Skip to content

stable_diffusion_xl_img2img failed due to dtype missmatch #12632

@jiqing-feng

Description

@jiqing-feng

Describe the bug

The official usage of stabilityai/stable-diffusion-xl-refiner-1.0 :

import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image

pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"

init_image = load_image(url).convert("RGB")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt, image=init_image).images

breaks, error message:

Traceback (most recent call last):
  File "/home/jiqing/HuggingFace/tests/workloads/test_sd.py", line 13, in <module>
    image = pipe(prompt, image=init_image).images
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 124, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py", line 1483, in __c
all__
    image = self.vae.decode(latents, return_dict=False)[0]
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/utils/accelerate_utils.py", line 46, in wrapper
    return method(self, *args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/models/autoencoders/autoencoder_kl.py", line 294, in decode
    decoded = self._decode(z).sample
              ^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/models/autoencoders/autoencoder_kl.py", line 265, in _decode
    dec = self.decoder(z)
          ^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1783, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1794, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/models/autoencoders/vae.py", line 302, in forward
    sample = up_block(sample, latent_embeds)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1783, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1794, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/models/unets/unet_2d_blocks.py", line 2639, in forward
    hidden_states = resnet(hidden_states, temb=temb)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1783, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1794, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jiqing/diffusers/src/diffusers/models/resnet.py", line 341, in forward
    hidden_states = self.conv1(hidden_states)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1783, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1794, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/conv.py", line 553, in forward
    return self._conv_forward(input, self.weight, self.bias)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/conv.py", line 548, in _conv_forward
    return F.conv2d(
           ^^^^^^^^^
RuntimeError: Input type (c10::Half) and bias type (float) should be the same

The regression PR is #12512 . Should we revert this change? @sayakpaul

Reproduction

As before

Logs

System Info

latest version

Who can help?

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions