|
| 1 | +--- |
| 2 | +comments: true |
| 3 | +difficulty: 简单 |
| 4 | +edit_url: https://github.com/doocs/leetcode/edit/main/solution/3700-3799/3740.Minimum%20Distance%20Between%20Three%20Equal%20Elements%20I/README.md |
| 5 | +--- |
| 6 | + |
| 7 | +<!-- problem:start --> |
| 8 | + |
| 9 | +# [3740. 三个相等元素之间的最小距离 I](https://leetcode.cn/problems/minimum-distance-between-three-equal-elements-i) |
| 10 | + |
| 11 | +[English Version](/solution/3700-3799/3740.Minimum%20Distance%20Between%20Three%20Equal%20Elements%20I/README_EN.md) |
| 12 | + |
| 13 | +## 题目描述 |
| 14 | + |
| 15 | +<!-- description:start --> |
| 16 | + |
| 17 | +<p>给你一个整数数组 <code>nums</code>。</p> |
| 18 | + |
| 19 | +<p>如果满足 <code>nums[i] == nums[j] == nums[k]</code>,且 <code>(i, j, k)</code> 是 3 个 <strong>不同 </strong>下标,那么三元组 <code>(i, j, k)</code> 被称为 <strong>有效三元组 </strong>。</p> |
| 20 | + |
| 21 | +<p><strong>有效三元组 </strong>的 <strong>距离 </strong>被定义为 <code>abs(i - j) + abs(j - k) + abs(k - i)</code>,其中 <code>abs(x)</code> 表示 <code>x</code> 的 <strong>绝对值 </strong>。</p> |
| 22 | + |
| 23 | +<p>返回一个整数,表示 <strong>有效三元组 </strong>的 <strong>最小 </strong>可能距离。如果不存在 <strong>有效三元组 </strong>,返回 <code>-1</code>。</p> |
| 24 | + |
| 25 | +<p> </p> |
| 26 | + |
| 27 | +<p><strong class="example">示例 1:</strong></p> |
| 28 | + |
| 29 | +<div class="example-block"> |
| 30 | +<p><strong>输入:</strong> <span class="example-io">nums = [1,2,1,1,3]</span></p> |
| 31 | + |
| 32 | +<p><strong>输出:</strong> <span class="example-io">6</span></p> |
| 33 | + |
| 34 | +<p><strong>解释:</strong></p> |
| 35 | + |
| 36 | +<p>最小距离对应的有效三元组是 <code>(0, 2, 3)</code> 。</p> |
| 37 | + |
| 38 | +<p><code>(0, 2, 3)</code> 是一个有效三元组,因为 <code>nums[0] == nums[2] == nums[3] == 1</code>。它的距离为 <code>abs(0 - 2) + abs(2 - 3) + abs(3 - 0) = 2 + 1 + 3 = 6</code>。</p> |
| 39 | +</div> |
| 40 | + |
| 41 | +<p><strong class="example">示例 2:</strong></p> |
| 42 | + |
| 43 | +<div class="example-block"> |
| 44 | +<p><strong>输入:</strong> <span class="example-io">nums = [1,1,2,3,2,1,2]</span></p> |
| 45 | + |
| 46 | +<p><strong>输出:</strong> <span class="example-io">8</span></p> |
| 47 | + |
| 48 | +<p><strong>解释:</strong></p> |
| 49 | + |
| 50 | +<p>最小距离对应的有效三元组是 <code>(2, 4, 6)</code> 。</p> |
| 51 | + |
| 52 | +<p><code>(2, 4, 6)</code> 是一个有效三元组,因为 <code>nums[2] == nums[4] == nums[6] == 2</code>。它的距离为 <code>abs(2 - 4) + abs(4 - 6) + abs(6 - 2) = 2 + 2 + 4 = 8</code>。</p> |
| 53 | +</div> |
| 54 | + |
| 55 | +<p><strong class="example">示例 3:</strong></p> |
| 56 | + |
| 57 | +<div class="example-block"> |
| 58 | +<p><strong>输入:</strong> <span class="example-io">nums = [1]</span></p> |
| 59 | + |
| 60 | +<p><strong>输出:</strong> <span class="example-io">-1</span></p> |
| 61 | + |
| 62 | +<p><strong>解释:</strong></p> |
| 63 | + |
| 64 | +<p>不存在有效三元组,因此答案为 -1。</p> |
| 65 | +</div> |
| 66 | + |
| 67 | +<p> </p> |
| 68 | + |
| 69 | +<p><strong>提示:</strong></p> |
| 70 | + |
| 71 | +<ul> |
| 72 | + <li><code>1 <= n == nums.length <= 100</code></li> |
| 73 | + <li><code>1 <= nums[i] <= n</code></li> |
| 74 | +</ul> |
| 75 | + |
| 76 | +<!-- description:end --> |
| 77 | + |
| 78 | +## 解法 |
| 79 | + |
| 80 | +<!-- solution:start --> |
| 81 | + |
| 82 | +### 方法一:哈希表 |
| 83 | + |
| 84 | +我们可以使用一个哈希表 $\textit{g}$ 来存储数组中每个数字对应的下标列表。遍历数组时,将每个数字的下标添加到哈希表中对应的列表中。定义一个变量 $\textit{ans}$ 来存储答案,初始值设为无穷大 $\infty$。 |
| 85 | + |
| 86 | +接下来,我们遍历哈希表中的每个下标列表。如果某个数字的下标列表长度大于等于 $3$,则说明存在有效三元组。要使得距离最小,我们可以选择该数字下标列表中相邻的三个下标 $i$、$j$ 和 $k$,假设 $i \lt; j \lt; k$,则该三元组的距离为 $j - i + k - j + k - i = 2 \times (k - i)$。我们遍历该下表列表所有相邻的三个下标组合,计算距离并更新答案。 |
| 87 | + |
| 88 | +最终,如果答案仍然是初始值 $\infty$,则说明不存在有效三元组,返回 $-1$;否则返回计算得到的最小距离。 |
| 89 | + |
| 90 | +时间复杂度 $O(n)$,空间复杂度 $O(n)$,其中 $n$ 是数组的长度。 |
| 91 | + |
| 92 | +<!-- tabs:start --> |
| 93 | + |
| 94 | +#### Python3 |
| 95 | + |
| 96 | +```python |
| 97 | +class Solution: |
| 98 | + def minimumDistance(self, nums: List[int]) -> int: |
| 99 | + g = defaultdict(list) |
| 100 | + for i, x in enumerate(nums): |
| 101 | + g[x].append(i) |
| 102 | + ans = inf |
| 103 | + for ls in g.values(): |
| 104 | + for h in range(len(ls) - 2): |
| 105 | + i, k = ls[h], ls[h + 2] |
| 106 | + ans = min(ans, (k - i) * 2) |
| 107 | + return -1 if ans == inf else ans |
| 108 | +``` |
| 109 | + |
| 110 | +#### Java |
| 111 | + |
| 112 | +```java |
| 113 | +class Solution { |
| 114 | + public int minimumDistance(int[] nums) { |
| 115 | + int n = nums.length; |
| 116 | + Map<Integer, List<Integer>> g = new HashMap<>(); |
| 117 | + for (int i = 0; i < n; ++i) { |
| 118 | + g.computeIfAbsent(nums[i], k -> new ArrayList<>()).add(i); |
| 119 | + } |
| 120 | + final int inf = 1 << 30; |
| 121 | + int ans = inf; |
| 122 | + for (var ls : g.values()) { |
| 123 | + int m = ls.size(); |
| 124 | + for (int h = 0; h < m - 2; ++h) { |
| 125 | + int i = ls.get(h); |
| 126 | + int k = ls.get(h + 2); |
| 127 | + int t = (k - i) * 2; |
| 128 | + ans = Math.min(ans, t); |
| 129 | + } |
| 130 | + } |
| 131 | + return ans == inf ? -1 : ans; |
| 132 | + } |
| 133 | +} |
| 134 | +``` |
| 135 | + |
| 136 | +#### C++ |
| 137 | + |
| 138 | +```cpp |
| 139 | +class Solution { |
| 140 | +public: |
| 141 | + int minimumDistance(vector<int>& nums) { |
| 142 | + int n = nums.size(); |
| 143 | + unordered_map<int, vector<int>> g; |
| 144 | + for (int i = 0; i < n; ++i) { |
| 145 | + g[nums[i]].push_back(i); |
| 146 | + } |
| 147 | + const int inf = 1 << 30; |
| 148 | + int ans = inf; |
| 149 | + for (auto& [_, ls] : g) { |
| 150 | + int m = ls.size(); |
| 151 | + for (int h = 0; h < m - 2; ++h) { |
| 152 | + int i = ls[h]; |
| 153 | + int k = ls[h + 2]; |
| 154 | + int t = (k - i) * 2; |
| 155 | + ans = min(ans, t); |
| 156 | + } |
| 157 | + } |
| 158 | + return ans == inf ? -1 : ans; |
| 159 | + } |
| 160 | +}; |
| 161 | +``` |
| 162 | +
|
| 163 | +#### Go |
| 164 | +
|
| 165 | +```go |
| 166 | +func minimumDistance(nums []int) int { |
| 167 | + g := make(map[int][]int) |
| 168 | + for i, x := range nums { |
| 169 | + g[x] = append(g[x], i) |
| 170 | + } |
| 171 | +
|
| 172 | + inf := 1 << 30 |
| 173 | + ans := inf |
| 174 | +
|
| 175 | + for _, ls := range g { |
| 176 | + m := len(ls) |
| 177 | + for h := 0; h < m-2; h++ { |
| 178 | + i := ls[h] |
| 179 | + k := ls[h+2] |
| 180 | + t := (k - i) * 2 |
| 181 | + ans = min(ans, t) |
| 182 | + } |
| 183 | + } |
| 184 | +
|
| 185 | + if ans == inf { |
| 186 | + return -1 |
| 187 | + } |
| 188 | + return ans |
| 189 | +} |
| 190 | +``` |
| 191 | + |
| 192 | +#### TypeScript |
| 193 | + |
| 194 | +```ts |
| 195 | +function minimumDistance(nums: number[]): number { |
| 196 | + const n = nums.length; |
| 197 | + const g = new Map<number, number[]>(); |
| 198 | + |
| 199 | + for (let i = 0; i < n; i++) { |
| 200 | + if (!g.has(nums[i])) { |
| 201 | + g.set(nums[i], []); |
| 202 | + } |
| 203 | + g.get(nums[i])!.push(i); |
| 204 | + } |
| 205 | + |
| 206 | + const inf = 1 << 30; |
| 207 | + let ans = inf; |
| 208 | + |
| 209 | + for (const ls of g.values()) { |
| 210 | + const m = ls.length; |
| 211 | + for (let h = 0; h < m - 2; h++) { |
| 212 | + const i = ls[h]; |
| 213 | + const k = ls[h + 2]; |
| 214 | + const t = (k - i) * 2; |
| 215 | + ans = Math.min(ans, t); |
| 216 | + } |
| 217 | + } |
| 218 | + |
| 219 | + return ans === inf ? -1 : ans; |
| 220 | +} |
| 221 | +``` |
| 222 | + |
| 223 | +<!-- tabs:end --> |
| 224 | + |
| 225 | +<!-- solution:end --> |
| 226 | + |
| 227 | +<!-- problem:end --> |
0 commit comments