1919#include < string>
2020#include < vector>
2121
22- #include " utils.h"
2322#include " auto_opt_config.hpp"
24- #include " quantization/Observer.hpp"
25- #include " quantization/Config.hpp"
2623#include " quantization/AutoCast.hpp"
24+ #include " quantization/Config.hpp"
25+ #include " quantization/Observer.hpp"
26+ #include " utils.h"
27+ #include " verbose.hpp"
2728
2829// #include "ProcessGroupCCL.hpp"
2930#include < pybind11/chrono.h>
@@ -47,6 +48,7 @@ py::object GetRevisions() {
4748
4849void InitIpexModuleBindings (py::module m) {
4950 m.def (" _get_git_revs" , []() { return GetRevisions (); });
51+ m.def (" mkldnn_set_verbose" , &torch_ipex::verbose::_mkldnn_set_verbose);
5052 // ipex amp autocast
5153 m.def (" is_autocast_enabled" , &torch_ipex::autocast::is_autocast_enabled);
5254 m.def (" set_autocast_enabled" , &torch_ipex::autocast::set_autocast_enabled);
@@ -65,7 +67,7 @@ void InitIpexModuleBindings(py::module m) {
6567 m.def (" autocast_decrement_nesting" ,
6668 &torch_ipex::autocast::autocast_decrement_nesting);
6769 m.def (" clear_autocast_cache" , &torch_ipex::autocast::clear_autocast_cache);
68-
70+
6971 // llga path
7072 m.def (" _jit_set_llga_enabled" , &torch::jit::RegisterLlgaFuseGraph::setEnabled);
7173 m.def (" _jit_llga_enabled" , &torch::jit::RegisterLlgaFuseGraph::isEnabled);
@@ -108,7 +110,7 @@ void InitIpexModuleBindings(py::module m) {
108110 d[" weight_granularity" ] = indicator.get_indicator_weight_granularity ();
109111 std::vector<float > x_scales, y_scales;
110112 std::vector<int64_t > x_zero_points, y_zero_points;
111- std::vector<quant_utils::TensorQuantizationParams> x_params, y_params;
113+ std::vector<quant_utils::TensorQuantizationParams> x_params, y_params;
112114 std::tie (x_params, y_params) = indicator.get_indicator_scales ();
113115 for (auto & p: x_params) {
114116 x_scales.push_back (p.scale );
@@ -123,13 +125,14 @@ void InitIpexModuleBindings(py::module m) {
123125 d[" input_zero_points" ] = x_zero_points;
124126 d[" output_scales" ] = y_scales;
125127 d[" output_zero_points" ] = y_zero_points;
126- d[" weight_scales" ] = w_scales;
128+ d[" weight_scales" ] = w_scales;
127129 std::vector<std::string> i_quantized_dtypes, o_quantized_dtypes;
128130 std::tie (i_quantized_dtypes, o_quantized_dtypes)= indicator.get_indicator_quantized_dtypes ();
129131 d[" input_quantized_dtypes" ] = i_quantized_dtypes;
130132 d[" output_quantized_dtypes" ] = o_quantized_dtypes;
131133 std::vector<bool > inputs_quantized, outputs_quantized;
132- std::tie (inputs_quantized, outputs_quantized) = indicator.get_indicator_insert_quantized_status ();
134+ std::tie (inputs_quantized, outputs_quantized) =
135+ indicator.get_indicator_insert_quantized_status ();
133136 d[" inputs_quantized" ] = inputs_quantized;
134137 d[" outputs_quantized" ] = outputs_quantized;
135138 std::vector<std::string> inputs_flow, outputs_flow;
@@ -188,7 +191,7 @@ using namespace torch::jit;
188191
189192void InitIpexBindings (py::module m) {
190193 InitIpexModuleBindings (m);
191-
194+
192195 // // llga jit fusion pass
193196 // torch::jit::registerPrePass([](std::shared_ptr<Graph>& g) {
194197 // if (torch::jit::RegisterLlgaFuseGraph::isEnabled()) {
0 commit comments