|
| 1 | +# |
| 2 | +# CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP) |
| 3 | +# (C) Cloudera, Inc. 2025 |
| 4 | +# All rights reserved. |
| 5 | +# |
| 6 | +# Applicable Open Source License: Apache 2.0 |
| 7 | +# |
| 8 | +# NOTE: Cloudera open source products are modular software products |
| 9 | +# made up of hundreds of individual components, each of which was |
| 10 | +# individually copyrighted. Each Cloudera open source product is a |
| 11 | +# collective work under U.S. Copyright Law. Your license to use the |
| 12 | +# collective work is as provided in your written agreement with |
| 13 | +# Cloudera. Used apart from the collective work, this file is |
| 14 | +# licensed for your use pursuant to the open source license |
| 15 | +# identified above. |
| 16 | +# |
| 17 | +# This code is provided to you pursuant a written agreement with |
| 18 | +# (i) Cloudera, Inc. or (ii) a third-party authorized to distribute |
| 19 | +# this code. If you do not have a written agreement with Cloudera nor |
| 20 | +# with an authorized and properly licensed third party, you do not |
| 21 | +# have any rights to access nor to use this code. |
| 22 | +# |
| 23 | +# Absent a written agreement with Cloudera, Inc. ("Cloudera") to the |
| 24 | +# contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY |
| 25 | +# KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED |
| 26 | +# WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO |
| 27 | +# IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND |
| 28 | +# FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU, |
| 29 | +# AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS |
| 30 | +# ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE |
| 31 | +# OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY |
| 32 | +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR |
| 33 | +# CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES |
| 34 | +# RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF |
| 35 | +# BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF |
| 36 | +# DATA. |
| 37 | +# |
| 38 | +from typing import Generator |
| 39 | +from unittest.mock import patch |
| 40 | +from urllib.parse import urljoin |
| 41 | + |
| 42 | +import botocore |
| 43 | +import pytest |
| 44 | +import responses |
| 45 | + |
| 46 | +from app.config import settings |
| 47 | + |
| 48 | + |
| 49 | +@pytest.fixture |
| 50 | +def mock_bedrock() -> Generator[None, None, None]: |
| 51 | + BEDROCK_URL_BASE = f"https://bedrock.{settings.aws_default_region}.amazonaws.com/" |
| 52 | + TEXT_MODELS = [ |
| 53 | + ("test.unavailable-text-model-v1", "NOT_AVAILABLE"), |
| 54 | + ("test.available-text-model-v1", "AVAILABLE"), |
| 55 | + ] |
| 56 | + EMBEDDING_MODELS = [ |
| 57 | + ("test.unavailable-embedding-model-v1", "NOT_AVAILABLE"), |
| 58 | + ("test.available-embedding-model-v1", "AVAILABLE"), |
| 59 | + ] |
| 60 | + |
| 61 | + r_mock = responses.RequestsMock(assert_all_requests_are_fired=False) |
| 62 | + for model_id, availability in TEXT_MODELS + EMBEDDING_MODELS: |
| 63 | + r_mock.get( |
| 64 | + urljoin( |
| 65 | + BEDROCK_URL_BASE, |
| 66 | + f"foundation-model-availability/{model_id}:0", |
| 67 | + ), |
| 68 | + json={ |
| 69 | + "agreementAvailability": { |
| 70 | + "errorMessage": None, |
| 71 | + "status": availability, |
| 72 | + }, |
| 73 | + "authorizationStatus": "AUTHORIZED", |
| 74 | + "entitlementAvailability": availability, |
| 75 | + "modelId": model_id, |
| 76 | + "regionAvailability": "AVAILABLE", |
| 77 | + }, |
| 78 | + ) |
| 79 | + |
| 80 | + make_api_call = botocore.client.BaseClient._make_api_call |
| 81 | + |
| 82 | + def mock_make_api_call(self, operation_name: str, api_params: dict[str, str]): |
| 83 | + """Mock Bedrock calls, since moto doesn't have full coverage. |
| 84 | +
|
| 85 | + Based on https://docs.getmoto.org/en/latest/docs/services/patching_other_services.html. |
| 86 | +
|
| 87 | + """ |
| 88 | + if operation_name == "ListFoundationModels": |
| 89 | + modality = api_params["byOutputModality"] |
| 90 | + if modality == "TEXT": |
| 91 | + return { |
| 92 | + "modelSummaries": [ |
| 93 | + { |
| 94 | + "modelArn": f"arn:aws:bedrock:{settings.aws_default_region}::foundation-model/{model_id}:0", |
| 95 | + "modelId": f"{model_id}:0", |
| 96 | + "modelName": model_id.upper(), |
| 97 | + "providerName": "Test", |
| 98 | + "inputModalities": ["TEXT"], |
| 99 | + "outputModalities": ["TEXT"], |
| 100 | + "responseStreamingSupported": True, |
| 101 | + "customizationsSupported": [], |
| 102 | + "inferenceTypesSupported": ["ON_DEMAND"], |
| 103 | + "modelLifecycle": {"status": "ACTIVE"}, |
| 104 | + } |
| 105 | + for model_id, _ in TEXT_MODELS |
| 106 | + ], |
| 107 | + } |
| 108 | + elif modality == "EMBEDDING": |
| 109 | + return { |
| 110 | + "modelSummaries": [ |
| 111 | + { |
| 112 | + "modelArn": f"arn:aws:bedrock:{settings.aws_default_region}::foundation-model/{model_id}:0", |
| 113 | + "modelId": f"{model_id}:0", |
| 114 | + "modelName": model_id.upper(), |
| 115 | + "providerName": "Test", |
| 116 | + "inputModalities": ["TEXT"], |
| 117 | + "outputModalities": ["EMBEDDING"], |
| 118 | + "responseStreamingSupported": False, |
| 119 | + "customizationsSupported": [], |
| 120 | + "inferenceTypesSupported": ["ON_DEMAND"], |
| 121 | + "modelLifecycle": {"status": "ACTIVE"}, |
| 122 | + } |
| 123 | + for model_id, _ in EMBEDDING_MODELS |
| 124 | + ], |
| 125 | + } |
| 126 | + else: |
| 127 | + raise ValueError(f"test encountered unexpected modality {modality}") |
| 128 | + elif operation_name == "ListInferenceProfiles": |
| 129 | + return { |
| 130 | + "inferenceProfileSummaries": [ |
| 131 | + { |
| 132 | + "inferenceProfileName": f"US {model_id.upper()}", |
| 133 | + "description": f"Routes requests to {model_id.upper()} in {settings.aws_default_region}.", |
| 134 | + "inferenceProfileArn": f"arn:aws:bedrock:{settings.aws_default_region}:123456789012:inference-profile/{model_id}:0", |
| 135 | + "models": [ |
| 136 | + { |
| 137 | + "modelArn": f"arn:aws:bedrock:{settings.aws_default_region}::foundation-model/{model_id}:0" |
| 138 | + }, |
| 139 | + ], |
| 140 | + "inferenceProfileId": f"{model_id}:0", |
| 141 | + "status": "ACTIVE", |
| 142 | + "type": "SYSTEM_DEFINED", |
| 143 | + } |
| 144 | + for model_id, _ in TEXT_MODELS + EMBEDDING_MODELS |
| 145 | + ], |
| 146 | + } |
| 147 | + |
| 148 | + else: |
| 149 | + # passthrough |
| 150 | + return make_api_call(self, operation_name, api_params) |
| 151 | + |
| 152 | + with patch("botocore.client.BaseClient._make_api_call", new=mock_make_api_call): |
| 153 | + with r_mock: |
| 154 | + yield |
| 155 | + |
| 156 | + |
| 157 | +def test_bedrock(mock_bedrock) -> None: |
| 158 | + from app.services.models.providers import BedrockModelProvider |
| 159 | + |
| 160 | + BedrockModelProvider.list_available_models() |
| 161 | + BedrockModelProvider._get_model_arns() |
0 commit comments