Skip to content

Commit 2460cf0

Browse files
committed
Split product up into two fields in IsNormal
1 parent 40bb8c6 commit 2460cf0

File tree

2 files changed

+9
-9
lines changed

2 files changed

+9
-9
lines changed

src/Algebra/Construct/Quotient/Group.agda

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open import Algebra.Morphism.Structures using (IsGroupHomomorphism)
1818
open import Algebra.Properties.Monoid monoid
1919
open import Algebra.Properties.Group G using (⁻¹-anti-homo-∙)
2020
open import Algebra.Structures using (IsGroup)
21-
open import Data.Product.Base using (_,_; proj₁; proj₂)
21+
open import Data.Product.Base using (_,_)
2222
open import Function.Definitions using (Surjective)
2323
open import Level using (_⊔_)
2424
open import Relation.Binary.Core using (_⇒_)
@@ -28,7 +28,7 @@ open import Relation.Binary.Reasoning.Setoid setoid
2828

2929
private
3030
module N = NormalSubgroup N
31-
open NormalSubgroup N using (ι; module ι; normal)
31+
open NormalSubgroup N using (ι; module ι; conjugate; normal)
3232

3333
infix 0 _by_
3434

@@ -66,19 +66,19 @@ open AlgDefs _≋_
6666
≋-∙-cong : Congruent₂ _∙_
6767
≋-∙-cong {x} {y} {u} {v} (g by ιg∙x≈y) (h by ιh∙u≈v) = g N.∙ h′ by begin
6868
ι (g N.∙ h′) ∙ (x ∙ u) ≈⟨ ∙-congʳ (ι.∙-homo g h′) ⟩
69-
(ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x .proj₂) (ι g) u ⟩
69+
(ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x) (ι g) u ⟩
7070
(ι g ∙ x) ∙ (ι h ∙ u) ≈⟨ ∙-cong ιg∙x≈y ιh∙u≈v ⟩
7171
y ∙ v ∎
72-
where h′ = normal h x .proj₁
72+
where h′ = conjugate h x
7373

7474
≋-⁻¹-cong : Congruent₁ _⁻¹
7575
≋-⁻¹-cong {x} {y} (g by ιg∙x≈y) = h by begin
76-
ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) .proj₂
76+
ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) ⟩
7777
x ⁻¹ ∙ ι (g N.⁻¹) ≈⟨ ∙-congˡ (ι.⁻¹-homo g) ⟩
7878
x ⁻¹ ∙ ι g ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (ι g) x ⟨
7979
(ι g ∙ x) ⁻¹ ≈⟨ ⁻¹-cong ιg∙x≈y ⟩
8080
y ⁻¹ ∎
81-
where h = normal (g N.⁻¹) (x ⁻¹) .proj₁
81+
where h = conjugate (g N.⁻¹) (x ⁻¹)
8282

8383
quotientIsGroup : IsGroup _≋_ _∙_ ε _⁻¹
8484
quotientIsGroup = record

src/Algebra/NormalSubgroup.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,6 @@ module Algebra.NormalSubgroup {c ℓ} (G : Group c ℓ) where
1212

1313
open import Algebra.Definitions
1414
open import Algebra.Construct.Sub.Group G using (Subgroup)
15-
open import Data.Product.Base using (∃-syntax; _,_)
1615
open import Level using (suc; _⊔_)
1716

1817
private
@@ -22,7 +21,8 @@ private
2221
record IsNormal {c′ ℓ′} (subgroup : Subgroup c′ ℓ′) : Set (c ⊔ ℓ ⊔ c′) where
2322
open Subgroup subgroup
2423
field
25-
normal : n g ∃[ n′ ] ι n′ G.∙ g G.≈ g G.∙ ι n
24+
conjugate : n g Carrier
25+
normal : n g ι (conjugate n g) G.∙ g G.≈ g G.∙ ι n
2626

2727
record NormalSubgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where
2828
field
@@ -33,5 +33,5 @@ record NormalSubgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) wh
3333
open IsNormal isNormal public
3434

3535
abelian⇒subgroup-normal : {c′ ℓ′} Commutative G._≈_ G._∙_ (subgroup : Subgroup c′ ℓ′) IsNormal subgroup
36-
abelian⇒subgroup-normal ∙-comm subgroup = record { normal = λ n g n , ∙-comm (ι n) g }
36+
abelian⇒subgroup-normal ∙-comm subgroup = record { normal = λ n g ∙-comm (ι n) g }
3737
where open Subgroup subgroup

0 commit comments

Comments
 (0)