File tree Expand file tree Collapse file tree 2 files changed +11
-8
lines changed Expand file tree Collapse file tree 2 files changed +11
-8
lines changed Original file line number Diff line number Diff line change @@ -10,14 +10,14 @@ open import Algebra.Bundles using (Group; RawGroup)
1010
1111module Algebra.Construct.Sub.Group {c ℓ} (G : Group c ℓ) where
1212
13- private
14- module G = Group G
15-
1613open import Algebra.Structures using (IsGroup)
1714open import Algebra.Morphism.Structures using (IsGroupMonomorphism)
1815import Algebra.Morphism.GroupMonomorphism as GroupMonomorphism
1916open import Level using (suc; _⊔_)
2017
18+ private
19+ module G = Group G
20+
2121record Subgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where
2222 field
2323 domain : RawGroup c′ ℓ′
Original file line number Diff line number Diff line change 99open import Algebra.Bundles using (Ring)
1010open import Algebra.Module.Bundles using (Bimodule; RawBimodule)
1111
12- module Algebra.Module.Construct.Sub.Bimodule {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm) where
12+ module Algebra.Module.Construct.Sub.Bimodule
13+ {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm)
14+ where
15+
16+ open import Algebra.Module.Structures using (IsBimodule)
17+ open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism)
18+ import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism
19+ open import Level using (suc; _⊔_)
1320
1421private
1522 module R = Ring R
1623 module S = Ring S
1724 module M = Bimodule M
1825
1926open import Algebra.Construct.Sub.Group M.+ᴹ-group
20- open import Algebra.Module.Structures using (IsBimodule)
21- open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism)
22- import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism
23- open import Level using (suc; _⊔_)
2427
2528record Subbimodule cm′ ℓm′ : Set (cr ⊔ cs ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where
2629 field
You can’t perform that action at this time.
0 commit comments