@@ -46,7 +46,8 @@ open import Relation.Binary.PropositionalEquality.Properties as ≡
4646 using (module ≡-Reasoning )
4747open import Relation.Nullary.Decidable as Dec
4848 using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′)
49- open import Relation.Nullary.Negation.Core using (¬_; contradiction)
49+ open import Relation.Nullary.Negation.Core
50+ using (¬_; contradiction; contradiction-irr)
5051open import Relation.Nullary.Reflects using (invert)
5152open import Relation.Unary as U
5253 using (U; Pred; Decidable; _⊆_; Satisfiable; Universal)
@@ -506,15 +507,15 @@ inject!-< {suc n} {suc i} (suc k) = s≤s (inject!-< k)
506507-- lower₁
507508------------------------------------------------------------------------
508509
509- toℕ-lower₁ : ∀ i .(p : n ≢ toℕ i) → toℕ (lower₁ i p ) ≡ toℕ i
510- toℕ-lower₁ {ℕ.zero} zero 0≢0 = lower₁-¬0≢0 0≢0
510+ toℕ-lower₁ : ∀ i .(n≢i : n ≢ toℕ i) → toℕ (lower₁ i n≢i ) ≡ toℕ i
511+ toℕ-lower₁ {ℕ.zero} zero 0≢0 = contradiction-irr refl 0≢0
511512toℕ-lower₁ {ℕ.suc m} zero _ = refl
512513toℕ-lower₁ {ℕ.suc m} (suc i) ne = cong ℕ.suc (toℕ-lower₁ i (ne ∘ cong ℕ.suc))
513514
514515lower₁-injective : ∀ .{n≢i : n ≢ toℕ i} .{n≢j : n ≢ toℕ j} →
515516 lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j
516- lower₁-injective {zero} {zero} {_} {0≢0} {_} _ = lower₁-¬0≢0 0≢0
517- lower₁-injective {zero} {_} {zero} {_} {0≢0} _ = lower₁-¬0≢0 0≢0
517+ lower₁-injective {zero} {zero} {_} {0≢0} {_} _ = contradiction-irr refl 0≢0
518+ lower₁-injective {zero} {_} {zero} {_} {0≢0} _ = contradiction-irr refl 0≢0
518519lower₁-injective {suc n} {zero} {zero} {_} {_} _ = refl
519520lower₁-injective {suc n} {suc i} {suc j} {_} {_} eq =
520521 cong suc (lower₁-injective (suc-injective eq))
@@ -524,7 +525,7 @@ lower₁-injective {suc n} {suc i} {suc j} {_} {_} eq =
524525
525526inject₁-lower₁ : ∀ (i : Fin (suc n)) .(n≢i : n ≢ toℕ i) →
526527 inject₁ (lower₁ i n≢i) ≡ i
527- inject₁-lower₁ {zero} zero 0≢0 = lower₁-¬0≢0 0≢0
528+ inject₁-lower₁ {zero} zero 0≢0 = contradiction-irr refl 0≢0
528529inject₁-lower₁ {suc n} zero _ = refl
529530inject₁-lower₁ {suc n} (suc i) n+1≢i+1 =
530531 cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc))
@@ -541,7 +542,7 @@ lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)
541542
542543lower₁-irrelevant : ∀ (i : Fin (suc n)) .(n≢i₁ n≢i₂ : n ≢ toℕ i) →
543544 lower₁ i n≢i₁ ≡ lower₁ i n≢i₂
544- lower₁-irrelevant {zero} zero 0≢0 _ = lower₁-¬0≢0 0≢0
545+ lower₁-irrelevant {zero} zero 0≢0 _ = contradiction-irr refl 0≢0
545546lower₁-irrelevant {suc n} zero _ _ = refl
546547lower₁-irrelevant {suc n} (suc i) _ _ =
547548 cong suc (lower₁-irrelevant i _ _)
@@ -563,7 +564,7 @@ lower-injective {n = suc n} (suc i) (suc j) eq =
563564
564565lower₁≗lower : ∀ (i : Fin (suc n)) .(n≢i : n ≢ toℕ i) →
565566 lower₁ i n≢i ≡ lower i (ℕ.≤∧≢⇒< (toℕ≤pred[n]′ i) (n≢i ∘ sym))
566- lower₁≗lower {n = zero} zero 0≢0 = lower₁-¬0≢0 0≢0
567+ lower₁≗lower {n = zero} zero 0≢0 = contradiction-irr refl 0≢0
567568lower₁≗lower {n = suc _ } zero _ = refl
568569lower₁≗lower {n = suc _ } (suc i) ne = cong suc (lower₁≗lower i (ne ∘ cong suc))
569570
0 commit comments