@@ -143,13 +143,13 @@ class FixedPipelineParams(NamedTuple):
143143 information on what to save. Must be a member of `DisableFileOutputParameters`.
144144 Allowed elements in the list are:
145145
146- + `y_optimization `:
146+ + `y_opt `:
147147 do not save the predictions for the optimization set,
148148 which would later on be used to build an ensemble. Note that SMAC
149149 optimizes a metric evaluated on the optimization set.
150- + `pipeline `:
150+ + `model `:
151151 do not save any individual pipeline files
152- + `pipelines `:
152+ + `cv_model `:
153153 In case of cross validation, disables saving the joint model of the
154154 pipelines fit on each fold.
155155 + `y_test`:
@@ -577,7 +577,7 @@ def _save_to_backend(
577577
578578 backend = self.fixed_pipeline_params.backend
579579 # This file can be written independently of the others down bellow
580- if 'y_optimization ' not in self.disable_file_output and self.fixed_pipeline_params.save_y_opt:
580+ if 'y_opt ' not in self.disable_file_output and self.fixed_pipeline_params.save_y_opt:
581581 backend.save_targets_ensemble(self.y_opt)
582582
583583 seed, budget = self.fixed_pipeline_params.seed, self.evaluator_params.budget
@@ -586,9 +586,9 @@ def _save_to_backend(
586586 seed=int(seed),
587587 idx=int(self.num_run),
588588 budget=float(budget),
589- model=self.pipelines[0] if 'pipeline ' not in self.disable_file_output else None,
590- cv_model=self._fetch_voting_pipeline() if 'pipelines ' not in self.disable_file_output else None,
591- ensemble_predictions=self._get_prediction(opt_pred, 'y_optimization '),
589+ model=self.pipelines[0] if 'model ' not in self.disable_file_output else None,
590+ cv_model=self._fetch_voting_pipeline() if 'cv_model ' not in self.disable_file_output else None,
591+ ensemble_predictions=self._get_prediction(opt_pred, 'y_opt '),
592592 valid_predictions=self._get_prediction(valid_pred, 'y_valid'),
593593 test_predictions=self._get_prediction(test_pred, 'y_test')
594594 )
@@ -608,7 +608,7 @@ def _is_output_possible(
608608 return False
609609
610610 y_dict = {'optimization': opt_pred, 'validation': valid_pred, 'test': test_pred}
611- for inference_name, y in y_dict.items ():
611+ for y in y_dict.values ():
612612 if y is not None and not np.all(np.isfinite(y)):
613613 return False # Model predictions contains NaNs
614614
0 commit comments