Skip to content

Commit 3c7bbdd

Browse files
committed
style
1 parent 99c90ae commit 3c7bbdd

File tree

2 files changed

+11
-8
lines changed

2 files changed

+11
-8
lines changed

src/Algebra/Construct/Sub/Group.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -10,14 +10,14 @@ open import Algebra.Bundles using (Group; RawGroup)
1010

1111
module Algebra.Construct.Sub.Group {c ℓ} (G : Group c ℓ) where
1212

13-
private
14-
module G = Group G
15-
1613
open import Algebra.Structures using (IsGroup)
1714
open import Algebra.Morphism.Structures using (IsGroupMonomorphism)
1815
import Algebra.Morphism.GroupMonomorphism as GroupMonomorphism
1916
open import Level using (suc; _⊔_)
2017

18+
private
19+
module G = Group G
20+
2121
record Subgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where
2222
field
2323
domain : RawGroup c′ ℓ′

src/Algebra/Module/Construct/Sub/Bimodule.agda

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -9,18 +9,21 @@
99
open import Algebra.Bundles using (Ring)
1010
open import Algebra.Module.Bundles using (Bimodule; RawBimodule)
1111

12-
module Algebra.Module.Construct.Sub.Bimodule {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm) where
12+
module Algebra.Module.Construct.Sub.Bimodule
13+
{cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm)
14+
where
15+
16+
open import Algebra.Module.Structures using (IsBimodule)
17+
open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism)
18+
import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism
19+
open import Level using (suc; _⊔_)
1320

1421
private
1522
module R = Ring R
1623
module S = Ring S
1724
module M = Bimodule M
1825

1926
open import Algebra.Construct.Sub.Group M.+ᴹ-group
20-
open import Algebra.Module.Structures using (IsBimodule)
21-
open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism)
22-
import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism
23-
open import Level using (suc; _⊔_)
2427

2528
record Subbimodule cm′ ℓm′ : Set (cr ⊔ cs ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where
2629
field

0 commit comments

Comments
 (0)