Skip to content

Commit 4e2533d

Browse files
committed
Add 320x320 model default cfgs for 101D and 152D ResNets. Add SEResNet-152D weights and 320x320 cfg.
1 parent 0167f74 commit 4e2533d

File tree

1 file changed

+36
-1
lines changed

1 file changed

+36
-1
lines changed

timm/models/resnet.py

Lines changed: 36 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -59,10 +59,16 @@ def _cfg(url='', **kwargs):
5959
'resnet101d': _cfg(
6060
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
6161
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
62+
'resnet101d_320': _cfg(
63+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
64+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
6265
'resnet152': _cfg(url='', interpolation='bicubic'),
6366
'resnet152d': _cfg(
6467
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
6568
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
69+
'resnet152d_320': _cfg(
70+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
71+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
6672
'resnet200': _cfg(url='', interpolation='bicubic'),
6773
'resnet200d': _cfg(
6874
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
@@ -151,8 +157,12 @@ def _cfg(url='', **kwargs):
151157
url='',
152158
interpolation='bicubic'),
153159
'seresnet152d': _cfg(
154-
url='',
160+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth',
155161
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
162+
'seresnet152d_320': _cfg(
163+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth',
164+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
165+
156166

157167
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
158168
'seresnext26_32x4d': _cfg(
@@ -710,6 +720,14 @@ def resnet101d(pretrained=False, **kwargs):
710720
return _create_resnet('resnet101d', pretrained, **model_args)
711721

712722

723+
@register_model
724+
def resnet101d_320(pretrained=False, **kwargs):
725+
"""Constructs a ResNet-101-D model.
726+
"""
727+
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
728+
return _create_resnet('resnet101d_320', pretrained, **model_args)
729+
730+
713731
@register_model
714732
def resnet152(pretrained=False, **kwargs):
715733
"""Constructs a ResNet-152 model.
@@ -727,6 +745,15 @@ def resnet152d(pretrained=False, **kwargs):
727745
return _create_resnet('resnet152d', pretrained, **model_args)
728746

729747

748+
@register_model
749+
def resnet152d_320(pretrained=False, **kwargs):
750+
"""Constructs a ResNet-152-D model.
751+
"""
752+
model_args = dict(
753+
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
754+
return _create_resnet('resnet152d_320', pretrained, **model_args)
755+
756+
730757
@register_model
731758
def resnet200(pretrained=False, **kwargs):
732759
"""Constructs a ResNet-200 model.
@@ -1171,6 +1198,14 @@ def seresnet152d(pretrained=False, **kwargs):
11711198
return _create_resnet('seresnet152d', pretrained, **model_args)
11721199

11731200

1201+
@register_model
1202+
def seresnet152d_320(pretrained=False, **kwargs):
1203+
model_args = dict(
1204+
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
1205+
block_args=dict(attn_layer='se'), **kwargs)
1206+
return _create_resnet('seresnet152d_320', pretrained, **model_args)
1207+
1208+
11741209
@register_model
11751210
def seresnext26_32x4d(pretrained=False, **kwargs):
11761211
model_args = dict(

0 commit comments

Comments
 (0)