Skip to content

Commit 25b7212

Browse files
authored
update docs for 2.0.100 release (#1631)
1 parent 6a341a3 commit 25b7212

File tree

10 files changed

+46
-31
lines changed

10 files changed

+46
-31
lines changed

docker/Dockerfile.compile

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Mini
4040
FROM dev-base AS build
4141
COPY --from=conda /opt/conda /opt/conda
4242
RUN --mount=type=cache,target=/opt/ccache \
43-
curl -fsSL -v -o compile_bundle.sh -O https://github.com/intel/intel-extension-for-pytorch/blob/v2.0.0+cpu/scripts/compile_bundle.sh && \
43+
curl -fsSL -v -o compile_bundle.sh -O https://github.com/intel/intel-extension-for-pytorch/blob/v2.0.100+cpu/scripts/compile_bundle.sh && \
4444
bash compile_bundle.sh && \
4545
python -m pip install --no-cache-dir intel-extension-for-pytorch/dist/*.whl && \
4646
rm -rf intel-extension-for-pytorch llvm-project compile_bundle.sh

docker/Dockerfile.prebuilt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -27,10 +27,10 @@ RUN ${PYTHON} -m pip --no-cache-dir install --upgrade \
2727
# Some TF tools expect a "python" binary
2828
RUN ln -s $(which ${PYTHON}) /usr/local/bin/python
2929

30-
ARG IPEX_VERSION=2.0.0
31-
ARG PYTORCH_VERSION=2.0.0
32-
ARG TORCHAUDIO_VERSION=2.0.0
33-
ARG TORCHVISION_VERSION=0.15.0
30+
ARG IPEX_VERSION=2.0.100
31+
ARG PYTORCH_VERSION=2.0.1
32+
ARG TORCHAUDIO_VERSION=2.0.2
33+
ARG TORCHVISION_VERSION=0.15.2
3434
ARG TORCH_CPU_URL=https://download.pytorch.org/whl/cpu/torch_stable.html
3535

3636
RUN \

docs/tutorials/blogs_publications.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11
Blogs & Publications
22
====================
33

4-
* [Accelerate PyTorch\* INT8 Inference with New “X86” Quantization Backend on X86 CPUs](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-pytorch-int8-inf-with-new-x86-backend.html)
5-
* [Intel® Deep Learning Boost - Improve Inference Performance of BERT Base Model from Hugging Face for Network Security Technology Guide](https://networkbuilders.intel.com/solutionslibrary/intel-deep-learning-boost-improve-inference-performance-of-bert-base-model-from-hugging-face-for-network-security-technology-guide)
4+
* [Intel® Deep Learning Boost (Intel® DL Boost) - Improve Inference Performance of Hugging Face BERT Base Model in Google Cloud Platform (GCP) Technology Guide, Apr 2023](https://networkbuilders.intel.com/solutionslibrary/intel-deep-learning-boost-intel-dl-boost-improve-inference-performance-of-hugging-face-bert-base-model-in-google-cloud-platform-gcp-technology-guide)
5+
* [Get Started with Intel® Extension for PyTorch\* on GPU | Intel Software, Mar 2023](https://www.youtube.com/watch?v=Id-rE2Q7xZ0&t=1s)
6+
* [Accelerate PyTorch\* INT8 Inference with New “X86” Quantization Backend on X86 CPUs, Mar 2023](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-pytorch-int8-inf-with-new-x86-backend.html)
67
* [Accelerating PyTorch Transformers with Intel Sapphire Rapids, Part 1, Jan 2023](https://huggingface.co/blog/intel-sapphire-rapids)
78
* [Intel® Deep Learning Boost - Improve Inference Performance of BERT Base Model from Hugging Face for Network Security Technology Guide, Jan 2023](https://networkbuilders.intel.com/solutionslibrary/intel-deep-learning-boost-improve-inference-performance-of-bert-base-model-from-hugging-face-for-network-security-technology-guide)
89
* [Scaling inference on CPUs with TorchServe, PyTorch Conference, Dec 2022](https://www.youtube.com/watch?v=066_Jd6cwZg)

docs/tutorials/examples.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -312,4 +312,4 @@ $ ldd example-app
312312

313313
## Model Zoo
314314

315-
Use cases that had already been optimized by Intel engineers are available at [Model Zoo for Intel® Architecture](https://github.com/IntelAI/models/tree/pytorch-r2.0-models). A bunch of PyTorch use cases for benchmarking are also available on the [GitHub page](https://github.com/IntelAI/models/tree/pytorch-r2.0-models/benchmarks#pytorch-use-cases). You can get performance benefits out-of-box by simply running scipts in the Model Zoo.
315+
Use cases that had already been optimized by Intel engineers are available at [Model Zoo for Intel® Architecture](https://github.com/IntelAI/models/tree/pytorch-r2.0.100-models). A bunch of PyTorch use cases for benchmarking are also available on the [GitHub page](https://github.com/IntelAI/models/tree/pytorch-r2.0.100-models/benchmarks#pytorch-use-cases). You can get performance benefits out-of-box by simply running scipts in the Model Zoo.

docs/tutorials/features/hypertune.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,15 +95,15 @@ This is the script as an optimization function.
9595
'target_val' # optional. Target value of the objective function. Default is -float('inf')
9696
```
9797

98-
Have a look at the [example script](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py).
98+
Have a look at the [example script](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py).
9999

100100
## Usage Examples
101101

102102
**Tuning `ncores_per_instance` for minimum `latency`**
103103

104104
Suppose we want to tune `ncores_per_instance` for a single instance to minimize latency for resnet50 on a machine with two Intel(R) Xeon(R) Platinum 8180M CPUs. Each socket has 28 physical cores and another 28 logical cores.
105105

106-
Run the following command with [example.yaml](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/example.yaml) and [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py):
106+
Run the following command with [example.yaml](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/example.yaml) and [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py):
107107
```
108108
python -m intel_extension_for_pytorch.cpu.hypertune --conf_file <hypertune_directory>/example/example.yaml <hypertune_directory>/example/resnet50.py
109109
```
@@ -115,6 +115,6 @@ latency: 12.339081764221191
115115
```
116116
15 `ncores_per_instance` gave the minimum latency.
117117

118-
You will also find the tuning history in `<output_dir>/record.csv`. You can take [a sample csv file](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/record.csv) as a reference.
118+
You will also find the tuning history in `<output_dir>/record.csv`. You can take [a sample csv file](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/record.csv) as a reference.
119119

120120
Hypertune can also optimize multi-objective function. Add as many objectives as you would like to your script.

docs/tutorials/installation.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ Make sure PyTorch is installed so that the extension will work properly. For eac
1717

1818
|PyTorch Version|Extension Version|
1919
|--|--|
20-
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.0 "v2.0.0")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu)|
20+
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
2121
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|
2222
|[v1.12.\*](https://github.com/pytorch/pytorch/tree/v1.12.0 "v1.12.0")|[v1.12.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.12.300)|
2323
|[v1.11.\*](https://github.com/pytorch/pytorch/tree/v1.11.0 "v1.11.0")|[v1.11.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.11.200)|
@@ -48,6 +48,7 @@ Prebuilt wheel files availability matrix for Python versions
4848

4949
| Extension Version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | Python 3.11 |
5050
| :--: | :--: | :--: | :--: | :--: | :--: | :--: |
51+
| 2.0.100 | | | ✔️ | ✔️ | ✔️ | ✔️ |
5152
| 2.0.0 | | | ✔️ | ✔️ | ✔️ | ✔️ |
5253
| 1.13.100 | | ✔️ | ✔️ | ✔️ | ✔️ | |
5354
| 1.13.0 | | ✔️ | ✔️ | ✔️ | ✔️ | |
@@ -88,7 +89,7 @@ python -m pip install <package_name>==<version_name> -f https://developer.intel.
8889
To ensure a smooth compilation, a script is provided in the Github repo. If you would like to compile the binaries from source, it is highly recommended to utilize this script.
8990

9091
```bash
91-
$ wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/v2.0.0+cpu/scripts/compile_bundle.sh
92+
$ wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/v2.0.100+cpu/scripts/compile_bundle.sh
9293
$ bash compile_bundle.sh
9394
```
9495

@@ -152,6 +153,7 @@ docker pull intel/intel-optimized-pytorch:latest
152153

153154
|Version|Pre-cxx11 ABI|cxx11 ABI|
154155
|--|--|--|
156+
| 2.0.100 | [libintel-ext-pt-2.0.100+cpu.run](https://intel-extension-for-pytorch.s3.amazonaws.com/libipex/cpu/libintel-ext-pt-2.0.100%2Bcpu.run) | [libintel-ext-pt-cxx11-abi-2.0.100+cpu.run](https://intel-extension-for-pytorch.s3.amazonaws.com/libipex/cpu/libintel-ext-pt-cxx11-abi-2.0.100%2Bcpu.run) |
155157
| 2.0.0 | [libintel-ext-pt-2.0.0+cpu.run](https://intel-extension-for-pytorch.s3.amazonaws.com/libipex/cpu/libintel-ext-pt-2.0.0%2Bcpu.run) | [libintel-ext-pt-cxx11-abi-2.0.0+cpu.run](https://intel-extension-for-pytorch.s3.amazonaws.com/libipex/cpu/libintel-ext-pt-cxx11-abi-2.0.0%2Bcpu.run) |
156158
| 1.13.100 | [libintel-ext-pt-1.13.100+cpu.run](https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/libipex/cpu/libintel-ext-pt-1.13.100%2Bcpu.run) | [libintel-ext-pt-cxx11-abi-1.13.100+cpu.run](https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/libipex/cpu/libintel-ext-pt-cxx11-abi-1.13.100%2Bcpu.run) |
157159
| 1.13.0 | [libintel-ext-pt-1.13.0+cpu.run](https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/libipex/cpu/libintel-ext-pt-1.13.0%2Bcpu.run) | [libintel-ext-pt-cxx11-abi-1.13.0+cpu.run](https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/libipex/cpu/libintel-ext-pt-cxx11-abi-1.13.0%2Bcpu.run) |

docs/tutorials/performance_tuning/known_issues.md

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,13 @@ Known Issues
77

88
- If you found the workload runs with Intel® Extension for PyTorch\* occupies a remarkably large amount of memory, you can try to reduce the occupied memory size by setting the `--weights_prepack` parameter of the `ipex.optimize()` function to `False`.
99

10+
- If running DDP with launch script, explicit configuration of the `nprocs_per_node` argument won't take effect. Please replace line 155 of the `intel_extension_for_pytorch/cpu/launch/launcher_distributed.py` file to the following code snippet.
11+
12+
```
13+
if args.nprocs_per_node == 0:
14+
args.nprocs_per_node = len(set([c.node for c in self.cpuinfo.pool_all])) if len(nodes_list) == 0 else len(nodes_list)
15+
```
16+
1017
- If inference is done with a custom function, `conv+bn` folding feature of the `ipex.optimize()` function doesn't work.
1118

1219
```
@@ -54,13 +61,13 @@ Known Issues
5461
- When working with an NLP model inference with dynamic input data length appling with TorchScript (either `torch.jit.trace` or `torch.jit.script`), performance with Intel® Extension for PyTorch\* is possible to be less than that without Intel® Extension for PyTorch\*. In this case, adding the workarounds below would help solve this issue.
5562
- Python interface
5663
```python
57-
torch._C._jit_set_texpr_fuser_enabled(False)
58-
```
64+
torch._C._jit_set_texpr_fuser_enabled(False)
65+
```
5966
- C++ interface
6067
```c++
6168
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
62-
torch::jit::setTensorExprFuserEnabled(false);
63-
```
69+
torch::jit::setTensorExprFuserEnabled(false);
70+
```
6471

6572
## INT8
6673

docs/tutorials/performance_tuning/launch_script.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ run_20210712212258_instance_0_cores_0-43.log
9292

9393
## Usage Examples
9494

95-
Example script [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.0+cpu/examples/cpu/inference/resnet50_general_inference_script.py) will be used in this guide.
95+
Example script [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/examples/cpu/inference/resnet50_general_inference_script.py) will be used in this guide.
9696

9797
- Single instance for inference
9898
- [I. Use all physical cores](#i-use-all-physical-cores)

docs/tutorials/releases.md

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,23 @@
11
Releases
22
=============
33

4+
## 2.0.100
5+
6+
### Highlights
7+
8+
- Enhanced the functionality of Intel® Extension for PyTorch as a backend of `torch.compile`: [#1568](https://github.com/intel/intel-extension-for-pytorch/commit/881c6fe0e6f8ab84a564b02216ddb96a3589363e) [#1585](https://github.com/intel/intel-extension-for-pytorch/commit/f5ce6193496ae68a57d688a3b3bbff541755e4ce) [#1590](https://github.com/intel/intel-extension-for-pytorch/commit/d8723df73358ae495ae5f62b5cdc90ae08920d27)
9+
- Fixed the Stable Diffusion fine-tuning accuracy issue [#1587](https://github.com/intel/intel-extension-for-pytorch/commit/bc76ab133b7330852931db9cda8dca7c69a0b594) [#1594](https://github.com/intel/intel-extension-for-pytorch/commit/b2983b4d35fc0ea7f5bdaf37f6e269256f8c36c4)
10+
- Fixed the ISA check on old hypervisor based VM [#1513](https://github.com/intel/intel-extension-for-pytorch/commit/a34eab577c4efa1c336b1f91768075bb490c1f14)
11+
- Addressed the excessive memory usage in weight prepack [#1593](https://github.com/intel/intel-extension-for-pytorch/commit/ee7dc343790d1d63bab1caf71e57dd3f7affdce9)
12+
- Fixed the weight prepack of convolution when `padding_mode` is not `'zeros'` [#1580](https://github.com/intel/intel-extension-for-pytorch/commit/02449ccb3a6b475643116532a4cffbe1f974c1d9)
13+
- Optimized the INT8 LSTM performance [#1566](https://github.com/intel/intel-extension-for-pytorch/commit/fed42b17391fed477ae8adec83d920f8f8fb1a80)
14+
- Fixed TransNetV2 calibration failure [#1564](https://github.com/intel/intel-extension-for-pytorch/commit/046f7dfbaa212389ac58ae219597c16403e66bad)
15+
- Fixed BF16 RNN-T inference when `AVX512_CORE_VNNI` ISA is used [#1592](https://github.com/intel/intel-extension-for-pytorch/commit/023c104ab5953cf63b84efeb5176007d876015a2)
16+
- Fixed the ROIAlign operator [#1589](https://github.com/intel/intel-extension-for-pytorch/commit/6beb3d4661f09f55d031628ebe9fa6d63f04cab1)
17+
- Enabled execution on designated numa nodes with launch script [#1517](https://github.com/intel-innersource/frameworks.ai.pytorch.ipex-cpu/commit/2ab3693d50d6edd4bfae766f75dc273396a79488)
18+
19+
**Full Changelog**: https://github.com/intel/intel-extension-for-pytorch/compare/v2.0.0+cpu...v2.0.100+cpu
20+
421
## 2.0.0
522

623
We are pleased to announce the release of Intel® Extension for PyTorch\* 2.0.0-cpu which accompanies PyTorch 2.0. This release mainly brings in our latest optimization on NLP (BERT), support of PyTorch 2.0's hero API –- torch.compile as one of its backend, together with a set of bug fixing and small optimization.

scripts/compile_bundle.sh

Lines changed: 1 addition & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ VER_LLVM="llvmorg-13.0.0"
66
VER_PYTORCH=""
77
VER_TORCHVISION=""
88
VER_TORCHAUDIO=""
9-
VER_IPEX="v2.0.0+cpu"
9+
VER_IPEX="v2.0.100+cpu"
1010

1111
# Check existance of required Linux commands
1212
for CMD in gcc g++ python git nproc; do
@@ -52,9 +52,6 @@ ABI=$(python -c "import torch; print(int(torch._C._GLIBCXX_USE_CXX11_ABI))")
5252
# Compile individual component
5353
# LLVM
5454
cd ../llvm-project
55-
if [ ${UID} -eq 0 ]; then
56-
git config --global --add safe.directory `pwd`
57-
fi
5855
if [ -d build ]; then
5956
rm -rf build
6057
fi
@@ -72,14 +69,8 @@ ln -s ${LLVM_ROOT}/bin/llvm-config ${LLVM_ROOT}/bin/llvm-config-13
7269
export PATH=${LLVM_ROOT}/bin:$PATH
7370
export LD_LIBRARY_PATH=${LLVM_ROOT}/lib:$LD_LIBRARY_PATH
7471
cd ..
75-
if [ ${UID} -eq 0 ]; then
76-
git config --global --unset safe.directory
77-
fi
7872
# Intel® Extension for PyTorch*
7973
cd ../intel-extension-for-pytorch
80-
if [ ${UID} -eq 0 ]; then
81-
git config --global --add safe.directory `pwd`
82-
fi
8374
python -m pip install -r requirements.txt
8475
export USE_LLVM=${LLVM_ROOT}
8576
export LLVM_DIR=${USE_LLVM}/lib/cmake/llvm
@@ -90,9 +81,6 @@ unset DNNL_GRAPH_BUILD_COMPILER_BACKEND
9081
unset LLVM_DIR
9182
unset USE_LLVM
9283
python -m pip install --force-reinstall dist/*.whl
93-
if [ ${UID} -eq 0 ]; then
94-
git config --global --unset safe.directory
95-
fi
9684

9785
# Sanity Test
9886
cd ..

0 commit comments

Comments
 (0)