|
| 1 | +test_that("autoplot works with multiple hidden units parameters", { |
| 2 | + skip_if_no_keras() |
| 3 | + skip_if_not_installed("ggplot2") |
| 4 | + |
| 5 | + # 1. Define a spec with multiple hidden unit parameters |
| 6 | + model_name <- "autoplot_spec" |
| 7 | + on.exit(suppressMessages(remove_keras_spec(model_name)), add = TRUE) |
| 8 | + create_keras_sequential_spec( |
| 9 | + model_name = model_name, |
| 10 | + layer_blocks = list( |
| 11 | + input = function(model, input_shape) { |
| 12 | + keras3::keras_model_sequential(input_shape = input_shape) |
| 13 | + }, |
| 14 | + dense1 = function(model, units = 10) { |
| 15 | + model |> keras3::layer_dense(units = units) |
| 16 | + }, |
| 17 | + dense2 = function(model, units = 10) { |
| 18 | + model |> keras3::layer_dense(units = units) |
| 19 | + }, |
| 20 | + output = function(model, num_classes) { |
| 21 | + model |> |
| 22 | + keras3::layer_dense(units = num_classes, activation = "softmax") |
| 23 | + } |
| 24 | + ), |
| 25 | + mode = "classification" |
| 26 | + ) |
| 27 | + |
| 28 | + tune_spec <- autoplot_spec( |
| 29 | + dense1_units = tune(id = "denseone"), |
| 30 | + dense2_units = tune(id = "densetwo") |
| 31 | + ) |> |
| 32 | + set_engine("keras") |
| 33 | + |
| 34 | + # 2. Set up workflow and tuning grid |
| 35 | + rec <- recipes::recipe(Species ~ ., data = iris) |
| 36 | + tune_wf <- workflows::workflow(rec, tune_spec) |
| 37 | + |
| 38 | + params <- tune::extract_parameter_set_dials(tune_wf) |
| 39 | + |
| 40 | + # The user code should not need to change. |
| 41 | + # `hidden_units` will be `kerasnip::hidden_units` which auto-detects the id. |
| 42 | + params <- params |> |
| 43 | + update( |
| 44 | + denseone = hidden_units(range = c(4L, 8L)), |
| 45 | + densetwo = hidden_units(range = c(4L, 8L)) |
| 46 | + ) |
| 47 | + params$name |
| 48 | + params$id |
| 49 | + params$source |
| 50 | + params$component |
| 51 | + params$component_id |
| 52 | + params$object |
| 53 | + |
| 54 | + grid <- dials::grid_regular(params, levels = 2) |
| 55 | + control <- tune::control_grid(save_pred = FALSE, verbose = FALSE) |
| 56 | + |
| 57 | + # 3. Run tuning |
| 58 | + tune_res <- tune::tune_grid( |
| 59 | + tune_wf, |
| 60 | + resamples = rsample::vfold_cv(iris, v = 2), |
| 61 | + grid = grid, |
| 62 | + control = control |
| 63 | + ) |
| 64 | + |
| 65 | + # 4. Assert that autoplot works without error |
| 66 | + expect_no_error( |
| 67 | + ggplot2::autoplot(tune_res) |
| 68 | + ) |
| 69 | +}) |
0 commit comments