|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +import numpy as np |
| 3 | + |
| 4 | +from modelcache.embedding.base import BaseEmbedding |
| 5 | +from modelcache.utils import import_paddlenlp, import_paddle |
| 6 | + |
| 7 | +import_paddle() |
| 8 | +import_paddlenlp() |
| 9 | + |
| 10 | + |
| 11 | +import paddle # pylint: disable=C0413 |
| 12 | +from paddlenlp.transformers import AutoModel, AutoTokenizer # pylint: disable=C0413 |
| 13 | + |
| 14 | + |
| 15 | +class PaddleNLP(BaseEmbedding): |
| 16 | + def __init__(self, model: str = "ernie-3.0-medium-zh"): |
| 17 | + self.model = AutoModel.from_pretrained(model) |
| 18 | + self.model.eval() |
| 19 | + |
| 20 | + self.tokenizer = AutoTokenizer.from_pretrained(model) |
| 21 | + if not self.tokenizer.pad_token: |
| 22 | + self.tokenizer.pad_token = "<pad>" |
| 23 | + self.__dimension = None |
| 24 | + |
| 25 | + def to_embeddings(self, data, **_): |
| 26 | + """Generate embedding given text input |
| 27 | +
|
| 28 | + :param data: text in string. |
| 29 | + :type data: str |
| 30 | +
|
| 31 | + :return: a text embedding in shape of (dim,). |
| 32 | + """ |
| 33 | + if not isinstance(data, list): |
| 34 | + data = [data] |
| 35 | + inputs = self.tokenizer( |
| 36 | + data, padding=True, truncation=True, return_tensors="pd" |
| 37 | + ) |
| 38 | + outs = self.model(**inputs)[0] |
| 39 | + emb = self.post_proc(outs, inputs).squeeze(0).detach().numpy() |
| 40 | + return np.array(emb).astype("float32") |
| 41 | + |
| 42 | + def post_proc(self, token_embeddings, inputs): |
| 43 | + attention_mask = paddle.ones(inputs["token_type_ids"].shape) |
| 44 | + input_mask_expanded = ( |
| 45 | + attention_mask.unsqueeze(-1).expand(token_embeddings.shape).astype("float32") |
| 46 | + ) |
| 47 | + sentence_embs = paddle.sum( |
| 48 | + token_embeddings * input_mask_expanded, 1 |
| 49 | + ) / paddle.clip(input_mask_expanded.sum(1), min=1e-9) |
| 50 | + return sentence_embs |
| 51 | + |
| 52 | + @property |
| 53 | + def dimension(self): |
| 54 | + """Embedding dimension. |
| 55 | +
|
| 56 | + :return: embedding dimension |
| 57 | + """ |
| 58 | + if not self.__dimension: |
| 59 | + self.__dimension = len(self.to_embeddings("foo")) |
| 60 | + return self.__dimension |
0 commit comments