@@ -18,7 +18,7 @@ open import Algebra.Morphism.Structures using (IsGroupHomomorphism)
1818open import Algebra.Properties.Monoid monoid
1919open import Algebra.Properties.Group G using (⁻¹-anti-homo-∙)
2020open import Algebra.Structures using (IsGroup)
21- open import Data.Product.Base using (_,_; proj₁; proj₂ )
21+ open import Data.Product.Base using (_,_)
2222open import Function.Definitions using (Surjective)
2323open import Level using (_⊔_)
2424open import Relation.Binary.Core using (_⇒_)
@@ -28,7 +28,7 @@ open import Relation.Binary.Reasoning.Setoid setoid
2828
2929private
3030 module N = NormalSubgroup N
31- open NormalSubgroup N using (ι; module ι ; normal)
31+ open NormalSubgroup N using (ι; module ι ; conjugate; normal)
3232
3333infix 0 _by_
3434
@@ -66,19 +66,19 @@ open AlgDefs _≋_
6666≋-∙-cong : Congruent₂ _∙_
6767≋-∙-cong {x} {y} {u} {v} (g by ιg∙x≈y) (h by ιh∙u≈v) = g N.∙ h′ by begin
6868 ι (g N.∙ h′) ∙ (x ∙ u) ≈⟨ ∙-congʳ (ι.∙-homo g h′) ⟩
69- (ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x .proj₂ ) (ι g) u ⟩
69+ (ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x) (ι g) u ⟩
7070 (ι g ∙ x) ∙ (ι h ∙ u) ≈⟨ ∙-cong ιg∙x≈y ιh∙u≈v ⟩
7171 y ∙ v ∎
72- where h′ = normal h x .proj₁
72+ where h′ = conjugate h x
7373
7474≋-⁻¹-cong : Congruent₁ _⁻¹
7575≋-⁻¹-cong {x} {y} (g by ιg∙x≈y) = h by begin
76- ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) .proj₂ ⟩
76+ ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) ⟩
7777 x ⁻¹ ∙ ι (g N.⁻¹) ≈⟨ ∙-congˡ (ι.⁻¹-homo g) ⟩
7878 x ⁻¹ ∙ ι g ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (ι g) x ⟨
7979 (ι g ∙ x) ⁻¹ ≈⟨ ⁻¹-cong ιg∙x≈y ⟩
8080 y ⁻¹ ∎
81- where h = normal (g N.⁻¹) (x ⁻¹) .proj₁
81+ where h = conjugate (g N.⁻¹) (x ⁻¹)
8282
8383quotientIsGroup : IsGroup _≋_ _∙_ ε _⁻¹
8484quotientIsGroup = record
0 commit comments