99# Note: You can write your own datamanager! Call fit with respective train, valid data (numpy matrices)
1010csv_dir = os .path .abspath ("../../datasets/example.csv" )
1111
12- X_train = np .array ([csv_dir ])
13- Y_train = np .array ([0 ])
14-
15- # Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
16- autonet = AutoNetImageClassification (config_preset = "tiny_cs" , result_logger_dir = "logs/" )
17-
18- res = autonet .fit (X_train = X_train ,
19- Y_train = Y_train ,
20- images_shape = [3 , 32 , 32 ],
21- min_budget = 600 ,
22- max_budget = 900 ,
23- max_runtime = 1800 ,
24- save_checkpoints = True ,
25- images_root_folders = [os .path .abspath ("../../datasets/example_images" )])
26-
27- print (res )
28- print ("Score:" , autonet .score (X_test = X_train , Y_test = Y_train ))
12+ def main ():
13+ X_train = np .array ([csv_dir ])
14+ Y_train = np .array ([0 ])
15+
16+ # Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
17+ autonet = AutoNetImageClassification (config_preset = "full_cs" , result_logger_dir = "logs/" )
18+
19+ res = autonet .fit (X_train = X_train ,
20+ Y_train = Y_train ,
21+ images_shape = [3 , 32 , 32 ],
22+ min_budget = 600 ,
23+ max_budget = 900 ,
24+ max_runtime = 1800 ,
25+ save_checkpoints = True ,
26+ images_root_folders = [os .path .abspath ("../../datasets/example_images" )])
27+
28+ print (res )
29+ print ("Score:" , autonet .score (X_test = X_train , Y_test = Y_train ))
30+
31+
32+ if __name__ == '__main__' :
33+ main ()
0 commit comments