@@ -70,15 +70,18 @@ class BayesianOptimization(Observable):
7070 Parameters
7171 ----------
7272 f: function
73- The function to optimize.
73+ Function to be maximized.
74+
7475 pbounds: dict
75- The dictionary with the bounds for the parameters to use in the optimization. The dictionary contains the lower
76- and upper boundaries.
76+ Dictionary with parameters names as keys and a tuple with minimum and maximum values.
77+
7778 random_state: int or numpy.random.RandomState, optional(default=None)
7879 If the value is an integer, it is used as the seed for creating a numpy.random.RandomState.
7980 Otherwise the random state provieded it is used. When set to None, an unseeded random state is generated.
81+
8082 verbose: int, optional(default=2)
8183 The level of verbosity.
84+
8285 bounds_transformer: DomainTransformer, optional(default=None)
8386 If provided, the transformation is applied to the bounds.
8487
@@ -89,6 +92,9 @@ class BayesianOptimization(Observable):
8992
9093 maximize()
9194 Tries to find the parameters that yield the maximum value for the given function.
95+
96+ set_bounds()
97+ Allows changing the lower and upper searching bounds
9298 """
9399 def __init__ (self , f , pbounds , random_state = None , verbose = 2 ,
94100 bounds_transformer = None ):
@@ -143,6 +149,7 @@ def probe(self, params, lazy=True):
143149 ----------
144150 params: dict or list
145151 The parameters where the optimizer will evaluate the function.
152+
146153 lazy: bool, optional(default=True)
147154 If True, the optimizer will evaluate the points when calling maximize().
148155 Otherwise it will evaluate it at the moment.
@@ -206,21 +213,27 @@ def maximize(self,
206213 ----------
207214 init_points : int, optional(default=5)
208215 Number of iterations before the explorations starts the exploration for the maximum.
216+
209217 n_iter: int, optional(default=25)
210218 Number of iterations where the method attempts to find the maximum value.
219+
211220 acq: {'ucb', 'ei', 'poi'}
212221 The acquisition method used.
213222 * 'ucb' stands for the Upper Confidence Bounds method
214223 * 'ei' is the Expected Improvement method
215224 * 'poi' is the Probability Of Improvement criterion.
225+
216226 kappa: float, optional(default=2.576)
217227 Parameter to indicate how closed are the next parameters sampled.
218228 Higher value = favors spaces that are least explored.
219229 Lower value = favors spaces where the regression function is the highest.
230+
220231 kappa_decay: float, optional(default=1)
221232 `kappa` is multiplied by this factor every iteration.
233+
222234 kappa_decay_delay: int, optional(default=0)
223235 Number of iterations that must have passed before applying the decay to `kappa`.
236+
224237 xi: float, optional(default=0.0)
225238 [unused]
226239 """
0 commit comments