@@ -59,10 +59,16 @@ def _cfg(url='', **kwargs):
5959 'resnet101d' : _cfg (
6060 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth' ,
6161 interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 , pool_size = (8 , 8 )),
62+ 'resnet101d_320' : _cfg (
63+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth' ,
64+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 320 , 320 ), crop_pct = 1.0 , pool_size = (10 , 10 )),
6265 'resnet152' : _cfg (url = '' , interpolation = 'bicubic' ),
6366 'resnet152d' : _cfg (
6467 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth' ,
6568 interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 , pool_size = (8 , 8 )),
69+ 'resnet152d_320' : _cfg (
70+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth' ,
71+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 320 , 320 ), crop_pct = 1.0 , pool_size = (10 , 10 )),
6672 'resnet200' : _cfg (url = '' , interpolation = 'bicubic' ),
6773 'resnet200d' : _cfg (
6874 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth' ,
@@ -151,8 +157,12 @@ def _cfg(url='', **kwargs):
151157 url = '' ,
152158 interpolation = 'bicubic' ),
153159 'seresnet152d' : _cfg (
154- url = '' ,
160+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth ' ,
155161 interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 , pool_size = (8 , 8 )),
162+ 'seresnet152d_320' : _cfg (
163+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth' ,
164+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 320 , 320 ), crop_pct = 1.0 , pool_size = (10 , 10 )),
165+
156166
157167 # Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
158168 'seresnext26_32x4d' : _cfg (
@@ -710,6 +720,14 @@ def resnet101d(pretrained=False, **kwargs):
710720 return _create_resnet ('resnet101d' , pretrained , ** model_args )
711721
712722
723+ @register_model
724+ def resnet101d_320 (pretrained = False , ** kwargs ):
725+ """Constructs a ResNet-101-D model.
726+ """
727+ model_args = dict (block = Bottleneck , layers = [3 , 4 , 23 , 3 ], stem_width = 32 , stem_type = 'deep' , avg_down = True , ** kwargs )
728+ return _create_resnet ('resnet101d_320' , pretrained , ** model_args )
729+
730+
713731@register_model
714732def resnet152 (pretrained = False , ** kwargs ):
715733 """Constructs a ResNet-152 model.
@@ -727,6 +745,15 @@ def resnet152d(pretrained=False, **kwargs):
727745 return _create_resnet ('resnet152d' , pretrained , ** model_args )
728746
729747
748+ @register_model
749+ def resnet152d_320 (pretrained = False , ** kwargs ):
750+ """Constructs a ResNet-152-D model.
751+ """
752+ model_args = dict (
753+ block = Bottleneck , layers = [3 , 8 , 36 , 3 ], stem_width = 32 , stem_type = 'deep' , avg_down = True , ** kwargs )
754+ return _create_resnet ('resnet152d_320' , pretrained , ** model_args )
755+
756+
730757@register_model
731758def resnet200 (pretrained = False , ** kwargs ):
732759 """Constructs a ResNet-200 model.
@@ -1171,6 +1198,14 @@ def seresnet152d(pretrained=False, **kwargs):
11711198 return _create_resnet ('seresnet152d' , pretrained , ** model_args )
11721199
11731200
1201+ @register_model
1202+ def seresnet152d_320 (pretrained = False , ** kwargs ):
1203+ model_args = dict (
1204+ block = Bottleneck , layers = [3 , 8 , 36 , 3 ], stem_width = 32 , stem_type = 'deep' , avg_down = True ,
1205+ block_args = dict (attn_layer = 'se' ), ** kwargs )
1206+ return _create_resnet ('seresnet152d_320' , pretrained , ** model_args )
1207+
1208+
11741209@register_model
11751210def seresnext26_32x4d (pretrained = False , ** kwargs ):
11761211 model_args = dict (
0 commit comments