iCdLKzkkiNt2KQRd5bWhokwPTyzH+2MvShGZhCDHzDnBuIooCKgKKq6CWxj3CqKhpJkUb+8MAUWtpdXHFeHtfOHkRDS8/+89iEQTp8pSNNEPjHB1uDBJiUOAt3X1bE6m0NfLqyHLdXQRBgTEEid106DJOkIatuNEGHR/X3S1T0iIBN7Kbp8+eCBBgAzeeh6YMnGXqrP5qv7BDflvTIFMalD6cwMZ+m7lbuGH0tS8pXU9NVj9vnpsxezc8mfx+RI6cwCF6Z89OnMzVjPHVdDegkHYmWeHSKAc0Xvp7ONRwuH91OL9EnaMqrNJWBrEewHp3prSBKiBEJKC0V6HKPvVpRVpKNTSUtNLc7iY/qv3JhL22udpw+F/GnoR/MweRF5bCyrhiH14lZd+TvFSZMmL6ckAgTFRVFZmbmyepLmNMMWRYp3tXEPz/ZGbR8e2kr//P8gZKZvQgC+DTYUtLMl2sq0TQ4b3QaEwpTCDUG6Q2fXrapjuWba5FlkdnjMrGadfz93S1sL+ng/im3sq15F6uq1iMIAjOyJ1IYPwjJow9px6eqGga9wNcly7A7OzDqjMSao4NSQsAfWWPTW4kkBqs52j/T5gYrJixRFva2lvJF6VI8iocJ6aOZkDoSnc/U50VYhxeDs4nONe/ja29El5hNxNiLcOui8apioE9yQjaSNRql244lfxzd24NNUw+ma90n2OYNwHXyfbPDfEeIokBFe3WQsbOiKjT2tJAXm01Ja3mfbeYPPB+DZgJF4PEZD7Oyeh3r6jZjko1MyxpPhMGKoAkYVDM6WU+P5ODt7R/T4e6kKHEw52VPwuAzH3UVlDMJQRDwarBqWz1LNtYgiSJzxmcyYmA8e8pbGJcuMt6xBap2IZij0IbPZefuKoYOyiAvJSIwc37o9SqKAm4VvtlQw6pt9Rh0EvMnZ5OfHoVOBE/Vbuin8lnP3rUkXvoQUkwqgmggymzwe78oGovW9W8iunZnAzNHph5zhESYMx9VEKhu7uH9paW0d7sZNiCOOROyMMvB4qCqauiA5CgjgiCgadpB5/HhU5oAXF6VTXv90Z6yJHL3ZcOIsOjZtKeJ/yw94N+iaaD6vKj2Ohw7F+GpL0GKiCdi/EIUaxJu1f/M0bxuvC19jXcBf4peTzc/mHA7Wxt38W3FGjRNY0rmWIYkDOT3y58LCMo9XgeyKPOTKffwm+V/x6f6cPgcWI9ChAHAJ6LHTLYpx98vz6HyaJhzheb95alP1BNGaSpHjEhEEI9eyBMiE1BqdqCpCoJ4bKbAGQk2RAF2VLQxffiRo29quv1prqdbZaRDyY3KZlntana27mZ00ohT3Z0wYc5ITmiUd+WVV/Lpp59yzTXXIIrHZlgV5vTH6VN5/TAlMxvaHKTHmgMDHq8m8LvX1rOv5kCVpH017Xy6soL/vX1cn8ohbhV+/tyqQNlBgD2VdobkxPLjG0fSTCkPL3qc7Oh0hiUWAPBV6TJijFFkmbICs9eHomkaPR5/pYfXNv+Hu8Zez392fs6uZv/LqEVv5uqhCxgYNQCf95BZSb2H5ze8xtam3YFlFe01fLXvWx6b9iCyx3igrc+LUrmBpk//HljmaaqkZ/syEq78KWrMgEAfHVhIvPYXtH72dwSdHtXdfzUX1d3T70AwzOmJIECPt+/f9J3tn/L9CbfydekKNtRvQ9M0DJKeeQPPY0bmJFQPgIZeMVIQPwCv6sWjeHh3x6c0O9oQEHh85kMsLV/N12UrAvutbK/l67IV/N+MhzBrtrPO0Nmrwf88v4b61gPGnHur7Pzv98aTZ+3B9Z//O8hjqRIqtjBo1MWonjgw9D8r51I0Hn1mVVC56l0VbYwuSOTey4YhHDLzH4SmIkcl4JAj0A4KwtM0Dben/3Snzh4PghCeuT/X0ASBT1dV8P63pYFlFfWdfFVcyW/unUykUQ7p1aIdZBp9tBwcFXfL/MGs2FzLrHGZfLYqWPxNS7DyvUlWet76KfQKxk2VOPetJ/qCW9HnTsKjSqjK4ctWdxuN/GnV82hoFCUVICCwtGINi0qXc9OIy/jNcv8zMdmawHVFlwBaQKD2HqEkdijOtvtbmGOnqf3Ey1NrPhdqRz1y9qhj2k6MSERRNqO21yEdoaLSoRj0EsmxFnaUHb0IY5KNWGTzMR3nv02E3kaCKZ4tLTvCIkyYMMfJCYkw9957Lx6Ph8suu4yLL76YxMREJKmvSjxr1qwTOUyYk4C4P/xeA3QiCFpfT5dD8fk07F2hc7YBSmvbyUqw4PNpSJLI9rK2IAGml9rmblZvb2BaUTLK/tlgnV7isxUVQQJMLzvKWvneFbk8tew9AMrt1ZTbD8zKPbv+X/xi+sNoigFJEAJRNj7JgyooaIhcNfQiZuRMQNM0NtRs5fycydwy4ko0QACi5Gi8rr6z5DXdDUECTC+tTjuLy5exIGc2brd/O6XbTtuXL/T9YTSV1s+eJv66X9GDf0CoqhrdQiSR83+IjBcEAU9j3+gIAFPeWHyiIewjcQahKBoDovtGBVr1Zqo66lhYMJvriy5FVUFEwKCZ9gswIOrAIzrpcfTgUxWWVRQHqoLIooTD6wwSYHpxeJ38e9v73D7sOvCePcWRJUlkycaagACTEmfh8olJpMToyYxV6fjk5T5VxgA8Gz4keuhUNNES0itHlEQ+WrIvSIDpZf2uRupbuslNG9xvv3RxaSh6G75D0g0lUaAgK5pd/VSGG1WQ6DdqRUDdb1ZvNUi43cc+GA1z5uDwKEECTC8uj8LzH27jwatGHGOtlWBkWUSnuRA1L2ajyN9+OJWmdjeqprFpbzOzx2fhOkQcvG5qMr5vnzogwByEffGrJOeMwIMNwWBF0JvQPH2fz/rEbLbbK6jYX6K6sj3YjL+xu4W/zP1f3IqXDlcn/976AZMyRpEZlYZJNmAzWFA0N6IgoqKiaaDX9KjesFAZpn+a7A6MegmT4fiHLWprNWgqQuSxebsIlmiQdKit1ccswoC/StLmkhZUVUM8QgROTVcd8abYM0K4z47MYGvLDhRVQTrGCKEwYcKcoAjT2NhIcXExu3bt6rcCUrg60qlFFAXcisZbX+5h2aZaVFVl1KBEbpxXgM0gHTbPXJYETIbgUqwHkxx7oGSmqhFkinkoX6+rYsKQRGQBfAhU1nXx7cbQlZQkUaDN2Y5b6TvQAmh3dVJnt/O/f9tJbmok9141FJfUymsb3kPTNK4ruoTP9i5hc8MOJEFibt50cmMyeWfHp6yq2sCAmEyuL7qcOF0c+A68BkuywJKKVf1+h+WV65gZNYDoiGRcggVfR3PIwSCA0tUG7m44KFdW0zScmh7QYxs6g86NX6E6OoO2E80RWIZMpcsXFmDONCyShTEpRayr2wLAlMyxjEwp5KPdX/H61g+w6M3MHTCD6ZkTUd3+e6NP7+T9PYv4tnINPsXHkISBPDTpTtbXbWNr404uyJ3K3hCpTL1srt+Bd5gHHWdPTrZbUVmyv8raZZNTuSDbi1r8At6WaoQrHsFd1395XK2hBCE3dBUKj6KyfHNtyHUAXxZXcf6waGIzh+Gt3HrIWoGYC27DhZFDEyJkAW69aCiPPL2iz/10YHoUCTEminc18dbXe2lscxAfZeLymXmMzI9HCgutZyWSJLJtd1O/63eUteHxqRil4xto6SUfQmsV7UtfxdNYgWiyYho5j/whM3jxa/+1I4oCkiigHHSOpUb4/Y1CovrwtdUjxNhwixaip19H21d9JxkMky/jm4q+onAvSytW0+nu4oNdXzIqZRjXDlvIN+UruaHoEmo6G3hhwxtcNOh8Pi9ZyuaGHYiCyMT00VxWMG9/eqW/v7IsIooCiqId0YA8zNlPo9154qlILVUIBguCwXpM2wmC4PeFaa1ClzfxmI+blWRj1fYGKhq6yEmJOGzbmu46siKOXeg5FWRFZFDcsIHyzioGRGWf6u6ECXPGcUIizKOPPsqOHTu48847GTZsWLg60mmIW9X46XOraGk/MPu7blcj20pb+NP3px72JdAoi1w4KYt3v+k76LEYZbKTI47aPFbY/38f8OtX13He6IyjaN8/NosOQQCPT6XWUcXfNz4fyD3/w8rncPncJFjiuGH4pbQ67Ly/60syI1OZOnU8n+39hv9d8kf+Z/qDJMrJR2+AK4DP3kDzV68Qd/n/8+egHLZ9/+sdgpWk639Fx6p36NnpF34sgycSOfEKHIKVcOb7mYfg1XFT0ZUMjMthQ91WipIG85fVLwbW93gcvLvzU/a2lnHHiOtRUPnV8r8FKndlR2dwYf5MdreU0u3pYUrmOPJis9jZVHL4454BM2bHgrD/6i/IimZWaieuT58+sPII5hiiJKIeb+6CIPDVljZmD7uO2KR8fNu+RHV0YkgZSOz5N+G1JgcMug9GVTXirHp+d99kXv50JzvKWjEbdcybkMXciVksXlfFvw8qn93c7uSZ97ZyyfQBXDwpCzU8wDwrOeJ1eZyXrV4vQ90uWv7z28Ay1dlNz8q3UepLmTH4Kpasr2b9rkYmDksJEh61Ixy0d61XAWPOOOIvjab929fxttYiR8YTOelytOSBUNu/CAMCGqBoKmtrN7OruYSfTruf5ZXr+GLfUn4y5R7+tPJ5nD7/O4miKSyvLGZ7425+Mf1HyIoBt+hkbcN2ajrrGRQ/gIExuRgUU78pyGHOfpraHCeUigSgtlQgRCQc1zNTiIj3+8JoCoJwbFEfybEW9DqRnRVthxVhnD4nbS47YxKHH3P/TgWJ5nhMspFdrXvCIkyYMMfBCYkwGzZs4Hvf+x4PPPDAyepPmJOILIus29kYJMD04vIofLS8jKtn5vU7CFAUlTnjM6lv6WHl1vrA8iirgZ/fOhaDLKDufykSBZg9PoNtpS1B+xiaG8uc8VnERBhxeRVUVaO9y8OmPU2ML0zm4+V9y1wqqkZiRAwG2YDb1zcdKtoYiUGn4/EHhiEg8+I2/2zd2NThrKhah8vnxmawcvuoa/j72ldodx2INpEEkbvH3ohH8fLKlnf40di7EfabESo+jfOyJ7GmZmPI32NKchFiyUbczZUobTUY4lIRZH3IaBjJFgt6C/QzvlIUjS5smKbcTMTkqwEBr2CgSxEh/KJ5xiK4dUxJmsi41BH8evlTQeuSrPHMHTiDWFM0TtVBdWd9QIBJtiVyxZAL+cvqF3EddM4bZQOPTr2fFFsidV19Z7CHJw9GPsYXwtMdvSxw3uh0cqJUvMt/H7TO01yFISUPd11oYcqYmk9XP9ePXhKZNjKNT1aEjiwaXZDA8x9sZ8WWOooGpHHR5B+TkxKBxWrGGBmN095Dfxe0pmnEWvQ8eOXwwOVrkAUcXiWkiA3w8fJSZo3NwBC2UzvrUBSVwtz+q5sMzY3FIInHZXYi+bppW/zPkOtcZRsYOO1qivLiWLKhmh/fMBp7l4vtpa0A1HSoZEUn47PX991YlJFiUgJdcqk6pMRCYq74Of7EIRGPaEZTYGb25H5LVI9LG8662i2Bz12eHtbXbaO6o46xqUWsqlofEGAOxu7qYJ+9gkijjV8vfzrgIbO4fCURBhuPTfsBFvHoJ37CnF00tTspyOy/2uCR0DxO1K5m5MTc49petMWjKF60jkaEqJRj2lYSBTISrOwob2P+xKx+29V0+a/LONPpbcrbiyAIpFtT2dVWwkW5c051d8KEOeM4ode/uLg4IiMjT1ZfwpxkFA1WbWvod/363Y14jlCxQ1Q1br1wMH/70XR+evNYfn3PJH573yRirfqAAAP+l878jGjyMw48JBdMyWH8kGSee38rjz6zkvv/uJS/vrOZB64cTlObg5H5CSTG9DUfGz4wDoOk5/phC/v2RxC5vuhS/r72FX61+nf45A7qu/1h3zkxGexo9M84z8qdwvu7Pg8SYPy/icrz61/nwoHnUW6vxssBAUVVNZItiQxPGtLnuHHmGM5LGIx7n1+gce5di2SNJmbOnSF+NIm4+ffhEiyH+WX9uBWRbtVMt2rCrYRHY2cDik/Dq/gC5yXAwNgcbii6lC9KvuUPK5/jg91fsqb6gNi3IP98/rnxrSABBsDlc/OXNS9y0/DL+xzHojMzb+B5eLWzy1tE8alMLkohzgJKT3vQus6NXxE1+XIEnbHPdpGTr8Qj93/NqYrKRZOyiY3su+2oQQl0dHvo7PGgabC5pJXH39zLXz+pxKUd3eyrpmkImoaM/z/Fp9LR7cHtDW3a61M02rr6DkbDnB2YdBKXzRjQd7lB5nsXDz3uly/B68TX0X+qk710B7PGZXLBuEz+8NoGRgxM4LHbxnHfFUUkpaUQe+G9IPWdf4u54BY8QvDzWFFUHKqRbtWMQzXi86koikpBXB450X2jWdMjU0i1JVHaVhm0fEPdNnJiMsiJzmTHYSL7rAYzf1z1j6AqcwCd7i6eWf8qiuTtd9swZy9ur0J7t+eEImGUNr+HkWBLOK7tBUsMiDJKa+iqYUciI9HGvroOPP08D8CfiiQJEtHGM2dclR6RRlVXDQ6v41R3JUyYM44TioS55ZZbePPNN7n88suxWI484Azz30UUwGbW9bveatIfMaMG/Ca+Fp3IgGRbv6VfAWQ0HrpuJDvK29iwq5G89Cj++HpwVElpTQd/emMjP7h6BC9/soM7Ly2kuqGLVVvrkGWJeROzGJgehaD66PI4eHjyXSyrKKapp4XMyFQmpI9iZdV66rv8L6Fexes3+NNU3D4PZr0ZHG3kRGfw3s7PQ34ft+Khx+Mg2hSJKAS/CosePbcNv4by9go+L12KR/EyMWEwoyIz8H74VKBqkWiJRJR1SJnDSbrpN3St+whvWz36pFxso+fh1kUddx67KPpLlIYrQpy5SIIUOC8FQeDyIfP4w8rn8Cj+QYRH8WHVH/BxiTDaaHa0hdxXq8OOQTZwz9gbWVG5ji5PDwXxA5iRPZFn1v6L74+97b/ynf6b6IDIGCuHSshKt532Fe+QePnDOPZtxlW9w1+iesgcNrSbGKbokPan8kmS2OcaNEgCT9w9idXb6lm5tQ6DXmL6yDQkUeD1L3cjCsF+2DaLnuMt/CeKAgbd4Tc26M6uKKYwBxA0jbnjMxk+MJ4PlpXS3uVmeF48F4zJwKgT0PabdB5rZIcgySCI/VbQ0ww2Xv5kJ3deUkhXj5s12+vxeBWG5MTw4kfb+PG1w0m7/U90rPsUd91e5MhEIsYtwGdJ6Hci4NB+ehUfFw26gDaHneKazWhoTEgfSaw5mmfXvdZne5vejNvnQRZlLHoT9PRpsj/y1YMjRJU5gNK2SlyqExPhtPdzjZNRnlptrUYwWBCNxzdWEUQR0RqL0laL7jiCaTITbSiKRkltB0OyYkK2qe2uJ9YUg3QGRbdmWFPR0ChpL6covu8EZpgwYfrnhEQYj8eDLMvMmjWLuXPnkpSU1Kc6kiAI3HzzzSdymDDHiaqoXDgpmxVb6kKuXzAlB32IgUp/HKlkpqaBhMaI3FiGZMfwq5fXhWzX2ePB61N45MYxNNudRFoN3HLRUGRJIDHSiNerICoyGRGp/G3NPxmfPpLriy7F4/OgaRq5sZkMT/bf7Ks6ahmdMoy1tZtZU7ORGdkTeHVzDT6t/9kGAIfPxdSMcehVY58EA9GjZ3DUIPIHR/mrSbU1QlcHwsybaF/9AZ7GciyDJgDg1XQoxiRM02/HrPpQRR3dPgEOf/iQGCUvsrcbb3MtosGMFJmIU7AQtow489BjYFzaCFZXb2BY4iA2N+zEo3iRBJEFg2ZREJ+LXtKzpHw1AIp6+BOm093FG9s+ZFzaCIyygcbuFqraa8iJzkCv9T2Hz3Q0TUOVzRgzh+Cq3BG0zl23j8b//JHoG/7AOnU4rT0+lr7XREe3hydS4omLMtHS7qKl3UlynIVIqx69oKGqfvFYB8wYkcLkYckYZFAdHTia6/jf2QaIzKK41MFrS6pRVY15E7LQjmGQLIoCJhzgsOPrbCU5Mp6fXzOIv3xURmdPcNpiXJQRm1lP2P/p7EXUNNJizNx3SSGKpqGTRDRVw+3TaG530tnjIT3RhkkvIR6l6u6TLRhzR+HaF+L5Ksm4bak0t+/kjUV7uPWiIWza08yOslbe+novN184GFmWESUrEWPmozo7EfQmVJ0Jr6bj4HNREEBBoL3HQ1Obg9hIE9E2PUa9wIclS+hwdzE3bwbZ0emAQJQxgvd2fkZPiBnxuXkzeGv7J/hUHzNzJgVVO+xFJ8pHvBK8mu8ssiAPc7Q020+8PLXaVoVgC23afrQIEfEojaVoaAHvsqMlLtKIxSizq8LerwhT3VVLnDH0utOVCIONCL2NkvbSsAgTJswxckIizG9/e8AY7rXX+s5+QFiEOZVoGsRHGlk4LZcPDimVOWZwIsNyY7+TqgOKoqIiUFHfGXJ9blokRoOOR55aTpfjQHjx2CFJfO/ioaj4Z8KzItIZk1LE8opiLhw4k1d3vcu2xgPloyMMNu4eewOFCYOo7KiluqMOi87MiOQhuHxuoo2R2F19S2YDpEckMyppGGo/Fbh1ihPH8vdw7C0OLBONVuLn34Pi9eHTHwgX1TRw+0RA368HzJGwSG66lr1Gz47lgWWCwUzC5Y/gsWVyhKyxMKcZmlfk6iELKLNXkWiNp7K9FgGBe8beSHHNZt7f9QV3jLqOywbP472dnyGJEjpJh1fpG26vE2VkUcbu7OCLkqUYJD33jb+Z5eVrub7osn7P4TMZVRD4amsrY8bdiNT2W3+1sV4kGcOsB3h3dQODcxJ45V/rAxVgyus7eeebEjbtaQ40z02L5Mc3jMYgagFfX8WnYtQJyO2VNL/7G1T3gYHjhPyJZF9zEVtrPMRFGo86Ik0UBSxqB03v/DrIcyMlIZMnbriPR17ZTY/T//c1GWQeuWEMJlnAF66EdlajaRpo/txvTdVo7HDz+EvFdDsPXOsTC5O59aIhiEcwngbwqiLR599Mc3NlcFqSIBJ78Y8oVc385MYxuDw+VFXj3W/86T9DcmKZXJSMQemm8T9/xl17wCxassWScNXPcMgxqKqGIIBXE/jNq+soqzvwHE+KNfOLu0YTa44i1hzN49/+JSAgS4LIFUPmc1H++Xy85+vANlMyx5Kqydw6aA6/Wv8qRp2REclD2VS/Peh7Tc4YQ1pEEgICWgg5xmawYpZNELogYZizmEa7E50sYjEe35BF87lRO5uQs0efUD9EaxxKzXa07jYEa/+eT6EQBIH0BCu7KtuAvqE0iqpQ39NI7hlocJtqTWZvW+mRG4YJEyaIExJhFi9efLL6EeY7QtQ05k/MYvrINFZt84clTxiaRGyE8ahn3g5GliVE0S+0HFqpQBAEdDoRQRRoa3NwwdgMKuo7KaluD2p39QX5/OaVdX1KX6/d0UBclIm2DheKonLThQVcM/QSFg6ew1f7vg0SYMAfHfDUmpf50aQ7uG/sTdR01rOvrZK5A8/DprNwzbCL+fvaV/t8hymZY0k0xyN5DCFn3nSygGPzV0ECDIDq6qbpw7+SfNsfcNJ/mtexIssCrp3LgwQYAM3toOmtX5F825/o4thKKoY59ei8Zn46+QE6PZ18U74KOUmksqOWtbWbkQSRWEs0VZ21PDL5bjrcXVycfwHv7vysz34uHTwXg6RnTt50kizx5Mb6ozNuGHY5kkd/1sVR6HQSLV0eVmyu45MVbv542y/oqSlBaNyLakvAlzSEZ5fUs6mkDqdH5YqZeZTVdVLX3I3FqKO8Nlj8La3p4Nn3tnL/FUX0qqSaIICrg6a3ftnHWNuzZxXZSVnkTJmDqqjI8oHH5OHuf0acNL//+z6mp56mSoyr/8kTt97FF5tayEqKYFheHBadiC+srp5TuBWN/3l+NS5PcOTbqm31ZCRZuXTaAARBwOXy4j3EO0IUBWRZBEHgneWtFE1+kBhfI2LDbjRrLL7kQl4obmXqaInfvFqMzazjoim5/ObeSWiqRlykCZPgo33xy0ECDIDS1UrT278i/trH6cGEisDT720JEmAAGlodrNzSwIBBGfx6WbDxuKKpvLn9I3427QFEQcSteBiakE9ley12bw/WVZ/x60k3sbu7kVk5k7kofyYb63egE2XGpo7AJtkQNIHzc6ewqHRZn9/uhmGXYVBNKGfdHS/MkWhq95enPt5KgKq9HjTtxCNhbHGAgNpWg3iMIgz4fWG+Xl+N0+3DZAgefjU4mlA0hXjTse/3VJNqTWZ3214cXidmXThWLUyYo+WERJjU1NRjau9wOHjppZdYuHAhaWlpJ3LoMMeAqGlEGCQumpAJgM+nHDG1qA+CgNOnsmZLNQ2tDoYPjCcvLQq96A/xVwTB/4K2rQ6jXmbckCQKc+OIjTJx7exB/GfJPraVthAfbaK1w9VHgOllyfpq7r2iiD+8toHtZa383x0T0FtgSfmqkO17vA66PD28s/0TnF4XqRFJvLXtI+q7mrikYA4PTridD3Z/Sbm9mmhTJBfnz2ZMchG4df2+yumVbhrX9x0MA2heF576fYjpo47t9zsMBrWHpuIPQx/P58FVtR0pa+J3ErUU5rtD0zQkj4FYMYE5A6ZT2VHDy5vfAWBIQj6b63fwRclSFpUuZ2BsNjOyJ3DbyKv5bO831Hc3kWSN58ohFzEwagCyqiM9JwNR9FdpVhQV1RNqvvjMRRQF3IrGpj3N7CxvZVRBIgVZMexp9fHCVx5S4obQ2eOhtNafnjRqUAITh6VQWtOB1aRj7sQsslMiMBok6A7e96a9zTjcCmZZQJQENpW2ke/eHrKyGUDX2o+JL5hCRYfI8i3lSKLApKIU3F6FFZtrGTYgnoHpB+5/AKKnG29zaNNGV/VOUqwqN87OR1FUPB4lLMCcY4iiwN4Kex8BBuDuSwsZmBHD29+U0N7tYdSgBHJSIjFK/khLjwql1R1s3NNEQrSZwTlxfLGuij2VTtIShtDt9FLy8U4ACvOTibIaaO928/qXuymvTeL2i4YgaBo6pQfH3tBpwkpnC/S0gSkVp1dhS0lLyHYxEQa+Kfs65DqAT/YspjBpEBvrtrOkbBVuxUNlyjCujU7E9e9fkh+fgWyNRp+cy2WjF+JVBL/gtP9yuDhvNpmRqby/+wtaHXYyIlO5tnAhaebUkCXiw5z9NNkdRFn0x729aq8BWY9g6r889NEgyDoEcxSqvRYyio55+4wEK6oG+2o7KMwJFltqu3srI51Z6UjgF2E0oKyjgqFxBae6O2HCnDGckAhzrDgcDp5++mlGjRoVFmFOAYfOrB01okBJbSe/fXVdwLRy0doqYiON/PLOiehkkSff2MjO8gMpAx98W8q8iVlYTDqeeHktD14zEpfHh0En0u3sP57Y6fYhiULg318WVzJtfFTA0DQUbY52BEGg1Wmn1WkPLP/31vdJsMRxy4grSLOloKmgV00o7sMPfgRNQfOENgcE8NkbkTOOb0Ym9PFUVGdX/8drq0fOEVCO888X5tSiqhoW2UZ6ZAo9Hn/ai81gpWW/Ea+iKuxq3seu5n2kR6Ywa8BUYs0xZEamYfCZUbwqChrKWXwCiKJAh0vhp8+sDErT0Mkij948FptZz6a9B1KMhubEMnVEGo+/WBxIRfpmfTVRNgMPXjOSP/57Qx8PFqfbh1nW4fJpLN9Uy6D0/ivMqM4uWu3d/OSZbYFlHy0vY9KwFAqyYvjDvzcQE2Hkl3dNxLR/oKy6Q7iNHrxPjwunEK7ucq4iigINrX3PkTsWFqKo8OCfvw0s+3ptFanxVh67fRyoGo89v4bGtgMpc4Lg387rUyneEWxf3dbhwmbR097tz1Ncvb2Bq2flY9NLaF53v4a+4K9GJpjTcIcQinoxmySaW1v7Xd/iaMPldbGj6UC0TbPTjmL1p1l4m6vwNlehuh3oh83FqwZHlQoeHaNjRzFsymA0QUPUJHSqPizAnMM02p3kphy/gKK01SBa4447kuZgBFssir32uLaNthmwmnTsrrT3EWGqu2qJ1EdgkI7f9+ZUEamPwKKzsK+9PCzChAlzDPzXa+IecwRGmJOOJIsoCCCKiOKRH0oeReP3r23gUH/K1g4XXxZXsGpbfZAA08tnqyrITY1ClkSefncL915exIKpA0iJ6z+1JibCiMN1IEpm274WDLKeCEP/FRGyotLQiToEQWBUSiF3jbmBhyffxbXDFiKLEl5VQa+akX2Go4omUUUdUkRcv+v1yQNQjyJ3/2hRBRldTHK/6w1p+eEomDMdn4hFMpNo8Z9XDd1N5MVkc0HuFK4cOp9pWeMxSHqqO+p4ZfO7fFGyFEnVhfy7S7KAKnvRZB+SdHaUNfdq8OQbG4MEGACvT+VPr29g4fTgHPoFU3P5+3tbAgJML+1dbt5atIe5E7KClsuSiMXkH+z1OL1UN3ahxfdf4kIXk0xpQ1+D0ZVb6zCbZGIjjbR1unju/W3+1CZANEf1/wUFEcEQuiqHKPrvxQrCWfP3DNMXRdEYkB4VtEwWYXBOLP/4YFuf9rXN3bz7TQlrdzYECTDgF/2e/3A7s8dn9tkuJd5CS3vwJEJpTQeiKCDoTQhy/xEFclQimqZhNuqQpdDvBjUNTnKiswDIjcnk0sFzuWzwXPJi/SJLdnQGKbZELhs8l9wYf//yIlIRW2qC9mNIK0ARQ/dFUVQkrwHZY0T06vqk/oU5d/ApKm2druM25dVQUdvr96cSnTiiLQ6tu/WwE3X9IQgCafEW9hySog9Q01V3RqYigf97pVgSKe2oONVdCRPmjCL8xncOIYoCbhU+WFHO4y+v5Q9vbGRvXSfqYWYHRFGgvK4TXz8iQFyUmU9Xlve7ffGOBkYMjKfH6aWuuZvfv7Yej1chOS70gGThtFy+Kq4MfLaadNTU+piXOztk+9SIJOKMsVxbeDE/n/Z9UmyJfLp3MR/v/poIg5W7xlxPii2Rmu56uryewIDpcHhEC9HTrg25To5KRIpOOanlo92CmagZN4RcJ9likOOzjrmMaZjTD51i4prChQDkRGeQF5dNq8POqqoNuH0eHpx4O2NS/SHOVw9dgOgLDlQURQFF72J5w2r+sPYZnlz/HJvaNqPqz3ynSqdb6dfIu8vhRS9LyPsFCptZR7fT0+9s/c7ytj6D3dnjM7EYJETRL3Q0tztp1ych2UK/9OrHX827q0NHyizfVMu4oX7RdEtJM06v/97ok82Y88eG3MZaNBOvZO6zXBUE9tV38ac3N/H4P9fy3rIy3CpHJY6HObPQNI3UOCuJMQfOgykj0tiwq7HfbZZuqCE2qu95A/4Iu+rGrqBnaUaiDYfL1yfd12bW+dOaJAsR4y4KuT9DegGKwR9tYNQJzB6fFbJdSVUHc/Nm8KOJdzA6pYhN9TvYULeN4UlDeGjSnczNm85nJUvYWL+d0SnD+NHEO5idPgb3nvWBfQiyHuvw8/GGo1vCHIHWDheaBtHHK8J0t4HPjXiSRJheMUdtP75omPQEKxUNXUHPL03TqO6uI958cvp4Kki2JFLVWY1XDW01ECZMmL78V9ORwpw6BAG6PSqPPLWcnoMiTXaWt3He6DSuvSA/pFGvIBCo6BEKg07q198FwOn2BgzINPxVQV7+ZCcPXjOS95fuY3OJP8XAYtJxybRcnG4feyoPpBTNGJXOB0tLmT42kcsHXcxnpV/h8DoREBiePISbi65E9hmIMkXy2Dd/wOE9MDuxu2Uf49NG+qslKW50ahtWbyoDkiMOW3bW51PRpQ4lZvb3aP/2DVSX32DCmD2MmFl30IP5pKqXiqKii88j9sJ7sS/5F6rDPxg1ZgwmZs5d9GAhXMb2zEdRVAZE5PDI5Huo72rkF0ueDKyr6aynuHYT9469iemZ44k2RqC5g//mXp2LXy77K009B7waStsqyYvN5v4xtyJ5zrww5l76E3l7kSSB0QUJFO9oQCdLuA5zzwECM+cGncSc8ZlcNCUHxavg0WBPlZ2MRBtPfljO/179Y/SrX8FT7ffTEM0RRM+4nhX2KKoaQld7cLh8GHTSQcdSQZJwKToiz7sV0WCle/syUH0Ikg7ryFlYRi+gR5GC9qMKAu8t3cfnqw+IzlWNXSxaW8Vv752MzSCFI0fPMvQi/OJ743nmP9vYUtKMySD3if46GK9PRTzMxIHT7T8XBQFG5idw0eQc/vj6hqA2Bp1EeqINTdPw+ASsRbMRBJGO4o/86UmCiKVgPJHTbqBL8UemaIrGJVNz0Mkin60sx+NTkUSBaSPTuOaCgQiim3d2fEpVx4GBaEV7Dam2JG4ddRUlrf6JmXJ7NemRKTw8/rbA4EwXl0bsvHtwShFw9mZYhjlJNO4vTx1tO77nm9pWCwgI1pPjtSIYrKAzotrrIDnvmLdPT7CiqhqldR0M3l+q2u5ux+lzEneGRsIAJFuS8GkK1V215ET2jdALEyZMX8IizDmCJoi8+tm2IAGml2/W13DhpGyiTX0r/oQKoT6Y+pYeRubHs3Rj6FmBYQPi+XRlOaIA2SmR/O6+yTg9CgadyL2XD8PhVnB7FAxGlQ5XDw6njzmT0vh2fQNDcmIxGWWqGrt49eMuZo/P4IlZ/w+Xz4Ve0mHAiOCV0GSFt7Z9FCTA9LKmZiOTM8egV3S8s+NTLsu8HrdiQ3+EiWanqkfOnUxC1nDwOhEkPT7ZRLeqQ1O1o5qpFgQwiD5k1Q2CgFc07i9l3ReXqkPOGEvCDUPA60CQdCiSmW5Nf1jBKMyZgSQLeAQXKioptkSeXP18nzaapvHvLe9zy8gr+axkCQty5tI7qSTJAkurioMEmF5KWssp76hioGXgGRsxZTHKWEy6kIKvKEBSjJnbFwzlxrkF1Lb0EBtp7Hdf44cmUZQq8/ZPJyBqCpog4sWNVzbw4eJ9rN/VyL2XF/GnNzbyk1f3cunEyxgx5npEVSEmPhrBFEnLsop+91+UF8+Ocr8nRny0CaNeplck7VaMGCddj238JWg+N4LOiEey4EbCh/++4VNVBARUVaN4R98oCKfbx4sf7+CBy4cRjoc5u1BVDYMI379iGE6viqZqtPd4eH/pvpDtB2ZE09bpCrkuOdbC3BGxzCuKQEXAI1n4x4c7uOX8DFJj9Dg8Kp9tbGXe5FwMkhB4jrgwEjXpMsxDp6N6nAiyAa9spssXLBKKmsbCydnMHpeJ2+vDoJMx6kREYFPz7iABppfargb2tJQyICaLfW0VAFR31LG5eS8z7nkG1e1E1VlwYkQNpxiFOQqa251IooA1xPvp0aC21yOYIxGkk1PRUhAEf6nqtuOLhImNMGIySJTUHBBhqrvqAEgwnbmRMPGmWGRBoqKjMizChAlzlIRFmHMEr6Ky/jBhz8U7GrloQmZI816bUWbSsBRWbq3rs25obgyJMRZWb2/okx6QHGch0qqntrmbBVNyMMgCgqqhN+x/2dM0zAaJLqWNj/d9yYb6rQgIjEkp4nc/ms+eEg9/f3cL4Bc0Jg1LxaiY0KnGQCUFDfAJHtbXb+33u+1o2kuEwUp6ZAqxMQJtnW6SIo88q+LzafiwgLw/3PsYZu0kScPkaaP9m3/hLN8CooRlyGQiJ15Oj2ALOVj2KRo+zCDvDz9Xe79hmDMZTe9lWe06Pt77NU6vi/vH39Kv0bTd1YEgCKyoWsuc3POQ8Z+nHsHF8srikNsAfFO+gvzhA8BzZg7bDbLAzRcO5un91/vBXDQlB5POXxbKopfQSSIrttQxZXgqyzcfeBEWBPjx5QMZLFcjdtXTueUbenavAcWHMWsYUefdSHNbF83tTl74aDv3XTGcZruD6sYuNtWLFGTFEWs043L5OH9MOl8VV/Yx9422GRiUFc3bi/cC8L2Lh2KUBXwHpVW4FRE3NpBtoIGqCOyqbCXCamTlljq+3VSD26MwKDOauy4dxqLiStYdcm/eUtKMR/EP2MOcXWia/38mSQBJwBBtYlBWNLsr7EHtRFHg1ouG0OXwIAgEpcBeNC6ZhUNEej78Nd7mKkSjhchZd/Kj6Ubs37yAt6Uas8nKvWMuwpSUT88haT+irMMp2vD1Ptv6CSxTFRWDCIbeaFZFRdEp/VYrBFhbs5mRKYUBEQZgeeVaRiYWIkgx4edamGOi0e4gymY47hRN1V530qJgehFssSi1O48rUlEQBFLjLOw9yBemuqsWs2zCogudengmIIkSCeZ4yjoqOe9UdyZMmDOE8CveucThvF8O83wTNI1bLhzMbRcNISbCiCD4Z+ieuHsiWQk2RAEevWkMYwYnIokCJoPMnPFZ3LGwkPeX7uOBK4ezcGoOQgjhQdM7+PP6p1hftwVN01A1leLaTTy+/EmSkgVAoyArml/fM4m0WFO/Bn3CYeaMe8O5NU1Dr7qJ+S8858y+ThpefRRn+Wb8IzEfPduW0vj6/2Dm8FVUwpw9aDqFt3Z+yOvbPqDL3Y2G/xw/HAICgiAeckYLhz3HBUQ07cwUYABURWNkXhw/u2UsmUk2BAESY8w8cOVwLpqUTa8ruKKopMdbGDMokUnDUrh+ziDiovz3pO/NG0Be2zL0Fhstnz5Dz44VoPhHl66KrTS++ih3zEzEqJeoaermiZfX8unKchraHCxZX81XxZWBl2qTLPKbeyczfVQaOllEL4vMHJ3Oj64dxT8+2EZeehS/vGsiuckRhy01LUoiSzfV4lPgnx/v4KviyoBYvbvSzm9eXces8Zl9Qu0F4bC36zBnEZKm8aNrR3HFzDwiLHpEAYbmxvLE3ZPQywJLN9TwkxvHMCgrGlGAYXlxXDZYpfsDvwADfiNpydtN09tP4G3xl0lXnd10LHsD+1cvYJROblWuw1WZEQSxz+DUf+8Kn9Bhjp1mu/O4y1Nrihe1uwXRenLTfERbPChe1M7mIzcOQWqcldK6DpT9BR6qu2qJM8WelOpNp5JkSyLlnZVHbhgmTBggHAlzzqCTBMYPSWLVtvqQ68cNSTpsCWtRU5lalMy4IYmAgCiALIAmCPz7sz1s3NPEjFHp/PDakUiigAa43T7uunQY+Zkx2O09+PDP7vk06HH70MkC35atoMfbtwpJl7ub3R3b+fMPpyEKIm6PglsBo05E2+8fIehUXPhTkMamDmdNzcaQfR+cMBCf4mV55TqMHa3ExEfRzcnzzzBKPnSKAzwOBJ0BQWfAVbkXTe37eypdrXgqtyJnTzzs4C3M2YFLc7C8am3gs6Iq6EQZg6THrfQ11I0xRdHt6WFq5liMogmnzoHD50RSRb43+lqeWfcvmnv6loc9P2cyKH7R8kxF0DTyUmz87JaxgVl/f5SJ2qddaqyJ6AgDaQkWJhWlIIkC0VIPSssoRJ2BuAvvBkFE87jQFB+az0Pnxi9h80dcMHIaH6/xR9DUtfRQ1+IXRe+8pBDvfpNdRVExinDTnHyum5WPLEvoRHC4ffzf9yYE7n9HSv9y+VS+Kq7k2tmDQhoPq6rGf5bsY9a4TN76em9g+cj8BPSSP/onzNmFIAgogNOj4PGpWI0yBgEWTM5iYmEyoijQ1Obk1c93cuV5A5k1LgOfonLbRUNxuH0kmTz0fPTLoH3aRszCvuzNkMdz71uHOPUqkA+f6mCQVXRKD5rbiaA34pPMuJS+r4iSquP87MnsaQntmTQ+bQRrajYFLZuSORajYMR9mHBSURLwii56FAciAmbJjE41hCsjneM02p2k9lPI4UhoHY2gqSc/EsYaDYLo95tJO/bUm7R4Cx6vSnVTN1lJEdR015IbmXNS+3gqSLIksKFpC+3uDqIMkae6O2HCnPackAjz2WefMXPmTAyGoxvQxsTEsHjxYuLj40/ksGGOA0HTuH7uILaXtfYJsZ8zPhObSceRSv4oPpWAxa7mn5z2ahpbSppxuHx8urK8T6WkcUOS+MlNYwC/ANPW4+XJNzdR3djFtfOy2eTd0e/xNjduo8A2gr+9sYOGVgeSKDBzbAZXzhgAejevb3+fNTUbMUh6fjTxDnY07aHLExxlMiVzLN3ubnq8Lm4YeAHasg9Qp18Ptv5LXh8LJhy0f/Myjj3F/t9FlLEOnYJ16BQSL/khTe8/iXZI6oljzxos2ePwhWcGz2pEUaC2s6HP8q/2LePaooX8c+PbQcslQeT6oktZWr6a20deww77Ll7a9BZdbr8xdGpEErePuoY3t31Eub0qsN3g+IFkRqSjes78wYqiaBzsTHFwmo8oCqiAT4VdFXb+/t4Wepz+SJefXjMYk3cH9hXvoo9NIWrKlbQtfhVvq19sEc0RxEy7GndzNaPirHy8Jvi4EwqTSIw29ZnB1xQNgywSHWXCbu/pc/87El0OD6kJVnZVtPXbZldFGwumHngBtxhlbpk/GEFTz2BJLUwoRFHA4dP461ub2L3fgN5kkLn6goGMH5rMg39eBvhTee+8pJB/fb6L0poOwH9eXHZeHmk5Eq6O4Bl40WBC6er/HHPWliLnJvQr/FskNz3FH9CyaRF+IyoB88AxRM28hW7VFPRqoCgqg2LzgnxfesmMSiXJFh90f8qOziDOHI3T50bs75VTVintLuf5jW/Q4fKLlUnWeO4dezNxUjwh5jPCnAOoqkZzh5Mh2ccnoigdDSBICKaok9ovQZQRzVEo9uPzhUmMMSNLAiU1HcTGiLS7O/n/7J1neBzV2Ybvmdm+q5V21SVXyb33XjBuYGwwvfdACCSUEEqAQBJICCHwERISAgFC79XYGGxwxb03WbItS1avu9pepnw/1pa1lmTcANvsfV0Uz5yZObOeM+U97/s8GaewM9IBsiyZAJR4yhiUngjCJEjwXRxXEObXv/41NpuNadOmce655zJq1KjDthdFkdzc3OM5ZIJjRNPAqpd48pfjWLqpgjU7akiy6Dl3fD4d0q1tOiMdCaIgYDMb8AbaTndOthmay4FCisaDz69odlMKhlSspvZrg6x6C7v3NXHhpO5EogovfbaNr1aVMrBXMt82zmNj9bbYfuUwL298jztG30hh/R42VG3DZrAwscto0q1O/GE/XXQ2dGvmE63ag2BoX9SzPWLlAULczLcS8NA495+ESrcdbKjK+LYsAsCQ0Rn7iJk0rfw4/jez2NEEkVM5ayHBd6NpGlaDudXyLTUFOMzJ3DPuFlbuW0+Vr5aO9hzGdxmBL+znZ0OuoCns4e+rXorbrsJTzTMr/ssjk+7ipQ3voBN1TMubQDdHV8TIsaVrnwqIooCCQEmtj48W7cblC9OjUwr3Xj2cdxcUEpUVOsl7afzmdQAcEy+j5qOn0CIHBU3VgIf6L14g88J76Zzi4IZZfVm+uRKTQWLmuK7k59hjwR9BQNNif3cHxvzxEHNyUg4rKmk26jAZdHTvmMKQXhlMGtIBkyScsiLLCdonosLDL6yg3n3w2gyGZV75fAdWs57eXZwUlDRy3Tl9eObtjbh94eZ2/pDMa/MKmPzrISCI0KKsURAlYuU+bV8zOmsSBwzIWl7SOp2IDhn/6k/wrv8C0WBBl9oFuamOQNEalKCP5HPuJKjF31+kqIHbR9xIYeNuFhYvBzRGdxxKn/TuFNTtpmdaHiAwssMgUkzJfF38LTf0v6LN3gkCNMqNPLXiBbQWLap9dTy65BmemPIgBuXU1cpIcOy4vGEURSPFdmzPN7WpGsHqQBC/B+UFWxpKY/kxbaqTRLKcFnaXN9Ghayyb+3QIwtgMVmx6KyVN+xiU3u/H7k6CBCc9xxWEeeutt5gzZw7z58/n448/JjMzk5kzZ3LuuefSo0ePE9XHBCcIRVHRCzB9eEcmDemAJAoImnZcL/sGSWDW+K688Mm2NtdPH9kZURSQJJHVmyrj7KxXbKrjkgvGs7O+bWeIsdnj+N87+2j0hJgwOJdLpvTgnQVFWG0aG3fEH6/KW8NjS56lX0ZPbh9xA1JjJYLfh1y1BVt1CZHCNUTlCJItBcwpzcK+34UoCpjxo3nqUPxu9M4cVKOdCGZknys+ANMC37alZF54D4bUnFZBmKQhZxGQEx9YpzuaBumWNMx6E8FovMPJkpJVuINN3DL0GlRVQxIlZFmhg8FAVI3w5paP29xnUA6xvbaI34z8BbKiIKk6lNMgA6YtDKKMUQ0QqdmHqkCKPp1ks8CWPV7Karws21jBvdcMQwp5iH77FADGDr0I7SuIC8C0pGntXLZ3uZxOmQ7uvXooqiJjln0YglVIkkSksQrRkoTOnobsrkMJetGndUAJKIDU5j4Ph9WowxeI0i8/jQ8XtX2fO2t0F/Ky7dx31VD0koAiq4kAzGmIKAqUV/viAjAteevLQn51ySBe+HgrDZ5QXACmJYu3uxnTfRiBooNljqGyAsx5AwkWb2rVXtAZMKR3xo9GRIPyGh/dox5MYQ/RhgoMWXm4ijeRfc1joGlEG6vQ2dMQTVYaFvwPKeoFKV5TQ9NAihjpn9yfPkN7IUlQ2bSPe7/6M52ScxmQ1QuARXtXUtZUyX0jrseASFtnpOlUPtg8Ny4Ac4CIEuXbsjVM7TApLisuwU+DWncsQJFiO7bycc1dhWA9saVIBxCTUpFrilDCAY5F7ygn1UpRuZt8bxSDaCDZYD/xnfwRyLJkUOLZ990NEyRIcHxBmCFDhjBkyBAefPBBli1bxpw5c3jzzTd56aWX6NGjB+eddx4zZ84kIyPjRPU3wQlAllVEYqn2x/taoygqI/pksnZHDRuL4lOkr5je86DgpBArIWhJTWOASFNHRuUOY1XFurh14zuOxlVrarbnXLqxggevH4HFKBGQfe32Z1ttIZ6IH5tsIfrl31EDB3UYBL2J9AvuI4iFI8lCEUUBS7iW2vceQ/E3NS83duxD+qxfEXUfRpRNVWJaFIpGyxnK5FGzEaypaIn06p8EBtnEPWNu4fFl/ySqHgxAOszJXDvoErSwDjQNBRDQIaOi6pU27V8PsLN+N+OzR0MUlNM0m8osRQhvXUjDtx80z/gLoo4rz7gehy2bz1ZVEZFV3l1QxP3nd8bnjenk6B1ZROrafwGM1JZi6xGzhi6rdjMi3Y/mLSfgqcOzbj6G7DwcYy+i6n+/RQ0dvM+Y84fgOOvneI9SS0ovwt1XDmH+yhKum9mH/32+I259tw7JzBjTGSUqIwJK4kPztEUUBfZUuNtd3+gJkeEw0zc/lbIab7vt3lm8j7PvvpZIbSmyO+aq5d30NRkX3E20oQK5ZamSqCP1gnuISFZ2lrh56bPtPHdrf9xzniFcFdN0ybjkt2RdfB+1n/2dSPXBcmLJnkbWxfcjR0IIlrarlRVFBUVCr4RJbXIxIXcISys2xN2/JnUcRo7fj2CPAK0zGmSilLrbzygobChmcseJJIR9f3rUugIIAiQfgzBvTJS3EV1G/vfQs5hDEkC0vhzsHY96+9x0K2t21rKrtpp0y6kvynuATGsG62o2omoqopDwfkmQ4HCcEGFenU7HpEmTmDRpEn6/nwULFvDxxx/z5JNP8tRTTzFixAhmz57N2WefjcFw5DdTv9/P2WefTU1NDR988AH9+/dvXvf+++/z3//+l8rKSrp27cpdd93FpEmT4rb3er08/vjjLFy4kGg0yvjx43nooYdaBYU2bNjAE088QUFBAampqVx++eXcdNNNp81N8ftGVDVuvXAADZ4Qa7bXYDZKjOybjdUoodv/EwrAkJ4xLaDqBj8lVR5EUWDlxgamjD6DSaMnUODaQSSq0sfZl117Qvzvy11xx9mxt4FO2XbMutYlHi2x6E3onOmYL30MuWY31O3FkN4RU8c+BNqxh25zP/ipeffRuEAOQLhsB65l75I8ZNphthYQdHokazL2YWchSHpMnfsS3LsFIj6Qjl0YWKcTEUURRVFjL8EJTlpUFbINOTw57Xdsry2kyldDj9R8Oid3wCCbUdv4shEQSbemtvth0iEpG05hJ6TvQhQFaNxH0/J4zRxUmfA3L3L2BX/kyw0SqXYTqckmDCYjotmGGvTtz1bLbnffupR06jxR0h1mhnbSoXz1L6RRs3B98wUAjrEX4VrxEabOfVB8TYQrigCN4J4N6Nd+jmHYhUTasfNtC1XVSDHrOH9iPnXuIH/95Ti27KnHF4gyrFcGmQ4LOu34g+EJTn5UVSMn3dbueqtZj04SuWJaT9YdYlneEpNBwksSGZf/Hk/FXiJl29GsqTRoycjT7kXvrUSsKUSzpZPaexhhnQ1/FJZtruT+S3vhXfRqcwAGwODIomHBK3EBGADFU0/Nh0+SddlDBA55zBx4BqmqiiyraIIeYcdqZud0ZfrIm1hbX4SAwLC07pjLdyEUbkDLHdJmBqqERLo1FVeoqfVKIDcpCxGRhELST49adxC7xYBOOvqPea2pBtBOuCjvAQSjDUFnIlJfjnAMQZic1JjYcHGVl955p34p0gEyLemElQjV/lpybFk/dncSJDipOeHuSLt27WLr1q0UFRWhaRp5eXm43W7uu+8+nn76aZ566imGDRt2RPv617/+haK0ThmYO3cuv/vd77jlllsYNWoU8+bN45e//CVvvvkmgwYNam535513snv3bn7/+99jNBp55plnuOmmm/jwww/R6WKnXlpayo033sjYsWO58847KSws5G9/+xuSJHHjjTeekN/kp4CkaWTajZw/viuaBrKs7J86E5AVBU9QJhCSMRkkJgzO5RcXDiAcUVi/s5YN292M7JfFlI5TeemzbcwpKCTShoCgIAj0y0slzZZCl5QOlLTxkdo/oxcmTDHVTFMKpvwRkD8CWVbxKup3ig8fPBYo7upWAZgD+LcvJ2XkTPRpHZstQVtizh+MKkeI7isgUleGpsg0rZ0HqoymyOhHX9nsxHKk6EUNk+olULCGcH05xo59MHfqS1BISgRjTmJUBfSKmaGpQxDTBRRFRY1o7X5U6FUDF/Y+m6dXvthqnSSIjOs84rBOZqc6BiGKZ8VH7a4XC7/hTzdfRlG5l6J9LtaXhhk4fBaepW8T3LuF5BHn4Fn/ZZxmxgFsoy8iUG6kX1cnVK7G2mc03k1fA2Ds3BfJnoqt12gitSUYOufiGHcRTWvnEizehHfjV2QNPosIR+fUoaoaegE6plkQRZGc4Z3QNC328appR3pLSnCKo6oa3XKTsZh0BEKtI3nnTcjDJAmgaXTv6MColwi3Mc7PGdsVnSTgF2zMLbGxu6In/kCUPZ9tASA9xUx2ei8iUZV7+iajKDHxfKNeorNDoGrX+rj9aYrcZhkTgOyuiT0DTTEhe0kCi+ojtGcz4cpd6DO7YssbQliwYR91HtWvPYBOb+SM7Fj2QbjyEyJyBOe1fyGgtP0hLSl6Luwzg8eX/bPVOkEQmNx1HHI0MUh+itS6gsesB6M01YAgIpi/H4FYQRAQklKJ1JdhzBt91NtbzXqSbXo8jXoy+p0+ZiUZlti5lHrKEkGYBAm+gxMShNm7dy9z5szh888/p6ysDIfDwcyZM5k9ezZ9+/YFYOvWrTz44IP8/ve/5/PPP//Ofe7Zs4e33nqL++67j0ceeSRu3bPPPss555zDnXfeCcCoUaMoKiriueee48UXYx8uGzduZPny5bz00kuMGzcOgK5duzJjxgy++uorZsyYAcBLL72Ew+Hg6aefxmAwMHr0aBobG3n++ee5+uqrjypz56eOphH3cSgIMTvq0iov1Y0BstOs7CxtZHeZG4Ne4qXPtjV/gCzeUE6Gw8zdVw5lQ2Ftm/sf0SeLshovD/1zHXdfdyVvFL5OWVNl8/ruzq7cNPQKhIgODY4rU0QQBBRvayvgZlQZxesidcp1NCx8JZaSuh9jh56kjDkfwWCm4Yv/oAbjy6dkdw1GLVaAcqToRA2daw+V7/9lv3sF+LYuRjQnkXnlHwnonAkdiZOc2PV4JO008uxduajPDD4qmI+6P5hg1pu4Y+QNmDXraTsnrAkCriYfeOrbb+StZfPOSl5fWALAko3lPHT5ADr1qyKwbTGe9V+Sfs6t1H/1ElokpimAKGEacT6+pM7oJC8N7hAp3jqktHRkbwOSLQXH2IuofvtR1GCLUhBxDukzb0WNhAiX70RVZDRJQOTogyeKorU5qZDgp4NRJ/DozaN59JU1uL0HFVImDe3A5KEdY7pteolte+r59RVDeO6Dzc1uhoIAZw7rSGqyCX9Y4fH/reGK6b34aHG81lCdO0idO8j5Z3QjGFV48N/f0uSLkJVqAdnOoaW4ajh42D7LgSZESy4gYA7WUPXWIwfH1dbFCLo3ybjsYRR7FtYpNxFY9D9C+2Jld4LOgG3qz4la0tstwVVVjVxLDlf0n8272+eg7LdCMuqM3Db8WixC+9lDCU5val1BnEnHqAfjqUEwJ38/orz7kZLSiFYVYjjGJ3JKsojHnXJaiPIewCgZcJoclHrLGc3wH7s7CRKc1BxXEObVV19lzpw5bN++HYPBwKRJk3jggQcYP348khQvYti/f3+uv/56HnzwwSPa92OPPcZll11G165d45aXlZVRUlLCPffcE7d8xowZ/PWvfyUSiWAwGFi6dCl2u52xY8c2t8nLy6N3794sXbq0OQizdOlSpk6dGhdsmTFjBv/5z3/YuHEjI0eOPKrf5KeAIICklwhFVERRwKgXCIWVmAAvsZeqZivONzewc19MC8ZkkJg1Po9R/bK559mlrT5ial1BPlu6h7NHd6a60U9+FyvBoMLyDXUM652J3Wrg+Y+2oKgaT/2vgMvOvoiMHhKeiIcMm5MsuwOzAoIQRpGMR1U2cCiqqqFPaz/FVDTFZsPrPv8HKWMvQpeUihL0IFlTiNaVEa7ag2hOwj70LASdgWhDBf6ClWhyBGOnviixX+qI+2PSAlR//FRzAKa5n0EvDZ//g5TZ9xNso94+wcmJpIOoEEVERFR0rQJoQlTHmR0mMLbjCGr99RgkPU6zA71iRJNPz1IkvU4AOUilN0JGVj5yU9vBWCG7F9uLDwY2NQ3+9HYBl04cy/k3nU/EXUNQSiLt6r+geBtR5TAhYxqfrKklTfMgiQJOuxFR6oM+2Yxz0lUIBhOuRW/EB2AAVJn6+S+QPvOXNDTVsq3Uy6frS7jtwoEYRaGVpXWC05MD9uiKCjpJQDuC4L6kE4nIKqIgoBNjQThV0Ui1GfjrbWNxeSMEQlE6ZNrQtNhzVdSJRBWVdIeZdxcWcdtFAzEaJIJhmRSbkW+3VOLyhHl5zjbKan1UNwYY0z+bFVur4o7ttJs4d1xXthbs49LxOVR7NAb0zASDgqA3gqZh7TMWvTMb0WRB0BnQ5Eib56FPziCogk0KUvfp0wcDMIAhpzt0H4K7pgiLJY1XtidxxUV/xia7AfDqUvjv4iommQP0yLG3O1EgRHWMzR7FiJxB1AYa0Ik6Us0p6BUz2nE8xxOcumiaRq0rSF72sQnWqk01CDbHCe5VPEJSKtq+EJq3ASyp373BIRgsYbRKO0nS6WXnnGlJpzQhzpsgwXdyXEGYxx9/nCFDhvCHP/yBs88+m6SkpMO279evH7feeut37nf+/PkUFRXxj3/8g+3bt8etKy4uBmgVnMnPzycajVJWVkZ+fj7FxcV07dq1la5LXl5e8z4CgQBVVVXk5eW1aiMIAsXFxccVhNHpjjwCL+2veZWOofb1h0QFghGVVZvLWbqpAk2DcQNz6N4xhc+/3cv0kZ3pmm0nqmk88sJK6twHX9hCEYWVW6tw2k20l7RR3RjgynM78eXuHayq24nNaOGGqybTzdmRbYUulP0bNvki/Of9oph4rlHi52eb6eKsxbPmM9SgD3PeIJKGnEVYn4x6DMkwoqChE20Ysrq2qpUHSB5zAYLRguJrouHL/8bSXg0mtEgIwWAi+6o/IruqCJUXoXgbMGR2JfOie2la/yWWXqMJcnTXh+qui3v5bUmkuhhJDqA7BuvtQzlVrsNj4Wh+7+8LQYQAPubuWcrm6h3YjBZm9phKXnJndMqhQTQRi2aji2X/TLBKLHnqO+7ap9rfoSgKGBUPga1L8ResIN2cRMqkq6guWt2qpEjQm4h2HsWm+fGuZKoGby8uIycnnYo6C70zIb1mO8KuJaAo0HEg0weP5IUFlcwal0emTcBuduBe9QnRujJSp90Yp5PREi0SQpMj6EdeyvuraiksdfPYK2v4/c9GYjhFfuOTjZNhLB7pOJE1KKv388E3u2hoCtGzk4PZZ+STbGp7IAoC+CMqXy0vYW1BDRajjnMn5NGrkwP9/kOZRIEcpxlf2MBny/aysbCWJIuBqSM6IQiQnWZj5riuuLxhlm4qJxJR6NbRwej+2TiSDLw+vwCA178o4Gfn9mNo70yWbaogGJIZMzCb6QMcRPetocfOeajRCKYeI/Eb7Hg0B86pN6BPcuLdsgjf1iXonVkkDZmGZ03rDGVzlwFgTCKJEJqvHtlVDYBosmE49zY2BmpYXL0FzacxMcnCVef1R9y5jmDR8thvmzeK2aP68eHqMnpc0A+deLgAsohOs9HZfHT3uyPlVLsv/lAceEU+2X4Xjz9COKqQmmxEko5u4kFTFVRfPfrUDojfYyaMYE8jgoDqrkKXdPTZLIrRBZqDeneUDlnH//52spBly2Bp2Uo0UUUvth7AibGYIEGM43q8LViwgI4dj1yQqnv37nTv3v2wbYLBIH/5y1+46667sNlap6E2NcXE2+z2+Oj4gT8fWO/xeNoMCiUnJ7NtW+wF3uv1trkvg8GA2Wxu3texIIoCDsfRaQfE+nJ40dkfE1lR2Vft5f/e3kBJ1UGtlJIqDzlpVq6f1ZfHXlnDhZO60S8/LS4AcwCjXopLw26JzaznmvM78tA3TxCU99t4eqGwvpiJXUYxIWNqq21UVeOyCR3Ir15A/eJlzcujDRV4N39D7nWPY0g/etG0cG0plW89SsbMW/FsXEBg1zrQVASjBceYC7H2nUDUVUX6ubfjWvIWclMdWjiAISuP1Ok/w1+wgqYWuhbRhgr8O1eRffnvMDozMR2lary/rm1b0wOIgnpM11t7nMzX4bFwrOPxRFPeVMWDC/96yPX9HyZ2GcU1gy4kyXjiUu9Plb/DqLuWytcfQvEddE/zrPiQjPN/TeOiN5o//AwZnXGcfSu//7Cs3SCuJxBhVL4Fw4r/Ei1v4URUtRvdjm+49ZwH8Go6zK5dVH70FAdKM9Rw4LB91ASRjf5MCktjAfzyWh8ub4ReXb4f0cfTmZNlLB7gcOMkEIqycPleXvuioHlZea2PJRvL+dMvxtKna+vZ78o6H795dhm+YLR52ZNvrGfMgGxuvXAgyfvtdvdVe/jNs8sIhg+mehSUNDJ+UC7THWY2FtaybNPBctvd5U0s21jO47eNa84iVVWNFz7ZSlqKiRF9szHqRcZ1t9H05b8IFW9u3jZaX4ZkXYD1qscRkjOofufR5gBn7UfPkHPdnxFECc/6+WjRMIgS1t5jcJ5xOYIoUP3eE6SMvaB5f4ZZt/L07vns8xzMwHl9y0csTPqW+3rOJLx4v6h+5S5sqR25fNIdGAx6ko7B5eZEc6rcF38oDkxUnmy/S01T7D0xNyuZpKSj61vUXYNPVTCnZqC3fJ/XnIGwNQXBW0NS0oij3tojViOKKdS7VHp3P7l+/+MhT+3Aon0KXsFNvqNzu+1OtmsuQYIfmuMKwhxNAOZI+fe//01qaioXXnjhCd/3D4mqang8h3+xb4kkidjtZjye4EklsqqJAsFwzAjXbJDYuqcek1HitosGYrPo8QWiLFizj6J9LvaUuxnUI52cNGu7VpzldT4umdKjzXVTRucwr2TewQ/UFiwpWcW0/DMw7E/xPoBRLzGko47oR8tabaNFgjR88xr26bcR0fSt1ouigF4JIKpRNFFC1lmRFTAIEZq+egnV76Lmo7+RNPBMMi+8B01VQFXQZ+ahyFH0jix0KVlkXvY7kCMoPhfhmr1okSBNKz9pfYKqTP0X/yH10kcIC0f38DE7cmhpdR13HhY7qs6My+U/qn22xQ95Hf6QH2JHOx6/lz5IMq9t+qDd6/usbpOQA8dfavRj3Ev0goxOCQEaimQiir5dzRRBEJBVjYisYtKDunZuXAAGILB7PVF3DY5zf02jL4qsQplfQGfOxhMoabcfXbLsOORS3OU7Wq1TfC7MuxaTN+ws6t58kZZjSYuGY+OoTSFugYA1l//M2xq3tLTKQ7bD1FxiIQgCUVUjKqsIooBZL6KdQjpNP9R4PBnGIrQ/TiRJxB9Wmp3Llm1qLQAvKxr/eG9TLBuqRXaHqBMJRxUevWUMgVCU97/exaaimGX0ii1VzJ6QjxqVUYCXPtveHIAx6EQun96LQT3SEQUBk1Hi7DFdGNE3i283V7FmRzWqquEPyVTX+8lOtVLVELvf6ySRQXkOxuUbMRh0WEO11LQIwOjTO2IfNBUpyYFeCVIz79+HZJipVP7vARyTriD3hidRoyFEvRFFbyOAAaFkDZGa4pgQqd6E3pnN9ogrLgBzgCpvDRt9VQzM7UGkoij2WzWUkdxUCDnZJ+QZdaycrO9Y7fFDjUdN0xAE4aT7XXaXNgJgEDS83sPrFh1KtCpmlhCRbEQDbZfZnQhEEXTJaYRqSo+6jwE5iCfiJSkJ9pT6GNTb8j318ofHgg1RENlaXoRTaJ0hdKqNRfhh31cT/HQ4qiDMb3/726M+gCAI/PnPfz6ithUVFbz88ss899xzzVkqgUCg+b9+v5/k5FjtpNfrJT39oKK4xxN7eT6w3m63U11d3eoYTU1NzW0OZMocONYBIpEIwWCwud2xIrfh8PNdKIp6TNudaHQ6EX9U5a0vC1m5tRJZ0bjpvH4kWw2M7JvN218V0ugJkZZiYta4PMYNzGHr7npumNWXed/upUtO279dOKJQ5woytFcG63fGaz70zrfx1eaCNrcD2FS9jVnj8/hw0UEhwrzcZITyTe1uE9y9kZTJIWQtXqPIKEYRavfQ8M1rRBsrEU027MPPwdz/TIhGCZXGyuC0aBjPui/wrPuieduU8ZcQKN5EpKIIU+e+OM68DnR6qt/9E5LNQcrYC9t0ZgGINlZCxI98lBbVEclC0tCz8K7/otU655TrCQmWE3rdnCzX4Ynkxz6fqBBmc3X71/eGqq1MyZ0UcxY7AfwQf4eSJGBRmnAvfYtA4RrQNMzdhpAy6WqCupTWQsSiQIM3zEufbWNnqYvfXtyd3B3L29x3tL4c36qP+DB8Bks2VfHAdSNAg6tn9Oavr69rFeQZ1S8LZ5KByPJF7fY3UvgtwoBxKP74LEfPxq9wjL8kVlp4CIb+U/hqs6vV8TKcFqJRZb8JnEBtU5CX5mxnV5kbo0Fi6ohOnDc+D90xiPie7vzYY7ElLceJKgosWV/Gp0v34PFHyE6zcsEZ3ahq8PPRongB3PJaH8Gwgri/xkgRRb5YUsz8lSUEQjKdMpO4ZkZvxg3M5Z/vbwJg+eZKLj4jn3BEYWNR7PnntJt49OejmfvtXu5/bjnhiEJ+h2QuOrM76wtqcdqN/Pba4Tz15npCEYU3v9zJzef3548vrcJuNfDHK3pi3PkFkS+WYek+FJ908LUuecRM9GkdaFr1KdHGKjIvurcdrSUV16I30KV1JOzsGbteI2CUIvg2fwOAd8siUsbMxh8NsqR6axv7iLGkegsD8gfB/iAMQGT7Ykz5w5HVHz8T5nR8th0PB+5NJ9vvUtXgx2rSIYkiinJ0N1DFXYtgtKKJOrRjqUc/YkR0yemEq3YjRyIIUuvJvvao9MRs6NMdBsprwkd9jiczIhKpJifF7n2MzR7VbruT7ZpLkOCH5qiCMKtXr261LBQK0dgYi1gfCFocKONxOp2YzUc+419eXk40GuXmm29ute6aa65h4MCBPPXUU0BMG6allktxcTF6vb45OycvL4+VK1c2R/kPsHfvXnr0iGViWCwWsrOzmzViWrY5YK/9UyUoa/zuPyuodx+ctbeYdewqc/PZsoO/V707xCuf72D2xHwundaD3/1nBU2+CA9cNwKrSYe/DStOly/EuRPyyM9NYeHafTT5wvTu6iQ3Pam9ZA8AJEHi3PFdSbYZ+XTpHtzeMF2ykzAbDbQ71yG0ziyQJAEqtlH32d+bl6khH+5l7xKpKcEx6SoO2xFNBSWWah4q3U71aw+Qc/0T+9dpbR4zvktHn+0QVnRYRpyPIbMLTSs+Qm6qw5DZBccZV6GkdESWT58H+GnNYS4rEbH9lScpFtVL9esPxgnaBnevJ1RWQPZ1T+DlYEmoIAi4/FHuf255s7aTrB5+vAiCSG56Eg9c1wG7zcCdzyxhwqBcHrtlDG/O30lhqYuUJCOzJ+Qzsl8WmwprGXS4Uj9RRGjDlSxcXoghozPp591B0+o5RGpK0CWnYxp+HgVyJz74qCiuvSPJSJbTgqbFRMirm0I88O9vm8ukwhGFz5fvZXtxAw9cMxzpFPt7/SmiCQKvf1HIko0HM1+q6v0898FmbpjVl/75aWzdE+/adeBKUgSRf76/ic27Dq7fV+PlsVfWcO/Vwxg3MIflmyvjNBAO3AoeuG44T7+1gT0VBwODe8qb+Ovr67j3qmG88vl29pQ3ce05ffjPx1spr/WR6TRz/zXDSTOE0H/zNOHGWFaKpmmI+69/Y4de6JLTqZ/3fIuTPPx1qGoCiiAgtmy3f3wGdq3DkN4RS/5QhF2tJwMOIAoiwqGTEKL4nc/FBAlaUucO4jhGZyTFU4NgSTmxHWoHXXI6aBpqUzWS88irA2qCdRglA1mpFnaXNOHxydhtJ0gA6SQg05LGPk/rLMIECRIc5KhG/DfffBP35927d3PDDTfw85//nGuvvRanM1Yf39jYyKuvvsonn3zCCy+8cMT77927N6+99lrcsoKCAh5//HH+8Ic/0L9/fzp27EiXLl2YP38+U6ZMaW43b948Ro8e3exyNGHCBP71r3+xcuVKxowZA8SCKzt27OBnP/tZ83YTJkzg66+/5p577kGv1zfvy263M3jw4KP4dU4fjEYdq7dUxQVgAJx2M8+9v7nNbfZWNpFkMdDki4VD3vpyJ3dfOZR/vr+ZRs/B/YwblEPnTDu/f3EVfbqmctnUHljNesIRBSWiY2j2ANZVtn2Mwdn9UCIKEwdmM6pvJiAgCmCJJtO07J02t7H0GE5UNEGLGXmT6qfu61eR7GmxmcKUzFipkabh3bQAAHPeIILFG9vcpym3B+4VHzf/WVOiROpKMeb0IFxZhD45HUQJ1NYZDfr0Tqg6y9EYIzUTUAzouowmtdMARDQUdIQwJqypTxEMGBmePYA17VzfQ3L6n1KzQjqdQGDb8taOQoAWDuDbuAD9sAuI7o/DagK8Oq+gOQADsHRHE9f3HI+y/rM2j2EaMBltL6zZVsUZ/Zw8cXU3HBaBxqCXWaM7cc7YrviCURavL8dhN1FQ6qJfn/Gwc0Wb+5N6jAeTDSnJieJtjFvn3fAVoX07yLz4fmqbouyp9GJPSWfJ0uK4b9cMh5nf3TASoxTT/JW1WGlJW8Nwb6WHqsYAHVMtCSelk5xgRIkLwLTkg292cdPsfnFBmC7Zdox6CdBw+8NxAZiWvDp3B3dfMYTlmysZOyCbaFTBIImM6JvFvhovvkA0LgBzAE2LHfes0V14bV4BsyfmYzHpGNY7k4VryjBKGoMHW1DOuAJB0hOpLsa7bQnOCZfj27YU++CpNHz9atw+ZW8jemdOLCPzUCQddWoyL72ziTsvG4SoasjosA2eRqg0pqPnXvEx5poSpg6dSGF920LWZ2YPhDXx74q2QdOIYuSYHnwJfpLUNAZJsR2rPXUtYlqXE9uhdpCsySDpUV2VRxWEqfbVkmJMJs0Z++6orAmfVkGYDEs6OxoKiSgRDNKPnwGXIMHJyHGN+EcffZQJEyZw1113xS13Op3cddddNDQ08Oijj/K///3viPZnt9vbdSPq27cvffv2BeBXv/oVv/nNb+jUqRMjR45k3rx5bNmyhTfeeKO5/eDBgxk3bhwPPPAA9913H0ajkf/7v/+jZ8+eTJs2rbndjTfeyJw5c7j77ru5/PLLKSoq4qWXXuKuu+6Ks63+KaFqGusKalotD4SiyIpGv/xUBnZLb263q8xNl+zkuG1Kqjy8PGc718zojdmoQ9U0UmxG1uyo5pl3N6JpsL24ge3FDQBYTTpuPr8/l/Y9j8L63Xgj8bXjM7qfiVWI1WQqsrr/wtVAA9lgJ2n4OXjXzo3bRjQnkTLxSnxqfCkS0SCiJYnUM6+JlSPVxeqHRaOFlLEXogQ9OCZfS7iyCDUU3w/7sLMJFG9uFWBxL/+A9PPupOqN3+HdshjHhEtxLX4rro2gM5A64xcEMXGsGQ+yrCLTMrss8WF3yiCLXNZ/NgXfcX2f7Byw3jVoUXy717fbLli8Ecfgc/Z/fIGs0iqTYO3OOi4fPx79ntXI7vh7jj5vKJtq9MxbUcIzN/UluPB5wuU7qSc2lvKGzGSneRD//jhWJlK0z8WD149gT2MD+XlDiRbH902Xkkm46zg8vjBpZ99CzQdPHDKOBVLGnI8ajfLkR3sorvSgk4q5YFI3zh7TBbcvjNWkR9M0bCZdcy27omrsKnO3+ztsLKyl64Q8otETU2aW4MQjCALldb5213v8EXQtsliMeolfXjQQvQg6ncTOHa2flweoaQwgSSJTRnQixWoATUPQVK4+uzffrNvH5t1tB28A9lQ0cfHkWOburnI3PTs5uHRKD0pKKujh20D1a583W0sbO/QibfrNRN01WLoPQ9AbW2kcNa2dR+qZV1H7yTNoSjRunXHCdby+soZtxQ2sKahlbJ9MFEXFlN0DY8c+hMtiOkvBPRvpNvAMeji6UOQqidtH1+QO9DM6CbVwFDTmdMfQsQ++U0T7IcHJQa07yKBuR+84pEWCaGE/guWHsX0WRAnR6kRxV3KkxUgaGtXBWrraO2E2SdgsEhU1YXrlnxrvAEdCpiUdFY1yXxV5ye2L8yZI8FPmuIIwmzdvZvr06e2u7927N3Pnzm13/bEyc+ZMgsEgL774Ii+88AJdu3bln//8Z6vMlWeeeYbHH3+chx9+GFmWGTduHA899BA63cHT7ty5My+99BJ/+ctfuPnmm3E6ndx+++3ccMMNJ7zfJxuiKKBpB4XZBCH2/5IkkpFiIsNhxu0NNwvhmo06Hr5xJDv2NrJscwWiIDB2YA4XTurOtj312K3xj6DyWh/PvLMRSRS4cFI3vIEoX6wsabMvNosBbyDK7j3w2OR7WbFvHRuqt5FksDGj+5lkmTMRom1friHVgHnoeZi7DcO79nPUoBdz/lAsfcYREJLQWrz8iaKAoNPjPONKaj/9O2ro4Iu3Gg7Q+M3rZF54L6GkTmRd+wT+7UsJ7d2EZLGTNGgy0cZqXEveju3LYkfQGdAioZiopzGZ7OufxL/lGxBEsi59EO+WRchNdRg79MY2aApBKQn1NKr9TXDkaBpY1CQeO/NeVpStZ0P11hbXd0a71/fJgiAIRDVYsrGCRevLOXNQJmPMrR3oDiCarGiiCEps3KFCkkXfnC0HMWvpP7xdxAMX/xqnpwi1fCuCKGHoPZ5KLZ0vFlXw6DV98H36l2aXJABNjhBa8xE9x5oY0iOLDUX1KKpGVYOfijqZ5N4Xk95jAtLOr1HlMObe4wll9OWVBZX8YnIqoYoicq//C571XxKpLUXnyCZ5+NmEK4pQ5QhmY+zvQlZU3ltYhCCAyaAjElUY1DOdnh1T4n4Xs1EX53LTkpQkY1wWzIF7bSKD7WRCw2Y+/CeU3WKgZycHfbo6mTqyE2adiKpqqKrW7HjUFqIoYDJIXD6lO4Kqodu/nVUvcN6EfL5Z337KvlEvoezXtMh2mjlvfB4CMvnB7QRWfxTXNly+k/ov/4tj7AWY8wbFyiQOQXZV0bR2LpkX349/93oilbvAno7Q/xyWFIVZsaMEgLnL9zKsZzo6wK+YcJxzO3J1Ib4NX4GmYo0q3DnyegoaS1i4dzmgcWbXsfRJzcOwrwg69gEBbIOmos/phV9NuKAkOHKCYRlfMEqK7egnQlVvTAj7hwrCAIhJTpSGIy+98US8hOQwTqMDgFSHnvKatl1DT1VSTU4kQaLUU5YIwiRI0A7H9dafnJzM0qVLueKKK9pcv3Tp0jZtoo+GkSNHUlhY2Gr5xRdfzMUXX3zYbZOSkvjzn//8ncLAQ4YM4b333juufp5KaIJAMKqwt9KDyaijQ4YNvz+CTifS6AnhDUSYOrILYwbmEgzL1DeFePOLAhxJRv78v7XUNB50tiip8pCXm8xVZ/VCrxNZvb31jKCiaqQ7LYzsl9xuEObMYR1ZtqmCIT0zGKKkcmbuBCZ0GIOIiCaLaNHDf7AEVQOCPQ/rtNsQVAVZMOBVNA6k0XhAuAAAxd9JREFUP5vFCFLUR6S6FCGzK1F3TVwApiWNS9/BcWE+Xs2GbsA5JPefik5UUZtqAI3Mi+9HNFuJ1pWjqQqG9E5ochiCbhRTMrrB5yGqUWRRh3lSNwRVRhENeGUtriwqwU8PRVHRKWbOzB3PhA6jj/j6PhmIavDIi6uaXVk+/TbCiNlTYM+GNtvbR55LCCPeSJTSKi/ZaRbOGduVt76Mv5+7vGHW7Gri4jEDiCYlIeoMqCkdKCny0S8/FWOogYCrtcg6QHTDZ8w+47ds2dPIDdM6M64zaEkudBYFY2o+0awcIsEAqjkFm9XGjLEGZF0UW+e+hMoKsQ2agqg3Em2spPqdPyHo9GRc/WfOnWBh+96D5UqaRnOQ5bzx+bSsPTLqBKaP7MwnS1uXZwgCDOudiSyriKJAWNGoqPXhC0bpkm3HYpTi9TcS/ChoGqSnmNvVMeub58RpN3HdzD7YrQYMktisryLLKt07pqDXiUTbKCcc0ScTURQIRhRkRaO4uJEki54OmUmYRY3hvTN5be6ONsvZJgzOZWNhDf/4xSCyLBEixd9izM6naUPb5XuyqwpB0uNa8AqO8+7G1HkAodItcW1C+3ZQU7uP7OufpLIxiEWnIdeXMTYtwpib+7BoWxOLtjbEkiz3y7j4VRNS9iBs5/RDQCOKAS2i0je5L72G9AQ0JFWPElZRcgaTlBPLWo5iIJzIgElwlNS6Yk5Dx6IJo3rrQBARTPYT3a12EZPSkCsKUENeRNN3f/NU+2Pi2A5TCgBpDj2bdniRFQ2ddHpoJ0miRJo5lTJvxY/dlQQJTlqOKwhz6aWX8uyzz/KLX/yCq6++mk6dOgFQWlrK66+/ztKlS/nVr351Qjqa4MSgigLvf72bL1eXNi8b2D2N88/oxhOvrYubzR3WO5NzxnbBatLxxC/H4wlEyE23UesKxGkkFFc07U/XFpg5tiuff7u35SEZ0z+bHh1TWFdQy5XTe/LmIR9hA7qlkZth4+2vCrlxVl8URd2/f2l/COXIPlI0TSMsi3CIwKlVCuNZ/BqBgm9jf+4zFkHf/sM9WleGtD9aoqogyT7qPnkaS94gzPmDkcw2wjUliEYzAgLBvZuQmxowdeyJZ8MCUs+9k5BoxqAEEFBRBR2nwDd2gh+QmJDy0V3fPyaSTmTpxsrmAAzEgifbXBb6959GZOtXce2t/c9AyOzGfz/dzoqtMdFQQYAHrhtBny4OdpQctKS+c3Y3+vpWUvViC7FPSceIabfyZVMKmt9F6rQbkGxOtGgY3/ZlBIs3Axpq0IfNKPCPWwfjUBvQ/LWEG/bR+M3XaIpC+sxbCa6ZS7h8J8aB0+k96jw8q+ZSvXlB86EESU/qtBsw5w/BNmwGIcFKfo7GmcM68M26+NnN8ybkkZ9hQK/4QABVZ8IjC0wf3Zn8Dsl8tHg3eys9zed7x6WDMetEBAFKav08/tpawpGDkdgJg3K5dkZvhO/VwSPBkWCQBB68fiS/f3Flc/YnQGqyicum9uS+55bj8ceyuHp1dnD3FUOaBZfNeoF7rx7GX15dG6d5lJ1m5aqzexOVY06Dq7YdtHU2GSTuu3oYKUlGbr90MM++uzEuENMl287Y/tn0SFUJrPqQUGYndMkZgIapUx8Cu9a36cIXdVVj6DEKvykD+9QbSW6qIly1G++mhSg+N4KkJ/3smwls/YZUm4OGr14G9cBzX2DK4BkMu/hMDDoRtUUARVE0FA6U9u4vxVNUUPa7Q7VYpjS/Wiau6wRHT607FoQ5Fk0YzVuPYLYjiIcRaD/BiLZUAFR3FWLWEQRhArVY9RaMutj5pTr0KCrU1EXIzTo2HZyTkQxLGqWesh+7GwkSnLQcVxDm1ltvJRKJ8NJLL7F48eK4dZIkcfPNN3PrrbcezyESnEB0OpG1RXVxARiA8ybk8+dX1sS9eALkplvxBqK8s6CIqno/dquBK8/qxSVTevDvDzdTWn1QkPObdWV0ykzCaTfxt9vHs66ghqisMqx3Jmajjn9/uIWdpS4umtSNp++cwIotVYQjCn3ynDS4Qzzz9kYGdk/DeUjq/nGfsyQQ2rm8OQADILuqMXcb2v42KRmo+6cAzQRwLXqd1CnX0LT6c7xbFpNx3u2Eynfi374cTY5gzM4nZcwFKOEggijRtPQtLN2HUTPv32iREPr0jjgmX4eS0pmIenKXnCRI0BYRWWPR+tYvU/+eW8zVZ45g/KVnoK/cDKqKucdwNLODz9fWsmJrFZlOC/m5yQTDMs+8vZFrzunN5dN7s3p7FVmpFoalVNOw9BC3FUXG+8U/uOiWZ4lWe3Et+QjZVYVospE0aDK2/hOpm/NP9KkdyEqz4Fn2FjVFa2MW2V36k3HeHTQueYe6z/5BxgV3U/Pe44Q3f4nSsTtK+Y64Q2lKlPr5L5J5/ZP8fX4NN8zMRkLjiqk9mTk2jzU7qpHEWOllmuilaeELBHbFjmXKGwTDL+Fvn1XgC8pceVYvTAaJ6oYAw3plYNLFMiZCCjz2ymrkQ0oRl26qIC83mUmDc1BOIVHm0xFN1ch2mHj27jPYVtxAZZ2fXl1i5QLPvrupOQADsLPUxevzd3L9jN5oiooqa+Tn2PnHbyaxYWcNde4Q/fJTSU8xs25HDeGoEheAAQhFFP70v7X8/e6JNPnCPPPrM1i/sxavP8KAbmnodCI2vYpauQNL3gDcKz8mWleGYDCTNOAMMi/8TUzbRY73BjTk9MDQcyxN335AbeG3oMgYO/Qi/dw7kb2N6Cw23Gs+J3n4OdS89/ihvwKRjXPp1LUvUe3o9TgSJDgR1LoCmAxSc1no0aB66hDMP1wpEoBgtCIYLGjuSsjq8Z3tq3zVOE2O5j877DokCcprQqdVECbTks62+h2E5DAm3elzXgkSnCiOO1R85513smTJEp588knuuusu7rrrLv72t7+xdOnSVoK9CX5cwrLGB1/vjlvWMTOJ0mpvqwBM7y5OMhwWnn5rA1X1fsYMyOauy4dQWedn3oq9zByXxwPXjSDTaQFide+Th3eiqMzF/c99S49ODox6Haqqcef/LWFnaWzm+4NFu3n7y0KG9c5EEOHfH27mw0W7uGJ6T3518aATnppv1AJ4Vn8a/ztU7cGU2x1BalsDIHnsxUTE/QJpQQ8pI86h5qOnCe7dTOrUa2n4+jV8m79pfvkNV+2h5qOnkMxWkoZMxV+wAlGnR4vEXKGidWXUvvMoUuPeOIvSBAlOHbQ2rdU1DV77eh//+roBceAsxIHn4tdn4JH1fLO+nN9cNZQLJnVDrxPJSbfx6yuGUFzRRElVE8GQTJpRwbPywzaPaOrYi3DJVuo++T9kV+wDVg35aFr1Kf4d35Iy5gLSZtxC3duPEChcvT8rQCNYsoWaD5/CecYVaJpKtKESvTMHAO+aOdj6T2zj9FTcW5YSjCj4QjHBUlHTSDHrmDWmC5dN60W6LkDN6w8SKDp4rFDxRsIf/5G7z+1EvTvI029twOUJMWlwDiZJAC2mAbKhsLZVAOYAHy/ZTThhMX9SoKkaBgGG90jnggldSbYa+PP/1lK3f2a+Jcs3V+KPKKgHxoWiYhLhjEG5XDa5O0adyJ3/t4T+3dKYe0h26AFy0qxs2VXPK5/v4M7/W0xJVRNRWeGdBYW881Uh2TYNURSp++zZZgF5LRLEs+4L3Ks+w3lGfCm4ZE1Gl5xKw/uPEdqxBJRYhku4fCfV7zyGzpZC7SfPIBpMsTHTDp6VH2Lk9NKoSHDqUOsK4jiWLBg0VG/dD6oHcwDB6kRxteE6dgiKplAXbMBpTGleJooCqSl6KqpPrzGXYUlHA8p93/27JEjwU+SETMs7nU5mzpx5InaV4PtEFDh7TBdy0q37yyGgqMxFY1OoVdPpozrzv7mxGeOhvTIY2C2dR19a1ZwuvXRjBY4kI3dcNpi/vbGe0f2zefKNtVwwqTvhiMKOvY3sLG0k3RET5OvWIYWZ47o2z2zUNPpJTzHz+K3j0EsCRp34vcwEC6itHCIgZrWZft7t1H/xwkGLXUHEPmIWuk4DCMgqggCCoOErWIkWCSIlOdFUlWh9G+mVmop75Sc4p1wPqoLWRnmBa+HLZFzyIErEj6AzougthNQTm/mTIMH3gUESmT6qM//5eGub66eM6ISmKKiqhiYIRKIqd1w2mGBIZlNRHcs2VaBqMPfbvVwxvSdWk55aVxARUyur6AMkDZrSymL3AIFd60gZfymh0q0o/jbsfaMhfNuXY+05CsXbiLhfQFj2NiBZ2tYK0PlqmNB/DJn6AFIkiKA3IeusyIqIpioECtqx444EEXZ+w+i+/Vm+tYbXvtjJwO7pGPZ/mwuCQFW9v9V2B2jyRdBOgZK0nxKxkliBmsbWwZcDqKpGeY2PXWUuzh7VuXkCIRKR0elEiqtizx1JFOKyaFpitxqobQzgtJuYNT6Pjpk2ZFmjb14aa3dUIaFQ/23bQcpw+U6SR8xE0JvQoiF09nTSZ99BqGRrK6exWIdlmtZ8jq3/GWhyBNnTviuT4m1A0GTgp+kQmeDHpcYVJPkYRHm1kA/kMOKPEYRJSkWp2IGmqQhC+5NttYF6FE2Ny4SBmC5MSUWo2SjjdCDV5EAnSOzzlNEtpeuP3Z0ECU46TkgQZs2aNSxevJjKyli0MycnhzPOOIMRI0aciN0nOAGIooA/IrNofVmzZoHZqOOSyd0ZMCCNQFgmN91Kky/Csk0VmAw63N5YVH7GmK48/uqaVsKBLm+Yjxfv4YrpPdHrRCrrA/zn463ce/UwAiGZBWtKSbYZGNM/mxF9s3h17g5c+/eZnmLmptn90EsikhCbgfw+UJHQZ3TBkN4BQ3pn1LAfuakeQ3pHlKCXrCv/gBoOokbDSMnpRAUzAWW/AbYGotFMqKwAAEN6J8IVRe0eK1xeiICGaLQ0z0C2JNpYRbS2hNqP/gaAMbcXqTNvwy/avzenFFEUMBBB0BQUyUhEPj0e7gl+WBRFZVivDL7KtrO3Kj6o2aerk56dUoiqoGgCz3+0hY1FdXTrkMLIvpkM7ZXBxMG5bN5RRmaynrIGHyP7ZhEMy5itOvRZeYRLtpE89nxMHfuAquDburhNi92WaNFQTBejHUL7dmAfMg3JYse3fRkAxsw8og1tCwXqOvVnYGATda+8jy7JibXPGAxpHbF27ocageDutgWIAbTyrfTrPoLlW8EfjBIMyxhMuubfrm9eaiutrAN0zkpCROBU0Ab6KaGqGrkZ8ZaxogDDe6UzpKsVBQGjQeTDRbsZ3T8bp+VgZqWiqIzpm8GAXCMpBplhvTPZWFjLyL5Z5HdIIRxRWL65gsp6PxdN7s7AHum8Nq+A4oomdJLImYOzmDksA1QlzhXsUOSmWjJm3wmaii4lE8/Ghah+d7vtQ2U7sPUejXfzIkwdexIs3tRmO0N2NxTRmBCST/CjUOsK0Luz47sbHoLm3R9Y/IHLkSCmC6MoUTRfA0JSa2eyA1QHahEFkRRj/GRAmtPAjt0BmrwyKfYjNbs+uREFkXRLGqXeI3eOSpDgp8RxBWEikQh33303CxcuRNM07PbYTcXj8fDKK68wdepUnnrqKfT60+OGcioTVjV+9/xK3L6D6Y7BsMy24gb6d0sjEpVZsGYfaclmrjunT3MGS1qKiRpXoN1U+s276rh2Rm9++6+Y5kpUVvH4I5gNEk2+CMUVTcwY25WH/7MiLohT5w7y19fX8fQdE3njy51MGtKB7h2ST3g5kiyayJj1S5rWzMG7+Rskqx370LPQomE86+ajKQrG/OGEVFNMDPiQw6uSCdFki/1/JIhosrY+yH5EowXF58Y+/By825a00SB+uIUrdlL73p9Iu/T3+DEd76m2wiKFUWt241n9KUrAi6nrAOzDZhAQk0kYViQ4WnRo/Pba4ewoaWThmn2IosBZozrTrWMKa3fUYDLqmPttCRV1Pu69ehhV9X6Wbapg0oAIffJEMqNfo5b7GWBJxhy1I6oqHyyr5r7zr8cognfrYhoXvIxotJI0dDr61JzDd0jSI1oOY5FttsXUcUUJxe8GBJLHX0LtB39to20S5qwuVL/2EM7JVyMaLXi3LMK/czWmkq04xl8c2197xzLZ8IUODiq97uBMqKpq5OXaSU020dBG1uF15/RBL8ZEwBOcXNgtBnp1drKztJHsNCsPXNgVffFy1F3rEfRGdEnTeOSKXizZUM6lZ3YjElHQ6URMShNNG77EtHcDIaOZ20fMRJ05kneWVfH12n3YLAZmjs/DYtSR5bRy/7+W4/aG6dUpmdtndEDcsQBlwXaUaTeCKIHadjRENNloXPwWis9N2vQb0SKhw16nkikJNRIiVLaDlLHnI6z/Ei0ciG8kiKSMuwS/KrW9kwQJvkfCUQW3L3JM5Uiqrx4ECcHU/hj4vhBsTkBAcVUiHiYIU+WrwWFMQRTjx1eaI/adVF4dPm2CMAAZ5oQ4b4IE7XFcQZjnnnuOBQsWcMMNN3DDDTeQlhYTcmtoaODll1/mpZde4rnnnuPOO+88EX1NcIyIokBxWVNcAAagQ4aNycM7cd8/lzc7OlTV+9m6p57Lpvbgmhm9WbhmH6Fw66yOltS6goSjB18SBQE+XLwbg04k02nhy1WlbdpvyorGnOXFXHJmd37zj2VMHt6Ry6f0OGGBGFEUMARrqHz9oWb9FtlVRV15IbYBkzDnDaTxq5cwZC0i9fx78CnmVvsIqCaSR86i9qNCwhW7cIy9iKZVn7ZqB5A0ZBro9Vi6DyPqqmq13tprJMFD7HxlVzWapwYhqTMnMv5kFiP4V7yHb/PXzct8rir8WxeTdfWf8OvTE2VQCY4KTYsFYgbnpzIgzwmCgAb88aXVVNT5uO+a4ewud3PnZYP5ePFudpW5Gd0nnTGpDegDYOgzBtnTgC4lHdVVysj0FL7drqKXJKreehhNUXCecTmi2Y7srkWLhDB1GUCoZEurvggGM4h6lF5TYOeqNvubNGgKhrQO1H70FLqUTKRx17Jsr0r/STchL38N2VMHgCG3J45pN9H4+T9IHnUukboyfFsWNe/H56oiWLqd9Bm3ENzdduaN1nc6CxfEZmF7d3Fg0ku0HNBGUeCxn4/h+Y+3snlX7LhOu4kbZ/WlU4bte8uES3B8SALcfH4/Plm8h0tHO1DnPEa4RXZWpPp5MjsPYNyQqwEQRTBFXdS8/gBq6GAJWnjO39HnD6N79kzmr/IDfor2uRg/KJcOGTbc3jApNiN3np1J5OOH0aKxZ7W/cCXWHiPw71zZunOiDp3Ngc6WQvqMXxBtqMCQ2QVTh554Ny5o3R6wDToT347YhIl7zTyyL3+Yhi9fJFwVs1fXpWSSetbPCRtT2zJeSpDge+eA/lLKMdhTa956BIv9RynnESQ9giU5Js7baWC77Sr91eRYM1stNxpEkpN0lFeH6dfjhw8ifV9kWNLZXL+doBzErGv9jp0gwU+Z4wrCzJkzh/PPP5977703bnlqair33HMPDQ0NfPbZZ4kgzI+MJInsKnO3Wj5zXB6vf1EQZ6l5gPcWFvGP35zJgtWldM5qW0MBIDvVSjAc5eqze5OTbkXTIC/HTtfsZEIRmbQUE+8ubL+Ep7TaS4MnyIBuaXy9toyZY7uSbDq+KjlBEDCKEQxaCDUSIOOie9HkMCgqaiSEaDTHBDNT0vFs+IpIdTHRykKknCExy80WqKqGkNkdW7+J+LYtwbdtKc7J19L49Wu0TJsx5nTDlNuTmnf+DIBj/MVIw8/Bs3YuAPrUXJIGnEHNB0+26m+0vgwxuWurYx8PUsQTF4A5gBYN4/r6fyTNuIOQcvrMtiT4YRAE0BPBrIUQECh1qdS5g9jMBhqaQmSnWkgyS1w5PhOLIYucNCsGxU/dx//XHPQA0Kd1IOP8X/O7S/VEygpA1cg47w4avn6NaN0+AESTlYwLfkN9Y1XctoKkJ/2cX+AOaayrEBk6ZCaRDZ/H9dPaeyz6TgOobvCiTr0bv2IAQaSTM0q9kEXnS/+AQQuhCRIhTKD6iTRU4Jh0RRuOMaB46oh66rG3GNPN59JzHLsi6VQ37MJpN/HLiwehE4gLPKuqhkmC2y8aQFhWiSoqZoOEURJP6LhPcGIJRVUeeG45t8zug3HnV/jbKI+Llm4hd5QXRcnEIKm4Fr0dF4A5gFa/j5HjbHS+vjcRRWPhVjeF5W4chihPXt+blCQDur0rCbcoZfVtW0bmRfcQqdsXX0YnSqTPvBUkHY4zriTaWIW/aDWBXetJnX4jjklX4Vr0RtzxTV36YeszjkiHoTj1IjqzlaBoI3n2fUjRAJqmgt5CSLAkrskEPxq1rmO3p1a99QimH74U6QCCLRX1MOK8vqgfX9SP09x2qVWaQ0/ZaSbOm2nJAKDMW0EPR7cfuTcJEpxcHNfXbl1dHQMGDGh3/YABA5g7d2676xP8MKiqRsfM1pF1R5KxXcFIVYPtxfXce80wIhGVcQNzWL45/uEiCHD1jN4kmfXMW1HCrjI3ep3IxMG5TBzSgSZfhCynhexUK+W1vjaPk+m0sLPUxcDu6WzZXc/6nbVMG9YB+RhFeiURzNF6XF+/GptBF0Qs3YeRPHIWmqrQtPZzwuWFIOqw9h5F1sX3U/vpM/g3f4M1tz8KrVOwg6qR5NHnY+01ilDZDkSzjdwbnySwZwOKvwlL/mBkn4vaT//OgelD19J3ybr8YQRJjyGjE/rUXKrfebSVnSiAzpFF6ATOhOt0IsFdm9pdHyrdhkMJA4kgTIIjJza2GnF/8xrBvZtBEEjqNoy/XXchf/20jBSbkd9e2hPTvuWEN85DDfpoSskkedR52PqNw73i4+Z9RevLqf/iBcx5A5Ebq8i87CEav361OQADoIb81M35B6nTfwaqQmjfDnRJqejTOxKq2cc3jWaWbGtk6DUzsPUcR2TvBlBkdF0Ho09Op0428uuX1nL7efn0UHcgr/8Uxe/GkuREG3sxatehBJSY+KMoRTCkdSBctbvVeR+gYd6/yb3ln1j7n0lw9zo0TcGcP4zaiIniLY3cdtFArGY9b39VyIWTupFi0cdpXWkaCGiYJAGTFLvPJD52T15EUaCkvIlQVCVJFyGwc0W7bcM7lmCc2ANJDhHatbbVemvPUVj7jsX95XPoq/di0Bm4etI1GEfn0DT3rxhqSgjqjdj6jiPzonup/fTvaOEAmhyh9tNnSZ1yLYLBTLi8EF1yOqZOfVACXhq+fJFoQ0WzbXXGBXcj6o34d64i69IHCZXvRI2EMHXoheJrJLB7A6auI/h6m5uJg6xosoKMAcT9Iqhq878SJPhRqHUFMehErEc5GRdzRmpAyu75PfXsuxFtqch1xWhKBEFqLSxc6Y/pO6Wa2g7CpDv17NkXJBhSMJtOj3JAhykZg6in1FOeCMIkSHAIxxWEycrKYs2aNVx++eVtrl+7di1ZWVnHc4gEJwBFUendxYnZqCPYorToSFI2//TyGm65cABXntWL7h1TmLeihEZPiO4dU7jyrN4YdAL3/XN586xvVFZZuLaMnaUuLp7cg7UFNVw0uTtrC1q7NQgCTBySyzsLChnZNxuIOUkcDxa1iarXHmhO50ZTCRStIVxRRPrM22IBGABVxr99OeHyQlKn3YB309dA28c2SOBe/gGBwjUYsvIIlRdSX70XQ3pHRL2JqKsaQ2ouWjRe78Gzfj7GnG64VnxE2tQbUIOtA1GSNRnJkXPChYkF4XAPcIGEDmiCo8Wieal6/UG0yH7HGE0jtGsNYnkBv571OxSdhmnzhwQLljdvI7traJj/As5JV2Hq0p9QyUF3pXD5TlJGz8a99F1s/SYQKt3W6piKt5HaD/5K1hWPEGmsJNpYhWBKQs4bw7ufrOZ3N4zkty9uxBeMkN8hG0kU2LOoGCjm/+6cwH9+Mw5l46cE182J22fj/P+QPPYiDANmEFFEopIVU94gBPHwL76qquHTpaLrdzYCAk2yyvOfbEIAlm+ppN4duwes2V7N03dOwKJLWNKfyoj7n0eaCoIotn/LbL5uhNiDrQWSPQ1bv/HUfPg3Dtx0JZsDkzWJ2ncebV6mRcN4N31NuKqY1MnXUD/veQDUoJe6Of/EMekqlJAP2duAYDBR//lzzcc4YFsdqSsjeeQsvJsW4t38DcbsPARJj3fLIrRwAL0zm5SuQ5g8vDOaLHP4QuMECX54al0BHEnGoy4p0sJ+kEOI7bjf/RAItlTQNFR3FVJq51brq/w1WHVmTO2U5aSnxgI35dVhunexfK99/aFoFudN6MIkSNCK43pDnD17Nl988QUPP/wwxcXFKIqCqqoUFxfzyCOPMH/+fM4///wT1dcE34EoCigIeMMKrkCUqAaiFHuQmSSBP948Oq7OtqbBT+estoUtdZJAWoqZ+qYQz72/GZ0k4LQbOW9iPrdfOoh++Wnsq27i5Tk72tR7Ka/1oSgqny0rJj3FzC0X9MfQ4oPEZJC4eXZ/vt1cxfDeWawrqCEr1cLUASkYQ3VYIzXYxAC6o5gMMOg0PKvnHAzAtEDxuwlVFmHMjZ8lkZvqULyN2EecS7QdIUJBk5Gb6tDkCOHynTGHJCVKpLqYUNkOog2VzRa4ccf0NaKG/Fi6DECX1hFLn7Fx63X2dDIue4Sg0L7Y77Egyyqmru3XJJu7DUEWT7wQcILTF4MOvOvnHwzAtEANetGXrcMuhuICMC1xr/yE1CnXknHBb8i8+H7sQ6eDqEPbX3qhRloL1rZEU2Qc03+BfdotqF1HE5GsDOmRjlkI88fLu/LMtV35+ZRsOqUZiUQVwhGFT5cWkyQECW6Y1+Y+m1Z9gkGNiZKGFRHr4LMwdezdbh9MXQYgS7FxE8vU09hYVMv24ga2FTc0B2AAIrLKB4t2I0gJN7JTFVXV6Jxlx241EJbMWPpOxNSlPxnn/zp2HV90H6nTf4YuJRNr/0lEozKyzoypZ/x93j54Cu4VH9Ey6m0fPLXVsgNEavYi6k1xzxRr7zFY8gdjyR9CyujZuJa+22afQ6XbEEQdgs4Amkq4cjehsoJm8V3Z68Kg1x2T3kaCBD8ENa7gMZUi/ZjOSAcQLMkg6dstSar0VeM0O9vd3moWsZhFyqpOr5KkDHM6pd5EECZBgkM5rkyYW265hbKyMt577z3ef/99RDH2ka2qKpqmcf7553PLLbeckI4mODyiKNDoj/K3N9dTub/EyGrWc8OsvgzKT0VVNdKSDPz1trG4fRFqXUEcdiM/y+nPYy+vjhPWBbjyrJgob6bTwv3XDOfxV9dx6ZQefLVoDyX7LWrvu2YYBSWN7fapsNRFptOCNxBlRO9MctNtNPkiCALoJJH5K2NZNaP6ZbFuRxVPXN4Jzwd/JNoYE7UVTVYck6/H2HEgYfW7S2d0Soimks3trg/tK8CY1YVwRWGr5cm9xqOG257nVAQ9pk59DmbRHIIxO49oY+uHriErHyXkx9Z7NHIkinXidSSPvRjF2xhzWTLZCWBBbcd56niI6pNIHn0BTSs/ilsumm2kTLoav3pC3OkT/ESQ1BChvZvaX1+/CyG9Q7vr1ZCPaGMVtR89BYKItfcYMmbfiSDFrkNBFBEkPZoSbXN7MSkNn7I/cKiqmA0id8/uiufL5wnv24YCSKKO2f2nMPTSCfz53Z1sKqpDGWFq11kGRUYLemG/k4ZPMWGzZ5Iy/hLcy96LP77JinPK9fhUAwc+nFUNVm9vneF3gM1FdUSm9ECfiMOcsph0Ao/+fAwvfbaNPrOmYqncTP2851H3BzX0zhzSZtxCxJKBpoE/IhDtNxNp3xYUnyvWJjWXcNU7cfvVObKI1Ja2e9xQ5a7YduU7SZ16PbLPTeX/fosmR8i44Dconvp2t43Ul6FLTm/Tit2Yk48s6EmEYBKcrNS4AnTPPfpAiuptAEFEMP54oraCICDanCiuqlbF3lE1Sl2wnoFp/Q67fbrTwL6qw09KnGpkWtPZWLcFb8RHkuH0ER1OkOB4Oa4vMUmS+Mtf/sJ1113H0qVLqaiIPfRzc3OZMGECvXr1OiGdTPDdhBSNB59fEVdu5A9G+cd7m/jDTaPonG5FVTV0QHqSgRSbkW3FDewqc/HHn49m1bYqdpa4yHBamD6qM4WljYQjCr+7cSS/e34FLm+YZ9/bxK0XDqDRE2L19mr0OgmrWY8/2PaHU1qKifqmAAa9iE6ALKeFQCjKl6v2EZEVpgzvSLrDwter9/HHK3pQ99q9aC1mxNWQn4a5/yTz8kcQk/O+00FEE6SYPWdTXZvrJbOtzRl3KclBWNMDbX+sSVoUY7eheNZ+0arkCFFH0oBJ1BxieyvoDCQNPDNW+rD4bRzn3h0TwhVSwJ6y/wTh+6oJCqt6zAPPIjNvEN61n6MEPJjzh2DpNQa/kHTCy58SnH4IgoAgxDICNEFqtmpvs63ehHQYa1ygOeCCpuLfsRwEMHeJaYr5ClaQNHQ6njWft9rO3G0Yit4WNzwtaoCGT/4apyGDKhPePJ+OQ/WM79+LKleYKBKIErqkVDQ5st+qukWfdPGvyj7ZhKnvVDI798e7di6K34Wp6yDsAyYSEJLQIrFOiKKAThJJPsyMbZLVgCgk6v5OZWQVnnprPaGwjOyuxrPglbj10cZKaj74K7bL/owx2YoSUfjbZ6Xccc5vMVVvRihdj6A3IRhMcc82VAVBZ2hTIwxAZ09DDQUwde6Hpsg0rTyopyQIAggi7dkXSdYUkNqatBBImXAFEVprVRwou0q4dCX4MYnKCi5PGEevo8/U1XwNCGY7wnGWtB8vgi0Ntb4EDQ2hRYl7daAWVdNIbUeU9wAZTj3rtnkJR1SMhtOjnDXTErPs3uctp29q4rswQYIDnJARLori/hf2+H8S/DDodCLrCmriAjAteWP+TuQW71YHrGaHdE/j3PH51LmCDO2VwR2XDeb8iflEZYUx/bO589JBVNb5cHn322UGozz5xnoWrtlHny6ppNmNTBnesd1+DemVybkTuqGTBGQtlmaqanDz7P788uJB2MwGahsDXDq1J9G96+NfUlvgXvIWRo4gPVPSkzRoarurrb3HENi1rvXy/mcSibQzWw7oZD+NC18l4/y7MGR1bV6uT80l88LfIFrs6FIOWg4aMruQdfnv8KyfT80HT2DtO4GweGJLjo6EoGogaOuEZcovsM/6DUKf6Xi1hB1ugsMjigJRDfZUe9m4pwFvRCGMEfvIc9vdJmnIdIzOrHYDNaaOvQlXxove+nesQNpfv+/f/i2WQdNIHncxgmH/C7ikwzJwCklTbsSvHvLhGHTHB2BaENn8JecMcTBjbBf01iSyLvkt9qFn4Zh4GZkX34epc2wmUu/MQW1jVi6k6glaO2KZ/HPss+5BP2gm+pTM2LgRBcIqbN/nZuPuei6Y1I1pI1vX/gPMnpCPIVGOdErj9oVBg99f0x95zfttttEiQaSKLZTW+RAEgWG9MrjrxW08uzWNb1IuZHm1FUO/yXHb+AtXY+s7vu2DCiLG7DxEqx1rvwm4V30atzpYsgVL92Ftb6ozIFnspM+8DWOHg6V1uuQMMi7+LVFrZkvndBAEIhoUlDWxZa+LoKyhJd7dEvxI1LlDaMRMI44W1VeP0EZZ+A+NmJSKFvajBZvillf6atCLOpINh9esyUgzoGlQcRq5JCUb7JgkU0IXJkGCQziuTJhIJMLDDz/Mp59+iqZpceVITz/9NLNmzeKxxx7DYGg985LgxCGIAgUlrnbX76vxoqgaLScINEFg8aZKXpt3UNNFFOCCSd0BeGLFOh752ShcntaBkdJqLyajjois0DcvjZ2lLgpLDx5fEOD6mX35bFkxSzaU47SbeOC64fzjvU3kpFs5Y0hH/vXB5uYSqImDc7ja1HapD0CkrgxRk6GNGby430EOIepNWHqOIlC4Km5d8qjZqKFAK+tQx+RriRpTDmsIoYX9hCt3UT//RZKHnoV+7EUAyJ4Goq5qou5a7IMmo0uORfujrmrCVXuQTDbMeYMxdR+J70dyQdE0CMsCsaGeCL4kODyCKFBa5+fPr64l3CIwObpfFref1x1r/0n4ty6K28Y+YhZacg6766Jkn3M3gc/+EqfLJNnTSBl7EbWfPhN/ME1tLj9KnvYzFu/w0ODrxzlXjsftaiKi6Zi71c03T6xiYPcMfnFBf0RVRZNE3FXtv8xpcgSnGZwOA+7FbxApXHnw/HQG0mf9kqSBkzFkdUVFwSiphJX4+YiW40YnxMaNosGKbdW8/PmO5kCmIMCFk7pz2bSevPPVwXvY6P5ZDMhPTbgfncKIokCTL8x1M/vQ6PJgr2v/motW7MSYM4Y7n1nC7ZcMpmdnBwUlLgpKXIiiwBPXT8RWVUSkahcQC8JkXnQv4eq9RGqKD+5IEEmb/jOa1swlULQGc5f+qC1ssQVJjyYrOCZeRrS+PL4MVtSRcf6vUaNhApV7SD33DrRoGE1V0PRmwoIVRVE5IM2mApuLG/jn+5tRWgTmzx2fx3njuiJoiedFgh+WGleszO/YNGEaEDO6fnfD7xnBlgaA2liJmJvSvLzSVxVzRfqOIGeSVcJsFNlXFSKvU9sCvqcagiCQaUmn1FP+Y3clQYKTiuMKwjz55JN88sknXHHFFVx11VV06tQJQRAoLS3l9ddf5+233yY5OZkHH3zwRPU3QVto0CXHzrdb2hYDy3Ja4tLiBQFqmkL8b+6OuHaqBh98s4vfXDmUtBQTm4vqOGt0Z1ZsqWLz7nqyUi3k56YQishUN/jJSrXy1FvruX5mX86bkM/ucjdmo47uHVL4Zn0ZSzfGytMaPSGeeH0dV5/VmySrgcdeXh330tfgCRPNzG339PSOTJB0CAoc7r1QJwnIZitJAyeRNGAioX07QNJj7T4c2duIIOnIvvpRgnu3IBgsmPIHE5FshL9DH0UwxB6EiqeexkVvNC+XrCk4J19D3WfPtrld9lV/xDR0Fj4lEYRMcGoQkjUefXk18iE6RSu3VdOtQwrnjL8C+7AZBHavRxBFzN2GIuvtBBU9JgOs2CNx1iUPEKktRW6qw9ipN8hR6ub+CzXobXU8nT0N3cV/4Z0NjZwxIp2sqMpfPthJqsOMyxNmx94GNA3W76zhy1V2Zo3rwrtf7+ac7odJ6RZ1OJx2GreujAvAAJg69ELQGWha/RHhyqKYVX2fMSSPuxQ/sSwxnU5EFAU0DaIttLLqm0L897PtcfvT9t8zf3/TKH4+ux+eQJShvTJIsRoQEx+xpzSappGVZuPB57/l6jM64EzJJFrfdiBGSu/Cm/N34gtE456JO0saSUkyYkhOxTf659hkF6a6AiSTBUGnxznlGrRIiGDJViRzEsbsfDwbFxAoWhPrQ9CHYDCjRYKI5iQyzr0d3/ZlVL3zGKlnXAmiSKR2H5I1GWNWHsGSrfi2LkZuqkM0mDH0mYSiqMiyinpIQNDtj/L3dze1OpfPlhXTp6uT3h2TUb4HvbIECdqjpjGIXidiMx+lPXU0hBbxI5h/PGekAwh6I4LJjuqqgNw+AKioVPpr6OnI/+7tBYH0VD2lFaeZLowlnR2NhWiJ52KCBM0cVznSZ599xnnnncfDDz9MXl4eOp0OSZLIy8vjkUceYdasWXz22Wcnqq8J2iEaVRjbPxtdO6nvl03tiaGl8Y8o8vHiPW22NehE9DqRG2b1o7Lez2vzCrhgUjeev+9MLjqzO4II6SlmrpvZl355TnSiwPMfbeG5DzYzom8mq7ZW8YeXVjUHYA5Q5wriTDaxq8wVF4AB2F7cgNp5BIhtP3gNwy/gw1U11HoiqO3MIljEMOHyHfi2LaHmvcep/eQZQuVFhEq2Uvn6Q0QbKxGtybiWvYe11yjMvccSkBxEjkCgVtFbMXXq02q5tc9YfFsWt7td09p5KEJCADfBqYEkiWzaVdcqAHOAT5buwSMb8OnTEfvPQOh7Fj4pldB+0ewUmxGHzQiCgCpHEAwmJFsK7pWfoHgbWu3PnD+EsoCJX72wg/lrq6lt9NE1KcLtg1xcZ13Kr3qW84+b+zCsR8xNYu6KvfjDChuLajGnZjVnnh2Kre9YZFc1kY1z45aLJivJI2dS8+GTsQAMxKzqty2l9u3fY8FPRIOVO2p4/tPtzF1dSlDRAIFwVOaTpcWtD7afjxftZnS/LM4e0QmnRZ8IwJwmuLwhmnwRPllTizhkdtuNJB26biPYWBTTIgtHlOZn4u5yN6u3VVPbGOSe/26hLGRDCXjw7/iW6rcexbX4LcLVxYSr9uAvXEX1u39qDsAA+HZ8S/KwswFInXo9DQtewbdtKaq3kbo5/6Bx4auEKwoxdeqDf9daoo2VpIy5gPRzb8e/eQERXxPfbKxkd5UXBaF5El5RVOavLGn3vN//ZhfRRBJXgh+YY7an3u+MJPyIzkgtEWxOVNfBrI+6YANRNUrqYZyRWpKZZqC6PkIofPoMwkxrOr6on8aQ+8fuSoIEJw3HFYSRZZmBA9u3wh08eDCK0r7WRoITh1kv8vCNo0iyHBTkk0SBy6b1oFNWEoGo1mxXragaDU2trWYBHrxhBAa9RCisMHZgDt07Onj+46288eVOAiGZ5Zsqmb+qlD+9sobV26v5w82jSU024Q9GcXsi7KloapWtYjbquOjM7ljNenp1dvLQDSM4e3QXpP31UZoGLy+qxjTzN/GaEqKEYcSFrKm3897CXdz33HLe+3pXm4EYIeTGkNYB/44VsX1Gw4QrCglX7gJVoWnVp2ghP5a8QdTN+Qe1bzyEVfMd0W8bUg04Z/wSY06PuOX6tA7IvvbdoRRvPYLatk5PggQnG6IoUNPgb3e9NxBF3T+4ZVndb9N8EJNOY6jTTdWbv8e16A3cy9+n5t3HcU6+GkNml/i2HXuTPPl6/vjGdlQNMhxmBqVHcb/1WyLLXsNfsILw6vdRPnyIm0ab6NUpmUBIRhLh/muGU+YVcV78IHpndtx+zflDsPYYgRYJtRLhtfU/g6Z1X7TpliQ31RGpLOTptzbw74+2snxzJe98VcSvnlrMrkoPkYhCfTv3TIAGT4iorCHLiefd6YIgCLg8sbK68lofmzypGEdcAOLBGQ3RbMM66142VsgkWQxcdVYvHrphBPddM4w7LxtMusNC4b7YxMPEwbn0SY3i37yQSM1eQCNcXYwxO59w+U4iNSVtdAJMXQeSNGQ6mhxp5cKn+N2E9u2gccEriDoD/h3fUv/Ff3Cv/ATnGVdQVtOE0SDxxcoSHn99LfJ+oVBZVZtLP9qisSnUarIkQYLvm2pXIBbIP0oUXwMgIHyHOPwPhWhPR/XUNZfbVvqqEQURhzHliLbP3K8LU3YauSRlWjIAElbVCRK04Lim6ceNG8fy5cu54oor2ly/bNkyxo4dezyHSHCEaKpGpzQLf/vVeJr8ESJRFUGAhWv3cduTi5BEgemjOnPxmd2QgN5dneypiAmHmQwSEwbnMn5QLgLw38+2UlYbC1Bkp1q58by+vLugiGG9MklJMuLeL9T7+hc76dnZyVVn98JhM+GwGzHoRCItPs66Ztv55SWDeGN+AR98E6uHF0WB8QNz+PUVQ3j6rQ0oqsb6ogbesuRw1cWPQdCNXlBwqzY+3tDAV+v3Nu/vqzX7mDikAzkOU3OwR5JE1IAHJXiwdv5Q1JAPQW/A1KEXng1fITfV0rTifczjryEsHz4WqWngw0LyuXcjRf0ofjeSNRl9koNw5R6i9W3XuRo79EERjehE0CtBECAqmpHlxMttgpMPRVHpm5fabsZHp8wkpMO4/RgVP9Wf/F+ca4sa9FL7yTM4z7waY0ZnZH8Tks1BRDTz29cLcPti7jBXTszBN/+faOFDPgxVmchXz3LN1IdYXJRMea2ff7y3CZc3zNVTujLjzGuQjBbUcADRbEf2NhB11aDP6ISl+7A4IW5jZle8m79u9/yDRWvITJ1IUZn74OFVjSffWMc/75lE366pcdpXLenVxYlOEtAS5RunHCoCMqCXRFDV5ueKqmp0yDgoqP78vGKmDe3GjPP/jCHiRtQZsDjTefLDXcw+I4e7rxzKm/N38sb8nQDodSLTR3XmV5cMIi3FRL/8VLzFq+MPrsiESreTNGQaoZJtWHuPRjSYCdfsJbhvB/Yh06n54AlSJ19LuCpe2LolobKd2IfNQNAbsfYegyGtA1o0giwYePGTrdx/7TAee3kN36wv55zRnTDoJAZ0S2NjYdtOgj07O9BLAiQCMQl+QGoag/TsmHLU22m+egSTDaGdbOofGsGWBpqK6q5ESu1Mha8KpykFSZS+e2PAZpGwmkVKK0N072L5nnv7w2DVW7Abkijx7GNEzqAfuzsJEpwUHFUmjNvtjvvnjjvuoLy8nF/+8pesXLmSiooKKioqWLFiBbfddhuVlZXccccd31ffExyCqmrohZiy/P/m7uDB51ewaH0sQKABXbLtbCyq5y+vr2dUv2wMOpFhvTO5/5rh+AJR/vn+Zt5eUMSFZ8aEJgGqGvw89eYGrpzei2+3VDK8dyaCEJu5Tk8xs2V3PQvXlPHYy6tQVI3po7sAMd2Zm2f35+YL+vPip1vjXvZUVWPJxgrWFdQwZUSn5uVDe2fx8BuFfFtp4vefubjzxe18tb661Xl+sbIESXfw0tU0DZ0t+aAFbntoGg0L/0fK6PNInXId/u3fxoIjR4CmQVA14pOcBO15hIzp6KzJ2EfMhDaOK+gM2AZPw6QF0HZ8heuDR3G9/yhawUJsUjDhHpbgpENVNTpn2Ul3tC0GeN05feLLGlsgCKA01bS2cAfUgIf6z58jogrc9V49P/v3TuqjJoorPJiNOgbkpzE8z9puMFMNB3BKAaaN6Mxjr6xpdmvrlm0BJYpr6Xt4ty9DEDRCJVvwbPgS99J3sPYeS+r0n8XsfAE1EkQ6jHuGakomGG6dyRKKKFQ3BJg2shPGNn4AnSRw3vg8tIQI7ymFosHW3fU8/fZGfvfCKl78bDvuoExLBXu7xUCfLgdLCL5aX82dL27njjerWFNrxq2aqW+KkJJk4l8fbKZo38EgXVRW+Xz5XlzeEP5glDnL9qKZWpdLNK35HFufcaSMvZBg8SY8GxcgGMxkX/YQTeu/QgsH8G1dgmhs/2NMNFsRdAYyL7wHLRrGs+ErmtbOpZuhlhund6bBHcJpNzF/ZQnBiIogCIzpn4PV1PrZJYoCl07pkRDmTfCDEokquL3hY3RGakAw/fjOSAcQLMmgM6A2VqChUeGrIs10ZKVIEMvCy0gzUFJ++mTCQEwXpqSpbVfDBAl+ihxV2HjUqFGtPh41TaOoqIivv/661XKAmTNnsmNHvABsgu+XJl+E3eXuuGVXTu/FhsI6Vm2rAuDN+Tt5+Gej8AUi/PHl1c1uHzWNAbYXN3D+GflMGdGJhWv2EQzL7CxtJMNhpkfHFMYOyGFfjRdJFOjeKYVhvTP46+vr+PeHW/jlxQMx6iX0OpHCfS4ynRZ2tuPctHRjBfdfO5x1BTXcMKsvFXU+qhr86CURbyDS7vkFwzJqi+8dVdVi4rmihGiyoYZalxmZOvZBbqojXLmLcOUubP0nkjzyHI7XMShidJB1xR9pmP9vovvdMwyZXXGefQuIIrXv/BHZVdXc3r3odfxbviHt4ofwaaeH8n2C0weDCI/ePJoXP93GhsJaNA2cdhM3ntuXzpm2wwh1Cm0GYFpS5wpS1RALeu4qc3Pf1cNQNY3cdBuuporDbmszwkerSpvvU+eMyCazfi21qz9AtNjJGDObqrcfbXZlkt011H32d6z9JuA88yoav34N347l2AZNwb3k7TaPoeSPZfPStrWywhEFm0nkz78Yw78+2NKcRdgpM4lbLxqAzSihJbIGTh0EgeVbqnhpzkGh5ZrGAKu2VfHQDSPJz4pd66Kmcdflg3nrq0KWbqxAUTWsZj03nduX3l1Tqaz3ccmU7ngDEWoa2y7v+XjxHn518UD21XiR0/vGgoItssUcEy7Bs3Ye/haOfr5NNfi3LyfzgrsJl+8gVL6TlDHn03SIXfUBkgaciWi0UPXWH2B/CazsriFcvpNBQ8+lMXsSep2Ixx9pfuJZDSJ/vnUc//5gMzv3B49y0qz84sIBJFv0ies5wQ9KrTt4zPbUmrce0dG+ucMPjSAIiLY0lMYyvKHeBOUQaebUo9pHVpqBvWUe/AEFq+XIMmhOdjItGayuXo/SRklwggQ/RY4qCHPbbbclZvBPckRRoMYVID3FzPRRnemQkQRoOJNNvLewqLldQUkjda4A7y3c1fxh05JPl+zhdzeOYuGaWNR6X7WXK6b35KvV+5izfFNzyrYoClx9di/uuWooqgpuX5hRfTORJInf/WcFI/pktttXRdVIshi4/ZJBdM5KomfHFMb0z0avk6io8zFvRQkQ05Q5e3gWI7slIQhgsiYhCvGu0lHJQqhqF+nn/ILaz55tZZGbOu166j5/rnmZb+sSsi5/GEU0QIvngSCAUZTRqbEPSlk0ElYNcYrukiRi0gJEXV6Mqgb2VDIuuh8tGkFDQNGZiUgWtJ1fxwVgmvvaUEG4ZBO6vLGtdDUSJPgxUVUNowi3XTCAUFRBVlRMBgmjJKAoGoIgoAkQljUEAQySgKBpaJqG5OwAtF2uJNlSqA/HXiTTHWY6JgvYDWEUTWBPeT1pZj12sw29I5ukgWcimm2gqijhIJLZht6RQac0N+kpZiYPSmf28FQ0l0J45CwEgwX3yk/ixvwB/NuWYh48A232YwQFCSwm9J13EC3dHNfOMeV6vtgdJtrGeBQE6JBhQ1Ug1Wrgt9cMIxRV0LRYKadeoM17aIKTC51OJBhVUdTYtfvqvNaTQ6oGz32wmcd/Mbb55UjSNK45qxeXTO5BRFawmnQ0+SLc/fel+IJROmUlMW5gTrvH9QejsF+L5a1l1Vx/1u2E5j8LmoqgN2JI74Rr+QdY+47D2mMEgs6AYLTE7KUB5+TrqJ/3b3zbl+GcfA2NX79OyzFmzO2Jre84aj/7R3MApiWR9XPoOuhMfMEIP5/VA4fgI+ryoxcMpJgNPHTNQHRyAA0NVTKhCKaEtlGCH5wDQcyjDcJoShQt6EHIaW2e8GMiJKWjVBVQ7q1AgJg99VGQmR5z1SypCNG3u/U7Wp8aZFkziKpRKnzVpKX++E5WCRL82BxVEOZXv/rV99WPBCcIVdXITbdy0+z+vP91EW/M34lOEhg7IIcHrh/BM29vaE7nt5j0VLUjxKlqsYeiI8mIyxsmJ92GJIlsK26IE95VVY1X5xbw22uHo9OJPP/RFuwWAyP7ZnPn5YMxGdq/xAQBfMEIj728hjsvG8zg/FREnQhozBqXx5KNFdgtBh66uAvShg8Jz1kHmoqxUx9MU24gaExFUWIvt8GoRFK/STR8+V8yZt9F1FWN3FSHIaMTkiWZqKumlfBhpG4fOLvDfvFoURSwKG7cX79GcPcGQMPUZQCOydcR1DtRVDCKUYSaXdQteg3ZVY1gMJE0YBKmzv3w795I8ugLCGkmTEoA97Yl7Z67f8s32LsOQ0bfbpsECX4MNA3QVEySAFIscKIoGqIo4AnJvDRnB5t31SEIMKxXJted0webUaTWq8Mw8Cwim79otU/92Gt4Z3kNY/qkce1oG+rK54hU7QFRR89eYxAGz8Z24QOoVYW4lr+PLikVx4RL8Wz4itC+7SCIDO82lGk3X45nzefUvLQIAHPXATgnX4172bvtnk9w7yb+tSmTon0udJLIrTMvoNfg2Rhrd6DoTEQz+yKmp9PJ6Adap0rPGpdHis1IOBRBVTVEwHKgHFLTErIZpwCqKLBwQwUfL96NrGjcckH/dl3AGppCBEJR7C1KdTRFxSiC0SARVeGRF1fhC8ZEN93eMOkp7ZcKmQwS4v7LZVVBAwJpXHHh40i1OzEa9YTrysi66F58BSupm/NPNDmCPr0TjrEX4t+9AdFoIvOie6n95P/QNI3cnz1FXeEmCPlI6jYIwd+A7Glo1z4bNEIVu3nqZ/2QNnxA5aJVoKlYeo7CMfFSXEvfJVC4JvZs7dAb59TrCRkzSMwPJPghqXEFMeolLMajtKf2xZz3TgZ76paI9nSUss001RfjMKagk47uXc9slEix69hbHjxtgjAZljQEBPY2lTKQHt+9QYIEpznH5Y6U4ORDEAQUFf7y2lp27ReYlJWYBsu/PtjMTbP7x7U9HJIooGoaOkmkX34qd/99Kdee0wdRbL3dsk0VbNhZw20XDmRUv2z65jt5d0ER+6q9dM5qu1Z3RJ8stuyKWQt+8M0uIi1eis06gSd/NY4/XtkDbe6fCe9e05zCHdq3g+rXHsAixwvxBqQUnNN/hm/7MnxblyC7a1A8DSAI1M/9VxsnqI+bwbZqXmreeJDg7vUcmGkMlWyJHUv1IEkiVG2n7qO/IrtiWjVaJIRn3Rd41s/H6Myi9t1HsQoBNAQE8TDDS5Q4MDuaIMGpQEBWue+5b9m8K6bvpGmwtqCG+/+1nJCsUe/XKEoZg+OcX6F35iDoDBhyemA870HmFJupagxw7dgUQp88FgvAAKgy4R1L0W2fh1xRQOPXr6IEPDgmXEbNB3+NBWAANJXQrrXUvPV7knqPIjY+NYJ7NxN11zbrvrSFIEhcdGY3umTbkUSBz9fVsyuYwjrjSJ5Yl8I9/yskIEv06JDMn24ZQ6/ODox6idx0G3ddPpjZE/KwmBPB0lMVTRR47+tdvDavAG8giqZpCN9x723v2SgIApX1vuYADIDHH0GvF0lpZwZ/2sjOcRmPKwvq+dUL2/nraiufVGRj7tiHxkVv4tuyCE2OleFG6/ZR+8n/Ye02hOCeTbiWvUf6rNuR+5zNLo+RJ9cl82xhJ+54o5wKKRfBdHhXGINBQvvmOQIFK5qfo0kDzqD6rT8S2LmqeVm4vIDq1x7EJLddQpwgwfdFdWMA5zHYU6u+/fbUlpMrCCPYnCBI0FhO2hFaUx9KVpqBveWhuEzsUxm9qCfdksbehC5MggTAcbojJTj5UIE3vihoMz2+pjGAxx8hO9WKw24kw2GmS7adkqrWrkI6SSA12YSqatx5+WA+WbKHQEhm5dYqRvTJZNW2eMHcRk8Ih93Eoy+v5tYL+yMIArvK3NS6Avz6iqG8Mmd73HEGdU9n2sjO/PX1dc3bq5pGkkFFJ3tRAz5s5iSC1ZsJ+Jta9U+TI3jWfIppzNWElQPW2+ATUjBPvJEkNYQoaPg2L6Tmvb/QVomEqVM/vPvFNHU6gcC25ajB1noyWjSEd8N8bMNnUfvNa23+7qGSrSQPm4HiqUeuK0HJ6odt8HTCVW0Ef4CkIWcRxUB8UVWCBCcPoiQQljV8wShmk45535YQDB8sd7BbDVw2IZf+uQaMvgr6ZiQzr1xjldgFXZ+bGZDnoLwxwn8/L+aM/qn8/caemMKNJF98X0yAdMOC5vIJS97A5nJBa69R+LYvbf4gbYka8BAqL8TUsTehsgIAQiXbsHQbEueE1JJwZl9e+6SASUM7kum0kJ1m5ck31lHdEEt/nzGmCwZJRFVUcp1mfnPFEBRNQ0SIlVslYqWnNOGoyoI1B1/6QxEFs0mHUS8RjrYuu8lJs+6fjW/9zBDFWKbMobw1fyd3XjqYf3+0pbmsQhBgTP8cundKwROI8ofrh9A9DcSwD3R6PLKBJiyocgWR2tI2++5e+TH2wVNpXPQGYdHM794tYfKIzhj1EgUljQDc9/I2HrisDx2z8wlXtaFpJIiY0jvQ0GKdITufSG0piq91sEVTonhWfox5wnWElcQ8XYIfhur9mddHi+ZtQDBaEY4y0+T7RhAlNJuDtEATJnPaMe0jK93AzuIA9a4o6U7DCe7hj0OWJZ097rbvdwkS/NRIBGFOMxRNY1txQ7vrC/Y2MGt8HhkOE3WuANfM6M0Tr68jHIl/Gb1pdn9MBh0/P38Any7Z05xVs2NvA2MH5LQKwvTs7KC0yoPDbmRwjwwWb4gJbTb5Ijz91nouPrMH2WlW/KEoNrOeDIeFDYW1DOqRztod1fTo6CBVH8S75nM8G74ERcY+dDqRhsp2zyW0dyvWUSEgXuA2rIiEsSAA1r4T8G1c0EqsN2XC5UQka3MMRKdGCIf9OCddhabK+IvWHpytB0J7N5M0aDKKt7Hd/kTqy5HsaQR3r8OY3Q9D5/4Yc7oTrtwV187YoTe63F6EE24qCU5SNEFg614X//l4K75glKvO6kVFvY/rpnYm2SxS0iAzdUAKumUvEF69iyagSdQxYdjZ1CZP4P6XixEEmDkujydu6If/m5doen0DTQCCiLXXKDJm30ntJ8/sD8QIaJHYx60xMy92D2iHUNlODJldmoMw3q2LybroPkIVRaiB+ICyYeh5LCrwUV7r4/UvChjSM4OOmbbmAEx6ipnzJuSj7h+LB8qNYp+eGoqiodMlPkRPZeqbQhw6kfzFihKum9mHFz7ZGrfOoBO549LBGKTmKtU4FCXmIHYolfV+/v3RFh752Sgq6nwEwzJJFgObd9XxzNsb+dtNA0itXU39vI+atYv0aR3pct4dBKvanxWO1JSgG3sRAIF9BaQkZTF/ZQl3XDqYJ99YRyAko2kx++w/XXY9wqePNY+jAzin3kC0qR7n5GtQAh5825ZhbDF+2iJUugWbGubQZ2uCBN8X1Q0BBnU7+mCF4q0/6UqRDuAzmcn2NdBoPjo9mAOkpxqQRNhbHjptgjDZ1ky21O/AF25bCiFBgp8SiSDMaUiSxUCjp22nktRkM726OGjyRXj05dV065DCA9eNYF1BDXvK3aQ7LJw5rCOrtlbxn4+2tNI7sFsMcbPhEBPOHTsgh4lDOpBk0qMXiUvNbvJF+O9n2wDQ7/+guf/a4XyxooTBvTJ45KbRdE434d/yBZ61c5u3U8OHt5QVLTY0QWrX4EjTIKBzknXdXwgUrCBUvAmdM5ukIdORjQ5CauzylyQBgxYmrKp4Ni2M2Uv3HUfKyHOpm/svtGgY0WyLzbQc4mzREsmShBYJItmcaBr4VTOOc3+NXF2Ef9PXIIB10DR0md3wK6Z2zytBgh8TQRCobQrx1FsbgJhj75AuZiamyiib30bxe+jXqS92aSIusYVrgyrjXTOHtFFGRvftwsrtteTYNDzz/0Wk7KALDZqKv2AFAPYhU/Gs+yLOXl6NBJDMNmR3TZv9k8xJqOGD1vJaOIB3yyKyr/g9gT0bYnpO5iTU3lNZUyHw3rLS5vO4bFpPlmzYx8TBufTu6mRIjwwMInFua4fSVvllglMHcxsaExsKa0m2GfjdDSNZuaWKinofPTs7mTq8Ixa9eBgXMEixGejRKYWife645TWNATRN49l3NxKKKM0iz+MH5ZIe2EPDIa5c0foyqt/6A1mXPUR7xT+C3ggHnETMdoJhGbc3zGvzdnDfNcPZWdJIRZ0Po16iHicdr3gcbdcKwvu2IdnTsQ+fgWi04FryFpGqYqQkJ86JlyHoTQSK1rR7jqI5CU0Qj9c8MEGCI8IfiuILRo/ZGUlIzvgeenX8VOsEumsaZr8H2X70ASadJJDuNFBcFmTEgJMz0HS0ZFljZh1FDXvpau76I/cmQYIfl8QU32mGUSdy7vi8dteP6BvTYVmyoRxV1Sja5+IPL66kotZHfm4KZqNEOCLzxcqSNgUnZ43PY2/FwfKg7h1TuOeqoTz/0VZ+/+IqoorGvroAebnJ6KTWHy9RWWXcwFyWb6qgqsHPvG/38tSb67FpPjxrP49rG9i1Dmuv0e2ei33EeUSEwwczVFXDq9qQ+k3Hec5tWHqOIly9FynYgEXaL1Cseql67QE8a+ciu6qJ1u3DtfgtmtbOI3XaDbFjjTyPiGTF0n14m8cR9EYkix3F78bSewzR/e4pftWMnD0I24w7sZ11J9HM/vjVRAAmwcmLCry9oLD5z9dM7ox5+6cEvvg74crdyE21BLYuoua9P5My5nwkW/ws3/+3d9/hUVT748ffM9uy2WTTG0logYSShITeuyKiAsoVVLChYkFFr/eKV+V6vdyvXn92RbH3K4qAiiIWRJGq9F6SQAglvW02yZaZ+f0RsrBsAgQhBc7reXwkM2dnz+zOmZn9zDmfU7nxW67sUTMGvlu8yTsAcwL77rWY26cBNUmyTa061CzfuZqAlKH11s/SpT+V+/7wWiYn9OXVH/N5bksE2oj78Bt5J2+vqea9H2oCMDHhFp64vR/BAUZSEiJI7RhBl7Zh6E4xs5FJdhOglSFl/0HFjpWYlTJMspg1pqUJshgJtfqec5dvOMTny/YyeXQSD12XzriBbfHTSaec6UqVJBwuhel/SWNI91h0xwJ0VouRW67sSnF5NZf2beM1y9aNgyMoW/lF3dursuEqOow+tO7ZlQKSB2PfvQZkHa7wjhzKr+nRebTQTllhIVd20XFjxyImdXFidtvIzHPg16k/QYMmEtRvHJrLweE3Z1C5ey3usnwch3ZT8M0cHLlZBKQOrXc/rX3G4pRELxihcdT2TAw9q5mRSpHNQeejWn+KpkG2YkeRZAyluad/QT1iIo3kHK2uc+a+lijIaMXf4M+ewjqGTgrCRUb0hLnAKG6Vgd1asXlfPpv3FnqWSxJMGd0Ze1VNYsKcPJtnnarVPBncuCcfgHYxQYwZ0I5vV+332vawHvE4nG5uuKwTlx+bYSknz8acL7Z4xskvXplFWUU1ldUKd0/oxpz5W1BOuKltG2NlUFor/u/94z+iyu1OFGc1qqPS6/1URyWO3CyCel9J2e+Lvdb5dxmIPrbzGQ3p0clgsB0m97PZXu9hik0kfNxDlK9Z7DOMAcBxeA/W9BEE9rkSOTKBKkVH8PAbcRXm4Co+PkxK0hmIGHM3pWu/Juzyu3HprV6pXhRFQ/HEO8WjRaF5U1SN7Nya84NeJ9O7nQnngl98ymluJ6WrFhKYPpLS3+YfX+6sIjJQV9Prrdrm87rjBVU0d830vbrgaMLG3EPevH/XtC1ZxtKpX80P0BNY+1yFMz8btfp4V2ZjyiWsLzDzy6aam7p/fbiFJ2/ry93jU6h2qyiKitmo52hxJXc/sxz3CeeMwemx3Di6M/JJXWHMshPHth8pXPUFnjYryYQMvQG/pMFUq80r/4BQP6MMj97Sm8ffWE1l9fFenKFWP+6fmI6s1RzzymmmuVIlif/9uIef1x/CqJcZ2iOeh2/sSUigH4H+Bl5buJUPvt3Byw8OY2dWsSdni79RorIsv97tOo5mEDjydkrm/9url6UxJgH/Dj3IW/Q8lstn8NaKmh9yep3M7Bs7Y1n3DgW/HA+WGk3+dBl7PyXffoYzN4uwUbdR9vs3dfbcLFv7FZZOfQkecA2lqxZ4rfPv1B9DfApOMVxWaCS5tdNTWxsYhKkoBk1rlsORKlx2qhUHDn8rhuIjVLVOPqvtxESa2LSzgpyjDtrHt/zAqCRJtLJEsacwk8viRzZ1dQShSYkgzAVIVlXuuaYbB3Jt7MgqwmzSk9Q6hF82HsJW6cRiNhAV5k/mYd+EtwCb9hYwIDWGHp0i2X+knMpqF53bhbInu4RNewuochz1yQlTa/XWI8ya2pd/vL4KSYLHbu1Ddm45DqdC2xgrFVUunvtkg9cPIQA3eiSDyTNevlbZmkVYe1xGq1ufoerAdjTFjV/7NFRTEHbF94JtNB6fUldRVCQJ/KVKjn42G+2kII/j8F7cBQd8fuidqDJjE9ZLbqfCURNEcegDCL/8TtxlBTVPMIMiMUa2xlmYQ8jACcghrbApuhPqoZ6ya7sgNDc6WSImzJ9Sm4PW0YFwdGed5YxR7dAHR+DfthulqxZ6hk1IeiNu9DxyUy8slgpK630nCTkwDN1fnsJltVK58hPCRt6M6qjEVXgYa/dRBPW5ksp9G5BM/pjap1OFCRwVBOpMVDsViE1hVWY1Xy07SP+UGGQZdu4vocrpJsCow3xsmu0qReWJt9b49O5bsekwSW1CGNg1GuXYOUmWJSg9RNmq+d6FNZWS5R8RFZeE5B/nk2dEaJ5UVSMswMAL9w8m41AZOfk2EmKDaBtjJTo8gJIS39wEZrMBSaq5jjgcbvR6mXW78/l5/SEAnG6VH9Zl88O6bCQJnr1vMNszi1BVeOS1lTx6ax/cbpUt+wqQZR26wNB684kZwuL5Yb+eXtc8hb5gNyaXDf8O6UhGM5VFBUTe8iw2zcLogQ7atw4ntW0QwXsXYj+8x2s7qqOS/K9eImLM3eQvfBZ9QIhnFj8fmoqrJBdzt0sxdxlEdeYmNLcTv/bpqH51X1sF4Xw5WlRJkMWIUa87feETHJ8Zqfn1hCmoKgQksEaiz81AUlxoZ5E82Bqgw98ssz+n6oIIwgC0Cohi7dENKKqCmCVUuJiJIMwFSqKmV4rDqeB0Kcz7cQ+aBiGBJu4Yn0LbGCurtx6t87UjesXzwqcbcboU/npDD5avz+GrFVm4FZUh6bHoTjH1sl4nczDPxs1juvD6wq1s2J1P66hAHr2lNwt/2cf3a+tOQrgmo4oe6ZdQ/vs3Puvse9YS2OsK6DQSCbC7VZ9JhUyyC4OjlIqNP6NWlGBO7IsltiNKlR1XyWGfAEwtd3khknyKC79Oj1MzADU/MA3uCnI//z9kgwl9cDSauqUmC77biTMvm6gbniDAaKZiw8+o9jLMnfphju6IXfO/YKYZFC5sOgkmXZLEP99aWzM0Q/a+TBhCYwgdcRPOgoM4j2Zh3/s70X95GNvWX7DvWo0xeSTzVuWxYmsej0xMIi66Pc7cLJ/3MSV059dMN68v3sfHD6ZRtmsVlbtWoQsMRW+NwL73d5SKEoyRbWqe6q9eiGIJQ9exP2WxA5n79W6yf8zkjsva8N9ro9FnrkRSFVxX9SPI5MSh1dywGgw6lm3OqXN4JcCiXzLo1SnKczE0Si7K135Z7+dj+/0b/EfcgcMtRvO2FKqiYZCga5tgUtqF1CRgriPXj0GvYXSWYVu3AkqOoIvrQkCHHlRogSxcXnf3eU2DVVuPkJIQzpZ9BdgqXcx8dSURwX6kJ0VSrFoI6juW4h/f83mtZPTD2LorH/5vPR8C3TqGc+vwrriOZKLL2YRqCcVoDWXNrmIGpLejfXQAfko5R3esqLsujkrU6gp0AcGcdlovnRG74ocmmdB3GlHvtVUQzrfcYvvZ54Mx+iPpm1/S2nx7IYGmABRrBNLRvRhKcnGGxzd4O5IkERNhIvNgFSP6n4eKNoFWAdE4FRc5tiPEWWKbujqC0GREEOYCZZAlhneP48XPNnstL7E52H2gmJQO4Uwbn8KHS3Z5Eu36GXVMGd2Z33fkerpt5+TZKCit8vRcyS+p4tqRiazaWvesRQO6teKXDTmM7N0ai58ee7Wbg3k2jhRWkJIQUW8QJr/MjXXAGJSKEuw7V1M7BEAfHEXUhL9TKVtx1zMm1iS7UPb+RuEJ00fbd69FHxRJxBV34y4vrPN1AJUZ6wlIHUrZ6kV1rg9IG0mV6/j7SpqK5qxGcVajnDR1trXHZTiyt1O68vgTdPvuNehDYoic+Bg2zVJvPQShuVBVjdhwC7dd1ZWPvtuFFt3Zs072txJ26VTyv37Zawhf2brFhI2aiiGqHXkhaaz4ZTuqqvHyV5k8N3U6xmWvegVijK2TsadN4p0PdqJpoDiP94BTbMVevQYcR/bhKsimMnMDmrMKNiwmcuyDhFh0jBnTlsS873GtWo2r9gW7VmJr3YXQMfdRofghSRK5hfXPxFBc7uDEYYKSqqBU1D8LmmIrRFLdQPO78RdOTVU1T86Xk4MwBj2Qu4vcRc8eH8KzZy0Vqz4j8oYnT7nd/KJKAv29n3IXlFbzw7qDDEhtRWRCTwKLjmDb9KNn27qAECLH3o/tWK8TP6OO20dEw3dPUW07PsNh1cYl9Bl8M05HNDqTH5riBsU7Of6JlIpSZL8AXMVHMUa2qXv6a1mPISKe6mOfRX3XVkFoDEcKK2kV3vD7I8VW0Cx7wWiaRkFVAVGWKDSTBdXkj6Ho8FkFYQBiIoxkHqyizOYmKLDl/2yL9I9AL+vJKN0vgjDCRa3lt2ahToqi0rV9GJ3ahLI7u5hObUPo1TkaWZYos1XTLsZKm2gr3TpGkJNn8zwZXLr2AJv2FHi206VdzTbK7U7MJj35JZUUlFbRLyWGNdu8e9LERQaQkhDOVysySWoTwrSrUzlwtJwVGw8RZjVj0DuZOKIjYX5uZAnW7LOxcW8h0aEWRvZpQ5lbwzr0JoIHTECpKEH280fyC6RSCjzlTaJBsXsFYGq5y/Ip3/wT1h6X1ftaZ24WYZdMxb5rLe4S7/3x7zwAAqPRTniErsp69MFRvjO3yHrMCenkff6Ubz1KjlL++9eY+k7C6RZdL4XmT9Y0BiRH07NzFLiqsQyaRNlv87CmX0LpqgV15FDSKPrpfaJufZ6MPdU8enNvKh0u4iMDWbErn7CON5M0UAeOCoLCIvhlZxkffbATh7Omh1mJQ0bSG9Hczjrro7MEH596V1Mp+eZl7pnyLPa8Q7hWrPYp7zi4E+eBzejb9UdRFLp1jGDZ+pw6t50YF4wsSdSOL1J0JkxxnXAVHqqzvKl1Mopsot6uNUKLZFTs5C1+ySeHilptp/jbOdxy6e3836d1T+uc3ikSnSyxcov3wwmLn57YUBPFqz7BoJOJvnYmanUlksGEWm2n8Pu38b/sfq4Y2A6d6kS/eSGOEwIwtRwrPiC4XSqq7A+SCZ0lGMVeWmddDOGxuMsLKV+/lLBRU8n/8kU0l/dsieGj78Cls4heL0KTcysq+aVVpLQPbfBrNVsBclDMeajVn1PmsOFUXASbagJErsAIjEU52LU+p++hVoeoCCOSBFk5VaR3qX/G0JZCL+uItUaRUZLF0NiBTV0dQWgyIghzAdNpGg/dkE6lQ+H3Hbks35CDW1EZlBaLW9EwyWAyysgSvLJgCxWVLq/Xt40OJDLEzD/fWktByfHeMAadxP+7bzC9u0azassRnC6Fnp2jiAgx89Jnm9C0mmmyf1yXjabB7eNSMBpkLGoFo4L2Ur3tZzRVIaVjf/yuHIrTGIxJBrdbo8JtBMkIgcdmXFHgVHeKer1M1a4N9a6371pLUO8rMNYzJCJ44EQq5UAiJj6OM2c79u0rkA1+BPS4DCkknkrVu4usQ7IQMvxGChb+P6/lfrEdqc6uexYYAPvW5QT0HosT/3rLCEJzoqkaRgkw+mHsOoLotilIqtsnkaeH4qbiyAFiIzvwx448Ai0G2rcKIutIKR8fG/qo18nMvCmW9348QESIP06XQlFZNV/+Xsh13S+n6vcvfTZr7tCd6kN7OLG3iuZ2YnBXot/7My6fV9SwbfiO4DbpVKkmOrUJIdTqR3F5tU+5G8d0QS8dj6k43RDY6wrs235FU7y3LhlMBKSOwOYWAZgLiSyDq+ioT06yWs7cLJIv90OSQJYkIkP8cSkKhaXVBAeYaBVuITjAyP+7dxDfrNpPUVkV3TpG0LltKPbSEqSdv1GtuLBt/qlmeJ+qUHs8KwfW063DIDpHahS9U9+00RrKoR38LzsaWZK4fuAkyr6f61PKGN0OxV6G5qzG7aymdOV8oic+QtX+bVTn7EQfFEVgz9GYwmIoq9QQURihqRWUVtXkbapjBrNT0RQXWmU5Ukyn81Szs5dfVYAsyQQZawIm7qBITIXZ6MsLcQdFNHh7RoNMeIiBrIMXRhAGoHVQLJuO7EDTNKSzCEwJwoVABGEucJoGL83b5JWEd/6yfWzZV8hfr+9OfqGdUpuDh27oga3SxXuLd1Ba4aB/Sgw3Xt4ZowRP3NaX977Zwe87chndvx29u0ZTanOQfbScUKsfer3Mz+tzOHC05um4XicRE25hW2bNE73tWUW8NaMHpl9fxlZwfDiS+/eFuHavQB31MO6gCExnkWJBkiRUR1X9BVQ3blsxoUMm1eSs2LMOVAXZ30rw4Eno2vagyqXiwh9d674EtO4BkoxDleucqlRRVAyRiYRfdT8lyz+qGTYhyfi1SUZ1+v7Aq6W5nUhiZiShhapWDUj+sQSoJacsp3NXo6gaPTtHkVdcSU6ejQnDOxIRbGbpmmxcioq/Sc9jt/Yh63AZZpOeqFB/vlm5n72WHiT2M1G9cTGaoxJJbySg6yDMCWnkf/WS73vh9nnCfyLV5fD0bjHKMPvO/rz15TY27a3p6RcV6s8d41KIDvbzaevV+mCibniS4qVzPcM5jDEJhI6aRqUcKH67XnDkmuPlVCU0hefvH0yZ3cn+I+WYjDraRAViMMi88L9N5JdU8n93DeC2KzrjcmvoZah2a6gVlThODOap3kOJJFcV+SWVdAwx1DmTkaecu5oDR2xkHColLqgNA0beTuXqz2p6pck6zJ36Edx3LPkLjj0gkPXow+OQAiOR064iIPUyNElPNTJmkz9U1j9ETxAay5HCY9NTNzQIYysANCT/4HNfqT8pr7IAqykQWaq5qVUsQWh6I8bCg2cVhIGaWZJ2ZdhRFA2druUHLVoHxfJb9u/kVRYQbYls6uoIQpMQQZgLmE4nsfNAqc8sSOHBflw/Kol/vL7KM7U0QHSYP7Pv7I9OltDrZDRFRZIljJLKHVclc8uVXVm6Jpt/vrkGvU7mHzf34qPvdrH/yPGhCTpZ4p4JaXyz8vj01m2iA3Ef2omrwDcfjFJeiDF7HRuNvRiQEoPawGkx3W4Fc0I6Zau/qHO9Ka4TztwsytZ+TUDyYKLGP4hksiAHRVIlWag64Ym2oqgo1CbprT9gUq0aMLbuSezNXXFV2UHW49ZbkMsOUX7SVNq1/Nql4pbEjBNCy6VpIOmMdQ/HOyYwvgOvzN1MSXnND9qYcAsThndkRK/WDO8Zj0Gv43/f7/YatqHXyUwbn8KG/UW0GjAcJSqdQBOEBftjW7+E/C9f9My8dCI5IBRLl4FUZ2+vsy7+SX1x6/zAXZMLxKyD6RNScbhU3KqGn0HGpJM9syKdyK2A6t+K4Kv/gV6pQtbpcMsmqlRTncFZoXnR62WqXCqKqqGXJUwGGeUUQ1pVVcUcEUdNSnvf71cXEAImC19/n8XyDceHqel1Evdem85tY5P5eOku5nyxhcdv7Y1BAqdSM9QiNDiAstZdqT5Yd09Jc0J3Fn2UgVGNJTkmAefRuhMAS626kJOfAcC7P2Tze/tQ/jbpPxQXl6Gg46ed5RxZfJS/TvwnOsWBpDPi0vljU2RQVGpv9/Tirk9oRo4U2TGbdFj8GnZgKuUFgITk37ymp1ZUlcKqYtoExh1fKMm4gqIw5h+gsn33sxqSFBNpZOvuCg7lOmgT27CAVXMUH9QKCYl9pVkiCCNctMTl+AKmIfFzHXkQJgxP5K0vt3sFYAByiyp54dON9E9txdHCCgaktsLpVmkXHYhBhszDNhb9UnMT6FZUnvtkA7dc2RU/o54jBRUEB5oIDzbzzcr9bNyT79lujw5ByJlf11/PzDX4d0nB4VYxNPDapGmAJRy/tt2oPrDFe6WsJ7j/eAq/fR3N7cS2+Sfsu9cSfdNT2BR/ThVoOR1V1dCHhGFT/Gry1bjB3xqJXx0325LOQMiwKdhVw596T0FoaioaIYOupWDxq5x8LAd0HURVhQ2Drubp35DucfTqHMXnP+3lYJ6Nru3D6NEp0idvhltReX3BFp6fMYTnP93IwVwbsizxr9v7EhnVBdSlPvUI6HEZDoxUhXeqMygk+1sJ6DYS2wmdDjQNJE3DTyfVTAEFdQZgPPuqalRhQm8wExJiwV5iR1VFF5jmTpUllm06zMLlGdgqXQQHmpg4MpFenSKRTzFDnVtvwdz9cqo2fuuzLviS29hy2OUVgAFwKxovztvIv27vx+X923Io345b0SiwVfPml9s5cLScZ6cmE99vLLmH9/gk1PWL74KmKESHW8gsdNNr8M045z/hE3Q0tO+B0xTsyaEEsD2rmKVbI1i99SjZuTYAhnaPo1IKQNYdS3LqG7sUhGblaKGdMKtfg4ekaLYCJL9AJLl5/Ywpri5BVRWC/YK9lruCozEW5aAvz8cdFNXg7YZY9fiZZLJyqi6IIIxJbyTaEkFGaRaDYvs2dXUEoUk0r7OXcE5JUs2TupOFB/txuKCiztfsyyll0iVJfPDtTrKP2hjSIw6XS6FDfLAnAFPLXu3m1flbCPQ3MGZAO5ITwrn7mZ99tqmonHoaaFlX8wPpLHtYVqomQkbfRfXetdjWf4tSVYFfm2RCB0+k+khNnWWTP/6d+mLtMw67ZPUMUziXKhU/QsbcS/We1ZSvX4JabcfcLpWgQROp1od6JfgVhBZJUajM2EDUhL9R9vu3OHIz0QeEEpg+EtngR1lhAaqmERXqT5+u0Tzz0XrPSwenx/L5T3vr3KyqwYrNhwkw18wwo5Mlyu1Oftul45rxs1DXf4ErLwt9YBjW/leji0/hhUV72XuwhCeuewhT1grcu38FVcEvqT/BfcfWDBtSRJu7qMgSC5Zn8t2aA55FpTYHbyzaRtkliYzqHY9WzzHhUPQE9hmLKSYB+7qFuMsLMUa2xTr4etzWWN574486X6dp8MeuPA7m2hiSHkt5pZNH564+4RKjUbr2a6L/8jDlG76nKnsHOr8AAlKHYIxoQ+XhfahqNMkJ4bz120FuvOZfaOsX4Dy8G505EDl1NHkBnTicaScmzMLRouPDiPyMOgwGHTHhFq4Z2oG0xHBkcZ0RWpDDhfYGD0UCUMvykCzNb2akvMoCDDoDAXrv/H+KJRjV4IdfbhYVZxGEqZmqumaWpGF9Q85VdZtUbGAr9hZnirwwwkVLBGEuYJqqcVm/tvy+8/hTYp0seT1Nq4vrWLftPQdLGDc0gf8t3c2M67rXmdQSwFbpYmtGISN6xvvcJAKs3V3MZZcNg/1b6ny91GkoTtm/3qEBZ6JC8UOfNJywjn2QNA23bMSm6tG3Cye8dTckCdyyHza3dF5nNalQ/NB3GkF4x35IaLhlE3ZVd6qh/oLQYig6P9yleRQsmUtgt+EEpg5FqbJRsX0FzoIcuPr/KCzdwU1jujB/mXfAJcBsoKSecwhAcVk1gf410z4PSG3FHzvz+GVjHr/vNXFV72volGahXWwITslMhUvl0j6tGd4jnkK3hBIzAkNEX1RVY/PBSq5UAzCch0Cr0LxVu1W+X3ugznULl2cwtHtcTbLpelQpRoztehES3xVJU1BlAy5MVLtVzxC7utQcuwbKK538sHiHV4y/QjER6B9M3qIXCEwZQvilt6A6Hdh3raZ05ReE3fgMBSsy0Msyq7YXsDmzlDG9Lidp2DXYqxS+2VjE3oO7GD+0AwH+Bjg2eZIkQc/OUfRLjkZCwqSXxFTTQouiqhpHi+wkxjUsmKKhoZbno4tJOk81O3u59jyCTUG+QQVJwhXSCmP+AaQOPdF0hro3cAoxkSb2byyjvMKNNaDl/3yLD2zF+tzN5FcWECWGJAkXoZbfioV6qapGfGQAvbtEeQIxiqrh72fghBlZveh1Enr98YvHgSPl6I4FR5Jah5BbVFnne6V2CMdskJkxKZ3H31iN84SbwfySSuSIrhjbdsN50pAhfWR77BEpdI+IPOsATC23W8WNueaPY3EmlxtcmGtGTjTS/anbrfnUQxBaAkmS0KSaYRY6WUIGtBNOFA78CB19F7kfP07Zmi+9Xht86e28/3tN0tvoMH+vXFEAOfkVdIwPYc/BupP7dowPZsnqA4QH+zGsZzyz310H1PRk+HBZTXLc1/4+DJMelqw+wJLV+3Ef69WQEBfEjZd34bXPN1FYWs3IvgkYTKfofSdckEptjnpj7E63iq3SRZjl1D9+nE4FOJa/69jsfHpZomPrYLZn+k4fDdClXSgWs4HYyABWbDrstc6h6XCnXIWcs4Py9d95rTOmjWFvIcSEB1BW4SAq1J+84ko+X+E7jLhdKyvL/jieV+2myzvjp5eRNA3QcIsZu4QWJr+0CreiER5kbtDrtCobuB3IluDzU7Gz5HA7KHOUkxjaoc71zrBYjPlZGPP242iV2ODtR0cYkYD9h6ro1qnlz5IUGxCDLMnsKckQQRjhoiSCMC2QJIEs18zeo53maa9O07h9bDKj+rZl6ZoDON0qZqOOIemx/LLxsE/5kb1as2ZbrufvQIuRyFAzZj89o/u3Y9XWo56pqmuZTXqGdo9DUVSiQ/x48cGhLPvjIHsOlhAXEcDo/m3JtzvQd7uBiORLUHctA1VBShyCLiYRo8mKHpEtRRAagyxLSBIoJw3L0CSJ8moXX6/IYltmETHhFq4dmUhMiPnYD71jeVJM4cTc8v+w7/wNx8Ed6K0RODsO44ASQLG95pziVlTMJj1WixGdLJFbXMmP67K5bWwy//1wvU+dwoL8iI8KZHS/tkSH+/Pq55s9PfJqmQw6/Aw6ft5wiK9/855uPvNQGXPmb2bK6C68OG8jRv1ZTLUmtHgm46lvaUyGszsuZOCm0Z35+5yVPg8vggNNJMQF8/z/NmA26RnWI55xQxJ45dgx7HAqvL7yKNPGPIrxyFbkgxvBFIDWZSS7S0yUlqq0igggr9jOjZd35v99vMHn/eMiA4gK9adNtJXQIBNX9G9HaKDJ0y4FoSWqHRYfHtSw4Uhq2bF7VP/mNSwnr7IQgFBT3fXSjGYUawR+h3bhiOnY4DH4JqNMWIiBzIMXRhDGqDMQ7R/J7pIMBsf1b+rqCEKjE0GYFkSSJNwaFJZVk5NrIyLUTKtwCyZZOuWMHTpNIyE6gHuuSQEJnC6Nq4d1xGox8f26bBxOBbNJz2X92hAbEcCcL2p6qxj0MnERAXSIC+Lvr6ykY+tg/ja5B5/+sMczHXWXtqFMv7Yb1U6FbRmlWPwNtG9l5aqBbVGUNhgNOoKsZsrKKnEpAejkGIztktE0DZemr8mToqgiACMI55sk4VA09mWX4HQpJLUJwWzUIWsamixRWuFi874COsSHMDAtlu/WHOCxuau58+oU+nSK9OQ0UlUoJRBHh0upjB6AwWTC4Yb/fbuTa4Z1JDzYj+Kyav51R1/2ZJfgVjTaRAeyZV8h67bnMmNSOp/+sIe84kokCdITI7l9XDL+Rh2twi1Me3oZSh3ns0t6t8alqD65qWrll1QhUTOUyc+gq6mocFEJNBuICDFTUFLls65tjBWzSX9W+cA0TSMs0MQTt/Vl7qJtHC2sGXLbrWM41wzryIvzNpJ/7D3f/3YnyQlh3HplV37ZcIjQID9G9WnDuv2VdG7bD//4Pkiynv15doqqqklLDGNgaitkCUpsDh64Lp0Pvt1FcXk1sizRLzmGm8Z0xk8v8eDEbsiyhKqop30AIwjN3aECO/4mPf4NnBlJK8sDvR+SsWE9aM633Mp8AowWjKcYauSIaIMlcz3G4iM4w2Ib/B4xkUb2ZFVeMFNVxwfGsrVwJ6qmeqb0FoSLRbMKwvz666+89dZbZGRkUFFRQVRUFCNHjmT69OkEBh6P+v7888+8+OKL7N+/n1atWnHHHXdwzTXXeG3L6XTywgsv8PXXX2O320lPT+fxxx+nffv2XuUyMzOZPXs2mzZtwmKxMHbsWGbMmIHRaGyUfT5TkgROFWa//zs5eTbPcqvFyJO39yPEovd5sn0iVdWQgdzSav71zjocTjf9U1sxY2I6JqOO8GAzn/6why9/zUTTaqaN/dvkHtirXXy3Zj9VDjdb9xWSV1TJmAHtiAqtSTrWNsbKe9/sYO32471n9DqZv0/pQYdWVs+U06qqoSkqbgVq5oeQEGN1BKFxaJLE5oxC5izY6hWwHdWnDRNGdOTjpbv5dePxmV90ssRtY5MxGXW8t3gnaR0jPLk03Eg8/dF6Mg+Vecpb/PT89YYe/O/73Vzapw0uRWXmqyu9hoaM6NWaDvHBhASa+Pcd/XC4FHSyhJ9Bh6SpKC4FnSTx8I09+e+H670CMYnxwYwd3B6HU8Fe7T3DzInySiq5ZUwXJE0Edi9GRhkevak3j7+5Gluly7M8JNDEQzf0wPBnUoJpGm0jA3jy9r5UVLmodiocLbLz/z5e7/VeANszi7hmWAfGD+vA7HfXUX0sD1ty+zCuGNiOF+at9+Rm+3jpblI6hHPVoPZoGuzaX8zk0Z0wm/TIksT2rEIKS6poFWpGU7U6A5SC0BLl5FcQEWxucFJWpSwPOSCkWSVz1TSNXHse0ZZTJ91VLCG4/YMwZ2/FGdqqwb1hYiJMbNtj50i+g/iYlj9LUnxgLOtyN3DQdoi21tZNXR1BaFTNKghTWlpKamoqU6ZMITg4mH379vHKK6+wb98+3n33XQDWr1/P9OnTmTBhAv/4xz9Yu3Ytjz76KBaLhcsuu8yzrdmzZ7NkyRJmzpxJVFQUc+fO5eabb+bbb7/1BHTKysq46aabaNu2La+88gp5eXk8/fTTVFdXM2vWrCb5DOqjSRJzF231CsAAlNudPPnuOp6+e8Bpv0yHovGvd9ZR5aj5EbNyyxHPdLEje7XmykHtiA6zEBxgJKVDBEY9GA0GvlqRydDucZTbnWzZV8C7i2umYE5JCCclIcwrAAM1QxGe/nA9r/51KAEiL4MgNDlbtZtX5vsmxv5+XTZJbULIOlzmtVxRNd78chuP39qH1VuPUmJzEGU1IelkPvx2l1cABkCvl1m55QiP3NSbovIq/v7KSp/3WvbHQR6e0pO2kQEoioq+dmiIejxgomkaHWOsvPrQMHbsL6LU5qBr+zDCg/zQo6HoZcwmveccdrKOccHo0M5n7m2hGVNVjWB/Pc/eO4j9R8vJybPRrlUQ8VGBmGRO2WP0TCiKig4I9jfg8NPzzzfXeOU/O5HZpOfpD9d6JcIfP7QDT3/4h89Qu20ZhbSOCiA+MpCla7NZurYmB5LJqCOtYwTL1h/kuks7IYvQonABycmvoHVUQINfp5UdRQ5vcx5qdPaKHaW4FBehpuBTF5QknFEJ+O/fiKHkKK7QVg16n9BgPSajRNbBqgsiCBNticSkM7KraK8IwggXnWbV92vs2LH8/e9/Z9SoUfTp04fJkyfz17/+lVWrVpGXV5NY9vXXXyc1NZUnn3ySvn37MmPGDMaMGcPLL7/s2U5ubi5ffPEFf/vb35gwYQKDBg1izpw52Gw25s2b5yk3b9487HY7r776KoMGDWLChAn87W9/Y968eZ73ay6qnCqb9hbUua64vJpiW/2zjkBNHogDubZ6f7z8svEQ9ko3O7KK+GHdQebM3wxION0KvTpHU+10Ex1u4dFbejOwW81FY2iPOL5dvb/O7amqxu8789DpmtUhJggXHYNBxw/rsutdXxtkPZmmwaa9BaQkhKOTa57WVbtUVm094imj10ncPjaZqVcl43KrvPftDopKq7nrmtQ687J8sXwfrtP8ENY0DZMMvRIjuLRnHNFBJnSahqaBWS9zxYB2db4uJNBEq3DLn/6hLbRsqqphkKBTXBCjesXTISYQA9o5PS40VUNGqvf6Fhli5nCB3SsA0yrcwuGCCp8ATK1lf+RgDTB5/h47OIG/Xt+DAH8j9mqFrZmFuJGa1dN/QThb1U43haVVRAY3bEiRWm1Dc9iRLWHnqWZn52hFHnqdgUDj6XO1uAPDcFtC8M/cQEOnzpQkiegIE5k5vkMuWyKdpCMuoBU7ivY0dVUEodE1+1/IwcHBALhcLpxOJ+vWrfPq8QJw+eWXk5mZyaFDNd3pV65ciaqqXuWCg4MZMGAAK1as8CxbsWIF/fr187wHwOjRo1FVlVWrVp2/nToLTveph+7Y7M5T3pxJkkRRWf0nbbeioqgaew+WcLigAlXVqHYqzHx1JZ98v5u123NZsmo//353HSkJ4XRPisTfT09ZhbPebeaXVIobRkFoYqqGJ19FXUpsjpqpb+tcV014sB9BlprhmS634vVj9vZxKWzck8/z/9vIb5sPs3LzEf770XpWbj7C3RO6+W6v3HHGP4YVRcXtVr1SeCiKyqg+bRjRK96rF3dMuIUn7+iHSQeaLFHpVimyO6lWNJCb/WVOOA9UVcPtVs86+CLLMi4Niu0uyqrduMEr6GLSSQzvEV/nawP8jZRVeE9pHehvpOQUD0uqnYrnmB4zoB06ncT/vf87y/44yNrtR3n5s83MemsNThFjFC4AhwrsaNDwIEzpUQCkgNDzUKuzd8SeS6gpGPlM7nklCUdMR/T2Eky5Wacvf5JWkUbyi1zY7PUPzW1J2lpbc6D8IHZX3bOvCsKFqlkNR6qlKAput5uMjAzmzJnD8OHDiYuLIyMjA5fL5ZPXJSEhAYCsrCzi4uLIysoiLCyMoKAgn3JffPGF5++srCyfXDJWq5WIiAiyshp+YjyfzCY9fkadZ2z5yaJCLadM1KeqKgmxQfWuD7X6Ya8+Pq593NAOvPXldiqqvMe6axq8/fV2Hr6xJ2g1U8OePDShVkqHcFSRHFMQmpSERlpiBOt31d27LzE+2GeY4/F1ISTEBmHUSWiqhsmgw2oxUm53EhXqjyxJbNid7/O6bZmF9OkaTeuoQA6esO1ObUMx6GW0PzEdvaypXH9JItcM7UBZhRM/k44APwNGHTgUePWLLWzNqJmlQpZgUFosU0Z3RhbnIuEMaZLE+r0FvLN4h6f3aESImYeu70FkkKkmN4uiMnZwe/7YlesT5EyMD6ZtjNVr2dEiO2Pq6cUFNdO6Vznc6HUSPTpF8uQ763zK5BZVsmD5Pq4fmejJtyYILdHBPBs6WWrwzEha6dGahLzNKCmv3WnH5rARFxpzxq9RLMG4gmPwz9yIM7w1muHM81DGRNT0mMvKuTBmSWprbY2Gxq6iPfSMTm/q6ghCo2mWQZhhw4Z5hgMNGjSI5557DqjJ4QI1gZIT1f5du768vNwrke+J5WrL1JY7eVsAQUFBXuXOlr4B06TWPmGrr3uzQZaYMLwmgebJenWOIsCsR3+aAHxYkB8JsUFkHvbdt6uHdvAMWdDJEq2jA9lzsKTO7bjcKm63RlLrYG69oiuPzl3tUyYi2EyH2CBPT5gLbVjS6b6vlupC3S9oWHtsyer6Dnt1juLzn/ZSbvfuuSbLEteN6sQ/3/RtwyGBJnp1icLfKCNpgCxhlGWuH5XE3IXb6N0lmt+2+E5zX+vXTYfokxztCcLoZIlJIxPRScA5+C4MJh0BJjOSVNPTz6loPPvJevbmlHrKqBr8uukwOp3MTZclcTb98i7kNtFUmkNbrO97lSSJA3kVvPqFdw6lgpIqZr25hhcfHILlWD4jgyTxnzv7s3lfISu3HMHip6dfSgwFpVUUl1fTNsbqmUmw3O5EUTXiIgM4lF/hU59rRyRiNulJbB3CtszCeuu9fMMhJgzviN9ZfoYX6/F8se736dR23GjszyUnv4KwID+MxoblDawuOYQUGI5O1/T5Bms7WR6x5yJJMmH+IUjymV9lHLGJWHatwnJgE1VJfc74df5mmfAQA1k51XTv6vsbprmTj31wNf9XCTIHEOkfzvbi3fSN69G0lROERtQsgzBvvvkmVVVVZGRk8Prrr3PnnXfy3nvvNXW1GkSWJUJCLA1+ndVaf3T/sn5t8TPqmPfjXiqqXBj1Mpf2acNfRnQkNOjMngo8dmsfPliyk982HUZRNUICTfxlRCLF5dXsyS6hdXQgU0Z3pvykrtQnq6x2UeVw07aVlVlT+/DGom2eKWd7dY7i9nEpRIcd3/9T7VdLJvarZTjb9tiSnfgdhgBP3zOQ1xdsYVtmEQDxUYHcfU0qrcItPHxjb15fsIUjx6beTU+KYNq4FGIjfYPZg9Li0MkyRWVVXjkvTuZ0KeiP3di3jg5k+oQ0YiMDMBrOzc2zqmoUlVWRfdRGQUkl8VGBXNKnDUcK7T49+H7ZeIhJlyQRE372x8CF1iaaSnNriyd/rza7k4+/933YAeBwKazeepRrRyZ6Lb8sPIChPeKorHJx//O/UFrhJMBs4KEbevDD79ms256Lomos+iWDv0/pyec/7WX1tqOoqkZYkB+3XNGVymoXuw8UM25IApv31Z3/DWoegqgaBFrNnvZ1Lvb7YnGx7nd9ah+UNfbncjC/gvioQAIDz/x9NU2hojQXc/tumP2bzwymR+y5hPkHYzE38DM0GVDjkzBm70Bq0wktNPKMX9omzp9te2yY/f3Qt9Cpqi2W4zmwOkUmsP7wVgKD/NDLTR9gE4TG0CyDMJ06dQIgPT2dlJQUxo4dy48//kiHDh0AsNlOmiGovOZJU+3wI6vVSkWF75Om8vJyryFKVqvVZ1tQ06Pm5KFMDaWqGuXlZz6+UaeTsVrNlJdXoZyim/HQ9Fb07hKNw6Vg1Mv4m3SgqRQW23EcS/hnMsjoJTy5FGSdTKVDwa2q6GWZW8d0ZtLIRNyKismgw2SQqahyM7R7HP4mHZv3FaKoGpEh5npzSYRa/Xjp803cPjaF+MgAnryjHy63gk6WMRtlZKCkxH7G+1UfvQx6dwWobpANuAwBp5yKu7H82f1qrhpzvxrzh1hD22NLVt93GGiSeXBSOlUuFVVVMRv1mPQSLoeLdlE1OVWqne5jbViHU1HIySvHqJfx08teuTUGpEQhOysY1cWfoyVRLN1cwsrt+V5l+qe2YmC3VvRLicFi0mHSy9grqrGf4X5IkoRL1XC4VSTApJfRyzXnNUmWyC9z8M8313gFXNrGWHnohh48/eEfXkM3VVWjotJJSd2d+87q87zQNFZ7bC5tsb7v1a1JjB2cgCxJVFQ5+XHdQa9eoXsPltR7LGhIJMQFs2F3PhVVLp764A+G9ojj71N6EmA20DZUQq9WcN+YeG67IpHyqpoZkAL9dLjcGpUJ4ejkmpwyS1YdqLPeqR3D+fmPg6QlRhIXbqahEyZdLMfzyVrafjdWe9Q0DUmSGvVzcboVDuba6BgbhM125glmlZKjaIoLxRxKZWX9+QgbiyyDplPJrygiMbQ91Q7X6V90spBW+BfkoNv8K7beV5xxDrPIUB1Op8quvSW0jWtZgUVZlrFYTNjtDk/KgnhzHCtc6/g9ayudwxJPs4XG15weHAgXjmYZhDlRUlISBoOBgwcPMnz4cAwGA1lZWQwaNMhTpjZ/S22umPbt21NYWOgTTMnKyvLKJ9O+fXuf3C82m42CggKfvDNnw13PLAinUpuMsv6N1nxptdO7Km6Vsio3b329ne3HnnB36xDO1LHJWP10uFVYu+0I85ftpezY07lxQxIY2j0Wo1Tzi8btVPCrjaQrKsntw5i7aCu3jU3mqQ/+4ORUMyN7t6ba6WZI93j+++F6CkqrMBl1jO7bhisGtEd1q5y8B6fdrzpYdA6qty6n6PfFqNV2dJYgggb8BWNCbyqV5vEU5Gz2qyW4EPfrQtuf06nvO/STqbnRU1WcJ9zHyoDFoMOlwQff7eK3zYdxKxrxUYHcflUyseH+SJqGn+xEO7CTouWf4C4vIMBg4vquIxh901D++dFOnG6VUKsfia1DmPXGGq6/rBPdEsJwnqLXzMkkWaLE7uStr7ax60AJkgTdkyK59YquBJh0VDkU/vX2Wp8eLweOlvPt6v1c0rsNi1ceP7fLEvgZdX/qGLgQ20RTaU6f44nfqyrLfLdmP0tWH6DK4SbU6se4IQl07xTJpz/UzN7RrpXVk/T3ZJIEN13eme2ZRThcCg6Xwvdrs+kQ5UdXcxVl89/DVXQYZD2mpP6oXa/k2e9ymHRJEm2jAjAd+/0VGeRHt47hbNnnPSzJoJcZP6QDL3y6ka9+y+KlB4ZgPMuH4Bfr8Xyx7nd9au/vGvNzyT5qq3nQF2xu0EM1V2E2yHo0c0gzyTcok1NRMyQ31BSKdlZJwCWq4rpg2bcOY/Z2qtqkntGrggL1mP1k9h6obIFTVR8736qq5/sPM4VhNQayIXcbHYM6NGXlBKHRNPvBsVu2bMHlchEXF4fRaKRPnz58//33XmWWLFlCQkICcXE106wOHDgQWZb54YcfPGXKyspYuXIlgwcP9iwbPHgwq1ev9vSkAVi6dCmyLDNgwIDzvGfnRqVbY+ZrqzwBGIAtGYXMnLOSarfGT3/k8PZX2z2zGFVUufh46W6++Dmj3oi7UYY7x6ei10k8eUd/unUIx+Knp3VUILePTSatYwT5JVW8uWgbBaU1TzEcToUvV2QxZ+EW1HMwI5JJ56Zi9eeUrpiHWl3z7Fyxl1H8w9tUb/sJo67pe8MIwoXGrcGT765j+YZDuI/dHOXk2Zj11hpyS6owGGTUnC0UfvUi7vKaIROay4Fj8xKCNn3EPVe259I+bbh/UjqvL9hCUXk1r3y+mXUNnK7e7lSZOWcluw7U9EDQNNiwO5+Zr62kWlEpKK3yyW9Ta8OuPFI7hnst658ai985GgYlXJhUSeLtr7ezYHmGJxlvcXk17y7egU6WSE+MQK+TGZwWi8tVd0BR0yDQT89z9w9iUFosFrOBAakx9I91UfT57JoADIDqxrFrBcblL3LD4Gj+/e46DuRVeNqIrGncOyGNqVd1JSrUH4vZQN/kGB69pTfzl9XkdnI4FbKOlCM3IAeFIDQHWUfK0ckSkSEN68GhFB5EDgxDakYz3h0oySHEHIRRV/cMg2dCNVtxRrTBfGArusozy0cpSRKtIk1kZF8YU1VLkkRCUDs25W9FbeC03YLQUjWfMxkwffp05s6dy/Lly1mzZg3vvfce06dPJykpiZEjRwJw1113sXnzZp544gnWrVvHyy+/zDfffMO9997r2U50dDQTJkzgmWeeYcGCBaxcuZLp06cTGBjIpEmTPOUmTZqExWLhnnvuYeXKlSxYsIBnnnmGSZMmERUV1ej731A6nczSNQc8N4wnqqx2s+yPHLKO1n1C/2FdNtUnPfWQdTJODfLLHVRUuWgVHkh8VAC3XNmV28YlM6xnPN+vzUZRNRYs31fndjftKcBWdRZdMk9iUCqp2PJznevK136JUT3TQQ2CIJwJWZY4VFhRZ9JQgHcX78CoVFD6yyd1rncd3Eb31kaqHC6efHut11DG/32/m+oz7Oou6WS+XJGJs46nsrZKFxv3FFB6ipxVqgbuE96rV+cobh7TGZrFk1OhuapyKqzdnlvnukW/ZjKqbxuemT4QnSydMG215AmcSJKEKkmUV7upcihcPyqJlx4czD1XJlD+ywd1btdVdJhIqYRQqx/vLt6B84ReAbKm0rdLFFcOas8tV3QhONDEfz9cz879xZ4yhaVVnpwegtBSZB0pIzKkYTmNNE1FLc5Bskafx5o1TLW7ilxbIRHmsD+9LUdUAprBD8vetfh0P69HbJSJkjI3RaV//p67OUgMSaDCZWdfSfOanVYQzpdmNRwpNTWVJUuW8Oabb6JpGrGxsfzlL39h6tSpGI01w0969uzJK6+8wosvvsgXX3xBq1atmD17NqNHj/ba1mOPPYbFYuG5557DbrfTvXt33nvvPa9Zk4KCgvjggw/497//zT333IPFYmHChAk88MADjbrfZ8upqGw5RQK/TXsLSEuM4PcdvlPTqhqU2qqJPjY9oCbL/LThEJ//tNfz46dVuIV7r00jKtSfFZuOsGlPzVS0RoPs6VlTl+zcctLah3nlh2goxVZMfYPdNbcTrdoOpoCz3r4gCN50Opkte+s/n2QeLkNzVaPYS+stU56Txb4cGeWktm+vdlNicxJhNSGd5gbTpahsy6h/dpi1249y85iu9a63mA20ibby1N0DCPQ3YDbokEQARjgFSZLqDT4C2KtcRIVZ2H2gmA++3enJNxQZYuZvk3sQFeyHrVrh2U82sP9ITc9anSwxZkBbbhgYiTN3f/3vfXQncVFJbN1XiEtR0Z2QZFND4stfMygsra7ztR3jg5vJsAxBOHMZh8uJj2zY/ZtWcgTcTuSg5vOANMd2BEmC8HMQhEHWUR3XCf+sjZjysnBEJ5z2JVHhRnQ6yDhQSVjan8tj2RxE+UcQZLTyR94mkkLFkCThwtesgjB33HEHd9xxx2nLjRgxghEjRpyyjNFo5OGHH+bhhx8+ZbmEhATef//9hlSz2dDJEkEWE+CbXBggKNCI/RS9UvyMNV+/Xi+zMaPIZ/rrI4V2/vPe7/x7Wj8mX5bElr35qBroZBlZqgnk1Pm+FtOZBvLrJZtO3U1V0p99109BEHxpmkZYcP3tzt9Pj6QzgCRDPd2FZX8rldWlda6zVTrRNI3oID+0U5wgZEnCajGSV1x38tZAfyNWi4FuHcLZUkew5rpLk/A3yPhZTbU7Vu97CUINDavl1HnGJOCNRdu8luWXVPHYG2t46cGhPPH2WgpO6P2lqBpf/7afy9NCkEz+aI56khH7B1NZ5cZk0PkMLfLTS9x0eRee+99Gn5e1b2Ul/DRtSRCamzK7k4LSKvp2aVgwRcnPBL0fUkDoeapZwx0oP0S4JQyDznCW+WC8uQPDcQXHYMlYjzM0Fs146lwver1ETLiJvQcq6XMBBGEkSSIptAMb87dybeK4PzXESxBagmY1HEloGBkYP7T+aPm4wQkcLqg7QBMV6k+AueYE53Cr/K+eKTkrqlzs3F9McICJJ+/oT1xkANsyC+nRqe4LqL+fnlbhlj9/Y+hnRWcNr3OVMbo9ilH0ghGEc8ntVumRFEl9KSbG9G+LW2/BlNCzzvWS0YzdFFFnrpbUDuHsyS5h3o970E4zfMIgw9VD638KduXAdsiqyr1/SeOyfm0w6GsuY0EBRu4cn0LfLlGoLWD2E6H50DQID/KrNxCT1jHCK+/aiYx6mUN5Nq8AzIk+/e0Igemj6n5jSUZplUrm4VJG9GqNn977lsztVuncJpgHr0sn1Frzg0wnSwztHscjN/VC39CpkQShiWUcqhkiHxvesNlmlLwM5ODoZjP8rtxho7SqlNjAc9szpzo2ETQVS9aGMyofG2PicJ6TCrtvWoKWqHNoIg7FwZaC7U1dFUE470QQpgVTVY34yACuHNjOZ93VQxNoFWZh2vhUz81brUB/A4/c1AvjsW9f1ah3KmqoScypqhrx4Wb+ObUPl/VpzdSruhJ3UndSk1HH47f2waT78xfJasmfyGseRjZ7v4cuMJTwq+6nWjX96fcQBMGbn17mb5N7+jyR79o+jEv7tKWoSsORNgFDWKzXeslgwv+KhzAEhmA2eXewjAr155rhHfluzQFy8ipwnSZAoigaHeOCGNm7tc+660clEW71Q9NqcmZMHN6RVx4cyit/Hcoz9wykX5coZNEzQDgLJr3EY7f09jl+o8P8mXZ1Cgt/yajzdSFWPw7m1f2wA+C3LbmY0y7FENfZe4Uk43fpdOatyqdjXDDjh7SvM3goa9CtfRhP3z2AV/46lFcfGsZNozuh0zTRyUtocfbklBAUYDxtz7MTqfYSVFsButC481izhjlQnoNeZyDCcm575mh6E9UxHTDlZmIo9U0lcLLYKBOSBHsPXBgJeoNNQcQFtGLVkXVNXRVBOO+a1XAkoeFkTWPcoPZc0rsNWzIKkaWap85mY00eBItB5um7B3Aov4IDR8uJiwqgTXQgJlny5GyRJQgP9qt33HmriAAkSUJRVHSAWS8jSRL/vLUPeSWV7M0pJSrEn4S4IPz0EmoDphysj6JoVJoiibrpGdwFB3AVHcYY2RY5NBY7lnPS9VMQhJNoGknxQcx5aBg79xdRbnfStX0YoYEmZE3FqNPx2GcZ3Dn6bloZK6AwCwLCqA5szfM/HWH6X9rzxO19yTpcRmFpFfFRgUiSxIufbsRe5aJdjBWD7hRjGY+RNY1JIzpy5YB2bMkoQK+TSe0Qgdkge+WU0RQVowzGY7NlKKIHjHCWVEUj0mrihRmDyTpSTm6hnQ7xwcSE+iPLNUPkist9r5GlNofPA4kTmYx6yhQzIVfOQLMVUn1wJ/qAIKSoRHbmKVwxJIAwqx96tHr7tSiKih7QG2qOc00c50ILtTu7hPiIhvVkVo7uAlmPFBxznmrVMIqqkl1+kChLBLKko3bK5XPFFRqHofgo/nvXUNbjStDVP7OfySgTFWZkd6ad7l0D6y3XknQN68T32T+Ta88j2tJ8cgAJwrkmgjAXAEnTCDDKDEmNRtOO/RA59kNFVTX0QPvoADq0CkRVNc9/tYw6mYkjk5jzxRafbZtNejq3C8UgwYmTcmqahg6IDfWndYTl+HbPQQCmlqpqVOCPHNEVOSqZakU7FnwRARhBOG9UDZMMPRMjkKSa80nt8EI/g8yAbq2YPW8Pgf4GosOiKLc7ySve6ZntwuJn4OsVmQT4G/npj4NeSbwnXZqEzJndssqaRqBJx9BurXzOa4JwPqiqhlGCLvFBJLcJRlG0mmudVNML6//e/8PnNdUON62jAgm1+tUZpLlyYDv89DJVigk5IBZTtzbHrpcqndtKnvYljmzhQlde6eRQgZ3U9meeyFZDw52zHTk0DknXPH6yHKk4ilNx0ep8BQgkieq4zlj2rcN8cDtV7bqdsnh8KxPrt9moqFQI8K8/YNNSdAxuz8rDa/nl0GomJY1v6uoIwnkjhiNdQNxutd4nwaqq4Xardc5YpCgq3RPDmTC8A/oThhJFBJt59JbehFn96t2uptW/3XOltu4iAaEgNB5FUY+1u+PLVEXlyoHtGdYjjooqF/tySskrrqR1VCD/vK0vRhksRplp41PJK670BGBMRh13X5NKTIi5weeKU53XBOF8OPmaoyga7WOs3DymsycHEUBwoIknbu+Hv0HmyTv6EnvCE35Zgkt6t+bS3q09x6+qgsPhxuVSUBTNp30JwoVsd3YJAG2iz7zHhlp8CM1ejC7Sd9h9U8ko20+QXxD+Bv/z9h6qORBnRBvMB7ehqyg+Zdn4mJqUA7uz7OetPo1JJ+tICe/C2qN/UOG6MPZJEOrSPMLKQpOTVI0r+rdlRM/WlFY40OtlAs0107sqbuX0G2ghZFnChANJU1BkA05VL26CBaEBZFXlxsuSuPnS9uB2gKxH0ZuRteM97NpGBvD/7h2IrdKFqmoEWYyYdNJ5DdYKwvkkaxpDurWib3IMZRVO9DqJQH8DRp2E260SYNTxxG19sFe7qXa6sfob8TPoaiIvZ0mvlzEoVUioKDo/HO7mkZRUEM7GtswiIoL9CPQ/83wwrqw/kMxWJGvzGJZSXF1CcVUJXcI6nff3ckQnoC/LJ2D3asq6jwa57l4uJqNMq0gjO/ba6ZlsPe/1agypEV3YkL+ZX3JWckX7ehKbC0ILJ4IwgofqVjHJEGU9nvT2QgrAmHVOKNxP2aovcJcXYIxsT9Cga3GZI3CqLb8LpyA0BoOsYnIUUbZyPo4je9EFhGLtfzW6qEQqqbm5VlUVAxDqf3yKSRGAEVo67dhwpYjA4z8ia4fgqmrNEF2rSYfVdOx68icCMBadA9f+TZT88Q1qtR2/9ukE9R1LpRyE6BgmtDSqprE1q4gubULO/DW2fNTcvejb9242syLtKc7AbPAjzO/M9+OsSTJVrVOwZKzDnL2Vqnbp9RZtG2dm1YYyikpchIW0/KmdzXozKeFdWJ6zkqHxAwkwNGw2LUFoCcRwJOGiYJIVnNuXkT//KRxH9qFUlFKVtZHcDx5BLspAdw5mdBKEC51OJ2MoP8jR9x6mcu/vKBWlOHOzKFz4LFXrv8Yku5q6ioLQ4vnLDsp+fJOi7+biKjyEUlGCfevPHH3v75hdxTST36OCcMYyDpVhq3SREBt0RuU1NJzblyH5WZEjmsdQpHKHjSMVucQHxjZaUEj1t+KMSsCcvQ1D8dF6y8VGmTAZJbbsrmiUejWGHpFpqJrKDweWN3VVBOG8EEEY4aJgUCspXTm/jjUaxUvfwE+rbPQ6CUJLY9IqKV76Jmi+j+LL//gGoyLakSD8GZIEkr2QqowNPus0l4PSXz7GJF84PVSFi8OGPQUEmA3Ehp9Zjwb3gY2oRdno23ZHkpvHT5UdRXsw6f2INEc06vs6ItuiBIYRuHMFuqq6gyw6nUTbWDPb9lbgPocTZDQlf4OZ7lHd+OXQSvIqC5q6OoJwzjWPM5sgnEeSBO6So3X+cARQbMXgFMm/BOF0JHcVruIj9a535GYiy+IxvSCcLb1eR+U+31mYalVlbkKv+c7CJAjNlapqrNuVR1J88Bn1IFFy9+HasQw5OhE5pHlMS11UXcKRiqO0scYhS4380+nYsCRNlgnY9jOS21lnsQ5tzVRVq+zKuHDuZ3tEdiPAEMC83QvF5BzCBUcEYYSLwummNpQa+6IqCC3Q6dqJpGv5Y9EFoalJ+lMkLtXpABHoFFqO7fuLKbc76dI29JTlNMWFa89vODYsRA6JRd+m/hwojUnTNDbnbyPAaCGqkXvBeOqgN1LZLh2dw07gtp+RFN+hv9YAPa0ijfy+tfyCCVjoZT3D4gextzSTFYfXNHV1BOGcEr88hQuepoEuKKreG1tDeByqSPolCKel6MyYWiXWvVLWYYxqJxLwCsKf4HIp+Cf2qXe9pcsgXLK5EWskCH/OL5sPExliJjrU97jV0FDL8nDt/oXqn+fiyliDLrYr+sQBzWYYUmbpAUqry0gIatekCYJVvwAq26WhtxUTuLXuHjGdEywUFLvIyK5qghqeH22scaSGd2XhvsXk2A43dXUE4ZxpHmc4QTjPqiV/wq+8l5OfIEoGP8LGTKcav6apmCC0IA5MhI6ehmzy91kXdtk0HJLvckEQGsZttGLtN95nuc4aTlD/a8RU1UKLkVdcyZZ9haR1CPcEMGoCL0dx7lxG9bLXqf7tPVwHNiIFt8KQdjn6+JRmMxtSubOCbUW7iAmIIsjU9NM/K5YQKtuno68oxrrpe+Rq7xwxEWEGIsMMrPij9IJ6IDIoti9h5lDmbn2fUkdZU1dHEM4JMUW1cFFwqxJydBdipj5HxeYfcRcfwRTfGf/OA6iUrBfUxUoQzhdV1ag0hBN98zNU7l2LI3s7uqBIAtMvxWkMxqmKuL4g/FnVqgFzt9H4d+iJbeP3qFXl+Cf1xdgmFTuWmu6dgtACLF59AIvZQHK7UDRNRTmyC3fm76jleWAwI4fGoW/bA8ka2Wx6vtRyqwprj67HpDPSPqhtU1fHQ7GEYO/QC//9mwhav4SKLoNwhdbkzpEkiW6dA/hxZQlb91SQ1jmwiWt7buhlPWPaXcr8vV/x6ua3uT99GoHGgKauliD8KSIII1w0nIoOpy4UQ99JmDQVBR02typuaAWhAVRVw0YA+s6XYuk8Ak3SUeFSoe6814IgnIUq1YjkH4vf0KlIx65XFW4VENcroWU4mGdjzfZchveIhYIMqnf9gmYvRg6OwdBpCFJQDFIzTeSuqhrrcjdQ6aokLSIFnaRr6ip5Uf0CsHfsg/ngNgK3/kh162Qq23YDWUd4iJF2cX4sX1tKQmszgZYL46deoDGAcR0uZ+G+b3hh4+vc020qYeZT5xkShOaseYWdBaERuFwaDreE2y1+NQrC2XK7VRxuCadLtCNBOB80DZzieiW0QG5F5b0luwgL1NOp4Eec6xciGUwYUkZh6DwUOaRVsw3AKKrK77kbyLXn0zksEYuheQ6zrU3W64jpgF/OToLWf4u+rGYq5/SugcgyfL2sEOUCmbIaINQvhGs6XkW128F/17/MjqI9TV0lQThrIggjCIIgCIIgCMKfpmkan3y3nZx8G8OUlcjV5Rg6Da0JvgQ0754LVa4qVhxezRF7Hl3Ckgg1hTR1lU5NknFGtsfesTeSpmLd9B0Be9ZgxkH/7kEcynXw3YqiC2rIfYhfEBOTxhHuF8ZrW97h413zsTkrTv9CQWhmLow+aoIgCIIgCIIgNBlnWSGffrWGX49YGOa/l9iEDshRHZttr5daiqqyvyybHcV7kJHoFtEVq7Hl5FNRzVbsHXtjLDqEKTcTY14Wfq060a9rAmt22HE4VcYMDcfPdGE8ezfrzYxNGM22ol2sPvI7G/O3MCRuAINj+xHiF9zU1ROEMyKCMIIgCIIgCIIgNJhaVY4rZxtbN+/i6+xgjirBDI8uIa1LTyS9oamrVy9N0yh1lHG4IpcD5Tk43NVEB0TRztoag9x8610vScYZ3hpXcAzGggP4HdlDuraTwIhOLM+J5815h+jfPZjkxIALIhgjSRKp4V3oGNyODXlb+CVnJT9m/0JSSAe6RSSTFJJApH9Es5lpSxBOJmmayEp6Pmia1uDufzqdjKJceOO+xX61LI21Xzpd490EnE17bMku1GOzqVwMn2djtcfm1BYvhu+1LmK/m7/GbI+SJJ3yc1HspVRsXY7qrEJzVqNU2XDZSvg5x4+dtiBylWCK1eMz1VzaAVoFNX0iW7uzkuLqUlRNQ1UV3JqC0+3GqTqpclWjnZDk2k/vR5h/MCbZ2KD3kGQJrZmcz04maQrG8lJMtmIqVBNrnB0pPfY96SSVGHMlQX4uLEaV+GAHsT1iUSyNMw23rJNRz3FbdChOdhTsZUf+Xlyqy7NcJ8lEBUQQag7GagrE32DGT2/CpDOi1+kZ1Lo3Yf6nHnbWmPerwsVDBGEEQRAEQRAEQfCR/9VLVGxf4bWsWLHwr7JrmqhGwvlwS8wi5sWbm7oaja57TDIzB9/T1NUQLkIiCCMIgiAIgiAIgiAIgtAIRP8qQRAEQRAEQRAEQRCERiCCMIIgCIIgCIIgCIIgCI1ABGEEQRAEQRAEQRAEQRAagQjCCIIgCIIgCIIgCIIgNAIRhBEEQRAEQRAEQRAEQWgEIggjCIIgCIIgCIIgCILQCEQQRhAEQRAEQRAEQRAEoRGIIIwgCIIgCIIgCIIgCEIjEEEYQRAEQRAEQRAEQRCERiCCMIIgCIIgCIIgCIIgCI1ABGEEQRAEQRAEQRAEQRAagQjCCIIgCIIgCIIgCIIgNAIRhGlEv/76K5MnT6Zv374kJyczYsQInnrqKWw2m1e5n3/+mauuuoqUlBRGjRrFggULmqjGDWe32xk8eDBJSUls27bNa938+fMZNWoUKSkpXHXVVSxfvryJanlmFi5cSFJSks9/zz77rFe5lrZfAIsWLWLcuHGkpKTQp08fbrvtNqqrqz3rW/IxeDHIzs5m1qxZjB07li5dunDFFVf4lJkyZUqdx29mZmYT1Lj5+u6777jrrrsYPHgwaWlpjB07li+++AJN07zKtcR2fjE5XZs4dOhQne0hKSmJlJSU05a79tprG3uXzsi5PH5tNhv/+Mc/6N27N+np6dx3333k5+c31q40yOn2u6KigldeeYUJEybQs2dP+vfvz5133smePXu8ttPSvu8TNcV3v3HjRiZOnEhqairDhg3jzTff9Hm/lubP3rdejJ/dubiHdDqd/Pe//2XAgAGkpaVxyy23kJWV5VMuMzOTW265hbS0NAYMGMAzzzyD0+k8r/snCI1B39QVuJiUlpaSmprKlClTCA4OZt++fbzyyivs27ePd999F4D169czffp0JkyYwD/+8Q/Wrl3Lo48+isVi4bLLLmviPTi91157DUVRfJZ/++23PP7449x555307duXJUuWMH36dD755BPS0tIav6IN8PbbbxMYGOj5OyoqyvPvlrhfr7/+Om+99RZ33nknaWlplJSUsGbNGs/31tKPwYvBvn37+PXXX+nWrRuqqtZ7I9e9e3cefvhhr2VxcXGNUcUW4/333yc2NpaZM2cSEhLC6tWrefzxx8nNzWX69OlAy2znF5vTtYnIyEg+++wzr2WapnHbbbfRt29fn+09+OCD9OnTx/O3xWI5PxX/k87l8TtjxgwyMjJ44oknMJlMvPjii9x+++0sWLAAvb553S6ebr+PHDnCZ599xjXXXMOMGTNwOBy8++67TJw4kQULFpCQkOC1vZbyfZ+osb/77Oxspk6dyoABA5gxYwZ79uzh2WefRafTMXXq1Kb4CM6JP3vferF9dufqHnL27NksWbKEmTNnEhUVxdy5c7n55pv59ttvPffcZWVl3HTTTbRt25ZXXnmFvLw8nn76aaqrq5k1a1aT7L8gnDOa0KQ+++wzLTExUcvNzdU0TdNuvfVWbeLEiV5lHnzwQW306NFNUb0GycjI0NLS0rRPP/1US0xM1LZu3epZd+mll2oPPvigV/mJEydqt912W2NX84wtWLBAS0xM1IqKiuot09L2KzMzU+vSpYv2yy+/1FumJR+DFwtFUTz/fvjhh7UxY8b4lJk8ebJ2xx13NGa1WqS62vdjjz2mde/e3fM5t7R2fjE6kzZxsrVr12qJiYnakiVLPMtycnK0xMRE7bvvvjsv9TzXztXxu3HjRi0xMVH77bffPMsyMzO1pKQk7dtvvz1PtT97p9tvu92uVVZWeq2vqKjQevfurT355JOeZS3t+z5RY3/3jz/+uDZs2DDN4XB4lj333HNaz549vZa1JH/2vvVi++zO1T3k0aNHtc6dO2vz5s3zLCspKdHS0tK0N99807Ns7ty5WlpamlZSUuJZNm/ePK1z586e302C0FKJ4UhNLDg4GACXy4XT6WTdunU+vQ0uv/xyMjMzOXToUBPU8MzNnj2bSZMm0a5dO6/lOTk5HDhwgNGjR3stv/zyy1mzZk2L7VbYEvdr4cKFxMXFMWTIkDrXt/Rj8GIhy+LUfa6Ehob6LOvcuTMVFRVUVla2yHZ+MTqbNvHNN98QEBDA8OHDz0ONGse5On5XrFiB1WplwIABnjLt27enc+fOrFix4vzuxFk43X77+/tjNpu91lssFlq3bt1sh1g1VGN/9ytWrGDEiBEYjUavbZWXl7Np06ZzvXuN4s/et15sn925uodcuXIlqqp6lQsODmbAgAE+n1u/fv08v5UARo8ejaqqrFq16hzumSA0PnEn3wQURcHhcLBjxw7mzJnD8OHDiYuL4+DBg7hcLtq3b+9VvrbbbF1jJZuLpUuXsnfvXu655x6fdbX1Pvkil5CQgMvlIicnp1HqeLauuOIKOnfuzIgRI3jjjTc8XS5b4n5t2bKFxMREXnvtNfr160dycjKTJk1iy5YtAC36GBR8/f7776SlpZGSksLkyZP5448/mrpKLcKGDRuIiooiICCgRbZz4fRcLhc//PADl1xyCSaTyWf9E088QefOnenXrx+PPfYYpaWljV/Js3Q2x29WVhbt2rVDkiSvcu3bt28x5/0T97su5eXl7Nu3z+f6Bi37+z7R+fruKysrOXr0qM9n1759eyRJajHHyInOxX3rxfbZnat7yKysLMLCwggKCvIpd+LnkZWV5bMtq9VKREREi/rcBKEuzWuQ70Vi2LBh5OXlATBo0CCee+45oGbsI9ScYE5U+3ft+uamqqqKp59+mgceeKDOm5+Wul8RERHce++9dOvWDUmS+Pnnn3nxxRfJy8tj1qxZLXK/CgoK2L59O3v37uWf//wnZrOZuXPncuutt/LDDz+0yH0S6tarVy/Gjh1L27Ztyc/P55133uGWW27ho48+Ij09vamr12ytX7+eJUuWeHLpiDZxYVqxYgWlpaU+CXyNRiPXXXcdAwcOxGq1smXLFubOncv27duZP38+BoOhiWp8Zs72+C0vL/fKfVYrKCiI7du3n88qnxMn73dd/t//+39IksR1113nWdbSv+8Tnc/vvnYCiZO3ZTQaMZvNLe48eK7uWy+2z+5c3UPW97lZrVavz6O8vNxnW1Dz+bakz00Q6iKCME3gzTffpKqqioyMDF5//XXuvPNO3nvvvaau1ll7/fXXCQsL45prrmnqqpxTgwYNYtCgQZ6/Bw4ciMlk4oMPPuDOO+9swpqdPU3TqKys5KWXXqJTp04AdOvWjeHDh/Pxxx8zcODAJq6hcK7cd999Xn8PHTqUK664gtdee4233nqriWrVvOXm5vLAAw/Qp08fbrzxxqaujnAeLV68mPDwcPr16+e1PDIykieeeMLzd+/evenYsSPTpk3jxx9/5PLLL2/kmp65i/X4PZP9XrBgAZ9//jlPP/000dHRnuUt+fs+0cX63Z+tC/W+9XwT95CCcO6I4UhNoFOnTqSnp/OXv/yF1157jXXr1vHjjz96uuWdPGV1eXk5gE+3vebg8OHDvPvuu9x3333YbDbKy8uprKwEarpg2u32Frlf9Rk9ejSKorBr164WuV9Wq5Xg4GDPxRNqxuF26dKFjIyMFrlPwpnx9/dnyJAh7Nixo6mr0iyVl5dz++23ExwczCuvvOLJMSLaxIXHbrezfPlyRo8ejU6nO235IUOG4O/v36zbzp89fq1WKxUVFT7bLSsra9bHeH37faJff/2VWbNmcffddzN+/PjTbrMlfN8naozvvrbXwsnbcjqdVFVVNetj5GTn8r71YvvsztU9ZH2fW3l5udfnYbVafbYFzf+8JAhnQgRhmlhSUhIGg4GDBw/SunVrDAaDzzjH2r/rGsfc1A4dOoTL5eKOO+6gV69e9OrVy9NL5MYbb+SWW27x1Luu/TIYDMTHxzd6vc+FlrhfHTp0qHedw+FokcegIPxZ1dXVTJs2DZvN5jMlfUts58Kp/fjjj1RXV3PllVc2dVXOiXNx/LZv3579+/f7TO29f//+ZnveP9V+19q8eTP3338/48aN4/7772+CWp5fjfXd+/v7ExMT47Ot2tc112OkLufyvvVi++zO1T1k+/btKSws9BlSdHIOmLpyUtlsNgoKClrU5yYIdRFBmCa2ZcsWXC4XcXFxGI1G+vTpw/fff+9VZsmSJSQkJBAXF9dEtaxf586d+fDDD73+e+SRRwD417/+xT//+U/i4+Np27YtS5cu9XrtkiVL6Nevn1e2+OZuyZIl6HQ6unTp0iL3a9iwYZSWlrJr1y7PspKSEnbs2EHXrl1b5DEonJnKykp++eUXUlJSmroqzYrb7WbGjBlkZWXx9ttvExUV5bW+JbZz4dS++eYbWrduTbdu3c6o/PLly6msrGyWbedcHb+DBw+mrKyMNWvWeMrs37+fnTt3Mnjw4PO/Iw10uv0GyMjIYNq0afTt25d//etfZ7zt5vx9n6ixv/vBgwezbNkyXC6X17asVmuLyjN2Lu9bL7bP7lzdQw4cOBBZlvnhhx88ZcrKyli5cqXP57Z69WpPTxqoSagsy7LXjFSC0BKJnDCNaPr06SQnJ5OUlISfnx+7d+/mnXfeISkpiZEjRwJw1113ceONN/LEE08wevRo1q1bxzfffMMLL7zQxLWvm9VqpU+fPnWu69q1K127dgXg3nvv5aGHHqJ169b06dOHJUuWsHXrVj7++OPGrG6DTJ06lT59+pCUlATAsmXL+Pzzz7nxxhuJiIgAWt5+jRw5kpSUFO677z4eeOABTCYTb775Jkajkeuvvx5oecfgxaiqqopff/0VqOlaXVFR4blZ7N27t+em/JJLLiE2Npb8/Hzee+89CgoKeOmll5qy6s3Ov/71L5YvX87MmTOpqKhg8+bNnnVdunTBaDS2uHZ+MTpdm6idzre4uJg1a9Zw++2317mdp59+GkmSSEtLw2q1snXrVt544w2Sk5M91+nm5Fwdv+np6QwcOJB//OMfPPzww5hMJl544QWSkpK49NJLm2DPTu10+22z2Zg6dSomk4mbbrrJK7lwQECA54l+S/u+T9TY3/3UqVNZvHgxf/3rX7nuuuvYu3cv77zzDg888ECLCkafy/vWi+2zO1f3kNHR0UyYMIFnnnkGWZaJiorijTfeIDAwkEmTJnnKTZo0iY8++oh77rmHadOmkZeXxzPPPMOkSZPqDLwKQksiaSf3oRPOmzfffJMlS5Zw8OBBNE0jNjaWSy65hKlTp3plZ1+2bBkvvvgi+/fvp1WrVtxxxx1MmDChCWveMOvWrePGG2/kiy++8HqSNH/+fN566y2OHDlCu3btePDBBxk2bFgT1vTUZs+ezW+//UZubi6qqtK2bVv+8pe/MGXKFK/pCFvafhUXF/PUU0+xfPlyXC4XPXv25JFHHvHqZtrSj8EL3aFDhxgxYkSd6z788EOio6N58skn2bNnD6WlpZjNZtLT05k+fTqpqamNXNvmbfjw4Rw+fLjOdcuWLfM8uWtp7fxic7o2Ufuj65NPPuHJJ5/0PJk92fz58/n000/Jzs6murqaqKgoRo4cyX333Vfv1MdN6Vwevzabjaeeeooff/wRt9vNwIEDeeyxx5rlj53T7ffhw4frTVDbu3dvPvroI6Dlfd8naorvfuPGjTz99NPs2rWL0NBQbrjhBm6//XafKZpbmj9z33qxfXbn6h7S6XTywgsv8NVXX2G32+nevTuPPfaYz3k5MzOTf//732zatAmLxcLYsWNbXPBKEOoigjCCIAiCIAiCIAiCIAiNQOSEEQRBEARBEARBEARBaAQiCCMIgiAIgiAIgiAIgtAIRBBGEARBEARBEARBEAShEYggjCAIgiAIgiAIgiAIQiMQQRhBEARBEARBEARBEIRGIIIwgiAIgiAIgiAIgiAIjUAEYQRBEARBEARBEARBEBqBCMJchF555RWSkpIoLi4+Zbnhw4czc+ZMz9/r1q0jKSmJdevWeZbNnDmT4cOHN+j9z+Y1TWHhwoUkJSWxbdu2pq6KcBFo6nZZnylTpjBlypRzsq2zkZSUxJNPPtlk7y+0TFu3bmXSpEmkpaWRlJTE3XffTVJSkleZk9tSS9bU7fRMnel5ThBOpbGOowvpHCEIQvOib+oKCEJT++STTzCbzVx99dVNXRVBuCht3LiRVatWcdNNN2G1Wpu6OkIL53K5mDFjBkajkUceeQQ/Pz8RTG9kc+fOpUOHDowcObKpqyIIgiAIzY4Iwgj1Wrp0KZIkNXU1zrtPP/2UkJAQEYQRWoQLsV1u2rSJV199lfHjx4sgjPCnHTx4kMOHDzN79mz+8pe/eJad7EJsS83FG2+8wahRo0QQRhAEQRDqIIIwQr2MRmNTV0EQhJOIdikIp1Y7RCEwMPCU5Zp7W3K73aiq2uzrKQiCIAhCw4icMBexkpIS7r//frp3706fPn2YPXs2DofDs74xx8Kqqsr777/PmDFjSElJoX///syaNYuysjKvcsOHD2fatGmsX7+eCRMmkJKSwogRI/jyyy99trl7924mT55MamoqgwcP5rXXXmPBggUkJSVx6NAhz/b27dvH77//TlJSEklJST7j6p1OJ0899RR9+/YlLS2Ne+65p8HjkGvHL+/fv5+HHnqIHj160LdvX1588UU0TePo0aPcdddddO/enQEDBvDuu+96vb4278eSJUt49dVXGTRoEOnp6dx3333YbDacTif/+c9/6NevH+np6TzyyCM4nc4G1VFoHpqyXX722WeMHDmS1NRUJkyYwPr16+ss53Q6efnll7nkkktITk5myJAhPPPMMz7HXG0+l6+//ppRo0aRkpLC1VdfzR9//OEp88orr/DMM88AMGLECE87rG2jtX766SeuuOIKkpOTGTNmDCtWrGjQvh06dIikpCTeeecdPvnkE0aMGEG3bt249dZbOXr0KJqmMWfOHAYPHkxqaip33XUXpaWlXtuoPf+sW7eOq6++mtTUVK688kpPPp4ffviBK6+80rOfO3fubFAdhT9v5syZTJ48GYD777+/znN6rZPbUm0esD/++INZs2bRp08funfvzt///vd6r0UrV65k7NixpKSkcPnll/PDDz/4vE95eTn/+c9/GDJkCMnJyVxyySW8+eabqKrqKXPi8fn+++8zcuRIUlJSyMzMPOvPoqHt9EzaWO2xn5KSwsiRI5k3b57n+nbi9iorK1m0aJGnPZ98zrLZbMycOZOePXvSo0cPHnnkEaqqqhq0fzNnziQ9PZ0jR44wbdo00tPTGTRoEJ988gkAe/bs4cYbbyQtLY1hw4axePFir9fXft/r169n9uzZ9O3bl549ezJr1iycTifl5eX8/e9/p1evXvTq1YtnnnkGTdMaVEfh/Drd9dLtdjNnzhxGjhxJcnIyw4cP5/nnn/dpA5qm8dprrzF48GC6devGlClT2Ldvn1eZnJwckpKSeP/9933qsXHjRpKSkvjmm2/OqN7n4nr0008/cccddzBw4ECSk5MZOXIkc+bMQVEUr3IHDhzg3nvvZcCAAaSkpDB48GAeeOABbDabp8yqVau47rrr6NmzJ+np6YwaNYrnn3/+jPallqqqvPLKKwwcONDzGWZkZIi8OoJQD9ET5iI2Y8YMYmNj+etf/8rmzZv56KOPKC8v9/wgakyzZs1i0aJFXH311UyZMoVDhw7xySefsHPnTj799FMMBoOnbHZ2Nvfffz8TJkxg/PjxLFiwgJkzZ9K1a1c6duwIQF5eHjfddBMAd9xxB/7+/syfP9/nieI//vEP/v3vf+Pv78+dd94JQHh4uFeZ2bNnY7VamT59OocPH+aDDz7gySef5MUXX2zwfj7wwAMkJCTw17/+lV9//ZXXX3+d4OBg5s2bR9++fXnooYdYvHgx//3vf0lJSaFXr15er3/zzTfx8/PjjjvuIDs7m48//hi9Xo8kSZSXlzN9+nS2bNnCwoULiY2NZfr06Q2uo9C0mqpdzp8/n1mzZpGens5NN91ETk4Od911F0FBQcTExHjKqarKXXfdxYYNG7j22mtJSEhg7969fPDBBxw4cIDXXnvNa7t//PEHS5YsYcqUKRiNRj799FNuu+025s+fT2JiIpdccgkHDhzgm2++4ZFHHiEkJASA0NBQzzY2bNjADz/8wPXXX4/FYuGjjz7ivvvuY/ny5Z7yZ2rx4sW4XC6mTJlCaWkpb7/9NjNmzKBv376sW7eO22+/3dO2/vvf//LUU095vT47O5u//vWvTJo0iauuuop3332XO++8k3/961+88MILXHfddUBNW50xYwZLly5FlsXzjsYyceJEoqKimDt3LlOmTCElJYXw8HA2btx4xtt48sknPef8/fv38+mnn3LkyBE++ugjr+FLBw4c4IEHHmDSpEmea9H999/P22+/zYABAwCoqqpi8uTJ5OXlMWnSJGJiYti0aRPPP/88BQUFPProo17vvXDhQhwOB9deey1Go5GgoKCz+hwa2k7PpI3t3LmT2267jYiICO69915UVWXOnDlebRXgmWee4bHHHiM1NZVrr70WgNatW3uVmTFjBnFxcTz44IPs3LmT+fPnExoayt/+9rcG7aeiKNx+++307NnTc/188sknMZvNvPDCC1x55ZVceumlzJs3j4cffpi0tDTi4+O9tjF79mzCw8O599572bJlC5999hmBgYFs2rSJmJgYHnjgAVasWME777xDYmIi48aNa1AdhfPndNfLxx57jEWLFjFq1ChuueUWtm7dyhtvvEFmZiZz5szxbOell17i9ddfZ8iQIQwZMoQdO3Zw66234nK5PGXi4+Pp3r07X3/9NTfffLNXPRYvXozFYmHEiBENqv+fuR4tWrQIf39/brnlFvz9/Vm7di0vv/wyFRUVPPzww0BNIHbq1Kk4nU4mT55MeHg4eXl5/PLLL5SXlxMYGMi+ffuYNm0aSUlJ3HfffRiNRrKzsxt0zgR47rnnePvttxk2bBiDBg1i9+7dTJ061SsoJgjCCTThovPyyy9riYmJ2p133um1/IknntASExO1Xbt2aZqmacOGDdMefvhhz/q1a9dqiYmJ2tq1az3LHn74YW3YsGENev+TX/PHH39oiYmJ2tdff+1VbsWKFT7Lhw0bpiUmJmp//PGHZ1lRUZGWnJysPf30055l//73v7WkpCRt586dnmUlJSVa7969tcTERC0nJ8ezfMyYMdrkyZN96rlgwQItMTFRu/nmmzVVVT3L/+///k/r3LmzVl5efsb7XPuZP/74455lbrdbGzx4sJaUlKS98cYbnuVlZWVaampqnZ/9FVdcoTmdTs/yBx98UEtKStJuu+02r/ebOHFig78XoWk1Zbt0Op1av379tLFjx2oOh8Oz/LPPPtMSExO92seXX36pderUyasNapqmffrpp1piYqK2YcMGz7LExEQtMTFR27Ztm2fZ4cOHtZSUFO2ee+7xLHv77bd92uWJ2+jatauWnZ3tWbZr1y4tMTFR++ijj854H3NycrTExEStb9++Xm33ueee0xITE7WrrrpKc7lcnuUPPvig1rVrV6/Po/b8s3HjRs+y3377TUtMTNRSU1O1w4cPe5bPmzfP53sRGkdtm/juu+88y2rb14lObku15/zx48d7nWffeustLTExUfvpp5+8XpuYmKh9//33nmU2m00bMGCANm7cOM+yOXPmaGlpadr+/fu93vvZZ5/VOnfurB05ckTTtOPHZ/fu3bWioqIG7/PkyZP/VDs9kzY2bdo0rVu3blpubq5n2YEDB7QuXbr4fLZpaWlen22t2u/hkUce8Vp+zz33aL17927QPj/88MNaYmKiNnfuXM+y2utnUlKS9u2333qWZ2ZmaomJidrLL7/sWVb7fd96661e1/iJEydqSUlJ2qxZszzLaq/Xdd0rCI3vTK6Xtcfwo48+6lXm6aef1hITE7U1a9ZomlZzD9m1a1ftjjvu8DoOnn/+eS0xMdHrOK49r2dkZHiWOZ1OrU+fPnUe7/U5F9ejqqoqn+0+/vjjWrdu3Tzldu7c6XMuPNl7772nJSYmntV5p1ZBQYHWpUsX7e677/Za/sorr/h8hoIg1BCP5y5iN9xwg9fftV24G9rN/89aunQpgYGBDBgwgOLiYs9/Xbt2xd/f32vqXYAOHTrQs2dPz9+hoaG0a9eOnJwcz7LffvuNtLQ0Onfu7FkWHBzMlVde2eD6XXvttV5PP3v27ImiKBw+fLjB25owYYLn3zqdjuTkZDRN81putVp99qfW2LFjvXoFpaamomka11xzjVe51NRUjh49itvtbnAdhabVFO1y+/btFBUVMWnSJK/eYuPHj/fJq7F06VISEhJo3769V3vt27cvgE97TU9PJzk52fN3q1atGDFiBCtXrvTpNl2f/v37ez1J79SpEwEBAXW2kdO57LLLvPYpNTUVgKuuugq9Xu+13OVykZeX5/X6Dh06kJ6e7vm7W7duAPTt25dWrVr5LD+bOgpNa+LEiV7n2euuuw69Xs+vv/7qVS4yMpJLLrnE83dAQADjxo1j586dFBQUADXtpUePHlitVq/20r9/fxRF8RqaB3DppZf69Cw5Gw1tp6drY4qisGbNGkaMGEFUVJSnXJs2bRg0aFCD6zdp0iSvv3v27ElpaSkVFRUN3lZt8mU4fv00m82MHj3as7x9+/ZYrdY62+OECRO8rvG119W6rteiPTcvp7pe1rbXW265xavMrbfeCuBZv3r1alwuF5MnT/Y6Dmp7U59o9OjRmEwmr6FtK1eupKSkhKuuuqrB9f8z1yM/Pz/PvysqKiguLqZnz55UVVWRlZUF1JyTautY33C/2mT4y5Yt8xoi2RBr1qzB7XZz/fXXey2v/T4EQfAlhiNdxNq0aeP1d+vWrZFl2ScXw/mWnZ2NzWajX79+da4vKiry+vvEoRG1goKCvMbsHz58mLS0NJ9yJ3eJPhMn/rCC4xes8vLyP72twMBATCaTz013YGCgz/jf+l4Pvp9JYGAgqqpis9kaPFxDaFpN0S6PHDlS53sbDAafrvvZ2dlkZmaecXs9eZsAbdu2paqqiuLiYiIiIk5bv/ra/Nm0wbrayqmWl5WVeX0G9ZWLjo72Wl5783s2dRSa1snHrMViISIiwifw3qZNG5/Zldq2bQvUXIMiIiLIzs5mz5499baXk/OLxcXF/cna12hoOz1dGysqKqK6urrO9lzXstOp77paVlbmaTtnor7rZ3R0tM93ExgYWGd7bMh19eTcQELTOt31UpZln/u+iIgIrFarpz3XXv9q226t0NBQn+GAVquVYcOG8c033zBjxgygZkhRVFSUJ8DZEH/merRv3z5efPFF1q5d6xO8rM33Eh8fzy233MJ7773H4sWL6dmzJ8OHD+eqq67ybPPyyy9n/vz5PPbYYzz33HP069ePSy65hMsuu+yMh9LWfoYnf9bBwcFnPaRSEC50IggjeDTVVJ2qqhIWFsazzz5b5/qTb7B0Ol1jVMujvouQdhYJ+uraVn37U9f266vLuayj0Lw0tyl0VVUlMTGRRx55pM71JwcjzoWGtJGz3daZtqH6Xn8u6yhcOFRVZcCAAdx22211rj/5h9+JT7f/7Ps2pJ029vF7rq5Z56I9NvS6KjRfdV0vz/U1dNy4cSxdupSNGzeSmJjIzz//zHXXXXdWx8vZXo/Ky8uZPHkyAQEB3HfffbRu3RqTycSOHTt49tlnvXq0zJw5k/Hjx7Ns2TJWrVrF7NmzeeONN/j888+Jjo7Gz8+PTz75hHXr1vHLL7/w22+/sWTJEj777DPefffdRr/nFoSLhQjCXMSys7O9nvBmZ2ejquo5exJ3plq3bs2aNWvo3r37ObsBjY2NJTs722f5wYMHfZY1tx+5wsWtKdpl7ZPg7OxsryfnLpeLQ4cO0alTJ8+y1q1bs3v3bvr163dGbaeudnjgwAHMZrMnwCraoNCcZGdnez3VttvtFBQUMHjwYJ9ymqb5JOuFmmsQ1LSXyspK+vfvf/4rfoKGttPTCQsLw2Qy1dme61omCI3hVNdLTdNQVZXs7GwSEhI8ZQoLCykvL/e00drr34EDB7y2VVxcXGfPp0GDBhEaGsrixYvp1q0bVVVVjB079nztYp1+//13SktLefXVV70mcKivx2ztLGV33303Gzdu5LrrruPTTz/lgQceAGqCPv369aNfv3488sgjzJ07lxdeeIF169ad0bmr9jM8ePCg12dYUlIieo8JQj1EmP8iVjuNY62PP/4YwOdG83wbPXo0iqL4zNYANdMLnk13/oEDB7J582Z27drlWVZaWuozRSWA2WwWQwaEZqMp2mVycjKhoaHMmzfPa+rORYsW+bSN0aNHk5eXx+eff+6znerqaiorK72Wbdq0iR07dnj+Pnr0KMuWLWPAgAGeJ2xmsxnAa8pMQWgqn332mdesKJ9++ilut9unDebn5/Pjjz96/q6oqODLL7+kc+fOnmF2o0ePZtOmTfz2228+71NeXn7e8nY1tJ2ejk6no3///ixbtswrL0V2dnad++bv7y+uq8J5d6rr5ZAhQwD44IMPvMq89957AJ71/fv3x2Aw8PHHH3v1lDr5dbX0ej1jxozhu+++Y+HChSQmJno9qGgMtT1lTqyv0+nkf//7n1e5iooKn3NMYmIisix7rvV1DX2vzad48lTe9enXrx96vZ5PP/3Ua/nJ348gCMeJnjAXsUOHDnHnnXcyaNAgNm/ezNdff80VV1zR6BeT3r17M3HiRN544w127drFgAEDMBgMHDhwgKVLl/Loo49y2WWXNWibt912G19//TW33HILkydP9kxRHRMTQ2lpqdeTwa5du/Lpp5/y2muv0aZNG0JDQ+sdRy8I51tTtEuDwcCMGTOYNWsWN910E5dffjmHDh1i4cKFPjlhxo4dy3fffcc///lP1q1bR/fu3VEUhaysLJYuXcrbb79NSkqKp3xiYiJTp071mqIa4N577/WU6dq1KwAvvPACl19+OQaDgWHDhuHv73/e9lkQ6uNyubj55psZPXo0+/fv53//+x89evTwmX62bdu2PProo2zbto2wsDAWLFhAUVGR1zSyU6dO5eeff+bOO+9k/PjxdO3alaqqKvbu3cv333/PsmXLzkki3pM1tJ2eienTp7Ny5Uquu+46rrvuOlRV5eOPP6Zjx45eDzygpk2vWbOG9957j8jISOLi4jzJqgXhXDnd9XL8+PF89tlnlJeX06tXL7Zt28aiRYsYOXKkp7dbaGgot956K2+88QbTpk1jyJAh7Ny5kxUrVtSbU2/cuHF89NFHrFu3joceeqjR9rdWeno6QUFBzJw5kylTpiBJEl999ZXPcLu1a9fy5JNPctlll9G2bVsUReGrr75Cp9MxatQoAObMmcP69esZMmQIsbGxFBUV8b///Y/o6Gh69OhxRvUJDw/nxhtv5N133/V8H3v27PF8hqK3qyD4EkGYi9iLL77ISy+9xHPPPYder2fy5Mn8/e9/b5K6PPnkkyQnJzNv3jxeeOEFdDodsbGxXHXVVXTv3r3B24uJieHDDz/0jH0NDQ3lhhtuwGw2M3v2bEwmk6fsPffcw5EjR3j77bex2+307t1bBGGEJtNU7XLixIkoisI777zDM888Q2JiIq+//jovvfSSVzlZlpkzZw7vv/8+X331FT/++CNms5m4uDimTJlCu3btvMr36tWLtLQ05syZw5EjR+jQoQNPPfWUV1ApNTWV+++/n3nz5vHbb7+hqirLli0TQRihScyaNYvFixfz8ssv43K5GDNmDI899lidSXgff/xxnnnmGfbv309cXBwvvPCC12xBZrOZjz76iDfeeIOlS5fy5ZdfEhAQQNu2bbn33nt9Zh87VxraTs9EcnIyb731Fs888wwvvfQSMTEx3HfffWRlZXlmY6k1c+ZMZs2axYsvvkh1dTXjx48XQRjhnDvd9XL27NnExcWxaNEifvrpJ8LDw5k2bRrTp0/32s6MGTMwGo3MmzePdevWkZqayrvvvsu0adPqfN/k5GQ6duxIZmbmWc2K9GeFhIQwd+5c/vvf//Liiy9itVq56qqr6NevH1OnTvWUS0pKYuDAgSxfvpy8vDzMZjNJSUm89dZbnskrhg8fzuHDh1mwYAElJSWEhITQu3fvBp+fHnroIfz8/Jg/fz5r1qwhLS2Nd955h+uvv95r1kVBEGpImsgaKFxE/vOf//DZZ5+xadMmkWxMEM6zpKQkbrjhBmbNmtXUVRGE01q4cCGPPPIIX3zxxWl7iQwfPpyOHTvyxhtvNFLtmq+7776bjIwMfvjhh6auiiA0mnHjxhEUFFTvsCUBTw+kGTNmcNdddzV1dQShWRE5YYQLVnV1tdffJSUlfP311/To0UMEYARBEAShgU6+rh44cIAVK1bQu3fvJqqRIDS+bdu2sWvXLsaNG9fUVWk2Tj43wPG8OuL8IAi+xHAk4ZwpLS31SmZ4Mp1Od17Gvtdn4sSJ9O7dm4SEBAoLC1mwYAEVFRXcfffd5+w97Hb7aRMchoaGiqCP0GSaW7s81xRFobi4+JRl/P39sVgsjVQjQTh3iouLURSl3vUGg4Hg4OBGq8/IkSMZP3488fHxHD58mHnz5mEwGOqdgvts2Gy2On/Qnag28bEgNKa9e/eyY8cO3n33XSIiIrj88su91l+I16MzPQctWbKERYsWMXjwYPz9/dm4cSPffPMNAwcOPOPcMoJwMRFBGOGcuffee/n999/rXR8bG8vPP//caPUZMmQI33//PZ9//jmSJNGlSxf+85//eE3n92e9++67vPrqq6css2zZskaf9lsQajW3dnmuHT161Cdh6smmT5/ulQhYEFqKCRMmcPjw4XrX9+7dm48++qjR6jNo0CC+/fZbCgoKMBqNpKWl8eCDD9K2bdtz9h7/+c9/WLRo0SnL7Nmz55y9nyCcqe+//545c+bQrl07nn/+ea/8gnBhXo/O9ByUlJSETqfz5FcMCwvjxhtvZMaMGY1XWUFoQUROGOGc2b59+ymnpDSZTBdcNDwnJ4ecnJxTlunRo4fPhVoQGsuF3i4dDgcbNmw4ZZn4+HifWZ4EoSXYsGEDDoej3vVWq5Xk5ORGrNH5l5GRQX5+/inL9O/fv5FqIwhn7kK8Hl2M5yBBaAwiCCMIgiAIgiAIgiAIgtAIRGJeQRAEQRAEQRAEQRCERiCCMIIgCIIgCIIgCIIgCI1ABGEEQRAEQRAEQRAEQRAagQjCCIIgCIIgCIIgCIIgNAIRhBEEQRAEQRAEQRAEQWgEIggjCIIgCIIgCIIgCILQCEQQRhAEQRAEQRAEQRAEoRGIIIwgCIIgCIIgCIIgCEIj+P+obz4ZJi/CygAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Lower-level tools for building figures" + ], + "metadata": { + "id": "2IVYnSNc7PQr" + } + }, + { + "cell_type": "code", + "source": [ + "g = sns.PairGrid(penguins, hue=\"species\", corner=True)\n", + "g.map_lower(sns.kdeplot, hue=None, levels=5, color=\".2\")\n", + "g.map_lower(sns.scatterplot, marker=\"+\")\n", + "g.map_diag(sns.histplot, element=\"step\", linewidth=0, kde=True)\n", + "g.add_legend(frameon=True)\n", + "g.legend.set_bbox_to_anchor((.61, .6))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 994 + }, + "id": "MWFBlC9J7KOb", + "outputId": "fb6f836e-a3f6-46bd-9aac-fcaf29905312" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+IAAAPRCAYAAAB59BJIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd83VX9x/HX947svdt0pHsvShd7lelAQQH9gSAgUragIIoKKkNBFChDEBAFGYLMMkuh0FKalg460pWmSZq9c29yc9f398dNbpM2bZP05iZt3s/HQ2nu/Y5zk1vI+37O+RzDNE0TEREREREREQkLS18PQERERERERGQgURAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwsvX1AI5UlZWNIbuWxWKQkhJLTY0Tv98M2XXD7Uh5HXDkvJa+eh3p6fFhu5eIiIiISH+jivhhwGIxMAwDi8Xo66EckiPldcCR81qOlNchIiIiInI4URAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcREREREREZEwUhAXERERERERCSMFcQkpr8+Pz+/v62GIiIiIiIj0W7a+HoAcGXaVNfLyku1sKazDMGDcsCS+MS+H8cOT+3poIiIiIiIi/YqCuByyzbtq+dsr63B7WyvhJmwqqGVTQS0nTBvMD+ePwW6z9u0gRURERERE+gkFcTkktY0tPPq/r3F7/UwemcIP548FEz7ILeKTNbtZuq6EsmonN31/OjabVkKIiIiIiIgoGckheXnJdpwuL8Mz47nuu1PITI4hMyWGi88Yx03fn0Z0pI2txfX87b/r8Hi1dlxERERERERBXHokb1cty78u5ctN5QCcNH0wO3Y3kLerNvg/m9XCeSeMxG6zkFdYx4uLt/XxqEVERERERPqegrj02KotlQCMGpxAZkpMp8cMTovlW8fkAPBhbhHL15eEa3giIiIiIiL9koK49EhTi5cNO6sBmDU+44DHjspO5Kw5wwB48vWvafH4en18IiIiIiIi/ZWCuPRI3q5avD6TjKRohmbEHfT4bx83gtSEKKrqXby7YlcYRigiIiIiItI/KYhLj2wpqgNgYk4yhmEc9PgIu5ULTh0NwKIvdtHk8vTm8ERERERERPotBXHptjpHC0UVDgDGDUvu8nlzJmYyPCsel9vH0nWlvTU8ERERERGRfk1BXLptdWuTtkGpMSTGRnT5PMMw+NYJowD4dF0Jpmn2yvhERERERET6MwVx6ba12wJBfNzQpG6fe9y0wUTYLZTXNJFf0hDikYmIiIiIiPR/CuLSLR6vj63F9QCMHJzQ7fNjouzMHBvost5WWRcRERERERlIFMSlW7YW1+Px+omLtpOaENWja8wclw7Amm2Vmp4uIiIiIiIDjq2vByCHl007awDIyYrvUrf0Nnm7arFaDeKrm4mwW7BYDMprm1mxsZzk+MhOzxk/vOuN4ERERERERA4XqohLt2wsCATx4VnxPb5GpN3K4NQYAArLG0MyLhERERERkcOFgrh0maPZQ2F5YNuy4Zk9D+IAw1rP36UgLiIiIiIiA4yCuHRZfkmgSVtmSgxx0fZDutawjDgAdlc5D3lcIiIiIiIihxMFcemy7bsD242N7kG39L1lpcRgGNDY5KGxyX3I1xMRERERETlcKIhLl+3YHaiIjxqSeMjXirBbSU+MBqBEVXERERERERlAFMSlS3x+P/mlbRXxQw/iAINaG7aV1zaH5HoiIiIiIiKHAwVx6ZLdlU5a3D6iI60MTosNyTXTkwIV8co6BXERERERERk4FMSlS3aUBKrhIwclYLF0ff/wAwkG8XpXSK4nIiIiIiJyOFAQly7ZVRYI4jmDDr1RW5v0pCgAGpxuWjy+kF1XRERERESkP1MQly7ZFaL9w9uLirAFt0Gr0vR0EREREREZIBTE5aC8Pj+7KwNBfFhmXEiv3VYV1/R0EREREREZKBTE5aDKqpvw+kyiIqykta7rDpW2LczUsE1ERERERAYKBXE5qF3ljQAMy4jDYoSmUVubPZ3TVREXEREREZGBQUFcDqqwvG1aeujWh7dJTQxMTa9tVBAXEREREZGBQUFcDqqwrSLeC0E8KS4CAKfLq87pIiIiIiIyICiIywGZpklxa6O2oRmhbdQGgc7p0RFWAOodLSG/voiIiIiISH+jIC4H1NjkwenyYgBZqTG9co+k+EgAah3uXrm+iIiIiIhIf6IgLgdUWu0EAmu5I+3WXrlHclwgiNc1qiIuIiIiIiJHPgVxOaCSqkAQH5wW22v32FMRVxAXEREREZEjn4K4HFBJVRMAg1N7L4irIi4iIiIiIgOJra8HIP1bSevU9EFpvbM+HPZUxOsOsSK+tXZHt88ZmzzqkO4pIiIiIiLSXaqIywG1BfFenZreuoVZQ5MHr8/fa/cRERERERHpDxTEZb+cLg/1rZ3Me3NqekykjQhb4K1Yr87pIiIiIiJyhFMQl/0qrQ6sD0+OjyQ6svdWMRiGQWJrVbzeqXXiIiIiIiJyZFMQl/2qqA0E8czk6F6/V0LsnunpvcE0TcqbKil1luE3Nf1dRERERET6jpq1yX5V1DYDkJHce43a2iTEtAZxZ+inprt9Ht7Z+QGFjcUApEal8I2Rp5MUmRjye4mIiIiIiByMKuKyX21BPCwV8V4M4kuKPqOwsRgLFuwWG9WuGl7b9jZNnuaQ30tERERERORgFMRlv8qDFfFwTk0PbRAvdZaTV7sNA4PvjvkGP5p4IUmRiTR6HCwu+hTTNEN6PxERERERkYNREJf9alsjHpap6b20RnxV+VoAJqSMJTtuELH2WM4eMR+rYSG/fhdflOaG9H4iIiIiIiIHoyAunXI0e3C6vABkJIVjarodgMYmN35/aKrUTo+TnfW7AJiZOS34eHp0KvMGzQbgte1vU9dSH5L7iYiIiIiIdIWCuHSqsi4wLT0xLoLICGuv3y82yo7FANMMfAgQCltqd2BiMig2k5So5A7PzciYQmZMOs1eF69sfSMk9xMREREREekKBXHpVHnb1mVhqIYDWCwG8TGhXSeeX18AwNikUfvez7Bw6rATsRgW1lZuYG3lhpDcU0RERERE5GAUxKVT4dy6rE1wnXgIOqe7vC5KHGUAjEzK6fSY9OhU5g87CYCXt/xPXdRFRERERCQstI+4kLerdp/HthcH1k0bRufP94a2deKhqIjvdpRhYpIcmURCRPx+jzsr51TWVKynormK5za/yE+m/AiLoc+nRERERESk9yhxSKfaqtJtVepw2FMRP/Q14sWOEgCGxA8+4HF2q51LJ12EzWLj66rNvLbtbfym/5DvLyIiIiIisj8K4tKptqp0Qkz4gnhcdOBejc2hqIiXAjAkbtBBjx2eMJQfjDsPgCXFn/Psxv/g9DQd8hhEREREREQ6o6npsg/TNGls3c+7bbp4OMS33stxiHuJu7wtVDZXAZAdd+CKeJs5g2bix+SFvP+yumIdW2q3c86I0zl28Gyslt7vGi8iIiIiIgOHKuKyjyaXF1/rXt5xYayIx0e3BvFD3L6sxBmohidHJhFr73qzuXmDjuaGGVcxKDYTh8fJS1v/xx9X/oVttfmHNB4REREREZH2FMRlH23T0uOi7VgtRtjuG9daEXe6vPh8PV+nXeosB2BwXFa3zx2dNIJfzrqR7489lzh7LOVNlTy09u+sqfi6x+MRERERERFpT0Fc9tHQNi09jI3aAGIibVhag7/D5e3xdcqbKgHIisno0flWi5UThxzD7+b9gpkZ0/Cbfp7d9J/gunMREREREZFDoTXiso9gx/Qwrg8HMAyD+Gg79U43jh5uYWaaJhVNgfXhGTHpBz1+a+2OAz5/zODZVLtqKWgo5KkN/+bCsd9hXMroHo1NREREREQEVBGXTvRFx/Q2ca3rxBt7uE68wd1Ii68Fq2EhNSr5kMdjMSycNuxEIix2Kpoq2Vp34OAuIiIiIiJyMAriso/GPthDvE3cIXZOb5uWnhadGrJu57H2GI7KmAbAV+XrME0zJNcVEREREZGBSUFc9tG2Rjy+Dyri8YdYEa9oDeJdmZbeHVPTJ2EzbFQ0V7GrsSik1xYRERERkYFFQVz2EVwjHhveNeKwJ/w39nCNeHkvBfFoWxSjknIAWFn2VUivLSIiIiIiA4uCuHTg8fppagl0LO/LNeI92UvcNE0qm6sByIhOC+m4AMYnjwFgbcXXmp4uIiIiIiI9piAuHTQ2ByrRdquFqIjQrLHujviYngdxp6eJFl8LBgYpIWjUtrch8YOxWWzUuxsp1lZmIiIiIiLSQwri0kGjs3V9eKwdwzDCfv/gGvEmT7erzlWuQDU8OSoRW4gatbVns9gYEjcYgI1VeSG/voiIiIiIDAwK4tJBX25dBnumpvv8Zrer4lXNNQCkRqWEfFxtchKGAgriIiIiIiLScwri0kEwiPfB1mUAVquFmEgbALWNLd06t7o1iKdFp4Z8XG2Gtwbx7XUFNHmae+0+IiIiIiJy5FIQlw4aWqem91VFHPZUxesc3QviVa62IN57FfGkyETSolPxm362VuX32n1EREREROTIpSAuHTQGp6aHf+uyNm0N22q6URH3+X3UumqB3p2aDjAiYTgA26p39up9RERERETkyKQgLh207SEe30dT0wHiWoN4XTeCeEVzFT7Tj91iJyEivreGBsCIxGGAgriIiIiIiPSMgrgEmabZ583aAOKjA/fuzhrx3a3biaVFp/R6t/e2hm3bagq0n7iIiIiIiHSbgrgENbt9eH2BYBnfh1PT29aI13ZjjXiJowzo/WnpANlxg7BbbDjdTVQ0VfX6/URERERE5MiiIC5BbdPSY6Ns2Kx999Zo+xCgOxXxEueeinhvs1lsDEsYAkB+/a5ev5+IiIiIiBxZFMQlqLGPty5rE9+DNeLhrIjDnnXiBfWFYbmfiIiIiIgcORTEJaitIt6X68Nhz9R0p8uL2+M76PEur4vqto7pYaiIA8GKeHFjaVjuJyIiIiIiRw4FcQlqaArsId6X68MBIu1W7K1T47uyTrzUWQFArC2GaFtUr46tTXZcFhBoEqeGbSIiIiIi0h0K4hLUXyrihmEEtzCrbehKEG+dlh6majhAVmwGVsNCs9dFbUtd2O4rIiIiIiKHPwVxCWroJ2vEAeK70Tm9pC2IRyX36pjas1lsZCcMAvZsnSYiIiIiItIVtr4egPQfjcGp6X0fxOO60bCt1FEOhK8i7i3ZjGm1kG2PpRAoKlnPBPf+9y63DZ4QlnGJiIiIiMjhQRVxAcDn8+NoDgTxhNi+XSMOEB8d+DCgK1uY7amIh29qOsDQmNTA/Vtqw3pfERERERE5vCmICwCNrSHcajGIiez7iRJd3Uvc4XHS4G4EICWMU9NhTxAvVRAXEREREZFuUBAXoOP6cMPY/zTrcInr4hrx4LT0qGQirOGt5A9pDeIV7nq85sG3WRMREREREQEFcWnV6Gydlt7HW5e16WpFvK1j+qDYrF4f096S7bFEWuz4MalqrcqLiIiIiIgcjIK4AO0q4v2gURtAXOsa8XqHG79///t0lzgDFfHBceEP4oZhkBmRCEC5uz7s9xcRERERkcOTgrgAe/YQj+8HW5cBxEbZsBgGftOkvnVsnSlxtFXEM8M1tA4yIwNBvEJBXEREREREukhBXID+VxG3WAyS4gNjqWl0dXqMaZrBqemD+2BqOkBmZBIA5S11fXJ/ERERERE5/CiICwAN/WyNOEByfCQAtQ2drxOvdzfQ5G3GYljIjEkP59CC9lTEG/rk/iIiIiIicvhREBdM0wxWxPvL1HSAlPgoAGr207CtrWN6enQa9jB3TG/Ttka8wl2Pae5/LbuIiIiIiEgbBXGhxePD4/UD/WdqOkBKQqAiXtPQ+dT0kuC09L5ZHw6QHpGAgUGz302jr7nPxiEiIiIiIocPBXEJNmqLjrRht/Wft0TyQSriJc6+bdQGYLfYSLXHAVDeooZtIiIiIiJycP0ndUmfaWjqf+vDAVLa1ojvp1lb29T0QX2wdVl7GRHqnC4iIiIiIl2nIC40tnVM70frwwGSg1PT962I+00/pU2te4j3Ucf0NhnaS1xERERERLrB1tcDkL7XNjW9P60Phz3N2uocLfj8fqyWPZ8b1bjqcPvc2Awr6dGpYR1XcWMJFotBjDeSpqYWIlqbtBU2VVDcWLLP8TlMCOv4RERERESkf1NFXIJT0+P72dT0xNgIrBYD04R6h7vDc237h2fGZmC1WPtieEGptsAa8Rqvs0/HISIiIiIihwcFcdlTEe9nU9MtFoOkuMCY9m7YtttRCvT9tHSAFFssAPW+Zjymr49HIyIiIiIi/Z2CuAT3EO9vU9MBkhNaO6fvtYVZ2xTwIfGDwz6mvUVb7EQZgVUedd6mPh6NiIiIiIj0dwriA5zP78fR3No1vZ9VxKF95/SOFfFiR2sQj+v7IG4YBsmtVXFNTxcRERERkYNREB/g6hrdmGZgGnhsVP/r3dfWsK1953SX10VlczUA2XGD+mRce2ubnl6ririIiIiIiByEgvgAV9065Tshxo5hGH08mn21bWHWfi/x3Y5Ao7akyETiI+L6ZFx7S7bHAFDjUUVcREREREQOTEF8gKuqbwb65/pw2DM1vX2ztj3T0vtBNdw0MdzNpFijAU1NFxERERGRg+t/c5ElrKrrA5XmxH64PhwgpZNmbcFGbX28PtyoLiVh3adYmxuZY7NTkhLFhkQbpmn2y9kFIiIiIiLSPyiID3DBqen9NYi3VsTrHW68Pj82qyVYEc/uw47pttoy7OsXY/gD25VZvR7Or/BgAs2ZHmKs/fP7KSIiIiIifU9T0we4qvr+HcTjYyOwWgxMoM7Rgs/vo8QZWCPeVxVxw9NC7KalGH4f7rSh1BzzfZqHTATg25WNNDoq+2RcIiIiIiJyeFAQH+D6+9R0i2GQ0tqwrbreRXlTJV6/l0hrBGnRKX0ypuhd67G4XfjjknBOPB7THknTyKMoiYkmwoSUok19Mi4RERERETk8KIgPYH7TpLp1W7D+WhEHSEsMNEKrqnftmZYeNwiLEf63r7WxiqiSLQB4Jx0D1tbVHYbBhuzhAGRWl2Fpbgz72ERERERE5PCgNeIDWIMzsO7aMCC+n3ZNB0hPimLzLqisa8aMLgU6n5YeUVHQ7Wu7M3K6dXz8xk8xTBN36hDMtGxo2tPN3UjIYFv0DsY0e4gs20HziOndHo+IiIiIiBz5VBEfwNqmpcdF27Fa+m+X77aKeHW9q087plsdNUQVbQbANXL6Ps8n22LJTQiMNbJsB5j+cA5PREREREQOEwriA1hVP18f3iYtMbCFWWV98549xPugY3rs1hUYmLiTB+OL23d9eootlo1xkTRZDKzuJuw1JWEfo4iIiIiI9H8K4gNYf9+6rE1aUqDKXFHXhMPjxMBgUGxWWMdgtDQRs3MdAM1DJ3V6TLw1CgwrX8UHPjiI7MFUeREREREROfIpiA9g/b1jepv01op4vcOD6TfIis0gwmoP6xhid6zG8HtxJw/Cm5TZ6TEWwyDZFsOGuECXd3vNbvBrerqIiIiIiHSkID6ABfcQ78eN2iBQsbfbLJgmmO4ohsUPCe8AfF5itucC4BwzB4z9r6dPtsWwK8qO22bH4nVjqy8P1yhFREREROQwoSA+gLVNTe/vFXHDMILrxM2WGIYnDA3r/aOLNmJtceKLjsc1dOIBj02xxWIaBsXxCQBEVBeFY4giIiIiInIY0fZlA5RpmsGp6f11jfjW2h3BP0fH+KEazJZojL2ea9Mrr8I0id26AgDn6FlgsR7w8BRbLAB5cVGMrIWIqmJM08Q4QBVdREREREQGFlXEByhHs4cWjw/ov0G8vZhYM/CHlhjSolPDdt+IygLs9RX4rXaaRh510OOTW4P4higD07BgbXFiNlT09jBFREREROQwoiA+QLWflm6z9v+3gRHZDIDdl4jNEr6JHLF5XwDQnDMNMyL6oMen2GIAqDHduBPSAPDu3th7AxQRERERkcNO/09g0isqagPBNj3p4OGyP/DaGgAw3LFhu6e9qpCo8h2YhgXn2DldOifaGkG0JdDRvSEhsNe4b/emXhujiIiIiIgcfhTEB6jKusMriDdZqgDwNodpGr1pEv/1ksC9R0zHF5fS5VPbpqeXxsUD4C3ZjGlqGzMREREREQlQEB+gylsr4pnJ/T+Im6ZJnVkKQEuLBY+390NtdOHXRFYVYlqsOCYc361z26anF0Xa8Fvt0OLEX13YG8MUEREREZHDkIL4AFXZNjX9MAjiDe5GWgwnWD0A1Df6en4x04+lxQlez34PsTTVk7DmPQAaJ56APyahW7doq4hX+5rwJmUC4C3W9HQREREREQnQ9mUDVEXr1PSM5Gg8nv49bbq8qRLDAHu0B4/DTl2Dh7Rke/cu4vcRvWs9USVbsXjdmBh441NpHjGd5mGT8UcHppFbmhpI+ew/WDwtuFOycY47ptvjbdvCrNbbhCcpi4jqYnwlm2D62d2+loiIiIiIHHkUxAcgt8dHbWMLAJnJMRRXOPp4RAdW0VQJQHy8SY0Dquu8jB7ejQv4PCR8vQR7fTkAJgYGJvbGKuzrPyJ+/WLc6cPxR0YTWbYDi9eNLyqOurnfAUv3J40kt3VO9zpxJ40jFvCVbsX0eTCs3fwAQUREREREjjgK4gNQW6O26EgbsVH9/y1Q3hrEU5MiqCmF2vr9Tyvfh2kSt2UF9vpy/FY7znHzcKcNxdLSjL2mmIiaEiKqi4msLAie4k4ZTN3c7+KLTe7ReNuCeIvppTEqmpToBMzmBnyVO7Flje3RNUVERERE5MjR/1OYhFz7aemGYfTxaA7MNE0qmgId0wenxLGNFmq6EcTtrSHbNAwaJ58cXLPtj4qlZfA4GqefgdVRQ2T5TvB58SZn4U4bBofwfbEZVhKt0dT7mqnxNTFy0Hi8+SvxleQpiIuIiIiIiJq1DURte4hnHAZbl9W4anH73dgsNoalJwYeq/N27WSfl9jtuQC4hkwMhvB9DotLoWnUTJrGzsGdPvyQQnibNHscAJUeB9bB4wP3Kdl8yNcVEREREZHDn4L4ABQM4odBx/TSpgoAMmPSSU0K7CHuaPLh7kKDuaiSLVhbnPgiY2gaPqVXx7m3NFsgiFd5HVgHtQbx8u2Yvm5MqxcRERERkSOSgvgAVFbTBEBWSkwfj+TgypyBBmuDYjOJirQSExV4y9bUH6Qq7vcRXRyoQDcPnwZhbpLWVhGv8jRiSRqEEZ0APg++ivywjkNERERERPofrREfgEqqnQAMSo3t45Ec2K4SF4V1ZQBYXcnsKnERE22lyeVn684mWtwdq+Jj2r2bI8vzsbib8UXE0JI5IpzDBiDdHtgOrcoT6EhvbVsnXpqHbdC4sI9HRERERET6D1XEB5gml5d6hxvo/xVxj99No68OgGR7OgDxcVYAGp0HqIibJlG78wBwDZkAFmuvjrMzKbZYLBi0mF7qWurbrRPPC/tYRERERESkf1EQH2BKawLV8KS4CGL6+dZltZ5At/QYaxxR1sB69oTYwJgbHL79nmdrrMbmrMO0WGkZNLr3B9oJq2EhxRaYcVDiLNsTxLVOXERERERkwFMQH2BKqwLrw/v7tHSAGk9g//CU1mo4QGJCIIjXNey/Ih5Zth0Ad9owTFtEL47wwNrWiZc4yrAkap24iIiIiIgEKIgPMKWt68MHHwZBvLY1iCe3C+JJ8YEg3ujw4veb+57k8xJRUQCAK6tvquFt2oJ4saMEwzD2dE/X9HQRERERkQFNQXyAKa1u7Zie2r/Xh5umSU3r1PQUe1rw8ZhoCzabgd/sfHp6RFUhFp8HX1TcfvcND5dMewIARY0lAHump5cqiIuIiIiIDGQK4gPMnop4/w7idZ4aPGYLFiwk2lKCjxuGEayK1zfuOz09qjQwLb0laxQYRngGux9tQbyiqRKX19VxnbjX3ZdDExERERGRPqQgPoB4vD4q61wADErr31PTy1oCVeQkeyoWo2PX88T4zteJW5obsNeXYwItmaPCMs4DibVGEm+NwsSkqLGk4zrxyp19PTwREREREekjCuIDyO4qJ37TJC7aTmJs3zUx64py126g4/rwNkkJnVfEI8t2AOBJHow/qn980LBnenqx1omLiIiIiAigID6gFJY7ABiWGYfRx9O2D6bEVQx07JjeJlgRbx/ETT+RZYFu5H21ZVln2oJ4YWPggwWtExcREREREQXxAaSoLYhnxPfxSA6s2ddEtTvQMT0tYt+Ga20VcWeTD7fHH3istgCruwm/LRJ36pDwDfYgsiI6BnHb4AkA+Mq3aZ24iIiIiMgApSA+gBRWNAIwNCOuj0dyYG3V8DhrIpGW6H2ej4ywEBsTWDdeU+cBIKN8PQAtmSPBYt3nnL7SvmFbk6cZIzELIzoRfF7tJy4iIiIiMkApiA8QftOkqCJQER+a2c+DeHMh0Hk1vE1qUqAqXl3nxe52kFQbWB/en6alQ6BhW0Z0GiYm+fUFgXXimp4uIiIiIjKgKYgPEFV1zbjcPmxWC1kp/Xvrst3NRQCk2Q8UxO0AVNd6SKvYiMX040lIxxebFI4hdsuopBEAbK8LdErf07Btc5+NSURERERE+o6trwcg4dHWqC07PRabtf9+/tLic1HlLgcgNSJrv8elJrcG8ToP6ZavA+dmdb8aHlFR0P1BdtOopBF8UZobDOK27Im0AL6y7ZjuZoyIfaffi4iIiIjIkav/JjIJqfzSBgCGZ/bvRm2lrmJMTBLtyURb91+5T06wYxjgavHjbm7BZ7HTkjE8jCPtutGJgYp4YWMxbp8HS2ImRmIWmD68xRv6eHQiIiIiIhJuCuIDxPbd9QCMzk7s45Ec2G5XYFp6dtTQAx5nsxnBbcwKvGlUZUwEq73Xx9cTadEpJEbE4zN9FDTsAsA2bBoA3sK1fTgyERERERHpCwriA4DX56egNNAxffSQfh7EmwNBdXD0sIMem5UQ2Lpsq2cQpYOO7tVxHQrDMBiTPAqAzTXbALANnw6Ar3A9punvq6GJiIiIiEgfUBAfAHaVN+L1+YmLtpOZ3H/XIzf7mihvKQVgaHTOQY+fbAQ6pW/2D8MVk9KbQztkk1IDDdo2Vgc6pVuzxoA9GtPViL9yZ18OTUREREREwkxBfADYUbxnWrphGH08mv0rai4AIDUinTjbgdeyR7jqmelYiQU/NZ5oHE5vGEbYcxNTxmFgsNtRSo2rFsNiwzZ0MgDeXWv7dnAiIiIiIhJW6pp+BMrbVdvh6zXbqgBIiLXv81x/UtgUqAwPix5x0GOHFH1BjNHCkMgGCluSKKt0Qz+edR8XEcuIxOHk1xewsTqP47PnYRs2HW9+Lt7CtUTOOq+vhygiIiIiImGiivgRzjRNCitaty5Li+vj0eyfaZoUNuUDMCxm5AGPjXFWkF4R6DaePihQOS+tdPfuAENgcuv09PWVmwCwDpsKhgV/dRH+urK+HJqIiIiIiISRgvgRrqymmeYWLxE2C4PTYvt6OPtV7a7E6XNgNWwMPlDHdNNkxI4PMTCpTh1L2tB0AEoqWnD18yw+PT0wFT2vdhv1LY1YouKxDpkEgGfHir4cmoiIiIiIhJGC+BGuoKx1//CseKyW/rs+PN+5FYBh0TnYLPtfMZFZtpb4xhJ8Fju7RpxCcqKNxHgbfj9s3B2u0fZMZmwGIxKG4Tf95JZ/BYB91FwAvNtXYJpmXw5PRERERETCREH8CLezNBDEc7IS+ngkB9YWxEfGjtvvMTHOCobvXAJA4fATcEfGYxgGI4ZGAbB2V++P81DNad1mbUXpKkzTxJZzFFjt+OvL8FcdBi9AREREREQOmYL4EazF46OkygnAiEEH7kLelxo8dVS6yzEwGBE7utNjbJ4mxua9gcX0UZs8ivJBM4LP5WRHYRiwu9agrC5Mg+6hmRnTsFtslDrL2VaXjxERHQjjgGfzJ307OBERERERCQsF8SPY9uJ6/CakxEeSFBfZ18PZr7Zq+OCooURbY/Z53uJzM27za0S56nBFJrJjzJnQbhu26CgrwwYHquJLNodnzD0VY49m7qBZALxbsBgA+4STAfBs/wLT3dRnYxMRERERkfDQ9mVHsM2Fga3Kxg9P7uORHNgWR6CL+KjYsR0et9eWYfG5GVP4MXHNlXgtEWwfciKGowE7DR2OnZ4JRSWwrcxg826TCdlhG/5BFWxZ3OHriV47yzDYWrudz9f/lyERSSTGJGJrqqf882dwZY8nZ9ypfTRaERERERHpbaqIH6GaW7wUtK4Pn9CPg3iNu5qKllIMDMbETezwnNXXwthdHwVD+LZhp9AS2flm4YkxcMyYwJ/f+AoKq3p75D2XYItmSkzgk4IP6zbhw8Q1OLA2Pqp4M/j9fTk8ERERERHpZQriR6gtRXX4TchIiiY1Iaqvh7NfWxoD+4EPjxlFjG3P9mqWlkbGFnxIrKsajzWSrTnzaYpJP+C1TpwAOWkmbq/Bv5YFmrf110bkxyWMIcYSQZXXwfLGHbRkjcRvj8TqchBZkd/XwxMRERERkV6kIH4EMk2TtdsCJeGJOf23Gu43/eQ5AkF8fPzk4OMWVz1puY8Q01KLxxbN1uGn0xyVctDrWS1w0TwYN8jE5zd48yuD/66EppZeewk9FmON4LSkCQCsaMxnY0slzUMDe4pH79qA6fP25fBERERERKQXKYgfgYoqHVTUNWOzGkwZmdrXw9mvfOdWHN4GoizRjIgJzCu3NteQvvIR7M4K3LYYtgw/HVdUUpevabfB9+bAyRNNLIbJ5hKDxz+GHeW99CIOwbjoLGbGDgfg3doNrEiIwW+PwupqxP31e308OhERERER6S0K4keg1VsqAZg8IpXoyP7bj29tfS4AUxJnYLPYsDorSVv5CLbmKrzRKWzJOYOWyO7vf24x4Phx8OMTIS3OxOEyeGE5bCwO9Ss4dCcnjmNKTDYmJh86trI0I/DBiXv1m/gbKvt4dCIiIiIi0hsUxI8wBWUNbCuuB2Dm2AOvqe5LZa4SSl3FWLAwOeEobI5y0nMfweaqxRObQeXs63BHxB3SPQYnw5Unw9ShJiYGr62CbWUhegEhYhgGZyRN4qSEcRgYvBflJj86AnxunB8t1BR1EREREZEjUP8tl0q3mabJK0t2ADBxeDKpif2nSVuRowSrBaJ9kTQ3tbC0+gMAsqNG0FK9g5SNr2D1NOGMSSNv4vl4vE3Yu3mPgv0UkKcNA4fLJL/S4NWVJufMgPjWb01OP/iswjAMZsXnkBOVyuK6zbyS4ef6ohqiqwrY9t69DD39ZqLt0X09TBERERERCRFVxI8gRRUONu+qxWoxOH7qoL4ezn5VtJRS6S7FwMIcfyYTN7yE3dOEIzaTzZMvxBMRe/CLdINhwLwxkBZv4vYZfLoZvL6Q3iIk0u3xXJA2i1OzZrF4eA4Ag3Zv5/M3buXjwqV4fJ6+HaCIiIiIiISEgvgRJDE2glHZCZw8I5vEuMi+Hk6nfKaPdQ2BteEnelI5Ku9tbF4XjfGD2Tz5Ary9VPm1WuDE8RBpM6lxGuT20x3CDMNgRFQ6F5x2B+XTTgVgbk0D0Z89zz3L7uXrqk19PEIRERERETlUCuJHkMS4SH518dEc1Y/Xhm+oXUODt5Z5DR7O2LUJi99LbfIoNk/6Pj5b7354EBsZaOIGJtvKDXb2415oFsPC6DkXE3H8pfgNC5OdLVy+bSe5nz/Gs+v/RYO7sa+HKCIiIiIiPaQ14hI2lS1lbK75iu9UNjCnwQVARcYU8kefDkZ4PhManAxThsLXRfDFdpg6DFIPrSdcr9haG1jrT9ZQ7Cf/iMQvXyfBWcv3KhpprP6Yz7euJDpnFoNz5mJYrYxNHtW3AxYRERERkS5TEJewaPTWkV/2AT8tr2FIixcTKB52HLuHzA0s4g6jacOgot6kvMHgpS9MLjsRoiPCOoRu8aQOoeqMnxK7bSVR21YQ73JyfE0j1HyMe+0neJMH4Ro0CWt6DpbU4ViSsjAs1r4etoiIiIiI7IeCuPS6SscOIre+yNW1jVgBjy2K7WO/QX3yiD4ZT9s+44vWmVQ5DF5cYXLRPIjqbpv2cLLacI4/BufYOUTs3oxrx5ckV5cS4/cTUb0bT/Vugq3crHYsKUOxpg3Dkjoca9YYSMqixlVPqbOMGlcdPtPH9PQpZMan9uWrEhEREREZkAzTNM2+HsSRqLIydGt4bTYLycmx1NY68Xr9Bz0+b1dtyO59KExHGY78N8gp30KUP/A2q0scSlHWHNzWvt+Oq9YJH3wNLV6DzAST8+d0fZq6xWIQExNJU1MLfn/f/BWq9TSSW7YWq6Oa7BYvQ1q8DHZ7sXcyniaLQUGUnYJoOzujI9gdaePoQTO5fOoPuvXeCpX09Piw3UtEREREpL9RRVxCw/RjddVhNO7GV7WRyJotpDrrgk9XRURSkzkbb8ZYPC0e6KPw2l5yLFxyPLywPDBN/fHFJrNGwozhkBYf9hnz3ZZsj2f+kOPY0LSb5Y4Cqr1ODNMk1eNjUIuXwS1ehrR4GObyEuM3mdjkZmKTG3DiNSy400K7TZyIiIiIiHSNKuK9xOcLbXXRarUc9JoeTwtfffAojVXlgAkmGJiYBP5J8EcdeK71/wAwOnxtYphgYmJAu/PAaP2zYfqx+7xE+LxEeD3Eul3Y9nor+YFdsTG4Rx6P25qFYbFgMSz4zfBVXg9mVKaFWofJayt9bCvdM/64KEiJM0iMgQgbWC0GVgtYLNCWzw3DIFR/fQ459JsmTp+bBm8zLr8Xn+nHahhEWGxEG3bi/H4iW1qwtDRhuJxY/F5OPiqbyede0qX3VqhZrdqwQUREREQGLgVxERERERERkTBSWUpEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjGx9PYAjlc/np6bGGZJrWSwGKSmx1NQ48fvNkFyzLxwprwOOnNfSV68jPT0+bPfan8rKxr4eQp85Ut6/4TaQvm/94e+oiIjIkUwV8cOAxWJgGAYWi9HXQzkkR8rrgCPntRwpr0O6Rz/3ntH3TUREREJFQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMJIQVxEREREREQkjBTERURERERERMLI1tcDOJh3332XN998k40bN9LQ0MDw4cO5+OKLOe+88zAMA4fDwTPPPMOnn35KQUEBERERTJ06lZtuuolx48Yd8Npffvkll1xyyT6Pn3322Tz44IO99ZJERERERERkAOv3QfzZZ58lOzub2267jeTkZJYvX84dd9xBWVkZ1157LSUlJbz00kucd9553HjjjbS0tPD0009zwQUX8OqrrzJq1KiD3uOee+5h5MiRwa+Tk5N78yWJiIiIiIjIANbvg/hjjz1GSkpK8Ot58+ZRV1fHM888w4IFCxgyZAgffvgh0dHRwWPmzp3LKaecwgsvvMAdd9xx0HuMGTOGKVOm9Mr4RURERERERNrr92vE24fwNhMmTMDhcNDU1ERMTEyHEA4QGxvLsGHDqKioCNcwRURERERERLqk3wfxzqxevZrMzEzi4uI6fb6hoYFt27Z1mG5+ID/5yU+YMGECJ5xwAvfddx8ulyuUwxUREREREREJ6vdT0/e2atUqFi1axK233rrfY/785z9jGAYXXXTRAa8VHx/PFVdcwaxZs4iMjGTFihU8/fTT5Ofn88QTTxzyWG220HzOYbVaOvzzcHWkvA44cl7LkfI6REREREQOJ4dVEC8rK+Omm25izpw5nXY7B3j11Vd5+eWXuffee8nKyjrg9SZOnMjEiRODX8+bN4+MjAzuuusu1q9fz9SpU3s8VovFIDk5tsfndyYhIfrgBx0GjpTXAUfOazlSXoeIiIiIyOHgsAniDQ0NXHnllSQlJfHwww9jsexbwfv000/5zW9+w4IFC/jOd77To/ucddZZ3HXXXWzYsOGQgrjfb9LQ0NTj89uzWi0kJETT0NCMz+cPyTX7wpHyOuDIeS199TpC/SGViIiIiMjh5LAI4i6Xi6uuuorGxkZeeukl4uPj9zlm7dq13HDDDZx77rnccMMNfTDKfXm9oQ02Pp8/5NfsC0fK64Aj57UcKa9DRERERORw0O+DuNfr5cYbbyQ/P5/nn3+ezMzMfY7Zvn07V111FXPnzuXOO+88pPu98847ANrOTERERERERHpFvw/id955J0uWLOG2227D4XCwdu3a4HMTJ06ksbGRyy+/nMjISH70ox+xYcOG4PNxcXGMHj0agN27dzN//nwWLFjAtddeC8Att9zC8OHDmThxYrBZ27PPPstpp52mIC4iIiIiIiK9ot8H8WXLlgFw77337vPc4sWL2b17N2VlZQBceumlHZ6fPXs2//rXvwAwTROfz4dpmsHnx4wZw1tvvcXTTz+Nx+MhOzubn/70p/zkJz/ppVcjIiIiIiIiA51htk+mEjI+n5+aGmdIrmWzWUhOjqW21nlYr+M9Ul4HHDmvpa9eR3r6vn0ewq2ysrGvh9BnjpT3b7gNpO9bf/g7KiIiciTT5sEiIiIiIiIiYaQgLiIiIiIiIhJGCuIiIiIiIiIiYdTvm7XJ4aOlpYUtWzazbdtWiosLqagop6GhnpaWFkzTJCoqipSUZBITk8nMHEROzgjGjh1PenpGXw9dREREREQkbBTE5ZC0tLSwbNlSli79hDVrVuF2u7t9jczMLGbOnMWcOccwY8ZM7HZ7L4xURERERESkf1AQlx6pr6/n9df/y9tvv4HDsaf7dEpKKhMmTCQnZySZmVkkJiYRFRUFgMfjxudzUVBQRHFxMfn5O9i5cwfl5WUsWvQWixa9RUJCAqeccjrnnPMthgwZGrLx5uZVMGu8Ku8iIiIiItL3FMSlW1paWnjttZd55ZX/0NzcDEBGRiannXYGxx13Ijk5IzAMo9NzO9v6p7m5ma+/XsvKlStYvvxzamtreP31//L66/9l3rxjueiiixkzZtwhj1tBXERERERE+gsFcemyNWtW89BDD1BWVgrA6NFjuPDC/2Pu3GOxWq09umZ0dDSzZ89j9ux5XH319axencs777zJypVf8MUXy/jii2WccMJJXHbZT8jKGhTKlyMiIiIiItInFMTloFwuF0899RjvvPMmAGlp6Vx++VWccMLJWCyha7xvtVqZPXsus2fPpaiokP/851988slili79hBUrlnPRRRdz/vkXYrPpbSsiIiIiIocvwzRNs68HcSTy+fzU1DhDcq3OpnSHS3FxIX/4w2/ZtasAgG9+81wuvfRKYmJiun2tnryOnTt38MQTC1m3bg0Ao0aN4ec//yXDh4844Hm5eRXk5lUEv16VV8HRe01NnzU+o8fT1fvyZxJKffU60tPjw3av/amsbDz4QUeoI+X9G24D6fvWH/6OioiIHMlUWpT9WrlyBffe+3uam5tITk7hllt+yVFHHX3Q80K5HruqJZ577nmAJUs+4vHHH2HHjm1cf/1Pufrq6znjjLP3ux5975D96OsbWHDu5JCMSURERERE5FCEbl6xHLbaV47bLFr0Jnfe+Suam5uYPHkqjzzyZJdC+N7X6+za3RlHbl4FhmFwyinzefzxZzj66Nm43W7+9rf7+etf/9yj7dJERERERET6koK47BOAX3rpeR5++EH8fj/z55/J3XffT0pKSkiufSjHpqSkcOed93DppVdgsVj44IN3+cUvbqSmpqZHYxMREREREekLmpouHbz88gs8++xTAFx00cVcfPFl+53+3RcsFgsXXPBDxo4dz91338mWLZu56aYF3HXXPQdcNx7qrctM06S8vJx16zZRVFREZWU5dXV1NDc34/f7sFptxMXFkZaWTnb2UEaPHkN29pB+9b0UEREREZG+oSAuQe+++zbPPPMkAJdeegUXXPDDLp3XWWO0R1/fAMCO3fXdWjN+oGvBnrXfM2bM5K9/fZTf/vaX7N5dzM03X8cdd/yeadNmdHrdQw3iPp+Pbdu2sG7dGjZs+JqtW/NoaKjv1jWSk5OZNWsuJ510KtOmzQhpx3kRERERETl8qGt6LzmcuqY/+voG5g1v4de//gV+v58LL/w/fvSjyw/pem2N0dr/+WCvo7OGagdrstbQUM9dd93Bxo1fY7PZuP76m5k//8wej729xsZGVq78ghUrlrNmzSqczo4/T6vVSnb2ELKzh5KZmUVycjIxMTFYLFY8Hg8ORyMVFeUUFu4iP397h/Xs2dlDOP/8CznttDP6dDs2dU0fmAZS9+9QGkjft/7wd1RERORIpiDeS/pzEN+76rxi7Vbq1v4DT0sTQ8bM4sqrb2b2hMweX/vFxdsYlZ0IdNw2zGKAPcLGjFGpHDU2/aBbjM0an0FuXsVBu5273W4eeOAeli79BIDzzruAyy67EqvV2u3xOxwOli1bytKlS1i3bg0+ny/4XFxcHFOnzmDq1GlMnjyZo46aitPp6dLPxO12s2nTBj777FM++WQxTU2B98bQocO49tqbmDp1OgCe/JXYR87u9rh7SkF8YBpIgTKUBtL3rT/8HRURETmSKYj3kv4cxNvz+XxcfPmV1JbvZMyYcdx//0NEREQc0jXDWRFv4/f7+de/nuHFF/8NwOTJU/nZz25l0KDBBz3X7XaTm/slH3/8IStXrsDr9QSfy8kZwbx5xzFr1lzGjh0XDPeH8jNpbm7mvffe5sUXnw9Ob//2t8/jxz/+Cb6lTxJ92jXdut6hUBAfmAZSoAylgfR96w9/R0VERI5kWiM+wL388gvUlu8kNjaW22//7SGHcOh8PXZuXgXzJmf16FpdWWNusVj40Y8uZ+TIUTz44J/ZsGE9V1/9Y7797fP41re+Q2pqWofjXa5m1q79iuXLP+eLLz7H4XAEnxs+PIcTTzyV448/kSFDhnZ7zHvbu8odHR3Nd77zPU4//SyefvpJFi16kzfeeJVt2/L4+YkjiT7kO4qIiIiISH+mID6AFRTs5IUXngNgwYIbyMoaFJLrhjqIP/r6hi43Wzv++JMYPXosf/3rn1m/fi0vv/wCr7zyH0aMGElm5iBM009FRTm7dhV0mHaemprGySefysknn8aIEaNC2t3cm5/b6XTz2Ng4rrvuJmbPnsv999/Npk0b+VXpLu6ddzHp6ekhu7+IiIiIiPQvCuIDlN/v529/ux+v18v4yUdz8smn9cp92iraXT02FAYNGsy99/6FFSuW8eqrL7Nx49fk5+8gP39Hh+MyMjKZM+cYjjvuBCZNmtKjNeWHwpO/Em9+LlOBe753LHe9+hkltQ5uu+HH/OHCk0iKicI2clZY14yLiIiIiEjv67UgnpubS1FREQ0NDey9DN0wDC699NLeurV0wbvvvk1e3iaio2P41a2/6FEFuCtTxtsq2l0Ryr2+DcNg3rzjmDfvOKqrq9i6NY+amhoMwyAlJbW1Qt79Cn0o2UfODobs0cD9J13GLdf9mJJaB39aks999z2IPQRLBUREREREpH8JeRDfvHkzN954I4WFhfsE8DYK4n2rrq6OZ58N7Bf+ox9dTlpaz6ZBHyiIt++IvmN3PbWNLTzy6nrsETY8bi9+c8+e4Ac6F/a/l3hXpaamMW/ecV0+/lC0Vbnb8+bn0vzRwuDX+6tyZ2Rk8pvzjueXrywnL28TTzyxkOuuu6nXxywiIiIiIuEV8iD+q1/9ipqaGu68806mTp1KfLw6r/Y3zzzzdxwOByNHjuYb3/h2r9yjfVhuC9HXnje1Sx2H9w7aXe2c3h+0r3K3af5oYZc7oWenxHPbbb/mjjtuY9GiN5k1aw5z5x7TG0MVEREREZE+EvIgvn37dq6//nq+//3vh/rSEgJ5eZv44IN3Abjmmht6ZV10ZxXt5PjIYEW8bR/xzs4L5fT03rpmV/V0T/CZM2fzne98j9dee5lHHnmQKVOmERsb2wsjFBERERGRvhDyID58+PCQdpyW0PH7/Tz22MMAnHrq6Uyc2L0qc1enjHdW0YaDV8SPtCC+v27pB2IbOQuASy75MV988TmlpSW89NLz/PjHP+mNIYqIiIiISB+whPqC1113Hc8//zzl5eWhvrQcog8+eJetW/OIjo7hxz++qtvnzxqfwYJzJwf/d/ReXx8o8HY3DLcP/H0VpEOlLVx3RVtwj4yM5Cc/WQDAG2+8Sk1NTa+MTUREREREwi/kFfHTTz+dlpYWzjzzTObOnUtWVlan059//etfh/rWcgCNjY0880ygQdvFF19KSkpKr92rqqqSrVu3UFxcRE1NNeu2lOArSmPTlwmMHj2CQYOGMXz4yANOi29fyT7cg3hPtx+bM+cYxo+fSF7eJl5//b+qiouIiIiIHCFCHsRXrlzJ7373O5qbm1myZEmnxxiG0eUg/u677/Lmm2+yceNGGhoaGD58OBdffDHnnXdehynwr7zyCk899RQlJSWMGDGCm266iZNPPvmg1y8vL+cPf/gDn3/+OXa7nfnz5/PLX/6SuLi4rr3gw8S//vUMDQ31DBs2nG9+8zshv35+/naWLFnMihXLKC4u2uf5wryOX8fFxXPMMcdx+ulnMXHiZC1n6IRhGFxwwQ+4885f8+67b/HDH/6IyMjIvh6WiIiIiIgcopAH8d///vfExcXx0EMPMW3atEMOtM8++yzZ2dncdtttJCcns3z5cu644w7Kysq49tprAXjnnXe44447+OlPf8rcuXNZtGgR1157Lc8//zzTp0/f77U9Hg9XXHEFAA888AAul4v77ruPm2++mSeeeOKQxt2f5Odv55133gDg6quvx2YLzY/dNP18/vmn/PPf/6Z41/bg4xaLhYysoYwfO5r09Ayio6Px+/00NNRTXl7C6jXrcTga+eCDd/ngg3eJSx3G5LnfYpcjObiefMfu+h6t7z7YOnbo/vZnB+LevhJLztHAvluX7W/bsu40cZs1ay4ZGZlUVJTzxRefc9JJp4Zk3CIiIiIi0ndCHsQLCwu5+eabOfbYY0Nyvccee6zDNOp58+ZRV1fHM888w4IFC7BYLDz00EOcc8453HjjjQDMnTuXrVu3snDhQp588sn9Xvv9999n27ZtLFq0iJEjRwKQkJDA5Zdfzvr165k6dWpIXkNfMk2Txx9/BL/fz/HHn8j06UeF5Lq5uV+y8q2FvF0aqH7bbDbShk7isgu/zcyZs/jnhwX7bDlms1lITo7lrr8v49hRfj766H0++WQxjupCVrzzCPGZE2gechHRccnUNrbsE6q7EqDDvfWZe8dKolqD+N5bl+1v27LuNHGzWq2ceurp/Oc//2Lp0iUK4iIiIiIiR4CQN2sbPXo0jY2NIbteZ2uZJ0yYgMPhoKmpiaKiIgoKCjjrrLM6HHP22WfzxRdf4Ha793vtpUuXMm7cuGAIBzj22GNJSkri008/Ddlr6Euff/4pX3+9jsjISK644upDvl5lZSW/+92v+M1vbqOitIjY2FjGHHUGzz33ErNOv4ITTjiZ2NgDz4IwLBamTp3Oz352K//854uMmHwiVquVxvLNLP/ffUxMKt+nEdzBmsGFgyd/ZUiP6+qxxx13AgBffbXqgO9nERERERE5PIS8In7rrbdyyy23cPzxx/daRXn16tVkZmYSFxfH6tWrARgxYkSHY0aNGoXH46GoqIhRo0Z1ep38/PwOIRwC63JHjBhBfn7+IY/TZgvN5xxWq6XDP7uqpaWFp556HIDvf/8iBg8edEjj+Pjjj3jooQdxOh1YrVa+853z+cEPLuafH+wkPT0Ni1ESfM0WY8/rX7mpnJWbyzEMA5vdysrNFcCe6eIxOfO55hvf4l/PPExteQH33fcHciYei/ntO7Hb7Yc05vbjOFSunauIHjsX2POzMDq5fttxhmF0eu/2j7e/5v6MGTOGlJQUampq2LYtj2nTpofg1QT09L0lIiIiIiI9F/Ig/vTTTxMbG8sFF1zA6NGjGTRoEBZLx1/yDcPgscce69H1V61axaJFi7j11lsBqK+vBwJTyttr+7rt+c40NDQQHx+/z+OJiYkHPK8rLBaD5OTYQ7rG3hISort1/DPPvExFRTmZmZlcddUVREVF9ei+Ho+HP//5z7z22msADB85lnHzLqTKmsRvnl1Hdb2La/7yKY1NHq6472Mi7VYamzz88V+rSUsKjNkeYeO4aYM5blo2tzy0FHvEnrdeTWMLJU2pTJl/DZVbl7B55bsUbFrG7bffwv33309SUlKPxg1w8qxhIfs5uCOs2MvW4dy8HIBmoH7zCuqaXUTZ7cRHRxA74RgiIqwkJ8din3Y8tDsewNtQjWf3VtxLAu9/f8UO7GXriJtwzAHvPX36dD7++GO2r/qYk04KzbKP9rr73hIRERERkZ4LeRDfunUrAIMGDcLpdLJ9+/Z9julph+yysjJuuukm5syZwyWXXHJI4+xtfr9JQ0NTSK5ltVpISIimoaEZn8/fpXPq6wPr6AEuvfQKmpt9NDc7u33vxsZGfve7X7N+/VoMw+AHP7iYiy/+EVbrnrfOjX/7jL/ecDyPvLqea88LzIJ4+L/ruOKcMbhcLVitFmJjY4mIiAAgKTaCq745MXi+x+1t9/VsVq48kbt+/zvWrl3LZZf9mHvvvZ+MjMz9jnHlpnJmT+z8+UnDkqit7f7r7ozb7SMiaxq7m+N55523yM1dQUlJCRBYJ5+SksKsWfWclu4motYJWdMAiGj9J4D7/Uewj5pNxMlXB7/2ZE076BiHDx8JfMymdWtC9nqgZ++tUAj1h1QiIiIiIoeTkAfxjz/+ONSXBALV6yuvvJKkpCQefvjhYJU9MTERCATG9PT0Dse3f74zCQkJOByOfR6vr69n0KBDm8YN4PWGNtj4fP4uX/Pf//4XTU1NjBo1hhNOOKVHY6mtreH2239OQUE+0dEx3HbbHcyePRfT7PjaTKC2to7Crbncf/+7bNu2lV2Fhbz5xJ71zIZhkJaWxpgxY6j1prB1ciQjRozCMAz8e13vqKNm87e/Psodd9xKUVEhN954Lffe+xcGD87udJwrNpVz1Nj0Tp87FHt3Qa/P+5JH3stl8YaCDsdZLRZ8fj81NTW8//67vA+c9NV2Lj9lOrGR9mC3dABfYzWms4bG9x4GAo3b2v4MdDi2vezsoQCU1jaG/H0F3XtviYiIiIjIoQl5EO8NLpeLq666isbGRl566aUO08nb1njvvd47Pz8fu93O0KFD93vdkSNHBiv4bUzTZOfOnSHr+t4XqqurgtuVXXbZFfssDeiKuro6brvtZxQW7iIlJZU//OE+RozouNbeNE3Wr19L0aoX+MF7W/F6vfu9nmmaVFZWUllZCcA1K99m2LDhnH32t/B6cvY5fvjwHB544BF+9atbKCoq5Be/uJH77nuQ7Owh3X4tPdW+C/quFYu4c/l7lNYGPrg57rgTOP/875K2fQkJE47BseULdg06ng8/fI8lH3/IJ5t2ke+Au+++n9TUtOA1LXEpEJcS7Ka+v87qe0tPD1T8qx2uUL9MEREREREJs14L4h6Ph/LychoaGjBNc5/nJ02a1KXreL1ebrzxRvLz83n++efJzOw4BXno0KHk5OTw3nvvcdpppwUfX7RoEfPmzQtOh+7MCSecwJtvvklBQQE5OTkAfPHFF9TV1XHiiSd2aXz90csvv4DH42HSpCkcddSsbp/vcjXzm9/cRmHhLlJT07jvvgcpaYygrR1ebl4FH3y6ko0r/kdt2Z6mdpHxmQwZOZnZM2dQ5ozmugvm8fR72/nptybS0FBPRUUZxcU7+fzz5axenUth4S4ef/xhIqLjGRl9OWed9Q2sVmvwHgD33fcgt99+CwUFO7nttp9x//0PkZmZdcjfo+4oLy/jl3/+G7VNbjIyMvn5z3/F9OnTsJeto7Y4Am9+LlF2G9OnH8X06UdxWoaHBz7cQGHhLn71s6u4+4LjiY4INJ3z5udixCYH9xf3O2r2e9/2FfmI+sB0dEezq9O9yUVERERE5PAR8iDe0NDAfffdx1tvvYXH49nnedM0MQyDzZs3d+l6d955J0uWLOG2227D4XCwdu3a4HMTJ04kIiKC6667jltuuYVhw4YxZ84cFi1axPr16/n3v/8dPHb37t3Mnz+fBQsWcO211wJwxhln8MQTT3Ddddfxs5/9jObmZv70pz9x0kknHbZ7iNfV1fH++4sA+OEPf9Tt9fh+v58//elutm3bQkJCAvfc8wDZ2UN44/UNzBqfgcvVzMrFL/D524GKu91uJ3X40fz25iupdMUGtxjLzasgOjoawzCwWq0kJ6eQnp7GccfN4Ywzvkl9fQMff/whr732CmVlpSxc+Fc++OBdbr75VoYPHxEM4rPGT+aeex7gF7+4kaKiQm6//Rb+76e/YfPuPdPeV+VV8Ojre7qwd2W/8a5yuVz87ne3U9vkZmhqAvc++CgpKSm4t6+k4Yv/QEwyfkc1prM2GJDH2Oq45/rLufWvT7KrooZ/bnFz0003AoEKePvw3D5U7619RT6xtgaeehe3zyTq1AU97rMgIiIiIiJ9L+RB/LbbbmPJkiWcffbZTJs2rdOu5N2xbNkyAO699959nlu8eDFDhgzhG9/4Bs3NzTz55JP8/e9/Z8SIETzyyCPMmDEjeKxpmvh8vg7VebvdzlNPPcUf/vAHfvazn2Gz2Zg/fz633377IY25L7311v9oaWlhzJhxTJ9+VLfP/8vCv/PFF59jt9v57W//yNChw4LPFRcXcdddd1BUtAuA0047g0svvYKXPisjJ2cEOe2uc7AgHBsbxze/+R3OOuubLFr0Fs899w+2bdvC9df/lLO+cxkkTQ4em5SUzN1338/Pf34DJSW7efWf93PffQ8SGxto+PXo6xtYcO7kTu/jyV95SBXjp5/+OwUFO0mMsnHXz64N7msfMXo2FK0m4uSraXzvYfyOmuAUc0/+SoaOnM3tt2fzi59fzwcfvMvpp5/FpElTADqMxzayazMWFLxFRERERI4cIQ/iy5Yt4+KLLw5ZmO1q87fvfe97fO9739vv80OGDGHLli37PJ6ZmcnDDz/cyRmHH4/Hw6JFbwFw/vkXdDu8bdz4NYvffRmAa665kYkT94Tb6tId3HTTUzgcDlJSUhk770Juvvb81mfLgsfl5lUEq9nQsVptMQLbmM0YlRpsrmaz2fjWt77DccedwIMP/olVq1byxktPkDPpBCYfc17wOmlp6fzxj3/m5puvY8eObfzxj7/jrrvuwWY78FvYm5/b7SDeNiV8R3ktb7+1GIBrj0ohsWYrzR9txe+oCXxvm2pxv/9IYPq41R6sbreF68mTp3DqlBF89PVOnn/+n9x99/373KurY/N4AuvvrRZDoVykE0UVDt5eXkBlXTPjhiXxzWNyiImy9/WwRERERDoV8iCelJTE8OHDQ31Z6YLlyz+jrq6W1NQ0jjnm+G6d63I188AD94Jpcuqp8znjjLODz61fv5YVixbi93oYmjOWe/94Dy8uLQECwbt99XvvaeHtq9U2m4Xk5Fhqa537dOhOSUnlzjvv4aWXXuC55/5BwcaltDQ34Pnmn7DbA79MDx6czZ133sOtt97ImjWrePjhv3DjjT/v3jepC9qmhD//y5sxgZNOOpXpQ6o7NFWz2Sy4lzwWrIj7yrd32nTt/Lnj+XjjLtasWU1RUSFZXayA762pKbBGPLqHe8GLHMnWbq/i0f9twNu6BV9BWSObCmq59QdHERN1WPQkFRERkQEm5L+hfP/73+edd97hoosu6lG3bum5trXhZ5xx9kErxXt7/vl/UlpaQlRcMldffX2wsl20K58Nix/D7/WQPnQCsRO+x4tLS6hpCHTvzs2r6DAtfO9g3lW5eRW8v7KQ2sYRpE0+n6qN/6M0fy0//MmNDDnqAgyLlZT4SEZlJ/LLX/6GO+/8NR988G5gS7PIaQe/QTd48ley8fP3WLv2K2wWgwvHRGBW1eJ4/qbgMZa4VHzl23G7ffjKt2O6HHjyVwLgXv9+oDs6kFK1iRk5GazOL+Ojp+/l/y6+tEdjamioByAxOfXQXpzIEaa40sHjrwdC+JSRqcyekMErn+ygqMLBix9v48dnT+jrIYqIiIjsI+RB/JprrsHtdnPeeefx7W9/m8zMzGAn7PZOP/30UN96QKupqWbt2q+AwNrtrsrNq+DjL9bz6WuvABCdczr//LAAgJbmRjYtfQavx0VixihmnX4lBeVNAOSXNPDo6xvYsbueR1sbuR01JpX3Pl5OXm4tO3Zsp7KynLKqer56O5qkpCSGDRvG0UcfxaRJM0hMTO4whty8ClISokhJiKK2cQLDZsVQtOp5Gss24djxLldcdSOzJ2Ty6OsbuPDUeVx99XUsXPg3nn32KS740U1A4MOAvff+9ubn7tMQ7WCdxu0jZ/PuS+8CcPKpZzD8u7/A8fxNxP3wweA9fDtXQVO7UOzzBO9rOmuwTT0D+8jZNH+0kBNHjGL1X+5jbY3JZT1cr15dXQ1AcnJKj84XORL5/SbPLMrD7fUzKSeZ68+fgtViIT0pmvue/4rP15dy2swhDMs8tF4lIiIiIqEW8iBeXl7Ol19+yebNm/fbGb07XdOlaz777BNM02T8+IkMGjS4y+fNGp/B2//5GNPvZ+7cY0ifdhwLzp2MaZr85je34W6qIzt7KJPn/4Trzp8RnGre9s8/PLeKH80fwZtv/o+//eENqqurWL7XPZoaYPfuIjZu/Jp3330Hi8XCUUcdzfnnX8i0aTOCFfS2fwbWlGcQG2lhy7LnKNqygvx1HzJ7wv8Fr/mNb5xLcXERb7zxGq+/+CjzZoxh3LgJHTqNQ9f36W6vrq6WZcs+A+DccwPr1I3YPQHYPnI20WPnBqemN29dgTc/Nxjwmz9a2GEMbU3ztm/fisvlIqoH08srK8sBSE8PTTd4kSPBfz7ays7SBiLtVk6Yls22ovrgc+OGJZFXWMeLi7fxrWNHBB8fPzy5s0uJiIiIhFXIg/jtt9/Oxo0bueqqq5g6deohd02Xrlm+/HMATjjhpG6dt3nzRlau/AKLxcLll1/Fm6saAHj33bdYtWolFquN0fP+j6IqD4++voFVeRXcvHAZjmYPNy9cRsmO1fzgf3fidjkAsEVEc9wxxzBhwiQGD84mJiYGr9dLTU01r33wJfaW3WzatIlVq1ayatVKZs6cxTXX3EhuXs0+U9qNxNEsWHADjzzyIM899zQjR44G4oLPX3nlAkpKdpOb+yV33vlr/vrXR8nI6LjPfE8sWfIRPp+PcePGt96T4FTzzthHzsabn7vfxnBpaekkJSVTV1fLrl07GTeu+1Nly8pKAcjKGtTtc0WORB6vnxWbAh9QnTBtMPExHRuzzZmQSV5hHVuL63G6PMSqcZuIiIj0IyEP4qtXr+bKK6/k+uuvD/WlZT+cTicbN34NwNy5xx7w2L3XcL/wwr8AmD//TIYMGUbtx6v4ywvLWfLSYwDE5ZxCQupgvK1rwkcOTuDXlxzNI6+uxVP4AZs2B6ZwxyZmMPaoMyn1DiF+3CC+rnNR7I8KNG+bGrhfXn0md1wxjw0btvDqq6+waNFbrF6dy4IFlzP8qPOg3VrzWeMzqGlwkTFqLsMnHseuTZ/zh3v+QPL0Kzq8nvnf/SmVlZUUFOTz29/ezv33/43Y2DgOxZIlHwFw6ql7lk+0dUJvvx1a7IRj8LQ+5ivfjul10/zRQrz5uThf/z2WuBT8jhpaVvyHoUOHUVdXy+7dxT0K4qWlCuIi7a3YWIbT5SUu2s7UUfv2TshMiSEzJZrymma2FtUxY0x6H4xSREREpHMh76aWlpZGYmJiqC8rB/D11+vw+XwMHpx90Gnp7bcW27lzB6tWfYnFYuH73/8BAKfPHkb11o/wul2MHTueE045hwXnTubXlxzNgnMnk5IQRUtLC3mfPcMHH7wLGPzwhz/iP//6N3f/4jJmTRzEgnMnk5wQxYJzJ3cI/W0N3nbX21mw4Aamn3Uzw0eOx+VysWX587z88n+APZ3XUxICQf6he+5g9OgxeFxOnNvf5upvT2LBuZNZcO5kjp+ew5133k1ycgoFBfn88Y+/w+PxBO9pGzmL3LyKYCO1gykuLmLbtq1YLBaOP/7k4ONt4bv9+vO4CccEn4ucdxGGLYLo067BNnIWlrgUok+7hthz78B01pKREfg+VFdXdWkceyst3Q0EOseLDHR+0+S9lYUAHD0uHaul8y39xg8NTEPfVlzf6fMiIiIifSXkFfHLLruMF198kfPPP5/Y2NhQX146sW7dGgCmT5/ZrfPeeOM1AI499vhgwMuKdfHVyk8A+OlPr2XJFrPDOdV1TVx1488pL/gaqy2ChAnn0RB3NE++E9ijvbY1bMO+e4pv393Avc/lsjm/mkUrdlHqiCR61PdJYTE1+ct45pm/s2hFIamjjuODlYXsaG0IBzB05gXs2vUnnFU7eP/9RZx55jnB62ZkZHLXXffw85/fwJo1q7n//nv4xS9+hdVqxT5yNrmvb2ByXNf2E//ss8BrnzFjJklJSQc81rF5OY51n2Gage+R6ayl+aOF+Mq3Ax2r53FxCQA4nY6DjmFvbrebiorAFNzBg4d0+3yRI83XO6oprW4iwm5h2ui0/R43ekgin64robC8EZfbS1SEtjITERGR/iHkv5W43W5sNhunn346Z511FllZWft0TTcMg0svvTTUtx6wNm0KhNXJk6d0+Ryn08knn3wMwLe+dV7w8Rdf/DeYJvPmHcuECZNYsmVDx/MKP6O84GsiIiL4/e/v48mPGzpsX9YWnNu0PZebV0H+7npuu2QWv3/qC3767clc99elTMhJgZEXsuKTaCq3fET55vf46fePY+7cozvsQQ6TGZ1QzZNPPsY//vE4c+ceQ1LSnqZLo0eP5de/vovf/e52li5dQkxMDNdd97NubaFnmiaffLIYgBNOOPkgRwcq4k5HC5acowFwPH9TcAo70CH4W5sClfD21fquKi0twe/3Ex0dQ3KyGk2JvN9aDZ82Ko1I+767crRJTYgiNSGK6gYX+SUNTMzRrgMiIiLSP4Q8iN93333BP//73//u9BgF8dDxer3k5+8A6HTt8d5V6VV5FTz6+gZ2bV5GS4uL9MxsJk0KhN3KyopgEL3ooov3udbmzRtZ98U7ANxwwy1MnTqdiM+WBa+fm1cR3M5sVV4Fmwtq+GBlIckJUdQ2uHB7fNz7XC7bi+v543OrcLq8rNseCKi2rHmktDioKVjB3ff8ket/+cA+4/czDltcJg5HObfe9QDTTrgQ2DOVfebMWfz857dz331/4L333sFbX86Nv7q3y9/Lbdu2Uli4C7vdzjHHHA/sfzs001lLQ1MtvmYnlpR3MZ01mM5aXB8/AaYfTJPGf16DYYvAdNbiLQpUwr271naolHfF7t3FAAwZMgTD6HwKrshAsbO0gbzCOqwWg6PHHXzd9+jsRAVxERER6XdCHsQXL14c6kvKARQXF+H1eoiJie10fXhbSG3TVmX++bInAfjmOeewaksluXkVbF75Fn6/n4jE4Xy40cOHGzdQ2+AiN6+Co8ak8tBDfwFMhoydTV7DIPJe30BtYwsvLt7GqOzE4P0uPHUMj76+gc0FNdQ0tgBQWOHA4/Xz5YZSvD4z+LjH6w+OLXnM6TTVFeOqK+aLD/9D6pTv7zP+wp3n8fVHj1K85Qtuv+EKhg/P6fB6TzjhZLYW1fDa8wv56ItVlF51EWdOGos3tpiv/3l38LiU+Cgyph/XIRC///4iAI455nji4gIN3/a3HZrNZiE5OZadf72S2HPvAAIVcWvmaGwjZ9HyxX+C+443f7QQd/4aoJrYsXO7FcIhsPUbQHa2pqWLvPdloBo+e0Im8TERBz1+eFYcX24up6jSEVxGIiIiItLXQh7Es7O710yqqamJp59+mnPPPZchQxQ0uqugYCcAw4fndLlaWlNTE+yyfuKJp5CRkcFRY1K55JXfATBl9qkdppsDvP/+OxQU5GOPjOH/LvkJJ84cBcAfnltFSkIUKfGRjMpO7BCaI+xWkuMj+dUlgWnmdY0tPPizk4JT06/80xJmjA1UtArLGznvxFFknHcX11xzJcuXf8aPjzpln7HnjJpAfNPxLF/+Gf/61zP8+td37nPMFT88jwk56dx3z51s3F1JUbOd4d+azJQLfrnfanRVVSUfffQeQIf1553x5K/ENnbuPo+37TVuHzmbli/+0+G5hubABw/x8QkHvHZnSkoCjdqys4d2+1yRI0llXTOrtgRmyJw5ZxjO5oMv9RicFovFgMYmDw1Od28PUURERKRL+rxzTVNTEwsXLmTmzJkK4j1QXByoDg0dOqzL56xYsQzTNBk3bnxw3+01a1ZTU1NNQkICWcP3rDXPzavgy02lLHnxGQCiso/lzRVlbCxq7nDNtmnpbdPINxfU4HR5qXO0cPPCZdQ2thAVYeXSu96n0enm5oXL8PlNduwOdDN2NHt4cfE2Ljx1DGeccQ6LFr3J2uXv8L1zTtpn/JdcchlffPE5y5YtZdeunQwfPmKfY4499gTu/N4J/Om9ddTVlPDzf5fzf9aRnB5fsU8QN02Tf/zjcdxuNxMnTmbatBmdft/atinzlW/Ht3MVTa46TGcNjudvClzH5cBfsQPn67/HbKrD8fxNGLEpmM4aKisD35fE0tU0f1SObeSsLlfGy8vLAMjMzOrS8SJ+MzDTxGKEfGOMPvVBbhGmCZNGpDA0I468XbUHPSfCZiUrJYaS6iaKKhzMmRSGgYqIiIgcRL/4LU3TBXuurCywv3RXt7WaNT6DVau+BGDOnD17ji9dugQIVMgt1o6fz0zPqKOpsZqEhEQmzTyJUdmJwe3D2mvbsmzBuZO55MzxJMdHkhQXyQPXHMvR4zOYOiqVZ39zBtPHpHHhqWOwWgxGZScyKjuRYRlxJMdHAvC9712IxWLhq69WBddHtwX8lPhIhg8fwTHHHAfAq6++vN/XOj47jUce+Ttp2WNp8fr4xz8e57qn3+O1116mrKwU0zRpaKjnscce4pNPPsZisXDFFVfvd2ZB2zZl1szRxJ1xLdmX3oMRm0LcDx8k7ocPYp94MraRs4g99w4s6SOJ++GDxJ57BxFzL6SkKfAezznzcqJPu6Zb09MVxKWrPD4Pr2x9g5uX/oafffprntv0Ek5PU18PKyQczR4+W18CBKrh3TEkI7DUpKiy+7sWiIiIiPSGPq+Iy6Fpq7S2VbYP5qgxqdy7bi0AM2fOCq7/XrFiOQDHHXciLRF7ppfn5lVQvPJtAKbPPoWqZhNbgyvYHb28pon8kgbsNgubC2q47q9LgcC09NrWdeA3L1yGo9mD1WLw1BtfM3tCJis2lRMVYQ1OaW9fUZ917mRmzJjJ6tW5LF26hIsuujjw+PiM4Nry8867kGXLPmPJksVcfvlPSUxM7LSxWgxw91ljWbPNwn9WFVDR0MSTTz7Gk08+hs1mx+vdM7X1pz+9lgkTJu73e9d2fV/5dhzvP4I7worprMH5+u8B8FcXgi2C5o8W4q/YQfNHCwPfo3onzhYPNpuNIUO6FyD8fj8VFYGfsYK4HIjf9PP0xhdYX7Ux+NiXZavZ1VDEzTOvIcYe3YejO3RL1uzG7fEzLCOOicO7t3vA0Iw4Vm6uoKjC2UujExEREekeBfHDXE1NNQApKaldOn7nzh00NTmJjY1l1KjRPPHWZmJ85TQ2NhAXF8+kSVM6bDfnctazdu1qAEp8I3A3e6htbCGz2UNVvQuf38Qg0HTN4/VjtRj4TROvz8RqMfD5TUZlJ7Jjdz0er5/P15WQHBdBaXUTTpeXD1cVsWTN7mDTtjVbK7l54TJaLMOBXJYs/bzTDu4TJkxkzJixbNu2lQ8/fI/zz7+g08ZqtpGzSMvPZf7Rkzlh2ngWL13KskqDLSU1wRCekz2Iy35yPbNn77vuG/btnG46202HtQaaRcWee0cweEefdk2wqRvAjsUfAO8yatRoIiIO3lyqvbq6OrxeDxaLhdTU/e+XLLKsZCXrqzZit9i4bNIPibXH8MzGFyhrquDpjc+zYNqPD9up6h6vj8WrA7NjzpgzrNu7B2SnxQJQ52jB6fIQG2UP+RhFREREukNB/DBXXx9YY52YmNSl4zdtClTLJkyYFAzca9YEgvZRR83cZ8/3soL1mKbJ+PETGTN2BLUNruAUdAh0Ya9tcFHT2BKcst7mj8+toqaxhQXnTiY3r4LVWyq444p51NY6eei/66lpcJHSeq1HX9/Ajt31pLQ2dyspyeHy3P9SWrwTj8dDTYNrn9dy5pnfYNu2v7B48fucf/4Fnb7e9uE8GjjbbuO8067B7XZTW1tDdHQ0CQmBavr+dBbw4864luTkWHY9dStG7J7qXPt9xNt89dUqAKZMmb7fe+xP24yH5OQUbDb9dZXOefxe3t35EQDfGnUW09IDC6F/OvUyHli9kM01W1lS9DmnDjuhL4fZY19sLKfB6SYlIbJDQ8iuioqwkRQXQZ3DTUFZI5O0jZmIiIj0Mf1mfxgzTROnM7DmsW27rYPZtm0LAGPHjg8+tmHDegCmTZuxz77jWzetAaCGbNZtr8Lj9WOvcHDzwmUA1Da2YLcFqmzBqeWtvygnJ0QFp5IDbC+u597ncvG4vazKqyA2ysauskauuv8TfD4Tv2lS29jS+rUfwxqB1+vmqrtfh8hUrrr/Ezxef/DeCZFJGBYrBQU72bWrYJ+tzPbWPmxHRER0mOrtzc896Lrtto7rfkcN7u0rKS9ajd9RA45qmj9aGKyau9e/j+mswZO/EnPIdL78MjDtf86ceQe8fmeqqgI/i/T07ocPGThyy9ZQ724gMSKB47P3vM+Gxg/me2O+xQtbXuXtnR9wVMZUkqOS+m6gB7C/xmumafLmssDuENNGpbG9uL5H189KiQkE8dIGBfHDjM/nw+M5eId8OXLY7fZ9CgMiIkcaBfHDmNvtxu8PTOmOjo7p0jkb87YCsLUqgkdf30Du5jIqNwaq5F+XRXPKSIJV7RUbS3mnIdCVffykGWyr8gcbqrVtVZabV0FNg4va1op4+2pVSnwkmz2+4HrymsYWquqaqaxpCoZ3n99kxth01m2vwkpguukV35jIrPEZfH/dUzTWlnLdt0by7+UuHrjm2OA+6G1+U3g0ublfsnz5Z/sE8b2r0+2nl/dEW1j315fh3rGSiAgrlrgUfOXbATpUxiPnXYR95Gw+++wTnE4nqalpTJjQ/XbNVVWVAKSlpR/S2OXIZZomHxV+CsApw47Hbun4r/V5g2exomw1+fUF/G/7O/x48g/7Ypg9tqOkgZqGFiLsFqaO6toSnM5kpcSQV1hHQVljCEcnvck0TUpLS6mrq0M9XQcWw4CkpCQGDRrU7aUoIiKHCwXxw5jbvafaHBUVddDjTdOktirQZf2q7x1PqSOKxppSyrxuoqKi+Pmlp2Kx7FlDmhbpwO9tITY2llt/fAaPv7kJIBi224J4+8fau/DUMR0Cu8Wgw9T0tscXnDuZ2574gvhoOzWNLcFr2SICr6m5uRno+B/itur03LnHkpv7JatWrdxnLXlnFe7Opo53lyUxKzg1vbbWSeN7D3dYF9780cLgvd9663UATjvtjB59ul9VVQVAamrPA4gc2QobiylvqiDCYue4wXP2ed5iWPj+2HO5N/evrK5Yx+mNJ5OTfPhsFblyczkA00enEWnveYUsKyXwYWVBqYL44aK0tJTa2jri45OIjIxk7/8OyJHKpKWlhdraOgAGDx7ct8MREeklfR7EU1JSWLx4Menpqvh1l8fjDf65KyGvrq4Wl8uFYRhkZg7izVVbaKgJbAc0YsSoDiEcOk5j3/u5FxdvC3Y6r21sISUhih2764NBun1YB4JBvL1Z4zN4f2VhYJ15Ywser5/axpbgunNnc+CDhvdzi6ltzgiuI3/09Q182/852SNnM2PGTAC2bs2jpaWl9Ze1/WsLyJ11WG9rttZmf3t9W+K6Nq11w4av+frrddgsBuec8+0unbO32toaAFJS1KhNOvdVRWBpyeS0CUTZOv9Abmj8YGZmTGN1xTreyn+f62ZeHs4h9lhheSPFlU6sFoOZYw/tvxGZrUG8usFFQ5ObhJjuNU6U8PL5fNTVBUJ4fHxiXw9Hwiyi9YP4uro6MjMzNU1dRI5IvRLE6+vrefvttykuLqa+vn6ffcINw+Duu+8GwGKxkJ3dtT2wpSPTDExL3zsk70/bNOfk5BTs9kDXYGd9oKI9dOi+22p9uSYwZX3kyNEA1Da4OH32sA6V7Ny8Cl5cvC3YcG3vvcX3J6V1intbs7abFy7jwlPH8NqnO4LX+MH7XtzA90+bxOur9zR9mzU+g+aPAlNxs7IGERuXiNNRT37+jgNuP9ZeZw3Y2rqc91T7artpmjz77JMAnDwpp8cfNNXX1wGBKXoibbbW7gAC77MvywLNFgfFZgYf78w5I09nTeXXbKjezI66Ao5O7v5SiXBbvqEMgCkjU4k/xOAcabeSHB9JbWMLheWNTB6hWSb9mcfjwTQ56IercuSKjIyksTHwXlAQF5EjUciD+Geffcb1119Pc3MzcXFxJCQk7HOM1vv0jT3V1T0V3aaGwPZnWVmDeXHxNi48dUzwufyCXQAMHToUoMO08Tazxmfw4uJtHR5r37Ctvfadz7fvrg92VW+riOfmVQS/nj4qifq6qtaxDSI5oSx4v/YMwyAmaTBORz07d3YM4vurevsdge9DxNQz9tugre1cv6MG0xk43nTW4nj+JkxnLXX/vJHGyEiM5KH4qgqD1/Xm5+LNz+XdjbeycePXRNqsnD91UKf36Iq6ukADKwVx6Ux5UyWNbgd2i42chAPvUZ8Zk87crJksL83lre3vc/SI/h3EiyocFFY4sFgM5k7MDMk105OiqW1sobjCqSB+2NDvCwOXfvYicmQLeRC/7777SE9P5+GHH2bcuHGhvry00/YJsd/vxzTNg37AsW7LbgCqHHDzwmXUNrZQVx0Iux+tr8OSXNxhanlzYyAEZmRkkZtXgbu18VpNg4v8kgau++tS3K37h1/316U4XV5uXrgMt8fH+ysLMQh0TgdYlVdBXLQ92DW9vKYJ2LNuc28lRfn4/X4SE5NISUllmOvTYBUcOk4lHxvjoBIoKyvtcI39Vb3bzjtQl/S9z937/Pgzr8O95DEiTr6a5q0rsI+cHdy3vCJ/E08vWQvA9+ZOILlpd4dp7/ub8t6Z7m5PJwPLrsYiAIYnDMVmOfi/zs/MOZUVZavZXLONrVX5pFtDE3B7w/INgb/PU0amkBAbmmnk6YlRbC2C3ZWOkFxPREREpKe6Nqe5G3bt2sXFF1+sEB4GNps9+Gev13uAIwMGJQeOnzgyiweuOZajx2cwOCnwFvjpd2eREBvBgnMnB6vOLc0NQKCCPmt8BlkpMSw4dzK/vuRojh6fwSVnjueJW05i1OAEHr7xBI4en8ED1xzLhJwUfn3J0Zw+exgLzp3MgnMnM2pwAhNzkrntkllce95UJuSkMCEnhV9dcjQLzp1McnwkC86dzNCMOBacO5mmqkAn8ilTpgXWtE8/nujTrgn+zzZyVvDP1UnTgT3VY2C/+4J78lcGK+IdvpeH0MStfag2hh3FQysrcLZ4GDt2PBfc+mCHsUafdk2XQzhAQ0MgiCckdH+N5IH2RpcjQ2FDMQDD4rvWfC01OoU5WYG+Cq9uerfXxnWoiisd7Cp3YDFg7sSsg5/QRelJ0a3Xd4bsmiJ96eqrr+Tqq6/s62GIiEgPhLwinpOTg9OpX3LCISJiT5WopaUluO57f9r2YW1/XFNT4GcVExOD21Mb3GoMwNPSDMADr+Rhjy4JNlKDwJ7htQ0uZo3PCFa999Z+inpZTRO1jS0d9hFPjo/kD8+toraxhQanm0df30B+SQML//c1S955DwCnffg+U91z8yqI2l3PZ61jKal2A7Axv4JHX9/ArPEZTC7ufF9wb35uYKr5Xg3XuhOO98c0Tf7+94Vs2l1FTEwsP//57dhsNnq6+63L5aKlJdCwridBvCt7o8vhy+1zU+YM9HjoahAHOGP4KXxZtpo1pRsoGFbEkNj+16OjbW345JGpJIaoGg6QlhT4d1VJtRO/38SydwdJERERkTAJeRC/4YYbuOuuu/jGN77BkCGHzxY5hyO73Y7VasXn8wXX5B9YoGle+ynsbeE8IiKCCLs12CjN7/fz1hOB4++6Yh5JSUncvHBZ8Pn2gb2rUhKiuO2SWcHty2DPnuV/fG5VsOHb3GEu3m6oJDo6mjuuu5Do6OgO15k1PoPm4kSmnBY4d/vaj2jYARNyUoPXay7e9/62kbMOaS/xtqr5/qrn76zZzltL1mEYBrfcchtDhgzt8b0AGhsD2yxZrVZiYrq2T7wMHLsdpfjxkxART2Lkvr049ic9JpXZWTNYUbqaRfkf8ZMpP+rFUXZfSZWTgrLG1mp4aKfOJ8VGEmG34Pb4Ka9tYlBqbEivLxJuDz30aF8PQUREeuiQg/gf/vCHfR5LSUnh7LPP5phjjmHQoEGddrv89a9/3aXr79q1i3/84x+sW7eObdu2MXLkSN5+++3g88XFxZx66qmdnhsREcHXX3+932t/+eWXXHLJJfs8fvbZZ/Pggw92aXx9yTAMoqNjcDgaWyvbB+7MbbUGftw+X2Aau9vjo84RqLg++PI6XNa04Lrv9p3un1m0iciYBBzNnmB1uv0e4inxkTz6+gaKyht59PUNrMqr4I/PraKspombFy4jJT4Sl9vH9t31XHrX+5h+k8ZmDx6vPxjo264N8PLLLwAwf/6ZHUJ4+8p4+zDsctYBkJTU+bZinvyVuNe/j+mswXQ5wOfBm5+L4/mbAt/H2JQDNm5rr22tt2PnKjw7VtJUuAUw+bKwjmeWFgDwf8dNZrpzHZ78COwjZ/d42rvTGVjHGhsbqwaHso/CxkDPh+5Uw9ucNfJUviz9inWVGylqLGFofP/Zp3dZ69rwSSNSSIoLbcdsi8UgOy2WnaWN7K50KojLYe9gM+FERKT/OuQg/u9//3u/z33yySedPm4YRpeD+LZt2/j000+ZNm1asClZexkZGbz00ksdHjNNkyuuuIK5c+d26R733HMPI0eODH6dnJzcpfP6g7i4OByORhyOxoMe27YNTNt05xu/N411i+IoK2vg2u9M5B9L6rnw1DHBQFz8aSSmr4UdRZVExpl4vH6eey8v2CW9/VT19pLjIymracLp8hJht1LT2ILPb2KzGozPScHj9lJV7wpuXQYEp5S/8+GnrFu3BpvNxnnnXdDhuu2DePvQXFdZCMAgx45gUG7fId1fXwZeN9giwNc6Udza/V9e2jdws9kswWZtW7Zs5eFXrsUEzj77W1x07Y0dgnNPp4fvWTZwsJkOAQfbG707TeKk/yt1BqZvZ8d1vyt/VmwGxwybybLCVbxXsJgrp1wc6uH1SGm1k52ljRghXhveXnZ6HDtLGymudHB0J7s7iHTG6XTy978/yqeffkJ1dRVxcXGMHj2Wa665nvHjJ3D11VdSX1/Hb35zJw888Ce2bt1CSkoqF198Kd/97vkdruV2u/nnP//B+++/S3l5OcnJKcyffwZXXbWgw5IzgHfffYdXXnmRHTt2EBFhZ9So0Vx22RXMmTMPILg+/LHHnuz29b/8cgX/+Mffyc/fjs/nIz09g5NPPoWrr76ut76NIiLSziEH8by8vFCMY79OOeUUTjvtNABuu+02NmzoGPwiIiKYPn16h8e+/PJLHA4H3/jGN7p0jzFjxjBlypSQjDfc4uMTKCsrpbGx4aDHxsYGqj/tQ3tMTKDi3NQU6GLeVu1+cfE2kpOTqKkq56qzc5gyZRp/eG4Vv77k6OC5e+8b3vZ1WzivaXAFj7954TIMCE5N/2JDWTDwtx3rdrvZsep1AL75zXPJyDj4tNSamhrqKwPbrB190c1EZwZ+ee9sX/C2oOor3441c/RB9w335K88aHBtbm7mnnvuoqWlhek5mSxYcH3IqtfNzYE1+tHRna/B31tv7I0u/ZPH76GyKbD14OC4ngXW7048i2WFq1hb+TUljrIeXyeUlrWuDZ+Uk0JyfO/sHz0kPfDBlhq2SXfcd9/dLFnyEeeffwEjRoykvr6OdevWUlCwk/HjJwDQ2NjATTddz6mnzmf+/DNZvPgD/vSnu7HbbXzzm+cCgWVfP//5jaxbt5Zzz/0uOTkj2L59Oy+++AJFRYX86U9/Cd7zqaee4KmnnmDKlGn85Cc/xWazs3HjBlatyg0G8b119fr5+Tu45ZYbGD16DFdeeTUREXaKi4tYv35d734jRUQkKORrxEtKSkhJSSEqqvPw4HK5qKmpYfDgrk2FtFi639j97bffJi4ujlNOOaXb5x5u2vaXrq+vO+ixbVtg1dXtObatCVjg/D3TNHPzKhg+dCg1VeWUlBQzZco0UvbTlK0ztQ0udpU1cvPCZYGvGwNV+Lap6SZgt+352dY2tvDCC89RVVFCcnIyP/hB19atvvXW//D7/YwfP5HMzAMHie6uD+9Ks7M33niN3buLSE1N46az53S6DKOnPJ5AE7qIiN4JJHL4KndW4sdPrD2GeHvXZkzsbWjiYI7KnMpX5et5r2AxP578wxCPsntKq5vIL2kIVMMn9d62akPSA/+eK9YWZtINy5d/xre//R1uuOFnwccu3msiSWVlJddf/zN+8IP/A+A73zmPyy+/hEcffYSzzjoHm83O+++/S27uSh599EmmT58RPHfUqFHcd9/drF+/jqlTp1FUVMjTTz/JiSeezD33/LnD70J7zwxsr6vXX7lyBR6PhwcffJikpMNnFqCIyJEk5EH81FNP5U9/+hPf/OY3O33+448/5uabb2bz5s2hvjUQaD72wQcfMH/+/OBU7IP5yU9+Ql1dHenp6ZxzzjnccMMN+/0gob9JTg6si66pqT3IkZCamgZAdXVVcN/xtscqKyuYNX5Oh+NHjBjJmjWr2LZtK2eccc4+16tpcAWr37UNLnaUNAT3EXe6vFgtBqOyA0F/9ZYKMpOjefJXpwcr4u+vLAyeX1a0lU3rA2vDRx79XTYXNwFNHarmq/IqOkyFH5Vm8r//vQLA+edfePBvVisjNuWQtitrEzN+Hm8++UcALrvsSpJHJB3yNdtr25LOZgv5X1M5zJU6ywEYHJt1SDMwzh55Gl+Vr+erivWc7ZxPVmzfTdX+YmOgGj5xeDIp8b3379+2inhlbTMtbh+REaH78EyOXHFx8WzcuIHKykrS0zvvx2K12vjOd84Lfm232zn33PP405/uJi9vM5MnT+Xjjz8iJ2cEOTk5HbbcnDkz8KHv6tW5TJ06jaVLP8Hv93P55T/ZpyBxoL/zXb1+XFw8AEuXfso3vvGtHhU9RETk0IT8N/wDfVILgaDcm//CX7p0KXV1dV2alh4fH88VV1zBrFmziIyMZMWKFTz99NPk5+fzxBNPHPJYbLbQvE6r1dLhn+2lpQWCdG1t9UHvl5WViWEYtLS04HA0kJycHOxsX1q6m5//35693w1g8uQpvPbay6xctRqbzcLciZkd7nH23OHMnpjJyk3lzJ6YySOvrufa86YC8Mir66lpaOH68wNfL3jgE4ZnJQRfx7zJWcybHKhgV1dX8+6zt4NpMn/+mfziF3sa6M2MCqz/jhg9u8P1PR4PP/vZ9YEp4dOPInZsYoexRY6eE/zavX0lEaNnYxgGEaNmB6/X9vj+GIax3++pNz8XZ+ZoKisrsNvtnHTSyWyozWNmiH7msOfnbRg9ey+1/x4c7B6dvbek/yppXR8+KPbQKsdD4wczLW0S66o28l7Bx1w6qesfaIVSabWT7bvrAZg7qXenyCfERpAQY6ehyUNJtZMRg7recV4GrmuvvYHf//63fPvbZzF+/ATmzTuWs8/+BtnZe5olpqen7bPLx7BhwwAoLS1l8uSpFBUVUlCwkzPP7LzJbG1tIDwXFxdjsVgYMWJkp8ftT1evf9ppp/Pmm69z99138eijD3H00bM56aRTOOWU0xTKRUTCJCRB3OFw0NCwZ41yXV0dJSUl+xzX0NDAokWL9vtpcii89dZbpKWlMW9e5+un2ps4cSITJ04Mfj1v3jwyMjK46667WL9+PVOnTu3xOCwWg+Tk0HbkTUiI3uexYcMCewA3NNR24X6xZGVlUVpaSn19JSNHDmHixED4/mr9Zm56+PPgkTWNLbySa2IYVirLd/Pkf5fyiyvP6nC1M44N/IKwZkc1Zxw7kvomD0+8tQmAHSUNVNe7gl+7vX62767n83W7OW5aNp+v283n60rwelr49LUH8bY0kpAyiNhRZ/DEW5s4btpgjpuWTXnRagCSZ52MPcJGcnIspmny29/+lry8TSQkJHDnnb/lpV2LmD/x2D2Dm3Uyjs3LcW5ejqt4KxStxrNjJRGt1S930WpcxVuJjYskbsIxAMHj23h2rMS95LE9370JxwSPLd+1ivqowPs4JSWFrKwUXsjfyGmtz4dCQkJgyzLDoGfvpVknd+Ne+763pH8yTTO4f/ihBnGAM3NOZV3VRlaVr+HsEaeREZN2yNfsrvdXFgEwOjuR1G4sgempwWmxNBTWUVKlIC5dc9pppzN9+gw++WQJK1eu4Pnnn+Pf//4n99xzP8ccc+zBL9DKNE1GjRrNDTfc3OnzmZmH9ne6q9ePiori8cefYvXqXJYt+5wVK5bz0UcfcPTRs/jb3x4N6TIrERHpXEiC+LPPPsvChYHuzIZhcPfdd3P33Xd3eqxpmtx4442huO0+nE4nS5Ys4Xvf+16P/yNy1llncdddd7Fhw4ZDCuJ+v0lDQ1OPz2/ParWQkBBNQ0MzPp+/w3OxsYGp38XFu6mtPXjzoaFDh1NaWsr69RvJyRnL4MHDAair2s2zP5kVnM5/498+4683HM/vGj5l2bLPaC5ZRW3tCZ1e0+P2UlvrJDHGzlXfnMjKTeWUVzkZNTiBq74Z+KBjR1Et3z9lDMdNy6ahoZlJw5Koq23kzRf+QW35Lqz2GB76y/0dqgu1tU7cbl/wzx63l5oaB48/vpBFixZhsVi57bZfExOTFBxDB1nTiMiahvv9R4g4+Wrcbh8RJ18dfNr9/iN4sqbtOa/1+ODzex3vaR0HgMfjIyEh8At8XV0dVVUNnY/hELTOTMfhcIb0uu0d6L3Vm0L9IdVAUttSh8vnwoKFtOjULp+3tXZH8M9Wq0G8J5rGxmZ8PpOchGEUNBTyr80v882RZ3Q4b2zyqJCNvTP1TjfLW5u0zZ4Qnqnxg9NiySusY3eVGrZJ16WlpXP++d/n/PO/T01NDT/60Q949tl/BIN4ZWUVzc3NHarihYWtu3oMCuxukJ09hG3btjJr1uwDTjEfMmQIfr+fnTvzGTt23H6P21tXrw+BHjyzZs1h1qw5wM08++w/ePzxhaxevYrZs+cc8FwRETl0IQnixx57LDExMZimyZ///GfOOeccJk2a1OGYwJ7X0UyaNKnXOpR/+OGHuFyu/a5PDzevN7TBxufz73PN1NRAVbaysqJL9xs5cjQrV65g2cp1nH32t0lNzSAqNgmXs47169czY8ZMAMzW8Y+ZdhLLln3Gu+8u4rvfvYCsrH23Sqqud+H1+vGbgXNWbCqntNpJabWTh/67HoCymmZWbCxj9bYqyqscHD8ljb8/fA9VJVuJiooia+bFZGYO3uc1tC118Hr9+Pwmjz++kNdeC6wLv/HGW5gxY1aHe3fGNE2at67ANM0Ox+z9dWfn7f+aMHjwYGJiYmlqcrJ58+YDjuGrivUcldG9D3aiogIVcafTGfL30t46e29J/1TUun94SnQyNktoVhcdO3gOhQ3F5NcXsL1uJ6OTRoTkul3x8epivD4/g1NjyE4Lzwc0bfcpURCXLvD5fDQ3NwXXVUNgJlR6enqwqWbgOC//+9+rwWZtHo+H119/leTk5GBn9VNPnc/y5Z/zxhuvce6553W4j8vlwjRNoqOjOeGEk1i48CH+8Y+/d9qsbX8hu6vXr6+vJzExscPzbYG//WsSEZHeE5Lf4mbMmMGMGYHunM3NzZx++umMHTs2FJfulrfffpthw4Yxbdq0gx+8H++88w7AYbOdWVpaoILU0NCAy+U6aJO5ceMCvwxs3RKYMm4YBmnZYyneupJVq1YyY8ZMcvMqcDR7ePT1DWwvjiAiKQd3XQE/v+Mu5p59NakJ0dS0dkGHwDT0R1/fEGzeVtvgIjMlhtrGluD2ZjcvXMa1500lOTmWW+9/g+cfX0hVSQHR0dHceec9vLkmsL+3J38l7vXvYzprADCdgfVsDf++kZYvi3l7e2DLpm/96HvsGlTFUxsC+9ivqVgf/LPpqMHvrGGaGcM0YoNblpleN47nb8KITcESl7LPPtvQ+V7be+/PDfBV+Xr+/eqtJA+NoWmLk4Uv/QX/8SnBMQAclTE1GL57EsTbOtrX1dUe8BcvGVjagnhGdOimkKdFpzAzcxq55Wv4uGgpmTHpxEf0rBt7d/j8fpauCyxjOnp8Rtje44MVxKUbmpqa+Na3zuTkk09jzJgxREfHkJv7JZs2beT66/d0UU9PT+df/3qW0tIShg0bxkcffcDWrVu47bZfY7PZATjrrHNYvPhD7rvvblavXsXUqdPw+/0UFBSwePGH/O1vC5kwYSJDhw7j0ksv5+mnn+Sqqy7npJNOISLCzubNm0hLS2fBgs73+u7q9Z9++u+sWbOGY489jqysQdTW1vDqq6+QkZHJtGnTw/FtFREZ8ELerO3aa68N/tk0TWpqAoEqJSWlR79kNTc38+mnnwKwe/duHA4H7733HgCzZ88mJaWta3gNX3zxBVdeeWWn19m9ezfz589nwYIFwTHecsstDB8+nIkTJwabtT377LOcdtpph00Qj4uLIzo6hubmJiorKxg6dNgBj580aTKGYeCoK6empoaUlBQyh0+heOtKli1byuWXX8Ws8Rns2F0f7Hjunv5tdn62kKriPOyVn3HBuQuCP8vcvAp27K5nwbmTyc2rYNb4DP7w3CpSEqLY+6ft9/v573//y5L//gW/101kTAI/+ukvmTJlGi57YM1rZ3the31+Hl/XwJLt6zAMg2uvvYmz/5+9u46vsnwfOP45te5mGysY3d2NiKDYiPHVn4KBIopiiwUWdgeKgYIoFkgJSHeOAQu2se7trM926vfHYQfGBmyw5np/X3xxT9zP/ZydsXM9931f1zVVZz0silzC9G53VrtfffxeTMV5KJ08qgXZF6uzXZlZ/dw+AfTd+BnX3/o0a5z/5cUXnyUjMpMxk4bU2IeDWRHnvcaFeHhYph1XVFRQXFyEs7PLJQX053MwK4IB/r3qpS3ReKyBeD2v5R7g14dThUlkl+WyOuFfbgyfjEapqddrnOtofB4FJRU4O2gID3Rr0GudrTIQzynQSeZ0cVF2dnbceOMt7N27m82bN2E2mwgMbMvcuc9y0023WI9zdnZh3rxXePfdt/n77z9wd/fgySef5vrrb7Qeo1Qqefvtd1m69CfWrPmHLVv+w87ODn//AKZOnWZN7gZw//0P4e/vz/Llv/Dll59iZ2dHu3bhXH119SomdW1/+PCRpKens2rVX2i1Wtzc3Ojduy/Tpz9YZeRfCCFEw2mQukgnT57ko48+Ytu2beh0OsDyi2z48OE88sgjdRotz83NZfbs2VW2VX79ww8/MHCgZR3TmjVrMBgM552WbjabMRqNVbK6h4eHs3LlSr799lv0ej0BAQE8+OCD3H///XW636akUCjw9fXj1Kl40tPTLhqIOzu74BcQQnpKAgsX/UHbDgNJLfNGrbEjMzOD+V/8RYeO3cgrKmffxlgASs0uuHe6ltxjf/DHH7+RkJLNvGefxt7enn1RWVTojSz4YT9JWcUs2xhLflG5tR7wA+9sRqOCvLQorr/1M8oKLKNfDh4hOHW4nq0xRlJLLCXJKgP5/p3OrBMtqzDwzspdHDqViUqlYs6cpxkzZnytXx9D/D7L6LqTx0Vrgp+rNsf37z+QgIC2pKYmE7/rBPSrfsylBuK2tra4urpRUKAlMzNDAnEBnAnEvetxRBxArVQzKfQqlkavIKM0i5Xx67gu7Op6vca5dkSkAzC4qx8qZePN+HB2kMzpovY0Gg2zZj1Wq2M7derC119/d8Fj1GoNd911D3fddc9F25s8eQqTJ0857/7PP//6ktrv128A/frV7XeiEEKI+lXvgfj+/fuZMWMGJpOJsWPHEhISAkBCQgKbNm1i69atLFq0iH79aohYahAYGEh0dPRFj7vjjju444476tTOAw88wAMPPFCrfjRnbdq0sQbi57MvKstak9vJpwOkJJBx6ihtOwzEw82JwH7D2L9rAwWJu8nzDye/UEdhSQVGkxmFAmy8uuHX3UhG5EoO79vCbXcepkPv8egdO1BSrsLdxY6MPEtyOpVSgbODmuyMZJwVqSRG70VXlGPZp7HDMWgkI8ZeQ3xakbV/5wbgADk52cz7ZTMJWVpsbe147rmXGDBgUK1ek8rp5MbMk5h1xdWmoddHHXEAlUrF1Km38957bxGz+ShF9xQRW5ZQJfhOKEhEW15w3mnrF+LvH0BBgZa0tFTat2/85R6ieSkoL6SgwvJz412HRG215WrrwnVhE/kz7h+Si1JZFb+OcLcwNKr6Hxkv0ek5fNLy78KwHm0oLtXX+zUuRDKnCyGEEKIp1Xsg/vrrr+Ph4cGSJUusWUIrpaenc8cdd/DGG2+wYsWK+r70FatNG0sJs/T01PMec3age7KbLbMOriMv9QR3jw/l+38TmDT5dvbv2sCJo/t4dOaDBAd344lPd9AuwJX8Qh15ReW8+8zjHDkyilfmv0ZZcT6RO34DhQIHF1+yy8Moy6nAx8ee+OMJZJTkYNDryDl9fbWNHTdefz333z+d2R/s5uEbevDZn5HV+lYpOjqK1157kdxcLa5Ojrwyf6F1fXtNzg1qK6eTl2341Do1/dxp6EajkbS0VMrKylBnx+DXe6w1a/zFHPNtQ9vT/z1mzHh++20ZSUmJLF/+M/fd90CV/lQG4DVNW7+YwMC2nDhxjOTkpDqfK1ofa6I2O7cGCY4B/J38mNJuIn/GrSGxKIUvj37PA93vrvfrHY7NwWgyE+DtSKC3E1GJ+fXa/sVUZk6XdeJCCCGEaAr1HoifPHmS2bNnVwvCwTJyO23aND755JP6vuwVrbLkV2pqSq2Ob9euPY5uPpRos9i+fTMQTHBwKF16DOR4xB7mvf4O4UPuIb+onCOnR6z0BhPzf9gPgFe/mWiKjpESs5uKogxKCzLYvdtSfij15JnrKFQ2+AR0oH2XfuTSlnIPH+b/EEFeUTlPfLqD4jI9eoOJIydzWL83CXcXO/p19CYnYS9ffPExer2etm2DefXVN2rM1n62ysD3fMneTLlJ1kRtyW7d+H3nEfbu3UN5ue5MfxXv0KaNP507d6FPn/4MGDAYJ6eaE1YdUZRQOWlXpVJx770P8PLLz/HXXysIHtSBU+YzD0UOZUXgZutqDchrOxoOoPayJN/bdOg/ynqqqiSlq2tbB7MiqozUH8qK4KsjP6CxUaOvMNDLu/ZtiaaRXGSZ9VLf09LPFeDkz5SwifwVv4YTeTEsj/mTOzrfcvET6+BgTDYAfTt412u7tSUJ24QQQgjRlOo9EPf396ei4vylL/R6PX5+fvV92StaYKBlbLa2gbhCoSCo42BO7PmLf/75mzsfehWAx2c9zEMPHSAr6Tj33l5EfrEt7QJc6d/Jh2UbY3nhf5blBJ/9GcnM68fx2Z9j0ZUUUJCbwsD29mzan8ioPm3ZeCSPsUN6cCpPwyM3WTLYL9sYy50TOuLu7sjdL6/lnYeHVpkuP/P6bmi1Wj755H127NgKwKBBQ3jyyeewyTwGXDgQr1RTsrdK9uMe5q+/VvDVwk8wmSylumxtbXFwcKCsuBCd3jJCnpaWysaN/6JWaxg8eAiTJ19P9+49L5hscMCAQfTq1YfDhw+y7++tPPvsS9Z9lzMiPqrXSNYs/RNDto7p3e48b1K62jg3aF8UuYT7e/4Pd3dH8vMbvkSauHzJxZWJ2ho+eA109mdy6FX8FbeGnen7CHUNZoh//awp1VUYiEywPCzr17Fxaoefq7KEmdQSF/WhprXaQgghxIUoL35I3Tz88MP8+OOPnDhxotq+48ePs2TJEmbNqrnshrg0/v6WqemZmRno9bVbZ9m240BsbGyIjY3BTm9JmJRebEtYT0sitHffe4fsrHROnMpj/d4ktMXlPPPlLj77M5L9UVl89mckcakFpGpB49aOa665jrAeo5k8+XrCuw5g8uh+KFVnMhGfXe6sUuV09LZlUWzcuJ4HH/w/duzYikql4r77HuDFF1/D0dGxSukwffzeWt1fTcf9++9avvjCEoQPGzaS959+lN9/X83PP//OT7OuZ+nS35k//y1uvfV2goKCMRj0bNu2haeffpw5cx7h8OGD572eQqFgxoyHUCgUbN26mePHI2vVz4tp1649AFlZmWi12nppU7RcKdZEbfW/PrwmwS5tuTZsAgArYldRWFF0kTNqJzI+D73BhI+7PQHejVM7/FxtTgfiuaczpwshhBBCNKZ6HxE/cuQInp6e3HjjjfTu3Zvg4GAATp06xeHDhwkPD+fw4cMcPny4ynkvvPBCfXfliuHp6YWtrR3l5ToyMzOsI+QXMqx3OzS5V/PPP3/z00/f0717T/p38qH3y3OYOzeRqKjjFBz7hZCrHub5//WzTksHcHe2rKPOLyrH3dkWBVjriJ/t3HXflWw0Kuv68IgjhzgQ9StpWssHfGePNtxxz6NMGV9zUjZD/L5aZTM/97h893A+m/8+ALfcMo07R/akYvcyyjdZpvoaE/Zjq1DQBejSFu4cOZMkswerV69k/b9riIo6zrPPPkFAjxB6TRnMCd1J3tv5NfoKAybz6dHmsB5cddVE1q1bzaJFX/Duux9bR9Evdcq3o6OTNSt7XFwM1G4Ju2iFdAYduTrLUguvRgrEAcYHj+JwdiRJRSmsO7WJWzqcP4NzbVWOhvds59VotcPP5eJgg7ODhqJSPel5JYT4ScI2IYQQQjSeeg/Elyw5s3714MGDHDxYdRQxJiaGmJiYKtsUCoUE4pdBoVAQGNiWuLhYkpMTaxWI9+/kQ7DH7axbt4aIiMPs3bubgQMHo1arefHFV3nssZlkZ2dx4r8vybiuIxMGBLEvKouZ13dj/g/7mXl9Nz77M7JKorVlp8udVX59vkD8xhGhGLQnWbFiOYmRljXLdnZ2TJt2FzfccAsaTf0lharMjr70j03odDq6dOnGPfdMx3hqPyrf9tYEbjXVFG8HzJr1OHfccTfLli3hn3/+IjXiFEWn8uk5dRBzps6oNqW718RBbN68iRMnjrFz53aGDh1ep3XcNQkPDyc1NZmYmBj6jK2/NdyyHrxlSS+xLONwsXHGXm3XaNc9qU2gr29PkopS2Ja6m47u7bG7yPVNhR7n3Wc2m63Z0l0dNY2epO1s/p6ORJdaErZJIC6EEEKIxlTvgXhUVFR9NylqoW1bSyCelJTI4MHDanWOj48v119/E7/9towvvviYnj17YWdnj4eHJ2+88S6PzJ5FsTaDWbMe4OGHZ2M2WwLr/LOmmZ8dbFdOP+/fyafK+m+A/VFZvP71OtITDpF4YjdlxZYP32q1hv4hvjzyygd4eFhG+SpLj1U6u/SYMfMk+vi9ta4JrgkbQHZ2Fps2/QvA/ffPRKlUUn5W+xfj4eHBzJmPcvXV1/Duu28SHx/HtkXrWObanQkTqtatP6lP5IYbbmbZsiX8+OO3DB489LID3vDwjmzevInY2CimTbu09eE1kUC8ZUkvyQTA37Hxc2y0dQrAy96TnLJcovJP0su72yW3lV9UTmFJBSqlgkCfmpMhNhZ/b0eik7WyTlwIIYQQja7e14iLphEcHArAqVPxdTpv2rS78Pb2ISMjna+++sy6PSAgkIeffB037yCKi4t466357PjLkkjNzUF1gRYt+nfy4a6xwfRtU4Q6awuFh7/kv+WvE7VvDWXF+Tg7u3DzzbexePFP3NCvszUIB0vwbD/uYesfdVh/63+rfNvXKgg/wpkP1v/88zcmk4kePXpdsARapfOtQw8La8/773/GhAnXgBneeecdfvrph2rH3XjjrTg6OpKYeIrt27dc9HoX06FDJwBiYqIvuy3RcqWXWCoTtHH0bfRrKxQKunpa3ofHcqMwm82X3NapDMsylABvR2zUF/+3pCH5e1rWiafnlDZpP4QQQghx5an3EfFKhw8fZs+ePeTm5nL77bcTEhJCWVkZ8fHxhISE4OjYNAl6WqvQ0HYAJCTULRB3cHDg8cef4rnnnmTNmlXYubXF4NIFgPxCHXad7sTbfTc5J7eRn5nA/PkvoVTbcvfu9tg4+bJKfRI7O3tMJhPxESf5Jnc7aWlpJCYmVMvirtFoGDRoEIPDg+jjXIqN2gCHlxNSHlMlu7k6rL812NbH78WYedK6/+zR8bOPr9xX6XBJCj03fIrRZGLdqtUAXN3Rq8rIurkkv8aR9sr15QezIqqNGtvY2DB79pOkKjKJXHuA7777Bnt7R6677gYAtDotzs7ODBw/nE1/rmX58qUMHz7qstbBhoVZErbl5uZQUFCAq6vrJbclWq604tOBuFPjB+IAndzbsz11NzlluWSX5Vxy5vbETEsgHuLnXJ/duyRnMqcXN3FPhBBCCHGlqfdAvKKigjlz5rBx40bMZjMKhYLRo0cTEhKCUqnk3nvv5Z577uGhhx6q70tf0cLCLIF4SkoyFRUV2NjY1Prc3r37cscdd/PTT9+z8tevmTdvPv37DwQsSdj63/gA2w6M4eCu9RSnH6a8tJCspGPAMT49vqlKW8fOaTsgIJDu3XuSbfDlxUduJjDQp9q66tTf3yPgnPXZADpdGYVOwZTb++M7YgY2NjY1ruWudPZIuWLjy9iPfZi9e3ehLfkdVydH+gWcWQNqLslH4eh+5njH6mtaawrEwTI6eOcdd/OTUsHR1fv5/IuPOWqIwbdDAAmFSSyKXEJOWCkqjZq4uFiOHDlEr159auxzbTg4ONCmjT/p6WkkJMRdVlui5Tp7arreZGj069up7Qh1DeakNp447alLCsTNZjOp2ZbZKm19mj4Qr6wlnqPVUa43Yqtp2hF6IYQQQlw56j0Q//DDD9m8eTMvv/wyAwcO5Oqrr7bus7W15eqrr2bjxo0SiNczLy9vnJ1dKCoq5NSpBDp06Fin82+//X+kpCSzZcsmXn31RW68/WH+b5olO3JlQrbPHF158LqXePObtXT1KSM5OYn8/Hx0ujJUKhWpeXr6dwvFz8+PoKAQ2rULt47e7ovKOu8sCA8XW4qKCjl27CjHjx8jJiaKxMRTaLVnkjipF6+na9fuXB/uRM351Gu2fv1aAEaPm4jzhDMBfOVI+PmC+rOdHZBX/ndfv54cmdCHNgYv1q9fy7Hf9vLwZ9+QUJBoqffNEoImuLNq1V+sWvXnZQfPwcEhpKenkZSUKIH4FahEX0pBRSEAfo6+JJ8uY9bYQl2COKmN51RhEoP9+9f5/PyickrLDaiUCnzd7Rugh3Xj4miDk72G4jI9GbmlBDeDUXrRut1551ROnozliy8W1erf8nHjRjB16u3MmPFgra9x4MB+Hn74fhYvXkLnzpYZboMG9WHWrMe4447/XXLfhRBC1K96D8T/+ecfbrvtNqZOnUp+fvVsuO3atWPt2rX1fdkrnkKhoEOHjhw4sI/o6ON1DsSVSiVPPPEMBoOBHTu2svyHDzCWpGN0G1jtODfvIKZMqZ6s6bM/I3nw+pqTOJ2bQV2r1XL06BGOHj1CxK5NJL77W43naTQazGYzBoOBI0cOceQIPOz7J5MnX1/luINZERzMirB+HaEo5dM9i9i1ezsAxaHG845wny85nFGRTVnGpxxwMlYLxMHymj/66Byiok6QlJTI119/BkPOtDtp0hRWrfqLXbt2oNXm4+bmzqWqzISfkpJ8yW2IlqtyNNzd1q1RM6afK8QlCICsshxK9CU4auq2xKgyKVobTwfUquaRosTfy5GYZC2pOcUSiIsGFR8fx8mTluoi69atbdSHqosWfYefX5tGu54QQoiLq/dAPDc3l44dzx8EqlQqdDrdefeLS9e5c1cOHNhHZORRrr32hir79kVlnbecWCWNRsOzz87j22+/5Pfff2XFil/w9N6Ki2kad9086aLnX0h2dhYnThwlJuYEBw4c5NSphGrHtG0bRNeu3enYsTNhYe0JCAjA0dEJs9lMenoay5f/zLp1q/nss4/o0qWbde00UK1E2Ne7P8IrzRWT0US7duE8cdWjVa51hBL6ho2y3HfYAI462VkDeaMiBJWvKxFZifzk68qpgkRe2fU2DhoHskpzWBS5hIJyLfEFSWQV5mA/zge+TWTTpn/x9+vM8yxAW15AQkEiLgHuFKbm89M/P/HwHY9c8usXEGAJxNPTm2YkVDStykRt/k6NnzH9bA4ae3wdvMkszeZUYbI1gVttVQbilWuzm4OA04F4miRsu2LsPZ7JgC6Nn2th3brVKJVKevfuw6ZNG3jiibmo1fVXrvNCunWTKhlCCNHc1Hsg3qZNG+Ljz58w7ODBgwQFBdX3ZQXQs2dvliz5jiNHDmEymVAqz4w41SYQB8uDkhkzZpJU7ErcvhXkZqezbPF7bFu/nDFjxuOuHkTfDl5Vzqlsu38nH8xmM7m5OSQmJhAXd5KYmGiio0+Qk5Nd7VohIaF0796L7t170r17j/OOGCsUCvz9A5g9+0lKSkrYvn0Lf/65gjlznj7/jTi6s3r1SgAmTpxcbfdRJzsGnbWm/OxAvizjU+y73cmiyCVVgvvp3e7k+R0L6OPTg8PZEQxy8eL/Ot+Ooa+JD1IXsm7dasr25LLgrs9YFLmE6d3u5I+sX/nqq89IPHIS7jh/d8+ncgTe19cSgGVmZta9EdHipRVbvu9NkTH9XCEuQWSWZpNUmFL3QPz0+nB/r6YtW3a2ynXiaVLC7Iqx90TjB+Jms5n169fRt29/pk6dxpNPPsauXTsZPnyk9ZitWzfz6acfkZ6eRvv24Tz55DM1trVjxza++eZr4uJisbe3Z/TocTz66OPY259/uUdNU9MvpR0hhBD1p94D8cmTJ7N48WKuuuoqQkJCAKwZo5cvX86aNWt44okn6vuyAujYsTN2dnYUFGiJjz9J+/Ydan3uuXW/U8vbMPD6Z4k7spG4iM2kpqbw44+L+fHHxdjY2ODvH4i7uwd2drbEpxbg46pCq9WyICuT8vLqMx6USiXt24fTr19fwsM707lz9zpn/1YoFFx77fVs376F/ftrLjFWKSs2jZSUZOztHRg9elz1tpyqJ2cDS+C7T5GNKnIJCQWJxOSdpMRQikap4fkdlpHupVG/Y6vSoFAqOJBxhJ5e3Zk27S42bFhHflwWcXEnre0NHjyMr776jGPHjlJSUoyjY90CkMpA3MvLkhgrLy+nTueL1sE6It4ENcTPFejkzx4OkFaSYU3IWRtl5QZyCy3/NgR4N58RcQnERWOIiDhCenoa9903g0GDBuPq6sb69WutgXhMTDTPPjuXQYOGMHv2HNLSUnn++afR6/VV2tm0aQMvvPAMkyZdx4wZD5Cbm8Onn35MUVEh8+e/Wev+1Fc7QgghLl29B+IPPvggR44c4c477yQsLAyFQsEbb7xBQUEBGRkZjBw5knvuuae+LyuwTC3v06c/O3duY/v2rXUKxCtHtCtHtz/7M5KZ13eDW/vz0a/j6eyWzY4d2zh69AilpSWcOhVfpWb52eO0SqUSf/8AwsLaEx7egQ4dOtGhQ0ecnBxxd3esljW9LirvKT8/j9LSUhwcHGo8LnP3KQDGj59w3mNq0senB91DdWjCBrAockmVfZUj4qGuwRSUF6BSK+nr15NfTvzFTeHXMnToCLZu/Y916/7BZoSlLrqfXxsCAgJJTU3h6NEIBg0aUtNlL8rFxfLQoqSkBIPBgFrdYJUHRTOUUWJ5SObneOnLQ+qLr6M3SpQU60so0hfjYlO7ddWV09I9nG1xsG0+79/KQDxbWyaZ00WDWb9+Dba2towaNQa1WsOYMWNZs+Yf6++xH35YjK+vH2+//R4qleU9aGtry4IFr1rbMJvNfPTR+4wbdxXPPz/Put3T04s5cx7l3ntnWCuoXEh9tSOEEOLy1PunIRsbGxYtWsTff//NunXrMJlMVFRU0LFjRx577DGmTJlyWTWVxYWNGDGKnTu3sXbdWkpcBqA4PT19f1QWn/0ZaT2uMvA+V+WoeFxqgfX4w3EFqDsF4tNrGmN6TKWdtxkv+3K02nwqKsrZciSDiYPb4+rqire3D76+fmg0DbPuzd7eHoVCgdlsRqcrqzHIPnkyltijUSiVSq6//mbgTDI3rU6Lm50bh7IiqgXafXx60NExjKWHjnDgh2/J1+ahtFdj19YJu3AXHss5gd6k53DWUcyYUSoUvLXnY5KL0gh1DWb8+KvZuvU/tm3bwphhZ9bod+3andTUFKKijlcLxM+XQO5cZ2ecLysrxdnZ5QJHi9akVF9Gkd5S59r3Emt31yeNUoO3gyeZpdmkFWfg4lHLQPz0tPTmNBoO4OKgkczprdze45nsPXHmcfHeE1l8suJMcs8BnX0bdKq6wWBg06YNDB48FCcny/vrqquu5o8/VrBlyyYmTpzMsWORDB8+0hqEA4wZM65KIJ6UlEhGRjqPP/4kBsOZEoa9e/dFqVRy4sTxWgXQ9dWOEEKIy9MgwxIKhYIpU6YwZcqUhmheXMDgwcNwcnKmQJtLX/9ia+BnHeGuhcqR8crjzz13X1QWe6OyAEsQnK1w4rjWB7RAYgH9O9leVmK3C6moqMBsNgOW0YKaLF36IwAjRoymTRt/4Mwa8Mq125V/VzIYDHz8w4e8tHIdBl3VqYAcBo2bLWHX90DhrcCMGY1Sg63aBnc7VzJLsunj0wODhwFbezu02nx8S92sp4eHd2T9+jXEx5/kXOcG4udmf6/ywEChALOZ8vJynCVWuGJkllryK7jauGDXhBnTz+bv6GcJxEsy6OQRXqtzMvJOrw/3bF6BuEKhwN/TgZiUAtJySiQQb4UGdKkaaH+yIoJHbmq85GV79+4mPz+fYcNGUFRUBEC7duF4eXmxbt1aJk6cTG5uDu7uVfOkODo6Vfk9p9VqAXj66ZqX99U2h0h9tSOEEOLyNJ/5gaJe2NjYcPXV1/Dbb7+wbNkSBg4cfEkzEC4USJ87ml6XIP9yZWdbPiDY2trh4FD1A/3BrAhcCu3ZuXMbKOC22+6sqYlqMjLSef31V4iNjQYs2duHDBmGl5cPq46sJvdoBsXaQk4uOUjQrd3o07sfpwoS6ejTjv/rfDuPb7JM7YvIO06vHn3Ys2cnhrQya/tBQcFA7UuPnf2A4OwHBn8oFmM6/RBCXDkySy2zVJrDaHilNk5+HMo+SnpxRq2ON5vNZOZbfiZ8PWq/VKSx+Hs7WQLxXFknLurfunVrAJg//2Xmz3+5yr78fC15eXl4enpVK/laUlJMeXm59WsXF8tMqCeffJquXbtXu05lLpGLqa92hBBCXJ7LDsT/97//XfygcygUCr7//vvLvbQ4jxtuuJWVK/8kOvoE27dvrZKV9VznJmk7ewp7bTOtN6aEBMu69KCg4GoPGA5mRXBqmWU0uW2vdgQHh1y0vWPHjvLqqy9QWFiIs7ML998/kzFjxlszzu9yj+TuO+/j/XfeouhkHol/HgMPFQp7FbuTD7In+RBmzDz637MAFNtZXsuzR799fCwjMTk52RdNbnW+qepGoxGTybKuvrHK3YjmoXJE3Mex+Xw49j+dvT1Hl0eFUY+N6sLvycKSCnQVRpRKBV6uzWNU/2z+npaHA5XT54WoLzpdGdu2bWHkyNHceuu0Kvvy8nJ58cVn2bBhPV26dGX79q3Mnj3HOj1906YNVY4PCQnFx8eX1NRUbr556iX3qb7aEUIIcXkuOxA31zBCl5GRQXJyMs7OzrRta6l/nJKSQmFhIUFBQfj5NX3m39bMw8ODm26ays8//8Dnn39Ejx69zhtQN+Xo9qWIijoOWKZ7nyvrZBoHDuxDpVLR5ao+NZ6fr9MClqnqu3fv5I03XqGiooLw8A68+OJreHv7VAuGBwcPQPHUs7w/73UKM/JRH9UTPD4Un9Plyx7Z8CwfjFrAosgldBw6gde3vEJaWpr1fFdXNwD0ej06ne6SSsOUlp6pcVyX5HOi5cs6HYg3pxFxR40jjhoHSvSl5JTlXrS+eeVouJerHWqV8oLHNoXKuuYyIn5lGNC58UqXbd26hdLSUm699Tb69u1Xbf+PP37P+vVrmDv3We699y6eemoON910K2lpKfz0049VpqYrFApmz57DvHnPo9OVMWTIMOzt7cnISGfHju089NAj1hlYF1Jf7QghhLg8lx2I//jjj1W+3r9/PzNnzuS1117jhhtusGZ3NhgM/P7777zzzju88cYbl3tZcQH7orK49dbb2bZtM8nJSSxcuIBXXrn01/xio+KNOWp++PBBALp3rzpqvD/jMPv/2g5AyKCOxJpOsShyCVqdlvzyAgDcbF05VZjEosglJB+KY9+yLZhNZgYMGMyzz76InZ0lQK4MxA9mRVBh1FvXaHuPDKLwl3wS9kbjNMQbbUUhBzKOVOmHp6elxnp+fp51m53dmRHAb44swc7pTCB+btK4ygcFlSofCFS25+joiI2NTV1eMtHCZTbDQBzAx96LBH0SWaXZtQjELQ+SfN2b50Mka+b0/DIq9EZsJHN6q9aYNcTXrVuDn58fffpUD8IBJk2azPvvv4OjoyMLFrzFZ599zDPPPEFYWDtee+0NHnvs4SrHjx07HicnZ7777hvWrl0NQJs2/gwaNAQPj5rLctakvtoRQghx6ep9jfjbb7/NjTfeyC233FL1Qmo1t956K/Hx8bz55pv8+uuv9X1pcVrllPJnnnmROXMe4cCBfXz88Xs8+ugT1inX9amxAvGsrEzi4+NQKpX06tW3SmKzxP2xlGUUobbT0HlcL9KMWdYEbWd7fscCgtO9+H3pt5jNZoL6tGPevNesUwEPZkWQUJBoDeJLDaUkFCQCYArUoHLQYCitICs+HccQV36N/hu9SW+tMX688BgAeYV5NU4zv6PjTbi7n/mQ887+T6rsr3xQUKny/IwMywh75TR3cWUwmU1kl+UCzTAQd/AmoTCJrLKL17avHBH386j7bJD6FpWYX22b2WzGzkaFrsLIrmMZ1R4YdAp2r3aOELXx7rsfXnD/1Km3M3Xq7QAEBrZl1KgxVfZv2LC12jkDBw5i4MBB522zb99+7N59sMq2c7+uTTtCCCEaVr0H4tHR0RfMlh4YGMjSpUvr+7KiBmFh7Zk79zlef/0V1q1bTXl5OY8//tQFR1Sb25rws+3YYflA0qVLN9zc3OiDG318eqDT6Zj+5l0A3DXt/2gf1vW8a61zDqby/pqNmM1mrrnmWuxGelcpF1M5El6ZIO3sZGmLIpdQ0T6X1IgEeio6MHHQNXRy6sSL297kpcFPsShyCRPCR3A/u7FR2livr9efycKu0VR97d3s3M6bnO1sp06dAqBtW5kueCXJ0+VjMBlQK9V42DWvYNDHwTL7o3Lq/IVk5jXvEXGFwrJ2PSW7hJwCXbPtpxBCCCFaj3oPxH18fFi9ejVTp061TkuvZDAYWL16NT4+zTfYa22GDh3B3LnPsXDh62zevJG0tFSefvoF/P0Dajy+OQfimzdvAmD48FFVtv/xx6/k5ubg4O7E9dffxA8xy637zh41T9gTRdLqEwB492+L3ShvThUmsSJ2pXX6OlSdLl45Ol4ZVDt6Wkob2VXYMLhtX/LzSwhw9reeW1FRAYBGo7Feu6zw9PpuBSyN/91a27029cMrxcRY+t2+fe1KRYnWoXJaure9J0pF81pb7XN6hD5Pp0Vv0qNR1pywrbhMT4nOgEIB3m5NPyJ+Pp6nA/HcAl1Td0UIIYQQV4B6D8SnT5/OSy+9xK233sq0adMICgoCIDExkWXLlnHixAleeuml+r7sFe1Cmc8B+nfqzvz5b/PGG68SExPFzJnTueOO/zFlyk0tZr1xYuIpYmKiUCqVjBgxyro9Pz+P5ct/BqDbNf2s91MZ5FZOT//337Ws+G0HAO2HdcVumCcKhQJteQEJBYm42blZ2wxxCapxRPxgVgRB7oHEEIFOV8au5AN0cuqE9qx13YWFloDe2dnZeu2YmGhWsxQ7Zwdm9Kh7lQGTyURk5FEAOnduvon0RP07sz68+T0gc1Q74KC2p9RQRk5ZLm0ca14nXjka7uFsh0bdvB4mnM3LxZLLIUcCcSGEEEI0gnoPxKdOnYpSqeSDDz7gxRdftJZqMpvNeHh48Morr3DrrbfW92WvaLXLfO7Dp59+zbvvvsmRI4f49tuvWLXqL2677U7Gjr2q2Qfk//67FoABAwbh5uZunXq+ZMn36HQ6OnToxHXjr7cef/Zo844dW/ngg4UAtBvahY+e+5gXdr7O9G53Wke+z50eXlM77rau2NpZppmrVCpWRW+kU99OFOtLrcdmH04FwNPzzHretDTLNkd3p2r3de6oeE2j5DExURQUaLG3t6djx07nfY1E69NcE7WBZTq3t4MXiYXJZJdeIBC31g9vvqPhAF6ulv7lFkogLoQQQoiGV++BOMAtt9zCDTfcQGRkpLWMk7+/P926das2XV00Hm9vH9544102bFjHd98tIisrk48+epfvv/+GCROuYfz4CQQGBjV1N6vR6/Vs2LAOgAkTrgEso9M+Fe6sXbsKAL+xYRzKPmr5c9bU8pz4DLZ9tQaTyUTIgA64jGrDN8d+QltewKLIJdZEbJXTzy8UGOeXF6Ar0ALg4uJKdGm6pX8mvfXYb1N2AxAQcGbqf2JiAgDOvm4XvdeaAvGtW/8DoH//QWg0UkP8SpJV0nwDcbBMmU8sTLYmlKtJc8+YXsnzdH1zbXE5eoOpWY/eCyGEEKLla7CoWK1W06tXL3r16nXB4/Ly8rjlllt455136N27d7X9iYmJfPPNNxw5coTY2FjCwsJYtWpVlWPuuusu9u7dW+3c1atX065duwtePzMzk/nz57N9+3Y0Gg3jx4/n2Wefxcmp+uhla6BQKBg//mqGDx/FmjWr+P335eTkZLN8+c8sX/4zoaFhDBo0lH79BtChQ6dm8eBk585tFBRo8fT0on//Mxlef/xxMSaTiQEDBvHsdXOt2yunk6elpfLYqzMxGU0MHjyMa+6/CaVSSR+fHjy/Y8F5R8TdbV2t/31u0rf09DPZy6NJr9bX+PiTAAQHh1q3nTwZA0D3jrVfE17JYDCwefNGgGrZdEXrVzki7tNsA3FLwrYLB+ItY0Tc0U6Nva2asnIDOQVltPF0bOouCSGEEKIVa/Ioy2QykZqaik5X83TA2NhYtmzZQs+ePTGZTJjN5hqP69OnD08//XSVbYGBgRe8tl6vZ/r06QC8++676HQ63nrrLZ544gm+/PLLS7iblsPOzo4bbriZ6667gd27d7J+/WoOHNhHQkI8CQnxLF36I7a2dnTo0JHw8I60a9eeoKAQAgMDrfW2G8uaNZYHL1ddNdGa4bwgLY+tW/9DoVBw9933VTtHpyvj1VdfoKiokA4dOjHh3in8EfcPbraubEzaira8gOd3LKBEX4repOeVXW8DEODsb13zXZlsrY9PD1bEriRee4rIaMta7TXazVSo4Zktr6EtL2Du1pfxsfMk4rilrnjlFHKj0UhU1HEAxvUbV+d737FjK/n5+bi7u1d5CCFaj5j8uBq3lxsrKKgoBKC4ovi8xzUlb3tPAHLL8jCZTdUSypWVGygssSQw9HVr3iPiCoUCP3d7EjKKyMgrlUBcCCGEEA2qyQPxixkzZgzjxlkCmGeeeYbIyMgaj3Nxcbno6Pu51q1bR2xsLKtXryYsLMzazn333UdERAQ9etR9BLM5qEvmc5VKxdChwxk6dDiFhQXs2bOLvXt3c+TIIYqKCjl69AhHjx6pco67uzu+vm3w8/MjIKAtwcGhdOjQER8fX2tOgPqSkpLEkSOHLInVQiusI9i7/tkMQECPEDaV7kabVVpl5Pqzzz4iMfEUds72zJv3Gp6eXhzVRgGW0e/ndyxgwdDnq2ZVL0i0jpIfzIpgRexKwDLCHpN3kvysPPQl5ShUCoweKsBovZ7epKcoXYu+rAJbO1vCwtpb2kyIo7i4GHt7e9q1a1+nezebzfzxx68ATJo0pVnMThCNR3s6k7+92h5btW0T96ZmrrYuqJVqDCYD2vKCaiXWKqeluznZYGujqqmJZsXXw+F0IF7W1F0RQgghRCvX7D/ZK5UNt05v69atdOzY0RqEAwwdOhQ3Nze2bNlyRQTiZ3NxcWX8+KsZP/5qTCYTycmJREdHERsbTUJCPMnJSRQWFpCfn09+fr51pLeSr68fw4aN5Prrb8LLq36m0q5Z8w9gWR/96PAHAUsG9RUx3wDwwkMvVpkGDmCXDCv+XYtSqWTAHaPx9LRMn83XaXE/nR3d7fT088q64ec6e3tlcB4XdZwUwDPYl8+ufotZG5/lzZEv8vSW1wh1DcYx3cw+oE/vftaR+/37LUsmevToXaVeeW0cPnyQ6OgoNBoNkyZdV6dzRcuXf3pmxtlLJZobpUKJl50HGaVZZJflVg/ETwe0zX19eCU/D0s/KzO9CyGEEEI0lGYfiNfW3r176dWrF0ajkZ49ezJ79mz69+9/wXPi4+OrBOFgmZ4YGhpKfHx8Q3a32VMqlQQHhxIcHMpVV020bi8qKiIjI42MjAwyMtJISUkmISGO+Pg4MjMzWLHiF/755y8efHCWNbHapdLr9WzcuB6AiRMnWbevWPELAEOGDK8WhJeUFLP6xz8AGDZxDMVeZ0bRTxUmWZO0acsLrNPO83VatOUFlOhLeWf/JyQUJlWZtr5w/ydoywuIP2pZ6+3bseYlDzt3bgNgwIDB1m27d+88vW1gne7dbDbz00/fn773ybi5uV/kDNHa5JdrAawPj5orbwcvSyBemktH96qzPqyJ2pr5+vBKlYF4TkEZBqMJtUoStgkhhBCiYbSKQLx///5MmTKFkJAQsrKy+Oabb/i///s/fvzxxxoTwFUqLCzE2dm52nZXV1cKCgouu1/qesq6qzr9YVDVDD4Uuru74u7uSufOnatsLysr48CBffz66zKOHz/GBx8sxM7OlrFjx1uPqet97Nq1h4ICLR4engwePBiVSkl+fr41ednUqdOqvcZLl/5Afn4eXn4+PD3zab47sYz7e1pqdz+z5TXC3ILp69uT/n496evXE4CrQkZyIPMI8dpEnhn0KF8d+YH7e/6Pr478AMD9Pf/H/M3vUpSQD0Bg1yBUKiU2KhtUKiUedm6U5BRw8mQsSqWSYcOGo1Yryc7OIjr6BAqFgqFDh9fp/bBv3x6OHTuKRmPDtGl31tt76VzN6b0lqqocEfewdWvSflyM1+l14jllOdX2WRO1tZARcWcHDQ62akrLDWRrJWGbqH9bt27ht99+ISrqOKWlpXh7+zBw4CBuv/0ugoKCGTSoD7NmPcYdd/zvvG2sWvU38+e/zNq1G+v1Ie2BA/s5evQI99xTPe+KEEKI+tcqAvFHH320ytejRo1i8uTJfPbZZ3z99ddN0ielUoG7e/1+iHNxab6jSu7ujvj7T2TSpAl88MEH/Pzzz3zwwTuMHTsSd/eqHxQudh+7kg8wuG1ftm61BNyTJ0/Cy8syPfePP35Br9cTHB7C0KEDqpz3z8F/+fOv3y39GRPAT3G/cSAzgme3zQegoKKQA5kRJBQm4engzg/Hl1NhrECpUGIwWdZ7P/TvXExmMw/9+5Q1+dSsjc+ScygNs9GErbcDsYpkHvn3GXSGCmaufxqlQknaVksiLd+OAfyRvprB6j6c3GOZut+rVy/at699WTiTycT331um3k+deivh4cG1PvdSNef31pUq//QacbfmPiJ+OhDPLsursr1cbyS/qBwAX/eW8f5SKBT4etiTkC4J20T9+/TTj/jxx+8YM2YczzzzIu7ubqSmprBy5V+88MIz/PDD0lq1M3TocBYt+g4np+oDCZfj4MH9/PzzjxKICyFEI2kVgfi5HBwcGDlyJOvWrbvgcS4uLhQXF1fbXlBQQJs2bS6rDyaTmcLC+llnqFIpcXGxp7CwDKPRVC9tNqS7757B/v0HiImJZunS5UybZikNVtv72Bq3l7aKQHbs2AHAsGGjyM8vOZ287E8AbplyG/n5JVXO++G7HzAajPTq1ZvwPn3o4d6V6Kw4Ql0sQfCBsgjcbV0xm8y4qJ3p6tmRvr6WkfGvjvxAvDaRN0e+WOOI+PVLLGu077zuLgp9DTzU5x5rmbSKigpu+OxaAO698V5GdR6D2Wzmvb/fAmD48NHV+noh//23kejoaBwcHLj++lvqdG5dNdV7q74fUrU2ZrMZrc4SiLs39xFxOw8ASg2llOhLcdRYRr+zTo+GOztocLDTNFn/6srPw8EaiIvWqeLkXmzaD7j4gfVo587t/Pjjd9x77wzuv/8h6/bevfsyefIUtm/fWuu23N3dqz3gbmw6nQ47O7sm7YMQQrR0TR6IazQa+vfvj6tr4yckCgsLIyYmpso2s9lMQkICQ4cOvez2DYb6DWyMRlO9t9lQrr56MjEx0ezYsZ1bbrm9yr6L3YfJDDt27ECv19O2bTBt24ZiMJg4duwo6elp2NvbM3ToiCptFBcXc2qf5Xs5deqd7Dcfx2gyE+IaTC/vHvTx6UFe2SfW0cV7u97JwawIenp1Z2/aYUxmMGP5nvXy7oHBYCKvTMuYoBHExMRQklKASqVizJjx/J62xhq0Go0mtm/fTllBKa6ubgwYMASDwURMjCXBnUajYdiwUbX+vhkMBr77zjIaftNNU3F0dGmU73lLem9dCYr0xRjMBpQKJa629TvqVd80Kg3utm7kl2vJKcu1BuLW9eEtZFp6pcp14hKIt14VcY0fiP/88494eHhy773Ta9w/bNgI63+bTCa+/voLfv/9N0wmE8OGDefJJ5/B3t4ys+TcqelpaWnceONkXnrpNY4dO8q6dWuwsbFlwoSJzJw5y1pxIysrkw8/fI+DBw9QUlKMp6cXI0eO4rHHnuTrr7/gm2++AmDQoD6A5SHB559/zddff8HPP//IJ598yfvvLyQmJpoHHpjJHXf8j08//YidO7eTlpaKk5MTvXr1YfbsOVUStj700AwcHOwZO/YqvvnmK3JysunSpRvPPPM8wcEhDfFyCyFEi9Dkgbirqys//vhjvbZZWlrK5s2b6d69+wWPGzFiBH///TenTp0iJCQEgF27dqHVahk5cmS99ulK07t3XwDi4mLR6/VoNHUbEduzx5LkbOjQ4dZt27ZtBixJ2s6tZb7knyUY9Uacfd3YpzrG4ayjJBQkUmHUE513khWxKynTl5FfXmBN2JZQkMjBrAhr3fBKlRnTU4rTOZgVwYHlliRsfl2D+D1tDQkFiRzIOFPS7Y8/fgPg6qsnYWNjA8A///x1uv8jasxDcD7r1q0mLS0VV1c3brjhllqfJ1qX/NOj4a42LtVqczdH3vae5JdryS7LJdilLXBmRLylTEuvdCZhmw69wYSmgfIziCuHwWAgIuIIo0aNRa2++O/C335bTs+evZk37xWSkpL45JMP8PDw5OGHH73geV9++SnDh49i/vy3OHr0CIsWfUlgYFtuvPFmAF555UVycnKYM2cuHh6eZGZmcOKEZQnVlCk3kJWVxfr1a/n00y8AcHR0srat1+t56aXnuO22O3jooUdwcbEMnuTn53H33ffi5eWNVpvPzz//yEMPzWDp0t+qlNyMjo4iJSWFmTNnne7rZ8ye/TDLl/9h/b0phBBXmssOxMeMGVPn2tEKhYINGzbU6tiysjK2bNkCQGpqKsXFxaxduxaAAQMGEB8fz6JFixg/fjwBAQFkZWWxePFisrOz+fDDD63tpKamMn78eGbOnMkjjzwCwIQJE/jyyy+ZNWsWc+bMoaysjLfffptRo0a12NJlzYWvrx+2traUl5eTnZ2Fv3/AeY89u5Y3wMHMI6TuPwpAhqfWmt18z57dgCUQP/e8XTsswXJw3/YoFAoUKHCzdUWBZY1tZe3wm8KvZUXsSmtJssq/83XaKnXI+/j0YGPSVm5oczV/HbJMUZ9z9xy6dOnGwawI+vr1xNHJlsjIoxw7dhSVWsW1114PQGFhgTWh3OTJU2r9mlVUVLB0qeWh1LRpd1pHP8SVR9tCMqZX8rL3JEYbR3bpmYRtlSXAfD1a1oi4k70GJ3sNxWV60nNLCPJt3jMSRPNXUFBARUUFfn5+tTre09OLV19dAMDgwUOJjo7iv/82XDQQ79q1O0888RQAAwcO4sCB/WzatMEaiB8/foyHHprF+PETrOdcc81kAHx8fPHx8UGpVNCtW/XPPwaDgQceeLjKuQAvvPCy9b+NRiPduvXguuuu5sCBfQwceKaCSF5eHp99toigIMtSsQ4dOjJ16o3888/f3HDDzbV6XYQQorW57EB8wIABdQ7E6yI3N5fZs2dX2Vb59Q8//ICfnx96vZ73338frVaLvb09vXv35pVXXqkSTJvNZoxGI2az2bpNo9GwaNEi5s+fz5w5c1Cr1YwfP57nnnuuwe7nSqFQKHB39yQjI438/LwLBuJ9fHpUCYLfScsloXQ/9vb2PDnxMVQqFRkZ6WRkpKFQKVEE2lY5r6Kigr8SLMHyo9fPom3bIB7979lqQYxGqaGPTw+WRv1erQ/udm7cFH5tte2//roMg0GPY1s3unTpZr0uwOC2fXlwwUwAxo+72lqv/J9//qaiooJ27cKt59TG6tV/k5ubg7e3DxMnVu+LuHLktYAa4merTNiWo8sFQG8wkVOoA1reiLhCoSDQ25GoJC0p2RKItwYVJ/dSEbfX+rU+bi/F6z6xfm3TbkCjTFWv7Uelc8tdhoaGsmHDhXPeWM4bdM55YRw4sM/6dceOnfj55x9QqVQMGDCQtm1rn0QUqs5Qq7Rz5w4WL/6a+Ph4SkrO5NxJSkqsEoiHhbWzBuEAbdsG0b59B44di5RAXAhxxbrsQPzNN9+sj36cV2BgINHR0Rc85ptvvrnkdnx9ffn4448vuX/i/JydncnIoMaEeBeSl5gNQKdOXVGpVAAcPx4JgHuAJ8cKoxnMmRrx8fEnMRj0aBxtWavdgjazAKPZyKGsCDRKDXqTnud3LEBbXsBTW1+m1FDKU1tfpsRQat2uUqiYu/VlbFSWaYNutq6cTIkl5Z9jlusO9reOzFc6fPgw+/fvRalUcsst0wBLApu/Tmduv+mmW2v9kKq8vJxff10GwLRpd8lUvStcS6khXsnbwRKI5+sK0Jv05BSUYTaDg60aJ/uWk6itUqC3E1FJWlKz6/Zvl2iebNpXDbSL132C04RHGu36rq6u2NrakpGRUavjz13OpNFoqKiouITz1JSXl1u/nj//Tb744lO+/PJTFi58g+DgEB588GFGjx570bbt7OxwcKg6u+X48WPMnfs4I0aM5K67/g8PD3dAwfTpd1frr7u7R7U2PTw8yMmpXvZQCCGuFE2+Rly0XpW/tMvKyup0njbNMqoWHt7Bui0u7iQA7m29qx2fkpIMgJOvCzO63wXAo/89Sw/vrtZjKqemLxj6PHO3vsxtnW7kYFaEdWp65TGANeC+fdltmAxGevTohVe3sCpBuNls5qOPPgLgqqsmWkf816xZSUGBFj+/NowYMbrW97x27Sry8nLx9vZh3LgJFz9BtGr5LSRjeiUHtQP2anvKDGXkluWTkWdZV+3rYd+gM6YaSoC3Jat/ak4JJpP5IkcLcWFqtZru3Xuyf/8+DAZDlbXTjcnLy5sXXngZk8lEVNQJFi9exAsvPMvy5b8TEBB4wXNr+jnesmUTTk5OLFjwFkql5Wc+PT2txvPz8/OqbcvLy6NDhw41HC2EEFeGy/5tsG/fvosfVIP+/ftf/CDRolWO6paX6+p0XnG2JQhp2zbIug586zHLGvAC+xISChJZuP8T62hhSYplBF1vZ2Lu1pfRm/QYzUYOZx3FjOVD9KxNz2DCsr/UUMp3x5ZiMlu+BkvppcqAPKEgkV//+438Y5mgAK/RwZwqSrbuB7BNNBIREYFKo+KOO+4GLA8cli+31IGdOvUO62j+xej1elasWG49r66J7UTrojfqKdZbRmJbyoi4QqHA296TpKIUsstyyMizTEf3q8P6cGNuYp2vq/IMrvM5teHtao+NRkmF3kS2tm4PEoWoye2338mcOY/y3XffMH36A9X279y5nSFDhjVKX5RKJV26dOWBB2aybdsWUlKSCQgIPD3yrq91O+Xl5ajV6ipB+rp1a2o8Nj4+juTkJOt0+OTkJE6ejOGGG268vJsRQogW7LID8bvuuqtOIx5msxmFQsGJEycu99KimbOxsazl1usvPqXubKZiywcBX18/up8ehV5TaAlUXT3d0JafHi08HaQkF6QClul7HT3aA3AoKwJ7tT16kx6DyYC92o4SQyk2Kg2lBlAqlCgVSnwcvFAAmWclmTKWG4j9+zAAYYM74x7ohbagxLomvaysjAfevgeAjqN6WMu0/P77crTafBw9nes0qr1p03qys7Nwd/dg/Pir6/RaidYn//T7215th7265dTpPROI55KZZ8mX0Oily0xGFCY9ZpUNXEa2eaVSQYCXIwnpRSRlyfT01samXeOWLgMYMmQYd955N4sWfUlCQjzjx0/Azc2NtLQ0Vq78i5KS4gYNxIuLi5g9+2EmTpxEUFAIBoOe5cuX4ezsTMeOnQAICQnFaDTwyy8/0717TxwdHS9YXmzAgEEsW/Yz7777FiNHjubo0aOsXftPjcd6eHjw5JOPWWuof/XV53h7+zBp0nX1fq9CCNFSXHYg/sMPP9RHP0QrZGtrCcR1uvKLHFmVrtgyAuXm5g5YkqMp9JaHPYGebfHy8QXOTCX/O96RYxzA3mhn3fbY5ueZdnr6uVan5cl+jzB368ssGPo8j21+nm5ena2B9cGsCGsmdbPZzINL76c0rwgbVzvu+N89DAkewKLIJdap6T/++O3pTPD+dBpj2ZaTk21d491tYr9aTz00Go38+usvANx881RZGy7ItyZqc2vSftSV1+mEbVnFeeQUWH6G6zIifinURWnYZ0Zgkx+PpigNpb4UBWbMKDDZOKJ3DqTCLYQyv14YnHzr1HawrzMJ6UUkZhQ1UO9FU2nsGuKVHnlkNj169OTXX39hwYJXKCsrw9vbh0GDBnP77Xc16LVtbGxp1y6cX3/9hYyMDGxtbencuTMffviZ9XftsGEjuOmmW/j++8Xk5+fRq1cfPv/86/O2OWTIMB5++FF+/fUXVq36mx49evHOOx9y663XVzu2Y8dOjB49lk8++ZDc3By6du3GU089J7/zhBBXtHrJmi5ETezsLKN5dZ2artPpTp9/Jtuy+fQ6TYXyzOyLymnrGRWWNeLZaRnW6eMGk8F6nJudGwezIigzlLEocgkGk4FDp8ueVQbqBeWFLNz/CTn7Ukg6eBKFUoHvpPb8k/Ivx4ti0OosZdT+3beBzX+uAqDDdT05nHecRZFL2PPTf5SX6whqH0pAj9Ba3+uOHVtJTU3GycmZq6+eXKfXSbROeeX5QMuZll7J294yCp6VW4HpdKI2Z4cGWGZhNmNXkIBr+j5sS9JrPESBGVVFMarcKOxyo3CJW0uFcwDFIaMp8+sFyosvGwlt48Lmw2kkZRVJPXFRb0aMGMWIEaPOu3/37oPVtt122x3cdtsd1q8nT76OyZPPjCT7+/vXeN7jj8/l8cfnApalYs899+IF+6ZWq5k791nmzn22yvYZMx5kxowHazznrrvu4a677rnoPVj6PaVOJT2FEKK1k2RtosFUJmsrLS257LbUGssH51CHtiTqMnG3c7OOaBcGFbBr8Qb0eTome43Fz68Nr+x62zqCXZl8bZn6d6Z3u5Ontr5MB4/21tFzgFd2vc3A0q68udKS8Xz6fQ9ywDeWUNdgpne7k4NZEXR2DufT398Gs5mxY8fz1vTXeGvz5/TUdWDF4W9QKpXMnf0sm3V7anVPZrPZuqZ8ypQbq2WkFVemyhFxjxY2Iu5u54pKoaK82JLorCEStal1+bgn/Yd9YRIAZoWSMtdQdC7BlDv5YdQ4YVZqUJgqUJcXYVOaiV1BIvaFp7ApSsXj6BL0MavIbzsSnduFH5i5m8042igoqTBzMrWAzsHu9XovQgghhLiyXXYg/uyzz6JQKHjttddQqVQ8++yzFz1HoVDw+uuvX+6lRTPn5GQppVJUVLepnba2dpSWlrDk6C84+7gBoLc1AbDpxGZsOrtwqjCJV3a9TYCzPwChndsTdyyG339fzqCbR+OocWBR5BK0Oi0JhUk8v2MBOmM5z+9YQImhlOO5UTy/Y4H1mskH49izdi1msxmvPgEED+1IXHKWdX9v7+68++6bpKWl4uXlzcMPW2rZ68sqWPj+GwCEDe3MZt0eDmVFVEnsdm6d9Er79u0hLi4WW1s7rrvuhjq9RqL1yj8nB0JLoVQo8bT3IKXEUvu8vqelO+RG4ZG4EaVJj1mhosi3F4W+fTBpHKsda1ZpqNA4UuHkR7FPT5SGMpyyInDOOoSmXIvPyb8odQ0jL3gsJpvq54Pl91Swp4bj6RVEJuRKIC6EEEKIenXZgfiePXtQKBSYTCZUKhV79lx8NLAllrMRdefq6gaAVptfx/NcKS0tYZz3cLp36wnAoYCdxCcV0lfTDYW3MwkFiQQ4+1tHtQ/f2YVnn32Cf/75mxEjRvNkv0esa781Sg2hrsEcyoog1DWYhAJLduZQ12B6enTl2Pr9HFy9AQC/XkG4jA3g95Or0JYXcOp0EJ99IIXkjVEoFAqeeup5a73WQ3/uoiBPi5+fPwvnLMTOzp5FkUuqjLbXxGw2s3Tpj4Blup6Li2udXiPROpnN5jNrxFtYIA6nE7aVuAD1GIibTbgnb8U56zAAOqcAckOvwmhb+58Zk9qeQv+BFPn2xjV9D86Zh3AoiMf2eBp5weMpc29X43khXpZAPOJkLreMal8fdyPEFedC68yFEOJKdtmB+KZNmy74tbhyeXpa1oxmZ2fX6Tw/vzakp6eRlpZC9+6WQNwjyJv4XSc4evQIPQZXzyzbq1cfeg7uy5FdB3jxpWe4fda9tOvSwRp4V9YLr/y7j08P7HNVfP7mR8TGxgCWZGn/93/3czgnkj4+Payj2gNM3Xhu/ZMA3HPPDGufVq9eTeKBkyiVSp544pkqa9ov5sCBfURFHcfGxoabbrq1Tq+PaL2KKooxmo2oFEpcbJybujt15mHjibns9NT0esiYrjAZ8Ixfi4P2JAAFbQZS4D/wkjOim1U2aAOHU+zZBa/4tdiUZeMdtxKt/yAK2wyEcx4Sh3ppUCos9cQz8koJ9HG67HsSQgghhIAGXCMeExPDli1bSE21lJYKDAxkxIgRdOjQoaEuKZoZP782AGRkpGE2m897XOUa7krBwaEcOnSAkydjmTABVsSupMhHDwqIjY1GF2OLg4cTCQWJ1qC6j08PXn5qPs8/P5fjxyP59u1P8esRhH+/EEw+lre52WwmJyebxP2xHDq6lfjjsQCo7NR4jg/GPNCJb4//XKVvhRn5vPblixiNRkaMGM0tt9wGwKlTCdblFdOm3UW3bt1r/bqYzWZ++OEbACZPvh53d49anytat8pEbW62rigvo/xWU1HpPAA9CnXF5SdqMxnwOvk39oVJmBUqckOvotSjY73002DvSUbnqbil7MAl6xBuabvR6LTkhoyvksjNTqOkrYeaxFwDB2OyJRAXQgghRL2p90C8oqKCefPm8ddff2E2m1EqLR8mTSYT7777Ltdeey3z58+XkhVXAD+/NiiVSnQ6HTk5ObRpU3P5oHMD8S5duvHnn79x5MhhwLJm1t3dDfcwH/Ljsig+koNmpC3a8gISChJJKEhkRexK3G1dGXDvaNKX5JJ/OJ2MI0lkHEkCBVz74TaMeiO/67+1XkepVBLUrz1dJ/RFZ1NRbTr5lmPb2PbVGnTFZXTp0pU5c55GoVBQVFTISy89j06no0+fvkybVrXsTE3rwc+2efNGYmNjsLe355ZbptXlJRWtXL6uZa4Pr1SqtQP0KJy06Exl2KsucVTcZMD75ErsC5MwKTVkt7+Ocpe29dpXlGq0QSPR23vikbQJx7wowExu6IQqI+7hPjYk5ho4EJ3FdcNqXxFBCCGEEOJC6j0QX7hwIX/++Se33347d955J0FBQSgUChITE/nxxx9ZunQprq6uPP/88/V9adHMaDQaAgLakpycSEJC3HkD8XP17t0XlUpFcnIiKSmW7MgBzv5M/N9wXnrpOQoPZTJo/Agc3BxrTIRWdEcpeSOyObJ5H4UnczCU6jGU6gFL8B0a2o5Bg4YwfvzVrMy2rA23o2rAkJiYwM4v16MrKiM0NIyXX34dW1tbKioqeO21eaSlpdKmTRuefXYeKlXVUkgXCsR1Oh2LF1vWy91yy+24ubnV6jURV4b8ci3Q8mqIV8rINgKgdMonuzyTIIdLCFxNBrzj/sG+MBGTUk12+BTKnQPruadnlHh3w6RxwCtuFY550ZiVGvKCx1qnqbf3sWFjVCkJ6UVk5pXi7l5zcjchhBBCiLqo90D877//ZsqUKcybN6/K9rCwMF566SWKi4v5+++/JRC/QrRr157k5ERiY6MZMmRIrc5xcnKiT59+7Nu3h3Xr1sBAywff/v0H0aVLN44fj+Tgr9sYet8EDp6uB74paStZpTlUmPToTXqwBbcJgbheFQClJuwMNnTz6cwd/aZyrCCag1kRrMzeQEJBItryAtxsXa1rwt1y7fnlk+8oLi4mJCSM119/B2dnF4xGI++++wZHjx7BwcGB999/Hzc3NwwGU61fj2XLlpCdnYWPjy833nhLHV9N0dq15ERtZrOZ1IxyAJROWnIqsuoeiJuMeMWvxr4gAZNCRXb7hg3CK5W5hZETejVe8WtwyolEb+dBkV8fABxtlXQN9SAyPo9tEel0aufd4P0RQgghROtX74sQDQYDPXv2PO/+3r17YzQa6/uyopnq0qUrAEePHqnTeR2HWNZcr1mzkooyy4d7hULB7NlPotZoyIxJJXLtfsAyAv1kv0d4e8TLfDBqAb19etDbpwdutq6WeuOhvXnvhje4d+j/sLW1BWB6tzuZ3u1OQl2D6e3Tg5vCr+W+rnfgGWvH4rc/o7i4mC5duvL22+/j5uaOyWTio4/eZevWzajVal566TXat69bFuWEhDh++20ZAPff/7C1L0JUyqsMxFvgiHhhsZHiUiMKhRmlYwE55Zl1a8BkxCt+DQ7aeMwKFTkNMR39Aso8OpDfdiQAbinbsC1Kte4b1t2S72J7RBpG0/nzXQghhBBC1Fa9j4gPGzaM7du3c/vtt9e4f9u2bQwdOrS+Lyuaqd69+wJw7FgkZWWWaZ0HMo6wL+NMYH5u3W13W1cO2cVg5+VISU4JW1duwHNUW2vdb78J7UhZFUXMfxFgMmPqcjtKpZKDWRFsStpKSnE6gGVkHIjMOcHzOxbgZutKmGswB7MirCPph7IicLN1pTS/mI9eX0hmdAoAo0aN5bHH5mJra4vRaOTDD9/h33/XolQqeeqpF+jTp1+dXge9Xs8777yJ0WhkyJDhDBlSPfO7uLKVG8spNZQCLXNEPDXT8sDMzV2BTmUipyKr9iebjHgmWLKjmxUqsttfi841uIF6en7FPj2xLc3EMfcEngnrSO96J2aVDb3DvXCwVZNXWM7hmCzCfCVpm7g0O3fu4Ndfl3HixDGKiopxcXGhc+cuXH31NYwbd5U1r0592bLlP7Kzs7n5ZqnOIYQQzc1lB+JarbbK17Nnz+axxx7jkUce4Y477iAoKAiAxMREfvrpJ9LS0nj//fcv97KihQgIaEubNv6kp6exf/8+rrvuGvr69aSn15ks4zXV3c4vL+DWWRN56aVnKTyQSd8hA5k75jFLbXBWYmfQcHLtUWK2HOX/0u6i7y3DcXB3wu10AONm50ZCQSJutq6MDRpRZd12fnmB9Xqf7/+Wk9uOsWnLdsrLdWg0GmbMeIjJk69HoVBQUVHB228vYMeOrSiVSubOfY7hw0fW+XX4/vtviI8/iYuLCw8//BiKc8okCVGZqM1R7YCtquUls6wMxNv62hEL5FXkYDAZUCsv8mvGbML96M845MdiVijJbjcJnWtIg/e3RgoFeUGjsC1KQV1RiFvKdvKDx6BRqxjS3Y8N+1P4e1s8j9184YSMQtTk888/5vvvFzNy5GieeOJpvLy8yMvLY8uWzbz88gu4uLgwaFDtlnDV1pYtm4mKOi6BuBBCNEOXHYgPGjSoWlBhNpuJiYlh48aN1bYDTJ48mePHj1/upUULoFAoGDJkOCtW/MJ//23kuuuuqfW5AwYMYvjwkWzbtoU9SzZRNPRe+vj04GBWBNNnP8/Gbut5/8O3yYpNY+M7f3DNNddx7bXXs6vkIKGuweTrtJap6TUkT0tMPMWGDWtZ888f6MsqAOjatTuzZz9J27aWh0f5+Xm89to8Tpw4hlqt4ZlnXmDo0BF1fg127drOihW/APDoo0/i4SHlykR1eTpL6bKWOBoOWNeHh/g7klxij85URk5FJn52Aec/yWzCPXIpDhkHMSuU5IRNQucW1kg9Pk+XVLbkhlyFb8wKnLIjKPayLK8Z1zeQjftTOBiVRWpOCb5u9k3aT9Gy7Nixje+/X8x9993PjBkPVtk3dux4pk6dhlrdYBVlhRBCNEOX/a/+ww8/LKN74oLGjBnHihW/sGvXDvLy8lAoqq+NPnu6OJyZru42ri02EXaU5BYx94XH+eCtT6zHjB17FUcUMWSsPcnRo0f488/f+PPP33Bt48GoAaPIV2dS5lzAsoxfiM6KobSghML0fFJiE1mh/cbajpefD9PveYARI0Zb38vHj0fy+uuvkJubg5OTEy+++Bo9evSq870nJiawcOEbAEyZciNDhw6vcxviypCrywPAw869iXtSdxV6E5m5lgdaAb52tEkLJKE0lrSy5PMH4mYTbpG/4JC2/3QQfg1l7u0asdfnV+7SlhKPTjjmReGR9B9m81X4uDvQp6M3B6KzWbMrkXsmdmrqbopLdCDjCH39zp/LpiEsXboELy8v/u//pte4v2vXblW+3rFjG9988zVxcbHY29szevQ4Hn30ceztLQ+ADhzYz8MP38+HH37GP//8zfbtW3FxceGmm27lrrvuAeDVV19i9eqVAAwaZEk+eM011zJv3isA/PffRr799msSE0/h4uLCuHETeOihR6rkL0lPT+Ojj95n7949GI0GevbsxaxZj9O+fXi9vj5CCHEluuxAfNasWfXRD9GKhYW1p2PHTkRHR/HHH39w4423VdlfWYLs7JHrs6erax5S8PcHy0iMiee+x+7BebK/9bhc2wKmPvF/TE0p588/V3Dw4H4K0vP466/frcfsYkO1PqnVavr06U+HwV25bfxt1hJkBoOBX375iZ9//gGTyUTbtkHMm/cagYFBdb7vvLxc5s17lrKyUrp378n06Q/VuQ1x5cgts4yIe9m3vBkTaZnlmM3g7KjCxUlFgH0QCaWxpOiS6MOg6ieYzbgd/w3HtL2YFUryetxFmaZ5PYDQBg7DXhuHbUkGhlMH0YT2ZdLgEA5EZ7M9Ip2Jg4Lwdb/EOumiSR3IbNxA3GAwEBFxhNGjx9Zq1HvTpg288MIzTJp0HTNmPEBubg6ffvoxRUWFzJ//ZpVj3377da6++hrefPNdtm79j08//Yj27cMZPHgo9947Ha02n8TEU7zyynwA3NwsP2dbt27hueeeYvz4CcycOYvExFN8/vmnZGZm8MYbCwEoKSlh5sz7USqVPP30c9jY2PDdd9/w0EPTWbLkF3x9/er5lRJCiCuLzIMSjeK6625k4cLXWbZsGRMnTkGjOfPE/UJ1twFmjLyX4b6DeO6FueQlZlH2UwkDnr2bHj16cTArwnK+L/TtOwCtVsv7Kz/Ev9SLtLQUCgq06PUG7OxsKVCVMKzLUJLsM3li8mM4OlatBxwZGcGnn37IqVPxgCVh26xZc3BwqPuH7eLiYl588WmysjLx9w/g+edfkWmH4oIqR8Q97VpeIJ6YqgMgyN8OhUJBoL3lwVVaWTImswmlomoCKpeTq3FM2YUZBfnd70Dn1wtyExu72xdktHGiyLc3rul7qdj/B+qQ3rQPdKVvJx8ORGXx1/YE7r+2a1N3U7QABQUFVFRUVAtczWZzlSoySqUShULBRx+9z7hxV/H882fKwHp6ejFnzqPce+8MwsLOzBwZNWqMdap7//4D2LFjO5s2bWTw4KEEBrbFzc2djIx0unWr+nt20aIv6datO6+++joAgwcPxc7OjjffXMDJk7G0bx/OqlV/k5GRzs8//0poqGXJSO/efbn++mtYtuxnZs+eU78vlBBCXGHqvXyZEDUZMWI0bdr4k5+fz19//VHn8zt16sKwhyYSEBBImbaEp59+nPfff5sgZRsOnp7GvihyCb+lrCInoATVUFfa3tKVbtOHct9Ls3j33U8Y9L+x3HPPdPy7BlcJwk+ejOHVV19g7tzZnDoVj4uLC08//QJPP/3CJQXhpaWlvPji08THx+Hu7s5rr72Fq6trndsRVw6doZxifQkAni1wRDwxzRKIBwfYAeBp44Ot0g69uYLs8owqxzqd2oxzvGWWirbLzZS16dO4na2DQt8+mFQ2mPJTMMTtBeDOqzsDsPtYJnGpBU3ZPdHCnLuK77//NjJs2ADrn/fee5ukpEQyMtIZO3Y8BoPB+qd3774olUpOnKiaX2fgwMFnta8gJCSU7OwLlw4sLS0lNjaa0aPHVdk+btxVABw5cvj034cIC2tnDcIBXF1dGTBgkPUYIYQQl06G6ESjUKvV3Hnn3Sxc+AZLly5h7NircHc/f8BR0yi5i68bH330JU+89Tin9sawfv0aNm3awOjRY7nqqmvo0qUrSqWyxizs57ZdVFTE7t07WL9+DZGRlrXpSqWSCROu4e67p19y4FxSUsK8ec8QFXUcJydnFixYiL//BZJVCQHk6nIBcLZxanEZ03XlJtKzLevDg/0tgbhSocTfri0JpbEklyXia2dZTmKfcQjX6L8AKAifRGnb+s0QXd/MajsKffvilraL8gN/YtdhEO3bujG8Rxu2RaTz4/po5t3dH6VS8qQ0ZwcyjnAg80zJzAOZEXx15Afr1319ezboVHVXV1dsbGzIyqpa0q9fvwEsXmwp3Tl37mPAmUo0Tz/9RI1tZWZWDbKdnZ2rfK3RaCgqKrpgf4qLizCbzdUShzo5OWNjY0NhoeUBU2FhIR4entXO9/DwIC7u5AWvIYQQ4uIkEBeNZty4q/jnn784fvw4ixZ9wdy5z5332PNNV3dwcKDvLcOZNXUWixd/TWRkBP/+u5Z//12Lm5s7PXr0JM+5hB0F28gij7jiU5hNJirKKohKjiJi5R7yErPIS87GbLJk8VcqlYwcOYZp0+6yZky/FEVFhbz44tNER0fh5OTEggULCQ1tHsmnRPOWU2aZlu7VAqelJ6frMJvB3UWNq/OZXynBDmEklMZyqjSWfu6DURem4ha5DIDioBEUh45tqi7XSZFvb9xyIzAXZKA/dRA8RzJ1bDgHorNJyizmv0OpjO0b2NTdFBfQ169qoP3VkR+4v+f/Gu36arWaHj16sn//XoxGozUniYuLCy4uXU4fo7FuA3jyyafp2rV7tba8vLwvuz9OTs4oFAry8/OqbC8uLqKiogIXF8uDaFdXVxITT1U7Py8vz3qMEEKISyeBuGg0SqWSp556invvvZdNm/5l+PCRDBo09LzHny+TulanZafdYabNvQ/7XBWrV69k587taLX5bN26GYDIf/bV2GbOWf8dEhLKiBGjGT/+6sv+cJObm8MLLzzFqVMJODu7sGDB24SHd7ysNsWVozIQb4nT0k+lVp2WXinUMZzNOetI16VSVpZFyOFvURor0Hl2pKDTlOrzdJsps8oGm86jqTi8Ct3hNdB3JC6ONtw0qh0/rovmty1xdAvzkMRt4oKmTbuTJ56Yzffff8u9984473EhIaH4+PiSmprKzTdPvezrajRqKirKq2xzcHAgPLwjmzZtZNq0M7PHNmz4F4CePXsB0KNHLzZt2kBi4imCg0MAyyj5vn17mDLlxsvumxBCXOkkEBeNqlu3btx8860sX76M9957m08++QofH98aj71QJnUrH+jcuSuPPqrnxIljHD8eyaGoQ5RrSykoKKSiohylUomjoyNlNhUM7DSQ8PAO9OjRq94yviYmnmLevGfIysrEw8OTBQsWEhISWi9tiytDZaI2L7vq00CbM7PZTFxSGQBhbavW1XZSO+Nr24bM8nQcjy1FXZaHwd6TvB53gaJlpSfRdBtHRcRajBmx6FJjwCGAkT392Xs8k+hkLV/9fYxn7+yLWtWy7ks0nqFDh/O///0fX331OTEx0YwbdxVeXl4UFxdz+PAh8vJycXBwRKFQMHv2HObNex6drowhQ4Zhb29PRkY6O3Zs56GHHiEoKLjW1w0JCWXVqr9Zv34tbdsG4erqhr+/P9OnP8DTT8/hpZee5+qrryEpKZHPP/+E0aPHWkuTTZ58HcuW/cQTTzzKAw88bM2arlKpuO222xvqpRJCiCuGBOKi0d19930cOnSQ2NgY5s+fx9tvf4idnd3FT7wAjUZDjx696NGjF7dR8/rwi60dvxQHD+7n1VfnUVJSQkBAW+bPfws/vzb1eg3RupnNZmvpMk/75lXC62LytAa0hQZUSggJPPMzbDydAT1E4YNvUQJtcrMwoyAnZDyGohyqzk1p/mKyzbi16YNj6l6SNvxKTo//YTSaGd07gMTMIhLSi1i08jijep/JB9EpuGV9L68kfX0bt4Z4pZkzZ9GzZy9++205Cxe+SXFxMS4uLnTq1Jnnn3+J8eMnADB27HicnJz57rtvWLt2NQBt2vgzaNCQauu6L+a6667n+PFjvPvu2xQUaK11xEeMGMmCBW/z7bdf8dRTc3BxceX662/koYfOlKR1dHTks8++4sMP3+ONN+ZjMhnp0aMXn3++SEqXCSFEPVCYzWZzU3eiNTIaTeTlldRLW2q1End3R/LzSzAYTPXSZlM4+z5SU9N49NEHKCwsZPDgYTz//MvWdXPnc7mBtLXUWT1QqRT8++8/vPvue5hMRrp27c6LL77W4rKjN9V7y9vb+eIHNbDs7AsnNGos+zMPs/jYzyhRMrPnvaiUF/45qA8qlQJnZ3uKisowGi/9V8CeI4X8tzufkEA7bpt0ZmaLPsHy2hbrMgg5/gsOJjNZfn3QBY647L43BZVnMOqidHx3vo1ZoSBn5PNU2FpmL8Qka/lzewIAkwYF0zXUEii19EC8qX9GdTodcXHxeHn5YWNje/ETRKtTUVFOTk4G7dqFXfbDeiGEaI6a/Ty6xMRE5s2bx5QpU+jSpQuTJ0+usr+4uJiPP/6Ym2++mX79+jFkyBAefPBBoqOjL9r2nj176NixY7U/jz/+eEPdjjjN19ePF1+cj1qtYdeu7bz33ltV6qk2hPoKwsvLy3n33bdYuHAhJpORsWPH8/rr77S4IFw0D5Xrw93t3BolCK9PcUmlALQLsq9xf1D6ERxMZlJs1WzzcGnMrtU7g3Mbyr06oTCbcUjYYt3eoa0bAztbHkKs3ZtEclZxU3VRCCGEEC1Is5+aHhsby5YtW+jZsycmk4lzB/DT0tL45ZdfuOmmm3jssccoLy/n22+/ZerUqaxYsYJ27S6etfqNN94gLOxMnUx395Y9ktFSdOvWneeem8f8+S+xadO/VFRUMHfuc9jY1Fy+qb4C6cuRmprCG2+8SlxcLEqlkvvuu58bbrgVRQtJPCWan+wyyzRtrxaWqK2kzEhyuiUJVHhw9UDcpjgdp9wTAPzp7Uy+PoE+5h6oWtj68LOVhI7GNicK+5S9FLSbiFljue8RPduQX6QjJqWA37fGM3VM+xY/Ii6EEEKIhtXsPxGNGTOGLVu28NFHH9G1a9dq+wMDA/n33395/PHHGTZsGGPHjuWrr77C1taWn3/+uVbXCA8Pp1evXtY/wcG1T4QiLs/gwcN47rmXUas1bN++hWefnUNeXl6NxzZlIG42m1m3bjWPPDKDuLhYXF1d+fjjj7n11mkShIvLklVqCcR9HS6/LFFjikkoxWwGP28b3Fw0VXeazbgnbQagyLMzufbOlJjLiK5IaPyO1qMKrw6YXNqgNJbjkLrHul2hUDBpcAgBXo6U640s/+8kSZnNY+mDEEIIIZqnZh+IK5UX7qKDgwP29lVHYxwdHQkKCiIrK6shuybqydChw5k//y2cnJw4fvwYs2bdz5Ejh5q6W1a5uTm8+uoLfPDBQnQ6Hd279+SLL75h4MCBTd010QpklWYD4NPCAvGoeMu09E5h1ct2OeTHYluaiUllQ0HgMPrYWmol79cdxWhu2CUoDUqhQN/BUv/cKWkbmM/kVdColdw8qh3+ng7oKowsXHqIhPTCpuqpEEIIIZq5Zh+IX4rCwkJiY2OrTDe/kPvvv5/OnTszYsQI3nrrLXQ6XQP3UJyrZ8/evP/+ZwQFBZOXl8szz8zhs88+pKSk6dZbGo1G/vzzN2bMuJvdu3eiVqv5v/+bwRtvvHvZdceFACgoL6JYb0nq6G3v1cS9qb2SMiNJaZZ/J6sF4mYzLul7ASj07YNJ40hX2/Y4KuwpNpcSUR7T2N2tV4bggZg0jqjL8rDLiqyyz1aj4pZR7fH3cqREZ2Dh0kPEJGubpqNCCCGEaNaa/RrxS7Fw4UIUCgXTpk274HHOzs5Mnz6d/v37Y2try+7du/n222+Jj4/nyy+/vOx+qNX185xDdbo2raqF16i92H2EhATzySdf8uWXn/LPPytZufJPtm/fyl133cPEiZNQqxvn7Woymdi+fSvfffcNyclJAHTq1Jk5c+YSGtquVvfSUrSW+2ipkotSAPCwc8NGpbnI0c3HsdgSzGZo41N9Wrptegw2ZTmYlDYU+/QCQK1QM8CuB/+V7WGfLoIwTVtcVU5N0PN6oLahNGgITnH/4pS4BZ1v1SUztjYqbh3Vjt+3xpOUVcw7yw5x4/AwQtpcPFmdrCuviRR2uXLJ914I0bq1ukB8xYoVLF++nDfffBM/vwvXuezSpQtdunSxfj148GB8fHx49dVXiYiIoEePS1+TrFQqcHd3vOTza+LiUnNm4pbmQvfh7u7IK6+8xKRJE3nzzTdJSkrio4/e47ffljFt2jSuvfZanJwa5gN8eXk569at46effiIuLg4ANzc3Zs6cyZQpU2osr3YlfE9Ew0k8HYj72LecGRZms5mj0ZaZKj06Op27E6cT2wEo8umBSX2m5FAnmzBi9KdINWSypWwv1zqObrH5FUqDh+EYvxHb/Hg0BcnoXdtW2W+jUXHTyHb8tSOB+LRCVmyNZ8qwUNoHSGWF2tJoNCgUln+XbWykdNWVqLy8HIXC8l4QQojWqFUF4lu2bGHevHnMnDmTG2644ZLamDhxIq+++iqRkZGXFYibTGYKC0sv+fyzqVRKXFzsKSwsw2hsuXXE63If4eFd+eKLb1m16i9+/nkJaWlpvPvuu3z66acMGTKMESNG0adPv2r5AerKaDRw9GgEW7b8x5Yt/1FUZEmw5ODgwI033sLNN0/F0dGRwsKqyxWuxO9Jfarvh1QtVUF5AQB+jr4XObL5yMypIDtPj0oFndtV/T7aZCVgk5eGSammyLdPlX0KhYKR9v35pWg1KYYMovUJdLKp3fKh5sZk50qZX28c0g/glLSV/O53VDtGo1Zyw7BQVu48RUxKAX9ui2fS4BA6y6h3rahUKtzc3MjP1wJga2sLtMwHN6KuzJSXl1NUpMXd3a3Gh+BCCNEatJpA/PDhw8yePZvrr7+e2bNnN3V3ADAY6jewMRpN9d5mU6jtfSgUKq699kbGj7+GTZvW8+efv5OcnMimTRvYtGkDarWGTp0606lTZ9q1CycoKBhf3zY4OtYc5On1erKzs0hOTiIuLpbo6CiOHYugpKTEeoy3tw/XXns9EyeeGXm/UF+vtO+JqF/jg0YDCrp6dmzqrtTaweOW0fAOIQ7Y2VZd0uB0fBsAxV7dMGmqJ3FzU7nQz647e3RH2FF2kCC1Pw7KljnaWRw8Aof0A9inH6Kgw2RMttVHu1UqJdcNDWX1nkSOn8pn1a5TGIwmuod5NkGPW542bdoAoNVqKZIk9FcUhQLc3d2s7wEhhGiNWkUgfvLkSR544AEGDRrEK6+8cllt/fPPPwB07969Prom6oGdnR3XXHMdEydeS3T0CbZs+Y+dO7eRlZVJZGQEkZERVY63tbXDyckJGxsblEoler2e0tJSiotr/iTn4uLCoEFDGTlyDD179pan76LReDt40s+3V1N3o9ZKy4wcj7U8uOrbzbnKPk12ErY5SZiVKor8+p63jV62nTlZkUiuScuOsgOMdxzaoH1uKHrXIMrdQrHVJuCYtJOi8Ik1HqdUKpg0KBiNSsmRuFzW7EnCYDTRO7zlLEdoKgqFAn9/f3x9fdHr9U3dHdGINBqN/C4WQrR6zT4QLysrY8uWLQCkpqZSXFzM2rVrARgwYABms5n77rsPW1tb7r77biIjz2SxdXJyon379tZzx48fz8yZM3nkkUcAePLJJwkODqZLly7WZG3fffcd48aNk0C8GVIoFHTq1IVOnbpw//0zSU1N4dixCGJiYjh1Ko6UlGQKCwspL9dRXl5z5nsbGxv8/QMJDQ0jPLwDXbp0p337cPmFL0QtHD5RjMFoxs/LhgBf2yr7KteGl4b0xGjjXNPpAKgUSkY7DGRF8Xpi9YmE60MI0QQ0aL8bSnHwCEsgnryDorCxoLKp8TiFQsFV/duiVis5EJ3Nv/tTcHGwoZ2sGa8VlUol/0YLIYRodZp9IJ6bm1ttqnnl1z/88AMAGRkZANxzzz1VjhswYAA//vgjYEkwZDQaMZvPZOEMDw9n5cqVfPvtt+j1egICAnjwwQe5//77G+p2RD1RKBQEBrYlMLAtEyZMsm7X6crIy8ujpKSYiooKzGZQq1U4ODji6uqGi4tLi00QJURTMhrNHDpumVXSr7tzlZ8jTV4adplxmBUKSjoOgewLt+Wj9qSnbScOl59ga+k+Alx80Sia/a+janQ+3THYuaPW5eOYsoeS4OHnPVahUDCmdwBGo5nDJ3NYtSuR/03oiLuz7XnPEUIIIUTr1ew/+QQGBhIdHX3BYy62/3ztPPDAAzzwwAOX1T/RvNjZ2ePv3zJH14RozqLiSygqMeJor6TTOUnaKkfDy4K6Y3RyJzvx1EXbCzUHEEMCxeZSdhUfYoRz/4bodr0w5iYCYFYqKS+1wVBagclkyalQ6NMLj6T/cIpbR6GDPygtv1ZVnsHV2lEoFIztE0CWtoy0nBL+3B7PXVd1RC3lA4UQQogrjvz2F0IIcUEmk5kdBy0Z3vt2c0GtOjMari7IxC4tGjNQ3Kn2673VChXdVOEARBnjKTPVvJykuSv26opB44RaX4JTzrGLHq9SKZkyNBQHWzXZWh3bj6Y3Qi+FEEII0dxIIC6EEOKCjp8sIU9rwM5WWS1Jm9OJHQDoAjtjdPGqU7tByja4KVwwYGS/LvLiJzRHSjWFbSyj+S7p+8BkuOgpzg4aJgyw1B7feyKLlOziBu2iEEIIIZofCcSFEEKc19mj4QN7umBrc+bXhqooF7vk4wAUdx5W57YVCgU9VR0AOFYRS6GxZQakZ0bFi3HJPFirc8ID3egW6gHA6t2J6KV8oBBCCHFFkUBcCCHEeW3ek09+gQEbjQJvTw2JaTrrHw5uRYGZPPd2xJW6ndleBz5KT3wVnpgws7+85Y6KawMt0/Jd0vehrCip1Wlj+wTi7KBBW1zBzkiZoi6EEEJcSSQQF0IIUSNduYkjUZagsmu4Ixr1mV8ZtmX5eGdZ1kSntR10WdfpprKUmYyuSEBrLLystppKqUcnyh39UJr0uKXuqNU5tjYqxvU9PUU9KoukzKKG7KIQQgghmhEJxIUQQtRo58ECyitMODuqCA91qLIvMGUXCszku4dS7Ox/WdfxULoRog7AjJl9uqOX1VaTUSjIbzsSAMfc49jkxdXqtPBAVzq2dcNshl//O9mQPRRCCCFEMyKBuBBCiGpy8/Xsj7SMTvfp6oxKeSZTul1ZHl5ZlrXhKW1rnyn9QgbY9wAgVp9IrlFbL202tgqnNhR7dUMBuEf+jMJQXqvzxvYNxN3ZFicHm4btoBBCCCGaDQnEhRBCVGEymVm9JReTCfx9bPD3ta2yPzBpp3VteIlzm3q5ppfKnXaaIAD26iLqpc2mkN92OAYbZ9RlebhG/1Wrc5zsNUyf1JkHruvawL0TQgghRHMhgbgQQogq9h0tJDWzHFsbBf16uFTZ51SYilfOCcxASlD9jIZX6m/XHQUKEvQpZBny6rXtxmJW2ZIbchUAjim7sE87UKvzFArFxQ8SQgghRKshgbgQQgirrNwKtu7TAjBmsDuO9qozO80mQuI3Wo7z7UGpk2+9XttD5UoHTQgAe3VH6rXtxlTu0pai0LEAuB/7BU1BUhP3SAghhBDNjQTiQgghAEuW9N/XZ2M0Qrsge3p0dKqy3yfzKE4lmRhUtiQH1b1ueG30s+uGEgVJhnTSDdkNco3GUBh+DTrvLihMejwPfYuqNLepuySEEEKIZkQCcSGEEJhMZlZuykFbaMDFScXk0Z5VpkvblBcSdGoLAClth2CwcWyQfriqnOlk0w6A7WUHMJlNDXKdBqdQktf9TvSOvqjKC/Da9ymqsvym7pUQQgghmgkJxIUQ4gpnNptZty2PuKQy1CoFN07wwd6u6pT0djGrURvLKXJuQ4Z/nwbtzwC77tgqNGQb8zhaEdOg12pIZo09Of0fwuDgjVqXj9e+T1AXZzZ1t4QQQgjRDKibugNCCCGajtls5t8d+RyJKkahgMljPPHzqlpGKzhhM66FyRiVGk6GTwJF/T/DzT5n6nZXZTgHjcfZXXYYR709rkqnaud4O3jWez/qizE30fI3kNn+OnyiV6Apy8N793vkhE1C5xpc/aRg98btpBBCCCGajIyICyHEFUpvMPH3xhwOHisCYNIoTzqFVZ1y7p+yhzbplszfceETKbdvnGAxTBmIr8ITIyZ2Gw+jNxsa5boNwWjjTGanW9E5+aM0VuAd+weuKdvB1HLvSQghhBCXRwJxIYS4AqVmlLH4t3ROxJWiVMKk0Z5063DWqLPJhHPEBoIStwKQFDyCPK+OjdY/hULBAHV37LCl0FzCdsMBDC04GDdpHMjqcCPFXl1RAK4Z+/E7vhS7gsSm7poQQgghmoBMTRdCiCtAYpoOgKISA8djS4hPtnxtZ6tkSB9XXJzU1mMcSrIIid+AU2EqAKk+vch2DEaTn9GofbZT2DJM3Ycthn3kmLVsMuxliLonToqGSRTX4JRq8kLGU+YaikfiRmx0ufjE/oHOOZAi396YTT1QKOX5uBBCCHElkEBcCCFaMbPZTJ7WQOypUpLSdGTl6q37QgLs6N3VGTtbJWp9Ka7aU3hlR+GWH4cCMCo1JLYZRL5rSJP1313pwnB1X3YYDlFgLmKdfiftlG0JUwXiZfaoktm9pShzb0+6cyAu6XtwzjqCXVEKdkUp6Izp2I9/pKm7J4QQQohGIIG4EEI0kZKCAmJ2ncCgN2P5H1j+z/K3GUsgDQrMZst+81n7zhxj+cJkVlBuUFCmV1BmUJJXpiavTIXedPYoq5lQ51JG+2UToMpBfbIU+7I8bMsLq/Qt17MjiaGjMJeWNuRLUCueSjfGaQazzxBJljmXWFMisaZE7AsP4K1yx1HpgL3CDhuFBiUKlAollv8pgPoL1JVKBTZmNRUVBkwm88VPuAiFTyB2bh60zUskID8Zo9mIfT30UwghhBDNn8Js+ZQn6pnZbK6XD2qVVColRmMLrad7ltZyH9B67qUp7kOlavrpt83he/fJx7+wIdmhwa+jxkioOosOmnT62STgoSqp8bgyJx+KvNqT36YHFY6WjOSKvLQG719tmc1m0o3ZRFckkmbIrnx00WoEuwXy5rhnm7obQPP4GRVCCCFaMwnEhRBCCCGEEEKIRiSPvIUQQgghhBBCiEYkgbgQQgghhBBCCNGIJBAXQgghhBBCCCEakQTiQgghhBBCCCFEI5JAXAghhBBCCCGEaEQSiAshhBBCCCGEEI1IAnEhhBBCCCGEEKIRSSAuhBBCCCGEEEI0IgnEhRBCCCGEEEKIRiSBuBBCCCGEEEII0YgkEBdCCCGEEEIIIRqRBOJCCCGEEEIIIUQjkkBcCCGEEEIIIYRoRBKICyGEEEIIIYQQjUgCcSGEEEIIIYQQohFJIC6EEEIIIYQQQjQiCcSFEEIIIYQQQohGJIG4EEIIIYQQQgjRiCQQF0IIIYQQQgghGpEE4kIIIYQQQgghRCOSQFwIIYQQQgghhGhEEogLIYQQQgghhBCNSN3UHWitjEYTeXkl9dKWUqnAw8ORvLwSTCZzvbTZFFrLfUDruZemug9vb+dGu9b51OfPaEvTWt6/je1Ket2a+mc0O7uoSa9fG635/SD31vw19c+oEOLyyYh4C6BUKlAoFCiViqbuymVpLfcBredeWst9iLqR7/ulkddNnK01vx/k3oQQouFJIC6EEEIIIYQQQjQiCcSFEEIIIYQQQohGJIG4EEIIIYQQQgjRiCQQF0IIIYQQQgghGpEE4kIIIYQQQgghRCOSQFwIIYQQQgghhGhEEogLIYQQQgghhBCNSAJxIYQQQgghhBCiEambugOXYs2aNfz9998cO3aMwsJCgoODueuuu7jppptQKBTVjt+wYQMPP/ww4eHhrFq1qsq+oqIi3njjDTZs2IBer2f48OG88MIL+Pj4NNbtCCGEEEJckqjE/Dqf0ynYvQF6IoQQoi5aZCD+3XffERAQwDPPPIO7uzs7d+7kxRdfJCMjg0ceeaTKsTqdjtdffx0vL68a23rsscc4efIkL7/8Mra2tnzwwQfMmDGDFStWoFa3yJdHCCGEEEIIIUQz1iIjzc8//xwPDw/r14MHD0ar1bJ48WJmzpyJUnlmxv2XX36Jv78/gYGBREZGVmnn0KFDbN++nW+++YZhw4YBEBoayjXXXMP69eu55pprGueGhBBCCCGEEEJcMVrkGvGzg/BKnTt3pri4mNLSUuu2pKQkFi9ezAsvvFBjO1u3bsXFxYWhQ4dat4WFhdG5c2e2bt1a/x0XQgghhBBCCHHFa5GBeE0OHDiAr68vTk5O1m0LFixgypQpdOrUqcZz4uPjCQ0NrbauPCwsjPj4+AbtrxBCCCGEEEKIK1OLnJp+rv3797N69Wqefvpp67ZNmzZx6NAh1q5de97zCgsLcXZ2rrbd1dW12jT2S6FW189zDpVKWeXvlqq13Ae0nntpLfdxqerrZ7SludK/75dKXjchhBBC1JcWH4hnZGTw+OOPM3DgQP73v/8BUF5ezuuvv86sWbNqnMbeGJRKBe7ujvXapouLfb2211Ray31A67mX1nIfddEQP6MtzZX4fa8P8roJIYQQ4nK16EC8sLCQGTNm4Obmxscff2xN0vb999+jVCqZNGkShYWFAOj1ekwmE4WFhdjZ2WFjY4OLiwsZGRnV2i0oKMDV1fWy+mYymSksLL34gbWgUilxcbGnsLAMo9FUL202hdZyH9B67qWp7qM5BMD1+TPa0rSW929ju5Jet+bwMyqEEEK0Zi02ENfpdDzwwAMUFRXxyy+/VJliHh8fT2JiIoMHD652Xv/+/Xn55ZeZNm0aYWFh7Nq1C7PZXGWdeEJCAh06dLjsPhoM9ftBzWg01XubTaG13Ae0nntpLfdRV1fiPZ/tSv2+Xy553YQQQghxuVpkIG4wGHjssceIj4/np59+wtfXt8r+GTNmcMMNN1TZ9tVXX5GQkMAbb7xBSEgIACNGjOCzzz5j165dDBkyBLAE4cePH2f69OmNci9CCCGEEEIIIa4sLTIQf+WVV/jvv/945plnKC4u5vDhw9Z9Xbp0oV27drRr167KOX/88QeZmZkMHDjQuq13794MGzaM5557jqeffhpbW1vef/99OnbsyFVXXdVYtyOEEEIIIYQQ4grSIgPxHTt2APDmm29W27dx40YCAwNr3dYHH3zAG2+8wbx58zAYDAwbNowXXngBtbpFvjSiGTKZTJSVlWEymbCzs0Oj0TR1l4S4IL1ej1abT0lJCUajEZVKhaOjI66ubtjY2DR194QQp5nNZsr1RmzUymqlWIUQQjRvLTLa3LRpU53PqSloB3B2dub111/n9ddfv9xuCYFOpyMi4hBHjx4hNjaG1NQU8vJyMZnOrCd1cnLG3z+A9u070LNnL/r1G4iDg0MT9lpc6QoKCti9eweHDx8gJiaajIz0Ku/Zs7m7exAQEEhoaDs6dOhI9+498fX1a+QeCyGKy/R8+OsR4tIKaevjxE0jw7BRq5q6W0IIIWqpRQbiQjQnJpOJQ4f2s379Wvbs2UV5ue6CxxcXFxETE0VMTBSrV/+NjY0Nw4aN5MYbb6Vdu/aN1GshIC7uJMuW/cT27VsxGAxV9qnVahwcHNFoNOj1ekpLSzAYDOTn55Gfn0dkZIT12ICAtgwYMJBhw0bSuXNXGZkTohEs3RBDXJqlMkxyVjFbDqcxvl/bJu6VEEKI2pJAXIhLpNfrWbPmH5YvX0pKSrJ1u4+PL3369KNTpy4EBYXg4+ODs7MLCoUCna6MnJwcUlKSOH78GPv27SY1NYVNm/5l06Z/GT58JDNmPIy3t3cT3plo7bRaLR9+uJBVq1ZZt4WFtWfQoCF07dqdkJBQ3N09qgTUZrOZwsJCMjMzSE5OJD7+JMePHyMmJorU1GT++COZP/74DX//ACZMmMSECddcdhlIIUTNsvJL2X0sEwUwtHsbth9NJyIulyFd/XC0l+VPQgjREijMZrO5qTvRGhmNJvLySuqlLbVaibu7I/n5JS26ZE5ruQ+z2czOnVv47rtvSElJAcDBwZFx465izJir6NChY61HBM1mM9HRJ/jrrxVs2fIfZrMZe3sHZs16nNGjxzXkbQBN9z3x9na++EENrD5/RluSnTu38+GH71BYWADAiBGjueWW22jf/tJKNpaUFHPo0AF27drBzp3b0OksM0JsbW2ZMOEabr55Wqt5sNRa/g2rjab+Gc3OLmrS69dGU74fft18kjW7k+gW5sE1A4P5cX006bmljOrlz4DOvhc9v1Ow+wX3t+b3emu5t6b+GRVCXD4ZEReiDhITT/Hppx9w9OgRwLJe9uabpzJhwiQcHR3r3J5CoaBTpy506tSFW2+9nY8+eo+oqOO8/fYCTp6M5b77HkCpVNb3bYgrkF6vZ9Giz/n77z8AaN++PY8++gTh4Z0uq11HRyeGDRvJsGEjKSsrY9u2zaxc+QcnT8by999/sGbNKqZMuYnbbrvzkn5GhBBVmc1mDkRlAzCsexsAuoZ4kJ5bSmxKQa0CcSGEEE1PPuELUQtGo5Fly5bwyCP3c/ToEWxtbbn//vv5/vufuPHGW+slwAgNbcc773zEtGl3AfD778v59NMPkEkr4nJlZWXy1FOPWYPwW2+9jR9++IHOnbvU63Xs7e256qqJfPTRl7z++jt069YDvV7Pb78tY8aMu9i8eZO8n4W4TGm5pWRpy1CrlHQP8wQgPNCyDCQ1p4TScsOFThdCCNFMyIi4EBeRlpbK228vIDr6BAADBgxi1qzH6Ny5fb1PbVOpVPzvf/fi7x/A+++/zerVK/H29uG22+6st2uIK8vevbt59903KCwsxMnJiSeffI6hQ4diY2NDSYm+Qa6pUCjo3bsvvXr1Ye/e3Xz99eekpibz1luvsW3bZh599AlZPy7EJTqekAdAxyA37G0tH+OcHWzwdLEjt1BHanYx4YFuTdhDIYQQtSGBuBAXsG3bFj74YCGlpSU4Ojry0EOPMmbMeDSahi0RM27cBHQ6HZ9++gE//riY7t170rVr9wa9pmhdysvLWbz4a/76awUA4eEdeO65l/Hza9NofVAoFAwcOJjevfvy669LWbZsCTt3biMq6jjPPPMi3bv3bLS+CNFanEjMB6DLOeu8A70dyS3UkZJdIoG4EEK0AA0eiP/111+sWLGClJQUCgoKqk1LVCgUHDhwoKG7IUSdGAwGFi36nL/++h2Arl27M3fuc41aL3ny5ClERR1n48b1fPzxe3z66SJUKqkRKy4uMvIoH3ywkNRUSzb/KVNu5N57H8DGxqZJ+mNjY8Mdd9zNoEFDeeut+SQnJ/LMM3N48MFHuPbaG5qkT0K0RCazmdgULVA94VqgtxNH4nJJyS5ugp4JIYSoqwYNxBcuXMi3336Lr68v3bp1w9lZMjyK5k+rzWfBgpetdZJvuWUad999X5MEwQ888DB79+4mMfEUmzdvZOzYqxq9D6LlKCoqZPHir1mzxlKWzNPTi0cffYIBAwY1cc8s2rVrz0cffc6HH77L5s0b+eyzj0hPT2P69IckKaEQtZCVX0aJzoBGraStj1OVfYHellwlmXmlVBiM2Kjlwa0QQjRnDRqI//rrr4waNSLaKR8AAQAASURBVIpPP/1UPmSJFiEhIY6XX36erKxMHBwcefLJZxg8eFijXf9gVgR9fHpYv3Z2duHGG2/h+++/YeXKPyQQFzUym81s2LCORYu+sJYlu/rqSdx334M4OTld5OyLO/d9eTns7Ox56qnnCQ0NY/Hir/njj98oLCzk8cefkhkfQlxEfJrl5zvY1xm1qurnKhdHG5wdNBSV6knPKSXYTwY/hBCiOWvw6HjkyJEShIsWYefO7cyZ8whZWZkEBATywQefNWoQDpaA51xXXz0JpVJJdHQUmZkZjdof0fylpCTzzDNzeO+9tygsLCA4OIS33/6A2bOfrJcgHGp+X14OhULBrbfezty5z6FUKtm4cT3vvfcWRqOxXq8jRGsTn1YIQJi/S7V9CoUCfy/LqHhGXmmj9ksIIUTdNWiEPGrUKFn/LZo9s9nM8uU/89prL6LT6ejduy/vv/8ZbdsGNXXXAHBzc6dTJ0uZqSNHDjVxb0RzYTQa+e23X5g58z4iIg5ja2vL//3fDD755OsWkwRtzJjxPPfcy6hUKjZt+pcvvvhYypsJcQEXCsQBfN3tAcjMl0BcCCGauwYNxF988UXS0tJ49dVXOXbsGHl5eWi12mp/hGgqFRUVvPfeWyxe/DUA1157Pa+99pY1n8H5RgIPZBxhV/L5HzKdfd7ljCZWntuxYycAEhLiL7mt87UtWp6MjHSeeuoxvvnmC/R6Pb179+OLLxZz6623o1Y3fDGMFbEra7XtbGe/384+dujQ4cyd+xwKhYJVq/7ijz9+rb+OCtGK6A1GkrMsidhC25wvEHcALGvJhRBCNG8NGojb29vTu3dvli5dys0338zQoUMZPHhwtT9CNIWCggKef34uGzasQ6lUMnPmo8ycObvKOtXzBuKZR9iVfPC8bdd3IN6mjT8AWVmZl9zW+doWLcvmzZuYOXM6x49HYm/vwGOPPcmCBW83almymt47F3s/XehnYuTIMcyYMROARYu+4MCBffXQSyFal+SsEowmM84OGrxc7Wo8xsfNMiKeV1ROhV6WegghRHPWoEMnr776Kr/++is9e/akZ8+ekjVdNBuJiad4+eXnychIw8HBkeeem0ffvgMuel5l0qp8nRYfG6/L7sfBrIgqQcmhrAgWRS6xfv3/7J13eBRVF4ff3Wx674VASOgQQu9dQPhAQAQUpagISlVQ6UVAOghIla40pUrvHULogRBCKOmk955s/f4YdklIgAQSmvM+Dw+bmTt37szOzM6555zfSclJAcDMTLh3MjPFsjT/VXJyslmxYgnHjx8BoHp1T8aMmVgqJfWed10m56SgUCkKtH9VPv64B+HhoRw5cpB582awfPla7OzsX7lfEZH3hYi4dADKOZojkUgKbWNqrI+psYzMbCXxKdmUsS8ZnQgRERERkZKnVA3xw4cP061bN+bMmVOauxERKRaXLl1k3ryZZGdn4eTkzNSps3BzK1+kbZ8Y4qkYZcv459YWbt26RXh4KGlpqejrG1CmjCvSckakuH6ElZXVc/ur6+CVT416rf9mBnr2zfc3oMubfdbLl8j7TWhoCLNmTSMiIgyJRELv3n3p0+fLUlMZf951udZ/Mym5qfnal4QhLpFIGDLkex48uE9Q0AMWLpzLzJnzxWteROQxj+IyASj7AuPa0dqE4Ow0YpNFQ1xERETkbaZUDXGZTEatWu+GaJDI+49Go2Hbti1s3LgejUZDzZq1mDhxGpaWlkBBLyAInsAF15YRlRGDGg0qtYqha78nyieE61EFvdM5OTkEBgZAIPQ924vyH9dAU86AqT7zcDUXwsufNnLykpyTks8jrvVEBj0IACBFk/bSx1+Yl3P1rY3oG8hQyJXUtn/2uETeDBqNhgMH9rB27R/I5XJsbGwZM2YitWrVeeW+fSKuU9WsapHaPkqPYqL3TAAyFVko1Ap+PDsJ+WPPuAZhokjbBsDVzBl9PQMAItOjiMtOYOSZiQAo1ApGn5sKgIGePnUdvHC3dKOugxfjxk1i2LBB+Ppe59ixQ3To0PmVj1VE5H0gIl74zXF1MH1uO0drY4KjBENcREREROTtpVQN8c6dO3P69Gk+//zz0tyNiMgLycnJZtGieZw7dwaAzp27MnjwiHzCVoUZyFpP4Fr/zdTKrsSCFXNJi0kGQCKVUL9eA+rVa0jFipU5Hn+ebm4duX8/kD93rCclMpGQHbdpOqA9jg4u+Tzdz8LayKqAR3ygZ1/WXV7FTXzQMzN46XNQmJfz21r9sbY2JTk5E6VS/dJ9i5Q8SUlJLF48j6tXLwNQv34jfvpp3AujLIqKT8QNqlYrmiHuau6SzyMekhrGzGYTdesLW/Y0eb3qI89MZH7LqQU87XUdvHB1LUe/fgNYt+4P1q1bTdOmLcW0JpH/PBqNRifU5voCL7f94zzxhFTREBcRERF5mylVQ/x///sfM2bM4Ntvv6VHjx44OzsXGkpZo0aN0hyGyH+cqKhIZsyYQkhIMDKZjCFDRtCpU9cibZuSk8L0E3Px23uZXQ8FA1zPUIZ5XXvs6pXB0qkc8YbZlLXXYKaxwN3dA3d3D8KcEkg+Es6ZMye5vuM8Hcb2KtL+nuWRfvQoHAAzu8KVckXeL86ePcWKFb+TlpaGvr4+AwZ8S7duPV5bmLZCoeDRo3AiIsLxDb7J3chAbu29hJ6+Hgl6qRg5mjJB/SsSqRQrQ0tC08LRl+rrojmeF/VRFD7+uAcnThwhLCyUf/7ZzKBBQ0rq0ERE3kmS0nLJzlWiJ31SK/xZaIXcElJz0Gg0YnqHiIiIyFtKqRriffr0AeDu3bucP3++wHrtD8Tdu3dLcxgi/2GuXr3MvHkzychIx8rKmokTp+HpWbNI22o0GpJ8owk87Et2djZ6enp4NKvGzOGzmOu3hCoOFfi62hc6T3LesG+pnpQffviZgAB/4uJiCbv+EIoQTVyY8aLRaHjw4D4AVi62RRq7yLtJamoqy5cv4vz5swB4eFRkzJgJuLm5l9o+VSoVYWEhBAYGcO9eIA8fPiA8PBSlUvnc7TKtounUqQs9enzG1uDdhKSGFSnqoyjIZDK++WYwU6aM48CBPfTs+RnW1jYl0reIyLuINizd2dYEmd7zC95YmxshlUpQKNWkZSmwNH35SCoRERERkdKjVA3x2bNnl2b3IiLPRKPRsH37Vv76ax0ajYaqVaszceLUIqswJyUlsmjRPHyvXQHAtrwjs8bP5VjaeczNzbE2sqJJ2brP3L6ugxdGRkZ07tyNDRtWE+Uf9lLHUdfBi+joKBITE5DJZFi5vrpSe96+Rd4eLl/24fff55OcnIxUKuXzz/vRu3ffEq8LrlKpePAgkDvHbjDurxsEBNwhOzurQDtTU1PKlnXD2dkFKysrDAwMyMnJ4fL9qySFxpGSkszWrRs5cuQgNT9rTN1qz7+e8l5v1oaWLxxn/foNqVKlGvfu3WXfvn/58stvin+wIiLvCbqwdIcXi6/pSSXYmBuSkJpDQkq2aIiLiIiIvKWUqiHevXv30uxeRKRQsrOzWbRors6r+L//fcTgwSMwMCjay8jVq5eZO38GmekZSGV6eHaqT3plFcfSzhOSGsZa/81kKDLxibjBOfkV1IJOlU5YLTknhZTcVE6Fn0NjIXgV48OiWXN7ky5EsDihu0sPLAfAqqwtt1MC8om5vUoIsGiIvx3I5XLWrFnBgQN7AXBzK8/PP4+nYsXKJbYPlUrFrrO7OH3mJNEB4eRm5uRbLzPUx62CO/VrNqBSpSpUrFgJBwdH3fWqrRYAIPPfzFdVe3Px4nn++msdUVGRnFt9mA+mNH/m/m/E+XEq/By7HuwHICU3lZFnJqJQKxh5ZiL6Un2ylFnMv7YMayMrQLg+e/T4jFmzpnLkyEH69PmyxCclRETeFR49NsRfpJiuxc7SSDDEU3OoUObFE18iIiIiIq8f8a1G5L0iOjqK6dMnERoagp6eHkOHfl/kfHClUsmff65l165tAHh4VGDMmEm4uZXXiUqdf3iRrKAUQq/7E5gZi0KhxNW1HO3adSDEsGBorlwu59Tve1HnqOhd/uNii07VdfDi34gtAHRp3Y00B1WJhf+KvHliY2P49dcpBAU9AKB795589dWgIk8avYj09DQOHdrPoUP7iYuL1S03MTHFpqI93Vp0pVq1mpQv7/7cUmh5DfG6Dl7IZDJatmxDw4aNWbBgDt7e55g1axpLlvxBuXJuBbZ/Vjm0p8Xanr62lTZKrKysSUlJ5saNqzRs2OSVzoeIyLvKo8eh6WWL4BEHsLM0BlJEwTYRERGRt5hSN8QjIyP5999/efToEampqbp6yFokEgkrV64s7WGI/Afw87vJjBm/kJ6ehrW1DRMnTqVGjaLlg8fFxTJnzq/cvXsHgC5dujNw4GCdQZQUHseMPb/g43MBtTq/uvjt234cPnwA+wZluVbhJvWdauvWGRgYYGxsTHZ2NunpacU2xDMzM7h58wYAjRs35VhaQa0FkXcTf//b/PrrZNLSUrGwsGTMmAnUq9ewRPrOyMhg165t7N27i+xs4UXczMycVq3a0Lx5K2rXrs3iW6v4uF6Pl1LL1xrmRkbGjBs3mSlTxuHre53Fi+ezYMESbib4l0jEhUwmo0WL1uzf/y/e3udFQ1zkP4lcoSImSUgfKUpoOoC91RPBNhERERGRt5NSNcQPHDjAuHHjUCqVWFhYYGZW8AdEVPMUKQmOHTvMkiW/oVKpqFSpClOm/FrkfPArV3xYsGAO6elpmJqaMmrUWJo1awFAWFgI69ev5sqVS7r2Vq52dGr5P0L1o2jl0pStJ/4h/NpD4q9GsOPff6g/pHa+/vX0hNtMpVIV+7guXDiHUqmkXDk3wdPoLxri7wMXLpxl7tyZKJUKKlasxJQpM7C3d3jlflUqFUeOHGTjxnWkpQk1593dPfjkk09p2bKNbmJJJpOSmJX8UvvQihLqQtVlMkaNGst3333J3bt38PHx5q5lWImlPjRq1IT9+//VTUiJiPzXiE7MQqMBM2P9Iud72z5WTk9My0Gt1iCViu9aIiIiIm8bpWqIL1y4EHd3d5YsWYK7e+mp/or8d9FoNGzatIG//94EQMuWbfjxx7EYGhq+cFuVSsXGjevZvn0rAJUqVWHChF9wcnImMzOTTZs2sH//v6jVaqRSKW3bfsgnn3zKiQxvvJxqcf/Bfh5aRGHbwQ0rF1tu7b1EwIkbrGr8J3r6Ml04rkIhB0BfX7/Yx3f69AkA2rRpB4h53e8Dx48fYfHi+ajVapo0ac6YMRMxMjJ65X4fPLjH0qULdQr7Zcu68eWX39C0afNCJzxtTayf2deNOL98VQC0+gcAIalhWD0ltmZvb0/Xrp+wbdsW9uzZSZUvGzx3rHnD3J9e9jQ1angilUqJi4slKSkRGxuxcoDIf4uohEwAXOxMi+y8sDI1RKYnQanSkJopx9r8xb+JIiIiIiKvl1I1xJOTk/nmm29EI1ykVFAqlfz++wJOnDgKwGef9aF//wFIpc8v7QKQmJjAnDm/4u8vGBt5Q9EvX/Zh6dKFJCYmANCkSXMGDPgWV9eygnGSAfWcanE68gLf1urP7EtL+HHQOHqe7kpOWhZ1FFVpWKcxIOSI5+bmAmBqWrSQQi1xcbH4+d0EREP8feHkyWMsWjQPjUZDx46dGT581HNzs4tCdnY2mzatZ+/e3ajVakxNTenXbwAffdTtuX0XZohrQ86fldMN5BNUy5s7/tFH3dix42/8/f0ok1jluWMujiFuZGSMi0sZHj2KIDQ0RDTERf5zRCU+NsRtTYq8jVQqwcbCiLjkbBJSs0VDXEREROQtpFQNcS8vL6Kjo0tzFyL/UXJycpg1aypXr15GKpUyYsSPdOzYuUjb+vpeZ+7cGaSmpmBsbMLIkT/TsmUb0tPTWbJkASdPHgfA2dmFDn26ke4o50jKWZJjUojMiEahVjD8xHgUagVDj49FpVHx0/kp6Jc1IedOFn+d3YSfyUMAyuMCCLnihaVmPI/jx4+g0Wjw8qqNo6NTsbYVefu4ePECCxfORaPR0LlzV4YO/aFIk0bP4/JlH1as+F0nxNa69QcMGjQMG5uCNbfzermlErge64dCrtSp/td18MpnWOfd7n7SQyZ6zwQExfPQtHAmes8kU5HFyfBzAEgAWw9H4h9Gc+3yJdbaWuj6eBV1fxDuxUePIvIJzomI/FfQesSd7UyLtZ29pdYQz6GSa2mMTERERETkVShVQ3zChAkMGjQIT09POnbsWJq7EvkPkZmZydSpE/D398PQ0JAJE34pIOJUmEGhVqv555/NbN78JxqNBg+PCkyYMJUyZVy5ceMaCxfOJTExAalUSvfuvejX7+sCIe7a8NzBtfsz/vwMZreYxNizv9KjUhc23/iTu3cSqGpUQec99PW9DpCvFFRRUKvVHDt2GIAOHToV7wSJvHXcuXObOXOmo1arad++4ysb4fHxcfzxxzIuXhQ0AxwdnRg+fBT16z9b7C2vMSyTSVlwfTnf1uqfT6wtbzh63u1uxPnprumJ3jNxt3QroHoOsDPUnnUP/0A/hhJV97ewEELh09PTSqxPEZF3hehEQajNxbZ4hrignJ5MfIqonC4iIiLyNlKqhniVKlUYNWoUP/74IxMnTsTJyanAy6dEImHfvn2lOQyR94iMjAwmThzN/fuBmJqaMm3a7EKV0Z82xNPSUpk/fxbXrl0BBON2yJDvkUgkrFq1nD17dgJQpowrP/00nmrVqhdrXDfi/ChnXZa7+CKXy3XLHz0Kf9xv2eL1d+MacXGxmJqa0qxZy2JtK/J2ERUVyfTpk1AoFDRu3JQffvj5pY1wlUrF3r272LRpAzk5Oejp6dG9e0/69PkSIyPjYvVVHLG2onqza9asBUBSWBwajabExDi1IfZPVywQEXnfUarUxCULhrRzMULTQaglDpAoKqeLiIiIvJWUqiG+ZcsWZsyYgaGhIeXKlSt2aK6ISF7yGuEWFhbMnDmfihUrv3C7hw8fMGPGFGJjYzAwMGD48FG0b9+RI77H2LdmGyEhwYCQ4/rNN4PzCWfterCf4NQwJEBybiopualIkOhC0388NYVMZRb+CXeRJ6YAkKJ44rXT9l2+fPliHevhwwcAaNeuQ5GE50TeTrKzsx+XKEujUqUqjB07+aVzwh88uMfixQsIDhbSHqpX92T48FG4u3s8d7vCokMAsrOymbxvBsYYoyfTw9jKlDsZ93RRH/DEAD8Zfo4bcX4k56SQkpuKf8JdJnrPJCU3lQXXlqEBrI2s8LKpjkRPijwrl9jYGJycnF/qWJ9GLhd0FkqqvrqIyLtCbFIWao0GIwO9Yud56wzx9FxUag16onK6iIiIyFtFqRriq1atok6dOqxatarY9ZNFRPKSnZ3N5MljdUb4nDkLcXev8MLtTp06zu+/L0Aul+Ps7MKkSdNwd6/AkSMHWbZiESqFCkNTIyaMmVJojeLk3FSsjax0YbaFhaYPPjYaT7tqqMxTCSGA8vbldNsHBQlGU1HGqiUpKZHLly8C0LHjR0XeTuTtQqPRsGTJb4SGhmBtbcMvv8x4KXV0hULB1q0b2b59K2q1GnNzC7755lvat/9fkTzrWkNcpVJx/foVvL3P4+d3k5iYgvod+uaGVGhsS7t2HahZs5bOo503NH3kmYl42lXLF5qeN0TdwsGK1OgkQkNDSswQT0pKAsDS0qpE+hMReVfQhqU72xZdMV2LhakB+jIpCqWalPRcXUkzEREREZG3g1I1xNPT0+nSpYtohIu8EnK5nGnTJhIYGICZmTmzZ/9WwLB9utzSjdhb/HDoKvdPC8scq7rS7quuxOolsWPe35w5cwqAunXr49y5Uj4j/FkexLz1k6/H3EKuUrD61kZAKO+U8zAegAeKMG7E+eFpVZXg4CBAKI32rH6f5siRg6hUKqpXr0H58mLFgXeV48ePcObMSaRSKRMmTMXW1q7YfcTERDN79nTu3w8EhPJ8Q4aMwMrq2aXHnkaencs//2xm996dpKek5lunZyTD0NgIhVyBIjMXRXoux48f4fjxI1StWh2HduUZ33l0vm30pfq66zglJ4W1/psJSQ3TTVIpLYFo2HVtD/5mwa8s1AYQGfkIEETbRET+SzwpXVa8sHQQUv/sLI2ITswiPjVbNMRFRERE3jJK1RBv2LAh9+/fL/F+Dx8+zL59+7hz5w5paWm4ubnRr18/evTogUQiISMjgw0bNnD27FlCQ0MxMDDAy8uLUaNGUaVK/rI66enpzJ49mxMnTqBQKGjRogWTJk3CwcGhxMctUnxUKhXz5s3k1i1fjI2NmTFjHh4eFQu0y/uyn5OTg89fJwjxDwPgs8++oF+/Afx+ZiV7Fm4hPS4VqVRK9Q51+XX4XNYHbM3X18WHlwjzvs+NG1e58+AOKqWKe+5XsWjohHO1stR18EImk+KXfIevq33B8BPj8bSrxrX0kwD0qPcxdR28CAjwR6lUYGFhibOzC4funH6hQaJSqTh69BAAnTt3e+XzJ/Jm0IqpAfTvPwBPz4I6Bi/C1/c6s2ZNIyMjHTMzc77//idatGhV5O2zsrLYs2cnR3ZsR5Ej6BZYWlph5+nCN52/5ob0DhKZHgNqCB7tLzw+YeyuSVRKLsOpU8cJDAwg8P5dqsrLo6mo0fVroPfEELd6HC2S1yN+p8w1AgOTKKdxLhHBtpSUFF0pwXLlyr9yfyIi7xJPSpcVT6hNi9YQTxDzxEVERETeOkrVEJ86dSqDBg1izZo19OzZE2vrontxnseff/5JmTJlGDduHNbW1ly8eJHJkycTExPD8OHDiYqKYtu2bfTo0YORI0eSm5vL+vXr+eyzz9i1axcVKjzxpo4cOZKHDx8ydepUDA0NWbx4MYMGDWLXrl3IZKV6ekRegEajYfXq5Xh7n0Mm02fKlBlUqVL1udukpaXyyy8TiAoMQybTZ9So0XzwQXu8vc9xasleVHIlhuZGuHX3JMtRwmSf2aTkpjLReyb6aVKCzviT4B+NrqbTY/z9/cDfj/I9PIlMj0KhVqDQKBkX9ysKtQK/mDuERQiGf4AmiAY04vbtWwB4enoVOaTw6tXLxMXFYm5uQfPmRTe6RN4uVq1aRnZ2FtWq1aBnz97F3l5bb1ylUlGlSlUmTJiKg4Njkba9EnWD3ft2EHjiJrmZwsu3haMVldt4YV7Flnh5Er4GgdxPDiVDnklQilCGbGbqItRlZMirGVK/Zlvu7L9Gyt04Vq9egVUTZ0LTBOHBlNxURp+bioGePnKVggXXlhGSFq7ziGcZCkZ/QkJcsY+7MO7duwtA2bLlMDV9OWNERORdJW9o+ssgKKcjGuIiIiIibyGlaml26tQJjUbDwoULWbhwIYaGhoWqpl+/fr1Y/a5cuTJfndwmTZqQkpLChg0bGDp0KK6urhw/fhxj4ycqwo0bN+aDDz5g69atTJ48GQBfX18uXLjAunXraN68OQDu7u506tSJY8eO0amTWDbqTbJ37y727fsXgNGjx1O7dl3dusLCvOPj45k4cTQREWHoGxswa/oCcu3VbNnyF5s3/wmAfQVnlsxYjpWVtc6Lt8xnDaorqRw7dlinylylSjWsqjtgXMYCPZkeSVcj8fW+Stb5eKZ8swR9fT0CMwKpalaVsWd/xSLFmAdqDSbmpvRv8DkAt275AuDlVavIx3zokFBBoH37jqIw1TvK7du38PY+j1Qq5fvvfyq2ONuhQ/tYunQRAK1bt2XUqDHPvRa0KRO1bGtw9uwpNm3aoMv/dnEpg2ubSvzyxWSkUqkuhePbWv1ZcH05FjJznUd8oGdfFlxbxgflWlLXwQtNaw1fzv+a+NNhpPhE07pJf9q371igZBkI2gnWhpb0qNSF6LvhhHOXpKTEYh33s9BOaBVWHUFE5H1GrdY8KV32EqHp8ESwLUEsYSYiIiLy1lGqhniHDh1KrHxNXvIa4VqqVavG9u3bycrKKlSd3dTUlHLlyhEX98RLc+7cOSwsLGjWrJlumYeHB9WqVePcuXOiIf4GuXbtCmvWrARgwIBvadmyTb71TxvisbExjBv3IzEx0RhbmvLt2O+pXLkKw6cOJcJXyNOu2KIGNTs31OXXatQaDh3ax7E1O3Whu40bN8W4oR1j/jeKid4zcbUUUhTMHSzxu+pLXFwsoaEhVKpUEZ+IG1StJnjojROECSbLsrZIJBJyc3O5c+c2ALVr1yvSMcfGxnD9+lUAOnXqUvyTJvJWsGnTBkAQ2itujv/x40d0Rni3bj349tuhLxRkux57i+i7Eaw5vZjQ0BAArK1t6NPnSzp06MSfgf/o+iisTnheknNTdfeWRCLBpmEZOpRpw+bNf7J8+WK8vGo/c9sbcX70qNQFL9eaXOQ4qampz2xbHPz8hAktbWk0EZH/Cgmp2ShVamR6Up1nu7hoDfHkjFxdXyIiIiIibwelaojPmTOnNLvPx/Xr13F0dHxmibS0tDQePHhA06ZNdcuCg4Nxd3cvMFng4eFBcHBwqY5X5NlERj5izpzpqNVqOnTo9MLQ3tjYGEb+PIyUhCScnV2o9XVzWlRuxqhxw4m4GwRSCeX+VxV1dRNuJfoz0XsmmUnphB+4S3a4UGrMqowttbo1xs7dCd84PxZcW6Yr0wSCQJXMxgBVjJJNV//BNascacp03RgSg2MBsHN3AsDP7yZyuRxjS1OOpZ1H4n8B3zi/QktDaf8/fPgAarWa2rXrUqaMawmdTZHXycOHD7h9+xZ6enr07l28/Ohr166wePF8AD7+uCfffjv0hROZDx7c49zKgySECNefmZkZvXp9Tteu3XV1xbWCagAhqWGk5KYy9/JSwtMfIUHK/GvLCH0cWp6Sm4pvnB/fnx6PVCJFoVZwxeUeRmXNyYlIZ8LCcTTp1+65Y6pfrg4glBssDoVFuWRlZekqDzxvEkBE5H0kSheWboL0JUuPmRnrY6AvRa5Qk5yei73Vyxn0IiIiIiIlz1uVBJ2QkECLFi1Yv349TZoULCX1LK5du8ahQ4cYO3bsM9vMnz8fiUTC559/rluWlpZWqKK7paUl/v7+xRt8IchkJTPzrPd4BlvvHZ/JLspxZGdnMWPGFDIzM6le3ZPvvx+Fvn7B0F6pRDi/SUmJTJjwMykJSZQp48qCBYv5+/6/jB//I8EPHiAz1Kfpl22Z3Gu8TuG8SkpZ5qyfiTJHgZGREe16dmJ43+G6EOLVtzbyba3+DD8xnq89hUmA67G3iNS/Qy5Z/M+9Dc3rtmCt/2b09KTUsanBFr/VADhVcUEmk+rKj33QvC1D6nyZr9+8rL61kYYutVGplBw/fgSALl26ldi18yLel2vrZSnp83z8+GEAWrRohbNz0XK6ASIiwpk9expqtZr27TswdOjw5xrhGRnprF27mkOH9qPRaJDIpHzaozefffZFgWda+/KtqOckeJO198CQul8x5sx0Pq3SlToOXrpr88dTU6hqW1F3nQ4/MZ5l7WZzwPIQv0+aS5RfGOU1zgXOWwOnWoSmhiGTSTEzE3JZc3Ky0dOTFDkq6ma8Hw1daudbFhR0H7VajaOjE05ORT+fpcV//X4RKX0Cw5J1n289EEQKTY1k+ZYXB4lEgp2FEVGJWSSm5YiGuIiIiMhbxFtliIMg0FUcYmJiGDVqFI0aNaJ///6Fttm1axfbt29nzpw5ODk5lcQwX4hUKsHaumSFhSws3o8f0Gcdh0ajYcGCWYSGhmBra8vChQuwsxPCyH0iruMTcQOAxKxkHiSGsPrGnxxfso+UqEQMrIxo8G0rVt/ZiPcfx5EnZCMz0cexZyXibNJYcH058emJJJwOY8dFrYfNi+nTp+Pq6spfvju4nxhCYlYyGfJMfjrzCwq1gj/v/AOAXKUgLVkItd0augdvg5s8SAwhNPkR8feiyMnJxtDciIfSR8y/uoxz508AUK6um+460DeQFbgmtMvOnDlDUlIi1tbWdOr0Ifr6+iV81p/P+3JtFYeSvkfVajXe3ucA6N69W5H7zs3NZebMqWRlZVGnTh2mT5/63O//r0NbWb1gJblpQs6nWTUbbFq6EuQYz9TrC3A2F9IpPqrSFgC/5Dv4Jd/R3TcGevqMOTOdpOwUNgfsYnPALjLlWfx0ZgqZyiyux/ox/vwMAJRqJYEZgfTr0IsdW/8m6k44iQGPsP7AlL98d+juSRDC2sefn4EyRwEI97OZmUGRtQ4Kuz8ePRJC7T09a5T48/RV+C/eLyKvn8Q0QWDtZcPStdhaPjbERcE2ERERkbeKt84QLw5paWkMGjQIKysrli5dWmgu5dmzZ5kyZQpDhw6le/fu+dZZWFgQExNTYJvU1FQsLS1faWxqtYa0tKxX6kOLnp4UCwtj0tKyUanUJdLnm+BFx3HgwD6OHj2KVKrHpElT0dMzJjlZKN1S1ayqLh979a2N1LHzJGjbbVIiE7G2tqHxd23pX/Nzfv55JPKEbGxsbJg3bxFHUwTDqLf7xwwe8y3xQYKIVdUPajFvzEL09GQkJ2cSk5rAz/WG6frXesSXtp0NwDKfNQRnCPnbsz6agpWVJWPOTMfVzBmrFAkP8KV9qw8xdrInPiianLQsTE3N+KhxV90xKORK3Wct2mU7duwCBJG2jAw5IC/JU/9M3tS19TYYVSV5jwKEhASRmJiIkZERlSrVKPBdP4tVq1YQFBSElZU1Y8dOfub3r9Fo2Lbtb9avX41Go8HFpQw//jiay9zGL/4us1tM0l27q29tpKqZcL9o7xvI7xEfemwsi9v+ikqlZtzZX5nTajLjzv6Kh5VbPo94VbOqJCdnUq5OBaLuhHPixEn69PmaruU70bX8Ex2NcWd/ZXaLSWRnZ9N13hkAEhLS8olmPo/C7o979x4AUKZMuSKfz9LkfXkWF4W34R79r6M1xG0tDF+pH1uLx4JtaaIhLiIiIvI28c4a4jk5OXz33Xekp6ezbdu2QkPMb968yQ8//MDHH3/MDz/8UGC9h4cHPj4+QmhnnvDJkJAQKleu/MpjVCpL9kVNpVKXeJ9vgsKOIywshJUrlwLw9deDqFrV85nHqtbA5d1neXQjGD19GXX6t+BuTjCDfvyGxNBYZKb6OH1Whb+j95Gcm0pCfBwH52wnKyEdqYEe5bvVQF7egDW3n9QPT8lJ4UrUTW7E+ZGSk8IfNzeiUCv446ZguPjfEVIVXFzKYGxsqnsJVylVXLggGPtNm7bkuuYuYTeCHv/dHKlUpjsOSwNLXX9afOP8WHzuD65cvST0X9f9jXzH78u1VVxK8pjv3AkABMV9iUSvSH0/fPiA3bt3ADBy5GgsLa0L3U6lUrF8+WIOHz4AQN0WjSjbsQo+mtuEpIbprtWQ1DDd/1eibubLub4R50dQShjWhpasvPEncpWC0aemoQHS5RnMvrSE5NxUglKEPpJzUpBJ9XTXbIxNCkjg0aMIFp37g2YVG+frX4NwPlWqJ1FNSmXh15VWvT0vvnF++e6Pug5euolSR0fnt+r6/K/eLyKvl+T0XACszY1eqR+tYNu75hGXq+TcTXqAqb4JFSzLl4r4r4iIiMib5J00xJVKJSNHjiQ4OJgtW7bg6Fgwd/Dhw4d89913NG7cmGnTphXaT8uWLVmxYgU+Pj46EbeQkBACAgIYOHBgqR6DyBPkcjnz5s1CLpdTr14DPvmk13Pbh169z6PLwUgkEiaO/4VGjZry7TjBCDczM6PxoPb89OH3ACw6vZy7//iQnZqJpY0Vs2f8xg3lHZJzU/OVYFrrv5m6Dl75DIuRZybq2gzf4wMUFIyKCYwgLS0Na2sbvLxqc8XvNo/8hHDaDz5on69tj0oFldDX+m/GKlCGRq2hWrUadKjVvkAbkXeDsLBQACpUqFjkbdauXYlaraZly9Y0alS4LoZGo2HJkt84duwwUqmU774bjmvjCrprdf61ZWQqshjomb8M2dPCZ3UdvDgZfo6f6w9HJpMy4uR45rSajFKp1m030Xsm7pZuBcqT7Xqwn3pl66JyTSQiIpymhnUK9K9FpVLpPj9L8f3pew0otCzamsfK69pKByIi/xWyc5XkyIV7ydq8ZDziSem5qNWalxZ+e13cTw4iXZ7Bvw8PkpybAkAV64p86NYGqaTwZ0pl6wqvcYQiIiIiJcM7qTgzbdo0Tp8+zeDBg8nIyODmzZu6f3K5nMTERL755hsMDQ358ssv8ff3161/+PChrp86derQvHlzJkyYwOHDhzl16hTff/89VapU4cMPP3yDR/jfYsuWvwgOfoiFhQU//jjuueWaQkKC8N0tCKH17fsVTZo0Z9OmDUTeDkWqJ2XKlBm0qd0agKioSHxWHyc7NZOyZcvRdEhH3N09XljCSYu1oZCeoFKpiLsTCUCjRk9U921NrAm5ch+ANm3aoaenh0G4BkW2HHt7hyKrPJ8+fRKAdu06FKm9yNtJXJygXO7k5Fyk9v7+t7l1yxeZTJ8BA757ZrtNmzbojPAxYybStWv3fNewBEHVPy/JuYWXDsv7+m2gVzB328rQslADW7s/R0fh2BIS4gu00W6nUDwJq39VrQOFQsg3L2qeuYjI+0LSY2+4uYk++q8oKmlhaoC+nhS1WkNyRm5JDK9U0Wg0HAs7TXJuCvpSGRIk3Et+yM34VxfRFREREXmbeCc94t7e3kDh5dFOnjxJZGSkLqTxq6++yre+YcOGbNq0Sff34sWLmT17NlOmTEGpVNK8eXMmTZqETPZOnpp3jrt3A9i5UxBE+/77nwutEa8NY1XKlZz6fS9qpQqLCrZkekqY9s8MLv0jGLJVP66rqzWsVVNPT0nFwtGKefMWs/PRQZ1BkZynpFNyTgqhaeEsuLYMKyMrQDAqypi7AODre530lFT0jGTsyDrCrnPHMNTTJz4+jqiAcGGM1vcZc24qEUfuAGBXuwzrA7bq+nqW9zA9PpXg4IdIpVKaN2/5qqdT5A2Sni6UwrOwKJq+xP79/wLQrt2HODoWLiJ5+bIPf/8tPK++//4nzKvZAU+u35ScFMLTI1FpVIw8MxGFWqH7f/S5qTia2GFlZKW7/pJzU1nrv5nU3FQy5JmMO/srGiAlN5X5j0v2ae+Rp6/ZlJwUTE2FvOGsLCG3Pm/JMW3ER06OEP5qaGj4whroL0ImEyoZaA1yEZH/Csnpwn30qt5wEJTTbSwNiU3KJjE1R+chf1sJTg3jUUYUMqmML6r2JCI9klMR57kUfY3qNpUxkr3d4xcREREpKu+ktXnq1Knnrnd1deXevXtF6svc3JxZs2Yxa9askhiaSDGQy+X8/vt81Go1H3zQnmbNWhTaTmvI/vHHUtLjUjAyN6Zl3w50dWzPsOlCCkHTD1uRU03wvuXkZPPLL+OJjY3B2dmFL8cNEUJbHz3x7LUt11JnQKz134z1YwP86dBYgAMH9gJQvl5lqjkI2gGDa/fnh7k/gAbsKzizsuciQkNDGBI6AIlUwvh+47G3t3/hOZCECt6JWrXqFtmAE3k7KY73Njs7m0uXhAnFzp27FtomLS1VV1e8W7dP6NChky6FwtrISnetag3yn+sPZ6L3TGY2m6j7/2luxPkx0LMvMpmUwcd+1oWmT/Seyej6wwut5a1FA6jVQqis1sAurH1mpiCqZmJSPLGvwvZraWkFQHJyUrH6EhF513mSH/7qhjiAnYWRYIi/A4Jt12J9AahjXxMrQ0ssDSzwSwggITuRWwl3aORU7w2PUERERKRkeKsMcSMjI7p3746Dg8ObHorIa2DHjr8JCwvF0tKK774b9ty2u87tZu/e3QCU+agKdzLuc/6X4WRmZmLqakl2PT1Sc1NZc3sTV7ac5tHDEIxMjfHq34wziRf598xhFGoFEiRo0LDefwsbpduQIMHK0AJTfZNC97vw5FJdTfDcqlJCUsMAWH55LfcvCN7vis1rALB3r6B87lLDrUhGOEDUXcGj3rRpsyK1F3l70dahVypVL2gJt275IpfLcXJyIdU8u9A2W7b8RUpKMuXKuVHno6as9d/MvaSHzL+2jNC0cCZ6zwQEb7aeRI+J3jPzeban+czDRN+ElNxUrA0tsTKywjfOj7X+m5FKBMN6R+A+ulf8SLfPug5e3IjzIyQ1jEvR1zHQ09ftI02eTnSoMMF5L1sQJEzOSSkw7tRUYZmFhUWRzlvefT+Ni0sZ/Pxu6vLvRUT+K2hD021eUahNi+07ItgWkxlLTFYcEiTUsvcEBI9+PYdaHA07RUDiPRo61hWF20RERN4LXpshnpmZSVpaWqF1wl1chBBgMzMzZs+e/bqGJPIGiYx8xLZtWwAYPHjEc73Bcrmcwxv3ANCxY2dM6zpx/+xtQsISMTY2YdmvK3Fycmai90ycQs14dCsEpBJ+nToHT88nL/dawwUgU5HF4tYzdeHpWgM7L3UdvDh6Rdivi6cbjao20q2zCpShzFFgbm+Jc/VyJCcncfLkMQAqtvAs0jlQKBQEBgpK27Vr1y3SNiJvLyYmwmROZmbGC9sGBgqTOLVr18E3/jb1HGvlW5+YmMChQ4JC+uDBI6jjWo9GrvV0nuu8wmbaa3igZ19GnpnI6MeecblawS/1h+frV7udTCblu2M/64SQ8qL1mucVNJzoPZOM3Ew0iYLXv2dDoRRkSiG56ElJiQDY2Ni+8Dy8iGrVanDkyEGuX7/K118PeuX+RETeFZLTStYjbmshlBF820uY+URfA8Ddsly+CfIKVuUxiDAgTZ7Oo4woypqXeVNDFBERESkxStUQz83NZdmyZezcuZOUlJRntrt7925pDkPkLUOj0fDHH8tQKBTUrVufVq3aPLf9rl3biYyMwMjcmG++Gcyl0CvsOfonANU61+VAwklIgLioGP7YeBoA21ZlkTvkL5OUqchCoVagJ9FDpVEx5txUspTZaNDolk30nomBVB+5WkFudCZ3zglq6ZJ6ZtyMu40GDepcFeFbhT7NGjpwM+E2/keuoVAosClnT8UqlYp0HsLCQlAoFJiZmVOmTNmXOJMibxNawzMxMeGFbcPDhUiI8uU9iKdgLfOjRw+hVCpwq+TOdf27XPcXnpEpj3O8Q1LDhJQKQ0tCUsOwMrRk4YmlRJ9+yBdbe5GZnoGeqT6/P1jEsL4jkMlkrLy1njuJ9xh5ZiJqjVB663qsHzdix6JBw/gLv1LByp2Q1DBdGT+tkZ+pyCI9PImsrEz0DGWsjfwb6yRr3Xi01HXw0onW2dkVLSrkeTRs2AQ9PT2Cgh4QEOBP9epFm+QSEXmX0WieiKqVWGj6Y494UloOanVBh8jbgEqt4nLMdQCq21TJt05fqk9l6wr4J94lIPGeaIiLiIi8F5SqIT516lT27NlDu3btqFevHpaWYg6sCPj4XOTatcvIZDKGDv0B3/jbz8xLjY+PY9s24UW/ZpdGmJmZcX7HcVQKFbVq1WHGgOlIJBLUajWHFu9ArVRRr14D0hvIdGG22hzz0eem6mbYMxVZzGs5lfnXlunyw0NSw3R5tWq1mh9/FMLl27Ztj5VnOd2Y7hy9jjpbSbly5Vg94g+WXVrPyUtC2PyIr0fSuPITZfXnERn5CAA3N7E+6vuAi4vwYvjoUfgL22q9xvb2DsQTWmD9+fNnAejR5VPae3YEYOWt9VgZWjLQsy/zry3TeasTMhKRX0ji8OED+SOOUnI4sm0fEf4hfDrqK4bUGpDPIz7k+GjqONRkQI2+BTzs2nsnr0c86qYQlt6u9YeMbDFat/xpXYWTkQfynY9XwcrKinbtOnD06CEWLJjNvHmLS8TAFxF5m8nIVqJQqpFIwMq0ZCoGWJoaoCeVoFRpSMuSv3iDN0BQaijp8gyM9Awpb1muwPpqNpXxT7xLcGooSrUKmVTvDYxSREREpOQoVUP8+PHj9OrVi+nTp5fmbkTeIeRyOatWLQfgk08+pUwZVw77n3lmyaRVvy8lNzcXO3dHElwymLFzDleuXEKiJ6HN5//TGbAT1k0kOzINqYEeyQ3VoFHy/enxqDRCvu66x31mKZ/0P+zUGABC054YTiPPTERfqk/K9Wge3buPoZEhX3/9Lf9GH6GugxcX7l/kwdnbwvbDhqGnJ+P+GT+ys7OpUKHSM2tBF4ZWZdvKyqrI24i8vbi5uQMQEhL83HY34vyIThWqOpyO8SYqJzGfVzk3M4fQUKEPI3cL3bo7iffQoGGt/2bisxJY678ZC6kp59YdJikoDgCTSlZYVnNAYqpHblwmyRciuXPnNit2rOB6m6bEZSUw0XsmEkCt0XA91o/ARCEy5PvT45FKpCjUCl2++fBTY5FKpGQ9SiP9njB5cK9MJCPPTMTa0LJQj3hwsJA/Xr68ewmcVfjmm++4efMG0dFRDBs2iF69etO4cTNcXMroROPkcjkJCfHExsYQHR1JdHQ08fFxJCcnkZGRgUKhQCqVYGxsgrW1NY6OzpQvX57Klavh5lb+ldXdRURKkuQMIXzc0tQAPb2SuTalUgk2FobEp+SQ8JbmifslCCk77pZu6EkKGtnOpo6YykzIVGYRmRGFm4UYSSYiIvJuU6qGuEQioXr16qW5C5F3jO3btxMVFYm1tTWffdbnuW2tM02J8BVe6if9MJVzuVe4sVPwFDZt34oOtdoDggJ12CnBWzfwq8G4Na7MxoBt+XLAB3r21eWI96jURbd+ovdM3C3dgCce8fDwMEb89q2w3TdDsLW1g2jByFjx22JUChXlq1Tggw8+4OHDMIK8hTzvfv2+LpZnW09PuP3E0kzvBxUrCikJERHhZGVl6XLGn6augxeO5vakxSTT3rUlfiZBOq/yjTg/DOIkHGALDg6OtKjYlBYIERbfnx6PuYEZAz2feLC3bPmLpKA4jIyMmDRpOrtzjjGz2USdsFvXch3ZsGE1krBchtQaoBvD0x7x+deWMfpxPrm2b+3/6enp/LBpMADt23fkx15jdf2MPjc1n0c8MzOT8PBQACpVyh9a+rKYm1swe/ZvzJgxheDgINatW8W6davQ09PD2NgElUpJdnbhgndFwcLCkoYNG9OyZRvq1q2vE90TEXlTlHR+uBZbCyPiU3LeSsE2jUaDX7zwW+phWb7QNhKJBHdLN/wT7xKUGioa4iIiIu88pWqIt23blosXL9K7d+/S3I3IO0J6ejobNmwAoH//b55pqGjZtGkDGo0G11ruVKlSlS2bthEaGoyZmRk2TVx17fbt201KSjLGtmZ06fIxfwb+88w+rQwtdTnjWrRhuFaGluTkZDN79jTkcjkOlcvQqVMXXZvLl32I9AtBKpVSqXNNJBIJf/21HpVCRfXqnjRs2LhY50MbuhsU9BC1Wi165d5xbG3tcHJyJiYmGn//WzRs+OzoCHNzQVE8NTUV8twGN+L8qJYqhGTa2dnl20atUWNl+CS9Jysri507hWv9hx9GU69eA05fu6xbr1ArKFtWeFHNzcwtMAYLQ3Pd52dNH+Xm5jJ9+iSio6PQtzRk0KCh+dY/vd3t27dQq9U4ObkIE1glhLOzC7///gcnThzl1KnjBAYGoFAoyMhI17UxMDDA0dEJZ2cXnJyccXBwwtbWFjMzcwwMDFCr1WRlZZGUlEBkZCQhIUHcu3eXtLRUTpw4yokTR7G2tqFz56507txNjFQReWMkl7BiuhY7S2Mg5a0sYRaVGUNiThL6Uhlu5q7PbFfBsrwuPL2Na3MxrUtEROSdpkQN8acF2YYOHcrIkSOZPHkyn332GS4uLoUaG+ILz3+Df/7ZQmpqKo5lnAl3fhKOqy2ppKWugxcWacb4+HgjlUqp9mFd1Go1gSduAvDJJ5+RaSIYLVcjb3B4xzYAzBo7sPjmH4SlPUKNmlFnJiFXC7lwI89MRKFWkJabTkR6pE6YLSU3lVPh54jNSkBfKmPE1GE8Cg3B2tqG+p+11F2v6SH+rF4i5IF3794LqYsZgYGBHD16GICBAwcX+4WgWrUaGBubkJiYwJUrPjRuLJYwe9epW7cBhw7t4/Jln+ca4k5OQqWIR48iwNk43zqtkFJMVjwjzzzWLNCo0aAhNC2c4acEcbWrl33IycnB2MaUq6Z3eOgfRfLjUHHfx5NN6y8L91Wuvpy1/ptJzknB2siKBk61qGpfEYVcyNWweqyTkBelXMEvv4zH398PExNTyn3qibm5eb42+o/Lm2m5ePE8APXrNyjS+SoOMpmMjh0707FjZ1QqFcnJSWRnZ6Onp4e5uTlmZubFvgeVSiUBAf5cuHCOc+dOk5ycxObNf7J922Y+6tKdTz/tI2qbiLx2kkq4hrgWbQmztzE03T9BEKSsYl2pwHMlL67mZdCX6pOpyCIuOwFHE1EzQkRE5N2lRF1wjRs3pkmTJrp/HTp0ICAggB07dtCrVy+aNWuWb732n8j7T2Jigq4O+PDB3/Ntrf4M9OzLQM++1HHw0n0e6NmXug5ebN8ulDZr2bI1Fg5WXLp0kfS4FMzMzOja9WNAMNgrJDqTm5mDg4MjzVu04uf6w7EwNEeChEWtZ2BlaEkdBy8Wt56JlaEltRw88bKvgb5Un5nNJmL1uL6ygZ4+md5xPLoVgkwmY8KEXzC2EFyVGo2GjVv/JSkpEVfXsvTr9zUatYa5c+ei0Who3bot1arVKPY5MTAw4KOPugGwZMlC4uPjS+BMi7xJtPXgfXy8UameXU/cw6MCAA8e3CuwzszMDABTlRGLW89kceuZLGkz+3HNe0uWfTCXOg5e2ElsAPCs4MnoBiMY6NkXd0s33T0F4JxkBYB75YoM9OyLtZEVAz37Us+pVoH95iU9PZ3zq49w65YvxsbGTJ8+GxNH8+duk5mZyYUL5wBo2fL5lRBeFT09Pezs7ClbthwuLmUwN7d4Kc+YTCbDy6s2Q4d+z6ZN2xk7djKVK1dFrlCye/cOBgzow+7d21EqlS/uTESkhEguJUPczuJxLfG0nEJLyb5J7ibdB6CGbdXntpNJ9XSK6eFpj0p9XCIiIiKlSYl6xIcNGyaGCYkUytatG8nNzcXLy4tGjZqgUj37JeD47VOcf/xCL6tjiW+cHyd37AXA1MuOWTd/14lEndtzCACzmnaEZUSw1n8zKbmpyKQyFlxbRqYii8j0KNb6byZbmU1yTgqhaeFYGJiz1n8zcpWClJwU4i+GE3FGeBGo3aMpl/DTeeqDLgYQdT8BiVRCpU/qsOnBDs6eOEnC7TBkhvqYNLfXqbMXly++6MfVq5cIDQ1h7NiRzJgxr0TUpkXeDF5edTAzMyM5OQk/v5vUqVOv0HY1atQEwP+OH5bpZYXrNieFkLRwsvSFOuSPIiMYf2Y6NmY2WBtZoUGDXKXQlS9T6guGfnR0FBqNBt/42yTnpLDg2jIeZUQjj8/i6jVB/CjLVc38a8tIyU3lRpwfelIJiVnJqJRqnQddG5USlxDD90sGkxQRh5mZOdOnz6FaterUfRCarxwgkE+s7d7pW2RnZ1G2bDnd8b1L6Ovr07r1B7Rq1YaLa6fw961YgoIesGbNSo4fP8rIkaOpUUPUPBEpXdRqDSklXLpMi5W5IVIJKJRqktJydR7yN022Moeg1FAAqttWJikn5bnty5m7EpwaSlh6BA2c6pT+AEVERERKiRI1xEeMGFGS3Ym8J0RFRXL0qGAwjxgx4vFkzbMN8YcX/EGjoX79Rvz04ff8dnwJwaFXkUqlLBgyDzs7e9b6b6ZX2S78GyLknE/pN4n98Sd0omxaAbbk3FTKmLvolo+uPzxfqaY1tzcReOImEacEI3zAgG/p1etzQBCtaowXe/f/BcDAbwbzyf8+JT4+nn3nNgnLvv6Wbs16vvS5MTIyZurUWYwb9xPR0VGMGjWUCROmUquW+HLxLiIYc205cGAvhw/vf6Yh7uZWHltbOxITE2glaUBjz6as9d9MHSMrvqnRh8s2J0hKSqSXRSfq1q0PwPBTY6liU1EnpCavkss9Q18ePYrg1KnjtG37oW4yaOXV9Rw9tBs0YFbJhrpV6uq2q+vghUwmpV21piQnZ6J8bIwP9OxLSkoKY5eOJCYiCmtrG2bNWqBTP+9R6YleghbtdsnJSXx7TkgR6dXr83da70AikVDX3Ykm30zj2LHDbNiwmtDQYH78cRh9+vRn2LDBb3qIIu8x6VlyVGoNelIJFiYlU7pMi55UgpW5IUlpucQkZb01hvj95CDUGjX2xrbYGdu+0BB3sxByyKMzYpGr5Bjolex5EhEREXldlKpY2/jx4+nduze1ahUeBunn58fff//N7NmzS3MYIm+YzZv/RKVSUb9+Q+rUqUNycma+9Xlf7DMzMzl+/AgA3bsLBm7IFSF8t0mT5vlqCPv53UStVuPo6szGiJ3EZSUw+txUspRZ+Mb5IUGCBg0BiYFM9J5JliKbG3F+JOekMP/aMpKzkwk7EkjSjSgAnFt5cNMlmJtnf8FZoSE4JY39W/9CqVRiWsWaOIs7/HHiF3x23UaRI8fT05OPP+7Bq0b4OTo68dtvS5g6dSIPHtxjwoSf+eab7+jevZcYYfIO8r//fcSBA3u5ePECiYkJhYqWSSQSWrRozZ49Ozlx4iiNGzfNt65hw8YcOXKQ3Ud3ccMgULfcN86Pid4zUagUZCqzcGnmQcipAH5bOIfN5//GyMMCeWoO8T7hKJJz0DORYdO2LDfjbvPj2UnkquQsuLYMG2Mr9A1keFnXoJad4L3Oyspi8uQxhIeHYWtrx9y5iyhT5tmiSVo0Gg1Lly4iIyODihUr8cEH7UvoTL4+FMFXUAZf1f2t/dxKBnX6tGLtqZtcuBfBpk1/4u9/izFjJmFlZfOmhivyHqPND7cyM0QqLfnnv425kc4Qr+H+dlzDAUnCb3x126JVWrAytMTSwIJUeRqPMqKeqbIuIiIi8rZTqm6Lf//9l/Dw8Geuf/ToEXv27CnNIYi8YUJCgjhz5iQAAwYMKrRNXkP85MljZGdnY+/sSJ069VAqlUT4CjWVO3TolG+7+/cFA6VcOU9G1x/O/JZTmd9yKlaGlrhblMPNoizuFuXoW+1TZjabSA27qtR18CJLkcXgKv2RHEkTjHAJ1OrWmPXj1jGz2UR6VOtB79ojCNsdhDxbSeXKVWnTrhKD203DJas2caHJSGV6/PLLL/lKHSmCrxR6fM9anhcbG1vmz/+dtm0/RK1Ws2bNSn77bQ5yufyF24q8XXh4VKRGjZqoVCr27Nn1zHYffvg/AHx8LhAfH5dvndaYvXXpGj1dP2KgZ1/KmbtSx8GLmc0m0rvqJ9Rx8GLpj0uo3bQBGrWGmMuhhP7tR9Sh+yiSc5CZGfD7vJUYWhgzwLMPC1vNoI6DFz/XH863tfrzY9NBulxxjVrN7NnTefjwAZaWVsyZs7BIRjgIIow+PheQyWT88MPoUi//dTUw7sWNnkNh96O+R0OM2w3DuN0wZB4NkHk00P3t2PVHJi7eyJgxEzExMcHX15dhwwZx925AsfcjIvIiSis/XIvN435jk7JKpf/iotFouJsoRKRVs6lc5O3KPfaKh4l54iIiIu8wbzR+MC5OqH8r8v7y559r0Wg0tGjRikqVnv8jq9FoOHx4PwAuDd0FD6DvdeSZOVhbW+tCdEEw3qOjBU92Fhb5+rE2tCQ5N5WU3FSSH+fE5iU2JJrhw7/lxo1rGBoa0bhfWyo2fyK25v3Ah3HjfiIrOQNTOwumTp2JnkTFw4f3WbNmJQCde3+Mu7t7vn7zetSKsvxpDA0N+emncQwePAKpVMrJk8eYMmUcmZmZL95Y5K1Cm95w8OA+0tJSC23j7u6Bl1dt1Go1u3YJYd3aSSlPTy8qVaqMUq7UCRfm9Y1pr2k9PT08Pq5J0wEf0qRJM8wdLKlevQY1Otaj8qAGVKhQMV/7Z5FwLpxr1y5jaGjItGmzcXUtWn1e5Z10Nm5cB8CQISN0tdRLk1c1xF90Pz5rfZs27VixYg0VKlQgKSmJsWNHcv78mZfej4hIYZS2IW5tIfQbk/x2GOLx2Qkk5iShJ9GjklWFIm/nZi48o8LTRUNcRETk3aXEQ9NPnDjByZMndX9v376dixcvFmiXnp7OxYsX8fT0LOkhiLwl+Pnd5MqVS0ilUvr3/+aF7QMDAwgNDUEq06NcXcGA8PYWRNsq162h87RphdF2ZQt52vqGxrrlN+L8SM5NJVORhUKtQIIE/4S7TPSeSVJGElf3nifc+z5owNbRjl9/mcPJTB9SHuekRUdHcXrFfrKTMnFwcKTuwFZYW9uQm61kxoxfUCoVNG7clBH9S0cPQSKR0K3bJ7i6lmXmzKncuuXLlCljmTlzPkZGxi/uQOStoGHDxnh4VCQ4+CHbt//NwIEF84pvxPlh0cgJ/GD/gT2UcfTULU/OSaFZtw94sOA++/b9S9u2HQotMQbCNaN21eOXXjN0OeC7HuwnXZ7BWv/NqDQqQlLDdCJvN+L8aOhSG4DrMbfIvJ/KuYPCM3vUqDFUqfJ81WIte/fuZu+f2wFh4qFTp67FPEvvHmXKuLJhwwbGjh2Pj483s2dPJzk5ma5du7/poYm8J5S+R1xwfrwtHvGAx97wClbuGMmKfsyu5i5IkZKSm0pqblppDU9ERESkVClxj3hQUBBHjhzhyJEjSCQSbt26pftb++/o0aPcvHmTBg0aMH369JIegshbgEqlYs2aFQB06tSlSB62Y8eEmtyutdwxMDFErVZz5YoPAPoeZrp2Wu+eiYkpAPIcwWNc93EZtB6VulDGzBkrQ0vcLMpSw7YqHdXNiNoQQPgFwQhv2/ZDVq/4C3f3CtR18EID3L9/j59+Gk52UiZOTi7Mm7cYU2tz5HI5dw+HEhsbg5OTCz/+OK7Uc7fr1WvA3LkLMTMzIyDgDvPmzXrrys2IPBuJRMKXXwqTT/v27SY2NqZAm7oOXkzoPoZateqgVqlRXUzTlfCzNrLis7afYVXVAZVKxbx5M1DmKvKlceT9nJybmm+5u6UbNkbWDPTsi4nMRFfWrEelLvm2O3vnPAsXzgEETYZWrT544bFpNBo2blzPH38sBeCTT3rx9deFp528q8g8nl0H3cTEhF9++ZUuXT5Go9GwcuUStm3b8hpHJ/I+k5Qu1Pi2KS2P+ON+E1JzUCjVpbKP4nBXmx9ejLB0AEM9A5xMHQDRKy4iIvLuItGU4tt91apVmT9/Pl26dCmtXby1qFRqkpJKJqRYJpNibW2qUzh+Fzh0aD9Lly7ExMSUdes2YWVlXehxXA2MQ88mhuMPT3Fu7gHUchXOvatgXNYCg2QpgWsvo2egR5UfmtLHUxBv23fvJA6J7bl9axuhly5gYOlGoz49SDK8i1yahkaqRI0ajVpD5oNkUi5HI48VZv9l5gbYtnPDvqoLBnr6ABhI9Xl0M4SoQw9QK1UY2BtTuUc19M0MSEFJyoEQkgMTkRnoMejzJrS3c0LPzBaZIhW5XKUzkJXBV5E6VECTmQSAxNQGqZkNyuCr+V7sZR4N0PdoWKTzGBDgz9ixP6JUKhg8eATdun1SMl+Qdixv6Nqyt39+TerXQUneo4Wh0WgYN+5H/Pxu0qxZSyZNmlZou5CQYIYPH4RarcajlxdWVRzIVGShL9UnPS2VR3/eQZWpwKSiFWW6V8VIZkimMgspUiQSCSqNUMZMK04olUhRa4TvUk+ip1tvZWgJCKkb7cu3oln5Onz0WTdSo5KoXr0Gc+cuRiYrPEhKG4WiUqlYvnwxhw8fAKBv36/44ov+pToxdTUwLl84+rXAOOpXdcjXpkFVBxo8tUyLVogtKS0XGwvDAvejxNQaTWay7u/n3a957xeFQsWWLX+xZYtQVaFvlw58Utn8mf083dfbzpu+R+Pj09/o/otCST8/lSo13y04g0YDQ7rVwLyEVdNBeC79vtMPuVLNrwMbUcbOtNB2JXVs95ODnrlOqVax6vafKNVKvqjSE3sT22L1fSXmBj7RV6lgWZ4f6w0t8nbv4jtVYbzpe1REROTVKVXV9MDAwNLsXuQtJTk5iT//XAtAv35fYWVl/cy2VwPjGPqxF0l+0ZyR78XZ2YUmdZshkUiwTTUikMvU8aqP2tCQug5erPXfjEKaxdCPPfnd5jxhV6XIU8MwehBA/3YdMDIyJiYmim1nthPuF4QqUwGAkZERVg2cWfnjcn69vpCZzSYCIJfLWbt2JZf2C9dqgwaNkLc2Zs4Hv6DRaOg/uT/JgYnoSSVMnTKbevWEF+vCfsizTyzHuN2wAsf4rOVFoXp1TwYOHMwffyzlr7/W0bJla6yt3w6lW5HnI5FIGDx4OMOHf4u39zmuXbtC/foFjTB3dw8++eRTdu78h6TjEfz68S/sjjr0pBTfVx3wXn2UrIcpZB+PY+Gvq/jl8lydl3ut/2b8E+6yuPVMXTkxbRj6zGYTdeX8tCX7hLFpmDJlCqlRSVhZWTN+/C/PNMJBMMRr2dZg3ryZnDt3GqlUyrBhP7yWcPSnjewVe/wZ+nHRU5r0PRqi79GQvXv8GdrO84X3Y1HvV4lEQt++X2FgYMCGDWvYvP8oJt8OpXv3XsXqR0RES3xKNhoN6OtJMTPWL5V9SCQSbCyMiEnKIjYp65mG+OsgKjMapVqJicwEO+Pi/66VMy+DT/RVHmVEo9aokUre3bKJIiIi/01K1RAX+e+h0WhYsWIJ6elpeHhUpEuXouVOnjhxFIB27TqQJZGQnJPCpUvXAUi2zkSTq2ai90xd7vdE75nIUeDavhIRR+5x/PgRXdmzvMhM9LGr60r9dk0JyLzP5oe7yFRkMf/aMqIjo4jYE0BGjBDW69SsPMpWZqQr0ph/ZSmhR++ScP0REomE7zs20Bnhr5suXT7m5MljPHhwj717d/HVV+9XGPD7jLt7Bbp2/YQ9e3aydOlCVq5cj4mJSYF2nh3qc+T8IVJikxk5ZThmH5dhLZCpyAJr+GzYV2xespZHN4OZMmU8mS2k+Cvu5rsnxpybSpYym5FnJqJUK9GgESauVApdbjgIeeE3//Um+NI9kEqo9UUz9sQchcfR83UdvPKFr4Ogqj5v3gzOnTuDTCZjzJiJtGjRunRP3jvCp59+gUqlYuPG9axevQILC0vatv3wTQ9L5B0kNjkbEMLHSzPKxNrcUGeIv0nCHyueu1m4vtTxOpjYYyDVJ1eVS2RGDGXNXUp6iCIiIiKlSqlOH1atWpVq1ao991/t2rXp0KEDU6ZMeW6pM5F3gxMnjnLhwlmkUimjRhWtlFFsbAy3bvkC6F5grY2sUMQILyXftvsGK0NLZjabiKddNd3nKjYVadi2OU26fE/Llq1xcnLB1taOKlWq4trIgwq9a9NlSl+adfuAYY0GUudxDrmJnjEVwh14uO4aGTGpWFhY0uybD9kwaQOzWkzCUmaO5Fw6wRfvAvDDDz/Tolq5UjpjL0YqlfLpp4IK94mjB1Cr391Quv8i/fsPwMHBkbi4WJ1uwtM0cq3Hwl+XYmRkRHxQNBKfTL6p0QdTfSG/u0+HL6jwaS309GX4+l4j5M9b2CdZ6O4Jfak+81pOpbZDTRa3nklth5qYyEwY6NmXyjYVcbd0o66DF9UtKpF4KJTgS/eQSCQ0/qI147r8pMtNH+jZt6ARrtFwY/dFnRE+ceK0/5QRXpQyZL179+WTTwRP+KJF8/D1vV7awxJ5D9EaxqUl1KZFm38e84YN8Yj0SADKmRetVOLTSCVSXMycAXiQ8uwQeBEREZG3lVL1iA8bNoyTJ0/y8OFDWrRogZubGwChoaFcuHCBypUr06hRI8LDw9m9ezcHDx5ky5YtVK1aNNVekbeLkJAgli//HYB+/b6mYsWC4isXbkVy+mo46sfKBNcC47h37RAAdi6V2eWTgL2bGwppDHFxsQD8GbOTXJmc70+P1+W7Dj81Fg1CJ7Kq+pgZmmDXTCid5GhiR2xWAlnKLNIUaaCAtf6bSc5JITw8jMitAfiGCirR9es3ZNSoMeyOEoTivEMu8eDvG2SEpiCRSrDrWJ6IMklszlAheaxI/bShouVZAk/PE34qKg0bNsHIyIjElDTCwkJxd/d45T5FXg/Gxsb89NM4xo37kSNHDlK/fkOaNWtZoF3ZsuUYPXoiv/46meCLdxmx6Hv06prjG+fH96fHoymrj9MXVYjb+xBFSi4X1hzh07NXcWxeHuxkLLi2jExFFmv9N5OSk0KW8slnDbDz7C6ObdlHREQ4enp6TJs2jVtGIYWOWVuBACDw1C1CL98DiYT6n7fE3ywYgzizZ94Hpc2zcsGfprDc8hV7/CmX40T4Hn9dX0/39/T9qgy++sK8bolEwjffDCYpKZEzZ04xc+YvzB31HUUvxiQikt8jXppYvwW1xHOVucRnJwKCAvrL4mrmTGhaOPeTg/igbIuSGp6IiIjIa6FUDXEHBweSk5M5fPgwZcvmV80OCwujX79+VKxYkbFjxxIaGspnn33GwoULWb16dWkOS6QUSE5OYtq0SeTm5lCnTn1dHeWnaV6rDDXKWenyqpfv9uPK3hsADOjbizZthNzPwMAANgG2tnYs/HAGE71nMrPZxHy5r2v9NwPky33V8vQ6uVzO2KVjGXZmIEqlEmNjEwYNGkLHjp2FkLgoYSJh3a9LyYhOwcjIiPHjf8HP5GGh/RdGYS/riuArJSLOZGBgQJUq1bh1y5eHD++Lhvg7hpdXbXr0+IydO/9h8eL5VKhQCScn5wLtmjZtzqBBQ1izZiVBx/0ZXGE48RWydXnfOECfbvMZvfBngrzvkn4/kfT7iZiWsaRlh1rUqNEaV9eymJqaMerkRNqaNsE/xI8zZ05yKmAXADY2tkyYMIXWrZtx68zKQsernXDy9j7PrsNCnfChQ0YUOdWkNCmqIf7s3PLSKZkpRAGNJT4+njt3bjNj7T/8XrMlFhaWpbI/kfeP1+YRtxBKmMU8NvzfBJGZ0WjQYGVoiZn+y+eplzETjPiHKSFinriIiMg7R6k+sdatW0efPn0KGOEAbm5u9OnTR2d0ly9fnt69e+Pr61uaQxIpBTIzM5gyZRyxsTE4O7swfvzkIoWkA8RFBBAXF4uZmTlNmz6ZzY6JiQbA2Vn4kbU2fPIym/dzUbh+/SpDhgwg8MRNlEolDRs2YdWqDfzvfx8hkUjQaDQo/NMYOXIo0dFRWNla89tvS2nYsHGx9lMYyuCrr9yHFu250EYKiLxbfPnlN1SpUo2MjAxmzPiF3NzcQtt98smntO4ipGj88ccyAk/ezFe6ztjYmNrdmtD+x+60bv0Benp6ZEamsn79an76aQSfffYxH33UjgeLLjN06EBWrFhCQMAdZDJ9unT5mD/+WE+tWrUBqOdY65njDQkJYsGCWQBUaFb9rTDCXwevcs8aGBgwefKvODk5ExMTxaxZ01CpVCU4OpH3mdhkwRDXGsqlhdbQT8uUk5WjLNV9PYtH6VEAuJq9Wl63g4kdBlIDspXZPMqIKomhiYiIiLw2StUjHhMT81yDTE9Pj+joaN3frq6uyOXy0hySSAmTnp7O5MljefjwARYWlvz661zMzS2KvH2I/zkAvOq3xNDwiRcgISEBADs7ewCsjKx06/J+1pI3lBbAN84PkxxDBm78msjboYDgCRw8eATNm7fUCcOkpqayZMlvXLx4HoD69RsxevT4UvVi5fWSP89jri27pMUw4QEAaXe9yT6RAbxb5ZD+68hkMiZM+IURI74jKOgBCxfOZezYSUilBedDxwwZh7OZI3//vYk7R66zVLIQo5Z2SGVPnqcWTtYMHDuCQYOGceHCWU77nCI0OJictCfhpvpGBliVscWxqiud23ehdZX8oZv1nGoVWr4nKSmRqVMnkpOTQ5069Sjf5c2EoT+PK3djqeJiRHJyEpmZGSgUCiQSCXp6MoyMDDE2NsHU1BRTUzP09YuuQK3OSCL7xHLd38rgq2SfWI46Iwk9c1uyclKQ1fgQafn6hW5vaWnJL7/MZNSoody65cv69asZNGjIKx+vyPtNrkJFUpowOVfaHnFDfT0sTA1Iy5QTm5yFu3PRf7NLikcZwrvfqxriQp64E6Fp4TxIDn7pfHMRERGRN0GpGuIVK1bk77//plu3btjZ2eVbFx8fz99//03FihV1yyIiIgq0E3l7iY+PZ8qUcYSGBmNubsGsWQsoU6boP4IhIUHEP7qLVCrFyDn/S21qqlDX19r62aXP8pI3d1sulxN48iZ3T15CpVAilUrp2vUT+vb9ClPTJyFw3t7nWbZsESkpychkMr7+ehAff9yzUMOoJMmbc/q8/FNt2SUteiEr4dp99MvXxbjd4FIdo0jp4ODgyMSJU5kw4WfOnTuNs7MLX301sEA7iURC//4DsLS05I9Vyzh8+AC2AQ407NumQFsbGxu6du1O166Cx1oul5OTk82s64uZ3XpKsdWI09PTmDRpDHFxsZQpU5bx439hW9jelzvgEkStVnPv3l2uXLmEv78fgffvo5TnFGlbIyMj0DPi9lFrTExMMTMzw9TUDHNzcywtrbCzs8fFxRV3dw+kZjb5yo5py5Bln1iOWYfhyE+vxKBiw+fWHy5f3p2ffhrHzJlT2b17O1WrVqdFi1avfA5E3l/iHoeJGxnoYWxQtIiyV8HBypi0TDnxKdmv3RDPUeYSny1MtruaF0zRKS5lzVx0eeJtyxXU3xARERF5WylVQ3zs2LEMGjSI9u3b065dO51YW1hYGCdOnECpVDJrlhD6mJuby+7du2nZUnyIvgvcv3+P6dMnkZiYgI2NLTNmzCt23vLWrZsAaN68JaYW+SdgMjIEj6+ZmTmAzsjOKxBVmFjU1auXWbVqGZGRQlmUGjVqMmzYD7i7P5FNyszM4I8/lulKprm5lWf06IlUqFCxQH/FFaR62out9aZpeRXhtqysTIBCy1+JvDt4edXm++9/YtGieWzbtgUbG1udEf003br1INNYzq5VW0gMi+P0on14yitQp0bNZxrYBgYGGBgYYGtuW2wjPDk5icmTxxESEoy1tTW//joHc3PzNybMBpCVlcXhwwc4cGAvMTEFQ08tLCwwMzPX1UFXKpXk5uaSlZVFdrYQHZCTkwPkEJqZ8tx9SYDyVgY0uHiHVtXccLY2Q52R9FLjbt68FT17fsbOndtYtGgeHh4VijVRKfLfIm9+eGmWLtNib2XMw8hU4lNef5545GNvuLWhFaavkB+upYy5mCcuIiLyblKqhnijRo34559/WLJkCcePH3/8MgSGhoY0adKEESNGUKNGDd2yCxculOZwREqI48ePsHTpQhQKBeXKuTF9+hwcHZ2K1UdgYAAXLpxFIpHQu3c/Dt/Kr96anS28HBgbC0bniwzx2NgYVq1ajo+PcA0Zmhnz/ZBRtGnTLt9Lza1bvvz22xzi4+OQSCT07Nmbvn2/wsDAoNBxFtcAedqLrfWm5eVlc1ATEuIBIcRe5N3mww//R0JCPJs2bWDlyiWYmJjQrl2HQtt+8eHntPZsydy5M7h/P5D582dRp049vv12WKHttVgXksLxPO7du8usWdOIi4vFysqaWbN+0+kSvAlDXKVScfDgPrZs+Yu0tFRAeB40bNiYOnXq4vtInx/7tX7mvavtIysrk/T0dDIyMsjMfPIvIyOT9PQ0UlNTiIuLJSIinPj4OEJS5IT43GW7z10aNmxCr8omLy3v9tVXgwgMvIu/vx+zZk1j0aLlzx2vyH8XbX54aYela7G3EvLQ34whLkyolTF7dW84gL2xLcYyI7KVOUSkR+JmUVCXSERERORtpFQNcYDq1avzxx9/oFarSUwUSlXY2tqWevivSMmTk5PDihW/c/z4EQAaNWrK6NHjMTU1K1Y/KpWK+Qt/A8C1UkMO38rSlRbSEh2fAgjCVM9DqVSye/d2tm7dRG5uDlKplI8/7kGND+vT1O2JQaxSqfj7701s3boRjUaDk5MLP/88jho1ahZr7MXl6XxTdUYS6rggMraMAkCTmUzmnl+RmtkAz8/5fvRI8PJrjSORd5vPP+9HWloqe/fuZtGieUilUj74oH2hbV1cyrBw4TJ27PibrVs34ut7naFDv6FNm3b06vU55cu7F9imqMZzRkYGf/+9iT17dqJWqylTxpVp02a/Ue9tYGAAv//+G6GhwQCUKeNK/eadkJtWQaZvQFA23I+PY+2h+7ptCitFpqenh7m5RZF1K5KSErm0aQ4+CVKuX7/KlSs+XLkCbXx86VfVBFVsEJrMJLLC7yExtUZqZvPce1ZPT49x4yYzbNgggoMfsmrVckaMGPWSZ0XkfSY2STCIbcxLV6hNi4O18Nsan1K09I6SJCZLKCtYxqx4E/jPQiqRUsHSHf/EuwSlhIiGuIiIyDtDqRviWqRSKfb29q9rdyIlTFhYCLNmTSM8PAypVEqfPl/Su3ffl5pQ2bZtK1ERwZiYmDLnl9EExQmqwkJpIYHR3oKS6/PCsB8+vM+iRfMJDn4IgKenF8OHj8TNLb9RkpmZwdy5M7h69TIAHTp04rvvhr/QyL8R55fPmHmesFrOw0tE6zkQcu0k2SaOGBkZ4ebmjoupdQGPeF4veWEe88LIzMzUheU+fXwi7yYSiYRvvx2GXC7n8OEDLFgwG4VCTocOnQttr6enR+/efWnV6gPWrVuFt/c5Tp06zqlTx6lZsxZt27ancePmWFpaFrh2CyM4OJidO3dz8OB+MjOFtIfWrT9g+PBRxZ5cKymysrL466+17N+/B41Gg4WFBf36DeB///uogPDnk3JkL6aoZQRtbGxpU6M8ndoNIzLyEZtXLeTMVV9OByVxMzqD8VN/wjH0DC7df3xujnhebG3tGD16ApMnj+XQoX3UqlWbli0L5vqL/LeJee0eceH3L+41lzBTqVXEZQn54Y4mjiXWr4elG/6JdwlOC+eDEutVREREpHQpdUM8NTWVAwcO8OjRI1JTU/OV4QHhZVSbJy7ydnLs2GFWrPid3NxcrK1tGDt2ErVq1Xmpvq5du8Zff20AYPDg4djY2PLPOf8C7bQlumxsCor3qVQqdu78h02bNqBSqTA3t2DQoCG0a9ehQG5dUlIikyaNISQkGAMDA3744edneh2f5mlj5mlhNbVazY0b1zh27AiXvc+QkaMo0IezvS0DjGvSvPmrCTXdu3cXAEdHJ6ysrF6pL5G3B6lUyvDho5BIpBw6tI/FixeQlpZGz569n5kn6uzswqRJ03jw4B7bt//NxYvnuX37Frdv30Ii+Q0Pj4qo7fX4sFZbbG3tH09macjMzCQ+Pp7Q0GACAvyJiorU9enmVp4BA74rkZJ9L4NGo+H8+TOsXr2CxEThJb1t2w8ZNGgolpavXsHgeaKIT6PVcShTxpXvW1ag6+ffsGjRPCIiwhk37ic61arI9x9rXtBLfurVa8Cnn37Otm1b+f3336hSpVqx03lE3m9eVw1xLQ6PDfGk9ByUKjUyvdcTpZiQk4RKo8JQzxArw5ITiXO3FDSIQlLDSqxPERERkdKmVA3x8+fP8/3335OdnY2ZmRkWFgUfuq9DlETk5bjo94hLJ7boQtHr1q3P6NETsLIqmpL504SHhzF27FjUahUffNC+QE7s1cA4GlR1ID4+TmeIu7mVz9cmJyeHBQtm4e0tlBtr1qwlw4ePLHRMqampjBv3ExERYVhbWzNt2mwqVaryUmPPi1Kp5MSJ4+zatZ3Q0FDdcmNjE8pZG2PjVo2srEzu3w8kOj6RmTOn0r//N3z+ed+X3uetW76A4PUXeb8QjPGRmJgYs3PnNtavX01cXCyDB494bvnHSpWqMHHiVOLj4zh58hjnz58lOPghQUEPIAhWXQp87n719fWpV68+HTp8RMOGjd9YutDt27f48881BATcAYSJhuHDR1G3buHlwbTPiXI596CQ7G3t+rwUR3DtaYO9WrUaLFmyiiU/9+F0UBIHfO/DkoUMHvz9c7+fp+nb92v8/G5x9+4d5s6dwfz5vxdre5H3l6wcBelZwkTu6zLELUwNMNCXIleoSUzNwdHm9YiAxmQKYelOJvYl+v7nZlEWqURKSm4qyTkpxdbIEBEREXkTlKohPnfuXOzt7Vm6dClVqry6ASTy+oiNjeH3eeNJS3yEVCqlb9+v+eyzL176Zf3RowjGj/+J1NRUqlatxogRPxb4Eda+QG/Z8hcANWvWwtzcXLderVYzf/4sLl48j0xPyvARP/Hhh/8r9MdcpVIxY8YUIiLCsLOzZ+7cRbi4lHmpsev2r9Fw5sxJ/vprvS5M3MRARpv2nWhqlkatfpOQn/7jSdh5djZ//72JHTv+ZuPGdXh4VKBRoyYvtW9f32sALx2JIPJ2I5FI+OabwdjY2LJmzUoOHNhLZOQjxo2b/MKa9vb2DvTu3ZfevfuSmJjAnTu32X1pD/YKa5KSEsnJeSJ8aGtrh6trWapXr07z5o1RKCRFDrEuSVQqFZcuXWT37u0EBAgRMYaGhvTq9Tk9e/bG0PDZxoj2OeGWe0+3TC6Xk5AQT0ZGBsfOPcDeqAbW1jZYWFggkUjQZL6c8rkWIyMjhjQuS7UOfVi5YikHDuwjMzOLn34aV2RjWiaTMXbsJIYOHcjdu3fYsuUv+vcf8ErjEnk/iH0cHm5paoCh/uuZnJFIJNhbGRMZn0l8SvZrM8RjH+eHO5o6vKBl8TDUM6CMqRMRGVGEpIWLhriIiMg7Qaka4mFhYYwZM0Y0wt8x7t69w7Rpk0hLTcHS0opx4yZTu3bdl+7v/v17TJ06nuTkZDw8PPik30+sP/JQt/5aYBwVXCxITMvh2zGzibh9DIlEQp8+X+br59Sp44IRLtPnl0+aUr9Dp2fuc8eOv/H398PY2ISZM+e/0Ai/EefHjTi/fMt84/xYdXIqAElRqTw8epeoxF0AWBrr062mM22d9TE2fgi5mWRt/h5yMwUhNj0D9OzK0a91A3ISwtl/2ps//1xDw4aN85Uwe7qcWWG5rImJCTx4IIhS1atXtPBakXeT7t174eDgxPz5s/D1vc733w9m4sSpz43kKHDt2oCiviGODhVxRCjJV9fBK1+ahUwmxczMlOTkzFI7lsKIjo7i+PEjHDt2WBeCLpPp8+GH/+OLL/pha1swFaUwVCoVcQnRLFu2iNu3bxEREZ4v7enCv8L/Job6uNlZUNFYQa2sSdRwdUA/NxUDrw6Fhqpryw9qPejquCBi1g4HwFSdQQ3FVT6v684/vqGcPn2CB49SGTj4RxpVf3aYed572tHRiREjRjF37gy2bdtC3br1xSgXEWIeh6W/LmNYi72lYIjHvUbl9Cce8ZLLD9fibukmGOKpYW+05KKIiIhIUSlVQ7x8+fI6EaCS5PDhw+zbt487d+6QlpaGm5sb/fr1o0ePHvm8ozt27GDt2rVERUXh7u7OqFGjaNMmv0hOeno6s2fP5sSJEygUClq0aMGkSZNwcCjZ2dp3BW/vc8ybNxO5XI6FrStLF/2Gvf3Ln4uzZ0+xaNE8cnNzqVChIitXrkAiMaRF3SdeuBV7/Onfrjw/jJ1CVLAQgv3VV4MKeH9PnjwGQO/efajhmPHMfaakpPDPP5sBGDr0e8qVc3vhOJ82VADW+m/mE5f/sX79Ks6dvAkIKu6C1+5TXFzsiPhnbgHdA+N2w/KJsH1a3ZtjFw0JDQ3h4cP7VKr0xAB42hgoLJf1woVzAFStWh0bG5sXHovIu02zZi1wcVnOr79OJjo6ih9/HMHAgd/RpUv3QiNSnnXtDvR8+VSIkiQnJ5uzZ09z/PgR7ty5rVtuYWHJ//7Xma5dPylySb6MjAwe+B7jy53THhvyT/QljIyMMDe3QJ6RilpmSHp6Glm5Cu5GJnIX2P/QG0NDI+q62fKh0wc0cFMV8GZryw9q79/sE8txyiOsWLnjCE7vD2BylwR+/fUXHj24yq0Lu2hU/dmCi0/f061bt+X69aucOHGU+fNnsWLF2jcmjifydqDND3eyeb6AaEnzRDn99RjiCrWC5NwUYd8mRZt0Kw7ulm6ci/QR88RFRETeGUrVEP/hhx+YPn06H330Ea6uJVcK588//6RMmTKMGzcOa2trLl68yOTJk4mJiWH4cMF7cfDgQSZPnszgwYNp3Lgxhw4dYvjw4WzZsoXatWvr+ho5ciQPHz5k6tSpGBoasnjxYgYNGsSuXbuQyV6bqPxbwcr1W9m3Yy2gwdHNE8p2Zod3HCDMYBdWHuhZyOVy1q9fxd69uwFBrGjy5GnY2NjovHBXA+O4GhjHTd+rHN88mZzMFJBI8WzagwSDmqzY46/bpyL4ClHBQs5rDVUYyuDgfGXB8pYQOn78MLm5uVSqVJm2bT98qXOhVCq5f/Y2A0/+TXZ2FhKJhDaVnejTph7Wpmmozq0j1kAPRdAVJKZP8tMlpgUNZVMjA+rUqcelSxe5fftWsfPUz507DUDLlq1f6lhE3j3c3T1YsmQVCxfOwcfHmz/+WMbly5cYNWr0K02MvU5iYqL5998dnDhxjKws4Z6XSCTUqVOPDh060bhxsyLV1L4aGMfFW2Ek+u7gdoAvOQqhooKZvpQa5Zyp6GCLq7UF6Xa1iDCuimfEDtLsvXDJCiAhPYuU7BzCQh/il6QiIT0bn/uR+EybhK2tHV27dqdTp66YmRXPEG7evCU//TSO+fNn8e+/O3F0dKZbt0+KvP2QId/j7+9HTEw0K1cu5eefxxdr/yLvF9rQdEfr1+wRf83K6Uk5KQAYy4wx1S/5Y3W3ECbdI9IjUaiV6Ev/W+9wIiIi7x6l+pS6dOkSNjY2dOrUiaZNm+Ls7FxoPt2kSZOK1e/KlSvzeQabNGlCSkoKGzZsYOjQoUilUpYsWULnzp0ZOXIkAI0bN+b+/fssX76cNWvWAODr68uFCxdYt24dzZs3B8Dd3Z1OnTpx7NgxOnV6dujz+8aePTvZt0M4L506dWHo0B9Ytf9ukcsD5SUkJIj582cREiLUAO7ZszdffTUQQ0N9AK4ExFK3sj0e9lJO7vmXiCunADCxsKNu2y+Z+O1HBQSX9D0aYmhpB2nhaGp2RpZ46Zllv65cuQRAhw6dX0oM5urVy6xZs4KIiHAAqlSpypAh31Mu4pTO4JfJpFhbmxLxz1xU6Ym6OuDPws3NnUuXLhITE12ssURHRxEQ4I9EIqFFi9bFPhaRdxczMzMmT/6VAwf2sHbtH/j6XuO7775m4MDv6NjxozcmrvYiUlKS2bhxPUePHkKtFiJfnJ1d6NixMx980B47u6KXsczJySbE7yTeu/4hPT0NAHNrZ74d8CX1og5h3f/3fO0VwVe4HiPlo949gB665RlbRmH6xUIePrzP8bUzOReWTmJiAhs2rGH79q306NGb7t17YmRkxNXAuEIk4PJzJSCWDz5oT0JCAhs2rGb16uW4uZUvcgqPiYkJP/88njFjRnLy5DGaNGlOs2YtinxeRN4v3lhoutXrrSWekJ0IgJ1R6UR22RnbYKZvSoYik4j0SDwsXxwNJyIiIvImKVVDfPPmzbrPZ86cKbSNRCIptiFeWHhutWrV2L59O1lZWSQnJxMaGsro0aPztenUqRPz5s1DLpdjYGDAuXPnsLCwoFmzZro2Hh4eVKtWjXPnzv1nDPG9e3ezapXgXe7V63O+/nrQSxmwSqWSHTv+YevWjSiVCiwsLPnpp3EFSiL5+D8i2O8kW7du0nmbu3XrQa5NY2T6gkhTYcrHrq5liYgIJyjoIVWtnj2O8HAhLK1aterFGn9YWAhr1/7BtWtXADA1N2PQN0No374jUqkUhX56oaHjmswkZF4dUAZfLZDzrcXMTBCdy8rKKtaYjh07DECdOvWKZcCIvB9IJBK6dOlOnTr1+O23uQQGBrB06SKOHTvM0KEjqVy58OiKN5UfefbsKZYtW0xGRrowjrr1+eSTT6lTp16xJg6ysrI4eHAvu3fvICUlGYCyZcvRr9/X+CXY0K6dFxlbjhTYThl8tdD+JKY2SCQSKlWqgrOXLQN/Xcu5c6fZseNvwsPD2LhxHYcP72fo0B+4EWOB52MHeWF6Ds1ruXD6ajh1K9vTq1dvwsNDOHnyOHPm/Mry5WuKnOdeo0ZNevbszfbtW1my5Ddq1PB86YoUIu8uGo2GuOQnhnh6pvy17dveyggQQtM1Gk2pV7HRGeLGpWOISyQS3C3LcTvhLmFpEaIhLiIi8tZTqoZ4YODzy+eUJNevX8fR0REzMzOuX78OCN7tvFSoUAGFQkFERAQVKlQgODgYd3f3Aj8+Hh4eBAcHv7axv0mOHz/CH38sBaB377707z+gyD/GVwOfhKw/fHifRYvmExwsiLA1atSUH374CWvrJz+4Go2GM2fOcHr7XDJT4wFwdauIe71PUNmXJSwyleT0VFbs8ScoMjVfaDoIKuo+Pt5cv36Fzm09njkuuTwXACOjouXbxcfHsXHlfE5dvoFarUamp0fXbj344ot++XI39T0aogy+iiL4Clm3j5GWlYwqKx1UcnJOrwGVAmXoDXJOrQK1ivS/hiGRGaDJTCbr0eNIkNj7OvEmrTBUXpTBV3Uh9yq1mmOHTwDQsWPnIh2LyPuJq2s5FixYwoEDe/jrr/XcuxfIDz8Mpm3b9vTv/w0ODvmFj163Ia7RaFi/fhU7d24DoEKFSgwePAJPz5q6NoUJEUL+SbekpCT27/+XAwf26ox5JycX+vTpT/PylmhCr2OVlkr2ifNoMpPJPrGctPhYNJlJZErNMVWnU0Oawe2/Zun6N7dzxC4zSXdfaTKTUZ1bQzOgSc/6+CQ1YePeI8THxzFt2kTqlXcm3fPJT6P2Hn1iiJfh9FUhWkYikTBixE+EhAQTHBzE5GnTWPR9H9Sh1/Nt/6w0mj59vuTq1UuEhASzbNliJk2a9pLfgMi7SlqWguxcFRLAwcrotRridpbGSIBchYr0LAUWpi9OFXkVErIFEUTbUjLEAcqau3I74S4R6ZGltg8RERGRkuK9SKC5du0ahw4dYuzYsYBQPxooULdc+7d2fVpaWr7yWFosLS3x9/cvsLy4yGQlEzqqpyfN939JcfXqZRYvXgBAjx69GDBgYD4jvHF1x+cew/V7caiUcu5c2suOHdtQq1WYm5tTqUF3fh2X36C/dy+QtWv/4OZNQYzN2tqG8rX+x5zxA3WesisBsVy5G8vwHl4s2+XH8B75jYlmzZqzevUK/PxukdOnK+bPGJuVlRUxMTEkJMRRrlzZZ44/MTGRbdu2cuDAPhQK4eWnefOWfF7FhMq9Cw97l0gkGFdujFm1plhYGBN//QwZ57dg9eViMo4uw6yDoFHw9OcMpQIIxt6zGcaVhQgBWeXGUDl/tEDe7c6ePU1S6m6srKxo1qx5iV1PeSmta+tdoTTOaWkhk0np0aMXrVt/wJo1Kzl58jgnTx7n7NnTdO7chd69+2JnVzRvbEl+7xqNhhUrlrJnj6AH0aNRVQZOXV5AYyMn5Jru2s/L9XtxOJlmsmvXDk6dEkQzQYiA6d27D23btn/SV9WmKAJiMa/uSNqu6Zh3HEHeJ3j6kaVcCYil8ZejMDIy0qVCyR9ewaCiYPw++mMorh1H6LbpCLTu8TWbNv3Jzp3buB4azYQ0c2b06F5A20R7viQSie7akcmMmTx5GkOGDCTkgT9H7jyiR48n/ee9p59GJjNizJjxDB8+GG/vc/j4nKdFi1bPO90i7xlaoTZbSyP0Za+3rry+TIq1hSFJabnEpWSXqiGu0Wh0hridcdHEGV+GcuZChRTREBcREXkXeC2G+M2bN7l8+TKJiYl88cUXlC9fnuzsbIKDgylfvjympqYv3XdMTAyjRo2iUaNG9O/fvwRH/WpIpRKsrV/+uArDwqLkFFUfPHjAjBlTUatV1G/SmrFjRxcIHe3Q7NleZ4DUhFCundhERorgGa/doBlzZ0xhzcFgbGwET3JkZCTTZ/3G9cuC8rdUT4ZxmUa07NSToKgs1hwUoibsLI1ISM0hKCqNmZuucy8smVX7A/Ltr3ktFypXrsz9+/cJSFXy8TPOb7169Th48CDnzp2kbduWBdaHhoby999/s3//fuRywQD3LGvPj9Pm4uXlRezuBbrvLuPuRTLvXtRtqwi6QtbeGSgSo0jWN0Sib4AmMwn56ZWo44KQn16JnrktBgZ6uj7kBnpERgYBUKVKxedeF/I82x04sAeAnj174uhYuiGrJXltvSuUxj36OrC2NmXu3NkEBPRjyZIlXLt2jb17/+Xgwf106dKFL7/8ssjimCXxvW/bto09e3YjkUiYPHkyjZT3uReVQfNa+UsG5r22QXgxv379OpcOrWTvH0/u9Zo1a9K3b19at26tM6Qz7l7ErFpT4MlzSW5jT1rgec4f3Yd/eDxBMclEJaaSq9LA4fNIJRLsLE2pXMGDGjYymlY9j525CabqDOSnV+r2F2FclRPxjiQYNaDlJy6c27eayKR0vhvyLc26DqNKlWpULW9DqM8pHplUBeByQCyyPPWem9dyYdSoUcyePZsNG9bSsWN73Xfw9HEDXLgVqTs/DRrU4csvv2T9+vUsX/47rVs3LzCJLPL+Ep0oCBm+7vxwLfaWxiSl5RKfkk3FMpaltp8sZRY5qhwkSLA1Kr3fs7KPDfHozFjkKjkGeqXr5RcRERF5FUrVEJfL5fz444+cPHlSl3/Upk0bypcvj1QqZcCAAXz11VcMGTLkpfpPS0tj0KBBWFlZsXTpUp0haWkp/Jikp6djb2+fr33e9RYWFsTExBToNzU1VdfmZVGrNaSlFS8f+Fno6UmxsDAmLS0blUr94g1eQEpKCiNHjiIrK4vatevg7NmN1NSiq6bK5bls2LCOMzu3AxoMTSyYMHYsN6ItkEqNUMiVhIREsnXrJvbv34NSKagct2v3IT/8MIJ1h8IY9klNlu3y47su+fO4l+0S6iE3rOZQYB1A48bNuH//PidOnKRVq/aFjq9Dh484ePAgBw8exM7OkRYtWpGTk8Pdu3c4f/4cfn43dW2rV/ekX7+vqJJwCfOyFUhOzkQuVz2pr+xUCwOnWnmOXYVJh+FkHluG62djebRtLpLcXAzaDEF+dBkGbYaQcXQZgK6PzCw5d+7cAaBsWY/n1m7W7vvu3QBu3ryJTCajbduOpVbvuaSvraLyNhjAJXmPvgmcnd2YPfs3bty4zubNf3L7th///vsve/bsoUmTZvTq9Rk1atQsNNWkpL730NAQFi9eDMCgQYNp0aItGUfvcvpqODXKWeVrm/e+8vf3Y/36Ndy+LdzvUqmURhVd6D1sPNWrC1JpaWlPBKQybp1H8fg+TE5O5uzZU5zcc5x7UdsKlA/UotZoiEvJIO66HxeA1Sd8adSoCe2MpLRq8+Q3p8Ljf8t2+TG8X1cMTWwIOraAhzHJXD6wDKViMD1adsPtbhSWnXpiYWHMjHWXCjyfqpftwJqNu0iIvM/MmbOZOXMuEokk//PkMU+fnx49Puf48RNERITz22+LGDny56Kc/lLlbbhH/wtEJwrPoDJ2b+Z821sbcy8ihfhSVk5PzBa0HiwNLZCVopq5laElFgbmpMnTeZQRLeaJi4iIvNWUqiH++++/c+bMGaZOnUqjRo3o2LGjbp2hoSEdO3bk5MmTL2WI5+Tk8N1335Gens62bdvyhZh7eAgek+DgYN1n7d/6+vqULVtW187Hx6eASElISAiVK1cu9pieRqksWcNGpVK/cp8qlYoZM6YSGxuDi0sZJkyYyqaT4UXq92pgHLuPXeHuhc3kpscCYOxUC+uKHVh3To5aHc/k1Re4c/UEB9f5oFQIL9IVKnsxcsQw0tTW/HX8EQ8iUliy049rgXEs2emXbx825oYkpQs53oWNqXHj5mzcuIEbN66TkZGFkZFRgTaVKlWlS71K7L/+gL/+Ws9ff63Pt14ikdDAsxpdqtlT3dUOTeghlHFBpPz1AyDkkKbunKZTQs+b06nRaFAq1Wjf/TUakJhao1Sq0XOv/3idBplHA934AxRW5ObmYmNji4tL2eeea20f//yzFRBqDltZ2Zb4tfQ0JXFtvYu8D8fs5VWHefPq4O/vx/btW7l69TIXL17g4sULVKxYiZ49e9O8eatCK1a8yveu0WhYMm86CoWCeh5OdDCLI/3IUpTBV2lmmELqzn/RZCYhMbVBamaDMvgqoTvmser4Da6FCNUDpHoyjBxr07hVZzpqLnIiQE2qOqaAUKNcqeLMmdMcP36Ua9cu69TYAVzKemBiWwFrR3fayO7gm1kW/QoNUORmUzFqD5cV5Qh5cJPkmGAuXbrIJWBd+Eg8m/XEyMRCp0Oh1gjXg4GxBTNHj2LWxn+5dcuXS4f+ILRTLWw1Gt2khfY5oC3BqEXi0g5JdBBXr15m0qJ/cCxXgw9sK1P1qXOs3ZcWqVTGiBE/MmbMSA4dOkD79v+jSpVqL/W9iLxbRCUIkzTOtm/II271emqJJ+cKKYHWhlaluh8QvOJ3EgNF5XQREZG3nlI1xA8ePEjv3r357LPPSE5OLrC+QoUKHDlSUPn2RSiVSkaOHElwcDBbtmzB0TG/UFHZsmUpX748R44coV27drrlhw4dokmTJrratS1btmTFihX4+PjQtKkQ9hgSEkJAQAADBw4s9rjeBf76ax23bvlibGzMlCkzMDcveghkUthVAk4uRS6XY2VlTaVGvXAqL4gxDe5anYnzN/Dg1BHSExMAQbDp668HUa+eIHIkk0np0MyDX9f6MLibJyv2+BdaHm3FHiE/XyvilFfM6VKQEgcHR+LiYvH396N+/YLiTwBftfKiUqtPOHRoPyGhIZgYG1G+vAd16zagVas2BWoxZ59YriuHlvfzi1BnJOkMdq2xrs5IyidKdfbaTUDw5itDCqqu50XfoyFhYaH4+FwAoGfPz4o0DhERT08vPD29iIgIZ/fu7Zw6dZyHDx8wZ86vODmt44sv+tG27YclVvbs2rUr3H4QjIGBASOmLMLE0QkQ7p/zGa2o+dS9fXzZOFZtOUNmZiZSqZQOHTrxxRf92X4hlqEfe5J94g412+XfJjLyEYcO7efE4QOkZe/WLa9cuSqtW7elefNWWKWH6O6p7BPLuZvRTPdcyT5xk67thqEIvsKJRwbcvXaUE8ePEB3sS2ZCEN16D6NB1fz7TErLwaJ6C6ZOrc+4cT9x795dpk2bxJyP62KOECYPwsRtXjFJLfple7B793bCbh7il+G9kEqLVgKyZs1atG37ISdPHmP58t9ZvHjFW1uiTqTk0Iamu7whj7iDtpZ4KRviKbkpAFgblV74u5Zyjw3x8PRHpb4vERERkVehVA3xxMREqlQpvLwOgJ6eHjk5xa9fOW3aNE6fPs24cePIyMjg5s2bunXVq1cXXgxHjODnn3+mXLlyNGrUiEOHDuHn55evpFqdOnVo3rw5EyZMYOzYsRgaGrJo0SKqVKnChx9+WOxxve1cvXqZHTv+BqB6s8856JsBvv5cC4zTGb9Q8OVSLpezcuUSjhw5CEDFqrXxaNCL4DglsQ8TyEwM5/g/c8hJFcRRZEZW1GzalW6d/0e96k4FxtGwWv6Jk6e9StcC46jgYsE/Jx9wNTCOoMhU3biu3YunVq06HD9+BD+/mzpD/GkFclXINZp7SGjeuToPI8tQsYxlPs92cdD2rc5IQp0aQ8aWUWgykwlb8i2q9ETQN9QppEtMbVDHBelUktOz5XhfvwkIofnK4DMvHMPWrRvRaDQ0a9YCNzf357YVEXmasmXL8cMPP/P114PYv38P+/btJiYmioUL57Jv325GjRpTIhE/27cLURsfffQx4clSdvkIz5AWqalci37yTNGo1STeP4bP2cuAYEQP69GBsvJIuLmdFqmpZJ84q1MX12g0+AY+5IBfBDcfJen2Z21qROvqbrSp4YarrQUyj3Lo29uTfWu77p6SmFrTInIf2SfOAk8Uy1WxD3FV2tPay5L6iopsC4fg4IdsWj2Hm3eDKV+9ue45GBmfwU/LvWloEsGn1exZFvaAR48iWLsvic4JWdgro/nA2BVFcFah93Lv3n04cuQgsdHh+PhcwMC2ar7nG/DMZ+6AAd/h4+PNgwf3OHnyGO3bd3y6e5H3iOxcJYlpQgSYs+0bCk1/XR7xnNfpERf0GUTBNhERkbedUjXEnZ2dn1sG7MaNG5QrV67Y/Xp7ewMwZ86cAutOnjyJq6srH330EdnZ2axZs4bVq1fj7u7OsmXLqFOnTr72ixcvZvbs2UyZMgWlUknz5s2ZNGlSAcXfd53k5CR++004X126fMzQof10657lmQZIS0tl+vTJ3LlzG4lEQr9+A/jssy+QSqUs/ucyAZf2kHjvEgAyAyP69+1PjKQqI3oK5zmvV7uJp2CUN6zuiI//k9z8pw1/7Xjy/q/tC6BGDU+OHz9CYGBAnn00zPdSrPVqK4KvcD7DpICnrTjoezQs8MKdc3IF1rVaEH90A2Z9FgrLfLZi1OQLMraM0nnUd2/5C7lSjbu9FVWrVicn8sxz9xUSEsz580KbL754e8QHRd49LCws6dPnS3r0+Iz9+/9l27YtPHz4gJEjhzJq1Gg+/fSTl+47JCQIf38/9PT06N69J3Z29rp7OPvEWepbOjD0Y09UKhXz5s3E59xpQCiR2LfvV6jDrqPv8TEA+zZeY2K7+mQdX8Zti3ps3ryBBw/uA0IaSf36DWnrokfzQdMfb/fsEmhGTb5g3wOhP2EswnNA56Vv54nBw2ksWjSeZXMncfziVW6f30br2mWgqjtDP/bkwD+7+Kh3D12/vdOzWHX6BmfCM+kwpAP26dco02bIM0P6zc0t6Nq1O//8s5ndu7fz22/LCnjNZ2y8Vugz18bGhs8+68OGDavZuHE9LVu2wdDQ8CW+IZF3gZjHiukWpgaYGeu/kTFoa4mnZMhRKFWlptye8jg03cqwdDzi95ODdJ+VakGXJjojloDEewVy0vX0JDS2roWIiIjIm6ZUrc2PPvqIDRs28OGHH1K+fHkAXS729u3bOXz4MD/99FOx+z116lSR2vXq1YtevXo9t425uTmzZs1i1qxZz233LqPRaPj9999ITU2hfHkPBg4sWk5+bGwMEyeOITIyAhMTU8aPn6LzQHt7n+PCroVkZgg/ru3bd0Ti1IJevZrm8/7kNcQbVrPjxo0bnD17gaNnLiPPTODwulTUajXW1jZUrVqNDz/8HxqNWYGx5O2zYkUhyiIkJAiNRpMvdP1pBC/5i8sBaWsEP/35eeRVU9ftq8kXur/T0lL5998dAHRvWKVI9dk3bVqPRqOhefNWeHhULNI4RESeh5GREb16fU779h1ZtGgeV65cYv782VhamtKwYfOX6vP4cSGlqHHjZtjZ2edbJ/NoAH7Cc2fx4vmcO3camUzGqP6f8kGvbwCQBz9J0dAAERHhLNt5Hr/wXQAYGhrhUqkRk0YNwsWlDNknlqOnp5dvu7zkfQYULt32BH2ZHgYGBgxuXI7gTEuCbp1g+fLFNPzfUMATt9x7+fptYW9Nly7d2bt3F6tWLWdJ72c/H7Rj6NKlO9u2/01AwB1CQoJwd6+Qr13yYx2Mwvj44x4cOLCH+Pg4Dh7cyyeffPqCIxJ5V9Hmh7u8ofxwADNjfYwM9MiRq0hIzSkVz7xSrSJNng68ntB0M31TjGVGZCtzSMhOwsm08PcDERERkTdNqRrigwcP5tatW/Tt2xcPDw8kEgmzZ88mNTWVmJgYWrVqxVdffVWaQxBBeGm+fPkiMpk+Y8ZM1OXIP4/D526yZfVMEhMTcHBw5NOvRlO/fj2ysrJYsWIxJ08eB6BcOTfK1vmEHwd31Xmu8+Z1J6Vmc+9eIH7nt/HZP7d1NdyfJjExAW/v83h7n8fEvgoPwj8lLRuG/HaGXEV+z9PCPWGAhIyMDH5ZcxYDo/yG+9XAOIwiUzm/x58WqakoE65w4J97hBs9SZP4wDaGqi3aURjPCh1XBF8BQO53FE1mMmqpBE1mEpl7fkWTmYQmK4WMf8aiyUwmfd0g1vvGk5mZiZuFPg31o0lfNwhUCtL/GobU0gmpmU2+cHl//9v4+HgjlUrp33/AC74hEZHiYWVlzS+/zGTlyiUcOLCX6dOns3r1BhwcnIvVj1qt5ty5M4CQbgH5DWF9j4bg58+uXds4ceIoUqmUCRN+oUmTJ0Z/Wnwsxo/7Sg7xZtjOgygUCvT19ena9RN69uzN1jOPcHERShElpeVSBlAlhhO5eyE2Fk+8xMrgq7SVRJB9oixJablUUrmg+D979x0eRdUFcPi3NX3TCwkBklBCl95R6VIEBQUbNrCABcTesAB+FgQLWFEBsSEKSG/SWygCAQKkF9I3PZvt3x+T3SQQIEAa4b7Pw0OyO3vnziY7mTP33nNiLWgPrMFapCXxu1cJtKZxl+UYSV8raSkv5sTCl3CXFXFPoA+/aVsQn3SOiC2LecfRl7v1Wo58PwuVSs5tulyC5Rn4ObixRSUnPj6OrVsL6J+bjcxFKsFk+wzbltjYbho6eLWgJCuKud/8SpueY4Cy2T8Go/mS769areaBByYyf/4nLF/+G8OH31lpUkrhxne+dH14ozpaHw7S4IivhxNJGYVk5upqJBDP0+djxYparsJZWfM3HWQyGX5OPiQUJJOpyxKBuCAI9VaNBuJqtZrvv/+e1atXs3HjRiwWCwaDgVatWjFt2jRGjx5dpVFC4dplZmbyzTfSeuWJEx8lJOTytcEBkpMT+eazmeiL83H1DGDu3M/5Y3c68fFxzJo1k5SUJORyOffccx/33z+R79edvaiNAydTKTh/jMPrf2LPb+ftj7u7u9OlSzdOZzrz0qNDWXc4m4lDw8nISGPhkr+Ji9xJceYZ3LI2IfcfwafP9GPhykhiUvIIC3InJiWPuVP78ODRr8nOzuLB2xqx5ZSxwr67hfuhS3an/aB2pWtF02juo8Np0Fj7NtLjZYG46RIjbeWZYiNwGjQVU2wEstJa4cWJZ3AZ8xYAhcum4zrhQwqXTSep82Q2rXgGgMeG9kLdxM8+RbayRHBWq5Xvv5dqGw8ZcgfBwVe/ZEMQrkQul/P008+RnJzEf/8dYdGib3nttZlX1UZMzDmys7NwdHSkc2dpdPjCWSm5GQmsXfUdAE8//WyFIBzAWqSluLiYjz+ezan90sySTs38eW7mPAICbDcGyhItaQtKCAIwGVjlMIQp5ZaaFC6bTk6BE60GTWXVykhiivMYH9odTWwE+PoTUPq5y0rJo/3Dr7P/63fpOWUmJxbP4aT7ncx/sgXPPDOZ5OQkAi0nkLl6sd/9TvuymH55q2n/8OuMSp7Kb3tPsfG8lZFz3r5oavqFS2zOx/bm8OYodJlRF01DN1whU/3AgUP57bdlpKWlsnHjOkaPvvZlBEL9lZolTU0PrKP14TZlgfjV5+ypCluiNg8H91q75vOxB+LZtbI/QRCEa1HjC6FlMhmjR49m9OjRNb0r4QJWq5WFC+dTXFxEq1atLznFsfzFY0ZGOq+99iL64nxCQkJp0W8yPj6+pMVvYfriJZSUlODj48srr7xFu3btK1yAdwv3Y19kCn+vWsXpQ5tYW5qcRSZX4uATjibwFhy9QkhSq8DLyF8RxWgL5Czfk063cH8atR1OYGgnDqz9kkOHDuDVOpAZC+QU6owYTRYORWUgk8Gz83dSaJTW0y1bf5QknZ99NL5JyRk6qRPwkBeh27IAU2wEvnJXdMnpsGXBdSVsM6dH2xM/yV29KUqPBmTSSDeA2UjhsukU5+fy0czpWK1WBg4cQvsmV85Mv337Vs6cOY2joyMPPSRGw4WaI5fLmTLlGZ544jF27drBk09m4+XlXeXXHzlyCIBbbulc6ewak8nEmf2/Y7FY6N//dkaMGF0hmaI2Xw+6PJ6bNIGUnAIUchl9u99K0+CWfLwiFi+3FDw1jhyKymDNbytoqj+DQpdLyl+foinKoZ9pNSl/bUJbUEKCQys6FxkxGC3MWLDHfq6YteQQo615JDi0wj8qgzaFWnyN6ei2LKCxLAPdlgU005+FvNWY1pt5pKWKWcnwz+q/GDE0kM46IycWr6Zdvh61o56FKyPxbtwDufwMUSnZJCcnExAQCEDUri2Vzq7xbRyOQqHg/PkUPlm6E2c3L/tzRpOl0mRttvOpUqlk7NjxLFgwn5Ur/2TkyNGVlp8Tbmzn6zhjuo2PuzTjoqYSttlLlzl61Ej7lfF1ls5pmcVZtbZPQRCEq9WwMpIJFezdu4v9+/eiUCiYNu2lS17I2QLpgoIC3nzzFbKyMnH18GfOnLn8sj2ZNWtWEbHxO8BKx46deO21mbi7S+u8IqIymDKmHRaLhYLzx1i8eBEZGVKNcU9PT5R+Xfji3WdY9m8Sz43rgKenCzk5RTz/2S7emNi1QqK437aeIywohPvvf4jFixdRfP4gcz99rtIR8VfTVnLsWCq3d/TlVK5fuRGniiNPhcumk2mS1rC2r2JJssqoQrvbR8R1WxbgNuxZDP9+hcFgxnHgFPu+XO7/lHnTJpJWYMDHzYknn3wGDiy5bNs6nY5Fi74B4N57H8DLy+uy2wvC9QoJCaNt27acPHmSgwf3M2zYiCq/NjLyOCAF4pXZsGENGalJaDTuTJ36PDKZrELCQ/fCQl6YNI6UPD3u7h60H/A4rz4xEoD7yrWzcGUkI8cMsH89ZUw7CpdNZ5eLNFodBLQHCpftRm2RM/epPvZzxZsTu6LbcoD2pbNgdMleZOYpCBg0leTod2k8aCr7v36XI+530n5MO3pbrYSdHEtMeg6rUp2h+1j7iHg31x2lI/DtOB59giNHDrF//x7GjJHyjxhjD0IlgbhK7URoaBjnzp2lRzML/fqVnZtmLNhTabK28jc2Bw0aypIlP5CWlkpExAF69uxd5Z+RUP8ZTWZ74FuXa8Sh5jOn5+nzAXB3qHq51Ovl5+QDQFaJFovVglwmSgEKglD/VGsgPnHi1Wd5lslkLF68uDq7ISAFd1999QUA48ZNoFmzy5fB2n/yPAvmvUtWSgJKRw3Orcbzyvf/kRO7i4I4KTmeR5OuOIePY9m/SXQL19svGM+dO8OHn3xCSmI0AEoHN5yD++Dfogd5xRbe+zmS4hIT0z7bhcFsAauVQp2JZ+fvpKjExOMfbkMuk2G2WDkUlQEmKcgvyUthykfrUahdKCoxcTpei4uTSioxlC1dMFgsF0/xNMYeLF3HLa3bbmaVatjbR66VatAX2UuOAViLcuwlx0CqBQ4gd/XCUqiV2irKsZcuy108DZnFgEwTgDH2oD3IWLr0R/aeTUapVPLCiB64ublhvEIiuF9+WUJ2dhYBAYGMHSsSMwm1o0ePHpw8eZJTpyKrHIhbrVZOnpKqFZzMcCKldFTXVo7LbDay9ZcfAXjwwYfRaKTPctSuLdKsEouFRduPkpSnx81RzeQ+bXCxHCZql2OFUWVb2cI1v60gsPA07XRG9n+9grbyHEbmLyTtaxMqmRmjVYmLXE9beQ5pXz/JeEwYFAoiv1pJU0Um5799BqVCBmYjzShh/9fv4mwuYP/X7xJoTedY0mFmL5Gm47b09yEmPYfTKVkUlR5PTEoeW70DSFwZSbdwP7p27caRI4c4ceK4PRC/lG7hfujjpED8z40HOZHtY38up0B/2ZKRICXZGzx4KH/9tZyNG9eKQLyBSdPqsFrBxVGJxuXKeVtqUk0H4rZEbe7q2gvE3R00KOVKTBYTefr8Wh2NFwRBqKpqDcSt1ivlq62e1whXVhbcNeK++x6qdJvyoy8n9q4kK+UsarUD8z/9lPXHdPiZTrJoqxSEt+g8jM9mvczv26KZMLAFINUXP7VvJWu+3YbVasXJyYnx4x9g9Oix/LAhmilj2jFjwR7mTpVGqnw0jkwd34mNe2JZtvksEwa2sI+ogzRKFBbkzpQx7XjkkV9IT09j6ojGtG3bvsJzAHF71GQlg0p1ccmX8qNvhcumI3PxIjZPQfuHXwfK6oKXX6t9qbXb5dm2KVr5Pu7jZmL49yvUpWWMjLEHWRuVya+HlgIwdeo0wpXx9v6U71t5CQlx9szqTz45tUqJ9AShOthqiSclJVb5NZmZGeiKC1EoFLz48CD776ttxHrLlo2sK87H29uHYcNG2l8X3m8Q9BvEjz9+R3SGFkelnP/NXUC2QSOdA/q1q3BDyzZNe+SYPkREZZD/3y5GThiL9qfnWeMxmSlj2vHb1nNMGNiCopXvcyLNQs+nZrJwZSSn47V8Ma0/KX99StDdLwDSua5d8nJ6Dppq7+v+r9/lsRGtUYV2JSIqA0u+C+uPQ3p+IbeF+9lHxEeO6WM/DmezrWLDpcty2nQL9+PcEalkY4iPrMII+KVGxC80ZMhw/vprORERB8jPz7Pf2BBufMkZhYA0Lb2uc+XYSphl5pZgtVqrvT+2EXGN2q1a270cuUyOj6MXacUZZOqyRCAuCEK9VK2B+NKlS6uzOeEanT+fwsqVfwLw1FPPXrIOrS0Q37t3N3/9JQWDHW59kJCQMJL+WMQ/238G4KGHHiXXuTMymUyqqzuwBYmJCXzwwbvEx8cBEBjWmY/fe/2itaaebtK+u4X78fvWc0wFDp5Ox9PNoUJJsgtpNBrS09MoKiq0t1MhGVSuNMrt5qahm++lM6LKXLywFmmBshJLtrWq10pqD1xa98aIdDNp+W8/s/RQCgDje7Vh2LARFUbYK2OxWPj887mYzWZ69uwtRryEWtWokZQULSsrs8qvSUpKACAoqHGlN402blwHwIgRoy+6SXb69EmWL/8VgPu7hhEa2pwNpSPNcHHCRNvjEVEZ9CstKZZjKZvCazsXWYu0qJUXr3G3J3gr3bbdBVURT1pC6Vi6z4ioDIbIpdHAghIDZrOxQh9s/PykwDorq2rrTl1dpcCjuLiowuNeblWrDd60aTNCQ8OIjY1h//69DBlyR5VeJ9R/iRnSKHETv9oLTi/Fx90RGaA3minQGdE4V98NYYvVQoFR+juucajdY/V19iGtOIOM4mxaeopyoIIg1D/1ao14Xl4ezz77LK+++ipt2rSp6+7csL7//itMJhNdu3anR49el902KyuTefM+AqD3bSPxDr2FEyeOcWznLwCEdRzI/fdPtE+jNBjNvDVvGUe3LcFsMiBXuRB0y124+Yfz285UuoWbK1y8emmkO+22QLz849r8EvsUzZzSr0/Ha1m4MpJ0rXThKpcr7NvbRsm6tPSxr0P38/MnMLBsf7bRbm2+Hm1BCc30MZhQ4m7Wc2KxVCve05hBjsoP1SWSLFWVa+veZGTksmDB56zddQKAsT3CGRuqsieKKx+MX5gobs2aVZw6dRInJyemTJl2zf0QhGthy/NQUFBQ5dekpkoVEIKCGl/0nFabzcmT0ufAVtbMNsptsVj4aO4n9gSG4b5lM6EuDHYv97jZbEWbXzGzs8FoQaW6/PpPbX4J0XlSScOYlDwWrozEpDOSF3+a6MVz6KwzorEW27fvnbsGY6yRbuEVZ7A4OUlTeI1GA8d/mo1MJqOZ/qz93ALSrBfbecU2sHjhxC/P0vNi+XJnUDbFv/x70Lt3P2JjYzh4cJ8IxBuQxHQpOA32d73CljVPpVTg4eZAToGezFxdtQbihcYi+xptV1XtJqXzdZJu0GXpRMI2QRDqp3oViBuNRg4ePHjJWtPClZWvRT158pTLbmu1Wvn887kUFhbQokVLPJsPRFeUy+zZc7FaLPTvfxua8DsrvKYg6QDRp6RRL5/AlnQe+DAOztK6r6pMtSzPS+OIl8bRPgXUs0Bvb2fX79JFsYeHR4XXRERl0MhVj8FgQK1W4+8fUOF527T0ICAIaTq5LD2aPJOvfWp64bLpePu7g/4M5UuYXa2UlBReffU1Tp8+hQyYNPlp7r77XvsU9stNd09NPc+PP34LwKOPTsbX17fS7QShptiCSr2+6tNRbaPnvpXMQjl8OAKr1UqLFq3sz9tGuXft2k5aSjzOzi5MmvQ0SasWXlOfnS0F5JSeJ2wMJjOoyn9/cd4IL40jzV2lkoa2qekzFuTh3kxHQOl0dZeEzwFpuct+rzF0CW1/UTt6fUnpNmo6PPIGACcWz7GfWy5UVCTdULS91xe6cG14+eSVNm504+eff+LYsaNYLBbkcpF06kZntVpJKp2a3qQeBOIgrRO3BeJhgdW3BCJfL93oc1O51nrCNN/ShG2ihJkgCPVVvQrEhetjtVpZtOhrAIYOHU6TJk0rPH/h6MvundvIjTqATK7AEjiMqMRckg78hCEvF0dNI1yajyIzt4QZC/ZgMJp5ePocMqI2A+AS1A1l2BBOJpVgsUoXpzMW7AFArZTj7+XM/OXHiEnJ49n5OykxmDFbrIx+cRUWK8gAK1Kimmfn7wTAZLbi4aomLy/PPvU8rdCB5lQcHTtx4hgAzZu3rDQTvC1Zm9zVC13yWVSGPAJkOinRmskA+iJ7AjbbiLXMxbPSdqBsKrulUNreVKBl2Wv389t/qZSYLDirFDzbxYuuun0ULtuHtSiHopXv29u/cCTcbDbz6acfUlJSQrt2HRgxQpT2E2qfUll2+rdYLFUqj5WbmwuAh0fFz0u3cD/2bdoIQMeOt5S1W5r0cMWKPwBo3Lo/v2xPpq3JmROL59AuX8+JxasBaKY/S8pfnwJgyk6kBEcKZa600xlp5pDA7gXv0FKu53n5MpK+XsbDOLN34WbaKwvJLMph31fvcovViknWhGfny2lhDuDLT7ajVsopKjHh5e+N628r6Fl4mjPL1vKILAtTbCbJ30xlpMVKTOmxeTqq6ZbxN1G70i+aMZOWlgqAj09Z4jWDsfKa4BFRGfaZOz4+FW+0dQv3s69xv5IWLVrh4OBIYWEhKSnJBAc3ueJrhPott9BAoc6IXCYjqI5Ll9n4ejhyNolqryVuS9RW29PSAbydPJEho9iko8hYhEstj8gLgiBciQjEG5CIiP1ERZ3CwcGBBx985KLny4++FBcXs2mpNKLz4AMTuf/+u5jx3ucY8hJwdHSk1/BJPHdPWXmiNWtWsWCjFIQ/9NCj3HffQ7y4cC9hQWV3zm0jOeWnVn4xrb/9sdiUPBa/M4z3v9/HU6PLRqZs28ek5BHs78bp09L3wcFNOB5fQN9bKgbie/fuAqBr18rrgZcvNRa9eA7NQ1uyvPBWpoxpZ68D7jLmrSsmaLO1YQuirVYr+/fv4cfdm0jKlpLPtG/fkRkzXkVzYoW9rSuNiK9Y8TuRkcdxcnJixoxXxQiXUCfKB95ms7lKgbhtrbOzc8UL2m7hfiz7OgaQAkcba5GW+Pg4zp07AzIF7730ZOmU+LIEjXMflpKh6bYsIKj083Ji8Rx2ud9pPz+0zPqavlPfkUqOBUilxeYv2MPcKX2kEeknykakVyzYwxdT+zBjgYJvpkptL1wZyYTSUmg2C1dG0tx1B41LR8QNp98BoFPvW+n+5EuVHv+pUycBCA0Nsz9mNJkr3TYiKoPYWOk9ufCm6NUE4gqFgpCQUKKiThEXFyMC8QYgMV0KThv5OKNS1o/68L7uNZM5Pc9QWrqsFhO12ajkKjwd3dGW5JJZnI2LuwjEBUGoX0Qg3kBYrVaWLpXKBo0aNeaipGkX+uOPX9AX5+Oi8SXboT2fLN3BqQP/ANCy2xjSCx3sydwOH47gq6+kaZuakFvJde7MV6tOklOgJye/BG3pVNHyWdivxFaeaNaSQyRlFGI0WVDIZRyKymD3BmlkTe7WhNPxWmYvOWRfU3ngeCyZhw8BkKQPkur8VlL6xybBoRWhhacYbdlE0cq/sWQngtloL0Nmy6oud/W6aOTaxmQysWvXdv7883diY6USbW5uGp55Ziq33TYEiwV0Jy7ed2Wlys6ciWLJkh8AePrp5wgIaFSl90sQqlv5wNtiqTyYvJDBICUxqywBZHp6GgA+yXvRbTmFNl+PpiiHVQul9dNhPu7sWr+FREcpUK/KuSJq1xZuOb8blULH/q/fpa08DkPScnYv+JPRFivffBFNa/Q8O38napV0PLa8E4U6o/38UJlu4X6QLH1ttVo5fF6aKtylS+U3+AB275Zm73Tu3MX+WIJDK3pWsq3JUEJ09FkAWrVqfcVjtfepEo0bBxMVdYrz51Oq1I5QvyXapqX71Y9p6VBWwiyrmgNx29R0TS2WLivP18lHCsR12TRzFzexBEGoX0Qg3kAcOnSQ6OhzODo6Mm7cfZfcLiIqgzA/JStXrgDgheefo3fvTsyaNRMsJrwbNed/rz3BnKWH6Rbuxw+rItj4yywsFguDBw8jWd2nQrmxNyZ2tQfKMSl5dAv3Q5tfgqzc/gBy8ksqrN20JV6z/a/NL8FL44jFYmbPMSmp2+MTRhKR4lJhzeSZiLVkWC20adOWlx+pOMJVmUTHVshd0/ArDbJtU8ZdH5h3xRHx7AId23/+ifXr16DVSmvMHB0dGd6hKQ+9NhfPwliMcnmltczh4lJlBQUF/O9/72E2m+nX71YGDRp6xf4LQk0pH4ibLjGqW1UWi4W8vFwAAoY9hZOXN0GA9qfnyXKQbqIV+fVi5ISxQNlNu+PbNgJ9LmpPV2ICd6ns2cLsAEKzvqbnpJmcWPASkcH3VCiNeGLxHL54uL+93d+2npNG0j/7iSljbgPgrx0x9rZt++4W7oeuNBDPy0wkq0iPg4MDMk1IpccYFXWKs2fPIJMr6NfvVntb2Z4X58aIiMogPfEkZrOZoKDGNGoUWKX38VKBuLe3NBVeq9VWqR2hfksqHREPrgcZ021qqpZ4nq2GeB1MTQcpYduZnGgyRcI2QRDqIRGINxB//CFlOR8+/E57NuTKRERl8N+uXej1JTRu2pxevfpw+vQp9uzZCciY8OCTyGQytAV6rFYr6/9aRGF+Pu4+wTzzzHT+2pVwUZtWKk61LJ9MyRaIawv0uDpJv27dW/sDZcE4SKNYXhpHMhJPkZubg9rRlU6duhCREmVvq6ioiLjIHQCMGTOuyu+NMrSbPWmUtUiLzMXrkttaLBaOHDnEunWrObB/D5bSbMeenp6MHDmGkSNH45R1BidXN4oi9qIO6GjfR/n9VdbuJ5/MIS0tlYCARjz33It1XjtWuLmpVCpkMhlWqxWj0VCl19jWlZtMxgqPG41GrKWpwR1KA2+QEqnZShw6ugfZH7cFw7eoy84n5T83F960K9orXcS7y4sqPA7SiLQtrVpEVIa9ZGJ7RZx920JdWX/Lz9yx7VOfcRyAXr36cDwun74dKx631Wq1z2Rx9m+Hp6cXJpPlkiUYI6IySIzaC0D//rdXus3VsC0F0OmKr7ClcCOwjYjXh4zpNrZa4toCPSazBaWyepZMFZQG4m51MDUdwEckbBMEoR4TgXgDcPbsGSIjj6NUKrn77nsuu61Rr2PLemkK+hOPT0Imk7Hw2+8AcGnUkcR8R6mcWIGeGR8spjDjDHK5ktDu4zkWm4u2QM+sJYfw0jjap4Cma4tZsiGKohITkz/6F7OlrFbPoagMe2I2pVzGi5/vxGyysGzzWdRKOdoCPUaTBVnpttrj0jp0B7/2vPLNAfs+AKIi1mI06GjcOJg+ffpXPK6LypZJJYX6FmrJzirBwVLC+R9ew8+UIyVXuiCZmsG/Det//Ya1W/8lLbfsYr9NYx+GdQyjR4sgnFqEo9K4g+biqavlR78rm96+dOmPHDy4H5VKxRtvvIOra/25ABNuTjKZDCcnJ4qLiykuLsbT89I3qGycnaU63rZs4OXbstFt/w6MBeRaXHAzF6DNlkaiRjoeY9FCE6esoeQXGZi95BD9dEZmLzlEmDmaJrooYB1yuYyOqniapC4k6WsIADzkxRz+fhbNZHo6p63gxOLV3BLaHWhhn+puW+4C0vrvdtayfBWG0qD5whHnFXGe3N3YwKljUtA8ePAd7E+8+Lh3797J0aOHUalUaJr158sVx7FYpbwWtnOUrRyjl5sDKUmxZKWcBZmMDEJZuDKSpPQCCnXGClPobQkuQbqxcKk142Vl0KyVPi/cOHR6Exk50qhzcD2amq5xUaNWyjGYLGTnlxDke/19M1vMFBmlm0cadd0cq62EWa4+D4PZgFpRfaXZBEEQrleNBeJGo5GYmBg8PDwICAi48gsAuVxOYGAgjo6OV95YsFu58k9AGnmxTWG8lKQz+9HpdDRt2oyuXbsTFxdLdNR/yOVywrsOs08Df+HLXSTtkdZqjxt3LzrPpvbpnLYka7OWHLInU7JNFQ0LcrdfDAP2ZG4xKXm0aOzOW5N6kZNThKl0xMt2oXw6XksjlyJ25cQhl8vp3ncoLz7Ux952VlYmk376F4CHH378ogRnlZUta1+ahMmWpC1s0FQKl03Hrdd9mGIjUHYYSq5bM1au/JP169+1jza5uLgwaNAwBngW0HL8a9fxk5Fs27aZ3377GYDnn3+R5s1bXnebglAdNBoNxcXF5OfnVVob/EK22Ta27Ok2KpUKpVKJyWTC0u0+5Mf/JGjQVM58/woWqxTZRniO4J1J/YCyZS0nFm/CU+PIhDETKrS3e8E7HA8aZz8fnVg8hy4Pv86JhS+hGPA07csF1Lbguvxyl27hfuz8YnmFZTSVTfuOiMogQJFIYWEhfn7+dOzYif2Jpytsk5uby4IF8wEYP/5+dqV58czYDphMFvv5q/zyGavVykOTpNKEA24fxIsTb6v0vbRNra8K240P240Q4caVnCmNhnu6OVRrve7rJZPJ8PVwIiWriMxcXbUE4nmGfKxYkcvkOCvr5nfXWeWEq8qFQmMRWTotga5Vux4VBEGoDTUWiMvlcsaOHcsrr7zCxIkTq/QaLy8vtm3bVlNdapDy8/PYtUuarj16dMX1l7avbdMnrVYrZ45JyYY0TXowZ+lhoiOkteKeQe04n6/i6bk7MJjM6DLPUJibhkzpyM7zQcjSM3jyk+14uTlQWDqKlZJZyJOfbMdosvD4/7ZhRRrVLq/89wdPZ3Dni6sAkMtkKBVy9EYzKqUco8nCwUN/A+DWqD2nUswsXBlJTEoeC1dGcmjzD+j1etq0aXfRaHhlLIVaila+z1BtMYXLSuyJ2axFOej3/Up8Vj5r1h9kd1SSfQQ/OLgpY8bczYABg3F0dLKXNrOxjbqDdNFijDmIwWC2j1JVluzt+PH/mDfvYwDGjZvAwIFDrth3QagtXl7epKWlkZV18frJykaQfXyk722J2WxkMhleXt5kZKTz7V8HGO2Ux66VkbQtdpCGc61W3LJPcOT7HahUckZb9JxYvINm+rMUpa3g2I+r0OlNnLSEcsoaymiLlWPRWSyY9xPtlXE0U2aye8E7dFRlcmzrQnZvlfab6NiSXO8ORERl4Jz+H+0M59CnyNi1xUonhwSOL3iRXIsLo4HP557hpDUUo8nCa9/sw9VJRaHOyJJfpRuZHsGd+eaf0xyKyrAH2GcTc0g4+DMlebmoXPzYnhyE2WrhkdlbsAJWKygVcmYvOYS2QI+nmwMFKYfJPn8OmVyJLKDPFRNKVkVmpnQevdKNVqH+S0wvnZZej0bDbcoC8eopYaYtyQXAVeVSp0uxfJy8KTQWkanLFoG4IAj1So0F4gqFgsDAQAyGqq09FK7Ntm2bMZmMhIY2p2XLsima5UeJbF9HR59jTXEWKpWKmc8/iEql5oF/3gVgxtMT2ZfgYB/ZueeR5QC4BnbmxzeG20eWgQplxyobET8WnYWrkwooGxE/Fp1FpxY+vDWpl718ma0tgAMRh9Bnn0Mul/PJOy+w+lC+ve3ujYv5J/YocrmcqVOfr9IfdLmrNM12I3fZR8QdBjzN3rmT2ZCo4vDhWPu2HTt2YuzY8XTt2v2ybdtG3QGUSjmGf79CffvT9tH9C0VHn+Pdd9/EZDLSp09/Hn108hX7LQi1KSCgEadOnSQ19fxFz1UWiDduLI2aJycnXbR9o0aBZGSk0z1URXO5O+0HtePE4tV4e3mTnZ1FiUcTOk+aAsCTn2znm4dv48TiORwpLVMG2LOP716wmY7NfezJ1vZ//S59p85k94J36Dv1nUscTbsK56mdX8ykW2s/nAZNlc5NYe58c8F5Ky09jaSkMwC8/uxE/P0DKrSxbt0/fLH+LEqlis8+nkOLFi2Y9OE2vn9lQKUj4rGx0bzwgnRDsXX3kbz40K1X+AlUja1aw4Vl0IQbT1KGtGa6SR2tD1flJuCUEUlJqgplcHsUga3tf/d8SteJV1fCttzSQNytjqal2/g6eROfnygStgmCUO/U6BrxBx98kGXLljFu3Dg8PDxqclc3ra1bNwEwbNjwK267e/d2AFq07szizfGkJ56ksLAQudqNvXEqohK1PDt/JxaTnsIMqeyOg18Hnp2/k2K9iWfn7yTAy5mY8/nSOvL8EmYtOUS6ttheLuhQVAYKuQyDUcrCnJNfgqfGEfUFiV9sI/UxKXl4uijRntkAQHB4b1YfykebL92R79DMjS/mzQJg9Oi7CQ1tXqX3xZagrVu4H3l5eWzYe4zNP4whJacAiEUG9GrZmDHdWtI8wAvyDmGKk1UY0a4s6VpVxcXF8sYbL1JcXES7dh146aXXRb1wod6xBXYJCXFX2FLSrFkoACkpSZSU6HB0lDItG2MP0kRZyDHg9LYV9Ao1oduyAGdzAUEucrKzITU5zn7eMJoszFiwh7EyA4dSM+x5J0C6eXjSElLhJkD8JUqElffb1nMci86yr7sejXQDcPmZPeQW6klML6iwTaHOiDbmEFarFWfvUD76M4Zu4QX29lJTz/PddwsBePTRSYSEhFW2W3s/MzLSefvt19Dr9fgGt+bee8Zftr9VHSHXarX2hHetW7et0muE+ivJXrqslpOXWcy4R/2Na5L0+TACxuPrKfYIIztkKFaFGnOB9Hc3Ji6VE4eKcXZWU1xssFcGadv5lqvapVafC4Cbqq4DcZGwTRCE+qlGA3GLxYJarWbw4MEMHTqUoKCgi9Z/y2QyHnnkkZrsRoOVmnqe6GhpFLl//yuX8jp4cD8AI4YOZMCAdixcKC0D8GvSlql3d7CPBP3y9yZit1pw1vjg6OZHWJA7apWCKWPa2QPo8msiba97dv5OOjb3ISYlzz4SbmNLUGTTLdxPWkse5I5Pxgb2FKXj6urGh2+/iLu7u32k6eiuFWRkpOPvH8DEiY9hjD1YaTK0C+n92rB77QoO7PmMdyMOYDZLNwac1EqG3DGaoT5FhIx75bJtVGU/lTl37gxvvPYCBUXFtGwZzjvvzK607rIg1LXmzaXkYGfPRl1hS4m3tw/e3j5kZ2dx9uwZ9OpAuoX7oQrtTsc7Svjn8ExOao0oB3XHadBUMpd+QZt2rhxP3EIjx2z7eePJT7Yzd2ofUv46gJ/CiTcndiVq1xbC+w0C4Pi2ijettKUlwsonK7twxH7CwBZoC/RlI+JfbqJ9gJyeY/rw7PyduDmpKmyz4O/jbNx7DICpj01gwABpvfbClZFYrVY+++wTSkpKaN++42WrNHQL9yMjI51XXnmB7OwsgoOb0mbgI/Roc/kpsJdKzHahHTuk83SrVuF4eHhW6TVC/WS2WEjOlNb71+rUdKsVj1N/4JJyECsydAGdsJgMuGSfxjk3BlnMOjJb3Im7k/S5y9NVPsvrauWUSPli6nxE3FlK2Jat02KxWlCguMIrBEEQakeNBuIffvih/es///yz0m1EIH7t9u3bDUDT0NYs+zcJkKaLll/jCNKFYqtAB+LipOnYnTtLI72RkdJFqNI9xL4dwKFjpwDw8G2CUiHndEIOk0a2Aai0XI+XmwMLV0ZiMlvtWYRtGYJBWkOZV2TgVJyWR97bSHZeCQlp+8jI1aE05ZK6bz0AoZ1H2o/Dy82Bw4cPsm6dlOF9+vSXpXXbpWXIKpOwfx0HdmzkUGwqp5KzKmRvD/VxY0CoOwNuH4jnbY9ctP77Wri07o3xgseOHj3M+++/jU5XTKtW4bz//ke4uNS/tYCCANC6tfS5Tk5OYt6v+3BwKhulq+w80i3cj7Zt27Nz578cO3aUAjel/bzRsWNn5HI5SUmJnM9pTRjQ0hyNs6cPvwH79u/j8z8OoVQ7Yiyd1u2Q5ktmgY6IqAwcYw9CaSDe1SmRJVvP2c83tr5YjM04UdqnnPySi0aVB3inodsi5czwkBVjycjkxOI53Ks0YM2zsv/rtSiMzZixII+0hNMYdbko1U6c1HrjVi7R244d2zh27ChqtZrp01+uMJulQ/Oyddrdwv1ISIjnjTdeIjs7i4CAQGbP/pj47OrJbm42m1m9WprqPmjQsGppU6g7aVodRpMFB5UCX0+nWtuv8/kIKQiXydF2fIQS//aYsxMo9GmD39m/cMqPxyN5D+6evYBqDMT1OUDdB+Luag1quQqDxUhOSS5+rt512h9BEASbGg3Et27dWpPN3/RsI9xDB93O6NEXj1CXd+DAPgAaNw7Gw8MDg8FAQkI8AE4ewUBZ1uGSolwAnN28QSHDYLJedhplWJA7E0qzqdvYRs9tr5v+xW6+mN4fT08X+xrx6Z/vwBy9EaPZgotPGP97dbJ9rVpeXh5PP/0qAHe08qFjx06V7jsnR8vmzRv599/N9umbNsHeGvoMvpPbbhtA06Yh6LYswOm2Ry55HFfLtXVvcnLKyjht3LiWL76Yh9lspl2wL+/M/gQXF5dq258gVDeNxp1mzUKIj4+jS1AJ/fv3sj9X2XkEwCuwFfAvBw7so82gsuUbrq6u3HJLZ44cOcTO04mEAWqVnOZ+ngQHNyEpKZEm6njGjBnHjAV7mDKmHbOXlKAsLqRbuB8nDpSNcvu4OxHm6W4/jwCl67rL1mPPWnLoor6F9xtERFQHuoX7sfjMHt51+ZP2D7xuT/w496k+9inujz79BwB3DB3KlHGd7W10CHFn0uxvAJgw4UEaNQqssI+ZpZUfABwM53nxrbcoLCwkOLgps2d/jK+vL76+V/VjuKT16/8hLe08Go07gwaJRI83uqR0aelDsJ8r8lpKXqbQ5eB+WkrKmh82jBL/9vbnDK6BZIcMxTdmLW7ph/HVtADU6E1WSowWrjfPeVmytroNxGUyGT5O3pwvSiNTlyUCcUEQ6o0aDcSDgoJqsvmbmsFg4NQpKfC1jXBfji3ZT8uW4QCkpqZgsVhwcXHB17dshCciKgOzSRrnbdLIk8RKboxfGJRfmBzOduFc/vH84ouT9qWfWk9OwllcHdWE97nPHoRbrVY+/fRDcnK0BAc35YFO7he9NidHy6+/LmXDhrUYjVJ/FQoFHTrcQrduPenRoxeep1biNOjxSt+P61n/fSGDwcB33y1kzRopI/xttw3g6Y7uIggXbgidO3cjPj6OAwf20b//7VfcvljdFLlcTkzMOZp0rThDZvDgYRw5cogtp1J4yGQCpIvgMWPG8sUX81i+/DeGDRuBp5u0VENboK+QP8J2ztAWlIB72WOVySnQV/p4+RJmpFW6CSkpyaQlnABgxIjRFZ7755+/ycrKxNfXj7FjL73Oe+fOf/n44w8wmYy0adOWmTNno9FcfK66Vunpafzww3cAPPjgw/b1+MKNK7F0fXhwNSdqM2cnXPI5j9j1yM0GSlwDyXNvDhdsq/NsQZF3a1yyT+OfvAUX9QiKDFZyiy14Xeevc249mZoOUsI2KRAX68QFQag/ajQQt0lPTyciIoLs7GyGDh1KQEAAZrOZgoIC3NzcUCjEep2rFRcXg9FoRKNxp3Hj4Ctun5Qk1fJt2jSEiKgMflu1FwC5gztxqQX2BEf5RQZyCqXo+8DxBDTNpUzsj/2vrKzc8egsIqIy0OaXUKQzYiidZmorVWYrOZaYXpb4COCXTWeJOJNBiP4sC1/7kpwEKVvxM53cUZh3ceT7ffh7ObM7KoaDB0+hkst4to0CtT6PgkVSxnGrycCmvYdYciSFYr0UgLdo2pjhYybQp09/3NzKptYWHdRWmIJuio2o8L3h+EbUHYZe81pwgISEeD74YBYxMecAGN+rDfd09sQSd6jCviorbSYI9UHv3n35668/2L9/LwaDAbX60rWNI6IySNaa8Q5qRWbSaQ7u3cZCj7Ibc4PlMXg4KtHm5bP+3Qe4LdgJU2wEPTnKb85KMrXZvPbSK4Q0u4WdX/7DaCuggOMLVhOiysI9dSFJX0MzeTHWlJ848r0HHfQm/jM05dVvCsjI0dnPVTkFemYvOYRnuSRvt6jj6Ze3hZS/NtFSW4zVksP+r9+lndFCO2D/11s4aQllZ+QJsFpp0boTTZs2s/e/pETH8uW/AfDgg49c8r1Yt24N8+d/gtVqpU+f/rz00uvVmgeipKSEWbOkJS5t2rRj+PA7q61toe7YRsSb1NL6cHVhGi7aM1iBnODbQFZ5wtCcxv1wzI1FrcvCU6WnyKAmT2e+rn2XmPQUmYqBehKIO5cmbCsWgbggCPVHjQbiVquV//3vfyxbtgyTyYRMJqNly5YEBARQXFzMgAEDeO6558Qa8WtgS67UsmV4lcp52erQ+vv70y3cj1VrpWC7SSNvQsP9KpQmSzA143jyfpysOXiW1g3/5sXb7FPPY1LyKmwP2MuXXVjOrLz7h7Rk6vhOPDszhYMnpBH6Bx98hO7+hfxYeCtTxrTj1KlIlv4wDYDJTz1L+1F3UbhsOq4PzKO4uJiPX32C/eekmwotWrTksceepGPHTpW+B3JXL5wGTbV/r9uy4KLvrzU4NpvNLFu2jAULFmAwGNBoNMyY8Rrdu/esdF+CUF+1bt0WHx9fsrIyiYjYT58+/S+5rW3Gy10dxzN79jsYM48xafjb5QLWdow1aFi06Bv+SlbQt4U7joEtcRs0lSkd9vLuu29wNvYkOt/uPDfjXZ78ZDuuTirmTu1D2vfPsMbvKaaMaceJxXPY7Xen/XwSl5LH3Cd7VZgu/+Qn23ljYtcLeujHruPOTBnTjiAg7ftn6PnEzApT0/1io/lr7U8APD15UoVXr1+/hvz8PBo1CmTgwMqngq9Zs4Z58z4GYPjwO5ky5blqvZlsNBr54IN3iY4+h0bjzssvvyFuVjcAVqvVPiLexL92Mqa7n5eWrxV5t8bocunlZRaVM/kBXfFM2YOfJZ1kgsktvr5APLc0Y7parsZBcembe7XFljk9XZdZIemjIAhCXarRQPz7779nyZIlTJ48mV69evHoo4/an3Nzc2PIkCFs2rRJBOLXwLYeOizs4pI6la3nzsvLBSjLulsat2bm6rCWjmCDlBQJo7R+Kis1Gnl2NkoHV3uZsgAvZwxGs73ckC0528KVkeQXGZixYA9qpZzpX+wmr8jA4x9KI+lWK0yctQVzQRKZ/y3DajHjEtCe+++fyPm/59GtjR85OVrmzHkXs9lM//63MXLkGHv/09PTePvtV0lMTEGpVPLww49z1133XPYCtTqnn5d37twZFiyYz5kz0s2QLl26MX36y3h7+1zhlYJQ/8jlcm6/fRDLl//Khg1r7YG47Txiq5RgcygqA0tLb5xcPdEV5rDo5z95+rH77c+PHDmaZb/+RlpaKqtPWbk3sCUACo/muDTqSFHqMZIP/8bHSxpjNFnILdTz7PydvORg4VBUBs/O38k9Cj2H06Svi0pMOKjkzFpyiKSMQvsouC3hW05+CdoCPZ5uDhTpjKTn6Ozns9tMziSV9t1ssWIymfjss7lYLBaatuxiT1YHsC8yhRUrpHXj99xzX6XnliNHDvH+++8DMHr0WJ58cmqVboRWVUlJCbNnv8OhQwdQq9W89dZ7+PtfPvu6cGPILTRQUGxEJoMgn5pftqQqSscpPx4rMvICr1T8Dwr9bkGTfhRfqxYIJrf4+hK21ZeM6TY+Tl4o5UoMZgPakpy67o4gCAJQw4H48uXLGTNmDC+88AI5ORef+Fq1asXOnTtrsgsNVmrqeQCCgi6ell5ZIF5SItUHtZWPU6qk/3W6IsKC3C8Y4fbjbE5rzpw5jSntAI6hg/HSOJJToMdT44i2QI+XxtE+WgVlI+Jzp/ax77P8909+sh1ZUSIZp3/HajHSpUs3iv1HIJPJ0BaUcEuYJ6+9NqO0/E8Tnn/+JfsFbmKujtkvPINWm42XqyNvvT+X8PCyC+hLqe6p4Lm5OSxd+iPr16/BarXi4uLC5MlPMWTIiGq9GBeE2jZs2AiWL/+VQ4cOcv58CoGBQRXyPpQ/p9hGpRvL7+ebbxawf8dqHn9wnH1U3NHRidY9R3N02xJWnEind6d8WpS2E9xxNAanImJjozn177dYmo3Dx8e/dET8D7qWzs45sXg3XYL9LjrHXDgifmEyuRkL9tjbADix2MM+iq/Tm/j++685ezYKV1dXWnSruDZ81Zp1ZGdn4e3tU+loeGZmJrNnv4fZbGbgwMHVHoRnZmby3ntvEB19DgcHB956633atetQbe0LdSspQ5qW3sjb5aJynjXBPU1KZljs1Qqzw5UXe1sVKvL9O+NdlApw3VPTtfUkY7qNXCbH39mXlMJUzhem13V3BEEQgBoOxFNTU+nUqfJs1wBOTk4UFhbWZBcarKysLAB8fKqWntdglP6ortgRi8dpM7GZ0tSswrwstLnF9hGvmJQ8vNwc8Ai9Dc6cRhu3D5kmlEMm6e74kTMZWKzSqNikD//FYrUil0kXwDkF0siW7SLDNlIOkJ98hNyza8FqoXPnrrz55nus3COVW4tXt2TLl/M4efIEzs4uvP32+zg7S/lao6PPMnNrPIU6Pc2ahfD2pAk0qkIQXhmZi+dl14xD5Wu5DQYDq1f/xW+//UxRkZQt+fbbB/LKKy+hUDhhMl08clBTo/GCUBMCA4Po2rUHhw4dYNWqFTz99HNXfM0dd4zi199+JSMjnQWLluLQqIf9uVRTE3wbtyYz+TRvrjiER8IWLCgwW6xY/EfinLqItLRUXHO+oUfXthz5/l9aWArpkbUS3ZYdOBjy8cqJZOFK7LNubLNybEtebCPiNt3C/TAYzfYcFQCmrAB2rYxEm6cjN2Y7q+Kl0mbTpr3Escyymtxms5lzRzcBcPfd91y0NtxqtTJv3kfk5+cRHh7OCy+8VK1B+IED+/j00w/Jz89Do3Fn5sxZtGlzccZ64caVmF6aqK0W1ocrDAU45UjLv/IbXbh849IKfdvhlRgjva6w8mSIVWUbEXdV1Z+kpY1c/KVAvEgE4oIg1A81Goh7e3uTmpp6yedPnjxJo0aNarILDVZ+vvRHzsPDo0rba9xcyMvNZkSPQDp2bIfFYmZbpBM6nY4JfT1p3rxsGqo0mtSVJ2KOkHT2AMVn/6LloEnkWf2YO7UPMxbssY+iL1wZiTa/hDcndr2o3NGMBXt4dGgY3367gNwzawEYPHgw06a9jFyuJCxIuku/7XQCURHrkcvlvPba2zRu3ASQgvDXXptBoU5fWpP7Q9zcNNf8njn2ur/C91dax202m9mxYxuLFy8iI0P6w928eQueeGIqnTp1wtPTpUL5svJEYjbhRnP33fdw6NABNm5cx333PVS2jKUStszkkx6fzKeffsiuzSv49ts77TcGFwL3Tn6XqVMnk5+vpYfyMNOnv8yLC/cyd+oA5i7z5tyuRSQkxLP0QCSPPjqJlq4eHCi+jS6D2rGl3Lmk/Ih4ebacFOX9tvWc/dwUEZVBBN15eHAzvvxyPvmlQfjjjz9Fnz79OVYuiN+yZQPF+Vm4u3swfPioi453+/atHD16CJVKzezZs1GrHSq9AXe1CgoK+P77r9i0aT0AYWEtxHT0Bsq+PrwWAnHXzBPIsFLi1hijU9WXTFmVjjh5B0Ee5OnBYrn2tdQ5paXL6suIOEiBOECqGBEXBKGeqDyFZjUZPHgwv/32G0lJSfbHbKMIu3fv5u+//2bYsGE12YUGq2yqedVK2tguqrVaKWOoXK6gQwdptsLevbvs25Wfgtq+33iaNW+DTlfM/rVfknluu71UWHmVjQtZrVYsuWd5+unH2LBhLSDDt+WA0otYabQpIiqDjRvXERWxBoCnnnqGrl2lADY2NprXX3+JwsJC2rRpy+zZn1xXEH41rFYrhw4d5LnnnuTjj+eQkZGOj48vL7zwCvPnf0X79h1rpR+CUJtuuaUzLVuGo9fr+euv5ZfcrnyJwoEDhxAe3gadTseCBfMrJEHy8fHllVfeRC6Xs3nzBn79dan9OScXD+bO/RIXv3BMJiPfffcVLy/biiepWK3WCuehypbaAPYSaJX1D2DfiSTiIncwadJEtm/fCsiYMuU5xo2rWJJMp9OxdOlPgLQ2/MJzql6v54cfvgXggQceomnTppd8b6rKbDazceNaJk+eyKZN65HJZNx11zg+/fRLEYQ3IFEJOfZ/MSl5lT5+4b/rZjHjmindZCrwvfqlDbKgNigwY0FOgfbaM4xrS5O1aepRIB7gLAXi2pIcCvWV30QXBEGoTTU6Iv7cc89x4MABRo8eTdeuXZHJZHz33Xd89tln/Pfff7Ru3ZqnnnqqJrvQYJnN0lRzpbJqP8LAwCBOnDjGgaOnOZ0XQExKHo6uLYG9rFi5klynjihVDhUSNJ1NLsCxxT1oiv8i//wJMs9s4a57D+ES1IOs7LZo80vstXxtF+aFhYXs2bOTNWtWEh0tlfRSObkT2HEsBocgHpu1Gb3BjN5opjAtkn9O/QWAX4v+JJlbsHBlJM08DSz56n0KCvIJD2/De+99WGs1uc+ePcMPP3zDsWNHAXBxceHee+/nzjvvtq+vF4SGSCaTcf/9E3nnnddZvfovRo++u9IEhOUDcblcznPPzeC5555k//69bNq0jqFDR9i37dy5K0899QwLF37O0qU/4tF8MAtXuhOTksfizXG4hY8jrFU0pw6sIi4jl7hv5rB78+8MGTKcrbltGNgzvML+oGw03kvjyG9bz1V4Lis7m2+XRjI34wz5qSexmg0AqJy90bS8kzVnPFl9+l/kchlGk4Wn524nP3YL2uwsFI4enLe2sI/A29bGr127yl5X/J57Ll1XvCqsVisREQf48cfviI+PBSA4uCnPPz+Dtm3bX1fbQv1lMJrtfyv9PGq2HrxzbjQKUzEmlQs6j4uTuV6J2ckLL1UymUZnCpOj8WzZ+Zr6kVs6Iu6qqj+BuLPKCU8HD3L0uZzKPEcLlxZ13SVBEG5yNRqIu7m58ccff/DDDz+wceNGHBwciIiIoEmTJkydOpVJkyaJ4OYaKRRyTCawWKo2PbJ58xZs3Ah5mfG8+oI0bbNT8x6MP/gPxQXZaIqO8sgjZaV8yidqslpv5fWPf+TEnr8xl+SSH7OR/JhNOKc2w1njS0GJjM15jpyLTWDtd4n2PqnUDoy9+x7Gj78fR0cnXlywh5/eHkpOThHbtm3lf//7G6xWmoT3xiVsMFPGtOP8+RReeul58vJyad68Be+/X3NBePl13OfPp7B48SJ27vxXek6p4s47xzB+/ANoNFdOdCMIDUH37j1p3botp0+f5Oeff+L551+84mtCQkJ56KHH+PHHb/nqqy9o2TK8wij2qFF3kZeXx7Jli8mN3oxb90aMHzCc7q39mZVfwpsTnyQ3dzy/fjuXjXsjiI2N4euvvwDg16BgWrRoAWpP1q6NxdnZma1HUilMbQTadKw6C80sWaSmnicxMZ7s7KwKffPy8ee+8fcxdOhwXv32IHOn9rEvoVm4MpJ+YWZeeWUvAF1uG8+z4yrmNCkpKbHXFX/ggYmo1ddeK/z48f9YvHgRp05Jgb6rqyv33z+RkSPHoFKprrldof7LzJNmsLk4KXFxqtmftWvGcQCKfNqB/NqSwrk7q8jMg7zMTDybm6l83tulWa1W+4h4fZqaDtBE05iczFyOpZ2iRZgIxAVBqFs1GoiDlKV7ypQpTJkypaZ3dVNRqx3Q6/X2KepX0rGjdFc7MvIEhYWF9gvlNj3HcGjzIpYv/5UOHW6hc+eyxC62bWQyGcEtu5OvaMKwlgX8vfofUpPjSkuoSWXUks6W7csvoDHDhw3DP6wHLq4a+1RPg8nC/5ZEEH1sF//t/BWsVhq37I5L2DCKSkx8snQHh9Z9QV5uNs2ahTB79sc4ZJwC15pZb60K7U52dha//LKUDRvWYLFYkMlkDBgwiIceeuyGnyJqjD0o1qoLV0Umk/HYY0/y0kvPsWnTekaOHENYWPNKS5iVT5RmVbWleXhHoqOO8d57bzN//kKgbPT6wQcfQS6Xs3Tpj/zyyxLan46m/Vtv4qWRbsR6eHgwadwoHnjqRf79dwvbt28jKuo0KSlJpKRIS5u2byrr5+Etlz4GN69G+AaFkysPpnXrtiSanPlu7Rl7wkqb4vws5sz5HKvVSqfut+Hf9OLkaOvXryE3Nwd//wAGDhx61e8nSMtsFi36hiNHpCzWarWaUaPu4t577xM3+W4SGTnFAPh7ONfoflTFWTgWpmBFRqHvtc+wcHd3hTw9mQYnWufGUOTR/KpeX2gswmQxIUNWr5K1ATRxC+JYZiTH06MYFzb6yi8QBEGoQTUeiNtkZ2eTkpICQFBQEN7e3tfcVkJCAosWLeLYsWOcO3eO0NBQ1qxZU2EbnU7HwoULWbduHVlZWQQEBHDXXXcxadKkCtO5CwoK+OCDD9iyZQtGo5F+/frx5ptv4udX+brE+sLFxYWCgnyKiqqWdb5x42CaNm1GQkI8W7duYvTouwFoFHoLgwcPY/PmDcye/Q6zZn1I69ZtK23DZFUyatRdjBp1F58u20PvMBkrthzFZNRzW+emHI7T8+wDg/D1ld476UK9xB7QqxTgUXyY/3b8AkCT8N4s/OQ9vvnnNKfPxRO5dRl5udk0bhzMnDmfoNG4ozsYUSPBpFar5c8/f2XNmlX2de/duvXgkUcmERp6dRcd9ZUptmbeO6Fha9euPf37387Onf+ycOF8Pv7480uWMCsvf+C7PP/806Slnee9995k9uyP7YE4wP33T8TT04sFC+Zz4uhenn/+KZp1mwBI7ZhiI9CEdmf06LGMHj2W+b8fpE+olbi4WE7tXIvcrxk6nY6k9HyC/TU4OTnj5uaGt7cP/v4BNG4czHebM5g/baC9j1CW5M2WbR0gLS2VfWsXUJyfQ2hoGAHtRl70PhgMBlas+B2Ae++9v8rLgGyKi4v56afvWbNmJVarFaVSybBhI5gw4cFKp/wLDVd6jg4A3xqelu6aeQwAnWdzzNcxEu3pIo2kZ1g0uGRGXnUgbkvUplG7objGUfma0tg1ELlMTnphJpnFWXiqveq6S4Ig3MRqPBDft28fH3/8MadPn67weOvWrXnxxRfp3bv3Vbd57tw5duzYQceOHbFYLBUSBNm89957bNq0iRdeeIGwsDD+++8/Pv/8c3Q6HdOnT7dvN23aNKKjo3nnnXdwcHBg/vz5TJ48mRUrVlz1hVdtcnd3Jy0ttdL67JWRyWSMGHEnCxd+zooVvzN06HAcHR3pFu5Hx+HTSU9P4/jx/3jttRd58cVX6dv31gqjYNr8kgrlgorNDig8mhDSTkqgNnp0O1JWRtqD8AsVFhZSeOYvvl/7HwDte9xBrks3Xv56P0V5WSRH/IS5JBe1szdO4fex8Ug2EwZW/x/I8+dT+OuvP9i0ab09AG/Tph2PPDJJJGEThFKTJj3NwYP7OHXqJBs3ruOOOy4OVC+k0bjzzjtzmDHjGU6dimTOnHfw7VhxTfUdd4wkOLgJb858i6SkRFJS5vKDIokJEx4kJ1/PqnKj7MfjClE7+KEtacGg1s3Z4TaSYI0j6VEZBJe7KVAItG7qR9twP3qmnbuoX7bzmFopZ+HKSPbs3c/GxaswlBTirPHh7ode5Eya6aKkcOvXryE7OwtfXz8GD766pKLR0WeZPfsd0tKkqiH9+t3Ko48+QaNGgVfVjtAwZJQG4v5eNReIy0x6XLKjgGtL0laely0QN2twyItHoc/H7FD1ZKm2aemejh7X1Y+aoFao7WXMIrPO0C+wV113SRCEm1iNRpqbN2/m+eefx9vbm0mTJtGsWTMA4uLiWLVqFZMnT2b+/PkMHjz4qtodMGAAgwYNAuDVV18lMjKywvMWi4X169fz+OOP88ADDwDQs2dP4uLiWLt2rT0QP3r0KLt372bRokX07dsXgJCQEIYPH86mTZsYPnz49Rx+jfLx8eXMmaiL1kRezpAhw1m+/DcyMzP4+eefmDTpKfvF57vvzmHWrJkcPhzB7NnvMGrUXTz22OQKF6eVlQuKiMogKb3gon2Vn8Z64sQx5s79H+npaahUKp577gUGDRrGrCWHeGSAP6+//jnmklwCA4P43//m4evra2+jOirpms1mDh8+yJo1qzh06KD9xk14eBseeOBhunTpVq01gQXhRufr68vEiY/x7bcL+f77r+natfslb7KV17RpM9555wPefPMlIiIO4JdegH7kpzg4lK2tbteuA7eOe43i2A3s3r2D5ct/ZcuWDdzROojHX25h37b8qPuJxZt4Y2LXix6/0ISBLSqMwmvzS+yj+Zv3nuTY3tVoT0hz3ENDm/Peex/g7e3DmZWRFc51Op2O33//GYDx4x+4qjXcBw/uZ86cd9Dr9fj5+TNt2kt06tSlyq8XGhaLxUpWnhSI+3nWXCDuoj2N3GLE4OiF3q3xdbVlGxHPtrhhtspx0UaR36jqs6tsI+KeDvVz6UWYR1NSClOJSDsqAnFBEOpUjZYvmz9/Pi1atGD9+vXMmDGDsWPHMnbsWF588UXWr19PaGgo8+fPv+p25fLLd9tqtWIymXBzc6vwuJubW4XR8507d6LRaOjTp4/9sdDQUFq3bs3OnTuvul+1yd9fqr+emnq+yq9xcHBgypTnAFix4nf27CkrW+bo6MS7737A3XffC8A///zNU089xp49uyqdcVBeoe7ikmYRURnodQUc2/ErL788jfT0NAICGrFo0SKGDZNucBRpk3nppefJzMxA7erLRx/NtwfhtjauldVqJTY2mu+//5qHHrqXmTNfJyLiAFarla5de/Dhh/P49NMv6dq1uwjCBaESd955N+HhbSguLmLevI8qJIa8VEkxkKa2z5w5GwcHBzIST/Hmmy9TUJBfYRsHJ1feeOMdZs6cjbPGh5ycHH7ZG8nEieP58cfvSE5OvOZ+284b3cL9yM4t4sCBfcyZ8w7zZj3H1q1SED5q1Bg+/fTLS04R//33ZeTk5NCoUSBDhtxR5X0fO3aU999/G71eT5cu3Viw4HsRhN/ktAUlmMxWVEo5nq7XnuzvsqxW3EqTtBX6dYTr/JvmopahVsiwIiPL4iaNtF/hOqA8bYk0U8/L0fO6+lFTWnk1R4aMmNx4snTXXqJNEAThetXoiHhSUhIzZszA1fXitUqurq6MGzeOTz/9tNr3q1AouPvuu/n555/p3LkzYWFhHDt2jFWrVlVIGhcbG0tISMhFgVhoaCixsbHV3q/q1LhxMMBVX7D27NmHO++8i9Wr/+bDD9/n7bdn2Wt3KxQKJk9+ms6du/DZZ3NJT09j1qy38fRrRovOQ9EW+zJ7ySG0pWVYVEo5GTk6ZDJptDynQM/Tc3dgLMknL/EARSkR9vJBHsFdCOk5Bq3RnUZARMQBTmz7GrNRT1hYCxSh4/D29sEYexBTbAQA/fLyMGWcRbdlQYVjUIZ2u+Ta58zMDLZu3cS2bVtISkqwP67RaBgwYAgjR44mKOj6Rgvqq/LvHUhrbsu/d5d73wThQgqFghkzXuWZZyZz9Ohh/v77T8aOlW7UXSoQL1vO4kCXoU+xb+3XREYeZ+LjjxPU5QEaNWqMp8YRU8xBTixejQvwwq1tiNPmsOnoKTLz8/jjj1/4449faKRx4n87/Ajx9aSnSybHf5qNTCajs87IicWrUYV2J7zfIPu+zWYzW/ad5L8jEUw7vB5tWhxZ56N5Z33ZjUKfoJYEtR1GtwF9WLS+bBp7+eRzBTmp7FohZUp//PGnqjwanpmZyZw572AyGendux+vvfZ2vV7eJNSOdG3paLiHU43d9HUoSEZVosUiV1HkHX7d7clkMrxcFKTlm0g3exBQkoBKl1nl19tHxOvh1HSQMrm382/FifQoDqYdYXjI1c3KFARBqC41epUQGhqKVqu95PPZ2dn26erVbebMmcycOZN77rnH/tiTTz7Jo48+av8+Pz//olFzkNZfXzjd/VooldUz4UChkFf4H6T3FiA+Pu6q9zNlyjNkZ2exZ88u3nnndZ577gWGDy9bA9qjR08WLVrMr78u46+/lpOTEc/BDd/g4OxBI/9hjOjTlbCwMDw8PJn++W4sZgPPjwpkwc8bcciL5/DhQ1gsUoZid59gZr7+Eu3bd0ShkOPm5sgPPyzmm28WYrFY6NSpCzNnvs+qPSkolXKULXtCy54A7FlxnBauO3Ed+sxlj8dsNnPgwD5Wr17JkSOH7CP4KpWa7t17MHjwULp371mtJYIq+5nUtfLvHUDhxi+v+N7Vx+OoTdX1Gb3RVPXn3qxZU5566hk++2wuP/74Le3bt6dNm8qTOQL0ahdAr3a2agMdmOPozMntP5CRkc75A99y77QXGTCgO1+ugE5jpXWsX644zjPPdaD9d+9RHH4b69ev4fDhQ6Tm60jNT2BHVAI/Ac7OOdL0eIUjPp5uyKI3Y1y7lqKiInJzc9FqtfbzTnne3j7069efE9pGfP3WvRw8lU73Nv7l+lnah7Ed0Ov1PP/8Z5jNZnr27E3//v0rBE+Xet+sViuff/4J+fn5tGjRkjfeeAu1Wn3Z91a4OWTk1vy0dLfSJG1F3q2xKqpn1N2zNBBPcQihozWhdP35kCq9VlsaiNfXEXGA/k17cCI9ij3nDzKk6e0o5eKmmSAIta9GzzwvvfQSL7zwAu3bt7ev6bbZvHkzv//+O/PmzauRfX/yySds376dWbNm0axZM/777z8WLFiARqNh0qRJV27gOsnlMjw9q7dsh0ZT9oe8U6d2yGQysrIyAQOenpf/g7f7WAp9OwbZv//kk49499132bBhA/PmfUx0dBQvv/wyTk7SPjw9XZgxYxoPP/wgy5YtY+XKlRQU5LJ8+W/2urrI5IAMrGaeXF9xfypNYxq16o9bQBv2xqtY/d9hQgMc2fT3IpLPHQbAKaAjIb0f4edt0sj1ip2xZOWVlWM7eDqD/kH57PvnlP2xvh0D7cdhMplYs2YNixcvJikpyb5N586dGTFiBAMHDqwwG6Pw9F5cW199csDLKf8zqW8MakWVfwfr83HUlJr4jN5oqvJzf/DBCZw8eYwtW7Ywe/Y7LF261F714sLzyoW8A5rw7GsfsfLnzzl8+DAffPA+m/7dSa5LL6Z/IU1Xz84rYfoXuxllMvLPf3J8Wo9nZKd70FhTyEuL5uTJk8TFxVJcXExCQjwACZfYn0yuROHkhYtnIGpNEFanIDx8g4i2KCmWSfvx8XDiaIw0HdV2PlGplbi7O/H22x8QExONh4cHM2e+hZdX5ZmnL3zftm7dyqFDB1Gr1XzwwRz8/UUmZkFiL13mWTOly+QluTjlxABQ6Hd9SdrKsyVsS5MFgBVctFFYLRZkV1gaCKDV26ame6AzVa3Eam3r1aQLPx/7m1x9HrtS9nN7cN+67pIgCDehGg3Ely5diqenJ88++yx+fn40adIEgMTERDIyMmjWrBlLlixhyZIl9tfIZDK++uqr69rv2bNn+eGHH/jqq68YMGAAAN26dcNkMvHZZ58xYcIEXF1d0Wg0pKWlXfT6vLw83N2vL8mIxWIlP7/4utqwUSjkaDRO5OfrMJvL1mkGBzchMTGBvXsj6N27z2VagH8jEmnbxKPCY9Onv0JAQGMWL17EP//8w+HDR3jppVdp167sj7lC4cTEiZMYP/4h3v3sNzxI4eTJSM6fPw/Wsr64urriqGnEyCG30q9ff1ZH5Nmfe3JUG95bsJINW/7g/PkUFAoFTz45hWRzC54ec+kLB6PBRKirhg5D21R4XKstZN++vXz33VckJ0sBuJubG3fcMZKRI0fTqJG0ft5ohJycIvvrCo/twhhQPZnRL/UzqU8MBnOF469MXR1HfQiAq/MzeqO52p/7M8+8wJkzZ0lKSmT69Bf4+ON5qNUOlZ5XyjMaTBw6k8/s2R+xdOlifv31Zw7v34GD0xGef/ZZBg4czMK/I3lmbAf+W7SdeY+XvxjuZv8q4tt38R/2CFlZWRQU5GMw6NkckcQdvUKRR23D//YH8fHxxcvLy94ewLTPdjH/+X72r+c9e/HFdk5OEYYSA+++O4sNGzYglyt4/fWZKJXOF31+KnvfzGYTn3/+BQD33DMBd3ffK37ubgT14TN6o7NarfbSZTU1Iu6SvA8ZVkpcgzA6VV9ZPFsgnml0wqx2RGEsxnz+FMrGl0+hajQbKTBIZVW9HD1JKUyttj5VJ7VCxcjQwSw7vYJ/YjfQyrM5ga4BV36hIAhCNarRQPzs2bMA9sDIVkdcoVDQqFEj9Hq9fRub6lhDFR0dDUgl0spr06YNBoOB9PR0XF1dCQ0NZd++fVit1gr7jYuLo2XLltfdD5OpegMbs9lSoc02bdqRmJjAkSOH6d798pk/LdbK+zN+/AO0bt2Wjz+ew/nzKUyf/izDh4/ikUcm4eZWVq5EoVAxavhQABxDM9AkZtPYW8Hxc5moHZy4JTyInAI9oR2bEBjoh8WaR7dwP3S6Ij7/fD67/lkJWAkICODVV9+iVas2LFwZedn3yGIFRUjXCttkZmbw5ZfzOHhwPyCVTLr33vsZPnyUfTT/Um1KSfxq9mdSn1z43l1OfT6OmnQzHnN5Vf25Ozg48fbbs5g+fQqnTp3kf/+bzauvvn3J84pNl1Z+RERlYLXKefDBR+natQeffvoRSUkJfPTRHFat+huvloMxmdoR79CKdpdoy6lFLwIDgwkMDLY/djovkn792qHTn8KpeSsALJayc11EVAZ6o5nP/5SSWGkL9PavbbqF+xEe5MSZPUs4c/IwMpmMGTNeoX37Wy57XOXft61bt5CSkoxGo+Huu8ff9L9TQpmCYiMlBjNyGfi4O1b/DiwmXJL2AdU7Gg5lgbi22EKRf0s0WccxRu+7YiCeU1q6TK1Q46ys3zOt+jbuwcHUo5zLjWX+ka8Z2mwAvRp1xVlVM7MXBEEQLlSjgfi2bdtqsvlLCgqSpkqePHnSfhMAIDIyEplMRmCgVMu1f//+LFy4kH379tnrmcfFxXHq1Klamb5+vbp06caGDWuJiNjPk09OveabGB063MJXX/3A999/xcaN61i37h92797BAw88wh13jLSvrbYlaOoW7mcvIbRwZSQxKXlMvat9hTbNJgPJp3fy228/k58vjY4PGTKM119/FaNRVuWLVVtyMavVyubNG/j66y/R6YpRKpXcffe9jB//AM7O4o9mZURiNqE6NW4czJtvvsebb77Mrl07cHf/HAIHXvY13cL9KlQ/CA9vw4IF3/H338v59delnDlzGs6c5tXEXTgG9WLEBTdF7a/rN+iix67Etm9bqbMLyy9arVZ2797J07O+JDs7C5VKxYsvvkb//rdXeR8Wi4Xff/8FgLFjx4tzkVCBbTTcW+OIsgbycDhlnEBhKMCscqbYo3m1tm0rYVZitJLlHo4m6zimuMNY+05Eprz0OnT7+nAHj3pdkeRkxlkKCnTcHtyPfEMB6cWZ/BW9hpUx62ji1piu/rcQ5NqowmtaeobVUW8FQWiobsjsFDqdjh07dgDSKHthYSEbNmwAoHv37rRr14527doxc+ZMsrOzadKkCcePH+fbb79l7Nix9pHTTp060bdvX15//XVeeeUVHBwcmDdvHq1atWLIkKolJalLnTt3Q6VScf58CrGxMYSFlf0hLsteLCmfFRiw19a1cXV1Zdq0lxgwYDALF35GQkI8X331OStW/M5dd43Dq2kXIhOKLmovJiUPtVJur92bnp7Gxo3r2LZqFSXF0hpQVw9/1E0G4RTaky//Oo3RYKJLK7/LlkCy9RGgqKiIL774lB07pBs7rVu3Zdq0l2jSpOllXy+yiAtC9TI4BNHh1gc5snUxa9aswqVxOnC//YLb9pm90rnn3nvvZ9CgYfzyy2I2bFjLsWNH4dhRnopcy/DhoxgwYHCFGTm2NtP/20VT/RkA2uXrObF4Nc30ZzmxeA5ebo54aRwY4N0KaFehPwBeblLwYDKZ2LdvD3/++Rtnz0YBEBTUmFdeeZMWLVpd1fuxf/9ekpIScHZ2YcSI0Vf1WqHhy8iVlr741dD6cJfEPQAU+rQHuaJa21YpZLg7KcjTmUmz+tJErUFpyMcUfxRV856XfN2NkKitPCelI+NajCZKe5b/MiPJLtESn59IfH4iA5vcSrtqyEIvCIJwKTLrlYpEV4N///2XHTt22KemBwUFceutt3L77VUfeSgvOTmZgQMrH4lZsmQJPXr0IDMzk88++4y9e/eSnZ1NQEAAI0eOZPLkyTg6lk0RKygo4IMPPmDz5s2YTCb69u3Lm2++ib+//zX1zcZstqDVVs86QaVSjqenCzk5RReNJM+e/Q67d+9g5MjRTJ067ZJt2Eawq8JsNrNhw1qWLVtMTo6U9V6lUtGpU1c6dLiFkJBQNh3Vcv/gVixdf4I+rZyJjj7LsWNHiI4uKwnk5+fP+PEPMHTocL755zTPjeuAp6cLG/fE0rml76V2X0F8fByzZs0kJSUJhULBxImPMXbseBSKq7/o0G1ZgNOgqVf9uspc7mdyI6mr4/D1vbhaQW2rzs/ojeZ6f+7r1v3DF19IpSfHjBnHE09MueToV2XnHtuNO4CMjHT++usPNm5cR0lJSWn/lHTu3I0+ffrRrVsPPD0vTn5ma7cqn2uDwcCcb1bhK09h164d5OXlAuDg4MDYseO59977cXC4crbp8u+b0Whm+vQpnDkTxb333s+jj06+4utvJHX9Gc3MLKjT/VfFlT5HH/x8mHPJedzeKeiKN56vet8Fqfjv/QirTM759o9iVlfvz0sul/P30QKi0/UMau1Mf/kR3FMPomjSEedh0y/5urWxm1gXv4U+gT24P3wsZ0sTydUnCoUMNzcnCgp0mM0VL4G1JTlEpB0lKuccMmTc03I0jVyk68H6NiJe159RQRCuX42OiOfn5zN16lQOHTqEQqHA11cKvvbt28fvv/9O165d7ZnMr0bjxo05c+bMZbfx9fVl1qxZV2zLzc2NOXPmMGfOnKvqQ30xYsSd7N69g82bN3DffRPx8rr+bL0KhYIRI+5k0KChbNmykX/++ZuEhHgOHtzHwYP77Nvt+FP6f3e518rlcjp0uIVhw0bQp0//SuvoHjydXqVAfNeu7Xz66YeUlJTg4+PLa6+9TZs2VbuZIAhCzRk+fBQWi4UFC+azcuWfFBYW8PzzL1a5bnb5QNzPz5+nnnqWhx56lG3bNrNhwzpiY6MrnG+aNQulTZt2tGjRkmbNQggKakxl95CtVitFRUWkpZ0nMTGB2NgYzpw5zdmzURgMBvt2np6eDBs2kjvvvAsPj2sbuTty5BBnzkShVqu5665x19SG0LBllE5N96+BRG0uSdJoeIlvu2oPwm383VVEp+vJLDRT1Cwc99SDmJMisZQUIHesfJ/a0jXiXvW0hviVeDl6MqTp7VisFs7mxrA9aTcTWt1dr6fZC4Jw46rRQHz27NkcPnyYF198kfvuu8++fq64uJhffvmFTz/9lNmzZ/Phhx/WZDcatI4dO9GqVWvOnDnNkiWLmDbtpWpr28HBgREj7mT48FHEx8cSEXGQqKhTpKQkkZaRjYNKjpOTE76+fjRtGkKbNm3p3LlrpaNXV8NisfDzzz/x669LAejUqQuvvPLWdWeyFwSh+owcOZo9J7M4vvMXtmzZSHZ2Fq+9NhM3t2sLClxcXBk16i5GjbqLhIQ4du/eyf79e4iOPkd8fCzx8bEVtpcrVOxb4Y7KrEP2y14MBgOFhQXo9fpK2/fy8qZ795706tWXzp27VvmmQWUsFguLFy8CYPjwO685mBcarqISI3lF0s2f6s6YLjOV4Hz+EACFTWqu7JafRvqMZBWYMTl5IfdpiiUrAVNsBOo2Ayp9zY02Nb0yMpmMWxv3IT4/kQxdFrF5CYR5NKvrbgmC0ADVaCC+ZcsW7r//fh5//PEKjzs7OzNp0iRSU1NZuXJlTXahwZPJZEya9DQvvfQcGzeuo0ePXvTqVb1/mGUyGSEhYYSElE3Lupqp7ldDp9Mxd+4H7NmzC4C7776Xxx574pqmoguCULOCW/Xgrtvb8MEH73H06GGmTXuaN954h9DQ60sc1bRpCE2bhvDAAw+Tm5tDZORxoqJOExNzjsTEBLTabCxmI9nZWdILcisuMXB396Bx42BCQkJp3rwlbdq0o3Hj4Gob1dq2bQvnzp3BycmJ8ePvr5Y2hYYlKV0q4eXuosZRXb2XWs7nDyE36zG6+GHwag7axGpt38bfXUrUmlloxmq1omreE31WAqZz+y4ZiOeUSDXEPR08aqRPtcVZ5UR7n7YczviP/zJPiEBcEIQaUaOBuFKpJCQk5JLPh4aGXteohCBp1649d901jr///pOPP57DBx/MpVWriqXbqnt9Wvn2yk8zrUxEVAY5+SV8ueI4KrWSg6czsFgjK2zTLdyPJp4W3nvvTWJjY1AqVTz33AsMHjys2vqsDO125Y0EQagyKeljOz755Avee+/N0hKIU3niiakMHz4KmUxmz15+Nckjy/Pw8KRv31vp2/dW+2N6vZ7tEWcJC3CgKO4/ok2N6NDcD1dXNzw9vSrkAaluOTk5fPONlPRx/PgHxGi4UKnEdGmNe7XXD7da7dPSi4L7QA1OmfZxUyKXgcFkpaDEgjK8J/r9f2BOP4elIBO5W8UlZharhRz7iLhHjfWrtnTwbcPhjP9ILjxPofHmzCciCELNqtEoeOjQoWzYsIEJEyZcNKJpMplYv349w4ZVX6B1M3v00SeIjY3h2LGjvPbai7zxxjt06VIWeNZlIG67yLYltnn/+308NbriaHpk5Amef/5t8vJy8fDw5K233qv29eAiQ7ogVC/b5z4srDlffPENH3/8AYcOHeDLL+dx8OA+nnnmhQplD22ud0aNg4MDQ/uWlkxs3pI9KyOvOuP5tbBarcya9T65ubk0axbCXXfdU+P7FG5MiRnSiHh1B+Lq3HhUhWlY5CqKA2v25rJCLsPbVUFmgZnMAjNyF08UgeGYz5/GGH0Ah04jK2xfYCjCZDUjQ4aHw42/lEyjdqORiz+pRenE5MbRuZprtQuCIFR/Ycty7rzzTvLy8pgwYQLLly/n4MGDHDx4kOXLlzNhwgQKCgoYNWoUJ0+erPBPuHoqlYqZM2fTocMt6HTFvP32qyxZ8gMmk6muu3ZFGzas5bXXXiAvL5fQ0OZ89tlXIimbINxgNBp33n13DpMnP41SqeLgwf08+eQjrFz55w1xHqqKZcuWsHPnTlQqFTNmvIZara7rLgn1lH1E3KN6S5c5J+8HQBdwC1ZV9SeBu5CvmzRek1loBkDVvBcApuh9FyVMzNFL09LdHTQoqrmcWl1p7i7N6ozOjavjngiC0BDV6Ij4gw8+aP/6xIkT9vV55U/eDz30kP1rq9WKTCbj9OnTNdmtBsvJyYn33/+QhQs/Y+PGdfz661IOHNjL88+/RMuWNT9adLWMRiPffPMla9euBqBfv1t54YVXcHSs+YsLQRCqn1wu5+6776VLl27Mn/8JUVGn+OabBaxfv4ZHH32CHj163bDZh9euXc3ixT8AMHXqczRv3qKOeyTUV0aTmdRsqYZ4dWZMlxl1OKX/B0Bx40vX8q5Ovm5SQJ1ZIAXiypAusHsJlpwULNokFN5N7NtqG9C0dJvmHqHsOr+flMJUCgyFuKld67pLgiA0IDUaiH/wwQc12bxQCbVazbRpL9GpUxcWLPiM2NgYpk+fwqhRY5g48XF75vq61L21P5mZGcyZ8y5RUaeQyWQ89NCjTJjw4A17kS4IQpmmTUOYO/cLNmxYy+LF35OYmMC7775Bq1atuf/+h+jaKrSuu1hlVquV5ct/5ccfvwPgkUceYcSIO6+p/rpwc0jJKsJsseKoVuDmrKq2dp3SjiA3GzC6+GPwuHT+nerk61qaOb1QmtUic3BB2aQjpvjDGM/tqxCIZ+u0wI2dMf1CGgc3fJ28ydRlE6U9R7eATnXdJUEQGpAaDcTvuuuummxeuIxbbx1Ax46d+OabBWzfvpVVq/5iz55dPP/8i3Tten1rpStLvDRrySG8NFKCpMslXgKQFyfyzFvvk5+fh6urKy+99Drdu/e6rj4JglC/yOVyhg8fRf/+t/PHH7+wevVfnDlzmpkzX6dp02Zox4zjttsGXNMMmKokfyv//7UqLi7miy/msn37NgDuvfc+pk6dSm5u8XW1KzRsiell68Or8+ayS+m09KLGPWs0SVt5tqnpOUUWDEYzapUCZYtemOIPY4o5gLXHPchk0irHTF229Bon71rpW20JdgsiU5fN2ZwYEYgLglCtRMryBszDw5NXXnmTQYOG8uWX80lLO89bb73CHXeM5IknplzzFPALA23bBfCVki8ZjUa++OILFi9eDEBYWAveeOMdGjUKvKZ+CIJQ/7m6uvLYY08wZsw4/vrrD9at+4eEhHg+++wTvvvuKwYMGMSgQcNo2bJVlYOWys5BF55/Fq6MvK5A/Pjx/5g372PS0s4jl8t58slnuPvusWLWjnBFcan5ADTyqr4ZaKr8JNT5yVhlCnSBXaut3StxcZDhpJKhM1pJySoipJEGZXAHUDthLdJiTj2LMjAcKBsR925ggXhj1yCOZBznbE50XXdFEIQGploD8ddeew2ZTMb777+PQqHgtddeu+JrZDIZc+bMqc5uCBfo0qUbX331PT/9tIhVq1awfv0ajh//j1dffbvW1jkmJibwySdzOHfuLADDh9/Jk09OFcmOBOEm4eXlxaRJTzFhwoNs2LCWdetWk5p6njVrVrFmzSqCgoK5/faB9Ot3G02aNK2zfmZlZfLDD9/y779bAPDz8+fll9+gbdv2ddYn4cZiC8QDvF2qrU3n5AMA6Pw7YKnFdcoymQw/jYKEbBPxaQWENNIgU6pRhXTFeGYXpuh99kC8oY6IB7kGIENGVomWbF0O3k4NZ+q9IAh1q1oD8QMHDiCTybBYLCgUCg4cOHDF14jRhdrh6OjEU089Q8+evZk793+kpCQzffpUJk16kjvvvLvGfg5ms5m///6TJUsWYTQacXd35/nnX6RXr741sj9BEOo3V1dXxo0bz91338N//x1h06b17N+/h5SUJH7++Sd+/vkngoOb0rdvf3r37kdYWPNa+TtRVFTIn3/+zt9/L0ev1yOTybjjjlE89tgTuLhUX0AlNGwGo5nkDKnmdHWNiMtMepxTDwO1l6StvEbuShKyTcSdz+f2TkEAKJv3wnhmF8bYCBz6PIhFJidHnwuAj5NXrfexJqkVavydfUkrzuBsTjS9nGq2bJwgCDePag3Et23bdtnvhbp3yy2dWbDgO+bN+4j9+/fy9ddfcvhwBNOnv4ynZ9X/eJZfo5mTX0LM+fyL1mhqZFq++OJTYmLOAdC1a3fef/9dlEpnkehIEG5ycrmczp270rlzV4qLi9m7dxc7d/7L0aOHSUpK4Ndfl/Lrr0vx9fWjZ88+9OzZm/btO6JSXZz8qlu4X5XWjVc2Vb2oqJDVq1fy11+/U1gore1t06YtTz75bL2sNiHUb4nphVisVjQu6mpL1OaUfgy5qQSTkzd6r+bV0ubVCNBIl4q2kX4ARaNwZM4eWItzMSUdJ8evKRarBZVcibtaU+t9rGnNPUJJK86otbX5giDcHMQa8ZuQRuPO22/PYs2alXz33VdERBzgqace4+mnn+PWW2+v0ujT5dZoZmVlsmTJD2zevAEAV1c3Jk16iuHDR+Dl5UpOTlHNHJggCDckZ2dnBg0ayqBBQykqKmT//r3s2bOLI0ciyMzM4J9//uaff/7GycmJTp260r17Dzp37oavb8WkbFdaN15eRkY6//yzknXr/qG4WDonBQc35eGHH6d3775itpZwTWzBamgjTbX9DjlXSNImr5Y2r0aAu3SpeD6rCJ3ehJODEplcjjKsB8YTGzGd20e2mxsgrQ9viJ+dTn7tuT24L/7OvnXdFUEQGhARiN+kZDIZo0bdRfv2t/DRR7OIi4vlww/fZ/Pm9TzxxFSaNm121W1mZ2exYsXvrF27GoPBAMDAgYN5/PGn8PT0apB/nAVBqF4uLq4MHDiEgQOHoNfrOXr0MPv37+Hgwf3k5GjZu3cXe/fuAiAoqDEdOtxCu3YdaNWqNY0aBSKXXzpQ0Wq1HD58kB07tnH06GEsFmlmTpMmTbnvvofo1+82FApFrRyn0DDZAvGQRm7V0p6yMA2H3DisMjnFQXUzJdrFQY6bo5yCEgvxaQW0biqtkVa17CMF4glHyQltDYBvA5uWbiOXyQlwub4qDIIgCBeq1kA8PDz8qoMtmUzGqVOnqrMbwlVo1iyEzz77mt9/X8bvv//CkSOHmDLlcfr3v40xY+65YiZjs9nMiRPHOLL1F9YvOobJJNUabdOmHZMnP014eJvaOhRBEBoYBwcHevbsTc+evbFYLMTEnOPgwf0cOnSQs2ejSElJJiUlmfXr15Ru70hgYCC+vv6czzXzWYIvRqMBrTaHlJQkMjLSK7TfsWMnxowZR/fuPS8bwAtCVcXaA/HqmZ5tK1lW4tsGi4N7tbR5LRq5KykoMRB7Ps8eiCu8myD3C8WSEYtj3FGQg08DS9QmCIJQk6o1EB84cCCBgYG4u9fdHwvh6qlUKh588BEGDBjMokXfsHfvLrZv38b27dsICgqmS5euNG/eEh8fX5RKJUVFhaSkpHDmzCmOHTtKfn7ZurE2bdpx330P0aVLNzECLghCtZHL5bRo0YoWLVrxwAMPU1RUyIkTxzl+/CinT58iNjYavb6EuLhY4uJiAUg+W7ENmUxGaGhzevbszYABgwkMDKqDIxEaqkKdkYwcHQDNGmlIzii8vgYtJpzOHwJKp6XXoUbuCs6mQ3RyXoXH1a1vpyQjlkYp0cgau+HjKAJxQRCEqqr2ZG0fffQRo0aNAmDixIk8/fTT9OrVqzp3I9SQwMAg3nrrPWJiolmx4nd2795BSkoSKSlJl32dm5uGfv1u5Y47RtK8ecta6q0gCDczFxdX+2g5SLNzUlPPc/58CllZmRQWFmIyGVGpVLi7e9CoUSAhIWG4utZe6Sfh5hKfJt2U9vN0wtXp+hO1OaWfQGEswuzgjt6n9XW3dz0ae6oAHWeT87BYrMjl0o12ZVh32PcrrvpiWhQ74O8i1lALgiBUVbUG4o6OjpSUlNi/P3jwIPfcc0917kKoBWFhzXn55TeYOnUaR44cIjLyGAkJ8eTm5mA2m3FycsbfP4DQ0Oa0b9+B8PA2KJUi3YAgCHVHoVDQuHEwjRsH13VXhJvUuSRptDg08NqnpZuzE+xfO8f9C0ChVzhm7eVviNc0PzcFjioZOr2J+JMnaOJddqNBHhiOJf4IvfJ0+BbkYyo5XfZCJ3Ud9FYQBOHGUK3RU6tWrfjxxx+Ry+W4lWbQPHHiBA4ODpd93ZAhQ6qzG0I1cXFxoV+/W+nX79a67oogCIIg1GtnknIBaBXscd1tKUtycSxIwgoU+rS97vaul1wuI8xXzcnzes6mGyoE4rmBzXGNP0LrYgPq4iJwd6nDngqCINw4qjUQf+ONN3j++ed54403AGk93pIlS1iyZMklXyOTyTh9+vQlnxcEQRAEQajPjCYzseelqemtmnhed3uumScAKHFvhtmhftTlbukvBeLnMvQMalMWbKcqZehdHehQqMcccwBF51F12EtBEIQbR7UG4u3bt2fTpk0kJiaSnZ3NQw89xFNPPUXv3r2rczeCIAiCIAj1Ruz5fExmCxoXNf6eTtfXmMWES7ZUTabQt3019K56tAyQppmfSTNgtlhRlK4TTzfk8p+nsxSInz+NpVU/5C4eddhTQRCEG0O1L+xVKpWEhoYSGhrKXXfdxe23307Hjh2rezeCIAiCIAj1wtly09Kvt2KIc040CpMOk8oVnXtINfSuejTzVuGsllFssBKXZaS5nxSYp+lzOe+gIsfDF8/cTEzR+1B3vKOOeysIglD/1Wjh1A8++EAE4YIgCIIgNGin4nMAaNXE47rbsk1LL/RtB7L6U99eIZfRNlDK+XMipSwxb7pBSlJX1Ey63jMnncCSn1n7HRQEQbjB1J8zvCAIgiAIwg2muMTEudL62u1Cr6+OtlKnxbEwBSsyiupBkrYLtQuSAvHIZD0AZquFjNJA3MOvBfKAloAV46ltWK3WuuqmIAjCDUEE4oIgCIIgCNcoMi4bi9VKI29n/Dyub324W8ZRAHQeIZjVbtXRvWrVNtABGZCUYyKn2Ey6Phej1YyDXIm3yg1V69tBrsCSFY855VRdd1cQBKFeE4G4IAiCIAjCNTp2LguA9tc5Gi7XF+CaJQWvBf6dr7tfNUHjpCDUVypddiShhMSSbACCHXyQy2TIXTxQtugDgPHkFuS6gjrrqyAIQn0nAnFBEARBEIRrYLZYORYjBaMdw64vEHdJ3IXMakbvEoDeNag6ulcjujaTRv0j4nQklUg3IYKdyo5dGdYdmbs/GEvw3L8CLOY66acgCEJ9JwJxQRAEQRCEa3D8XCb5RQZcnVS0CPa45nZkJj2uibsByA/oCteZeb0mdWnqiAyIzTISkyPVTm/i6GN/XiZXoO50JyjVqLOS0Py3EcR6cUEQhIuIQFwQBEEQBOEabD+SDEC31n4oFdd+SeWSuAu5SYfRwQOdR2h1da9GeDgr7DXFk1OdgYqBOIDc1Qv1LSOwAi4xh3E9tbO2uykIglDviUBcEARBEAThKukNZvadOA9Ar7YB19yO3FCEW9xWAPICe9SrkmWX0jtMmp5uzAjCUeaAt+rixHKKgJbkd5bqibud2onL2f212kdBEIT6rv6f7QVBEARBEOqZfSfT0OnN+Hk4ERaoueZ23GI2IjeVYHALpNgrvBp7WHO6NnPCQW3BanDCoygE2SWm0heHdaWg7a0AaI5txvnsgdrspiAIQr0mAnFBEARBEISrYLFaWb8/AYBB3RpfMhC9ElVuAi62teEt76zXa8PLUylkeAZISeoKzwddtmZ4Yet+FLTuC4D7sU0iGBcEQSglAnFBEARBEISrcOxcFqnZxbg4Krn1lmvLcC4zG/A8+TsyrBQ36oLep1U197LmmKxmiryiQGYmU6vi1HnDpTeWyShse1uFYFxMUxcEQbhBA/GEhATefvttRo8eTZs2bRg5cmSl2+Xn5zNr1iz69u1L+/btGTRoED/88EOFbQwGAx9++CF9+vThlltu4dFHHyU2NrY2DkMQBEEQhBuMyWzhzx0xANzROwQnB+XVN2K14n7qT1SFqZjVruSFj6neTtaweF0mJnURTgHSGvm/j+ZjsVwmM/oFwbjm2GYRjAuCcNO7hr8ede/cuXPs2LGDjh07YrFYKp0SVVxczEMPPYRCoeD111/H29ub+Ph4CgsLK2w3a9Ys1q1bx6uvvoq/vz9ff/01jzzyCGvXrsXN7eLkI4IgCIIg3Ly2HU4mNbsYN2cVY29vjlFvvOo2XOO24HI+AisytB0mYlG71kBPq9eZNL396wO6RABCgnVEZ0Ci1sQvB/PoVlpj3MbF5XyF7w2+zSguysM58QSaY5tRFGopadym4jZ+zWrmAARBEOqZGzIQHzBgAIMGDQLg1VdfJTIy8qJtvv32W4qKili9ejXOzlJ5jR49elTYJi0tjT///JOZM2cybtw4ANq3b8/tt9/Ob7/9xuTJk2v4SARBEARBuFGkZhfx1y5p1tw9tzfH1VlNztUE4lYrrnFbcD+3DoC88NEYvFvURFdrjNVq5ZxRWh8f6uxPUCtnNp8qZs85HcGeKgLcL3NpKZOha9YRAOfEE7jEHAa4KBgXBEG4GdyQU9Pl8it3+88//2Ts2LH2ILwyu3fvxmKxMGzYMPtjHh4e9OnTh507Rc1LQRAEQRAkeoOZr1ZGYjBaaN3Uk/63BF5dAxYTHpG/2oPw/LChFDW9tQZ6WrPSzJnkWwpRoSRUFUz7IAdCfVWYrbDiSAGZBabLN1AajBc3aQ9IdcYdk0/XQs8FQRDqlxsyEL+S5ORkMjMz8fT05KmnnqJdu3Z0796dN998k6KiIvt2sbGxeHt74+7uXuH1YWFhYp24IAiCIAiAtC584cpIkjOL0DireGJUG+RXkeFclZeI37650nR0mZzc1mMpaD7syi+sh84Y4gAIUzdBJVMik8kY3t6VAI2CEqOVXw/mczy5BMtlMqlfHIwfwiEtpja6LwiCUG/ckFPTryQrKwuADz/8kCFDhvDdd98RHx/P3LlzKS4u5tNPPwWkZG6VrQPXaDTk5eVddz+Uyuq5z6FQyCv8f6NqKMcBDedYGspxXKvq+ozeaG72n/u1Eu/bzclktjD3t/84k5SLUiHjzj4hpGYXk5Grwy1bR0GBDrP54qDTnJ2AzGLC/fw+3NKOIMOKWelEdshQSlyCITuhDo7m+ugsJZwzSP1upQqxP+6glHF3ZzfWHC8kUWti86liDsWXcEszaNcYPF0qaaw0GJdZzDgln8LlzD4sSpVYIy4Iwk2jQQbiFosFgJCQED788EMAevXqhVKp5M0332T69OkEBwfXaB/kchmelf7luXYajdOVN7oBNJTjgIZzLA3lOK5GTXxGbzQ348+9Ooj37eZhMlv4amUkZ5JykctljO4TQqBP1c4b6sLzeMdvRlWSA0CRVytygm/Dorpxf3+O6E9hxISvwotApV+F55zUcsZ2ceNIQgkH4krIKbbw7ykZ/56CJt5WOjWDNkGgUpR7kUxGcWhnZCY9jmkxuJ3ahdGniQjGBUG4KTTIQNw21fzC5Gw9e/YEpKzrwcHBaDSai7KogzRSfuF09atlsVjJzy++rjZsFAo5Go0T+fk6zGZLtbRZFxrKcUDDOZa6Oo76EABX52f0RtNQfn9r2830vtWHz2h9cORsJkfPZaGQyxjTL4SwwCtfG8hMejTR63BJ2IkMMKlcyGk6AJ1HWM13uAblmQuI1J8FoIdjB2SVTM2Xy2R0beZEh8aOnEk3cC6jkLhMSMyWkZgNWyOt3NoabmkK9oklMhlFLXsiNxpQZyfhued3tLc+hNHrKtfgC4Ig3GAaZCAeHByMWq2+5PN6vVSCIzQ0lKysLPLy8ioE3rGxsYSGhl53P0ym6r1QM5st1d5mXWgoxwEN51gaynFcrZvxmMu7WX/u10u8bzePFo096NehEY19XQn2u3KJMYfMk3icWoGydBS80LsNOcH9sSoda7qrNcpsNbOucAdmLPjKvHA0qMk0Zl/2NQGe0r8uzSA6w8q5NCjUy1j7H+w9a6V3S/C2v6VyZL79aK7bhqY4Da9dv5B964OYPAJq+MgEQRDqToNc6KZWq+nTpw/79u2r8PjevXsBaNu2LQB9+/ZFLpezadMm+zZ5eXns3r2b/v37116HBUEQBEGodzzdHHh0eOsrBuHykjy8/vsJnyPfoyzJweToSUaLMWhDhtzwQbjFamF78UFyrPmoUNJd2a7S0fBLcXaADsEwpgt0C7XioLSSUyxj3TE4lgilqwmxyhXEBN+GwTMQuUGH97+LUafH1dBRCYIg1L0bckRcp9OxY8cOAFJSUigsLGTDhg0AdO/eHS8vL5555hkmTJjAjBkzuOuuu0hISGDu3LmMGjWKJk2aABAQEMD7JnpuAAEAAElEQVS4ceP46KOPkMvl+Pv788033+Dm5saECRPq7PgEQRAEQbgBGEtwid6ES8xW5GY9Vpmcwqa3UhA2FFNeWl337roZrEa2Fu8jxpiIDBndle1xll3bGneFHFoHQjMfOBBjJTFbxrFESMy20ruFNDpuUajQ3voAnnv+wCEzAa9dv1DQfgBFLXvCVQT/giAINwKZ1Xq5+hL1U3JyMgMHDqz0uSVLltjXhu/bt49PPvmEs2fP4u7uzqhRo5g+fXqFaesGg4F58+axatUqioqK6Ny5M2+++SZhYde3lststqDVFl15wypQKuV4erqQk1N0Q0+HbCjHAQ3nWOrqOHx9L65WUNuq8zN6o2kov7+17WZ63+r6M5qZWVCn+79QVEJOhe9lhiJcUw/iFvcvMr3UV4N7E3La3ItJEwRIWdNvVDKZjDR5Blty9pFnKUSGjB7KDgTLq2equNUK8VlwMAb0JhkymZW2QVKG9WYdm4HZhEfEapySTgKg921KfsfBmDwbXfe+FQoZbm5Ol8x2fyktPevXGv+6/owKgnD9bshA/EYgAvGLNZTjgIZzLCIQF4H4jfz7W9tupvetrj+j9TEQlxsKccg+h2NGJE4ZJ5BZjACYnH3Ib34HuoBbQFa24u9GDMSLLTrijSlEGs6RZZZuPrjInBni0gelofpXM+oMcDAWErKk0W61wkrXDu60beGKt4cSp7ijaP7bhNwsvdcljVqga9aBkoAWoFRd0z5FIC4IQn1xQ05NFwRBEARBqGmW4lzydv2ET1oMDvqKNweKXX3JDelGqldLLFY51pKU0mek4M5iysBa+jWVxHvWSh60VvGrq9uq7NHyz5msZvRWPcWWEvIsBWSb89Bacu3PK1HQ3rElnR3a4iBTk2m4fHK2a+GkhlvDpenp/yVAbrGMvUfz2Xs0H0+NkgDfYHwCHsY7JxqP3FhUCcUoEvYhl+/D6uqOxdUDq4MzFgdnLAo1yBWgUGCVKwBZhenstmOXy2XkOqrQ6U1YLdYqT3l39JHROKQZcnmDTK8kCEIdECPiNcRqtWKxVN9bq1DIG0S5nIZyHNBwjqUujkOhqPsLmer+jN5oGsrvb227Wd63uv6M1pf3+MSe39DsWmH/Pl2l4LSLAyddHUhyUDbIdct+Si/CnUPp6NoKB8qW8qUVZtTofi1WK3EZVlKKnDkXX2RP4lafPNHbkeFjBtd1N4C6/4wKgnD9RCAuCIIgCIIgCIIgCLVI3E4TBEEQBEEQBEEQhFokAnFBEARBEARBEARBqEUiEBcEQRAEQRAEQRCEWiQCcUEQBEEQBEEQBEGoRSIQFwRBEARBEARBEIRaJAJxQRAEQRAEQRAEQahFIhAXBEEQBEEQBEEQhFokAnFBEARBEARBEARBqEUiEBcEQRAEQRAEQRCEWiQCcUEQBEEQBEEQBEGoRSIQFwRBEARBEARBEIRaJAJxQRAEQRAEQRAEQahFIhAXBEEQBEEQBEEQhFokAnFBEARBEARBEARBqEUiEBcEQRAEQRAEQRCEWiQCcUEQBEEQBEEQBEGoRSIQFwRBEARBEARBEIRaJAJxQRAEQRAEQRAEQahFIhAXBEEQBEEQBEEQhFokAnFBEARBEARBEARBqEUiEBcEQRAEQRAEQRCEWiQCcUEQBEEQBEEQBEGoRcq67kBDZTZb0GqLqqUtuVyGl5cLWm0RFou1WtqsCw3lOKDhHEtdHYevr1ut7etSqvMzeqNpKL+/te1met/q+jN6I3w+G/Lvgzi2+q+uP6OZmQU12n5D+Tk1lOOAhnMstXUcVfmMihHxG4BcLkMmkyGXy+q6K9eloRwHNJxjaSjHIVwd8XO/NuJ9E8pryL8P4tiEutZQfk4N5Tig4RxLfToOEYgLgiAIgiAIgiAIQi2qV4H4Qw89RKtWrSr9t3btWvt2y5cvZ+jQobRv354777yTf//996K2CgoKeP311+nevTudOnXiueeeIyMj46Ltjhw5wvjx4+nQoQO333473377LVbrjTvdQhAEQRAEQRAEQajf6tUa8ZkzZ1JYWFjhscWLF7Np0yZ69eoFwNq1a3nrrbd46qmn6NmzJ+vWreOZZ55h2bJl3HLLLfbXTZs2jejoaN555x0cHByYP38+kydPZsWKFSiV0mEnJCTw+OOP06dPH6ZNm8aZM2f45JNPUCgUPP7447V23IIgCIIgCIIgCMLNo14F4s2bN7/osRkzZtCnTx+8vLwA+PzzzxkxYgTTpk0DoGfPnpw9e5YFCxbw3XffAXD06FF2797NokWL6Nu3LwAhISEMHz6cTZs2MXz4cAAWLVqEp6cnn376KWq1ml69eqHVavn666956KGHUKvVtXDUgiAIgiAIgiAIws2kXk1Nv9CRI0dITk5m1KhRACQlJREfH88dd9xRYbvhw4ezb98+DAYDADt37kSj0dCnTx/7NqGhobRu3ZqdO3faH9u5cycDBw6sEHAPHz6c/Px8jh49WpOHJgiCIAiCIAiCINyk6tWI+IXWrFmDs7MzAwcOBCA2NhaQRrfLCwsLw2g0kpSURFhYGLGxsYSEhCCTVcyGFxoaam+juLiY1NRUQkNDL9pGJpMRGxtLjx49rqv/SmX13OdQKOQV/r9RNZTjgIZzLA3lOK5VdX1GbzQ3+8/9Won3rXbV989nQ/59EMcmCIJQ8+ptIG4ymVi/fj0DBgzA2dkZgLy8PAA0Gk2FbW3f257Pz8/Hze3i2m3u7u5ERkYCUjK3ytpSq9U4OTnZ27pWcrkMT0+X62rjQhqNU7W2V1caynFAwzmWhnIcV6MmPqM3mpvx514dxPtW826kz2dD/n0QxyYIglBz6m0gvmfPHrRaLSNHjqzrrlwTi8VKfn5xtbSlUMjRaJzIz9dhNluqpc260FCOAxrOsdTVcdSHC+zq/IzeaBrK729tu5net7r+jN4In8+G/Psgjq3+q+vPqCAI16/eBuJr1qzBw8PDnmwNpBFtkEazfX197Y/n5+dXeF6j0ZCWlnZRm3l5efZtbCPmtpFxG4PBgE6ns293PUym6j3Bm82Wam+zLjSU44CGcywN5Tiu1s14zOXdrD/36yXet9pxo7zHDfn3QRybIAhCzamXC2RKSkrYsmULw4YNQ6VS2R+3ree2rfO2iY2NRaVSERwcbN8uLi7uonrgcXFx9jacnZ1p1KjRRW3ZXnfh2nFBEARBEARBEARBqA71MhDftm0bxcXF9mzpNsHBwTRr1owNGzZUeHzdunX06tXLnv28f//+5OXlsW/fPvs2cXFxnDp1iv79+9sf69+/P1u3bsVoNFZoS6PR0KlTp5o4NEEQBEEQBEEQBOEmVy+npv/zzz8EBgbSpUuXi5579tlnefHFF2nSpAk9evRg3bp1HD9+nJ9//tm+TadOnejbty+vv/46r7zyCg4ODsybN49WrVoxZMgQ+3aPP/44//zzDzNmzOC+++7j7NmzLFq0iOnTp4sa4oIgCIIgCIIgCEKNqHeBeF5eHrt27eLhhx++qPwYwMiRI9HpdHz33Xd8++23hISE8OWXX140gj1//nw++OAD3n77bUwmE3379uXNN99EqSw75KZNm7Jo0SL+97//8cQTT+Dl5cVzzz3HY489VuPHKQiCIAiCIAiCINyc6l0gXr7E2KXcc8893HPPPZfdxs3NjTlz5jBnzpzLbte5c2f++OOPq+6nIAiCIAiCIAiCIFyLerlGXBAEQRAEQRAEQRAaKhGIC4IgCIIgCIIgCEItEoG4IAiCIAiCIAiCINQiEYgLgiAIgiAIgiAIQi0SgbggCIIg/J+98w6v8foD+Ofe7L0kImIkVhBB7K3ooFVa5UeLUlq1aVGk9l6lZu0aVdXSqlF7x4gMiUiEyCQ7uTc7ufP3x+29ciWRELvv53k8cu97znnPee855z3fc75DQEBAQEBAQOAFIgjiAgICAgICAgICAgICAgIvEEEQFxAQEBAQEBAQEBAQEBB4gQiCuICAgICAgICAgICAgIDAC0QQxAUEBAQEBAQEBAQEBAQEXiCCIC4gICAgICAgICAgICAg8AIRBHEBAQEBAQEBAQEBAQEBgReIIIgLCAgICAgICAgICAgICLxABEFcQEBAQEBAQEBAQEBAQOAFIgjiAgICAgICAgICAgICAgIvEEEQFxAQEBAQEBAQEBAQEBB4gRi+7AoICLwuBKaE4O3kpfedWq0mLS2VtLRUcnNzATUmJmbY29tTubIzBgYGL6eyAgJPQGBKCHXM3EhLSyEnJwe1Wo2RkTHW1tZUquSIiYnJy66igICAQLko6V0tICAg8CoiCOICAuVE+3JPS0vlypWL3LgRQHBwCLm5OSWmNzIyok6derRo0YpOnbpQpYrLC66xgEDpFBQUcPbsaS5fvsS1oKvkZ+aVmtbJqTK1atWhQQNPmjZthpubO2KxoFAlICDw6iEI4gICAq8LgiAuIFAO1Go1KXcTmPHbVAIC/FCr1bprYrEYB4dKWFpaIhKJyc/PIz09DZlMRlhYKGFhoezYsZWWLVszcOAQ6tSp9xJbIvBfJzs7iwMH9nHkyN9kZ2frXbO2tsHKyhqxWIxMVkhmppSCggJSUpJJSUnmypVLANjbO9C2bXu6dHkHD4/6iESil9EUAQEBAQEBAYHXFkEQFxAog4iIcDZv3sCtWzd13zVs2Ii33+5KvXoNqVq1BkZGRnp5VCoVCQkPCAm5waVL57lxIxA/v6v4+V3l/fc/ZNiwrzEzM3vRTRH4D6NSqTh69BA7dmwlJ0cjgDs7O9OxYxeS7KWMf3s05ubmennUajVZWVnExkZz585tbt4MJiTkBhkZ6Rw+fJDDhw9SrVp1PvigN++88x6mpkKfFhAQEBAQEBAoDyJ10aM9gWeGUqkiIyP3mZRlaCjGzs4CiSQXhUL1TMp8GbxO7QhMCeFanD83j1wn+uptAESGItxb1ad2+4ZYO1rTsVZLPCw9ytWWBw/u88svOzh79hQA1arVYNas+VSt6vpc21EWL+s3cXS0emH3Ko1nOUZfdZKTk1ixYjE3bwYDUNm1CnXfa0Tluq6oRSKCUkJoWkSV09vJq1TVTplMRkjIDc6ePYWv70UKCwsAsLS0onfvPvTu/QkWFhbPv1EvgddpDqsoL3uMvg7j803uD69T2wJTQghMCdF9fnQ+A/057XVq2+N42WM0NTW77EQV4E35nd6UdsCb05YX1Y7yjFFBEH9OCIJ4cV6ndoSG3mTZsgWkpCQD0LXrO5i0sWdsuxHA07clKCiAFSsWk56ehrW1DfPnL3mpquqCIP5qL/SfBZcunefHH5eTk5ODqakpQ4YMp3fvj6hUyUb3u28J3c1wz4FPXHZubi5nzpzgr7/2k5DwAABra2s+/XQwH3zQ+41zVvg6zWEV5WWP0ddhfL7J/eF1btvj5jOlUolMVkClStYUFqqfum2FhYVERIQTGXmHxMQE8vLyMDY2pmpVV5o2bY67e63nbrLzsseoIIiXjzelHfDmtOVVEsQF1XQBgSKo1WoOHPidbds2olKpcHauwsSJU/DyasKW0N0VLr9p02asXr2R2bOnc/duBNOnT2Lx4pXUqlX7GdReQOAhMpmMrVt/4u+//wSgXr36TJnig4tLVQwMno2jNQsLC3r2/IgePT7k0qXz7N79M/fvx/PTT2s5duwIY8ZMpGHDRs/kXgICAgJPSmpqKteu+RIcfIPIyLukpCShUmkW3lZW1nh5Neadd7rTokXrMgXn9PQ0fH0vcvXqZW7eDEahkJeSciOenl6MHDkWd3fh3S4gIFA6giAuIPAvcrmc1atXcOrUcQDeeqsbY8ZMLGY3W1Hs7e1ZvPgHZsyYQljYLXx8JvPDD2txcan6TO8j8N8lMTGBRYvmcvduBACffNKfzz8fhqHh85nyDQwM6NSpC+3bd+L48SPs2LGVmJhoJk8eT69efRg69EuMjY2fy70FBAQEiqJSKDlz5iT//HOY0NCQUtNlZ2fh63sRX9+LeHg0YPjwr/U2DtVqNQ8exHP16mWuXLlEeHiYnqNWB4dKeHjUx9W1OpaWVhQU5HPv3l0CAq4TGhrC+PGjmDp1Bu3adXiu7RUQEHh9EVTTnxOCanpxXuV25OXlMW/eDG7cCEQsFvPVV6P58MOP9HbIi4ZEeRZtyc3N4bvvvuHevbs4O1dhxYq12NvbP5P2lBdBNf3VVn19Gi5ePM+PPy4jNzcXS0srJk+eRsuWbfTSPPq7P+twP1lZmWzZ8hMnTx4DwM3NnenTZ+HqWv2Z3eNl8CrPYc+alz1GX4fx+Sb3h9exbTKZjH/+OcSe33aRJcnUfd+ggSfNm7eifv0GVKtWHTs7WywtjQkJCefMmVMcPXpY5+uiZk03qlRxIT8/n7i4WDIy0vXuUb9+Q9q160jLlq1xda1W4il6Wloqa9asxM/vCoaGRixbtgoPjwbPvL0ve4wKqunl401pB7w5bXmVVNMFQfw5IQjixXlV25GdnYWPzxTu3o3A1NQUH585NG/e8rF5nlVbJJIMvvlmLElJCbi712Lx4pVYWb24l6sgiL/aC/0nobCwkE2b1nP06N+AZsE4deoMnJwqF0v7on53P7+rrFy5FKlUgpmZGZMmTadt2/bP7X7Pm1d1DnsevOwx+jqMzze5P7xObVOr1Vy8eI6tWzfq/LrY2zvwwQe96dbtXRwdHfXSP9q29PQ0du/+mZMnj6FUKh9Ja0ijRk1o06YtrVu3L1ZWaSiVShYsmMWVK764u9dm7dpNz9xm/GWPUUEQLx9vSjvgzWmLIIiXwZ9//smOHTu4d+8e5ubmNGrUiLVr12JqagrAmTNnWLVqFdHR0bi4uPDVV1/Rp08fvTJkMhkrV67k77//Jjc3l6ZNmzJjxgzc3d310t27d4/58+cTFBSEhYUFvXr1YsKECRVWoxQE8eK8iu3Izs5i6tRviYqKxNramnnzllK3btnO055lWxISHjBp0lgkEgl16tRjwYKlWFlZV6jM8hCYEkJLlyaCIP4GcP9+PAsXziY6OgqAfv0+ZdCgoaWqor/IsZiRkc7ixfN0HtuHDRuBW4f6NKvc+Lne93nwKs5hz4uXPUZfh/H5JveH16VtSUmJrFnzA4GB/oBGXfzTTwfTrdu7pa7jSmtbZmYmt27dRCLJwMTEBBeXqri71yYs685TaQxlZmYydOgA8vPzWbhwOU2bNnu6RpbCyx6jgiBePt6UdsCb05ZXSRB/Nh57niEbNmxg3rx59OjRg61btzJ37lxcXV11u5T+/v6MGTOGJk2asHnzZrp3746Pjw/Hjh3TK2f+/Pn8/vvvTJw4kTVr1iCTyRgyZAjZ2Q8njszMTD7//HPkcjlr1qxh4sSJ7Nu3j8WLF7/QNgu8HPLy8vj++++IiorE1taOpUtXlUsIf9a4uFRlwYLlWFvbcPduBN9+O1bngfp5UjTci8Dry+XLlxg37muio6OwsbFlwYJlDB365XOzB39S7O0dWLhwOT179gZg69aN7Ni2hVdwD1hAQOA1Qa1W888/hxk58gsCA/0xMjJi4MAhbNmyix49ej7VYYqNjQ1t27bn/fc/pFu3d2nQwBNTU9Onflfa2NjQqVMXAK5du/xUZQgICLzZvBortX+Jiopi7dq1rF+/nk6dOum+f/fdd3V/b9iwAS8vL+bOnQtA69atiY+PZ/Xq1bz33nsAJCUl8ccffzBr1iw++eQTABo1asRbb73F3r17+fLLLwHYu3cvubm5rF27FltbW0CjTjRnzhxGjBhB5crFVToF3gzkcjlz537PnTu3sba2ZtGiFdSo4VZi2iexn31aW1s3N3eWLl3JjBlTiY+PY+zYEYwZM4HOnbs+9xAoAq8narWaffv28PPPWwDw9PRi6tQZODhUeuF10S5US+v7hoaGjBo1HmfnKmzevIG7F0JZZ7WK0aMnCP1bQEDgicjJyWHVqmX4+l4ANHPf+PGTSDGW6DQntTxr/xdPSsOGjTh27AgxMdEvrQ4CAgKvLq/UifiBAwdwdXXVE8KLIpPJuHbtmk7g1tKjRw/u3bvH/fv3Abh06RIqlUovna2tLe3atePChQu67y5cuECbNm10QjhA9+7dUalU+Pr6PsOWCbxKqNVqVq1aRnBwEGZmZsybt5SaNUsWwuHJTo4rcspco4YbK1euo0EDT/Lyclm6dAGzZ08nKSnxqcsUeDNRqVRs2LBGJ4T36vUxixateClCOGj6fXn6/scf92PChMkggiNH/mbTpvXCybiAgEC5iY6+x9ixI/D1vYChoSHDho1g8eIfcHWtVuIc9LI1v7Rzcmam9KXWQ0BA4NXklToRDw4Opm7duqxfv55du3aRnZ2Np6cn06ZNo3HjxsTFxSGXy4vZedeqVQvQnKi7uroSFRWFg4MDNjY2xdL98ccfus9RUVHFbMutra1xdHQkKirqObVS4EXwuF3wvXt/4cyZk4jFYnx8Zj+VOnpAUjDd7NpWtJrFcHCoxJIlK9m3bw+//roLP7+r3LgRSL9+n9K374AK+S54VFgKSglhU/BOjIwNkcsUNHH0eqknBwLlQ61Ws379jxw58jcikYivvx7Lhx9+9MLuX9YJU0nX9fpeVXB8tyapx2L4668/iCyMYUD/QULfExAQeCyXLp1n+fLFFBYWULmyM9OmzaJePY9y5X1SzbbAlBAkBVLsTG0JSglhS+hu3XVvp/K/K7UxywXNHwEBgZJ4pQTx1NRUQkNDuXPnDrNmzcLMzIyffvqJL774ghMnTpCZqQlHYW2t78hK+1l7PSsrq0TP09bW1ro02nSPlgUau56i6Z4WQ8Nno3BgYCDW+/915UW240aqxhHZo1y+7MvOnVsBGDt2Iq1atS6zLLGo+G8ZmBJCt/pti7WlpLRPiqGhMYMHD6FTp86sXbuKGzeC2L37Zy5dOs+0aTNwd6/1VOW2dGmi90w2Be9kpPcQrK3NyMrKR6l8fR1vPC3Paoy+SHbt+lknhE+ePJW3336v7EyPUJGxWNLYEv+7xjQ0FJd4/dG+JxZBJTdzNmxYQ+g//uQ3ex9Dl1f/t3hT5uLXhVd9fL7J/eFVaptarWbPnt06DaBmzVowffoMrK31D1tKev9qvys6L5XVNu18tSl4J181Hqz7/2mQSjMAsLOze+X7s4CAwIvnlRLE1Wo1eXl5/Pjjj3h4aHY5GzduTJcuXdi9ezft278+YW/EYhF2dhbPtExra7NnWt7L4kW0w8jYsNjzj4mJYenSBQD069ePQYMGFMt3JT6AK/GBet8FJIewPXyP7nObat4YGhkAcCszTC99SWnbVHs6T6l2dg3ZvHkTJ06cYPny5cTERDNu3EjmzZtHly5dnqrMohgZG+p+izelbz0Jz2OMPm/Onj3Lzp3bAfjuu+/45JM+ZeR4PCX97gqFgoCAAK5du8atW7e4f/++zsmltbU1MgsVt9wDsHS3Q+lkgEgkIiNfCsC0i/PJkeWyPGAdH9TrWmrfNzI2ZNiwz8nMTGfPnj0sW7aY+vXrUq/ei3eW+DT8F8fLi+Z1Gp9vcn942W1TKBQsXLiQv//WhGUcMGAA48ePx9DQsNj7OiA5hOUB60jPkwDgYG7H3fRotofvITorju3he/TeyWW1TbuOKGk9UV4SEuIAqFXL/bXpzwICAi+OV0oQt7a2xtbWVieEg8a2u0GDBkRGRvL+++8D6Hk+B83JNqBTRbe2tiYnJ6dY+VlZWXrq6tbW1sXKAs3J+qNq7U+KSqUmKyuvQmVoMTAQvxGnli+yHXKZAonkYeib/Px8Jk2aTG5uLo0aNWbo0BF617V4WHrgUV/T/wKSgmnm3Bi5TMHQ+p/qPstkMg5EHOKPhD9ITk7DytiYatWq4+X1MG1RSrpPeQlICqZly/Zs3uzJ4sUL8Pf3Y9q0acydu5CWLcs+zX8ccpmCrKz8l9K3XoUFybMcoy+C5OQkZs+eA0CfPn3p2rV7ufqWtt8WpaSxmJKSwsGDBzhx4h+kUmmJZeXlaZ5Xxr0UACpXdubDD3uTVjMPQxOjYqdHpdVPOz4HDx7O3buRXL/ux+TJU1i/fhMWFpZlP4yXxJsyF5eHlz1GX4fx+Sb3h5fVtqLzVX5+PvPmzeL69WuIxWLGjBlPz569OXfXj2bOjfXe16CZVx49ud4UvJOh9T/V/Q+U+72nnadSstKe+j0eGBgEgJtb7QqtBUriZY9RAQGBivNKCeK1a9cmLi6uxGuFhYVUr14dIyMjoqKi6NChg+6a1p5bazvu7u5OWlpaMYE6KipKz77c3d29mC14dnY2qampxezQn4ZnHZtOqVS91nH7tDyPdpRk//zTjZ26zwG/XyQmJho7O3umTp0BiMusw/WkYBpXakRGvpSfbuzk1p1QNtxYw4OQGBSFcs5yWC+9iYkJri1qIaneq0TTiKdBWwcLC2tmz17IihWLOXv2FEuWLGTjxp/1HA0+KU0cvXSLkDelbz0pr0ub1Wo1K1YsIzc3Bw+PBgwZ8lW5667tQyWhVKpISUljz54dHD9+FIVCAYCNjS0tW7bG09OLPEs5l9Kv4WpVlcKcfEIjQ1E+KCAnMoPk5CQ2b/4JQwtjqnapjVKl5kbqTb2xV5I9ZRNHr3/rL2LyZB/GjPmKhIQH/PjjSqZM8Xm6h/QC+a+OlxfN6/KM3+T+8KLbpp2vcnJymDVrKmFhtzAxMWHatFm0atUGhUJV6pymUj/sM9o1QXRmLD/d2Km3JhCLoGOtlnhYeui1rbR1RHJuGj/d2PlEtuEAUqmEO3ciAPD0bPrG9hEBAYGn55USxN966y0OHDhAeHg49evXB0AikXDr1i2GDBmCsbExrVq14vjx43z++ee6fEePHqVWrVq4uroC0L59e8RiMSdOnKBv376A5pT70qVLjBo1SpevY8eO/PTTT3q24seOHUMsFtOuXbsX1WyBZ8CjL8gtobsZ7jkQgIsXz7Hf7w4ikYgpU3ywt3cod7mBKSEYFxiRejKK2xeu6b43sTKjZZPmWFpak5eXT0TEbZKSErh3KYzREcOZOXM+tWvXeVbNA8DAwICJE6cQExNFdHQU+/b9wldfjX7q8gTnWK8PZ8+eIijIH2NjYyZNmvZMYoQrFAp++20Pu3fvoKCgAIBGjRrTu/cntGrVBgMDA13atNAs3XjaErobaYGUsY2+5Ny50/z22y8kJiYQeyiMysnWNOhRV5e2NIr2PSsra6ZOncGkSeM4e/YUrVu3pWPHtyrcPgEBgdeTzMxMfHwmc+/eXSwtLZkzZxENGng+URnaNYF2LVB0TWBoKMbOzqLYCfWj64jl/msZ7jlQ9/+TcuHCOVQqFXXq1MPR0fGJ8wsICLz5vFKCeLdu3WjUqBHjxo1j4sSJmJiYsGnTJoyNjfn0U41K0ciRIxk8eDCzZ8+me/fuXLt2jcOHD7Ny5UpdOc7OznzyyScsXboUsVhM5cqV2bhxI1ZWVvTv31+Xrn///uzatYvRo0czYsQIkpOTWbp0Kf379xdiiL8hpKQks3r1CgD69fuUJk28y51XrVZz4MgfhP7tR2FBIYjA1cuN8QMnck19g6ldRiGR5KJQqFCr1QQFBbDixyWkpqQwbdo3LFu2+rFh0Z4GIyMjhg79ipkzp3Ly5DGGDftaT2ASePPIz89n69aNAAwYMIiqVV0rXObdu3f44YclREZGAlCvXn2++OIrvLyalCu/pDATExMT3n23B126vM2ENd8QezYcP7+rmN8N5YNFXalRo/x9v379hvzvf5/x66+7WLfuRxo39q6weZCAgMDrR0FOPlOnTiQmJhpbWzsWLFiKu3vtcuUtaXO5IhvOksJMvf+fBLVazYkT/wDQpUu3p66DgIDAm80r5cJRLBazadMmmjRpwsyZM/nmm2+wtLTkl19+0e0mNm/enDVr1hAQEMCwYcM4fPgw8+fPp3v37nplff/993zyySesWLGC0aNHY2hoyPbt2/VUhm1sbNixYwcGBgaMHj2aFStW8MknnzB16tQX2m6B54NSqWT58kXk5ORQr54HAwcOKXfewsJC/H+7QMC+ixQWFOLh0YCu43vTamAXPD0bIRI/DEUSmBKCSCTC27s5m9Zvp379huTk5DB//kzy8/Ofebu8vZtjbm5BTk4OsbHRz7x8gVeL/ft/IyMjHWdnFz7+uF+FylKpVOzbt4exY78mMjISGxsbvvnmO374Ye1jhXBJgbTUa0ZGRjR9pxVrVm/ExaUqeZIcJk0ar1PJLC8DBgyiZk03srIy2br1pyfKKyAg8PojlUq5+NNRYmKisbd3YOnSVeUWwuHV0vIKCwvl3r27GBkZ0aXL2y+7OgICAq8oIrVarX7azNOmTXt84SIRJiYmODs707JlS5o2bfq0t3rtUCpVZGQ8G8ccRdWoXmcboxfZjsCUECLP3WL79k2YmZmxdu1mXFyqPja91jasMCefy9tPkhGXCiJw6VSLym1rkinPwtbEBjebGmQWSunV8B08LD346cZOPbW1rKxMRo/+krS0VD7+uC9ffjmqtNs+th6gsVFrWmRxoVWdGzfua+7ejWDWrPm0bv30ZhQvq285Oj4bG/qK8CzH6PNCKpXyxRefkp+fz/Tps+jQoXOZeUrrQ/J8GX6/niMpPB6Arl278vXX47C0LB7CsaQybE00J9QypZw8RZ5ev4zOjKVPnZ7UNq3BpOkTiL8Xg6WlFcuXr6ZGjZrlbm94eBjffKMxt/jhh3XUr9+g3HlfBG/KXFweXvYYfR3G55vcH15U27RzjSyvkAs/HSUzMQNTa3M6ft0DK0cb7Exsip1Il/ZeLAmtSnrROOJltU1bp4iMSOrZ136i+2mZO/d7rlzx5d13ezBhwuRyP48n4WWP0dTU4s6OnyVvyvh6U9oBb05bXlQ7yjNGK6Safu3aNQoKCsjI0MRJ1KoSamNw29vbo1KpkEqliEQi2rdvz+rVqzEze3NDfQi8GtjmmLNr1zYARowY81ghHB7upF+6c5mLm46Rk5qJgakhTh/WwrluNQCMxEZICzORFmj6896Qv2lof6dYWdbWNowfP4kZM77j4MED9Oz5Ec7OVcpV78fZuhdFayP8pnnqFdDnt99+IT8/nzp16tG+facy02sXm4/2oV6V32XGjCkkxcZjbGzMmDETGDCgL1JpHgqFSm+RCsX74eQLs3GzqQGAtEBKdFYc0ZmxuuvSwkwO3TtGVSsXmg7pAD9D/L0YZs6cyurVG7GxsSl2j5KoX78Bb7/9HidPHmPjxrWsXLkOkUj02DwCAgKvL95OXtSzqMX06ZPITMzAxNKMNSt+wtW1Wql5tO/F/XcP0adOz3LfpyhX4gPwsHzocV2tVnMp6gr+cUHkqvPIMy4kT5Gnm+eiM2OxM7HB1tS2zHtFRUVy5YovIpGIPn3+V676CQgI/DepkCC+efNmhg0bxpgxYxg0aJBOEJdKpezevZsDBw6wdetWKlWqxM8//8y6dev48ccfBdVvgedKYWEhS5cuQKFQ0KZNe955p3vZmYCqaieCtl4gJzUTR0cnmgzpgLWTrZ6TKi1iEUizMpEUSkssq3nzljRt2pygIH8OHNjHqFHjK9yuokgk+ptfAm8eqampHDlyEIDPP/+iXAJpScJubkY2k5ePIzk5CQeHSsyaNZ/69evrlVeWkGxsYKS3ITThnA8L2j30bq4dG9o0WXX7MGHCKBITE1ixYhFz5iwqlyAOMGTIl1y4cI6IiHAuX75Iu3Ydy8wjICDweiKTyZg3bwZ37tzG2tqaVl92e6wQXpTAlJByC+KPciU+kCouzpw/fx5//2vcuhVKVtbDk3dbWzsqN63G9NET+O7aXL35rix27NAcAnTo0Jlq1ao/Vf0EBAT+G1RIEJ87dy4dO3ZkzJgxet/b2toyZswYUlJSmDdvHtu2bWPs2LHExMRw/PhxQRAXeK5s3foTsbEx2NnZMW7cN+USYNLSUvlm8hgyUtOpUsWFxYt/4O+Uk8XS3c9OQK6SIwJyFXlESWORFGbqCena08S+ffsTFOTPqVMn+OKLEZiampZZj/IIK7m5OSQlJQLg6iq85N9U9uzZgVwux9PTC2/vFk9VhkSSwcWN/5CbkU3Vqq4sXLgcJyeNI8pHT4SK8qhquvSRPq5SPwwRVFJ/tba2YcaMuYwfP5Lr169x4sRReLxSig57e3s+/rgvv/66i127ttOmjSYKhoCAwJuFUqlk6dL5BAcHYWZmzvz5SzlfeF0vTXk38Iqmf9SspujcZWtsjaeqFpd2nGRf6FZdyEYtZmbmFBYWIJVKkJ6V4JMwGVUPi3LX5ebNYPz8riAWixk0aEi56y0gIPDfpEKCeHBwMO+++26p1z08PDh06JDuc7NmzThx4kRFbikg8FiuXr3MoUN/AfDNN1OxtbUrM09WliZUSkaqxiHWkiWrcHR0xBsv3Qs9OzsbVXgud/1vYFRogKmlKeIapjRsVY+aNjVKVB9v3LgpTk6VSUlJxt//2hOpFmsp6aV/40YgAFWrVqtQHHGBV5f4+Didx90hQ4Y/lXq2TCZjzhwfcjOycXauwuLFP1Cp0sMQOlfiA/GoX7Ig/qhq+pQLs/X6+OQLs4HHL0zd3GoxePAwtm79ia1bN9F50oflrvvHH/fj778PEBsbw5Url4RTcQGBNwy1Ws3GjWvx9b2IoaERs2bNp06demSnFOqlK2mOeZwwXJp5l1qt5saNQFasW8bWmGTd9dq169CuXUeaNPHGza0WJiYmyGQy/P39WLx8HhER4VSqUh3eKVsQVyqVbNq0DoD33vtA2CgXEBAokwoJ4lZWVvj6+upCiz3KxYsXsbS01H3Oy8vT+ywg8CxJT09j5cqlAHz00Sc0b96yzDwFBfnMmjWduLhYzGzMWbx4hc5Dv7eTFyfunGbEwhHEX41ELX/EHjsAEq5E4/xxHUJSb2FhZE7fur10L2qxWEzbth34668/8Pf3K5cg/iiPvvQDU0K4ePE8AK1atX7i8gReDzZvXo9KpaJ167Y0bNio1HSPO/0J+OMSMRERWFlZM3/+Uj0hPCApmDtpUWwK3olKXfzUqCRnREWv5ynyWO6/lvs5ifj4LiBXnodcJddLY2diQ0adQqyd7chKknDx6CmMzU0AjRf2rtU76t2j6CLX0tKSnj0/Yu/e3fz++15BEBcQeMM4cOB3Dh36C5FIxJQp02ncWOPM93GC7v67h3Tz3f67h5AWZuLju0B33dvJq0RV9cjIO6zcsJyosLsAiA3EWDSwp/Xb7bGu4kAOkGevwMREMz/9cGM92epc7Nq6kHI6htzYTN085+O7oNT7HD9+hMjIu5ibWwin4QICAuWiQoJ4v379WLduHePGjWPAgAFUr67Z/YuLi+PXX3/l3LlzjBr10GP0+fPnqV+/fsVqLCBQAhoVtwVkZWXi7l6bIUO+LFeexYvnc/t2GJaWVrT58m0qV3bWXb9xI5AbGy6QmSEF0MQEr2mCg6MjuRlZ3PW9RWFiLrn/JLF+zS9sC9tTbBHRpIk3f/31B2Fhoc+knVei/bh8+SIAHTt2eSZlCrxaXL16mevXr2FgYMCwYV8/Nm1ppz8XL55n/7UIRCIRU6fOKBZ7vJlzY0Iktxha/1MUClWpTgG1GD1iI77Mfy2Tmo/R80gcmBJSYhmNvnJn7twZ5NxIZ8Dkj7CwsGBL6O4SN5mKfter18f88cdvRESEc/t2GB4er5YHdQEBgafjypVLuhCFw4d/Xa5oEAB96vTUE4B9fBc81nZbKpUQsO8iB/y3oVarMTQ0okbrOswfPY9DqSd089+jZMtzWdDOh19y9rD79GYoULGgnc9j50mpVMrPP28FYPDgoeXSxhMQEBCokCA+ZswYCgoK2LFjBydP6tvTGhgYMGTIEJ39eGFhIR9//DH16tWryC0FBEpk167thITcwMzMjGnTZmJsbPzY9Gq1mrk/zMLv2mXEhgY0G9yJe6J4toTuRq1WE3E2hFvH/EENFvZW1OruSe3G9bmRehO1iQkWOOJasyH3d90iLSqJHYd+hlrF71mnTl0AHjy4j0wmK1avsuzZHhW0oq/eRi6X4+5em7p1hbH0ppGbm8P69T8CGq2O8jotKopUKmHt2h8A6NfvU7y9mwP6fU0sgoDkEOQyBSq1xiNwYEqILgxZaTbikgIpqXlpqNEI/UX7q7aMRwXsVq3aUq1adeLj4zh//jQ9enyI9DFxybXY2trRqdNbnD59gsOH/xIEcQGBN4CoqEiWLl2AWq3m/fc/5KOP+updL+2dKC2QYmtq+9jQYdr5R6VScezYEbZv30xOjibEVmWvajT9oA135NEceHCU6Kw4NgXvpIlj6eVl/bsJLzIzKDbfadHWZ/Pm9WRnZ+Hm5s4HH/R+yqcjICDwX6NCgrhIJGLy5Ml88cUXXLlyhYSEBABcXFxo06YNDg4OurQmJiZ89NFHFautgEAJXL3qy2+//QLA+PGTyiW87N+/D78zmvAi06fOpF27jmwJ3c0Qj/6sXr2CWyf9AXjnne6MHDmW3ZH7Ge45UPcSFos0ztrqdWpE2Mkgzp05Q4da7xW7j52dPWJDA1QKJRJJht6JO5Q/XBlo1OgjL94CoE+ffkJYpzcMtVrNunU/kpqagrOzC599NuSpytmwYQ1ZWVm4u9fis88+131ftK8ZGoqZdnE+XzUerDsR93by0oUD0oQUcufevUgyM6XcS4ngfy0+xMrKWs9Duo/vAr2oAiUtaMViMe+8052tWzdy/vxZevT4sFhc4NJ4//1enD59gkuXLjBy5HgsLCye6pkICAi8fDIzM5kz53sKCgpo2rQZI0eOK/YeK+2dWJbWDmgEcWeFA6tWLePmzWAALKvYMnfyfHyVQbo566vGg9kevqfUE3Et0phUAMycLR9bh4CA65w5cxKRSMS4cd9iYGBQ7mciICDw36ZCgrgWBwcHPvjggzLTZWZmMnbsWKZOnUqDBsLphkDFuX8/jmXLFgEaVdZOncpW17548bxOLe7LL0fq7E+VCiULFszi6tXLiMViRo0az/vvaxxMSYqc4Hk7eRGbFYdYJMbaoxKchNSoRAKTgtnyb5qiNrDGZsYUZOeTm5tTrC5lOX8pejpw+0wwhbkFmNtbEemQSNS/gs+TeJQVeHU5evQQZ8+eQiwWM3nytHJ52X8UyyQj9l84i1gsZuLEKRgZGZWaVqaUEZAUTONKjfT6UHh4GPv2/cL169dQKpW67wf8coUe3T/EoK0NLVya/luGXHfdzqT0UHq2Hk4A3AwNZoP/tmK2nbYmNsRkxRXTBmnq0Uh3mu7re6HcoQgFBAReLZRKJdPnTiYlJZkqVVyYNm1WuQRWyWO0Z7TzVmBKCE0dG3Hvcjijjv5CYWEBJiamfP75MFLd86hfvyG+oUF6edtU89b9XdT2HDQaQFNPzyHk8gUALGuVrmaen5/PmjUaDaQPP/xI0NwREBB4Ip6JIF5e5HI5fn5+ZGaW7zREQOBx5ObmMHfuDPLycmnYsBHDh48sM094+C2WLdMIAB9++JFOLU4mk3FlxymSb99HbGjADJ+5tG7dVpdPWuQEz9vJi5YuTchR5/B5vf68t/4UaoWKeibuZZ4OPkpZgrhW0M7MzOSL83sBGD1sLF0av11m2QKvDwEBfjqV9M8/H06DBp5PXEZhYSHHf/kb0GxK1a5d97HpZUo5AckPBfHs7Gyi/wzlm1undGkqV3bG0dGJ6KQYctOyOHToT5xuuzB8paafy1UPBfHHnXJ38+zCTseNpKam0M7Ym/smicVsO0s7bXrrrbfZuXMr58+fEQRxAYHXlJ9/3kJU2F1MTU2ZNWs+VlZW5confcy8orUXvxLtx9/rf+PGtcuAJmLJxIlTqFzZuZgquZY21ZohkeTqyilqez7hnA+tJA0JVpyjevUa2Fd3KrUO27ZtJDk5CSenynz++fBytUlAQEBAywsVxAUEnhVa52zx8XE4OFRi+vTZGBo+vjs/eHCf2bOnI5fLqdKgOl99NRrQbBAtWDCL5Nv3MTExocGnLQm1jCI0NEqXV3uClyfPZ9zZaajValSouBYfhNjEAGWegtAHYUw454OZoSlKlVJnb16YVwDAL/f2UyWv6mNPsUv7fufOreTl5WLjYk/nzl2f5pEJvKLcvBnMvHkzUalUvPVWN/r27f9U5ezbt4ekpAQcHCoxcODQYtcftRGXKeUEJt8kJNWHgpRcEg7cRp5ZCCJw8KqCU+sa1HGrQ6sqzTkdd4HYW/eIORBKyt0ERm8ah4OXC3KVnGX+a7EztS3VRlx7b4NKJpAKe6/9TmYtebHT79Lo0KETO3duJTg4iNzcHCwshMgbAgKvE1euXOKPPzQbyd988x01ariVmUc7X8mU8lLts+1MbIiMuIPvzpPIswvBQESddxqhaGzF8oifEEVoTMgmnPNBrpLr/p96fh6VLO2xNrQq0UZcIVew67ftADg0dyVTlqWzU99SRBMtKCiAw4cPAjBhwmTMzMyexeMSEBD4DyEI4gKvJdu2bcLP7yrGxsbMnDkfe3v7x6aXSqXMmPEdWVlZ1KlTjwaftcLAwAClUsmSJfPw87uKiYkJc+Ys4rrBrWInc496ZzU0FOtszN5b2w2A+o51+abzWODh6V5aWioHlNsQi8VUdnQu08atJIEkIiKcf/45DECTXm0Qi8VlPyCB14KAAD/mzZtFYWEhzZu3ZOLEKU9l+3//fhz79v0KwIgRYzA3Ny+WpiQbcTfr6rRUezFz9TTk+YWY2JmxZNYP1KuniS9edNG5xXQ37YybsXPnVmxjTVgw0gcf3wVMbj5GL21JeDt54e3WlKPh8TQwq0O4yYNiY6GoamhRXF2r4epajfv34wkMDKBDhycPAyggIPBySE5O4ocflgBQu0PDcntI1807j7ER/+efw1zaeAyFQoGrazXq9W3GpHfG66V9NP+W0N183WQwdnYWSCS5JdqIZ91IIT8zj0qVHJn9+UzmXF9W7N65ubmsWrUMgA8+6EXTps2e9NEIvEbcjpU8dV4DAxFW6fm4OggbNQLFEQRxgdeOI0f+5sCBfQBMnPhdmd7DCwrymfL9BBITEzC3s6Ruf29uSsPZHLIL/98uEBcYichARP3+LbhucIuglBCW+68lJS8NIwMjbE1sdF6jtTiY2gIgkxWizNeo5xYYynRptLv3CbdiAbB2siNTkV1sR78sL+lKpZI1a1aiVqvp0uVturZ+5ymfmsCrxqlTx1m1ahlKpZLmzVsxY8bcx9p0l4ZKpeLHH1egUMhp3rwV7dtrfB48ejodmBLC6bgLSAszEaFRJU+IjGf/79tRyVXY1qxEpV7u5NrJdOmjM2P1+nQlS2sAbt0NZfaVpXq23tLCTJb7r8X237HxaF82NdXE6JXJZNj+a09etI6POxVv0aLVv4L4dUEQFxB4TbieEMSqOYvIycnBvrojyhamj33fgcZeu6iZi/YdqZ2LtF7Rf966mXuXwgCwqGuH96DOROXF6aI7lMWV+AA8LDUbjkW1hQpzC0j3jQfAvFUl5lxfVuz97+3kxbnd/5CSkoyzcxWGDRvxdA9IQEDgP48giAu8Vly7dkVnSzt48Bd07vx452xKpZJFi+YRfy8WKytrfli6BlfX6my+uQv5xQziAiMRi8W0GtiFmf01J94l7cAX9Q4NsO3WboyMDYmLiwPAyMyYaR2/0Z1mavNu9F0HgG2NStiZ2hbbVS/LE+yff/7BvXt3sbS05MsvRwqxSd8A1Go1e/bsZPfunwHo3LkL33wz9amEcIBDh/4iNDQEExNTxoyZoOuDjwrij56ITzgwlfg/o1DJVXh7N2fmzPnM9V+uJxgXjQ2+JXQ371h3wI/TmIiMmd1mChPO+eg0RXx8FzDp39PxkigoKATA2NgYO1PzYnV8nCDepEkz/vzzD4KDg0pNIyAg8Gpx64Q/GXGpWFhY8MPc1RxKPVWmVpikMFMvjfbdq31XFhQUsHjxPO5d0wjhgwd/QY4nfNlokF7asrgSH4hHfY0gXnRu/PHH5agKlbi5ubNm5BoMDAyKvf99fS9y8uQxRCIR3347FVNT4aRTQEDg6RAEcYHXhtu3w1i0aA4qlYq3336P/v0f/0JXq9X8+ONy/PyuYGxszOzZC3B1rQ7ArWMBRJwJRiQSMWnSNO45JpVYhjacU0keoR3MbAm/qQknVt2tZjGV4oDkYE5ePA6AyNW4xNPvx/HgwX127doGwPDhghD+JqBQKFi9egUnTx4DoG/fAQwZMvypzQ1iY2PYtm0jAMOGfVUsPF5pSCQS7v0ajDxfRoMGDZkxYy4mJia4WlbR66NFY/hKCjM5H6cGwMmpMgDG4vJvHqSmJgNgb2+Ps1PNcucDaNjQE5FIRGJiAhJJBnZ2jzdFERAQeLmEhNzQmcv0HNJXMzelPn153k5e5OTkMGvWNMLCQjE2NmbSpOl06NCJ5f5r2RK6G3kJ9uQPshPYErpb9w5/XHSH8PBbHDt2BIBRoybovLoXzSORZLB69QoAPvmkP56eQtQSAQGBp0cQxAVeC+7fj2PWrGk6W9px474t05Z2x44tnDx5DLFYzNSpM3SeqH///VcizmhijI4ePYG33urGvVJ20ANTQuhTp6dO3bYo6flSYgM0u/Jtm7Urdt1SakJuejbGxsZ4NW2KoYlRue1iNerGy5HJZDRp4i14i34DkMlkLFw4h2vXNOHxRo+eQI8ePcvOWAr5+fksXDgbmUxGs2YteP/9XuWux+zZPhRI8zCxN2fWrAW6E52Rjb/QS1tUO8TW1BZpYAqAbiwZGZRPEFer1URG3gWgenU3PJ0alSufFgsLS6pVq05cXCwREeG0bl18vAkICLwaZGdns3z5ItRqNe++2wN5zYrH1a5jVpNp074hMlKjITZ79kIaNtTMI7b/apttCd3NR1Xe4875myRciiArK5Mso1wGf9UHN7daQOnRHWQymc7m26FxFTw9H85R2ve/Wq1m9eoVZGVl4ubmzsCBQyrcLgEBgf82L1QQF4vFuLi4PFV8XIH/LqmpKfj4TCErK4u6dT3K5SF9zc4fOfrbXwCMG/cNbdq0JzAlhAS/KLZt2wSAZ48WJNbI0u2ga21dZUo5Pr4LkBZmYiQ2Ykvobu5nJ+jsX6UFUqKz4jBUion0uw7AbcuHtrRypYwceR4//rEKgMoNXLmZGY6tiY0ujVYVrrRT8aNHD3HzZjAmJqaMHz/pqRx4Cbw6yOVy5s+fyfXr1zA2Nmb69Nm0atXmqctTKpUsW7aAuLhYrGyteefzD7mRFqq3sVOSBkZTx0bMWTaDsLBbmFmY02RQe6ytSz8hgoe24gYqMTfOnQMgwjqeKRdmk6vIY/KF2RgbGCEtzNR5UNfeT9u/o6PvIZFkIDY0wFcewNXQ4FLrWNqYqFevPnFxsdy5EyEI4gICrzDr168iNTWFKlVcGDFiDL/c2w+UrAVW1D4b0HsXg8b3xHq/rVzc9A/SB+lYWFmyZPFK3N1r6+zJJQVSVp1bj+/hMxwI34Zapda7x8SJoxk2fSzJ5hKiM2PZFLyTgOQQ5DIFKrUmVnnU6VvExcViYmmKZQf9sGfaE/ETJ45y9eplDA0NmTx5OsbGxs/0uQkICPz3eOaCuFqt5urVq/+e0jTD0vJhqBl7e3vOnDnzrG8p8AYjlUqZPn0SKSnJuLpWY86cRWWGCDl16jhHf/0LgCFDhvPuu+8D8OfR/fj/dgGA/v0H8vnnw3R5SrLV1i4GSrJp23ZrNw9CorkjV2Fhb8Wcnt/r2Yd/7d6XQfP7ATBmwFj8xKElllXSwiQ5OUmnbjx06Jc4O1d5bHsFXm20JhLXr1/TeeZv3Lhphcpbt24VV674YmRkRLPPOnKnMIbhTgP1+lNJffrPP38n8JIfYrGYZUuWcr6gbJtrra14jN8d5HkyjK1NWfXZMgwMDEr0TlwSZ89qYpO3bN6KEU2HPLaOpVGrVh1OnjxGdPS9cqUXEBB48Zw9e4pz584gFouZMsVH731d0vvu0c23R+eEqWfmEPGLP9IH6dja2rF48Qpd+DNJYSaD6/Zj797d/P77XhQKjeNUC1cbBrz3KY6Ojmzau5H06GRunw9m8uTpbAndzVeNB+uinigUKiIj7zD+wp8AfDvuOyLs7heblxISHvDTT2sBjV269oRdQEBAoCJUSBBfuXIlgYGB7Nq1C9AsEL/44guuXr2KWq3GxcWFn3/+merVqz+Tygr8t8jOzsbHZzL378fj6OjEggXLsLW1LTGt1unT1auXWblyKQAfffQJ/fp9CsDFi+fx33cRgF69Pmbw4C/08mrZf/eQ7nNmYRZq1Pj4LkCmlCNXybEzsaGqlQsxmbGEnfMHwKphJbbe+kVvMXH06N8UFhZQs6Y7jRo1xu9WaJk24aAV2laQn59Pw4aN6Nmzd/kfmMAryV9/7ef06ROIxWK+/35uhYRwpVLJ+vU/8s8/hxGLxUyePJ0Iu/vlyuvv78fmzRsAaPRBCy6rbhKQHIJK/fDkR1IgpWv1h17XJQVSlvmvJTozlgdnNP4QLJtWYmXQBmwfEzu86Hf5+fkcP/4PwGNNLEqLQa7Fzc0dgJiY6HK1V0BA4MWSnJzEunWrAKjXtTGXFIFcCg18Is2XohQWFnLvtxvkxEmxtrZm0aIVejHIJffTGLP6K+LjNdFJrNzsGTh4CBdlAUjsZUh4gGETK4hO5krYVZ2m26bgnURIItkk24mnbQO2r1iHSqWifftOdOjQmYhHTNWUSiUrViymoKAAT08vPv643zN4WgICAgIVFMSPHz9O165ddZ+PHTvGlStXmDhxIh4eHsycOZM1a9awbNmyCldU4L9Fbm4uM2Z8R1RUJLa2dixcuFznIKokAlNCMExSsXDhbFQqFc5NqjN8+EhEIhF+fldYsmQe/Guv1uKjjgSl3tQtBIoK4n3q9KRPHY3drvZEvGj8cC0/nl1LflwWIpGIJh1aMNxzoE7FTiFT8Ndff2vK69NPd1JenoXH6dMnCAryx8jIiIkTpwgxw19zYmOjddoNI0aMoXnzlk9dVkFBAcuWLeTy5YuIRCImTJhc4qKxJKKjo1i4cA5qtZoaLeqwbMwS7O0tWXJuA180fHjys9x/bYlezKfsnIYsPR8LCwuqtayt845eWuzwokL1X3/tJzs7i6pVXWnZsnR1/LIE8erVawKQlJRIQUG+4KlYQOAVQqlUsnz5InJzc/HwaMCy8ct0zs7Ko/ny6PhXKpUsXjyXnDgp5uYWzJ+/lJo1NUJ4QHIw96/e4+zmQ6iVKowtTZg0bhr/iC7yYeuepIQ+9LweeNUPgBq21VjQzkd3Ij7t4ny+ajyYeavmERMThY2NLaNHjy+xbgcO7CMsLBQzM3MmTZqma5eAgIBARamQIJ6cnEyNGjV0n0+ePEnt2rUZMUITU3HAgAH8+uuvFauhwH+OvLw8Zs78joiIcKysrFm4cBmurtUemycuKoaD23aikMup0qA6pl2dWBG4nrjb0dzbewO1UoWFhz0WXSpzIPIwUDx00qO2akVtxLVptOmzgjTuX1u1ao2rs6suzilArG8EUqkEcztLohyTyxQwtGRmZrJ583oABg4cQtWqrk/y2AReMdRqNevXr0ahUNCyZZsKaTckJSUyb94MoqLuYWBogMfHzTlnHsA53wCk/zof0m4c2ZnYYGtqq7NrPB12jnVzl5Gfn4dZNWvE7a3ZHLILI2NDoqT6J9pFHRlpx4NarebuOY1phWur2qgM1ToB/NHwaI+SmprCvn2/AJo+/egCtjzjQoutrS02NrZkZkqJi4ujbt165c4rICDwfNmzZyehoSGYmZkxefL0JxZWtfOQnYkNm2/uIvCPS8T43UFkIKL54E6cL7zOX/4nUcmVBO+/iuSWJtKJTT1H7N52Zb/yBHLVQ/8uPr4LsDOxIfNBBgDmjlZ693Mwt+PWrVAuHD0NwNix3+gikxSdl6Kj77Fz53YARowYXe7IFAKvH3KFCrEYDIQDEIEXSIUEcUNDQ2QyGaBZdF65coXevXvrrjs4OCCRSCpUQYH/Fnl5ecyY8R1hYbewtLRk4cJlZdpiPXhwn5BdvigK5TRq1Jh585Yw138575t3xmf/EdRKFW3atMe5Vx2+9BrMltDdSAqkD3fMS4llrBWutafd2mu5uTkEXdI4aevVqw9N6jTTpVfIFNy67gvA8EEj6N74g3K3fdu2jWRlZVGzprug+vYGcONGICEhNzAyMmLUqHFP7XDv2rUrLF++iJycbGxsbPn++7l6Hn21G0UlnTilpqbwy/LN5GfmUb16DSw+rkoDl/p81XgwdnYWLDm3oVS1cu2/0NAQDiRuQ2xowKzhM9n/4GiJ93q0HI0t+48UFBTQoEFDOnZ8q8w8ZeHm5s6NG4Hcu3dXEMQFBF4R/Pyu8OuvGhPFceO+xcWl6lOX1adOT375ZQcxfncQi8U07NeSab0mA5CensacOT5I7iYhFovx/KAFi79exPeXF7KgnQ/L/dcyqfkYvRP4j9ZoQoi+1VJ//rExsGTp0oWgVtO169u0a9dBd007L8lkMpYtW4hCIadVq7ZC9JI3kIysAv65Gkfg3VQk2YWIROBsb07zek60beRMZTvzl11FgTecCgniderU4e+//6Znz56cPHkSqVRKp06ddNcTEhKwsxNiHwuUj9zcHGbMmEp4+C0sLCxYsGA5tWvXLTGt9rQuPzOXc+sOU5hTgG1VB9z6ebHr7u+k30/B54cpFBQU4O3dnKlTZ7Dzzj4ApAVSHuQk6gSYx9mvFVVf1/597NhR8vPzqVLNBao+PDGPzowl5uJtCnPyMbezJL5KerlPwyMiwjlxQmNHO27cN2V6hRd49TlwQNPfunf/4KlOUZRKJTt3bmPfvj0A1KvngY/PHBwdncqVPz4+ju+/n0JKSjLOzlWYP38ZC26t0l2/Eh+ApCBTr+9LCzP1/CR4O3lx9C+Nx+PqzWpjZ2ePt7x8no9n+N0h4NplRAZiun3WU8/M4tH02jxl2ZHWrl2XGzcCuXPnNt27l3+TS0BA4PkQGxvNkiULUKvV9OjxIZ07dy2W5kk23E6ePMbu3T8DMHLkOK7YheruM2PGVFJTUzAyN6bN4G7kVJKx9dYvSAs189j9nESW+68lOS9Ns+F+P42ClBzEBmL8jG9x1tcfY7ERm4J3cmz3IbITUjGyNsG8U+US39V79uwkOjoKa2sbxo8vO2SqwOvF1bAkfv7nNjK5SvedWg2J6XkcuhzD4SsxdPBy4aMObo8pRUCgYlRotT969Gi+/vprWrduDYC3t7fub4Dz58/TqNGTxYsV+G+SlZXJ999/x927EVhaWrFgwbLHnnh5O3lRx6wmkyePJ0+Sg2UlazYs34ytrR3Hg09ycF84ijw5DRs2YsaMeRgbGyMtkAKamKCSwsxSvT0/ajNeFIVCwcGDGsFk2Odf0LxKE5o4al7eG/y3EXpd4xDu66GjebvJe+Vqu1qtZuPGdQB07foO9es3LFc+gVeXtLRUAgIeak2UF+1iMDs7m0WL5hAUFADAhx9+xPDhIzEyKl/cbj+/qyxbtoCcnByqVnVl4cLlODo66qVpU60ZuTmFNK70cI728V2Am00N3Xg4e/sCV65cAqB2+wZA+Twfrzy7jguHNCYgQwYPp7v3u49ND+WzI23YsBF//LGX4OAg1Gq1sDAWEHiJJCcnMWPGVPLycvH09OLrr8eUmK68gnhQUACrftT4FOrX71M++KAX5y8EcevWTWbPnk5OTg6urtVoOLA1EzqN0s0ZPr4LdP9Paj6GZf5rGe45kFWnNGW1b9eJaR2/0d0nMNCP34M15mWt+3dhVIthxepy+3YYv/+uMa0cO3Yidnb25X8wAq885248YOexCABqu9rQs21N3KpYI1eoiIiTcDk0idDoDC4EJxAQkcK7LatTu+rjQ30KCDwNFRLE27Vrx59//omvry/W1tb06NFDdy0zM5PmzZvrOXMTECiJjIx0fHwmExMTjbW1DQsXLqdWrdqPzVNQUMDs2dOJjY3B3t6BeoNb8Mf9I+SF5nBqzV8o8uTYulai1v+asDZ0Cyl5aeQrCnT2YwBTTswiLykLlSEEODaiWeXGgL5q7qNcunSB1NQULK2tuGuXSETwTrQhSy8eO40srxBzB0uinVLKfRp++fIlwsNvYWJiytChXz7h0xN4Fbl61Re1Wk39+g2fSE0zMCWEaiJnfHwmEx8fh4mJKRMnTqZTpy6l5inaxwoKCtixYyt//fUHAE41q2D/kTs/3t0Cd0GuknMnI5Kp5+chVyuQK+Q0qBSsyy8tzCQ6M5Zl/muRFmZy/9xdVCoVpq6WqG3FJfpLeBS5XI7fnnMUFBTQqFFj+vR5dmYWXl5NMDQ0IjExgXv3Iqldu84zK1tAQKD8JCQ8wMdnMqmpKbi6VmPGjLnl3igsSSPmWtg1/v51FyqlCtcm7jTq3gIAaWQq3y2fiFKuxL6GE02/6MStnAhdNBPtO31L6G5kSjlbQneTJ88jPT2N06dPAppIKVou3rvMD4vnA1CnQ0Me2KTpaeIAeNp4sGX5alQqFZ07d6V9+04IvDmExWSw618hvFtzV/p3qYNY/HBTt3VDZ1o3dOZOvJQ9p+4Ql5zDgQtRtG5QmQ5eVYQNYIFnSoX1X2vXrk3t2sWFJhsbG6ZPn17R4gXecBITE/DxmUxiYgL29g4sXLicGjVqPjaPUqlk0aK5Ojvy+fOXcjr3Mn2r9WTy6nHIswoxr2TJhmWb9cKdaR1Mnb91Eb9DF4iJSEOl0qgknXlwhKbfNtJTny1J0NAKOB/16sP4TiORSHJRKFRkZ2dxMGAnAOO+nEinxqULTkVRqVQ6NbyPPvoEB4dK5con8GqjPQ1v3brtE+XLk+Yyefl4kpOTqFTJkTlzFuLu/vhNKW8nL9RqNVevXmbjxnUkJSUA0KprB3zGz9BbHE8458PSjrMxNBTrbMSLek338V2ArYkNk5uPQaVS0XfthwA06ticLtU7lmtjaefOrUjvp2FlZc3kyT7P1MOwubk5bdu258KFs+zdu5vvv5/zzMoWEBAoH6GhISxYMBupVEKVKi4sXLgCa+vip4WlbUY/upEnkWTwz8LfkBfIcKhZmXVzNmBsbMzVq748OBCOWqmmefNW+PjMxtTUtJj2jPZEXHsSviV0N/v27UGhkFPJrTINGngCGu2z878epyA7H+vKtqz8biXbw38rpomzfv1qHjyIx8GhEqNGlexJXeD1JCdfzqa/b6EG2jVyZkDXOqUK1nWr2eIzqDm/n4vklP99roYlky9T8HazanqCu4BARaiQIJ6Tk0N2djZVqlTRfZecnMzevXuRyWS8++67eHmV3zbowIEDTJs2rdj3X375JZMmTdJ9/v3339myZQsJCQm4ubkxceJE3npL3xGHRrVzEadOnUIul9OhQwe+//57nJz07SsDAwNZsmQJ4eHhODg4MGDAAL788kthx+sFcO9eJDNmfIdEkoGzcxUWLlxOlSouj82jVqtZvXoFfn5XMDY2Ztashbi5ueMZn8GsWdOIj4/DyMoE9wFN9ITwwJQQoiQxXDl6jsQL0aiVGgHcspI1OelZnDlzkiqe1RnY/aEDt0dtXpce/YGIiHDEBmKqt9IXjvbv34eiQE5l1yp06NC53M/Az+8qMTFRmJmZCw7a3hDUajVhYZqY215eTcqdLy8vD9+tx8lKluDiUpXFi38olz14ZORdtm3bqFNjr1TJkbFjvyHEPJKbknC9fixXaU6MxCIwMjZEUiDV6+sypZyYrDi2hO4mKeI+edJcTM3NqOpZo1waHsHBQfzxx28ATJgwuZg6/OMor/pq//6fcenSeXx9L3D48EE++KBXue8hICDw9CgUCn777Rf27NmJSqWiVq06zJ27GHv7ktW2yzNnFBYWMmfO9+RJcnBxqUqt/k3ZeWcfD0JjuLbrDGqVmqpeNanWpz67I//QK087d2lPwrVz1+3Y24QfuQLAh30fmgadOXMSX98LGBgY8PXk0ZiYmBSrz40bgRw69CcAEydOwcrKqlgagdeX387cJStPjkslCwa9U6/Mtb6RoZhPu9XFQCTi+PV4giPTAXineTVBThB4JlRIEJ85cyb3799n3z6NU6KcnBz+97//kZSk8Wi5c+dOtmzZQqtWrZ6o3C1btuhNfpUrP4wffeTIEWbMmKGzTT969Chjxozhl19+oUmTJrp0EyZMIDIyktmzZ2NiYsKqVav48ssv2b9/v84RVmxsLMOGDaNdu3ZMmDCBiIgIli9fjoGBAcOGFbcZEnh2BAUFMG/eTPLz83Bzc2f+/KXY2zs8Nk9gSgghR/04ceIfxGIx06bNxNOzEdcTg9i0ag2JEXEYm5vg1LcOhWYKndMWJ/NKmCtNCd/tR0FcNgDmbrYMGzaCHs3eY8bi6fifv4L/zesUVNMI3Y9S07o6an+NSnuXt96mc70OXIkPwMPSg0tRV/j77wMAfDV01BPF/tbme//9nsIL/w0hIyOdrKxMxGJxmafZgSkhnIm7gK2pLdf3nicrSYKptTmNh7TnYPIJSC5dDTw1NYUdO7Zw5swp1Go1hoZGfPTRJwwYMAgzMzMu+PsXyzvu7MONzhjJfZJyUrAxCUFSIMXO1BYAA5HmBDvmmkZ1r2pTN+LyHujqW9rCOi8vjx9+WAJoHNS1bdu+nE9MQ3kFcTe3Wnz66WB27/6ZdetWERsbzWefDdHbeBMQEHi23LwZzPr1PxITEw3AW291Y9y4bzE1NX3qMlUqFT7zpxAREY6BqSGeA9sQqYzlwfV4ov4IAZUai/r2tPz0LTLlWdgZ2url185vy/zXAg/nrtjT4aiUKhxru5DpWMiW0N24iaqyfv1qAAYNGkK1WtWL1Sc3N4eVK5cC0KNHT5o1a/HUbRN49YhOzML3ZhIiYEh3D4yNyq+t1bh2JYyNDDh0OYbgyHQcrExp7lE+x6kCAo+jQoJ4QEAA//vf/3SfDx48SEpKCnv37qV27doMGTKEDRs2PLEg3rBhw1J3WFevXs3777/PhAkTAGjdujV37txh3bp1bN68GYCgoCAuXbrE1q1bad9esxh0c3OjR48enDhxQmfLvnXrVuzs7Pjhhx8wNjamTZs2ZGRk8NNPPzFo0CCMjY2f9JEIlIMzZ06ybNliFAoFjRo1Ztas+VhYWJaZ7/c/93LjL80u99ix39C6dTvUajXX9p8jMSwOY2NjFs1bzi+Sg8iUcl0Yk+52nZkx4zsKErMRGxvw0ef9kVTLp0ez9whMCaF+dQ/8uYKbSTWdWtujqmprr2zm+MVzAPTs+REAV+ID8ajvwf4Dv2m8qFevSps27cr9HJKTkwgKCkAkEvHBB73LnU/g1eb+/XgAnJ2rlDmHaOPXNy2sx/6ArSASMW/GYr3wZI+iUCjYv/83fv11F4WFhQB07tyFzz8fjrPzQ+2kojHBtdib2jHccyCGhmKmXZxPs8pefNHwYZ8PTAlh/91DfOzSgz/DNLFzv/3sWyQWOWWebv3882adh/Yvvxz12HZXlE8/HYxMJmPfvj0cPnyQkyeP0apVG5o3b0WDBp5UqeLyRBtiAgICJRMbG8PWrZt1Thutra0ZOXIcnTp1qfCJ4NatG7nlH4KhoRFDJn5Nn44fM3//Yq4dOAMqNZ07dyG2WRZfNR78WGeOXf81m5lwzoe24ibsD9+KSCRixriZ1KlTD6VSydSp35CXl0v9+g3p3/9Tdt7Zh0d9D705bcOG1f/OYS4MHz6yQm0TePX449w9QGMD/jSO1+rXsCMnX87ZoAecCXqAg40pblWsn3U1Bf5jVEgQl0gkeqfVZ86coVmzZrqT6d69e7N27doKVbAo8fHxxMTEMHnyZL3ve/TowdKlS5HJZBgbG3PhwgWsra1p1+6hUOTu7k79+vW5cOGCThC/cOECb7/9tt5iuUePHmzcuJGgoKAn3kAQeDxqtZodO3awZs0aADp06MSkSdPLFFYCU0LIvyvlxkGNED5o0FDee+99AA4c+J0jR/4GEVT90INfJAd1zth8fBeQFp/MX7/vQJmnwNjGFKePa0NdU6SZyWwJ3Y20QIqTQhMn8nEhw2L8IlAoFNSrV1/Pm3tOTjaRvmEADBs84okWJufOnQY06stPE95K4NUkJSUZgMqVq5SRUoNarWb7ds0mYu12DUoVwgNTQqgst2fRorncu3cX0HgR/+qr0dStW4/AlBAOh57Wpdc6MNLi7eSFq9VD0w+ZUqYrNzozVpdWWpjJgh0LUClVmLhY8kf6UexybR8bXiwi4jaHDx8ENHGEzczMytX2p0UkEjF06Jc0bdqMbds2cfduBBcunOPChXMAmJqaUqWKC46OlXFwcMDW1g4bGxusrKyxsbHB2toGGxtbbG3thA1XAYESePDgPitX/sKxY8dQqVSIxWLee+8DPv/8i1LtwZ8kJOHhw3/pQjx+++13dO7YldDQm1z5+SQqhYqqXjWxe68GcemhbAreSaDvNc6u+Zv89Fxat2xLg3F1OBJ/SrfhGJgSgkwhY+6KWQDUaF6HbBvNRuX+/fsIDQ3BzMyMSZOmYWBgqFcngIsXz3P69EnEYjFTpkx/7nOYwIslOjGL8FgJBmIRH3V8+nBkzes5kpZZwM2odP65FscXPTwwNRbCzQo8PRXqPdbW1qSlpQEab70BAQF8/fXXuusGBgYUFBQ8cbkffPABEokEFxcX+vXrx/DhwzEwMCAqKgrQnG4XpVatWsjlcuLj46lVqxZRUVG4ubkVE4rc3d11ZeTl5ZGYmIi7u3uxNCKRiKioqAoL4oaGz+ZExsBArPf/64hSqWTdujUcPKhRxe7Tpy9ffVU+Ne6T107gu/kkqOH99z9k0KDPEYlEXL7sy9atPwEw4qtRfPKJRjtj6vl5AAyv+j/GrRiNMl9B7dp1qP9ZCxKUKXzdZDABScE0c27MkmurkUozALC3t8fQUIxYpP/bKZVKHvhr1PG8OnljaCjW/RaHDx9EUSCnZk03OnTo8ESncAEBfgB06vTWM+srT8qb0LcqwvN47tr+5OhYqVzlp0clcu/eXUxNzWjwdpNS8+w/9we3fwskLy8XKytrRo4cTbdu7+rmuZYuTWjp0kSXfur5eXzdZLBeGQZika7/ypRyRCIRLV2acCM1hK8aa9Iu8v2RG/7nAXBpWZNprccBsOTa6mLlgUa9dMOGH1Gr1XTt+jYtWrw4dc7mzZvTrFkz7ty5ja/vJW7cCCQyMpKCggKio6OIjo4qswxLS0scHCpRqZIjTk5OVKnigqtrNapXr4Grq6veov2/Pl5eNC9rXiwvb2J/SExMZM+enZw4cRyVSglAu3btGTr0y8c6Un10/gHYFLxTN68U5erVy2zYoNmQHzp0ON26vc29e5HMnj0dlUJFy5at+XBkP1q5NmPontHc/PMSsZF3dfnPnj1FnTp1yKwr05uTBi/5gsyEDAxMDVk2ZRm2trZERt5h165tAIwaNZbq1asV+93S0tJYs+YHQOODQgi7++Zx3C8OgJb1K1PJ5uk3WUQiEV2bVSU+JQdpTiFnAx/QvXWNZ1VNgf8gFRLEmzZtyp49e3B3d+fixYsUFhbqhSuLiYnROzEvC0dHR8aOHUvjxo0RiUScOXOGVatWkZyczMyZM8nM1Ox8Wlvrq4JoP2uvZ2VllWhva2NjQ2hoKKBx5lZSWcbGxpiZmenKelrEYhF2dhYVKuNRrK1fzx3agoICZsyYzdmzZxGJREyYMIHPPvuszHxX4gP4x+8UF7cdRylXYF7bFqu3K/Pz7V+JjowmYNN51Go1ffr0oeG7XmwP30N6noRMWRYF6XmM/WEUinw5pi6WmPSqzN3CGGRKOcsD1uFgbkeI5Bb3cxKRx6YAULu2G3Z2FhgZG+r9dr6+vkjTMjC3NOeeQyLLA9aRnichLSuD+3tvAiBqYsEPQRtwMLejTTVv2lRr9ti2KRQK7tzR2OB27Nj2mfeVJ+V17VsV4XmMUQCZLB+AypUdSyz/SnwAV+IDdZ8DLmk8rLt61yRBmcL28D3F+tD169cJ2umLWqmiSZMmfDJ2AO817lpquel5EiSFmWwP3/OwXgoZMdL7/HH3EDKlDJlSTmByCGNPT0OmlDP78lIsTSwIvx5CRkY6RpbG4G6iK+N+TiK3c24X69uHDx8mIuI2FhYWTJ787Uvpy61bN6d16+aAZmzdv3+fBw8ekJycTFpaGhKJBIlEglQq1funUCjIyckhJyeH2NiYYuUaGxtTp04dGjRoQOPGjWnWrBlg9p8cLy+a5zU+nwdvQn9ISUlh69atHDx4EIVCAUDbtm0ZMWIEDRs2fKoyH32XAoSFhbFgwRxUKhW9evVi1KgRJCYm4uMzhdzcHMyrWaPoas7O2/tY/+cGEo/eQ61QITY1wKF1VdRpctJCEzkReAqXqnV17/2EhASSzms2zO06VGXJzbXYGlrht+4MCoUC96Z1Sagu1c1nV/+dK9UqNWc3HCE7OwsPDw/GjRv9WO04gdePNGk+129r1nnvtqxW4fKMDQ3o0bo6e07d5WZ0Bg1q2lPDWfDxI/B0VGi2mTRpEl988QVjx44FYOjQodSpo4nrqlQqOXbsGB06dCh3eR06dNBL3759e0xMTNixY4feSfvrgEqlJisr75mUZWAgxtrajKysfJT/evt+XcjMlDJz5nTCwm5hZGTEvHnzaNmyHRJJbpl5HfLtub7lHMoCBQ0aeOIxqBnDGg5EIpEwZOZnyAoKadq0GcOHj8LQ0JA8OxnN6jdm7qllXPvjFIo8OXauldi+dgcWFpYEJAXzS9h+0nIysDa0QlKQSaFcRlxkDACXMoO4eS4WOxNbvfr99tvvALz3zvsYOFjzVePBGBiI+W7jdGJyZZjbWrB+xI96L++y2vfgwX0KCwsxMTHBysqhXM/jefCy+tarsMB+lmO0KOnpEgAMDIxL/F09LD3wqO8BaNTS98fsAGDER1+hdDagmbMmnr02b3JyElOmTEGtVNG2bXt8fGbxc/heDMPNdGkfLXdT8E7sTGwYWv9TnfZHUQwMxIw68R1fNBpAUycvllxbg52pDWqVGolfIgBW3k5YmloilymQFEgxEhnhYemh16aCggLWrl0HQP/+AzEwMHtpfbkoNjaO2Ng40qBB6WnUajXZ2dlIJBmkp6eRkpJCSkoyiYkJ3L8fT2xsDPn5+dy6dYtbt27x+++aeaBOnTq0aNGKtm07ULdu2V53X1de9hh9XuPzWfI6v5u1ZGVlsnfvHv766wByucZcxdu7OUOHDqNNmxZkZeU/9ZiWyxR6eRMTExk/fgIFBQV4ezfn66/HEReXxIQJY0hPT8fNzR2Hfu7UtK/O5SPnSfjXprdy3apYvl0Fb7fGxB4JJ41EWrg1AwsLhtb/FLVazdR9k1DLVTRq5IVTh9pMbTOeVatWkJUsxd7egWXfL9ep1GtPwod7DuTXX38hKeIBJiYmTJ48nezsQqCwAk/0xfGyx+jrwkn/+6jV0NDNnuqVn43A7OpoSdM6lQi6m8a5Gw8Y/O6b+y4QeL5USBCvUaMGx44d4969e1haWuLq6qq7lp+fz4wZM/Dw8KhQBbt37862bdsIDw/HxkYziWZnZ+uFxcnKygLQXbe2tiYpKalYWZmZmbo02hNz7cm4FplMRn5+vi5dRVAonu2LWalUPfMynyeJiQnMmDGVBw/isbS0Ys6cBXTq1FYXe7s0AlNCuBp7nfPrj5CVKsHI3hT3fo2JyX3Aev/tXNx8jDxpLlWrujJt2ixAjEKh4mTMeepb1yN0zzVkmQVUrepK02EdMTExR6FQ0bhSI/YZ/I2tiQ02xjbck8aiTC1EKVMgNjHA0skOlRrSC6T4JdwAoLq4ClevXgbgnXd6cDL7EgqFCpVKRcRZzWl47Y6eujqUl7Q0TQgMe3sHVCp08cxfFq9b33pWPI82FxRoFnFGRsZllv/gwX0KcwowMjKiXr2GGBkZ6fJobS59t50gOzsbkyoWOH1Qi21he4nOjCUjX0rjSo10abWO37ydvFCpQf1v+64nBaNUqXXpAMQiTaiy64k3uJZwg4wCKW9V64AsKps/UnMxMzOnfbe3MDIz1jlzyyjILNae33/fR1paKk5Olfnww49fuz5kbm6JubklVasW96CsUqlITEwgMvIOERHhhIaGEBl5l7t3Nf/27NmNq2s13n77Pd55pzu2tnYvoQVvNq9Lf3od58+CggIOHtzPvn2/kpenEZYbNmzE558Po1GjxjqzgIq0TaV++BtmZ2fh4zNFE660mgvTp89GJlPw7bQJmrCj1ibU/6wltwvvkXMsQCeE27RwZuusHcy8upgG1h4cvKaxOU+wziAx+R4/3dhJ6IVAIgKDEBmKGT9+Mv9IznH+/HmN/xhg0qRpmJtbFWvH7du32b59CwBffTUaF5dqr93vKPB45Aoll0M1m8vvtKj4aXhR2nk6cys6g2RJPuGxEhrULNnJtIDA46iw/o2RkVGJwralpSXdunWraPF6aO25o6Ki9Gy7o6KiMDIyolq1arp0V65cQa1W6+1QRUdHU7duXQDMzc2pUqWKzma8aBq1Wl3MdlzgydDECJ+CRCLByaky8+Ytwd29fA4yPG092Lt8G1lJEuztHWj5dVdGtxrOltDdFJ5PIy0qCUNTI2bNWqBngpBRIGXt2pVI4lMxNDNm7tzFHM04q1e2sdiI+zmJOgcv2dEae17zataIxJq+onUos9x/LQkXolCpVFRyq8zJ7Es65zPJ4XFkpUgxMTOlZou6T/x81OonziLwmqBUatQ6i9oWl0Z0tGaxWbOmO0ZGRsWup8ckkxQej8hAjGN3NwyMHpZZtAs9KogD2JrY6F0f7jlQd83QUMzIk5P5qvFgFAoVW0J309SxEd8u1mg3ffBBLzJEeUgyE9kSupvozNhizt/qmtTk9981ap5Dhgx/45yeicViqlZ1pWpVVzp16gJAbm4W4eEhnDhxCj+/q9y/H8/27ZvZtetnunTpRt++/XF1LS7UCwi8KqhUKs6ePcXPP28hLS0VAHf3WgwZ8iXNm7d8pqd62vlGGys8Pj6OSpUc8f68I+bm5qxYsYiYO/cwN7fAc3AbzGwsKDiaQdRZzbxYtVsdTJraMvPqYqSFmfx1ZD+yvEIMbUyoXLcqJjIr3rPtxF/HNFpFtd/2pGpVV/Kic1j14zIA6nZuRNOmxU3FFIVyFi6di0KhoE2b9nTv/sEza7fAq0PQ3TRyCxTYWZnQ8BkLyuamRrRqUJmLIYlcDEmkXjXbN8pfhMCL4ZkYwsjlcqKiosjOzkZdgoRREec9R48excDAgAYNGuDo6EjNmjU5duyYnpB/9OhR2rRpo1sIduzYkfXr13PlyhXatm0LaATssLAwhg8frsvXsWNHTp8+zeTJk3WL4KNHj2JtbU3Tpk2fus7/dUJCbjB7to8uRvi8eUtwcKhUrrxKpZLlyxdy82YwZmbmzJu3mDN5VwlMCSHs8g3CDweACBx61OR45gUoYsqfEhRP0Mk7iMViBo8dTpJhuk44CUwJQVogxdzInJT8NF2e/HuaAuzqVC4WGsXayJobgZpQVF/0Hc5bnt10IVR8fp0EQM/3e9G0evPHtkke5YeRe0u97xwcNDHT09JSkcvlJQphAq8n2jmwPAtareZO1apVi13zdvLi3J1/AGjatgW5jg9jnmojA2wJ3Y2kQEpqXppOYN4SupuglBCczCqxJXQ3dzIicTIvPv6MDR4Kzt5OXoSGhhAerjEh6d37Ew4kHKXLv2GBtAJ40THy44/Lyc/Pp149Dzp37lqs/DcRGxtbunfvTuvWHcnKyuHixbP884/GRv7EiX84efIYXbu+w6BBQ7HLiS027gUEXibh4bfYsGENd+9q/JM4OVVm8OAveOutbs8l3J+3kxdKpZJlyxZw69ZNTM3NmDdvCSeTDvH777/qvJT7+Mwm0Pg2bslO7C8ihG/5dhPjzk7VFFag5tbJAABsWzoTkx1PTkEO49aNRilX0KSJN336DUKpVBL+uz85OdnUqVOPhu+W7K8l7p/b3L8fj4NDJSZMmCSoFb+hXLqpOQ33qG7LnXjpMy+/WT1HAu+kkpkr43aclIZuwqm4wJNRIUFcpVKxYsUK9uzZ81jv6OHh4eUqb9iwYbRq1Yp69TThoU6fPs2+ffsYPHiwThV97NixTJo0ierVq9OqVSuOHj1KSEgIu3c/PKlp2rQp7du3Z/r06Xz33XeYmJiwcuVK6tWrxzvvvKN3v0OHDvHtt98yYMAA7ty5w9atW5k4ceIbd7rzorhy5RKLFs1FLpc/UYxw0Agwmzat4+LF8xgaGjJz5jzc3WtzJvQqllITIg9r1GoHDRxKnpdYJ2QDZKdISTgRCUCDd73JdCzkdNwFJjcfA2gWBMv812JnasuDnETkSjnS1AwKEnJABKKaJrrr2vSJYXGkp6dhY2NLu3YddfWMiYkmMDAAsVhM794f4+Dg9Nh2KaKuF1uQOztXwcbGlsxMKcHBQTRvLizY3xREIs2CVq0uW8UxM1NjT25v71Dsmlqt5to1Tci+/33Qn13Sv3TXbE1sdMK4nantw79NbPB28iI6MxaZSg5AriIPSZHTbG8nL1q6NMHc6KGDKW8nL2atmw7A22+/R4ziPtICqW4TKyglBFsTG10ZTrm2HD9+FNCodL5Oi9jrt1No4fH4MVsezM3Neffd93n33fcJCwtl375fuXbtMqdOHefChbN83Lw2A75rIrxLBF46EkkG27Zt4tSp4wCYmZnTv/9n9O79CcbGxs9sTDyKWq1mw4bV+PpexNDQiJaD36JmTTfunrzNzT8160KvXq0JNL7NleDL/PmrZoOgbudGmLTQCDQOpvZUtXLh3OEwFHlyrCvbYtWoEm42Nbh44gT5SdkYmhnz7bdTqVTJkSXrNafshiZGuH/sRXDGrWIh1LLCUrh65vK/ocp8SgzHJvD6I8ku5Na/Wo+ebsXfsc8CY0MDmtVz5EJwIn7hyTSoafdavQ8FXj4VEsR/+ukntm7dyv/+9z+aNWvGlClTmDRpEtbW1uzZsweRSFQs5vfjcHNzY//+/SQlJaFSqahZsybTp09n0KBBujQffPAB+fn5bN68mU2bNuHm5sbatWuLnWCvWrWKRYsWMXPmTBQKBe3bt+f777/Xc6hVo0YNtm7dyuLFi/nqq6+wt7dn3LhxfPHFFxV5LP9Zzpw5yYoVi1GpVLRp056pU2c80SL0jz/28vfffwLw7bfTaNLEG4B6Zu4smDsLuVxO5RqN6N9/INvCHnqDVilVXN97AbVChWNtF5xaV0daIAUe2sSejrvAg5xEpIWZyFVy5Co5eWEaIciqpj0WNpZYGpnrygxMCeHGOU14MedmNdh5Z59OzW7rXk3M506dOlG5svNT2ZSJRCI6d+7CwYMH2LlzG02bNsPAwKDsjAKvPNo5Ri5XlJk2P1/jYd3MzLzYtaSkRLKyMjEyMqJ+/YZUDr6EnYkNfer0ZJn/WgAkBVKkhZlICzN16uP77x4iW5aDGrXGyZrYCGlhpi5tdGYsZ+MvkpEvZVPwTlRqyEqR4ud3BZFIxMcf96Oqk6uuvwN6J+JKpZJvvhmDWq3mrbe60aCBZ4Wf2YvkeQgdDRp4Mnv2AiIiwtm6dSM3bwaz93IYvmO+4ttvv6NevfrP9H4CAuVBpVJx7Nhhtm3bRG6uxg787bffY8iQL7G3f3hy97wE8d27f+bIkb8RiUQ069+BnEoyVp1bz60jd0ANlbyrUqttfepb1Obvv3ejUqqwq+eERTsnMmVZ+PguQFqYSeqdRNJvJADwv+GDOSf340FoDCl+Go01h/dq8FfScZLO38f38AkAvp0wlc6du+i02LTcvx/PvB81p+wDB36Ol1eTZ95ugVeDy6GJqNVQt5otdlYmz+0+TWpX4sqtZFIzC4hJysatinXZmQQE/qVCgviff/5J9+7dmTNnDhKJRqhp2LAhbdq0oXfv3vTv35+rV6/q1MPL4vvvvy9Xur59+9K3b9/HprGysmLhwoUsXLjwsem8vb3Zt29fue4rUDpHjvzN2rUrAejW7V0mTJhcbsHy+u0UshOC2bZtEwBffTWKzp01NplKpZJ/th4gJSUZF5eqeL01SKdCp7Xl/v33X5HEp2JgYsiKmas4mHxcV3ZR21idWrnvAqqbV+XYTU0ou+ad2mDv4Aw8VL2Njo5if9xWxGIx0z+fhpOTJgxfXk4uf13+GYABAwZU5JHRr99nnDx5nLt3I9i2bRNffjmyQuUJvBpoN59ksrI97yqVmji9JY2VpCSNSl2VKi4YGRnRpXpHfr19gD51emJnaoudqa2uv2r7dtH/ozNjmdx8DJMvzMazUn29xaihoZixp6fpbMS1Y7d167ZUreparC7w0N7zyJG/uXPnNubmFgwf/npFs3gWXAp+QMPqtiVeq1evPkuWrOT8+bNsXLOU+PhYvvlmDJ999jn/+99nwmabwAsjPj6OVauWEhZ2C4DateswevQEPDweE0rgCShLeP/rrz/Ys2cnAKNGjeeDD3qxMehnQrb4oipUUr9+Qzz6tmBYw89YtGgO8qxCqlRxYc2CjVhYWLLMf61m/jo6g7ijdwDo1asPH7f/iFMHLhLyu8ZZ6kcffYK4rQ29nd9l9LwvQQ09evTUrSGKIpPJWLRoLgUF+TRv3pxPPx0k+Gt5g9GGLGvr6fxc72NqbIiXuwMBd1LxC08RBHGBJ6JCgnhSUpLO5vrh4lOm+/zhhx+yfft2vvnmmwpWU+BV5sCBfWzevAGAnj0/4uuvxzyRvdnRUxe4fuwnAD7+uC812tXTXdu1aztBQQEYGRvz0cAJxGWaAhoVXICEhAfs3v0zAFW61eJg8nGiM2MBjR2tkdiIyRdmY2ygORWcc2WpJn7yJT8KsvOxsbdFWiWfR616/vxTE6qobdsOOiEcIME/GqVcSa1atWnatClSqX54HXmUH4qo63rfKaKuk39qne6zoXsLjNxbYm9vz9ix37BkyTwOHNiHubk5n346WFBres0xN9ecbufnlx166eHpubzYNa0nY0tLjUNCbycvdob9pvtbq+0BcE8aTWBKCNGZsSz3X0tyXhp5ijx8fBeQp8gjJPWWzvRCq5quUmu9GWdz6pTmFKlXrz6l1tXbyYuUlGR+/lmjETJkyLASVeqfFc/rlK6iXApOKFEQLzr2WwH13nJk+z0RF2/Hs2vXdm5ePMrkUV9j36jzC62vwH8LpVLJn3/+zs6d25DL5ZiZmTF48Bf07PmR3kZQRcfX4/IfP36EjRs177wG73iTWCmWjadnc/pkGNlRqRiYGSLuaEJwxi1mrh+N/8VwEIvw6NuciNwovC28sDO1paCggKg/gsnLysbEyZyhQ78kPz+fpIN3yc/LpUEDT4YO/YqVgRtYtGguWVmZuLvXZsSIMSXWa/Pm9URFRWJra8u8efMwMDAQvKS/oaRI8ohLzkEsEtG0TiUepD7fsJrN6zkSeDeV2ORsMrILsLcyfa73E3hzqJAgbmtrS16eZrFpYWGBpaUl8fHxemm0ocUE3kx+++0Xfv5ZE/6jX79PGTJkuJ4gWdbL/t69SPxPbEWpVNK5cxeGDfuabWF78Hby4sqVS/z22y8AuHRpwtmwQiTZWaz/K5R4sziSQm/id+wnZDIZTZp4Y9eqpu408FGKfq9UKDlxReP05X+ffIa/QYSeYJOWlsrZs6cA+PjjfroyFAqFTnX+44/7ligwG7m3LGYPnn9qHWbdRpfY/s6du5CWlsrWrT+xe/fPFBYWMnTol4Iw/hqj9YmQk5NTZlqtSrp2HtVH0wdKcoBZVG0cIFuWo+vD2pNvH98FLGjno9uI0vpL0KIVxE+e/IfCwgJq1nQvVU3T28kLtVqtc9DWoIEn77/fq8z2VYRnJYhfv52iOxkB8L+dwvq/QnWfW3g4FbvP09y7pLE/fcxoTp06ztq1K7kRk8yklZuZM8edatUEz+oCz56kpESWLVtIWNi/2l7NWzJ27Dd6m8l7T98lI7uQew8ydeOipDHR5ilPEU+ePMaPP64ANO/P4cO/RiQScfHiOf4KPo9IJKLm+7VZ3nsFG/y3cdH3MAD2rV2Y0n2irhy1SsXy5QvJS8zG2toa215uGBkZsXDhHPJTcrCzs2f69FkYGRlx658AUsLiMDQ1wsdntp5JnHauvHDhLIcPHwRgypTpODo6PnV8dIFXn4AITUQAjxq2WJkbA8/3t7axNMGtijVRCVmE3Eunc5PiDlgFBEqiQoJ4gwYNuHnzpu5zq1at2LFjB/Xr10etVrNz506d4zWBN49fftmhO40eOHBIiae5RRe0fmHJvNvuYVi4lJRkZs6cikJegJdXEyZO/E53kp6Q8IAVKxYD0KvXxxi2t0MWqTkFH9Xbk2X+52hmk8XhuDAMDAww7ViJ1Px0Jl+YTZ5CI9SIEKFGjYHIAB/fBeQr8qli4YxxqII8SQ5WtjYk18ghNytP55BqS+hugv++ikKhwLlWVfIdFDoBPj7oHunpaRiYG3LPIZEfLm9GLlPQxNGrmGD0JHzyyf8Qi0Vs3ryB33//FaVSqVu8CLx+aB3/ZGZKy0xrY2P7b1pJsWva0HxRydG6/itXyfHxXaBLE50ZS586PRGLxASmhCApkLIldDfSf+3Bt4TuRv6v07YNwdu4n6NRdxcBKrWa787OJfT3ywC4tnIvtc95O3lx7NgRAgP9MTY2ZuLEyc/Fy/Lz4FFBe/1foYzq7flYYftZnsZ36/YutWrVZs6c70lMTODbb8cyZ85C6tdv+EzKF3izeNq+d+7cGVavXkF+fh5mZuaMGDGad97pXmxMZ2QXMqq3p24cAHp/V4SjRw+xdu1K1Go1PXv21r3HUlNTWb1aI5z36/cpt6tF4uO7gNgzt5FIJJjYmWHT2lkzz8nzUapVJB2PJCs4FQxE2HxQHUNbYwYv+Jz0y/cRiUU4fujOuYwrON6yJOVaHADN+3XExUVfAPJ28uL+/XhWrVquu3+LFq0q3FaBVxv/CM0mU/N6L06rqnEtB6ISsgiNyqBDoypCKDOBclEhQbxfv378+eefyGSyfxdnE/nss88YOHAgarUaGxsbpk6d+qzqKvAKUVQIHzr0S/r1+7TMPH7hGkHcLyyZi0Ex+P69kuyMdIxsrXDxHsCWf+3AYg3Tmb5yOrm5uTRo0JDhw0fy8+29emVl5ErY+PN6APr0+R9Du3+pu1b0RDw6MxY3mxo623CTAkNO/XUIAPv2VYnPf4BcJSc6MxYjsRF3Htwh6uptAN7t3VNnhx6QHEyw3wUA6rX3YmSzodjZWSCR5D4T1baPP+6HiYkpa9eu5MCBfdjY2JTrmQq8etjZaQwdtH4zHkelSpqwYqmpqcWuVa6sOZGSZRZQw7IaYRKNR2E3mxq6NNq/xSKxrq8GpoTw6+0DGIg0aqhylRwLI3OMDIxxs6mhU00fe3oavUy6ECg9jZGZMd/2L92EKCUlmU2bNONt8OBhb0Ss7PIIPI+epotF4BeeglymQPWvokJJJ+qP4uZWi1Wr1jN79nQiIm4zbdokZs2aX2J8Y4H/Nk8qiMtkMjZuXMvRo5r3WoMGnkyZ4qObP55lvYqOhcDkENb/pflbrVaTF3+JM/9o/O307PkRI0eORSQSoVarWblyKTk5OZi7WDNw4BB+OD8bSyNnblw/C0DTD9qQYpCNm00NoqQxZJ9P0gjhInDr5Yl305ZcPH+W9Mv3AfDu056annUxzzZi5cqlAHzySX/UjSxKfD6LFs0hPz8PT08vBg8WnPG+6aRJ84lOzEYkAu+6ji/svu4uNliYGpJboCAyIYt61Wxf2L0FXl8qJIh37dqVrl0fxo+tXbs2p06d4tq1axgYGNC0aVNsbW0rWkeBV4w9e3bqhPBhw0bwySf9y8xT9AXuXdeBP35eSnZGIvb2Djh81AgLD40Qrlaridp+gZyEDAwtjCnoYMXUMz+Qb5iGyuQOYjGMPbWXDP9YMpISMLU2p9DLkMCUEN2ptLRAiqQwEzsTG7IKswlKCcHHdwFZhdmE77+OvFCGTTV7mnVojUgs4k5GJH3q9CQwJQTV5UxuypXUq+dBdmWZrs7HrxwnMvIuJiYmuLd9Mg/Ihu4typXu/fc/RC6XsXHjOrZv34ybWy1h5/41RBsjPj09rYyU4OzsAkBiYkKxa46OTlhYWJCbm8tb5q2IzYknV57HcM+BbAjeRoTkHqFp4ewM+w25Ss6Ecz6o1CrEIjFylRztOZiFobnGs/q/40LjNf0CMqWcNT+vBsC+aRXCsu7ibVpcs0OtVrNmzQ/k5+dRv35Devcu3Y68IjyNCvmTlP00eR+9p6GhmI2HwhjRs4FuA65onYvy6Li3tbVj8eIfmD9/FgEB15k9ezpz5izSRYcQEHhSUlNTmDdvJnfvRiASiejY7SMmjx9VolNA7fi69yCT9X+F6o0v7XePG2OPXpt2/Dyj3vUkNzeH1at/4MIFjVD9v/99xuefD0MkEhGYEsIfB/cRFOSPyFCMfffqzLq2BKlIRsH5q6jkSmyq2PNB1w/ZfmsPQ+sPYOy80URf02w6en/SHuqZkhadRMo/0QDU6dQIWy8n7iZHcnjbHgoLCjCrbs29uilkpmTj47sAOxMbbP/1h3F532miou5hY2PL1KkzBIeJ/wH8/1VLr1fNFmuLFxc+0kAsopG7A1fDkgm5lyYI4gLlokKCeElYWVnRrVu3Z12swCvCvn2/smvXdqBkIby0xfS9B5mIgEU7/IgLOEBQkD+mpqbMmbOQrfdO6uxaDx7cT054BmKxmAUzl+hsVreE7kYW2YQWHk6cSN5F1NWrAIwcNoZ3mnXXq4OtqS22/3qUHn9qNo2dazPccyDTNk4nPyoTQyNDlvgsp0YNN0BjSxuYEkKeJIdT/9qQDRo0lCDRHV2ZEWeCAXjnne4YWzyZE45H7UblUX7FvtPSu/cn3L8fz5Ejf7Ny5RI2bdqJpWX54rALvBo4OWlOotLT05DL5RgZGZWa1tW1GgAZGelkZ2fr1NEBxGIxrrVrEBEcRlBQIBTRuBzZ+Au9zacxZ75jVecFOq/pE875YGFkrucb4VGv6cO2jyItOhlDQyOadWlTqnnFqVPH8ff3w8jIiIkTpzy3hWxpKuSPQyaTcf9+HImJCWRkpJOTk0thYQGgxtDQCFNTU8zNLbgSkYW1qBlOTk40r1f8hKSsTQBt/dp4OuOadxtooJe3JOGlpDFuamrGzJnzWbBgNn5+V5g924dFi1ZQv/6z8WQt8N8hLCyUefNmIpVKMDK1YNb3s7gWb1ZsfD7atyXZmmgO2nBO2nFXmgCuUqnIzs5GJBJhbm6uM0lRKVWcOXOSHTu2kpKSjIFYzKjR4+nR40NdXlcqc/ufQAC+/GIk/k4RLGjnw5QLsymM0JjJDP3fMJpVbszWoF3Mnz+T6GuaTYXK77mz4It5/HBmLVd3nQSlmrZtOzB98ixEIhFz5nxPYUY+Tk6VaTm0K6Nbf1ksVNn582d04dMmT56Og0OlCj51gdeBAK1a+ktw9qkVxGOSssnNl2NhVvr7X0AAnpEgLpfLSU5OJisrq0THQg0bCrZwbwIHD+5n+3ZNiLEhQ4aXeBJe9IWu3X3XkpFdSGTwWYIvaxyhVXnHmz9TLpBlFMuW0N2kRiVycdM/AAwf/rWe4yhJgZQMs/MYK2wIPX4dVaES26oOxDqnsSV0t55aruTfGOLL/NeiEOcRmhbOhN+mEHHIHwDnt9w5me0Lob56wkfiuSjkcjmOtarg7d2CoFsaQfzOnQhS7iYgFovp0+d/PBCVfAJWXhRR10sVxAG++mo0wcFB3L8fzy+/7GDEiJIdvQm8mtjZ2WFqakpBQQFJSYmPdcxlYWGBs3MVkpISiYy8o6eqvP/uISSVCwD47divOA/0QIxYZyNuLDbS9Xk1al3IMq1duEwp132njTKgxT/xBmkXNY41qzWvxe3Ce3omHdrxJJVKdRERBg4c+ko4GUtIeMC5c6e5fv0akZF3UCjKjtcO4H9C41TSwMgESxsnZIb2xNyqi11lN6ztq9KygbNu7nrcJkC1vNsVqr+xsTE+PrOZM8eHwEB/Zs+exooVa3WbMgL/LZ5GE+TChbMsX74IuVyOu3st3FoPolmzFlyL1988Kim/tm+X1sdlMhlBQQEEBFwjPPwWsbGxuqgOhoaG2Ns7YGpqyv2E+4QoDgAaM5rxb3nQtIgQrlarWb9+Nfn5+TjUcOLDDz/C/6rG70uuNIcHD+4jFoux9qjE8uOruL/7FtHpBYgMRDi9XwvzenZ8/fdEHvwShiJbhkkVCyZPno6BgQG7dm3Hz+8KYkMDvv9+DucLrxdrx4MH93VO4/r1+5RmzcqnmSbwepORVcC9hCxEvFi1dC12ViZUcTAnMT2P2/FSmr2EOgi8XlRIEM/KymLJkiUcOnSoxPA7arUakUhEeHh4RW4j8Apw/PhRfvppLQCffjqY//3vszLztPBw4vrtFN1LP+1+ONf+2Q/A8OEj6dNH45F82eUtfOj0NuMXjEStUlOtaS169/5EV8712ynYmdpikd+Et8xM2X9jKwDTxn1fzMuzVoDQMu34OpzNxVw7eAqUalw8a9CyW3u9XfPozFhu3ArixmXNy9y+UzVWBKwjOisOH98F3Nt3AwCnRq4cStVsIhiIRXSza/skj7BESjodNzY2ZuTIcfj4TObIkYP07dv/uYaJEni2iEQiqlWrwd27EcTGRpcpvNarV5+kpEROXz+tJ4j3qdOTpDZJHDsTR15iNkbpMLjTp7r+/Wh0AGmBlFx5ni58X55C87dMKSc5L03vBD3vrpS8+CyMjY2ZM2ouB5OP640JLVu2bCA7Owt391q68fqyiIy88+8C/Kre95aWVlStWpVKlRyxsrLG2NgYkUiEQqGgoKCAnJwcIqIfYKDMJSMjHaW8kMy0eCCem0kaTRcLCwsyGnsjadWG1q1LHtfyKD8M67amkm35NGIepw5vbGzMjBlz+e67b7hz5zazZk1j1ar1WFkJ8Wf/azypJsiff/6u89fQpk07Jk/2YfvxexWqw/XbKbhYyTh06E9Onz5JTk52iekUCgUpKcm6z6bW5tRqW5/aHTwpSIjSS+vre4Fr1y5jaGiId9/2eif1skzNBqNKpWLntq3EXL8LajWm1ubU+Lghng29CIoPRvRPJoosGVWruuI2qAmmpqb4+l7UxSf37tOOOnXqcT5UXxCXyWQa7+r/2oUPGjS0Qs9H4PUh6K7GJKy2qw22liYvpQ4NatiRmJ5HWEyGIIgLlEmFBPGpU6dy9uxZevToQePGjfXUKgXeHHx9L+g8nn78cV8GDhyiu1baYvNRe7SrgeGk39iGSqWier3WJInr6/Jamxkyf75Gxc7dvTaDRo7Q8/R6KtIPI2cpqkqXmbn0FKjBpr4jfuJQ/EI1JwBaAfzR04XUrCzuHPMnT5KBcSULarb5EGl2BoEpIbpwZZI8CTcP+gFg71UFuYMaNWBrYoNttgWZd9JABPPGzNM5qTI0fDbeMEs7HW/atBkNGjQkLOwW//xzmM8++/yZ3E/gxVCrVm3u3o0gMvIO7dt3emzaRo0ac/78GYKDg4pdM7E0o2PHtzhz5iRJl2Lw7qsRpB+NGQ5wPycRuUpOrlwTNcBAZKCzlbQzsdEJ4dnZ2axfvwaAvn374+joCMnFbk1IyA1Onz6BSCRi7NhvXrhtpXZekclkbN++mYMH9+s2d729m9OhQycaN/amcmXnYiETtf+bA+ZAnGkKzT2cUCrl5GWl42yRT0BwGNaidMLCbpGbm8vlyxe5fPkiBgYGVHKtj7fzAFq0aKVrtyLqOtRtDcDa/SE6Z22lnWCWZZduamrGnDkLGT9+JAkJD1iyZD5z5iwSbFgFSkStVrNjx1ZdSE83z06Iqvfg+22BSLIL+Xadr+5/eysT7Kw1G0alqZ1rv4uKimT96rUkx4ToNBqtbOx4q1NnOnRoi7NzNWxs7FGr1UilEtLT0ygsLORMui8T3hqtU1XPCX8YeiwvL0+3cV+7kydJRun4+C5AWpiJj+8CxDZGiMQi1Co1MX4azTPXxm4sn7aS3+MP8VmtPhxZuY+ChGzs7R2YP38pCeJUjgYcY/1SzVqkdvuGZFTP10WJ2BK6W6f5o40Xbm1tI9iF/8cIvqd5Hzap8/LMEOpVt+NM0AMS0/OQZBeWe/NW4L9JhQRxX19fBg0axPTp059VfQReMUJCbrB48XxUKhXvvfc+w4ePLFec8KKL0YbVLTn163xU8gK8vLxYtGgeYrGm66nVagL2XST+bhTW1jbMnDmPOElxIdfW1JZI/1tkxKUiMhZT7e2HYfGKnoIXXXRkZmZycsw1CiSZVKrkiPOAeszo8bGeKjvA4cN/cSYpF3NzC9Z8t5YDCUd1trWhh64AUK1JrTI9RT/O9vtJEYlEvP9+L8LCbnHq1IkSQ8MJvLrUrevBsWNHCA8PKzOtt3dzANJjkovZiYNGrfLcudNk3kllwYElVK6rMRaXFmbqvKZL/v1bUiBlcvMxTDjng6tlFSY9EjtcGws8PT2N6tWrM2BA8VNw0JgbrV27CoAePXri4fHibZhbeDghkWQwZ44PEREadfDOnbswcOBQqlZ15frtFJydi889yTcu8kH/PmWeMuYauzGqtydKpZLIyDsc/OcMsXeDiIq6R3JsKHPm+ODs7ELfvv/j7bcf+qGoZGvGmLe8dM7aKhL6ydbWjlmz5vPNN2MICLjO3r27hU03AT2u306heT1HNm5cx8GDGo2yoUO/om/f/rp3Qlnq5kXRjotqtkqWLJnHuXNndNfqNvBm0ID/cS3OlLH9mugig+TfuYqxe0ucnCrrYpL7h4aVGsJwxcalpKenYeFghUfXxoRIwmhq76WLYpIvz2fsmG/Y+8+vNKhan/ff78VVgrGxsUEZpWDevBkUJGRjaWnJ/PlLcXaugnmWOWvWLkEpU9C4cVMWTF3G9vBfi2ny+Ppe0MULF+zC/1sUyBTcjtVEK2lc6+X97pZmRtSobEVMUjbhsRI62FZ5aXURePWpkCBua2tLjRo1yk4o8FoSGxvN3Lnfo1DIadu2A2PGTHxiYbBZ3UosWDCb/KxkrKztWLp0KQYGxrpF7N69vxB/IwoDAwN8fGZTubIz+6+E6i2ibRQ1edvKgkP/7ALAtUsdBjTr+9jY3RkZ6fj4TKYgLRNLGyu8h3YkwVBjT66NFw6QJ83hzNa/ABgyZBj29vbwrwPr9JhkIoI1i436bzcts60lnW7Lo/w0J2mPpMs/tQ4AZXJkqQJ827btMTY2JikpgdjYGGrWdCuzDgKvBg0aaPxiRETcRqFQYGhY+lRbpYoLNWrUJDY2hiV/LKNmi7q6a0H/am24tfHgnm8YoQeuMWbddmxsbHSOibaE7tY5J9T2a2OxEZLCzGL32r37Z3x9L2BoaMi8efMwMTFBoVAVG0t//vk78fGx2Nra8fnnwyv8PJ6G9PQ0pkyZQELCA6ysrJk0aSotW7bRXS9tE7BGYUS5ytfmNTAwoF69+liGK1k3YTSxsTGcPHmM48ePkpSUwJo1K9m3cxODGjvSljUooq4jkyl1p4fVC5yBp4/B7O5emzFjJrJixWL27NlJ48beeHo2euryBF5vHu3TfuHJBJz7jYMHNfbYY8ZM5P33Pywpa7loVNOaHTu2sn//bzqTQpda3sycPIYjQbk0b+6J3319W/OS3m3qnAzdewxAnSsh/9Q67iVLuHryPADTJn5Ps6YtmXJhtl7eQpWMB9WkuP6vAQ42NZA5qSFFswEYvs+fiBu3MDA2ZO7cJbi5uaNQKFi4cA5JSQk4O7swffqsEk+5k5OTWLVqGaAJZ9a8+bPZGBd4PQiPkaBQqnG0NaWKg/lLrUuDGnbEJGUTFpNBe69nG0pQ4M2iQvq1/fr148iRI6hUFY+jLPDyKCn8jkSSwcyZ0/6N5a2JS/o06l2//baHy5cvIhIbMH/eAl3cZICLF8+zc6fG3nvUqHEUGruUWIasMI9582Yhk8lwqlsVmyaV9QSHR+t//348YyaMICYmGhNza4ZNHcPELmOoZ6/xnl7TujrDPQcyrOFnpByLorCgEPsaTnreXtVqNdEnNaeZ77zTnU4NOyCP8nvi9hu5t8Ss22i9f4buLXR/G1SuXeopuqmpGY0aNQbgxo2AJ763wMujWrUaWFvbUFhYwO3bZZ+Kd+z4FgCKiByGew7E28mL4Z4Dafrv/0u/WYaLS1Wk6RLmzZvB1fjizomKYmFkjrH4obdWtVrNnj07dbaVY8dO1HOiqee0MDFBl2748K9fislRbm4u338/hYSEB1Su7MwPP6zVE8KL8jTjEooLPFpq1KjJ8OFfs2vXb3Tv/Tl2dvYkZ+ay/EIMSy49oLBaEyzfHaMbw3Gm9Uos53HsPX1X73O3bu/Stes7qFQqVqxYRH5+/lO1SeD1p2i/VKvVhF/7WyeET5gwqUJCuL+/H8OG9Gfv3t3I5XKaNPFm7drNNOs2lBo13JBkFZS7rGbunfXeayILO4w6j2DD5VhUaujUqQvNmmnebUYGRgz3HIidiQ3DPQdiIDJguOdA3Gxq6OY7L/sGLFo0h4gbtzA2NmbotyN10QQ2blxLcHAQZmZmzJo1H2trm2L1USgULF48j5ycHOrVq8/nnw976uck8HqiVUtvXKvSS9cgrFPNFkMDERnZhSRnCPO5QOlU6ER89OjRyGQy+vTpQ69evahcuXKJwto777xTkdsIPGcePVmSyWTMnz+TlJRkqlZ1Zdas+ZiYPLnTi4AAP3bt2gZArWYf6U4JAW7fDmP58oUA9Or1MT16fKiLYyrJKtDZXCoVcs7+uR5ZZjymlnY4/Z+98w6Pouri8Lu72U2vhAAJJCGhBAihhg6CNCki9o4K2CgqgiJFepMiCAQBAQVFUQQjTYHQexJKCiSk99422U227/fHZJeEhCao4Jf3eXwiu3fu3Jmdcs895/xO347oDSW3HH9MzFXmzJlOaWkpLm6utHyhJ6eUYWRE55k94ZmKbKEcWpScixfDkMlkjHpvrPna7egWwLlzZ0iNS0IilfDqq2/g6lqfisig+w491yaFos9NMHsSqnrHQag9XHUfbdoEcPFiGLGxdYKHjxJisZiOHTtz/PgRLlw4i79/zeiNqjoF5U2EvO6IiMt8eXQthZbVvdk2NjbMmjWfjz+eyNWrUWQvWEa3Uf0BoaJAf88+wA2D2kYq1A4HUCgUBAWt4vjxIwCMGjWGoUOH1zpuU81wtVpNu3YdePzxgfd7Ku4Zg8HA0qULSElJxsWlHkuWfEnDhrcO7avqrdPr9ZSp1GRlZSIWi7GxscHe3uEv1RCXZEXRzyqL11/vw+4LsQSHxXLhwjlirlgwObuYDn2HIfXpUq1KxN2UQDOl7LzUv3m1795/fyJRURHk5GSzdetm3nuvelpBHf9//PzzdhIjBIHQiRM/ZvDgYbW2M12Dt7rOFQoFGzcGcfjwnwBY2Tnj2nIIjTt142CUynytpuUpWBccfVcGeVuFiorI6h7x7Ys/JCkpATsrKaOfqCl6qNSWsyn6BwxGQ7XoNINOz4UfjpF1NRWxhZjZsxdySSako+zfv4d9+343lyDz9m5qFp6suoD43XebiI29hp2dHdOmzbptFFId/z0MRiMRiYUAtGv276cjWEol+Ho4cj2thKspRTT3rhPcraN27utJlZuby4ULF4iJibmlMnqdavqjx4YNa7l27Sp2dnbMmbOo2urz3ZZaOXQmmrXL5mI0GvH064HSphVrd0UilVlQUpDDiV0r0Go0BAZ2pUOf5821xtcFR5OYVUpnByv0Oi3nQ9aikacikVnQ8+3HSLbIxEZiYw7BLVGVoLXwBvw5f/4MixfPQ6PR4NzYlaBlG3FycjaH8M44s9D8d4BdTz7c8R4Ab731NoPbCwbHpbxIwrMuc/hrwQNh38mN4JyDkAN6UT6BlRMATUIouekXq4Wo3smoBsFDrksKw3qAUJKsIiTI/P+10aKF4G1LTIy/ZZs6Hk66d+/J8eNHOHv2NKNHv1tjhf7mieSVNufIvpqGKKKcpgO9zKXJTJNOL6+mLFy4lGkzplCUls+hFbvJik6lpKkGZysnjqSdpEQt52jl36KyIqZtnE5syBVUZRWIxWLee28CTz759C3H/Mcfe7l8+SIymYwPPpj8r3gVfvnlR0JDzyOTyZg9e6HZCK/t2bN2dwSNr0YRvutVMork5JeVYzAaIfikuZ3UwgKPxp4c9/GlVas2dOzYGXd3j7t4lnkT5jiCcUP8GTMEeu1YxOpTySQlJTB312nGNejEMJ/qRtC91kGviq2tHR988DEzZ05l797fGDjwCXx9m937CazjkcZ0XabGnCXy5E8AtO7+NCmapubr8+Zr7XaG+JUrl1ixYgkFBfmIRCJ6Nm/Cx0vWs2LnVbq0akBYbB62VhYkZsrR6gwkZsrxUl3n9Nr9WMoskEpEeKnjqr3bAHNkl3k/X73LzgtCWsiQUS+yxyIbTO/pSpE2pbYcjUGLIIcqCKLqtTpif7lI1tVUpFIpXd54nI4dO3MpOpaIiMt8/fVqAN54Ywzdu/cCqGGIX7wYxq5dPwPw0Uef0qBBXSjwf4mYlCL0+pqlkauSU1SOXKFBaiHGaDSac8X/TVp7OXM9rYSY1GJG1FLauY464D4N8enTp3P16lXeffddAgIC6lTT/wMcOXKIAwf2IhKJmDr18xq1be9msqlSqfj9x6/Qqstp0cKPZV/MZtOBOCY8G4BIpOXNNxehVSvw9W3OtGmzsba2pmvrhtUEZ94a7Mv8+bMoSk1CLJGyaP5SAgLamw1wk0DLpugf0Oi8CQk5yMqVSzEYDAQGdsV9ZEucnJxrPUZ7bFm0aC4ajYbOnbsyYsQz5u86ugWQdDIGRUEpzs7O9B42wLyvipwgrCtf/LJmXXAO7EdxsdKc734no9qEhc/d1zP18vIGhNrJWq0WqVR6+w3qeGgIDOyGTCYjKyuTxMR4mjVrcdv2LfsGkH01jZCQgwxoL1yTJmPcNOH082vN2tUbmTzrQ+RZRVwJPofE0gLPrvZ4eTWlmXVDyspKuRYRRm58JilaPQAeHk34+ONPad361oZhRkYaGzcKNcPffHMs7u4eD+I03BPXrkXz/fffAjBu3IfmhSio/uzR6/Wkxpwh7PeN7M+rKfluZWWF0WhErVaj1elISUkiJSWJo0cPA+Dt3ZS+ffvz0sAnzKUBa3uWVTXUPV0dWbNmHasXz+Tg6VDWrl2JSqV6oGXdOnXqQp8+fTl58jgbNwaxZMmX/3qIZR3/LIF+bhhLE9n/jWBYNuswiBWzPrjnfvR6Pd9/v4VffvkJo9GIu7sHkyd/hj5sD9bW1hSXqc33lOnanxx0hhXje7Iu2JFez401i7WV/bnmtu+2srJSVp5JQ6/X07v3Y7w1cnS163bGmYUs7DnDvCj+yck5jPV/jfWXviN151Vir0Qjk8mYNWsBly0FY74sX86CdbPR6/X07dufF154pdZ9FxcXsXz5YgCGDRtBz5697/lc1fHok5gpRIA1bWiPheTBVLW5X5o2csBSKqGsXEtqdimerv9u3nodDyf3ZYhfvHiRt99+mw8+uPeXRB3/HrfyBCnl+ZzY9SUg1Ar/K0InRqOR1atXkJSUgKOjEzNnzkUmkwFQUVHB9OlTyMhIx9rOmWden8yKnVdxcbCiqFRFUlYpC7aFk5dfwFvvLEVekI6VlRUtBj9pLlWWLE+lRC1n2sEgtCIlWnE5eaHx7L0seMBcWnsh6l+fqJIYPj05B6lESolazicn51Chq2D66QXE7bqMMr0IKwcbGgzz5UpBtNnQKSoqMufHvtLFl0x5GhUhQRgURRjyEs1eAZFIhLRdb2jY7p7P0e3C228WbqtXzxWZTIZGo6GgIJ9GjWrPo6/j4cPa2ppu3Xpy8uQxDh3647aG+KW8SEqdVTT0a0xObAand4Vg5+qASCQiWZ7Krvi9JMtTcbJyAsDlpaY0TWpJ3PFIykuUnDx5HDheo19LZ2vqd/GkWbdWqFxvreWhUlWwcOFc1GoV7dp14Kmnnr2/g/8LKJUKvvhCqNDQr98ABg8eWqONNimU1PCjrDoQSmKu4PGwl4np5NuErs3dadrAibLcfPzfFwSbTPdNenoavx08i0GRzrVr0aSkJPPdd5v4/vtveeyxx3nxxVeBG89GT9V10qxaVvOS95bL0SaUsGBlEK6r1rB9+zY2bfoae3t7Bg0aUmOsJo7/voe9GdXDEk1lpkwE+rmZQ9XHjHmP8+fPEhl5hfDwUAIDu97HWa3jUSMhIY7Fi+dhMBgYOPAJLJvWvA/uVBqvoCCfJUvmc/VqFABdfDx4om0zSk/uoo04mfPr5/KUwcDZdYeJ0jclQu1lLn9mik5buyuSfoGetPF0wqAouuW+dDodixfPI69MRYMGDfnggylmI9wU0SNXl1YrX1auK+ezI3OJ33GJ8oxSxFIJbZ4PYLfqECVyOVND5hDz7QW0ChUOjV1wGtSYy/lRNUQlDQYDy5cvpqSkGC8vb95+e9xfOeV1/AdIzCoFwNejpn7Av4WFREyLxo5EJRcREV9A77Z1kRp11OS+DHFXV1ccHR+ei76Ou6M2r/a7T7Zi6tSN6LVq/P0DePnl1/9S37t37+TYsRDEYjHTp8+mfn1hPwa9jvnzZxMdHY3U0oauQ8fxeNeWxGbf8IK7OFhRkp9G+rlvUClLsLG1Z9HCLyg11jOPt6pHfFP0D2REJBN3+RgATz75NO+/PxGRSMSm6B8oVpXgbOVkLplyOS8S7eVSlLFFiMQiur72OD18ulZ7uW/ZsoGKinKaN2/J0A++YMu1H7H2f42KkCDEdi5mr4CFhRi7Sm/B/XCzd/xmdVqRSISra32ysjLrDPFHkMGDh3Ly5DGOHj3M6NHvYGVlXWs70zVY76NXGT9+LOWJJbQsbkyfPv3YFP0DzzZ/0uxNupQXSXRBDL49W+HTvRXnr5zFucQOZWEpeo2Ohs4NUdnq0LjByueW3NGjKkxml5CSkoSzszOffjrjlmWJ/i5MC3h5ebk0bNiI8eM/qrXd5QI9S3acpKKiArHUirFvjaGfVRY/qh+nb6U3+/z6ueb2MpkMd3cP3N09+CXcwIpZkykrK+Ps2VMcOvQH165Fc/ToYY4fP0LjFt14td+ngBv+GSewHvBsNS+5Nqkc6xYNEIlEvPnmGHQ6HT///CNr1nxJkyaetGrVptpYTc+srrbp9B1fXWDL5HmsDTe3Bgwf/hS7d+9k+/bv6Ny5S51X/P+E/Px8Zs+ejkqlokOHznzwwWQ27out0e52hnhk5BUWLZqLXF6CtbUNkyZ9Qu/efc3fn18/l27vzWbSV8f47IVWdHBwxPFsBi/1b87koDPm9/GEZwPMHnGjsnZD3GAwsGrVUi5fvoiFhQWzZs3Hzs7O/L0pfHzCkWnVPOIT9n+C4o9MyjNKsbW1Zd68JTTNOoF1z/FsvLKVpB0RaItU1K/vxphPJhKvSammqWHKLY89coWrly4ilUmZNm3WX9KyqePRR1GhJadI0FnxaeTwL4+mOq28nIlKLiI6qQCdvk7Yuo6a3Jch/tZbb7Fjxw6ee+45bG1tH9SY6vgX2LcvmKtXo7C2tmbKlGl3rZBuEh4K9HPj4sVQtmzZAMA774wjIKA9YbF5dGxejwuHtlKQdgWJhYzGnV/jeq64Wl54UakKZXYEkad2YNDrcHVzJ+DxsbRs2Qq4MfEoUZVQrJYLNb6vRRL3UzhgpGk3P6S9ndl8dbvZqHGuUtJprP9rzPt5Ief/EASrxr3/AcOHj6x2LNHRkRw5ckj4ftwH/4gxcjfib87OLmRlZVJS8u/nPNVxb7Rv35FGjdzJzs4iJORgjWuuKqbrts/wARz7/SDLVy3hMrHE6ZLZFP0DyfJUNkX/QEe3AGylNuaUiZSyNBb2nFGtL1P7OxlwRqORjRuDzCXNZsyYaw7V/ifZuzeYkyePI5FImDp1Zq3vk6NHD7NixRIMBgNt27ZD5TaYp58eQubuL0nMlps91/5ag/mZ4uJgVWPh0d7ensGDhzJ48FDi4q7z00/bOH/+LGmxZ3n77VE07/I0/u1rjtF0r56OyKSNpxNvvDGW6NhErkZcYOnShQQFbcLG5kbo4V8RiDPx3HMvsX//Hq5fjyUqKoKAgFoGVMd/ioqKCubMmU5RUSFeXt7MmDH7rgXHVu2M4MPnAtiz5zc2bgzCYDDg4+PLjBlzySwV0pnCYvM4H50JSZmsfnM0xbkpvPmnEZFYgn3D1uQVjkJTmcpyN9euXq/nq6+Wc+TIYUGccsAYfHwETYOqRjOAUaQ3P5O+OvU1aduj0RarcHR0YuHCZfj6NqMi6wRGo5HLu8+SEhGHhaWUuXMX0bSpL4/Rq9q+N0X/QHdRO347JKSxTBg/CS+vuvKe/68kVXrDG9Wzwdb64Urf82xgj42VBeUqHVeTi2jj7fJvD6mOh4z7sjQ0Gg0WFhYMGjSIBQsWsGnTJr799ttq/3333XcPaKh1/F1UKEvYulUoIzZ69Lv3JHRiMsTT09PM4XSDBg0x512HxuSydu1KCtKuIBKLWfnlcgLatqWznxvjRvrj6+HI28NakhmxhyvHf8Cg19GidUc6D/0QW8f65v2YQukf9+xDU0cvnm/yJGm7r2LUG2ng5c+amWt5u+3r5lIoN3P9eiyh249jNApG+7BhT1X7XqfTERS0CoAnnhiGn59QNuV2tcpv5l5yv+8FBwdhhbe0tPRv6b+Ovw+xWMzIkc8B8OuvP6PX6++4zaQxk3FuUh9thYa4ny/i7+BXo9RPVZwta49KcrrF5yaMRiMbNqwzl0aaPPkz2rT55+tXX7lyiY0bhZSPMWPeNd97VTl16rjZCO/ffxCLFi3HzU14Prg4WOLr4ci4kf6MG+lPvKQZ40b64+JgxbiR/rc1Klq0aMns2QtZtmw1Ddw9KSsr5dKRraz5Mwy1Wl3rNqcjsgAhWqVJh2dxc2tATk62Obf9QeDs7EL//kK1kT17fntg/dbxcKLX61m2bCFJSQk4OTkzd+5ibG0Fz/LdGMXXkgtYvXoF69evwWAw8PjjA1mxYq1ZlNBgMFCcdpELwYs4EBVPcW4yYMTCQorRoKc0K4qsSz/i5mRV6z5FttWNB6VSwbx5n3P48J+IxWI++WQGDbxu6CuYyi+a/hMbZIz1fw2XCnvCNhxFW6zCza0BK1asqSZIuGPHD6SExSEWi+nyaj+aNvWt9XjVShVLlsw3H+vAgU/c1Xmu479JYpaQH+7r/vBF6IrFIlp5CXpF56/m/MujqeNh5L484l988YX5/3/44Yda2whhfG/ez27q+JuJOR9MRUUFrVq1ob7PvecjalRKZs9ebK45Pn78R4hEIoxGI1fP7iY5+jiIRHi0f57d4TqupxYjEYt4d/lxVMoSDv60BE1pJgB2Xn3QN+5HQrYKmVRbLQTPtMqeVJLCx1s/okJejmU9G9yG+fJtzE+UqEowgjkcvUQtZ1n4WjLS09jzww/otTo6d+5Ck5FtangKg4N/JSUlGQcHB17r18mcC94KqOAUuqQwRLbO5s8tm3WFwH7V+rjX0mbapFB0SdXrQdemvG5jI3gHy8vvLwy+jn+HQYOGsH37VnJzczhy5NBt84kBpFIp3V5/nJNr95OUlEjepiLkmlLSVVl8cnIOskrdg+Xha3GycqJYLa8m6GbCuTKfvLbvNBoNc+YsZf/+/QBMmDCJvn37P7BjvlsSEuKZP39WpSDT4+ZFi6pcvnyRpUsXYjAYcGrSCWvfYSz58QpJWaVMDjrD85ICwkvyWLgtHGcHKyLKmxAQm0d6blm1POyb87LhRm52S5sK5g5py7Frdvxy/hrHrqaS8f4rvNy1LRUhJwDhXrRo0a3a9lJLaz74YDIzZ37Knj27GTZsBA002dXu69ru6VtR9Xk3fPhIDhzYy/nzZygpKcHJyenuT2wdjxTfffcN586dQSqVMmvW/GqL4abF7lsp/GtUSnIvf096SSpisZjRo9/lmWeeN7/j4hOSeG30l5XGN9hbyWjSfiglEm86+ftSX1rI1g2LiYi4jL+dL9AFbVIoquRwNDIJGo2+mj5KfE4Rqw6Ekl2sQCyR0rH/G1wrcas2pkxtPCrrdGRSIbLOINXwzrZJZP4WhUGlR1rPig5PN2Vf7CaIhXZGGwqOh7LtolB+aky/dhQ2qT3K0mAwEL7jBAUF+Xh4NDHPN+r4/0SnN5CSUwaAj/vDFZZuorW3Mxev53Pxej6vD9Kb74s66oD7NMSPHDnyoMZRx79ETMxVMhMuIhKJGDfuQw5FF9C19d17xDUaDWEHv6EoJ4sGDRry+efzkMlkGI1GtmzZKBjhwMeTPiWxvDGfj+3O/E3nMBihm6eKufNXoFEpkFra0GfoaLK1DfH1cCQxU05xmdo8AUnMlMNZRwL9BiGT/8nl6COIxCJ6vT6Qx7xeqbGCfykvkl3xe7FUWZD2y1W05WqcPOoxbdpsYhUJ1drm5ubwww9bAUEoqV5AP6C6kV0RElStHJmFxf2HrUt9utQw3mtTXre2PgsIavR1PHpYWVnxwguvsGnT1/zww3f07dvfLGB4K3q17MET8/vx2Wcfo0gtJndnPK1ebI+VnbVZdXhKZ6HOtClcvSpV/32zIZ6bm8OSJfOJjb2GWCzhww8n33Fx4O/g+vUYZs6cSnm5En//AD766NMaE+qkpATmz5+FTqejT5++OLR8mvFPC8diyt/WJknpHGljzuWeHHTGbLxUVUG/VV628IyxITG3O74BT+CsDEUVu4P47CKWHbnGuHZzGdCt1S2Po1OnQLp06UZo6Hl27PieKVOmV7uva7unA/1qL0dY1RBv2tSH5s1bEB8fx9mzJxk6dESt29TxaHPw4AF+/VVQSP/446k1tAbg1tVKsrIymTXrCzQlGVhb2/DZZ5/TpYuwWGQ0Gtm3L5jrx9ZhNOiQSC15c9RbZKcrkDTtSkyKkPedr62HrffjlMb/QcyFvSz9rhX9uvnTfXC3aqrp6s6v8OOP37N//3EMBgOurvWZOXMeLVv6VRuTQPXqA6M3vU/RvmQMaj2tWrVBPcCaj4YuNn9/8WIo6y8LNc57D32cZyZ+Xi20vSo7dvxATmwGMpmM6dNnVUsHqeP/j4x8BVqdAVsrCxo4167B8m/j4WqLk70lJWVqIhML6XwfaUv3S1xxYo3PDEYDyfI0UkrTUGqVWFlY4W7bkOZOPlhaVNddaF2/+T811P8b7ssQ9/C4t/I25eXlbNmyhZEjR9K4ceP72XUdDwCj0cimTUK5ooEDn6BZs+Ycio6+w1Y3lIWNRiOXj26jKCcRC5kVrfqMZu2eRDAayY09TMIVoVRQw7Yj+DPOnuKyPN6cdxCVSoM85TT74o9iNBrx9W2Oc+tnsXHzgMoSFHKLVKQW7sSkFCGTSiguU1NcquJsZCrHft4FgFfPNjh5uNYautfRLYAdl3/l1PY/UZWU4+jgyPufTcLGxoaONtWNlvXr16BWq/D3D7htiNu9erxN3KyEfq/IZMKD8FahsnU8/Awf/hTBwb+Sn5/Hb7/tNKt034qObgHgBqOmvMuW5UHExl4jZWUKgS89Bv4gk0irt61t+5vQ6/X88cdetmz5hoqKcuzt7Zk2bRYdOnS+/wO8R06dOsGKFYtRq9X4+bVmzpyFNYSW8vJy+Wz6p1RUlFPPvTl2LUZwMa7A7HVLzJRXegm9ScyMZ8G2cIrkSnIzk3hz8hkU8iJO/2nE1sYWZ1c3XPVKDIbu6FPCq92PN5dwAhjcKY95+6+Ql5fL+q/mEJX8EZbW9pSUqUnIlBOTVIgRwcu+YFs4lo17Q+h5jh07wptvvo2ra31uh6+H4x2VrwF69uxDfHwc58+frTPE/4NERl5hzZoblUruNiolPr2ENz//gfyInzBoy5FYOuIY8ArfHK/gm+PHsJYaUCTsIzvpCgC2rr44tnySc7mueBmuV+sr0M8N58LGXLIMIDo6kojD6+ji/T4FDS3QaBRcvhzFsYPhnFqzB41GA0Dfvv0ZN+4D7O3v7IE8deo42b9dB4ORzp27MGPGHD49N8/8/fXrMSxYMBu9wUjfvv35ZPx0oPZnWGjoeX744TsAxo//yJyTXsf/L6b8cJ9GDg9tZIRIJCKgmSsnL2dy4Vruv2qI30x+eQEHU49RqKouyBhTFMepzPP0cA+krWtrxKKHoyTcf5H7MsTvlfLycoKCgujUqVOdIf4QcOHCWa5du4pMJuP119+66+1ME9fvvttEZkI4IrGYubPn07FjZ4xGI1u3buKMyQhvM5xvl04CYP3v0Xz4QhtefnMC+WnXAPD0686XX8xh04E4s1rruJH+TDt4giYVwou46ufffPM16vJS3N09aD+k0y1zuEtKSojffglVvhKpvQ3jHmtLn2Y1vWFnz57m/PmzSCQSJkz4e0LcblZCv1ekUuE21el0D2pIdfzDWFpa8tZbb7Ns2SJ++ukH+vbtf1daDAUOpYyfPYVdQT+Qnp7GqY1/8EWcBlXrCnObO+kYGPQGTp48xk8/fU9KihCe2rq1P4sXL8TGxgmd7p9TclWpKti8eQP79v0OCN7k6dPn1PBqlZSUMGPGJ5TJhbJEy5d/iZ2dXTVjeV1wtNmQPRl+HTvlBSJOHkShKDP3owSKgYzKf0e/fo7ePvV4eoLnbc+/u4s9y5Z9xZQpH5Cfn0d62HaWLPkSGxsrNuy9xrtPtkanM1QbzydxB4mOjuTgwQO8+uobtz0PpjDjOxnigYFd+e67TURFRaDX6+9aRLOOh5/MzAxzWkafPv147bU373pbe306yVE/YNCqad68BeUNnmTTjOGsC47mqUAn5s6dSXZ6KhYWFtRrMYgtyyazfs81xo305/z6ELqNHM2CbeHma1d/PJ7B02YzbdrHpKWl8sUXC2rdb4sWfrz11tu0b9/xrsYZEnKQlSuXgsFInz79mDJlGlKpFINReOakpqYwa9ZnqFQq2nm58fHHU28pkpqZmcHSpQswGo0MHfrkvxLFU8fDR3K28Lxv+pCGpZto16w+Jy9nEpFYSLlKh43VP2p+1UqyPI39yYfQG/VYSmS0cmmBi5UzSm058SWJFKlKOJ5xhuvFiQxrOhBbaV30yd/BP34lGI3Gf3qXddSCwWAwC7R5tn6MX07nArnV8rygZkicif379/Dzz9sBCOj9stkI//bbb9i58ycA3ntvAiczbkx2S/LTee21xeRmZSGTyRg//iOcPTshk8lwsbc07+9WZGVl8vvvuyr7nojEw7qaEWKqtZxVkE3ij1fQ5JcjsZPS8EVffnVQszNkJpYGB6RGWxy0XvRpEsD6r1cD8NxzL95WdfVuhNi0SaHAX/ec32o/osqVSKOxrvTFo0y/fgP44499REdHsnbtKubNW3zHhZ9iVQlYge+bHVDu11F0KYvjx4/AcXjx0HN4tPXGy8+XXi170KlBO3M454XUcIrS88mJTSf5chy/KbQASK1lPPHcCMa/Og5XV4f7Lr93L1y8GMratavIyckGhHvuzTffrmFclpbKmTHjEzIy0qlf343587+oVhLJRKCfGzqdjp07f+L4L9+j01Yeo6UtXTp3IkchpWsbD5RKBWlxUVyNT6KoqJDfiwrZN+Y1mrXtjXe7J5BZCbmopmdfYqacI/Ua0qBIxKJFy5g0aTwxMVfZuDGIjz6afMvjGzJkONHRkYSEHOSVV0aZf9s75YTfKvcXoFMLV2xtbVEqlaSmJtd5AP8jlJbKmT17GgpFGS1btuLjj6fe9SLwwYP7CT/0DUajkc6duzJ9+mw+CroAQEFWPBM/2ExFuRKplQMenV5GbeHGJ1+fM2skPI2RdcHR3Lw3FxcXvvpqPT//vF3wYmdnIRKJaNTInTZejRgw8jXatPE3j/PmSK+q7+5LeZHs3vcrF389BUawD3Alp6uKT87MAcCIkSn7ZhC37SLaMjX1PRsw/YPxSKW1K14rlUqmzZpSqUPThvfem3hX56qO/zZypYbCUhUiEXg3tP+3h3NbGtazwd3VlqwCJZfj8+nZttG/Op5sZQ77kw+iNxrwsm/CYO/HsbawMn/fpWFHogpiOJsVSrYyh5/jfuMpn7rFr7+Df39Jpo5/hRMnjpKSkoytrS2LZ3xgnuhWz/OqnbNnT7Nu3VcAvPbam8htO2E0Gtm8eQO7dgm5bu+9N5GnnnqGk5XiSAcPHuBU8EoMeh2NGrkzY8bcamqpRWVC2HXVl7kpzxOgqFTFli0b0ev1dOoUSGBgTVG5YrWcd1q8zrRvp6DJL8fK3po+7w0lTyvilSw5bd+YXq391q2bKSjIx82tAS+9dPu66bUZ1wqFghMnjnHp0iUSE+PJSU9Gq9Pj4FKfFi38GDToCTp2vDcl9dr2YzAIBrhYXOcNe5QRiUR88MFkxo8fS3j4BQ4ePMATTwy77TamEnwA9IBlf66i7GwOYWEXKE0opDShkBgucsxyD05OTih0SiRaUQ2FfUdHJ558ciQjRjyDvb09Esk/F2aWlZXJN9+s4/x5Qeugfn03PvxwCp061bw3CgsLmDnzU1JSknF2dmbRomXUr1/74pyns4HJkycSFyfUWW7Tpi0vvvgqP13QMHNCb9YFR/N65bOsIiSI2DRP1K37sXvDEqJyFFy/cpz8tCimTJlGhw6dzM8+IWT8RvTMZ599zueff8b+/XsIDOwC1F7erUePXlhaWpGTk018fBwtWrQEbr8wd6vc36o0bepLdHQkqakpdYb4fwCtVsuCBbPJzMzAza0Bs2cvuKv610ajkZ9/3m5eQB848Ak++GCyucTZ0aOHOb8/CKNBT8uWrfDs8hofv9LDrI1guraitp5g3Eh/FmwLN/cttRDeLVZWVrzxxhjeeGMMYjE4O9sil1fUGjVzc6RX1eu4MCKLS7+eBiM8+eRIpL1ceDvgxjt2/G8fUfB7OtoyNV5e3ixdugoHh9oVr/V6PUuWzCc/K5d69VyZMWPuLQ32Ov6/MIWle7jaYiV7uM0ZkUhEtzYN2H0iiQvXcv9VQ7xCV8GB5BD0RgM+jt4MbToAiaj6/FIsEtOufhs87T34PekP5OpSfo3fi4+zJ87Ode+hB8lDfeUqlUqGDBlCbm4uv/76K23b3iits3PnTjZt2kRWVhZNmzZl0qRJ9OtXXWCrrKyMxYsXExISglarpXfv3sycORM3t5uEvS5d4osvviAmJoZ69erx8ssv8/bbbz+0+Sb3i06nM+dZPfvsS7V6m27F1atRfPGFUDZk8OChvPLKKMJi89iwIcjsrfbv+TyZxhZCLV95Oe99PJPUGMEgb+TdljHvfoyvr3e1frO08WyKvkJxqYqiMjWl0lR2p+6kSKtm2sET5JXnknXmFIhEjB37fq1j01SomTnzU5KSErC2sqb98JYYyrNx1BrwVmcTtXWRua3eqOfXXYIa8jvvjMPKyqrWPquiTQpF5NmRCxfOcfToIUJDz9caLl6ek01OTjYnTx7jsdaevH3TM6uq6NvdoNUKeXl1k49HnyZNPBk1agybN69n/fq1tGrVBi8vb6Bm7V2Ay3mRbIq+UZFC5GrBvHlLWHksiPqZtoSHXyAxMQG1WkVubvXSKA0aNKRt23Yo3HVMe/bTOwrEPWjKy8v56adtBAfvQqfTIZFIGDHiaV577a1aBZYSExOYO3cG+fl5uLjUY9Gi5TRu7FmtjWmyHxl5hQXzZlCmLMfaxha/bs+ycMqbiEQiDsUIBkZrURJRW/dgoy/DRZdPM3Qoo3P4vHs9wgtc2XY5i5yiQmbM+KTSw3ZDhMbk7dMmhdKpUxeee+4ldu78ia+++pJP5q2pMR4AKytrOnfuwpkzJ7lw4azZEDd5vYtKVRRXLjia/ppU3F3sLRnUpfqxmmjUyJ3o6Mgav28djx5Go5HVq1cQFRWBtbUNc+Yswtn5znWFDQYD33zzNcHBvwLQrP1AJk36lPDr+YTF5lGReZ5lRw4C4O7TAd9erxGXoWBdcDQBFslUhFyha0ExUVv34K2OI2PDeEYZjGRs+JZSoy0txHmcXz8XmYUEqVSM1KcL/v0GcTYqmzaeTqjO/YhV91eqjUlfkFbrWE+fPsGqVcswGo08+eRI3n//A1ZcDDI/x8pLlKT9EouuRI2dqwNtRnUnQZVKR4eaKTZCicW1hIdfQCKVMGvWAlxcal8Iq+P/j+RswRBv2ujhDks30b1NQ3afSOJaSjFypQZH23/2nQzCPXUw9RgKrRInS0cGe/WrYYRXxdnKiRdbPM3viQfILc9nZfh65jpOxpZH45w/CjzUhvi6detqrbu7f/9+Pv/8c9577z26devGgQMHmDBhAtu3b6d9+/bmdh999BEJCQnMmTMHS0tLVq1axdtvv82uXbvMq8ipqamMGTOGnj178tFHH3H9+nWWL1+ORCJhzJgx/9Sh/qOEhBwkKysTR0cnRo589q63S01NZs6cGWg0Grp27cHEiR8DcPH4z+ZatxMnTjKLChUWFnA6+EtycpMRiUSMGvUW48e/V+sKe0WeG2Ofv+GFmnYwiMWDx7MuOJr3B7Xh9THvANCkeRe8vWuGkJeXl3Nm00GK0vJxdHTiiy++5HCZMMlNzJSTYmlfzSO+ZMl8dDo9HTp0okeP3nc89oKCfPZ8/x1H4pZSVFRo/rxJE0/au1nSslE9GjnbYWkhQdFyMOfOnWbv3mBOXEvDQlOPKe+Pv03vt6eiQsgHvhuvSR0PP8888zyXLoVx+fJFFi6cw8qVQdja2tLRLaBGvvem6B9ueMQr/w1gX9+R1/q9xmuvvYlWqyUvL5fS0lJ+T/iDF/2fxs3NzVyHeFP0D/+4EX7q1Ak2bFhLYWEBAB07dubddyfg6elVo63RaOSPP/ayYUMQGo0GD48mLFjwBQ0b1vQYBPq5cfToYVauXIpOp6N585Z4Br6Cjb2LeeHU2UFYVOv71AhAeBZVhASRkClExSi2T6LfOyuJ/vUSuvQQDh36g6+/Xk3rbiOh0iPubyd4+0xev9dee5OzIfvILC4i+tx+Av3eNY+n2vgCu3LmzEkuXgw1627Ult5jCj+/2ftdNUzdhKOj4CksLZXf+oTX8UiwY8d2QkIOIhaLmTFjNk2b+txxG71ez6pVywgJEQztd94ZT7bID5FIROeW9Yk6G0x+rPCdT8DjrFk8A7FYzOSgM5X6KmA9wJ8LlR7xipAgGg8YL3jK3xfeuVFbF9HtpogxgNMRWbTxdBLK8d1kiBuVRTXaR0Rc5osvFpoX6t97byIikQinysie/Px8Pls5CV2JmoYNG7F06apbRrwA7N69k717gxGJRAS+9Jh5cauOOnR6A6m5lWXLHhFDvIGLDb7uDiRmlXI2OpshXWu+D/9u4ooTSS1NRyKSMKzpQGSSO88NrC2seNp3GLsT9pFXUcDc46v4uNN7uFq6/gMj/u/z0BriiYmJ/Pjjj0ydOpXZs2dX+2716tUMGzaMjz76CIBu3boRFxdHUFAQ33zzDQCXL1/m9OnTbN68mV69egHQtGlThg4dyqFDhxg6dCgAmzdvxtnZmS+//BKZTEb37t0pKipi/fr1vP766//4BPbvRqPR8OOP2wB48cVXsLauXu7hVjna+fn5zJw5FYWijFat2vDZZ58jFov5+uvV5hflBx9MNofaxsZeY/78WRQXFWJnZ8enn86ke/fuZiGWsNg8Doam4VI5aS4uUwse9FIVLg5WaCz0Zi/S3DU7KcxOQCyxQO3c1TyJlVukUCpNxQIjqfvOUpSWj9RaRuDofhwuO4OzpSNNHb3IT0nDxT7OfCypqSmcPHkMEMqV3SrywWg0Ehl5hf37f+fMmVPmEHFnZ2ce7xzAY64aGklUGFVlQAEohNzXBtG5+NpDm8H+LPojkiMJhTwRHYW/f9ta93MnFAoFAHZ29vetwF7Hv49YLOaTT6YzceK7pKensnTpQmbNmn9XQlwmQ93092YverptLkeUZyH5Rvs7ibk9SBQKBWvWfGm+vxo1cue99yYQGNit1vssPz+PNWu+JCxMyHHt3LkrU6fOrDVKx2g08ssvP/Ldd5sA6NGiMZ8u/YplP0eRnSk3PxfCY/PYt2MXXmpBHdpNpsKmLA13o4ScTROwNShI3DKNdkoZTs4yitt1ISwilGvngzl+3B9oUG2/2qRQZD5dGP14O+bvOs3OnTsZNmwkLi41ldFNqSjx8XEolQrzYsjdUtvzVyoV3kF1Yo2PNidPHmPbNiGs/P33P6BTpzs/xzUaDV98sYCzZ08hEolp1/dVskV+hMfmEfRbJNGnfyXl2ikAWnV9ClH9QNbvEYRQ83Mz+WD6EvKyEjnxqwpbO3u+K+lIM3UuPfvfXqsnLDaP7v439F00WgPapFDBIDeh15priwNkWjVh3sqN6HRaevbsw8SJH6NPCUfs04V2RhvSdi9j1i8nyJUrkTnImPtkB+widlJB7VFiW4K3sHPT9wD4Dwskr2FZtegg+Oefb3U8PFQtW+b2kJYtq43e7dxJzCrlVEQ2T3Tx/Ecjb9V6DaezzgNCDrir9d1Hl1haWPJ0s2HsTzlMRlkWK8M3MKnj+7ha3zmip47b89Aa4gsWLOCll16iadPq3s/09HRSUlL45JNPqn0+dOhQli5dikajQSaTcfLkSRwcHOjZ84aX1cfHh1atWnHy5EmzIX7y5EkGDhxYzeAeOnQoGzZs4PLly3TtWjMX+VFm//7fyc/Pw9W1PsOGPVXj+9omggqFglmzplJQkE+TJp7mUkPr1n3Fvn2/IxKJmDTpU3Ppr6NHD7Nq1TK0Wi12zg35avly3N1vlLoLvZZbo87vjdV7YdV+8r6j7DgSj9FoIDNsLwDebXpjVbl6LniZ/DEYDIydOJn8pGwsLKUsW/yVua6pifM6MS4OqeZ/79nzG0ajkR49elfLUzdRUJDP0aOCpywzM938eWsPV0a8/j49evTG2tqyWo3VqphqBvcGBhuWcfDgAf74Y+9fNsRLSooBcHJyum8F9joeDpydXfj883l8+ulHhIaeY/36NYwb9+EdX8o3G+I3T0Rv9qD/k2RkpDF79nSysjKRSCS88MIrvPTSa7UuZmq1Wn7/fRfbt29FpVJhYSHljTfG8Mwzz9eqmqzT6Vi37iv++GMfAD36DmdEAxWb/4gXShuW3SjtJ7UQ06B9b9r63Yj2qQgJIqXSI56zaQK+oxezLugMK97sSQCwadN6du36mVWrltNj5CdQxX423XPtvRrQrl17IiKuELTxOz7/rPo7CKB+/fo0bOhOTk4WsbExtebB347anr/aShE6ieShfV3XcQdiYq6xfLlQN/vpp59j+PCa796bUalUzJ//OZcuhSOVSpk2bRbduwtOhaDfItGmHiTl2ilEIhETJ37MkCGCavqz3V3ZvHk9+WEnyK/SX2kh/JwaA4B1yLOIHJszZ3Umzg2b0rVCa65CEOjnxvnoDBrYKLkWcZ5dmmgKr+bi31pP58ffN9+fZZvfNr/rioqKmD9pHOXlSvz9A/j00xlIJBI0lfeOR72uTFv+C3lyJQ0butNsUCM8n6l5/5gIDT3P7k0/AjBy5HO88844Nl/d/q892+p4+DDlhzd9iMuW1Uagnxs/hcSTU1ROQqac5o2d/rF9H0o5ikKrxEFm/5cWsKwsrJjU6V1WXlpPRmk2qy8LxrizldODH+z/EQ/lm/3PP/8kLi6ONWvWcPXq1WrfJSUlAdQw0H19fdFqtaSnp+Pr60tSUhJNmzatcYP6+PiY+ygvLyc7OxsfH58abUQiEUlJSf8pQ1ypVLJjh6B0/tprb9yVt1+j0bBgwSxSUpJxcanH/PlfYG/vwPr1a2oY4aExuRz9cycnDgm54t269aD/U+9UM8IBQmNy0RuMxKQUmb1YJkXXUqWGyUFnkFu44ggYSuIoLchAbCHl+edf4VqGqlo45+bNG8hOuoKFhZTubwwwG+FVPceBfm5YyG5MiMPChBXBIUOGA4KnLTMzg9DQc5w7d4arV6PM6v5WUgl9WnkxuIUrTfS5WGhj0Ow/g1qei1wERonsRoieRApGA2VbxyOytEPi6klPWTYHgYvnT1J+WHhh3GuOeF5eLiCIXJEVc9fb1fFw07JlK6ZMmc7ixXPZt+93bG1teeONsdWeWVVflpfyIh9a709CQjzTp0+hrKwUN7cGTJ8+m5YtW9Xa9uLFUNavX0tGhrDI1bp1Gz788JNaw9YB5HI5i2ZNJjIuEREwqI0v/Ruq8VbHI5bvwd+gRuYkpkDlT5pVS2QW4loN2kIn4bmhE93QWjCFgrvZ1KNZAxcScovIDlmGtrcbiuQorIwqjIjQbX4b9FpGNHYmIgIunjlI6bVuOLSumdbi59eKnJwsrl+/tSF+p7Jl1Y+/BLgRol7Ho0Vubg7z5s1Eq9XSsk0nxox5747blJeX8/GnU0hNjMHKyopZsxbQoUMnQMgXjzjxE+nXzyMSiZgyZRp5Rm+Cfosi9vJJxmzeg14n6Io08PSnYdMArGwcaWCvpyQnjrNnz1ChKAZFKBcyhUofZ+3scHFNJXRXGSVKNeqKMg4IznuuCVIq7IyezgBvO97pWBmOajSi2D4Jjd7AnMMJ5BWU4+HRhGmjnq42t0hPT2PK1A8oLZbj4dGYxYu/JPzIilsee1RUBIsWzUGv19O3b3/efvv9R8rQquOfwVS2zOchL1t2M9aWFgT6uXE6KptTEdn/mCFeqinjSPpJAPp4dMdC/NfMPzuZLZ/3/ZCZh5eRX1HI6isbmdTxfRxkD7dq/cPMfRniBw4coH///nedu+ri4sKRI0eoX79mSJ+JiooKlixZwqRJk2oNT5TLhTw5B4fqN5/p36bvS0tLsbeveWE4OjoSHS0Yf2VlZbX2JZPJsLa2Nvf1V7GweDDKxCaF4/tVOt61awelpXKaNPHkiSeG3LE/o9HImjUriIi4jI2NDQsXfoG7eyO++WY9e/b8hkgk4uOPP+WJJ4ai0Wj45uvlZMQLQknN2g9g7twZ1bxbpv2JRCK6+zfk5yPxfPCcYFh89NUpVn3Y2/x37S5HDAY9l68IswC3zs0Z0K0Fsbsizef1jz/2s3v3LwB88slnJNTLMn+nSg7HukU3gMoQuxthdmq14D3btm0Lv/22k5SUJIqKque7tW0bwMCBT/DYY/2wsbFBcXAt4IXd4AnmY3FwsKa0tAL5gdXVtrUbPAHFwbXYDZ5AC91XiLiMvFyNofsonJyc7vxDVUGtVpOfLxgLTZo0QZQtemDXFTy4a+tR5UGey79Cv379UChKWb36S37++UeMRgNjx95Il+ji3t7c9kp+ZLV/14ZYdHfH9CB/94yMDLMR7ufXinnzFuPs7FyjXUFBPkFBqzl9WpgMODk5M2bMOwwa9MQtawdfu3aVRYvmkZubg5WVNdOnf87PoQY6jOnNlc0L6DBmJmt3CaH5E5698Sy5+RyIRCJi8WGAhRgLoxYLCzEi4OL1PGE7/xfpOfgxRo9+ndhCFRGiJvR7f1HlfX/jnu47ZCIrTz+LQp7PxVwVAwNqjtvPz4/jx4+QlBR/y9+iatjvncjJyQKgUaNG//r1+k/zsB/vne6j8vJy5s6dQUlJMb6+zWjW7WUsLW8vuqlUKvj8809JTYzBxsaWRYuW0qaNsIhkNBpZu3YV6dfPIxaL6dDvdQYNGsxXP4dTkfwnCWGHAeH9VWDdg20LX67R/1c/hxPYRMXmn/ahKUkmJyeHUoWC0soUKBP29vboLJzo1r45ZbEXCM9WcjStnPEr12JnZ0/xhrE4jlrFsmVLiC+IxN7engULlmBzNRgLi8cBSMmXM2/zh5SWyCvV0b/ExaUeHRSKWn/b2NgY5syZjlqtpkuXbkydOt2s53O3z7a74f/9vfeo8yiVLauN3u0acToqm9CYXF7s3wxbq79fiPdI2km0Bh0NbdzwcfT+y/1cL0rA3t6ap5o9wY7Y38krL2B5eBDPNBuOjfTuUgRaOPv+5f3/F7kvQ/zjjz/Gzs6OQYMGMWLECLp163bb9mKxGA8Pj9u2+frrr6lXrx7PPnv3ImIPI2KxCGdn2wfap4PDX8+DKSgo4LffBMXVDz/8AFfXO3tXNm3aREjIISQSCUuXLiUwsD3ffPMNO3fuAGDatGk888wzKBQKpk+fTkZ8OCKxmJkzZhAjd6devRsPyNMRmcSmFFEgV5GQKWfD3msUlan5bP05yso1KFU63ll6DJVGz6Q1pykr11CSdgl5RjoyK1tsWnlzNa2EfoGeXE0r4feDZzj+q7CqbufVh3ilO8UVajakXaNXO3eayyS3PP+PPdaHvXv3Eh9/3fyZ1EJCh46d6N27N/369aNhw+oTZY1MyN+t2qci5iwOrXpQUfmdbasewnicbdFU7l9jK8Pe2pLSCjUGg+qerglFzFmijuzFaDTiaGOJzeWfKE8MRXPsa3Mb21Y9sKvc7/1wP9fWo8rfcY/+FUaNegWZTMzy5cv55ZcdlJcrmDFjRg2VfKnM4o7j7ePb5Z6O6X5/94qKCubNm0lZWSmtW7dm3bp1tS6g7t+/n6VLFqOsUCGRSHjxxRd55513blmx4fjFFK6HH2TLli3o9Xrq2VnT8anJRBY4U1SWxYa912hVrmXD3mtcSy1GBGzYe43kTDlFZWo27L1m7svV0QptpiuXcvOZtOY0rxusWLHmNEVlaq4kFLDw+4u4Olnj6mjFSy+9xLZt2wg+G0HPVl9jyEtEX1aI5pjw/6oj6+jiYcdReT4XLpzhhReeqTH2gIA2AMQlJN339aXX60lMTACgXbs2D8X1+k/xsNyfd0Nt95HBYGDSJ5+QnJxEvXr1WL36K749mHbbY1IoFLwzfiJ5mUlILW1Yv/5rWrduDQhG+Jdffsn+/XsRicTMmzePK3n1MBhUhOz8EpU8E7FYzPjx43n99dd5dfafODvbcjoik9MRWeZ9XIwvwcrGna4tWmP0HkUHX3uKCnIJjU6jjfwM8W6DICueHMd2lJSpybe3YkL7RMKzlRgMBlb8HEFDNxeeFVtw+PB+Dh/+E4lEwuxxo3CL34sqLxHNsa+Jyyrk85+OoNQacHCzZXSnppw7fIIMGz8C1Vbsr3KP9mrnjqtlGdOnf0J5eTmdO3fmyy+XV6tmcq/Ptrvh//G991/gUSpbVhvNPBxpXN+OjHyFkCvetfaKGQ8KhUbJycxzgJAb/iAiTBws7Xm2+XB2xu2hUFXEL/HBPOM7HAfLR29h5N/mvq7gH3/8kb179/Lnn3/y22+/0aBBA4YPH86IESNo0aLFPfeXmZnJli1bCAoKMnury8vLzX+VSqU5PK+srKyaZ91UN9f0vYODAzk5Ncu9yOVycxuTx9y0LxMajYaKior7CgU0GIyUlpb/5e2rUtX7qtfXrOd5N6xatQaVSkWrVq0JCOhMcbHytu1PnjzO+vXrAZg48SNatmzLd9/9wIYNGwBo2GYY/foNJiUlk2nTPiU+/jpiiYyuT4ylT58BRO6KNO8j9FouPx6OAxG0alqPQrkKrUaHzEKMSq1DKhFjI5PQuqkLCRlyVk7sxVe/XOTI+dMAvDnqDRIbltLG0wkQfuurx7diNOjp2bMX9fyf490nWwOtzeNXxOhveYwTJ07m8ccHk5iYgJWVFU2aNKF+1E7qvzjX3ObmbTUafbXPJRIxFTFnMXh0MH8na9jO3Eaj0Zv/SsTCQ6+oqAwXl9uf92o0bEeCTTxwmBZt2mP5+Di0WgOyfjfKt2lrGeu98CCurb/CwzDBfpD36P0yePCTGAxiVq1azr59+0hNTefzz+dW8yxrNbo7/tZ+dn53dT08qN99zZpVJCcnU6+eK7NmLUCrFVXbv1arZfXqL/nzzwPC+Pxa8/HHU2ja1BettvZrNzo6innzF1FaJBgPffs+zti2DjQYMRCAmKRC3n2yNafXwrtPtmbtrkger5dD676t+eirU7jYW1Y+D6rQx4fzX51i5cReXNl8nJVjetXwpK/dFclLQ0bw/bZtXMtVUOg3EnvNLsRuvlxp8AyypG84U9yLa3b2wDecOXuBuRtPIxZL6NKqAV1aCyJvTk7Ce6kgL4f8fLnZo/dXiI2Noby8HFtbO5ydG9zXvX6v/Nv36MN0f96K291H3323megroUilMubMWYhMZnfbe1ipVPLZZ1PIy0zC3t6BjoPfo1EjL3P777//jp9++gmAyZM/pWvX3hz/9ihvvbUAlTwTe3sHAvq+yYgRzyKXVyCTiCkuVtLG08n87gQQJYfxzpMDSNt5AE/zfdKEJ/p0Jm1nEtniRrSvOEuEuxMXruXSzMORi+eF38GtYWPqOTnw7pOtObdMx5e7vgRg7Nh3aTfgBQA0B9cSV78nM1ZNpVxroHXrNjR/uQM9ur1tHsOVzS7V7tHExATe/2gSZWVltGnTllmz5lNRoaei4sa5uttn293wb733HjT/9j36b/GolS27GZFIxIDOjfnuj1iOXspgUGATxOK/L/3iWMZpNHoNTezc8XZ4cEa/k6UjzzV/kt8S9yNXl/Jz3G8M8R5AY3v3B7aP/wfuyxDv2LEjHTt2ZMaMGZw6dYq9e/eyfft2Nm/eTIsWLXjqqacYPnx4jbrdtyIjIwOtVss777xT47tRo0bRrl07VqwQvKBJSUnVcruTkpKQSqU0adIEEPK8z507h9ForLb6k5ycbF4ksLGxoVGjRuac8aptjEZjjdzxe+XmEl33i15v+Et9pqYmc+jQHwCMHfs+er0RuLVqanJyIkuXCsIyI0c+x+DBwzl+/BhBQV8B8Nprb3KppBmHz8WyZvksKkpzkchscfZ/mRRFPcYsOYpWZ+D95cdp4GKDi4MVRsDSQvAcu9hbYjCCRmdArdWj0RkwGIxcTS5CqdKx+tdIIqJ+p0JRjNTWiusuhaRXJLH+yjaMRiMXvj9KXl4u7u4eTJo0la2HU6iIO19N0VWXFFZDRK1qbrafXxv8/NqYv1OElZjPbQ112Mr+xG6+5j4tmwnaAXq9AWyc0OcmUvbnGgyKIozKIozKYkq2fohRWUx5ZSi8IexXKgz97ik/PCIiAoDWrf3R6QwYjcYHfl2ZjuPv6Pdh52E65oEDh+Do6MySJfOJiopgzDujaP9CT9yaCy+1y3mRrL+yzdz+QSgG38/vnpAQz969wQBMnvwZjo7O5r7CYvNo6+3A3LkzuHLlEmKxmBe6+fHa9NVIJJJa91lQkM+3337D0aNCeK29lYy3+3egVSMbZBmXCV0/D41OzwiDgdNrQ8hTW/HhV6fQaPUE5p/nnGuA+amm0xnM9bs9VdfxUl9nhEHNhfXHaGFI4PTa2fjrjRgMRiI37cZFl8dwvRFDsAWtXS25WqDmxJrJ9Pd2QGm05HxZLp6WLQXtCCs3xBaW6LQqSoty6d+zPR1b1Dcfk6OjCxYWUnQ6Lbm5eTRocPdh6Ddz9qxQgrF9+44YjaKH6nr9J3hUjvfm++jMmVNs3y7cq216vcihaC2HoiMJj81j9a83qhyYxNEqKir4aPIk0pKvI7awpsPg94nLl5nbplw9RdRpIQ3Lv+dznM+sR/CiYJLObsagLkVi5YSd/2ukKpz4sHIxqqhMXeu+WouT0OkMONtb1nhv2udH8oaPJQpJNv5lm3ncVUZjmyZ8miKk6Q1o5kj7kj2k7zrIyjNp6PV6encKYJBtrvndGHHhFIvO70ar0+PqYYfPAGeiSq8TdHCWeT/+Ftnm9in5JczedZYyZTktW7Zi7tzFSKVW/8hv///63nuUeRTLltVGt9YN2HksgQK5ioiEAjq0uHXK7v2g0Ws4lSF4wwd793/gegvOVk680GIkvyccoEBVxO6EfQQ27EBggw5/OQ/9/40HcpYsLCzo168f/fr1Q6lUcvjwYX777TeWLVvGihUr6NKlCyNHjmTIkCG3FQhr1aoV27Ztq/ZZTEwMixcvZu7cubRt25YmTZrg7e3Nn3/+yYABA8ztDhw4QPfu3c399+nTh3Xr1nHu3Dl69BBCd5OTk7l27Rpjx441b9enTx+OHDnCJ598Yg4FPXDgAA4ODnTo0OFBnJ5/nc2bN2AwGOjZszetW/vftq1CoWDG5zNQq1V06NCZdr2eISbmGl8sXYjRaCSw50BeeWUUoSsPsWPTN1SU5lKvniuLF69gwc9JtGvmSqCfG4dC05gxqrO534XbwqnnaMVnowKZv+kc7z3lz8RVJ2nlXb30QWKmnNFPNGP0L1EAvPPmewx/7CmzGvTRo4fZHZWCRCJh6tTPzeWBpD5dqhm4FSFBZkXXm7lTCbCb+6ran2lbCwsxmvSLaBJCser+So0+Te3z9q5ErRMU292f/ACp1d2Hwun1eiIjrwAQEND+rrer49GlS5dufPXV18yfP4v09FRObfyDoUOfZPRoYXHyYVIN/v77LRiNRh577HGzkJSJC1ez+W3bMq5cuYS1tTXTp8+hTUlYrSXazkZmkBJ9lF9++Qm1WoVIJKJJy24smzsVBwchKkkZPJ+OI2cCQoWFFe/1FP6OF6piVIREYe3nxo4j8eZ+b9Tv9uf473vYVezEmrF9SNwyjW6jZ7MuOJriUpX5ObVvxy6Gv/QsrSKf5WqBmhSHNjiPnoZVSBDjBvgD/lhYiEnMKkXj6kFRThLdfC1qCK+JxWJcXFzIy8uluLjoloZ4WGzebUXbjEYjJ08eB6BHj163/iHqeKjIyEhjxYolADRt25fFn442f7dwW3iN2vEajYZ582aSlnwdOzs76ncYxbQxT5griGzbuZ+rZ4W0snbdh7Nk5nhyc3OYMmUpBnUpTZp4ofF4mi2znmLhtnDz9WzaPmX/ZryHjal1rDe/66K2LqLtgPEkbF1Ehzdmcubn3SjqNSah+FdkMhlPjp/PyQMh/HD2LMVKNZ6eXkyascRcBvXKlUssPv8bWp2ejh0780mvxjgN+bBGNYeorYuwHjCepKQE5nwzmTJlOS1a+LFw4VJsbf8/vbx13B2Z+cpHsmzZzcikEvq0d+eP82kcDEv/2wzxsNzLKHXl1LNypl39NiSUJD/wfdhJbXmhxUiOpp8itjie0JxLxBbFE9iwIy2dfJFK/v4c+EeZB75cER8fT1RUFHFxcWavcklJCVOnTuXLL79kxYoVdO7cudZtHRwcbqlS3qZNG9q0ETyYEydOZMqUKXh6etK1a1cOHDhAZGQkP/xwo8Zkhw4d6NWrF9OnT2fq1KlYWlqycuVKWrZsyaBBg8ztxowZw969e5k8eTIvv/wycXFxbN68mUmTJv0naohfuXKJsLALSCQS3nqrZqRBVYQctCUUF+bSoEFDPvtsJt/siSR8/0p0Wi12DfzIsezGpK+OkHT2W3TKXCSW9shavMy6A5lodQYSM+UkZsopVWqYtuEcmsrV5uIyNYlZpbzy+QEUFVpCY44CQs1fEyIRGI0wfuZqiouLcHKuz+DBQ83fFxcX8fXXwir6q6++QYsWLYF7UyAGzB6Aqp4Ao7K4Wk3Um5XNDYoiKkKC0OcmoIk8iMS+HtrEUEiKwiLhAvpcIY+z6jbapFDSCgVPQv36bljdgxEOEBNzlbKyUuzs7MwK1BY+91YOqY5HjyZNPFm9+ms2bVrP/v17OHBgL2fPnqbp463Q+enuK9T5QZGamkJoqCAY9frrb9X4/tr530iODsdKasGskd1oWRKGLimsxj0WVSJmxRdfUF5aAIC1syed+71IQqEVPxxNBwRl9ZdKCrhW6eHWaPWCEV2m5rMN52hScZ120nx+jj6JUqVDIhYxOegMGq2eTtZplDdoT0DmJZSqPqwLjmakrox1wdGk5ZZRKFeZa44HlGcQtfU6TewFAaeU6DAyd39JulLKpcrqDmIRFMpV6CVCWtOe45E0lBjw6z2AsNg8Doam4eJghUovTDx2HIrGLfaGx+3G4sCdDfHY2BgyM9OxtLSkW7eet2xXx8PDmYg0vvriMyoqynFp1IwKpx7myiAAOUXVQ+31ej0Tp3xGWvxlxBIZru1eRSWux+SgMygqtIxbtJPUs99gMBh44olhpEq6UlxcxPsTJ1JRVoDEph6aJs8gltox5oujGI0w5oujONjIEItFQjmz3FDWBXelY9kxbA1luBtzidq6CG91HFFbF+Fib4WTWIlRWYS7WkFFSBDe6jgUB9cSUHyNBasyARg2bAROTs5cv/gHkdeSsba2ZubMeWYjPDLyCnPmTEej0xMY2JWZM+chyrhS63lysbciKSmBadMmU1paWmmELzMvrNdRx61IqhKW/ner6YtVJdhmhiKVp4JIgsa5KUr3LhhlD2axqH/HxhwKTScuvYT4jJIHrqBuNBo5ni5EVfVp3AOx6O8TJ5RKpAzy6kdTR09OZZ4XVNrTTnAq4yyN7d1pZNsQJ0sH7KR2uFg5Yye1wVJiWVcRgQdkiCcnJ7N371727dtHeno6zs7ODB8+nJEjR5qN56ioKGbMmMGcOXPYt2/ffe1v+PDhVFRU8M0337Bx40aaNm3K2rVra3iwV61axeLFi5k1axY6nY5evXoxc+bMahNZLy8vNm/ezJIlS3jnnXdwcXHhgw8+YPTo0Tfv9pHDYDCwebOQ5z106Ag8PBrftn1w8C7OnTuDWGzBjBlzsLKyJuzgN8hLinGo58F3X3/JpgOxpJ3/Dp0yF0tre979aB6ubu4E+rnx7vLj+Ho4UlSqAmDxu93Nk83JQWdo3tiRz8d25+CZJDq2qM/EVSeRSW94yIrL1DhaQ1LiKQC8AgZyJbHYPFnduHEdCkUZPj7NeOGFV8zb3ashDjU9AYrtk27pQQcQ27lgPWC82ZCwGzwBzbGvKU+7bv7c1J82SSgJo0sK43pWIQDNm7e85zGavGFdu/YwexLraoj/f2BlZc2ECZPo06cfa9Z8SUZGOpd3n2Xsmdd59tkXGDjwiXte2HmQHDy4HxCuzZufKxcvhpEcLVQ7mDp9Du27mbzWN6JUNBoNGzYGsX//HgDq1XNl7Nj3uFrsxvin25q9eSYU28VmI9b03cRVJ1nybndyf/qDPI0VrRxdiEgoQKsz4OsheNIDCk6i9xuEPkeE1ELMuJH+KLZLGTfSn7DYPHYciWf4S4IwaNTWRbR9Yzryha8KY5Q54PHMx3gAJhlSCwsxk9acxtvXnXOZEQR42+Klvg4MINDPjbDYPMaN9CfxlCPXCjMY2KkRPXvePgrpTue4V6/HsLGx+Ut91PHPcu7wdsqKs3F2dmHN8i/YcTKr2nU8OUiYFIfF5tG5ZX3WrfuKtPjLSKVS5s1bTPv2Hc2RHl/+eJZLB37BoNfSsWNnJkyYxJS1J5k9ezoVZQU0aNAQB/9RrJ4yhNFLjrJ56uPVokRM90nRRj3jRvqTufsQHs9MN1/nFSFBtK28H00RXYpNE7AeMJ5LmxbQZfAEds4eT1JeCZYWEpT2nZi9+mdCrwketVY9XmDvxVIClXnYGvKYPXsaarWajk0bMnPmPMGRcYv3VUlFOXM/m0xZWSktW/qxYMGyWwo31lFHVUxCbX932TKb9DM4Xt+DWK8xf2adF4Vd0hGK276Mun6b22x9d7g4WNGzbUNORmSz/1wqHz3vdN99ViW+JIksZQ4ysZQejf5+J45IJKKFczOaOngRWXCVqIIY5JpSkuSpJMlTa7S3EEmwldpgJ7PD074xLZ2b0a5+G2SSR98Jei/clyG+detW9u7dy9WrV5HJZPTr14/p06fTu3fvGiGIbdu25a233mLGjBn3tI+uXbty/fr1Gp8///zzPP/887fd1t7enkWLFrFo0aLbtuvYsSO//PLLPY3rUeDEiaMkJMRjbW3DK6+Mum3b5ORENm8WhNhad3+a5s1bsnr1CuQF6Tg4OBA4+B2srKyIOP4jmQmRiC0s6TpsHMlFFiQXCca2qX7vjiPxONsLJe1q8/p0ad0Anc5AQxcbjAgPIxOqzHPEqhQ0auTOwk9Gm68jl2Jbdh0/gkgk4sMPp9Qa4lqVO3mOb84Dv9kjburDZPjeiydalxSGhU8guqQwInIED0hAQDvzfu/GmNbr9Zw+fRyAPn363fW+6/hvERDQnq+/3sL+/b/z/fbvyM3NYd261Xz77Sb69OlL3779adu23R3vhweJwWDgxIljANUiVgB0Oh1ffy2U83vqqWdq9eSWlJQwZeonZKYJUSQu3t345stZWFtbc62K97AqIlshhcX0PNEmhfKy7CgVIVHYlGfjrdfSzO4EEXYF2FpL8QsYgNSnC1Fb99DRz43zx0FWWfqoal+m51RV1GLTAoeQcX7zPevqZI2zRPCIGG8ttVGtj3ulvLycEyeEqKEnnhj2l/qo458lJOQgR44cQiwW89lnn+Pi4gJkVWtT9b2YHBnCgQN7EYlETJ06k/btO5rb6XQ6rp/+nsLCAuycGjB9+mxEIhGZV3ZRlnMdBwcHFixYyndHc285HpfKfYmMBipCgpAUJZm93aboroqQICx8AtFEHkTq0wWlWIj00Oj0lJaWsu+ykOrxypOD6TfAlwkTBO2YYcNGMGHCmwAkJSXw6aefoVIJ6WzT3xhZI5qwqpZFQkIcc3afRVFeQcuWrSrD0euM8DruTOk/UbbMaMQhbh/2KcLzV+PoRbl7ZzDosM04j1SZS71Lmylu+zIV7vdv3A7p5sWpyGwiEwtJzSnD6wEeV1WldBvpP7eYK5VI6dSgPR3d2pFbnk+mIou88gJKNWUotErUejVagw6dUY9cU4ZcU0amIptz2WHYSm3o49GDQV59/28M8vsyxBcvXkzHjh2ZO3cuQ4YMqbVud1X8/f0ZN27c/eyyjrtEp9Oxbdu3ADz//Eu3rV+t1WpZvnwxer2Obt164NqmN1t+CuaPP/YBIj77bBbnUi1Z9fVmMhPCkUgkeHR6GYPUlcRMuTlUVKnSERabh6JCCwiTjdvh7GBFYqYQuu3iYEV+YQnXTgrREq+8MspsXBgMBo7v/BMQJqWmkPTbcStj1+StNn1v+nsnj/i9eKINiiKkPl3IjzrF1cQUQPAcgmCk301fYWHnKS4uxsHBkY4da0/luBN3a/TX8XBjYWHBU089y+DBwzh06A9+/30XWVmZHDx4gIMHD2BnZ0dAQAcCAtrh59eGpk19/ta0mvj46xQVFWJjY2u+Nk3CaOnXL5CZmYFYaoPapZs5LDfQzw33UjV2cjlTp35EZloq9vYOjHxlPBczbbG2tib2VAgg5FMXV0bVmKgolWNbuR/Bw+jGLqOWHgN6otg+CUmDZlgPGM/O62fwdXSkrY8/O47EU9VnYYq+Edvd0KWoughoIlcvGNkm48B0z2qTQrFo0Q1XJ2vKcgX1ZiEsV1OjD7Va+Ewmq2no3w3HjoWgUqlo0sSTNm3a/qU+6vjnyMzMYN26G2Kmt9L0MAVh6q4f4NvjgoDqu+9OoGfPPtXaffvtRtKSY7GxsSVw8DvY2tqxY8cPlOVcxcJCyuefL6Bx4ya4OMirbeeriweExa+iskqRUERYV+Z9Nxww3pwHXhESRHTj5wmLzOOZgly2BkfTq0LLuuBoAvRGJs1YRGmFGm/vpowYNZEZM6ZQWlqKh7M977wjvCuzsjKZMeNTlEplpdr5vFojdUyGeEJCHNOmTUFRXkGrVm2YP/+LupzwOu4aU1i6e72/r2yZXfJRsxEubz4MRdPHoTKkW+nZC6drv2KbeQHn6B3oLZ3Q1Gt+X/tr4GxDl1YNuHAtl99PJ/PBc/cnwGpCoVESmX8VgF4e3R9In/eKSCSioa0bDW2rO+NaOPui0WtQaJUotErk6lISSpK5nBdFoaqIP1JCuJh3hTdav/RAVd4fVu7rSj58+LBZpfxuaN68Oc2b399FW8fd8ccfe8nJycLZ2Zmnn37utm1XBm0kKSkRicwGQ6OBhEYmkh8ueMftPHuy7nApFUWpFEb8CED9VkOxqedLUZkaZ3tLcovKKSpVIUIQW9PqDBSXqdm07xo6vYGJq4Tczbj0Et6cdxCjwYizvSWJWaXYWlmQW5k3F3P5uPCi92hMv343hPhOnjxOfHwc1tY2jBp17ykDVb3f+twEs/dbn5twwytuUbvhUnVbg6IIQ14iiCUUrx8tzKr0OhTbJ2FUFlO2dTxix4YYCtPQJoVy4loqBoOBli1b0bBho3sa84EDewEYNOiJv5wTfLdGfx2PBlZWVowY8TTDhz9FdHQkR48e5ty505SWlnL27CnOnhVSOiQSCU2aeOLt3RRf3+a0aOFHy5atsLT8a0bhzVy6FA5Ahw6dzAKXprDxCRMEb3jLjgP48IXq3oI9l5pwasEs0tJSsbByoPPQDziXIkWpUjM56Axvig4SXjqEBdvCqS+/StTWQ7jYW+HiYImlqoCKkCAGF2VQESKEwnexqVdjbIF+bhSVqTn++x7c0y7iaJFP1LpPaGORj7txO2lfb8dZUk7Uuk/oDTiKlFz/xoFivTVtxMlc2rSAgkIhnUSnEoySpwxqPKjUlGjRjV7t3PnupFAa09W1PiCvMY7SUuGzqovTpsUKE+GxedXyh6vmjx88KJR7GzJkeF0O3UOOTqdjyZKFVFRU0LZtu2ppUy72ltV+48SsUr7Ycpgzpw4C0LX3Ezz1VPVa9FbqNHbv2wmAje8wYnPgjRnfkXdJELK19RnMqv35GPcLOeHvLj8OCH9ftUzmQNAy2kqSeRLI2CDCUaQnZ9ME3PUV5GyagGull0lk62y+5kzpGoUb5bxld4KDRTmkxQqRiKNbWLBl+iiuxeRjI7Pgs0B79Ce/IbtcxYyfjlFSosTHx5c5cxbdNl3GbIQrymjdug3z5tUZ4XXcG393WLqsKAGHeCElqMRvJEqvx6o3EFtQ0uYFRAYtNtmXcInaTm6PT+47Z3xET29CY3K5klBAQoacZo3/eulkE6G5l9Ab9TSx96DJQ1hOTCaR4SKR4WLlDPbQ1rU1T/kO4XJeFLvi95JXXsCXF79mtP+rtK//19K7HhXuyxC/FyO8jn8OlUrFTz99Dwie5du9HNPT0zh1JBiAdr1fYM7bj/HmexMw6lS0aOGHpNlA5r3VkdffWgMYsXdvh617J8rVOrPBDUJdRyNQrtIBILUQI7MQC+qW1lJkUgnNGzvSL9CTNp5O6HSGahOUNwf58OKu2QC8/PLrZm+4Xq/nhx8Ez/5zz72Ik9ONusr3gknx3IQp1NzkBb85LP2WSKSg14JEhsTGHn1ZoWDES6SgVWGQ54Bei/LMj+wPuwbA4w2N5hDAuyErK5PwcGGsTzwx/G4PsY7/E8RiMQEB7QkIaM/EiR8TF3edyMjLREdHERcXQ2lpKSkpyaSkJHP8uLCyL5PJaN++E0OGDKdr1/tbHb96VahocLPXLzU1mcTEeCwspHT3rqkAe+x6OrHRkVhaWvNYt/5YOjVAppSjVOnw9XDEObccZ3tLBnfxJPdKKm1fmm7etnjjWGIbP49rwgLkKTEAdNcayNl0GluDAlXSZSq++5DBBi2lehmlMjfkYhHOknLklo0pLleSZnDDQiJCJarglPtrhMfm0dMhE3V9QVukieEQHZ/5mKDxHwOZ9HysDy+N9Kci5ES14wiwSCYhVvA0WCeeQSdKI2qrkP7kX6rm9+3XyC8QxOcOXCymjDyzwVM1TefmPHgTyclJxMdfr6xGMvBefpo6/gW2bNlCbOw1bG1tmTJlWrU0kZf6C44H0yKMBC1hh7eg1RtwdW+Bq98T1aJGWrpbkhwuKKR3823M7KXvs+rnUML37geMNPFoxsavJpv7Nyn9j1lylA1T+nI66Dg+AR0oSdIiKi/GSSQscuv0RmxFeir0RmwMcnI2TcBSbECfm2gut5mxYTyOIi3psVH8fFnIA+/h7cam4q6kxQhCuJM+mYl13kVEvcbwxWeTyClR0rBhI+bPX3rbHO/ExIQ6I7yO+6Jq2bK/o364WF2GS+T3iDCi9OhS0wg3IRJT0voFpPJ0pOX5OF/bSVG7NwS14b9Io3q29GrbiFOR2fx6PIGpr3a8rwVYo9HI2SxhDtmj0aPjjBGLxHRq0A4/l+Zsj9lJRMFVNkf/wJutX6JTg/b/9vD+Nu7JEJ82bdo970AkEt0xR7uOB8u+fcEUFxfToEHD2xpyoTG5rFmxCJ1Oh5tna7K0jfn8y+/JS7uGSCxh0NNvc/RqBRs3BqFSFGPrUJ9eT7zOB88LpYpME4jETDkrxt8oJzQ56Ay+Ho4Ul6pwrhL6OeHZAK6mlbB2VyQGo7BdcaVXfcYX69FpyqlXvxF9+/Y3b3P8+BEyMzNwcHBg5Mjbe/ZvhckzfHOd8arcykiurSwaCNd1k5emkrzqbexe/ML8ufWA8ZRtfpvz9QdSWBGBk70dj7VvZd5nbcrRN3utf/ttJ0ajkc6du95RYK+O/28kEgmtWrWmVavWvPii8ALOz88jOTmJlJQk4uPjiIm5SlFRIaGh5wgNPUfbtu347LOZODs3vef9GY1G4uMFT5mfX+tq35lqXnfs2Bk/UVq1746FxXP9opBe0qr7s3SyScO0DCet1JawKBDh28CRQD83oi4I+zAZMC8ajYTF5uGvdSa6oaANkpgp56VezWl1cTF23V8230empbrJQWewMITQ7Y3pnF8/l0iPZxk30p+KynJk64Kj6SI/T9uRrwNQEXICg8FAcZaw72YVQg6t6Z7V5yagOLiWzJIyFCoNlpaWdBn9OboTG82iV+uCoxnc1gp+MGBra8ukV3rc84Tq8GEhZLlr1+63TSmq498nLu46mzdvBmDChEm4uTWotZ1pEealtzejLMnDwdqSNSu+qPH7Ll++mOLiIpo08eTxVl4AXD3zK4WFBXh4NOGltkLqhum+6FgSzbrglhgRrvenDEa+ibTG2X4QSfJSOvu58UruCvY0eJ+uBcF0GjsTxc9Tsa7niT43QUjTsHNBlxRGPd/WaJLCCU5RUVKhoVEjd14bGMDUHb8DguZDr16PoTwcxdKlC7l+PRYHBwfmz19SmQ9fO8nJSUyfPhmFogw/v9Z1Rngdf4mqZcsa/A1ly5xidiFRl6K1bYDc75nbtjVaWFIc8Br1L3yFdW4EVrkRqBq2v6/9P9WrKeeu5hKXIScqqYgA35oRX3dLSmk62cpcpGILOj+EBmxcceId2/Rp3AO1XkNscTzfXd1BmUaJu53w/Gvh7Pt3D/Ef5Z4M8QsXLtT4TKVSUVRUBICjoxBOIZdX5v26uJhLW9Txz6BSVbBz5w5AKPF1c1hzVfE0gzyBgszrSKVSXnn9Pf68WEDUid0A2DbpyZ9XFBTlJHItQphAW/kMIz5TycJt4RSVqSlX6dDpDegNRiYHnaG4TAgxLVVqSMyUU67SVTPEAXq180CpUHP+Wi4arR6phZjC4lIKLocAYOnRk8XbL+PiYIXRaCB010YAnnnmhb+kHKxNCkWXeU2YUGdeA7VS8F4D6LUotk9CZOuCuHIyUpthfDMGRRES+xsPSW1SqLl8WUVIEOUqNds2rQXg6U4+2LToZu7zdvXNAUpKijl8WDjfzz77wr0f602LDXcy+uv4byESiXBza4CbWwOz59toNJKamsKRIwfZu/d3oqIimDRpAlu3foeFxb3dU0VFhZSWliIWi/Hy8q72XUTEJQACA7vgokmqFop9PfwARr0WK0cP1LYtcRLF0j7rV/wNRrAC7dHj2FooaJuxk/Prd+FLOjnr36WRyIIRgEyk55mC9UhlFbQoECpBXLdqRqBfTxQXhQWzHUfiq4V+e6muo5EZKg0UA2mV3pSiUiHUvDbi4mKpUJVjbW1N656DIO0yIlvBtDcqiwE4dz0DgLbNmyKVStHd1IcpYqBFC797NsL1er05imHAgMH3tG0d/yxarZZlyxaj1+vNwok3Y7oHPFXXKUs8hTwjApEIpnR2Iv33dSgrUy8ATiWWcORICCLgKb+GtJemsX3eh2TERyIC2vl1wkJcxLrgaNJzyygqU9PLugz/jJ342wJG6GCZCppDiMtE9LUHixwRIpGRcSP9idoqVCgQWdqZK32YREVN78TzGQqOXS1ABLzfuzkrfz9LWVkZLVv6MWbMewD8cDKKc+FxSKVSZs1aQOPGt87hTEtLZfp0IbdcUEevM8Lr+Gv8nWXLLPOvYZ0bgVEkpijgdYwWd07j0jp6UtZ0AA5Jh3CM24uqfpsbc8u/gIuDFQM6NebP0DR2nUjE38cF8V88znPZgje8ff0AbKSPpg0mFokZ5NUPnVFPQkkS+5MP87LfM9hJ/3vPj3syxI8ePVrt3wkJCYwePZp3332XN954w7wqWlRUxNatWwkODmbjxo0PbrR13JF9+/ZQWiqnYUN3Hn+8ZlijyRDX6/Vs2fINAE8//TyDe7Xlj4PL0VTIcXKpT48BIxn3dAAvviZMegN7DKRh207VwivXBUeTmClHUaFlxfie5lDLhdvCGdTFk037rpn3WzUks0vrBnRsUd88SYm79Ce52gpsndzYuOA9c2jf2bOn2VdYiJ2dHcOHj/xL50Pq0wX1uZ+qebzNkw+4rVFsokaeeGEahrxEMr+bhrGiFPW5n0Aiw1gqKNjuiCmhWKmioYM1IyctQ3oPwlm7dv2CWq2mRQs/2rXrcOcNqlCb9/5ujq+O/zYikQhv76aMGfMeQ4eO4PPPp5KZmcGsWbNYuHDZPfWVliaUIGnUyL1azrnBYCAuTvAkt2nTFpfETDwqnxVGo5HRvwtRUR+8+yb9+vXi2vo9dGhWn6y0DOQGW1p5O6NLSsHH3REXB0vkKfnUe1yo9KBLCkOVeBFH71boksKw8RYiTFwy5dXSTV7q39wcCgxwfn0IOr2IFeN7snVDMs8+JqyiX9Z4mQ1xF/sbC4UWPoGcOCyowQcGdsOmRQ9o0cN8H1WEBGEzcBwndgge9McGj6z1HIWFnQegfftOtz2XtZVdvHz5IsXFRTg4ONCpU92i2cPMjh0/kJKSjJOTEx98MKnWNqb3pVLpzdtvCxorzz//Co00V2j8xo3UC71eT/DudwAYOmwEwyZM4sSaWRxPTwFgxFPP8t57EwjdMK9aOkPm7ksEPPMxq1ds4YPJozm7bg59JswBbqQ+lGx8CwAbfRkVIUEYCtPMkR4GRRFGZREYdGQlXmXjFUEfoVcLT87FZRCfV4q9vT3Tps1GKpVy6NAfBIfHATBp0qe3FRLMzs5i+vQplJQU4+vbnPnz69TR6/jr/F354SK9BqeYXQAovB5D53CrZdqaKJo+jm3mBSwqirBLPY7C5/5SiYZ29+JERBbpeQouXMule5uG99yHSqcmPPcKAD0fgKr7v4lIJGKgZ1+KVSUUqor4M+UIzzZ78t8e1gPnvnLE58+fT58+fZg0qfpLyMXFhUmTJlFYWMj8+fP57rvv7mc3ddwlGo2G3buFMmwvvfTqbUsaHT9+hPR0Qbn4hRdepqysjMTIIwC8+/Z7XCuR8t2O31GWZGNlZcPkD8az/Vh6tcljoJ+bWfUcoKhUxbrgaHKKytlxJB6tzmCu6xuTUsT3B2PxcLNnYKfGdGwh5JBq1eUkRQgLPB6tBpjHbDQa+XabIE4zbNiIe1pFNxnOpkmGUVmM6ugGMOhBJKrmGVcGzzerKN/KY3yzgasMno/Evh4eL00lN+wYeoNBCDtXK7iUnMOfiYLnbWyvFuhPfoP2Lj3RJSXF7NsXDAi5/XUiTXU8aBo1cmfu3MWMGzeGsLAwLl0Kp1272xuMVcnJyQbA3V2YrJgW9rIvHqaiohwLsQjXuAPoUi+aozGyisvIyclGIhbRXnWVipDrNBHnAV7YGsqQY4vI1rmylKFg3NsaFNWiO9RIca5UfFY1fp5APzdOBUfT1scfTeRBc7uw2DwOhabh7GBFW52By2ovIoOjSdQ1JSM0jdwrp2ikiDELvznoss3j1Or0HA05BFDrIiZAeHgoGRkZ2NjY0quXoHSdatmSsspFxZy8Ai5WitmllLtVy/+92fCuzRA/ckTY/2OPPW4Wwqvj4SM5OZGff94OwNSpU3F0FHRPbsX27VspLi5CalOPV199g7xvr1T7/vjxIyQnJyGVWVNg2Yl1wdFI0lLIyEjH1lJKR0khmbu/pJUoCcX2SWi0BjQ6PQ4GBVFbFzHSJoOorTnYo2Tfjl10kKXSu0xFRcgJJBhRbJ+Eva4Cfa5K0DgBdBY2WNm5YBEwGMXp7XwVrqZca6RVqzZkO/iTcOHnyuObSYMGDbl2LZo1a74EBB2XqoKqN1NQkM+0aZMpLCzAy8ubhQuX3bGqTh113Ar5Ayhbpi+sWccawCHrPBYVRehk9pQ4t8J4i3a3oti9O67Jf2KfeJgyGw8MtXhsjWIx6nIZ1GtdSw83sLOWMrSbJ7tOJPHbySQ6t3RDWll28265nBeJWq+hvnU9mjn53NO2DyMyiZThPoP4MfZXMhXZRBVco6VLs397WA+Ue/uFbyIiIoLWrW99YbVq1YqIiIj72UUd98CRI4coLi7C1bX+LSeSIHivduwQxFeee+5FbG3t2LNnNzqNCm9vH/r06YvRaOTgfkE0xqvt4+a0g6oE+rnhYm95oz5v5ecNXGzw9RDae7rZ4WxviUwqoaGLLcs/6EOX1kIeXVhsHgkRR9BqKvD09ELi4mfu++rVaDJS45FKxIwY8ew9nQepTxesB4xHFjAYy+4vI7J1xsK7IxY+gVg07Yz9G0JInoVXe2xHfo71gPFYDxh/12HbVcsfyZp1Me8vp9zIqkPC9f7kkyPpOXHVPfX700/fo1IJInldunS7p2Ouo467xcOjsbk29f79e+9p24KCfADq1xeMSFMoeIFM+HeDRo2xHzwRC59A832VXl9YlXeo743zkA+xHjCeq4amWA8YT77UnQOyJ7Dq/grGyjJL1gPGE6Xz5lvFY+b/NAaJUCKxQsuOI/GsC44210mWBdwI4Q70c8PZwYpxI/0RiURYyiSMG+kviME5WDH8pWe54DoS6wHjsXKqX22c54qllCqUuLrWp3Pn2u/Zn3/+CYAhQ4aaRTCPFjYk0M+NcSP9ae2QgdFgwMnNi0/f7M+4kf6MG+lfq9F9M0qlknPnTgPQv/+ge/pd6vjn0Ov1rFy5DL1eT69efRg48PZesPz8PPbs+Q0Ae99BbDoQh8FgZF1wNOuCownaHcnX32wC4NVXXsWtvgtjh7YgJF6IsGraeSRd3p6NxzMfc9XQFLtXV2Lf51Uajl2LhU8gbd+YToquPm3fmI5SbMfwl57F45mPOeU4QhAplTli9+pKjkn7YvfqSkS2zlgPGI/aIDa/n769UkB8/HXsZBJeffUNUi8HAzBmzBi6du1Gfn4+CxbMQqfT0ahpe1577c1bHq9cLmf69E/Izc3B3d2DRYuW1zp/qKOOuyWp0uHzoMuWibVKHHIuAlDSuBfGv1C3utylJWqbBogNWhxyLt33mAZ0boKTnYwCuYpjlzLuefuz2cICdvdGgf8ZZ46TpSM93LsCcDrrAkWq4n95RA+W+7qiHR0dOXnyJK+88kqt3588ebJuFfQfwmAwmL3hzzzzvNmbUlvJnDkpUWRkpGMhs6ZRix5oNBr27g0GBE+6WCymIPM6ZcXZWEitaNrmRo3THUfiiUgoQFO5+m9STTflhucUldPQ5UbeqbODFUVlajRafY0xq5RyUq8KisSjRo1h9xWx2Zv982+C8FPvxjZYX/qJisptikrVuLXvdVvj1tSHPjcBo04DaqU5hxtAde7HuzqnN/dnQpcUhsjWhdzdy9Fo9EiadqbE3pv5RxJRKDU0d7Vh7Nj3a+3rVqJwWVmZHDgg1FB/882x/5kHaB0PJ4MHD2HPnt8IC7uATqe76xJ5JSXCC9DZubo4U1GRENLq6upaY5vs7CwAjDJns4d4hDHHXFLpTb6l6LvvkVZ67gBaSkrp2CASq+6vEBabhzhXxLiR/uT+9Au+1o7VwnNNzwJtUih5V07TPqeUi5uCaSdNwVOfx9l1yfjrjVzRevHuciFCZ8G2cJ4yqsgpKscQm0enFq7sPiBoMwwf/lS1aKJUy5b4AdHpeURGXkEqldaq36BSqdizR9DY8G7Tp8b3d+LEiSOo1WqaNPGiRQu/O29Qx7/C3r2/ER9/HVtbWyZM+Oi2bcNi8/h2y9fo9Xp83Jx5sUkmzvI9OEvK6S3fg4u9FfG5BeyT5yOTWZIr9iM1U87nK75DodZgZetEhY0f64Kjqy3mJJ07xsY/tDwrymfX9TM8RaVYm9HA5nXf08sxi2fFSipCTiDVyFFsn8QgbRmK7RfM5TutDOVUhARxNNvI4ZgsRCIRozt7sG7dV2g1ajp1CuSdd94hP1/O/PmfU1xcTNOmPvj1ew2xuHYfTnl5OZ9/PpX09FTq1XNl0aLluLj8ddGpOuoAoewfPPiwdMesC4gNWtQ2DSh3bvHXOhGJkLt3wy3hd+zyIyht2AmD9N71jExYSiWM7O3Dd3/EsvdsCr0C3LGxurv3c44yjyR5CiJEdG1095FujwLtXNsQV5xItjKHX+P38k7bUf/2kB4Y92WIv/jii6xevZr333+f119/HU9PQbQjNTWV77//npMnTzJx4sQHMtA6bs/lyxfJyEjH2tqGwYOHmT+vrWRORqhQo7Zbr4H0bu/N0aOHkctLcHWtT69eQskGRaawstex62NILQXPj4u9JUVlapo0sDdPhNcFRxOTUsSK8T2rCcEBjPniKONG+ptzyU1hpyYiz+1Fq1HT2KsZPXr04njiRaQ+ncmS1Cc86VdAxNOP96yW5/x7cDTjfG5fU9A0MdfnJoBOAxIpRmUxIltnRLYuZkO6qiftTv3dnHstEolo8MwUiouVJCYmMmvKB+QrNbi7e/Bpf29kt8gLv9UCwpYtG9DptHTs2JkOHR7MA/Ruy6XV8f9Hs2bNsbOzQ6FQkJqagq/v3YV6lZUJE6KbF1iVSgVArSWMTNt0bGzJW3bCwptKosXK2x9dUhgp4ka0buyMNikcq0r18+ubFtCpu7DAGxabR2uL5jQGbA1l5n5vft5IfbqQpfFmV3Y8K8b25HTQHCwkInq8P5t1wdFYABsqn0eCevoFEjLltPVz49Sp46QVlGJjY8vQoSOqjf9oYUNaGo38ECqUdBo5ciT167vVCEX+/fddFBcX07BhIzx8O97V+TRhNBrNC3FPPDG0biHuISUvL5etWwWV9NGj36Fevdsbme18nMirXMR9a+JnbD2tYs0bfUjcMo22lTnia6cJ5cg8W/fhg+c7MX9rGNlXBWHc115+mbM5lub37YUTwnXR2FbDggZXkKcUsMD7CrqkVAJ9rpCXqSPQoxQLn37oksKwHjCerI0TcH91JVFbF9H21ekotk/CesB4VBvHktiwD+u/+hgQxF1DQoLJyinBza0B06bNRCwWs3LlMuLjr+Pg4MCsWQvYfb6w1mPVaDTMmzezsq0jixYtp0GDe89xraOOqmh1BlJzHnzZMgtVCXb5grBmSeNe91V+TOXojdqmAZbluTjkXKSkSe9a28WkFKHXG+/Yn6uDFfUcrCgsVfHDoev0aSfUARc7FN12u9OZgj6Jt4MneeUF5JUX3OORPLyIRCL6NdRtoAAAn41JREFUN+nN9thficiPJqEkmWZO91755WHkvgzxcePGodFo2Lx5M8ePH6/2nUQi4Z133mHcuHH3s4s67hKTJ2bQoCduqy5eXlrA5csXhbDNhsJk0aTS3bhFdzbsjaGgqJSrkcLkIV3jSXpsHpODzpi92lU93gAy6Q3vkcnjlZ5bhtEI7y4/jsFgRG8wEhqTx9Of7gEjaJW55CYKQksWHn2Zsu4sxWVqJq46SV6UIJxh5dqSiorq9caLS1V3dT5M5cr0uQlmVXSTYXq36ui3Q+bbhbJrZ/h9+/dsOnoZlVZPIzsL5gxrh7NYZVakreqtu9X+IiIuc+bMKcRiMW+//eDulzqF9DpuhVgspnnz5ly+fJm0tLs3xHMKhBDBczHFZBqjCY/NExbaIoVyZWUqYZJRdRHIYBAM1vqePlgPGEtYbB7W8SmcVDxGb0s5Qdnd8JU5MNYYydw/tDjbh+Mgd+dC5X0fk1JElL4914Kj6aeQEp6eZ17cC4vNo7hUhREhNSYtT4FWJyilv4GCEq0tE1edZLDkPA4oidq6h/ZKDVFb9+CtjsNS1BD5n6v55lshz/yZZ56vNYrr5MljxKWkY2VlTdvuw8wlGEGIMvpy+xmO/Syk+/Ts/yzt2rjf0+9x9Wo0iYnxyGQy+vevU0t/WPn669WoVCratGlbozTozQtDAD/vOYJSqcTK1okL6VYoVQrWBUfTUWPFjm3hqJTFXLlyCRAht/RjctAZcrOSKUxOApGEP+Ps0YuEaiQAXqrG/BJ0hlctRZznMepJ6vHigJeICvqEtgPG41Vl33lXTvN7cDS9ddYEB0fTS1HE+fVz8UZJ9Pq51CuvYM7Myeh0OgLcnUkPO8a1nBIsLS35/PP5ODo6MX9pEEeOHEYkEtOmzyh2ny803/MmAv3c6Ni8HkuXLiQi4jLW1tbMn/8Fnp5e1FHH/XItuRDN31C2zCEnDBFGKhy8UDs0ub/OHrBXXCwW0aedO7+dSiL8eh4dmrtib3P7sHm9Uc+1IkFIsU29/2ZEVT1rF9rU8yO6MIbd8fuY0nk8YtF9ZVg/FNx3ssVHH33EqFGjOHv2LFlZQgiih4cH3bt3v21tyToeHPn5+YSHC0btndTF0+Mqyxq074SNfT1KSoqJjLwCQD2vDowb6c+FC+c4t1OHtZ0LTvU9adbYqZpn++aSZFWp6ilXVGhZ85EQojk56AzNGzvy+djuzPvmDPEnd5GDkT59+jFt2qvmEPphHex4/5CwStnlsRE080ii7YAbHvCqE4Cb0SaFook8KKjAcqPckFGlwFCYZg5VFzs2vC8j1Wg0EqOUsX3jd1y+fBmAdu068HHPxrg9+XGt25hqmdcYs1ZLUNBXAAwd+iTe3v+NFb46Hn4aN27M5cuXycnJuettbGSC12BwV2/69bvhXf7NGMO1c5jztqte66Zc6vJyJSBM3M8ft6v0Sp/AWWHJjFGdUWzfzopXewKwLtjKHM2zLjia4lIV40b6c369LZ0r87FN+67Kvh27cC2Jpl0zV8oTi2kqKiDQJwp5Shr5UneaeTiyLcaOd994A2XwfNRyCcFh18kvLcfZSsIQ52KzeJtpIU2nVbN58wYAXnjhJYb28ad7W6XZI74uOJriq7+i06po2bIVo195+pahu7di504h9/zxxwfW5dM+pFy4cI7z588ikUiYOPHjGr9xbYa4skBIierftw/jnw5gctAZxo30J3P3IWY805lff/2ZcCAgoB1e7VswbqQ/r44X6si7+7Tjm2lDmBx0hiVDpOiSwrgcl8/bLSrQJSXQyu4ECXI5FSFBuErk3IyTWMlbdicoqPyrkxZg4dOUwsQ8vBvZ89n3+SjVWpo3b0EzRwm7w2MA+OijT2nWrDmhoefZ++tWAN59dzxPPSXUVr75vjMajaxdu5IzZ05iYSGUNGvRouWDOel1/N9zsTK18kGWLZOoS7EtFK53eWXu8f1S3SseTkmTe09PqkozDwca17clI1/J6agchnS9dZlAgGR5GhW6CmwsrPF2vM+FhYeYbo06E1+SSGpZOpfyIh/KOun3ygNRPXBxcWH48OF3bljH38Lhw39gMBjw9w+gcePb34DFGZEANG3VBS0QGnoeg8FA8+YtsHEQ8jujowXBsfqNW5oVzycHnUFRoUWrMxAem8e7y48DIBaBWmuo5qEK9HOjqNJzbTKci8vUJGTIWbItjHMnD5EfcxWRRGbOpTblsW/dugmj0UiPHr1xdG1CqqWUo1WMb9NqvKfqOmlWLauF3psm/6Z8bn1uQmVIuovZOAcw5CXeVX1tkxdbr9dTVFREamoy0dGRnD1xivQcwWsvk8l4eUh/nn97Mppj62977mtj586fSE9PxdHRiVGjxtzz9nXU8VepX1+oXFBcXHuoaW0YjYIb+GYjRCYTDHC1WtCMqGqUmPLGs69eMN93bcTJVIQEUZYay/OSArRJUrMXPSw2D8usy+zI9CH3yin88yORScVEbT1EG3EysoJgKkJOMLgoA23S01zReHMoVPDIOxWVsVvVG+frlrxBMgqRHUezujKEYv4UDWJQY0/CL11FHxxNb7mEpfHeFF4WqjYM6dCaRJ8b4fBEApHRnDz8G8r8PKztXCiS+bNkWxgdfOuZKz9kJ0cQfvoEYrG4VgPtTsTFXSc09BxisZhnn33xnrat459BpVKxbp2wYPr008/j5eVNWGwe3f1vH3qdkBAPQOvWguFqWqhya98LgAsXzgLQq1cf0itlVMpyYoX/cWguLPKUqfkm0hF4jIuleThdt+RVy2LOKx4jPDuPzo5uPMdlorYuwk2mQmfpRFGZCm91IklyCUa9DSWZcuwMDigy5ajUlnzz8wlyFVqcbKzo4GTBrnCh1Khv07bsvWrJoaj9RIWsxWg0MmTIMEaMeNp8TJ6q68ANQ/z777/lwIG9iMVipk6dQfv295aWUUcdtyM8plK08AGGpTvkXERkNKCyb4LG7t6il25JNa94JKWNAjFY/HUPvkgk4rF27mwPiSc6uZBAv/q43eYUXC0UnhutXFoiEd26YtKjjq3UhoGefdmXfIg/kkPo6BbwyHvFH4ghHhoayvHjx80ecXd3d/r27UuXLnWhsX83RqORkBAhrNKkhHwr/jwVSX5uJiKxmKuFzpRm5nEpUyhZhr2POew7MVFYxZc6eKDRGbCzluLr4Uh4bJ65lEK7Zq5mI9i0yl91pTwsNg+XSvViEDziLg6WKEryKIgTSvTYN+3HzjO5QC6JmXKUBUmknj+DWCxm1KjR7L+swK/3AKoG2dzI7zyB9YCaaupV87krQoLQ5yZg99IXZqPaZAhYDxiP0WikoKCAhITrpIb+QE5ONkVFhZSWllJeXk5FST5qLFAqFebwWhMymYwBbTx57ZPFWF38+bal4m5FWloqP/0khLO+++74OmHDOv5RTJ5XUw733WDySNx8P5iuXVNfVQ1xT09vAFJKdVgPGE9YbB76hAIuKR7DWGbLRZUnnSNtgACoFKXqYpuO2rEDw0f2ZF2w4F0L9HOj5Pgctmv74atwxF+5k59Oiykui0dRocXTzY62kmQiLbzx9XCkNNOOpg0dmPlMZypCLnBBIXjZdxyJZ9xIfwr3h1Dx5+8YDXoaegfwbPfm2FSO2TT25OQk9n1zDoBPPp5E796dcXa2pbhY8IiXlJQQeUoo8/Tccy/ddYi/CaPRyJYtgre9X7/+d1xIrePfYefOn8jLy6V+fTdefVUQCbobQ9xU7s/DQ/hdTdFkUp8uVFRUEBNzFYDrxc5kl8lZ8cMptOWFQr6qnReJmXIk4hteQCPg6+GIVC68h33cHQQRww0S2r4xnYqQIKIbPy8sJMn3cMpxhGCse7jRsWIXoTZPcOzgGlTFpdjJJHz06SyWL1+E3gi9ez+GY6tneLVfEyZNGo9Oo8K/SX0mTpxUzRPppb5u/v89e37jp5++B2D8+A/NGjN11PEgKJCrSM8tQySCpo0ezPxIrFFiVyA4d+SNHqyNonL0RmPtiqyiALu8SErv09vuUd+O5o0dic+QczIim+eaONXaTqFRklqaDkCbev/9aJS+TXpyJP0UOeV5XM6LpNMj7hW/L0Nco9EwefJkQkJCMBqNODgIyzWlpaV8++23DBw4kBUrVtTVQ/0biY+PIzs7C0tLS3r0qF0gwoSmOBGAgLbt8PRuSFGpiosXkwBwdW9GYlYp0zacIypGaFems0eiM1Cq1BCRUIBIJAhnmIzxg5VeKBAmJYmZcrMHPDw2Dx93B9YFR1NUqqJcpcPZVsKFkC0Y9VrquTfHyedGiS5HGwn5ycKCwrBhI/Dy8iawQvCSq879iFX3G8r8KpWKs3EZJCV/jVKpwMHBkaZNffD3b2f28pkw6jRm41udcIHkK+eIVYi5vu88MZmFFCkquBskEgmNGrnTooUfHTt2plevXkhDv0dW3w2TfJTJo3ezyjoIXvqqXni8OvJl0DZ0Oi2dO3ehb9/+dzWOOup4UNjaCvVOy8vL73obS0vBo6fRCJ5vk8GapxAWokzlzaribVGGRCKhoCCfpVuPYufohr9WMOQjdd7YWokJ9HOjvSzFvIh2/aKExEw50zacI6+kAqMRIhIKmGGL+XnU1gqaeTjyUn/Bc/h2QDmFRwt51/o0LTFikKZAsZSi7z5EqpHTX5RO1FYHnjKo+WlzKodOXkJZkofM2hGj+0ASsyI5VaXud4dmLqxcuRSjwUD37r3o3r1XteMyGo2sXr0CTUUZXl7evPrqG3d9Hk2cPn2CiIjLSKVSXn999D1vX8ffT25ujjl14O23x5lTLYpKVazdFYlUZoFWo6uRO200GikuFtKjTGl6VUPXr1+PQa/XY23nzJRRfQmLzUOVH0MI4OvTDEtHB1aM78mCbeHmBe0DQcsYOvITUrf+RMecXWh1Bs6v308bsZrz6+fiQS7auHxsJM2gSgZZREIBflItR39bi7o4BZmFhLEdG7Dyi7koKtS0cLFkXAcXkrJ+Z87HV8jJKcLd3YPpz3ZBKpVWEyZ0sRc6Pn78CF9/vRqA1157s4bIYR113C+RCYLYmIfrgytb5pB7EZFRj8rOHbV94wfSpxmRiNKGnYW64nlXKGvYCaP4/sbdp507CZlyEjLl5ORb07C+ZY0214quY8SIu21DnK2c7mt/jwLWFtY83qQX+5MP80fKETo84l7x+7pCgoKCOHz4MKNHj2b06NHmEMTCwkK2bNnC5s2bCQoK4qOPPnoQY62jFk6cEMIqu3btjrX17cNgIiOFfOYOHTpRCNjJ9KgUwkRh8ptPsPVwMuNG+vPMQTUVgH+LJuQoZGZFdJOxDUIu+IJt4YTF5qGo0AqiSZWlzIpLVTjbWzK4i6d54hH0WxT69IMU56UikVrz5tiP+OPSjVqAUef3o8jNRGZtj6Ze92oeNV1SGHR/BZ1OR2LkUd76eVZlGaXzNY7Rza0BXl7e1K/fAEuNHHVOKcrsIrKzs0hNTUGtri72JhaL8fLypmlTX9zdPXB1dcWmPA8Hn/aIIvf9j73zDo+q+Brwu5veNr0AIYQEUiAJhN6VqtgARUEEFAFBRQQboIANBfnsSFPs+hPEjiDSewu9JCG9996z7X5/LLuwJJE0UmDe51Gyc+fOnbl3zr1zZs6cg/2QKdjZ2WFv72C06m1qKkd53bX1SsT1XtZBtzp/rff377//msuXI7GxsWHu3JeEl2RBk6N/X+jNyWt3js4BjV5518toUr5ONrKyMim9fBi4us/ZLO08ISHdOXPmFO3NU3l07DCOrPmFZ8YG8eLqw/i2s6d3gBupv/3An+d15Q9Wa8gvrqRXgBtKtZaSchUz7uuCbB988cpQAC58e4TBwztfvY5PH9L27OCYy1h6jA3i1IZlhAwdRaTSG8vjGzhor1MUwtIyMYvZSUZWMjK5KdNmv0JamYKAEDeCfYxNbqOjL2NmbsWzzz5f5V5s376Vo0cPYWpqyssvv1ZjpISaKC4uYu3aVQA88sgk4WG6hfLFF2tQqVR06xbKoEFX9306KSyZ81CIwULi01/OG+2drqys5O/Pdfbm1tY2hnS9sh5z9gAAkpWHIe3ySZ23dF/fTsSpNAbTdP3x++Txuq1ZFj1IsvfnQmwOa+fcSfK6Z+g3+3UufPsuAx5/lQHovjnBI4KY/t4ePny6N28s+p7K/HhkJma8uvhNNny6nMLySjw92/Nobx/sRj3LZ3NfIj09DxsrK5YtW4F9zNYq98NJYcHJkyd4//3lANx//zgmTbp1QgkJWg7nY3XbphorbJlMXWHwlF7Upk+DPKXXRJmTH+rUw5gqi7HJuUSJW7cGleessCTQy5HwxHyOnC7kwbuM/VBIkkR4rs5KJcg5sEHXak3c6TmIPckHSS/N5Hz2Jbq7BTd3lepNgxTxLVu2MG7cOF555RWjdGdnZ15++WVyc3P566+/hCJ+k5AkiSNHDgEwZMjQ/8wbFpnFqTO6/eFReTbEF2ZhodI5abKydSQ8udSQV6VSAyA30XWPjbujDXu4lSoNpRVqw57xzLwyVFdmyx3trs7U6QfXhmsf3kb6pe2ADPuAcURlXp1hz8uIoyRJ5xX2pfkvMnhwVXOh+KNb+WD9l8Rm6pR3ZysT+vh742hjSV5JBbEFlcQmp5GVlUlWVuZ1Z6cY/rI2N8XftyNdfDsSMng0fn7+hhUOQ/zxshhMsstQl8diGq0biCgBmY0jUmk+2pI8pNJ8pNI8yuIuIFWWUPLjfCPv7P/lDO7ixfNs3KgzSZ8zZ36VVXyBoCmwtNStbFVU1C4SAWCweiosNHYOVao2x8zCGlVlGfu3/cXJyrsMysPgwkI6BvblzJlT/O/nXwjL8cJb6cWvqw+TX1zJuZgcvlzzPaPkMQy3U+Hlbos6K4r5bcAHDZU2OaTJzekYeRCtvIySH+ejVGnxVhaS8uV8TCUV96m0xH5lT2dtOlLOH6T+toM2Wt37rXeAG+Up9gSPCEKj0XBw29dkJJ9GLpcz4Yl5jB01gGXfnTSS2fPnzxpkdOyEmTg7X42PXhJxhMRKe9av/wyAxx+fUS+T9M8++4j8/Dw8PdvzyCOTbnySoMm5dOmCIaLFoLsmsfbPS4ZjJyOzjFbEr4/ooVRenarVW5Lot3OFRWZRFlNOBNDB24dnxgaxcXe04dt1JlGFqYea2NRCyip0//YOcEOWoZsEjzyYwfDK/cRaJ1Dy4584XJEL78p88r55nnztlQmzb98lQGPP9NnfUJiTjKmZJd27DuD7778mJa8YZ2cXli1bibR7NZ9/vpr0uLOYmsh5eVA7HMP/ojT2BGVJl9EZxYPMxomIiEu8feR3NBoNgwPaM31UHzGRLGh01Bot4Qk63z6+bRvHgaVtTjhyrQqllTMVipvk1V8mp8i9J07J+7DLPE2JazDQsNXa/l09CE/MJyqhnKxcJW7OVyd9k4tTKVQWYS43p5Pj7ePs19rMiiHtBvBv4h52Jx+4fRXx7OxsQkJCajweEhLC1q1VZ1QFjUNKSjIZGWmYmprRs+d/x4zu7GFGRVkhMpmMl564i6//jcWyrJCEI9Cpo5dhcAC6lbLiYhUqZTlgQ15xpUGx1ufR7wkHiE0tNNojrjdH15Mdd+yKEg4vvDCff6OceGZsEGGRWXT2MGfu3LcBiaFDRzB4cNU9ZseTClj962rKy8uxtbXjySefYpA8Hru7jGPUl5aWEhsbTXJyErm5OVRWVmJqaopCYY+HhwdeXt44Rf6Fzcg5uhXqkO5G5+tXsvWr19evYl+Lqakc5d61KJUaJEmqMd/1FBTks2LF22i1WoYPHylM0gXNhl45qMuKuJOTLm5yXp6xgzdneyu6BQdx8uQJylSVBs/mAOW79uM/ZAx7/9lIfn4ed3jlsC3ah/XPDmTW+/uYcV8XegfcyYVvkwl+bMGVc1bzV1pfXhvbCxtg0fv7WD9Wt/LX/rGPAEj97UM8H9RFKdC/e05tWEbPGYsBuPDtu7S9RrmuqChn5cp3KLiihL/00iKGDh0BYLDmAcjOzmL58rfQarWMHHk3T0666qgKIO/8Ad755TSVlZWEhvbiwQcfrvX90/PPP1s4cGAfJiYmvPTSojqvpgtuPpIksWGDzgHnqFGjuW9oL6Pja/64WGVF/FrUapXh7+t9iIRFZpGervOpY2uvm7CeOLwzUYetOZoME0cFszvegg+eHWjkeyVZ5/uNPbkePDN2BF9fPswHjw00yMWpDcvo+cRi9PFqEhMTODD/BdTl+SgU9rz66ut8vHwpGYUl2Ns7sHz5B7i7e/Dt+Rj+Oqeb1H/xpdcIUUdge9cclHvXYj70aYNpelxcDCu+eQalWkOvXn14eekysfVQcFOITi6gQqnBwc4CdycrrnNLUnckLbbZOkfExW7db8pquJ5Sl67Ypx3DrLIQq/wYKl0aFk7M2d4Sfy8HLicVcOR0IWNHXl28uXjF+3uAU2fM5LeXLN7hOYDdSfuJK0wkvjCRjvatM2RigxRxDw8PTpw4waOPPlrt8bCwMDw8hLndzSIsTGeaHRzczbCqWxNJSYkAuLt7GExSXWx1x+ztHQiLzCI5s5gXVx9GJbcFijh3KRqHtl05F5ODuakcJzsL8osqyLtiKncyMgtHOwtKylWGEEN69K+433/fzOefrwHgkUceZdKkSYR9uI+wyCy6+zry2msvk52dhbmNM3PmzAd0e8LVcWFIksTm8xlsvqBbJejiZsPcQe1xdyhCKq06w2hjY0NISHdCQrpXG7dbFXcCfJvGgeD11zf16Y1arWb58rfIzc3B07M9zz47v0nqIhBUh7W1btWsLivievPp0xdjjPbDnozMwsFEd+xYRCKTnHSezbUleWizYskrqmSorzu/nczjyy/XM6DPfVz49giPWVZiefwIqeGWeFdGGfwolKdE4VBgw5o/dKv2KrUuMsP9wDvfncRRYcmYK9dWxZ0AdG0xN7v6Xki08Cfgihzm2vuy4qXniY2NRiY34dVXX2fgwKs+NfTerEtLS3j99UUUFOTj4+PLM88Ym6RLksTaf08RHx+Pg4MjL720qM5e0i9fjmDtWt1q+hNPzMDf//YxJ2xNHD9+hMjIcCwsLGu1f//60GUajc4sXS6XV7tirPenYGXraEiTpKvaxij5UUp+/IUHy1WU/KgbYDvIy8jYMIcHNBIZG2TcoW7Pi6vhcWz4ePVhHqfAIJeZiRc5vedb1MoKrBUuBA97nOXvf0RhYQnmlrZ0H/k0W04VofnnW7ad01mPzJ49hzvvHEb5rogq9U1NTWHx4lcorVTRpUtXXnvtTaGEC24aF+J0q+E9/N2uyI/UoPIsCxMwqyxEY2JBmdPNjbMtmZhR4tYN+/TjKDJOkt0IDtQGdPXgclIBkXFl5OSrcHE0o1RVRmxBAgBBLrffd8TeQkEvj1COpZ9kd9IBZgRPae4q1YsGKeJjx45l1apV2NnZ8cQTT9ChQwdkMhkJCQl8++23bN++neeee+7GBQnqxenTJwHo3fvGyqXee6uNwtUQaiw2R+ds7XJKMY6RWbR3t9PF+NX2ZNu2NGSlyQT73kFsaiH5xZXkFVfiqLAkr7jSaNARccV8SAKDgu5gY8LTL71OwiXdPjgnn4GEDBir+1thwfbjCaz65D2yE85hZmaGIvBhvtkRd6XEEEK73cGBrV+x74JuBvPBBx9m2rSnMDXVdVkjx2fVUF3cbnVcWLUr19c7V9M7VtNkxlC+a/UNTc1rc33Tjr357LOPOX/+LFZWVixe/NYN9/QLBDeTq87aSmp9jt77s6Y8l2fGBhlkZ3CbQswtYN5xuJxVgFrSKSHawgyyTNuQ12UySjJwTP6Y/Mx4Dp87irXfi5zLKKKjQsFdXbzIO76BYL187lpNSqU/Dwa4seNEksFBpCRxzXuogoO7o+masovYkjtY9t1JhhRV8uJq3TaX/GJH2pbs4I+/Yjm77wdUlWXY2zswfup8IyUcdN6sKyoqeOON14iPj8PR0ZGlS5cZzPf1bN26hZ3n46+EalpscMJVW3JysnnrrSWo1Sr69x8kwpW1UCRJ4vvvvwZgzJgHa/Wcr1fEawr1p8cQrcDUyqA8p+bp5GbHsSjKFb2IbXM3eZoKFj+mW43PX/8kv7nMJiIhD3MzE/LLK3G0gwKtNch1irpWo6Eofi8ndv8JgI2zNz3vnMDp3d9SUpCBtbkZve97DoVzWxLCD3Hhitf/R/oHMsomg/Jdq1HHhVHy72dos2JR/vsZefa+vLrqa/Lz8/F2tefNN1dUkQ2BoDG5EKezuuoV4A40dDkc7LLOAlDqEoRkcvMnkIrdumGXeQqLsiwsipPBpm7bl67H1cGKzt5WRCeUc/RMIfcPcyEiLwotWjys3XC1cm6kmrcuhrcfwrH0k5zNvkhOeS4urfA+NEgRnz17NsnJyfz8889s3rzZ8MHRarVIksS4ceOYPXt2o1RUYIxGo+HSJZ3TidrE7dSbkvp0aGswC0+JSCf8GJibyoyczESFdwW2UJR2HpWynPziSsP+7/yiCrRaiY27ow1xxUFnnq5U6QYRbe2URB3bSHGObhU+sO8Y8i2C+WlXNGfj8sgtLCf+9BayE3Qmogsf6MuvlZ6GOhQXF/HWW0u4ePE8JiYmPNW7LQ/MfMaoPXoP5bVFFXfCoFhDVS/m1yrbepP0mlbV1XFhyGQy5BUFqFKjkLv5GsqqSWn/9ddNbNv2FzKZjFdeeY0OHbzrVH+BoLHRhy8rKSlBo9HUKgSfl1cH5HI5BQX55Obm4HxlO8fBK+az3vtjSEiI54TMhz4jplDy43zKsDMoKeWlT3Dwt/9DWZLB/j8/wy7wEZKz5GzcHc0YbaVhtdsm056cwgoyzx5keNlFlBZaHAstcDQp42HZLmwKzXAzryCgYz5qyZ6Jnp3pHeDG3xsT+WDiQAA+2RTGvlNxhF3QhWj08wvgtdfewM3N3eB8Us+JSykc3bKKnLQoTM0tmfjkAtzdPYwm6S6lZPPZZt3E4qSBXfHPOUr5rqO1nqgrLy/n9ddfJS8vlw4dvHnxxYVib20LJSzsOHFxsVhZWfHQQ49Um+d6xbtmZFX6W1hEJuXluogdWQVqHJ115TlXBvNN1HGKctNQuJoaJsGf+/gASrWW9+wkzsXkoFJrMTczQYbOH0t6fiAfTBvI7pU/ER25jqgoXUzhBx4Yh6ZMxrF/P6WkpBxnWysW93PE0/Ifdp7NYctxnf+U+zspmNC/i6F+cjdfbO+ag1nGOTLMPFnywnNkZWXi6dmet+Y8ga2tbd1vqkBQS/KKKkjNKUUmg+7+rly4fL3fn7phWpKJVVESElDsVvN22sZEa2ZNqXNX7LLPYZt+inKPhiniAAN72BOdUE54TCmDe9lzMUdnuXI7robraWvrQaCTHxF5UexJPsQjfmNufFILo0GKuImJCStWrOCJJ57gwIEDpKamAtCuXTuGDBlCQMDNNf+4nYmPj6OiogJraxs6dLixg4aSEt2ql52dztlS7wA38pN0K2LKCuPwRRPHjODn/21AWZqDNnUvHdsMxdneyuBoRs+1pqlOdhYcv5RKbuwBLp/cjqRVYWpuRejQyXh4h3AuJgcnhQULpvRixYr/41CUbj/a/PmvEEoMv14JTZqRkc6SJQtISUnGxsaG1157k87hP1RpT11XqM18+hitiP/X/u//uoZ+H7mpqRxHRxuSN76H5fBnqjn7Kjt3bufLL3WxgmfOfJp+/QbWqe4Cwc3AwcEBmUyGVqulsLCwVqt+lpaWeHl1ICEhnsjIiCory3fffS/r1n3G2WM70EwzdkCmf3c80Pd95r3wPGV5icgufotH/0mseHYMpzbsNcRZPq/uiEZbSZKlP3s1HpRUqpjRtwuX9q1ll/W9LJ56db+uOi7sqvd2S38kSWL//r3s2fQJynLdquODDz7C449PN+zFvvZdVlRUyKHfPyA/KwErKyuWLVtJly66SUG9vKekJLHy8+fQaCUGB7Zn6pJVaDS1N5VUq9W8++6bxMXFYG/vwBtvvGuwSBC0PH777WcARo++D4VCN2F1bSQPuLEirp9kkSRtlW/nCykFZFz528HO0jAJbaXWKQlFmVHMmOXNgBBPoz3iBeu/Zf1LdxrSZq7cC8CxYg+OLF5J7JlwNFoJM3MrQu54lAylGaf2fYNGXUn79h1Ytuw9ojav5bJtMJ8f122PGDt2PFN8JKxHzjHUTz+xrPIIZMGMmaSlpeLu7sG7734gnIsKbjrnr6yGd2pnj511w/1n2CTrxpvlDj5oLBrH8VttKHYPxTb7HFaF8VSW5oJ1w7bqerha4N3OkoTUCvacSqfQoQhzE3P8HH0bqcatk+FeQ4jIi+Joehj3dRyFtVnrsjZtlMB8+j1Q+g/PtX8Lbg6RkTrvrQEBgbXao6j34Kp30ATg6qobGJQVGzteMjExwa/vQ1zcs54dO/7BsUMu/YZPqHYgEhaZhbKyjJPn95Jwfg8VpQUA2Lv50mvEFKztdGYiKrWWxPQiRo1/hvxE3QqTR9D9RJW0w73wFEqVhsuXI3jjjdcoKMjH1dWNN99cTseOPlRUXL5h+6ozLy/9422k0jxDmlSabxhgaDJjql3xri81mbcfikzm4226kDQPPvgwY8eOb5TrCQQNxdTUFCcnZ3Jzc8jOzqy1mXWXLsEkJMRz/vwZgyKufy8M7ezGD+YmpKam8O1bc3m4XSmSyoQL374LwPnS9oQMuwvPPtMoj/6VnJwszv37KessknC08DIoHPrtM8+MDeKd706iVGkIi8xisLaEIYVbuPDtDkN9vCujSP3tQxzszGl36SJzf0sjJrsYAA8bU565dwBB7bVoDnxBOcZWK6mpKbz++iLys1KwtbXj7bdXEBBwdWUQdE5JX3vtFYqLiwgI6MK8+7rUac+iPt74yZPHsbCw4M0338XDo02tzhU0PSkpyZw7dwa5XM6YMQ8Z0q///lVH5MFdV3wWQHGFzgGgRqPh/DfvIJPJMPPpQ8DgEbq/zcxQqVTkFV7dGtKlS1es7JwoLc5jz+Z1hGa1YXBhIeW79gNgIpMo37XakDbGqgR5Yg4HD1ykoEzn66FHRw9mjQhlX/hxNh6+hAQ4t+1Ml+Ez2Hw4i8LLCRz8W1eeb8hwQoeMR5b6S5W2FBUVsWjRiyQmJuDs7MLy5UIJFzQNF66ELevWyeUGOWuBRoV12ikASlwbFkqsrqgtHSh38MG6IA7L1JNUuHZtcJn9uitISK0gOkaDRTczAlxuPydt1xPg2Jk2Nu6kl2ZyPOMUQ9sPau4q1YkGKeJKpZKlS5fy559/IkmSkWn6hx9+yP3338+yZcuER9ibQFSUTjmtraMf/byIft8aYFhJLy3MpqSkxMjcrGPnIGTKR7hw6GfyE09wcHMUbh17sM8hC1tbW8rLy0lNTebY7iPkpEUhaXVm6S4urgwZ9TBK2wCeHXc1nMC8T/ZQEPE7+YkXkclkBA+eSIfAATwzNojyXfsxSYnhlVfeQalU4uPTiTfffBcXF91H37L/jUP7XB+7u7oV72vTynetrlEJr6vZe03XPyLrzMf//IZW0q0UTp8+W0xQCVoU7dp5kpubQ3JyUq3fJT179mbbtr84ceIYs2c/h0wmMygoii6Defjeu/n6963suJzG6A6eHHJ7wqBgH/zjIr0D3Njh7cuzcz/nhdfeJD3uLH/++RtyuSkJWUnceedw1KqrE4aOCkscFZZXvKLb82flUD54XGdVIkkSMT+v4JTSjZ0bt5OWprPKsrS0xK3zEFYOs8H+7rnVtuPkyRO8997blJSUYGXryPvvf1hly0hubg6LFr1AVlYm7dq15+23l2N55qc63eNvv93Azp3bddtwFi4VztlaOHv27AR0/dzNzb1O5wYMHgGDdZ74S0pK4A/dVoaASS9XGQc5ODiSnZ2FurLYkCaXyxl1z8P8uWk9R8+cIHbC+/yZpmTxCJ0FSPK6Z2g/4ll2/XSMmOJkvt2/h8ork82urm7c0cGFB194mw8/XMnJk7rJ+g5dBvHZe68jk8lYv/4zDkbrtow99tjjPPbY48hkMspTjdtR4dGV1xe+SHR0FI6OTqxY8QFt2rSt070QCOqDWqMlPFEXpjbEt+H7fa2yLiBXl6M2t6NC4dXg8upKsVso1gVxWGRcQKYsBRPrBpXXoZ0lbi6mZOWoUWd2IDj49vueROXHVkkLcOxMemkmu5L209bG44Zj7S6unW9W9epMgxTx//u//+OPP/5g0qRJTJ48GS8vL2QyGYmJiXz//ff89NNP2Nvb89prrzVWfQVXiIvTdURf39p1JgsLnclneXm50X41G3tXSguzWfH577T1CQWurm55dx2Mla0j5w5soqS4gJLze3jv/J5qy1c4taVD18Ese+lJzM3NWfPHRcN1SgqziD+0HmVJFjK5Kf16DGGoXSpS8maOrv2F6JhzXA4vACCgrQuD+w0jPkfCpREmQ2viv5TtuqySm9fghX3LqWi+3qdbZRg1ajTPPfdCnb0rCwQ3Gx8fH86fP0tMTDQjRtxVq3N69OiJmZk5GRnpREVFGimWqrgT3N3Bgl3OCpJzC1hzsJLxd/xpWNHzqvAgLNKNvOJK/rcvBd++j1Fp0xUp6wj5mfHs27ebfft2g0yOma0Hj5z5FcnMHlNzG44f3oO7tpxU1UHmLNxHSWEmZfkpFBfmG65vbW1Dm079eHvhM/y0Pw1z0/1V6q/RaPjpp+/53/++Q5IkAgK6cP+jz1dRwjMzM1i06EXS09OumOX+Hw4ODpgFDkBVpdTq+f33zWza9D8A5s59gX79BtTyTEFzcfSozoy1oaElr1W8lUol5ubmhm+iUqVBMncAssjPSjWE/HRSWNKzz52kx5/nxImjLHhlHsGebmyIcUIuk6EpTOP0lHEk5hagn1M3t7TFt9twOgYNweT8Vzw160lKiguRm5gRPOgRsvBhze/nObPnWzISdCHWZs+eY7Taf+33sKSkhDe+2HRFCXfk//7vI9q1a3oFRnB7Ep1cQKVSg8LGHC8PuwaXZ52qs1Qsde5yU0OW1USlnSdKazfMy7KwTjpCUccRDSpPJpPh1jGfrBw7tFneKEwdb3zSbUCAU2cOpx2noLKQpOJUOig8m7tKtaZBivhff/3FmDFjWLp0qVG6j48Pr7/+OiUlJfz1119CEW9ktFotKSk6j+fVOf2qzoTO3t4B0MWxvna/mkXuMH75ZRPFqWfBJ5T8ogrCIrMMocmUUlt87pxHiGshR48fQ2FaSllZKZaWlphaOqC2cKPSvD0Wdm7kFFeyYVsUoHO2EZtaSBeHTD797kOU5WVYWCtYv+ZT2rXryKe/nEejVlIe9w97ryjhY8Y8yMyZz9TKaVRDaSyTdPNOfQwxVkG3F/Tzz9ewZZ/O2/uYMQ/x1FPPCCVc0CLRmWH/Rnj4hSrHajLFvZBQjFuHYFJjTvHvv9uMFHG9Zcgrvnczf/6znMwop+AyTO33MGGRWcTmFuIbmWWI2y0Btm6dGHrXHcTFRpEcdYLMxIuUl+ShKk5DVZxmdG29u6vCa9LMTOSEdO/J4MF3MmTIUL7+NxZHRyfA+FzQKdfvv7+cixd1Csk999zPrFlzqqxWxsfHsWTJAnJzc/DwaMPy5R8YVkdtAweQn1/63zcW2LXrX0Poxscfn85dd917w3MEzUtxcREJCfEA9OzZsG+EmZkZcpkMrSRx/GIKlzPUhmOlFWoc3TuSkxqFqjDBkK63HAlZuIQ5Ly8mLfY055IzOZdc1VlV585+aOyD8A8ZSG5eIef2/0RqjG4V3M6xDT2GP4HCuS1mGZnEHvqCjIRITE3N6HbnZCMlHK5+D0tKSli8+GWioiJRKOxZu3Ytzs5tjL5xAsHNRB+2LLijbvKpIcgrCrDI1VmPljo308qxTEaJRw+c4rZjnXiQog53grz+qpdW0pJpdg6ZRSjaShvORpTQJ0TRePVtpZibmBPo5Me5nEucz7l4+yjiarWabt1q3nMRGhrK3r17a13e/v37+eKLL4iJiaGkpAR3d3dGjBjBnDlzsLO7OjO2Z88ePv74Y+Lj42nbti1PPfUUDz1k/GFRKpV89NFH/PXXX5SWlhIaGsqSJUvw8fExyhcbG8uyZcs4c+YMNjY2jBkzhnnz5rVoc/q8vFwqKyuRy+XV7jWsbgDt7q4bRKanGw9O77rrXn755Weiwk9zx6gHiU3VDY7NTOWGwTLA0UoFKvcRaO0saGNngX6HpJPC0uDZVe9ZHWBQFwe+/2YtabGnAfDqGEDAoMkEBQWRn19KZ3c5X675mMKcZEzkMroMeJjZs59unBtE9Sve9TE5rwt5eXmsWPEWF66EXJs27SkefniiMEcXtFi6ddNZwcTERFNQUICDg4PhWE2KeFhkFl6BA0mNOcWePTuZOvVJHByMZ+U7derM3Lkv8OGH7xFzdhffAQF97teFQSyqwMxUTmxqoSHyQl5xJQ5uHXBw68C06c9wICyCguwkAj0kdh65BNoKtGoVZZUaNJjSxt0Na4UL9s6eBCsqaddrKABf/xtLbGqhIYyil7cHSX9cRJK0yPIvsOvv/1FeXoaVlRVz5sxn2LCRVdp3+vRJ3nnnDcrKSunQwZtly1YatsnUlsOHD/LRRysBnTOsCRMeq9P5guYhOVk3wW3v6MKPe5OBZMOxk5FZRg5Kewe40T+oZudLMpkMSwsLyioq6NzWiuH9OhhWxB3tLHB2DiH69L+U5VymsqyIzDw1L64+jJOdBY4KSyTPe/F270l24jlkqkLMTGV0MsmhosMwys3aEeDnQ05+Ce3kMezc9g1qZTkg46GHHmHqVJ1lWmRkOIu+X0VFWSF2dgqWLn2bctPq61xcXMzixa8QFRWJnZ2ClSs/pFOnTrWadBIIGgt92LLgRjBLt04LQ4ZEpaMvakuHBpdXX8qc/HFIOYRJZRFWGWcpb9vrxifVQFxhAiXqEqw8UyiL9SfsfBE9u9phYiLGmSGuXTmXc4n4wiSKlMUozBtuUdEUNEgRHzRoEIcOHWLSpOr38B48eJCBA2vvIbqgoICQkBCmTJmCg4MD0dHRrFq1iujoaL766isATp48yZw5cxg/fjyvvvoqx44d47XXXsPGxoa7777bUNayZcvYtm0bCxcuxN3dnXXr1vHEE0+wdetWg1JfWFjI448/jre3N6tWrSIzM5MVK1ZQUVFRZZW/JZGVpZsdd3FxNcTVvhHe3rr94ImJ8ajVasN5np7t8fTrTUrUCXb8voEuw+cw9+GehgFHbGohvu3seWZskMFTq36Arv/32sHJrPsD2bHjH9b+3xcUFRUhl8uZOHEykyZN5Yu/daEWTp4MY8PHb1FUVIRCoeDFu7pz0mkwjUlNHs9vFmFhx/nww/coKMjHysqKl156lQEDWpfDCMHth4uLCz4+vsTFxXL8+BHuuuueWp3n3KYTfn4BREVFsnnzT8ycWTVywMiRdxO153f+PhtFzNldmGkK8eqs83iuf5dc65TtWk5ezsZa4cJjY4MotLlo5MQNqJJfj/59pC/7vrHDiIwMZ926NVy+rHv/dOnSlRdfXETbtu2MzpUkia1b/2Tt2lVotVqCgkJYuvRtQ6SJ2hIWdpwVK95Cq9UycuTdzJz5tJiMayWUl+siiDg5KKr0sWu9l9cWe0cnytLTKCrSee/XW6Ot+eMiT48ZQNalv7l8OQJ59hECve82Kv+d707y2tRhvLi6Ax88qxtHHVv3Jv1mP82qX87gbR7Hrm3fcLREtzWjU6fOaDyGM2PGBCRJYvWXP7D9j29Rq9V4eXXg9dffqdLn9RQVFbJ48StER0ehUChYvvwDfH0bHm5JIKgLuYVXw5Z17Vg756E1IknYpOocJ5a1u3ljv1ohN6GiXQ+s4w9gm7if8jY9620mfzZb9w3s4e/A2XQTiks1XIouJSRAhBR0snSkvW07kktSuZATzsC2fZu7SrWiTop4QUGB0e/nn3+eefPmMWfOHB577DG8vHT7iBITE/nxxx9JS0vjo48+qnX5Y8YYx3/r27cv5ubmLFmyhMzMTNzd3Vm7di0hISG89dZbAPTr14/k5GQ+/fRTgyKekZHBL7/8wuuvv8748Tov1cHBwQwdOpSNGzcyc+ZMADZu3EhpaSmfffaZYSVIo9Hw5ptvMmvWLMMqcksjO1tnoKn3el4b2rb1RKFQUFRURGRkBEFBVx2pTZo8gy8+iiExMYGCreuQpKdIytZ5Wc8vrjSsMMWmFhIWmcW/J5J0Zqaphew4kURsWhEOtmYUZ0Ty6OZ3Kc5LB8DOqS1vL12Cv78ujF1PPxfWrVvHl19+iSRJtPHsyPJl7+JUmoRMWfu2tCSKiopYv34NO3b8A4C3tw+vvfY6np5iT52gdTBo0B3ExcWyZ8/OGhXxa/1K6C1gvHyHQlQkv//xG3mmfgzrH1JlBb1Dt1HMHzqWVas+IuJCGCaXw9nWrhCt5qp8OF1jSXMt+rKqi9RQU93g6srlhYsXeeLfz8lM0Jndm1tY8sTj03nggXFVtr8olUrWrv2U7du3AjBs2Eief/6lOltGnTp1grffXoJarWbIkDt5/vmXxLaUVoRuSwNkZmYa9nU3rDxH0tPTCLsYZ/TNBd1kk7PfKLgcwfbtW1H46jwP5BdVkFdcSVGpkjV/XCS/uNIwAVVe4MSPry4nMfwI2yp13tadnV3wDBrFOy8/ySvrjlFaWsKqVR+xf7/On0uXkD68/frrWFtX7ySqoCCfV199ifj4OOztHVi+/AM6dvSpNq9AcDO5cE3YMhvLhnkCNy+Ix7QsB62JOeXu3aAw48Yn3UQq23THKvEo5kUpmOfHoXSqe8ix7LIcUkvSkSGju3tXzILV7D1ewPFzhQT724gJX3Sr4sklqVzKjaSvR09MG7ANoKmoUw379etX5UFLkkRUVBS7d++ukg5w3333ER4eXu8K6hVklUqFUqnk+PHjvPTSS0Z57rnnHv7++29SUlLw9PTk0KFDaLVaoxVyBwcHBg4cyIEDBwyK+IEDB+jfv7+ROebo0aN5/fXXOXz4MA8++GC9630z0U+I6AcNNQ1E9ehn4Xv06M2+fbs5fPiAYVAQFplFRGolXe+YxtG/V1GYGcOeTe/hEngPJvbVxyd3uuLBeM0fF6ksL8FJFU7C4YOUFujqYGZuhV/P0eSaBrA7Qs3uiIuUFedxZs+35GXEAbr4rLNnP3dloOPBzTUab3w0Gg1//vknq1atMjyPMWMeYtq0mUYh4gSCls7w4aP4/vuvOX/+LO99vQs7R53pqv49olcMHO0scFJYGrahuLYNxM2rC1lJ4WRe+IMeU4dWfRclONLL0o3+D8zj+I5vUZZksWrVR5hb2xN9ZgD5cm9c3dsZ3lf6d9W1fixupIhfmzcrK5O4C/uI3LOJhGidvwq5XM7w4aPAfRDjxlW10MrISOfdd98kOvoyMpmMJ56YWa8tJceOHeGdd95ArVbRv/8gXn75tSbxdyFoPDp06Iizswu5uTls3foX48Y1LNyku3sbwsMvcT7C2Mvv1T4+lufToog69Q9FsTvIcCrEr9udWMptKCwsp6Qgk4qcKE4fOERuaiQVRemGMkwt7XHwHoClRyhZkgmvrDtGZnI0j055H1V5AcjkdOn7ABMemVijEp6Tk82rr75EcnISjo6OLF9eNXKAQNBUnL8StizYpxG8pafrQpaVu3dDMm3+MZlkbk15u95YJx/BNnEfefVQxPWr4Z0dfLA1t6F7Fy1HzhSSW6AmOqEcv44N88h+K+Bj3wFbM1tKVCVE58cR6OzX3FW6IXVSxJ999tkmmXHRaDSo1WpiYmJYvXo1w4YNw9PTk5iYGFQqVZV93r6+ug4dFxeHp6cncXFxODs7Y29vXyXfL79cjZcZFxdXZW+5QqHA1dWVuLi4BrfD1LRxVkJMTORG/5aX6/ZsKRR2mJrK6R/kYbRX7bNfzzPnoZAq5YwYMZJ9+3aze/cOnnxyOlZW1tecG8LlEX68tGABFaW5pJ36Ho+2HdDY+tI7sB+DenoS4SrhallEZsI5/ve/UxzZdYjcjFj07lutrW0YO/ZBxo+fgJ2dHZ/9ep5nHwxmx47trPl+FWVlpdjY2DBv3osN9kjbXGi1Wo4ePcy3335FfLyuj3To4M28eS8SFFT1nrd0ru9btxuNJaOtjWufe9u2bejXbwBHjx7Gqvgsc2e+AtT8HvnsV52jszkPhZA55HWeeupJIiIu8d13G5g58+ka3kUhfOrcjkun91IQf5C8vDyiTumsSDTO7rTrEUqnTp0xLa8gPV1JSEdnTExk1X5v+nVxR6WqJC8vl8zMDJKSkoiNjebSpYuGPb4AchNTRgwfwYQJk/Dy6sBnv56v8rwPHNjHhx/+H6WlJdjZKVi0aAm9e9dsxliTvOzatYP331+BRqNh0KAhvPrqUszMbu/Yro1BU8unqamcSZMms2rVx2zYsBY7O1vuvltnJdKvi3uV+tzo/enj48vevbsozEk2OvdaGZk65Qniunny9ddfEhZ2nLCw44Zj+qhi+rgAcrmcnj17gUMQb73wmGGL2ccbT2JVeILwcz8DEh4eHnTuN4mlz47hRHhmtfcxLS2VBQteJCMjHVdXV1au/BhPz6sOjm7lb8Ot3LbWikqtJaKxwpZpNVhl6r5T5W16NLRqjUZpxzuwTj6CZdYlTEqz0djU3vdIuaaMy/kxAHR3021hsTCX06OrHUfPFHH0bCGdva1u+1VxuUxOsEsgR9PDOJdz6dZTxJ977rmbVQ8jhg4dSmambh/04MGD+eCDDwDdnm7QKcvXov+tP15UVGTk3O3afPo8+nzXlwVgb29vlK8+yOUyHB1tGlTG9SgUVgDIZNorv22rvYaZuWmV9EPnUhk5ciiff+5FUlIS27b9yYwZMwzHBnVrR79+Pblr8lKsi8L47bffyEhLBBL5NmoP3153jRPX/G2haItTh548P2sSI/p11pXnZYOyopA33niVI0eOABi2FFz7sa8rJRFHsA1s+hBAFRUV/Pvvv/z444+GSRo7OzumT5/OhAkTWv2gW9+3biduhoy2NvTPfcaMJzl69DA7dmxn1qyZeHp6VvseAd37BcDR0YZLSZYsWbKYRYsW8fPPG/H17WiY3Dx0LhV58mnmr9Ltj80trADbEDz698A8+TyVORcpSI8hLzeTnTu3s3PndqPrmJiYYGtri4WFBTKZDEmSUCqVlJWVoVQqq22PXC7H0aMj0yaN43KhO6/PGmpUb317ioqK+OCDD9i6VWeKHhwczPLly/HwqNn5VnX3TZIkfvjhBz755BNAZ521dOnSWvvuENRMc8nn1KmPkZKSyO+//84HH7xHZWUpTzzxBHcNrNlcu6b3p62bzqosJ/Uy1tam1VpL3T3IFwb5cjHPmdy4o2QmhlNanIuk1WJqZoHMwoF2Xr4M7N+H7q5mDB0/gZc+PYCrq26h4ejRo+z++V0qinWrid5d+tNt8MOciMxn/ZZwIhPyOBOby6BubRnUTbdHPDo6mhdeeI7c3Fw8PT1Zu3YtbdpUdfz6X227FbiV29baiEopoFKlwd7WnPZuDdvvbJEXg4myBI2ZDZVOLSdetMbWnQqXQCxzIrBNOkhhYO2tbi8UnkYjaXCzcsHD+uq22V5BCsLOF5OepSQpvZIObS1vRtVbFUHOgZzIOEVmWRaZZdm4W9fN2WpT0yJHC59//jnl5eXExMSwdu1aZs+ezddff93c1aoTWq1EUVFZo5RlYiJHobCiqKgcjUZLebluEKpUaqr1aKpSqquk7w1LoquXA4899jjLl7/NV199RY8efenY0cdwDACZGU8+OZvx4ydx6NABfvhtJzayQnJzc9Fo1MhNzVHLrHF190Rt4YHaygs3N93g9ejFHDQaE45dTOXi0W3s+OFrNGolZmZmTJ06jYkTJ+HoaGtoR30oOXcQlUfNnvobE7VazcWL59m3by/79u2htFS3J8/a2ppx4x5i+vRpgBklJUqgesWgpXN932oqWoIC3Jgy2tq4/rl7eXWiZ8/enDoVxocffsySJW9W+x4B3fsFID+/lL1hScx5aACPPTaVH3/8jhUrVlBaWsn994+hq5cDKrsUnpn+BGC8kv7Zr07MeWguH/10goG+WiIiwomPjyM1NYWsrEzKysrQaDT/OSFqYmpG2zZtaNfOEx8fX/z9AwkKCiYypZw+Xdw5/nUYb284ash/IiKLt744QmrMKS4e/Z3KsiJkMhkTJkzi8cefxNTU9IYeoq+9b0qlktWrV7Flyx8APPjgw8ya9QzFxZVA5X+W0xpobhltTvmcPXsu5uZWbNr0Pz777DPAlDFjxlXJV9P780R4JiciMolOVmJl60h5ST7PvrqaDoH9AegT6E6fLsY+aNp4tOOdZ3W+b7RaLat/Pc9zD3fnra/DWDpNt3nr7JfLyM+/j+y8Mi5cuMyGDWs5fFgX99zFxRXf3g+y7AWd89zPfj3PrPu7GP4FncxeuHCOJUtepbS0hI4dfVix4n0sLRVV+n5zfRuaglulbc0to43JhWvM0hu6qmuVcQaACvcQkLes7UElHe7AMicC69TjFHUajWR248kglVbFucKTAPRw72Z0f2ysTQj2t+FMeAnHzxYKRRywNrOik4MPl/NjOJd9kVEdht74pGakRSriAQE6516hoaEEBwczZswYdu7cSadOOi+excXFRvn1Hkn1pugKhYKSkpIq5RYVFRmZqysUiiplgW5l/Xqz9vrQ2LE3NRotarUW+ZUXi1KprPYaWqnqtfVpgwcPZefOfzl58gSvv/4a//d/nxjl1/9tbW3LqFH3EFPmZfCUDlW9EuvTwiKzmPVAVw4fPsCeTaspLcoGICgohOeeewEvrw6AzKgd9UGSpJsS01SpVJKTk016eipxcbFERFzi/PmzlJZeHZx4eLTlnnvuY/To+3FwUKBQ2JCfX3pLxFhtyDNpzdyObb6Wa5/7k08+xZkzpzhwYB8nTpxAK1nW+H7pHeCGWq01vC8ee+wJSkpK+PPP3/j00w9JSUlm2rSnUKq0Ru8WwOi8onLo0aMPPXoYm4NXVJRTXFxMWVkZKpUSrVZCJgMzM3OsrKywtbXjmx1xPDsu+Prq0cPPFrVai4OdBbPH6Ez4JEkiIymCy/s2c/lyJKCLGDF//it06RJkqFdtKSoq4u233+DUqTBkMhkzZz7NuHEPo9XqlChB49Cc8vnEEzMxMzPnhx++Yd26zwgKCqFDh+r9plz//uzh50oPP1fW/HGRARMnsmHDWhLP/8PLTz2Ek5MTYZFZVdrW018nU/poJJJMbujH+rwSkJaWTtr5P5nxz2k0Gg1yuZwOXYfw/hsv882OuCrf8mu/70eOHOK9995GqVTStWswb7zxLra2tv95n2/lb8Ot3LbWhn5/eEhD94dr1Qaz9DKP0IZWq9GpdPZDZdsGs5J0bFKOUdLxxkpiRPF5KrTlKMzt6OxQ1TKnbzcFZyNKiEuuIDNHibtLyw2/3FR0cw3icn4MUfmxDG7XDyvTlmv90iIV8Wvx9/fHzMyMpKQkhg0bhpmZGXFxcQwefDXcld5UWL933MfHh5ycnCoKdVxcnNH+ch8fnyp7wYuLi8nOzq6yD70lYW2tmwW9Vkm8lupi/+qRyWS8+OIi5s17mvT0NF5++Xn8Bz0BBFV7rv73tYq4/ndsqm61SpK0HD58iAO/rqQwRxd31dbOnpH3PcbMKeObZc+KUqkkPT2N9PRUMjMzyMnJoaAgn6KiIsrKSqmoKKeyspKKigpKS0spK6v+XioU9vTrN4A77xxOt26hwgOy4JbFx6cT998/lj///I1PPnmfGfNXVJvvWudoemQyGbNmzcHW1o4ff/yW337bzIUL5xnlZc9/7dCTaki3tLTC0vK/P5zXv1eqc1r58aYTpMWeJjH8EEW5qVfKtuSRRx7joYceqZdX7JSUFJ5/fh6JiQlYWFjy8suvMnBg44ZfFLQMJk2aSlTUZU6cOMqGDet5++3qZeK/uP/+sWz69Q/y89N5883XWLbsPYOyfS3Xfluvd1AIEB19mU3HLnJ282NoNBrdsd59mT59FlnlNlhbWxsmxfXf5zV/XDQ4XYy7sI9LR34DJPr2HcDChUuwtBSrZ4LmJyu/jIy8MkzkMrp4NyxsmUXuZeTqcjTmdvXyTH7Tkcko6XAHjpc2YpN0gJIOQ/5z1V4raTlToNsM2sMtBLms6hjUQWFGoK814TFlHDtbyJgRLdsUuynwsHbDzcqFrPIcLuVeppd79+auUo20eEX83LlzqFQqPD09MTc3p2/fvvz77788/vjjhjzbtm3D19fXsPd40KBByOVyduzYwcMPPwzoVrkPHTrEM89cjXc7ZMgQ1q1bZ7RXfPv27cjl8jrFP29qnJx0L6rc3Jxqj1/7MdZzrSf1/KIKPPtMo2jfep2y+utK0hPO4xN8J6ZmFoYyrv23umscOhNLSnQYR48fIz9b583VxNQcq7Z9GTz8AdTmlqz981K1A/faooo7gTouzPBbHRdG+a7VgG6Vq7RSRY5tBzJxICUlicTEBBIS4khLS63zypS5uTnu7m3o0MEbPz9/goO70bmzv/B8LLhtePzxGRw/fpSMjHSO7/ofg7otMlJ49e8V/bvl+ggNwzp40u6B/qz+9yTR0ZeJiYbIzGkM69KRHpUSl7Q+rPnjGo/sV0Iz1eYdUZvoEDPu8SM+PpaLFy+gjt3L7sMxqNU6U3oTU3Puu/d+HnlkkuEdWlfOnz/HW28tobCwEGdnF15/fRmdO/vXqyxBy0c3wfQsYWHHOHnyOOnpabRp07bG/NX1UQC3bo9QcfQLoqIimTv3aTr0GIskdf3PSWrHvAvsXvUT4anZrElIJ6PwqpVfB2d7hgZ0hHbd2XqmlN4Busn5a7/besu1z349h5S6i0tH/gTgnnvu55lnnhffNUGL4UJcHqALW2Zt2TC1xDrjLADlHt2hGqW1JVDWpgeK6L8xrSjAKvM85W1qXrmPKYmkSF2ApdyKLs41f2v6drcnPKaMyLgyhhSqcLRv3X6LGopMJiPEtSu7kvZzPudSjZMYLYEWpYjPmTOHoKAg/P39sbS0JDIyki+//BJ/f39GjBgBwNNPP83UqVN54403GD16NMePH+fvv/82ilfu4eHB+PHjWblyJXK5HHd3d9avX4+dnR0TJ0405Js4cSLff/89zz77LLNmzSIzM5OVK1cyceLEFhtDHMDDQ+dUJS0ttcY81w9s9R/laymY1If/+793OH36JJfD/iY1Yj9Dh47AxGsApaU22NgY7z9Sq5RERISjTD/OwoVfceHCOYOya2puxYNjxzFu3MP8b19KlWvVBZVKRWJiAikpSWRlZVFYKKOkpITy8jJKkiuoiIygsLCAvLxcKioqaizHysqatm3b4eHhgYuLG05OzigUCqytra+suFliYWGJjY0N9vb22Nra3fYeJwW3N1ZWVrz44iIWLJjH7t076do1hNGj7zMcv/F7JYiAwSMIeSSH9es/4+DB/ey+mMDuiwn4dA4iKNSPh/q7IEmSYXtLbd8VvQPc6NHZmcLCQvLz88hMysbbvJSsrAxSU1P56t8kkpOTDKuFery9OzJixN24ePfijp71t3T699+trFr1ERqNBj8/f5YseRsXF7HycKvTtm07unUL5ezZ0xw+fJDx4yfUmLcm+QiLdMNtYjeWLl1ERkYaGdvW8GzEdnr37oeXVwfs7BRIkkRJSTFRp87zbvgvnLtwkaKCXENZpqZmBLV15vH5S9gTqWXCDeSmd4AbBQX5HNu2mty0aGQyGdOmzWT8+LqH5hMIbib6+OEN9pauUWGZeQG4ooi3VEzMKG0/EEXsv9gm7rsyaVBVJiVJ4nTBMQC62ffCTF6zcu3ubI5Pe0vikis4cb6IuwY3PARca8ffsROHUo9TrCwhvjARX4fqtxY1Ny1KEQ8JCWHbtm18/vnnSJJEu3btePjhh5k+fbrBhLBXr16sWrWKjz/+mF9++YW2bduybNkyRo8ebVTW4sWLsbGx4YMPPqC0tJQePXrw9ddfG3lTt7e359tvv+Xtt9/m2WefxcbGhvHjxzN//vwmbXdd8fLyBnQxQIuKClEo6ref3cHBgWXLVvLa+9+QEbGL9PQ0tmz5nS1bfgfAzMIWmanOdE2tLEOrKuOf68rw8wtg1KjRxJa1Y9rDPa+kptS5LgUFBRw6tI8jRw5x6dKFGr0i68i8rh2OtG3bjvbtvfDy6kCHDt54e/vg5NRwpx8Cwe1GUFAwU6c+yTffbGDNmk/w9GxPcHDtHCReuyLo0GU8U9SF/JuqIispnLjoi8RFX+Svnz/H1MKWY1vbUaqxJuK4i847tNyEdi5WuNmbU1FRTmlpKcXFxRQVFVJYWEBhYQHFxcVI0lWD9hPV1EGhUBAQ0JUSEw/mPzkWT0+vBt0PjUbDV1+t57ffNgMwcuRI5s59CVNTsQ/vdqFPn/6cPXuac+fO/Kci/l9sPVNKj3te5PKpbcRfPEh8fJwhBOb1XL7yr1xuinenQO4ZNYLBg+8g8ffVBAR0YU/kxWrPuxYbbRZz5rxJbm4OVlbWvPzyIvr3H1SvugsENwulSmMIWxbcQEXcMicSuaYStaUDSgfvRqjdzaO0/UDs4vdgXpiEeX5ctWb0yeUJZCszMZWZEWzfA6h54QmgX3d74pIrOH+5hEE9HbCxvr2tXkzlpgS5BHAy8yxnsy8KRbw2PPXUUzz11FM3zDd8+HCGD//vONTm5uYsWLCABQsW/Gc+X19fvvnmm7pUs9mxtbXF07M9KSnJXLp0oUEfV5lMhmfn3rz9wlROnQrj0KH9nDt3hqysTFSVJVBp7PTOwcERP78AuncPpW/fAbRtqwuHcq05Xl2IiAjn999/5siRQ0YrWba2dnTo4I2HhwcODk7Y2NhibW2FafwxHHo/gL29PY6OTjg7u4h9bgJBI/PII5OIjY3m4MH9vPXWEt5//5MaHVVdy/UrghcKXZm09FUyMtLZt283x48fJSoqEnVlCTmpOnUjJuPq+RG1qJtcLsfe3h6N3IYAX0/c3T3w8GiDp2d7vL19cHV1QyaTERaZhadn/bbE6CktLWXlync4cULnfX3q1Gk899wzFBSUCSdPtxH+/joHsomJ8fU630guJvTm443H6eqcT0TEJdLSUiktLUEmk2NjY0NumRkjB+m2RQUEdKnz902j0bB58098//3XaLVaXNza8s7b715xmCoQtCwikwpQqbU4KSxo59IwL/B6b+nl7t1brFm6Hq2FHWVte2GTchTbhD3kVaOI61fDuyq6YWVizY0U8fZtLGjrZk5alpKwC0Xc2dfxZlS9VRHs0oVTmedIKUkjpzwPF6uG+SC4GbQoRVxQe0JDe5GSkszRo4drpYj/1/7L3gFumJiY0KdPP/r06QfondZlGhzC/X0iHSsbR+ZN7HvD8muzH/zChXN8991XXLx43pDWubMfQ4YMpU+f/rRv71XtarYqrj1mPn2qpNcHVdyJRitLILiV0Dt1zMnJISLiEq+++jIrV35Mu3aeRvluJOulcp0FkodHGyZOnMzEiZOpqChn675T2MmL2XbwEgHtLKioqECj0SCTyTA313lGt7a2xc7OFoXCHoXCHgcHRxwcHLCzU2BiYlKtw6u61O1GpKWl8uabr5GUlIi5uTkvvLCA4cNHCCub2xBPz/YAZGdnUVlZWW088OqoqQ+aW9owcmRfRo68u8qxNX9c5OEazM7136uayk1JSeaDD1YQGRkOwJ13DuO5517E2tq6VvUVCJqaxgpbJtMoscy+BLRws/RrKPYeinXKMayywzEtyUBt62E4llGRSnJ5AjJkdLev3ThVJpPRL9Se3/7N5tTFYnqHKLCxur1XxRXmdvg6eBNTEM+57IsM9xrS3FWqglDEWymDBg1hy5bfOXToAM88M/eGHobrOmC1s7MzMuM/GFt7Yf6va12+fJkPPviQ06dPAWBqasrQoSMYO/YhfHw63bDsxlSc1XFhQhEXCGrAwsKCN998l1demU9CQhwLFszn3XffN1pZu5Gya6OtGh7S0tKKh+7WTR7GlLVndj39STRU0f4vjh49xAcfrKC0tBQnJ2eWLl1mWBUV3H7Y2SmwsrKmvLyMzMyMWq8uN3YfDRg8otpylUolmzf/xKZNP6JSqbC2tuHJwYHc8/xiMXEkaLFIksT5OJ3T4YaGLbPIDkeuUaK2ckJl37DtSE2FxsaVCrdgrLLOY5uwl4KgRw3HTuQfAiDALhiFmW77aWLaf6+IA5ibyXCyNyWvUM2/B3PpGaQwOn47xhnv5hJETEE8kfnRDGzbF0vT2k2kNhUt23ZDUCNBQSG0bduO8vIytm/fetOv1xDP56Dbz/7ee+/w2GOPcfr0KUxNTbn33gf46qv/8cILC2qlhAsEgqbFzk7B8uXv06GDN7m5Obz88lzDalttcLL774/+zVSm60NFRQVr1nzKW28tobS0lC5duvLpp+uEEn6bI5PJDN7S/8tJam1pLEsOSZI4fPgAs2ZN44cfvkGlUtGjRy/WrfuKYUHeQgkXtGgy88vJLqjARC4j0LthZtRWRt7SW0+/L74SR9w67RTyCl1I4IyKNBLL4pAho7fjgDqVJ5PJ6BZoC0BMQjklZZobnHHr0862DS6WTqi1asLzLt/4hCZGKOKtFLlczkMPPQLApk3/qzGmeGNRX0W8oqKCH374hhkzprJr1w4Ahg4dzhdffMecOfNxdRVehwWCloyDgyPvvfcxnTv7U1RUxIIF89m/f0+tznVS/PfMc0tSxE+dOsEzz0w3OKt88MGHWbHiI5ydXZq5ZoKWgH4VvCYHa3WhoYq4JEmcPXua+fOfZdmy18nISMPZ2YUFC5awbNlKXF1bjlwJBDVxNlq3Gu7X3gFL8/ob6MrUlVhm6yaIW4tZuh6VgzeVDh2RSRpsE/cDEHZlNdzfLgh7s7pPUHi4WuDhYo5WgguXS258wi2OTCajm6vO8u5c9kW0Usvy7yJM01sxI0eO5rfffiE1NZkNG9by/PMvNXeVDEiSxL59u/n66y/IztY5cuvSJYiFC1+hTZsOzeLo6L9ikgOY+vQWpuoCQTXY29vz3nsfsWLFW5w4cYwVK94mKiqSJ56YiZnZ1ZAqrVHGLl+O4IcfvuHkSZ0PdmdnF+bPf5mePVtWPQXNS0BAIPv27ebs2VM8+ujkZqmDJEmcOXOK//3vOy5d0oVpsrCwZMzQAYzprMBKHUHFbp3Lw9Yge4Lbm7PR2QCEdm7YZKdlTjhyrQq1lQsqO88bn9DCKPYZjsXpDdgkHya+TRcSymJ1q+EOdVsNv5aQQFsyDuaRkFJBoK81DorbO664v1MnDqcdp0hZTFxhIkFuNcdkb2qEIt6KMTMzY+7cF1iwYD7bt2+lS5egap2/NDUREZf4/PM1BhNWNzd3ZsyYzZ13DsXJyZb8/Ju7el8TZj59jAYi5btWYzXi2Wapi0DQ2rCysmLp0mV8++2XbN78E7/9tplLly7w0kuvGpxZtRYZKy0t5fDhA/z771bCw3UOfkxMTLj//nFMnvwENjYN894ruPXo128g69Z9xoUL54iPj6Njx/rHpK8rGo2GQ4f28+uvm4iOjgJ0ccVHj76PiRMn4+RU1RNwS5U9gQCgqExJdKrOFLt7AxXx1mKWrs5JQqutughVJrOh0todi7JMNJc3gxN0NuuAXXExGq7xs2JRe2Xa2cGM9m0sSE6v5Ex4CXf2dbitt6qYyc0IdulCWOYZTmed44HOo5q7SgaEIt7KCQnpzqRJU/nf/77jk0/ex9bWttlihaampvDNNxs4dEhnXmNpackjjzzGgw8+jIWFxW39EhAIbgVMTEx48smnCAzswocfvsfly5E8++wMJk9+gnHjHsbUtGV+UiorK4mNjebixfOcPXuaCxfOo1arAF2bhg0bycSJkw3hGAWC63F392DQoDs4dGg/H364gpUrP8HO7uZO2JSWlvLvv1vZsuUPMjLSAZ0Txbvvvo/x4yfg4iK2dglaJ+dicpAk8HK3xcX+v50N/xc6s3SdFUhrM0s3IJNR1LYvrjF/0SU/G1t7F3rZ1c+J6bV0C7QlNaOSjGwl6VlK2rq3LCdlTU031yBOZ50jvTST2IIEejl2be4qAUIRvyV47LHHSU9PY+/eXSxb9jrPPvs8o0ff32SKb1ZWJj/99D07dvyDVqtFJpMxatRopk59EienhnnCFAgELY/+/QexZo0fH320kjNnTvHVV5+za9e/zJjxNL169Wm2STelUklaWipJSQkkJyeRlJRo+FujMXZa0759B4YPH8nIkXeL95SgVsyc+TTnz58lJiaal16ay5Ilb+Do2PiO/BITE9i69U927dpBeXkZAAqFggceeJB77x2Dg4NDo19TIGhK9PvDQzs3bDLJMvsSMq0KtbUrKru2jVG1ZqHcviPZFla4VpYztkCOwllx45NugJ2NKX4+1kTGlnH6UjEeruaNUNPWi42ZNQFOflzKjWRHwj56dRSKuKCRkMvlvPjiQuRyGbt372TVqo+4cOE8zzwzFzu7hgtzTaSmpvDLLxvZtetf1Go1AH369OOJJ2Y2qdlefTH16d3cVRAIWi2urm68887/sWvXv2zYsI6kpESWLl1IUFAIjz46hdDQnjdVxoqLi4iICCc6+jLx8XEkJsaTlpZarekf6JzOBQZ2pVu37vTo0Zv27VtHiBtBy8HNzZ233lrB668vIi4uhqeeepLHHpvE/fc/iLW13Y0L+A/Kyso4eHAfu3b9y8WL5w3p7dt3YNy48QwdOgJLy9qHHhLfN0FLIDIxv0qaSq3lQpwufriDrXm1eQBMTGTY5ZbXaNINYJl0BIBS+45o8pIaqdZNT7omm4vO5kxPK6dLQTYZFQWoLR0aXG7XzjbEJ5dTXKohOqGcjp71tz64FejhFsKl3EjOZV0irTgTK2ybu0pCEb9VMDEx4cUXF9G+fQe+++4r9u3bzenTYTz22BPcffe9mJs3zkyYVqvl7NnTbN36F0ePHkKSJAC6dQtlypRpdO0a3CjXaQqE4xqBoGHIZDJGjrybfv0GsnHj9/z11x9cvHie1157mY4dfRg9+j7udC1qlAnB7Oxszp07zaVLF7h06QLJydUPuqytbWjf3gsvrw6G/zp29MXFxVVsjxE0GH//AFat+pyPP17J6dMn+eabb9i4cSPDho1kxIi7CQgIrHU/Ky4uIizsOMeOHebEieNUVuriBMvlcvr1G8h9942he/ce9eq34vsmaKkkZBSj1kgobMxxc2iAWbqmEqvCBADKHDs3Uu2aHkmSOFp+jgxrC1JtHGhXWoBD6mFyfO9tcNnmZnJCAmwJO1/MxagSBveyx8rSpBFq3TpxsnSko6ID8UWJ/B25i4c7jW3uKiGT9JqUoFHRaLTk5TWOUzJTUzmOjjbk55fWytt4REQ4n3zyfyQmJgA6L8D33vsAI0bcXa9wYZIkkZiYwKFD+9mzZyfp6WmGY3369OPhhycRFHRjBbyu7WjJ3Cptaa52uLo2bPWoMWhMGW1t3Kznnp2dxa+/bmL79m0GpcLExIRu3ULp1asPQUEhdOzoe8O95CqVisTEBKKiIomMDOfixfNG7x097dq1x98/AB+fTnh7d6RDB2+cnV1umsJ9q8h9bWhuGW3p8ilJEmFhx/jf/77l8uWrsWmdnJwJCemGr29n2rRph4ODAxYWFqhUaoqKCsnMzLjStyOIi4s1Wulr1649I0fexbBho5o9tOet3NdvlbY1t4xmZxffME91q93/HEvkQnwePf1cGd6zZi/nJiYy7OysyI+/XO2KuHVuJC7x21FZOpLedWqLddQml8uxtjanrExZbTsSVKlsK92PCSY8aTYQn4hfkSGR6fcQlYr2hnxpdXDWdi1aSeLfA3kUFKnp0dWOUYOqOnesLfpnUlxcjkbTOtXH1JJ0fon+C1O5KcsGLcLO9ObJUW1kVCjiN4nmVMR119ewfftWfvrpe3JzdXtxZDIZgYFd6dmzN4GBXfHx6YS9vX2Vc5VKJampycTERBMZGc6ZM6eMBsFWVtaMGHEX9977AB06eN/UdrRUbpW2CEW85Q70byY3+7kXFxeze/e/7Nz5L3FxMddd24x27drh6uqOvb0Cc3MLJEmioqKCwsJCsrIyychIq7KnWy6X06mTHyEh3ejaNZjAwKBq3183k1tF7mtDc8toa5BPU1M5Dg7W7N9/mK1b/+bYscOUl5fXqQxv74707dufAQOG0LmzX4ux2riV+/qt0rbmltH6KOJarcSaPy5SVqlmwtBOdPCouQ03UsRdov/CujCOwjZ9KWzXv+4NaCL+SxHXSlp+Lv6HPG0hoRZd6G/VHcfE3dhlX0Bl4UB618kg101c11cRB8jMUbLnaD4yGUx/uA0ujvWzkr0VFHFJktiWsJOYgnjubD+QhzuPuWnXqo2MCtP0WxQTExPuvfcBRo0azYEDe9m+fSsXL54nPPwi4eEXDfmsrW2wt7fH3NwctVpDaWkJBQVVZzBNTc3o2bM3Q4bcSf/+g7Cyur33mQgEgpqxs7Nj7NjxjB07npSUJI4dO8r582eIiLhESUkJiYkJBoudmrC1taVTJz/8/QPp0iWIrl2DsLFp/v1cAsG1yGQyunULpWvXbiiVSi5dukBExCUSExPIzEynsLAIlUqJmZkZtra2uLq64enpRadOnenSJUh4PhfcViRnl1BWqcbS3ARPt/q/z+WqcqyKEgAoc/JrpNo1PdGqRPK0hVjIzAi16AJAQbtBWBXEYVZZgH3acQo9Bzb4Ou4u5nh6WJCSUcnuI/lMuNe9wWW2VmQyGff7juKjU+s5lHqckV534mDRtJP61yIU8VscMzMzhg8fxfDho8jOzuLEiWOcP3+WqKhIMjLSKSsrpays6qqDjY0NHTv64ufnT3BwN0JCQrG2tm6GFggEgtaMp6cX48d7MX78BLRaLVlZmaSmJpOTk01xcTFKpRKZTIaFhQV2dgpcXd1o185T7OkWtDrMzc0JDe1JaGjP5q6KQNAi0a+Q+7V3wERe//e7dd5lZJKWSms3VFatM+qFRtJwokLnmDHUoiuWct0qtWRqQb7XUFxj/0aRcZJy+44oG8EjfPcutqRlVRKfUkFMYhmdOty+Y3p/p04EuPgSmRPLjsR9POJ381bFb4RQxG8jXF3duPfeB7j33gcAqKgoJzs7m6KiQlQqFSYmJtjY2ODk5IK9vb0YBAsEgkZFLpfj4dEGD482zV0VgUAgEDQhGq1EVHIBAAFeDg0qyyZXFzu81DmwgbVqPi5URlGsLcVGZkWwhfGqfrljJ0qdArDJi8QlbhsZXSZBA1dt7WxM6R2s4Pi5InYdyce7nRWmprfnOF8mk/Fw0H28ve8TDqcdZ1SH5lsVF4r4bYylpZUI4SMQCAQCgUAguKkkZRZTrtRgbWGKl1v997ebludiUZaJJJNT5uTfiDW8uWSV5SBpdfuqK6RKTqguABAo96GgvLBK/ly37gSWpGGpLEIR8xeykElI8oZ5PB/Qw55L0aUUFKkJu1BE/9DmM8luboLc/PF18Ca2IIF/E/YywX9ss9RD3ixXFQgEAoFAIBAIBLcFEVfM0v29HJA3wCzdNiccgHJ7b7RmrdO8+qImGjVqHGUKvOXtqs2jlZsR6zkEjcwERWkGPjHboYH+tS3M5dzZ1wGAI6cLKSpRN6i81oxMJuMB37sAOJR2jMzSrGaph1DEBQKBQCAQCAQCwU1BpdYSlVIAQICXY/0L0qqxyb0EQKlzl0aoWdOTry0iXpsKQHeTgP/cBlph6Uhc+zuQkOGaHY533O4GK+NdO9vg6WGBSi2x73hV58y3EwHOnQlyDkQrafk9dluz1EEo4gKBQCAQCAQCgeCmEJVSgFKlxd7GHE9Xm3qXY5MXhYm6ArW5HeUOPo1Yw6ZBkiTOanT7273kbXCR33hSosi2HQltBwDgkXEG3+h/QKp/2D2ZTMaIgbpY4uExZSSlVdS7rFuBcZ3uRS6TcyEnnKj8mBuf0MgIRVwgEAgEAoFAIBDcFC7E5QIQ7OPcIEfAttnnAChxDQZZ61NhErSp5EgFmGBCsEntw67lOfgQ0/meKyvjlwgI/xUTdf0VaA8Xc7oH6sLH7Tych1bbOmOCNwYeNm4MatsPgF+j/0bbgEmO+tD6erFAIBAIBAKBQCBo8RSUVJKUWQJAUEenepdjXpqJRWkmksyEEpegxqpek1EuVXBOcxmAriadsJZZ1un8HLeuRAWMRSM3w6EggaBzP2BZllvv+tzRxwFLCznZeSrORpTUu5xbgXs6jsDK1JKUkjSOpJ1o0msLRVwgEAgEAoFAIBA0Ohfj8wDw9rBDYWNe73IUGWEAlDl2bpVO2s6oIlBdcdDWWV6/iEX5zp24FPwolRYKrCryCTr/A465UfUqy8rShCG9HQA4EFZAWbmmXuXcCtiZ23KP9wgA/ojdRmFlUZNdWyjiAoFAIBAIBAKBoFFRa7Sci8kBdGbp9cWsLBvr/BgkoKhNr0aqXdMRVZ5AijYTGTJ6mXRF3gCz+jJbdy50m0KRoj2mGiX+kX/iFb8XmbbuinT3QFtcncyoqNRy8GRBvet0K3CH50C87NpRrq5gc9SfTXZdoYgLBAKBQCAQCASCRiUyKZ/SCjW2Vmb4edY/ZrV9+nFAtxqusnJprOo1CWXaCnbmHwXAX+6Ng1zR4DLVZtZEdH2YtHa9AWibdpLAi5swqyyuUzlyuYyRVxy3nQkvISO7ssF1a62YyE2YFPAwcpmcM9kXOJl5tkmuKxRxgUAgEAgEAoFA0GhIksTJyGwAevi5YGJSP5XDrDTz6mp4276NWMObjyRJ7C49Qqm2HIXMli4mvo1XttyEJO87uRwwFrWJBYriVELOfYeiIKFO5Xi1tSTQV2fq/8+B29txW3u7ttzVYSgAGy//Rm553k2/pulNv0Id+Oeff/jrr7+4dOkSRUVFdOjQgSlTpvDQQw8ZeVncvHkzGzZsIC0tjY4dOzJ//nyGDh1qVFZxcTHLly9n165dqFQqBg8ezOLFi3FzczPKd/r0ad577z0iIiJwdnbm0UcfZebMmQ3y6igQCAQCgUAgENyuRCbmk1VQjpmJnG6+9VzF1mpwjN8FQJmTf6tbDT9feZlEVRommNDPrBsmmNS7LLP8jGrTS+R2RHQcjW/Kfqwr8gm8tJl0126kuwTDdbpMIh7VluHvY01sUjmZOUr+PZhHl87Vh5jzaW9V7/q3JC7nxWCnsqK4uByNxnjioZODD21sLpJemsna81/zUKf7MZEbPzc/x8abUGlRK+LffPMNVlZWLFy4kLVr1zJkyBCWLFnC6tWrDXm2bt3KkiVLGD16NF988QXdu3dnzpw5nD171qisefPmcfjwYd544w3ef/994uPjmTlzJmq12pAnMTGR6dOn4+rqyvr163n88cf59NNP+eqrr5qqyQKBQCAQCAQCwS1FfIbOTDrYxwkri/qt+5lG78W8LBOtiQX57Yc0ZvVuOqnqTI5UnAFgqENvHOR2N+1aSnM7Ir3vJtuhEzKgbfY5OiXtqXWIMytLE3p01dXvQlQJRcXqG5xx6yKXybm7w3DM5eakl2ayN+UQknTzrARa1Ir42rVrcXK6Gtqgf//+FBQU8PXXX/PMM88gl8v59NNPuffee5k3bx4A/fr1IyoqitWrV/PFF18AcObMGQ4dOsSXX37JoEGDAOjYsSP33HMPO3bs4J577gHgyy+/xNHRkQ8//BBzc3P69+9PXl4e69atY8qUKZib19+7o0AgEAgEAoFAcDsyrEc7yivU+Hs51Ot8k5IMzC/+BUC+5yC0ZtWv0rZEirWl7Cg9hISEn7k3oTaBJFak39RrSnJTktr2p8TajQ7px7EvTaNL3FbiPIdQau16w/O9PS1JTK0gPVvJ8XNFDB/oiPw2tQ5WWNhxt/dwtsRt51JuJM6WjoS6hdyUa7WoFfFrlXA9gYGBlJSUUFZWRnJyMgkJCYwePdoozz333MPRo0dRKpUAHDhwAIVCwcCBAw15fHx8CAwM5MCBA4a0AwcOMHz4cCOF+5577qGoqIgzZ840dvMEAoFAIBAIBIJbHktzU7p2dMK0HnvD5cpSHE99hUxdSYWiPaWtKG54hbaSv0v2Ui5V4mLiyFCbfk263TXPwZeIjqOpMFdgri7DL2EHrrkRcINVXZlMRu8QBaamMnLyVYRHlzZRjVsmHe29GNSuHwAHUo9yKTfyplynRSni1XHq1Cnc3d2xtbUlLi4O0K1uX4uvry8qlYrk5GQA4uLi6NixY5WO7+PjYyijrKyM9PR0fHx8quSRyWSGfAKBQCAQCAQCgeDmI1eW4HxqPaalWWitHMnzvafKXueWikpSsbV0P/naImxkVoy2GYKZrOmNjyssHYnoOJo8RQfkaPHKPIlPygFMVWX/eZ6NtQm9gnQm6hcvl5KZo2yK6rZYQl2D6e6qmwTalbSf8NzLjX6NFmWafj0nT55k27ZtLFiwAIDCwkIAFApj1//63/rjRUVF2NlV3Ythb2/PxYsXAZ0zt+rKMjc3x8rKylBWQzA1bZx5Dr2nyfp6nGwp3CrtgFunLbdKO+pLY8loa+N2f+71Rdy3pqWly+et3B9E2wTNgXleDI4X/odpRT5aMxsq7piLNq8YtNrmrtoNqdQq+bt0H5maHCxk5txvOxQ7efOZ02tNzIlvN5gSK1c8M0/jWJxEt9NfkdhxKDmuXWqc3OjY3orMXCXxyRUcOV3IqEFO2FjX38lca0YmkzGk3QA0kpYLOeHsTNpHiaqUzg4+jWbl0GIV8YyMDObPn0/fvn2ZOnVqc1enzsjlMhwdG1cAFYpbw1vhrdIOuHXacqu0oy7cDBltbdyOz70xEPft5tOa5PNW7g+ibYKmwKwoGduE/Viln0aGhNrKifzeT2Ft3xbyGn8VsrEp1pbyT+kBcjT5WMjMuM/mTpxMHJq7WiCTke0cSKm1K95pR7GqLKBT9DbcMi+Q1GEwJYp21Z7WK0hBXoGawmI1+47nM3KgE+bmt+fElUwmY6jnIMzlZpzKOsfR9DBUWhWTAx/BTN5wNbpFKuJFRUXMnDkTBwcHVq1ahVyue/j29vaAbjXb1dXVKP+1xxUKBRkZVd38FxYWGvLoV8z1K+N6lEol5eXlhnz1RauVKCr6bxOQ2mJiIkehsKKoqByNpuXPCtbErdIOuHXa0lztaAkD7MaU0dbGrdJ/m5rb6b41t4y2Bvm8lfuDaFvLp7lltDZochOrpMnUFZiV52FWkYt5WTaWRUmYVRYYjpe4BJHffgiyCiUmmfFNWNv6ka7OYnvpIcqlCqxkFtxvOwwXE8fmrpYRZVYuhPvci2tZMp7JR1AUJRN04X/kO/qQ6tmPEru2RivkpqYy7ujrwM5DeRSVaNh/ooA7+jo0XwOaGZlMxqB2/bAzt2N/ymFOZp4lyDmQ3h6hDS67xSniFRUVzJo1i+LiYjZt2mRkYq7fzx0XF2e0tzsuLg4zMzPat29vyHf06FEkSTIyHYiPj8fPzw8Aa2tr2rRpU2UveHx8PJIkVdk7Xh/U6sZ9wWs02kYvszm4VdoBt05bbpV21JXbsc3Xcrs+94Yi7lvT0Fru8a3cH0TbBA3BtCIf89JMzMuzMSvLwaw8F1NVSZV8kkxOmWNnit17oLRxB6Cl7wpXSxrCKi5wtjICCQlnuQOjbYagMLFt7qpVj0xOmmdfclwDaZd8FLfMCzjmx+GYH0eJjTuZbULJdfZHa6pzYG1jZcIdfR3YfTifnHwVe47k097Dkmp2/t42dHPtipu1C/kVBQQ4dW6UMluUnYFarWbevHnExcWxYcMG3N3djY63b98eb29vtm/fbpS+bds2+vfvb/B+PmTIEAoLCzl69KghT3x8POHh4QwZcjUO4ZAhQ9i9ezcqlcqoLIVCQWhow2c5BAKBQCAQCASC2w1V9BHaXvwWl/jtKDJOYVWUaFDC1Wa2lCs6UOTeg2zf+0jpPptcn9EGJbwlI0kSMcokNhZv5UxluC5EmZk3D9qNarlK+DUoLRTEd7qLsz2mk+UWjFZuim1pJr4x2+kZtppOl7fgmBuDTKvBUWHGsAGOWJjLyC9S8+XmNOKSbm9v6m1s3Bnb6R7szBvnWbeoFfE333yTvXv3snDhQkpKSjh79qzhWJcuXTA3N+e5557jpZdewsvLi759+7Jt2zbOnz/PDz/8YMgbGhrKoEGDePXVV1mwYAEWFhZ89NFH+Pv7M2rUKEO+6dOns2XLFl588UUeffRRoqKi+PLLL5k/f76IIS4QCAQCgUAgENQDmZUCtbkCjZkNSmsXVFauun8tnZFMLZq7enWmUqskRpXE+crL5Gt1Dp2tZZYMseqNj3n7Zq5d3am0ciSu890ked+Ba+YF3DLPY1WRj0tOJC45kahNLCh08CbfyQfLPh3Yc6aS4lINX/yURGhXOwb0sMf2NnXi1pjIJOkGgeWakGHDhpGamlrtsd27d+Pp6QnA5s2b+eKLL0hLS6Njx4688MILDB061Ch/cXExy5cvZ+fOnajVagYNGsTixYurrLKfPn2aFStWEBERgZOTE4899hgzZ85ssDc8jUZLXl7jzBqZmspxdLQhP7+0VZtR3SrtgFunLc3VDlfX5rdtakwZbW3cKv23qbmd7ltzy2hrkM9buT+ItrV8mltGs7OLb5jn0umz9S5fLpdjbW1OWZkSbTN4TddKWvI0hWRocoiqiCdTykVCpzKZYoKfiTf+cm9MbxCeTCaXYWlhRkWlCknbYlSuqkgS1hV5OBXG41iUgLm6/OohoMDMhS2a/pzK0e1/NzWREehrTZC/LZ7uFpiYtPTNBFcxMZFhZ2dFcXE5Gk3dn4mfo2+t8tVGRluUIn4rIRTxqtwq7YBbpy1CEW/ZA/2bxa3Sf5ua2+m+NbeMtgb5vJX7g2hby6e5ZbQ2ivjZUyfRSPp7LF35/1W14/q/rv0tk8uxsjSjvEKJ5jpF/FrVpeqZNaUY/1ZLGlSSCqWkQomKSq2SEqmUYm0ZxdpS8jWFqNEYnamQ2dBR7klHeTvMZGY3bD+0IkX8WiQt1uW5OJSkYl+SinVFnuFQjMqNLWU9SdBcdZptLtfS1k6FiwKc7E2xsTbB0sIES0sTzM1NkZmaIJfLkZvIkMlkyGU6B2gyOUjXegMwWgSVGf1TF250iolcho2tJaUlFWhq+0yuKdTfpTPmlpY3PEUo4s2IJEloG1HgTEzkrdq7p55bpR1w67SlOdrREuK3NraMtjZulf7b1Nwu9625ZbS1yOet3B9E21o2zS2jN7p/x1PO8Omxr9DSeu+zucwMDzMXHGV2eJm2wb6ee8DlMjlaqfXeB1NVGdYlWbSxrsQkKwly0klUOnG0shOXVJ6USLdXKEAz1Lw6zovQ/j3/M19tZFQo4gKBQCAQCAQCgUAgEDQhzb8sJRAIBAKBQCAQCAQCwW2EUMQFAoFAIBAIBAKBQCBoQoQiLhAIBAKBQCAQCAQCQRMiFHGBQCAQCAQCgUAgEAiaEKGICwQCgUAgEAgEAoFA0IQIRVwgEAgEAoFAIBAIBIImRCjiAoFAIBAIBAKBQCAQNCFCERcIBAKBQCAQCAQCgaAJEYq4QCAQCAQCgUAgEAgETYhQxAUCgUAgEAgEAoFAIGhChCIuEAgEAoFAIBAIBAJBEyIUcYFAIBAIBAKBQCAQCJoQoYgLBAKBQCAQCAQCgUDQhAhFvIWwf/9+Jk+eTL9+/QgKCmL48OEsX76c4uJio3x79uzhgQceIDg4mLvuuotff/21mWp8Y0pLSxkyZAj+/v5cuHDB6NjmzZu56667CA4O5oEHHmDv3r3NVMvq+e233/D396/y3/vvv2+Ur6W3Q8/vv//O2LFjCQ4Opm/fvsyYMYOKigrD8dbUrwS1IzExkaVLlzJmzBi6dOnCfffdVyXPlClTqu3nsbGxzVDj5ueff/7h6aefZsiQIXTv3p0xY8bwyy+/IEmSUb7WIveCunEjmUlJSalWXvz9/QkODr5hvkceeaSpm2SgMft2cXExr776Kn369CE0NJS5c+eSlZXVVE2pwo3aVlJSwqpVqxg/fjy9evViwIABzJ49m8uXLxuV0xKfW2ulMce0SqWS9957j4EDB9K9e3emTZtGXFxclXyxsbFMmzaN7t27M3DgQFauXIlSqWzUdjV0XFtb2Tl9+jQTJkwgJCSEoUOH8vnnn1eR1brSmOPa5myHnsYY17aEvmXaKKUIGkxBQQEhISFMmTIFBwcHoqOjWbVqFdHR0Xz11VcAnDx5kjlz5jB+/HheffVVjh07xmuvvYaNjQ133313M7egKmvWrEGj0VRJ37p1K0uWLGH27Nn069ePbdu2MWfOHH788Ue6d+/e9BX9DzZs2ICdnZ3ht7u7u+Hv1tKOtWvX8sUXXzB79my6d+9Ofn4+R48eNTyb1tavBLUjOjqa/fv3061bN7RabY0fvx49erBgwQKjNE9Pz6aoYovjm2++oV27dixcuBBHR0eOHDnCkiVLyMjIYM6cOUDrkXtB3bmRzLi5ubFp0yajNEmSmDFjBv369atS3gsvvEDfvn0Nv21sbG5OxWtBY/btefPmERMTwxtvvIGFhQUff/wxM2fO5Ndff8XUtOmHlTdqW1paGps2beKhhx5i3rx5VFZW8tVXXzFhwgR+/fVXfH19jcprSc+ttdKYY9ply5axbds2Fi5ciLu7O+vWreOJJ55g69athvFZYWEhjz/+ON7e3qxatYrMzExWrFhBRUUFS5cubbR2NXRcWxvZSUxMZPr06QwcOJB58+Zx+fJl3n//fUxMTJg+fXqD29AY49rmbkdjjWtbRN+SBC2WTZs2SX5+flJGRoYkSZL05JNPShMmTDDK88ILL0ijR49ujur9JzExMVL37t2ln376SfLz85POnz9vODZq1CjphRdeMMo/YcIEacaMGU1dzRr59ddfJT8/Pyk3N7fGPK2hHbGxsVKXLl2kffv21ZinNfUrQe3RaDSGvxcsWCDde++9VfJMnjxZeuqpp5qyWi2a6uR98eLFUo8ePQz3szXIvaB+1EZmrufYsWOSn5+ftG3bNkNacnKy5OfnJ/3zzz83pZ71obH69unTpyU/Pz/p4MGDhrTY2FjJ399f2rp1602q/X9zo7aVlpZKZWVlRsdLSkqkPn36SG+99ZYhrSU+t1uJ+oxp09PTpcDAQGnjxo2GtPz8fKl79+7S559/bkhbt26d1L17dyk/P9+QtnHjRikwMNBwvYbS0HFtbWVnyZIl0tChQ6XKykpD2gcffCD16tXLKK2uNNa4trnb0Vjj2pbSt4RpegvGwcEBAJVKhVKp5Pjx41VWKO+55x5iY2NJSUlphhrWzLJly5g4cSIdO3Y0Sk9OTiYhIYHRo0cbpd9zzz0cPXq00c2IbhatpR2//fYbnp6e3HHHHdUeb239SlB75HLxeq8rTk5OVdICAwMpKSmhrKys1ci9oH7UR2b+/vtvbG1tGTZs2E2oUePRWH37wIEDKBQKBg4caMjj4+NDYGAgBw4cuLmNqIEbtc3a2horKyuj4zY2Nnh5eTWrSf3tRn3GtIcOHUKr1Rrlc3BwYODAgUb97cCBA/Tv399wDYDRo0ej1Wo5fPhwo9S/oePa2srOgQMHGD58OObm5kZlFRUVcebMmUZpS3W0lnY01ri2pfQtMVJrYWg0GiorK7l06RKrV69m2LBheHp6kpSUhEqlwsfHxyi/3qSquj0NzcX27duJiori2WefrXJMX8/rX2S+vr6oVCqSk5ObpI615b777iMwMJDhw4ezfv16g9lLa2nHuXPn8PPzY82aNfTv35+goCAmTpzIuXPnAFpVvxLcHE6cOEH37t0JDg5m8uTJhIWFNXeVWhSnTp3C3d0dW1vbViP3gqZBpVKxY8cORo4ciYWFRZXjb7zxBoGBgfTv35/FixdTUFDQ9JX8D+rTt+Pi4ujYsSMymcwon4+PT4v6XlzbtuooKioiOjq6yrcPWv5za000dEwbFxeHs7Mz9vb2VfJd29/i4uKqlKVQKHB1dW2UftkY49rayE5ZWRnp6elV2uLj44NMJmuUtjR0XNvc7WiscW1L6Vtij3gLY+jQoWRmZgIwePBgPvjgA0C3RwF0D/9a9L/1x5ub8vJyVqxYwfz586v9ALaWdri6uvLcc8/RrVs3ZDIZe/bs4eOPPyYzM5OlS5e2mnZkZ2dz8eJFoqKieP3117GysmLdunU8+eST7Nixo9W0Q3Bz6N27N2PGjMHb25usrCy+/PJLpk2bxvfff09oaGhzV6/ZOXnyJNu2bTPsoRfyIriWAwcOUFBQUMWpm7m5OY8++iiDBg1CoVBw7tw51q1bx8WLF9m8eTNmZmbNVOOr1LdvFxUVGe0v1WNvb8/FixdvZpVrzfVtq47/+7//QyaT8eijjxrSWsNza200dExbU39TKBRG79uioqIqZYGuXzb0vdxY49rayI7emd31ZZmbm2NlZdWgtjTWuLa529FY49qW0LdAKOItjs8//5zy8nJiYmJYu3Yts2fP5uuvv27uatWatWvX4uzszEMPPdTcVWkQgwcPZvDgwYbfgwYNwsLCgm+//ZbZs2c3Y83qhiRJlJWV8cknnxAQEABAt27dGDZsGD/88AODBg1q5hoKmpO5c+ca/b7zzju57777WLNmDV988UUz1aplkJGRwfz58+nbty9Tp05t7uoIWiBbtmzBxcWF/v37G6W7ubnxxhtvGH736dOHzp07M2vWLHbu3Mk999zTxDU15lbu27Vp26+//srPP//MihUr8PDwMKS39OfWGmntY1oQ49qWxq02rhWm6S2MgIAAQkNDefjhh1mzZg3Hjx9n586dBtOJ60M/FBUVAVQxrWgOUlNT+eqrr5g7dy7FxcUUFRVRVlYG6MxUSktLW0U7amL06NFoNBoiIiJaTTsUCgUODg6GlxXo9sB06dKFmJiYVtMOQdNgbW3NHXfcwaVLl5q7Ks1KUVERM2fOxMHBgVWrVhn2Dgt5EegpLS1l7969jB49GhMTkxvmv+OOO7C2tm522Wpo31YoFJSUlFQpt7CwsNn7f01tu5b9+/ezdOlSnnnmGcaNG3fDMlvKc2utNHRMW1N/KyoqMupvCoWiSlnQ8H7ZmOPa2siOfoX2+rKUSiXl5eWNLmP1Gdc2dzsaa1zb3H1Lj1DEWzD+/v6YmZmRlJSEl5cXZmZmVfYj6H9Xt8+pqUlJSUGlUvHUU0/Ru3dvevfubZhlmzp1KtOmTTPUs7p2mJmZ0b59+yavd31oLe3o1KlTjccqKytbRb8SCJqSiooKZs2aRXFxcZUwL61F7gU3n507d1JRUcH999/f3FWpNY3Rt318fIiPj68S2i0+Pr5Zvxf/1TY9Z8+e5fnnn2fs2LE8//zzzVDL25v6jGl9fHzIycmpYgJ8/b7d6nwUFBcXk52d3aB+2Zjj2trIjrW1NW3atKlSlv68myljraUdjTWube6+pUco4i2Yc+fOoVKp8PT0xNzcnL59+/Lvv/8a5dm2bRu+vr4tIu5vYGAg3333ndF/ixYtAuDNN9/k9ddfp3379nh7e7N9+3ajc7dt20b//v2NvCu2NLZt24aJiQldunRpNe0YOnQoBQUFREREGNLy8/O5dOkSXbt2bRX9StB0lJWVsW/fPoKDg5u7Ks2CWq1m3rx5xMXFsWHDBqP4qkCrkXvBzefvv//Gy8uLbt261Sr/3r17KSsrazbZaqy+PWTIEAoLCzl69KghT3x8POHh4QwZMuTmN6QabtQ2gJiYGGbNmkW/fv148803a112cz+3W4n6jGkHDRqEXC5nx44dhjyFhYUcOnTIqL8NGTKEI0eOGFY9QedgTS6XG3n3riuNOa6trewMGTKE3bt3o1KpjMpSKBSN7rulPuPa5m5HY41rm7tv6RF7xFsIc+bMISgoCH9/fywtLYmMjOTLL7/E39+fESNGAPD0008zdepU3njjDUaPHs3x48f5+++/+eijj5q59joUCgV9+/at9ljXrl3p2rUrAM899xwvvfQSXl5e9O3bl23btnH+/Hl++OGHpqzufzJ9+nT69u2Lv78/ALt37+bnn39m6tSpuLq6Aq2jHSNGjCA4OJi5c+cyf/58LCws+PzzzzE3N2fSpElAy+9XgvpRXl7O/v37AZ15XUlJieED26dPH8OgdeTIkbRr146srCy+/vprsrOz+eSTT5qz6s3Gm2++yd69e1m4cCElJSWcPXvWcKxLly6Ym5u3CrkX1I8byYw+TFZeXh5Hjx5l5syZ1ZazYsUKZDIZ3bt3R6FQcP78edavX09QUJDhe97UNFbfDg0NZdCgQbz66qssWLAACwsLPvroI/z9/Rk1alQztOzGbSsuLmb69OlYWFjw+OOPGzmVs7W1NaywtcTn1lpprDGth4cH48ePZ+XKlcjlctzd3Vm/fj12dnZMnDjRkG/ixIl8//33PPvss8yaNYvMzExWrlzJxIkTq52YqS2NOa6trexMnz6dLVu28OKLL/Loo48SFRXFl19+yfz58xs02dtY49rmbkdjjWubu2/pkUnX2xYImoXPP/+cbdu2kZSUhCRJtGvXjpEjRzJ9+nQjL427d+/m448/Jj4+nrZt2/LUU08xfvz4Zqz5f3P8+HGmTp3KL7/8YjSjvHnzZr744gvS0tLo2LEjL7zwAkOHDm3GmhqzbNkyDh48SEZGBlqtFm9vbx5++GGmTJliFLKhpbcDdIPG5cuXs3fvXlQqFb169WLRokVG5j2trV8JbkxKSgrDhw+v9th3332Hh4cHb731FpcvX6agoAArKytCQ0OZM2cOISEhTVzblsGwYcNITU2t9tju3bsNM+mtQe4FdedGMqMfkP/444+89dZbhhWW69m8eTM//fQTiYmJVFRU4O7uzogRI5g7d26N4bRuNo3Zt4uLi1m+fDk7d+5ErVYzaNAgFi9e3CiD0vpwo7alpqbW6LitT58+fP/990DLfG6tlcYc0yqVSj766CP+/PNPSktL6dGjB4sXL64ie7Gxsbz99tucOXMGGxsbxowZ02ClrzoaMq6treycPn2aFStWEBERgZOTE4899hgzZ86sEjKsLjTmuLY52wGNN65tCX1LKOICgUAgEAgEAoFAIBA0IWKPuEAgEAgEAoFAIBAIBE2IUMQFAoFAIBAIBAKBQCBoQoQiLhAIBAKBQCAQCAQCQRMiFHGBQCAQCAQCgUAgEAiaEKGICwQCgUAgEAgEAoFA0IQIRVwgEAgEAoFAIBAIBIImRCjiAoFAIBAIBAKBQCAQNCFCEb/NWLVqFf7+/uTl5f1nvmHDhrFw4ULD7+PHj+Pv78/x48cNaQsXLmTYsGF1un59zmkOfvvtN/z9/blw4UJzV0Vwm9LcsloTU6ZMYcqUKY1SVn3w9/fnrbfearbrC24dzp8/z8SJE+nevTv+/v4888wz+Pv7G+W5Xr5aM80tu7Wltu8+gaA+NFX/upXeHYKbh2lzV0AgaE5+/PFHrKysePDBB5u7KgKB4AqnT5/m8OHDPP744ygUiuaujuAWRKVSMW/ePMzNzVm0aBGWlpZi4rWJWbduHZ06dWLEiBHNXRWBQCBoFoQiLqiW7du3I5PJmrsaN52ffvoJR0dHoYgLWi23oqyeOXOGzz77jHHjxglFXHBTSEpKIjU1lWXLlvHwww8b0q7nVpSvlsL69eu56667hCIuEAhuW4QiLqgWc3Pz5q6CQCCoBUJWBYK6ozdLtbOz+898LV2+1Go1Wq22xddTIBAIBFURe8RvU/Lz83n++efp0aMHffv2ZdmyZVRWVhqON+XeFq1WyzfffMO9995LcHAwAwYMYOnSpRQWFhrlGzZsGLNmzeLkyZOMHz+e4OBghg8fzh9//FGlzMjISCZPnkxISAhDhgxhzZo1/Prrr/j7+5OSkmIoLzo6mhMnTuDv74+/v3+V/XNKpZLly5fTr18/unfvzrPPPlvnfUX6/Ujx8fG89NJL9OzZk379+vHxxx8jSRLp6ek8/fTT9OjRg4EDB/LVV18Zna/f87tt2zY+++wzBg8eTGhoKHPnzqW4uBilUsk777xD//79CQ0NZdGiRSiVyjrVUdByaU5Z3bRpEyNGjCAkJITx48dz8uTJavMplUo+/fRTRo4cSVBQEHfccQcrV66s0g/1+7v/+usv7rrrLoKDg3nwwQcJCwsz5Fm1ahUrV64EYPjw4QbZ1Mutnl27dnHfffcRFBTEvffey4EDB+rUtpSUFPz9/fnyyy/58ccfGT58ON26dePJJ58kPT0dSZJYvXo1Q4YMISQkhKeffpqCggKjMvTvpOPHj/Pggw8SEhLC/fffb9ifv2PHDu6//35DO8PDw+tUR8HNYeHChUyePBmA559/vtp3v57r5UvvPyQsLIylS5fSt29fevTowSuvvFLjN+vQoUOMGTOG4OBg7rnnHnbs2FHlOkVFRbzzzjvccccdBAUFMXLkSD7//HO0Wq0hz7V99ptvvmHEiBEEBwcTGxtb73tRV9mtjdzp5SE4OJgRI0awceNGw3fw2vLKysr4/fffDTJ+/XusuLiYhQsX0qtXL3r27MmiRYsoLy+vU/sWLlxIaGgoaWlpzJo1i9DQUAYPHsyPP/4IwOXLl5k6dSrdu3dn6NChbNmyxeh8/fM+efIky5Yto1+/fvTq1YulS5eiVCopKirilVdeoXfv3vTu3ZuVK1ciSVKd6ihoHm70bVWr1axevZoRI0YQFBTEsGHD+PDDD6vIhiRJrFmzhiFDhtCtWzemTJlCdHS0UZ7k5GT8/f355ptvqtTj9OnT+Pv78/fff9eq3o3x7dq1axdPPfUUgwYNIigoiBEjRrB69Wo0Go1RvoSEBJ577jkGDhxIcHAwQ4YMYf78+RQXFxvyHD58mEcffZRevXoRGhrKXXfdxYcfflirtujRarWsWrWKQYMGGe5hTEzMbbHPXqyI36bMmzePdu3a8eKLL3L27Fm+//57ioqKDAPgpmTp0qX8/vvvPPjgg0yZMoWUlBR+/PFHwsPD+emnnzAzMzPkTUxM5Pnnn2f8+PGMGzeOX3/9lYULF9K1a1c6d+4MQGZmJo8//jgATz31FNbW1mzevLnKisGrr77K22+/jbW1NbNnzwbAxcXFKM+yZctQKBTMmTOH1NRUvv32W9566y0+/vjjOrdz/vz5+Pr68uKLL7J//37Wrl2Lg4MDGzdupF+/frz00kts2bKF9957j+DgYHr37m10/ueff46lpSVPPfUUiYmJ/PDDD5iamiKTySgqKmLOnDmcO3eO3377jXbt2jFnzpw611HQ8mguWd28eTNLly4lNDSUxx9/nOTkZJ5++mns7e1p06aNIZ9Wq+Xpp5/m1KlTPPLII/j6+hIVFcW3335LQkICa9asMSo3LCyMbdu2MWXKFMzNzfnpp5+YMWMGmzdvxs/Pj5EjR5KQkMDff//NokWLcHR0BMDJyclQxqlTp9ixYweTJk3CxsaG77//nrlz57J3715D/tqyZcsWVCoVU6ZMoaCggA0bNjBv3jz69evH8ePHmTlzpkHe3nvvPZYvX250fmJiIi+++CITJ07kgQce4KuvvmL27Nm8+eabfPTRRzz66KOATn7nzZvH9u3bkcvFHHhzMmHCBNzd3Vm3bh1TpkwhODgYFxcXTp8+Xesy3nrrLcO3IT4+np9++om0tDS+//57I1P2hIQE5s+fz8SJEw3frOeff54NGzYwcOBAAMrLy5k8eTKZmZlMnDiRNm3acObMGT788EOys7N57bXXjK7922+/UVlZySOPPIK5uTn29vb1ug91ld3ayF14eDgzZszA1dWV5557Dq1Wy+rVq43kF2DlypUsXryYkJAQHnnkEQC8vLyM8sybNw9PT09eeOEFwsPD2bx5M05OTrz88st1aqdGo2HmzJn06tXL8J196623sLKy4qOPPuL+++9n1KhRbNy4kQULFtC9e3fat29vVMayZctwcXHhueee49y5c2zatAk7OzvOnDlDmzZtmD9/PgcOHODLL7/Ez8+PsWPH1qmOgqbnRt/WxYsX8/vvv3PXXXcxbdo0zp8/z/r164mNjWX16tWGcj755BPWrl3LHXfcwR133MGlS5d48sknUalUhjzt27enR48e/PXXXzzxxBNG9diyZQs2NjYMHz68TvVvyLfr999/x9rammnTpmFtbc2xY8f49NNPKSkpYcGCBYBukm769OkolUomT56Mi4sLmZmZ7Nu3j6KiIuzs7IiOjmbWrFn4+/szd+5czM3NSUxMrNO7FOCDDz5gw4YNDB06lMGDBxMZGcn06dONJkZuWSTBbcWnn34q+fn5SbNnzzZKf+ONNyQ/Pz8pIiJCkiRJGjp0qLRgwQLD8WPHjkl+fn7SsWPHDGkLFiyQhg4dWqfrX39OWFiY5OfnJ/31119G+Q4cOFAlfejQoZKfn58UFhZmSMvNzZWCgoKkFStWGNLefvttyd/fXwoPDzek5efnS3369JH8/Pyk5ORkQ/q9994rTZ48uUo9f/31V8nPz0964oknJK1Wa0h/9913pcDAQKmoqKjWbdbf8yVLlhjS1Gq1NGTIEMnf319av369Ib2wsFAKCQmp9t7fd999klKpNKS/8MILkr+/vzRjxgyj602YMKHOz0XQ8mhOWVUqlVL//v2lMWPGSJWVlYb0TZs2SX5+fkYy88cff0gBAQFGcilJkvTTTz9Jfn5+0qlTpwxpfn5+kp+fn3ThwgVDWmpqqhQcHCw9++yzhrQNGzZUkdVry+jatauUmJhoSIuIiJD8/Pyk77//vtZtTE5Olvz8/KR+/foZyfMHH3wg+fn5SQ888ICkUqkM6S+88ILUtWtXo/uhfyedPn3akHbw4EHJz89PCgkJkVJTUw3pGzdurPJcBM2HXk7++ecfQ5pe5q7levnSfxvGjRtn9D7+4osvJD8/P2nXrl1G5/r5+Un//vuvIa24uFgaOHCgNHbsWEPa6tWrpe7du0vx8fFG137//felwMBAKS0tTZKkq322R48eUm5ubp3bPHny5AbJbm3kbtasWVK3bt2kjIwMQ1pCQoLUpUuXKve2e/fuRvdWj/45LFq0yCj92Weflfr06VOnNi9YsEDy8/OT1q1bZ0jTf2f9/f2lrVu3GtJjY2MlPz8/6dNPPzWk6Z/3k08+aTQWmDBhguTv7y8tXbrUkKb/rlc3phC0HGrzbdX37ddee80oz4oVKyQ/Pz/p6NGjkiTpxqBdu3aVnnrqKaP+8eGHH0p+fn5G/Vv/DYiJiTGkKZVKqW/fvtXKQU00xrervLy8SrlLliyRunXrZsgXHh5e5R15PV9//bXk5+dXr/eRnuzsbKlLly7SM888Y5S+atWqKvfwVkRMy9+mPPbYY0a/9WZ6dTXvbCjbt2/Hzs6OgQMHkpeXZ/iva9euWFtbG4VgAujUqRO9evUy/HZycqJjx44kJycb0g4ePEj37t0JDAw0pDk4OHD//ffXuX6PPPKI0epGr1690Gg0pKam1rms8ePHG/42MTEhKCgISZKM0hUKRZX26BkzZoyRdUBISAiSJPHQQw8Z5QsJCSE9PR21Wl3nOgpaHs0hqxcvXiQ3N5eJEycaWZKMGzeuyp7a7du34+vri4+Pj5EM9+vXD6CKDIeGhhIUFGT43bZtW4YPH86hQ4eqmMXVxIABA4xWzwICArC1ta1Wbm7E3XffbdSmkJAQAB544AFMTU2N0lUqFZmZmUbnd+rUidDQUMPvbt26AdCvXz/atm1bJb0+dRS0PCZMmGD0Pn700UcxNTVl//79Rvnc3NwYOXKk4betrS1jx44lPDyc7OxsQCdDPXv2RKFQGMnQgAED0Gg0Rls3AEaNGlVlhbk+1FV2byR3Go2Go0ePMnz4cNzd3Q35OnTowODBg+tcv4kTJxr97tWrFwUFBZSUlNS5LL1DPrj6nbWysmL06NGGdB8fHxQKRbUyOn78eKOxgP77W913Xch46+C/vq16OZ42bZpRnieffBLAcPzIkSOoVComT55s1D/0VpnXMnr0aCwsLIy2Pxw6dIj8/HweeOCBOte/Id8uS0tLw98lJSXk5eXRq1cvysvLiYuLA3TvKn0da9oSonemunv3bqNtNHXh6NGjqNVqJk2aZJSufx63OsI0/TalQ4cORr+9vLyQy+VV9mHebBITEykuLqZ///7VHs/NzTX6fa1JrB57e3ujvXmpqal07969Sr7rzd5qw7UDabj60ikqKmpwWXZ2dlhYWFQZUNnZ2VXZz1PT+VD1ntjZ2aHVaikuLq6zma6g5dEcspqWllbttc3MzKqYbCYmJhIbG1trGb6+TABvb2/Ky8vJy8vD1dX1hvWr6T1QH7msTn7+K72wsNDoHtSUz8PDwyhdP6ipTx0FLY/r+7GNjQ2urq5VJmk7dOhQxeu6t7c3oPtWubq6kpiYyOXLl2uUoev9knh6ejaw9jrqKrs3krvc3FwqKiqqlfHq0m5ETd/fwsJCgzzVhpq+sx4eHlWejZ2dXbUyWpfv7/W+AgQtkxt9W+VyeZVxo6urKwqFwiDn+m+lXqb1ODk5VdkyolAoGDp0KH///Tfz5s0DdObl7u7uhsmvutCQb1d0dDQff/wxx44dqzKxpd//3b59e6ZNm8bXX3/Nli1b6NWrF8OGDeOBBx4wlHnPPfewefNmFi9ezAcffED//v0ZOXIkd999d623YOnv4fX32sHBod7bbloTQhEXADRbeBatVouzszPvv/9+tcev/3iamJg0RbUM1PQikerhjKW6smpqT3Xl11SXxqyjoOXT0kIpabVa/Pz8WLRoUbXHr1dIG4O6yE19y6qtXNV0fmPWUXBro9VqGThwIDNmzKj2+PWD/GtXsxp63brIblP36cb6tjWGjNb1+ytofVT3bW3s7+3YsWPZvn07p0+fxs/Pjz179vDoo4/Wqx/V99tVVFTE5MmTsbW1Ze7cuXh5eWFhYcGlS5d4//33jVa2Fy5cyLhx49i9ezeHDx9m2bJlrF+/np9//hkPDw8sLS358ccfOX78OPv27ePgwYNs27aNTZs28dVXXzX5mL01IhTx25TExESjVZ3ExES0Wm2jzbTXFi8vL44ePUqPHj0abXDRrl07EhMTq6RXFyO2pSk1AsH1NIes6ld/EhMTjVbLVCoVKSkpBAQEGNK8vLyIjIykf//+tZKn6mQzISEBKysrw8SbkEtBSycxMdFoFau0tJTs7GyGDBlSJZ8kSVUcuIHuWwU6GSorK2PAgAE3v+LXUFfZvRHOzs5YWFhUK+PVpQkEzcl/fVslSUKr1ZKYmIivr68hT05ODkVFRQbZ1X8rExISjMrKy8ur1jJi8ODBODk5sWXLFrp160Z5eTljxoy5WU2slhMnTlBQUMBnn31m5BS4Jis7fVSDZ555htOnT/Poo4/y008/MX/+fECn+Pfv35/+/fuzaNEi1q1bx0cffcTx48dr9U7T38OkpCSje5ifn39bWJeIqbzbFH3oDj0//PADQJVBxM1m9OjRaDSaKt5ZQRc6oj5mnIMGDeLs2bNEREQY0goKCqqEJQGwsrISpqKCFk1zyGpQUBBOTk5s3LjRKFTL77//XkVeRo8eTWZmJj///HOVcioqKigrKzNKO3PmDJcuXTL8Tk9PZ/fu3QwcONAwe25lZQVgFCJFIGhJbNq0ycgr8k8//YRara4il1lZWezcudPwu6SkhD/++IPAwEDDNozRo0dz5syZ/2/v7mOp/N84gL85DlFTDrUMi31zbDmZmLMRWWZLNDlbm8lDD9pIlDVrmtJmrGUrtFTmqWIeKkQPqI422qSl2lTGhOah9SAmFtnx+/3xm/P7HiKKc6T36z/uj3Nfh30+t+s+9+e6UFdXN+U8g4ODC1bvY65z92cEAgFcXFwgl8tV9qO+e/fuh+/NwMCA11/SmJmure7u7gCAq1evqozJzc0FAOVxFxcXCIVC5OfnqzxJMfnnJujo6MDHxweVlZUoLS2FWCxWubGtDhOfmP873u/fv6OgoEBl3NDQ0JS1RywWQ1tbW/l/wY+2UU7UZ5ptG11nZ2fo6OigsLBQ5fuT/z5LFT8R/0t1d3cjPDwcbm5uePnyJSoqKrBjxw61LwhSqRT+/v7IyMhAc3MzNm/eDKFQiM7OTlRVVSEuLg5eXl5zes0DBw6goqIC+/btQ1BQkLJ9mampKQYGBlTu/Nva2qKwsBAXL17EunXrIBKJpt0vR6QJmpirQqEQ0dHRiI+Px549e+Dt7Y3u7m6UlpZO2SO+c+dOVFZW4tSpU2hoaICDgwMUCgXa29tRVVWFrKwsbNy4UTleLBYjNDRUpX0ZAERFRSnH2NraAgBSUlLg7e0NoVCIrVu3wsDAYMHeM9FcjI2NYe/evdi+fTs6OjpQUFAAR0fHKS2ILC0tERcXh6amJhgbG6OkpAR9fX0qrYRCQ0NRU1OD8PBwyGQy2Nra4tu3b2htbUV1dTXkcvm8FGebbK5zdzYiIyPx+PFjBAQEICAgAOPj48jPz4e1tbXKzXHgf/O8vr4eubm5WLNmDczNzZVFDYkW2s+urTKZDMXFxRgcHISTkxOamppQVlYGT09P5dMwIpEI+/fvR0ZGBsLCwuDu7o43b96gtrZ22ho9fn5+yMvLQ0NDA2JiYtT2fids2rQJK1euRGxsLIKDg6GlpYXy8vIpWzKePHmChIQEeHl5wdLSEgqFAuXl5RAIBNi2bRsAID09Hc+ePYO7uzvMzMzQ19eHgoICrF27Fo6OjrOKx8TEBCEhIcrWn25ubmhpaVH+Dpf6E3JMxP9SqampSEtLw9mzZ6Gjo4OgoCAcO3ZMI7EkJCRAIpGgqKgIKSkpEAgEMDMzg6+vLxwcHOb8eqamprh27ZpyL4tIJEJgYCD09fWRmJgIPT095dhDhw6ht7cXWVlZGB4ehlQqZSJOi4qm5qq/vz8UCgWys7ORnJwMsViMS5cuIS0tTWWctrY20tPTceXKFZSXl+PBgwfQ19eHubk5goODYWVlpTLeyckJ9vb2SE9PR29vL9avX4/Tp0+r3Fiws7PDkSNHUFRUhLq6OoyPj0MulzMRp0UjPj4et2/fxvnz5zE2NgYfHx+cOHHih4XZTp48ieTkZHR0dMDc3BwpKSkqVcT19fWRl5eHjIwMVFVV4datW1ixYgUsLS0RFRU1pVPBfJnr3J0NiUSCzMxMJCcnIy0tDaampjh8+DDa29uV1ZgnxMbGIj4+HqmpqRgZGYFMJmMiTmrzs2trYmIizM3NUVZWhocPH8LExARhYWGIjIxUeZ3o6Gjo6uqiqKgIDQ0NsLOzQ05ODsLCwn54XolEAmtra7x9+/aXqqX/LiMjI1y+fBlnzpxBamoqDA0N4evrC2dnZ4SGhirH2djYwNXVFY8ePcKHDx+gr68PGxsbZGZmKgsie3h4oKenByUlJejv74eRkRGkUumc162YmBgsW7YMN27cQH19Pezt7ZGdnY3du3erdG5ZirT+w8ox9JdISkpCcXExXrx4wQISRBpgY2ODwMBAxMfHazoUol9SWlqK48eP4+bNmz/9tNjDwwPW1tbIyMhQU3SLV0REBNra2nD//n1Nh0KkcX5+fli5cuW0j7ATlE8iREdH4+DBg5oOZ8FwjzgtSSMjIypf9/f3o6KiAo6OjkzCiYiIFsjk629nZydqa2shlUo1FBHR4tHU1ITm5mb4+flpOpRFY/KaAfx/n/1SXzf4aDrNi4GBAZXCNZMJBIIF2eM2HX9/f0ilUvzzzz/4/PkzSkpKMDQ0hIiIiHk7x/Dw8E+L2YhEIib+tKgstrk63xQKxZS+y5MZGBhg+fLlaoqIaGF9+fIFCoVi2uNCoRCrVq1SWzyenp6QyWSwsLBAT08PioqKIBQKp23P9iu+fv36w3/e/22iGB7RYtDa2orXr18jJycHq1evhre3t8rxpXjtmu3adO/ePZSVlWHLli0wMDDA8+fPcefOHbi6us56r/mfiok4zYuoqCg8ffp02uNmZmaoqalRWzzu7u6orq7G9evXoaWlhQ0bNiApKUmlVcPvysnJwYULF2YcI5fL1d4Sjmgmi22uzrf3799PKZg1WWRkpEpxOKI/2a5du9DT0zPtcalUiry8PLXF4+bmhrt37+LTp0/Q1dWFvb09jh49OqUf+u9ISkpCWVnZjGNaWlrm7XxEv6u6uhrp6emwsrLCuXPnVOoVAUvz2jXbtcnGxgYCgUBZr8nY2BghISGIjo5WX7Aawj3iNC9evXo1YxsSPT29JXdXq6urC11dXTOOcXR0nLLYEmnSUp+ro6OjaGxsnHGMhYXFlOrvRH+qxsZGjI6OTnvc0NAQEolEjREtvLa2Nnz8+HHGMeruy070O5bitetvXJvmiok4ERERERERkRqxWBsRERERERGRGjERJyIiIiIiIlIjJuJEREREREREasREnIiIiIiIiEiNmIgTERERERERqRETcSIiIiIiIiI1YiJOREREREREpEZMxImIiIiIiIjU6L/7UFgkkWDLqwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Opinionated defaults and flexible customization" + ], + "metadata": { + "id": "DO8efGkg7Zux" + } + }, + { + "cell_type": "code", + "source": [ + "sns.relplot(\n", + " data=penguins,\n", + " x=\"bill_length_mm\", y=\"bill_depth_mm\", hue=\"body_mass_g\"\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "hceAakCs7RqD", + "outputId": "59641399-0cac-4ab1-9242-40f34011d8f3" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHkCAYAAADihlFPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XecHMd54P9/qrp70uacsNhFzpHIBEESBDNFUsGKpKxo2jrJlmz9zjqfZZ99+r1OujvZSrQkS6JkK/pkW2KWRDFHMIAgQGQswiIsNqeJner7xywWGMzMYoFdAItFvV8vBXTN9PT09E4/U/XUU0IppdA0TdM0TdPGjbzUB6BpmqZpmjbZ6ABL0zRN0zRtnOkAS9M0TdM0bZzpAEvTNE3TNG2c6QBL0zRN0zRtnOkAS9M0TdM0bZzpAEvTNE3TNG2c6QBL0zRN0zRtnOkAS9M0TdM0bZyZl/oAJgrP8+npiV3qw7hgpBSUlxfQ0xPD96/c4v36PJyiz0WaPg9p+jyccr7noqqq6AIelXa50T1YVwgpBUIIpBSX+lAuKX0eTtHnIk2fhzR9Hk7R50IbDzrA0jRN0zRNG2c6wNI0TdM0TRtnOsDSNE3TNE0bZzrA0jRN0zRNG2c6wNI0TdM0TRtnOsDSNE3TNE0bZzrA0jRN0zRNG2c6wNI0TdM0TRtnOsDSNE3TNE0bZzrA0jRN0zRNG2c6wNI0TdM0TRtnOsDSNE3TNE0bZ+alPgBN0yY+UwpM38WJJRGAWRDCkQaef6mPTNM0bWLSAZamaSOyBMQPH2PPr1/Asx0AjGCAee++llBDNY4OsjRN07LoIUJN0/ISAlQsxs7/9/RwcAXgpWze/vkTiGTyEh6dpmnaxKUDLE3T8rKkoPXZt3I3Kjjy4nYsU3+NaJqmnUl/M2qalp/nEe/qy9sc7+hFeN7FOx5N07TLhA6wNE3LzzAoqCnL21xYV4GS+mtE0zTtTPqbUdO0vBxfMfXaZSCy24QUTFm7CMdTF//ANE3TJjgdYGmalpdSQCjEog/dhFUQGt4eKAyz+MO34AUDl+7gNE3TJjBdpkHTtBE5Cqz6apb/8TvxEikQYISCOIaBq3uvNE3TctIBlqZpZ+V5Cg8J4TAADoAOrjRN0/LSQ4SapmmapmnjTAdYmqZpmqZp40wHWJqmaZqmaeNM52BpE5oQYBkCw08veOdIA9e9/Ba/CxgC6XkowDMNXFfnL2mapk1mOsDSJixDCoK+w4kXtzFw8BgyYFG5eDZlc6cT94ZKCExwUgoCnsORp7bSufMQ0pTUXTWX2hVzSSoDdTm8CU3TNO2c6QBLm5CEgKDvsPfnj+O7LgC+43Li5bcYOHiUxluuIeHlqH45wQQ9hy3f/TVu0gbAS0Hrc1vp2nmIBffeQlKP0muapk1K+ttdm5AChqDt5beGg6vTxU904/QNIuXEDrAsQ3D0pe3DwdXp4l19RI92YBj6T1DTNG0y0t/uk5BhyAkffJyNVD4DB4/mbe/bewjTNIb/fTHfsxCjez3puXTtOZy3vWPbfgyhhwg1TdMmIx1gTSIBfIx4nL4dLcQPHSfou1y2HSQKpJV/BNsIBlBKEZSKQCpJbO8h7KMnCOFhXqD3LET6HKv+QXrfbiF1rIOg8jCMfIGWwBjxPVjkXORP0zRNu+zpHKxJIiQUb//yGTp2tQ5vk6ZkxUdvJVRXdQmP7Py40qBi4Sw6Xt+Rs71s7jSE59Ly6It07zn1noUhWfC+TVi1lYz3ZMOg8nn9B48xcLxreJsZDrDmj+/EKCnCO6OyuWea1K+aT8vjr+TcX93K+Tje5TcjUtM0TTu7y7V/QzuNZUqOvrorI7gC8F2f137wOIbrXKIjO3+O61OxaDahitKstuqVC5GRMB1v7csIrgCU57PjF09getm5W2NhSdj10IsZwRWAm7DZ/N2HMXPkirmuT8W8aRQ3Vme11a2Yi1VSeFnMhNQ0TdPOne7BmgSE43Dwubdytinfp2N3K9XL51zkoxq7uAfN77iOVHcvfXsOYYSClC+YgQqE8G2Xoy9tz/k85St69rZSvGDmuNXMEo5D27YDOduceIp49wBmVVlWwJTwBXPes5Fkdz/tW/dhWAa1y+ciCyOkfD08qGmaNlnpAGsyUOmbfD6JnkHEZXgvVwrinkCWV1BxTXqYM2l74EMIhZvI/56TfVFKxvFN+87IhbdSAzGs6vKcda2SSiIry2m8ZS0gcBwXXWdU0zRtctNDhJOBlBTXV+ZtrpjVkJUfdDnxfYVte9i2N7xNSUlhXUXe55ROq8cbx/wmGbSwIqG87UW15fh+/nN86j24elhQ0zTtCqADrEnAlZL5d1+dsy1SWUxhbcWkqxjuIJlxy5qcbaGyIiI1Iwc858q3TObetjpnW8XMeoyC/MGXpmmaduXRAdYk4PuKQGUpKz9xO5GK4vRGIahdPJ3Vf3wXtjBG3sFlyPcVRlkxC++5mVBZUXqjEFTOb2bxH9427u/ZdRUV85tZ/N7rCBaFAZCmwdS1C1jywU3YSv8paZqmaafoHKxJwlWC0JQaVn3qbpTjIqREWSa2Yqj36jJMwjoLxxeYNVUs/Mjt4HoIKfFNg6SfTnQfb7YSlC6YztrZjfiOhzQlyrJIXsbDr5qmadqFoQOsScTzfDwkWIH0hiugxNLwez5ZUdUb+fFj5bo+CAMCQz1kOrjSNE3TctDjGpqmaZqmaeNMB1iapmmapmnjTAdYmqZpmqZp40znYGmapk1ChiExPRfleghD4JsWjs4Z1LSLRgdYmqZpk4wpFMmj7bz18IskegYQhqR+2Sym37iSFFIXu9W0i0APEWqapk0ihiFJnujmzX95nETPAJBeBP3Y63vY+qPHCVwJ04s1bQLQAZamadokYnguex5+MWfbYFs3qd7Lc21STbvc6ABLm7QCAYNAwERMsLuJaUoCARPT1H9+V5KL9rl7HvGu/rzNfYfaMAx97WnahaZzsLRJJygVJJN0v9mC77qUz52OVVpEwru0gZYhBYbr0LGtle6WNkoaKqlbMh3fCuBdgMrz2sRgSIGwbY6+eZD2fccob6yiecVsCAYvyOcupERaJr7j5mwPlhROurVJNW0i0gGWNqkEJXS/sYOOLbuHt3Vt20/hlBqab7sG+xIdl5QCFY3x1Nf+EyeRGt6+4+GXWf/puwlUlekgaxKSUuD2R3n4Sz/DPu1zf/3fn+e2v3wfkdpyvHFOifJNkymr5tL64tvZx2NISptqSenZhJp2wel+Ym3SEAL8aDQjuDoperSdgZZWpLw0vViG7/HqD3+TEVwB+K7HK997FMPN3dugXd6k6/Lk/Q9mBFcAnuPxxNd/BbYz7q/peIqmDcsobarNPBbTYNlHb8MzrXF/TU3TsukeLG3SsEyDjq178rZ3bNnNjBmNF/GITvGTNoMnenO22bEk9mAcSoou8lFpF5qTSNF3vCdnW3IwQWowjllWMu6vm1SCBR/chDsYp7+1nUBhhOLGKlzDwtU9pZp2UegAS7vsSSkISoWBhz9Cj4B3AXoLRss/yziQ6zj6j3ESUmf73FPuBfvcbSURRYWULipGKUXKV6CDK027aPR3unZZk1IQ9h3ant6M73qUzGimr+VozseWzGxEGcZFPsI0KxzECgezhggBhBREyoouWX6YduFYkSCBSBA7nv25S0NSUFGEdwFfXynwxjvJS9O0UdE5WNplLSx9Dj30exKdPaR6+wmVFhIsK856nBGwqF25APcS3Wt8y2Txu9bnbJtz0wp8U//WmYxEMMCaD16fs23JHWsQAZ0PpWmTlQ6wtMuWaUpih49lDAu2vfgG025aQ/WyORjBAMI0KJ83jbn33k5KXrogxvUU5XObWP9f7qK0sQohJYXVpaz8yM00rV+IqyZWrS5tfLieom7RdG79//0BFU3V6Vl8deVs/NQ7mHPDUv25a9okpn82axeUaUoMwBfgOOPbfWQIGGjryNjmJZIc+e1zFDXVM/3WtYSrK7CFQcJV4ClM89Ld0FwEwfoqVn3yDoRSKCHwTRNbD+FMap6QFDXVsunP343w0587loWrP3dNm9R0gKVdEIYUhPDo232AeFsngbJiyhfMxDUDOONUg8dHYBXnmHmnFIOHjmEPRKm7cQO2O3ESe31f4QsJJ+M8fZO9Ivi+AmHAyRRA/blr2qSnAyxt3EkpsOwE+/7j9/gn6zu1ttH91h6abr0Gs7JyXKaKO45H6Zxp9GzLrnsFULlsATYS9OK2mqZp2kWmc7C0cRcUPkd+99Kp4Oo0R554mYAYv4DHlhYNm9YhzpgdWL5oDlZVpZ5BpWmapl0SugdLG3+uS6p3IGeT77q4A1FEYRHjsRya4ymsigqmvedWnP4BfNclWF6GK2Q670rTNE3TLgEdYGnj7yyRk++Nb+UfxwMHgSgqRQiI6WKKmqZp2iWmhwi1cScsC6sgnKdRECwtHpfeqzMppdLJxJqmaZp2iekASxt3KSQN16/O2VazahGOuDTV1DVN0zTtYtFDhNq48zxFoKyUme+7hfZXtpHo7CVQXED1qkWYpSUkx6lMg6ZpmqZNVDrA0i4I2wdhhai+bjXS91FCYCsxKYIry5QY+CgktudfkOHOS80yBMr1wJB4SqAm45u8wCxTIIcKyjqempTXiaZp+ekAS7tglIKUqzhVVfPyvsOYxsniqftItndhFkQoWzgbPxQmlV2R4rIkpUCmUux/chsde48SKStkzo0rCFUU4+qMglGxpMDyHbre2EOio5tASRFVy+bhh0LYF3JlZ03TJhQdYGnaKEgpCDhJDj/+DOrkLMjuXqKtx6hauYTAlIbL/uYppUANRPnN//43PDsdMfYc7uDo1gMsvvtqpqyZj4deO28khiER0QH2/vpJGJpwkejooX/fYaZsWotZX4s7CXpxNU07O/2TVNNGISgV7S++fiq4Ok3n69sIiMv/pmn4Hq/95PfDwdXptj34IsJxcjxLO10AjyNPvDwcXJ3u2NOvEuAyj8I1TRs1HWBp2ihI3yPV25+7USlSPX1IeXn37vi2Q/eh9tyNCroPtF327/GCcxycwVjOJuV5uHnaNE2bfHSApWnj4bQMZlMKQspDDkYx4jGCeBiGDkyuCGfryLz8Ozo1TRslnYOlaaPgGwaB0mLsvhxLAAlBsLyUqKewhKJ/z2H2PPISvpMearPCQRa+/wYCNRW4E3hpRBmwKG+qpudwR3ajgIppdeOySPekFrCwCiM40XhWkzAkZnHhZZ+rp2na6OgeLE0bhZQnqLl6JcLI/pOpXL4QWxgIIXB7B9j1q+eGgysAJ5Fi6788jrTti3nI58yTBivv2YRhZf/uWnj7GghYl+CoLi82Bo2b1oLI7rFsuHYljv7K1bQrhu7B0rRR8H2FEwjRdOdN9O3cR6KjCzMSpmzRXIhESLqKgFTseeqNnM9XvuLY5p3UX7ccx5mY3Vi+rzBKirjlb+5h31Nb6dh3lHBJIfNuXkG4uhRXzyA8K8/zEcXFzP7AbXRu3UWivYdASSFVVy2AcJiUnkGoaVcMHWBpVyTDEBhDNzvfMHBGMXbneoooksiCeRTOTxdPTXmg3KGbpqeId+ZJhAeiJ3oQE3yIzfMVWAFm3baaWe6K4UKjrq6SOWqup3CFRdnKJZT7PkiJ7SmUHhrUtCuKDrC0K4oQkBqIMbDzAJ1b96J8n4r506lcNIskclSLRdvDwdgZjzUkBTVlJPujOZ9XNKUKJUT28yYg11MgJPhwORzvRGSfLLI7wYNqTdMuDJ0QoF1RLN9j1y9+R+uTr5Ho7ifZO8ixF99i188eJ8TYhu4cJZixaUXONmFIGlbMHVVPmaZpmnb50wGWdsUwDEn0aDvxzt6sNnsgRveOFizz/P8klFLI4kIWfWATZjg4vD1YXMBVH78Dzwqc9741TdO0y8uEGiJ8/PHHeeihh9ixYwcDAwM0NTVx77338u53vxtx2qycX/7yl3z/+9/n+PHjTJs2jc997nNcf/31l/DItfMlRPZCwrm2nUt7PqZQtG3fn7e9a0cLpfNnQI5k7tG+puNDpLmeVZ95N248hZACIxTENQy9RMpl4uRXzaVMO0sfg15kW9MuZxOqB+tHP/oR4XCYL3zhC3z7299mw4YNfPGLX+T+++8ffsyjjz7KF7/4RW699Va+973vsXTpUj796U+zdevWS3fg2jkxpCCIB339OMfbCbo2QQNChiLoJKGzk2AqQViq4crhQghCUhFIJVAdnQTsBCFDZQTeZ6MAIfNf8tKQWbGVqXxEPMHAgWM43X2YnnvWauaup0hh4EUiuKEwKSSeDq4mPFNCUQBCqRihVIyiAATMiztz0hAQ8F3s9h7irW1Yjo2pc+A07bIk1AT6idTT00N5eXnGti9+8Ys89thjvPbaa0gpufnmm1m4cCFf/epXhx/z/ve/n6KiIr73ve+d92t7nk9Pz+RdxsI0JWVlBfT2xnAvYR6QIcHvHWDrv/4GN5FKH1s4yMpP3kHrE68Q7+gZfmyovISZ79pIUliElMu+/3ySRFffcHukqoyZ79pIQslR9TZIKVBd3ez99ydztjfduJrwzGY8L31+LOXx8o9+x7Hth069ZmkhN/75u5DFhaNKiJ/IJso1camZpqS4IED0yFF633r7VNeVEJQuWoBRVU3SufCftSEg0dbFy//8KG5qaN1HATOvW8qsTVdhX+AyGfp6OOV8z0VVVdEFPCrtcjOherDODK4A5s2bRzQaJR6Pc+TIEQ4dOsStt96a8ZjbbruNl19+GXuCF3LUwPJctvzgkeHgCmDaNYs5+szrGcEVQLKnnwMPPUNYeLQ89ExGcAUQ7+zlwCPPjXqhZd9XhKvLKZ0+JastUlNOyczG4eDKlLD9kc0ZwRVAvC/Kb//PL5F64eNJQwhwolF6t27PHBdUir5tb2PYyVx1Q8edtG1e+KeHTgVXAAr2P72Vrj2tmGPID9Q07eKbUDlYubzxxhvU1NRQWFjIG2+kizhOmzYt4zEzZszAcRyOHDnCjBkzzvu1JvMXmDFUgdzIUYn8YpFS0LurFd/NLAhUMrWarjfezvmceEcvvm0TO9Gdsz16rBPpuZhWMGf7mTxDMvMd6xk83kX7lt0o36dq8SwK6quwhYF58i8imWLf87mPKTmYINrRR9HU6kuapzNWE+GamAgCpqR/+7687YP7WyhYuAjnAg7zGobkyKs7UV7u3pJdj7/KNXMaMc0L95Wtr4dT9LnQxsOEDrBef/11HnvsMf7yL/8SgP7+dBHH4uLijMed/PfJ9vMhpaCsrOC8n3+5KC4OX9LXb+vK/oyUO3IFRi9lp7sZ8kQzyvUoqz63z65i9lRKp9WDUhhDS8Ccvofe48msQPB08Z5BGhdPy9t+ObnU18SF4iZtvJSNkBKrMJw3X89LpeiLJ/LvJ5YgFDAoDOUO4pVSuPEESikMy8IInt9s0YET2bNbT4r3DGIZkshp31HJwTi+62FYJsHC8fsMJ+v1cD70udDGYsIGWCdOnOBzn/scq1ev5sMf/vAFfz3fVwwMZC/QOlkYhqS4OMzAQGJ4GOxik1JQMrUma7swjBEDKDMSyj+lSwhkwKK3d3T5cznPQyx7aFkYkmBBiFQsmXM/JfXlo37NiWoiXBMXgiGAeILWp1+n/3AbVjhE/ZqFlM1txs6RFRG0DALlZdh9uX+gBcpLSToeTiL78w5JxeDBo3S9tRsvmaKgrpqa1YvxQiHO5ZQahqBqdgOHN+/K2V46pQpXKXp7Yxi+T9+hNnY9uploVz/FdRUsvGsdkZpy/BEmcZz9GCbn9XA+zvdcXAk/0rXRm5AB1sDAAJ/85CcpLS3lm9/8JnLoS6OkpASAwcFBqqqqMh5/evv5uhISOz3Pv6Tvs7CukmBxAamBUzerjl2HqJg3je6dB7IeXza7CUyL8rnN9Ow+lNVeuWA6rjTP+T2d7TyYVoDFd67htZ8/k31MjZUESwsnzfVyqa+J8SSlQMZjbP/hw6ihSQgpO8rB375Cb8tRmm69mpSf3ZNVPGMa0UOt4J9xHoSgaMY0BpPZvZkhA9qef4PBQ8eGtw22HmfwaBvT796EH4yMeiKE60LV7CkECkPY0eygftG71uMgkZ5P6ys72PnIK8NtvYfbef4bv+KqezdRPq95zOVAJtP1MFb6XGhjMeEGmJPJJPfddx+Dg4N8//vfp6jo1KyM6dOnA3DgQOaN+MCBA1iWRWNj40U9Vu3c2dLgqj96B6XNtcPbTmw7QM2KBVQvn4sYynkQUlC5aCYN160k7sKU61ZStXjWcJkFYUiql82lfv1y7AuQG+N6Pk0r53DVe67BCg0N+QiYsmQ6N/zZO/GkMe6vqY2dhc/B37w8HFydrm//UfxYImfCulkQoXr9WszCgtO2FVB99RqSfu7PWtipjOBqmK9oe+ENAvLcrkvPCnDdn7+HsqZTvbyh4ghrPnErocpSfF8hXZddj72a8/nb/uN5PflC0yaQCdWD5boun/3sZzlw4AA//elPqanJHE5qbGykubmZ3/zmN2zatGl4+2OPPcbatWsJBHSl7InO9xW2EWDBB28Cx8FNORihAK5hUr5yEVXL5+E7LtIy8QyT+NBCynEPqtYto3b1onR7ILP9QnCQNF+ziOZVc3CSNmbARAQDuIjLOrl9MhO+z+CxzrztfQeOUrJkblavhDQMnECYsjWrkZ4LgDJMkp7IOURkmpLo4fa8r5Po6EH6HjD6QNzzfGQ4zJr77sBP2viehxEK4lsW7tAxJPqiqDN72YY48RROPAWFF/5r3TDE0DHrPwRNy2dCBVh/93d/x9NPP80XvvAFotFoRvHQ+fPnEwgE+MxnPsPnP/95pk6dyurVq3nsscfYtm0bP/nJTy7dgWujFjLB8F2S7d0I0yBUUU5KydOGNQwwjXRV0DOCp3RPlQFW7vYLwfUUmBai0MIDve7xBCeEQEiRswcLwBwhAd331VDAPhQUeYp8H7hSIK0Rvj6F4FxrO4RMEI5Nor0LaVmEq8tJKSMjwDOskQM2YcgLeokGZLoXLdraAVJS1FCFa5g4ehRN07JMqADrxRdfBODLX/5yVtuTTz7JlClTuOOOO0gkEnzve9/jn//5n5k2bRrf+ta3WLZs2cU+XO0cRSzBwI5dDOw/dGqjgKpVywlWV5MaeTKhpp2VJw0qFkyna3tLzvaS6Q0kxyGnxvN8CqdkT9gYfp0ZjXjCYLQRecQSdL7yJv37W09tlILGG9ZiVVUNl4gIFEYIFISwc0y+KKwuTfd4ndM7Gb2gVHS+vou2zZnlS5puWEnx3GnYOsjStAwTqpL7paQruV9YhiGRPV20v5g7f6TxthuIYV3w47jU52EimaznIix8dv7kMVJ90Yzt025ZS+GspqzelvM9DwED7KNtHH/utYztVmGE5jtvIOaNrgfLMCRu6xHaXngjZ/vM999GXKV/CxtSYHf08MK3fo1/Ws+WGbTY8Nl3I8awwsBI5+HkKgi7/+33OZ+78CN34EYik2boXFdy18bDhOrB0iavgPDp2rknb/vA/oOE5s3DcXQ3ljY2KWEw/57biB3vpGf3IQJFBVQtmYUKBMa1l8X2IDCljpnvvZXePQdxo3GKmhsI1VSSUJLR9l4F8Djx1u687QP7WwnPnYXjeHi+IlBVxqa/vodjW/bRf6yT8ul11C2cjmeZeBdo+SYLxaGXtudtP/HaTuo2rsKeRIG6po2VDrC0i0KgcBO5a0oBuLE4FzZ7ZPKSUmAqH3wfAfiWiXMR8tMmKt9XJJBYU+qob6oHIGV7550/ZxkSw3cRKHwhcZDDvUS2B7awKFo8D0gnfcc9n3N5MUG6mGk+9kCUyGn5XJ4Cz7RouHoRUwBfqXRgcyFjG+VjR/PXCbQHY6B0cKVpp9MBlnZReEhCVRXEjhzP2R6uq0FPSDp3pgCvb4C3HnyB3kPtGAGLpnULaN6wmBSjWwR7svI8H2+MHaJhQ9H11i7aNu/ATdoU1JTTdONqrLJinNPqadn2+b+QjyBSU0GsLffsx8LGupwzGS9mb6+SBkWNtSR7B3O2lzTX4wvJhY3yNO3yMuHqYGmTk+0pyhfPzzmzyggGiDTUTao8oItBSoHXP8iL3/hPeg+lSwZ4tsOBZ7byxgOPY+kehTEJScXBR1/gyLNv4ibT1f5j7T3s/MnjuJ2947ZOna0ENWuX5mwzC8KEaioveWV121PUr104XKfudEbQomLhdP33q2ln0AGWdlEoBbY0abhxA4HSU2tJhmurabjpWhI5qmtrIzOVz85fv5BzGaH+o50ku/vzrr+nnZ2fSNLXkqOQKHDwty9j+e74vI6v8EIRmt9xPYHSU0nSRU31TLvrBpJqYnxNO1aAhR++jYLaiuFtRY3VLPjw7dhSD4Zo2pn0X4V20TgeeIEIVRvWIYd6VzxpEHPTC+aeLyHANI30ortX0q9oz6d3hGKXHbsO03h95RUzcWA8rwPDkERHKFia7B1ML1I+Tr1YjqcwikpovO068DyElHjSIO6pMf1tjCfPU6hIATPevRHheiDSxVhtJVB6fF/TsugAS7uofF+R8GG483SMX8yW8kh0D3J4xyFCRWHqFjRDIIDHFdBzI8AIWHh27uVRgkWRCXNzvpCEgAA+qd5BTuw/SrAwTMWsRjzTOq9atEIIgsLHCY5QNkSKnMNlY+F5PgkEYKZTmS7QjMCx8H1FCgEne6x80NV3NS03HWBpl62A8nnhu4/Q2dJ2aqOAdR+7haq5TbiTPMjyTZOmdQs48MzW7EYBNfObr4hp80F83vrxbxk4elqPkxAs/sAmCprqzinIEgJCeOz818eZfsvadGX0HPlPFXOb8Q0DrozOQU3TzsPEGNzXtHNkGoJ9z2zNDK4AFLz0wG9QKfvSHNhF5HqK5g2LKZ5SldkgYMn7N+JfAWtzWoag9YVtmcEVgFJs+/nvMdxzW/zYkoJDT2wm2TvI8Vd3MPP29SAzA/VQWRFNG1cyhomDmqZdAXQPlnZZEo7Lnqe25m5UcHTrfhqvXjTpc7JSSJZ/9FaS3f107DpMsChCzfxm/EDgYizVeMlJ1+Xo5p25G5Wia08rZYtnjfo6kJ5L7970cjV9LccQUrLgAzczeKwDJ5qgdHoDoZqKcyokqmnalUkHWNqoBEyB6Xso3wdp4EjjEgcvCieZv5cq3h+7ZDPopBRYKITrIgMmyvXwXA9hGPimhTOOU+6VAhuJUVlO4/WVqJNFJ6+Ye7/Cs/PP5ksNJvJeB0IIAlJheA7J3gEsIfE9L2NWZu++I/TuO0JhXSVmOEDh1Nqh+mKjP8EBU2B4bnoBasPAEcYlL7ugadqFpwMs7awKTOh84226d7agXA+rMEL9+uUEa6su3QLNUlI1oy57iHBIw8Jpl+QmZhgCIxaj5fGXqJg/HTvpcOj5bdjRBEbQomndIhrWLiA5zmUplFJXzGzB0ylpUNxQycCxrpztlbOn5PwhYBiCgGPT+rtXGGxNz8QsrK+i+darCRRFsAczq5ZH29L7b9q0mtQok8+FEISlz7Fn36Bn90GUrwiVF9N0w2qs8tKsNRE1TZtcdA6WNqKwAa2/e5GubXvT09IBJxrn8G9ewG5rH7dii+fKkwZXve+6nL0TpQ0VFNWWn/eit2NhOTbbf/QIgaICEgMJ9j6+GTuaXgbFSzkceHoL+x59iYC4YrqYLihlGsy9Yx255jMU1VUQKS/O2dsU9D12/+yx4eAKIHq8k0O/eYlpN67O+VplM6dAcPR5bSHhs/eXT9C980C69wpI9gyw55dPoPoHkHJyT8LQtCudDrC0Ealkktixjpxtx154k8Almkbl+4pAeQk3feF9VDTXAGBYJrOvX8r1f/YuXMO46McUMATHXngL5flULZrBoee35XzcibdawDm35GstN8PzGDx8jOUfvpnihkoApGXSuHoe8+9chz0QzQrCLVPSvaMFL5X9GUSPdSCEYt77byRcUZJ+jVCAKdcsZdpt60mNsudRSkGqt59kd3/O9tYnXyVw5YzjatoVSQ8RXmEsy0ApRjV8ZhiC+PGevO1uLAGuCyJ3vSDLMhBC4LreBelN8hQEKstY/6m7wPOGCiJZ2J66JDlIYihHrWJuMwiZtz4VQKJnELOmYsKuFWgYEsOQE37oUSifE6/tJFhSSNPquQRLikD59O5rZd9/PkXtqgWULi/LeA/S9xk4lLtCO8DxV7Yz4z03MfsDtyBQGAETX0oSydFXbjcMSe/h3MPXAPHOXoTy0b9xNW3y0gHWFcCUAtNxOPTMmwy291DaXEfp9HpsaY4Y+Pg+WJFw/h1LgTCMrPVdLQmm69CzdS/2QJSSWVMJV1eQQo57oOX7Kr3IrDk+hUvPlykUfsrBMSyS0Th1hSOcN8CKBCdiHUmkFEQMRbKzk9jxE5hFhRQ2N2IjmZBxlpAYAYtUf5Sjz76R1RwoKsi+5qTEKozk3aUVCeErlV7rMRqn+82DAJTPnY4oiJAcxXlQShEsLsjbbgSt9LDmBLwGNE0bHzrAmuQMKfC6e9nyL48PF0xsf3MfZjjI8k++AycYyhv0KKUIVpQgLRPfyf71XjarCVcaGRWnLQmpI8fZ85uXhrd17zxAsKSQWe+9ifgk/MVuCkXf3iNs+envh7cVVpVQNq2O3oPZvRjB4ghWYZjUxTzIURACItLn2G+fxY0nhrf3bNtF3YbVWKVlEy7IcqWkZvlcjr+yPatNSEFxcz2JM3prbU9Rs2I+fftac+6zdtVCDAFtz71Of8uR4e3d2/dROruJmnXLSHgjDxW6rk9xc0P6pObopqy5ah6uNNO/YjRNm5Qm391Oy2D5Htt/+kRWNWo3kWLnL5/GUiN/wacwmH73RqSZGYuHK8uoXbsU+4xiS5bvcei04Gp4P/1R2l7cSsCYfIm90nXZ8rMnM7a1PLeNGTdcRaSiOGO7FQ6y/GO340zAxXEDhqDzta0ZwRUAStH2/KsEJ2BivuMqKpfOpWhqbcZ2ISUz37kRR2bn4imlkIWF1F+9NKutZsV8AlXlJNu7MoKrk/r2Hsbu7htVgrojTWa9ayNCZn7NFjXVUrlkDs4kr9GmaVe6ifctr40ruz+Kl6eqebStG2XbYAXzPt/zFBQUMvtDt5Ps7MWOxojUVGAURIifkfBrGJKBg0fz7qtn90Fq1y1lMsX1hiHp3H00q5fCjiV57cdPsOju9YRLChho6yJSUUJBTTmOMfLQ7KViKo/4sRO5G32fVE8vsrRiwh173IOmW9fjJ5JEj7ZjFoQprKvElgZunh63lA/F82dSNqeZ6NF2BIqCKTX4hoXvKzq37s77el1bd1N7w7qz9kC6vsKsLGfRJ95J9HgnbjxB4ZQaZDhEfPTpXJqmXaZ0gDWJCQFejqG906lR3Cw9TxFHIqsqCVZX4fg+tpeejRUQPrjuUBFNQXyE4p/KV0ihKJReuuCikqQu82JAQoCbyP2ek/0xXvuX37Lpix+mrKocpVS6htIEC1CGnSXj3nccLlHt1rNK+gKCYcKzp6OUIu6rs64TaPuAMAnPmEpJSYTe3hiu6xOUCn+E4qXpyQuj+wxdH1wkZkMtlhDYnp+Vs6hp2uSkA6xJTCkIlxfnTaa1IiGMYIDRFgxI91ykdxSxBMkjR2jbsSednyUEhdMaKWlu4tjzuZ8fqakg1d5B/67dIAQFjVMomjOLwdQEDThGwXV9KmdNydteMqUKjMujcreSBlZRIc5gNGd7qLKC2CWaRDBa53Oez+yR86VByYxGEl29OR9fMqsJT0jOJVI6/W9H07Qrw+QZq9Fy8kyTxqsX52ybdfva86oXZZmS5JGj9GzdcSr5XSmiB1rx4jGKp9VnP0kIGq9ZSuzw4eHHx1qP0LftbcKBCdotMkpWYZia+c3ZDUKw+D3X4srL488spSRVq5fmbCtsbsQzrozfY47rUzZvOmYklNVmFYQpnTl10q9xqWna2F0Z35hXMMeHurULKawt59DTb5LsHaSwrpzpN69KL9dxHj0SAeHRtmNPzrauV7cy7baNdO8+TPsbO3HjKYoaa6hfs4jEsSNZCdTJ9g5KFnhczrG+jWTx+67j+Jv7aXn6TVLRBJUzGlhw5zpEUQHeRB0SPIPn+RgFxUy59Xq639hGoqsXMxyibMFswlPqidmXx/sYDwklmfUHN9Pxxg569xwCoGzuNKqvWqAXetY0bVR0gHUFSPmCotlNrJgzFSfl4CFwhcTJc+OXUmAaAlQ6UTcrqdnzcpZtAFC+T7Knj8L5Myme3YwADKnofPFl/DzJ9l4igQgUDKcAGYbEEAqEwHHVOS2se6mklKTmqrnULpmRHpGVEheJfx7HblmS9ACUuOhFPm1PIa0w5etWYwiFUun3FrOvrB4b31fEkJStXEzVioUowBOSmJs91CcEWKaBQOEpdO+WpmmADrCuGJ7nEywrIO6mE3nzJTSHDXB6e+ncvg+A8gUzCFeUkzjtPi+kkbe+D4AZDpN0PJRKD/0VGuQNrgCMYADlpxfHDQmf2NHjtO88iAyYVC+bi1FcOOolSi4l1/NBDA25quH/GjXTEISEx+D+g6R6+wiUllA8o5kUxnn1NJ4v31ckM2KEKzdgsF2FPbzQYY41DQ2Qdoret/bhJZIUTK2noLGOhD/+RXU1Tbu86ABLGxY24PjTmxk8fHx4W/+BoxTUV9N409XEh4IsB0lhUwPRQ9klGYxQEBkJo07LnHeRhKqrSHZ0Zj3eLIigzADYirD02fv/fkeyZ2C4vWf3IaqWzKZ6zeLLIsg6X4YhsJIxjjz5Amqo+GT8eDt9u/ZRv3E9fqQwXTJDmzACBiQPtdKx+a3hbdEjbRjhEE133kBcyAm7FJKmaRfe5Zv4oo0rKQWpzu6M4Oqk2PEO4sdOYBjpyyXlKkoXLyBUVZHxOCMUpO76q0n6mZdVylWULllEoCSz6KYRDlO5ZhUJN50437l1T0ZwdVLnW3tR8cSELREwHoJSceKFV4eDq2FK0f7CZkJS36knGsv3MoKrk7xEks7Nb03Korqapo2e7sHSALAEtG3LnbgO0LVtLw0NtcOlhWKOomzNVUjHwRmMYoRDyHCYhC+ypsorBVFbUbJyBdKxcWIxzHAYgiFibnpIKqA8OrftG+H191G5/irsEeoTXdYcBy+RzNnkpex0QVgRuMgHpeVjGJLY0fwLRg8ePkbV6iWk9G9YTbti6QBLG6JQIyTn+p6HQMFQPopSkHAALGRJOY5SQ8OC+dY1TBddNIVEBMIoaeJ56tRSbEKgvPwJ3Z7r5t33SExDIGwHO5bECJjIcP6q9fkYhsDyPfykDQJkMIAjjRGH7KQUBPDBcfBdDyMUwDVMHDfPc842lqQU6A6RS8ow0jmCynEQnkBVlROqKCXZ3Zf9YKX08KCmXeF0gKUB6RlSZXOnEWvLzpMCKJszDVcY5Ep4Hk0yb8SErte30bvrwHAwUdRUT921K4l7Al9KymY30bV9f87nVyyYcc6zsyx8jry0m+0Pv4Jrp5PCyhqr2PDHdyALwqPahynB6+zh7QefxY6mS0wEiiLMvvtazPIy3BzvXUpBwLXZ/+tnibX3pLdZJlPWL6F0wQxSOeJIEQjkXVRbmAYyGGTUFWG1cWcZIAb6OPri63jJ9CI5ZkGY6hVL6N19gOiRzEW9wzWV+GcshK5p2pVF919rQHpqeWFTPcHSoqw2q6iA0llN5z39PGgKut94m96dLRk9NYOHj3P0iZcIyvRsrbo1izFC2cNghQ3VBMtKzmlWlmFIOnYe5s3/eH44uALoPdLJb7/ybzDCrMaM/aRS7PjZb4eDKwB7MM7bP/0Nhp17Nbqg8tj5098MB1cAvuPS+vQbxA4dH85lO11KCapWLs25v8rli0kp3X11qQgBludw/MkXh4MrADeW4Pjzr1KxZG7Ggs5CSmrXLecKq2yhadoZdIClDUv4kunvvIHatUsIFBcSKCqgZtVCZr77xqHiiufH8D16drXkbIu3dSLcdACUkiYLPnwHNcvnEiiKECovpmnTaqa/YwOJc5xBKB2HbQ++lLMtORCn70gnUo68T8sQHHtpW+7hO19xfPPbBMzMfUgpSHT24kQT2c8Bjjy7BcvP7qVyXYWsrKLhpmsJ11ZhhEOEayppuHEDVm1t/qFF7YILGJLebbtyN/o+0dZjlC2YhRkJUzyziWnvvhnbCuoyDZp2hdNDhBOQlCI9JKEULvKiFS5UShFzBZG5MymePQ0ATxrEXJ+xVK72bWfEoRI3GkcUp3uo4hiUr15M1YoF6UKjwiDu+aedE3ARZz0nyvOJ9+ZeUw+g53A7xdMb8P1T43VCpIMqfB8lDYTnETvRnXcfsbYu0klkp4IsKSWDIzzHHoznzbdKuQphRShbtWK4yKejBJfBMoYT2snPVSiFEhL7HP+epPJJ9Q1Q2NRAoKgIz7YZPHQU3073gqZ6+qjesJrSRXNQvsJB5MzPC5jpawspcTydo6Vpk50OsCaYsAlefz89b+/FcxwKp9ZTPH0q8YtYuNB1fdyTQcOZZQPOg7RGvszMSAjntLfmuAoHORTT+UQsgdffz8CeFnzXpaCxnsKpDcRdkfecCEMQLAqTGszdk1RSX4F/2nsLSPCjMY69sp3UQIyixhrqls+lfM5UYh25F/0NV5SAlBnBo+/7hCtLR3yv6SKtuduFAC/lsP+1PRx6dQ9mKMCCm66irKkGV+gO53MVkCCSCTq27MTpjxKpraJyyWxsw8IdZV0xJQVVq5Zx4s29dOxrIVhcQN2Kpdi9vfTt2kdBYz0q5XLijZ3E2roIlhZRu2oBhCPYfjqPz7Btjj3/NtG2LsIVJUy5ejFEQjiTuLabpl3pdIA1gYRM6H3zbQb2Hx7eluzsoXfHPpru2Ej0Mh3R9QyT4hlTGWhpzWoLVZRCIAh5JhBGLEH/W9uJtZ6qz5Xq7qV/Twt1mzYQzRP/KctiwS0r2fLL57LarHCAimm12EOBkSVhcM8hDv3+1eHHxNq66diyhwX33ELn9gMk+waz9jNl3WLsM27Svq8oqKvECFp4qeys9Ia1i3ClAXlu7tK2eeT///OM3re2na00r5zNyg9ePzTRQBsNy4DUkeMceXLz8LZ4Rw/dO/Yx412bMArOXrxVSoE3EGP7jx7Fd9MXabSti+49h2m+fjll82cTKCtj+wMPDtcwi53opmf3IZpvXkvB9Ebsrl62/uvjqKHrbfB4Fx3bW5j3nusJTa3POVFC07TL3+V5x56EhACRSmUEVyd5yRRdb+3Kyve5XKRcRe3VyylsrMvYHqosZeptG0jm+RUvBJBIZARXJ3mJJP279+U9J66naFw5h1nXL0GcVqE0XFrITf/1fRA8Va7B9D0OPfla1j5816PlsZeY+67rMnrhZMBk1h1XI/CRMvtPyJYG8++5lUBRJOPN1CyfQ9m8aXl7Tkwp2P74azmHNg+9tpd49+CkLrY63izlc/Tp7M9VeT5Hnng5XUbjbPvAZ/9Dzw0HV6c79OybFM1oouXRF7ILxAKHf78Z03PZ/Z/PDAdXp9vz4POYOfLxNE2bHHQP1gRhmgaDe4/kbR9saaVi6QJGN/dt4om5UHPdauo8FzeewAgFwQoQ90XexZwty2BwX3av1/A+Dx2heO6svOfERjL3ttXM3bScRG8UMxQgWBSmuKqEvr44kO6hiLf15M2Linf0glAs+tAmPDt9kzUCBtEDh+nr7aB09UrOLN/leQoVCjPv3tvwkym8lEOguADPMDLWdMziOLS8tDNv8/4X32bpH1w3eYutjiMhwO4bzBn4AKT6BsFxQVoj78hx8g4R4yti7b2oHMEXpAO5ZO8Afp7Py3dcnME4FGXP3NU07fKnA6wJ5cIPFRgSAoZKVw1XCiMcwhbGqPNRzus1DUHYEgjfQwkIVZSQciHlnC15fuTumpGShIUQhAyF9Dx8PIJ1pXjCQAHx7gG8/ihmwMKMhEicpVdIWhZ9e/eT7OpKbxjqjQhVluc9fN9XJJEQDEMwTALyDoOO2kVOdpdSYCkPlbIBhRkIYMfT1ebNSBhHyomdgH8RssjV2QrA6tE/Tbti6QBrgnBdj6JpjfS8vTdne9G0RlwkY7nLeo6L19XLgd++gJdM9/tI06ThuhUEp9RhjzUAyEFKQYHp07/zbfzUyRpCgnB9AwU19cSS+d+P47gUNjcyuP9QzvbCpinpZPgzzokQggLD58Szr5DsPtX7UDC1jtJ5c3j+W78eLugZLi9m1SdvH0o8z74bRqpK6TnQhiwqpzAcInr4VC9j4fRmHCUYr7uoCFhMXz2XPc9sy9k+c/0CnByFSC8EKQUBx2bHz5+gpKmGwrpKDvzuVbyhmmJGMMDcd15LsL4KZwIGWUpBoKwYpMg5gzVQUgiWefag17KIVJUS7+zLbhOCwrqKjBpYGc1SEiovTg8vJ7P7WaVlYhVFxhx3a5o2MekcrAlCKSAUonhGY1abEQxQuWw+qTGWa7AHohx46Onh4ArAd12O/P4ViMYycpXGS0FQ0Pf2W6cFVwCKxPGj+P09mGb+S1ApIBwhMqUuq80IBSmdPxs7x909ZCjann4pI7gCiLW20b97P1PXzBvelugZ4OAL25l67bKs/QhD0njtcg4+9xbbf/ksgaqa4VysQGkxwerKrHUXx8LxFIvvWE24pCCrrWn5TCIVJRdtan9AeWz7l8ewo3Eq5zax75EXh4MrSK+PuOPfnkAkc6+fOBE4wqBhw4rsBimYeuNabM4+YcBBMuvODYgcxWGbNq7AMy2m374ekaOm2tQbVuIYJnPeuYFcyXOz7rg6PeFB07RJSah8CTBXGM/z6emJXerDIGIKnN4eet/eh2fbFE5toGRWMwklzzrjaSShoEnv69vo3Jp7QeeiqbXUblybcxmX8yWlIOREGdybu0ijtAIULVxKdIReLIACS+D09maWaWhqJOblLtMQwaH1oSdy70wIqtevZvN3H8nYvOZTd6Fcn7bXd2IPximoraBywXT2PfEGPS3pRX1rFk5n6rKpWOEQwdoaYs741zKSUiAdm5aXdnHotT1YQ2UaKmfU4YzzDELTlJSVFdDbG8uoKyYE0NvHth89Rv3KediDcbp2Z0++AKhZOospm1afc22piyVogIrF6Xj9bezBGJGaSqqWzcUxAsOz9/Kdh5MMQ2A5Nsc372Cw9QSBkkKmXL0Yo6QI2xeYBliOQ9trbxNv6yZQUkjd6kWIwoLhMg0ymeLoi9uInugmXFFM4/oliMKCCdX7d7bzcCU533NRVaXz6bRT9BDhBBN3FbKknIprViFUeo3A6BgLfQII5ZPItSjtkFTvIEKdWsx5VPscKuAofR8lBI7KDHgMQ+L15w9afcceWkB6ZDFHYZSUUbp6BaAQhoHrugQEOIbM6EUSIr2ESV5K5Rwy6tjVSnlTFeHaKoJVHtH2Xl773iP4p+073tWHjMzHqiglal+Y3yW+r/ANixnXLWX61QsQUqAMA+cC5sidSUpJrHsAgGBxAX2H2vI+Nt7ZRzrLf2JOb0x5IMIRqq9bjRgqIJtw/ZzXgCnBlD4IiX3atex5Ck9a1KxfRq3vIQ0jvZiz5xMwJbarcKVF9dVXITwPJSWOr1BDl47rA4EgDZtWIXwPYZlIpUAphCFz9sJqmnb50wHWBOT7itTwd+74fPkqIYhUVxA90p6zPVRRgjqjaOZITCmw3BTtL79N/EQXVmGEmlULCZSVkhzqBfM8H6ugMO8+ZCCIYnQ5TJ6nUFIQkYrebTuJHmlDWhblC2ZRUFdN7LSSU1ZkhIWchUjn5ZyhdtE0UIro9kMceyN3HlxBdRl9B45SU1561uMdK9fz4eTw0UUMriBdLDVSVQpAsm+Qgqqy3DlIQGFdRfq6ucjHeC6USq91CSJn4VwpINHdR+fm7cSOdWAWhKlZsYBQZfnwtQzpIdyQFMSPtXPsxW3Y0QQl0+qYsm4JjmUN9eKJvOfC8RQFAQO7s5Pe3fvxbYdIfS3Fc2aMuYda07SJR+dgXSFcT1G1aFbehNya1dlFM/MxDImMDrLnZ4/Rt+8w9mCMWFsnBx58mv5d+wkMvYTvK4yCQoSVeyp8ZGoTiexanDkJAWE8Dv36CXp37scZjJHq6aPt+dfoeHkL4aGfCqbv0XmwnWBFWc79FE1rpG3bwYxt069fRvTwcQ489DRTVszJmS+DEExdPY9gQQGuMbl/lyiVTgIPlRXR8fYB6q6ak7ODSkhBw5qFF7V3bbxJKZCxGLt+/Ai9uw9iD8aIn+ji4CPP0rt1F8HTRmUDUnH8ha3s/n9PMnisk1R/lI6t+3jzn3+FjCfOurZl2ILeLdvofPkN7N5+3FicgX0HOP7bpwnj6RpnmjbJ6ADrChIoLmTGO2/AKjzVw2OEAjTdeg0qHB51PlEAjyNPvpJz1l375u2Y6tTP/ritKF24BCNyWtFNKYlMbUYUlo46STxgCLq2bMd3siOy2JE2VDyBYQj6WjvY/OMnKZo/l3Bt1akHCUHRjKkUz5qe0UNVVFvO1NXzaH99B8r16Nm5n6UfvIHAaecoUBBi8fuux40nKF04A+cKyE+xhcHiD99KpKKEE1v3MffuDViR0HC7VRBm4YduxgsELuFRjl1AKI48uTlnvazOrbsxvFOzNkXK5sQbu7Mep1yPA4+9iDVCb7MQIJIp4kezh1t9x6X3rR2XbSFhTdNym9w/xbUM0jSgtITp77kZZdvgK2QoiI0cde8VAK6bLtSYR7KrF1lVhe8rPE8RVYKC2QuReOkhGtPC9gSJc6gLYaKIHs6s6C4tCyEFXspm8GArJUsWcvClHdjxFE9940EW3LyC2vVr0jdPKWnbfZSScJhrPv9+koNxpGkgI0Hi7acWZx44cBQ3lmDxezYgDAOloKCqFGEaOEgS7uXbWzMaJ3tRfF+RlBZz3ncjOA4oWP5Hd+EmbRRghIM48sLWT7sYhOeS6BqabSoEZiiI5zjDxUNjxzsxG+sBQf/+/Llog8c6EZ4Hwhw+h6f//jBNg9ih7BUJTooda6Ns2SJSeR+hadrlRgdYVxjfV9ieACMIBkN1gM7xJnm2sQwpM24uvq+IpdI5MEHDwLRd/P5BAobELCokpeTobtRDrxupraJ84Wx8x0W5LlZRAV7SxpBDQSTgJGy2/vqljKcXVBbTtHYhRdUlpKSB4/pIJbKGTePt3cSfOPXcOfe+g7g3fvWuJiLLEASljzMQBaWwiotIKUHKE2Ce1ksVSvfsOYoJnXc1akIgDEnt6kUUVFdgD8YwQgGUrzixeTvCSF/LQpCzVMOp/YBhGRRJcGPpkicyEiHlieEh1HzD8+nDkJP46tK0K5MOsLRzpgyTcFU5ic6erDYhJaGKUuI5kuXDJkT3HaT7rV3DP++FYVB/3WqssjKcETq0HCQls5pw40mKmxs49uTL+O6p4ZuKRXNQwKwNiznyxr6c+5ixfhEimJkP5vuKSGVp3oKUkepylDGKgpSXMUsq7LZ2Wje/eWqoTAiqViwm2FBPahKvzKOkwcy7N9L+xk7aXzlV4NWMhJi6aS1WaRExTwGKkqbsemwnzX33daROnGBg775T17aUlC1djCgqxXY8Chob6NuRu0xKYfPYCwlrmjax6Bws7ZzZSjD1xjUZCyCfNGXjqqHq6pmkFLi9fXRv3ZkxdqI8j2NPvkTgLIve2q5P+aJ5VCyYxbFnXs0IrgC6t+/BSyQJhiSNy2dmPb+krpym1XPxcgRRDpLGjauzj9kyady0FltN7twYkUrR8fIbmXlIStH52lvIROKCFKCdKHwp6W85QrQ1c/jPjSc5/LsXOT273zMtmjetzNpHQU05hVXFDOzZm3lt+z49W7YSHIrOPdOkZM6MrOcb4RAlC+YMLR2ladpkoXuwtHPm+wrbCjHng7fTu+cg0WPtBIsKqVgyBz8QxM5xnwhIRcfW/AsZ9+89SHj+XJwRurFsaZI83pF3jbneXfspmTWd5X+wgRnXLGLfM2/h2S7Na+dTNbMBRxo5a3c7PgQb6pj9gdvofmsPqcEohQ01lM2ZRhIjZzHTycJ3Xfp25C5LAdC7YzclK5ZP2l4s03Pp3tGSs81L2qT6BhDFpSilcHwoXTCDJc31tG3egR2NUTqjkZolM+h7K/fyRgDRQ4cJTJtB0vGJzJpJpLGegb0H8FM2kan1hOtqiLuTewha065EOsDSzovnK2JIIvNmUTRvJsKQSM9DAtIQpNzMKudCKZxoPGMf4eoKalYtxowEAYGSPpah8EQ66T47jlKk+gYytsiARfHMJoIV5eD7BIoKwHUJN1Sz7J4bQSl8IbE9f8T7l+2DEQxTvW4pQil8IYjbipMLHQQsOTxLzFESUBhDlSQ9YUzYSuZn43s+TjSat90ZjI9YDNYwJEHhIwR4ZH/uE41lnvwcFS4GynFR3ghBfX8Uq7RsuEaV7QtEJEL9javBT18nnvJx4/mL23qxGCez2BKuQlgRCpcsSh+Dz1DR2gl80jRNOy86wNLGxHV9ggFB4tgx+nfuxU2mCFdXUrF0IbYRGE7w9YUkVFFG7NgJABo3rSNQEiF2pBU3HsMMhQlW1ZLoGSR6tIPqVYuxpTW8nAmke87CddUMHEgvuByuraJs0VwOPreNnifewgwFaFyzgPpls9IV0U8986zvI2IJUu3ttG3bhRNPEqoso/KqRfihMAGhGGzZT2/rMRBQ0DiFwsYGWp94GSeeoHT2NMoXzSbhy8uut0uaBqGqCpInZ9KdIVRVjhK5c4MKAoLk8TY6du/DS6YIV1VStnR+xuc+UUgpiBiKvl17ObH3IEopiqc1UrFoDkYoiJfMPX8vXFmGfUYJB6U4rfq6wrQkgdISEidyr8sYKC/PmA+glCLlTKzzo2na+NM5WNqYhC1Bz5ZtdL26FScaR7ke8ePtHHn8KUz7VPFF24PKqxYCULF4LmbIoH/XDtzoIPg+bjxG7HALgQILI2jR8u+/IeDZGRMWXdenoLEOGbAwQkHKFs7l9R88Rueuw3gph1R/jP2/fZXt//Y0QTH6HqWgCf1v76L9hdewB6Io1yVxopMjjz5FEI/2515isOUQvuPg2w6DLQfp2Pw69euX4yVturft4dBDTxGWl18vljQMSubMyD1DTghK58/OmRsUtgS9W7bR/fpbuCc/97Z2jv3mGSzn7EU3L7awoTjy+DP0bN+Dl7LxbYe+PQdof20btasX5XxOqLwEoyBy1h65lOtTNDs77w/SkzjCU+qv+LX9NO1KpAMsbUykYxNrPZbdoBRdr75JUJ78p8ILhJhy43rK508nevhg9nOAZPtxKuZPR3k+J17eSuCMpKmEL2m68wbKl8xj/1Nb8N3s4Z3eg8ex+wZHnZxt+h79ew5kbY/UVRM9fBQvmd0z4SWS2L29FNRXA+AMxogePo4x0lT+CcqRJg03XYtVfGpZI6uogIYbN2CL3J3c0rFzFs1EKbpf30bQmDg9NKYpiR87gTOYvS5m9PAxQhUl1K9fhgycmmFa1FRP0x3XkfDPfg0pBbawqFy9EiN8WjHWokKq1q0h7l5+14SmaWOnhwi1vIQQSCnwfT/nr3jDkMSPd4JI30xQ4AyeyudJ9fYjlcfJON5VYJSVASPkvSgFykdISfRIG3UoUqfN5EoXwAxQOLWenl88k/fYO3ceom7D8hGT5k++B2dwAGmZ+E5mJnektpJEe0fe57qxGKWzm3ATSZzBGP37D1MztSGrooMQ6QWUff9UTtdo2g1DopS64MOOng9uIEzNxmuQQ5XLlWmS8mXOSvumKUkc68q7v1RPH9L3mSi/3wwUfUPDyrm0v/wmze/YSNH0qXi2gzQNPMMk7mV+HiN9jrar8EOFlK9Zg/BcEAJfGsRdMhYM1zTtyqEDLC2LYQgiJnjxGH4qiVlYhAoEidvZgVaovJSGjetJ9fYjBARKSxg8fJSB/YfSM9yFwJACw3Xob+3EjiYpb6omWDuVVMfRnIvvpguVKqRp5Ez9PZlfJQ0jZw8WgBkaeQkXKQVB5RE/3kWiZ4DS5Usx8OnZ+jZeyk6/jushzOw/kaJpzUQa6lBKkOgZoGjmdCJVJSjHGSqGOlQHSQjChsJPxLF7BwgUFWAWF5HwBL6vkFJgKY9U7yADHb1EKksIlxeDYaCSKQYOtmMEAxTVV+FKgws5i9/zFOk07aH360C+3DWlQFq55mMOEaTrik2Y2mFiuABtLtI0EFKSEgauIdIfn5sZWFnKx+6L0nOsi3BZEYU1ZXimlVH2w3V90uHpydeaOL14mqZdfOMSYL322mscOXKEgYGBrF92Qgg+8pGPjMfLaBeBYQjCOPS8tgV1Wq0pq6iIksVLGEicuukGpCJ+rI3enZmFPcsXzaVswWzswSgekmRbF6987xH803qTquZMYdm71pI4nPlcYZq4SRuUonTujKGaWtk3Ks8waVg5lyMv78j5PqoXTMfO03ullMLvH2Tzdx7CiZ9Kbi6qLWfJezfQ8cJmfMcl2nqcyqXzSHWfKqhaOm8OqbhLojfK3gefz+j1KppSzcy7rwUEQkCB6XP89y9g959aVsgIBZly8wZSZhDTttnyg0dI9J5qX/LBTfTubaVzx6khSyEFs995HaEptRc0yBotz/MprK7K217Q2DBUNHNiBBiOryibP4vokdxL3ZTNn4UZCkIidy2KgO/x6vcfpf+0XjsrHGDdf7kbo7goZ201TdO0MQVYu3bt4rOf/Sytra05hz5AB1iXm7AJvWcEVwDO4CDR/fsITZtF0vbTQ4cDA1nBFUDP9t3UX7eWolnTsBMOL3/3YdQZwySde45y6LX9TJldhtN3ai24gqnTOfbCVgKlRVQsmUssz9p/jqdo2rCU7n1HiXf1Z7TNuHkVKhjIe39P9kV59Z8fyQiuAAZP9LD3yTdpXNBM/679eCmbUHUl4doaEifaMcIhlLQIlobZ/R/PZA0pDh7t4PjL26letwQJdLz4WkZwBeAlUxx74gXqb7qOt37xZEZwVTK1hlTfYEZwBaB8xZ7/fJrlf/JuHGNiLK5sI6lctYyuV9/M2G5GwpQtWZD3c7sUfF8hi4sonjGVgZbWjLZIXTWh+pq8z7UE7Pj1CxnBFaSXYnrpnx7k2s+/D0/qgQBN07KN6Zvhv//3/05PTw9/93d/x+LFiykqKhqv49IuASFAJRNZwdVJyY4OCqbPJAkEJPTuzL3sB8DAwVZKrlpG177DWcHVSQde2MG0dX+ANAzMSAFmUQl9LUeoXDqfYFX5Wdf/S2Kw7GN3MHisk/btLQQKwtSvnIsIh3BGqL4e6x7AjuauW9Sx8zBzbryKUFkJ4dpqYq6geNFCimdNx43F6Xz7EJG6qqzgavj5W/dRu2oBhoT4ic6cj3HjCbxkioGjmfldDctncXzz27kPWkHnjgOUX7XgrHllF4PtKgLV1TTcdgPRA4fx4gnCDbUEKyuIeyLvD65LJeFC2fJFlM6bSf/egyjfp2RmM0ZRISlfEMn3RMfh+FvZEyAAnHiKRPcAZnX5hK79pWnapTGmAGv//v386Z/+Ke9973vH63i08xAwJYGhEgGuEqRczusGJ4TAT+WuBwSkk298HxAYhqB07kzK5s7CHozSv/cATvTULC03nkSiiPcM5t2dm7RRwsCaOgPfh5TvE549E9f1ibtnL76olCKJJNhYy/Rp9QDYtjf8NNOUWL4HKBQCRxgIIbAH8xeFRAGmRaC+Dt/1COLj+RLHihAqD6O8Azix3PWOIL30D75/1vPv2U7WNjMcyhv4ASR7Rj8z8mKwXYWNQWDWrHShUU8RddJFPCeihAsiEKZoWbosg+34KFeRI80OwxAEJTgpL+/KAQDJwThFNRUTLqDUNO3SG1OA1dTUNKG+8K80QggKAzCwZy89rUdRvk+oqpKyxfNJYuGeY7FH31eYhYV526VloaSkIACxloP07d6PbzsEy0qoXLaQ2PETDLQcBiBcW43jQcXMevht7v0V1ZahhCQezw42zvW4bTuzVydswMD+Qxx8ZTtOLEGwrJgpG5Zj1VZSWFOad19mOIAZMGl7+lV69qTfS9msqdRfswzPCGAVRyioLsv7/GBxARgGwhAI00DlScK3CsIIQ2b07kXbeyiqr2Kg9UTO55TNnJJzVt+lNhF61EZLKbKulTMFTZDxKD1vvU1kxgwCBSHsPEF1UW35ZVdcVtO0i2NM86g/85nP8NOf/pT29vbxOh7tHBRY0PHCy0QPtQ4v1Jvs7OLE0y8QEh7nE/t6hkWgNHcAUThjJkpB96tv0LNtF/5QL0yqt5+25zcTqa0mUFqMtEyKpk/FdjwKqssorC7Nub+Fd6/Hy9V9MEYBAzpe3c6RJ1/FiSWGjnGAlgefIXbwKIGiCJVzGnM+d/ZNKzn+0lZ6dh8aKhmh6N17mN0/eQzDc6laMgffcSioKc/5/Kk3rMQ1TBwMyhfNzfmYwqYGRMBi6tWZBS6PvraLKesWnb6+8Kn3VBShqLFmQgZYk4lpShgYoP25l7H7B0kePcqcG6/K+djKWQ2YkVDONk3TtDHd3W666SZSqRS33HILa9asoba2FsPIng7913/912N5GS0Hw5A4vT24sXhWm/J9+nftJTJ/3jkvyRFP+RQtWED80EESx4+DUshAgMIZM5El5ahUivjx3LWhurftpHLZQsyiIhJ+ehaZIwzWfeoudjz0Ese37kf5ikh5EYvedQ2RukrcCxAwmJ5H59bc+WFHn91C2YxGFr33eg48tYUjm3fhux6BwjCzbl5JaV05+zZvzXqel7Lp3r6PsqXzCVdXMP3mNbS9vovu3YdQviJQFKHphhWE6quG1yUsmN6MNE16tu3CS9kIw6B0znSK588mZiumrFuEFQ5y6NmtuEk7XY0+lmLRPbey/7GXSHT3g4CymY1Mu3kNKWGMOFyljV1Q+HRs3T7872RHF2Vz57Dk3evZ/bstpAbjSNNg6up5zLpxBakJUutLuzx885vf5Fvf+hYvv/wy5eW5f6SNh40bN7Jq1Sq+/OUvX7DX0M5uTAHWq6++yv/4H/+DRCLB008/nfMxQggdYF0AhiGIH8897Rwg0d5B8fy5jJBRlddgwic4ZRoVU5tB+SghSXoC5YHq6s77PGcwhlVSTFyZ+EPDk0opUsJg3juvYd4da1Gely7qaaWrZltC4LreuMUNQkCqL3/el5eycZMpnECIqTesoHnDEnzPR5gGRtDk0K+eyvvcvpajlC6ajRMMEQgFmbrxKqZetxzf98EwsYWRXlR6SNxRmI2NNDTWg58unupgELOHeht9Qc3KBdRdNQcv6YAh8S0LX8HcD90CroeQAt8wSan0bMLJyDQlIPC88bsOzpvv4Z2xcPPA7j2EqipY+4c3YBQUIIIBlGWRmmDrLWqaNrGMKcD6n//zf1JYWMg3vvENlixZQuEI+Tva+DOC+afsGwFrTKnGKccfCs5OzuRLF8Yc6TURAiXkcHB1OscHDBMMk4ApCAuPxIkO3FSKcE0VhCMkHDXmG6xS6fc+EjnUy+p4CqQ5PFAe9EY+p2YokK7Q7SkcCcr16dl/jGRflPIZ9YQqS/CFzHgP6eKTAjCG6namgytLgum59O48hBtLUjqjAbO4EGeo98tDwslldybpqKAlwVIeAy1H8OJJiprrMQoLSFzClC4hcvdIpTq7SXV2U331KmyzIOc1rmmadroxBVitra38xV/8BVdfffV4HY82SrbtUdDUxOCBwznbi2ZOx1aS8bw7+74iUl6WrtKdozelcGoDrhi5wGTAAPp6OLb5jeGH9e/cS7C8jMq1KxhMjf3GZRSEMcNB3ER2/11BbUU6byaVfRd3FNSsXMDA4dw9gzUrFuAogSkVqbYuNv/Lb4Zz3w489QaFNWUs++jtJM8ybGQJSLS2se/BZ4fPwZHnt1I0pZrZ775+qDzF5GZJsI+dYP9vXxredmLzdgrqq5h62zXEc1fBuOBcIQnX1ZBoy84rFYbELC4meY7D7pqmXZnGlEAwc+ZMBgfzD8doF5ZnWJQuyE6kDlVVEqqrw3XHv+sjpSR1G9ZwZga9VVRA+bKFZ835CkhF1ytvZMVgqZ5eBvcfxDLHntNiYzDznRuzlkcxIyGm3XYNVp7EZN9XWOWlVC6eldVWsWAGgar0jDHD89j6r6eCq5Oi7b20PPEaljFygGR4TkZwddLg0Q5OvL4Ly7wCAizPpfW04Oqk2PFOet/eNy7XwflIuYryZYswC86ojCUE1VevJjmKxZ817Wx6e3v5sz/7M5YvX87q1av50pe+ROq0Ejmu63L//fezadMmFi5cyMaNG/mHf/gHbNvO2I9Sin/6p39iw4YNLFmyhHvvvZd9+zKLPx85coQ5c+bwox/9KOs4tmzZwpw5c3jkkUdGddxHjx5lzpw5/OAHP+CnP/0pN9xwA0uWLOFjH/sYbW1tKKW4//772bBhA4sXL+ZP/uRP6Ovry9jH73//e/7oj/6I9evXs3DhQjZt2sT999+Pd8b6tIcOHeIzn/kMV199NYsWLWLDhg187nOfy4g5XnzxRT7wgQ+wYsUKli1bxs0338w//MM/jOq9nOT7Pt/85jdZv3798Dncv38/Gzdu5Atf+MI57etMY+rB+su//Es+//nPc80117B48eIxHYh27pKuIljXQF1dLYnjbfiOS7i+FoIhoqkLM67keAqrqJSp77iJ+PETuLE44doqzOJiYs7IhUFNU5I4fixv+2DLIWqnNzO2og2kly4pLGT+R+5i8MgJkt19FNRVEamtwDVHHj5MelC1ejFVS+fQt681vWTPrCYIBUl66TUMBw6eyLuAb9vWfUzftAJE7rXvTFPSs70172k68fouqpfPHVoiaHIyTYO+XbmLdwJ0vrmH0vkzcXJNp7zAlIKYK6i6dh3ewCDJji7Mggih2mpSvjzn0iealstnP/tZGhoa+Iu/+Au2bt3Kj3/8YwYGBvjf//t/A+mJYb/61a+4+eab+ehHP8q2bdv47ne/S0tLC/fff//wfr7+9a/z7W9/m2uvvZZrr72WHTt28LGPfQzHOfUt2tjYyPLly3nooYeyVlV5+OGHKSgo4IYbbjin43/44YdxHId7772Xvr4+vv/97/PZz36WNWvWsHnzZj75yU9y+PBhfvKTn/CVr3yF//W//tfwc3/1q18RiUT46Ec/SiQS4ZVXXuEb3/gG0WiUv/zLvwTAtm0+/vGPY9s299xzD5WVlbS3t/PMM88wMDBAUVER+/bt47777mPOnDn86Z/+KYFAgMOHD7Nly5Zzei9f/epX+f73v8/111/PNddcw+7du/n4xz+eEfCerzEFWA888AAFBQW8733vY+bMmdTV1SFl5o1BCMG3v/3tMR2kll/KVaSQmPVTMQUkXA9lX9ibgOMpHARmfQNBIXA8f6jnauTXFULgJfNftMp1x+2W6nmKOJJA0xRC0xrxPJ+4rzBHkSie8gVYIYqXzAPA8XwsfELKRQqD/uhIhUb9dG2rPIsLCyGGS0fkPO7UpQgrRi9oSSzhg1IoIUn54px7SqXkLOfAHtM5sAyJcByU5yFMA9+yUAoCeOB5CClxpYGdZzkf31fEbJCRYqwZpSg1cgHVgCkw/aECs4aBjaHLaWgjmjJlyvB98UMf+hCFhYX87Gc/42Mf+xiQDkL+4A/+gC996UvDjykvL+eBBx7glVdeYc2aNfT09PD973+f6667ju985zvDNSn/8R//ke985zsZr3f33XfzN3/zN7S0tDBjxgwAHMfh8ccf56abbiIcDp/T8be3t/O73/1uePUW3/f57ne/SzKZ5D/+4z8wh8rv9Pb28vDDD/N3f/d3BALp/NavfvWrhEKnRhE+8IEP8Dd/8zf8/Oc/53Of+xyBQICWlhaOHj3K17/+dW655Zbhx376058e/v8vvvgijuPwve9977xnZHZ1dfGjH/1ouBftpG9961t885vfPK99nm5MP5P37t1LKpWirq6OWCzG/v372bt3b9Z/tAvPdT0c5+LOwnJdH8fxRl1o0XV9QrXVeduD5aV44xxeeN65HePpHMfD93ysVJKDv36Grf/077z1nf8csVBppLIEkSe4Onk8pTMa8rYXTanGz5NofSkJAUUhiX1gPx3PPk/HM8/R88pmzGgfIevcPjPX9SmZlv8cFDZU451nAeOQUBx7YSsv/N9f8OyXf8bLX/93nPYuRHcXh3/9JPt++gj7fvYIfa9to8DMGunO4PsKx/HyBpDpBb2h77W32P+z9H5bH3wS0dOdzjXUtDw+9KEPZfz7nnvuAeC5557j2WefBeCjH/1oxmNOBl8n21966SUcx+Gee+7JKPj9h3/4h1mvd+uttxIMBnn44YeHt73wwgv09vZy5513nvPx33LLLRlL450cwbrzzjuHg6uT2x3HyaiVeXpwFY1G6enpYcWKFSQSCQ4cSPdsn5ww98ILL5BI5P4xVlxcDMCTTz6Znsl9Hl5++WVc1+WDH/xgxvaTn8dYjakH66mn8k9p17QzKaWQBQUESoux+way2suWLiI5wYqCB3yHt370ML6dzrr2bAe7b5Cy5lp6D2VXXJ/7jqtxDRPy9GD4viJUXkqkqox4Z29moxBMu2n10NDYxBqKCluC3je2YPedWljbSyToeeNNyq9ahllYOuqerPQ5KCFUUUKyO3OhboSgfsNVQ2tJnts5sIRi90Mvcnzr/uFtwaIIpFIcenrz8Dbl+fTsbCHR2cOUWzec95B0yIDWx54l2XXqc7QHohx+9Fmabr8Wo7xC92RpOTU1NWX8e+rUqUgpOXr0KABSSqZOnZrxmKqqKoqLizl2LJ1mcfz4cQCam5szHldeXk5JSUnGtuLiYq6//noeeeQRPvvZzwLpYb6amhrWrFlzzsdfV1eX8e+TwVa+7f39/TQ2pos779u3j6997Wu88sorRKPRjMefzK9qbGzkox/9KD/84Q95+OGHWbFiBRs3buTOO+8c3udtt93GL3/5S/76r/+ar371q6xdu5Ybb7yRW265JWskLZ+T5/DMc11aWpp1Ds/HxPuprE1qcUdRdfVqimZOQwyVSwiUlVB7/XrcQGhCLTtimZITr+8aDq5OOvzUa8y8YTnN1yzBCKZzugpryrnqE3cQrD37TTWFYN4HbqR2xbzhRPzCukoWfeR2VGHBhDoHkO6pEY6dEVydrn/nLoLy3I454Qum372RisWzhnv8IrUVzH7fzfjh8HmdA2E7GcEVwPRrFtG5ZUfuY+jsxY/Fz2vFAyHAG4xlBFena3txS3pIUtNGIdeSc+O9DN3dd9/NkSNH2LJlC9FolKeeeorbb7991MHI6XIVFAfy7uvkWp0DAwPcc8897N69mz/90z/lO9/5Dj/84Q/5/Oc/D5DRE/WFL3yBhx56iPvuu49kMsmXvvQlbr/9dk6cSP+wDYVC/PSnP+VHP/oRd911F3v27OFzn/scH/3oR7MS5i+VcVmn5GQX4MDAQM5FTxcsWDAeL6OdxrLSCxe77qnhL9OUSCnxff+CzCA8V7mOUSkYTCmCs2ZRMm82CHA9RdJR+K4a1/cQCBiAGBo6PY8btufRfyhdssEMBylurAFgoPUEu//9SepXLmDd596L8hVKSjzDGFUStFIQV5Ka9UupW7sonc8kJQ4yb2AhpcA0DZRSF33tPykldk9f3nYvkUSo9CLgo6UUxDxB+arFVK9YCCh8IbBV/nMwEiEg1p3dKxoqidDTH83xjLRYWycF5/FL1TAk8bbcKxoA2H2DCN8HTt2IJtrfp3bpHD58eLhH5+S/fd9nypQpKKXwfZ/Dhw8P50tBOl9oYGCAhob08Hp9fXqB+0OHDmXsq6enh/7+7B9D11xzDeXl5Tz88MMsWbKERCLBXXfddaHeYk6vvvoqfX19fOtb32LlypXD20/23J1pzpw5zJkzh0996lNs2bKFD3zgA8O5WpD+blq7di1r167lv/23/8Z3vvMd/vEf/5HNmzezbt26sx7PyXPY2tqacQ57e3tznsNzNaYAa2BggK985SvDMwrOpJRCCMGuXbvG8jLaaYImmK7D4N70QssFU6dglRYjpcDp68GLRQkUFRMpLiVmK7xLMOvJkulj7Nm6F3swRsnMRsLVFaSGAoiAAYadomv7QdxEkqJpjYQrS1Eo+vcfIXa8k3BNOaUzGnEM85xnbln4uNE4B17djWe7NFw1m0hVKfa5dthKSbAoTPXiVZiFETp3tYIQNN+6DmcgxsCRdnzTPJUsfY7HmX7e6cVEs58vBEQsgTcwSPzoMWQwQEFTI660SOVJ0h5vSimMYDD/A6QcOZlpBLarSKe0n3z++b0npSAQyT5G5SuEYaDy/KK1CiLnFXwrpbAKI3nbhWmkz4lKr7oQ8Fz697UyeLSDgupyymZPxTHPfUF2bXL46U9/yvr164f//ZOf/ASADRs2APAP//AP/Mu//At///d/P/yYH/7whwBce+21AKxbtw7LsvjJT37C+vXrh3u8/uVf/iXna5qmye23384jjzxCS0sLs2fPZu7c3OulXigne7hO/5uzbZuf/exnGY+LRqOEQqGMfK7Zs2enf+wNlaro6+ujtLQ043nz5s0b3udorF27FtM0+fnPf55Rz/OnP/3p6N/UCMYUYH3hC1/g6aef5rbbbmPJkiUZSW/a+AuaguTBg/Ru3z28LdXbT83qJfTv3zO8Tl2qqxNhGBTPX0T0PHsEzpclIXXkOHt+c6rGUfeOFoIlhcx67024hiR56Ahtz78x3N676wDBsmLqrllB61Ovpmfh7Wjh2HNbmPP+mzEKC0cdKFooDj61hQPPbRvedviVnVTMqGf5h29KV0gfJVdB0w2r2f3oy3TuOlXQ9eiru6heMI05t67OVa90XBUGBJ0vbs7IWRvY00LpwnkEp0y5KEGW7yvM4mKEIdOfzRkKGupxxrmo7fmwiiIEiyOkBk6tz3nszf1UzG6md1dL1uOFIQnXVmKfx9+H5ykK6qrynpPy+TNwpIEEzESCbf/6KF4q/SO0Ezj8zBss+NAtGMVF+dL1tEns6NGj/PEf/zHXXHMNW7du5aGHHuKOO+4YDnje+c538m//9m8MDAywcuVKtm/fzq9+9Ss2bdo0nDNVXl7Oxz72Mb773e9y3333ce2117Jz506ee+45ysrKcr7u3XffzY9//GM2b948PCx3MS1btoySkhK+8IUvcO+99yKE4MEHH8z6kfPKK6/w93//99xyyy00NzfjeR4PPvgghmFw8803A3D//ffz+uuvc+2119LQ0EB3dzc/+9nPqK2t5aqrci/QfqbKyko+/OEP88ADDwx/Hnv27Bk+h2Mdph1TgPXiiy9y77338ld/9VdjOghtdAw3lRFcAVQsnkf0UEvWIsDK84ju20N49nxiyYsYYPleRnB1Uqo/SttLW6lfu5iDpwVXw+29A/TvO0T5nGa6d6Znkviux/5fPc3ce24nMYrhJyHA7h3ICK5O6m45Tvv2A1QvnzPq9yIEDLb3ZgRXJ3XsOEjDyrkE6qsv2MxNy5JEWw7mnBDQ9/Yu6uprSI3PKP9ZJT1B5aqVdL36WkZAESgppnD2LAaTlz5KcA2TVX90B6/804M48XQ5kGNbW2j+kztJ9fYTP9E1/FhhSJrfcR12nnplo5HCoOn26zj86DMZ5yRSW0nF0vnEXEVIKvb86unh4Ook5Xrs/uXvWfixu84p6Ncmh6997Wt8/etf56tf/SqmaXLPPffwX//rfx1u/9KXvsSUKVP41a9+xe9//3sqKyu57777MsoUQLqeViAQ4Be/+AWbN29m8eLFPPDAA9x33305X3fhwoXMmjWLlpaW85o9OFZlZWV85zvf4Stf+Qpf+9rXKC4u5s4772Tt2rV8/OMfH37cnDlzWL9+PU8//TTt7e2Ew2HmzJnD9773PZYuXQqkF7Q+duwY//Ef/0Fvby9lZWWsWrWKz3zmM+fU2fP5z3+eUCjEL3/5S15++WWWLl3KD37wAz74wQ8Ol5Y4X0KdT//4kGuvvZY/+qM/yppyOhaHDx/mBz/4AW+99Rb79u1j+vTpWVVmE4kE//RP/8Rjjz1GV1cXtbW1vPOd7+QTn/hERpfiufA8n56e2Hi8hQsiEDBI7NpN/57TfokLaLxpA9GWPXmfV7JoGQOpdP5HWVkBvb2xC5b/YRiS1MFWWp94JWd70ZRqymdP5cTLW3O2C8OgYeMa9v36mYztC/7wDlKBs9dpCZiS3b9+jqOv5y4NUlhdyppP3U1JVcmozkNAKnb+/Pf0Hsy9dE75jAbmvf8G7AvUi1UQELQ/8Qx+juF3gJK5szCnTT/vnKxzvSZMQxAyFO7AAF4iSaCsFAJB4uOwhuR4kVJgeS6Dbd3Eu/opbqgiXFmMYUi8eIL4iS6sSJhwTTkp0jlzY/nbMA1BEI9EezduPEmkthIRDg+vpxh0U7z13V/lff6ij92JE84/1HgxXYzviMvF+Z6LqqqJP4pz9913U1JSkncoUWO45/Czn/0sf/Inf3Le+xnTz9/3vve9PProo3zgAx84r5kIuezbt49nn32WJUuW4Pt+zvyIv//7v+d3v/sdf/7nf86MGTPYunUr3/jGN0gkEsPJb5OPwLfPuNEKAWrkP36lfEYzWTRoCkzlDRVnNLGRODmGnwxDEDJADr2uJyRJNz2MJAR4yfxj30JKvFT+duV5SJndU+W7Pozqh4TCTeTfv5vMLGAZsiSm8MHzwDBIKYnjnHY+Fbip/JP4vZSNRBEWCt9xkKaJZ5jY45ZXo/Dd/Ivy+baNEOmbgem5KMdND1mZJraf1ak5Zq6niHogIyWIglLivn/Bi9qeK99XpIRBaEoN4cba9L+VAhdEMExgWhNKKWLe2QvjjobrKVwksroaSwhSvo86Ld7NNXyYcbyOC+dW41HTztv27dvZtWsXX/7yly/1oUwYyWQyozYXnMpjW7Vq1Zj2PaYA67/8l/+Cbdu8+93v5q677qKmpibn9M2bbrpp1PvcuHEjmzZtAtI5Xm+//XZGu+/7PP7443z84x8f7jlbs2YNBw8e5NFHH520AZbrehQ2NTB4sPXURl+BGEowznE3FYYBhslIuTFCQIEF3W9sY/DQUVAKaZmUL55HpHkq8dPWFjRNQci36d+6AzeW7u0zCwspWbiApGHheT5FTXXwfO7XUkBxcwOdW3bmbI/UVRFr7znjPUjMgjCjWV/XU4KG5bM5seNQzvbahdPBSl/yEQsGdu0hfrwNlEKYBkUzZ1BQV09sKGhQhkHNwmkMHu/Kub+axTOIH23n8O9ewbMdEIKKec00bLiKhC/GHOB4ShCurc658DBAZEo9vueROnKCvb9/FSeWrjBf0lzHtFvXkZLmBcm/S+9zYgVWZ8p1jEpxwepS5TsnRiiIEbSyhggBhBQEigvIX9Ne08bH3r172bFjBw888ABVVVXcdtttGe2e59HT05Pn2WmRSISCgoILeZjjqqenZ8RyDZZlUVpaymOPPcavfvUrNmzYQCQSYcuWLTzyyCOsX79+1Llc+YwpwGpvb2fz5s3s2rUr70zBc51FeLaeMKUUrutmjbEWFRWd12ygy4XvK8ySEoJlJaR6T00f7W85TEFtHckTx7OeE5k6jWT+DhAAQqbgxHOvkOzoPvVajkvXG9upRGE1Nw/36kSkovOV1zKCOTcapfvV16hat5aBFMhImOJp9QwcPON4hKBh/TJkYQGRuiribZ2ZzVJSfdUC9j/yQsb2+nVLcKUxqhl6nudTPr2OwqpSop19GW1mKMDMG5bhKfBSKXq3vEXqtC8U5XoM7N5LsQKrrgHH8XFcn7pls2l96W3saOZtMFgUoWpOIzv/9bTha6Xo3nmQ1ECc5js2jLloaspVlC2eT7K9M2th6UBZCUZhIckT3ex/8LmMtv5Dbez86W+Yf+9to8pd0y4cR5o037ialjOua4CGdUvwDANdLku70H77299y//33M23aNP7hH/6B4Bmzgtva2s66HuGnP/1pPvOZz1zIwxxX73nPe4aLsuayatUqfvzjHzNnzhwMw+D73/8+sViMiooKPvzhDw8XZB2LMQVYf/VXf8WOHTu47777WLx48UWZRWgYBu9617v4yU9+wvLly5kxYwZvvfUWDz74IJ/61Kcu+OtfSnEXaq5dx+C+A/TvP4hyXDzbIVRdi1lUROJoK14yiRmOEG5swrPCOPbIv9iFncoIrk7Xs203jU2NOAgCliR26EDucSffJ37kKFbDVJKOz9Sb1tG3+yDtb+zEjacoaqyhYcNVeKEwcVcx5car6d97kO5te/CSNoWNtdSuXYqTtLEiIdxEklBZMQ3rlxGqqyJ5DkNutjRZ+6m7OPj8Ng6/vBPPdalfPIM5t6zCswIIwEsmM4Kr0w22tFBVXzdc3ds2TFZ/6p0ceOZNTmzdDwLql81i2rVL2f/g0zn3ET3ajkqmwBqhtMEoKAVJTOpuvJa+7buIn+hAWiZFM5opnNaE4/ocfvK13OdhIEaiowdZXTnhCpdeSVzPp2BaA/M+cDOtT79GvKOXUFkxUzYso2BK7YRbuUCbnD7zmc+MGBxVVVUNl4HI5/Q6UZeD//N//s+ICzafXGpnwYIF/OhHP7ogxzCmJPelS5fysY99jD/90z8dz2MadnKI8Mwkd8/z+Nu//Vt++ctfDm+77777+PM///Pzfi3P8xkYuDw6601DYKr04rO+kNheOrk3YIAU6ZFD22P4xiolBC0T05SkHB97qDK5EAK6Oml7NndSOkDTXTfhBoKYKAa2vokbzV200SoppnDRkuGEb8OQGK4LpBcFdkXmkJlhpPOGQOFLA1elj8fwPYRSKASeYSClSP9bnNuiwoYAHBfDkoDEkxLP89PFHgd66Xotc8V1IxQiVF0JCApnTCPhZw51mwI4mQ9lmRBP8vYPH8z7+jPvuharoW5celWFSJe/kKh0XpiQuJ4i4Lm8+U//nvd59WsWULV2Sd7zZhiS4uIwAwOJMQ+dGYZEkv7chACBwlPislgqxjAkRYVBEvEUrj9y7TgpBYYk/Tn4jPrzlVJgeB5C+SiRLko70QLf8bweLnfney7Kyi6fITTtwhtTD1ZlZeW4rNdzrv7v//2/PPPMM3zpS1+iubmZrVu3cv/991NcXMwnPvGJ89qnlOKy/ePIddQn82btwSjJnn5O7GjB9zzKZjcTqasiWJxeTDOWHCHDVgiUbeO2dxCa2oBVWpo3wDJCYcKRIAXnOYvzTL7n4cYTDB5sxe7rI1BaQtG0JsxIGJlnmYbTebZDojdF67PbiXX0UtpcS92y2YSLi7BTp/UsSUn5ovkIwyBxIp3r5MfjFJWVYp6R+Hi6pO/lzX0DCBYXUFx6YWeHpQZimJEQbjyZsz1cUUJR0dkzqIuLzz/LWvkKJxZj8OAhZMAiWFpM7MhRvFSKSF0tRbU1mAUTY5ZcLr7j4MTidL2xGycaJ1xbRWFjA2ZBJKsGjhOLE+/ooWtnCwioWDiLUGUZVmRyZamP5XqYbPS50MZiTHfDj370o/ziF7/gPe95z0VLftu7dy8PPPAA3/72t9m4cSMAK1euxHVdvv71r/P+979/eCXuc+H7ioHTChROBmHp0/biFgYOnFqGYPDwcUIVpTTdtoGELwmFwpjh9LDcmYqaGoi2HmNg30F6t++h4cZrSHV24ufodi2Y1sRANIVS+btkR0tKgZmM0f78y8MBTKK9k/69LdSsX4MbLhzx178UED9ygrd+/Lvh53ftPcLBp99kxX13UlRTihEK4iVTlC9eQLytDbv71JBhsqODQGkpJUuWkMiTw2YKSfncJnp2HcpqswrDGAURensvbNkPQwoa1izk8FOvZ7UJQ1LcVD/iMYy1x0JKgWUnOfq7Zyme3kiACB0vnuoNTbZ30h/cS/U164j7E6/WkynB7+qk69U3h7clTnTQt2MvtRvXk5KB4R6qoFAcf+olEqfV0ho8dIyCxjpqr1lJSl3+uW66B+sU3YOljYcxBVi2bWOaJjfddBO33nortbW1WbMIhRB85CMfGcvLZNi/P72Y68mS+CfNnz8f27Zpb28/rwALmFS1X6SUpPoHMoKrk5LdffTvO0R49gwSrqDhpms49rvnM4KsUFUFpbOnceL5V4H0L/3OV7dSsXwhPVu2nOq5EYLiuXNwZSCzxMEYFAQEnZvfyO4dUorOV9+g+tpriI1QwTyEx9u/eDLr+Z7j8va/PcWqP7mbyjWr6H1rO0BGcHWS3deH090NJRU5rwsXmHLtCuyBGNFjpxL2rYIwc957Eykk3gW+nlygbP50ou09dO84MLzdCFjM+YMbSEljVMfgeee3Nl7YgvaXXkN5HkVTp9D5yqvZ+06l6Nu5m8i8eSRHMxX0IgpZcPy1rVnbfceh+/WtlK5aQWJofcz40baM4Oqk2JE2Ut09+KXlE27I73yd7/UwGelzoY3FmAKsr3zlK8P//+RaSmca7wDr5EKXO3bsoK6ubnj722+/jRBiePHGK10oIOnYuT9ve8+uAzTPaCLlCZJGgPpbN6IScdxoHCMYwI3GOPHCaxlruCW7ehCBAJVXX50eKhRgFhSS8iA1njdPx8bLk5zop2xwbMDK+/RUXxTPzt31FOvsw44l8cMhypcvo/+MMiAZj21tpXBJOfkmYiZ8QfMd16JSKZLdA1hFEayiCLYwLtoakAkP6q9bwZSrlxDv7MUMBQiWFV+UY5Ceh903QLC8lFRvb/5jPN5G8fyLu+bZ2UgpcPr78w7xprp7MZQHSEzl0zXC31Lvjn1UXrOalL4Pa5p2mjEFWE8++eR4HcewRCLBs88+C8CxY8eIRqP85je/AdLTKhcuXMjChQv527/9W7q7u5k6dSrbtm3jn//5n3n3u99NOKzHzCGdZDxSkcPT2zxPEQeMUAGG7dD56puUzJ5O7TWr0oVHpSTaeozBA60oXxHzIBQpRLouTjyJFbDANE4tejwkaEksPJTrIgwDVxik3FFU/T5Lu0AR9uzhopopXwz3HliWwPFHvtMp38f3FbZSWeUPznzcSMeiFCSVACuEUR/GUwo3z6LNF5LtA4aFWV+DUoqEYlRVRoUAJ5HEcmyk42IELLzTF68+CwVULF1IsLwUIQSVK68ifux4urZYrgdPMPkWgB5uP+0cjvZvSRt/UgqCQoHrgO8jAgFspF4oW5vwxhRgnexNGq14PM4DDzzA3XffzZQpU3I+pru7mz/7sz/L2Hby3//6r//K6tWr+c53vsPXv/51vvvd79Ld3U1tbS2f+MQn+OQnP3l+b2QSsj1F6awmBg9n18cCKJ4+Bd80wT11k/E8RbikmJp1K+jZvpueben6ZUJKimc0UbN+JRgmEc/j2BMvE29Pl3cQhqRyyVyK580czlkqDAoG9+yl61Dr8M0+XFNN2bLFRO2RgywRsBCmicpRxVwYBm4syeHH07WfgmXF1F+/lqQRIGiA236CQDCMkDJn8BQoChOIhEgocJUg3FCPnaf3JVxfh6MEo4kOJsLw0LkcgxCCgO+y9z+eZaD1RHqblFQvm0P1yoXDS73kI6VACkHPnkMkOtJDrMIwqFwym9IF8+jbcar2XbCiHI/RnceLxfcVgbL8E3SswgKUTNeocoWkeOZUOl/bnvOxJbOaJ9z7mywMKbDsBEd+/xJ2f3qCjREMUHf1cgK11RdsmSpNGw9jKtNwrrq6urjmmmt44IEHWLt27cV62VGZ6GsRno8iCw4//hzJ7r6M7WY4xIx33cigm52YWxQQnHjmJZyBway2soVzKJw5g4P/+VvswexzVbt2GcHpTUgBqZZ9DLYcynpMsKyU0pUrMirEn8kyJaK3i+43tuY4hnn0HzxOtPVUL4kMWEx7zy24Pb10v/Em4YZ6Bvs99v/+jEWlBSy592ZqF0ynrz+O6/oUhSS9r78+XJn+JCMUonz16gmxiPGFEJKKlv/8PYkzCrIC1K1dROnS+Tgj5J5ETMXhB5/EiWZPDKlbuwQv2keqqycdtG24mjjWhAhCTxc0BakDBxjY25LZIAQ1167DDhYMJzgXmIrWh5/Ker+BkiIab7uO2FkK+l4OJuJahAWGT8svf5NeUugM0+7ciFNQdEGuq8m8FuHF8Oyzz/K9732P/fv3E41GqampYdOmTXz605/OqJf51FNP8bWvfY2DBw9SX1/PH/3RH/Hud787Y1+2bfOP//iPPPTQQ8RiMZYtW8YXv/hFpk+fnvG4lpYWvvSlL/Hmm29SUFDAXXfdNbwY9qUyPnPqz8FkrrY+0cQ8aL5tA337DtGz6wDK8ymePoXKRXNIYJBrCR0vkcwZXAH07W6hsGlKzuAKoHPLDqZNm4IUgq7Tl/Q5Taq3D+k5jHTpOa5PsKyCmg3r6N+1B2cwilVYSNGMZqJHOzKCKwDfdlDJFP27dgOQOHac0pkzWfqhTRx6YTuJnkEK6yqYceNKzJJCxGnrHUZTirIVK0geP078WHqpoHB9PeEpU4aXzJmM/HgyZ3AF0P76LioXzcbJs4alEAKnfyBncAXQuXUPjRtXYgSCFM2cjmsG8SdgV0PKVURmTCdUVUH/rr24iSTB8lJKF8wlJayM2WMJXzL1HRvp332A/n2HQApK50yneFYzcVf3Xl0IpikZPNCaM7gCaH91G7U3rGOS/ga6rPX19bF48WLuvfdeSktL2bdvH9/85jfZt28fDzzwAACvv/46n/70p3nPe97DX/3VX/HKK6/w3//7f6egoIBbbrlleF9f+tKXeOyxx/jCF75ATU0N3/nOd/jIRz7Co48+Ohys9ff384d/+Ic0NzfzzW9+k/b2dr785S+TTCb5m7/5m0tyDuASBFjaxeP7MGBDePYMmmc2IYXANUwGEy65gispBU5f7jpXAMp1sxecPo2XssHz0utPj5Db5MYTiHDxiMF2ylUII0zR0qVIFKYUHPz1E3lrPuGn62adlDzRRuHURha9ZwO+7yOEwIsU4p3xa1cpxWBSYVbXU1KbnjTh+GLS9lxB+nNO9g3kbfcdN31TM3P/8jMMQbKrL+/z3UQSIxQmEXXpe+5NajeuGeshXzBxRxEoKaPuunWkkg6ugpirUGdcJ76viPmC8NxZFM2ZjiI9dBhzJv66jJcrKQXx9tzrgEJ6NrRQCvRyUDm5iQTxtuN4iQRGOEykrh7zIuUo33XXXRn/Xr16NYFAgC9+8Yu0t7dTU1PDt7/9bRYvXszf//3fA+k1hY8cOcI3vvGN4QDrxIkT/Pu//zt/+7d/y3ve8x4AFi1axPXXX88vfvGL4bSgX/ziF8RiMb71rW9RWloKpAuS/93f/R333XcfNTU1F+V9n2niFafRxl0q5ZFUBsGSIuwRSikopTAL8xeFFFIirPwxubRMMAyEaYz4nWeEQ6PqyVRKkXQUcQccT6UXr8774hIjGERISfmyJZQtnE+grIT40SPEWvZhd7YTwsXMc8W7rk/cVsRtNeLQ2GTg+4pgcf56PcKQSCv/ufZ9RbA0/1CIDFik+gbp2r6PYEkhaoLfAH1fYQSDpHxByhk5P9BxfRKeIOkJ3FFOBtDOj1IQqijN2x4oKZrw19alEm9ro3Pzy8QOHyLZ0U7s8CE6N79MvC3HBJSL5GTg4zgOtm2zefPmjJ4qgNtuu42WlhaOHk2XF3rhhRfwfT/jcaWlpVx99dU899ypNVife+451q5dO/waALfeeiu+7/Piiy9euDd1FjrA0oYpBTIcxsxTmbpoZjNYFmY49xp7FYtm4wgDB0nBlNwTIKyiQlSenpGROEiqli/I2SZMAxEMUjRnFmWLF5Dq7cdLJOh+/Q2SJ07g9A8Qaz1CxwsvYtqXx3JIF5pZWECwJHe9uMpFM/GM/IG07ysC5aUYodyfY/n8mXTvPghCULF4NvYkD1i1C8NxPEpmNiNk7ttU9YqFODrAyuImEvTv2ZWzjmD/nl24iYv3Heh5HqlUih07dnD//fezceNGpkyZQmtrK47jZOVRzZgxA4ADBw4M/29FRUXWijEzZswYfszJx525r+LiYqqqqjIed7HpAEvLkPAEtddfjVWUefMtaKyneO4sEi40v2MjVlFmD0jpnGZK58/EcX1SjqJ4wTzCNdUZj7GKi6hat/q8Frh1XZ9AXQ0VS+el6wsMMUJBpt52HUlPEKytBWkSqaliYO/e7J0oRe+27bjJPMOMV5AUkjnvvZFQeXHG9rLZU6lbu+SspRqSSqavgzN6PEtmNREqLyF6rINpt2/ANfLXK9O0s7ExaLr9OozgqWBeSEn16sWYFWUXrd7c5STedjx/mRal0u0XyfXXX8/ixYt517veRVVVFV/96leBdM4UnFpw+aST/z7ZPjAwkJEUf/rjTj7m5OPO3BdASUlJxuMuNp2DpWXwfUVcGlRdtw7hOPi2gxEO4UqD6FDSd9IIMPUdG8G28WwHsyCMJwxip6VnRVOKoiWLKVUeXjKFEbDwDYuYe/4lDRKOIjJ7JiWzp+HGEkjLQARDpJTA8xSOVEQPH6V4+pS89a28RALftoGzr2c4mfm+wrGCLLjnNlKDcZxEikBhBN80iY9iRpzvK2wrSNOdN6BsG992sArC+J6Pm3KY/cHbsZXEmWAzB7XLi+MrjMIipr37ZvxkEuX6mIURHCRJPUSbk3eWHqqztY+nf/7nfyaRSLB//36+/e1v88d//Mf88Ic/vGivf6npAEvL4vuKuA9gQcACDzjtl6LvKxIIMIIQDqYLXeaQcBQgwQync+rz3GylFIQNBY6D8jxkKIitZEYvihAQsgSG8lC2Q6AojCsMEo7Kzuca5+9d0xSEDVCOnT4WK0DCZdwKHZoCcBySA3GkKQkUhlGmlZWQP96UUgQKC4g5Cs8MkoD0Zz1K6QK1p66DlA8IA0LWUH0ifQPUxs7zh64zKwwWpPS1NSLjLInsZ2sfT3PnpldwWLZsGYsWLeKuu+7iiSeeYObMmQAMDmbOWB8YSE++OTkkWFxcTDSaPfFqYGAgY9iwuLg4a1+Q7gk7c3jxYrqoAVZ5eTlPPvkkVVVVF/NltQnMMAQhL0X7s5tP5QYIQem82USmNRN3FEJAYUDQu/UtUqetGxiqrKB0yanCpY6nKJz+/7F33mFWVOcf/5yZub1sYytLW8rSe5VmwQJGsaGosUTs3ZjEaIya6M8WjTXWoIkaY4wlNlQUFUSxUpRels6ysPXu3r1tyu+Py1643HuBrSwwn+fxkZ1zZubM7N2Z733Pe75vZ4QsgSQlXcko2+1IViv7ddLchU0RSP4aypcuixmfCkUhvX9/JJf3gF3PU6Ggs/nblSx6az5aJDomu9fJ0Vefij03s9VFlomJyeGFM78A/6aNyacJhcCZf3DKyRUXF2OxWNi0aRPHHnssFouFkpISxo8fH+vTkC/VkE9VVFREeXl5glDaO+eqqKgoIdeqtraWnTt3JuRmtSXNFlg1NTW8//77bNmyhZqamoRoghCCe++9F4gWIG6s+7vJ4Y1DMtj6yZcYezjKYxhUL1+FxeNCycrBIowEcQUQLK+g+qefcQ8YQCBsRFeDeb3Ur9uAt2cPfKv2ysMSgvSBA1Dsdgjs31RWCLAYEcoXL4nbbqgqVYsXkz32KMLNmGqUJEHNhh388J+58dflq+eTh//LqXdfDJaDZ5JnYmJy6KE4HKQV90lMdBeCtN592syqYW+WLFlCJBKhsLAQq9XKqFGj+Pjjj7noootifWbNmkX37t1jlV7GjRuHJEnMnj2badOmAVHNMX/+fK6++urYfhMmTOCZZ56Jy8X66KOPkCSJsWPHtuFVxtMsgfXll19y/fXXEwgEcLvdSZPMhDBXeZgkR5YlgjvK4sXVHlQtXUnO0R2Q0RPEVQPBneWkGzoNvhD1EXB174oRDJA1bCh1m7agBwNYvF5c3boREQf+kbcqEv6161O2163fgK2oJ6F9WF/sC0nTWPx28iXEWkRjw3er6Hb0YCKR9mfSaWJi0n5x5udjTU8/aD5Y1157Lf3796e4uBi73c7KlSuZOXMmxcXFTJo0CYCrrrqKCy+8kLvuuovJkyfz7bff8v777/PII4/EjpOXl8dZZ53Fgw8+iCRJ5Obm8uyzz+LxeJg+fXqs3/Tp03n55Ze55ppruOKKKygrK+PBBx9k+vTpB80DC5opsB544AGys7N54oknKC4ubqkxmbQhVkWgCJClaJpUWBdEmigYGossC4LVqVd4qP56JEjp5NxAdOpu92o1fwRkqwuLpOPp0wcDA1UX1EZ0FOXAp9wkjFgJHWtWJraMLABClRWEKytR6+qwNScXRNfx7ahO2Vy5aQdF7fD7iRBglQWSoWMIQXiPYtutjaJIWES0CLcqpDb7rJqYHGooDgfeou4H5dwDBw5k1qxZPPfccxiGQceOHZk2bRozZsyIla4ZPnw4TzzxBI8++ihvvPEGBQUF3HPPPUyePDnuWLfffjsul4uHH34Yv9/P0KFDefHFF+NWF6alpfHPf/6Tu+++m2uuuQaXy8VZZ53FTTfd1KbXvTfNqkU4YMAAfve733HBBRe05JgOCodjLcI92bu2liIJbGigRghXVhAoK9tVJiYfe0FH/Lum3FoTWZaQKney89sfk7Zb3C6yJ4xFFgbbP5+btA9A7rijQLFQr0v7HXNjaozZLBKRjSXYsjpQtW4rlSs3goCsPl1J75pPuKYKubDrPs1b9zkWdL588h3K129P2j7s7Il0HjsANUWEr7k0pd6aIgusapjyRcsI7qzE4nKQNaQfUpqXYCvX43NZBeGyHdSuLUFXNZyFBXi6d8WvNk/gtccafAcD8z7sxqxFaNISNMsHq2vXrvj9h68oOVyRJIElEkL1+ahZuZzakhJUvx+1vp7ateuo/P47XG2Q+qNpOrYOWUiW5F5JGQP7EjIkVCFhz0m+MMKem4NvwxY2fzAHp9SyL4VQRMfZuTNr3/+KbQt+JljlI1jpY+tXP7Fu1gKcHQubLK4AdElmyBnjkrYpVgudh/ZoNXHVFGRZQvbXsv6tj6kt2Uyk1k/99nI2fzgX/+oSbK3ofOGyCKq+X0jFj0sI19Si+uvxrVpL6Zx5uBoRlTQxMTFpK5olsG644QZeffXVmK29yaGBVTKo+GklRiSMWpcokLVAkGBpKUqqujItSL0myD9ufJyxqZBlMgf3R87IRNN0AmGD9IH9E4xLHXk5uDt1omrZGrRQmKqlq7BaWm7MiiJRtWYzoerE5b/BKh/VJduadY903cCd34ExF5+AZQ9XdHcHLyfccjaGLblj/sHCKnS2z/s+6eqk8kXLUZLUt2wJJEmg+esI7qxIaNNDYXwr12Jtg8+qiYmJSWNoVA7WPffck7AtMzOTKVOmcNRRR5Gfn4+cpF7c7bff3vQRmrQ4kq6hOGyEKlIXUg2UluLJzaeVZ32inlqShewJRyFUFUPXkaxWwoZEYI/oUG3QwDNgAN4efrRgGCQJ/7YdbJnzNYYWjfLUbthMWv9iwgiEEAdU73BfyLpOxbLUZRbKl66lc9fCZt0jVQhyB/fgF327EK4LIMkSitOOYbGgae1rmkaoKmFfimLghkGoohopM6vFp5YVRcK/YVPKdv+WrbiLexBu0bOamJiYNI9GCaxXXnklZdsXX3yRdLsQwhRY7Q4RNf2UUmdQC9F2EYHdxqZKdDFgBEgSDYnoULeyBN+aDUmPIyQJSQicqAQrfVhsVhSPi5AhNdlPSuzrHsnSPotaHyiaZoCsIKVF8zdUgHYmroD9XquQpH0WSm7WqVPUo4udt3VOa2JiYtJkGiWwVq5c2VrjMGlDNElGjUTwdCogVJ447QLg7FRIRBe0J8fkSETD26NbSoGV1rMrNWs3sXXe7qR52Wal26lHI1zuRjuvq0Iie3Ax/tLkkb6cwb1Ro+scG3XcQxVDVrBnpROsqE5oE5KENSONSCvUhotENNxFXajbsDlpu7tbFyLGkfN7MDExOTRoVphi27ZtBPdRODcYDLJtW9sVljQ5MMKaQYfBfdFVsGZmJrRbvF6sHbLb3UoiwwDhcODt3iWhzeJx4+nama1fLozbroXCrHt7Dlaj8cnimqbj7pSHu2NOQpu7MBdHQXa7m8ZrTUK6IH/iKCQl8XtZ3vjhhFupdrxhgGFz4OpSmNBmcbuiAqudfVZNTExMmuWDddxxx/Hggw9yyimnJG3/7LPPuPnmm1mxYkVzTmPSwhgGhGQL9g6ZWNNcaAUFBMu2YxgGzo6FyF4vdaH2+cIKqJA2qB+e7l2oWbkWPaLiKeqMMz+HdW/PSZqAbaga/q1lKIWNryJQrwm6nDyeYFkF5T+tBgQdBvXCnpNJQGuHJlWtiK4bhCw2up55Ir61GwmU7kDxuMjo1wvdYiXUCtGrBgIRA0/fPri7dqZ2bQmGquHsXIgtuwN1kf3vb2JiYtLWNEtg7S+JOBKJIO0jd8Lk4KFpOn4EitWJYnfiysxC0w3CmoEWiv+9WhUJyy4LhIghNcuaoAFFkbAYGgLQhERYMw44fyeggnB4SBsxFHaZiGpqNO8qFaEqH9bOhU1KfA9oAiknm/wTshEIIrpBoAliQlEkrEJHFgACzTAI6VKLR8GEAKHr6KqKQCDbbahNOIdVkVB2VX9WkQmrOppm4EfC1rM7zp5FGEJEFyOkCBA25/e8N/URA2F14Ro4kIbfe12qSuP7QJYlrDSMSaAfQLUJIQSGGkFXNYQkUOz2Iyp6aWJi0ngaLbDq6upiFa8Bqqurk04D+nw+Zs2aZRZ2bueoqp5yFZwkCVwWg7p166jZshUAZ2FHPN2L8Edo8moxlwVqSzZS+tMqtFAYV2EeuSMGEFasB5wnZRgGoUhDXwNdEtjSPUktFQCc+dHpPGkfSev7QtcNou/ypl6zQPVVo+s61WtLCPt8KC4X6X16YfWmE4i0TPRHEhCsruXTl2ZTsqQEp8fJUaeNpe/4/ujSgf25S5LAKRlULVuBb1109Z63e2cy+hVTv8u1fffnJvW4nRaoK9lI6c+r0YIhXB1zyR05sFG/573Z+/feWBwKhLaXsW3RciJ19dizM8gZNQjNmdyLDQBdp3J7OW88+z82rNhERnY6J194In2G9QZlH/uZmJgc0TTayf3JJ5/kb3/72wH1NQyDG2+8kSuvvLJJg2tLjjQn9wPBYxPs/PJrtL3y7GS7jezxY6kNNe0Ft/2Lb/Bv3RG3XUgSRWeeQFC2NSnKJMsSxs6dbPhgXkKbxe2g+1knUq+Jg+JW7VDAt3INzgwPlT8tS2hP61uMpWMnQmrzRJYkCfw7q3ju18+g7WVQ2mNYD0674Ux0ebfISnUv3BbY9P5nqPWBuGMoTgedf3HsAU3JOWTYPu87/FviXeqFJFF0+vGErPY2K6/TgE0B388rqVq6JqGty+QJGJmZhMPx902WJTYuX8djv3064XN59Gnj+cXFU0Bu1kRAu8F0ct+N6eRu0hI0+skwduxYnE4nhmHwl7/8hZNPPpl+/frF9RFC4HA46NevHwMGDGixwZq0HYoiEdi6LUFcAWjBEIGt21DyOjbq4SME6P76BHEFYOg6279eSM7Rowk1wVhK03Rs2Vl0mjSabfMXoQVDALgKsuk0aQxBQ+JgrIgUAoxAAFduB6qW/Jy0T82K1RR0KiTUzHMZqsoHz76XIK4A1v64ltoKH+7czH1O0SmKRG3JxgRxBaDWB6hdvxlL1y77/L0LAUYwkCCuIPp7Lv1qIXnHjSHYxu9wRdeSiiuAbV/+QOdTj0vw0ooEArz80GtJRf8X//uS488+BpvHfKmamOzJ3Llzef7551m7di11dXXk5uYyadIkrr322rgagqFQiGeeeYZ33nmHHTt20KFDByZPnswtt9wS62MYBs8//zyvvvoqlZWV9OnTh1tvvZXBgwfHnbOsrIx77rmH+fPnY7FYOP7447n11ltxu90cLBotsIYMGcKQIUMACAQCnHDCCfTq1avFB2bSdGRZwjCaV0tQEQa1e0z9Km4XQMz5PbCtFG9+QaNMNhVFpm7j1pTt/q07kA2DZIZLDddkGAaSJKHreoJQCGlgKSyg5/Rc9LCKZFEwZIWAamAc4L0QQiBJIunxm4KiyPjXleLKy0KPpAj9GEZU0CjNq3SvR1Q2LUttyLn6+1WMmDpun+V3ZEOnMoUdAkDt+s1kd+m0z9+7LMvUbky9erh++04kQ6eZi5gbhSQJQpWpC4tH6uoxIhH2LBoOEKwPUrG9MuV+m9ZsoXh43zaPxpmYtGeqq6sZOHAgF1xwAenp6axZs4YnnniCNWvW8MILLwCg6zpXX301mzdv5tprr6WwsJBt27axfv36uGM9//zzPP744/zmN7+huLiYf/3rX1xyySW88847dOrUCYjme1966aUAPPzwwwSDQR544AFuvvlmnn322ba9+D1oVmz72muvjf3bMAwqK6MPoszMTMQBJI6atCxOq0DSVSLVFUgWK4rXS0ADtYlTT0KRcXfrgqtjPpHaaG6TxeOhfmspYV9to+NBhmEgWVPnrAg58YVrl0FEwgRKy5GtFhwdMgiW+1CsFixeN0EjvsCzqhkIWcZmg+DOSnRNw5nTAU1WCO7jPsiywC4ZqL4aVH8Ae0Yawm4noCZdmNj4a97P34OU5NobixACWZGTRrAAbE4b+43iCZHUhqEBSVF2Xcu+jmMg7+v3LEm0iENrIzAMA6Hsu1iikKQEK61klSn2xOawtZq5qolJcwj76qhaWUK4tg6rx01G7yKs3raJ5kydOjXu51GjRmG1WvnjH/9IWVkZubm5vPnmmyxZsoRZs2aRk5NohQPRCNezzz7LJZdcwsUXXwzAsGHDOOmkk5g5cyZ33XUXAB9//DFr1qxh1qxZFBUVAeD1epkxYwY//fQTAwcObLVr3RfNTh5Yu3Ytjz/+OF9++WXME8tutzN+/HiuvfZaM7rVRrjtErXLlxHauYcppiSROWQwwuZutBgKa5DRvx+Bsu1U/BjvLeXq0oX0AX0JNHKKR1V1PF0LKfv2p6Tt6cVFqEKm4S3nVGDH1wupWbtHVEYSdJwwgqpVG6jfXk7R6ccRlJSYyLIpoJZuZ8M3C+OUUVqvbqQN6Es4yY2QZYEtEmTrnPlxUSZbRhq5E8dQ14waLKqq4+5UQLBsJxaPm0htYqkZyWpB2Gw0t9aLbLMw8OhBLPp0YdL24pG99zulqxqQ3rcH9dt3Jm3P6NeT/S0iVVUdd5cCWLA4aXt6ry6oom2nbA0DrOlehCJjJBGgjpwsDFmJVjjYA5vTTs+B3Vnz07qEfSxWhYJu+c0uyWRi0tJUr17P1rnfxT0Dy5esoOPEkaT36nZQxpSeng5Eo00A//3vfznppJNSiiuAhQsXUldXx+TJk2PbrFYrxx9/PJ988kls27x58yguLo6JK4imM6WnpzN37tyDJrCa9bX5hx9+YNq0acydO5djjjmGq666iquuuoqjjz6auXPncvbZZ/PDDz+01FhNUmCxSIS2bY0XVxBd/bRwEXal8S8AwwBD1/Bv2JjQ5t+4EXQdvQk5NKqskDdmcMJ2a5qbDkP6EN4lABRFom79lnhxBaAbbP3iOzr07064rp6Ns77EKnZfn6xGKFvwY0LYqWb1eiLlFUlXEdolg22fzU+YwgtV1VC5aCk2pXnRFlWSMSRBxoC+iL2jQ5Ige9RwAmrzIzqaITjm/GPJyMtIaJtyxclYHPb9H0MzsHbIxNUpP6HN3bkAS1bGAU2HqZJC3tihCdutHhcdhvUn3MyE/qYQMiQKjzsqIZoo26wUHjuaSJLHoVAsXHTL+bjTXPHbJcHld/4Ki33/99TEpC0J++oSxBUAhsHWud+lrifaCmiaRigUYtmyZfztb3/j2GOPpbCwkEgkwvLlyykoKOB3v/sdgwcPZsiQIdxwww3s3Ln7y11JSbQW7J7CCaB79+5xRuclJSUJfYQQdOvWLXaMg0GzIlj33nsvmZmZvPLKK+Tnxz+QS0tLOf/887nvvvt48803mzVIk31jkwwqkwghAAyDcHk5coe8xh1TEfhTlKQBqFu/AXuvPgQbaS8Q1sDRrTPdC/OoXlmCWh/E270TtuxM6rXdUQ2LobFt0fLU59+8HXfHHOq2lCEiEZAsWC0SNUsTIw0NVP68ktxjsuK2CQFanR89nDw/qm7TFjIG9SPUjCmtkAa23FwkNPLGjyGwYyeRGh+WNC/OjgUEdSlaj7AFkOx2Lrn/Ujav3Mzyr5fhzfQw9IRh2Dwu9AP0pKuPQIfRQ8kc4Me3egMA3l5dkVwu6g/Q1DOsgb1LId0LcqhetR7VH8BTVIg9J4uAfnAWHKiagSUjg+7TJlOzdgPh6lqcHXNxF+ZhS/cQqK5P2McwDFwZXv7491tY/sMqln+/gtzCHEafOAKH143RxlOdJib7o2plSeq8BsOgamUJuSPbJqJzzDHHUFZWBsD48eN5+OGHgWiOViQS4fnnn2fEiBE8+eSTVFZW8pe//IXrrruO1157DYjaPVmtVmw2W9xxvV4vhmFQU1OD3W7H5/PFJc83kJaWRk1N6tzL1qZZAmvt2rXccMMNCeIKID8/n3PPPZcnn3yyOacw2QMhBHYFZAwMIELU9FNA6gRqQA0EsDTyPSBLAnt+Afa8fLRgkMC2raj+3S8gPRSiqWlDIQ2sNjvZw/sTNYw0CIaNuKkWAUSSrGSDaK6WNc1Nxx6d0EJhZKuM2OWqvucY90YNBBENAk4W2KXoPQ1Wpy73hAGGptHc2fSQBiFkrFYr1i5dsRgGmmZQG9FoSbGh6wZYrHQZ3IOiob1AQDisNfoMARWE3Y1n2EAkSSA0DcnQcSqCMNIBrR4Na4BkxTOoLxBd6VmvGhzM+pYRzSCCjKN3L5wier+CgGMfOXKaZiDbHQw5eihDjxkWPU6k8fe0AVkCNRjCMEC2KAhFMZPkTVqMcJI0hD1JlqbQWjz33HMEAgHWrl3L008/zZVXXsmLL76Ivmv6w+Vy8eSTT2K1WgHo0KEDv/rVr1iwYAFjxoxps3G2Fs16axQUFBAOp04ciUQi5OU1LnJikhxFFti0MFU/LCW4swIhy7i7dcZb3AONaPJ5QyL63tgyMxtVhNdlAd+qEsqXrEQLhrBlppE3vB960E/9li0AWDPSESE/Hqeb2voDr/MnBLitAv/69WxfvxFD07BlZpDWvy9h2RYbpy4ErrwO+LfF5wIpTjvdpownXFOBb9Uy0HUi6Rm4e/QgjAVnQV5SewDYlWcjyURq66hbugL/pq0gCfLGjUo5XslmjU7rtVA5lqjPUuPrIjYWTTPQtOadxzAM0DSMmlp2fP8ToaoaZJuVjH69cBd1wX+A0cu9vaXaA5HI7jEpyoF9U2iuN5QQYITDfP7mPL6e9Q3hQJiu/bpy+tVT8WZnYAiz6oVJ87F69p3IbtlPe0vSu3dvIOo+MGDAAKZOnconn3zCxIkTEUIwdOjQmLgCGDlyJLIss3btWsaMGYPX6yUcDhMKheKiWD6fDyEEaWlpQDSiVVeXKBxramqSBoDaimb9RV9zzTW8/PLLSWsNLl++nFdeeYXrrruuOacwYVfkyohQOmcewZ0VQDSqUrt2PTu+/AbJAG+f3kn3lZ0OJJf7gBNx7QqUfb2Ism+XxLykQpU1bJz9NYZiw+L1IiQJZ0EedevXEtqyEadt3yut9sRpEVR+/2O0ntwuARCqrGLHvK+waqFYjlRYF+QdNSRh/86TRlO3cR2B0lIaksDC1VVU/vgDNqHi6pSPbLMm7IcQZA3qi4zO1k/n4d+4JRpG13TC1T4cOR2SjjdrUD9CxpH54pNlgVFVxZbZXxKqiobZtVCY8oVLKf9+MfZm5qYdaRjhCDPveJEv3pxHOBD9Yrph2QYeu/4Jasurm1xlwMRkTzJ6F6VetSxEtP0gUFxcjMViYdOmTTgcDjp2TF0bNhSKvnsa8qr2tm4oKSmhoKAA+64cyKKiooRcK8MwWL9+fUJuVlvSrAjWkiVLyMrK4owzzmDIkCF06dIFgA0bNrB48WJ69uzJ4sWLWbx4cdx+t99+e3NOe8RhU6Bq0fKk8+oRXy2qzwfeNDKHDaVm+Qq0QHRqzZ6bi7d3MXVhONCSkFIkgq8kuQ9S2bc/03nSaBS7Bf+2qEAJV1diL+h0QMcWQmAE6glXJ58Tr1m6HM+QIQT06NSN5nDSdeqxlM79nlB1LbZ0D0Imdn1xGAZ169dj79aTwsnHsPObhbGVcLaMNHJGD0W12tC2bosJxwaqlq4kZ8xwaje5qS3ZhKHryHYbmYP6Ys3NI3CEulrbhM7WbxcnbavbuJUOg/vRAguRjwiEEOzYUsbWtYk+cLqm887T7/LL2y8A6cC/rJiYJMPqddNx4sjERHch6DhxZJtZNezNkiVLiEQiFBYWAtH8rI8++iguOvXNN9+gaVrMvHzo0KG43W4+/PDDWDQsEokwe/ZsJkyYEDv2hAkTePfdd9mwYQNdu3YFYMGCBVRXVzNx4sQ2vMp4mvV0fOWVV2L/XrhwIQsXxi8PX716NatXr47bJoQwBVYjkYVBoCz5snmA+q2l2L3pRGwe0oePQBg6QggihkRtKGqYeSDfji0WmeC2RJf1BiL+AJLVin/LevQ9poa1+jokxb3fPBJFkQjvrMbWIRMtGIqZljZg6DoWRSKoahgGRDSQvel0OvVYJECxWKhbn9yJGyBcVYmzyMBvKGQeNZJsQ4uak0oyIV1gMQzqt5Ym7GdoGmVff4e3ZxGdTzkeXTeQLBZCOgTa4fRWayPL0q68qzAWtxOL20mwogpjr+LGwYoqpOwcM3/oAFAUiWXfJEb6G1j3c0m0OLf10BFYDZ8TVdUPWauKhmvQNP2w+hyn9+qGMy+bqpUlRGrrsLSxD9a1115L//79KS4uxm63s3LlSmbOnElxcTGTJk0CYMaMGbzzzjtcffXVXHjhhVRWVvLwww8zbNgwRo8eDYDNZuOKK67giSeeIDMzk169evHvf/+b6upqZsyYETvfiSeeyLPPPst1113Hr3/9awKBAA8++CBHH330QbNogGYKrJUrV7bUOEz2hRH1StJDyfPdZHvU7FDTdPwa7DZxPLDIiyILHLJBuKocLPt+wBu6GieuAISi7NdsUZIENjTCFhvC4sCRlY0t3UPNqjVY3S7cXTsTqq4msGULzqwssNnwhwzsFpA0nUh1FcLtRrIkmf5rOIeixNzegyrEZsAbijTLElKy6UMA3SBS7cNAEPHV4S/dgcXtxNUxl7AhEzmMHr6pUGSBXdIJlpUh2W1gt+HMz8FQNbIG9iaws5KKJbtFgmy30kI1qg97DAM86alfbnanbb9mtO0FYeiEA0GWfL+Sqp1V9BlWTE5hDpLVesiYrgoM6v11LPl+GaVbtjNgaF+6FHXC6nAesmJxb6xed5utFtybgQMHMmvWLJ577jkMw6Bjx45MmzaNGTNmxHKu8vPzeemll7j33nu57rrrcDgcHHfccfz+97+PMyq/7LLLMAyDF154IVYqZ+bMmTEXdwCLxcLf//537rnnHn7961+jKArHH388t912W5tf+540utjz4Up7LvZsUSS0zRupXrYqaXvBicdQp+1bGKUqXipLApsaYMf8BRiaTvboEWyY9SV6EjNGd+c8svt3JbRzjyRySSKt7yBq9pHoLoTAKWlsnvU5av3uFXuSRaHLlIlofj/Ve+XxWTPSyRwymLq1q4n4amLn8vYspnLJkqTncXfvgZaWnTIZWQiBU62n9POvEttkmfzjJrDxw3mEqncvFhCSRJcpE9C9aagtZKXQXtjzM4FhoATqKP3sK7IG9yOwo4rq1fF5D+m9umHvkM6O739CyDJdTjsBfwv4dx1s2qTIsRqhsrSCJ3/9VNLm46Yfy4Szj2kxu46mcCD3QWCwcXkJT972HPoeEc3C7h25/sGrkKy2pPu1J4Qw2LB6Pb+/8m7Ce9izFHTK46G/34Xd5UaWzWLPJs2nRbJ3Fy9ezLPPPsu9997Lhg0bgGidwmXLluH3t0/RcigRUXWcXTtj65CZ0JY5ZAAR0fRpBYdisOPrb2PTP7616+h03Ohd5Ux2Y/G4yB89iHDlHlOVQuDu3C225DYVdtmgdO63ceIKQFc1DF1PEFcQFTahHWW7xRWArhP21eDu0jWhvzU9A2uH1OIqioFkteIp6pLQkjGwD2Xf/xwnriA6bbnxw3nY2mDl38HELhmUfvE1st2GZLEmiCuIukPLNiuK20nH444ipB/64qotkGXBT1/9zJfvf80pl/8iob1Tr0LGTR17UMXVgRKpD/C3vcQVwJZ1W3nvH7OQRPu/hqDfzx+uvTdOXAFs27ydJ+/7O7rahGrzJiZJaNYUYTgc5te//jVz5syJ1voSgmOOOYauXbsiSVKsftBVV13VUuM9YqkLGWSMHAaBegLbyhBWK86OeYSRCTW11qAAzV+PEdn9QAmVVyIkiaJTJuIvq0ANhHEVZCNbZNBUHAWd0QJ+JIsF2eGieuUa3N26IeyelKF1oakEdyYWzHXkZBGuTF5I19mxgGDploTtwdJt2HPzyBo2nFBlJbqqYuvQAUOxUbuf2j1WRaJyyTKsHhe540YR2FEOho4jJxvJZqNmzvdJ9zM0nWB5FVJWh8MqT6MBISBS48NQNdw9OiYVVw1Ur95A58nHRGtcHgKCoD2gBkN8+p/P2bF1J5wEV9x3Ket+Xk+gLkC3fl1xZ7hRHPY464j2iCwLVvy0Dk1L/ne24KPvOPmCk1AczSta3poIIdhYsoVAfXLvuwVzfyRQX48lVSqBiUkjaJbAeuyxx/jiiy+46667GDVqFCeddFKszWazcdJJJzFnzhxTYLUQ9WEDoThRirpjGAZ1qk5zTBuFEAn5VADBHeUEd5RjTU+jw+gRGLpG6SdfACA7HFg9brRwOLYa0NmxI8IRTRi1KwbCMEBIhDQIR/SE5OgGZIuS8tuipKRuC5Ztj670K+iGrmr4VQ0jdCBhfAM9GKJq01aEJGHrEC1KXrNmIzmjh+6zqrMaCKHst8jxoYkQAm1Xfp9kUWL/ToYWChPRDFLUkzZJgqEb+H3RSP6Cj77jm9nf061PF2x2G9/M+YHu/Yu44Pe/PMij3D9CCHxVvpTtakRNiGy1N4QAX3Vyv0CILu2P7MO02cSkMTRrivCDDz5g+vTpnHPOOTHDrz3p3r07mzcnX/Jv0jSiDwCtRXJFdN3A4k2dM6AGAuiGgSEk5F1+I1ogQGDHzjirBWt6GnaLwFJfje+nRVT9+B3VC7+DnVvxOGQkqwXJkqjlg5U1WL3epOcOV9dg8SZ+phqwZGQRCkWijtoHqHk0Q+DoGDW+NXSd4I5yAmU7MVQVLRTG4nGl3NeZm5Xym/uhjq4b2DLSAQhWVuPMy07Z190pH800xGwUis1C72G7i94bukHJsg2s+HEVtVV1DJk4aO8a0+0STdPpNahnyvb8LrkoNksbjqjx6LpB996pix1n5WTicLbfCJzJoUWznpQVFRUUFxenbJdlOVaM0aSdoig4C5I73Wb274sqZIKaRMaAvkn7OPJyMSwW9OoKalevjEXEDF2nfstm6ktWIxSFDsP6J+yr1geQ7HYUd+LqKv/mLbg6d026skq225EczkZP16mqjqtTAbI9MRG3dv0mCpIUJwZwFebCIZC82xx0iwVnx3zqt23H260jkjXxRSlZLaQVFxE5Qn3BmoohJE65ZApKki8ZmbkZ9BzY45AQ74YB6Tnp9BiY3Ljx3BvPPiSKX3vTvIw9ZkTStqt+ezEO18HxiTI5/GiWwMrPz99npeqFCxfSuXPn5pzCpJURuoanayFpxT2QLNGXquJ20WH4YIxIGAt69OGflkH2mBFY3NEoj2RRSOvdi/RBA5AA/8bkeTuhigqEoWLv1JH8iaOwuJ1A1Foie+RAcLrIGDoUZ+dOscR6S5qXzKFDCSGT1m8gintXlE0IbNm5uHv3py7YtK/8IWQKTzwaV+eOMfHmyM8he+QQ5KxMupw8EVuGN3aN2UP7UnD0KAKH+ZRYIGKQNWIwGf17U75kOZ1PGIe7c0G0UQjcXQroOvV46nUzetVYDAOc6V5+/8zN9BrcAwBZkRl90khufvx6FEf7FyUNCMXKFXfN4KRzJ2FzRL90FHYv4DePXU9BUcdDQijKFis3/PEKLrr6HNy7otaFXQu458lbGTS8/yFxDSaHBs2yaXj88cd58cUXeeGFF+jatStjxozhH//4B6NHj+b111/nrrvu4uabb44zBGuvtGebhpYg2RJsSRLYAj6qf/oJW4csnPn5IEno4TD1W7YQqa0ja8wY6tToS1WWJWySgYSBISCsS0RUHY/VoGph8gRxxeXG07OYkGSNTkmiIxk6hhCEkWNjsVokrFK0ELBmCEJqNJwvSQK7RcQKS4c1CIWb/gBsuA91vnpkPWpEqgmJkBqdfpVlCSs6wtBBCAzFgrbLY+xwe/Am+0xYFAmriOb2CSFh6DoYoAqJsGa0qM+RJAkURQaMNq9XaLHI0dwzTUcIWt+mgWgOE5pKJBRGCIHFbkOn/azEbIxdhSxBOBBE13QUq4Jisx0SqyD3RJYhUOdH03QUiwW70xn7G2+qdYdp02CyJ81Kcr/yyitZsmQJv/zlLykqKkIIwX333UdNTQ3bt29n4sSJXHzxxS00VJOWxjCitgUAofIKQuUVCX32tGvQNJ14u6tdD54kdXgUpwtP9+6ofj+BbVuQXS6cWdkEVIndi6V2P7jCEZ3dqdW7H9S6blAfavkHd0QzCKgQNWXdfXxN0wkAFlnComvUrlhD2FeHuzAPV14HArp0WK4kbCCi6rvqWjfclwYB0HLXLETUFiJcVUP5ivVINgtZ/bqDzc4BrVVozrnRCdbVM2/Oj5Ru2k6/4b3pM7QXZKTOv2spDMMASY6tsjuU5bqmg2yz02AQc6iJKwBNA6vDtcfPh/JvxKQ90iyBZbVa+fvf/867777Lxx9/jK7rhMNhiouLufHGG5k6dWqcI6tJ+8IwQNjtSBYLepKVM/acbCKGxP5eBaousGZkEq6KWi5IVhueHj2oXr4MY4+VgP4N60nvPxBdtrfrB7Iig1FRydrZX8VWFlavWo/ictDt1OOoF9Ih41jdHnHIsP69efi37fZU2/HjCvJG9idjUO9WE1kC2LhyAw/95snYarcvZy3Am+HhrudvwZWefMGFiYmJSVNodkKFEIKpU6fy1FNP8cEHH/Dhhx/y7LPPctppp5ni6hAgoELGsKEIJd6sVHG5cBf3JnQA4fFgRMfdoxeyI5pf5SospLZkXZy4AsAwqFm+FKelfX8ubOhs/uTrBNsG1R+gdP4P2OT2Pf72jKJIVK9YHyeuGtj+3VIIBFqtYkwkGOCxW59JsBLwVdXy7N3/QA2by/NNTFoav9/PhAkTKC4u5ueffwagrq6OJ554grPOOovhw4dz1FFHceWVV7JqVWK1ktraWm677TZGjhzJkCFDuP7669mxI7Fm7sKFCznnnHMYOHAgxxxzTKxMz8HEzFg9wtE0gwAWskaPIX3wYDzFvcgcMZy0IUOoCx1Yzo1hQG3QwNNvIOkDB2NJS0etq0veV9Mwwu13ZakkCYIV1dHcoyTUbd6OpJtOz01F0VV2LE5dw7T8p9W78rJaFiGgdNN2QsHkHl+rlqwlUFff4uc1MTnSeeqpp9C0+BzLbdu28Z///IexY8fy6KOPcvfdd1NbW8s555zDunXr4vreeOONfPXVV9x111089NBDrF+/nssuuwx1jy/wGzduZMaMGWRnZ/Pss89y0UUX8fjjj/PCCy+0yTWmolFThBdeeGGjTyCE4J///Gej9zNpOzTNoFYDyeZG2D1EdB2jkXlPhmFQFzQQwop7P+UyDE1DSPv09WwyiiJhlwzQVJAkVCERijQuOVvfTyTDaEYOlnVXErmhawhJImJITXbiP1TRQqnvrxoMt0oESwhB0B/aZx/NdE81MWlR1q1bx6uvvsott9zCnXfeGdteWFjIJ598gmMP1//Ro0dz7LHH8uqrr/LHP/4RgEWLFjF//nxmzpzJuHHjAOjWrRtTpkxh9uzZTJkyBYCZM2eSkZHBX//6V6xWK2PGjKGyspJnnnmGCy64IFZguq1plMBKFm7bvn07mzdvxuPxxKpbb9myBZ/PR+fOncnLy2uZkZq0OtHk7ea97A0DDElOmdcFIDucGE20WdgXdouAmkrKl69A3+VGbu+QRdqA/vhVcUDJ6bpu4MxOrPnYgNXrji4/asK72GUVBDZsoHJtCYamgSRwd+mMp7gXda2d3d1O0IVMWlEhlSuS27tk9unWKiv5dN2gU/eOKdszstNxuEyDSZPDh0Clj63fryBQWYsj00PHEX1wZLZtnuE999zD9OnT6dYt3tzV6XQm9HW5XHTu3Dlu+m/evHl4vV7Gjh0b21ZUVESfPn2YN29eTGDNmzeP448/Pk5ITZkyhWeffZZFixYxatSolr60A6JRAuvll1+O+/mHH37g6quv5u677+b0009HUaKHU1WVt956i4ceeoj77ruv5UZrckgQVMHdvSe+lcsT2hwdC2mNFfmyLCH8PioWLYkfS3kFkW++JWvMaOr2HcCIoVsspPXsQs2ajQlt+eOHEUamsWvAbBYJf8k6atfsISx0g7r1G9FCITz9+xOIHP6RrLBmUHDUQKrXbkKPxE+12rPSsOdmEWilBRB2l4PjTp/AnLfnJbT96rfnYXc729wuwsSkNdj24ypWvPlFXLR949wl9DlzIgXDUpuDtyQfffQRq1ev5oknnmDZsmX77e/z+VizZg1HHXVUbFtJSQndunVLyOcuKiqKeXDW19dTWlpKUVFRQh8hBCUlJQdNYDUrB+vBBx/kjDPOYNq0aTFxBaAoCmeffTZnnHEG999/f7MHaXJooao6usND+oDBUZNQIZAdDjy9emPNLyTYCkLCJhvUrEie26MFgmi1tUjSgc09BVXIHjmI/PHDo+VzJIEzrwPdTp+E8KY1aTm3BY3adRuStgW2bUc2jpwXe0iy0OeCX5BR3AUhy8h2K3kj+9PjzEkE9VZcQCArnHbJKVx224VkF3RAlmW69+vGH5/+DQNG9j2s7TdMjhwClb4EcQXR6hor3pxLoDJ1PckWG0MgwP33389NN92EO0mljmT85S9/QQjBueeeG9vm8/nweBK9xdLS0qipiZZrq62N1pb07lV2zWq14nA4Yv0OBs2yaVi1ahVTp05N2V5YWMi///3v5pzC5CAgSQKLEtXeEVVPePHsrx0gGDGQJBvO4n7IAnQDQhqowdaZCpMwUOtSG8WGKquQO6Ud8KqSehWUToV0K+qEwEAzotfU1JewoaqQInEeoiIQy+6wuSxLKIrAMGhUvcWmoCgSsgDNoEWn52RZYJGlqCltWI/de003CEoKuUePpGDCcABUSaa+DUrwCMXCsGOG039UPzAMJFnG6rDjdDsIVR2+RsMmRw5bv1+RMk/U0HW2fr+CHie2bkTn6aefJisrizPPPPOA+r/55pu8/vrr3H///YdVWlGzIlg5OTnMmjUrLpu/AVVVmTVrFjk5Oc05hUkb47JLOLQA6oY1RDasxq76cdt3f0zcDhknQYztGzDKNuIUIdyO5Ku+oiahOrVBHX9Ib1WXbBCxUj/JUFyuRokjm0XgFBHqS9ZRu3wZ6o7tuCwccBQsYXTyvlfGNdT+E0LgccjYw7Xom9dB6QbcsorT1vILfhUZwj4foXVrCSxfitixDY9NIDfThkII8DgVnISgciuichtui4prj8+JYUBYNQjogoAu2rS+oarqyFYbss2OUCwHfSm3iUlLEqisbVZ7c9m6dSsvvPAC119/PbW1tfh8Purroyt06+vr8fvjv8jMnTuXO+64g6uvvprTTz89rs3r9VKXZEV6TU0NaWlpALEIV0Mkq4FwOEwgEIj1Oxg0K4J16aWXcuedd3L22Wdz7rnnxuoObty4kddee40VK1bErRwwad+47RL+tasIV1bGtoXKy7GkpeMu7oMQgsDGtah1uz/I4apKLN403J2KqDuIBfuCusDTvRs1K1cnNkoStqxMasM6irJ/oWJVBKK6kp1Ll+4+/s5yxLp1dBg1ijpDbvRLWRMy9uwOBHeWJ7QpbheGYoWIgcchUbdyKdoeRdJDFeXYc/Jw5nakvoWS4S2KgKpKSvfIWQvu2IlvzTqyjxpNvaQ0OVrncSoEtpSgBwOxbRFfNYo3HVeHAvyHe2FHE5ODiCNz3+V69tfeXLZs2UIkEuHyyy9PaLvwwgsZNGgQr7/+OgCLFy/mhhtu4LTTTuOGG25I6F9UVMSCBQswDCMuD2v9+vX06tULiCbMJ6uLvH79egzDSMjNakuaJbDOOeccJEni0Ucf5Y9//GPsBhiGQWZmJn/60584++yzW2SgJq2LJAl0f22cuGogUlON5qtGttvixFWs3VeDLeBHlh0HzaFdVXXcBR1x+GoJbCuNbReKQocRwwho8SVx9oVNhp1JkjKNiErNsuW4+g8gkNxOKSVB1SBz2GDKF3xHuGZ3DoTidJJ91CjqNbBYJEJlpXHiKrb/ju14s3Oj9QFb4BbbJShb/FPCdkNVqV7yM96hQ6hv5DVCtJahVlsdJ64aUH3VWDM6IIRiRo1MTFqJjiP6sHHukqRefkKS6DiiT6uev0+fPrz00ktx21asWMF9993Hn/70JwYMGADA2rVrueKKKxg9ejR/+tOfkh5rwoQJPPXUUyxYsCCW/L5+/XqWL1/OpZdeGtdvzpw5/Pa3v8WyayZj1qxZeL1ehgwZ0hqXeUA0S2ABTJs2jdNPP52lS5eybds2AAoKCujfv39c4rtJ+8aqCAIbt6ZsD2zdgmuXDUcyQju3Y+1Y1GorwA6EupCOs1cx3l49iPhqkaxWJIeTgHbgtdIkSRDx1aQ06QpXVZHWBCsLw4C6sEHGqJGISIiI34/icCLsNup3WUg4rYK6nWUpjxEu34Elu2OzV7oJIaJCOdU11tQgGTo0oRCx1SIIlyVG6RqIVJVjzSwgFDKjWCYmrYEj00ufMyey4s25cSJLSBJ9zpzY6lYNXq835aq9fv360a9fPyoqKpgxYwY2m42LLrqIpXvMFrjdbnr06AHAkCFDGDduHLfddhu33HILNpuNRx55hOLiYk444YTYPjNmzOC9997j5ptv5txzz2X16tXMnDmTm2666aB5YEELCCyIrhocPHgwgwcP3me/yspKpk2bxkMPPXRQVaVJclK5l+9uSy0sDENHlgVui4ERURGKjCZkgur+TT4lSWAVOiISQdd0ZLuViJCJNMGAM2p1ICG50jEMAyPcBMG3j/sADX5wjRcfhgH1EQOwInlshHWDaIXr3WPc9+9Aa9J590aIfZ8nNtgmnsvi9iKsTvSwimSR0SMBwtUV0ftqGC1wBQcfWYAaCBL0B7HarVgcdgzZrFFp0j4oGFZMRrf8g+6DlYq1a9eyfft2AC6++OK4tpEjR8ZZQj366KPcd9993HHHHaiqyrhx47j99tvjAjhdunRh5syZ3H///Vx++eVkZmZy/fXXc8kll7TJ9aSiTUNMuq6zdetWgkmmQEwOLqoO9pxcIimWtNpz82AfEUlnx674VqzGt25DLDJiz+lA1vAh1O3DSV2SBDY1zIYPvyRYUR3dZlEoGDsEZ7dONDXQ0dT8IV03sOwjKVJxuzAkieYasiYbX0QHW2YWofLEOn0A1g45+CPNj/zouoHFm/pBqzidGJJMU65RaDqVa7ZTvbokunQUcBXmkTd6IMGyzShpmQTaMKG9NZA0lflvzOO7Wd/F3N+7D+7OaTecgbBZTZFl0i5wZHpbfbXggTJq1Ki4OoN7/7wvPB4P9957L/fee+8++w0dOjSW29VeMGsRmgDRHCZLZhayI9HNWrbZsGXnIDs9SFZbQrs9Jw9fyUZ8a9fHTTsFd5Sz8+vvcCipYxZ2NNa8MTsmrgD0iMqWL74nsrMcWW77j2jEkHB16ZLYIARp/foRbKVShKGwjqNj56QrDhWPFyy2FstdihgCT4/kyZ/pA/sT1JowPagIKpesoHrlupi4AvBv2c62eT9iy85H2JwHLU+vJVAk+Obdr1nw7oK40jrrFq/j1XtegSQrqk1MTI5MzCQpkxh1QYP0gYMJ7thOsDSaKG7PzcOel09dKFpGx1Pcl3D5DkIV0TwbW4dsrGmZ7Pz+s6THDFfXICJhINFCQZYl6reVoQWTW6xv+2oxXaceh9bGk0rBiIGzcxesmRnUrStBC4Wwpqfj6dmDoCGjtWLtwNqQQVr/wQS3byNcVYGQZey5+chpmdS24Oq7YMTA1aUL9qxMalatQQsEsWak4+nVkxBK08xUDY3qFeuStgV2VCAkK3WBQ1uARAIhvnl3QdK20nWl1FfX4chKb9tBmZiYtEtMgWUSwzAMfAEDS2Ye7g65YEQjHb7A7pdtjV/D6s3BkZENQFgDKRLG2McLWfXXI3nSE6bFZFng20dCdKjKRxNtp5pNfdhAdnhxDxqMRNSEs041Wn31m64b1AQMrNkFOHMLMAwIqaC1grVBSIWM/DxUu5NIOILVZsPfjGvUI+o+c7tCtX7wph/w8RRFQsHAEIKI1nST15YkEgyjhlOLxKrtlbiyM9rFWE1MTA4upsAySSAS0dldpjnxRRGOaIT3qONss8i7MqeTv1Rkp51QkheOphk4sjJSjsPqcR3UfBZNMzhYlk3hsE4TXBIahRoJs2LJVl5/4R12lJbTb0hvfnHOCbi8XpqiDyRF2efnQHE6OJAqSZIkcFmgfstWfNtKEYqCp0c3JI+X+qYsWmhBLDYLkiyhp/hCkZadZoorExMTwBRYJi1ABBl3l0LqNmxOaFPcLoTVxh6KLYam6bg75SEpCnqS3JXcUQOISPJ+V/WZNAFd48vZX/PMA/+IbVqzvIRZb3zKgy/cSW5hQaOFgirJeIs64Vu3KaHNmu4Fmw0OYIbQpRiUzf06zg8suLMcZ2FH3H16H9Si2IrDzuDjhrBw9o8JbZn5mbgzvc1c/mBiYnK4YCa5mzSbUETH2683zoLcuO0Wr4ec8aN3mXym2FfI9DhzEorTvnujEOQM7YurU0Erl9c5cgkG6nnuoZcStodDYR698xkiocav9A2pBtkjB+HqlB+33ZaZRuGJ4wkdQCFnq0XCt3ptUrPV+i1bEeEg4iD6PGgGHPvLSfQZHW/WmN0pmwv/fDHiIHrumJiYtC/aNIJlsVgYMWLEQa0NZNI61IUMPIMGkj5QQwsEkWxWDFmhXhP7jIRomoHhcNHjnMnogSB6RMXicaIK+aBNzx3uSJJgw+pNKae5NqzdTKCuHndG4orR/VEXgQ5jh5OrqaiBILLNhmGxUK+JA8rtsgidys2pDW/rN2/F2qNns81Wm4MuK0y5ZionXHIitZW1ODxO7G4Hwmo1pwdNTExitKnASktLizMQMzm8aDD5xOIEneh/BzBhousGAQRYHWCN+kGZtC77+600RyZEbSwUsLujG9TGHDF5eMpWkI/IyqYmEMFSWoHD40S225olaCQJwvUBqqprKd8CnnQPFocd3dh/iEwzdEKaStBQEVoEWbdhxUALBqmtqkWSJdxpLhSH3ZzhNjE5QmmUwDr22GPjCi4eCEIIPv3000btY2Ji0nroukG3Xp2RJAk9ydu/U1FHnC7nQRgZqIbAWViAf+PufD5Hz5788N065rz+esx7Kq1DGpf86WLS8rKaJmAMjbVL1vHMn1+kvi5aN9HutHPJLefTd3hfkBK9yBrQwkGefeifzPt4t13DZTf+krzsDrzx5NuEQ9GEQ5fXya/+eCEde3RCPyz8601MTBpDowTWyJEjGy2wTExM2h92h5Nf3XAeMx95JW67xaJw011XYrHbD8p0Vyiik1bck+D2HVH/sTQvGzdXMfvVeJ+1mvIa/vabp/ndc79BsttTHC01dVU+Hrnl6bhpy2B9kKfunMndL95GZn5O0sWQAp1Xn3szTlxldkinS9eOvPjn+Oi831fPU79/jttf/D02j7vRYzQxMTm0aZTAuv/++1trHCYmJm2JJHPsKRPoO7gXr/39bXZur6Dv4F6cdv4UXGkH12rArwpyJ47Fv3kLEcnCx/e8lrRfOBBm1Y+r6T9hcKOMUWUJPnrt05Q5Ye/8Yxa/+v2FJFsDFPDX8/H/Po/bdsKpRzM/hfmorunMf+9rTrzwRNRWNKg1MWmv+P1+Jk+eTFlZGW+88QYDBgwAIBAI8NRTTzFr1izKy8vJy8vj9NNP59JLL42rM1hbW8t9993Hp59+SiQSYfz48dx+++3k5OTEnWfhwoU88MADrFixgqysLM4991wuu+yygxoUMm0ajnBsFgkZHQNBWOeQLmNi0jgUi5UBw/pQ0KUj4VAYq816QPlHrY2uG9SGwdKxMwSDlG+rSNk34A8QCQXRVA2b05F0ulCSBJoaQYuoWGxWNFVnS8m2lMfctmE7ajiCnKQsVDAQRI3Ee01k52Wx5qvVqY9Xsg1d1WmJQt0mJocaTz31FJqWuCjlz3/+M7Nnz+bXv/413bt3Z/HixTz++OMEAgFuuummWL8bb7yRtWvXctddd2Gz2Xj00Ue57LLLePPNN2NCbOPGjcyYMYOxY8dy4403smrVKh566CFkWWbGjBltdq170yiB9f333zfpJCNGjGjSfiathyIL7ELDt3oNoR3lyDYrnl49sKWnH3QzR5O2RZJlFKutSeairUlklyjJ6ZTNjs3xBbCtDitn3zyNLVu3c+sVdxMOhZlw/BimTJuEw+2JReAMNcLGki288cK77Cwtp3ufbky7dCpjJ49m7bL1Sc/bqUdHLFYryWJidocdi9VCZA+n3e1bd5DXOYfqndVJj9e5uBOSLKdctWli0hr4dlSz4vMl+Mqq8OZm0OeYQXhz0tt0DOvWrePVV1/llltu4c4774xt13WdDz/8kBkzZnD++ecDMHr0aNavX88HH3wQE1iLFi1i/vz5zJw5k3HjxgHQrVs3pkyZwuzZs5kyZQoAM2fOJCMjg7/+9a9YrVbGjBlDZWUlzzzzDBdccAHWg2Sf0iiBdcEFFzQq3GYYBkIIVqxY0eiBmbQekiSwGxG2f/5lrMSNWl9P6NsfcHXtjKtXr4Nq5mhi0oBss3HyJZN58U/xnl2nXTOVl/7+Bit/WhPb9p8X/sfsdz7n0Vf+D5vTDbrG3A/m86+//TfWZ2dpBd998SN/eOzXdO3dmQ0r401RhRBMvWgKhhBJFz463S5OOfsE3nrlg9i2T96byy1/vpaVPyZGsRSLwlFTRqOa4sqkDVk59ye+eG4Wxh7fmha/9w0TL5tM74kD22wc99xzD9OnT6dbt25x2w3DQFVVPB5P3HaPxxM3dT9v3jy8Xi9jx46NbSsqKqJPnz7MmzcvJrDmzZvH8ccfHyekpkyZwrPPPsuiRYsYNWpUa1zefmmUwHrppURjQpNDD5sMlT/+lLR+oH/DJrw9ioDUq6hMTNoKTdPp3Kcrp111KrNe/IhwMExGbgZBNRwnrhqoqqjh7Vc+4LwrziYQCPDvZ95M6KPrBs/c+w9ue/TX3HfdI9RU+ADwpLm57A8X4s3KSFmiSTcEZ158KsFgiI/e/gxd06mu9LFu7QYu+eOFvPbof6mvja5KTM9O55LbL8Dqdh7Ukk8mRxa+HdUJ4gqi+YBzn/+Qgj6d2ySS9dFHH7F69WqeeOIJli1bFtcmyzJnnHEGr7zyCkOHDqV79+4sWbKEd955h6uvvjrWr6SkhG7duiUEdoqKiigpKQGgvr6e0tJSioqKEvoIISgpKTk0BNbIkSNbaxxHNNEPj9FmD2EZnVBFVcr24I6dKLnxLuoNn2/zRWFyoAhxYOai+8OQFYYcN5z+Y/tTX1OPK93F3x54IWX/uR99zZkXnsq2jaWxaTmrzYLD5aDO50dTNXaWVoABd7/4B/w1foQAh9uJ1eFA289cqWyxceG15zLtV1Opq6nD4bLjcLuw2mzc+vzv8PvqkCQJh8eJxWE38xpN2pQVny9JEFcN6JrOis+XMOqcia06hkAgwP33389NN92E2518Be2dd97JnXfeybRp02LbrrjiCn71q1/Ffvb5fAlRLoh6ai5duhSIJsEDeL3euD5WqxWHw0FNTU2zr6epmEnuBxGbRcKmgB6oB0lCsjuoj+htsNpo39O8QpJi+TgWGWzCIOKLfogtXg8hQxAxXdZNkiAEGJEIfp+fytIKvFlevFlpyLbmmYJqBkg2O+4cOxZFwmK1pOwrK9H6lYqikJPfgXMuPw2X20ltdR0ZOels21RGOBhGkSRK127DleaiQ34Wks164A7xQsbh9uBw7374a5qBZLPhybbFbTMxaUt8Zam/PEM0wtXaPP3002RlZXHmmWem7PPQQw/xxRdfcM8999C1a1cWL17M3/72N7xeL5deemmrj7EtaJTAuvXWWxFCcPfddyPLMrfeeut+9xFCcO+99zZ5gIcrTpuEXllGzdYtuzdKEp4exYQVJ+FWrMGnIuHIyyGwfUfSdlt2B+pUHZsCkdLtbPh28e6Cy5JEzshB2AoKCJnLzk32Qg+FeeHuf1KydHcCeVZ+Ftc+eAV2r6dF7B9UzWDKWZP4fNb8pO3HTh7H28+8y2lXnsLVf5zBPx74F+Wl0ZWIkizx24ev4+v3FvDgKw/H9nGnu7ny/svwZGdgpkuZHMp4czP23d7K04Nbt27lhRde4G9/+1ssulRfXx/7v9/vj/V5+umnOfbYY4HoYjhVVXnssceYPn06brcbr9fL9u3bE85RU1MTK7nXEOFqOFcD4XCYQCBwUEvzNUpgffvttwgh0HUdWZb59ttv97uPaUyaiCwLpJAf/57iCkDXqV29grSBQwmryfdtCUKqTvrAfoQqq9HD4bi29H69iSAhBEihIDsWLEwY445vFtFpSgbCYjenDE1iCEPj9SffjBNXABWlFfztlme58dHrEJbmr+YxDIOCTvlMPOko5n70dVxbYdcCho8ZxNO//zvjTh7DPx56NSauAIZNGMyyBctZ+nV8TkhddR1/+83T/OaZmxG2xtdgNDFpL/Q5ZhCL3/sm6apVSZboc8ygVj3/li1biEQiXH755QltF154IYMGDeLiiy+OjrVPfNH0vn37Eg6HKSsrw+12U1RUxIIFC2IL5hpYv349vXr1AsDpdJKfnx/Lydqzj2EYCblZbUmjBNZnn322z59bgo0bNzJz5kyWLFnCmjVrKCoq4v3330/o5/P5ePzxx/noo4+oqakhNzeX8847j0suuaTFx9TS2BRBYNPmlO3hnWVYMvOJtNI8nGFAQFfIO2Y89dtKCW7fgWy34elehGa1EYwY2BSJqkWrUh6jaulK0oYPMaNYJjHC9UF+mr80aVv5tgpqq2rx5mS1yLlkq43Lf3MRJ51+DO+8+hGhUJjRE4bRsWMeL933bxSLQigUjhNXAKMnDef1h/6b9JiBuiCl60sp7NvNLNpscsjizUln4mWTmfv8h3EiS5Iljr58SqtHsPr06ZOwIG7FihXcd999/OlPf2LAgAGoajSCsGzZMvLz82P9li5dihCCgoICACZMmMBTTz3FggULOOqoo4CocFq+fHncNOKECROYM2cOv/3tb7FYoukDs2bNwuv1MmTIkFa93n3RIjlYq1evZu7cuWzduhWAwsJCJkyYEFOYjWHNmjXMnTuXQYMGoet60iTZ+vp6LrjgAmRZ5rbbbiMrK4sNGzZQV1fX7GtpCyQBWiiUsl0LBpBaOfCnaTq1Gih5HXHndwSgXtUxdtkzCHQifn/K/SN19YgmlgS2WSUswsAAwrogYlZ3PiwIhyL7TGqvrawlLTer2VFPWRZEgiEMXadrUWcG9etNMBDi5zk/8eG6jwDwZnjwVdUm2VciHAwnbG+gvLSCTv2KaF6560MTIaCu1k+ovh4Q2JyOuIUuJocOvScOpKBP56gP1o5qvDnpbeaD5fV6U67a69evH/369UPTNPr378+dd95JRUUFnTt35qeffuK5557jzDPPxOFwADBkyBDGjRvHbbfdxi233ILNZuORRx6huLiYE044IXbcGTNm8N5773HzzTdz7rnnsnr1ambOnMlNN9100DywoJkCKxwOc8cdd/DOO+9gGAaSFC0toes6Dz/8MKeccgr33HNPoy7w2GOPZdKkSQD8/ve/j60U2JPnnnsOv9/Pu+++i9MZLUp7sJZhNgVVB8XlJlJTnbRd8XhpK82hqjrJZiN1JBwdsghVVCfdz94hc1cB2wN/EUmSwG2F+o3r8e/ciZAkHPkFeAsKqA3q5nTjIY7dYUOxKqgp5rcz81LbHxwohhZh1U/r+M9z/2P75jIKuxUw9YIpbF65mS3rdruz+31+MnMSc1EC/iCeTA+1lYniC6Bj945JC2Af9ug6ZZvKePnJ11n101oystM58+JTGDxmIFILTOuatD3enPRWXy3YVGRZ5plnnuGxxx7j2WefpaKigry8PC699FIuu+yyuL6PPvoo9913H3fccQeqqjJu3Dhuv/32uHI6Xbp0YebMmdx///1cfvnlZGZmcv311x/0GS1hNGMd9f/93//x8ssvc9555/HLX/6Szp07I4Rg48aNvPzyy/z73//mggsu4A9/+EOTjt8gsPaeIhw3bhznn38+V111VVOHnoCm6VRWpo7YtCRCCNyKim/ZT4ltsoy3/2B8gZZ9yCuKREaGi6oq/wF/K3VJGhvf/YSE+iOSRJdTj8evN84ry2sXVP7wPYYa/wJWXC68AwZRG2z9F1tT7sPhSkvfC0nAZ699yievJaYO9BrSg4v+cCHITf9OJ9D57J0vePVvbyS0XXzTuaz7cR3Lv18Z23ber8/mq9nfsnrJ2ti24sE9GDl+CO//fVbCMbI7duCqv1wFltQrFA9HZFli46oS7rzqgYQI5LGnjOe8a85GUo6se9LUv43s7ERLAZMjl8Rqpo3g3XffZerUqdxxxx0UFRWhKAqyLFNUVMSdd97JKaecwrvvvttSYwWiCXQ7d+4kIyODK6+8kv79+zNy5Ehuv/12/PuY0mpPGIZBCAue4j5Ie0T3FKcLb98B+NtJqZqQUCg8cQIWz24fE4vHTeGJEwiJxr0orRaJ+k2bEsQVgOr3o9X6kGVzQcShjG7A0WcdzQnnHRezURCSYPixQ7jo1l82S1wBhOoDvP7s20nbXn/+f0w8fVzs554Du9N3RG+uuPNXDJswGLFrzn39ik1kd87hlMtOxu6yx/r3HlbMlQ9cjjiI0wkHi3AgwNP3vph0evez976kvvbQeK6amLQ3mvXEU1WVQYNSr0gYMmQIn3/+ecr2plBeXg7AAw88wAknnMDzzz/Phg0bePjhh6mvr+evf/1rk4+tKM3Sm41CNyBsceHuMxBhaIBAFxJBDYQwUJSWFRuyLMX+L0kCw+CATCB1l4eCEyZAgzCyWIgggd64MVplqCnfmbI9WLYdW490IqJ1o0p73ocjnVa5F4qVSedOYvwpYwkGgljtVuwuB0jNrwywo7waVU2+8KO+LoA3y8Md//g9ikXB7nIgWy3U19SSlp3GDfdfiaZqIATzPlyALEmc9/vpuDwuvJlevBluVEOgafFFmRVFQteNwzrpvb4mSOmmspTtq5euZfRxow7re7A35nPCpCVolsAaN24c8+fP57zzzkva/uWXX8bVEGoJGvIjunXrxgMPPADAmDFjUBSF22+/nZtuuolOnTo1+riSJMjIcLXoWJuCoxWPrYXD2IkQqfUhWa1YPB5kmw0htf5DRAuFEHLql6xQFFyuthkLgNfbmnf60KJV7kVGcvfm5lBu33d0yWq30aVn/N9+uD7AJ29+wcevR6ctO3XvyBmX/oLa2jrWrt1Acf8eyLV+tq7eTKfiTngyPDjcDiq2V1JZVsXm1ZvJyMmgY/d8MnMzUSyHnzdzcD+Lg1xuJ2lpzjYaTfvCfE6YNIdGPS2qq6vjfr7hhhu48cYbufbaazn//PPp3LkzELVa+Ne//sW2bdt45JFHWmywQMw0bO+k9tGjRwPRVYhNEVi6buDz1Td/gO0Ul03Ct3I54ardLr9CkkgfMJCIxbnf8iDNRZYFzo6F1K5NrB8H4OjYkRpfoNUT3WVZwut14PMFdkUrjlwOtXvhSfPgSXdTW50oCPIKc3C4HVRVxU9nWWxWRhw9hG/n/EhhUQHTrp7Kg7c+Sa1v9zG69uzMtb+7hEeufIyxU49i9C9GM/OOF9mydmusj91l58r7LqNDp1za/51qHBabjUEj+7Hku2UJbYoi0624S8J9Pdxp6t9Ge/iSbtJ+aJTAGj16dIJxqGEYrF69mjlz5iRsB/jFL37B8uXLmznM3XTq1GmfqxJD+7A/2B+Ha9Kz1SJRv2VznLgCMHSdqp+WkDliFLWtnPelquDJzsayo4yIzxfX5ujYEV2xEQm13f3XNP2w/X03lkPlXljsdn77wHX8+dq/oEZ25/LZHTZ+fe/VWGz2hOsQQjD9mjNZu7SE0y6ZwkO3PxUnrgA2rNnEG6+8y/CThvPZa5/TsWfHBBEX9Ad59rbnufnpm5Dsh1dUQ0gyl996MX+YcTfVlbv/NoUQXP/nK7AewXYNh8rfhkn7pFEC65prrjnozuxWq5WxY8eyYMGCuO1ffx11dO7Xr9/BGFa7xiobVG/bmrzRMFB9NciO9FaPYtQFddx9+2ME6gluL0XIMvb8AnTZSn0biiuTQxPdgIKiQh79z7189em3bFi9ieIBPRgxcSh2tztp3T/DAJvLxZ3P/Z5NJZupqfIlOTJ89+Vipp49ma/e/oqv3/uaoccM5vP/zo3rE6gLsn3Ddgr7Fh1W+UiGAa40Lw++9CeW/ricH75cQl5hDsf8Yhwur4dmroUyMTliaZTAuu6661prHDECgQBz50YfbFu3bqWuro6PPoqaB44cOZLMzEyuvfZapk+fzs0338zpp5/Oxo0bY75bDdOUJrsRBhhaald4LRhEtEGKhWFERZYkO1C69AAE/oiKcQhMTx2u6JqOFgxhaDqSIiFZbQcktIUAyTAwIhFAIFkttIWpv2EIbG43J047YdfPBqqqpxQ8igRGOIJVkamrTZ0CoOt6zF26trKO7oOT/0HUlPvoIouDKrBkAZFQCAwD2WIBWTmgBSv7QtcN7G4Xx592NKOPG4WmGa1WScLE5Eih3WVsVlRUcMMNN8Rta/j5pZdeYtSoUfTv35/nn3+ehx56iKuuuoq0tDTOOeccbrrppoMx5HaPDsgOB1ogkLTdkpZGfZJv/602Ht0gHDYf3gcbIxJh3hvfM/e/c/HX+MnpnMOUy04mp1s+xj5W/cmSQK2r5/NX5rDuh1UIISge249x049G2O1tIj729/KXJIEIhfjmzfms/moZCDjuptNS9nd7XdEQGdC5d2e2b0gsMAtQ2LPjQas8IEkCNRDgw399wjcff48aVukzvDdnXj0VZ6YXw2iZ2QVVNafFTExagmYZjR5OtKXRaFsjyxJ21U/1z4nGporTiaf/IOrawOSzPWAajUYRusbHf/+AJV8sSWib/vtz6TqkV8pIlgiFeOm3zxGqj893dKW7Of++GejtwKhT1iK8ccfL+PdwbB9xznje/egLFn+bWB3i4mvPobakkpKfSrjmsWt45NrHUPcScV37duHC2y+Ag+RsboRDPHrTk5Rvi6+vaLFauPX532BP8zRrkYj5t7Eb02jUpCUwJ9ePADRNx7C7yRgwANlmi24UAntODmkDBuEPmRr7SCPsDyQVVwAfPPc+WjCYtE2RYNGH3yWIKwB/dR1rvl2BcpC9gxRFYuOidXHiCmDh2wu4aMaZTDlzUswINS3Dy6U3nk+WOw1/jZ+rHrkad7qH0685Dc8uqwnFIjPyxOFcdBDFlSxLrFu6PkFcAUTCEWa99BHC/K5sYtKuaHdThCatQ1gzyMjJRTjdoOkgCcK6aPGSPCbti6h5rogz6JQkwfb1yafAIFqUOVwfwpqWKCb0sErJwrVJ9oqy5tuV9BrXn7b47iZEtKYZGPFRBl1n3XerEvprYZVPH3+X/pOGcNZbDxOJqFhtFmyKBUPXGX7CCJAVNN1g8LFD6T+mH8H6IJIkYXM70JFQ5KjxaFvbWkgSLPpiccr25d+tZGoojNTwBWovGkyUj/TIlEnb8NZbb3HrrbcmbL/sssv4zW9+k7D9008/5ZprrqFnz54JpfFqa2u57777+PTTT4lEIowfP57bb7+dnJycuH4LFy7kgQceYMWKFWRlZXHuuedy2WWXHdSFeabAOsIIRBpM2Q0aU6jZ5NBCNnS0QIh1i9eihiN0GdwDe5oLVcgYhoHDvW+rAdmSIgdLEtj2KDGzNw6PI2oW24rvcSGASITqHVWs/nE1rjQ3xcOLURx2DCEQkoQ9xfXpqk7pis0MPWUMmit6jfIe00GaphGur2fxl6vYua2c3kN60bFrPrqqsXPDNjav2EhGfhZd+nVFctgSynS24lXjSU9t3ur0OKPFIPfC0FQCtX6WfP0zakRl0FED8GR4EUdYbUGTg8Pf//53PJ7d06a5ubkJfYLBIPfeey8dOnRIeowbb7yRtWvXctddd2Gz2Xj00Ue57LLLePPNN2MFnzdu3MiMGTMYO3YsN954I6tWreKhhx5ClmVmzJjROhd3AJgCy8TkMEM2dFZ/sZjv35wf2/b9G/MpGlXMUb+chIpMVscOWO1WwsFwwv7dB3fH4rAn1UjCojDi1DG8+3BiwWWAYb8YjWYIWlW8RyK8cs8rbFqxafe4hOCc351D0ZCehAIhuo0uZs2CFUl3H/KLUdGCzntHoQydLWs2cf9Nj+322XoR8jrlct0dl/DfB14jHIjeL8Wi8Ms/X0R6YQ5tsaAwEtEYd8pRfPne10nbjz3raCx2e1xkzVBVPnvrc95/6aPYtreef48xJ4xk2tVnmCLrMKe8tIIFH3xD+bYKOhRkMebk0XTIz2rTMfTr14/MzMx99nn22WcpKCigsLCQpUvj8yMXLVrE/PnzmTlzJuPGRWuNduvWjSlTpjB79mymTJkCwMyZM8nIyOCvf/0rVquVMWPGUFlZyTPPPMMFF1ywT+/M1sTMwTIxOYwQAoJVtXHiqoGSb1dRunwjsiwh221ceNeFCZGqtOw0TrvudIwUJYs0zSC/uBO9xyb6zQ2dMhJvXmazLQP2hSwJFrz3dZy4gqhdw38e/A+R+gBv/eN9li1dQ99JgxP2LxrRi479uiSd4gv663nwN0/EmZgCbN9cxv9e/pBBx+0+nhpRefXPL6OHEgVqa+HOTOPUS6ckbO89vJhB4wfGXZMQUFG6M05cNbBg9nes+3mdWWfvMObbj77j7vPvZfYrn7Lws0XMfuVT7v7lvXz70XcHe2hxbNq0iRdffJHbb789afu8efPwer1xJfeKioro06cP8+bNi+t33HHHxQmpKVOm4PP5WLRoUetdwH4wI1gmJocRiiz4cfYPKdsXf/AdJ/Xpgi7J5BQV8Ju//4ZVP6yifGs53QYUkVeUj2Sz7dNqQZNkJl50AiOmjmHNNyuRFIleo/pg9TrRRfOLOu8LNRji63cXJG0zDIPlC5azce1mZv3nE87+1amc8OvT2L5iC7qmk9enELvXiaEkiV4Bm9ZuTRrRA/hx/hJOPOMYvn9/9wsqHAhTubWcrKKCVi/xBIAsM2ryaAaNG8jiL38i6A8yaPxA0nMyYK9olCTgk/9+lvJQs/41m+4DuptRrMOQ8tIKXn3wP7G6vQ3oms6rf/kP3Qd1b7NI1i9+8QuqqqooKCjg7LPP5tJLL92VNxnl//7v/5g6dSq9e/dOun9JSQndunVLyKMqKiqipKQEgPr6ekpLSykqKkroI4SgpKQkobReW2EKLBOTwwhDNwjso6ZmsDYQ9XuSwECQVZBF/6OHxBK3dd04IB8rTZKxZ6UzbOpRqPUhNFUDzUC2SS2WAN5gZqqFwhi6gWxVQBZJVzA24KusxbKrIPPrL77L2//6kF79uyPJEmv/8RanXTCZydPzk+9bXZt0O0S92zQ10XurvraeDkI0K2onoRMJhtA1HYvNimyzJnWlj3ZWsKd5GXfaRIQAVdWSijtd05PWbGygzudH13VaVw6bHAwWfPBNgrhqQNd0FnzwDadcenKrjiE7O5vrrruOQYMGIYTgs88+49FHH6WsrIw77rgDgM8++4xFixbFjMST4fP54nK4GkhLS4tNJ9bWRv9uvV5vXB+r1YrD4aCmpqalLqvRmALLxORwQpLoNqwXm39an7S504BuCKsSl4TelHprQoCsqnz12pesmPszmqqRlpPOxIuPp0P3AnTRvOknSRIYgSCf/vMT1ny3EkM3yO6cwwlXTOHosyfyxetzk+5XPLwX3y/cnccRCUdYtnBl7OcBI/qmFIBFvbukHE9WbiaRQGJ0K7dbXpONVRuMQ//33Pss+fLnaJStSy7TbjiD7M55GPu4h2oSsbcnskVh8NiBrFi4Omn7gFF9sdjbMknfpK1IZuWxJxWlla0+hvHjxzN+/PjYz+PGjcNms/HPf/6TK6+8krS0NO69916uu+66/eZoHcqYk/AmJocRqqrTeXARrozEFWeKVWHIqaNpiZX6kqby3l/eYOmcxbHITs2Oat598L+Ur9vW/PyeUJhX//gPVn+zAmOXgNm5aQev/vGfDJkwEE9m4vXldcsjp3MuZ19+WtJD9uxXRHZ+dsrpPG9mGoOPGpC0bdqMU1j0UfzUa+8xfbC5ml74WQsGefLmp1n0xRL0XaJv+8Yynrz5Gaq3VyAlWRV4oKiqzrCJg/FmJn77t9mtnDj9OFNcHaZ0KNj39F9W/sERNJMnT0bTNFasWME///lPJEni5JNPxufz4fP5iEQi6LqOz+cjHI5+mfF6vdTVJUZia2pqSEtLA4hFuBoiWQ2Ew2ECgUCs38HAFFgmJocZusXKaXf8kp5H9UXaJXQK+3XljD9fhORMbbFwoAgBdeU+ykpKk7bPe+lTjHDTk79lWWLrqs34yhMLMxu6wdxXP+fKB6+gsGdHACxWhaNOHcMld/8KLBYKunbknuduo2uvaF1Sm8PGqeefyO/+cj1KCp8oAMVq5fJbL+KMS36Bc5fNQ0GXPG756/UU9e5K0B81X7W77Rx93rFMvuIX6PsoKbQvJEmwZc3WpNEEwzD43zPvoUciTTp2Axank9uf/i0jjx0W+xwMGNWXO/7+e+ye1JYPJoc2Y04eHft9740kS4w5eXQbjyiRkpISNm7cyJgxYxgxYgQjRozg/fffZ926dYwYMYI333wTiOZRrV+/PmEKfv369bGcK6fTSX5+fiwna88+hmEk5Ga1JeYUYQsiyxKyLGEYZqFUk4OHrhtgsTLq/EmMPHsiGCAsMpqQ0VrAU0CWJbat3JKyvXp7FXpEBTn+8SKEwGKJGoPuqxalLEus+yH51BbAlhWbsDpsXPini9EiKkISKHZbNG/dACHJFPbowu2P/YZIOIIkS9icDnSd/SajC4uVk6afyDFTx6OrOrJFweqIiq0L7vkVuqohyRKS3ZY6T+oAUBSJFd+tTNm+ftkGDE1DyE1/ROu6gdXt4rybpjPt6tPBAIvNCrJyUItVm7QuHfKzOO+35/DqX/4Ti4xCVFyd97vpbW7V0MCsWbOQZZm+fftSWFjI6aefHtf+3HPPsX79eu677z66du0KwIQJE3jqqadYsGABRx11FBAVTsuXL+fSSy+N7TthwgTmzJnDb3/7Wyy7SnXNmjULr9fLkCFD2uYCk2AKrBZAlgVOi0D1VROpqkJ2OvFm5xBQIaKaDzKTg4NqEL+6rIWWuum6gTsrdc01xaogyVKcj5asq9SUVrJq/jIsdgt9JgzAnu5BS5JnZBgG3uz0lMd3pbmi/WQFaZcA2TutStcNJIsV267SNo2ZDtN0A8XmgF3BrljOlmJBKBYMaJa4guivIiM3I2W7O921y1G1eRgGICQUe1QkGrGNJoczo04aSfdB3VnwwTdUlFaSlZ/Zpj5YM2bMYNSoURQXFwMwZ84cXn/9dS688EKys7PJzs6me/fucfu8/fbblJWVxa34GzJkCOPGjeO2227jlltuwWaz8cgjj1BcXMwJJ5wQd7733nuPm2++mXPPPZfVq1czc+ZMbrrppoPmgQWmwGo2QghcikHVoh/jQvp1G9aT3n8ghuJAbebD2MSkPaHrBvk9OyJbZLQkkdp+xwxCslljokbRNT567H9sW7k51mfxrO8ZcvJIBv9iNNpe02yRiEa/owew4K35ScXAyNOOQthsSa0WDhUiEY3BEwbywQsfJl2BeMy0o6NROfPZYdJEOuRntfpqwVR069aNN998k+3bt6PrOl27duW2227jggsuaPSxHn30Ue677z7uuOMOVFVl3Lhx3H777TEXd4AuXbowc+ZM7r//fi6//HIyMzO5/vrrueSSS1ryshqNMFrTFfAQQtN0Kiv9jd7PaZOoX72cSJKloEKSyBg+ktrgwb/FTa0Of7hh3ofdNOdeyAJqNu/g7fteixNZ+T0LOPnmM1ElJXaOdV/+xNx/fJL0OOf838XYszMSdJRk6Gz+aR0fPPFOLMkdoNfo3ky6dEqCKGsOB+0zYehs+Gkt//y/f8VN5fQb3YdzbpoW9etqQ8y/jd009V5kZ6eO7JoceZgCaxdNFVgeG1R+/23K9vQBg6iX7Ac9Km8+PKOY92E3zb0XsgAjFKZs3TbqqurI79URV6YXXZZjn3dJU3n7T69QU1aV9Bh9Jg7gqItOTJqzKGGgh8JsXbGJoD9I535dsHldTU4sT8XB/EwIDNRAkJJlGwjU1tN9QBGuDE9C/lpbYP5t7MYUWCYtgTlF2Fz2o5wMTUXIzTMiNDFpSWRZYATDhOrCVAVDCKuCEKLRXwI0A7Baye3XjXxJoGk6mgGKEKihEJFgGJvdQiSFOzpAyB9CpDixjgCbjc7DegHR4x9ur30Dgexw0HtUXxqu0cTE5PDAFFjNxJCkaGmRUHJ3acXlRg+Z4sqkfSDpOut/WM2X/5pDoDYAQtB9WA+OmzEZrLYmfRHY0/1d1jUWffQD37z9NeFgmMHHD6XLoCJWzPs56b7F4/qxvzSjaB7S4f03dCRco4nJkYbpg9VMAhHw9uiVtM2RX0DYMG+xSftAliW2Li1h9jPvR8UVgGGw7oc1vHHPvxBq83yXZAkWfvgd8/79Raym39K5P9F74gAs9sSVPBn5meT1LDSjNiYmJocl5tu/mWiagWp3kTF4CBavF4RAttvx9CrG1qkLwbD58jBpHxihEPP+lbwAcOXWCnxllc1yBtACIb7539dx29SwyicvfMwvfnMWvY7qi2JVsLnsDD1lNKf98Xx0i1ls2MTE5PDEnCJsAUIRg4hkw1ncD1mAbhiENEEwaIork/aDFtGorUh0R29g+9ptpHfOa3KCczgQQg2rCdtL15Xy2j2vcuG9v2LsL49FIJBsFnQExkFOppYkgSwJIhE1rjSNokgYuo6QpCM+4dvExKRpmAKrhdB1g/q4XCszn8KkfSEpEha7NWXSeVpuRrMcvi02y65k+cRjhINhLHYLvgof373/Lf4aP33H9qP7kB4Im+2gOIsbkTBb1pfy5btfoes64045ik49C/H76pn7vy+p2F5J3+G9GTxhIBan03Q/NzExaRSmwDIxOUKQbVYGnziM799ZkNBmdVjJ6ZbfZBEhdI3K7ZUUDe3Buh/XJLRPPP8YFn+2mC9e+yK2bfUPq0nLTmPGA5fBPmoEtgZGJMy/HnqNpd8sj22zWC2UbyvnP4+/Fdu27NsVzHrpY3771I040tLM1cAmJiYHjJmDZWJyhKDqMOzk0XQf1jNuu91l5+w7L0DYmy5y1ECI1+9/jdGnjiavKD+uLSMvk14je8eJqwZqdtbwxWufIze/KswBI0mCTas2xYkrgLEnj+G/f/tfQn9/bT2vPvw6hta8RQAmJiZHFmYEy8TkCEKVZCZdeQoT6gJUbNmJK92FNzsdw2ppcvRKUSRWL1pLOBDm9Qf/w7G/nMSEDkdTs6Mad4Ybm8vOir3EzJ4s+Wwxx5x3LFjaqGaYpvH5W/PiNmXlZVK2uSzOUX1PVi9eSzgQwuoyH5kmJgfK22+/zT//+U/WrVuH0+lkwIABPPnkk9jtdgA+++wzHn30UdavX09BQQGXX345Z555ZtwxwuEwjzzyCO+++y5+v58hQ4bwxz/+kaKiorh+69at45577mHRokW4XC6mTp3KjTfeaNYiNDExSY0iC0Q4Qrg+iCTLKA4bmiw3WRBpQkL2uOg40Et6upOqKj9aMxO51VA0uhOsCzLrmfdRLArONBdBf4COPQvJ71mQcl9d01us0oEQoKph/LV11Pvr8XjcuDweELvd3w3DSEjGl2UZNaLuOoZgzIkjGHXcMAxNR7YolKzcmNIQ1cTEJJGnn36a559/niuvvJLBgwdTVVXFggUL0LRo1YYffviBa6+9lrPOOovbbruNb775hj/84Q+4XC5OOumk2HHuueceZs2axe9//3tyc3N55plnuPjii/nggw/weKLO+TU1NVx00UV07dqVJ554grKyMu6//36CwSB33HHHQbl+MAWWiUm7RsGgbPE6Fr0xj0ggmpyeVpDF2MumIHlczUq8bql8IlXV6T60B5/+c/bubREVX3m0Pqdkkegzui/zXp+XdP+ew3siWZVmu7QLAcH6Ov7vj4/w1RfR8lWKInPqtMlcfu1FWGwOAGSrhdEnjmTtzyWxfcu3V9CxqCMAF99yLv7SamY/+g6aGn0ZFPTphO0EC0aKJH4TE5PdlJSU8OSTT/LUU08xceLE2PYTTzwx9u+nn36agQMH8uc//xmA0aNHs3nzZh5//PGYwNq+fTtvvPEGd955J2eddRYAAwYM4JhjjuG1117jsssuA+C1117D7/fz5JNPkp6eDoCmafzpT3/iiiuuIDc3ty0uOwEzB8vEpJ0iywLf5h189/KnMXEFULOtgk//8jpypP3kBDm8bvqN75+wXbEoTLrwBDzZaRSP7J3QbrFbOPGSyRii+Y+icCjIrTfcHRNXAKqq8da/32fm0y8D2q5tOn2G9yK3U06sn67prPhhJdNvOItwhZ+fPvoxJq4Atq3YzNv3/gepmWasJiZtRemWMmY++i/u+c1fmfnovyjdUtZm537rrbcoLCyME1d7Eg6H+fbbb+MiVQBTpkxh3bp1bNmyBYD58+ej63pcv/T0dMaOHcu8ebu/sM2bN48xY8bExBXA5MmT0XWdr776qgWvrHGYAsvEpJ0iVI0lb81P2hauD1G2cjOy3D7+hHVZ5vhLJnP6r88kt2sunkwPA48exBWPX40jKw1dUjjl2qmcfuMZ5HTOwZPpYejxQ7nmiWuxpXtaZIqwprqGJQuXJW17+z+z8NfWAlHH+U/fnse0607nhHOPo0N+Fpm5GaiqxuAx/fj5k4VJj1G1rYK6Cl+zzFhNTNqCj//3ORdOvpZXn3uLz2d9xavPvcVFU67j4/993ibnX7JkCb169eKpp55izJgx9O/fn+nTp7NkyRIANm3aRCQSScij6t69OxCNgDX8Pysri7S0tIR+DX0a+u19LK/XS3Z2dly/tsacIjQxaacIw6B6W3nK9vJ128gb0gNNS9ml5cckBBI6hqYjWRTUPQoJ6rJC12G96TygCEPXka0WNEOg67vbe47pR9GQnhiGjmy1ohmknOaUZYEWiSAJCZLknCmKQAtHkCQZZIkd23emHLcaUfHX1ePypKNGVFYsXMX7r3xM/5F9mHDGOCRJsOSb5WzdUEo4kLo4ddW2Ctz5WbtqB5qYtD9Kt5Tx0B+fSliwoakaD9/xNAOH9yW/sHWnzHbu3MnSpUtZvXo1d955Jw6Hg2eeeYZLLrmE2bNnU1MTTR/wer1x+zX83NDu8/lieVZ792vo09Bv72MBpKWlxfVra0yBZWLSTjEAT3Y6tTuqk7anF3ZoU/NLydDwlVby7f++pq6ylq6DujPo+KFIDltMRGmaDrICMkmLOKuqDkr0sZNKo0iSQA0E+eHzRSycuxi7086x0yZS2KMQFAuyLFDrg3z34UKWfb0ch8fBhDMn0L2oC5IkoeuJ2VySJOF0OYHotGVB1zzWLlvPz98u5+dvd69wPOH0iShWJakjPUBaTrppOGrSrpn1xqcpV8NqqsasNz5lxo3nt+oYDMOgvr6exx57jN69o6kBgwYN4thjj+WVV15h3LhxrXr+9oIpsExM2imGxcKAU0bz9cyPEtpki0LHgUVE2qiMi2To/Dz7R+b/Z25s2/Z1pSz88DsuuG8GljRPyyXN1wd46NpHqdmjrM+qhasZftxQTr9yKpGAypM3/A1/jT/WvubHNYycPILb7rqBe+54JOGYk6ZMxOV2A6DpMHn68Xw565uEMX/1yXcMmDSERbO+TziGO9ODNyc9pTA0MWkP7C/XavvWHa0+Bq/XS3p6ekxcQTR3qm/fvqxdu5aTTz4ZgNpd0/YN+HzRv/mGKUGv10tdXV3C8X0+X9y0odfrTTgWRCNhe08vtiXtI4HDxMQkAU3T6VDciX4nj0LsUSfP5nFw3M1nolvbrlCyFgzFiasGwoEws5/7AElvmXlKWcDHr34SJ64a+GHOQmp2VvPZvz+LE1cNfPfh94wcMYT+g+KT6Y+aMIKbfn8lQtr9fdKTlcZ191yG3WmPbbParPQb0Zthp46m11F9446RnpfBmXecj3EQPXVMTA6E/U3/5XXM2Wd7S9CjR4+UbaFQiM6dO2OxWBLyoxp+bsinKioqory8PGGab++cq6KiooRj1dbWsnPnzoTcrLbEjGCZmLRjIkgUHT2YorH9CFTVIlst2DwOdEUhxSxAiyPLEuuXb0zZvnn5JrRQGOz2lH0OlEgoxPef/piy/dvZ3xP01aesebj062U8NvN+ysvKqa6qITunAy6PG8Wyl0u9kCke1of7X7mT6opqANI7pGO121ERjL/oeI46ZyJ1lT7sbgdWtwMsTTdjNTFpK6acNYn/vPBO3CrYBmRFZspZk1p9DMcccwxvvfUWK1asoE+fPgBUVVWxbNkyLr74YqxWK6NGjeLjjz/moosuiu03a9YsunfvTmFhIQDjxo1DkiRmz57NtGnTgGhUav78+Vx99dWx/SZMmMAzzzwTl4v10UcfIUkSY8eObfXrTYUpsExM2jmqASgWLNmZAESAZptGJUGSBERUIv4A4WAYp9eJtKt8jpFEWKTnpjNu2gS8WV4idQEcsgQWCyr7X2YnCzDCYQLVfmRFxuayEw6EEBY56bkaMAyDky44nrFTRiIUmW8++p4lc38CoFNxIb1HFFO7swZFl+nWtQsWuw0dgSIMjFCEYG09ilXB4rKjKxasLid5ditqfYigL4CCQLbb0IQEDjveTg7UUIi6mjqCgRCedDdWp6NFbCVMTFqD/MJcbv7zVTx8x9NxIktWZH5z99WtnuAOMGnSJAYMGMD111/PTTfdhM1m47nnnsNqtXLeeecBcNVVV3HhhRdy1113MXnyZL799lvef/99Hnlk9xR/Xl4eZ511Fg8++CCSJJGbm8uzzz6Lx+Nh+vTpsX7Tp0/n5Zdf5pprruGKK66grKyMBx98kOnTpx80DywAYZiueUB0OqayMnHa4XBBUSQyMlxUVfmjicZHKOZ92M2e90LXDfT6AO89+F8qtuxauSig7/gBHHXeMYSDYZ6/9snYvlmFHZhy+cl89685sSR8IQS9jhlEv5NHEdlH9oFs6KxbsJyv//05WiT6AnB4nRx32UnU7qhmyc/r+ObjxBwogGv+71K+f2kOIX8Q2SIz8ORR1AZDbFy5iUHHDuY/j71J3a7pQ6vNwhlXn8bgcf1Z/uEPrJyzOBb18mSncfyvz8QQgncf/C8Vm3fGrrnPuP6M/eWx6LJCoNrHU7c9T9nmaN6KkATjTh7Dyb+aDHLbTdG2Bebfxm6aei+ysxNXvB0sSreUMeuNT9m+dQd5HXOYctakNhFXDVRWVnLffffx+eefE4lEGD58OLfeemvc9OGcOXMSSuU0GIo20FAq55133sHv9zN06FBuv/32mKVDA+vWrePuu++OK5Vz0003HdRSOabA2oUpsI4MzPuwmziBFQzzxp0v4duZuKR52CmjGDp1DD++9w0L3oz6ck27dTo//msOwdpAQv+hZ42ny7iBqEnmMCVJUFWyjXfv/09Cm6zInH7bdCKaxlN3vkhtVXzS6sCx/Rk9diDfvhrv5TPhsslY0pw8dvNT0VWMe3Hdg1fw07/nUl8Vnyw78cqT+fylOUmvecjJIxk4eTj3X/lw0nywky86iaOnHXNY2TWYfxu7ORwElsnBx5wiNDExoa68JqnQAFjy8Y8MPHE4gyePpMvAIn76dCFGOJJUXAEs/fB7uozsHbVr2AuhqnzzemKyPESXkG9YvA7VH+Cquy5m2cI1LJ7/E3anjYlTx+GQZL7+5ycJ+1VuLGNHfSCpuAL48JVPGD9+MEs/+C62zeKwYgiR8prXfrOS3P6dk4orgDn//YKjpoxGboG8MxMTk8MTM5HAxOQIR5IE1durUrarYRUtrKJLMhld8jju8imEUogrgLA/iJ4kwRbA0PV9nqtqexUY8PmjbzNoVB8mTT+GK/7vUkJbq5j/wsdJ/X10A7aWbEt5zB1bduJId8Vts7sd1JanNiC0ueyUbUq93D1YH4wVhzYxMTFJhimwTEyOcHTdIKMgM2W7xW5BsSkNnamvqsOR6U7Z3+5xICly0jYhy2R2zEq5b1bHLPyVtWBAKBimpqoWSbHg7pDo0tyAJKBLceeU7XldcqmviJ9uDPjq8Wanp9wn5A+S3zUvZbvD7UCxmBMAJiYmqTEFlomJCe4sL+n5yUXW0JNHItltyLJE5ZYdPHblo4Q1HUd6cpE14JTRYEueAG7IMmOmH520TbEqdOrfle2rtpDfpzNrV25gyLiBhEIq3Ub0QklxzK5DezL6pJEo1uSC5+QLTqRkwYq4bWoogqHpKYVl7wn9yS7MISsveftJ503C6nIkbTMxMTEBU2CZmJgQdY0/4w/nktejILZNkiUGnTScAccPQ9UMtFCItx59E13Xee/5Dxj9qxPI6JS9u78iM+AXI+k0rBeqmjz5W9cN0go6MOnKk7E6dq/u8WSnMeXG01n8ztcU9O9Kz5OGUjy8GKtr19SezcYpt52LZ49IlsVhZcKMk/AUdMDqcnLDw1eTvkdUyuF2cPEffklu51x6TRwQF1XLKOxAdlEep992Lnk9d1+zkASDThzGoBOHI9ts3PjXa+jcqzDWLisyx08/llEnjjysEtxNTExaHnMV4S7MVYRHBuZ92M2e96JBLEiaihoIEQlFsLnsSHZbrDRM2FfHY1fu9qjxZnk5etoE8jrnYmg66XkZWLxuIgcgPGQJ2JUoLykSVrsVLRwBITAkgSFLWOz2OBEjyxKEw0TqQxiajtVtB6sVbZdvliQJtGCI+lo/hm7g9DqxOBxouoGy63xRewcFxWFFlxUMA2RDQw+GCQZC2Jx2ZLuNBn0ohMCIhAn6A4RDYZweF1aHHf0AvL4ONcy/jd2YqwhNWgIzicDE5AhFkgS+8hp8ZdXUVdWRkZ+Bze1EuJxYXdFi03tqJUmKFxW+Ch8f/WM2k345idzOOZRuKCMtO4Qr04OwWvfpeq7pRM1TM6LTfhqAJRrRErv+2ztC1FBIWvIou/fZ8xyGjoRBpC6Iqmq4PE4MXQMk1F3nk9Oi51P33FdRyOqUFnuZ7hl8MwwDFAv2NAsN6wWPbOlhYmJyoJgCy8TkCESSBPWVPl6545/49lhN121QEVNvPBM9icWCxWEjv3s+petKgWjO1Pl/OI8vX5/HnH/MjvVLy0nnl3+6CIvH1WalZSTDoHTFRt555C0ioQgQne4bf87RDDphGLqUPOnexMTEpLUwc7BMTI5AjFCIl29/MU5cAaxfUsLnr3yCLBKFkbBYOOumaVjt0UjTiJNGsHD2j2xesSmuX82Oal654x8Y4XDrXcBehOvqefOB12PiCqLlfeb9+3N2lJQmRN9MTExMWhtTYJmYHGEIAb6dNdRW1iZt//mLn1ADoYTtum7g7JDO9U/dwHG/nET/sf1Z9e3KpMeo2VlDXWVyk86WxmKRWPTx90mLPwPM/88XoJqeVSYmJm2LKbBMTFoARRIomhr9T24ff1aKLJA1FVlTo0neuxBC4EvhUA6gazpqOLkg0XUDYbcz8tSxOL2ufRZmrq2sRYjWjxwZmk7F1oqU7TU7azBSuLybmJiYtBZmDpaJSTOQZYEIhVn24fds+G4lkizRfVx/io8djKZY2iwHaU+EEMhahBWfLGLlFz+hqRpFI4oZcuoYDLsNXTfI2ofZp9VhxWLfdyFjVdWj/WyWuGm5PcnIy0wZVWpRJInO/bqwbuHapM353QuQLDLJveVNTExMWof28VXbxOQQRQqH+fCef7H6iyWE60MEawMs+/B7PnnwdeRIcuHR2shqhFn3/4dF735DwFdPuD7Eyrk/8dYd/0SEolN/zjQ3BT07Jt1/7JnjkR37r7Gn2G2MOW1s0rZOfTrj8DqbfhGNQFV1+o4fEMsN2xMhBBPOOwZdmI86ExOTtsV86piYNBGLLFj9xU9Jix7X7qyhdNkGFKVt/8RkWWL7qi1Ul1YmtIX8QZZ+/COKLDAUhbNvO5c+Y/rEpvEsNgtHn3csgycNOyATTVWHoZNHMOHsiVh2uawLSdBnbD/O/N3ZGElWIrYWksPORffPIKdLTmybN8vLOX88H2dWGqbbn4mJSVtjThGamDQRIxxh08I1KdvXf7uSvEHdoQ1NKSXDYO3Xy1KP6YdV9Js8AkNWkG02zrh5Gr7KWiKhMFaHDYvTHrWH2kNgSZJACBH1odoLXVIYdupYBh8/jHAwhMVmRbHb0BBgRKdQDYOEqVIhQJIkdN1o1DSiLEsYhpFwPF03sGelcc6dFxIJBNF1A6vThmSzmo7rJiYmBwVTYJmYNBVJQrGmzlVS7JZodKgt3+9C7DN/SrFZ4xLP7S47gbCGYrdihCKULinB0A1yexUg223Ihk799ipCPj+e/A4obichRFxESNMNsNmw2mzRnwHZ0NECIbau2YpikcnpUYCwWjEkCUlVqS+voXpbBZ6cDDy56eiWfeer6WqE2mofa35eh8vrpHufblidTvYUr7pugCwju13I7DJKNcWViYnJQcIUWCYmTcRQFHofN4SvX/w4aXuf44ZGIzltqLBU3aDf8cNY9+2qpO39TxgKFssuK/UoQtMomb+M7/47NzbU7KJ8Jl54LIte/QRtjyR2b6cc+k6fRMBIHZVTDJ3F737N0k8W7j6HEIz/1Ql0GdSdj//yX2p3VMfaHGkuTvzdNCSXM6nI0iNh/v6Xl/jmsx92n8Oi8NsHrqXngF5g5leZmJi0Q8wnk4lJE9E0nbx+Xcnr0zmhrdvoPrjzs9p8FaFhGLhy0uk9cWBCW15xIV2G9EyY6vPvrOa71+fG6cCRZ45l6V7iCsC3eQcb5/yAVU4usGRZsHPt1jhx1TCueS98TM32SgI18TU/AzV+5jz2P6QkXlWyLJj/8ddx4gpAjag88JvHCNQdvvVDTUxMDm3MCJaJSTOICImjLjmJ2rIq1n21FEmW6TFhAI5ML+pBiqxoQmbIGePpfcwgVn6xBC2s0mt8f9IKOhDZq2RMJBThpw++i9vmSHOhB0MJ4qqB7UvW0vnooSCSlJ9RNRa+uyDl2FZ/tYzCgd3Y8P3quO21O6qJ+AMIjztue6g+wP9empX0WLpu8O0XPzDp9OOO+OLEJiYm7Q9TYJmYNJOIJOPsmM2Q846L/hzR4goGNxYhBAo6QtNBRKciI43MJdIkCVuHdIafexxgRIsY7xVNk9GprfAx7KxxFI3pzXevzSU9P5M+xw7GlZ1GtxNHUfbjSur3KqfjyPSiazoyOgiB7LBCWAXdwNB16qvrUo7LX11HVl5m0rZIIIw9TcRH/QyD6n04wu/YWh5XBsciCVB3CUNZRt0rX8zExMSkrTAFlolJC6DrBuFw860sZQGG38+St+dTvmYLkkWmy6i+9DhuKGFJadSKO8OAcBJHdkWR0Pz1zHnxc1Z/swLDMOgxojen3HYua+Yv5et/zCZUFySjsANDTh1NsLSc0u9XAFAwqh/W7Aw+fPgNqrZWMPz0o8grymP1R99Tt6OKbkcPJq9Xx5Q5YHk9OrJj1ebEBgGqruErq8CTnYGxK3ldUmR69itizbKSpMcbNKofqqojSQIlEmHZe9+y4duV6JpGfr+uDD5zPCJFbpeJiYlJa2LmYJmYtBOEAOoDzH34dcrXbAFAj2isn/8zC55+B4veMvX09Pogr/7hH6z8ahm6pmPoBvlFeXzzrzksfmcBobogAFVbyvnsqfdRMtPwFHTA2zkH3C4++dt7VG2tIL9PJ9KyPCx8aTZ1O6oA2LxgGQOOG4KUpFyQzWWn27Ce7FizLaGty7CeLP5qKY9e9zi15VWxlY6K1cbFN52b9Dqy8zvQvW83dN1AViPMefi/lHy1DF3VwIDSpRuYfd+/kYLBFrlvJiYmJo3BFFgmJu0ERcCK9xckrZtXt6Oa2r2mw5qCzSKz8qul+PeYxpMUmYKeBWxenDxK9OPbX5M/si8Fo/rz3ZvzY9sHTBrCujk/xvVVQxE2fbWUKTedQVan7Nj2jn27cPpdF2DPcDNs2niszqilg2KzUHzcYLIHduWz/85F13Tee/Z90KJiUtcN8jsXcMcTvyWvMGoiKkmCkROHcPezt2J1OFEUiR0rN1OfpHi1FlZZ8fEP0alDExMTkzbEnCI0MWknCE1jx+rE6TNXlhdHhpvydVvpVtQx6bTfgaJFIpTsqtknKTJ5Rfl4Onip3pbo/N6Av7IWV34WumHEVgA6M9y4Mr3Y3A7CdUHs6S6cmWmE6wKUr9xEfXk1J1xzKsgySALJZkEXMmHdoMcxg8jomku9rx5N1/l+zkIWv/RRrHD02iXr0FUVYd2VRC/JdO/fk3ue/wO6riMkgSxbELIcjV4J2LIPw9fSpRvoc/JokJIk5ZuYmJi0EqbAMjFpR1gdNoKRegA8eRn0/cUY/JV1+Mqq8ORlQjCEpChNzimSZAn7/7d35/FRVefjxz93mSUrIRC2BAgECUsSEraAGHYEBEURxSpotX4tVtxaf5Xab21rsbZ92YpFoYJ1R6wK9KsWcUNxqYAoIGCQPUDYIRtZZu72+yMQGDMDIQxJSJ7368Wrzj333jlzeglPznnmOVFeBk4cROdenSnceQDdreFtGRf6IgUUXUd1HKKaR3PplOHYhsW+DTtp06cbmd07UHSogD0bdtEiJZHU9gnsWP41ls+P1rI5jlNZfPRktrllwXffbOXdF5YFfTtPpIcfVr9XTROnpIKD3+XhjvLStmdHHFWtrDOmKLijI0J23x3pCSiuKoQQdUECLCEaCNul02lwL3Lf+ZKoFrGkXZ3D5/OX4i89lUPkjvIy4oHQRTnPxnRUhk4Zzp6Vuax97t2q431uG4vm1rGCzI4lZXRG8bhQcRh179V8+ewyjp/2zULNpTPwJ2PYtyWftUu/QnfrXHHfNUS0bIYvSBcNwyJzcEbIACtnwiBcXk/Vtx7d2Kz851IObzstd0uB7KmjaNEjGdOyuWRoL3atzA16v9SRvXFceuXmiUIIUUckB0uIBsI0HZL6pdIipS1dRvZh9YKPAoIrAH9pBZ/PfRvNqt0yoeM4OH6TPV8G7le4c8V6htw+plpyenSLWAZMGXGiIr3CxrdXBgRXAJZhsol4Nv8AAC74SURBVOrF9+l39aWVn8Nv8t7Tb2MZoQMad3Qk198/qdrxDqkduPTKS6uCK11T2fn5xsDgCsCBVS99AD4/jgPuuGh6XNG/2v3apXeidc9kqZMlhKhzMoMlRAPic1Sypo7GKCnj+OGioOeUHCrELPdBZOQ5319XYfOK9dWOH9u+D1XXGPeryRzZfZiSQ4W06daeuPYJ2LoLx3aw/Qb7N+UFva9R7sfyG3iivPhKK/CVVlB8uJCodi2D1qFyFJXuA3vyq4wUNv53I8eLSumR3Z0W7VpWbuVz4hrFMNjy8bqQn2fP11voOCQTw4BOg3vRsV8qe77ZimWYJGV2wdMsGr/8HimEqAcSYAnRwPhRcewzz7jYhsWZsooUBVwKqJYFODiahoEKjoNRGrxswZHv91B+rITsu67GUjUs60Rx0hOzSbZ55jpf/lIfLo+LFh1a0XN4L7yRHlTDQPG4MYMUSnUUDVd0FP2uGIiiKJimXTnDdjK4UiozsfxlocssVBSVcjK9ykSBiAiSh2ZVvjYtjHNYRfWXl+Ov8KPrOu7ICKR0lhDifEiAJUQD5I6KQNVU7CAlG1Rdwx3lJfhGNpX797kMPzvfW0nB9r3gQHS7lqRcMQi1WQyteiZzbOf+oNcmdGuPiYJpVA+mNI8Lb0wkFSVlQa+NaR1H5rj+OJbNyoWfUF5UisvrJu3y3vQY2Rsj2NY6EHT5TlUVNMPP4W37SEhJ5PC2/KDXtsvoXO16I0jfz8QyDP77/mpeefINjh48hsvjYsi4QVz147GoLs853UsIIU6SuXMhGiDH7aLb5X2CtnUf3RfcrpDXum2LDc+/Q8G2vVVLbcf3HeHb599GKS+nbWYX3NHeatdpbhedcjKCzjZV3thN1vWDgzYl9upMeUk5RrmPVf9aUVXOwajws/atlaxcsBzNqXkelGYaLH/8TdYt+oweY/oG/RZgbJt4Ytqd34bamqaS+/VmnnzoGY4erCxVYfgMPlz8CU//Zj624a/1vYUQTZsEWEI0QKYNnYf0ou+Nw4loFgVARFwU/W4aQaecdELlj2uayrHv8zCCLKs5ls2ez9ahuF1ceve1tMnoXLUO16pbBy67bxKmK3TgZlo2LVPbM/hnVxLTKg6oLIGQfuUAOg3qiebW+fbdNUGv3b5qM3aFr0afXdNUju7YT1lBCRXFZWz7bAM5d46nRXJroHIGr8vgdIbcew2men6T8L6yMl6d/WbQtu/Xb6PoaPA8OCGEOBtZIhSinum6iqqq2LYdsNxloNK6d1fapHUC20bVNfC48flCf4NQUxwKtwXZ6++Eol37STJNDJeL7tcOIX1iDqZpY6tq5cbIQQI3l0tDURQsy8K0VGJTkhj680lg2yiqiuJ1Y5X7MErLMSpCz/gUHyoiNjmiKsdKVRV0XQMC93HUNJV93+6sep2/fgcFew5zyZAMeoztD45DfKe2VDgK57uTs1Hh59iJbX6C2bk5j5aJrbGCLNWe7uQYmaYl+x4KIQAJsISoN5qqoPj97F+/i8Pb9xPfoRVJvVJwPC5O/ntuWTY6ULT/GHlrtuCJjqDzwO5oURFYSpAJaEXBHRMV8j3dURGAcqL4p0JsfCwFBaVB86A0HPD52f7ZZo4fLqJdWjIJKe2wVBeWqp2qjO630BUFVT3zhLgn2lsVD7kci+P7Ctj91fe4ItwkZ/dAj4nARMVxHKJaxAZcW3ashPVLvgAgqkUMw35xfVgqs+suHU3TsKzgeVtxLZqdcYNtxbHxHy/n60/WUXi4kO4DetDukkRUj0cCLSGaOAmwhKgHqqpgFh3nvT+9VjXrs/2LTXzz5mdc/v+uw5PQHMt2cNkWy2cvoWD34aprNy37iqyJl9Hx0p7Vgiy/YdOmX3cOrtsS9H0TB2VgqhqcZUZGU6BgWz6fzn2nKsDY/sUmIptHM/rByThu96lgybZY8exSWndJpF33DuzL3V3tfpHNooiIi8YC3I7Nl/OXcmTHqUT77z9cS/cxfek8tLLkQsfsbnz37uqgfes2qg+2y3XWz1ATnsgIBo7ux+dLV1Zv87rp0CUxZKCkODbbv/6eRX87tcT4zYff0LxNc27/0/+AWxLkhWjKJAdLiHqgmiafzn272pKaZZh8PPv/UAwDl6bw/cfrAoKrk9Yu/hwrRPkCJTKCTqOzf7jbDK2zuhKVdPblLqisP/XZM/+pNntTVnCc1a9+jH4ie17XVfI37mLvhl1sfP9r+lx9KbGt4wKu8UR5GfvL63BcLnRNZfdXmwOCq5Nyl63BKK4su6BEeBhw6+hqye1JWSm0y+xSo89QEzYK1//0Gjp2bR9w3O1x88tZ9+I+Q60xq8LH4icWVTtecKCAD156H02RGSwhmjKZwRKiHpjlPooPBs/9qSgpw3+8HHc0bPm4elHQk3auzKXrmP7VyhL4bYXYbp3pfUkHivP2YxsWzZLb4ng8VNQgLlFVhWO7DgYtEQGQv2EHts8AtxvHb7Dhva8A8JVW8NHctxn4o2EoqkJB/lHi2sbTOjUJ2+XGth1U22TrJ6E/0/ZPN9D9mhwMwyK+W0fG/eHHHN6Wj1Huo9UlSejREWEvHOqJiuBXf7+fA3sOsm3TLlq0iiO5W0c8kZEha2FpmsrW9dtDLh9+u+JbRk69HMUjs1hCNFUSYAlRD+wQOT8nWYaJolSWDAjFV1pBqD2MDRsMRScipWPluZYNNZz0URTwl4f+xl/7XinoqoJSUYGqa3Tu25WiAwWYfpOywlI+mvsO3pgIolvEUnjgGK3TOlUtsyk4mGdIhPeXVVRNvFkOWLqLFj07VV7pOJimiVVehmXZeCPc6OqJoqxuV2WSfi0mjRwHmrdshqLrtEmuXBK0beeMhUYVBSqOl4dsty0b27Y5/ywxIcTFSgIsIeqBO8qL7nUHDTZUTSUiLhpH00hMS2bv+h1B75Hct+tZ99irzVKaZTkkpLQN2jZgynAcn5/Pnngds8JAURXaZKRwxc+v5d1ZS6qWPCtKyqkoKafnyCxQVThZmV7XaZveibxVm4Pev2P/bpg/6LNlOagq+IpKWDTrTfbkVn5LMi4hjituG0PF7oP4SsrIvH4Ypttd6+Ryxwle9DQY07Tp3CslZHtil0R0twtZJBSi6ZIcLCHqgeN20/e64EU7068cAC4XFgq9Jw1Gc1WfB2mR3JqYNvEX7JtqWqSX5P6pAcfaZ6bgVPjZ9sHXmBWVM2uO7bB/3TZ2fPQ1AycPCTg/JqEZiWmdAktP2JA2LhvdU73eVmzbeJp3bB30M9kVFcx74Jmq4Aqg8HAhC//yL5r36EjJgWN88dQSXLXcBLs2ouNj6dq3a7Xjiqpw5c+uRDlDTTEhROPX4AKsvLw8Hn74YSZMmECPHj0YP378Gc//8MMPSU1NPet5QjQkluXQNjOF4fdeQ/P2CSiaSmybeIbcOZ6UnHRMp3JGRY2KYNzDU2mflYKqqXiiI8i4aiBDp0/A1C7cApSJSp/JQ+l/0wii4mNQNJUeI7PY9fmGoOcX5h0koWMrXBEeXBFu0kf35cpf31j5bb8fsD1eLn/oRtr3uaRq25/uo/sy5J5rMIIUDtV1lS1rtlAWZIsex3H4+I1PSerXjfLC4xTtPYyqnmmXxvBxNJ1r7r2WsbdfQUx8DJqukdIrhbuevItmbVpKmQYhmrgGt0S4detWVqxYQa9evbBt+4w1aCoqKvjjH/9Iy5Yt67CHQoSHiUpsp7YMvXciimPjKAqO7sI4sUSmKJXJ1FpsJP1/PBrHb+CggEvHbzlc6PUnPyrt+nUjMTMFBXD8/jPnT5WWc/2ff4JtOyguV8BG0aezHQfF6yHrxhH0njwUFAVbUfCfjCp/QFUVtq/bFvJ987fmEznhUgCObs8npnMitn1u+xHWlq3pZI7qR1pOBuCgaBpoOvZ5FkAVQlz8GlyANXz4cEaOHAnAjBkz2LhxY8hzn3nmGdq1a0dSUtIZzxOiobIsBxS18g9U1XZyYVNxtITNK9ZjlPvo0DeVlpckYqo6Tqi9Ai9I/+yqgp5ulwtFVXBCzMx4m0VhqhqOQtDA6iRFAc002Zebz5bPN+Lyuuk5qjfRCXGVBUx/wHGgZWLoX6KaJTTDX1pZsiIqIe6Mv5RdCKZlw4mZOgfOu7q8EKJxaHAB1tmqQZ+0e/dunn/+eV577TVeeOGFC9spIeqQjs3WD75m68frqo7t37iL6IQ4htw3Eb9SP99Nc1w6bTO7sO+brdXaPDGReONi8NUgttAti3f+8joF+Ueqjm1bmUu3IRn0uTanWpBlGBZZI3qz4o0VQYO7y64ayP5vtqDqGq26dcBfw0R1IYS4kBpcDlZNPfroo0yYMIFu3brVd1eECCuzpCwguDrp+OFCti1fh67VTY7RDxk2dBs3kObJbQKOe2IiyZ52JaZ+9t/XdE0h95P1AcHVSZtXfEvZseKgpSfc0ZHc9Osp6O7A98ge04+46AjKjhYz8KdXYuuSWC6EaBga3AxWTSxfvpy1a9eybNmysN5X1y/aePOsNE0N+N+mqqGPg65rfP9h8BIGADv+u4kuIzLRwxBI1GYsTFSybhmNcbyc44cL8cZG4m0eg3OiPIKunyX48xvkBgkeT8pdvo4BN48KWi6hQ1on7p/3cw7vOYy/3EebTm1wfAaYFsNm3IjjcmFz7j/UGvozUVdkHE6RsRDhcNEFWD6fjz/+8Y/cfffdxMfHh+2+qqrQvHnoTXIbi9jYiPruQoPQkMfB8ocuLmqbFlg2LseP5TNQXRruqAg8MaG3dDmb08fCKKvAf7y8MhFdVTEr/CiKgjs6Am+zqFNb17SIJb5j63N+r+PHirGM0Anoht8gKspzhlSBaBLOkI91PhryM1GXZBxOkbEQ5+OiC7BefPFFVFVl3LhxFBcXA2AYBrZtU1xcjNfrxe12n/N9bduhuLj618AbC01TiY2NoLi4PGz7uF2MGvo4KAq075fK9s+Df2mjXUYnSg8eY8O/lmOdqPIe3TqeXjeNwomKOKf86tPHwrZtdNMk942PcUV6aNmzM5v+/QUVxaUAeGOj6HXjCCLbtsD64SaH50BVNTr3T+W75euCtncbnEFxcUWdJqo39Geirsg4nFLbsWgKv6SLmrvoAqwdO3aQl5fHwIEDq7X169eP3/3ud/zoRz+q1b1rWsX5YmZZdpP4nGfTkMchsmUcrVKTOPT93oDjrgg3Pcf256t//BvLf6qg5vGDx1g9999k3zMJXy0S4C3LRrNMvn3xXSoKj5N24yhWPvN2QEJ5RXEpq+e9Tc4DkzE93tp/OCBr/AB2rP6+2lYzrbu0Iy4podreinWlIT8TdUnG4RQZC3E+LroA63/+53+45pprAo7NmzePnTt38thjj5GcnFw/HRMiTAxFpd8tozmwYQdblq/DrPDTukcHUodnsf3DrwKCq6pryn0U5R0gKqV9rWYfzJIyyg4X0jqzC7tXbw76bT3Hdti5Yj2dxw7AOI9SEY7Xw7V/uIVvl33FjtVb0D06aaP60KlfKpamXfD6XkIIURcaXIBVXl7OihUrAMjPz+f48eNVyez9+/cnJSWFlJTAPcCWLFnCwYMHyc7OrvP+CnEh+FFJyOxK24wUjuzYx5YvN1N8pJjD3+WFvKZw9wFiu3bgTPtIKwroCjiWjXYiz0lXwFRVuk0aiubS2bzsq5DXF+09TOUb1C75V1UVVMcBXaf3xBzSx2ajqAqK21U5UyDBlRCikWhwAdbRo0e59957A46dfP3SSy9JECWaDMuyUV06R/Yc4fvPN9K+Zwe8zWOoKCgJen5MmxaVhUtD0HHwHSth7burOX64iFaXJNJtWC92rMpl77e7SOjUhm7DetGqR0eKg5RRAIhOiANNg1rMYOmOTcmeI2x6bw2+Uh/tM1PoPLA7jsslyzBCiEZHceq67HEDZVk2x46V1nc3LhhdV2nePIqCgtIm/Y/ZxTgOqs/Hwv83n5bJrek9ohfb3l1Z/RyXzqX3X48vyF5+AJoC+9du5b8vfhB4na4x/GdX8tXrKyg6UIDm0rlixvVseG05ZUeLq93nsp9fhxMddc7FynXHZuPbX/L9J98GHPdERzDuf2/EqsUXU8LlYnwmLgQZh1NqOxYJCTEXsFfiYiNFPoRo4BSvh6seuoGiAwVUmA5JA3qgnLahsTs6gn53XIkZZGPlqnsYBitf+ajacdu0+OqNT+kxqjcAlmHy+fPv0+tHI9BOK+qpuXUybxqJWovgCsAoKasWXAH4jpezdvHnNOISdEKIJqrBLREKIQJZDkS1S+C6P95KeVEpbk97knN64SsuRXO70CO9mLoecnlQUaBo/zHsEMnvRfuPERV/6jfvgr1HsAyTy+6ZiOkzcAB3bDSWrlGbiQ2XS2PrNyc2a1aolme1a80Wel83GDT5cSSEaDzkJ5oQQaiqgmaZmOU+jAo/3phIcLswnfPfpkZTQLFMNNvGsSwcy8IVFYGh6iG/nWfbDugu3C3iAPABNI/DAiw4S06Ucs51pSzDpCT/CLGpHfFbDn6A81g1im3djBH3Xo1pWqiqimWYbFq2hqO7DkpiuxCiUZIAS4gfUFUFtaKCFU+/RdH+Y5UHFeg8sAfpVw/Cfx4r65pjc+C73cS3jCZ/+Sr8JZXFbRVVoW12OvG9UqkIcxkox3GIa9sCRVNxgsxixbZuTlnhqfzDuHYtMIpLiWrVnG8XrSDj6svO6zPbfoPS4nLe+8fSqhITEbGRDLvtcnZ88R261w26LoGWEKJRkcwHIX5AM02W/23RqeAKwIEd//2OLR+txVXLzZZVVaFw72Fim0eS9+5nVcEVVNaY2vflt5Tm7bsge2I6bp3+Nwyt3idNpd/1g/nug28qX+sa2ZMHY/v8KJrGzv/msuXDb87rMxflH2HFCx8E1O8qLy5j2VNv0XNMX/pcexn1U1pUCCEuHAmwhDiNokDZ0SJKjwUvhbD14/U4Pn/t7m2a5H6yHrOoBDtIsVCA/C/WodvhDzcsRyGpT1fG/fpHtM9MoXlSS7oOyWDC76ZyZOcBFFWha04a4381GW+EG5vKcfDGRLLlk/P4zJbFytc/Ddpmmza7N+1Ci4msVeK8EEI0ZLJEKMRpVFWh5FBhyHbTb1RuuKyH/sZeKI5tY1s2RlHw4A3AX1yKggM13O9PURRc2GDbOJqG6RAyWLEUFXdCPNk/Hg22ha4qfDVnCa3SOtN/4iA0XeXY93nsW7sVX3EZnUf2wdsskoq9ZdiGWbvPbFkUHjgWsv3IrkM4dtMuCSCEaJwkwBLiNLbtENu6ech23etC1fVa5Xsrmoaia7jjYkOe44mLwalhcOVSHPzHitj0wRrKjhYR27YFKaP6okdHYYQIshzHwazsDLpjYfpNdn+xIei5kS2aUV5Yiu5xobpr/5njk1qyL3dP0PZWKW1PfF6ZwhJCNC6yRCjEaRwHIuJjiU5oFrS926g+4KldUUxH00gfkYUaHYXmDX6PxJwsjBps2KyrcCx3F6vm/JujW/dSfqyEg5t28d8n36R070G0GuRMOW43KcOygrZ546Kx7co6Vd1GZkEtC4E6msaA6wcHbdNcGqmDejb5opZCiMZJAiwhfsDSdYbdfy0tkltXHVM0ldQRWaTkpGPWYjNlqJwdi2kTT1mZn45jc/DGn5rJUnWN9kP7EJHYukabNWumSe7/fVG9wYGNb3yCbgbP8TqdZTsk9e9O8pBMFO3Uj4KYdi3pMXEIXy/+nK7DMkkZ0guzlps727ZDdJsWjPrZeNyRnqrj0S1iueZ/b4QIzxmuFkKIi5dslXOCbJXTNNR0HBRFQbMtbJ8fy2fgivSieFwY5zB0yolJpB/+DdNUBcU0UW0LxbZxbBs90ouhahhmDf86Fhaz8uklIZsH3X8dVmTkGW9xciyKC0vB58cs96G5Kpcx/WV+NI8bPK4aFxdVlND1tjRVAb+fiuPlqKqKO8oLbneNgskLTf5uVJJxOEW2yhHhIDlYQgThOA6mooLXi+L1VuYt1fDnrEsFzTIpP1yEoql442Mx1VNV0C3bAVWr/HOC3wbsmv+uc/pWOUHblZqXVbAcMFUdovRT5RKiXTX+zC5srDIfpUeL8MZG4YmNxNT0yuKoJ9/jRKFUV1xlonxlcdSm/Y+4EKJxkwBLiDByqw5H128l7+OvcU4EGKqukXrNECLatzmnGbAzvk9MJLrHhekzqrVFxEWj1tHSmwebr15YxuGt+6qORcbHkDP9aojwBgRZQgjRlEgOlhBhoqoK/iOF7PpoTVVwBZUbKue+uRylwhe29zI1jV43jTy1DnmyD5pKr5tGYtXBvn4uFTYs+TwguAIoO1bCZ0/9G806ex6YEEI0VjKDJUSY6Nhs++Sb4I0O7P/qO9oM6YMRhvwWy4aIxFbkPDCZ3V9s5PihApq1TyCpfw9st7vWifjnxG+w9+utQZvKjpXgKypFPUNJCiGEaMwkwBIiTBTboaLoeMj28qNFKOfwnRJdV1CNylkgR9OqLS+aNuD20GFUP7BtUFX8pn1OuVznw/IbZ9xEuqKolKjmzc55o2khhGgMJMASIkwcVSWmbQK+ouDfRo3t0AZbOXtRTUWpzG3KX/U9eV9sxPT5adU9ma6j+2F5PJUJ46epmhGr44romseN5tYD9hg8XVRLCa6EEE2X5GAJESaGAx2HZVXLiwJQXTqtenWp0Ve+3Y7NNy+8x/dLV1FRVIpZYbBv7VY++9vrqL6KYLevF47bRdcRvYO2tUxpix7lreMeCSFEwyEBlhBh4jhgR0SQPnU0nmbRVcejWjUn87bxGDXYy09VFcoOF1C4+2C1Nstv8v3SVegNJMAyLYfky9LoPqYfmrtyMlxRFBKzutD/trGVZS6EEKKJkiVCIcLItEFLaEnGbeOxfX5QVRSXC0NRsWtQDV3XVfLWbgvZfui7XXS/ahDUYDudUBRFQT1LHa2a8qPScWgmHS/tgeUzUN06ituFz1Zke0EhRJMmAZYQYWZZNhYquE8skTlUL+ceguOAHhF63z/N7ap13KKqCvj8HM0/TNGhQlont0F3bBT1/GaaDMsBzQWRrsq6pFI/VAghJMASoiExDIukPqns/GR90PYOA3viuHSo6ZY6J6iqQsWxIl777UuUl5RXHW/ZIYHr//cmFJerpjGgEEKIGpAkCSEaGDUqgi4j+1Q7HtMmno6D0mq+X+FpHJ+f1x95JSC4Ajiy+zDvz1+KKhXXhRAirGQGS4gGxnAUEgem0SajM3tW5WKUVtCu9yXEJCbgq+XvRMePFlFaGLx8xLY1Wxnh84FXvvUnhBDhIgGWEA2QgQJRUXQakw2Aadr4bKdWieOKolBaVBb6BMfB9JvoNYivdE1FNQ1wHBxVxVI12W9QCCGCkABLiAbM77fO+x6O49CiXYuQ7Z5IDy6v+6yxmwebvM83sO2T9RhlPuKSEsi4NgdPyzhMGkjtCCGEaCAkB0uIJsAV5aVz7y5B2wZdPwQtwnPm67H55tWPyF26GqOsctPqwr2H+fTJxZQdOIqmyY8SIYQ4nfxUFKIJsFWNMXdeSZ8r+qOfKAoaGRvJ6J+Oo/vgdMyz1Ogyj5dzKHd30Lb1b6yoXDYUQghRRZYIhWgAFAU0TQOcGm2nUxuWpjPg+iH0u2ogpmHi8rho3iqOouLyEztHB6dpKod37A/ZfvxQIY5hgbv2xU+FEKKxkQBLiHqm2RZlBSXsWrsdd4Sb5N5d0Lwe7Auw1YxpA243mtuNqquoNVjacxwH9xn2FVRUBUWTHCwhhDidBFhC1CPdtvjwH/9h17rtVcdWvPghQ28dRecBPS5IkHWubNshPrkNqqZiW9VnuhKzLgGXSyq4CyHEaer/p7cQTZSmqWxbtTkguDrpk+c/wF9yhtIKdczSdbJvvwLlB3sYRic0o+dVl2JIcCWEEAFkBkuIeuL4/XzzzqqQ7ZuWr6Pf9UPCUqrhfFkORLVvzajfTOXApl2UF5TQKrU90W3iMVS9xnstCiFEUyEBlhD1xXGoOF4esrm04HiDilssByzdRes+qSiKgmXZ+G1HgishhAhClgiFqCeKrtO+Z8eQ7V2yUxtklXTTtDEMq0H2TQghGgoJsISoJ7aicOmPhqHq1f8axiY0o23XJKwgSeVCCCEaPgmwhKgnjgOu2Ch+9OitJHZvD4Cqq/QYmsGk303FcbvruYdCCCFqS3KwhKhHtgOeFs0Yc99EbMNEURRUtwvTOdEohBDioiQBlhD1zLYdUFRwV264LHGVEEJc/GSJUAghhBAizCTAEkIIIYQIMwmwhBBCCCHCTAIsIYQQQogwkwBLCCGEECLMJMASQgghhAgzCbCEEEIIIcJMAiwhhBBCiDCTAEsIIYQQIswkwBJCCCGECDMJsIQQQgghwkwCLCGEEEKIMFMcx5GtZQHHcSo33W3ENE3Fsuz67ka9k3E4RcaikoxDJRmHU2ozFpomcxbiFAmwhBBCCCHCTMJtIYQQQogwkwBLCCGEECLMJMASQgghhAgzCbCEEEIIIcJMAiwhhBBCiDCTAEsIIYQQIswkwBJCCCGECDMJsIQQQgghwkwCLCGEEEKIMJMASwghhBAizCTAEkIIIYQIMwmwhBBCCCHCTAKsRmTFihVMmTKFAQMGkJaWxogRI3jssccoKSmpOmfGjBmkpqZW+/Ppp5/WY88vrNLSUgYPHkxqaiobNmwIaHvjjTcYPXo06enpXHXVVXz88cf11MsLL9Q4TJ06NegzsX379nrsbXgtXrw46Gd8/PHHA85r7M9DTcahKTwPJy1ZsoSrr76a9PR0srOzuf3226moqKhqX758OVdddRXp6emMHj2aRYsW1WNvxcVGr+8OiPApLCwkIyODqVOnEhcXx9atW5k9ezZbt27lueeeqzqvffv21f5hSUlJqevu1pk5c+ZgWVa14//5z3/4zW9+w7Rp0xgwYABLly5l+vTpLFiwgMzMzLrv6AUWahwAevfuzYMPPhhwLCkpqS66VaeeffZZYmJiql63bt266r+b0vNwpnGApvE8zJ07l/nz5zNt2jQyMzMpKCjgyy+/rPo7smbNGqZPn86kSZN46KGHWLlyJb/+9a+JiopizJgx9dx7cTGQAKsRmTBhQsDr7Oxs3G43v/nNbzh48GDVD1Gv19vo/sEIZfv27bz66qs8+OCD/Pa3vw1o+/vf/864ceO47777ABgwYABbtmzh6aefZv78+fXQ2wvnTOMAEBsb2ySeiZ49exIfHx+0rSk9D2caB2j8z8OOHTt46qmnmDNnDkOGDKk6Pnr06Kr/njt3LhkZGTzyyCNA5fOwZ88e/v73v0uAJWpElggbubi4OAAMw6jfjtSTmTNncsMNN9CpU6eA43v27GHXrl2MHTs24PgVV1zBl19+id/vr8tuXnChxkFUamrPQ1O3ePFikpKSAoKr0/n9flatWlUtkLriiivYvn07e/furYtuioucBFiNkGVZ+Hw+Nm3axNNPP83w4cMDpvfz8vLo06cPaWlpTJw4kQ8//LAee3vhLFu2jC1btnDXXXdVa9uxYwdAtYAjJSUFwzDYs2dPnfSxLpxpHE5avXo1mZmZpKenM2XKFL766qs67GHdGT9+PN27d2fEiBE888wzVctBTel5gNDjcFJjfx7Wr19P165dmTNnDgMHDiQtLY0bbriB9evXA7B7924Mw6Bz584B151MpTj5vAhxJrJE2AgNGzaMgwcPApCTk8Nf//rXqrbu3buTnp5Oly5dKCkpYeHChdx11108+eSTjWrau7y8nD/96U/cf//9REdHV2svKioCKpdCTnfy9cn2i93ZxgGgX79+TJgwgeTkZA4dOsQ///lPbr31Vl5++WWysrLquMcXRkJCAnfffTe9evVCURSWL1/OrFmzOHjwIA8//HCTeR7ONg7QNJ6Hw4cPs3HjRrZs2cJvf/tbIiIi+Mc//sFtt93G+++/32SeB3FhSYDVCM2bN4/y8nK2bdvG3LlzmTZtGs8//zyapnHLLbcEnDt8+HBuuOGGRpdXMHfuXFq0aMG1115b312pVzUZh3vuuSfg9dChQxk/fjxz5sxpNLlHOTk55OTkVL2+7LLL8Hg8vPjii0ybNq0ee1a3zjYOrVq1ahLPg+M4lJWV8eSTT9KtWzcAevXqxfDhw3nllVe47LLL6rmHojGQJcJGqFu3bmRlZXHdddcxZ84cVq1axQcffBD0XFVVufzyy9m+fXvA15MvZvn5+Tz33HPcc889lJSUUFxcTFlZGQBlZWWUlpbSrFkzgIASFgDFxcUAVe0Xs5qMQzCRkZEMGTKETZs21WV369zYsWOxLIvc3Nwm8TyEcvo4BNMYn4fY2Fji4uKqgiuozFft0aMH27Zta9LPgwgfmcFq5FJTU3G5XOzevbu+u1Jn9u7di2EY3HHHHdXabr75Znr16lW1bLpjx46APIsdO3bgcrlo3759nfX3QqnJOLz++uv10LOG5+Qz0JifB3FKly5dQv5M9Pl8dOjQAZfLxY4dOwJm/E7mXv0wN0uIYCTAauTWr1+PYRgha9jYts2yZcu45JJL8Hq9ddy7C6N79+689NJLAcdyc3N57LHH+P3vf096ejrt27cnOTmZZcuWMXLkyKrzli5dysCBA3G73XXd7bCryTgEU1ZWxieffBKyvbFYunQpmqbRo0cPEhISGv3zEMrp4xBMY3wehg0bxuLFi8nNzaV79+4AFBQUsGnTJn784x/jdrvJzs7mvffeC0irWLp0KSkpKY2uJpi4MCTAakSmT59OWloaqampeL1eNm/ezD//+U9SU1MZOXIk+fn5zJgxg3HjxtGxY0eKiopYuHAhGzduZPbs2fXd/bCJjY0lOzs7aFvPnj3p2bMnAHfffTcPPPAAHTp0IDs7m6VLl/Ltt9/yyiuv1GV3L5iajMOaNWt49tlnGTVqFImJiRw6dIjnn3+ew4cP8+STT9Zxjy+cn/zkJ2RnZ5OamgrARx99xOuvv87NN99MQkIC0PifBzj7ODSV52HkyJGkp6dzzz33cP/99+PxeJg3bx5ut5sbb7wRgDvvvJObb76Z3/3ud4wdO5ZVq1bxzjvv8MQTT9Rz78XFQgKsRiQjI4OlS5cyb948HMchMTGR6667jp/85Ce43W6ioqKIjo5m7ty5HD16FJfLRVpaGvPnzw+YBm8qxo8fT3l5OfPnz2fevHl06tSJp556qtF8U6omEhISMAyDJ554gsLCQiIiIsjKyuL3v/89GRkZ9d29sOnUqROLFi3iwIED2LZNcnIyDz30EFOnTq06pyk8D2cbh6byPKiqyrx583jsscd4+OGHMQyDvn37smDBgqqAu2/fvsyePZtZs2bx5ptv0q5dO2bOnFmtVpoQoSiO4zj13QkhhBBCiMZEvkUohBBCCBFmEmAJIYQQQoSZBFhCCCGEEGEmAZYQQgghRJhJgCWEEEIIEWYSYAkhhBBChJkEWEIIIYQQYSYBlhBCCCFEmEmAJcQ5mj17NqmpqRw7duyM5w0fPpwZM2ZUvV61ahWpqamsWrWq6tiMGTMYPnz4Ob1/ba6pD4sXLyY1NZUNGzbUd1eEEKLOSYAlhDgvCxYsYPHixfXdDSGEaFBkL0IhLpBly5ahKEp9d+OCW7hwIc2bN2fixIn13RUhhGgwJMAS4gJxu9313QUhhBD1RJYIhailgoIC7r33Xnr37k12djYzZ87E5/NVtf8wB+tCsm2bF154gXHjxpGens6ll17Kww8/TFFRUcB5w4cP56c//Slr1qxh0qRJpKenM2LECP79739Xu+fmzZuZMmUKGRkZDB48mDlz5rBo0SJSU1PZu3dv1f22bt3K6tWrSU1NJTU1lalTpwbcx+/389hjjzFgwAAyMzO56667zpq/9kMn89527tzJAw88QJ8+fRgwYACzZs3CcRz279/PnXfeSe/evRk0aBDPPfdcwPUn89+WLl3KU089RU5ODllZWdxzzz2UlJTg9/t59NFHGThwIFlZWfzqV7/C7/efUx+FEOJ0MoMlRC3dd999JCYm8otf/IJ169bx8ssvU1xczF/+8pc678vDDz/MkiVLmDhxIlOnTmXv3r0sWLCA7777joULF+JyuarOzcvL495772XSpElcc801LFq0iBkzZtCzZ08uueQSAA4ePMgtt9wCwB133EFkZCRvvPFGtVm5hx56iD/84Q9ERkYybdo0AFq2bBlwzsyZM4mNjWX69Onk5+fz4osv8sgjjzBr1qxz/pz3338/KSkp/OIXv2DFihXMnTuXuLg4XnvtNQYMGMADDzzA22+/zZ///GfS09Pp169fwPXz5s3D6/Vyxx13kJeXxyuvvIKu6yiKQnFxMdOnT2f9+vUsXryYxMREpk+ffs59FEIIkABLiFpLSkpi7ty5ANx0001ER0fz6quvctttt9GtW7c668eaNWt44403ePzxx7nyyiurjmdnZ3P77bezbNmygOM7d+5kwYIF9O3bF4CxY8cyZMgQFi9ezIMPPgjA/PnzKSoqYsmSJXTv3h2AiRMnMnr06ID3HjlyJLNmzaJ58+ZMmDAhaP/i4uJ47rnnqvLRbNvm5ZdfpqSkhJiYmHP6rBkZGTzyyCMATJ48meHDh/OnP/2Jn//859xxxx0AjB8/npycHBYtWlQtwLIsi5dffrkq4CwoKOA///kPOTk5zJ8/H6j8/3L37t0sXrxYAiwhRK3JEqEQtXTTTTcFvJ4yZQoAn376aZ32Y9myZcTExDBo0CCOHTtW9adnz55ERkYGlIUA6NKlS1VwBRAfH0+nTp3Ys2dP1bHPPvuMzMzMquAKKgOl0wO1mrr++usDkv379u2LZVnk5+ef870mTZpU9d+appGWlobjOAHHY2Njq32ekyZMmBAwm5eRkYHjOFx77bUB52VkZLB//35M0zznPgohBMgMlhC11rFjx4DXHTp0QFXVqvykupKXl0dJSQkDBw4M2n706NGA123btq12TrNmzQLytfLz88nMzKx2XocOHc65f+3atQt4HRsbC0BxcfF53ysmJgaPx0N8fHy144WFhTW6HqqPSUxMDLZtU1JSQvPmzc+5n0IIIQGWEGFSXyUZbNumRYsWPP7440Hbfxh8aJpWF92qoqrBJ8odxwnLvUJ9nmD3D9WXcPZRCCFAAiwhai0vL4/27dsHvLZtm6SkpDrtR4cOHfjyyy/p3bs3Xq83LPdMTEwkLy+v2vHdu3dXO9YUan0JIcS5khwsIWppwYIFAa9feeUVAAYPHlyn/Rg7diyWZTFnzpxqbaZp1mop7rLLLmPdunXk5uZWHSssLOTtt9+udm5ERESt3kMIIRozmcESopb27t3LtGnTyMnJYd26dbz11luMHz++Tr9BCNC/f38mT57MM888Q25uLoMGDcLlcrFr1y6WLVvGr3/9a8aMGXNO97z99tt56623uPXWW5kyZUpVmYa2bdtSWFgYMGvVs2dPFi5cyJw5c+jYsSPx8fEh88GEEKKpkABLiFqaNWsWTz75JH/961/RdZ0pU6bwy1/+sl768sgjj5CWlsZrr73GE088gaZpJCYmctVVV9G7d+9zvl/btm156aWXmDlzJs888wzx8fHcdNNNREREMHPmTDweT9W5d911F/v27ePZZ5+ltLSU/v37S4AlhGjyFEeyOIUQNfToo4/yr3/9i7Vr19Z5srwQQlxMJAdLCBFURUVFwOuCggLeeust+vTpI8GVEEKchSwRCtFAFBYWYhhGyHZN06qVXLiQJk+eTP/+/UlJSeHIkSMsWrSI48eP87Of/Sxs71FaWkpZWdkZz4mPj5eATghx0ZElQiEaiKlTp7J69eqQ7YmJiSxfvrzO+vO3v/2N9957jwMHDqAoCj169GD69OlceumlYXuP2bNn89RTT53xnI8++qjOS18IIcT5kgBLiAZi48aNZyx34PF46NOnTx326MLbs2dP0C1tTtenT5+ApHohhLgYSIAlhBBCCBFmkuQuhBBCCBFmEmAJIYQQQoSZBFhCCCGEEGEmAZYQQgghRJhJgCWEEEIIEWYSYAkhhBBChJkEWEIIIYQQYSYBlhBCCCFEmP1/EwalQ7OMeN8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sns.set_theme(style=\"ticks\", font_scale=1.25)\n", + "g = sns.relplot(\n", + " data=penguins,\n", + " x=\"bill_length_mm\", y=\"bill_depth_mm\", hue=\"body_mass_g\",\n", + " palette=\"crest\", marker=\"x\", s=100,\n", + ")\n", + "g.set_axis_labels(\"Bill length (mm)\", \"Bill depth (mm)\", labelpad=10)\n", + "g.legend.set_title(\"Body mass (g)\")\n", + "g.figure.set_size_inches(6.5, 4.5)\n", + "g.ax.margins(.15)\n", + "g.despine(trim=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 477 + }, + "id": "l13mFcWI7cu2", + "outputId": "9d28542b-3b0c-4701-cbef-f0b91413b24b" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAG7CAYAAAB+RskvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXdc1PX/wJ+32HsPEVyACG5FceCeuUDNllnWt11WlratrH6V7Z3tMlMB98StiBNRQVEQEdl7j5u/P+hOkK1ojvfz8eiR3r3vc+87EJ73Wm+JTqfTIRAIBAKBQCC4aZH+1xsQCAQCgUAgEDSNEDaBQCAQCASCmxwhbAKBQCAQCAQ3OULYBAKBQCAQCG5yhLAJBAKBQCAQ3OQIYRMIBAKBQCC4yRHCJhAIBAKBQHCTI4RNIBAIBAKB4CZHCJtAIBAIBALBTY4QNoFAIBAIBIKbHCFsAoFAIBAIBDc5QtgEAoFAIBAIbnKEsAkEAoFAIBDc5AhhEwgEAoFAILjJEcImEAgEAoFAcJMjhE0gEAgEAoHgJkcIm0AgEAgEAsFNjhA2gUAgEAgEgpscIWwCgUAgEAgENzlC2AQCgUAgEAhucoSwCQQCgUAgENzkCGETCAQCgUAguMkRwiYQCAQCgUBwkyOETSAQCAQCgeAmRwibQCAQCAQCwU2OEDaBQCAQCASCmxwhbAKBQCAQCAQ3OfL/egNXQ1ZWFlu2bGH37t1cuHCB/Px8bG1t6d+/P4899hje3t6GtYWFhWzdupVdu3aRmJhITk4OlpaW9OzZk0ceeYQ+ffr8h69EIBAIBAKBoHkkOp1O919vorUsWbKEpUuX4uXlRf/+/bG2tiYxMZE9e/agUChYunQpAwYMAGD58uUsWrQIFxcXBg4ciKOjI6mpqWzfvh2NRsNHH33E5MmT/+NXJBAIBAKBQNA4t6Swbdu2DTs7O/r27Vvn9s2bNzNv3jw6duzI5s2bAYiOjqa6upqhQ4cilV7OAMfExDB79mxMTU2JiorCyMjohr4GgUAgEAgEgpZySwpbU4wdO5aUlBSio6Oxs7Nrcu3cuXPZv38/YWFhBAQE3KAdCgQCgUAgELSO267pQB8pk8ubL89TKBQtXisQCAQCgUDwX3FbmUpcXBznzp3D398fKyurJtdmZ2cTHR2No6NjnSaFhhg5cmSj9+Xk5NCjRw/++uuvq9qzQCAQCAQCQXPcNhG28vJyFi5ciEQiYf78+U2uVavVLFiwgKqqKl544QVkMtlVP69GoyEzM/OqHy8QCAQCgUDQHLdFhE2pVPLcc8+RmJjIM888w8CBAxtdq9PpeOutt4iOjiYkJISQkJBmr79jx45G72sq+iYQCAQCgUDQFtzyETa1Ws3zzz/Pvn37ePjhh3n66aebXL948WLCwsIYP348ixcvvkG7FAgEAoFAILh6bmlhU6vVvPDCC2zfvp0HHniABQsWNLn+/fff56+//mL06NEsWbLkmlKhAoFAIBAIBDeKW1bYNBoNL7/8Mlu3bmXWrFm8/vrrTa7/8MMP+f333xk+fDifffaZ6AwVCAQCgUBwy3BLCptWq2XhwoVs3LiR6dOns2jRoibXf/rpp/zyyy8MGTKEL7/80jDOQyAQCAQCgeBW4JYMM3399desW7cOKysrnJyc+Prrr+utmTZtGu3atSM8PJwffvgBIyMjfH19+eGHH+qtHTVqFF27dr0RWxcIBAKBQCBoNbeksGVkZABQUlLCt99+2+Ca/v37065dO8NapVLJ0qVLG1zr7u4uhE0gEAgEAsFNy213NNWNRj/Wo6nRHwKBQCAQCATXwi1ZwyYQCG4MpVVVrDl5gtZ8rqtWqwmLjUGj1V7HnQkEAsGdhRA2gUDQKCVVVSw7epifoqNaJG3VajVvbFzHnqRElBrNDdihQCAQ3BkIYRMIBI3ibmPDp9Omsy3hTLPSppe1SpWKDydPw1R0YwsEAkGbIYRNIBA0iYetbbPSdqWsmRkZ/Qc7FQgEgtsXIWwCgaBZmpI2IWsCgUBw/RHCJhAIWkRD0iZkTSAQCG4Mt+QcNoFA8N+gl7YXVodRrVaTWlggZE0gEAhuAELYBAJBq/CwteX/Jk/l0eXLANjw2JNC1gQCgeA6I1KiAoGgVVSr1fwQtQ8bU1NMFQqWHT3cqjltAoFAIGg9IsImEAhaTO2atb9mP0R+eTkvrA4D4JGBg5BIJP/xDgUCgeD2RETYBHcE8VlprDwR3apIUEpBLr8e2XPdo0eJuTl8u38P2lY8T3pREZ/u2o76Bg6nbajBoCUjPwQCgUBw7QhhE9wR2JqZsyMxnuXHD7RIKlIKcnknMgJbU/PrHjWyNTXjUMoFPt21vUXSll5UxPy1YZgpjJBJb8w/4aa6QYW0CQQCwfVHCJvgjsDNypa3xoSyJ/lMs9Kml7XJ3fow1b/vdd+bg4UFn0ydzqmM9GalTS9rwZ28eWzQkBuSgmzJ6A4hbQKBQHB9EcImuCZOpKWTWVzcqsck5eSSlJN7nXbUOA1Jm1anY+e5BIMktVTWdiWebTYduftcIlUqVYv2ppe2g8kpfBC5pUFpu1llTY+QNoFAILh+CGETXBN7k87z1IqwFktbUk4uT68M40jqpeu8s4a5UtqKKyv45dABvtq7i+T8nBbJ2u+Ho/lm3x5yy8saXaPRalkZE8v8iLUtlrYT6Rnkl1YReymtXqTtv5A1gIziImQSaYvnrOml7VxODpUtfN0CgUAgaB6JTnwMviZGjhwJwI4dO/7jnfw36HQ6PtmxiwPJF/jm7um4Wls3ulYva7P69mHOgP43cJf1ySgp5O1t4QR37MrIzv48F7GKKk0lD/YfwLSAfo0+7vfD0ayPO8UnU0PxtLNv8jkqlSpeCF+NTCplScgUTJo4DH3H2XO8t3kbiydPxNvJkRfXhBHg5s4Lw0eRWVz8n8iaQCAQCG4ehLBdI3e6sEHLpO1mkjU9emnztHUgITuTskoI7uzDM0OHI21Ailoja3paIm21ZS2oYwcA8srKeHFNGPbm5qQXFzG8s4+QNYFAILiDESlRwTUjkUh4ceRwgjp2aDA9ejPKGtSkRx/sO5TYjItUa5R8N+NejqSm8NXeXfVqyK5G1gBMjRR8GjoNjVbbYHq0IVmDmpq2F0eM4mRGOvnl5TwaNFjImkAgENzBCGETtAmNSdvNKmtQ02Dw06FdjOjcDRtTc3YkxfHJlNB60na1sqanMWlrTNagpmbtg8gtDOvsjbu1DZ/t3tGqOW0CgUAguL0QKdFrRKRE61I7Pfr8iGG8t2XbTStrtRsMrqxpe3FtOP3ae2FtYsqG+KuXtdrUTo+O79aVT7bvalTWates5ZeX16lpayhdKxAIBILbGyFs14gQtvrodDqe/GcVsWnpTOkewMKxo/7rLdWhsdEdV0rbfX/+CsBPsx7Ay/7aZE1PpVLFiC++BuC9yRMZ4eNd5/7GukH1NW1C2gQCgeDORKREBW3O+dw8LuTnA3D44sVWz2m7njQ1Z632yI+Pd2013L427kSbpSMPXLhg+HNE7Mk6NW1Nje5ozXBdgUAgENx+CGETtCm1a9YOzJ/XaCPCf0FLhuK6WdkS4NyJUxmZTOvhz7IHHmq0EaG16GvWPgmdys7nnq5T09aSOWtC2gQCgeDORQiboM24ssGgue7RG0lLTzD4/XA0uxMTWTxxMiezUhptRGgtVzYY1G5EeGZFGC+sWdWiOWtC2m4fdp87x+GLF1v1mOOXLhGZkHCddiQQCG5mhLAJ2oTGukFvFmlTazWEdu/frKzpu0H7te/AW2NCkctkOFla8cnU6VctbY11gxqkTadDo5LyYP8BLRrdoZc2axMTcfzTLYxaq+WN9etbLG3HL11i4dq1zR6JJhAIbk9E08E1IpoOWja6ozUnIvwXtGR0R3ZpCS+uCaNfe69Gh+teSVOjO/S05kQEwe3F9oQEPt6+nXcnTaK/p2ej6/SyNm/4cMZ363YDdygQCG4WRIRNcE20dM7azRJpa4grZS0hOwOVRl1vnXMTkbbzedlUKKvrrG+JrEHdOW2P/b2ixWePQo0IH73435zLeicQczEdpbr+90JTxKVnU1ZV3fxCYJSvLy+NGtVkpE3ImkAgACFsgmsk7PiJFs9Zqy1tm+JO34DdNU9hRQX7zicZZE2n0/H70f18tGtTk9J2OjODjOIiAM5kZ/DGlghOZFwWJ41Wyz9HY5qVNT2mRgqeGjqExJw8vt8b1aK963Q6vty1jzfXbaa0qqplL1jQYnQ6HR9v3suzy9a3WNqOpaQze+lKopJaXpvWlLQJWRMIBHpESvQaudNTolqdrtUzwfTfcjfLUUtXvoby6moWbYvAxtScl4dPQCGTN/qYM9kZvBu5lgf7Dmasb0CT120Jhy5cZH7YOhaMHcFd3Rv/Ba2Xta3xCXx/3wza29m26nkELaOksoqHfwnHwcKML++bhJG8/veCnmMp6Tz6WwQvjR/KPYE9Wv1cV6ZHhawJBILaCGG7Ru50YbtdqFRVY6owNvy9JdIWm57CR7s2Nyhr18KRlFReWLW2UWkTsnZjaYm0Xaus6dFLW2jPnoTHxgpZEwgEBkRKVHDHU6GsZsHmP4hJTzbcZm5szKIxIRRVljeYHt2bfIZ3Itdyl1+PNpU1gH5e7fl0xhQ+3LqTDSfj69wnZO3GY2Vqwi8Ph5JXVtFgerStZA1q0qOjfH3568gRBnXsKGRNIBAYEMImuOMxMzJmdu/hfHdwc4ukbW/yGT7fs43A9l7c2zvouuypIWkTsvbf0Zi0taWsQU3N2vaEBPp5ehKVnNzqOW0CgeD2RaRErxGREr19OJqWxA+HtvLEgPH0du9ouL12ejTIqxNf7dtOoKcXC0ZMue57qp0ePZ+XL2TtP6Z2enTO4D48+efaNpW12jVrLR35IRAI7gyEsF0jQthuLHnlpfxyZBdPDhyDhbFJix5TVFnODwe389iAUdiYmje5tilpu//v7wHo196TV0dOverX0FqOpKTyxN9hAEQ8/pCQtf+Yksoq+r3zDQCv3TWc2YN6X/M1G2swENImEAj0iJSo4JbCxtQMmVTK4h0RlFU3P8qiqLKcd7dHYG5kgpWxabPr+7brzGOBY+ulR4/V+rNOJ21w5Mf1QKfTcSA5xfD3k2kZN+R5BY2TmJ1v+POBpIutntN2JU11g7ZkTptAILgzEMImuKWQS2U8N3g8jhZWzUqbXtY62Dnx5MDRSKUt+3a/Utr0NWsDPL34697HG21EaGtq16xFPP4Q3907vcFGBMGNQ1+ztmjqKI68+VSjjQgtpSWjO4S0CQQCECnRa0akRP8b1FoNX+zfTG5ZCa+PDKmXHr1aWavN0bQkPtu3kYoqGFCrZq0lIz+ulcYaDJob+SG4fjTUYNCaOW1X0to5ayI9KhDc2YgIm+CWpKlIW1vIGkCFUkVFFZgYwWify6M7mhv5ca001Q3a1MgPwfWjsW7Q5kZ+NEVyfn6r5qzpI23nc3NbvX+BQHDrIyJs14iIsP23XBlpU2s1bSJrhtEdnl6M9O7WbPdoW0XaWjq6Q0TabhwtGd1xLZE2gUAgaAkiwia4pakdaXtp418s2PR3m8raghFTGm1EaC7SlllSQGs+D+l0Oj7eHsnW+DPNju64XpG2SqWKjKKSVj1GpdFwMb+wzfbwX5NWfLmpoKVz1kqU5fz8UMg117QJBAJBYwhhE9zyyKUyHuwTTGFlOcVVFczuM+SqZS2tKI+v90fWm7PWEmk7ePG84XatTst3hzby94ndLZa2/cnnOFt8hufHDmjR6A69tH2390CbHf6+7kQ8D/+2grTCohatV2k0LAzfyPubbo8Ic4Wqmnciw1kXfxSdTsf7G3Y1K2uxGSm8tmUFBVWlhvTo1rjEG7hrgUBwJyBSoteISIn+9+hr1trbOqDSqMkrL22wEaE50ovz+b/d4QR38Gd694ZPMGhsTptSra6XBsuvKOHjveEEuHhxb49hTR52f7Ewh0/3RzCmSx8m+vZr1b6r1WqM2ygFp9PpWLJtDzvOJPLTgzNoZ2vT6Fq9rKUVFfPD/dOxMWt+bMqtwIWCHN7bsZrJfn0Y690TY0Xj721sRgqf7dvEY4GjCPLyBqBapW7yMQKBQHA1iAib4JamdoPBM0FjmTdkQotGflyJXtZGdOreqKxB45G2hmqW7M2seGloKKeyUupF2nQ6HWqtFrgsaxN8+jUra2qNpt5tbSVrABKJhPljghnZtQuP/L6q0Ujb7SprAB3snHht5DTWnT7G1nOxja5rSNYAIWsCgeC6IIRNcMvSUDdoa+a06alQVvPhnghGdOrONP8Bza6vLW0XC3OaXNuYtIUdP85bGzZwPj/TIGtjvfs0ea1/jh7lrY0bmt3ftdKctN3OsqantrStiz9a7/7GZE0gEAiuFyIleo2IlOh/Q3OjO5qb03YlFwqy6WDn3Ko9XCjIxtPWCWkTqU49V6ZHS6ureXH1CiTGJUztNoAJPk1H1v45epRlRw7zSWgo3k6t2+fV0lB69E6QtdrUTo9O7tYXELImEAj+G0SETXDL0ZI5a62NtLVW1vSPaYmsQf1IW2FlMaYWlehUJkSdzUTVQKpTz38ha1A/0paSV3BHyRrUj7QJWRMIBP8VIsJ2jYgI242ltUNxWxtpa4rolCQKKsqZ6Nd4x+CVxGWmE5eVxqxegUBNpG3hll8BmO4/mIHtuzE/IhxHC0sWTZyIQiar8/j/StZqo9Pp+L8tO1lx5AQWxkZseGbuHSFrtblQkMMrm5cD8Oyg8ULWBALBDUdE2AS3FCZyBUM7+rZ4zpo+0jagfZdrHmZqa2bOn0cPsPH0iRatj8tM551ta7EzMzfcVjvSl1dRgqWxMUtCQsktK2XRxo11Im03g6wBqLVa8krLAdBodZRVV/9ne/mvKK6qMPw5r7x1c+oEAoGgLRDCJrilMFEYMaVbv1bNWZNLZUz174fRNZ5E4OvkyqJxU1skbXpZe2TAUMb4+AOXu0Gn+w/m/8Y9ZEiPNiRtN4us1a5Z2z3/CUJ6BzTZPXo7ok+DPjtoPB+Mv6fRRgSBQCC4nghhE9wWHEg+T6VKZfj7udwsskqL662rUCk5eukCAEdTL1JUWWm4L724kOT8+l2fKo2G6JQkoGlp0+l0bIk7y6mMtEZlTd8NWrum7c1NqzGRyw3SNvqrL/n90MGbStb0NWstGflxM3A2N4VKVesigRcK0impKqtz25U1a1fWtBWUV3D4QmqrnqdCqWRfYnLzCwUCgaAWQtgEtzxanY6w48d5Ze0ag7QdTk3mjc1h9aTtUmE+H+/azPdRe3h93TrOZWcDNbL2xuZwjl1KqbNepdHw0a5NrDpxxHD0VGPSVlxZxWfbd/P65tXMDWxc1vTYm1nhIu/E+iMp/BAdiaWxMf08PQGwMjGhg71D275RraCxbtCWzmn7L9HpdBy8FMfPR9e0WNqS8i/xy7F1pBRlGm5rrMGgtrT9cnA/z69cS1TShRY9T4VSydPLV7P8yPFWHVsmEAgEt6SwZWVl8dtvvzFnzhyCg4Px9/dnyJAhvPjii5w7d67Bx5w/f55nnnmGwMBAevToQUhICGvWrLmxGxdcF6QSCe9NrjlGSi9t9/UeyEDPzvWkzcfJlcl+vfnnSAyTe/jT38vLIGsjunRleo/L4zX0spZfXsY746bVOdy9IWlLKy7A0kZNdbmcg+ey0Gp1jcoawI97DrHy8Cl+eHAa6eVZvB25knUnT/BJSCjWpqb1atpuFM2N7rjZpU0ikXBfz3GYG5m2SNqS8i/xe8wGpvoNo7tLF6D50R16aUsouMDEnp15OXxDs9KmlzVjuYxPZkxu8uQLgUAguJJbskt0yZIlLF26FC8vL/r374+1tTWJiYns2bMHhULB0qVLGTDg8gDUs2fPcs8996BSqZgwYQL29vbs2LGDlJQUnnnmGZ5++umr3ovoEr15qFSpeGXtGgA+mDIVE7mcXw/vJfpiEu+On46LpTUHks/zzqZN3Nu/LxsTjnN3z/5sOB3LiC5dua93kOGX6JWy1lh3aUJOJou2rKGXuyfH0lJ4ZMBQ/J3bM+fnlXRv74zSOI2Jvv0blLXfoo7yy0Mz8HV14teD+9l76Rh923XmyQETKK2ubrJ79HrRmjlrrTnGqi3Q6nQUV1ZgW6uJoynUWjV/xGykoKKcpwaGYqowrremtqz1ce8KtGzOWmFlObam5oY5bR2t2rMxNomPQu9iUOcOhnV5ZWU4WFjUkbVPZ07BVKFodN/6xwgEAkFtbskIW/fu3Vm2bBlbt27l3XffZf78+fzwww989tlnKJVK3n777TrrFy1aREVFBd9//z0ffvghL7/8MmvXrqVbt258++23JCeLepLbAVOFgg+mTAVqIm1VajUP9R9qiLRtij/JO5s28eq4cczuP5D/DQzmz2NRdHJwuipZg5pI24we/dh/IRFXKxvG+PjjZmPFrw9PZ/fZJCqKbBjduXedx1wpa/8cPUrE8ZM8GTiJS8U5HM84j5WJSaPdo9eTsGMnWzxnrXak7a1126773vadP8e81f+QVVK/NrEhZBIZUq0DRy4U8tOR1fUibUn5l/jt2HoKy7XYmtgBNYe/f3tgW5Oytvt8HK9tXkalSmmItF0oTeWJ4QPqRNoqlEru+elPVh6LbbGsnc7MYsaPvxOXntnoGoFAcGdyS0bYmmLs2LGkpKQQHR2NnZ0d58+fZ8KECQQFBfHrr7/WWbt9+3aeeuop/ve///Hiiy9e1fOJCNvNR0ORtvci13Pk0gXm9h/G5IAehjRoNxd3Dl1M5olBIxjeuWurZA0ud4MO6ehN1IVEHugbZJjTlpSTw5N/rmNQFy/euGskUqmkQVmr3Q1aVl2JuZGJQR5LqqpuaKRNrdVSoVRiZdLyeXU6nY7iyqrrPptNp9Pxw4E9RKec58NJ03Gxsm5y7Z9HD7LlzCnemziV3SkHKVdWMrfvVEwVxnUiazmllayOO8zC4dPoaO9MaXUllsYNv5bd5+P4K2Yv84On4Ovkbrhd/5htp8/y9vpthkjbgfMXmLdyDe1tbflz7n3NytpTy8N5ZPAA7uvf9DFlAoHgzuOWjLA1hZGREQDyf2duHTlyBICgoPoHegcFBSGVSg1rBLcmV37muDLStuvcOfafS6FPOy/WnzlKTFoKb2wOY0SXrrwQPI7XRk/i+wO7iDwXd1Wy9siAoTwzZFS9mrbOTk78NncmUYkpvLthBz/sblrWACyMTevUNt3oSJtcKm2VrEFNpO1GDNKVSCQ8FhTMQK9OLFgf1mikrbas/d+k6XSwd+KBXhMMNW1x2efrpEHH+/Zmmn9//m/XapLzs1sla/rvPf1jxvj58NakMbwcvoHI0+f4af9hvJ0cyS4tZWt8Qp3H1OZqZe1qPm/rdDrR8CAQ3ILcVhG2uLg4QkND8ff3Jzw8HIAPP/yQX375ha+++ooxY8bUe0xwcDBKpZLo6OhGr6uPojVEZmYmrq6uIsL2H6HRavg8KoIpfkF0tnevc1+lSsX4b74G4NWx4xjt68t729cRk5aCl6MZjwWOw8fRA4Bjl1J4J3ItAMvue6xVsqbvBoXLNW21I20ZRSWMWrIUgLAn78fPzZn1p07y4/79LR7doY+0edja8sb4CS18d25Pmoq0XSlr7W3tDPeptWoW7fgRlUbN5K7BDPKse2LF5oSYOpG22jQka/svJHAyM4XHB4ypNxdwTWwc72yoSRNHLXiGM5nZzFu5mmm9/UBRybzBEw1ifi2Rta/2baeTvSMTWnj6hk6nY+nBPTiaWzGte+/mHyAQCG4abpsIW3l5OQsXLqypq5k/33B7WVnNXCWLRop4LSwsKC0tvSF7FLQ9MqmM/h6+fBO9jqT89Dr3Hb90eT7Wpvg4kvNzSc7PxsYCKpRVmCpqoiIqjYYtZ08Z1h651HS3X2OyBg13j244ccZw/6qjp9BqdQR6deDT0OktnrOmj7RN7dHyY7FuVxqLtDUlawAphZlotVoAjmck1KtpuzLSpqexNGiAiwcphbl8d3Cb4bpQU7u27kQ8UNPBHHMxjd7t2/G/4H4sP3QCuca8TWQNYJS3H78djmJTC07f0MtadMp5Bnp1avVzCQSC/5bbIsKmVCp58skn2bdvX72uzzfeeIOVK1fy66+/NpgWnThxIhcvXiQuLu6qnlvUsN0c7Es5RUTcfp4aOJnO9u6GbtBXx42jn6cX81eHkV2RS0cnc1wsrbGU23H40gXeGjON349GGdKg5/NzeH/7Bh4PGs7wzl3rPU9TslYbfaStg7Ube+LT+OWhGViZmjDn55V1atoEV8+VkbZtZ083Kmu1a9Z6uHbhz+Ob6tS01aZ2pC21KLdBWdNTXFnOezsj8LR15IkBY6hSq+s0GOxLTObt9dt4eGgvotJOMq5TP77eeZAXRg3D29mxTWrWzmRn8NbmNczpP6jRSFttWftgYtP1fwKB4Obk2s7quQlQq9U8//zz7Nu3j4cffrjeiA59ZE0fabuSsrIyLC0tr/s+BdeXIV4BAHwTvY5gz758v+cgr44bx9DOXUgvLqRCW4qdpZSyKiUPD5+AtYkpSKS8uO5vnCxs+GDidCyMTejh1p5XR93F+9s3ANSRtpbKGtRE2no5dWFvajxzh/fB19UJgN/mzmTOzyt5d8OO6yJtmcXF7DibyH39+rR4zldRRSXhx2OZMzAQWSuO/Pqv0UfaAB5aXtNQ9MPM2Q3K2hf71hLk2d0wuuOBXhP48/gmfj66pp60jfetSRW+smk5Wi28O35Gg7IGYG1qzmsjQnhvZwRf7t/CyeQSjBVyQzfoGD8fkvKy+G7nYZ4dNZCZvfvR2cGV//21EoDnRwVfc4NBV2c33h4/lbc2rwGoJ21C1gSC24Nb56dzA6jVal544QW2b9/OAw88wIIFC+qt8fx3cvzFixfr3VdRUUFOTo5hjeDWZohXAD2cfdiceIBHh/Q3yNobm8Nwspbj7eiMQmvHoo0bKa2uJru0BBO5EZWqasqUl9Njemn7/sAudiVdTmdWqZU8OiC4WVmDmtEda2PO8uzg0diaXy5id7OxqtOIoNW2bYBbqdHwz9FjfL8vqkWF5UUVlTy9Iozk/Hxu1VC72b+NRgBGV3TR6iNrfdz9WBFzkqOpKQDIpfI6jQhXpkfzyysorQAdNHsGrbWpOS8MnsS6Y0nklBfzyfRJhm7QQ6mJHM2O53/B/fhh91Giki5gorh8PfNae78W9NJ2ZXpUyJpAcPtwywqbRqPh5ZdfZuvWrcyaNYvXX3+9wXX9+tVMrj9w4EC9+w4cOIBWq6Vv377Xda+CG8OB5PP8cyiewHb+7L8UQ/TFBN7YHIajtQxnCyueCZrK/00JQafT8eCfv5FbVsrXIQ8Q5FX/RISGpK2vRwdG+3Rrdh+1R3eM9fMjpHvdCMr1lDZPOzu+mTWDjXHxzUqbXtY87W15+64JyG+h6BrUrlmL4/uZDzDFv2edmrbaadA5/UbwfPBoFkduaFba/jq2n7+PHSW0R2/mBg6tV9N2JRVKJa+u2Uone2d82pvy67FdaLVaDqUm8sOhSJ4dNJ7/DR7CW5PGMD9sHY/9tYrnRwXz4/0z+XT7btbEnmr02q3hSmkTsiYQ3F7cWj+h/0Wr1bJw4UI2btzI9OnTWbRoUaNrO3XqRK9evYiOjiYqKspwe1VVFd9++y0ymYyQkJAbsGvB9aR2zdrD/UcyolNvfo/ZiolJJc4WVjw1cArGcgVyqRR7a2NUGg1alRy5TE53544NHmPVWKQNIOZiWoMydOWctcb4r6XtVpG13LIyMoqK6t1+ZYOBp629oRHhpXWrWHPqCL/HbGCwZx+8HWpOHgju7NOstP1+ZDd/Hz3K+K7+zB0wtNFGBD21TzD48p4Q3hwVysXCXB5a9S3fHdzKs4PG09Ot5vnb2Vojk0lQqjV42dnRu307Pp857bpI26+Howj59WshawLBbcTN+VO6Gb7++mvWrVuHlZUVTk5OfP3113z11Vd1/ktLSzOsf/vttzEzM+Pxxx9n4cKFfPTRR0yZMoX4+HieeOIJOnbs+B++GsG1otXp+PvIEUPNGkBGYRkSCejQMc67H8bymhTV2ZxMSqoq+e3+2cilMnadPccLK9ajrDRioGdntiXU/cWpl7a1cccNh7+HHT3Jk8tWk1pQVGdtYXkF62JPNytrevTSFnMxnQt5BW3wTlymKWm7VWQNYOvp0zwbFkZ6LWlrrBtUIpFwb+9AqpQalkYfYKhXf+LTi3htQwSl1VVA09KWVVzJiuOxmCoUOJpbGZ6vKWk7cD6lzgkG1qbmjOrSHbVWg5FMTneXmnILfTfoE8GDeHfKeH6JOoxOp7su0ubr5IqHjS0qjYYhHb2FrAkEtwm3ZJfowoULWb16dZNr/vjjDwIDAw1/T0pK4vPPP+fw4cNUVVXRqVMnZs+ezbRp065pL6JL9OZAo9UaCuar1Sq+ia6ZqdbDtSMbEg4Zukdrr9X//1x2Lo/8top7A3vxv+ABSBso1tevDTt6kiXb9vDtfdPo7dmuyX1czd7bmosFBTz1zyom+nfj8SGDKK6sumVkDWrk7Os9e9iTlMQX06fjZm3d6OiO0qoqXoyIwNbMDA97S46kprB44jR+Obif/PIy3rsrBMt/5+vtSTrLZ3sieX30XfRt71WTBj16FFOFgtE+3XgsKLhe00Zjc9pqf/30adAH+wxj45ljeNo6EuzZg2dWRNTpBr3yax6Tmsa8lat5YdQwpvYMuKb3S58Gnd1vEN/t39lk96hAILh1uCWF7WZCCFvbUKVSYSyXt7izEUCpUSOTSOv84qtWq/j24Dp0Op0hDXrlyI+G0EvbfQN681jwgAbXNCdrrUGj1aLSaDCWy6lUqeoUzjeGTqejSq3CVGFEhVLZosfAZWkb3KkjcRlZt4ysAai1GjQaLT9GRbE7MZERvp2JupDYoKw9Hx6Og4UFb0+YgFan4/cjB4hOOd+stPXx8CD6woV6slapUmKqqPseNzVc91BqIt8f3MZzgyfQ060DxZXlLNiwgpMXSnhy6GDuH9B0rey1SltDNWstGfkhEAhuDW7+n9iCO4KvD2zl1yN7WnxkjlKt5uNd61kdd/lYsYZkDWq6R0P8Bzc4XFePt7MjP82ZwbKDMfyw52C9+9tS1gBWn4zhzc1r2Hr6NE/+8w9FFRVNrtfpdPxyaD/vR24i/Phxnl6xAm0L3ytPOzvem3wXa0/GcT4vj7cnjr8lZA1gZexh/m/nRv43aBA+Lo5sPH2S54eNaVDW0ksKmNDNm1+P7Oer/dsNNW3vR25k4agJ2Jtb1EmPejs5I5fCgQsXkEtldWRNo9Xy4rp/iDxXdz6jPj26ZM9aKlVKw+2HUhP5LnobEq0xSnXN10UhU5CUVkV7J1OKtXl1hus2RO30aFxG6w5/b6zBoLHuUYFAcOtx1RG2tLQ0jhw5wpkzZygoKKC0tBRLS0vs7Ozo2rUr/fr1o127a//FdrMjImxtQ05pMYsiw+nbriMP9aufjqqNUq3m493rqVKreGXEFMyMjBuVtdpcbaStrWUNaiKKb21Zi1arxURqyqXCQj6fPh0bM7N6a/WytisxgeGduhERG8vH06bh5+raoufS16xJJRJyy8qY3N2fx4cMalU087+iXFnN21vXYG5kzEvDxvP13j0cvpjKF9On425jY0iD2pmbM7l7V5bs2YKFkQkfT5qFs6UVOp2OrNISXK2sUWk0vB+5kfzyMp4NHsk729ZSWF4jbzodvDVuEv3adzA8d3xWOu9GrmNu4BBGe9cd5ZJdWoSzpQ1wWdakOmN6uLfn6UGjDFHftMIiLE0UdYbrXnmM1ZWkFRbhbmPd4q9PS7pBRaRNILj1aZWwFRcXs3r1alatWkVycjLQ8OHD+h80nTp1YsaMGUydOhVr69uz8FUIW9vREmm7WlnT01ppszc3a3NZ09MSaWsrWdOnQdOLiurUtN1q0rZwxER+jIpiT1IS702axCc7dmBnbs7bEybw65H9HEhJpEqt5PmhYxno1aXetVQaDW9uXsOpzDRAgqlCwcguXfF1duXzWjVtepqSNmha1mpz5YkIzUlbS2nN6A4hbQLBrU2LhK2yspKffvqJX375hcrKSkxMTPD39ycgIICOHTtiY2NjOJOzuLiY5ORkTp48SVxcHNXV1ZiamjJ37lzmzp2Lqalpc093SyGErT7HUlPZl5zEs8HDGyzgb4jTWZmsOXmChwcO4J3IiAal7WJhHu9GRuBkac3rI6diZmSMRqvhywNrGpW1vLJSlh7azbODx2BuXDPNXi9tzwZNo4OdS4P7OZedS+i3fwDw+8N3t5msLTt0FBOFgtDeNb8wm5I2vaytiT1FB1tHzufnXpOs6dOgVzYi1H6PY9KTuFCYRUi3lsvcmZxUjqUncn+vka18N1rOldL26c6dbD59mg729vx4zz38emQ/x9JSWDw+lNSiPD7ZvZnnhoxhoFcXIk4dxsbUnBGdu5FZUsTL61eQV1YJwEjvrrw4bAwSiaROI0JBZQnVGjWT/Ho3Km1H087zddSWZmVNj17aOtg58fiAMW0iy78c2se+5HMtHt2hl7ZHBgxljG/zA6AFAsHNQ4uOpho1ahT5+fkMHjyYyZMnM2rUKMwaSN1cSUVFBdu2bWP9+vV8/fXX/PPPP+zfv/+aNy24uWlvZ0fMnlQ+2bmdF0eMalbaTmdlsmDtah4eEISLpQ2LRoeyKDIcwCBtSrWaP47urZmfprkcxZVJZQxo35Xebl0alLU3toTT3dUD01oF+kO8AjBTGONo3vgvuJOXLtcQHUlJazNhC3B3Y96qCABCe/fARKHg7XFTeGvLWqq0lXjY2jIvLIzPQkOJOBXDmthTlJQrOavO5rPQ0GuWNbg88uOpf1YB1JG2dtYOrDhZU0sY6j+4Wak4k5PKdwc3cG/PEVfzdrQYcyNj3ho7lbe3ruHdyHVkFdakMosqK/ly3w7O5WWyeHwozpZWOFta8eKw8XyyezMAPo5ufLhrHcWVFaw+dZyiimrMFAoqVCpSC/IpU1ZjaWxCcGcfAN7eug5zExlvj63pIO/m4s4boyfzbuQ6AIO0WRqZIsWEHu4ezcoaXD7G6mxeRptFNnu4eTCha/cWj+7Q17Q1d3qDQCC4+WhRhO2pp57iqaeews/P76qfKD4+nm+//ZZvvvnmqq9xMyIibA2TW1bGi6vDCHBzb1LaasvatB49DbfXTo/e33uwIQ36YvBEPtuzFZVWwxujp9Tr4tNTW9YeCxrR4kgf1K1ZszAxbrZ7tLWcTMtg3qoIngoe0mik7WR6OmqdhrIKFSbG8jaTtdo0FmnLKSvik33h9Gvn3aS01Za1Ae19r+KdaD1ZJcU89NefmCoU/D57Di9ErOJ8bh6fhU6nh3tdqT5yKdkQaVNpNXyxdwtVSglmRkaM7NKVhwcM5oPITXW6R7edPcnPh/ZSpdTxxphJjaZH+7TrwGubwvB1dm2RrAkEAsG1IsZ6XCNC2BqnOWlrTNYAMkrySCnI4dcj+ymuqsTb0ZVXa9Wsvb99PSqNhrFdOxHk2R2FTE5BRQkXi7LxsHJpUtaOpJ2mm3NHzBQm9fbcUINBS0Z+tJampO1E+iWU1RI0/55+8N2sWW0ua3quVtr+C1nTNxhYm5qilVWTlJeNjYkpfo5eHKnViFCbI5eSeX/7erRaHRqNBLlcR3dXD94eF4JEIqnTiDDK14fwU4d5dcQUskpK68xp0xOflc6rm8IAGNGlq5A1gUBwwxA/aQTXDUcLCz6ZNp1TGel8snN7nTEUTckaQHZZIavidhl+GbpZ2RiiacZyBa+OmoRMKuW3w4f4+cg6sksL+PJABMczkpuUtV3nj7Dp7H5KqsrrPWdj3aDNjfy4Grq3c+PzGSF8s2cf4TEn/n1dcjxt7VEqoVp5eQSEWysadrJKSvBzdWnxnDV9ejSzpAR1rbETThY2vDgklCNp5wiP21+nuei/lDU7c3MW33UX7axtAbAwMWXesOEEd+7Mc1eciADQzrpm/IdGCwqZnMD2nUkpymbX+dMAKGQyXh09EYlUy7KYKOYNGY+Pk5vhRITEvLonG7ha2Rj+7OvoKmRNIBDcMESE7RoREbbmuTLSlpCd1aSsQU036OtbV5BRks/D/YMJO3GsXiNCtVrF4si1XCrOwdlaSxf7ThxLzW5S1vamHOfRftNws3Ksc19LRndcz0jbk8GDKVaWGmrWpDLwdXXAwcy6yZEf15srI20JuZf+U1nTd4MeS0vhtVF38W3Uznrdo/pIW2ZJEW9uCSfAtT0HkpOpVFezYMQ4rE3N+HDXOub0C2ZE525sO3uSZcejcDG3p1KprjNctzYFFeWGNOiIzn68t319o92jAoFA0NZck7AdPnyYw4cPk5ubi1KpbHCNRCLh/fffv+oN3uwIYWsZemmTS2XklJYyvVdPHuw/sNnRHeO7diMsbg+h3YL542g0ge0715G2zJICXt7wN0q1FolEwpAOvjwxqCb9WlxZgUQiwcrEtMWy1tXNiXJlNQ7mlg2+jushbScupfPUP2FIpTokgImxnA+nTGF57CFDTVtacR6fTpuJrbl5i6+bW16EnaklMqnsmvanlzYLYxNyy4pvClnTNxg0NvLjtXFj+PZAJAGu7TmamkqQVyd6e3jw6Z4tPDdkDFYmpny4ax3u1nakFxfw2sipdLR3NqRHr5S22rL29KBRZJcVUVhR2eTID4FAIGhLrkrYioqKePrppzl27Fizk+klEglnzpy56g3e7Ahhazl7k5JYtHkDAL5uVgzp6MusnnWlraE5a8fSz/HL0W0Ul4OJwoggT28e6hdMYWUpXx6IwN3SmU2nzwEwpqsHj/SbjEIm57cj+zmRkcoYHy8Op8c1KGv5ZRXM+P4Plsy4i65uTryzbS2uVjY8O2R0o6/jXHYuT/wZwc9zZuDlYNfoupagH93xz+FYyqtUmBjL+HrmTPxcXQ01bRqNhiryqVZK+WjiAy2StvTiPD6PiuCeHsPp7V5/Hllr2XPhJH/H7sLK2IyPxj9yw+a3/RIdzbmcnAZlTc+V0vbZrp3sSz5HaO8e5JSUYWNqZjjBoHYjwqHUJA5cPIeRXMIrI6bSzbm9oaatg70js/sNBOrL2pazMWw5F8NHE+aQnJ8rpE0gENwQrkrYFixYwNq1a+nSpQszZ87Ew8OjyTEf/fv3v6ZN3swIYWsZ+pq1yQHd2Xc+iU4ODqSVZTCis79B2hqSNYBzuZm8uz0CUyMtD/YZwbKYQwS4tCOrPB1PG1eOXMzC18mV3LIS0kvyCPRyZm6/yUgkEl7e8DcZJYW8Oy6ELg4NpzqrVCp06Hhn21rkUhmvj57U5PBd/WNMFE2vaY7ac9ZKypUYKaSoNfB0cHC9RgS1RkkVhSiVsmalTS9rwzv1ZILPtf/b09esje7Sm/0p8c12j7Ylaq0WrVbLL4f3NShrevTSJpfKyC4tJNCzC48OCEap0WAkk9XZ65FLySzZvRGFTEpoQH/CTh1CLoOXh002SJtUIkEmlTYoaxvPHmNB8DQ8bZ2A5ofrCgQCQVtwVcLWv39/zMzM2LhxI+atSNHcjghha54rGwz06dHa0hbi348lezY0KGvv71jDrF5BOFqYsix2O6M69WNZTDSuVtaUVmrp6daex4JGoNKoWRy5lrTiXAK9nOlo78aBiyfQqR0oqa7mnXE1aS6NVlunWLxSpWxQ1tQaLXJZ64rK1RotoEMuazoNqZe11bEnKS2/PLpDrdE12j3aEmm7XrKmT4O2dORHW6HT6fgheneTsqYnOT+Hl9avwM7MnK+nPYBxA0Kt0+nYevYEf8VEodLomDdkLFYmpry/c00daYO6kbUnBo4gMjG2nqzpEdImEAiuN1fV4qTRaOjZs+cdL2uC5mmoG1TfPXo+L492Fm7sTIrjlc3/UNmErI3z6UEfd28m+ASy6dwBXK1NSSssplRZzpBO3kglEozlCl4fPYV21o7sTbpEZOIhHu47hTfGTMXJwoo3t0SQVpTPq1uWcy63ZjBuY7IG8FLYBn6LOlLvNTWGSqPhpbD13PP7T8RlNnzIvJ61cbGsPhFLtVqJsZEMZ2sz5DJpg92j+uG6cpkROrU5yJQs3PQXmisOE7/esgZNd49eD1adONIiWatWq/i/nRsY4+OPrak53xxo+APU9we3sCpuL6+MmMz8YRP4Yt82ZFIZr46YiloDH+1eR3x2KhqtlkVbV+Pr7Iq/qxPv7Pi7UVmDy8N1fz60j5i0lLZ6+QKBQGDgqoStW7du5OXltfVeBLcZTY3uuFLaiirL8XZwNYzuuFLWAAoqStifcgqF1IiL+RX4OLlxf+8gPtm7ntPZaUDNyI8hndohkUBGoYRNCQfQ6XS8NHw8tqZmvLBuOS6WNnS2d25S1gAeHRLIT/sOt0jaVBoNr4Rv4lJBMXf36ssbG9c2KW1KpY7SMi2e9jaYmIC/mxudHWtEoDFpG9KxC9mlZTzYaww2FjJWntptEKYbIWt6bqS0jfbuxnsTmpY1qPm6zx82gf8NGMaisVOZ0aP+e7Dt7EkOXryAq5UNu5KP09OtPYvHT6eLgzPdXNrVkbaE3DSeGTwKf1cnwuL2k1dR3qis6enm4s77E6YT4Nq2Z84KBAIBXKWwPfHEE8TGxrJ379623o/gNqG5OWtQV9o8rdqx78IZ/omNblTWvjwQQXtrF6qqTAlw9aBElY2XvR1z+g7j4z3rOJ2dxq7zR4i+dJL3xs+ko50bh1Ky+fnIOooqyymuLsHaxJTU/GLyK8qarVnzc3Pmx9nTm5U2vayl5BeydPZ0pvfqw6NBQxqVtnUn4vhuTxRvTxqPRivBwsSIUmUlao3GsOZKaduaEMfvR/bz9ripDO7oy8vBM4nPvsg/J3eRVpx7w2RNz42SNlszc5wsmpY1Pd6OLkgkEsyMjPGwqdsMoh/d8eqIqbw67G6Kqsr54dAmPG3tDenxK6XtSHoCYXH70elkvDIstElZ09PR3hGFOPZJIBBcB656rMeWLVt4++23CQ4OJigoCGdnZ6SNDJHs16/fNW3yZuZ2q2HLLClg34V4pncf3OLjnAoqStmUcJRZPYcil8o4k5XJy83IWm1q17TF5SYhkUh4uP+wBmTNlSMXMw1z1o5nJLIsdjuP9JtAblkFPx/egYu1nHmDpuNm5WiY05ZalINMrsPHwQ0fJ0eOX8olNiOVjvaO/N/EGU02GOSWFbHi+AH+iUrmkSGBzBl0+Xs5raiAzWdOkZBazMWCIpbOno65iRFr4vcy3mcA+86fZ+mBfbw7cQr+ru4A/HP0KL8eiuKlkWNYHnMYP1dXHhkwhHlr/sLF0oa3x03DSH75F/7JtAxeXB2GmSn42XZmzqB++LjUdLrmV5Tw+rZfAZjUdWCDsrZ072F6erjRr0PLoj6tHYpbu6ZtesCQFj3HtZJVWsTWsyd5oPfgRn/m1GbbuZP8dWw/LhZ2DOnQlUn+PahQVvPp/ghsTMyZERDMmrgYHu4/BIVMTnxWGh/tiUAh15JXDIM8fXlp5Lg61yyrruKPo1HM6T8Es1rHo+l0OpYdO0zvdh74ubi1+WsXCAR3Llc9pruiogK5XM7atWtZsGABc+bMYfbs2Q3+J7h1MFEYcTwjmd+O1j2ZoDEKKkr5aE84aq0GqaTm28ncyJjHBw9tkazB5Uibo6WF4bbCinJ0Op1B1nwd2xMaMJRR3t0MQ3H7uHtzX89R/HRkE1ll6dhbyMgp0VJUWQ3UpMmeHjwamVSGuZEcSxMVB1PPkFZck86vVqtR1opqXUluWRFfHAjHzc6ywUibQiZj8+k4korS+OGBUGzNzZBJpFSoqvk6OoIhnTrVibTllZexMeE4vdq78/exQ/i5uvLs0JFEnN5FJydjqtRqFkeuR6lWG54js6wAS3Mp0wP642lnx5yfV3E2KxeAKtXl2YfFVWX1olzf7ozml31HsTarPwS2McwUxtzfa2SL56zpI22OFi0/jeFaMZErOJFxka+jtqG9oo6vIeRSKZbGJpgbGfPzwf1sOn0KMyNjXhgcQlFVOX/H7uRcThYf7tyESqMmpzwfUyMJpRVQWQ17zydxsaDAcL2y6ire2rqagopyFLVm3Ol0On49FM26UyewaGDwruDWwsfHp95/3bp1Y/DgwTzzzDPExMTckH189dVX+Pj4EBERcUOe705DrVYzduxYpk+ffs3XysnJoXv37ixatOjaN9YAVxVhi4iI4LXXXkOn0+Hn50e7du2abED44IMPrmmTNzO3W4QNoLCyjI92h9PFwY05fRs/uF0va76O7ZjdZ2SrDli/ktpp0O4u7VkUGcaA9p25WJxCVydPZnYf3uj1/zq+mZNZiUzuGoxGq+C3o7t5KXgybla2LN4RgZedI3P7DmPp0bXEpBag1KiZ1M2flLxycspLDN2jtdHLWm93b6b51XRDns7I5n9/hPHIkP7cN6A3r4Rv4kJ+Pra2Ovxd3Xl26GikEgkarZY/j28lszSfpweGsO/8eX6M2ouNuTF+zm4kZOXQzc2NZ4eO5K/YrWSXFvDUwBBkEhlvbl6DmZERr4+exK6kBH46uIe3xk7B/9+6qO93HeT3AzEsuWc0axJ2MbxTTwI9fPlsfzjdnD2Z1X04EomEb3dG82f0cX5/ZCbezg5X/XW5WSmqLOedyAi8bB15etCYRiNtRZXlvB0ZQUc7J54KGs3p7Eze2LiWR4OGMMEvwBBpM1eYkFZQhUanoUpXSKVSSlGJjpG+3uxNTkCjUvB5yN3Ym5vx1tbV2Jqas2DERBT/dgPrZW3LmTiWTJ1Oe9trm88n+O/x8fEBYNq0aYbbysvLSUhIIDU1FYlEwscff8ykSZOu6z6++uorvv76az744ANCQkKu63PdiSxbtox33nmHH3/8keDg4Gu+3uLFi1m+fDkbNmygQ4cObbDDy1yVsE2YMIH09HR+/PFHAgMD23RDtxq3o7BB89LWElmrVqs4nZ1OL3evJp+rtqyN7hJATPoFzI2MWLx9NZ0cHFg0ela9Mxt1Oh3n85NJLcpn38VYBnv2ZuPZw4b06PcHIwEY5OXDkwPGUK1R8/bWNWSX5dLbw4GsslJ6unYhKae0nrTllhXx0d4V9G3nzcyAYUgkElLy8wGoqFYz97eVlCuVeNhZ89fce1Fp1by4dgWOlua8Nuou7M2t0Gi1fH9wA6mF+TwZdBevboigsKISjRbG+PrxzJARvLc9HK20jJeGzsLKpOYDT4Wymjc3ryEhJxOZRMp7E0MMsqbns+07OV10iiFe3ZnddzhQkx7VS1tBngl/HYy9Jlkrq67ibE4OAW5uxFxKZYBXx2Yfo1SriUm7RL/2nhxMSSaoQ6frOvajOWm7Utb098dlpjcobRcKciguB60ONCoZTwwexriu/uy7cJov9m5HrZLjYWeFs6WVkLU7AL2wnT17ts7tWq2WTz/9lKVLl2JjY8P+/ftRXONMxqYQwnb9UCqVDBs2DAcHB9atW9cm18zOzmbYsGGMHTuWzz//vE2uqeeqUqLp6en069fvjpe12xlbUwteHhZKYl5GvfRoSyNrl4ry+WzvJnb/e9B2Q1wpa1/u38KK2GjyKwoZ3rkL2SXlrDxxsF66T6lRsu/CPuJzTvJI36mM7NyX+3qO4mjaWXq4ehrWDevoR7VGzTvb1lKlrqSPhxRjuYRZPYZzIiuJzk6WOJnXjPwora4it6yIz6PCMJYbk5SfTeW/acfoCxd4LiwMhVyCnXnNkOhybRkJuRmoNFpKK6s4n5fDwg0r0Wi15JeXsz8hj4JSHS+uXY6vkwuaf7N3wzp580z4n0QlZpKaq0apvpzWMzMyZlCHmpMJ5FIp3o4udV53enEeGcok2pm347utZwzpUXszK54fHEp0yjl2XzzGb3NnXFNkLTE3l7c2rWND3Enej9zCurgTTa5XqtW8tXk9fx89xJKdkSyNjqJSpbrq528JNqbmvDk6hJTC3Hrp0cZkDcDf1Z13J05h6YF9hvRoL7dOSKVgotBRWQUedjaM9K5JCw/p4MdjA4NBqiK1sIB7eg0UsnYHI5VKefbZZ5HL5RQVFZGUlPRfb0lwlWzZsoX8/HymTp3aZtd0dnYmMDCQ7du3t/k0jasSNmdnZ0xNTdt0I4Kbj4akrTVp0M4OLrw8fBK/HN7doLQ1JGvpxQW8OTqEIR2680j/cSwaM51d5+P5Jza6jrQZy42Z3j0USyMFCblx6HQ6+rh7M9l3MIt3RDDIy4f/BY5kyZ71LNy4ikpVBV0cK5nePYRH+88gwKUTzw0KrSNtr25cxSf7w+jTzoc3R9yHpbEpn0etpkJZzT19+zLJ35/Hlv+DQi7hhwdCqaqQ8vq6jRxOO4e7kxS5REZmSRlPh//Js6tW4efqAhIpDubmHEq9gK2ZCY8OGMzLa9eQlF2Eq60JiyfOwMHi8rmlWxPi+DsmmrfGTqGDvWOdmrbaozveGh/Kg0G969S0rTgYT+xZDR1dzYjJPnVNnZu92nnwyujx/HLwAPf07stP0VGNSpte1kqrqnCxtuZMdhafTJ2OmZFRg+vbkoakrSlZ01Nb2j7bs5kNCYdRqmTkl0jwc7XFWC4z1LSVVVexJeE0He0dkMt0zF8TxsWCAiFrdzBGRkZYWNTU3Kpr1ZzqyczM5M0332T48OH4+/szcOBAnn76aU6ePNnoNXfs2MHdd99Njx49CAwM5JlnnuHChQv11imVSgIDA+nRowclJSUNXismJgYfHx/uv//+Fr2eESNGGCKKy5Yt46677qJ79+6MGDGCpUuXGn6WxMfH8/jjj9O/f3969erFE088QXp6/U74nJwcli5dyv3338+QIUPw9/dn0KBBTb4HBQUFLFmyhAkTJtCrVy/69OnD2LFjefnll+s9Jj09nbfeeouxY8fSo0cP+vfvz8SJE3nzzTdJTk5u0WsGWLVqFRKJhIkTJzZ4v0ql4scff2Ts2LEEBAQwbNgwPvjgA8rLy3nggQfw8fEhLS2t3uPuuusuVCpVm9cdXpWwTZkyhUOHDlFUVNSmmxHcfNSWts/3reXD3a2rWfN38WhQ2pqSNSsTM9QaDeXKatysbVk0umFpszS2JDQghEtFl9h5fhcF5WW8vT0MLztHnhwwhgHtvTGTW3CpKA9HizJCu0/DxdIZiURCSVUFjuY2BmmzttBQVFVMdpGWPi5+KGRyngiciMW/0lZcVcHp9ByMJEZoZEpcbSz5+cGZSHSwISGaAKcufHDX3WiUci4WFKCikovF2XS0dySjqAIzIxld3Y3ZdOY4Op0OmQweCgyuM35ia0KcoWatX/sOvDN+KhVKJYsj15NSkF1vdMfjwwcYpG3e8vX8GX2cnx68m5eDZxhGflyLtA3q2IlXRo9n2dHDjUpbbVlzs7HhXE4On0ydjv0NHKpdW9re27GG17esbFLWNFotxZWV+Lu6M61nN7aeOUt2oZaiEnhiUDC2lgra2ZlQWFHOm1tW8+qmMKxNTFg4/C7mBY9GplAxL2IFb2/Z2KSsVaiqUWnq/zIX3PpcunSJoqIiFAoFnp6ede47e/Ys06ZNY8WKFRgbGzNmzBg8PT2JjIzknnvuYfPmzfWut3z5cp588klOnDhBQEAAQUFBxMfHM2PGDFJTU+usNTIyYtq0aVRVVbF+/foG97dq1SoAZs6c2arX9f777/PRRx/h5uZGUFAQRUVFLFmyhK+++opjx45x3333kZOTQ1BQEI6OjuzcuZM5c+ZQVVVV5zo7duxgyZIl5OXl4ePjw6hRo3ByciIyMpJ7772X/fv311lfVlbGjBkzWLp0KRUVFQQFBTFo0CCsrKzYtGkTe/bsMazNzMwkJCSEf/75B4Dg4GD69euHkZERK1euJDY2tkWvtaysjGPHjuHp6Ymzs3O9+3U6Hc8//zyffPIJOTk5DBo0iICAACIiInjwwQdRNZFB0Gcfa++7LbiqgUGPP/44CQkJzJ49m9dee43+/fvfsMOgBTceW1MLHg0cy+IdKwB4v/fsVjUY6KXto101P1wGeXnz+b7NjcoawKaEWKJSzvLGqBCDtC2KDKObszvd3S7/gNRL27KYVfx2JB4zhQlPDqipZ1p+5CBGMvB3kZGYDwUVKlws4Xx+Fp/vX8v8oTWDUO/tOYpvD67ByhzczV2Zt3olIzt256nhQTwROJFvD27gpY2/otSp+e3BOWw6fZrnwsKY1b8bXu0gKxd+TIijoFiHubEJRZVqpFIVWaXF5JSWYWZkxDfT7+XRFT9RVAa2VhKm+AXy1Z5dOFlY4e/qXkfW9DVrZkbGvDN+Km9sWs2SfeGM9e5db3TH48MH8N3uQ2yJO8fHMycY0qDPDw7ls/3hxGQk0sfd+6q/9npp+yByM/f17c9P0VEATPbvcVPImh4bU3OeGzKOlzb8DcBgL59GGxG2nzvDipgjTOvpx+H0eKzMZBSXa3C3tmRyQE9GKbvy6f4IXKyN2J9c8+nZ3ETFOzuW88WUR2EovL1pG/uTk3h7/F0Ny5qyiq8PrqaHSyfGet++ZynfaZSXl3PmzBlDI92sWbOwsro8J1Cn0zF//nwKCwt55JFHmD9/vuF349atW5k3bx6vvvoqffr0wcmpZq5feno6H3zwAQqFgu+++44hQ2rG46hUKl555ZUGa6vuvvtufvvtN1auXMl9991X576ysjI2b96MtbU1Y8eObdXr27x5M+vXr6d9+5rj2c6fP8/UqVP55ZdfWLNmDQsWLOCee+4BaiJ9jz76KAcPHmTjxo2EhoYartO7d282bNhAly5d6lx/3759PPHEE7z99tts27atznuTlpbGiBEj+Oabb+r82y0oKKiTWly1ahVFRUXcf//9vPHGG3Wun5GR0WDEsyFiYmLQaDT4+zd8lNy6deuIjIykXbt2LFu2DBeXmvKUwsJCHnroIU6dOtXotT08PLC1teXkyZNUV1djbGzcoj01x1VF2MaMGcPp06dJTExkzpw5htDpyJEj6/03atSoNtmo4L+joKKUHw9tobuLF07m1vx+bEeLRn7UpnakLSrlHP83YVajsgYwoWtPHM2teHd7BGXVVbhZ27LkrvsIcG1f79oqjYRDqdWotVrG+XoYfgj4uZjTxbGSJwfN4KF+ww3DdTvZuzDBty9L9q4mNv08f8dup7tLJ2xNLejiZMXiCVNZffwU3+w6gE4HienlaHRq3GxssDI14eGBAxnu24Ht54/hbuGCiSkYKyRsOXMaN2tLPOwt0WklaLU6dGj5OvReXt0QRvG/stbF2ZJpPXoYRn78cmhfPVnTY2ZkzLsTpmGss+VISmadkR9QM7rDzEjBhO4+vL9hV52atoXBs+jtVvcH5tXQUKRt9YnjN42sQU3N2uf7ttDDtT2O5lasPx3DitjoBteO9vHDzdaEtWei6ecWQEmFBi87WwoqKg01bf/rN5GYtCxsTE2wMjYlMbsUW3Mj/j6xg3NZhdiYmjK0Uxc+372zzsgPuCxrVsbmjOjU+0a8fMF1pPZYj969e3Pfffdx4cIF3njjDV577bU6aw8dOsS5c+dwc3Nj3rx5dQIZY8eOZdSoUVRUVBAeHm64PTw8nOrqaiZOnGiQNQCFQsFrr73WYPlRhw4dCAwMJCEhoV66cP369VRWVjJ58uRWi8Kzzz5rkDWATp06ERwcTGVlJS4uLgZZg5pIn35s15EjdQeL+/j41JM1gCFDhjBu3DhSU1M5d+6c4faCf/8NDRgwoN4HLTs7O7y9veutHThwYL3ru7m51dl/U+ibSRrr5NRH8J599lmDrAHY2try8ssvN3v9Dh06oFQqOX/+fIv20xKuKsJ2Zc5apVKRkZHRJhsS3FxcWbNWXFXOR7vD+e3o9iZHfjRE7Uibtu9QTmSmNihrAHKpjHlDx/P53s28uz2CN0bVX1OzvzJeXP8nGq2O98fPYE9yJDvP78LO1JbYjKOGNKiLZU3I++M963gpeDLjvHtTVlXBV9EbGOzly5w+Y8irKOaLqHCkUglLZ8/gkT9WsfdCHOYWVTzWdxyHMxL4bH8Ed/kGcr74PB4W7dh1+hKdnW2QuBaTW6AjqSATPxdXckrLqagCCzMdj674lZJyDdZWEp4dMpYLRSl8HR3B0wNDOJ2VTsTJY/xv4LB6sqanRtpCeHPzGhZHruf10ZMwksvrje74ftdB5vy8it/mzsDHxREL45bXmepTp41FymtH2u7u3Zfvo/biYGFBNxe3m0LWatesFVdV8ObWVayLPwbA3T3r/mDfk3ySYlUhFlIH/j56jO7urvzfXTM4nZXBm5vWUa1WsT/lLL6O7hRU51BUWY2rqR0yTInNSKaoXM2SqbPwtLXnt0PRzF8TxpKp0/G0s6sja3P7ThCnHtwG1B7roVQqycjI4MSJE3zzzTd4eHjUGQVx9OhRAMaNG9dg5+iUKVPYtm2bYV3tx0yYMKHeeltbWwYNGsT27dvr3Tdr1iwOHjzIqlWr6N69u+F2fTr07rvvbu1LZfDgwfVu8/DwAGDQoEGN3pebm1vvPqVSyd69ezl16hQFBQWGFKJe1C5evGiom9NHuX7++WccHBwIDg421AheSbdu3QD47LPPkMlkBAUFXVUESy9+1tb1Z0iqVCpOnTqFRCJh3Lhx9e4PCgrCxsamybIw/XULrvhAdy1c1U+ThISENtuA4OaloQYDfU3btUjb/OCJLN6xBoCfZjzaoIhBw9JWeyBppUrJi+v/pFKl4sXg8XSwc8PBPIRfjtRM/7+7x0yDqAEEd/QDaqTN1dKC7PIijGVyjqVdYESnXDxtnXhuUChfRNV8+vV1t6CcPLwsOhPo6U07G3vejPybr6LXM8yrBysOnMfVyobE7EI8HcyxsqikqkrHyfQM5DIJn4aE8nx4OGamGszNJDw3ZCzBnboyWOvDn8e38ta25aTmVTHVvze/HjxANxd3Ojk4Nvhe6NOjb25ewwc7NuKgcOKvK+asPT58AEAdaWspW88dpUqjYkrXgU1K2/wRY1i8bRMA2aWlZJeeZcWcR28aWUMi4fuD27m39yD+jomqJ23RqWdYHX+AoZ69+SU6GicrM3JLy3l/52qk0gqeGzacD7dvo6ODPb6OdpxNzKGLqy32ZlYcu5hDWbUSP3cL9l2MwcokkGpJOmO6+jB/TRiL75rE2oTdQtZuM/7v//6v3m2nT5/m/vvv58knn2T9+vV07Fgz9iYnJweAdu0a/vDl7u5eZ13tP+vva+wxVzJq1CgcHR3ZsGEDCxcuxNzcnPj4eOLj4+nVq1eDEa7maKiWy8zMrNn7lEplndvPnj3baEOCnvLycsOfBw4cyJw5c/j999954YUXkMvl+Pn5ERQUxPTp0w1iCBASEkJUVBSbN2/m8ccfx9jYmICAAIYMGUJoaCiOji37uVdaWgrQ4AzZoqIiVCoVdnZ2jcqgq6trk8KmF87GGkOuhqs+6UBwe9NUN2hTIz+aQ6PVsiMp3vD3mPSUJtfrpa12ehRAq9Px+9G9KGRyZvUM5Lej20nKyyAp73L4OT77dL2i+wHtu+BiaUFeeSGO5lbokKHRwMd7IrhYmGNoRIhKOY1SXsAM/2D2JqTxyfadvL8rDB0114tMPIW/uxMSqQ6JBAorK3G3tsHWSopcJkEm0/HFni3odFBRCRothJ04hkarRSaV8kCvsXg7OtHFxYy7e/flldHj8bC1bfK90Eubusq4nqzpqd2IoE+PtoSebp2ISoln7ZnoRhsVlGo1WxNqvnaKywP+ibrw34w1aKgbVCqRMLiDr0Ha7MzMWRd/zJAe9XX0INizD79ER9Pbox1LZz6EiYmO09kZOJlZs/TQDnxdHUnJL2Dz6Tg+mjyDl4dOR6M2oqJKg5uNHXJsSMpP56O9y3C2sOfhwCGM7dqVT/etQiE1ErJ2B+Dn58fdd9+NWq1m+fLlLX5cW9Z6KxQKQkNDqaioYNOmmg9R+ujajBkzruqaTR311pJj4KAmWj9v3jzS09OZNWsWa9eu5dixYyQkJHD27Fkee+wxw7ravPLKK2zatIn58+cTGBhIYmIi33//PePHj2fr1q2GdTKZjM8//5zVq1fz9NNPExAQwIkTJ/jss88YO3Zsi0+gsLSs6c6vLY5tSVlZGUCdGsdrRQiboB4tGd1xNdKm0WoNNWs/zXiUN0eHNDryozZXSltJVSU/HtxBfHYaH4yfxVT/QEIDgvj1aAQHLkZzd4+7ebjfQ4buUf0Phmq1ik/2rqawsphRPj1YPOYBujm3Byl1pC0hJ50KpQZbM2OqKeX/po8lNi+OClU1HpZOZGWYY2FkQrY6BR9nB3xcbWlva09iZhGmRia42JhgZWTKpYJyHGwlPBk8CJ1awYX8POat+dsgbY/2n4iPkwtfR0fQ1cUZoxb8kv9tfwzb45KbHIp7NdLmYmnHi0NCG5W22g0G3dyckUjA3FjK3AFBTY78uF40NbpjSAdfHuk/okFpi8vI4KfoA/T2aMdbY6fy1YEt2Jia0s2xA5vPXMTK2AQL0xIsjBVotDpOpqex4ngM0cmpfDJtBh9MmEFhRSWX8srR6CSUKdVUqqspUKbhYG7NgXN5ZBS33Sdqwc2LPop28eJFw221GwkaQj8CQr8OMESEGntMU+VGM2fORCqVsnLlSiorK9mwYQMWFhYNpldvFMnJySQnJ+Pv78/bb7+Nr68vFhYWBlm9dOlSo4/t2LEjjz76KL/88guHDh3i5ZdfRqVSNXjUk5+fH8888wzLli3j4MGDzJkzh/Lyct5///0W7dPOrqZZqLi4uN59NjY2KBQKCgsLqa6ubvDxmZmZTV5ff13987QF1yRslZWVHDlyhE2bNrFmzZpG/xPcOrRmzlprpK22rOlr1hob+VGbrNJC9l44aZA2B3MrHln1I4dSk1g0OhR7c8t/96LD2ULHpSINOxIT2HAmhhD/aQZpq1Ip+WTvalKLshnRJYAZ/sHIZTK8bOQoq+SodBqqVRre3r6cX49uZ97gKbwcfDeHL53lh6MbUcghLVvLusOZdHd35WK2CrlEwcnsZDo7OuFsZYGjlRn5hWqkEhWZRZXYWElQyCTYmpny5YyZaFU10vbwPz+h0qgNkTYXCzs+3ruMzNKaTqjd5+O4VFR/4GJrjptqS2mrLWtSuY7cihzeGj+Rl0dMbHLkhx6dTsfWxCOUVle0aB/NoZc1Txt72tta09B3XUPStiL2EIu3bcLDzoqFIyfyRdRmCirKeH7IRAqrSrE2NSM5t4zs4mp6e5nwyugxfLN/F+tOxRpGd6i1SlyslUgkRpjLnIjPTmHhlh+xNDbjrVH3MrFbd8OcNsHtjV6+9GlBgL59+wI1A1k1DZxTrO/41K+78jFXUlRURFRUVKN7cHd3Z8iQIZw8eZLPP/+c0tJSJk2a9J/OSdWLSu1C/dr3HThwoEXXMTY2Zu7cuTg6OlJQUED+v6fNNISFhQUvvvgiEomExMTEFl3f17dmMHZDs+4UCgUBAQHodDq2bdtW7/7o6Ohmx5olJydjZGREp06dWrSflnBVwqbT6fj8888JCgpi9uzZvPjii7zyyiv1/lu4cCGvvPJKm21WcP2p1qjp4965xXPW9NJmLFeg1TV8EHdDsqanOWmr1ihZe/oA25NikEqkmClqhrHKJFKM5TVFvcfTYzl48SBWxta4WWnZnxLL1rMnyauoJDQghNTCVL6N/hOlRsV4n17M8A9GIpGwOWEb53LPUF6pJj1XiVqnRe+cpgojNFodxVVqNFoN7SycyCusSX8eupSEDrin1xCMFZBYkERJdQVL73kAV2srpFINfp4SFHIJXZ1d+f3YTpILsvhw6hQqKyGvrIK/jh1Ap9MhlUiwNjVFq1NToaomMvEEy47vo0pdd8aPTqejWq1p1XFTjw8fwCND+1Fa1fAnxIa4UtqqVSqDrMnkcD4nF383Bw6kxtK3vUezc9p0Oh0rT+3mwMW4NptJVq1W08vdi4f6BXMsPYmlh7eiaeAQ+NrSdpdfL3Q6MDUGuVzNN9HbKKgo47UR05DLZPg4ujKwfWcALubp8LB2JerSAQZ6eTGxmz/tbe0oqizlpyPh+Dp78fmU2TiaWSGT1PwINVUYI5fJeLD/AKZ170m5suXvueDW4/Tp06xYUTPmqHbTQWBgIN7e3qSnp/Pll1/WiVRHRkYSGRmJmZlZnREYISEhGBkZsX79+joyo1Kp+OCDD6ioaPqDzqxZswD47bffgNbPXmtrPD09kUqlHDx4kJSUFMPt1dXVvPXWWw2Kzvbt2xucnxYXF0d+fj5mZmaGFOaaNWvqdJjq2bt3LzqdrkFRbIhevXohk8kaHc+hf1+//PJLsrOzDbcXFRXx8ccfN3nt1NRUioqK6N69e5uN9ICrbDr45ptv+P7771EoFIwaNarZw98Ftw6ulrbM6F6/U6gpbE0tuK/XsAbva0rW9Fw5p21YJz/DfZ42zjw7aBpfRq0mOuUcOWVVfD11Dn8c28e72yOY0q0LJzNjmBYwDSOpKd8f+gMfRy3ncnV8sDOCl4KnkFdhhlyaS5Bne0Z3GWSQtaS8BDra+3My8wwanRlZ+RW4OxmhQMaHu8PQ6iRUa5R4WDoRk1jBBH8fjmUkU6VSM6xDV4I8vYk8e5qM8gx0snJ+3L+flIICLM3B2VqKt5MpaUWFdHGokTYHcwuGd3XnQGIu606eQi6VYmGqIiH3Ai8Mvo9j6RdYeeIALw+bShcH1zrvkUQi4fkxrfu6AMwd0q/Vj9FL2yf7wtl17ixqlTFyuYTEnBzeu2sy3Zzb8cPh9Xx7cC1PDpjS6Jw2vaydzknhuaBQ7MzappbD2dKa2X1qxh/MDw7h490RLD28lUf7j6135uyQDr6UVlXy69E9OFuZYWtqQmpRMSkFOSy56wEsjE0w1+mQSeTsSDzD0lmzWRV7lO1n0hnV1ZVMspnZe4RB1jo7eDK56zCqVNWUa/PwsHHihYBhfBO9mmWx27mv5yju7Svmrt1OLFy40PBnlUpFeno6J06cQKvVMnz4cKZMmWK4XyKRsGTJEmbPns33339PZGQkXbt2JSMjg5iYGORyOe+9916dlKiHhwcLFy7knXfeYe7cufTt2xdHR0diY2MpKSlh0qRJjQ7IhRphdHV1JTMzE39/f/z8/BpdeyOwt7dn+vTprFy5kilTpjBgwACMjY05duwYGo2GkJCQeicAHDp0iD/++ANnZ2f8/PwwNzcnJyeHY8eOodVqefbZZzH69+SUbdu2sWDBAtq3b4+3tzcmJiakpaVx4sQJpFIp8+bNa9E+LSws6NOnD4cPHyYrK6ue6E2ePNkg2ePGjWPgwIHIZDIOHTqEh4cHPXv2JDY2tsFu4EOHDgG0yWHytbkqYQsLC8PCwoIVK1a0abhPcHvRnKxllGThYuGEVCptUNoqVdUUVpbhYe2Eu6U7iQUXGOzlh62ZGfOGjmdexB8sPXSA10dNw0RuzmdR4XjZdKZKlY2vUzGns5W8s30VHe0deXbQPWw4s57fDm/A0VLBhYJzeNh0Y/3pBIZ39iPq4hksKuwoK6nG2LwSNCCVgLOZLTGJFXR3dyEm8wJyqZQFo8ewZOs+jqZfwMPRjFeHT+f9nWHklsZhaQHPDR3Huax8YrJisDFTkJSTg1YnIbesjHE+fZnVcxjPrlrJ3gsxOFopuLfH2DqyZiRTkJSbTUF5Bf29Ls8ISszNxtPOHqlEwqWiXDrY1f8kGZ+ZSVcXF0N0NCU/D0dLS8yNWvcpz87UConamkpNFgXlpVRU63jvrsn0cq/Zz2P9JzUpbTqdjipdYZvL2pVYGZvx0rDGpS23rISNZ2KxMjahqKqSCpUKF0sbiisr2JQQy4zugfxyKIod587w0eTptLOx5flho/lsdyTbz6QzzMeJJXt/QyKR0NvdzyBrV47ueG7QdL6ICjNIm1QiyoNvF1avXm34s1QqxcrKir59+zJlyhRCQkLqFeP7+PiwevVqvvvuO/bt28fWrVuxsLBg1KhRPPbYY3VGcOi57777cHZ25scff+TkyZMYGxvTt29fXnzxRUNDQWPIZDL69evHunXr/vPomp5FixbRsWNHwsLCiI6OxtLSkoEDB/L88883eFxTSEgIcrmcI0eOcPLkSUpLS3F0dGTo0KE8+OCDdWauPfTQQ7i4uBATE8PRo0eprKzEycmJCRMm8NBDDxEQENDifc6cOZPDhw+zYcMGHnnkkTr3SSQSPvvsM3799VfCw8PZu3cvdnZ2TJ48mXnz5hESEoJEImlwLMiGDRtQKBSEhIS04l1rHonuKs6u6dGjB0FBQXz33XdtuplbkZEjRwI1R3EI6pKQk8GvR3bz2sip9WRNq9Py29EV2JvZMqnrGMMPvbisS/x6ZA8fjJ/F8YxEVp3ai7ulG8kF+Uz1DyAifj9DvPwY1SmQ0B9+xsPBChc7BWYmWjrauVKmrEKlUWNnUklRZT6nc0CjVfD6yOnEpqbz0dZdjOspo7u7P+tPJzC0Y1cOXkrguUGTaWftyLywVaSV5OJkJwEdSCUS3E28yCgpJresjPv69eevQ0eZ3rsH3+06xD39exHaO4CnV/6Dra2S9jYOvDPmPiQSCUuj9rM75ThlVRpUaujt4UxqSR4fT3iAzYnRnMhIpKLaCK1EhVYrY+HwaUiQ8uaWcFRqqFbqmBbQm4cGDkSn0/HyujCM5Qpc7eQUVZXxyrC766StIxPO8MmOHXx79yw6OjiQlJvDgvXhPDFoGKN8urbqa3co5QJ/HzuMl6MZkWfOM9TbnQXDptfpclOqVfxweD1qrYYnB0zhaOollh07zGNBQ/g2egNO1kY8P2j6dZO12pRUV/Dx7gjcre0N0pZbVsKibeHIpDrszIxJyK2pC3ygVzDd3Tx4JzIcBzMbLuYXG2RNj1an46PtW9iVkEiff2d2Lgh+CIVU0eicteKqcr6ICqODnauQNsENo7KykqFDh6JWq9m3b1+j88sE9VEqlQwfPhw7O7smo5hXkpWVxciRI2nfvn29o8aysrIYPnw4Y8eO5fPPP2/T/V7VTxRPT89rOqNQcGfg6+TGB+NnNZgGlUqk3N1jCjnleaw/U3NoN9SkRz+eeC9Gcjn9PHyxMrbiXMEFQvwDiM04zBS/fhxJO09sVhK/zL6f3CIl57MLKSirpLiqnHJlJQ/1GUt2mQlqrYJuzhKMZWrmr1nBx9t2E+wnbVDWfJ3aUaaswMisAnQSCotkKFVQWg5xORepVqv47YHZ3NO3L9N79yQs5gQfhU5kw4kzfL9/DzbW8Ej/sVRpqoiIr4kwhfbqSVk5GMnBSAGns3Lp4eLFR3v/5lJxBq+OmE1owADUGglGch3pJQX/ypqOqQG9+DJ0FutOneTX6GgkEgmvjZlIUl4m+xJTeSLwrgZlbfFdk+rI2t29+rVa1gACvTowuYc3F0vSeG3cGPIri+p1jxrJFTzWfxJyqYxvD66lb3sPvgyZSUJ+Is7WxjdM1uBypC29OJ+lh7eSVVJUR9ZMFBZ0sHXEy9KNP2L2cC4nC3+nDpzPz2SET+c6sgZQoVRyPjufgA4SyisVdHPqwg+HwvjiQHijc9asTcx5btB0LhRksix2e6M1nQJBW7Js2TJKSkqYNm2akLVWYmRkxJNPPsm5c+fYtWtXvfsTEhLqnRmal5fHwoULUavVTJ48ud5jfvrpJ6RSKc8++2yb7/eqImzLly/no48+Yv369Y0OCLxTuFMjbEq1CiN5/dx9k4/RqFBI5XWiNOXKCv6OjcDJ3MEQadNotai1Gn49sof47DT6erhyOC2BqX79Gd1lIBeLsvkyajVBnt2IunCOY+fKcLCR4Gwv4bVh9/L3iT2otRqeGzSJ8FMRxFzM4WCiluCuUjo7dyD6Ylo9WcsqLeS9nWFUq9V0tvFgy6nzmJpIkUq1VCt1dHQ15pURoXja1tSe/Bp9kLCYWMb5d2FPShzdHbvw8uhRFFaW8en+CPwcPVkTcw6Q8tXMGbyxZQXFlSrkUujoJEelNqVvuy7sTo7n5WFTOZaWxIrjx5AiJ6R7H+7rU5MCSMnP5/nwMO7y90clKya9OJ+CYil25ha8MXYiRjJ5HVnr6+lZR9Zm9urb0JeiWXadP8HaMwd4LmgaHexcyCot4JN94Qzy6lZvuG7tSJu9mTXnC9Kvaxq0KUqqK3h/xyoyisuwNjXBztQYU4UFxdWVvDZiGuZGxry+YQ2JRano1AoWjBrPDwcjGe3dnZk9agYPF1eUMz9iNfZ2xfRr78OFHA2ns9JxtFWhQ82C4PuxN6ufBtEjIm2C601hYSFLliwhPz+fPXv2YGJiwubNm1tccC+4jFqtZuLEiVhYWNQ5Mgxg7ty5nDp1Cl9fXxwcHMjNzSUuLo6KigoCAgJYtmxZnaaCnJwcRo0aRUhISIOjSK6VqxI2gMWLFxMZGclzzz3HoEGDGpyCfCdwpwrb94fC6WzvwajOLSuwrlIr+fnoGnq5+hDk2aPOfVdK26ZzhzhyKYn8cjWPBQ5hW2IkdmYexGen89ygEDxsHDmZmcx3h2pC2G7mrpzKyMDaTIFOJ6OToz3PD5mCidyIzXGneXfjFob5SalGQnYZDO3ox/GMxAZlrZ97F7afzERuUkl6Qc1Axc7uxiikUhRyCR9NfAgTeU3x64fbtrEhLp4HAvuwdM8xune0ZkbPvnSws+OZVavQaiH8kcewNjWjoKKUJ8J/pkoJcqkUYyMtUqmEh/uNoL2NE29uCadSqcHcBN4eN51OdpebDs7n5vDkyn9wtTXmq9DZSJDwyobV2JiaEeTVmS927bqusqanOWl7YdO3ALw27H5creyv6rmvFa1Ox/z1f5FVVoCRDCyMzVBrdXw88QEs/z2qa1tCPF/u2YG5uY7HAkfTxdGZdyLDeajfMLo5ufPQX7/RyV3LAE8/pnUbAcDCzb9QoVQS3KkTqUWZPNIvFGuTxqMZemkb0N6PMV1a3/ghEDRFWloaI0eORKFQ4O3tzYIFCwgMDPyvt3XbsXHjRiIiIjh79izFxcXIZDK8vLwYO3Ysc+bMueHjU65a2JKSkpg3b16zB5tKJBJOn256MOqtzJ0qbJmlefxwKILBXj2blTa9rCmkch7qM7nBKfC1pW1k52C+il6DVAIyChnZZSi93PzZeu4okYnHeLjvOFac2o1cIiOzLB8jmQIjmZyjZytwsTHj5/sexFRhzJb4MyzeuJUhXcHFRo5aqyEhRwISBY8PGE2fdp3ryFr/dt483H8EqfkFfB+1lyMXL2JmZIS5sRxraw0KiYJ3xs7CzqzmF7VWp+PrPXvYEn8GWysp1ZpqFo6YxLubN6HSaOnsbkRwp25M8wtiXcJejqWf5UKOkrJqDeignZ0FWh0Ullej1sDUgN642ZixOv4Azw2eSic7V9RaDT8d2UpyXi7n0iqZ0r0HDw0cSFl1FU+t+pusklLeHjeJAR07XldZ09OQtOm7QWMzkzCRG2FlbMaTA6Zg/K/Y3khUGjWf7l1LblkReRWVyKQy3KwV9HTrTEi3mnEuSo2agvJyvtq7k6SiVB4LHI2/izsyiZRH//6Djm4a+rf3ZXrAaEPaObe8mAqlGg8bO9bE7+BCYXqLpM1IJsdU0XZt/QKB4M7lqoTt+PHjPPzww1RWVhq6JGoPD7ySnTt3XtMmb2buVGGDlklbS2RNT21p6+rkzXeHNuBkYcf8IbMMj1sbH8XWxGN0c/ZEq9NxsSiLClU1VkaWSLQmHE8qYVqvADzt7QyyFtghgHWnz9C3nTlqbSlnc0CpVfD4gDH8dmxnHVnT6XR8sG0riTk5vDByOB/v2oRKKUMi0WFtrcFEZsxbo2capK1SpWTusj/IKCxnUg8fNpw6g7mREX8/9DAVqio+2ReGs6U5SnUVjwdOJ+zUYbafjUOpBi9bR9KK81GqtUzq1pNHBw4DaqRpdfwBngmazI7zJ8guK+SFwSHkl1XwfHgYkwO6087WhiU7tuNua4W7jQ339u7P65vWXFdZ01Nb2ib7DmBV3B5DN6iFkWmdRoQbKW0qjZrvojdRWFmGsdycgooy5FINzpY2FFblEuDSySBtUDMj7vWNa0gqSuWBnsH8ciCqQVm7Eq1O12JpEwgEgrbiqoTt3nvvJSYmhqeffpo5c+bc0YWOd7KwQdPS1hpZ01OurODLqJ8AGNZxEHtTErE0NuXRfhMpV1bxWVQ4xjIFl4pza4bOmphjJDUhuzyP4A7d6e/enVlLfwdgpL+UwA4BrD+dwGMDx9DXvRPLjv9DYWUeZ7J1VKhBIZMxwKNrPVn7LHQ6dubmpBTk8vqm8CukzYS3x8zEWK7gnW1rMJErsFHYsDImFplUQnsnExZPCMXT1oG/T2xlzfEE+nl1wMXShq3nYhnZuTvr40+g+neOrLeTIzqJktdGhuJgbkVhRTmPLv8LqaICawspn078nyGdl5Kfz5w//wBgybQQfF2cmfnbj2i0Wrzs7HhvYggOV/Hvcc+Fk6yOj2pW1vRklRawZG8YjhaWVKiq6tSsXdk9erEwnx2J8fxvwIh6c9IaI7Uwj4hTR3h68BjkUlmz62vLmoncnKKqCl4bMQ0tWj7eHVHzvjYibfPXrORSWSaOFhKCO3VtUtb01Ja2//WfgaVx4x9YBQKBoC24qmrYM2fO0LNnT55++uk7WtYE4GrpwGOBIexPiWV70mHD7VcjawAFFUWGP+eU5fLUgCmUVlfy7cF1fLo/jA62LoZfjjp0zOo+nBGdezCsQ3f2XjjJX0f3Xt5DtSPr4s/w2MAx9PfoglQq5b5es7A1dcDbESyMpWi0MKKLf4OyBuBl58jiCaEojDTodBI0leaM8e6BTCI1yNpjA4ezM7Em7S+TSBnUwYc3t4Tz5/EtXCzKYIJfXzaeSGZt3HEm+vZlaEe/OscpGUmN8HP24L0d4eSWFbP86FHyyyopqwSNVkdO+eX3JDE3x/DnUxkZZJWUGLoRiyorMTVqXSOIHg9rxxbLGoCzhS3dXDwoqiqr12BwZfeojakp5/Ky+Gp/wycSXElqYR6LIiNwt7ZrlawVVZXzUnAoAz29eW3ENCyMTQzdo3nlJdiaOHIq6zwR8XsM3a4llRWcy8onr1BLYYmUge36teiED6lEwtRuIxns1VukPAUCwQ3hqiJsgwcPJjAwkE8++eR67OmW4k6PsOmpHWkb7NXzqmTtUlEGK0+uZUTnIXg7dDSkR/u268OHe1dgbmSCq6U96cW5yKUy+rj7cOBivKER4d0tq9l04gLBflI6OXTh131nGeXXhbcn3mWIqGh1OpbHbiOzJBFjmQ5Hi27sSjqHncKZjOKSOrJWm8uRNjkeNrbIFGrMjIx4bOBwHlu+DJDy54NzCD9+grCY4wzwsaSwKp85fSYTm3GJiNgYCkt1jPTzJCEnC5Vaxzhff/ZeiKO0So23gxsdHW3YfiaRonI1PTtYYS6zIykvGytzFS8ETyM5p8jQDepgYcFzYSvRoMLGzAxPO3uKKiuxMzM3dI9eL1p6gkHtSNt9PUfzwc4NeNrY88zg+icS6NHL2nifHszo0XwRdW1Zmz80BLNGBgTr57TVjrSN6tiP+3//HalEx2+z5/B79BF2nk3k23tm0M7WpqVvh0AgENwQrirCNnToUGJjYxs83FZwZ6KPtO04f5g3Ir+7Jlnr5eaPuZEZ9/YMIa0kh0/3ryLAuQPVahUJuakAPD94OiH+gxndpQ9fREXw9+HDbD15kWA/KVU6CfsvJrNg/DAOJ6fz476aczu1Oh0rTm4npSiLh/vOxsbUnpyyOLRKY45dusgLI4c1KGtwOdKmllZyPD2VxKxCHuo3pI6sWZmY8mBgf/w9jcmryMfL2pd3I9ex9exxZvbqx8w+Pdl15iLlVSqm+vdm7oBgPp/yIJYmchJy09mXlEJ+qRIHW3gqaCKvj7kLXyc3SsoVvLkxjCXbtxu6QdVaDRKZFrVOi5FMzlvjJvHhpBCKKit4d+tGlG10bifUSNHRtHh0Ol2LZU2j1XI8M4FH+01ELpWxLDaSV0bcxcWi/EYjbU3JWnpREVHnkw1/r1Kr2J54km8PbGxU1grKK4g8cxaomdP2/NCpnM/LwcbYgaOXzhKy9AckEi2PDRuIrZk5z40IZoRPF55cvoq0wqIm348dSXFiFqVAILihXJWwzZ8/H6lUymuvvUZpaWlb70lwi2JramVIYbW3cblqWdNjbmTGYK8gTOUSLhZmGA7atjA2w9qkRqzGevfFydiDL3ftZ6ifKTN7DcfOzAlTYx29PNz59t4ZrI49xQ97D/DPiUiSCzJ4akAoduZW3NdrFuYKexQyKXMHB1JQ1fT3srOlNcZyOZbmEqxMTHhn0xakEplB1gBKqitRoaS4xJKNsUloNDqqlOBhY0/UxTNYW8ioUuro4lCTerQ1syC4YwDV1Tryysqwt5YT3KkrxVUVyKRSFo4aj62pBXllGlzswNbSiKTcHF5eF4aFsTEBru4UlFax7PARLIxN+OCuaW0ubWXKCrYnHWTLuSiq1UpKqsublbWwuEiiL55Aq9PxWP9JWJtYoNVpWTQ6pEFpay6ydrGgkNfXb2RPYhIARZXlrDxxkLTiIl4cMq1BWXtmZRj7zp9Hp9Oh1mr44+hejOTGVKs1HD9fjUwG43q0Y038EVbHHUYikTQrbSqNms/3b2Jn0imq1ap69wsEAsH14qpSoq+88golJSXs3LkTCwsL/P39cXZ2rjOXyfAEEgnvv/9+m2z2ZkSkRGuoXbM2zjuIX46ua9HIj8ZkTY9Ko+ab6LWcL0hHLpXx/KDpLD+5y9CIsCMhkQ82b2dmoA8XSi4Y0qO7zscQmXSYJwaEoFRKmfvH37RzVPDV9PuxNbNs9eurVCkNNWuh3fsxLywcGxNzfn9wNuZGdTshS6ureGHNCi7kFiLRyhnZrQMHUxOR/TsU197Ums927uT9yZM5m5vBn4ePoFbrsLEEuVRBR3sn3hg7GRO54t+huNvxd3chu6wII6Nq8kskWBgb08nBkdfGTCSjqNjQPaof+aGf09ZW6dG88iJ+OhJOD1cfxnkPavDfOlyWtcySXB7pF4JFA8X4xZUVLIqMMKRH04sLWpQG3Zt4nrc2bmLRxPEEd+lMenEB724PZ3inbszscXkunF7WOjk48ObEcYCOr6O2klFSyHNB43j8nxVIJTo+mxHKn7Gb8LRx5UBKKuN9ejHNvz86nY4vdu6plx7Vy1pRZTmvjghp9fmsAoFAcC1clbD5+vq2/AkkEs6cOdPap7hluJOELaesECeLy0f4lFaVYGZkjkqrqVezpq9p6+Xmw6SuQw2F3BXKcuRSOUZy4xbJ2g+HNnCpOAepVIq7hQIHc1vu6jqabw6upUqpYdfJfP5v2mS8HG2IzUhke1IMzw0KwdzIjCNpp9mVfBQzhQXlVUpik5SE9OrO/4YEIZFIyC0rwdbM3BAVLKuuRq3VUFalxM3G2rDn2rL2fPB43tqwicKKCtTSMqYE9GZGj/5kFpfgYGGOQiZjV2IC30fvwFRuikqlpVxThk4nRSGTsmTy3XjZObLl9Gk+ioxEItEhlUjp6mHBKyOm8fGuTWSVlNLBzpFBXj58uXs3i++aRC8PD17fuIbj6alIJdDVxZlF46YYGjD0JyI0JW0Vqmq0Wk2DEtUSmpO2lsiaHr20SYCCinImdu3Zopq15qStsKKyRbL2+4NzsDE1J7+ihK+jwxqVtsgzZ/nu3pm4Wlu2WNayS0uwM6v5XhAIBIK24qqE7fDhw80vqkX//i2bhn8rcqcIm0qj5q3tvzPIsxsTfWuO8NmcsAG1VkNqcRUKmaJezdrRtDP8c3Ibfdv5Mav7aMqV5ayNj8DH0Zde7n34+cjf9G3Xs0FZA9h34RQbEqJrImuDp5NfVsrfJyIY0L4fvd38eHXL73R0cGL+0FDe2LaCro7uuFpZcCr7AmZSOy4VF5JdnkFJBSwcNRZ7E0eeWR7GZzNDMDOR8u6OcOb0GcZAT2/KqqtZtHU1Po4u7EtIw8/VhZfHjqRarTLI2sKRk9h4Kp5tZ87wyfQQcsuKeXNLBIM8fVgbc5bnRgzFwcqUF8NXM9LXm+eGjeDRlb9QpdRgrjBjao8ANpyO5Z1xIRy4cJ4f9x1Eq9Ph4WBKXrGaz6ZPp72tDW9uCae0SklOSQVvjLmLvv+e3ftM+HKS8mq6RLt5GONp68Bj/S/POkvJz2d+RDgfTQuho4ODQdom+gUwtHMXvjsYQUc7d6Z1G3rV3weNSVtrZE1PXNYlFm2LAGDF/c+0eORHY9I2oL032+JS6OzgWE/WXhk+mdc2hJNeUG6QNT2NSZtWq2Xqjz+ikMoJ9HakuKqiWVlLKyrg5fVhPDJgKCO6tPyDrUAgEDTHVZ90IKjhThE2gIySPD6PiiC4Q3cm+g6guKqUv2L+RCqR81DfBzGpNd7gQkEmX0WvYXjH7hxLj2eAhx8FFRdwsnBmROea8xWVGhVGsobHUNQUt+/hZNZ5nh80HQfzmrMbdyfF80P0Hl4eMRFPG3uWHt2ApbEpU/2G8H+71tLLzYt7eg5CB/xv1c+UVSsZ7duJtJI0nhgQgoOpLfmVJby7I5xRnQOYHjCAcqWSRVtXY2ViyisjJ5JfVsGTy1fRu307yrRFmCqMWDhyEsZyOTqdjmq1GhNFzb4PJCcxP2w9fTu487/BQby3fR3jfXux4shxZgcGMtLXm0Vb1mNrasabYyexJu4Yy48doqJKh5HUiH6enkQmJDCrTx+eHFojUlUqFTp0aHUY0q1l1VW8sj4Ca1NTFDIZGcVF+LUzRSqR8L/+kw3SVqlSYaq4/J5WqVRodRq+O7QaK2NzHuozAfk1pkivlDatTtdqWdPXrA3y9CYuO63Z7tEruVLaTmdl8M72MOyMbfgi5D4kEurIWlj8Looqy3i035Q6sqanMWlLLyrgyfBlWJkY8e30B7E0Nml0T3pZG+PdjQf7BzWaNhYIBIKrQQjbNXInCRtclrZBnt1IK0lHLpFia6LCwsiCsT4TkEllBlmb0jWI4I49uFBwifWn12BrZs89PWcilzYuDPpOxLC4vZzMSmbeoFDszCzrHKC9L/ks30bt4OURE/FxcuGrA6uxMDZl2r/S1tPNi7SibE6kZ+Nh44CpwohhXbzYc+EYId1GsvTwrkZlTR8hTMnP58Hf/8LR0ow/58ypI0FanRapRMrF/AKe+HsVQ7t04GRuEiqthscGjmCUdzfOZmfzQng4swMDmeDfjVc3hGNvbklHOwf+OnIEpVrLI0ED+fPQUUb4+LDz7FnenzyZPu3bG55Ho9UilUgoV1bz6obV2JqZ8dqYicgkUv5v+2YuFRXQ1d2knrRptFqD+FSoqvnuYESzslb7MS1BL23dXbwpqS4nqzSv1bKmr1m7sqattdI2b/gwVsYcx8PWikJNLkM7diW3rKSOrJVUlfPEgBDMmpiZdqW0je7SnZTCXHJKS8gtUdKnnSdPDRnR4Jw2IWsCAVRXV/PJJ59w6tQpLl26RFFRETY2NnTs2JH777+f0aNH1/u3kZ2dzWeffca+ffsoKSmhffv2zJgxg9mzZyNt4GdBSUkJX375JZGRkeTn5+Pi4sKkSZN4/PHH6xzEXntP33//PevXrycrKwt7e3tGjx7Ns88+i5VVw41TNystEjaVSoVCcXUDOa/HdW4m7jRhgxpp+yxqObYmFrw09AE0OjXr49dgbmSOj1Nvvjm4ziBr+jSopbE1h9MyqFLLeCZoCu1tnBq89vakKM7kpJNVVsbzg0KRSCR8eWAdj/Ufj1utA8X10vbS8Alkl19kX8pZvB08Ge89gJc2/kmVSsNLwRPp7ubJe9vXo9Jo6NnOiXWnYxnR2Z+H+45oVNZ0Oh3vbFtDpVLN2bRiAjt48fLYkUglEo6mxXM6J5lBHgN55p9wJnXvxqQefry4bjlSiYS5gcGM8u4GYJC24b6enC/I4GJBGdXVYKYwpZ9XO3YkJPJMcDDTe/Vmy+nThkaEPu3bo9Fq+WLfNlytbIlOTjbImr6BQKPVNihtZ3Oy+e3wft4ZPw2pVNIiWYtJu8ivh/bx6dR7WlV3lVNWwOdRfwHwyrBHWjTtv7Fu0KuVtnUnT/HB1u0YyWXseO5pMksKeGnjMgB+DP0f6xP2kVWa36ys6dFLm4+DF2vjTwHw0/THqVAqeXl9GL3d29eTNiFrAkENBQUFDB8+nO7du+Pl5YWtrS0FBQXs2rWLvLw87rnnHhYtWmRYn52dzfTp08nLy2PMmDF4eHhw4MAB4uPjCQkJ4YMPPqhz/bKyMu655x7OnTvHkCFD8PX15eTJkxw6dIigoCB++uknZLV+hmk0GubOnUt0dDS9e/emT58+nD9/np07d+Lt7c3y5ctvqeH/LRK2YcOG8fjjjzN9+nTk8tanU1QqFStXrmTp0qXs3r37avZZj7Vr13L06FHi4+M5d+4cKpWKb775hlGjRtVbq9Pp2Lx5M3/99RcpKSlUVlbi5ubG8OHDefjhh7Gzs7vqfdyJwgZwPOMcf5/YxbAOPZjoO4AqdRXhJ1eRUVJEX4/BDO/UyyBr+jRoblkhh9MS2XH+BC8MntagtBVVlvDzkVV42XoQ3HEAn+wLx9/Zk3t6Dq8X2dh7PoGwU5G42xpxX8+pSJDxy5EdnEjLwt7SlAHtuzCn7zCUGjVvbo0grSSHABc3iqtzmNNnEkuj99eTNT3n83JoZ2NHYXlNerS/l+e/NW3VfLY3jMgT+Uzv3ZsngwcDcDYnE3NjY2xNzbGolTaLOHWAr3cdopOjHSkFBShV4OviREpeITN69+SRoMGGtXppWzxpEvtSznAuNxuZTo6DhUUdWdPTkLQ91Gcin++JJLe8hHb2UmxMLJqVtfcjN/D0kJEM69zymit9zVpcViIAQZ49m+weheZHd7RW2vTdoBnFxWi1Ot6aOI6TOUkcS0tGq9Mx2a8PQzp6Y2Nq2SJZ05NdWsCvR3dzOjsDrU5HaEAg0/z7k1tWWk/ahKwJBJfRarWo1WqMruicLy8vZ+bMmSQlJbFt2zY8PT2BmhFh69evZ/HixcyYMQOokawnn3yS3bt389tvvzFw4EDDdT777DO+//57Hn/8cZ5//nnD7W+99Rb//PNPnesArFq1itdff50pU6bw4YcfGv59/vjjj3zyySc88cQTzJs373q9HW1Oiz7Gtm/fnkWLFhEcHMx7771HbGws2maOmNFqtRw/fpx3332X4OBg3n33XcMXqS344osvWLlyJZmZmTg4ODS59r333uP5558nMzOTcePGMWvWLKysrFi6dCmhoaEUFRW12b7uFHq5efP8oFD2XDjJxoSDZJYUcjyrFHszCyqVaZRWl9aRNalEirOlPZO6DmC8d18+3b+a1KKcete1MbVibr8ZJBde4t2dy+jWiKzpdDpUunzcbIw4na4mu7TSIGsLR97F4rGzOJ6Rwm9Hd5NTVkJRVTE2xhYUlWsY2L4nb22JwEgua1DWADo5OGEsl+NibcW398zgcMpFPtq6g6zicvadLqOTiykWloVodFokEgm+zm542NjXkbUjaXGcyj7BcJ+OnM0qAK0cG3MFCVk5eDrY8GDgwDrPOc7Pj+eGD2fBmjUcv5TWpKwBhjltHjZ2nEmvQqvT8euxjTwWFIzCqJS0omJmBIy8brKWWZLLguCHeW7Q/ZzIPMuWc1GNDpNtyQkG1qZmjc5pu5Laozsin32KRRPH8+X+zSTmZvHNtLl8NPE+dp2PZ1/yOUxbcQC9SqPmj5j9lFZX813Io7w3bhabz8ayOu4wjhaWfDRpOjHpqXyzbyephULWBILaSKXSerIGYG5uzuDBNR9OU1Nrhp+XlZWxZcsWvLy86kiWTCYzyNiqVasMt+t0OsLDw7GwsOCJJ56oc/3nnnsOhUJBWFhYndtXrVqFRCLhhRdeqPPv86GHHsLe3p7w8PBbagB2i4Ttjz/+4Pvvv8fe3p4///yTe+65hz59+nDvvffy2muv8eGHH/L111/z4Ycf8uqrr9a5f9myZTg7O/PDDz/w+++/t9nGFy9ezK5du4iOjiY0NLTRdTk5Ofz11194eXmxceNG3nzzTRYsWMDy5cuZNWsWGRkZrFmzps32dSfhZuXAvEEhbDx7iI/3rWSS7yBcrbpxMPUifx77FQczB4Os1Wasdx/GdunD/+1eyYnM8xy+dI4Pdq0yfAjQ6CCvHEzkOuxNpej/mel0OjadPUhqUTY7zx/gRGYCj/afycOBI1kcuZaYSzWy1tejE44WVrwxMpRtiSd5edNf+Dg68cmk+2pGkBw8jJ2ZJVppHlml+fVel06n44vd2/nr2E4Ag7Stjj3JrJ9+566Abrw+bgJZpTksO74RtbbmxI+w4zEcv3QJqJG1TQn7cDTtzIHkVCyMjalWqyksU2FjoaBaW817kRtR1TotRKPVkpB3CScbUy7llSGTyBqVNT1XSluFqpr3dv+Gp60jDsZuvLVlLWXVVfUedy2yturUVs7mpjDdfwz7Uo6j1Wl5pF9oo9KWWpjHom0ReNnaMKSjN7uSj3KxKLPB69eWti8bkbaG5qydyEnE3daSwopSopKTcLe2441Roew6H8/KE9GGPcVlpRKZeMJwLZ1Ox8aEA2SW5jc4Z83T1pGH+gaz7syROtK26cwpHlv5B6O8/YSsCQTNUF1dzcGDB5HJZHTq1AmA48ePo1Kp6kTQ9Pj6+uLg4FBnIsWFCxfIzc2ld+/emJjUbf6xs7PDz8+PkydPUl1dDUBVVRWnTp2iY8eOuLjUPSNZoVAQGBhITk4OKSkpbfxqrx8trjIeNmwY69atY9myZUydOhVTU1NiYmIIDw/n119/5euvv+bXX38lIiKC48ePY2ZmxtSpU1m+fDmrV68mODi4TTceFBSEm5tbs+syMjLQ6XT07dsXM7O6NTb6PRUWFrbp3u4kak97L1NWYqYwJqVIQ3qxDpVW1einl3Hefeho58yXURv4MmozCpkcqVRKfkUJS/aG092lAwuC7+Nc/gW2ntuLVqtl7Zkooi7GcTw9jhOZCTzYJwR7M1vKldWG68pqNTRUay7v7VzeJfannDAIkpnClDGdAzGS16+pTC/J5XjmGf4+FE9Sbu6/r/PyqQGlVdVYGJsjl0rILM1m2fGNLD96hN8PHsTc2KiOrO1JSiake28eCbocVRrTxR+VVsWFglyDtOlr1s7n5/JFyN0Ed+nEIwMHt2jorV7aBnh1QPOvPKq1Gp4fNgZHcwte2xRRR9quNbKWVZpPO+v2/HhkE0qNmh8ORzQpbQqZHE87a9RUcDjtFPtSjmMsazzqpZe29rb29USoqaG4742fRaCnJ+vO7mTz/7N3nlFRXV0A3VPoTUCQoogNQcCKvWDvxhp7jJqYxDTT45ceY2KqJjGaoom9iz323rAASlFARem91+nv+0FmZGAoEk00zl4rK/jmvvfuzFD2nHvOudcjDUqbpYkp2yODOXTjCoIgsOPaKUJSYhAjMthnLT43kzVh5UUq2khbxe/5ErmcR+fzuREj/wxlZWUsXbqUH3/8kY8//pihQ4cSExPDvHnzdH+3ExISAKpdeWvatClZWVmUlpbWebxGoyHprw/NiYmJaDQaPCoUclUerx33qHDPCWmdOnWiU6dOANy+fZvY2Fhyc3MpKirCxsYGBwcHvL29adas2X2fbH1o2rQpJiYmhISEUFZWhoWFhe6xU6dOAdCtW7d/a3qPNNpq0En+fWnV0J2l54No1kBE/+ZuHItLRZqUioj9uurRiohEInp7tuVqSipSCQxq1VYnaxVz1p7uOJ7VoduJzkolu7SELu7NiMuN18nagehwNoSeZ9GIiWQVF/L18T95p/8InKyt+exYEOP8utC3uS8fHd7C5vDzNLKyZ8O0F/j6xJ8ciY2je1P9HnDJBZn8dnkHs7r1JDlbxRtB23l7wCAWHTzGzO5dGNu+LS9uKg/TP9t7HGtCd3A+Lok7mXf4YcJEChRZerL25cjxJOXl8Mmf+xnm78FYv568uWMHI/x8OZsYzZ3cLBYe3oeNhSl3crP5fNg4GlhY8emIUff0XsjVSnLkSThZNeC1XpNYFbKPVaF/8lpgeU7b+/t38PnwcdzIyvjby6DPdh6HpakF668cJTTlDp3cW/HrpR0832Ucz3Yez8rLQQAM9Spvr3I8LhQ1ZQQ0bs7VtFie6zwOFxvHGu9nZ2HJeH/9/o01ydoHA8Zha27BK71Gs/TsbvbElkdHh7Xx58OB4/nsaPmcJrbrzruBY/jq1E6uZ96iUF7EC13GsDbsrEFZ+/LUDkb5dGaEdyd6efrwyeEg1l26zKT2nRnh25Z39m5n2Znj1VaPGjHyOFJWVsZPP/2k+7eJiQnvvvsus2bN0h0rLi4GqDbpX3u8uLgYS0tL3XiravZ71o7XbpdZ1+s/Sttr/q2GTM2bN6d58+b3ay4PBHt7e1577TW++eYbhg8fTr9+/TAzM+Pq1atcv36dt956y2BItiLawgJDpKWl4erqer+n/dBTuXVHiaIEHycz0ouKadOoMS9192dZ8CEgBQxI26WkG/xy4SBtXZsgFqv5KXgfAH2b+dOvRQdSCnJo0qAhduY2uNo25XzCNezMBSLTb9GnWYBO1taHnufDwWNwsbFFKoYXew7g6+P7sDSXMLR1Oyb4d6NYLsdULKFYISGnrICQ5EhG+7dld2QECw7v5qPBo7EwMSW5IJOfL25nYMvOBDbrCM0gv7SMD//cy+DWvnRr6apbHtVKm7OdF3EZIXRubs668G1IxRJcLL2qyNogXw/mDxiHSCRi8fjxvBEUxAg/X04nXOdqWjzmUhN+GveUwR5htWGodcecLk+w4tIePWmbvPYXAN7qN1Qna7GZ6ThZ2+BgWf19K8vaufgbtGnkga9zS9QaTbXSJgC5JTJu5CTjbutIWGoMA5v3xNbs3quy6iJrAGKRqFZpe7JtN7p6eHA17RaBngF1kjUAiUhCqQykUgFbS6luefS/Km15pcXklhXTwtGl9sF/UaqQE5+XRZtGjR/gzIw87Dg4OBAbG4tarSY9PZ39+/ezZMkSrl69yvfff2+wXYeR2nksXrVnn32Wr776itzcXDZs2MAff/xBWFgYvXr1YvDgwf/29B45DMna7ms7cLN1Y1qHiZyOjySnLJ+Xug/hdq6ci0kpHIrdr1uuu5R0g6XnDuBgZYa1uZhp7e8Ksa9LUyJS41l0fAeJeVnsjj5HRPodAhp7otZAZqmc/Tcusvz8Hj1Z++L4Dk7dvk4zx4ZYmIsplStp4eBavoPBkXWYmJTy4YAxiEUWbAoPZnXIAQJbtsBEImHB4d3E5aTw26UdWJmYk5CXjkqjIiEnlz8jYvB3bcypuBhWXTqJTKXQSdupWzfYcDkM3yZSLMxBLAKRIOZWVm61sgbQulEjFo8fz59R1xDU5RJraWJGoazsnt+L6vqsmUpMmNPlCcQiEatC/6R/Kx/dOQFNPHVfn7gVzQcHgsgtLan2HnllheSXFfFs53GkFRayLuw0vwQfIijiIumFMprZuxKacoe2Lq10y6OzA8YRmhxNbHYi9ua2nLtzG9+GvvwafJK4nIx7fp5hSUm0dCrfwUAqFpNRVEB+WYmerGnRSpt3w6YcijtNbmmhbnk0Kj2JLRHHSSrIYHbHkRy8EU5aYW6tsqatBh3m7c/XIycSnpZAmVJRpRBB8wglMNfGtYxkvjyxk5vZhvMNK1OqkPPVyZ0cvnH1wU7MyCODRCLB3d2dOXPm8Prrr3Po0CGCgso/OFWMoBmicoRM+/+SEsO/q7TjbWxs7un62vGPAo+FsP3www988MEHvP7665w5c4aQkBCWLVtGREQEkyZNIiUlpcbzjx07Vu1/j1t0rTpZ01aDuts581rPcZy6E2FQ2i4mRLP03AHauXmwcPAsCuWlfHlqI709ffFq6Mby4H242tkyoKU/X53ayoXE63Rxb0ZCXholSgnOVua4WttzM+cOI/28dLLmae/EoFbt+OxYEMNat2du90F8fWIf7x9cjUgs543ek/FyasyngyYiEVmgUMOua6cJbNkCiVjNLxeD6NOsI6/3mkaRvISlZ3czd+NWRrb1pV0zOxo1MOVOhpzkvAIATt26CSI1apUGeZktarUGG1NzLEyltG1sTkJupkFZ09LSyYlOzVzJLCilT9M2KNRKItKS7um9qK0prlbaShRy1l3Zzyu9+9OtaXO9nLY53QJp7eRSo7Q1tGrAc13Gk1taxsKje+nfvB0ylZwm9vYUlpUalLa90cEo1FIcLBpwJSWJoV7t2XPtKq/0GoK/q+GckpoY6N2aT/6SNQB3Owc+HjShiqxp0Upbj6Y+LLuwg7yyQtxs7Wnn7syNnERe7j6B9u4t+F/fcZQoZZyNvw7ULGvaalBPB2c+GfQkFibleXj/VWnr1cybie168PXJXbVKm1bWrM0seKnH0H9ohkYeJXr06AFASEgIcDeHTJubVpmEhAScnJx0ued1GS8Wi2nSpAlQ3t1CLBZXm6OmvU51OW4PI/95YTt37hzLly/nqaeeYubMmTg7O2NjY8PAgQNZsGABeXl5rFy58t+e5iNBbbKmrQbVVo9WlrYjNxNYduEwbV2b8FafsZQq5eSXyrAwMaVIXsy8HmPwaujGsuB9pBSlYWYiQqVScDX9JjmlKp7uOAQ/p3Zkl2Th6+LB9cxbLDy+AU97J0b6BPD5iR26HQw6uHviZCNBJJYzzKsPbrblrV+crG31pG1P9Ck04hykIluOxSYAInp5dOfPK0k0dTZFal5MXE4aP4yfzuROAbwRtJ0vDh1kzcVgWjcRMbtPG2LTc5GVuDKl/SikIhGRqSl8uv8Qg9o0MShr2gKDnLJivhk7huOxN+np4cP28MvsjAyt03tR1x0MotJSCb2Th3sDB27k3uC1wEF6hQgSsZiXew2sVdqS8nP58OAOhrT2Y1aXPrw/YAK3stPwcHDQk7aQ5NuIRSbcyInDTGKqk7UDMVG80msIXTxa1vG7rSqVX8faKjPFIhET/PvR2smDn4KD+D1kH9cy7/By9wk4WpZ3OG/u6MK7gWPYEXWRXy8erlXWtPesfO//qrQNatWuVmmrKGuv9TLcJseIkczM8jZO2sa27du3x8TEhODg4CpjY2JiyM7OpnPnzrpjzZo1w8nJibCwMGQy/cr33Nxcrl+/jr+/v263A3Nzc/z9/bl9+zbp6el645VKJRcvXsTJyQlPT8/7+TQfKP95YTtz5gxgeAN67TdDTEzMPzqnRxGlWsWKy/t1sgZwMu5YFVnTUlHa7C2t6N/Cl8wSNSKgX4smugIDfxdPPuw/gzKVnJUhf/JqjzGIxRCZkUTrhi5YmonIKpYzvHV3HMzt2RYRxhjf4RTJ81BrNIhEClo6NmDp+YM6WQNYcjYIMxM1A1v2YPXlYL0qSa20IZii0gjI1SoGtuqAiUTCmstneWfHbrp6meFkX0Zcbhxv9BmDvYU10zp3QSwScTg6GveGAv1a+nIn/zYfjRpAWGIiq0P20LJhc67Gy2nlKsLNwRS1oN+WomI16OfDxhHg4albHp0Z0KfO0rbr+uk67WDwxZF9vNR7IO8ETi6f+61LvDtgxD1JW2Jejk7WpnTohkgkwsHSuqq0FcjIKikkuSCfErmG2Mxs+jRvfV9krb6IRSIm+PUjp7SQqIzbTG8/RCdrWpo7ujCpXU/OxkdjLjXRyZogCCw6ur/OfdYqStuJm/+d3yk1SZtR1oxUJC4ujrKyqqkdBQUFfP/99wD07t0bKF+KHDJkCPHx8Xr91tRqtW5sxf5sIpGI8ePHU1xczM8//6x3/R9//BGlUqk3HmDChAkIgsDixYv1KtdXrVpFTk4O48ePf6Ra8vwn9hJdunQpP/30k8GdDhYsWMCGDRtYtGgR48aN03ssKSmJgQMH0rVrV9auXVuvez9OOx0UyEqwM7+bnF6mLMVMal5F1ipSKCshOjOZn84fpKGVNdklxfi5uJMvK9KrBi1Tyll2YRdF8lKUahVKtYZCuQxzqRgfp+ZEpKbwv/7jsDa1QCSCRSe2YWNeipdjM6IyEwlw92WUT08A9see53LSdZ7rOhY324bklZZgXympPrkgk+UXg/BxakpMVjxFMg2j2/Smu4c3d3Iy+fXyTuzMwcLEHFcbF57qOJygK+GsuRiMpbma4jIR/h4Snuo8hKDIM0jFcjztXckqzsHatAGFijxUGg2uNo2Y1mEEUrGkiqxVLDDIKSnB0cqKuOxMPjq4gwntOjPWv1O1r2upQoapRHpPTXEVaiUajQZzEzOUajVfHfuTrJJiPh8+Dmszc9QaDT+dPUpsVjoLh43HwdLKoKxVJLe0mM+PbaeFoytXUuJRaVQ4WEnJLJLRyqkBhYoChrbqw8BW7at9Lg8SbeuOqIzbNLJ2IKskn5e7j8Pe4q60aZdB/Ro1JTI9gXF+XRni1eGv51eCvYXlPf1Szy8rxdbc4j9VgABw5GY4W8PP807fMbRq6GqUNSNVWLp0KatXr6ZTp064u7tjaWlJWloaJ0+epKSkhOHDh7N48WLdz1NNW1ONHTuWL7/8Uu/6Fbem6tOnD97e3oSHh3Px4kW6d+/O77//XuPWVAEBAcTFxXHs2LH/7tZUDzs1CdvevXt56623aN26NZs2bdKVBGs0Gt5//3127NjBK6+8wssvv1yvez9OwlYftAUG7dw8eKvPWI7evMKqkNO42NrwzfBZuj9qgiAQdO00Z+5E0MDcEolISVapHIUaXuw2krjsLI7ejODFHkNZG3oKT3snJrfrxrqrO3GzcSUyI4E+nh2Qq5VcTrrOS90n4GRtb3BOSfkZrAjZyYAWXQhs1pHE/HR+uRhEsVxgvF9fbuWkEZuZhCBSYGcuIBFJyS4wJTq1CK/G0K+lL7vDo8jIE+HdxBwHKzVNG7iSWZxNa+fmDPPqQ76skFUhQSj/krbJ7Yax7Nwxg7Kmff7aX2IVpW2MX8d7/gQYmhTPoqN/1tq6ozZpe6F7P747dbBaWdOSXVLEewfWIxYLSERQKFPi0cCeWzl59G/lSWZJFs93GYezdf23gKsPFWXt5e4TsLewYXvUCWKzEnXSVjln7XZOOl+d2qUnbUbuopW2l3sMY0fUBaOsGdEjMjKSLVu2EBYWRmZmJmVlZdjZ2dGmTRvGjh3LiBEjqpyTnp7OkiVLOH36NEVFRTRp0oSJEycyY8YMPfnSUlBQoNv8PTc3l0aNGjFq1Cjmzp1rcPN3mUym2/w9IyMDBwcHBg0axLx58/6bm78/jGzbto3Q0PKlo+joaGJiYujatauuKd+ECRMICAhApVIxffp0rly5QqNGjejbty/m5uZcunSJ6OhoPDw82L59O3Z2dvWah1HYqqeyrJUoZCw8vglHS1uupibTyd2T13uPRhAEdkef43JyDJ3dm3M0rnzT7RkdBnP6ThQ3slN5vdcYLiTEcexWJE0bOPHZkMmIxWLyywpZExaEh11jziaUJ463d21Ny4aN6e7hV2VOl5OvExR1jMGtutG/RfmSuCAIbLh6hPC0WIoVGmRKWDzyGWRKOd+f20Z2gYL4TDU+HmIGt27PlZTrjPUbxJLjR0jOkTGyXWPUFNHauTkDWnRnU/g+Rnj3RSqW6KQtvUCCUiXl8+Hjq8iaTClnS8R+hnj1wsXGCSiXtvf3B1FSaMZ3T47Cq5FTnV7zsKQEPj64iykdujE1wPAWUBXRSlt2STHfPDEJE0l5JPDdfVu5mZ3BYC8/XuzZv1pZ0wgCm64e51pGAol5RX+9nqBUQ4fG7pSpiunk3oyI9Jv/qLRVljXtMqhGEHTSNtonkOUXDunlrAFGaauFPdcvszX8PNam5iwd84xR1owY+Yd4ZHPYQkND2blzJzt37tTloF28eFF3TFsZIpVKWbVqFa+88gp2dnbs2rWLjRs3UlJSwtNPP83WrVvrLWtGqqeyrEF564oJ/r14o/c4Xu4+hNCUeJac2a2TtXk9xuNoefcPekhKLK/2GEN7t2asu3KYaxnl72lOaREphblA+d6jMzqMQ66++7nDVCJlx7UzBCdG6c0puSCTvdGnsbew5nZuEgp1+U4Me2POE5OViKuNG5amYG4CkenxuNo64mLuSXymGj8PEXYWIjKKchjTZiBBkWdo6SKmfRMH/gxPwd7cheGtAzE3McPT3p3VoTtQadTMChiPiVhMMwdbFg4zLGvrruxCIpbgaHk3ItiioTNfjBhPn1bNmL1qGzcysmp9zUvkCr49eJYGUkfGtetYp/fJRCLh3QEjmNyhKyZ/fZpNKcgjo7gQgGsZKeSVlRo8VytrsdnlDXvvHv/rC8GkSvVoZnFuneb1d6hO1uBuTpubjRMrQ/YwsKW/nqyBfiHCoRtXHvh8HyVKFXJCk+OA8l1O4vNq/740YsTI/eFvRdjKysqIiooiKysLhUJR7bgxY8bU9xYPPcYIW1UMyZohguOjWRZ8GGtzCQsGTSOzJJ8/QvbzVIfBeDt5sOzCrnLJ8+3LFyc3g0jN/wKnci4+lqM3I/hf/3E0tnNkf+x5QpKjebHbeJQaFb9c3Imvc3NCUm8yzrc33T38dDsYDGjRhW5N/FgTtgcRIpysnAhJuYGbjQtJ+TlM79iHjeEHKJJpsDdx5dytRHyaSDA1kWJvIUKEhJxSJY6WUt0yaH6xJVcT81g8fgItncojYSfiLnA5OZKZncYhFUtYHbqDNs4tGeLVWxet0sqahYkFk9oOrzZS8cvJC6y/EMYfs56sNtJWIlfw3NogLE1NWDp1NOYmVbfcqgsVc9Ymte9aJadNS0VZsze31VWD7o+JxM7CDD8XDxJzc7G1sMTF1pw7eWn/SKStJlnTUr4MGkRLRwfKVGVVctq0GCNt+lTOWTt5+5peTpsRI0YeLPUWth9++IHVq1dXKa+tiDYvJzo6ut4TfNgxCps+hmStVCnncOwV7C3F9PLshEQs0S2Dnr4dSWaxAm9nZ3LLcnmqw2A6uLVCqVax+9pFrqZHUyiT08rBE1c7a8LTb/Fqj/GcuR3D0Zvh9G7enBvZCbzYbbwuZy21MEtP2vo1a8+F5HBdzhpAXkkR35xdj0ylorm9JykFubzTdzz2FtYk5qfz4f6tJGeraeMh4YXuI3CwaMDC4+txtCyvVrIwscBEJMa7UQuGtw5kY8hltoSG8u3YcUSkJzCiTXsuJIZVK21ylUInaxP9h7E/OoJ+rXywM7c0+LrWJG0PQta0OWvanLaYzDT6tmrBeP/uiEVig7KmrQZt2dCFz49tp7mjC9EZybjaOuJmZ1mrtJ25E46fSzOD8lQdl5KjaWLrhKttw3uQtfKctWGtO1bJaauMUdrKqa7AoHIhghEjRh4c9Uo+WLFiBT///DMSiYTAwECaNWtW7f5eRh4vckuL6PhXbpoWhUrFufgYGljKSS/KZIL/MEQiESqNmvl9J3P6ThSn7lxhZsehOln74cyfFCrSEAlKTKUmiCUKnvDpgZnUhFKlnLF+XYnPT+Ry8nVmdhqlV2DgZuvEC13H8svFnQS4teLY7TDaNmqmkzVBEDh6O4QShRJzEzHJhYm80Xsa9hbl1UIiQK0R8GkiApGEnNIynK0cUQsg6B7XIJaYMLhVL0QiEdM6d0EiFpNTWkJEWhJXUhL5YNATAKwO3cHMTuOY2WkcFxLDKVPI2BC+Rydr60LPcyHhFt09W2Jnbvh1faFvebuS2au26Unbg5Q1QNfy4/vTBzkYe5WUwlxe7D4UsVhEZ3dfgiIvGOyzNr/fON47tB6pWExhWSlikRhfZ086N/bDytSCUqX+Bz1BEEgrzuFk8JVq5akywYlR7Lp2mue6lH+vaf5qoVKdrAEUyssY3aYLw1qXfy9M8OvHvphzlCnl2BvowatdHg1LvVO3F/I/SE3VoINalbf4+frkLqO0GTHygKlXhG3w4MFkZmayYcMGfH19H8S8HhmMEba6kVdWwhfHttHAUk5LR3cm+A9DIpYQlXFHtwxaWdZAhbOVJ7MCBvLzpd1Ympgxp/NIpGKJbhm0pUMLzsXf5H/9x9GkQUO9e1aOtI3z7U23Jr7sjTnPpaRoGlo2JDorETdbC9xsHXm64ygyi3NZcbm8UGBau2FIxeYsObMLsViNg4WI5o7uxGZlYmNWXj3qYtOIpzoORyq++0dMrlLy+dE9qDUCHwx6Qi/SZmtmrRdZ08raZ8Mm4GJTey5lxUibewO7ByprFVFrNHx/+iCRmbdp6+pBW5embL56nlE+AWyPuKQnayqNml8uHCKlIAeZUomXkzuJubnYWVjyZmD1FYUVCwJqk7aKstbC0b1ez9tI7dS1dYcx0mbEyIOnXsLm7+9Pt27dWLFixYOY0yOFUdjqTmVp83H2YXXYwRpl7cXuwxGLxbo+bRZSM5rYOXIlNVa3DLoj8oIup61GaUu5gYlEilgk1uWsPdd1KCsu78dcqkZAVV6IgIhp7Ybh26gFWcX5fHJ0HXbmGlxtnHix+2Qyi/P4/tw2nbTZmtszO2AUFiZ3S8oNSdvZ+FAkIjEe9u71kjUtv5y8wK+nL2AqkdC2sesDlzUtWmmLyLyFCBjt05UdkSEGZS29KI93+45DqVbz+bHttGzoet+kzShr/wz32mfNKG1GjDxY6lUl6uTkhIWF4T38jBipDnsLK94b8CT5pWbczE5mY/gRprUbqCdrRYp0LE0kerIGYGFixkvdxlCsKCUkJVYvZ22cfzcGtmrL3ushVe6pXR6Ny0mikbU9xYoyWjVsQmphPu/0HU8zh0a81XsCMhXIVAo0goC9qQs+zs3JKs5nwbH12FuAp707qYUKlBoVrraOvNbzSYrkIpRqJUn5qRy7pV9NaCY14f2BTyARi1h4ZA8dXP1QadTI1Ur6N+9ab1kDeKp7RxQqNcVyBa8O7FVvWQPYERlaJ1mD8uXR57v3R4oUc6kpB29c4cUeg6qVNRszC92OCPG5mTwV0JsiuYzIGvZM1VZxlm8nVb4HaEWMsvbPEZx44576rGl3RNgRefEfmJ0RI48f9Yqwffvtt2zfvp3jx4/rNmZ9XDFG2O4dbaTNzkJGq4aNGd1mED+dO0iRIh1naytmdBqLlYmFTtYqotaU5ylJqnnM0HFBENjzV+uQEd7d2HHtDGN8etHT0x+A5IIMVobsRKESYSoRUapQ4mLVhDv5idiZC7Rp1IxJbYdXue/ZO9FsCj+Ms7WUrk389SpAtchVSj47spu0wkx6t3DDzbYhOyPDkStN+WLExHuWtYo5a37uLmwLiaixerQ21BoNYpHonprzKlQqylQKvj61A1cbB17oNgSgiqxVvo9ELK72PaqMoUibUdb+WQRBQCMIdXq/KlLX99iIESP3Rr2ETS6XM3v2bKRSKQsWLKBp06YPYm6PBEZhqx93pU2OIIhQCRqcrayZGTAOK9PaPwQo1SokYolupwSFSoWptGoUQNtn7VJSNK/2GI+ztT23clL49dIenvDuSTOHRvwesosBLbrQxrkl357ZjlSsoFQpw1Qiwq9Rcya1HV7lD1B0RgpfntjDGN8OXEi+iq0ZdHJvU0XaZEo5q0N3EpZUQENLe9wbOHAh4SatnMW80G0CztaOurEKtQoRVBvNMFRgsPzEeTZdusLvMycalLYyhRIL03uLwJXJFUikYkxriaoUycv48mQQjawbAJBelMf8vuOxrabS1RAqjRoAqbhqR/OK0hbg3pqTt68YlLXq3vvKqNUaVBoNZibSOp8jCAJyhQpzs/pHMY0YMWLkflAnYZsxY0aVY0qlkqtXryIWi3Fzc8PFxcXgp3SRSMSaNWvuz2wfQozCVn+ySwp5c+8qmjcs/755o/dsbMxq39dNoVayOnQvbZyb08uzPRpB4MODmxjYqi39Wt7d3cCQrGmJTLvNipC9WEgljPLpSS/P8pYNGUV5fHBkLY6WAGLcrVvxUs8hevtCamVtRqfeDGjlR1phDt+f20YDczEDW3anc5PyyF3FPmujfQYxY9NvAHw/ehq3827pChGcrR25kZ3CyosHsTIT9JZ7tRiStSupt9l45RgikZKLUQIrntaXtsSsfMZ9vYHVr0zAz6NRnd6TK3dSefrHrQzv15CPhj6JpWnVrV4qkl9Wwry9KxEB1qZmdHL3YmZAvzpF7FQaNcvPH8LZ2pbJ7XsZHKMRBN7a/xMaQcP09kMIaKy/1VZ+WQkfHt7Eqz1H1Jo3tSzoLGE3kvnfs335MXgf7/ebQCObBtWOFwSBrzYcJyE9j5/fmlDr8zFixIiRB0md4taXLl2q8t+VK1cQBAG1Wk1SUhKXL182OO7SpUsP+jkYeQRRqlWsvnwC9wZS1Jry7YxWh+5E/VfEpTq0sqYRNHRpXF6hLBaJmBEQyIYrZzhxq3x3g5pkrVguY1P4GSykYpQakIhNdHPaFH4KO3MrlGpTzKVmJBXGsfz8YTR/fa6pLGsArraOvNVnCs92fpJ2buVCUVHWJvoPY2v4JWzMzGlkbctvF07SzaMjnRv7szp0B5nFObRydMPPxZMiuZKfgreTVZynm291srbi4p+IxXImte3PlC6dquyI4OHUgGcGBDBl8WaiEjNqfU+u3Ell+pKtvDqiB64Otnx3eielCnm141UaNeuvnMLSxBSxCFxs7AlPjWdN6Elq+xyolbX0ojxG+FS/yf3FpGtIxRJcrB04cONClZy2BhZWjG7TmW9O7+JmdlqN93xqaADpeYVMW7iWvp5+dZK13aejeGda/xqva8SIESP/BHWKsKWkpPytm7i7/3fzTYwRtnunYoGBs7UVY3yH8v2ZPViaFdPQyp4Xu01FYmCJrKKsze40GlOp/jJVbFYK35zcw9T2vShWFVYra1+c2AKiIoZ6dcfN1oVfL+1htE9PQpJvI1MpmNdzNGVKBd+e2Y6ZVEWJXIGHXUv6t/TlqxN79WTNEJVlrWKBgb2FZbUtP5ysHFgXdpyI9BtYmUp5ufsELE2sqpU1G3MRE/0H0umvqFN1zXV/PniR5QcvsOmNydVG2rSy9tbo3swa0AmlWsXy4P0Uykp5s8/YKpE2bYFBXE4qCpWSF7oNY3PEWRwtbUjMzaG9ezOe7tTXYKStoqz9r3/VfDctFXPWmjm41Vg9evRmOFsjz/N2n+orFBPzs1hwaDu3gpW0aOTM8rcmYGZieBldK2sbP32KZq7/7Kb1RowYMWKIR3bz94eFx13YTt6+hJOVPb6NWtVpvFKt4puTm5Cri3C2tmVmwDjOxofgZuvK2pAz1UpbRVmb1fEJLiRdwdnaER/nlnrXj81K4fuzO7Axl/JW78k6WYtISyA0+TZR6bcxMSlhiFd3+jUv3/w9JiuRny/sws7clvmBk9kWeZa+zf3JKS3hlwsHcLGVUiCTkZYPz3Xtz0AvbbFCFiduX2VK234EXTtHW5fmtHB0YU3ojmr7rGWV5LP7+nkSskvRCOhJ2+yACThaNtBJm6WphPgkC8wkFrXKmhattK2ePYmWznfz42qStsqyVvG9MiRtlWXtjT5jaOHoqstpq0na6iNr2py12lp+1CRtiflZLDqxg2GtO9C3aVueXrgRB1vLKtJmlDUjRow8rNSrlOenn36qk6AcP36cn376qT63MPKI4GrjxM6oI1zPuFXrWJ2safKwt7TUFRi42DjxZ8xRZgT0plRuTXZJHssvbNQtj1aWteCkMEJSImloaV/lHq2d3Bnt2428EoFr6XcjwzZmFhyPi0KpAZXKkivJWag0apRqFQdjw3CwsGd6+/5YmprjauvAV6eCWHruID2b+pJaKEehKr/Ojex03fKovYUNyQVZfHJsHVdS4nC2tkMqltLO1adaWVtyNgh7C2u9lh/dPDoyoEV3rE0tEYlEPNWxP21dvChVqHF1KeLj0YF1kjUo3xHh9UG9cbLR33lk7tCuvDi0W5Xl0epkDcqLH17sPhxbc0vd8mh1sqZ9jef3HU9OaREeDo5cTbmjtzz6d2QNam/5MbBVOyb696iyPFpR1p5o0wVbK3PWfDCV3MJSXvx2O3Jl+ZtrlDUjRv4ecrmcL774gilTptCrVy/8/Pzo1asXM2bM4PDhw9WmSkRERPDqq6/Ss2dP/Pz86NOnDy+++CIxMTEG7/HDDz8wcOBA/Pz8CAwMZOHChRQWFhq4MqjValavXs2IESPw9/enZ8+ezJ8/n4yM2tNEHjbqFWHz9vZm7NixLFq0qMZxH3zwAUFBQca9RP/jxGbdYVvEAcb5DaZNo5YGx+jJmoUtc7pM1KsGDU+L5kDsSUZ4D9SLtD3b+UnWXdmvJ2uhKVHM6DAWpwoVllXnVL48Oq1Dbzo3acmiEzuwMbMguSCPdq5NiclIxdXOHolEiVylZF7P0brGt7ey0/ns2HZMJaDRSJAplTjbmePj3ISolAy8G7nzQveBiIA1oUcISY2ltVNjXuz6hG6f1D8unTYoa53cWzHOt7yStHJzXQsTU938BUHQWx7t36IrW8JP1ShrdaFipE2pVlcra5Xfu+XB+ymQlWBrbk1CXkYVWauIoUjb9I59/pasVeReIm1mUqmerFWksESmF2lbsuWUUdaMGPkb5Obm0q9fP9q2bYunpyf29vbk5uZy4sQJsrOzmTJlCp988oneOVu2bOGTTz7Bzs6Ofv364eTkRHZ2NmFhYcydO5fRo+9uc6hWq3nmmWcIDg6mY8eOdOrUibi4OI4fP46XlxebNm3C2lq/cG3+/Pns3LkTLy8v+vTpQ3p6OgcPHsTR0ZFt27bRqFHdCrIeBh6osP3vf/9jz549XLt2rd4TfNh5HIRNEAQuJl2jc2Mfg7llYFjaLidH09alBWKR2KCsnYuPoYN7Myz/EqWTcWcJToxgpM8gnbRpBHCzdWV2p9EEJ4Vx7NZVZnYcSYuGjQHILslEo9GQUlSAt5On3m4DsVkpfHZ0OwABjVvwcs9h5JYW89nRIHwbuXMzJxaF2oQvhs7UCcSt7HQWndjJYK92HL5xBZFYxeCWAQxs1ZZvTm/BwcKUpFw1rZ3dsbOUci0jgRe7j2T9lSM4WNryTKehrAk5p5M1M6mY6MwE9sVc1JM1LXWRtotJUZj/la43td2Qesualp8PXuSLoJMALJg8sFpZK1HIiMpIoGuT1pQpFfzv4FoKZSUAvN9/okFZU6hVXEq6QVsXT746tQNHSxvu5GSRV1ZCEztH3hsw/m/Jmpa6SNuasPLn+KR/9yqypqWwRMaMzzYSEZeKg40l2z6faVDWjl25iY9HI9wc674x/cWYROytLfBqXL8eeUaMPGpoNBpUKhWmpqZ6x0tKSpg4cSK3bt3i8OHDulZg4eHhTJkyhXbt2vHbb79hY2Ojd55KpUJaof3Otm3b+OCDDxg9ejRfffWV7nfpb7/9xnfffcfcuXN57bXXdOPPnz/PrFmz6Nq1K7///jsmfzUZ379/P6+//jpPPPEE33zzzYN4KR4ID7S74a1bt7C1rfsvOCMPJ3K1kjPxEawJO1BtFWdrp2Y82XYYO6IOcz3jFkduXmLXtdPklRVz5k4ock0eTexcdLKm0Wg4eyeGb07uplRZXoloYyqlgbmYfdFHmNqhB3J1+Q+jq40jwUlhHLlxlZR8NYry3rlkl2Sy//pO0ovTuJoWy+8huyhT3q1qdLe9G4HzdWmCVCzB2dqODweOJyLtNo6WAnam8NuF46g0an1Zi42kTKGhg2tLziVGUiArxsPOitSiPCa060hURhzBiTG80XscTeyceLXHOHJLC1lxeT/phQU6Wfv+3Fa2RZ42KGtwd0cEOwsLskuK9B4TiUT4u3iirPCSezT4+58Gu7Vuovu6c6vG1Y7LLilkXdhxjseFI1cpsaogw642VaVGoVbx0/m9nImPwsLElPl9xwNga14uaO52jlibGt7dXhAEbuem1rkprnZ5tI2zJ6mFOVUe93Jy033t49ykyuNabCzN8G3uAoCdtTluDQ3/vjoRcZtJizaQmmN42aUyF2MSmbV4G1EJ6XUab8TIfwGxWFxF1gCsrKzo1au8dU9iYqLu+A8//IAgCHz99ddVZA3QkzUoFzaRSMQbb7yh97t01qxZODo6EhQUpLfsum3bNgDmzZunkzWA4cOH4+Pjw4EDByguLq7ns/3nqXOE7X//+5/u6507d9K0aVM6duxocKxarebOnTtERUUxcOBAli5den9m+xDyOETYAEoUZSy/sBNHS1ue7jisxkjbmtB9qJEwr8eTJBWkcuxWME91GE2TBvoRGYVaxZLT+5CpFLzddzQWUlNCkoK5nBxOTpkKO3MHRrfpz5qwHZTIBbKKRbzRZxR+Lh46WWvnHkA7t/KqxvVX91OiKOOZgDGoNQKLTuzAycqWwV7tWHx6H9M69KZfSz+upt1gc/hRSmRimtprKJJJkUgcScjLvCtrSgWzO/dloJc/h26EciExGBdra1o7t2VP9DkkIjNkchN8GjXmhe4DEYtElChk/Hh+Bw6Wtoz37c3S4O0UymT0bOrPeL+qslYbFXPW3GxcSSrI1FWPVu7TVudrVshZkylVtVaPxuWkseTsLnwbNSUqPYFXez7BwdjQKoUIWlmTq5W81nMMFiamejlrc7oO5Mez+2nn5llt9ej9omLOmqWJWbWFCBVz1n5990k+XnnQYCECgEYj8P6ag5y9Fs+W/02rMdKmlbWPpw1kUmC7B/IcjRh5lJDL5UycOJGbN29y9OhR3NzcyM/Pp1u3brRp04YdO3Zw4cIFIiMjMTU1pVOnTvj56Vfiy2QyOnToQLNmzdi/f3+Ve7z++uvs37+fgwcP0qxZMwB69epFSUkJISEhSCT6f7O+/fZbVqxYwe+//66TyYed2lt9/8XOnTt1X4tEIhISEkhISKjxnNatW/POO+/Uf3ZGHhqsTC14sdtYll/YyZqwA9VKW2J+FhqkWEg0HL55htTCTD1ZyyktwNGyfDsmU4mU1/uMZMnpfXxzcjcvdB+Ed6N2nIqPRaCYEkUBJ26fo0whIrVQxaBWPlVkzcHSg1KFDEtTc6a3H876q/v5+cI2sovB2boBL/cchlQs4c3Akfx4Zi9JBRlEZ8Uys+NwHCztWXR8Gy62MrKKUzCTmHMwJgK5Ssnszn0Z0MqP/LJ8lOps7C3MiM4qJbMkBonIFJFIyewu/Vh16Rzfn97Pa32GY2Vqzqs9xrH47HYWHF+LSCSmZ1Nf+rdoX0VQMosLcLaufluqygUGHd1b63LafgreXi9pq67AYMrizWx6YzItXe1RaFRYmphRICvF0dKGFo6u9Pb05dCNKwxp3YHWTu40d2jE8uD9fHd6J/N6PYFMpWBd2HGKlTLe6TOhiqxpc9beHzCez48FsYaTD0zaKhcYaPnm9C49aTNUYLDmg6k8vXAjL367XU/akrMKcHW04fOnh/L+moNMWrShWmnTytrrY3oxprvvfX9+hsjKL8bK3BRL86qRjeooLJGh1miwt3mwWwsWFpWhEQQa2Nb9PnK5koKiMpyriXYaefgpKytj5cqVCIJATk4Op0+fJjU1lTfeeAM3t/Lod3R0NIIg4OLiwvPPP8/Jkyf1rjFs2DC+/vprXcQuMTERjUaDh4eHwXtql1kTExNp1qwZJSUlZGVl4eXlVUXWKo5PSEh4ZIStzkuia9euZe3ataxZswZBEOjdu7fuWOX/Nm3axLFjx9i9ezdNmlS/HGHk0UIrbTmlhQaXR4/cvMTJ21d4tccEWjo25k5uMp3c/XSyVqIoY8mZTVxMjNKdo5U2c6kpC49u4+tTa7E0tWZg83YIgpqo9BSS85VMatuV+Px49kQf18map31rPju2mZ8v7AXKqxrH+PQnszgPkSiPpwP66LY8ElFEezcxZ+5EkVOiRiI2xdnajont+hCbpcbJWsDesowShZyZAYEMaOXHybjjbLy6lYziTGYHTEWmUpJWnMWYNr0Y5xvI5ogjDPfxIyz1FrujLgPlFa0KtQyVRoNSrSKvtIitkSf1XqfDN8L58NBm3VJwZQxVg1asHi1RqKo0162N6mStYvXomuAzfH82iBNxkSw8tpWMonyO3Qrn9J1rzOw0gDN3rnE8LlxXPWpjZsF7B9ew6MRmEgtyUKnBXGpSbTVoQytb3h8wvs7Nde+V6mStcvVoddWghqpHBUHgreV7ePvnfQgIfP70UHr5ehpcHtXK2rzRPVl/MIStJ6/e1+dXHYs3n+TZL7dQKlPUaXxhiYxZn29i6fazD3hmsGrzGZ59/XfyC0vrNF4uV/LqB+v5ZnnVCIqRR4eysjJ++uknli1bxubNm8nKyuLdd9/lueee043Jzc0F4OTJk1y7do1ff/2V0NBQdu/eTUBAAAcOHGDJkiW68dqly8pFBVq0x4uKiu5p/KO0JFpnYevSpQtdunSha9eujB07liFDhuiOVf6vQ4cO/+lmuY8z1UmbVtZe6j6OpIJUEgvS6NOsM5eTInQtP6xMLZgVMIrd0WeqSNvLPYcgoCG1QIlKo6ZULSFfBhmF0KSBGF8Xd57078uFxCjE0kZ4Ofmx5so+/FwacSc3hwOxoRTLZXx7eg9Olh5Ym5nw84WNFMnLk+TLVBJyZUp8G4mQiCA5P5db2en8cfkoLRzNyS0VYWMmxtvZnMj0RI7fOkpUxg1MJWZMajuO3dcv0sDchkZW9myKOIatmQ1jfftw4s4lRni3Z19MCBcTb/D9ua0Uy+V0aeyNhdSUGznJTG03QPdcD98IZ1vEed4KfEJXbFGRmlp31FfaamrdAXel7acdUYiVVpxPiKC9WzM+ObqZ7ZHneKP3GPo09+P1XmPYEXWe43HhiEQipBKQqxQUyhRIRBJe6zkStaCpsRr0QUlbdbKmRSttX5/ayfyVe6qtBq0sbQqVmqXzxhIRl1qjtFWUtY2HQundtjnTBlZfeXs/+XDmYIA6SZtW1mytzXn3H9jB4cVZA3B3sa+TtGllrai4jI/fHPPA52bkweHg4EBsbCzXr1/n+PHjzJs3jyVLljBv3jw0mvIkZO3/1Wo1n376KX379sXa2hpvb2+WLl2KlZUVmzZtQqGo2weRx4F6FR0sWrSICROMe+s9rlSWtoM3LurJmjZnbUDL7nqFCADNHdx4JuAJPWlTqJVsuHqANo0caeHgRlRaFvujQ0kr0NC9qQtNGpiwKXwPp+OOMaRVe+JyM/nu7HqsTS14sds43g4cx5/Rl3n/0HqcrGyZ13skL/d4ChGw9Pw6zsVfZVP4URLyRDSydiegsTlbrp7k8+PbaeFoQpFMRXP7NmQUWWBrrkaliSc8LQZzqSWT201g9/WLRGUk8HbgBD4cMB1324Ysv7hbJ21X06/Rp1lrlp4/QHZxKd2b+qJQKXCwtMHBwpZNESdQa9Q6WXunr+Fu/HXps3av0labrGnRStuWg0lIVNZEpN1CoVYiFUuxNi2XrhaOrrzeawxBkef4/MRGbmYnY25igVgswdrEDBOJtE6tO+63tNUma1oGtGyLNNWePWeiWPTakGpbd1SWNlsrczZ9NL1aadt5PqqKrC2YPRSx+MHl6VXE0tyUlfMnATVLW0VZ++WtJzEzrXNGTL0xkUr49tMptUpbRVn77dvZWFsZLk4x8mghkUhwd3dnzpw5vP766xw6dIigoCAAXZGBRCKhT58+euc5ODjQvn17ysrKiIuLA2qPiGmPa69b1/HVReAeRv5WlahCoWDv3r18/PHHzJ07l7lz5/Lxxx+zZ88e5PLq9yA08uijlbaI9DgO3rjAC13HGCwwqFg9eiX1Or9c3ICVqametG28ehCNoOGZgNF0aepGqUJDZrGAh4M1T7YdhAg1VlI12WVqXGwaY21qSamiDG8nT6QSKU0aOGFjZkWpooxWDRshFUvILc3BzcYGmUrBgdhTFJYJTGzbm8ntx+Fi3YTWzhoa22nILZXh26gtz3UbwPx+E1CoBMRiDWpBoEDWgJ3XLxCVkcBbfcbjaGmLWCTm3cDJetLWt3lHwtKisDQRUSSH+JxMcmVFvNZzAq/1HE9uaSELjm2uUdbictL47eL+OvVZ05c2NcsvBOlVx2pJyi6ok6xp0Urbhv3xZBaU4WxtRUDjlnx5MoiMonwAmto74+nQkJSCXArkKkylJnw2eCqOVjZ8dHgDaYW5NcqalorStiPqYq1zq478spI6yRrA7/sucjUykw/m9mVjzAkyivOrHVtR2t5dvhenBtYGpc1EIuG1X/YyObDdvyJrWmqTtn9D1rTUJm1GWXs86NGjBwAhISEAeHp6AmBubq5XwalFK1IymQwADw8PxGKxXpVpRbQ59docNysrK5ycnEhOTtZF8wyN1+ayPQrUe2uq8+fPM3/+fLKysqp8QhaJRDRs2JAvv/ySnj173peJPqw8LlWihjhy8xL7Y4MBEe52jsiVhczoOKZKNSjc7dPm49yC23kJPNVhLCUKBb+H7KGPZzv6NQ8gOCmMQ7FhJOUrESHCykyKh50aZysRAhpKlSIKFAINrRoxxqcfthbWWP/VfPdGVioSsYjvz+yme9OW5JbepKWTD0duRmAmETCVSHmzz0wyior46mQQbZxBIlZjbdKaWV3Kl5ROxh0nMj0WmUqFSAT5ZWLyZPDxwGk0qpTgrxE0fHVqMymFWdiamZMvk2EiFmNtYkNifiGv9x5JR/fmAOyLDmFL+HnaurnxRq+xBos1VBo1t3PSkUqguUPd0gkEQSA2KwUTichgKwxBELh4M5luXveWR3r6ehyNG1lx4s4VkvOz8LRvzNXUO7wVOIbd184Rm5VEoVyFRoDx/t14wqcrSrWKkORb+Lk0rVXWKpJdUogggJN1/RLMy1+DVLyda3/NMnKLKJUraebqQExmCq2d3GotfCgskZGSVYCPZ3kVbVZ+MVMWrKdtCzee7N+O2Yu3IVeqESHwRIAP3734xD8uaxUplSl49sstAKycPwlLc9N/VdYqolSpeevjTaSk57FyyTM0sLU0ytpjxOnTp5kzZw7jx4/niy++QBAE+vbtS3p6OqdPn67SwHbkyJHcvHlT77GJEycSERHByZMncXFx0Y1VKpUEBgYiFos5c+aM7udaWzm6ceNGOnXS/9A6ZswYbt26xYULFx6ZKFu9Imzh4eE8//zzZGZm0rZtW9577z2WLVvGsmXLeP/992nXrh1ZWVm88MILhIeH3+85G3kI0Oasvd1nKmN9e5BelIOdhRNuts4Gx2sjbdGZcTS3b8q6Kzt1kbbT8VfZHnWQQ7FhJOcrGe8fwPdPPIVEpCGpQINcY8V4/6eRikXYmUJBWQ5ytVwna1Ded6uFoyvTOvTgRNw1VIIjx+OuUSKX0NuzB2ZSCUvOruGrkzto4WhKRrGAhYkTUkkKhbICTsYdJyrjBpamVkxs+yRx2RKszTQ0tJCyPvQ8qkoFFmKRmOe6jMBELCJfJqOdS3PcbBwoVRUyrHVblp0/yPWMZA7fCGf3tcu8EzgalUbByhDDveykYgleTu51ljUo/2Dk7dy42r5lIpHonmUNoE+bFjR3dGFmxyE0buBEfF4y7Vw9+eTIJqIzkxAwwcHSlnk9R3D4RpiuEKF7U+97kjUoj7TVV9ZA+xrU7TVr5GCjWwb1dnavU5WqrZW5TtYAXaTtYkwC07/azLzRPWlsY0UzZwdC7qSSnldUw9UePJUjbZl5RQ+FrEHVSFtmdqFR1v5jxMXFUVZWVuV4QUEB33//PQC9e/cGyn92J00q/179/vvv9QI/+/bt4+bNm3To0EFP5CZMmIAgCCxevFhv/KpVq8jJyWH8+PF6P9fa1K0ffvgBpVKpO75//36io6MZOnToIyNrUM8I2+zZswkODubjjz9m8uTJBsds2bKFjz/+mJ49e/L777//7Yk+rDyOEbaKBQbJBWkcvXWeCX5D2R19vk592ipH2oITrnI2/jqZRTDOP4ABLduyNmwbJqJSEvOtyS4twdpCRSsHNyylReSWFVOmkjC53RM0c7grJAl5iey9/ieOVk05cvMmANM79KV3szbsunaQ8LQ7mEigTCnG17kd0zr05HzCWcJTryJXg625nS5n7UrqHZQqNU0aqCiSSbE1d2de76G6qtO8siK+P7eVQpkME7GUEqUME4mUUd7dOHzzIgHu7dh1rTz0/8mgibRq6KrXp+3ZgGGoNQJbws8x1q8r1mYP5x8rtUbD7yEHCEu5hVojQqEu/3WxeMQsHK1sdX3axvn1oH+Lqj3H4rIzCE9NYlzbgDrfM60wn2M3rzO1Y3fEtUhVUamcHzae5I3p/erc1kKuVPHN2mPMndALRzur2k+oxMWYRGZ+txW1XIVSoWZy//Z8NnsYH647VKc+bf8EpTIFkz9aS9SddLr4eLDmg6n/qqxVRKlS8+p76zh9IRbPJg3Z8ttLRln7j7B06VJWr15Np06dcHd3x9LSkrS0NE6ePElJSQnDhw9n8eLFOqmSyWTMmDGD8PBw2rVrR6dOnUhOTubo0aNYWlqyYcMGvL3vpodU3poqICCAuLg4jh07ds9bUzk4OLB9+/ZHamuqekfY/Pz8qpU1gEmTJuHv78/Vq1frOzcjDyEVZc3N1glTiQlPdRiNl5NnjS0/tGgjbX4uXnT36Mi6Kzu5nZNDZhHYWYK9pTlrw7ZhLimjm0d33u33JGKRiNxiUGg0jGozHolYgrlUTX7Z3WR7ray1dPLhStod3fEylZxd1/ZQqizC+q8mr6YSGO3bAZFIhFKtQK4GjQAjfAZjZWqJg6UN/+v3JO8PmERTez+cbERYm5Uh+uujTV5ZET8FB9HCwY2BrQJo7uiKSFQuN8Hxtxnp05OTt8N0c1Cqy18LbZ82d1tHFCo1i8/s5XZuBhLxA91w5G8hIKBQ390cXYvqr5wQbSGCtnq0MiYSKbuvhbH5yoU63S+tMJ8PDwSh0qipy8KiVCImJiGDZz7bWKe2FnKlipe+3MqVmCRMDPRmqg1tNehrY3ohFZW/bzKFCpGYGlt+/NOo1BqUao3ua7WBHJ5/C41ag0JZ/j2l1mhQqR+euRn5e/Tt25dhw4aRnJzM3r17Wb16NRcuXKBjx44sXryYJUuW6EXAzM3NWb16Nc899xw5OTmsW7eOkJAQhg8fzvbt2/VkDcoLFH755Rfmzp1LZmYmq1atIioqiunTp7NhwwaD0bLPP/+c+fPno1KpWLNmDefPn2fkyJGP3D6iUM8IW+fOnenTpw/fffddjePefPNNTp06pUsy/C/yOEXYKsuaIeq6I4KWJWe2EZacypDWbWjn6smasP24WIsZ1LIHXs5+rLi8EwupGdnFGhLzM/Fza8jUtoNZf2U9gqDmybYTUKhVOlk7HneNwjKY2LYXTe2d2BIehL2FNWCKo1UDhngFsjx4PQICAW7NiM2+g4WJJS0cGpOUn8Bov3HYmTfQm2NOaS5bwnfg7+KLbyNfll3YQeuGTRjjG8ia0IPklBXyUrcxbI04SUT6HSRYkVdWjJ0F9GzagYOx4bzZ5wnaNCrfBkqhUrH4zF7kKiXv9B2jt3/ow4RKo+a3i38Sm1W+DCpXKXG2tqKlowdXU+8wv+94Gtk0AKgx0paYl8OHB4MY5t2WyR26VXs/raz1au7F0wG96txYt0yuZM7CTeXRwA+nVhtp08paXmEpqz6ejq31vUV1DLXueHV8L6Z+toG2Ldz4Zu5IRIjqvCPCg6JiztqSV8bw4nfl++lqc9r+TSrmrC3/8mk+/nqnXk6bESNGqqdeH+3btm3LjRs3ah1348YN2rZtW59bGHnIqIusQe3NdSuyLeIsYcmpdPFw53ZeNHtjDuBhJyG7VEShQsKKyzuxNrVgVqdRvBk4mqYNGhGVms3GiMNM7zAdkUjC1ojt7IjaVUXWejdrQ1hKMO52jqQWFqHUwHi/odiZW/NS9+mYS1REZtzATGrBlPZP0rdFf1o4tiQoYhu5pbl683S0dGBSu3GEpUTy3ZmNeFWStVHe3TCVSJkVMBQHc3syiwtws7FnvH9vQlLCGdq6Hd+d3sP1jOQaZU2tURObVfPuIZURBIHozDu1D7xHKsuaicSEzwZPx9OhEfF5ybR3a6ZXPVpTpM3D3pHPho7nQExEtZG2+soagIWZCSs+mIJELK420vYgZG3B7KE429vU2PLjn460VS4waGBjUaeWH/8ElQsMGthZ1anlhxEjRsqpl7DNmzeP+Ph4fvzxR4PlsoIg8OOPPxIfH8+8efP+9iSN/LvIlHIiM27XKmtatNJWJC8lvTjX4JjozHgOxoYxzj+ApzsNAcBSCh3d/ZnRcQS7r59GqVYxo8MIpBIpphIpbwQ+gae9CwWlcrZGHaVf874IAoiAa+kperK269oeNBoNpQqBFo6NuZlVyOGbVxEEgbCUS9hbWKLWiNAIpphJTBGJRHT16EmZCraEbzIoba2d/bEwETPUq6tO1oa26sTWyIMkFWRw9GYkyQUFdGzcmGJVPqdu3WCkT0/k6mJmdArku9N7WHB0W7WRtaySfNaG7Sc4IbJO74sgCOy8dpIdUScNtvWoLyqNmpWX9pe/dyJTTCQmvNd3PM7WdnqFCNVJ24XEWJR/LaNqqUna/o6saalJ2v6urAFsPhVebZ+16lp+9PL15MiVm/d8r/pSXTVoXfu0PUiqqwata582I0aM1HNJdNeuXYSFhbFt2zbc3NwYPHiwbmeDlJQUjhw5QkpKCk8++aTBDeLHjBnztyf+sPC4LIkKgnDPf0irOyc2K4HVoX8ywa8/rRq6syZsB83sG2NnbsOFxKtIJRZIxaakFeYwuk0funr46V1ToVay4tJWlOo8enn2IDjhEvkyJV2adGdAy/Y6WcstU+Bo1YDxfkNJLsjh21NBdGnigEgkY7TvOCQiKRuv7sHSxIKJbYcjlUgpkZexOnQ9YpGCSe2m4GCp31xVoVKyJuyQTtZ2Xj/Gk36DSS0s0fVZa+HYiFUhB4lIv4OThTNvBY5GLBLzwaFNpBbl8WbvUXRwb2bwNbuTm8qKy7sZ5d2L7k39a3xtd147SXRmPHO7jcfB8v4svWllLae0iEbWTsRkJfO/vuNxtLp7fbVGw+qwQ3otPyouj9b0vVJ5efR+yFpFKi+PSiTivy1rAMlZ+Uz7bEONfdYqtvz4Zu5IxCLRA93kviJ1ad1hqOXHP0FdWncYavlhxIgRfeolbN7e5XsbVjxV+4vJ0DEt2l/k0dHR9Z3vQ8fjImz3C62sjW7ThzbOTXWyNsK7PzKVgqXn16NQlzGr0wRkKjW/h+xhtE9vunr4UaYsw8LEgoS8RPZc34dIZI1MJSU+N4/mDmAqFeNgYY9EJNGTNYlYgiAI/Bm9n1vZcbRoGMCoNuVNHGUqOevDdtVJ2lQaNatCDlQra/N6DcPPxRMo79OmlbYGZg5IxFIEQaCHpzebr57V5bSVKsqwNNVvhVGdtMmUZZhJy//Y1VXWZCoZZhKzasWhTCnHTGqCWCQ2IGsp/K/vOD1Zg/KdKTQagQ3hx3TSdiX1NvP7jsfFpvYN6bXS1tG9MVFpqfRs3vq+yJruOf0lbTKFElOpFLlC+bdkLSW7gKkL1tepKW5lafsnCkrupc/aPy1t99JnzShtRozUTL2EbenSpX/rl+vLL79c73MfNozCVndKFGUsOrGGMb6BXE4KRqZS0aphC0Z490ckErEl4jBFZSmIRWJyZHK95rozOw7l2K3jdHRvx+Wkywxo1Y/Gtk14688/8LQ3I6BxY6L+2v7KxaYpErFUJ2sA0RnXCU25TEDjPiw7f4hXeo3Cq2F5VFgrbc0dPejfonv5XP+SNolIzTNdnsVEIuXQjUtcSbulJ2tWprZ8cTyIl3oM5kDsUSa1HU5zx/JWIxpBw++X9xOSHEeJHJaNeRY7CytO3b7GpqvneK3XIHZeO8zcblNoYKEvRZWlTRAEdkRuxc22ManFCmLqIGulilL2XNtBW7f2tGnkZ3DM5vCDiEUiJvgP4uCNEK6mxtG1SRsOxF6pVtbWhu2liZ0LA1t2Y3XYIeRKJSWKHDKKFHw9fA7iOkhK8J0YLicfIr0QPh/+6n2PRBUUl9Fp+jcAnP39NVzqmfwvCAKTF6ynlXvDOu9goJW2GUMCmDGk7u1M6sv8n/eRkVdU5z5rWmnz9nDmo9lDHujcflhxiIthcXXus6aVNhNTCd9+POWBzs2IkUeNeu90YKQco7DdG4WyEkDDqpCtqDRlDGgRSHv38ihSiaIMkaDhyM195JTJySmT8VSHsShUSv6MOYC7nSsJufEM9OqPj7M3Go2aPdf2oFCXIGCGUqMkX1YAiJjRcSq25nf/SGsEDTKlDEtTS/LKimlgbqUnCTKVHLFIjKnk7hYpJfIyVoUG0cCiAZPbDUMjCFzPiNPJmp9LSwDyykqwt7AiPDWafTEnmdJuJM0dm6BQqfju9B4KZCVIRBKszcx5o88ozKQmRKTdYm/0EYZ7B9LBrY3B16qytOWW5PDzxc3IVGJe6zkVRyu7al9nraw5WDVkYKvBiEWGJapIXsrKy0G42zrzRJt+qDUaLKSmFCnKsDPX71GmlTWNoGFmx9GYSk1QazSUKGVIULEvejue9h508RhQo4Al5Wey99oWTCWmnIuHIa3b1Vg9eq9oc9ZSswoxkUqwtDCpsXq0NrLyi3G0tbqnHQxyCkuwtTTHRHrvrUPulfyiMizMTO6pz1qpTIFKrcH2Afc/KymVIwjCPfVZU6rUFBWX4dDg0WloasTIP4FR2P4mRmG7NwplRbpl0Pau3gRF7SGweS/au91d+lOo5ByI2VUubaWlWJpIaNLAvYqsHbt1kIKyfNSCKWKxmDG+T6BQK1gTsg6ApwOewsr03hujVqRUIeOP0J00MLehvZs32yIP68laZbTSNsFvGDuvXdEVGIiAr0/txkQsYbx/R7ZFHqhR1rRopW2kd0/Si3KIyojDxUpDW1c/unp0NyhGdZU1LRWlbYL/IIPjDcla1fsWcfRmEI2sG1crbVpZszW3YlL7p0grLKxTy4+6UrnAwMREUqeWH0aMGDHysPO3EyxiYmLYunUrv/76q560KBQKiouL/+7ljfyHKFPK9HLWGjdwZ7z/aE7dPsvV1LuVkaZSM4Z5j8HGVIJYpCS3TMaFxFv0bRlYo6yZSEywMrXCRNySMqWaZef/oERRe9WZIAhsunKeP6OvVnnM0tSc2Z3Gcj3zNhuv7mec78BqZQ2gnZsPQ736sDF8LzJVsa4a1NzElHcCR6NQl7Lh6l4Gt+pVq6wBNHNw49nOTxAUdYJzCRG83H0iT7adQEzmdS4mBlfZx/deZQ3AxsySZzuPJ6Uwk+2RR9AI+pXftcnaLxcOEpZyG0tTGwa2Gk9GcTKXEo9VmZtW1mzMLFFoPAhJuV2nlh91xVA1aHXVo2ej45n7yy4UqurbzlQm5FYyT/+47aFqQmvEiJHHh3oL2+3bt5k8eTJjx47l448/5vvvv+fo0aO6x/fu3Uvnzp05ffr0fZmokUcfc6kZ/Vt01+WsATS2czMobSWKMrJLZdiZWeBh2wAbMzvOJdxErpRXK2taWjo1IrFQhYlEypEbR1FpVFXmokUQBDZfDebYrWu0d/MwOCYxP033dWT6jSr7ilZEoVJx5OYNRNgiFReRVpiheyytKBOppAgRthy9eRO5SlntdSrO72rq3Z6HsVkJ2Fs6MNp3XBVpq4+saalO2uoSWQto3JKfLxyoUdr0ZE3wIDorGa+GbkDd+rTVRk2tOwxJm5+HCwlZ+cz9dXedpC3kVjIzftzGwLYtH+qdKYwYMfLfpV6/edLS0pg+fTpXr16lX79+vP3221U+TQ8bNgwTExMOHz58XyZq5NFHJBLh28irylJZZWnLK81nc3gQPs6tearjdBpYmOLfyI5SpYxvz6wlrzSvWllLzM/g8K1zdPdoy5VkDRnFuey7vt+gtFWUtU8Hj8fdzqHKmJjMO2yKOMDUdsP5oN9z5MuK2Bx+wKC0VWyK+27fKYzy6cem8H3czkniTm4yG6/uZbh3IPP7TkGpUbP49N4apa1i6473+83i5e5PsjfmLMEJkVWk7e/ImpbK0iZXKWqVNSgXtue7DqlW2pLy9GUtJiuF+X3H42hpo7vG35G2uvRZqyxtphIxG9+YTFpuYa3SppW1/43ry1N9O9zT3IwYMWLkflEvYVu2bBl5eXksXLiQ5cuXM3v27CpjLC0t8fHxITy86v6CRoxURittR26eYOXltfg4tyaweU/MTMwZ5j0GpboMS3EGMpWM1OJiRCKRQVn7+eJOhrTqyuR2/Xin32jO3SkxKG33ImvanDXt8qghaTO0g0E7Nx9GevdlTdhOVofu0OWsaZdHa5I2Q33Wmjm4Mafz6CrSdiUllNUhK+slawdORhIbl677t1ba4vNS+fTYL6g1VWXtfOgtLl29rXed6qQtMT+OM3c2VZG1BuaWnIgL0WuwW5u0aQSBk7dD9ZoE30tT3PpIm1HWjBgx8rBQL2E7c+YMrVu3ZsKECTWOc3d3JzMzs14TM/L4YWVyt+9SAws7XSROKpZiJjVHIhbh7+yAIIjJKRNDhe3BK8pa3+blf1j9XBrrpK1ApkBVYRPze5U1LdVJm1ytxNHSusoOBrbmd6NIdmZ3v9ZKW0Mr2yrCVlNT3MrSZiY1171ONqY2iOq0ZfpdktNymfnW73rSZiY10Qmalak50gqbpJ8LucUrH20gM6eoyrUqS5uJxBQRYgQBUookxGTejawp1SqiMuJYe+VPg9JWLJejqRC11wgCO6+dIDgxErnqbqd+mVxJwwbWde6zppW2Zm6OlJQpaGBlXq20GWXNiBEjDxP1EracnByaNTPcqb0iKpWKsrKy+tzCyGOGdhm0c+OOTGk/Qbc8qi0wkCnLmNT+acykUlo5OiNTKfg9ZB9KtcqgrGnRStuRG5kEJ9z+W7KmxZC02ZhZMKfrID1Z0y6DjvEdyDjfQbrlUS3mJqbM6ToQW/O7olqXHQx00hZ9hpWXNtLcsSWT208jNivaYCFCTcyZEsjMCT110qbNWbM0Meet3k+TVZKny2k7F3KLVz/ewCevj2bkgHYGr1dR2taFbsHewpESlReJBUUMadUIBwvrv567Gc92HkOpQmZQ2p7tFoj4LxHVytqN7ERe6DqOBhYVJNjagi9feeKemuJamJnwxUujcLIvn4shaTPKmhEjRh426tXWo1evXjRu3JjNmzfrjnl7ezN27FgWLVqkOzZq1ChKS0v/0y0vjG09/j4Vc9YCm/dEJBKRXJBKUORunK3sMJPAcJ+xmJtY6Fp+SMRm3MyVkV1aiEKlYIR3zyqyVpGo9GS+PL4HS1MzNIKm3rJWkYotPya3G4ZUfDcSVTFnTVsNWrlPW2XuZbupUkUpG8K2cDOvmNFtAunZtC15pbnsvrYDb+c21bb8qI5fN5xk9fazPDHLE0cXc90yqLblhyzNhG2rY/n09dGMGti+xmsp1XLWhm7hXEI+1mYWmElNmNdjCGEph6q0/ChTyll5eReFBfDmwLGYV9pftbKs2VdoMHwjOQsPZ3vM/+o/FhWXhm9zlzo9b4VCRUJKNkoBWjd1RiIRE3w9gc+CTpCaV0SxTMHHE/vryZpGoyEmLp02rdx0x6LupOPXzKXW+xkxYsTI36VeEbaOHTsSGRlZ4xZTly5d4ubNm3Tp0qXekzPy38eQrAG42TTCo4ETKYU5eNh7Y25Svn2TtuWHWiPH2VJEiaIMpUZNzxr23QTwbeSOp31DckuL6deijUFZU2s0HL4ZXCdZg7uRtgJZMXEVImeGZA3Q5bRVjrRpSSvK5kZ2Yp13MGjq4MrzXcZy6nYYZUp5tdWjdWHW5J74dbdn64ob9GjQVbckamNmib+kAxv/iGL4hGaMGNC2xuso1XJO3NqNZwNrLE3NKZCVMtSrA40buBqsHrUwMWNWpyfYeTiZid+uRKa8u9xZk6xdjUtl/MJ1nI4sz6UrkyuZu2gL36yt2k7EEOdCbjL5xV+Y9NZKwm+mkJxVwJzvttHZ042colLkShWTet19rhqNhg+/2cl7X25HrS6voF1/NIwpCzeQllNYx1fZiJHHk08//ZTWrVvTunVrCgvv/ryUlJSwa9cuXn31VQYNGoS/vz9dunRh1qxZnDhxotrrFRYWsnDhQgIDA/Hz82PgwIH88MMPyOVyg+Plcjk//PADAwcOxM/Pj8DAQBYuXKg3l0eBegnbM888gyAIvPjii5w6dQq1Wj9ZNzg4mHfeeQepVMrTTz99XyZq5L9HdbKmXQYVNArG+Y3kXMLFKn3a/Fx7cCU9g5YODWjaoJFuedQQ2mXQ9OIC5nTtx4GYcE7cul5lnEQs5qXuk+oka1osTc15oeuTtHbyBKqXNS01SZubrRNv95leJ1nTFhi0cGzMu4FPYWFiBlAvadMug3bu24g5EwOZ8+5aXU7buZBbvLswiI/mPYFjK5HBPm1atLImEUlJKLDBwsSU6R0C2Rx+tsaWH9ZmFgS9N5OktFKdtNUma099s5k3xvVhcCcvoHyZc92Cp9h9KrJO0iY2N0FuIsKkTIlEI9DYyY53pvRjzcEQhvm1xN+jkW55VCtrV64l8NtXM5FIxKw/GsZXm06w+t1JuNZz2ysjRh4HLly4wKZNm7C0rLo3bGhoKO+++y6XL1/G39+fmTNn0rdvX65cucILL7zAL7/8UuWc4uJipk2bxrp162jVqhUzZ87Ezc2N5cuX88ILL1TxEbVazfPPP8/y5ctxcnJi5syZtGnThnXr1jFt2rRHq1+sUE/Wr18vtGnTRvD29hbat28veHt7Cx07dhQCAgIEb29vwcfHR9i8eXN9L//I0L9/f6F///7/9jQeehQqpd6/c0vyhOXnVwonbp0RNBqN7rharRIOx+4TgsI3CIVlhYIgCEJSforw/ZnlwpWUCEEQBCEhL12Yf/Bn4ejNS8KuyM3C3ms7hcVnNgk/X9hZ5T4ajUbYGHZOeGbrb0Jyfo4gCIIQmZYkTNuwTDh+89p9fY63c5KEhceWC2EptV/3asp1YeGx5UJcdmKdr18iLxE2ha0TDsUeENQadY1jc0tyhFWXVgjB8ef0Xt/KyFUKYcWlIOHXi9sEuVIhCIIg/LL+hNBtzELhjy1nhI7DPxH2HLkiCIIgFMpKhMVn1gpbwg9Wub9CJRMOxWwRjsYGCb9fOiy89ecqIbuk/P27nHRTeHb7T0Joctxfz6NQ2B21SrgQf0RvbvGZ2UL7V74RRn6+TFh3+YDw+fE/hNzSAr37XLmVIvg9/53w258XqjwXlUot3EzIEHrMWix8tfpIlectk5c/v5OhNwX/SV8I+85ECRt2nBe6jPhU2HQkRPB5ZbGwYONRwXf2N8LvBy4JwxasEmYv3S68u2ibMOyp74SMrPK5rDsSKvjN/lYIiU2q8T0wYuRxp6SkROjfv7/w0ksvCdOnTxe8vLyEgoK7P9PR0dHCnj17BIVCoXfenTt3hICAAKFNmzZCenq63mOLFy8WvLy8hMWLF+sd/+ijjwQvLy9h69atese3bt0qeHl5CW+//bbe74Rff/1V8PLyEpYsWXKfnu2Dp94dIKdNm8aGDRvo168fIpEIQRAoKSlBoVDQq1cv1q1bx6RJk+6nWxp5RMkqyePLk2tIL8oBQKVRsS1yV5XIGsClpPMUyQrwc+3BknNbKZKX6PVpu5gYoSswGNCys255tF0jR8qUcr1Im1BNgYGfS2Pm93+C3y+dNBhpqw8FsqIaI2uVqRhpyy+rPSwvCAIHY/+sc+uOipG2mMzqUxd2XTtepc/a89P60rq5C1//eoApo7vqctYq9mk7duuS3nWC44/oImvRlfqs1dSn7XpGiO4aTZ0c2fXhLO6kFLL4uwsUXrakQYUqW21kbWJ3f7buvEhqZr7uMbVaw/xF29i5P5QNC2dUibSdCrnJsBeWcfhCDK98vY1FLz/BiF6+TB3bndHjuvDOpiM81b0tH04ZwB9vT2TxtlOMD2hDSEwSe2/cZsXXs3BuaKsXWevk1bjW982IkceZb7/9lsLCQj766CODj3t7ezNq1ChMTPR7PHp6ejJs2DBUKhVXrlzRHRcEgaCgIKytrZk7d67eOfPmzcPExITt27frHd+2bRsikYg33nhD72/NrFmzcHR0JCgo6J7SR/5N6r5bsAHat2/P8uXLEQSBvLw8NBoN9vb2SCQPfsNjI48OTlb2dGniy88XgpjbbTwuNo6M8xuFo6VDlQTxtq4dcbBswpqwAwxr3QMbs/K9QBvbudG/xUA2hh9jiNfdalBtTptCraCHpyk/X9zF7yH7mN1pBEGRl6utBtVK25fH9wDQr2XtklUTduY2PNtlIo2sHet8Tjs3H1xsnWlgUfuSmkgkol+LAdhZNKhznzV7SwfG+k/A0qT6/VQHtuyGtamlXp+1cyG3iIxJpqWnM0EHQhk1oD2tW5Qn1mulrXJefzv3ngRFhlSRNS0BjcuXmX++cIC53YbR0b05A1tNQCq++ytIIwiEZIQzbIgdB/fB/hNRmElM+OSNsYTfTtMtgz49sCOqYjnT569m/ZczaeRoy/xF24i+lcq7Lw6noYMNGxbOYNoHawHo0saD177cxvQnuvHW9zt1sgblrTvWX41mjH8rdm04x/B2rejSxoOVbz7J9C824YgY2xaOfBR0gj6tPPh2yymjrBkxUgcuXbrExo0bWbhwIc7Ozvd8vlbipNK7vyPu3LlDVlYWffr0wdxcvzLcwcGBNm3aEBERgVwux8zMDJlMRmRkJM2bN8fFxaXK9bt27cr+/fuJj4+vU+eLf5v7sseKSCTCwcGBhg0bGmXNiEGGeHWjR9O2/HwhiPSiHBpaORqs5ssqKdTJWi/Pu60jEvMz2BihL2taTKVmWJvZYG5ixtyuYyhTyvn8xAaO3YqqthoU7n+k7V5krT7n2Fs63PMOBnbmDfSaC1fGwdKuiqxpW3fs/X2eXssPLTZmllib3s1H0QgCO6LCqpU1LVUjbdaYSs1119DmrL03aBr7Pp+DuKk1O49e4eVPNjD96028Ma4PswYHIBaL+XjucHp3asm0d1cx7+MNRN9KZfXiZ2noUH5vTzdHNiycwdbDYby4cDPTn+jG2gOXqsiatnXHj6+NZ94zg3jundVciUpg794Q3EVSik1ETOnelmtxaSxYd5QVb00wypoRI7VQVlbG+++/T/fu3Wvt12qIkpISDh06hJmZGZ06ddIdT0hIAKBp06YGz2vatCkajYakpPL84MTERDQaDR4ehrcd1F4nMTHxnuf4b/C3ImxGHn1uZsVSoiyhvVvHOp+TmJdAWlEqXT2639O9hnh1A9CLtAFsizxDO9fmmEnE/HZpVxVZSy7IrNJn7c+YS7jZOtLBrYXePcxNzHC2dOd27hX83VxwsbGrcU4VI21ikYjAFj739Jz+S1SUNe0y6PPT+gIw863fWf3tM7pIW0WmfrcKi4ZKvp04tVpZ0xLQuCWCIPDWqp1M6daVOQN7GSwwsLeA3Z89S+C8Xzh2Lpr2/k2ZOaj8F/et5Cx+33OBD2YN5uLFG5y8fINO/X3RiMs/ABwPu0lEXBodmrmiKFOiEAR+3nmOTr4e9O9cXqQQHJPA9G828+roXrrWHVPHdkcjCEx75VcATm6bT3x2PhMXrAfAs2lDVhwPpXPrJsb9RI0YqYHvvvuO7Oxs/vjjj3qd/9lnn5GVlcXLL7+Mvb297ri2QMDKyvCqgbV1eW/FoqIivfHa47WNf9ipk7Bpe43VB5FIpLcpvJGHCzsLe07fOQkCtHevXdoS8xI4GLuffi361+t+hqTN1caBH87twtIERrfppSdrALZmVoxp04euTcqXLfdGX+TE7XDe7DXO4D1aNXSle9OWpBZl1CkipZU208c4OmxI1rTUJm2+TV3ZfCCK293ycfSuWdgEQeDMxTRyE0V4T3CpsRo0r1COIBUjc7Yk6noinyzeySdvjKWhnTVRt9MY/uyPWJtIGTaoPfsj45iwcB2vj+7F+ysPMHtQAPMWbWXG6G78vPMciKFMpsBUKkGmULIk6AyNHe14ZlCA7n4ajYbom2m6f6dl5nMjNVv37xmBHTC1MNE19DVixEhVQkJCWL9+PfPnz6dJk6r9Jmtj2bJl7Ny5k549e1bJU3vcqZOwpaSk3POFtYUIRh5unK2dGdVmLHuv7wRqlraKstbKqXW971lZ2prYOWAmEShWgLN1wyrjbc2tDMqau13VsQBdPMqjbs0d697Q1M/l8V3mqknWtNQkbR8+OYwWDi7M+mYLq96eRGdvw7+kBUFgSdAZNh67wraPnqKFe8NaW3d8Mn0Qrg5WzF28g6DDYeX3e200LaytOZGXQovuXnz2yhOYrzjItovXeP23fczq24H1O4OZ/kQ3Vu+/iKO9FT3bNuNiRDxfrTnK9excVBoNf346C2uL8nYoFVt3nNw2n6NnrjH9/TWoG5gT9MkM1BoNs7/ZygfTB95TQ2IjRh4nVCoV7733Hu3atWPGjBn3fP7vv//Ojz/+SEBAAMuWLdPLX4O7EbGSkhKD52sjajY2Nnrjq2vdUXn8w06dhC0mJqbKsYULF7Jjxw6mTZvGiBEjaNy4/A9eSkoKf/75Jxs2bGDs2LF88MEH93fGRu47dZG2+yVrWrTS9s3p8uWmcX59ASk/nt/Nqz1G49XQvco51cna9YxYWjVsXmOuVmVis27h0aAxFiZ139Lov0hdZE1LTdI2dUD5smJ10lZR1ja9P7VaWTtxKRaRiYRXft2jy1kD+PmNccxdvIPth8LYti8EzyYNeWnOYPYFX+fpBRsY0dMXzYlwRFJYdSyUWUM6snr/RSwtzRja3YdPnh1GTEI6T3y0GscGVhz96jmDsrZ68bM4N7RFY2OGwsYUy9wypCoNndp48MfbE5n9zVYAJver+bW6X6jVGvYcD2f0gHaI67gMKwgCu4+FMzzQD1MTY9aLkX+O0tJSEhISSEhIwMfHcHpJ586dgfLdgbTeALB69Wq+/vprOnTowG+//YaFhUWVc7U5Z9pctsokJCQgFot1kT0PDw/EYnG1OWra61SX4/awUa+f5rVr17J582Y2bdqEv79+h3ltN+NBgwYxZcoUGjduzMyZM+/HXI08QGqStvsta1q8nZpy+OZFAFo6NtbltBmStupkTa1RcyU1koi064z3H1knaYtIu8axW6eZ2HYM7nau9+35PIoEh92qk6xpeX5aX0QiESGR8VWWRquTtsqy1qqxE6VKGfmyoiqRtU0HQzkVeotXZg7QyRrA0AAflr02htc/3IwEcHOxZ8Wu8/T0b8a+4GhCY5OY80Q3Vm49h8payqrTV3C0MNXJWplcwdPfbkMiEUOhkp+3neXtGQMQBKGKrGlbd2z8YBqx15J47p3V/Pb1TLr8C9KWV1jK8o0nCY9J5qOXRtQqbYIg8M3Kw/x5KpKu7Zrh6lRzDqcRI/cTU1PTaosMTp06RVZWFqNHj8bExEQvD23Dhg0sWrQIf39/Vq5cWW2OWrNmzXByciIsLAyZTKZXKZqbm8v169fx9/fHzKz8w5i5uTn+/v5ERESQnp6uVymqVCq5ePEiTk5OeHp63odn/w9Qn+Ztw4cPF2bPnl3ruNmzZwvDhw+vzy1qZdeuXcIHH3wgjB07VvD19RW8vLyEI0eO1HjOmTNnhDlz5ghdunQR/Pz8hH79+gmvvfaakJqaWu95/Nca52YUZQgrL/4iXEkOFQRBEBJy44Vfg5cLNzJj7ut94nNThfcOLhfO3LkqHIwNFj46/KuQVpgtCIIgnLkTJby0e5kQm5UsCIIg7Ll+QXh9369Ccn6WwWvJlXJhfdg2YdOVHYJCpTA4Rkt4apSw+PRyISHX2PT0QbHhaJjgO/sb4VJ0oqDRaITvtp0SOr3wvXAjKbPG867cShF8n/tWGPP6b8LQ55cKWblFusdUKrXw1mebhX6TvhSaTfxM8B/yofDU6yuEVsM+ElqOXSB0mf2d4DVugfDlH4cEr9GfCp5TFgq+c74V0nMKheJSmRDw4g9C65lfCfFpOcKdlGyhx6zFwperDgvvfVl7U1xtc92r1xIEQRCEi9EJgu/sb4RNx6/c/xfPACkZecLAmYuFj3/cI6jV1TdM1mg0wle/HRT6TPtGiE/J/kfmZsRIXTHUOFcQBGHTpk1C69athbFjx1Z5zBDVNc79+OOPDTbO3bJlS42Ncytf52GmXhG2pKQkWreuPdJiZ2dHSEhIrePqww8//EBKSoqunUhaWlqN45csWcIvv/yCi4sLQ4YMwc7OjszMTC5dukRKSgquro93pEVLxUhbUkEiaYVp9YqsCYJAkbwYW/OquQEJeWkGq0F/vrCdpzoMpZdneduFH8/vprmDC8kF2TXmrJlKTXnS/wm2Re4hKHJftZE2bWRtvN8oPOwf35y1B03FSFvb5q7cSM7WRdaqQ5uz9ub4QGYM6Mi7i3fy1P9Ws27RTOxtLXV91rYuf5GIhHSeXbSZy1dvIzaTIhGgKLsEW3tLVu67iK2dJU62liQVFjH8oz9QKFQolWoOLXqWpi7lLV6+e3U0L3y4HqlUzL5fX9aLrH05ZzhuFbabmjq2vBr634q0uTk3YM1Xs3j63VUsWPanwUibUCGytvbrWTR1u/cWM0aM/NMEBwfzySefAOV7lK9Zs6bKmC5dutC1a1fdv+fMmcPx48f55ZdfuH79Ot7e3oSHh3Px4kW6d+/OuHH6xWjjx49n//797N69m6SkJAICAoiLi+PYsWN4eXkxZ86cB/oc7yf1qk23s7Pj8uXL1W60CuWbrV6+fBlb2wezz97ChQs5ceIEwcHBjB8/vsaxBw4c4JdffmHIkCEcOXKEBQsW8Oabb/LVV19x4sQJ2rdv/0Dm+KjibO1Me7eOJOUnYm9hX69l0LicO6wL20xWSY7e8epkbXCrrjR3cCQoag+phVn08vTF2tSc6MwkRnl3rVbWtGilTS2oCYrch1Kt1HvcKGv/LFP6t8fCzITz1xJ488k+NcqaWqPhrZV/6nLWJBIxX70xFt8Wrkyfv4rXP92k12fNQizBXC4gtzdDotKgyS9DhIZMtQINkF9cxs5vn2VUB2+yC0splClY+cYEnaydvBDD8/PXYGFpQpadlCNXb5GcVcB3W0/x5ZzhvLliH68s26U3x6ljuzPvmUG8/1UQarWGLt7l0vbVphP/yObvWmk7F3aLBcv+RKO5u5+rUdaMPKqkpaUhCAKCILBu3Tp++umnKv9duqS/q4q1tTXr169n+vTpxMbGsmrVKlJSUpg7dy6//vprlV6wEomEX375hblz55KZmcmqVauIiopi+vTpbNiwodqWHw8jIkG491LOBQsWsHHjRgIDA/nwww/1EgcBkpOTWbhwIadOnWLKlCnVbktxv1i6dCk//fQTy5YtY+DAgXqPCYLA0KFDyc7O5tSpU/f9zdG2PDl27Nh9ve6/iTZnzdfFj5jM63Ry71ynlh+VOR9/kSupEUxsNw4nK8dqZU0QBM7FXyQ8LYrGdi0IS72Jt1MrLqfcpGsTb87ER1VbiFAZhUrBtsg9SEQSXaTNKGv/LEKFnLUnerRh68nwGqtHAYrK5Nj8VQSgRaFQMXzW92RlF7LtlxfxauZCcPhtnvtkI0pTMX06tODk6etYakClUiO3kCBYm+JsY0Ubz0aEJ2eSU1iKoNKAmYTjX84hISGLNz7bzHNP92fpyRBeGdmDF4aXF8BcT8hg3IK12FiYceLbF7A2N60yz+ISGdZWd/Nmikrl2FiaVRn3oEjNzOfpd1fRs2NLPnppBCKRyChrRow8JtRrSXTevHlcuHCBU6dOcfbsWfz8/HBzcwMgNTWVa9euoVKpaN68OfPmzbuvE75XYmJiiI+PZ8iQIVhYWHDy5Elu3LiBlZUV3bp1o0WLFrVf5DGicoFBq4at69TywxA9PMvD2FvDd9C7WW+2RJyoUdYmtxuHo5UDt/NyOHknghe7jaSdawvcbR1rrB6tSOXlUS+n5py6fd4oa9Wg0QiIxXVvU6HRCLptqQy1txAMFBi0cHWsteVHZVlTqzW8/3UQ5lIJfXq3Yd5X23lpciD/+2E3ClMxc0Z1Y/3OYF6bNYBlu88jpBVhUqpCbColUyUn/Xo8iODgF8/wy5bT7AyNof87v2GbK+fFmf1ZeiKUt8b1YdbA8sKGhIy8WmUN0JM1oEZZu9fXti7nVFwe/fSnfVhamLL/VJRR1owYeQyol7DZ2dmxefNmvvvuO3bv3k14eDjh4eG6x83NzRk3bhxvvvkmdnb/bpVSVFQUUD7nyZMnExERoXtMJBLx1FNP8d5779XYW6mmxsFpaWn/mfw3Q9Wg99KnzRA9PLtSqpRxIPYwgc0CapW1vdEXSSrIZUALf3ZEHaO5g4teTtu9SNuSs7+QkJ/EBP8njLJWDfPXHqRZIwfmDuta69icolKm/LSZVo6OeLs58crIHnqPG5K1tLwi1odGMmdkt1qlrSKLlu0rXwZd8iz2dlYEzlrCG98Egb0pLq0cWbcrmEWvjaa9dxPWHQ4l11GFTYkaWaEclakYjYkIF1NzFm86yeRRARyLu01RtowCBzO+P3aZdyYE6snakPdW1ipr90JuYSlTP9/ADy+PpnWTuu2jmJ5bxDPfbuWHl0bT0r36FACttPWfsRiAg7/PM8qaESOPAfXeX8XW1pZPP/2U4OBg1q9fz+LFi1m8eDHr1q3j/PnzLFiw4F+XNYC8vDwAgoKCKCoqYsOGDYSFhbF582ZatmzJ2rVr2bhx4788y3+fmlp3aKUtNOUyV1PC7vna/Vv2wdfZh5vZ13Q5bdXJmrZ1x8S2/ZneYZhuz8penr5MbhvIj+d3cyO79kbOMVk3dV9fTrpSJafNSDkz+ndk+YEL/HzgYq1jHawtMNVI+DMklvYt9D+kVCdrk5Zupl1TF14Z3ZP3pg5g1jdbuByTVOu9Jo3qqstZuxQVT15hKQDOEjPcG9rh0tmVVs0aMfWjtQzq3JpNC2dS5mCKytUakUbAJE9BHiouJ6Tw3PdbEOKLGdXZG40YysoU9PUt3+j5QcgagIOtJcO6ejNl4QZikzJrHZ+eW8Tkz9bj6+lCc9ea5UsQBNbvvvt+rd5xXi+nzYgRI/9N6pXD9rBRUw7bL7/8wpIlSxCJROzcuVOvmd+tW7cYNWoU7u7u9d4+67+Qw1bXPmuZxZnsvb7zvuS0xWberFbWaiowOBt/jc0Rp2qMtFXMWXOxca6S02ZEn6jEDKZ8u5kXh3WrNtImCAIfbDjCyajbDA5oxe6wGDa/Mgkv14Y1yloPLw++mDhYt8y38dgVvth4rM6Rtoo5a9/OG83JczFExqVi7ePAtfh0xnh58cXzIymTK+j12nLyissY29GLk8eiUNiaILcWYRJfgqeXG4mCnNmDA1i2+zwA696exDOLt993WavIDzvOsOZQCJs+mFZtpE0ra118PPjy2eE1LolWLjAwkUr0ctrq2lzXiBEjjx7/+Z9u7ZYTrq6uVTovt2zZEg8PD5KSkigsfPCVXg8j99IU9+9G2np4dqWDW1tWh2wgOPHSPcsa1B5pq1xgUFv16H+dYpmCRftOUqpQVDvGz6MRm96arIu0KVRqvtx3ktyS8qhWRVnb8vYUPp4wgKd6tWfy0i3cSMuus6xBecuP2iJtq4+GEhaXoidri18fSysXR1p7ONOisRNRZ+Oxt7LghrKQzIJius/7iWKZgp9fHcuxa/F06euNKk+GNKEUmYM5sVm5OJiZ4dHIgRNfPYdGIzD1q82Ym0j1ZG370SucD7+tm8uVO2msOhFa79d/3rjePD0koNpI2/YT4Yx6/497krWdR68yYWQATd0ca6weNWLEyH+L/7ywaTsYV1cdqj0uk8n+qSk9VIhEIvq1HFDn1h1aaZOK7z39URAENBUCuhrKvzaXmtRJ1rT08vRlSru+VY5XVw36OEubWAxRyRnM+WNnnaRt2YFgRi1eS3BcEhKRuIqsNXYsT3N4fXhPnbSVKZR1kjUtUwd04MPpA6uVE5EIpi/cyPOfbmLqqC4sfn0sw7v5IBaLWb3zPG4NbWnp5ohNlgoziYSBn6+ksEjGF88MZVhXH95+uh+n4hJABGpzKWgEVFZSbKzM+WDzEQ6F30J7aw0Cwl+Ss+3IFRauOIj0r7YAV+6kMf3HrX/n5Qeql7b03CK+2XaK/IISerVpWmdZK5EIONrf7W9olDYjRh4P/vPC1r59e8zMzEhOTkZR6Q+WUqkkKSkJCwsLHBwc/qUZ/rs0aeBBq4Ze93SOs7Uzfq5t7+mcijlrswOm07NpV7aG7yCrJIdBrTrWWda09GzaRm9JtLbWHY+rtFmamrJi9liAWqXNy60hbX1cuJ2ZQ99mzbC1MDMoa1q00hYUFYMgEdVJ1rRM6teeTl6GC0G8GtojzpOhtJYyJNCX4d3KI+OtPJ1Z/eUsDpyMZHDHVvi3cCfyeBylpQqa+zdiaBdvzt9M5MstxzBJKMHGxgLMJEjlGmyL1NzKymWQbws+CzqJpZU5xxY9i1Klpu/bv7Luz0t8vvIgv304lS5+TXWy9tYTvZjVr9O9vuxVqCxt2mXQwPYt+O2tJ3n/533sO3fN4LmVZW3+04OYOkR/TkZpM2Lkv89/XtisrKwYNWoUpaWl/Prrr3qP/fHHHxQUFDBgwACkUuMmyQ8KQwUG2uVRrbT9HeraZ80obdVLm0Kl5tUNeylRKFn33ET+OBpK0zlfG5S10zHxaFNftdI2aNEqun38S7Wydv5mIkq1usp9T8fEo9HcjboGh9/mxc8289kro5j/9EBmfLeVsLi7S9+tPJ2Z9+JQNu+/zIUbicgVKtxKpLg0sKHdB0uZ8fUGxLeLMbMxJ99Oyv+eH8bEgR2QK1RIs2XsCb6OBWKUUohIzuTIojkU55ey4LcDfP/OhDrJWkJGHvHpuff0HmQVlDCgYyueHhLAkHdX0u3lpbpl0H4dW/HTWxP43/K9VaStLrKmxShtRoz8t3lkhW3btm3Mnz+f+fPn6woG1q5dqztWcUusN998Ew8PD3766SdmzpzJV199xTPPPMPixYtp1KgR77zzzr/1NP7zGJI1LfdD2tQaNeFp1+rcZ00rbQICqYXp9brno0hN0qaVtbT8ItbOeZKurZrQ0rX8ferv30JP1oplCt7fdoQPg47qpG1y97vR1pl9OlaRte2Xopjz+05upOu/x6VyBe9vOcJ7Ww/rpG3TnyF8NHc4Ywe05+kBnXh7fB89adtx+Rof7T5Bl74+pOUVM7CXN938m+Fta4+4QIk0vhjTv2TtvUn9mT0ogM/njWZYzzYolWpMCxWYSiSM6+zD/zYeZtmOs5gpBCR2Zrz5x37ORcfXGlnbeyGaSZ9vrLO0ZRWUMOWLjWw6cZVJfdvrjs8a2ln3WgV2aGlQ2rJyizl+MaZWWdOilbbIGymkZhbUaX5GjBh5NHhkq0Tnz5/Pzp07q3180aJFenuK5ebm8uOPP3L8+HFyc3NxcHCgb9++vPzyyzg7161PkiH+C1WiD4qaZK0ilXdEqM99auqjd7/O+S9QqlAw54/yn5sVs8ciFUv0ZK3iMujHkwbw5qr9VapHk3MLmLJsK4E+nrzYvyuTf9pCDy8PnG2tWH82XFc9CuWy9vGOY6x4Ziw9WnlUmU9qXiGTftxCz9blkTmRqGpD3jXHQvkm6DSzh3fmtxMhzOrVgVWHQvhoQj+WrTxCjz6t2R91A/HtYpSNzFHYm/D2kN7MHVa+g4G2dYekWImiVMH04Z3Zfu0mvs4OhIbe4fnpgUzu257+//sNmRT+NzaQuUOq70snCAJfbDrBnuDrbHl/Kp4u1adTaGWtTVNn3p3Yl2mfb6SLjwdujrasPVy1evTUlVu8/O12Fr04ipE9fQmNSWLWwo3Mf2pgrbJWeY6P4/e3ESP/ZR5ZYXtYeFiFTaaSYy69ty1zZEoZ5ibmtQ+sA3WVNS1/V9qM1B2ttCnVaixMTcgvlVWRNe0yaHUtP5JzC5i4dDOFZXJGtPNi0aQhiMUiluw/x9ozV1g7dwKx6dk1ypqW1LxCJv6wma6tGvPNlGEGc99eX/0nQSHXGdKmBWci7vDby+Po49eMbWfD+d/qPzFLKMWigSV5dlKatXDEztqc1XMmkFtQqtdnbdGvB9h29CrtWrtz9WYKgYE+nElIYXKPtmwNjkRRoqCBqRknv3keG8vqfxbqIm3VyZq2GrS6lh9aaZs4oAPbT4Tz7vQB9yRrRowY+W/yyC6JGqmeYkUJKy6u4U5uQp3PSSlIY8WlNeSV5d+XOcTl3KmzrMHd5dFdUfvQCMbcmweJpakpPz89mrCEVM7dTOCXp8dUW2BQueWHFolIDBoQEJBKJbrtql4f3pOWro6M+WEDH2w7UqusATSys8bfsxEHIm7qLY9q2XH5Ggcib9LKwZ5Dl28wd3g3+vg14/zNRD7dfQzLZBkqkYhMCxHvT+rPn289jY25GTNXbGfi5+v1+qx9Pm80Lg1tuXojhQkDO3DxdipjAnz440QorVwdOfXFc5TKFcz8tubqUJFIxHtT+vFE9zYGl0drkzWovno0sENLZo/sxuo/L+HX3NUoa0aMGAHquDVVTVsz1YZIJKp3U1oj9cPa1IoBLQPZfW0/o32H08yhaY3jUwrS2B65m97NumNv0eC+zKGFYzNmdJqMjZnhdiqG6OHZFX/XNohFxs8RDxKFSs07Ww/SwtkBU4mEtzbvp7GlHWevxxusBtVK25RvNwMwplsbJi3dTB8fT14a2I2pP2/lw6CjfDZ+ICKRiNGdfAiJT0Gl0WBjVnMzWrVGwzubD3IjPYfNL03ipVV7eW/rYV3hwo7L13hv8xHdMujgDq1YcfASDezM+fbwWV4b2ot1qado1qQh1+MzKEkvxMxEyq8zx/D86l04etjwx7PjdX3Wth25QmGpjB7tmnH0QgxvTA/k28MXGNS2JediE7h0O4Uji+ZgIpXU+jpqpQ1g0ucbdZG2usialnnjegMwZeEGXaQtNCaJ1fsvMbCzF+cj77Dv3DVG9vSt25trxIiR/yx1WhL19vb+WzeJiYn5W+c/zDysS6IA1zNiOXzjeI3SVlHWOrq3MzjGyH+HygUGUomYQV/+Tl6JjD2vP0Ur1+rbq0QlZjD5m01IzMQMC2itk6qKOW3tPFz5ZMcxfnxqJB8FHSWzsIQdr07F38OlyvW0snY1MZ1NL07E2dZaL6etc/PGvL/lrqxpl0E/2XqUtRevMqNre07vi6Bft9Z8MHc4txKymDl/FZNHdOaVp/ojV6p4fvUuimRyVs+ZwMEz1/Vad3y68iDr911i9pRe/G9Sf85Ex/PsLztZNHUw47rWXZAqLo8ue2UM838/UCdZq4h2efTDaQP4ZMVB3TJo5Zw2I0YeRT799FPdFpCXL1/G1tZW7/GzZ8/yxx9/cPPmTQoLC3FxcaFbt27MmTOHxo2rFpNlZGSwZMkSzpw5Q2FhIR4eHjz55JPMmDHD4G4fhYWF/Pjjjxw5coScnBxcXFwYNWoUL7zwAmZm95Y69G9izGH7mzzMwgY1S5tR1h4v7spaIe62dkzs2pbTkbc5GHYDtya2mEmlrJg9FkvTqlExjUbgnU0HORJxi5ICOe9N6MvsvzZPf33Nn3Tz8uDdrYcA2PjiRHq08qBYpmDI16vILCzhzzeewsvNCfhr54QtR7mZlU1OSZlO1rSk5hXS7aPyFjwv9uvM6sOhOlkLi0/l6XwBtK8AAGxESURBVBXb6OnRhIPBNxjZpgVL356gS7C/GZ9pUNoS4rLIvZ3Pio/0+6z1cnMl7Go8qxc8hW8L178lbW/8uo8dZ6Po0MKNlW9MYMIna+ska1re/fVPtp4K542xvXjlyT6640ZpM/Ioc+HCBWbOnImFhQWlpaVVhG3VqlV8+eWX2NvbM3jwYGxsbIiJieHs2bPY2tqyfft2mja9+7crIyODCRMmkJ2dzeDBg2nSpAnnz5/n2rVrjBs3jkWLFundv7i4mClTpnDjxg169+6Nt7c3ERERXLx4kR49erBy5Uokktoj6g8FgpG/Rf/+/YX+/fv/29OokWvpMcKS08uF2znxumPJ+anC92d+FkKTr/6LMzPyTyFXqoTnV+8Unvh+rZBfUibsCY0WvN9cIvx86IKQlJ0vlMjlwtSfNwtTf94slMjleueq1Rph/qaDQu9PfxP+OBkihN9JE6KTMnWP7wuNEZrP+1Zo+to3QtPXvhHe33ZY0Gg0giAIQlGZXOj/xUph6vItQplcIWg0GuHdDQcFn7eXCH0W/iZkFBRVmWvQpSihyctfC01e/lpoNvdr4UREnO6xgtIyYdOZK0K/p74TJn20RvCdu1gIvZWsd/6NOxlCj0lfCj+uPSYIgiBsPHBZ8B2/ULgYWf79H3Y7VWjz2vfCH8dDBEEQhN+CzgoBU78Som6lCoIgCKev3xG8Xl0sBF2IqvPrm5lfLAx45zfBY9oXQqcXfxBup2YLu85GCWq1pk7nh0QnCm2nfyW8+/NeQaZQVnn8ZNhNwW/qImHv2brPyYiRf5uSkhKhf//+wksvvSRMnz5d8PLyEgoKCnSPKxQKoUOHDkKXLl2ErKwsvXN//fVXwcvLS1i4cKHe8TfffFPw8vIStm7dqjumUqmE5557TvDy8hLOnz+vN37x4sWCl5eXsHjxYr3jH330UZXrPOwYk4UeA9o0as1gr/7svrafO7kJxsjaY0blZVA7S3NGdfTm66lD+eFwMLcycqvt06bRCLy/9TDnbiSy+ZVJzArsRFtPF7wbO+muX6ZSIjURIxXEfDVxCKei43V92qzNTdn9+lMoVGqe/X0n72w4yJ6r0TjZWbHtlSl6kTVAl7P2Uv8umCtFONhbcfDaTV0hQmFBGb/9dpx+3Vqz6ZOnqvRpg7s7Imz+8zIvLNjIV6uO8Mcn06ttijtnXE+eG9+TmR+t41pcGr19PFn5wlj+t/EwOy4a3n2gIhVz1uLWvMvYnn5M/mIT7Vq41imyFhqTxOzPN/Hu9AF8+cJIzEyqphZX16fNiJGHmW+//ZbCwkI++ugjg4/n5+dTUlKCj48PDRvqp2MEBgYCkJeXpztWXFzMwYMH8fT05Mknn9Qdl0gkvP7660B5j1YtgiAQFBSEtbU1c+fO1bv+vHnzMDExYfv27X/vSf6DGIXtMUErbdsjd7Px6jajrD0mGJI1LVppm/vHbk5ev1NF2oplCj1Zc7O3rXL9N9bt56OgY6x6bjw/zBjBh1uO8vLAbhyJjGPWbzt00vbHs+OITc1me9g1TEwkfDd5WBVZ+/XoJd7ZeEiXs7by5fHseWs652ITeW/rYRLTcpnxzipdzppIJNI1133qu618svYwJbJy0Wzl6Uz7Ds04FnKToV29DcqaIAisOxxCTmGJTtqmvbeaPWci6yxtFWVtyQujkErENVaPVqairNVWDWqUNiOPEpcuXWLjxo28++671fY6bdiwIQ0aNCA6Oprs7Gy9x06dOgVAt27ddMeuXLmCUqmke/fuVa7l7e1Nw4YNuXTpku7YnTt3yMrKomPHjpib67fpcXBwoE2bNkRERCCXy+v9PP9J6lQl6uPjU+8biEQirl+/Xu/zjdw/7Mzv/sG9X9WgRh5uShUKbM3N+GrOUD1Z0zKqY3lB0dw/dvPz7NH0bdOMFbPH8unOY3yw9TBh8WnVytr2S1HsuRpDQwsLWjg70KhVuYC9vnY/k7r5se5COLN+3cEfz43l850nKf5LpopK5ZQq9LcF+/XoJb7YfYoRbb0wl0h1OWsAW16dxKQft5CTV8ywPr689cxgvaawTw/ohEqlYfPxK0R/tYU/3p2Elbkp6blFWDtYoVSr0Wg0JOcU6Mna99tPs/HoFXr4euJoa0VTj4aUoSE2IQt6o5O2kArRu4pUljXJX8nO1VWPGiI5M/+e+qxppe3a7cdnlw4jjx5lZWW8//77dO/enQkTJlQ7TiQS8eGHH/Luu+8ycuRIvRy2ixcv8vTTT+s1wE9IKG9VVTGnrSJNmzYlNDSU0tJSLC0t6zQ+PDycpKQkWrZsWd+n+49RJ2FzdXV90PMw8oDRLoMOaBmIudS8zi0/jDzaNLC04OtJw2ocU1na+nh7IhbEhMUn1yhrH+84xurnx7H93DUmL9nM5tcnM6Jja6Bc2qZ1bcuGixH0+ORXCsvkWJqboC7U0Nzdgd9OhdClRWPMTU10sja8rRfLnn2iSod+N3tbnbQ5trZGEKByE/9nhnRmat/2PPv1Vmb/JW3bv5zN5+uPsT/4OkmZBYwKKH+eFWVt44fTaOHekMMhsby2dDdL35rA4M6tddft7eNJbx/PKs+/OlnTUldpG93Hv8b3xhCBHVoS2OHh/+Ni5PHlu+++Izs7mz/++KPWsSNHjsTW1pa3336bLVu26I537tyZ0aNH61V9FhcXA2BtbbhdlPZ4cXExlpaWuvFWVlY1ji8qKqrDs/r3qZOwHT9+/EHPw8gDpLqcNaO0Pbqk5BVgY26GrUXdd6bILSlFqVbTyNamymNaaXv+9100tLFEIhbXKmvaprjdW3rw5poDBqXNWmxCemExJlIJqkIZa158Ev+mLsxaEcSzf+yiW7PGfLPvLMPberHcgKxpaWBuxnfjB/Fm0BG9Pm0VuZOSw4q3n2TON9uY/dUWfn1jAr18PFCq1UxZsI5NHz2FR6MGerKmVmk4eDGGN5bv4fuXRzO4c2syCoqRiEU0tDH8S742WdNyL5E2I0b+K4SEhLB+/Xrmz59PkyZNah2/efNmFi5cyOzZs5kyZQq2trZERESwYMECpk2bxtq1a2nbtm2t13kcMOaw/cepTtYqFyIYebT44+wlnl+3ncIyWZ3G55aU8uyabay/EFbtmBHtW2MqlZCcW8jcgV0NylqxTMGPh4P1djCQ/L+9+46Oqnj/OP7eml5JD5BQQ+8dQi8K0kOHiDQFC0VFERT1i2KhCgjSBOkJEIr0Jr2D9F5CSUjvdXezvz9iVkISCFISfjyvczjA3bl3Z3NPcj6ZO/OMUsnkt9+kqpc7PaeuJCwukbbVy2KpVZNgSMdMoyZdZ6B7/SrU9ymOtbmW3wd3JTYxhclbDtKmUunHhjWA7TvO8OmI3/mpU3OOXLvL2TvZHwmmpOkY8t1Kfg3cz7xPu6FUKGj5wUw+/f1PLsRH06qOD72+XcLXi7aZwlpYZDydP1/AiJnrs4W1nrNWsfTgmTz7smj7iSeGtSwP74jwy7qDj20rxKtOr9fzxRdfULVqVfz9/Z/Y/saNG3z77bc0b96cUaNG4e7ujpWVFfXr12f69OmkpKQwc+ZMU/uHR9By8+gIXNbfSUlJj21vY5Pzl9jCKF8jbOLV9KTVoBVcM0dCZKTt1fPZm834OGAj7y5ZzW/9/B470pYV1ko7F2F4C99c22StBnWwsuCD1vX4du1u3O1taFqhRLZ21uZadn4+AO0jOwFkhbaPF2+hx5QVVCvhTjoGbCy0xMWn0aF6OQL2n6Np+RK0rFqaiLhEQh/E42pnRXKGjjSdHnOtJs/P0KlDHUJCYvj84z/4bfYQynlnn6ZhYabhj2/70nfcH2QYMnCO03EhTU+pYk5oVEouxEfj7GjN0u2nWPhZD8Ii4xn8wyoy1EpmfNQpW1irVcKTj1rnnNScZVRXX9Nnzo+s0KYzyJZr4v+35ORkgoODCQ4OznPue+3atYHM2qWHDh3CYDBQp06dHO3Kli2Lvb19tsL7WXPRsuamPSo4OBhnZ2csLS3z3V6pVOZrJLAwyFdgCwkJAcDV1RWVSmX6f355eHg8fc/EM8lv6Q4Jba8mrVrN5O7tnxjaHg5r33dpi1qVM2Q8WrrDw8EWDwfbbAsR0vUGU0h7NKxlUSmVTPJ/g+bfLGD96cvYWpmRmqRjVNuGzN55jAEtazJs7gZGd/blt23H6FinPCPbN2LA/LUMWriO+QM6Ya7VkK43oFEpc4y4DXuvDfqMDN4dOpeFc4dSquS/uyfo9Aa83Yuw6Os+9Oj/CzZaDVsWD2f0vM2kRaQRkpFMeHwi7RtWYNSs9SQlpGJUK5kxvHOOsPbjPxvZ5yW/Qe1hCoUiz6+bEP9faLXaPBcZ7N27l4iICDp27IhGo8HKyor0f8oHPVy6I0t6ejpJSUnZ5qtVq1YNjUbD4cOHc7S/fPkykZGRtG3b1nSsRIkSODs7c+rUKVJTU7OtFI2OjubixYtUrlz5ldntIF+BrXnz5iiVSjZt2kSJEiVo3rz5Yx9fPExWib58ielJT1Vn7eHQ9natXrKC9BXxpND2X8MaZF+I8GXnZszacZQlw/wo6ZL3HCyj0chXAbuISUvFqDASHZ/CxB6t6etbjbIeToz8YzNv1fLhm1W7KeniwLYDl2lXzYffB3flnXlr+GL1Dqb0bsuIuRsp6ebIx519s/2cuRUaTeCVW7R6szoDhsw2hTad3sAHc9ZTrqgLdw/doJijLeGWSlbsOMW8T7tRsf/PGIGqdby4mBBDdGIKAF/0bPrUYU0IkTdzc3O+++67XF/r168fERERjBs3zrTTQfXq1QEICAigV69e2WqxzZkzB51Ol230zcbGhjZt2vDnn38SGBhoqsVmMBiYNm0aQLb6bAqFgq5duzJnzhxmz55tqtUG8Msvv6DT6bK1L+zyFdiyhjAtLCyy/V8UTtZaK3pV64qLtfOTG/+jgqsPTlaO2JvbPbmxKDTyCm3PEtayZIW20cu30qxCSbpPX0nA8J65hjaj0cjYlTvYe/EWbSqVJuDYBezNzVmw6wStqpSmXQ0fwmITGb9yJy52VoTGJtK9dgX6/7iKRZ/14PfBXYlKTAZgVGdfevyQue9gVmi7FRpNr++W0bFBRT7v1QwnKwsGDJnN3NnvMmXbEYLDY1HfjiPsXjSL579PTHIqfcYu5ujVu1hbaLE015ISksT15DgooqWo0oLfNx+jhk9RPgncJmFNiAJQo0YN2rRpw7Zt22jbti0tW7bEzs6OM2fOcPLkSRwcHBg2bFi2c0aPHs2xY8f46quvOHDgQLatqTp37kyDBg2ytR88eDC7d+9mzpw5XLx4kXLlynHmzBmOHj1K/fr1s5UNKexkL9FnVNj3EhWvh3S9no8DNhKZmMQPXdsxctWGZwprD9t46rIptB27cS9HaHs4rDWrWJI/Dv7NgMY1+LJrMz5evIUzwaH81PcNhv22nsrebuy/GszApjVZuPMk3WtXYP3+Cyz6rAc1y/67yfP10Ch6/LCcXk2q0qV+RXp/t9wU1rJG3Wb8upVZe0/iXsKJCnotYfeimTf7XRwcrDEajYxfuJVlO07Ro3EVWtQuy5DJq8lQQNkqHthYmVPCwoa15y/TumoZZvXvIGFNiBeoX79+HDt2LMdeonq9nmXLlrF+/Xpu3ryJXq/H2dmZBg0aMGzYMDw9PXNc68GDB0ydOpV9+/aRkJBAsWLF6N69O/7+/rnuCxoXF2fa/D06OhpXV1fat2/P0KFDX5nHoSCB7ZlJYBOFRbpez4BFAZy9F0qDUt7M7N0517BmNBr5YlXOsPbn6cuExycxoEnOIq5Zoa1JeW8O3brNwoF+1CpRlANXgvlx4z6i45KzhbWvu2V+Xxy9cZdPl23lQUIcng421LZ1o0GdMoxevo1BTWsyf8cJU2hr3LAUw9rUR6lQsvzw37SpWIYhv60mNVxH9TKerB7fzxTWbkdE8/ZvAURGJZFxIQrzWD3bNo9l8s4jvNu8Nr+uOcCmo5eZ9WFnhvxvBRlqBUqtCls3C7xsHIg3z+BGeDQl7O0Iux3L9I860ap6mWyfefvxK9x6EM277fNegCCEEC+LrBIV4v+JxLR04v4p8xGdlJy5y0EuCxEUCgXVvDz4sE39bCNrxYrY8UXgDozAwEdCW/sa5VApFXg72ROyJo7+CwMY1bIxkzYfpEP1cqiLKnOENYDUNB334uLQqBWEJSWyJ+E2kduTmNT3Dcq4O1GpmCsjFm6iu29FAv86y77Lt1Bp1XSvW5kxgVtIiUhHYYTzt0KZveEwwzo2QKc38O3yXUQkJWEwM6JK1WM0GomPS8bWwox23y0iJSKVUX6+aFVKjEowqhQYjEa8XBxRpcLdiFgA4vXpqK1UjJu7mbLj/fFycwAyw9qImeuZ9mHH53yXhBDiv3mqETaDwcC1a9cwGAx4eXllW71x+/ZtVqxYQXBwMJaWljRp0oSOHf///7CTETZRGDw8Z+2bjm0YvfpPIhOTnljy41Fn7oTSb85qhrdpkCO0ZdEbDLSZvJCQ+DgGN6yHLj2DWTuP5ghrV0Mi8Ju1FCsLLWSoMFOqiUiJxzJDRWUrZ2Z/1h0zjZrNJ68wYuEmWlUsyaaDFzF312JnbU7EjQRKOTswY1QXekxcTlpSOh90bMjZew84HRpKsiENjd5ItfLFqKGzZfWaI5RrVYHtZ25g7WzB112b8+WvmzColTh72xATk4Qu3oBtcVtUejAYM0jCgI+7E9UcnNlx7AorvurHlbvhprDWupZPrl8DIYR42fId2DZt2sSECROIjY0FQK1W07t3b8aMGcO+ffsYNmwYBoOBrMspFAqaN2/OrFmzXljnCwMJbKKg5bbA4OE5bc8jtOkNGWw8folOdStw8OodhiwMwtnBgvCEBJITjLzjmzOsdZ25FHNzNVtHDiApXUevX1ehUahyDW3zdh7n+817KW/vyMXLmUVxi7vYsXvSe6jVKq6HRtHp28UkxKVibW+GwgZK3Dcye9IAPl2/FWszLfdPR3AxPJr+LaoTTjpbjl9BnZiBR2l7alcsTtfKFekzOxDSjVQp7srlqGh8rOyxdLVEZ8igoq0jGw+cJyVdz/SPOklYE0IUKvkqKHT69Gk++eQTYmJiUKlU2NnZodPp+OOPP1i2bBmff/45ZmZmvPPOO3z11Ve88847WFpasnv3boKCgl70ZxDitZXXatCs1aNO1lZPtSMCQNXi7ix5z4/p2w6xYO9JACITkvhhzV7em7OewQuC+K5bayb5tcWgB0sbBW89FG7S9QY+W7MZtUaBMlGJzpBB8SL2rBjWA53RgKulHVb25pxPjmTojwGcvRPKnH3HaFGhJPdT403XiTPXcSUsEgAvZ3tcHGxQ2KlIik/D6p6eP2a8R1E3R+a93ZV7D+K4FBVDAy93ti89xL5N53A1tyTDXk25km6MbOnLF0G7aFWlNCoDnDl3j+FN6uJmZ80nrRpirlFzMOQ+8anp9GxRXcKaEKLQyVdg+/333zEajQwZMoTTp09z5MgRduzYQcWKFZk6dSpxcXEsW7aM0aNH07t3bz777DOWLFmCQqFg3bp1L/gjCPF6elLpjucZ2tzsbRjdtTFbT1+hdlFPijva0f+3tYxp24wyLs70XxjAiVv3SNcbGLlqAxEJSWhTNKz6pDdu9pnbvmSFtjSjngYlS+DiYsPfieH4/bKCTjXLcyU0jIS7KZRxc+R//duQ+iCd3jNWcOZOCO/PXkcCaVjaqlFqFMSqFazYdxaAC7fCuHM1hhKli5DuqSFeA5bxadgWNaeUVxFO3gilx6yV1PT2wNrSDNdi9thrNUxdtZcWNcpQs2xRelSrwM2QKLwruPJJz6bP7R4JIcTzkq9Hor6+vlhaWrJt27Zsx0+cOEHfvn2pXr06K1asyHFer169uHXrFkeOHHl+PS5k5JGoKAj5qbOW5XGPRyPik7CzNM+zCn/W49FaJTw5cv0uI1s3YObGw8SnpTK+Zwv6N6mJ3mCgy8yl3IyMopSrI1Hxyehijaz6pDfeLg6ma4XGJOBmb83d6Dh6zV6Fp70tp4JD0CgVKI0ZJIekU9rFkS0/DUatVrF05yn+t2QHRkcVZuZqjBkGStw38s24HrwzYw1pSenUr+DF8St3+bJvSxytzRm+ciMeLnYkJKeRGp7E7He7MjRgK2k6A5WKuhCdlMKK93uQlJhKtzG/k2DQ07R6aQ6cu8WPQ9ux6vRF0nR6Fr3bFSsz7fO7YUII8YzyNcIWExODj0/ORwQVKlQA8t56ysPDg4SEhGfonhAiN9N37s9XWIPsI22z/8q+pcvXAbt4d+460vWGXM+tWtydd5vXYffFm5RyccTHw5nYtFT0Rvjz2GWMRiNqlYpVQ3thVBi5Hh5FcrQ+R1i7cDeM1hN+59CVOxQvYs/4Ti04fus+hgwjBqOBpNB0SM9g/fcDUP8THns0rUrJok6kh6eTnJqOU6SRP2a8R41yxVgzrh9KrYo9f9/AydaKDg0q8vWcLXzSsjH3ExKIN6RjY2PDh3M30KpSaVL1ek7cDmFij9a42llT0tOJwInvoEXBjhNX8a1Sgvb1KjJvYCfMNGpm7zr2jHdICCGer3wFNr1ej5WVVY7jWRusarW5/yaq1WrJyJANj4V43j57o1m+wlqWrND2UYtG2Y5/16s14XFJeYa2A1eCmbXjCP19a3AjLIq+MwIo4+7E7MEdOHbjPt0mLSddp+eTwE04mFtgTIc0cz2RSUmma1y4G0bPaasY2rouDct5cSkkgjEB23irmg/KDCPpITrMrdU4lbThg0mrSdPp0ekNvD97HZGkYOtqSUaEgXu2Ri5EZM5pi4pNAl0G5hYaHsQk8PvW4yz7/m2Crl3CydIKjUJFqbJOBIzzx4iRks4OdKxRnuFLNnErInPfwushURhUCga2rcPBc7cJ/OsMFloN8wd24sPW9f7rrRFCiBfi6XcxFkL8J/+lRrXRaMz1PEszbb7DWtb5WrUaC60m22v2VuYs+6h7jtBmNBo5cCWYIQvX8V23VjQvX5KkRB1KpYJujSrzVs1yzHuvM8du3Mf3+zmcCQ5FF2tk4/C3KeVcxDSn7eGwNqxNXS6FRNB3TgBda1fk79v3yIjQo7ZU06lpFVzdbDmfHMl7P6xi6Ky1nH4QisZSxfox/nzj35qMCD3vzA5k/vZjDJwUwHj/Vvw5YQBmVlqmBx2gx5RlJCano0pXsf5Df9L0evotWMPJW6GseL8H0/q2pUONcvSatYolO08yYuZ6pn/UiXH+rZj/aXe+WbSdwL/OYK7VYKaWEpVCiMJFApsQL8l3m3Yzb9/RfLc3Go1M2rY3x2PMpxGZkETHX5ZwMyI6zzaPhrY7kTG0mrSAwQuD+K5bK0o6O9BvRiBl3IqwelQvZu08woK9J2lWqST1qngQl5pK8O0EVn3Sm1LuTqz9oC8lnYrw9oJVdJ+2Itewtu38Ze5fjaW0iwPb/zeQ/deCqeLpiYuLDcdiQzlw7TZqCyXLhvSghLMj/q1r8rV/a/QReiYs2knPVtXp0awapd2LsGCUH4oiCsLvJxITkkLAyF4Ud7LHzdqe6MQUirlaY29pjkKhYEz7JlRxduarBVv5wr+laTVovYpe2UKbEEIUNvladFCuXDnTljD/xaVLl/7zuYWdLDoQ+XX5QTgDFwXSv0EtBjeu+9i2WWFt6/krLHynO15FHB7b/nHXmbxtP0EnL7BkSA9KOufcuD1LbFIq3aeu4HZkNEatkR+6vUnLiqXo80sASoWCwFG9MNOoOXMnlL5zAvF2syUmMZngWwmghLqlixL4SW8UCgVnb4fQc85KHGzNWPfh20QmpJjC2s7LV0mISKGslSOLx/ZGrVZxJyqWXrNX0bisN9svXiUhNY0ali4sHtMbM03maNfRS3d4+4eVOLhbEU0qCwZ0pbyHC/0XBhCTkEp6nIG0mDSGtKvLrZR4Tt0KYf6gTowN2oa1uRkze3dk7983GDFzPY3qluJseAQr3u9BCed/v7ZHLgQz6OcAxvdvTbemVf/T11wIIV6EfAe2//wGCoUENiH+kZ/Q9rzC2sPXy09oC42Np8uMpdx/kEgFTxeWftCNd35dSxEbC34b0skUnNL1BgYuCuTEzfsok5RsGtufKyGRDJ4TRJ1SnnzdowW9pgfwbqs6hKbEcuT6HaLj0+lWp5IprPl6FOfnDzuieuixbnBkDB2mLyGDDNztrImNTqaSpROzP+vO39dDGDgpgC/7tqRr4yp0mraEqxGReDraQAYYUxUEjOxFeHQCXb7+A2tHC7Z8PQBXO2sSU9MYvHgNyXHpXDsfzrSPOtKqZlkmbtzLhlOXJbQJIV4Jsvn7M5LAJp7W40Lb8w5rD1/3caEt4NhZftqyj/jkNL5s34JftxzhXlQ8vuW9+H1Y12xhbeSqDZwJDiUuLJ10tZHRHRqjUSuIjk9m8vpDAHzeqTGNKhZn18UbzN19AmtLDVbmapKj0kxhbdPZKzhYWdCwdHFmLt1DlFUGmy9cITXNQPtq5Th7P4Tw8AQ8jdZcDYvmq34t6dGsGgBhcYk0/fE3dIYMtBka/ho3iCI2lny2ahuHLwaT+CCZd9vXY1iHBgCsP3ieUbM2UKmaBwEj+2KmUWM0GiW0CSFeGTKHTYiXrJybCwv6d2PRoRPZ5rS9qLAGmSPdH7fxpXPNivSbuyrbnLbQ2Him7ThIQkoafetXp0ONf0fUQ+Pis13HaMzgQWQiSZF6lDYKhrSshVKhIDY5hdl7j6L45yfKnnM3MBqNLD10imYVStCpZjmalClB9yqV+PnDjvx55jLj1mw3XTcyJpGNe8+iUkC3OhVxtrFm8aDudGpQCQ9nO8b2aWEKawC/rz2IMTkDfaoRxT+fD8DF1pq1n/Rlxbg+aFT/1pbTqtVM/aAjjaqUIOOh7fPGtG9C34bVTMey1KvoxfzR3cnIkN9nhRCFg4ywPSMZYRP/1cMjbYN867ywsPawR0faLDRq+s4LoH6p4jQu680nKzfjoLKihIsDH71Vj97TV1G0iB2bRvdHq1bxv4DdrDt6EYNlBmM7NKN7nSpEJCYweMlKzl+Nw8xCzYiWDflfwB7qlPJkXI+mDFm8lhGtGtG7XnUA1p+6yJdrdzDLvyO+Zb0BuB4WSfdZS9HEGggaNxAPF/s8P8MvS3Yz66/jOLnbs/qT3nwf9BcX74WzcnhPnG1zlh8SQrw8udVszTJhwgS6deuW5+vffPMNy5cvB+D48ePY2trmaBMWFsbUqVPZv38/8fHxFC9enG7duuHv749SmXMMKj4+nl9++YUdO3YQFRWFm5sb7du357333sPMzOw/fMKCI4HtGUlgE8/i8oNwBvweSFxKKm621o8Na2fu3cfH1QVzjSbX13O/fhjudrbYWViYjmWFtt/+yiwO26NOFb7t1IqbEVH0m7GasPhEZg1qz5tVfDh3P4Ruk1dQ1NGWko5OHLocjNHSyIBm1RnRqjHB0dEMW7aaGzeSGNG2IWYWKmbvPsp7Teryv4A9lPNw4tveLXh/2Xp61K1MKSdnvlm3K1tYuxkRRf8FgXSpUZHoS9Ec/vsmCyf2515MPPXLexGZmERMcgplXJyyhbWgT/vgYmeN3pDByD82ZQttiWlp3IqMprKn+3+/OUKIp+bj44OnpyedO3fO8Vrz5s2pWLFirucdOXKE/v37Y2FhQXJycq6BLSwsDD8/PyIjI2ndujXFihXj0KFDXLhwgS5dujBx4sRs7RMTE+nVqxdXr17F19eXcuXKcfbsWY4ePUqDBg2YP38+KlXuu7wURlJsSIgC5OPqTAV3Fw7fvEPDMiXyDGtGo5F5+w+jUMDPXTvmK7Sdux/C8IC1fNamJW0q/PuYU6FQ0KdeNVNga1u5HAmpafSbsZqopCS+6taUMau3olGraFmhNIEf96LLz8u5cjca1AqqOrly7N5txqyLY8e5myQnZzCibUPef+PfYrOzdx+lVc1SbD95gwXbT5IWl87CfSfBqGTeO11yhLWuNSvxUcuGGFsaGT9jIx2GzcKptDObvx/Enss3mLn7AM0cvVhx+Hy2sAagVimZ6t+OkX9souf0lSx4rwtfbdiKk40VU7p3+K+3RgjxH3l6evLhhx/mu31ycjJjx46lZcuWxMXFcexY7juN/Pzzz4SHh2cbqTMYDAwbNoy1a9fSoUMH6tevb2o/b948rl69ynvvvcfIkSNNx8ePH8/KlStZu3btY0f8ChuZwyZEAcmas3YrMpppPTuw69K1POu0KRQKfuzSgTS9gU/XrCdVp3vstbPC2tDGDbOFNcics9Z3XgCda1RAiwr/eavo9NNSyro58e4bdVhw8DifvOHLJys3sfPidSp7etCrcRVQKlAAb9Xw4dOWzdj093WSkgwMbVwvW1gb1KQ21b092HftFp91acT+q8EYzRTodaBVK7gbnbnTwKNhTaFQkGGEaFUGKksthrAkImMS6VarCqXM7Vl75zIO7rbZwlqWrNBW1qMIXX/9A41KxcQubf/DXRFCvGyTJk0iPj6er776Ks82iYmJbN26FW9v72whS6VSmcJYYGCg6bjRaGTNmjVYW1szdOjQbNcaPnw4Go2G1atXP+dP8mLJCJsQBSC3BQbFHO0YuCjzB05uJT+szLRM7daZj1at4ZPV65jk1ynXkbaHw1q3mpnzxlJ1OlRKJZEJSaY5a5+92Zj3m9Wn8dfzuZkczTc9WuBbzhu1Sslv+46aQlvdEsXZevo6RV1tiYpL5Md1+7G0U6JPBydrcxKViRgyMlD9M39k7t5jnLsbSn/fmszddxyNrZGUFCM1PDw4ezWESdv2cSsyhm3nr5rCWmJaOhYaDSPmbOBaSBRbZr7PzD924T96IXWqlODg+bvYelqisckgNjUFFztrEtPSsNJqTQsOUvU6EknBxtyMW3fiiU9Ow9lWfsQJ8bLFxcWxcuVKYmNjKVKkCHXr1qV48eK5tj127BjLly9nwoQJuLi45HnN06dPo9Ppso2gZSlXrhxOTk7ZRuZu3bpFREQEjRs3xtzcPFt7R0dHKlSowNmzZ0lLS3tl5rLJCJsQL1leq0HzWj36MCszLbZmllx5EMUnq9flGGnLLayl6HQMX7meKdv3mcLat51a8fXmrQycu4ZGZYtjZaVm4KI1HLl+l49aNMCvVhV+23eUSp5ubD19HQcbc9QWBkqVsMGYYSQpzoC3vQPrR/Xn3P1QJm7bgSEjg7l7j7Fg73F+H+SHu6MlqXodKakZdKxegaPX7vNGbR+SI3UsO3KadL2ej1o2JMNoxH/BCrpNXcLV+5Gs+Lw3zvZWjP/gLe6GxrDyyDnsXWzY9PE7+NevxeDFgRy9GUzvecvZeekaAIlpaQxbuhZrMy2bRgygYjFXRize9ALvohAiL1euXGH8+PFMnTqVcePG0bp1a8aOHUt6enq2dikpKYwdO5b69evj5+f32GsGBwcD4OXllevrXl5eREREkJycnO/2GRkZ3L1796k+W0GSwCbES/Sk0h35CW2fvdEcrUqTI7TlFdZGrFxPQkoa285dN4U1pVLBqBZNMbfLoFoFZw5++R5ahQr/+QGm0Obt6MiJ4LvY25iByoBGrSA4PBEXN3NcXTRcj45mwvo9zOzpx7n7ofRfvIIFe4/x+yA/jty6zeQt+1EqlNQuUZQNZy7yRq3SfNCuPnYu5hjTjKQbDKw4+jdGI9jqzLmVGEW3NpUpYmsJwK/L9+JgZ0ltTzcsH6RiSDcwuHFdOlevzHtL11LCyZHm5UqbwpqVmZZpPTtmjkT6t2NS3zdf4J0UQuRm4MCBBAYGcvz4cY4dO8aCBQsoV64cq1ev5vvvv8/WdvLkyURGRvLtt98+8bqJiYkAWFtb5/p61vGsdll/W1nlvnI8q31CQkI+PlXhIIFNiJckv3XWnhTa3OxsWPB292yh7UTwnceGtQexyTQo7WUKawCe9vb81rc7h27eZNGxYxwY964ptH0WsI195+9gozXHxlqDh7Ml4fEpWJtrUCpgfKc2FHUz58+/rzBh/R7qe5XiWng4vhWLcfjmLSZv2Y/BoOS7Lq25Gx1HLa+iHL19l77zVtG7XjV+7PImyQ90TNq6D7/JSwgNT2Rm784sPnyCZUdPMXPpHpZvPMYfPw5g+aSBNK5eGv/RCzl/O5TdV65T1tWZ08H3OHMvNFtYy9q0Xa1S4u5g84LupBAiL6NHj6ZKlSrY2tpiZ2dHo0aNWLx4Ma6urgQEBBAREQHAiRMnWLp0KcOHD6dYsWIF3OtXgwQ2IV6SX3YdzHedtYdD2x+HTuZ4/eHQduTmXYYtX807DermCGtxySlcDImghpdHtrCWxdPenpk9/Nh37boptGUYYO3Jc7g6WPLXmMFoNHArLAEzlZq0NAPtqlTgfxt28Vmb5hR1M2fTmSvM2nmUyV07se/aDSZvPYBBnxnWpm4/yJuVyzLBrxVKBSQkp9PMpxRnI8Po1qwyqanpXImNoFvrKjQqW4LZ/bowbft+Fh88weIf36GMtwtKpZLxH7xFjape+M9fQUpaOt90aEWXmlV45/dVhMTGm8JaRoaRD39azanL+X/MYTBk8PmMDRz4+0a+zxFC5J+dnR2tW7fGYDBw9uxZ9Ho9X3zxBVWrVsXf3z9f13h0BO1Rj47AZf2dlJT02PY2Nq/OL3YS2IR4SRqU8nqqorhZoa2md9FcX3ezs+HTNo0xGEBvgKM3b5Oq05nCWrrewG/+ftQp7U6UPpyYlNx/cD0c2oYHBGHQGTHoID4ljUFLVxKVmAKAWqXi0zebsOb4BdpWLs//NuyiVjFvFAowAl8F7SAxMYP0dKhbxp2p2zLDWs96VXhnYSBvN6rBiNYN6TlnJZvPXuF+SBwZaUbUKgW//nWI5UdOs3fPZZTX01AXM+dY2D1TH6OSkrmoikWtVRETmYQhzcCp4MzXE9PSCY7KXHmqVCqoV9mbAd8uz1doMxgy+HT6Ov6+ep9y3q75ui9CiKdnb28PQGpqKsnJyQQHB/P3339Tvnx5fHx8TH+yFg7Url0bHx8f7t3L/D7PmouWNTftUcHBwTg7O2NpaZnv9kql8pUa3ZPAJsRLUrtEsafewaCcmwsVPXIPEufuh/Dt5m180Lw+7rZ2XHkQxajAID5asY50vYFZfTpjZ2HBnD7dqeThyafrVxOVlPtvp5729lR39+ZyWBhubhr2jhuEjZ2CM7cjcbK25PT4j+hdt7pp9eia4xfwLlKEHRev8Gm7hlhbKrkTFY9OB+M6NOXY9VAcbbV0r1OJdxZmlu74sEUDQuMSsNCqiU5I5kZYNAe+fp+mZUqiNxiY+Oceft93nKXf9Gfu237M3nOYZUdPEZGQyIBFASSnp1OpmCvNXb3x/20laoWSY2M/YmCjOgxeHMjVsMxHLX3erMWn/Vo8MbRlhbWLt8JY+r9+ONnnPjdGCPHszp8/D4CHhwdarRY/P79c/zg7OwPQsWNH/Pz8THPQqlWrhkaj4fDhwzmuffnyZSIjI6ldu7bpWIkSJXB2dubUqVOkpqZmax8dHc3FixepXLnyK7NCFCSwCVEo6Q0Z/HHoJOl6Q66v/3H4BMOWr2Zo44YMbFSfBW93x2hUcOj6PS4/CGNy97ew1GoBUCoUjGzaCmdLO4YsX5FraJuydT+/7z6NwqDCztoMv3kLSUnLIEMPoWEpRCWkZFs9Wq9UMU7eCqFxmVLM3H2IdF0GxozMa/1v/V90qVUJhdpA99+WUbWYGx+2aMCEjXvYeOYS5W2csMWMBI2OBwkJ/NKvE15mtkAGBnctf925zdWwCGb368JPW/+i5ZS5JKen41XEgZ/82hNqk4ajtSV3DtwnOiaJwY3r0rdezacKbVlh7dzNB3R8szpF7PK/pVVquo4FO0/IPqNCPOL69es5VoICrF+/nj179lC0aFEqV66Mubk53333Xa5/SpQoAcC4ceP47rvvcHDI/CXXxsaGNm3acPv27Wz11gwGA9OmTQPIVp9NoVDQtWtXEhMTmT17drb+/PLLL+h0uleqaC5IYBOiUErV6fjz7CVGrtqQI7Sdux/CrL8OkJJqpJKHJwC2Fmak6fUAqJVKvtqwOVvJj7N3Q/nrwj0cLaxzjLQFnTzPjK1HcClixvaPh6BWqkhKhgwjjGjTEAuNhpYTFxISk8BHLRpQyrkI+67dongRew5fvwNARgY421mgUIJCCTcjohnUsAGWZioO3rjJOwtXs+HvSyQkp3E3Mo4tXwzg/Zb1uR0ZS0aGkWpWztQuWhRDhoG5e49w9OYdXGz+HfGy0Gj4qetbjArYgLWZlg2fDqBF3fI8iIgDeKrQ9vDI2o/DOzB/1wkmrdtPfnbpS03XMXDmWv48fvmJxYuFeN2sWrUKX19fPvjgA1MA69WrF6NHj8bS0pIff/wRtfq/10YcPXo0Li4ufPXVVwwfPpxJkybRrVs39uzZQ+fOnWnQoEG29oMHD6Zs2bLMmTOHwYMHM3nyZPz9/VmxYgX169enS5cuz/qRXyrZS/QZyV6i4kWJS0ll8OLVONtYMbVHB7RqVbbSHXHJOhYeOM6vfTrx2drNRCUmMb1nJ77fvIt0gw4ftyJM8uvE5dAI3l2yhuEtG9GzTjWm/rWDC6Eh/NzRj32Xb/Pxki0UdbVi44h3GLV6HefvRFLO3YUHCdGExabyYfOGzNpyjBSdngHNaxB47CxtqpRh87krpOl12Jqbo1UriU5Opmnp0libmxFw/Dx1ShRlWp92tJv+O3FJ6aiVCpwyrAga428q3fGwqMQk2s9YSFJaOh/6NmT9xYskp6fjZG3F3Zg47MzN8XZyyLYa9FHz9h1l6ZGTzHu7G2VdMx+tLNtygp+X7GLhV72pWsYzx2PQ66FR9Ph5BT19q/BJJ19TId5HZYW15DQdS0Z2w9r81XmUIsTLsG/fPgICArh06RJRUVHo9Xrc3Nxo0KABgwYNyrN47sP69evHsWPH8tz8/cGDB0ydOpV9+/aRkJBAsWLF6N69O/7+/rnuCxoXF2fa/D06OhpXV1fat2/P0KFDX6nHoSCB7ZlJYBMv0sOhbZBvbT5esy5b6Y7Zew7x2/4jqBRKlg/ug4+bMw/iEhi4OIB0gw43W2uuPIhhRMtG9K6beU6G0cjUv3aw88JVrtxIoahL9rBWrZgnM3p3ICIxkYF/rORBTAofNm/IlE0HSUrRs2hoF25ERjBl20G0KjVKBaTo9NQs7sH1yEhm9enM6uPnCTh+HkutGo1KRWJ6GhZmSka1bIx/w1o5Pmd0UjJvL1xJOTcXHkQncDY0BK1aTeWibvzU9S3eW7qam5HRjGjpi3/9f8+/HR6Dq501ielpaNUq7Cws8gxtPy7eQRE7K8y0mhxz1p4U2iSsCSEKmjwSFaIQs7MwZ97bfoTHJ/LJ6vUMbtjAFNaS09NZd+YCChSolSoy/vndK6vkB0YFZ++F06JcSVNYg8w5bYPq+XInJBUHByV/vNuDz4I2EB6XbAprWrUaT3t7Fvj3xM3Bgpl7DmLrCI72WmbsOMyMXQfxq1URSzMNqTo9LlY2xKfqGNasAe8vC6JrrYqYa1Sk6PQkpqXjorDEs4g1s/YeYt3p89k+Y3RSMkP+CCQ6NoW4iDSuR0eCQkG6wcCoVk3YeuEKzjbWzPfvxty9R1l29BQA10Ii6frDMlYcOMPQ5QGsOXUG+Pfx6PSd+03v0bN1DZJTddwNi+XjPs1yLDAo7V6EVZ/2YuX+szkej0pYE0IUBjLC9oxkhE28DHEpqQxaFIiLrTVTe3RAn2Gg86+LiUpMYtmgPuy/douFB46zoH83yru78PedEIb8sRpLMzUtypdhbLuWKP8ZNYpPTWXMxjXYW1hipTVj56Ub+Li4MrlrJ9RKFVp19scK92NjGfjHSsLjUrCyzNxD9N3GDQg6dYHbkTF0qlqJL9o3Y/jyjTyIT6RLzfL8vHUf6foMVAoFOoOR/g1q8Gnbxpy5F8rwlesY3aYZnapXygxrSwIp5ezE2/Vq0XfeCowGsLRSYm1uRkYGzPPvhoe9LVq1mnP3Qxm6ZC1+NaqwZOsZOtYrz5no21QrVpSxbVubPiNAul6PVq3ONmetbcMKLNxwhIVf9aZGuZzL+R8daUvT6SWsCSEKBQlsz0gCm3hZskJbEWtLbkZGEZ2UzLJBmY9BAebvP8bCA8cZ3rIRU7bvY3jLRjQvV5pBi1dRp0Rxxr3VisS0NMZsXIOrjS3Dm7RkdNAGHsTH4WCtYXLnbhSxyr20xf3YWPouWEZsUipWliqs1BaExabQpVplvuzYHIVCQbrewIdL13Mi+B6JaemYa+GLtq24ExXH3L3HGOhbi8/bNeX47bsMX7mOwb712HTuIqWcnRjRsjFD/ggkITWNsLspNPTxQmGTTkhcIum6DOa//W/9us1/X2bMus1UdfMgiaRcw1qW3Ep3PDyn7XGhrVPdCly+HyFhTQhRKMgjUSFeEXYW5jjZWHD45m0exCeweEBPU1gDGORbh1reRfl2407eqORD77rVcbSywNPBjt1XrjNrz0FTWBvTqi3fb92BmVrNigH9qez5+DptKoWS5DQDluZa4pMMxKcnUbekpymsAWhUStIMmY9AlQroUbs6P2zew6FrwQz0rcWC/SeY+9cxansX4+sObZi+az/Xw6P4tmMbPlweRHJ6OiWdHfmkqy+H7txBlWSOh501Wo2SQYsDCI6K4VpIJF/+sZNmJcpwLjwEF2vbpwpr8OSSH6Xdi7B4RDfm7TjO/ou3JawJIQqFVzawrV+/ni+//JIuXbpQqVIlfHx82LlzZ77OnT9/vqmq8qVLl15wT4V4PoxGIzbmFiiVCsxUan7dczhbyY+/74Rw9OYd3O1s2HHxGmfvhfLJ6o0kp+uY3rMTZ8NumcKaRqViaONG/NS5A5ZaLSObtqKiu0eeoc3NzpaZvTvjbGmDnbkFaWkKLkeGsuXCRVPfBi5azZEbdzBTK7GzsOTYzRBm9umEvaUFp26HMLxFA2btPsymM5eZu+8wTtZWmKlVrD99ATO1Cq8iDrQpX55fdhxiSu+2XA+NRp1sYQpt/eauoNtPy+lYrzx3U8JpUaEUU3t0eqqwluVxoS01XcfE1X9hb2WOpZmG2VuO5qvkhxBCvEivbGCbPn06AQEBhIaG4uTklO/zbty4wS+//GLavkKIV4HRaOTHrX9xMvg+U7p3wMJMzdWwCFOdtr/vhJhKd+z8eAhvN6jJO4sy99n8oWs75h7eQzEHe1NYA/Au4oi5RgP8W1w3r9AWl5LKT1v+opijPbs+fpeFb/cgNdXIj9t3senceQYuWs2ha8FYaNUsHtSTfZ+/i5utNT9v3c+P3d7AykzLvqu3GdWmEaNW/omV1pytIwYzpVsHfti6m8T0dNqUL8/3G/cwp39n3qjqw8pPenItJAp1sgV2GjPuBSdiNM/gePgNqhUryk9dO5j6/7D87mCQW2h7eIHBoR/f489xb+e6EEEIIV62V3YO26FDh/D29sbDw4MZM2Ywc+ZMZs2aRcuWLfM8JyMjg969e6PX6ylRogQbNmxg3bp1lC9f/j/3Q+awiRctK6ztuHiN39/pTnFHey6FhvHOolUoUeFqZ0lwZByftGlC77rVSdfr+WT1Rq48iCAuOY2yRW0o7VKEMa3a8telW9yLiaNWKXcO37zJkEaNTO+z9/o1opKSOBZ8iwshD/i9bz+crK1Nc+fc7GyY3L29aVHC33dCGLwkkDSdnrR0I9aWSub160ENr8xivul6Ax8t28CD+ETm+ndm1MpNnLsXSjlPZy6HRDKlZztWnjhNXEoK1x5Ek55mZP6ArtQv/W+tpsj4JGp/MgtDhhE3Nwv0Zjo0Kg2r3u2Hdy7bfGVkGPlkWtBTbTeVNadt9pjuzNxxLMectfzWaRNCiBfplR1ha9CgAR4eHk91zu+//8758+f57rvvci2wJ0Rhk1tYAyjv7sqIZo1J1qVxIzwajdaIAZ0prMUkpbD6PX/eaVibi8FxdK5ci78u3WLk8j8xKgyMDgrC1cYm23u5WFvz+5FDlHZyJSU9g2XHTxKbnJJrWAMwKg1YWoJKBfa2SuqWKmYKawBatYpf+nTAzdaagYvWkKBLzlz5aVDwdceWuNnZ0LC0N12rVUOXDhYWSsIS4rP1KSYxxVSuJDVVj0oF7vZWmKtz//5VKKCaT9Gn2hu0z5u1+Lx/Kyb9eTDXBQaPK/khhBAvyysb2J7WrVu3mD59OoMHD8bHx6eguyPEE+UV1rKU83BBqVCiVCpQGdUsOHSInvOWEJOUwq99umBjbs67TerxXtP6DPg9kBHLNzKqbQMCzxznvUaN6Fi1arbrlXdz56eOnVl/7m961arOtouX6TRrUa5h7fS9u3waFITBYESjUaDTKbgQGsrm8xeyXVOrVvFNp5ZEJscTkZBM4Pt9sDbTsuLIGYoXscfOzJLvN+5h3jtdMvcO3bbHVKftWkgkPSetZGCrWlSvVgSFQUUtx1K42Fjxv83bct0aSqFQ4N+uzlNt5J6armPj+WtkQJ4LDCS0CSEK2n/f1OsVkpGRwZgxYyhWrBhDhw596vOzHnvmJjQ0FHd392fpnhA5PCmsZc1Z+6R1E5RGBT9s302KHhKTY3i3ST1szM1Nbb0cHElO0WNuoWLZiaO09ClPy3KZ0wBO3L5Hqj4NbydHito7mELbx0FrSUlRkZSeTll3B47fvks5NxeKWFuy7u9zTN2zC4MB9BlGOlerwpsVKvDu0kB+3J45NaCSuycxySkUc7Tj/RVraVS6BPFJ6Qxbsp65/p35LHAr1b+aAcCSId2pX7o4kYlJDPGtz0/b9hAWm8DcjSdNddZqlSjGvH4N6T15FWU8iqCzSuXj1euY7Ncp13ls+fU0RXGzQluPn1cAyONRIcRL9VqMsC1evJgzZ87w3XffodVqC7o7QjxRfGoaVx9E5hrWAP66coPh/2w31aVWJewtMwOahVrL2jN/s/z4cQB2nL/OyOV/8vGbjTA3g8puRbkRFsu7f6wlKS2d7Reu8WnAFj4ICORebAyQOdL2Tp2GJOlSGdykJkGnL/DeH0FcCHnAur/P8fWG7eh0RjKMRjpWqcyYN1pSrbgHv/XtRnE7Jybv3MOiw8cYvGg1f565hI+rCxO7tmVG344Ud7TjZmQ0bSqVMX2WSkVdiUxM4p2FgVwLi2R0y2bM3nWEDnXLZSuK62JnbVqIoEoyR6c38PHqdc+0Cfvt8FjUSmW+S3dkhbZTN0NISkv/z+8rhBBP65VddPCwxy06uH37Nh07dqR79+6MHTvWdPzzzz8nKChIFh2IV9rDc9aaly3D9D37aVDSizsJ4dQuVoLAQ5dzPAZNSdfx/rJ1pOsNzO7bmUnb97Ht/BXcnLXM7N6NovaZk/kvPQjl/ZWriYjR42SnpYqnO3uv3MLSXIlapWRAg3r0r183R59O3rnLZ2vXU79EKbadvc68/l2pWuzf+aZBJy/wddBOpvdpz+KDp4hLTiEtQ08FDxcGNqhNnykBj93BIDI+iZ6TVlLGowgGq1Q0atUzj7QJIURh9/9+hO3LL7+kSJEijBw5sqC7Iv6fC4/Pvejs054TFpdIVPKTr/VwWPu6fRs61CzP562bc+hmMOi07LhyiXoVXHLMWbPQapjVpxNatYqhS4N4t2ldWlYoQ2hEOu+vCjCNtD2ITSY61oCTvZoyro7svXILi3/Cmn/d2nStXhW9IYOoxKRs/Srn6sr4dm05fOsGbaqUZvCiNZy5GwL8G9bm9O9M0/Il+a5rK4JjYohKSKJtBZ8nhjUAJ1ur5z7SJoQQhd3/+8B26dIl7t+/T/Xq1U3Fcn18fAgKCgKgU6dO+Pj4cPTo0QLuqXiVPYiLp+PM3/nryo18n7Pv6k06zFxISOy/KyNvR8bQetIC3gtczJHgvK/1cFjrXK0qvecuZejqP2haoQRNy5ThXmwslkpLrkaEYWdhkWOBwcOhrffc5cSlx1HMwY6bIUm8vyqAwJNn+HjVn/zUrR3tq1Ti4JUQLMyVoABdRgbnQu8z9+BBvgjazDcbd2S79q+7jjJt62HGt2vLseBbDGxci8GL1jB9x0FTWMuas/bukiAaly2BwaBgyOL1+DWoSKIq8bHbTUH20NaoaFkMGRksOXI83197IcSLtWnTJvr160ft2rWpWrUqbdq04fPPPycxMfsvo2FhYXz++ec0bNiQypUr065dOxYtWkRGRkau142Pj2fChAk0adKESpUq0bJlS6ZPn05aWlqu7dPS0pg+fTotW7akUqVKNGnShAkTJhAfH59r+8Ls//2ig06dOpGSkpLj+IkTJ7h9+zatWrXCzs4OZ2fnXM4WIn/c7Gz5tlMbRq/+k5/83qKpT6nHtt939SafBG5kQqc38LC3NR33dnLgm06t+H7LDn7es4VPm71JPa/s13o0rH2/eQfexdR80KgF5+5EsPPcDeqVLcbJu/fwdrIjMS2N5ceP07t27WzXyQptQ5cEcfxGGLVKuhCbYs31+wmMv7eTL9s3J1mXyoK9p7CxVKFQGCnv7sq18EiCo2NRZWi5FRnD/Le7Z7vuR63qc/F+GNO2Hub3fn3xcLDlZngMv+09whdtm5vC2jsLAynr4kRiig5XWxtKuThyOiyU6X3ewtXOJs+wlsXJ1oo1n/fBxtyMbvrKqJSyAECIgpa1yG/dunV4e3vToUMHzM3NefDgAfv27SMxMRFr68xV3GFhYfj5+REZGUnr1q0pVqwYhw4dYuLEiVy5coWJEydmu3ZiYiJ9+vTh6tWr+Pr60r59e86ePcuvv/7K33//zfz587OV7DIYDLz77rscPnyYGjVq8MYbb3Djxg2WLFnC0aNHWbFihakvr4L/94Ft3LhxuR7//PPPuX37Nu+///4zzWETIkurCmUBnhjaHg5rrSvmLDHTqWYFgFxDW15h7aPGrUhLVjFy+Z+mOWttK/uw6ewVGpT0YvmJEwC5hrZf+3Zi2NJ1nLgZhpeTDSExoFDCgsMHCY1Kw85KjVarpE15H3Zdv4SrrRXh8cmcTb7PykFvU8Q6+64hZho1c/p34r1F6/hw6Ub8aldk65lr9KlbnV92HcDdwYZpOw6YwlpobCJL3+uGhUbDe4vXMXzZnywY2BWbfCwCsMtabKGV+WtCFAYLFy5k3bp1+Pv7M2bMGJTKfx/kPTpq9vPPPxMeHs6ECRPo1q0bkBmyhg0bxtq1a+nQoQP169c3tZ83bx5Xr17lvffeyzbNafz48axcuZK1a9eargOwdu1aDh8+TMeOHfnxxx9Nq7rnzp3L5MmTmT9/PiNGjHgRX4YX4pVddBAYGMjJkyeBzMeely9fpm7duqZiun5+ftSqVSvP82XRgXhRdly8ytigLbmGtieFtYetO3mR77fsoFhRlSm0jV79J6Fx8bmGteHLNlLey54kQzJD/5mztvLI3/ywfTdNy5biekwIvWvVyhbajt4OZunR40zs2J7aE2YCUKmYI7fDE0hM02FhDtaWavzr1Ob8gxDiU1O5GxuNMkODWq2kXcUKDG3cKNfyFmk6PX4zl3MpJILf3ulEiwqlmLHrILP3HKGogx0lHIsQGpvIH+/6YW9pYTrnvcXrSNXpWfZuD5QyaibEKyMlJYXGjRvj4ODAli1bHlugPjExkXr16uHp6cm2bduyvXb58mU6duxIu3btmDJlCpBZ6sjX15eUlBQOHjyI+UOli6Kjo2ncuDEVK1Zk1apVpuPdu3fn7Nmz/PXXX7i5uZmO63Q6mjRpgkqlYt++fa9MeZ5XdoTt5MmTpnloWR6eh1anTp3HBjYhXpS8RtqeJqxB7iNtvetW52Z4bK4ja8PfqMuK08coau/AGxUrAtCzXjUUCgUTNuzhw9b1so20Hb0dzNj1GxnduiXHb99DoQCjEW6Gx5OcpgcgLR0cbJScvBeMSqHCQWtLBKkYzdLpXLky685kFrnNLbSZadQsHNiFdxet59ddRyjl4sj2C9cwGo0ER8SRYVCw+oPeprCWdc6ctztxKjhEwpoQr5iDBw8SHx+Pn58fer2e7du3c+fOHRwcHGjUqFG23YlOnz6NTqfLNoKWpVy5cjg5OXHs2DHTsVu3bhEREUHjxo2zhTUAR0dHKlSowNmzZ0lLS8PMzIzU1FTOnTtHyZIls4U1AI1GQ926ddm8eTO3b9+mRIkSz/kr8WK8soHthx9+4Icffiiw84V4nEdDm1KheKqwluXR0NaiRFUW7juZ52PQYb6+7LpyjTHrNjCxUwfM1Gp61K1KUQd73lu8jg9b12X5iRPciYll56UrjG7dEo1Cw8er/mRazw7EpiQxft0uVEqwsVagMGgIi0rHqAinvFNRbsZEs6h/b8IT4xi9PohOVas9NrQ521qzYmgPBixYQ7spi2lRsQQeNnZcuB9ObEoSwVEx2QIbZIa2h/cTFUK8Gs6fz/xZoFAo6NChA7dv3za9ptFoGDFiBIMGDQIgODgYAC8vr1yv5eXlxcmTJ0lOTsbS0jJf7c+cOcPdu3cpXbo0d+7cISMjg+LFc/9ZknWdO3fuvDKB7f/9KlEhCkqrCmX5rvObfLRiHR8sD8oW1s6G3GPXlcv5uk6nmhX44s1WXL+dxrYbp/D0VOQa1t5r1IjuNWsypWtnktLTGbNuA2n6zJGyhmW9mPN2J2ZsP0p19xJsvnCeRqVLmsLaD35tSdal8s2GXdhbq1CpFKSmKlBq0zE3UxIWoed82B3+16kN9pbm/HX5JuPatGXdub/pVLUSWy5eYva+A7lu2ZSQlkZsajIqpYI/T1/jalgUf47yZ1Qb32wlP4QQr7bo6GgAFi1ahL29PUFBQZw8eZL58+dTpEgRfv75Z/bs2QNgWi2a16T/rONZ7bL+trKyemz7hISEp7p+VvtXgQQ2IV4gM/W/g9jah/6tM2Qw9a9d7LxyKV/XiU1N5uH5ulqVmlS9nqm936JqcTeG+vqaSndYmZnlGdqGv1Gf7RcvM6hBAzIMClNYK+5ox/827MHBRkOH6uX5sGU9zDVq4hLA0Tpzd5ComAzG/rmBuzEx3IqKZuqO/Yxr0xZbC3Nm9eiGOpf5KpGJSbyzIBAURjKMmR9ApVCiUirpXa86I1o1ktAmxP8TWb+wabVaZs6cSYUKFbC2tsbX15cJEyYAmWFO/DcS2IR4QbLmrE3q9haTu7dn9Oo/TXXaahYrzjdt2zPtr91PDG2LDp5g6va9lPbW0KR4ZUJD4Oc9W3B20NCqUmlqFi9OhypVsp2TW2g7ejuYlaeO8b/Ob1DMzok/T181hbW3FwRgY62kf8OajGjWjPOhIVTzdsbO3IIHMWk0KueBm50NN0OSGL56NcOaNqC4oz1Td+ynpU95ijs6MKRRg2yPRLPCWgYZ3ImIp6iDPUe+eo9ijrb0n7eahNQ0CW1C/D+SNWpVqVKlHKWyGjZsiFar5cKFC9naPlqXLcujI2RZfyclJT22vY2NzVNdP6v9q0ACmxAvwKMLDLIejz5taMsKayW9NIxs2oY3K1Xg41bNuHvPwM97tjy2uG5WaItOSqbFtBl8uiYo25y1h8OahSX0rVedPrVqM2bDBvSGDCxVlhSxtqCyhztngiMp52mHq611jtA2dNlqYpKz1zp8NKx52tuxclhPXGytmdO/E7bmZhLahPh/JmsuWG6PIZVKJVZWVqSmpgL/ziHLmpv2qODgYJydnbG0tMx3e6VSSbFixQAoXrw4SqWSO3fu5Nk+q92rQgKbEM9ZXqtBnza0PRrWGpf0YdHhY+y5cYlP8hnaHsQncD8uDiNgMBrxLVWKhQdO8INfW1pXLMOSw6epWMwpR1gzU5hzMyKahf17ML+/H+XcXAmPT6FScQdcba2JiEljw7mzfNepba6hbeu5KznCWtbigqw6bbmFtkUHTz7HOyGEeJnq1s3cW/jmzZs5XouOjiYmJgZPT08AqlWrhkaj4fDhwznaXr58mcjISGo/VIKoRIkSODs7c+rUKVPoe/jaFy9epHLlypiZZdZvNDc3p3Llyty8eZMHDx5ka6/T6Th69CjOzs54e3s/02d+mSSwCfEcPal0R35DW25hDeCbt95Eq1azOx+h7UZEJO+tWEW6Xs+nrVpQycOdsRs2Mte/C60rlgHgf51aM9+/R65hbf7b3SlibYmFVsPC/t1Y1L83uowMKhV3oEYxT/ZfuktyWnqO0GY0GgmNj801rGXJK7RN7v7Wc70fQoiXx8vLi/r16xMcHMzatWtNx41GI9OmTQOgTZs2QOajyDZt2nD79m0CAwNNbQ0Gg6ntw0VwFQoFXbt2JTExkdmzZ2d7319++QWdTpetPWTWYzUajUyZMiXbgqjff/+dqKgounbt+srUYINXuHBuYSGFc0WWp6mzlltx3ZN37zB+80Z8HIuy8/z1HGEtS6pOx+igDaTr9TQvVZ5JO/ZkK64L2cPa2Dfb0Lp8OZLS0hi1JgitUs0kv06mBRGpOh2fr1+fa1jLkpiajpWZhhSdjk+DgtCqVBh0Kh7EJTLP3w9LMy1j120mOCqGMi7ObDh5BQ+73MPaw9J0et5btI741DQWDfbL1+4GQojC6/bt2/To0YO4uDiaN2+Ol5cXp0+f5vTp05QtWzbbdlB5bU114cIFOnfunKP0VmJiIr169eLq1as0btyYcuXKcebMGY4ePUr9+vVZsGBBjq2pBg4caNqaqlatWty4cYNdu3bl6MurQALbM5LAJiBr8/dF/K9Tm3zXWdtx8SrjgrYS9H5/036ic/YdYMrmI5Qro+GTZm/kCGtZHg1tk3fuwauoml869yUpTZcjrGVJSEml3tdzKOluy+oP/DFTq5m8axe3o6Io5+zJzovXcoS1yIQkes0I4IPW9ehYqzzJ6el8GhREKScn7kQkYjQamd6rEzqDgboTp5OSkkFRO0cCP+j12LCWJSu02VqaM72PjLAJ8aq7d+8e06ZN49ChQ8THx+Pq6krr1q15//33cwSkBw8eMHXqVPbt20dCQgLFihWje/fu+Pv757pTQlxcHL/88gs7duwgOjoaV1dX2rdvz9ChQ02PQx+WmprKnDlz2LhxI2FhYTg6OtKqVSuGDx+Ora1tjvaFmQS2ZySBTWS5FxNHUQe7/3zOzahIPl23BmcrW+7FRTGiaQta+uS9bdrDoW1U8+bYWWlJTM07rGU5ev0OvWYGUNHbkdUf+JOcnp452maEVL0eR6ucYc3H3Ylp/u1QqzJnUSSnp5NuMGCl0RKVlIyrrTXTdu1j87lLOFhakmE0Ms+/Ow75CGyQGdpik1NxtXt1ftsVQoiXSeawCfGcPG1Ye/icrLDWuWo15vTsxTdtOzyx5Ie5RsNPnTugVauZsns3EQnJTwxrAHVLF2fFB925cDsav5l/YKnVZv4x0+YrrAFYarXYW1igUatMYW37hSsseLsHywb1oaSzY66rR/NiplFLWBNCiMeQwCZEAXs4rPWtlbnKKr912rJC273YWAYvW/nEsJbl0dBmeLgqL9nD2iftG/JZ0EYSU9NyXMdoNJrC2m/9ulHc0QGNSsWIFo2JTkpmyJKAfIc2IYQQeZPAJkQByi2sZclvaLsfG0dKug4ATzs7GpUqma/3zgpt1+7F8/veU6bjj46sudvbojdk8P7KNdlCW25hDSA8IYEPVq6hQWkvvIs83UibEEKI3ElgE6KAPC6sZXlSaLsREcmHAavpXacWe0Z8gJONDaNWB5Gcnp6vPtQtXZxVH/Vk2pZDzN9zItfHoGZqNT91bY+9hYUptD0urL23LJBqxTz5ql0bvu+ce502IYQQT0cWHTwjWXQg/ov8hDWj0ciSg3/TvU4lLoSFMn7zRkY0bW5aiJAV1rpWr8bABvWAzIUIPeYsw8nOjBk9u2Kp1earP2fuPKD9z0sA6FCjXI45awBpej2j12wkJjmZiu7u/HXlep5hbVzb1ij/qW+kMxgYu24zd6Jjmd3HL98LEYQQQvxLRtiEKAB3Y6LpUrV6nmENIFWnZ8OpywxesI6Kru5807Y9NyIjgdzDGsDcPSe4E5ZERgZPNdLm6fDvfnqVi7vmCGuAaaTNztyCrRcuM7V7xyeGNQCNSsV3ndpSwd2ViITc9/UTQgjxeDLC9oxkhE28SImp6fSfuwYLjZp5AzthrtXkGdZ+2X6YRftOseL97ng52ZtKfkzx6/zYkbaHH4MOaFoT/9mrGfFmAwY1q5Vr+6yRttiUFGb17EqyLj3PsCaEEOL5kMD2jCSwiRft4dA2pqMvnwSte2xY83F3BrLXacsrtOU2Z+3MnQf0mRmQr9B2PTwCnSGDRmVKSFgTQogXSB6JClHIWZtrWTSkKyk6PW/PXUOHKpWfGNYge5229WfP57huXnXWqhZ3Y9kH3U0LEXJjplbzaetmhCUkEp2czIjmTSSsCSHECyQjbM9IRtjEy5KYmo7/b6ux0mpMj0fzCmsPS9Pr0ahU2QLV44riZnncSFvWnLWK7m7EpaQSl5rKrJ5dsZa9QIUQ4oWQwPaMJLCJl+nhx6NVirux4vDZx4a13OQnrGXJLbQ9usBAZzBkm9MmoU0IIZ4/CWzPSAKbeNkSU9OpNOYXANaP7EPV4u75Pjcjw0iHyUvxdrJ/YljLkhXafuzVhtqlPXJdYPDoQgQJbUII8XzJHDYhXjEL953ETKPGxtyMSZsOkPrPLgf5oVQq+KFn63yHNcic07ZmRC8qF3fOczVobsV1hRBCPD8S2IR4hWTNWdswsg+Hx79Lik7P4AXrniq0VSqWe521x3GwMWdE4LrHlu6Q0CaEEC+OBDYhXhGPLjB4ePXo04a2pxGRkJjvOms5QluahDYhhHgeJLAJ8QrIazXoywhtFhoNHapWynedNTO1mp+7tqdJmVJoVarn3h8hhHgdyaKDZySLDsSLlp/SHbntiCCEEOL/DxlhE6IQy09Yg5cz0iaEEKLgSGATopBKTkvn0LU7+a6zlhXalEoF18OjX0IPhRBCvCzySPQZySNRIYQQQrxoMsImhBBCCFHISWATQgghhCjkJLAJIYQQQhRyEtiEEEIIIQo5CWxCCCGEEIWcBDYhhBBCiEJOApsQQgghRCEngU0IIYQQopCTwCaEEEIIUchJYBNCCCGEKOQksAkhhBBCFHIS2IQQQgghCjkJbEIIIYQQhZwENiGEEEKIQk4CmxBCCCFEISeBTQghhBCikJPAJoQQQghRyElgE0IIIYQo5CSwCSGEEEIUchLYhBBCCCEKOQlsQgghhBCFnAQ2IYQQQohCTl3QHfiv1q9fz4kTJ7hw4QJXr15Fp9Mxa9YsWrZsma1dTEwM27ZtY8+ePVy7do3w8HBsbGyoVq0agwYNombNmgX0CYQQQggh8ueVDWzTp0/n/v37ODo64uTkRGhoaK7ttm7dytdff42bmxv169fH2dmZO3fusHPnTvbs2cNPP/1Ehw4dXnLvhRBCCCHy75UNbBMmTMDb2xsPDw9mzJjBzJkzc23n7e3Nb7/9RuPGjVEq/30CfOrUKfz9/fnf//7HG2+8gVarfVldF0IIIYR4Kq9sYGvQoEG+2tWvXz/X4zVq1KBu3bocOHCAK1euULly5efZPSGEEEKI5+a1XnSg0WgAUKtf2dwqhBBCiNfAa5tUwsLCOHz4MM7OzpQtW/axbVu0aJHna6Ghobi7uz/v7gkhhBBCmLyWI2x6vZ7PPvuM1NRURo0ahUql+s/XUqlUEtiEEEII8UK9diNsRqOR8ePHc/jwYbp06UKXLl2eeM6uXbteQs+EEEIIIXL32o2wTZgwgdWrV/Pmm28yYcKEgu6OEEIIIcQTvVaB7fvvv2fp0qW0atWKSZMmPdOjUCGEEEKIl+W1eST6448/snjxYpo1a8bUqVML/crQvn375lkMWAgh/j9yd3dn6dKlBd0NIQqlwp1anpMpU6awcOFCfH19+eWXX0zlPAqzM2fOYDAYZEFDIZYVqOUeFW5yn14NoaGhhIeHF3Q3hCi0XtnAFhgYyMmTJwG4dOkSAH/88Qc7d+4EwM/Pj1q1arFmzRp+++03tFot5cqV47fffstxrZYtW1K+fPmX1/l8cHFxAWTBQ2GWVe5F7lHhJvfp1fC48klCiFc4sJ08eZKgoKBsx44ePWr6d506dahVqxYhISEApKenM2/evFyv5enpWegCmxBCCCFEllc2sP3www/88MMPT2z34Ycf8uGHH76EHgkhhBBCvBiv1SpRIYQQQohXkQQ2IYQQQohCTgKbEEIIIUQhJ4FNCCGEEKKQUxiNRmNBd0IIIYQQQuRNRtiEEEIIIQo5CWxCCCGEEIWcBDYhhBBCiEJOApsQQgghRCEngU0IIYQQopCTwCaEEEIIUci9snuJvqrS0tKYPHky586d4+7du8TGxmJvb0/JkiXp27cvrVq1QqFQZDsnLCyMqVOnsn//fuLj4ylevDjdunXD398fpVIy98vyzTffsHz5cgCOHz+Ora1tttflPhUMHx+fPF+bMGEC3bp1y3bs9OnTzJw5k7///puMjAzKly/PkCFDaNq06Qvuqdi0aRMrV67k8uXLpKen4+bmRvXq1Rk3bhzW1tamdvK9JEROUoftJYuOjqZZs2ZUqVIFb29vHBwciI6OZs+ePURGRtKrVy++/vprU/uwsDD8/PyIjIykdevWFCtWjEOHDnHhwgW6dOnCxIkTC+7DvEaOHDlC//79sbCwIDk5OUdgk/tUcHx8fPD09KRz5845XmvevDkVK1Y0/f/QoUMMHjwYc3Nz2rVrh4WFBVu2bCEsLIyJEyfSpUuXl9n110ZGRgZjxoxh3bp1eHt706hRI8zNzXnw4AGHDx9m7dq1uLm5AfK9JESejOKlMhgMxrS0tBzHExMTjW3btjWWLVvWePv2bdPxjz/+2Fi2bFljQECA6ZherzcOGTLEWLZsWeOhQ4deSr9fZ0lJScbmzZsb33//fWPfvn2NZcuWNcbFxWVrI/ep4JQtW9bYt2/fJ7ZLT083NmvWzFi5cmXj5cuXTcejoqKMjRs3NtaoUcMYExPzAnv6+po3b56xbNmyxgkTJhgNBkO21wwGQ7Zj8r0kRO5kbPklUyqVaLXaHMetrKxo1KgRAHfu3AEgMTGRrVu34u3tne2xjkqlYuTIkQAEBga+hF6/3iZNmkR8fDxfffVVrq/LfXo1HD58mPv379OhQ4dsj1EdHR0ZMGCA6T6K5yslJYXffvsNLy8vPv/88xyPNJVKpemYfC8JkTeZw1ZIpKWlceTIEVQqFaVKlQIy59rodDrq16+fo325cuVwcnLi2LFjL7urr5Vjx46xfPlyJkyYgIuLS65t5D4VvLi4OFauXElsbCxFihShbt26FC9ePFub48ePA9CgQYMc52f9snT8+HF69uz54jv8Gjl48CDx8fH4+fmh1+vZvn07d+7cwcHBgUaNGuHh4WFqK99LQuRNAlsBSUlJYf78+RiNRqKioti3bx8hISGMGjXK9AMsODgYAC8vr1yv4eXlxcmTJ0lOTsbS0vKl9f11kZKSwtixY6lfvz5+fn55tpP7VPCuXLnC+PHjTf9XKBR07dqV8ePHm0a0H3efihcvjkKhMLURz8/58+eBzHvSoUMHbt++bXpNo9EwYsQIBg0aBMj3khCPI4GtgKSkpDBz5kzT/zUaDZ999hnvvPOO6VhiYiJAttVTD8s6npiYKD+8XoDJkycTGRnJwoULH9tO7lPBGjhwIG+88Qbe3t4YjUbOnTvHpEmTWL16NRqNxrSI53H3SaPRYG5uTkJCwsvs+mshOjoagEWLFlG5cmWCgoIoXrw4p0+fZty4cfz888+UKlWKZs2ayfeSEI8hc9gKiKOjI1euXOHixYvs3r2b4cOHM3XqVIYPH05GRkZBd++1d+LECZYuXcrw4cMpVqxYQXdHPMbo0aOpUqUKtra22NnZ0ahRIxYvXoyrqysBAQFEREQUdBdfa8Z/ChFotVpmzpxJhQoVsLa2xtfXlwkTJgCZYU4I8XgS2AqYSqXC09OTwYMHM3LkSLZt28aaNWuA7L9N5uZJv42K/0av1/PFF19QtWpV/P39n9he7lPhY2dnR+vWrTEYDJw9exZ4/H3S6XSkpqZiY2PzUvv5Osj6uleqVAlnZ+dsrzVs2BCtVsuFCxeytZXvJSFykkeihUjWZOgTJ07QrVs30zyOvObVBAcH4+zsLI8GnrPk5GSCg4MJDg6mfPnyubapXbs2ALt27ZL7VEjZ29sDkJqaCpDtPj1cmw0yV2YbjcY8506J/65EiRJA7iFLqVRiZWVlCmLyvSRE3iSwFSLh4eFA5qgbQLVq1dBoNBw+fDhH28uXLxMZGUnbtm1fah9fB1qtNs9FBnv37iUiIoKOHTui0WiwsrKS+1RIZU12z1rEU7t2bebOncuhQ4dy3I8DBw4AUKtWrZfbyddA3bp1Abh582aO16Kjo4mJicHb2xuQn3lCPI4Etpfsxo0beHh4YGFhke14XFwc06ZNA8DX1xcAGxsb2rRpw59//klgYKCpLpHBYDC1fXTbHfHszM3N+e6773J9rV+/fkRERDBu3LhsOx3IfSoY169fp3jx4jlqG65fv549e/ZQtGhRKleuDED9+vXx9PRk48aN9OvXz1SLLTo6mt9//x1ra2vefPPNl/4Z/r/z8vKifv36ph0NsnaTMBqNpu+PNm3aAPIzT4jHka2pXrIZM2awaNEiatasiaenJ5aWloSGhvLXX3+RlJRE27ZtmTJlimk/0cdt09K5c2d++OGHAv5Er5d+/fpx7Nixp9qaSu7Ti/Pdd9+xYcMGateujbu7O5A5snbq1CksLS2ZN29etlGzgwcPMmTIENma6iW7ffs2PXr0IC4ujubNm+Pl5cXp06c5ffo0ZcuWZcWKFaZHpvK9JETuJLC9ZOfOnWPVqlWcOnWK8PBwUlJSsLOzo0KFCnTu3Jl27drlOOfBgwdMnTqVffv2kZCQQLFixejevTv+/v6mx6fi5cgrsIHcp4Kwb98+AgICuHTpElFRUej1etzc3GjQoAGDBg3KUTwX4NSpU9k2fy9XrhzvvvsuzZo1K4BP8Pq4d+8e06ZN49ChQ8THx+Pq6krr1q15//33c8xvk+8lIXKSwCaEEEIIUchJWQ8hhBBCiEJOApsQQgghRCEngU0IIYQQopCTwCaEEEIIUchJYBNCCCGEKOQksAkhhBBCFHIS2IQQQgghCjkJbEIIIYQQhZwENiGEEEKIQk4CmxBCCCFEISeBTQghhBCikJPAJoQQQghRyElgE0IIIYQo5CSwCSGEEEIUchLYhBBCCCEKOQlsQgghhBCFnAQ2IYQQQohCTgKbeK34+Pjk+FOxYkUaNWrEhx9+yKlTp3I9r1+/fvj4+HDv3r1sx5s3b46Pj0+u79O8efN892vGjBn4+Piwdu3ap/tAhdjatWvx8fFhxowZz/W68fHx1K1bl48++ui5XvdFS01NpVGjRgwePLiguyKEeAVJYBOvpc6dO5v+NG/eHAsLC7Zv307v3r3ZuHFjQXfvlVBQIXP27NnExcXxwQcfvNT3fVbm5uYMGjSIffv2cfjw4YLujhDiFaMu6A4IURB++OGHbP/PyMhgypQpzJs3jwkTJvDGG2+g0WhMr//444+kpKTg6ur6srsqHhIeHs7SpUtp1qwZZcuWLejuPLWePXsya9YspkyZQmBgYEF3RwjxCpERNiEApVLJRx99hFqtJjY2luvXr2d73cPDg1KlSmULceLlW7NmDenp6XTq1Kmgu/KfmJub07p1a86ePcvFixcLujtCiFeIBDYh/qHVarG2tgZAr9dney2vOWwvg16vZ/ny5fTo0YMaNWpQpUoVOnbsyKJFi3L0E7LPqwsMDKR9+/ZUqVKFhg0b8tVXXxEfH5/r+9y7d4+PP/6YevXqUa1aNbp06cKmTZu4d+8ePj4+9OvXL9t7zJw5E4AxY8ZkmxN49OjRHNcOCQkxXbtKlSp06dKF3bt3P9XXwWg0snr1aqysrGjatGmO1x9+RHv+/HkGDRpErVq1qFOnDsOHD+fBgwcAJCcn89NPP9G8eXMqV67MW2+9xdatW3Nc7+jRo/j4+PD5558TFRXFF198QcOGDalWrRq9evXKNt9xxYoVpq9zkyZNmDFjBhkZGbl+jrfeeguAVatWPdXnF0K83uSRqBD/uHv3LrGxsWg0Gry8vAq6O0DmRPUhQ4Zw9OhR7O3tqVatGlqtlrNnzzJx4kSOHj3KrFmzUCpz/u71008/8ccff1C3bl28vLw4deoUq1at4saNGyxduhSFQmFqGxwcTM+ePYmOjsbLy4sGDRoQHh7Oxx9/nC2oZWnTpg2HDh3i8uXL1KhRI9vXy8nJKVvb+/fv4+fnh5WVFfXr1yc0NJTTp0/z/vvvM2/ePBo1apSvr8X169e5d+8eDRs2xMzMLM92Z86cYfz48ZQpU4ZGjRpx8eJFtm7dyuXLl1m9ejXvvPMOISEh1KpVi5iYGI4fP86IESOYN28evr6+Oa4XFxdHjx49yMjIoE6dOty/f59Tp04xYMAAAgMDWbVqFYGBgdStWxdPT0+OHTvGzJkz0ev1jBw5Msf1atSogUajYe/evfn63EIIARLYhCApKYlLly4xceJEIHOeka2tbQH3KtOPP/7I0aNHadu2Ld9++y02NjYAJCYmMmrUKHbv3s2qVavo1atXjnM3bNjAhg0bKFmyJADR0dH07NmTEydOcOTIEerXr29qO378eNPrX331FSqVCoD9+/czdOjQHNf+7LPPmDFjBpcvX6Zbt2506dIlz88QFBTEgAED+PTTT03BctGiRUycOJHZs2fnO7CdOHECgMqVKz+23cqVK/n6669NXxOdTseQIUM4dOgQPXv2xMnJiZ07d2JpaQlkjkKOGzeO3377LdfAtnv3bjp06MD3339veiQ+Y8YMZs6cyYgRI4iPj2fjxo0UL14cyAyWnTp1YvHixQwZMgQrK6ts1zMzM6Ns2bJcuHCBu3fvUqxYsXx9fiHE600eiYrX0sOP8GrUqEGfPn24desWX375JWPHji3o7gEQFRVFYGAg7u7uTJw40RTWAKytrfnuu+/QaDSsWLEi1/OHDx9uCmsAjo6O9OzZE/g3/EDm6Nrhw4extbVl9OjRprAG4OvryxtvvPFMn6No0aKMHDky2yhg3759sbOz48yZM6Snp+frOleuXAGgRIkSj21Xs2bNbAFWo9HQt29fAG7evMnXX39tCmsAXbp0wcHBgb///hudTpfjetbW1owbNy7b/MX+/fujUCi4fv06H330kSmsAZQuXZqmTZuSkpLC+fPnc+1j1n25fPnykz62EEIAEtjEa+rhsh7t2rWjevXqpKSkMGvWLPbt21fQ3QMy51DpdDp8fX0xNzfP8bqzszPe3t5cvXqV1NTUHK83bNgwxzFvb28AIiIiTMey5mL5+vrmGA0CaNu27X/9CADUqVMHrVab7ZharaZo0aLodDpiY2PzdZ3o6GiAJ45+5va5s0axPD09cwQ+lUqFh4cHOp2OmJiYHOdWqlQJOzu7bMdsbGxMx3IbIcx6v4e/zg+zt7cH/v1MQgjxJPJIVLyWHi3rAXDx4kX69u3LsGHD2LhxY7bRqYJw//59AAICAggICHhs27i4uByhzs3NLUe7rED28KhWVqjIrT1krpB9FnldN7e+PE5CQkK28/KSW+mVrBG1vMqyPK4vjzsnNjb2se+X12fLer+8FoAIIcSjJLAJ8Y8KFSrQo0cPFi5cyIoVKwr80ajRaASgfPnylCtX7rFtcys3kttChILwvPqR9Ug4KSnpP7/ff+nLk875L9dMTEwEnjxaKIQQWSSwCfGQokWLApnzugpa1shNzZo1+fLLL1/Y+zg7OwOYyl48KjQ09IW999NwdHQEMkcTX3VZnyHrMwkhxJMUjl/BhSgksuqsPTwpvaDUq1cPlUrFnj17cp0M/7xUr14dgAMHDpCcnJzj9S1btuR6XtaonsFgeGF9e1jWKOOtW7deyvu9SDdv3gR44sipEEJkkcAmxD8uXrxoKmbapEmTAu5N5ghb165duX//Ph9//DGRkZE52gQHB7Nt27Zneh9vb2/q169PXFwckyZNylbw9eDBg2zevDnX81xcXIB/w8eLVqtWLQDOnTv3Ut7vRUlLS+Pq1au4u7tLSQ8hRL7JI1HxWvr8889N/9bpdNy/f58zZ86QkZFBs2bN6NixYwH27l9jx47l/v37bNu2jf3791OuXDk8PDxITk7mxo0bBAcH06JFC9q0afNM75NVt2zZsmUcPHiQSpUqER4ezokTJ+jduzdLly7NMU8uq4Dt4sWLuXbtGi4uLigUCgYOHPhCFmyUKlWKokWLcubMGdLS0h5bPLcwO3XqFDqdrlD8UiCEeHVIYBOvpaCgINO/lUoltra21KpVi44dO9KlS5dCM2Hf3NycefPmsXHjRoKCgrh8+TLnzp3DwcEBT09POnToQLt27Z75fby9vQkICGDatGkcOHCAnTt3UrJkSX744QeKFi3K0qVLTaUosri6uvLrr78ya9YsTp48aXqc2qFDhxcS2BQKBd26dWPq1Kns3r2bN99887m/x8uwceNGALp3717APRFCvEoUxqylaEIIkYu5c+cyefJkPv74Y4YMGVKgfYmIiKBFixY0aNCAOXPmFGhf/ovU1FR8fX3x9vYmMDCwoLsjhHiFFI5hBCFEgUpLS+P69es5jh85coQ5c+agVqufy0jes3J2dqZv37789ddfpp0PXiUrV64kPj6eUaNGFXRXhBCvGBlhE0IQERFBo0aNKFGiBN7e3mi1WoKDg01bJ3322WcMGDCggHuZKT4+nlatWlG3bl1++eWXgu5OvqWmptKyZUvKly/PvHnzCro7QohXjAQ2IQSpqalMnz6dQ4cO8eDBAxITE7GxsaFy5cr07dtXJsgLIUQBk8AmhBBCCFHIyRw2IYQQQohCTgKbEEIIIUQhJ4FNCCGEEKKQk8AmhBBCCFHISWATQgghhCjkJLAJIYQQQhRyEtiEEEIIIQo5CWxCCCGEEIXc/wEXu4z+fuZpoAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file diff --git a/Anusha/Module0/readme.md b/Anusha/Module0/readme.md new file mode 100644 index 0000000..985c8b5 --- /dev/null +++ b/Anusha/Module0/readme.md @@ -0,0 +1,23 @@ +# Module 0 + +This repository contains documentation notebooks for various essential Python libraries used in data science, machine learning, and deep learning focused on practical learning implementation through colab platform. + +## Contents + +- `Module0.ipynb` - Commonly Used AI/ML Python Libraries +- `NumPy.ipynb` - NumPy Documentation +- `Pandas.ipynb` - Pandas Documentation +- `Matplotlib.ipynb` - Matplotlib Documentation +- `Seaborn.ipynb` - Seaborn Documentation +- `SciPy.ipynb` - SciPy Documentation +- `Scikit-learn.ipynb` - Scikit-learn Documentation +- `XGBoost.ipynb` - XGBoost Documentation +- `LightGBM.ipynb` - LightGBM Documentation +- `CatBoost.ipynb` - CatBoost Documentation +- `OpenCV.ipynb` - OpenCV Documentation +- `scikit-image.ipynb` - scikit-image Documentation +- `Pillow.ipynb` - Pillow Documentation +- `TensorFlow.ipynb` - TensorFlow Documentation +- `Keras.ipynb` - Keras Documentation +- `PyTorch.ipynb` - PyTorch Documentation +- `MXNet.ipynb` - MXNet Documentation diff --git a/Anusha/Module0/scikit_learn.ipynb b/Anusha/Module0/scikit_learn.ipynb new file mode 100644 index 0000000..e128cb3 --- /dev/null +++ b/Anusha/Module0/scikit_learn.ipynb @@ -0,0 +1,1438 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# **Machine Learning in Python**" + ], + "metadata": { + "id": "kKsPZmn_C7IE" + } + }, + { + "cell_type": "markdown", + "source": [ + "Simple and efficient tools for predictive data analysis" + ], + "metadata": { + "id": "P5UkPNybC1tH" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "* **Purpose:** Machine learning library in Python.\n", + "* **Highlights:**\n", + "\n", + " * Simple & efficient tools for **predictive data analysis**.\n", + " * Built on: **NumPy, SciPy, matplotlib**.\n", + " * **Open source** (BSD license).\n", + " * **Commercial use allowed**.\n", + " * Reusable in multiple contexts.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿง  **Core Machine Learning Areas & Algorithms**\n", + "\n", + "#### ๐Ÿ“Š **Classification**\n", + "\n", + "* **Definition:** Assigning categories to objects.\n", + "* **Applications:** Spam detection, image recognition.\n", + "* **Algorithms:** Gradient Boosting, Nearest Neighbors, Random Forest, Logistic Regression.\n", + "\n", + "#### ๐Ÿ“ˆ **Regression**\n", + "\n", + "* **Definition:** Predicting continuous values.\n", + "* **Applications:** Drug response prediction, stock price forecasting.\n", + "* **Algorithms:** Gradient Boosting, Nearest Neighbors, Random Forest, Ridge Regression.\n", + "\n", + "#### ๐ŸŒ€ **Clustering**\n", + "\n", + "* **Definition:** Grouping similar objects automatically.\n", + "* **Applications:** Customer segmentation, grouping experimental results.\n", + "* **Algorithms:** K-Means, HDBSCAN, Hierarchical Clustering.\n", + "\n", + "#### ๐Ÿ“‰ **Dimensionality Reduction**\n", + "\n", + "* **Definition:** Reducing the number of input features (random variables).\n", + "* **Applications:** Data visualization, efficiency improvement.\n", + "* **Algorithms:** PCA, Feature Selection, Non-negative Matrix Factorization (NMF).\n", + "\n", + "#### โš–๏ธ **Model Selection**\n", + "\n", + "* **Definition:** Choosing the best model and parameters.\n", + "* **Applications:** Boosting accuracy through hyperparameter tuning.\n", + "* **Techniques:** Grid Search, Cross Validation, Evaluation Metrics.\n", + "\n", + "#### ๐Ÿ”ง **Preprocessing**\n", + "\n", + "* **Definition:** Preparing and transforming input data for ML models.\n", + "* **Applications:** Text data transformation, normalization, feature extraction.\n", + "* **Tools:** `Preprocessing`, `KBinsDiscretizer`, etc.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ—ž๏ธ **Recent Releases & News**\n", + "\n", + "* **Ongoing:** Development of **scikit-learn 1.8**.\n", + "* **June 2025:** Released **scikit-learn 1.7.0**.\n", + "* **Earlier Versions:**\n", + "\n", + " * Jan 2025: 1.6.1\n", + " * Dec 2024: 1.6.0\n", + " * Sept 2024: 1.5.2\n", + " * July 2024: 1.5.1\n", + " * May 2024: 1.5.0\n", + "* [Full changelog available](https://scikit-learn.org/stable/whats_new.html)\n" + ], + "metadata": { + "id": "VZCXvcWsWX6b" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## ๐Ÿ”Ÿ Most Used Supervised Learning Models (with code)\n", + "\n", + "---\n", + "\n", + "### **1. Linear Regression (Ordinary Least Squares)**\n", + "\n", + "**Use case:** Predict continuous values (e.g., house prices).\n", + "\n", + "```python\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.datasets import make_regression\n", + "\n", + "X, y = make_regression(n_samples=100, n_features=1, noise=10)\n", + "model = LinearRegression()\n", + "model.fit(X, y)\n", + "print(model.coef_, model.intercept_)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **2. Ridge Regression**\n", + "\n", + "**Use case:** Linear regression with L2 regularization (penalizes large coefficients).\n", + "\n", + "```python\n", + "from sklearn.linear_model import Ridge\n", + "\n", + "ridge = Ridge(alpha=1.0)\n", + "ridge.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **3. Lasso Regression**\n", + "\n", + "**Use case:** Linear regression with L1 regularization (can eliminate some features).\n", + "\n", + "```python\n", + "from sklearn.linear_model import Lasso\n", + "\n", + "lasso = Lasso(alpha=0.1)\n", + "lasso.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **4. Logistic Regression**\n", + "\n", + "**Use case:** Binary classification (e.g., spam detection, yes/no).\n", + "\n", + "```python\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.datasets import make_classification\n", + "\n", + "X, y = make_classification(n_samples=100, n_features=2, n_classes=2)\n", + "clf = LogisticRegression()\n", + "clf.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **5. Support Vector Machine (SVM)**\n", + "\n", + "**Use case:** Classification with clear margin separation.\n", + "\n", + "```python\n", + "from sklearn.svm import SVC\n", + "\n", + "svm = SVC(kernel='linear') # or 'rbf'\n", + "svm.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **6. k-Nearest Neighbors (KNN)**\n", + "\n", + "**Use case:** Classification/regression by majority vote of k closest data points.\n", + "\n", + "```python\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "\n", + "knn = KNeighborsClassifier(n_neighbors=3)\n", + "knn.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **7. Decision Tree Classifier**\n", + "\n", + "**Use case:** Classification using a tree of decision rules.\n", + "\n", + "```python\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "\n", + "dtree = DecisionTreeClassifier()\n", + "dtree.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **8. Random Forest (Ensemble)**\n", + "\n", + "**Use case:** Reduces overfitting of single decision trees.\n", + "\n", + "```python\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "\n", + "forest = RandomForestClassifier(n_estimators=100)\n", + "forest.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **9. Gradient Boosting Classifier**\n", + "\n", + "**Use case:** Builds trees sequentially to minimize error.\n", + "\n", + "```python\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "\n", + "gb = GradientBoostingClassifier()\n", + "gb.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **10. Multilayer Perceptron (Neural Network)**\n", + "\n", + "**Use case:** Captures nonlinear relationships.\n", + "\n", + "```python\n", + "from sklearn.neural_network import MLPClassifier\n", + "\n", + "mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500)\n", + "mlp.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "## ๐Ÿ”ง Common Evaluation Metrics\n", + "\n", + "For classification:\n", + "\n", + "```python\n", + "from sklearn.metrics import accuracy_score\n", + "y_pred = clf.predict(X)\n", + "print(\"Accuracy:\", accuracy_score(y, y_pred))\n", + "```\n", + "\n", + "For regression:\n", + "\n", + "```python\n", + "from sklearn.metrics import mean_squared_error\n", + "y_pred = model.predict(X)\n", + "print(\"MSE:\", mean_squared_error(y, y_pred))\n", + "```\n", + "\n", + "---" + ], + "metadata": { + "id": "iaggThenYBC9" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## โœ… Most Used Clustering Algorithms in `sklearn.cluster` (with key insights & code)\n", + "\n", + "---\n", + "\n", + "### **1. KMeans**\n", + "\n", + "* **Use case:** Fast clustering, assumes spherical clusters, widely used in ML.\n", + "* **Scalability:** โœ” Very scalable (`MiniBatchKMeans` even better).\n", + "* **Geometry:** Flat geometry, Euclidean distance.\n", + "* **Drawbacks:** Sensitive to outliers and initial centroids.\n", + "\n", + "```python\n", + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters=3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.labels_\n", + "```\n", + "\n", + "---\n", + "\n", + "### **2. MiniBatchKMeans**\n", + "\n", + "* **Use case:** Faster than `KMeans` on large data with minor loss in accuracy.\n", + "* **Scalability:** โœ”โœ” Excellent for large datasets.\n", + "\n", + "```python\n", + "from sklearn.cluster import MiniBatchKMeans\n", + "mb_kmeans = MiniBatchKMeans(n_clusters=3, batch_size=100)\n", + "mb_kmeans.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **3. DBSCAN (Density-Based Spatial Clustering)**\n", + "\n", + "* **Use case:** Arbitrary shape clusters, noise/outlier detection.\n", + "* **Scalability:** โœ” Good with spatial index, fast for low dimensions.\n", + "* **Geometry:** Density-based.\n", + "\n", + "```python\n", + "from sklearn.cluster import DBSCAN\n", + "db = DBSCAN(eps=0.3, min_samples=10)\n", + "db.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **4. HDBSCAN** *(external: `pip install hdbscan`)*\n", + "\n", + "* **Use case:** Variable density clusters, better than DBSCAN.\n", + "* **Scalability:** โœ” Handles large sets better than DBSCAN.\n", + "* **Bonus:** No need to specify `eps`.\n", + "\n", + "```python\n", + "import hdbscan\n", + "hdb = hdbscan.HDBSCAN(min_cluster_size=5)\n", + "hdb.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **5. OPTICS**\n", + "\n", + "* **Use case:** DBSCAN-like, detects clusters across multiple scales.\n", + "* **Scalability:** โœ” Good.\n", + "* **Bonus:** Builds a reachability plot for flexible analysis.\n", + "\n", + "```python\n", + "from sklearn.cluster import OPTICS\n", + "optics = OPTICS(min_samples=10, xi=0.05)\n", + "optics.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **6. MeanShift**\n", + "\n", + "* **Use case:** Finds blobs (dense regions), no need for predefined clusters.\n", + "* **Scalability:** โŒ Not suitable for large data.\n", + "* **Geometry:** Distance-based.\n", + "\n", + "```python\n", + "from sklearn.cluster import MeanShift\n", + "ms = MeanShift()\n", + "ms.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **7. AffinityPropagation**\n", + "\n", + "* **Use case:** Auto-detects cluster count, good for small data.\n", + "* **Scalability:** โŒ Not scalable (O(nยฒ) time and memory).\n", + "* **Geometry:** Similarity-based.\n", + "\n", + "```python\n", + "from sklearn.cluster import AffinityPropagation\n", + "ap = AffinityPropagation()\n", + "ap.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **8. Spectral Clustering**\n", + "\n", + "* **Use case:** Non-flat geometry, graph-based affinity.\n", + "* **Scalability:** โš  Medium, good for image segmentation.\n", + "* **Needs:** Predefined cluster count.\n", + "\n", + "```python\n", + "from sklearn.cluster import SpectralClustering\n", + "sc = SpectralClustering(n_clusters=3, affinity='nearest_neighbors')\n", + "sc.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **9. Agglomerative Clustering**\n", + "\n", + "* **Use case:** Hierarchical clustering (bottom-up).\n", + "* **Scalability:** โš  Slower, but works for moderate data.\n", + "* **Variants:** Ward, average, complete, single linkage.\n", + "\n", + "```python\n", + "from sklearn.cluster import AgglomerativeClustering\n", + "agg = AgglomerativeClustering(n_clusters=3, linkage='ward')\n", + "agg.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### **10. BIRCH**\n", + "\n", + "* **Use case:** Large-scale data with many clusters.\n", + "* **Scalability:** โœ”โœ” Very high, great for data reduction.\n", + "\n", + "```python\n", + "from sklearn.cluster import Birch\n", + "birch = Birch(n_clusters=3)\n", + "birch.fit(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "## ๐Ÿ”„ Comparison Table\n", + "\n", + "| Algorithm | Auto Clusters | Outlier Detection | Arbitrary Shapes | Scalable | Best For |\n", + "| ------------------- | ------------- | ----------------- | ---------------- | -------- | --------------------------------- |\n", + "| **KMeans** | โŒ | โŒ | โŒ | โœ”โœ” | General-purpose clustering |\n", + "| **MiniBatchKMeans** | โŒ | โŒ | โŒ | โœ”โœ”โœ” | Big datasets |\n", + "| **DBSCAN** | โœ” | โœ” | โœ” | โœ” | Noise + non-spherical clusters |\n", + "| **HDBSCAN** | โœ” | โœ” | โœ”โœ” | โœ”โœ” | Variable density + hierarchy |\n", + "| **OPTICS** | โœ” | โœ” | โœ” | โœ”โœ” | Multiscale clustering |\n", + "| **MeanShift** | โœ” | โŒ | โœ” | โŒ | Blobs in smooth density |\n", + "| **Affinity Prop.** | โœ” | โŒ | โœ” | โŒ | Small, complex datasets |\n", + "| **Spectral** | โŒ | โŒ | โœ”โœ” | โš  | Graph-based clustering |\n", + "| **Agglomerative** | โŒ | โŒ | โœ” (some linkage) | โš  | Hierarchical structure |\n", + "| **BIRCH** | โŒ | โŒ | โŒ | โœ”โœ”โœ” | Large scale + fast pre-clustering |\n", + "\n", + "---\n", + "\n", + "## ๐Ÿ“Œ Tips\n", + "\n", + "* Use **`KMeans`** or **`MiniBatchKMeans`** for quick and scalable clustering.\n", + "* Use **`DBSCAN/HDBSCAN`** when your data has **arbitrary shapes and noise**.\n", + "* Use **`Spectral`** or **`Affinity Propagation`** for **non-flat clusters**, but on small data.\n", + "* Use **`Agglomerative`** for **hierarchical relationships**.\n", + "* Use **`OPTICS`** to **tune density cut-offs later** from one fit.\n", + "\n", + "---\n" + ], + "metadata": { + "id": "I0h8fR3bYG1S" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## **๐Ÿ”ถ 1. BIRCH Clustering (2.3.10)**\n", + "\n", + "**BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)** builds a **Clustering Feature Tree (CFT)** to perform clustering in a scalable way.\n", + "\n", + "### ๐Ÿ”น Key Components:\n", + "\n", + "* **CF Nodes**: Tree nodes storing compressed data.\n", + "* **CF Subclusters**: Summarize data in nodes; hold:\n", + "\n", + " * `n_samples`: Number of points\n", + " * `Linear Sum`: Sum of vectors\n", + " * `Squared Sum`: Sum of squared norms\n", + " * `Centroid`: Linear Sum / n\\_samples\n", + " * `Squared norm of centroid`\n", + "\n", + "### ๐Ÿ”น Parameters:\n", + "\n", + "* **Threshold**: Maximum distance for merging a sample into a subcluster.\n", + "* **Branching Factor**: Max number of subclusters per node.\n", + "\n", + "### ๐Ÿ”น Process:\n", + "\n", + "1. Data is compressed into CF Nodes (lossy).\n", + "2. Final clustering uses:\n", + "\n", + " * **Subclusters directly**, or\n", + " * A **global clusterer** (e.g., KMeans) if `n_clusters` is set.\n", + "\n", + "---\n", + "\n", + "## **๐Ÿ”ถ 2. Clustering Evaluation Metrics (2.3.11)**\n", + "\n", + "Clustering evaluation differs from classification due to **absence of true labels**. Here are the key metrics:\n", + "\n", + "---\n", + "\n", + "### **A. With Ground Truth**\n", + "\n", + "#### 1. **Rand Index (RI)** and **Adjusted Rand Index (ARI)**\n", + "\n", + "* **RI**: Measures agreement between two labelings (ignores label values).\n", + "* **ARI**: Adjusts for chance (better for random baselines).\n", + "* **Range**:\n", + "\n", + " * RI: \\[0, 1]\n", + " * ARI: \\[-0.5, 1]\n", + "* **Symmetric** and **permutation-invariant**.\n", + "\n", + "---\n", + "\n", + "#### 2. **Mutual Information (MI) Scores**\n", + "\n", + "* Measure the **information shared** between true and predicted labels.\n", + "* **Variants**:\n", + "\n", + " * `mutual_info_score`: Not normalized.\n", + " * `normalized_mutual_info_score` (NMI)\n", + " * `adjusted_mutual_info_score` (AMI) โ€“ adjusts for chance.\n", + "* **AMI preferred** for objective comparisons.\n", + "* **Symmetric**, range \\[0, 1].\n", + "\n", + "---\n", + "\n", + "#### 3. **Homogeneity, Completeness, and V-measure**\n", + "\n", + "* **Homogeneity**: One class per cluster.\n", + "* **Completeness**: One cluster per class.\n", + "* **V-measure**: Harmonic mean of the above.\n", + "* `v_measure_score(beta=1.0)` is default.\n", + "* **Range**: \\[0, 1]\n", + "* Best when analyzing *type of clustering error*.\n", + "\n", + "---\n", + "\n", + "#### 4. **Fowlkes-Mallows Index (FMI)**\n", + "\n", + "* Geometric mean of **pairwise precision and recall**.\n", + "* **Range**: \\[0, 1]\n", + "* Perfect match: 1.0\n", + "* Random match: \\~0.0\n", + "\n", + "---\n", + "\n", + "### **B. Without Ground Truth**\n", + "\n", + "#### 5. **Silhouette Coefficient**\n", + "\n", + "* Measures how similar a sample is to its own cluster vs. others.\n", + "* **Range**: \\[-1, 1]\n", + "* High value = **dense & well-separated** clusters.\n", + "* Works well with convex clusters.\n", + "\n", + "---\n", + "\n", + "#### 6. **Calinski-Harabasz Index**\n", + "\n", + "* Ratio of between-cluster dispersion to within-cluster dispersion.\n", + "* **Higher = better**.\n", + "* Fast to compute.\n", + "* Biased towards convex clusters.\n", + "\n", + "---\n", + "\n", + "#### 7. **Davies-Bouldin Index**\n", + "\n", + "* Measures **average similarity** between clusters.\n", + "* **Lower = better**.\n", + "* Simpler than silhouette but limited to **Euclidean distances**.\n", + "\n", + "---\n", + "\n", + "### **C. Utility Metrics**\n", + "\n", + "#### 8. **Contingency Matrix**\n", + "\n", + "* Cross-tabulation of true vs. predicted labels.\n", + "* **Shows distribution** of samples across clusters.\n", + "* Not a score โ€” used to compute other metrics.\n", + "\n", + "---\n", + "\n", + "#### 9. **Pair Confusion Matrix**\n", + "\n", + "* 2x2 matrix counting:\n", + "\n", + " * **True/False Positives/Negatives** between labelings.\n", + "* Useful for computing **Rand Index** and **FMI**.\n", + "* **Interpretable only with small datasets.**\n", + "\n", + "---\n", + "\n", + "## โœ… **Metric Selection Summary**\n", + "\n", + "| Metric | Needs Ground Truth? | Adjusted for Chance? | Interpretation | Best Use |\n", + "| -------------------------- | ------------------- | -------------------- | -------------------------- | ------------------------------------ |\n", + "| Adjusted Rand Index (ARI) | โœ… | โœ… | Similarity | Benchmark with known labels |\n", + "| Adjusted Mutual Info (AMI) | โœ… | โœ… | Info shared | Robust similarity |\n", + "| V-measure | โœ… | โŒ | Homogeneity & completeness | Analyzing types of clustering errors |\n", + "| Fowlkes-Mallows Index | โœ… | โŒ | Pairwise match | Clustering comparison |\n", + "| Silhouette Score | โŒ | โŒ | Separation | Optimal cluster number |\n", + "| Calinski-Harabasz Index | โŒ | โŒ | Variance ratio | Fast evaluation |\n", + "| Davies-Bouldin Index | โŒ | โŒ | Cluster similarity | Compactness/separation |\n", + "\n", + "---\n" + ], + "metadata": { + "id": "-VNRSRzzYd13" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## ๐Ÿ”ถ **2.5. Decomposing Signals in Components**\n", + "\n", + "These methods aim to **represent high-dimensional data using lower-dimensional components** while preserving key properties such as variance, independence, or sparsity.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿงฉ **2.5.1. Principal Component Analysis (PCA)**\n", + "\n", + "#### โœ… **Exact PCA**\n", + "\n", + "* **Goal**: Orthogonal transformation to capture max variance.\n", + "* **Centering**: Data is centered, but **not scaled** by default.\n", + "* **`whiten=True`**: Projects data with unit variance per component (useful for SVMs, K-Means).\n", + "* **Probabilistic PCA**: Allows likelihood-based scoring.\n", + "\n", + "#### โœ… **Incremental PCA**\n", + "\n", + "* Handles **large datasets** in **mini-batches**.\n", + "* Supports `partial_fit()` and `fit()` with `np.memmap`.\n", + "\n", + "#### โœ… **Randomized PCA**\n", + "\n", + "* Approximate PCA using `svd_solver='randomized'`.\n", + "* Great for **very high-dimensional** data (e.g., images).\n", + "* Much faster, especially when dropping small components.\n", + "\n", + "#### โœ… **Sparse PCA / MiniBatchSparsePCA**\n", + "\n", + "* Learns **sparse components** (few non-zero features).\n", + "* More interpretable than standard PCA.\n", + "* **MiniBatchSparsePCA** trades accuracy for speed.\n", + "\n", + "---\n", + "\n", + "### ๐ŸŒ€ **2.5.2. Kernel PCA (kPCA)**\n", + "\n", + "* **Non-linear dimensionality reduction** using kernels (e.g., RBF).\n", + "* Supports **`inverse_transform()`** via kernel ridge approximation.\n", + "* Ideal for **denoising, compression**, and **nonlinear structures**.\n", + "* Note: # of components โ‰ค # of samples (not features).\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ”ป **2.5.3. Truncated SVD / Latent Semantic Analysis (LSA)**\n", + "\n", + "* Computes only top **k singular values**.\n", + "* Used for **text document analysis**.\n", + "* Equivalent to PCA if data is centered.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ“š **2.5.4. Dictionary Learning**\n", + "\n", + "#### โœ… **Sparse Coding (Precomputed Dictionary)**\n", + "\n", + "* Transforms data into sparse linear combinations of **predefined atoms** (e.g., wavelets).\n", + "* `transform_method`: OMP, Lasso, thresholding.\n", + "\n", + "#### โœ… **Generic Dictionary Learning**\n", + "\n", + "* Learns the dictionary **and** sparse codes.\n", + "* Great for **image inpainting, denoising**.\n", + "* `split_code` helps distinguish positive/negative contributions.\n", + "\n", + "#### โœ… **Mini-Batch Dictionary Learning**\n", + "\n", + "* Faster, online variant for **large datasets**.\n", + "* Supports `partial_fit()` for streaming.\n", + "\n", + "---\n", + "\n", + "### ๐ŸŽญ **2.5.5. Factor Analysis (FA)**\n", + "\n", + "* Models data with **latent variables** and **noise**.\n", + "* Unlike PCA, FA can handle **heteroscedastic noise**.\n", + "* Rotation (e.g., **Varimax**) improves interpretability.\n", + "* Useful for **generative modeling** and **feature extraction**.\n", + "\n", + "---\n", + "\n", + "### ๐ŸŽง **2.5.6. Independent Component Analysis (ICA)**\n", + "\n", + "* Separates signals into **statistically independent** components.\n", + "* Commonly used for **blind source separation**.\n", + "* Whitening is required.\n", + "* Not ideal for dimensionality reduction.\n", + "\n", + "---\n", + "\n", + "### ๐ŸŸจ **2.5.7. Non-negative Matrix Factorization (NMF)**\n", + "\n", + "#### โœ… **NMF with Frobenius Norm**\n", + "\n", + "* Decomposes data into **non-negative** matrices (W, H).\n", + "* Produces **additive, parts-based representations** (interpretable).\n", + "* `init`: Use **NNDSVD** variants for sparse/dense data.\n", + "* Can include **L1/L2 regularization** (`alpha_W`, `alpha_H`, `l1_ratio`).\n", + "\n", + "#### โœ… **NMF with Beta-Divergence**\n", + "\n", + "* Generalization with **KL** or **Itakura-Saito** divergences.\n", + "* Supports various similarity measures between X and WH.\n", + "* `beta_loss` specifies the divergence.\n", + "\n", + "#### โœ… **Mini-Batch NMF**\n", + "\n", + "* Optimizes online with **mini-batches**.\n", + "* `forget_factor`: Weighs past batches less.\n", + "* Supports `partial_fit()` for online/streamed data.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿง  **2.5.8. Latent Dirichlet Allocation (LDA)**\n", + "\n", + "* **Generative probabilistic topic model**.\n", + "* Decomposes document-term matrix into:\n", + "\n", + " * **Topic-term** (`components_`)\n", + " * **Document-topic** (`transform()` result)\n", + "* **Online variational Bayes** algorithm.\n", + "* Supports `partial_fit()` for **large-scale or streaming** datasets.\n", + "\n", + "---\n", + "\n", + "## โœ… **Quick Comparison Table**\n", + "\n", + "| Technique | Linear? | Sparse? | Online/Batch | Interpretable? | Handles Non-Negativity? | Use Case |\n", + "| ------------------- | ------- | ------- | ------------ | -------------- | ----------------------- | ------------------------------- |\n", + "| PCA | โœ… | โŒ | Batch | โŒ | โŒ | Variance reduction |\n", + "| Incremental PCA | โœ… | โŒ | Online | โŒ | โŒ | Big data PCA |\n", + "| Sparse PCA | โœ… | โœ… | Mini-Batch | โœ… | โŒ | Interpretable components |\n", + "| Kernel PCA | โŒ | โŒ | Batch | โŒ | โŒ | Non-linear projections |\n", + "| Truncated SVD | โœ… | โŒ | Batch | โŒ | โŒ | Text analysis, LSA |\n", + "| Dictionary Learning | โœ… | โœ… | โœ… | โœ… | โŒ | Feature extraction, denoising |\n", + "| Factor Analysis | โœ… | โŒ | Batch | โœ… (with rot.) | โŒ | Latent structure with noise |\n", + "| ICA | โœ… | โœ… | Batch | โœ… | โŒ | Blind source separation |\n", + "| NMF | โœ… | โœ… | Batch/Online | โœ… | โœ… | Parts-based images, text mining |\n", + "| LDA | โŒ | โŒ | Batch/Online | โœ… | โœ… | Topic modeling |\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "6WV7s2XoZDEY" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "## ๐Ÿ”ท **3. Model Selection and Evaluation**\n", + "\n", + "Model selection involves choosing the best estimator and parameters using **cross-validation**, **hyperparameter tuning**, and **performance metrics**.\n", + "\n", + "---\n", + "\n", + "### โœ… **3.1 Cross-Validation: Evaluating Estimator Performance**\n", + "\n", + "#### **3.1.1. Computing Cross-Validated Metrics**\n", + "\n", + "Use `cross_val_score()` to evaluate performance on **multiple train/test splits**.\n", + "\n", + "```python\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.datasets import load_iris\n", + "\n", + "X, y = load_iris(return_X_y=True)\n", + "clf = RandomForestClassifier(random_state=0)\n", + "scores = cross_val_score(clf, X, y, cv=5)\n", + "print(\"CV accuracy scores:\", scores)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.1.2. Cross Validation Iterators**\n", + "\n", + "Control how data is split using classes like:\n", + "\n", + "* `KFold`, `StratifiedKFold`\n", + "* `ShuffleSplit`, `StratifiedShuffleSplit`\n", + "* `GroupKFold`, `LeaveOneOut`, etc.\n", + "\n", + "```python\n", + "from sklearn.model_selection import KFold\n", + "cv = KFold(n_splits=5, shuffle=True, random_state=1)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.1.3. A Note on Shuffling**\n", + "\n", + "* Shuffling can improve randomness and prevent bias.\n", + "* `StratifiedKFold(shuffle=True)` recommended for classification.\n", + "\n", + "---\n", + "\n", + "#### **3.1.4. Cross Validation and Model Selection**\n", + "\n", + "Use **cross-validation** to:\n", + "\n", + "* Estimate test score\n", + "* Select best model in pipelines (`GridSearchCV`, `RandomizedSearchCV`)\n", + "\n", + "---\n", + "\n", + "#### **3.1.5. Permutation Test Score**\n", + "\n", + "Use **random label shuffling** to test if model performance is better than chance.\n", + "\n", + "```python\n", + "from sklearn.model_selection import permutation_test_score\n", + "score, perm_scores, pvalue = permutation_test_score(clf, X, y, cv=5, n_permutations=100)\n", + "print(\"P-value:\", pvalue)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **3.2 Tuning the Hyper-Parameters of an Estimator**\n", + "\n", + "#### **3.2.1. Exhaustive Grid Search**\n", + "\n", + "Try all combinations from the parameter grid.\n", + "\n", + "```python\n", + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "param_grid = {'n_estimators': [50, 100], 'max_depth': [3, 5, None]}\n", + "grid = GridSearchCV(clf, param_grid, cv=5)\n", + "grid.fit(X, y)\n", + "print(\"Best params:\", grid.best_params_)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.2.2. Randomized Parameter Optimization**\n", + "\n", + "Try **random** combinations with a fixed number of iterations.\n", + "\n", + "```python\n", + "from sklearn.model_selection import RandomizedSearchCV\n", + "from scipy.stats import randint\n", + "\n", + "param_dist = {'n_estimators': randint(10, 200), 'max_depth': [3, None]}\n", + "random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=10, cv=5)\n", + "random_search.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.2.3. Successive Halving (HalvingGridSearchCV)**\n", + "\n", + "Faster than grid/random search for **large param spaces**.\n", + "\n", + "```python\n", + "from sklearn.experimental import enable_halving_search_cv\n", + "from sklearn.model_selection import HalvingGridSearchCV\n", + "\n", + "search = HalvingGridSearchCV(clf, param_grid, cv=5)\n", + "search.fit(X, y)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.2.4. Tips for Parameter Search**\n", + "\n", + "* Use **fewer but important** parameters.\n", + "* Use `n_jobs=-1` for parallel search.\n", + "* RandomizedSearch is better when param range is wide.\n", + "\n", + "---\n", + "\n", + "#### **3.2.5. Alternatives**\n", + "\n", + "* **Bayesian Optimization** (e.g., `scikit-optimize`)\n", + "* **Hyperband**\n", + "* **Optuna** and **Ray Tune**\n", + "\n", + "---\n", + "\n", + "### โœ… **3.3 Tuning the Decision Threshold for Class Prediction**\n", + "\n", + "#### **3.3.1. Post-tuning the Decision Threshold**\n", + "\n", + "Use **ROC curves or precision-recall tradeoffs** to tune threshold manually.\n", + "\n", + "```python\n", + "from sklearn.metrics import precision_recall_curve\n", + "y_scores = clf.fit(X, y).predict_proba(X)[:, 1]\n", + "precision, recall, thresholds = precision_recall_curve(y, y_scores)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **3.4 Metrics and Scoring**\n", + "\n", + "#### **3.4.1. Which Scoring Function Should I Use?**\n", + "\n", + "| Task | Metric Example | Scoring string |\n", + "| -------------- | ----------------- | ----------------------------------------- |\n", + "| Classification | Accuracy, F1, AUC | `'accuracy'`, `'f1'`, `'roc_auc'` |\n", + "| Regression | MSE, MAE, Rยฒ | `'neg_mean_squared_error'`, `'r2'` |\n", + "| Clustering | Silhouette, ARI | `silhouette_score`, `adjusted_rand_score` |\n", + "\n", + "---\n", + "\n", + "#### **3.4.2. Scoring API Overview**\n", + "\n", + "* `cross_val_score(estimator, X, y, scoring='f1')`\n", + "* `GridSearchCV(..., scoring='roc_auc')`\n", + "\n", + "---\n", + "\n", + "#### **3.4.3. Defining Custom Scorers**\n", + "\n", + "```python\n", + "from sklearn.metrics import make_scorer, fbeta_score\n", + "fbeta = make_scorer(fbeta_score, beta=2)\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.4.4. Classification Metrics**\n", + "\n", + "* `accuracy_score`, `f1_score`, `precision_score`, `recall_score`, `log_loss`, `roc_auc_score`\n", + "\n", + "---\n", + "\n", + "#### **3.4.5. Multilabel Ranking Metrics**\n", + "\n", + "* `coverage_error`, `label_ranking_loss`, `average_precision_score`\n", + "\n", + "---\n", + "\n", + "#### **3.4.6. Regression Metrics**\n", + "\n", + "* `mean_squared_error`, `mean_absolute_error`, `r2_score`\n", + "\n", + "---\n", + "\n", + "#### **3.4.7. Clustering Metrics**\n", + "\n", + "* With ground truth: `adjusted_rand_score`, `mutual_info_score`\n", + "* Without ground truth: `silhouette_score`, `davies_bouldin_score`\n", + "\n", + "---\n", + "\n", + "#### **3.4.8. Dummy Estimators**\n", + "\n", + "Baseline models for comparison:\n", + "\n", + "```python\n", + "from sklearn.dummy import DummyClassifier\n", + "dummy = DummyClassifier(strategy=\"most_frequent\")\n", + "dummy.fit(X, y)\n", + "print(\"Baseline accuracy:\", dummy.score(X, y))\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **3.5 Validation Curves**\n", + "\n", + "#### **3.5.1. Validation Curve**\n", + "\n", + "Helps choose **best hyperparameter** by plotting training and validation scores.\n", + "\n", + "```python\n", + "from sklearn.model_selection import validation_curve\n", + "import matplotlib.pyplot as plt\n", + "\n", + "param_range = [1, 2, 3, 4, 5]\n", + "train_scores, test_scores = validation_curve(\n", + " clf, X, y, param_name=\"max_depth\", param_range=param_range, cv=5)\n", + "\n", + "plt.plot(param_range, test_scores.mean(axis=1))\n", + "plt.title(\"Validation Curve\")\n", + "plt.xlabel(\"max_depth\")\n", + "plt.ylabel(\"Score\")\n", + "plt.show()\n", + "```\n", + "\n", + "---\n", + "\n", + "#### **3.5.2. Learning Curve**\n", + "\n", + "Shows model performance vs. **training size**.\n", + "\n", + "```python\n", + "from sklearn.model_selection import learning_curve\n", + "\n", + "train_sizes, train_scores, test_scores = learning_curve(clf, X, y, cv=5)\n", + "\n", + "plt.plot(train_sizes, test_scores.mean(axis=1))\n", + "plt.title(\"Learning Curve\")\n", + "plt.xlabel(\"Training Size\")\n", + "plt.ylabel(\"Score\")\n", + "plt.show()\n", + "```\n", + "\n", + "---\n", + "\n", + "## โœ… Summary Table\n", + "\n", + "| Tool/Concept | Purpose | Key Method |\n", + "| ------------------ | ----------------------------------- | ---------------------------------- |\n", + "| Cross-validation | Estimator evaluation | `cross_val_score()` |\n", + "| Grid Search | Exhaustive tuning | `GridSearchCV` |\n", + "| Random Search | Randomized tuning | `RandomizedSearchCV` |\n", + "| Successive Halving | Efficient param search | `HalvingGridSearchCV` |\n", + "| Threshold tuning | Adjust prediction decision boundary | `precision_recall_curve` |\n", + "| Model Scoring | Evaluate predictions | `accuracy_score`, `f1_score`, etc. |\n", + "| Validation Curve | Plot metric vs. hyperparameter | `validation_curve()` |\n", + "| Learning Curve | Plot metric vs. training data size | `learning_curve()` |\n", + "\n", + "---\n" + ], + "metadata": { + "id": "QVNxFYavZHKp" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "## ๐Ÿ”ง 7.3. Preprocessing Data\n", + "\n", + "Scikit-learnโ€™s `preprocessing` module provides utility functions and transformer classes to **prepare raw data** into a format suitable for estimators.\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.1 Standardization (mean removal & variance scaling)**\n", + "\n", + "Transforms features to have **zero mean** and **unit variance** using:\n", + "\n", + "```python\n", + "from sklearn import preprocessing\n", + "import numpy as np\n", + "\n", + "X_train = np.array([[1., -1., 2.],\n", + " [2., 0., 0.],\n", + " [0., 1., -1.]])\n", + "\n", + "scaler = preprocessing.StandardScaler().fit(X_train)\n", + "X_scaled = scaler.transform(X_train)\n", + "```\n", + "\n", + "* `scaler.mean_` โ†’ Mean of each feature.\n", + "* `scaler.scale_` โ†’ Standard deviation of each feature.\n", + "* Use inside pipelines:\n", + "\n", + "```python\n", + "from sklearn.pipeline import make_pipeline\n", + "from sklearn.linear_model import LogisticRegression\n", + "pipe = make_pipeline(preprocessing.StandardScaler(), LogisticRegression())\n", + "pipe.fit(X_train, y_train)\n", + "```\n", + "\n", + "* Disable centering/scaling with `with_mean=False`, `with_std=False`.\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.1.1 Scaling features to a range**\n", + "\n", + "#### **MinMaxScaler**\n", + "\n", + "Scales to a **given range**, default is \\[0, 1].\n", + "\n", + "```python\n", + "min_max_scaler = preprocessing.MinMaxScaler()\n", + "X_train_scaled = min_max_scaler.fit_transform(X_train)\n", + "```\n", + "\n", + "#### **MaxAbsScaler**\n", + "\n", + "Scales by the **maximum absolute value**, suitable for **sparse** or **already centered** data.\n", + "\n", + "```python\n", + "max_abs_scaler = preprocessing.MaxAbsScaler()\n", + "X_train_scaled = max_abs_scaler.fit_transform(X_train)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.1.2 Scaling Sparse Data**\n", + "\n", + "* **Do not center** sparse data (destroys sparsity).\n", + "* Use `MaxAbsScaler` or `StandardScaler(with_mean=False)`.\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.1.3 Scaling Data with Outliers**\n", + "\n", + "Use `RobustScaler` โ€” uses **median and IQR**.\n", + "\n", + "```python\n", + "robust_scaler = preprocessing.RobustScaler()\n", + "X_scaled = robust_scaler.fit_transform(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.1.4 Centering Kernel Matrices**\n", + "\n", + "Use `KernelCenterer` for kernel matrices to center inner products in feature space.\n", + "\n", + "```python\n", + "from sklearn.preprocessing import KernelCenterer\n", + "centerer = KernelCenterer()\n", + "K_centered = centerer.fit_transform(K) # K is your kernel matrix\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.2 Non-linear Transformations**\n", + "\n", + "#### **7.3.2.1 QuantileTransformer** (Uniform Output)\n", + "\n", + "Maps features to a **uniform distribution** \\[0, 1], reduces outlier effects.\n", + "\n", + "```python\n", + "quantile_transformer = preprocessing.QuantileTransformer(random_state=0)\n", + "X_train_trans = quantile_transformer.fit_transform(X_train)\n", + "```\n", + "\n", + "#### **7.3.2.2 Mapping to Gaussian (Normal) Distribution**\n", + "\n", + "```python\n", + "quantile_transformer = preprocessing.QuantileTransformer(output_distribution='normal')\n", + "X_trans = quantile_transformer.fit_transform(X)\n", + "```\n", + "\n", + "#### **PowerTransformer**\n", + "\n", + "Applies **Box-Cox** (positive data only) or **Yeo-Johnson** (handles negative values) to transform features closer to **normal distribution**.\n", + "\n", + "```python\n", + "from sklearn.preprocessing import PowerTransformer\n", + "pt = PowerTransformer(method='yeo-johnson')\n", + "X_pt = pt.fit_transform(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.3 Normalization**\n", + "\n", + "Scales **each sample (row)** to have unit norm (L1, L2, or Max).\n", + "\n", + "```python\n", + "from sklearn.preprocessing import normalize\n", + "\n", + "X = [[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]\n", + "X_normalized = normalize(X, norm='l2')\n", + "```\n", + "\n", + "Or using `Normalizer` (Transformer API):\n", + "\n", + "```python\n", + "normalizer = preprocessing.Normalizer()\n", + "X_norm = normalizer.transform(X)\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.4 Encoding Categorical Features**\n", + "\n", + "#### **OrdinalEncoder**\n", + "\n", + "Converts categories to **integer values**.\n", + "\n", + "```python\n", + "from sklearn.preprocessing import OrdinalEncoder\n", + "\n", + "enc = OrdinalEncoder()\n", + "X = [['male', 'from US'], ['female', 'from Europe']]\n", + "enc.fit_transform(X)\n", + "```\n", + "\n", + "โœ… Handles missing values with:\n", + "\n", + "```python\n", + "OrdinalEncoder(encoded_missing_value=-1)\n", + "```\n", + "\n", + "#### **OneHotEncoder**\n", + "\n", + "Encodes categories as **binary vectors**.\n", + "\n", + "```python\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "\n", + "enc = OneHotEncoder()\n", + "enc.fit(X)\n", + "enc.transform([['female', 'from Asia']]).toarray()\n", + "```\n", + "\n", + "โœ… **Advanced parameters:**\n", + "\n", + "* `drop='first'` โ†’ drops one column per feature to avoid multicollinearity.\n", + "* `drop='if_binary'` โ†’ drops 1 column if binary.\n", + "* `handle_unknown='ignore'` โ†’ unknown categories โ†’ all 0s.\n", + "* `handle_unknown='infrequent_if_exist'` โ†’ marks rare/unknown as infrequent.\n", + "* `sparse_output=False` โ†’ returns dense arrays.\n", + "\n", + "#### Manual categories\n", + "\n", + "```python\n", + "enc = OneHotEncoder(categories=[['male', 'female'], ['US', 'Europe', 'Asia']])\n", + "```\n", + "\n", + "---\n", + "\n", + "### โœ… **7.3.4.1 Infrequent Categories**\n", + "\n", + "Aggregate **rare labels** into an \"infrequent\" bucket.\n", + "\n", + "```python\n", + "OneHotEncoder(min_frequency=2, max_categories=10)\n", + "```\n", + "\n", + "---\n", + "\n", + "## ๐Ÿง  Summary Table\n", + "\n", + "| Task | Method/Class | Notes |\n", + "| ------------------------- | ------------------------------------------------- | ---------------------------------------- |\n", + "| Standardization | `StandardScaler` | Mean = 0, Std = 1 |\n", + "| Range Scaling | `MinMaxScaler`, `MaxAbsScaler` | Scales to \\[0, 1] or \\[-1, 1] |\n", + "| Outlier Robust Scaling | `RobustScaler` | Uses median and IQR |\n", + "| Kernel Matrix Centering | `KernelCenterer` | For precomputed kernels |\n", + "| Uniform Transformation | `QuantileTransformer` | Makes uniform distribution |\n", + "| Gaussian Transformation | `PowerTransformer` | Box-Cox or Yeo-Johnson |\n", + "| Normalization | `normalize()`, `Normalizer` | Row-wise unit norm scaling |\n", + "| Ordinal Encoding | `OrdinalEncoder` | Categorical โ†’ Integer |\n", + "| One-Hot Encoding | `OneHotEncoder` | Categorical โ†’ Binary vectors |\n", + "| Handle Unknown Categories | `handle_unknown=...` | Set to `ignore` or `infrequent_if_exist` |\n", + "| Drop One Category | `drop='first'` | Avoid multicollinearity |\n", + "| Sparse Support | `MaxAbsScaler`, `StandardScaler(with_mean=False)` | Retains sparse format |\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "pa3SiYePZ7L6" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "### ๐Ÿ”ข **1. Encoding Categorical Variables**\n", + "\n", + "#### โœ… **OrdinalEncoder**\n", + "\n", + "* **`min_frequency`**:\n", + "\n", + " * Can be `int โ‰ฅ 1` or `float โˆˆ (0, 1)`\n", + " * Groups infrequent categories into one label.\n", + "* **`max_categories`**:\n", + "\n", + " * Max output features for each input feature.\n", + " * Infrequent categories grouped into one.\n", + "* **Infrequent Category Handling**:\n", + "\n", + " * `handle_unknown=\"use_encoded_value\"` allows encoding unknowns with a specific integer.\n", + " * Missing values encoded with `encoded_missing_value`.\n", + "\n", + "**Example Behavior**:\n", + "\n", + "```python\n", + "# min_frequency=6: categories < 6 treated as infrequent\n", + "# 'dog' and 'snake' are infrequent, grouped together\n", + "```\n", + "\n", + "---\n", + "\n", + "#### โœ… **OneHotEncoder**\n", + "\n", + "* **`min_frequency`**, **`max_categories`** work similarly to OrdinalEncoder.\n", + "* **`handle_unknown=\"infrequent_if_exist\"`**:\n", + "\n", + " * Treat unknown values as infrequent if infrequent support is enabled.\n", + " * Otherwise, unknowns result in zero-vector rows.\n", + "* Feature names:\n", + "\n", + " * Infrequent features labeled `x0_infrequent_sklearn`\n", + "\n", + "**Example Behavior**:\n", + "\n", + "```python\n", + "# dog, snake < 6 โ†’ grouped into 'infrequent' category\n", + "# unknowns mapped to 'infrequent_sklearn' if configured\n", + "```\n", + "\n", + "---\n", + "\n", + "### ๐ŸŽฏ **2. TargetEncoder**\n", + "\n", + "* Encodes categories with **mean target value** per category.\n", + "* Best for **high-cardinality** features like zip codes.\n", + "* **Prevents overfitting** using **cross-fitting (k-fold)** internally during `fit_transform`.\n", + "\n", + "> โš ๏ธ `fit().transform()` โ‰  `fit_transform()`\n", + "> Cross-fitting ensures no data leakage from training to encoding.\n", + "\n", + "* **Missing values** are treated as another category.\n", + "* **Unknown categories** are mapped to `target_mean_`.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿงฎ **3. Discretization**\n", + "\n", + "#### โœ… **KBinsDiscretizer**\n", + "\n", + "* Converts **continuous โ†’ discrete** values (bins).\n", + "* `n_bins`: number of bins per feature.\n", + "* `encode`: `'ordinal'`, `'onehot'`, or `'onehot-dense'`.\n", + "* `strategy`:\n", + "\n", + " * `'uniform'`: equal-width\n", + " * `'quantile'`: equal-freq\n", + " * `'kmeans'`: k-means based binning\n", + "\n", + "**Example Output**:\n", + "\n", + "```python\n", + "X = [[-3, 5, 15], [0, 6, 14], [6, 3, 11]]\n", + "โ†’ Binned into: [[0., 1., 1.], [1., 1., 1.], [2., 0., 0.]]\n", + "```\n", + "\n", + "---\n", + "\n", + "#### โœ… **Custom Binning**\n", + "\n", + "* Use `FunctionTransformer` + `pandas.cut()` for custom bins.\n", + "\n", + "```python\n", + "bins = [0, 1, 13, 20, 60, np.inf]\n", + "labels = ['infant', 'kid', 'teen', 'adult', 'senior']\n", + "```\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ”˜ **4. Binarization**\n", + "\n", + "#### โœ… **Binarizer**\n", + "\n", + "* Converts numerical values into **0/1** based on a threshold.\n", + "* Use for **Bernoulli-based models**.\n", + "* Similar to `KBinsDiscretizer` with 2 bins and single threshold.\n", + "\n", + "```python\n", + "threshold=1.1 โ†’ values >1.1 โ†’ 1, else 0\n", + "```\n", + "\n", + "* Works with both **dense and sparse** matrices.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ“ˆ **5. Generating Polynomial Features**\n", + "\n", + "#### โœ… **PolynomialFeatures**\n", + "\n", + "* Adds **higher-order** and **interaction terms**.\n", + "* `interaction_only=True` โ†’ only interaction terms, no powers.\n", + "\n", + "```python\n", + "X = [[0, 1], [2, 3]]\n", + "โ†’ Features: [1, x1, x2, x1ยฒ, x1x2, x2ยฒ]\n", + "```\n", + "\n", + "---\n", + "\n", + "#### โœ… **SplineTransformer**\n", + "\n", + "* Generates **B-spline basis** (piecewise polynomial features).\n", + "* Controlled by:\n", + "\n", + " * `degree` (typically 3)\n", + " * `n_knots` (determines piece ranges)\n", + "* Advantages over regular polynomials:\n", + "\n", + " * No boundary oscillation (Rungeโ€™s phenomenon)\n", + " * Efficient matrix (banded, low condition number)\n", + " * Extrapolation-friendly\n", + "\n", + "**degree=0** โ‡’ equivalent to **KBinsDiscretizer**\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ›  **6. Custom Transformers**\n", + "\n", + "#### โœ… **FunctionTransformer**\n", + "\n", + "* Wraps a custom Python function into a transformer.\n", + "\n", + "```python\n", + "FunctionTransformer(np.log1p)\n", + "```\n", + "\n", + "* `check_inverse=True` ensures `func` and `inverse_func` are inverses.\n", + "\n", + "---\n", + "\n", + "### ๐Ÿ“ **Revision Notes (Quick Recap)**\n", + "\n", + "| Concept | Key Point |\n", + "| --------------------- | -------------------------------------------------------------------- |\n", + "| `min_frequency` | Group rare categories if frequency < threshold |\n", + "| `max_categories` | Cap output features; rest go into 'infrequent' |\n", + "| `TargetEncoder` | Uses category-wise target mean; avoids leakage with k-fold cross-fit |\n", + "| `KBinsDiscretizer` | Bins continuous โ†’ discrete via uniform, quantile, or k-means |\n", + "| `Binarizer` | Threshold-based binary output (0/1) |\n", + "| `PolynomialFeatures` | Adds powers and interactions of features |\n", + "| `SplineTransformer` | Piecewise polynomial, better numerical stability |\n", + "| `FunctionTransformer` | Make any Python function usable as a scikit-learn transformer |\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "-XdydvZGaFn9" + } + } + ] +} \ No newline at end of file diff --git a/Anusha/Module1/m1.md b/Anusha/Module1/m1.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module1/m1.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module1/readme.md b/Anusha/Module1/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module1/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module10/readme.md b/Anusha/Module10/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module10/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module2/readme.md b/Anusha/Module2/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module2/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module3/readme.md b/Anusha/Module3/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module3/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module4/readme.md b/Anusha/Module4/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module4/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module5/readme.md b/Anusha/Module5/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module5/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module6/readme.md b/Anusha/Module6/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module6/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module7/readme.md b/Anusha/Module7/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module7/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module8/readme.md b/Anusha/Module8/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module8/readme.md @@ -0,0 +1 @@ + diff --git a/Anusha/Module9/readme.md b/Anusha/Module9/readme.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/Anusha/Module9/readme.md @@ -0,0 +1 @@ + diff --git a/README.md b/README.md index 8871b01..0b828c1 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,4 @@ +# Personal Note ๐Ÿ˜Š : This repo will be used by Anusha0501 for tracking her learning peogress. Hence, Please note that โœ… = Module is completed! (Done)

Free AI and Machine Learning Roadmap with Resources

๐Ÿง  Become skilled in Artificial Intelligence, Machine Learning, Generative AI, Deep Learning, Data Science, Natural Language Processing, Reinforcement Learning and more with this complete 0 to 100 repository. @@ -6,11 +7,12 @@ ๐Ÿ“š These are a collection of the best free resources from YouTube and online courses, as well as other popular blogs and websites. + ## Contents **Learning Pathway Modules** -- [Module 0](#module-0---before-you-start) - Before You Start -- [Module 1](#module-1---the-math-behind-it-all) - The Math Behind It All +- [Module 0](#module-0---before-you-start) - Before You Start โœ… +- [Module 1](#module-1---the-math-behind-it-all) - The Math Behind It All - [Module 2](#module-2---building-your-foundation) - Building Your Foundation - [Module 3](#module-3---data-science) - Data Science - [Module 4](#module-4---machine-learning) - Machine Learning