Skip to content

Commit d5c518b

Browse files
committed
Define propositional reflexivity in terms of abstract reflexivity
1 parent 9940158 commit d5c518b

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

src/Algebra/Construct/Quotient/Group.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -35,8 +35,11 @@ infix 0 _by_
3535
data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
3636
_by_ : g ι g ∙ x ≈ y x ≋ y
3737

38+
≈⇒≋ : _≈_ ⇒ _≋_
39+
≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y)
40+
3841
≋-refl : Reflexive _≋_
39-
≋-refl {x} = N.ε by trans (∙-congʳ ι.ε-homo) (identityˡ x)
42+
≋-refl = ≈⇒≋ refl
4043

4144
≋-sym : Symmetric _≋_
4245
≋-sym {x} {y} (g by ιg∙x≈y) = g N.⁻¹ by begin
@@ -58,9 +61,6 @@ data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
5861
; trans = ≋-trans
5962
}
6063

61-
≈⇒≋ : _≈_ ⇒ _≋_
62-
≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y)
63-
6464
open AlgDefs _≋_
6565

6666
≋-∙-cong : Congruent₂ _∙_

0 commit comments

Comments
 (0)