@@ -4636,6 +4636,14 @@ def set_gguf_parameters(self):
46364636class MambaModel (TextModel ):
46374637 model_arch = gguf .MODEL_ARCH .MAMBA
46384638
4639+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4640+ # Avoid using AutoConfig for hparams
4641+ hparams = kwargs .pop ("hparams" , None )
4642+ if hparams is None :
4643+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4644+ hparams = json .load (f )
4645+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4646+
46394647 def set_vocab (self ):
46404648 vocab_size = self .hparams ["vocab_size" ]
46414649 # Round vocab size to next multiple of 8
@@ -4710,6 +4718,100 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
47104718 return [(new_name , data_torch )]
47114719
47124720
4721+ @ModelBase .register ("Mamba2ForCausalLM" )
4722+ class Mamba2Model (TextModel ):
4723+ model_arch = gguf .MODEL_ARCH .MAMBA2
4724+
4725+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4726+ # Avoid using AutoConfig for hparams
4727+ # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
4728+ hparams = kwargs .pop ("hparams" , None )
4729+ if hparams is None :
4730+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4731+ hparams = json .load (f )
4732+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4733+
4734+ def set_vocab (self ):
4735+ vocab_size = self .hparams ["vocab_size" ]
4736+ # Round vocab size to next multiple of 16
4737+ pad_vocab = self .hparams .get ("pad_vocab_size_multiple" , 16 )
4738+ # pad using ceiling division
4739+ # ref: https://stackoverflow.com/a/17511341/22827863
4740+ vocab_size = - (vocab_size // - pad_vocab ) * pad_vocab
4741+ self .hparams ["vocab_size" ] = vocab_size
4742+
4743+ if (self .dir_model / "tokenizer.model" ).is_file ():
4744+ self ._set_vocab_sentencepiece ()
4745+ elif (self .dir_model / "tokenizer.model.v3" ).is_file ():
4746+ # mamba-codestral
4747+ raise NotImplementedError (f"Please rename { self .dir_model / 'tokenizer.model.v3' } to { self .dir_model / 'tokenizer.model' } " )
4748+ elif (self .dir_model / "tokenizer.json" ).is_file ():
4749+ self ._set_vocab_gpt2 ()
4750+ else :
4751+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
4752+ self ._set_vocab_builtin ("gpt-neox" , vocab_size )
4753+
4754+ def set_gguf_parameters (self ):
4755+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4756+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4757+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4758+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4759+ head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4760+ n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4761+
4762+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4763+
4764+ # Fail early for models which don't have a block expansion factor of 2
4765+ # TODO: does this really matter?
4766+ assert d_inner == 2 * d_model
4767+ assert d_inner % head_dim == 0
4768+
4769+ self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4770+ self .gguf_writer .add_embedding_length (d_model )
4771+ self .gguf_writer .add_feed_forward_length (0 ) # unused, but seemingly required when loading
4772+ self .gguf_writer .add_head_count (0 ) # unused, but seemingly required when loading
4773+ self .gguf_writer .add_block_count (self .block_count )
4774+ self .gguf_writer .add_ssm_conv_kernel (d_conv )
4775+ self .gguf_writer .add_ssm_inner_size (d_inner )
4776+ self .gguf_writer .add_ssm_state_size (d_state )
4777+ self .gguf_writer .add_ssm_time_step_rank (d_inner // head_dim )
4778+ self .gguf_writer .add_ssm_group_count (n_group )
4779+ self .gguf_writer .add_layer_norm_rms_eps (rms_norm_eps )
4780+ self .gguf_writer .add_file_type (self .ftype )
4781+
4782+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
4783+
4784+ if name .startswith ("model.backbone" ) or name .startswith ("model.lm_head" ):
4785+ # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
4786+ name = name .removeprefix ("model." )
4787+
4788+ if name .endswith (".dt_bias" ):
4789+ name = name .rpartition (".dt_bias" )[0 ] + ".dt_proj.bias"
4790+
4791+ new_name = self .map_tensor_name (name )
4792+
4793+ if self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_CONV1D , bid ):
4794+ data_torch = data_torch .squeeze ()
4795+ elif any (self .match_model_tensor_name (new_name , t , bid , suffix = "" ) for t in [
4796+ gguf .MODEL_TENSOR .SSM_A ,
4797+ gguf .MODEL_TENSOR .SSM_D ,
4798+ ]):
4799+ # unsqueeze A to use similar shape semantics as Mamba-1
4800+ # (D is also unsqueezed, but for more straightforward broadcast internally)
4801+ data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4802+ elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4803+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4804+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4805+ n_group = self .hparams .get ("n_groups" , 1 )
4806+ data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4807+
4808+ if name .endswith (".A_log" ):
4809+ logger .debug ("A_log --> A ==> " + new_name )
4810+ data_torch = - torch .exp (data_torch )
4811+
4812+ yield (new_name , data_torch )
4813+
4814+
47134815@ModelBase .register ("CohereForCausalLM" )
47144816class CommandR2Model (TextModel ):
47154817 model_arch = gguf .MODEL_ARCH .COMMAND_R
@@ -6477,12 +6579,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
64776579 # maybe we should fallback to text model's arch in that case, since not many models have both
64786580 text_config = hparams .get ("text_config" , {})
64796581 vision_config = hparams .get ("vision_config" , {})
6480- arch = hparams ["architectures" ][0 ]
6582+ arch = None
6583+ if (arches := hparams .get ("architectures" )) is not None and len (arches ) > 0 :
6584+ arch = arches [0 ]
6585+ elif "ssm_cfg" in hparams :
6586+ # For non-hf Mamba and Mamba2 models
6587+ arch = hparams ["ssm_cfg" ].get ("layer" , "Mamba" ) + "ForCausalLM"
6588+
64816589 # if "architectures" is found in the sub-config, use that instead
64826590 if model_type == ModelType .TEXT and text_config .get ("architectures" ) is not None :
64836591 arch = text_config ["architectures" ][0 ]
64846592 elif model_type == ModelType .MMPROJ and vision_config .get ("architectures" ) is not None :
64856593 arch = vision_config ["architectures" ][0 ]
6594+ if arch is None :
6595+ raise ValueError ("Failed to detect model architecture" )
64866596 return arch
64876597
64886598
0 commit comments