Skip to content

Commit 48771ec

Browse files
committed
Fix MWE for multithreading
1 parent 6f428f8 commit 48771ec

File tree

1 file changed

+22
-17
lines changed

1 file changed

+22
-17
lines changed

examples/basics/image_classification.py

Lines changed: 22 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -9,20 +9,25 @@
99
# Note: You can write your own datamanager! Call fit with respective train, valid data (numpy matrices)
1010
csv_dir = os.path.abspath("../../datasets/example.csv")
1111

12-
X_train = np.array([csv_dir])
13-
Y_train = np.array([0])
14-
15-
# Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
16-
autonet = AutoNetImageClassification(config_preset="tiny_cs", result_logger_dir="logs/")
17-
18-
res = autonet.fit(X_train=X_train,
19-
Y_train=Y_train,
20-
images_shape=[3, 32, 32],
21-
min_budget=600,
22-
max_budget=900,
23-
max_runtime=1800,
24-
save_checkpoints=True,
25-
images_root_folders=[os.path.abspath("../../datasets/example_images")])
26-
27-
print(res)
28-
print("Score:", autonet.score(X_test=X_train, Y_test=Y_train))
12+
def main():
13+
X_train = np.array([csv_dir])
14+
Y_train = np.array([0])
15+
16+
# Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
17+
autonet = AutoNetImageClassification(config_preset="full_cs", result_logger_dir="logs/")
18+
19+
res = autonet.fit(X_train=X_train,
20+
Y_train=Y_train,
21+
images_shape=[3, 32, 32],
22+
min_budget=600,
23+
max_budget=900,
24+
max_runtime=1800,
25+
save_checkpoints=True,
26+
images_root_folders=[os.path.abspath("../../datasets/example_images")])
27+
28+
print(res)
29+
print("Score:", autonet.score(X_test=X_train, Y_test=Y_train))
30+
31+
32+
if __name__ == '__main__':
33+
main()

0 commit comments

Comments
 (0)