Skip to content

Commit 79a05e0

Browse files
committed
pdate code
1 parent 1107c6a commit 79a05e0

File tree

2 files changed

+29
-6
lines changed

2 files changed

+29
-6
lines changed

Fall20/NeuralNetworks1/NN.py

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,17 @@ def linear_activation(z):
77
def tanh_activation(z):
88
return np.tanh(z)
99

10+
11+
def averageOf3(input1, input2, input3):
12+
w1 = 1.0 / 3.0
13+
w2 = 1.0 / 3.0
14+
w3 = 1.0 / 3.0
15+
bias = 0
16+
z = input1 * w1 + input2 * w2 + input3 * w3 + bias
17+
y = linear_activation(z)
18+
return y
19+
20+
1021
# 2 layer NN for implementation of OR gate
1122
def orgate(input1, input2):
1223
bias = -1
@@ -31,3 +42,5 @@ def boolToBinary(bool1,bool2):
3142

3243
input1, input2 = boolToBinary(True,True)
3344
print(orgate(input1,input2))
45+
46+
print(averageOf3(1, 0, 3))

Fall20/NeuralNetworks1/vectorized.py

Lines changed: 16 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -59,24 +59,34 @@ def random_nn(x):
5959

6060
return a_3
6161

62-
print("On 3 layer network, input {} fed forward gives {}".format(x, random_nn(x)))
62+
# print("On 3 layer network, input {} fed forward gives {}".format(x, random_nn(x)))
6363

6464
# 4 layer NN for computing whether absolute difference is between 1 and 3
6565
# if between 1 and 3 outputs >0 else output <=0
6666
def multilayer(x):
67+
68+
# layer 2
6769
w1 = np.array([1,-1])
6870
b1 = 0
6971
weighted_input1 = np.matmul(w1,x) + b1
70-
output1 = parametric_activation(-1,weighted_input1)
72+
73+
# output of layer 2
74+
output2 = parametric_activation(-1, weighted_input1)
75+
76+
# layer 3
7177
w2 = np.array([1])
7278
b2 = -2
73-
weighted_input2 = np.matmul(w2,[output1]) + b2
74-
output2 = parametric_activation(-1,weighted_input2)
79+
weighted_input2 = np.matmul(w2, [output2]) + b2
80+
81+
# output of layer 3
82+
output3 = parametric_activation(-1, weighted_input2)
83+
84+
# final layer!
7585
w3 = np.array([-1])
7686
b3 = 1
77-
weighted_input3 = np.matmul(w3,[output2]) + b3
87+
weighted_input3 = np.matmul(w3, [output3]) + b3
7888
y = tanh_activation(weighted_input3)
7989
return y
8090

8191
x = np.array([4,5.5])
82-
print(multilayer(x))
92+
# print(multilayer(x))

0 commit comments

Comments
 (0)