Skip to content

Commit 34aae22

Browse files
committed
More miscellaneous edits from UniMath#1547
1 parent 92aafbe commit 34aae22

File tree

2 files changed

+26
-9
lines changed

2 files changed

+26
-9
lines changed

src/foundation/dependent-homotopies.lagda.md

Lines changed: 10 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,11 @@ module _
4545
((x : A) → C x (f x)) → ((x : A) → C x (g x)) → UU (l1 ⊔ l3)
4646
dependent-homotopy f' g' =
4747
(x : A) → dependent-identification (C x) (H x) (f' x) (g' x)
48+
49+
dependent-homotopy' :
50+
((x : A) → C x (f x)) → ((x : A) → C x (g x)) → UU (l1 ⊔ l3)
51+
dependent-homotopy' f' g' =
52+
(x : A) → dependent-identification' (C x) (H x) (f' x) (g' x)
4853
```
4954

5055
### The reflexive dependent homotopy
@@ -57,7 +62,11 @@ module _
5762
5863
refl-dependent-homotopy :
5964
{f' : (x : A) → C x (f x)} → dependent-homotopy C refl-htpy f' f'
60-
refl-dependent-homotopy = refl-htpy
65+
refl-dependent-homotopy x = refl-dependent-identification (C x)
66+
67+
refl-dependent-homotopy' :
68+
{f' : (x : A) → C x (f x)} → dependent-homotopy' C refl-htpy f' f'
69+
refl-dependent-homotopy' x = refl-dependent-identification' (C x)
6170
```
6271

6372
### Iterated dependent homotopies

src/foundation/transport-along-identifications.lagda.md

Lines changed: 16 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,8 @@ open import foundation-core.equivalences
1717
open import foundation-core.function-types
1818
open import foundation-core.homotopies
1919
open import foundation-core.identity-types
20+
open import foundation-core.retractions
21+
open import foundation-core.sections
2022
```
2123

2224
</details>
@@ -41,25 +43,31 @@ module _
4143
{l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A}
4244
where
4345
44-
inv-tr : x = y → B y → B x
45-
inv-tr p = tr B (inv p)
46-
47-
is-retraction-inv-tr : (p : x = y) → inv-tr p ∘ tr B p ~ id
46+
is-retraction-inv-tr : (p : x = y) → is-retraction (tr B p) (inv-tr B p)
4847
is-retraction-inv-tr refl b = refl
4948
50-
is-section-inv-tr : (p : x = y) → tr B pinv-tr p ~ id
49+
is-section-inv-tr : (p : x = y) → is-section (tr B p) (inv-tr B p)
5150
is-section-inv-tr refl b = refl
5251
5352
is-equiv-tr : (p : x = y) → is-equiv (tr B p)
5453
is-equiv-tr p =
5554
is-equiv-is-invertible
56-
( inv-tr p)
55+
( inv-tr B p)
5756
( is-section-inv-tr p)
5857
( is-retraction-inv-tr p)
5958
59+
is-equiv-inv-tr : (p : x = y) → is-equiv (inv-tr B p)
60+
is-equiv-inv-tr p =
61+
is-equiv-is-invertible
62+
( tr B p)
63+
( is-retraction-inv-tr p)
64+
( is-section-inv-tr p)
65+
6066
equiv-tr : x = y → B x ≃ B y
61-
pr1 (equiv-tr p) = tr B p
62-
pr2 (equiv-tr p) = is-equiv-tr p
67+
equiv-tr p = (tr B p , is-equiv-tr p)
68+
69+
equiv-inv-tr : x = y → B y ≃ B x
70+
equiv-inv-tr p = (inv-tr B p , is-equiv-inv-tr p)
6371
```
6472

6573
### Transporting along `refl` is the identity equivalence

0 commit comments

Comments
 (0)