We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 9940158 commit d5c518bCopy full SHA for d5c518b
src/Algebra/Construct/Quotient/Group.agda
@@ -35,8 +35,11 @@ infix 0 _by_
35
data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
36
_by_ : ∀ g → ι g ∙ x ≈ y → x ≋ y
37
38
+≈⇒≋ : _≈_ ⇒ _≋_
39
+≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y)
40
+
41
≋-refl : Reflexive _≋_
-≋-refl {x} = N.ε by trans (∙-congʳ ι.ε-homo) (identityˡ x)
42
+≋-refl = ≈⇒≋ refl
43
44
≋-sym : Symmetric _≋_
45
≋-sym {x} {y} (g by ιg∙x≈y) = g N.⁻¹ by begin
@@ -58,9 +61,6 @@ data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
58
61
; trans = ≋-trans
59
62
}
60
63
-≈⇒≋ : _≈_ ⇒ _≋_
-≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y)
-
64
open AlgDefs _≋_
65
66
≋-∙-cong : Congruent₂ _∙_
0 commit comments