|
| 1 | +<!DOCTYPE html> |
| 2 | +<html lang="en"> |
| 3 | + <head> |
| 4 | + <meta charset="UTF-8"> |
| 5 | + <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| 6 | + <title>Bivariate Gaussian Joint Density</title> |
| 7 | + <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> |
| 8 | + <script src="https://cdnjs.cloudflare.com/ajax/libs/numeric/1.2.6/numeric.min.js"></script> |
| 9 | + <style> |
| 10 | + body { |
| 11 | + font-family: 'Arial', sans-serif; |
| 12 | + background-color: #f4f4f9; |
| 13 | + margin: 0; |
| 14 | + padding: 0; |
| 15 | + } |
| 16 | + .container { |
| 17 | + max-width: 1200px; |
| 18 | + margin: 0 auto; |
| 19 | + padding: 20px; |
| 20 | + } |
| 21 | + .header { |
| 22 | + text-align: center; |
| 23 | + padding: 20px; |
| 24 | + } |
| 25 | + .controls { |
| 26 | + display: flex; |
| 27 | + justify-content: center; |
| 28 | + flex-wrap: wrap; |
| 29 | + margin-bottom: 20px; |
| 30 | + } |
| 31 | + .control-group { |
| 32 | + margin: 10px; |
| 33 | + padding: 10px; |
| 34 | + background-color: #ffffff; |
| 35 | + border: 1px solid #ddd; |
| 36 | + border-radius: 5px; |
| 37 | + box-shadow: 0 1px 3px rgba(0,0,0,0.1); |
| 38 | + } |
| 39 | + .control-group label { |
| 40 | + display: block; |
| 41 | + margin-bottom: 5px; |
| 42 | + } |
| 43 | + .control-group input[type="range"] { |
| 44 | + width: 200px; |
| 45 | + } |
| 46 | + .plots { |
| 47 | + display: grid; |
| 48 | + grid-template-columns: 1fr 1fr; |
| 49 | + gap: 20px; |
| 50 | + } |
| 51 | + .plot { |
| 52 | + width: 100%; |
| 53 | + height: 400px; |
| 54 | + } |
| 55 | + </style> |
| 56 | + </head> |
| 57 | + <body> |
| 58 | + <div class="container"> |
| 59 | + <div class="header"> |
| 60 | + <h1>Joint Density of Bivariate Gaussian Random Variables</h1> |
| 61 | + </div> |
| 62 | + |
| 63 | + <div style="margin:0 20px 20px 20px;">This demonstration shows a 3D plot and a plot of a bivariate |
| 64 | + Gaussian (Normal) density with zero means. The standard deviations |
| 65 | + and correlation coefficient for |
| 66 | + the random variables can be adjusted by moving the sliders. Hold |
| 67 | + down the mouse button on the 3D surface plot and drag around to |
| 68 | + change the viewing perspective. |
| 69 | + </div> |
| 70 | + |
| 71 | + <div class="controls"> |
| 72 | + <div class="control-group"> |
| 73 | + <label for="std_x">Standard Deviation of X: <span id="std_x_val">1</span></label> |
| 74 | + <input type="range" id="std_x" min="0.01" max="2" step="0.01" value="1"> |
| 75 | + </div> |
| 76 | + <div class="control-group"> |
| 77 | + <label for="std_y">Standard Deviation of Y: <span id="std_y_val">1</span></label> |
| 78 | + <input type="range" id="std_y" min="0.01" max="2" step="0.01" value="1"> |
| 79 | + </div> |
| 80 | + <div class="control-group"> |
| 81 | + <label for="rho">Correlation Coefficient: <span id="rho_val">0</span></label> |
| 82 | + <input type="range" id="rho" min="-0.99" max="0.99" step="0.01" value="0"> |
| 83 | + </div> |
| 84 | + </div> |
| 85 | + |
| 86 | + <div class="plots"> |
| 87 | + <div id="plot_surface" class="plot"></div> |
| 88 | + <div id="plot_heatmap" class="plot"></div> |
| 89 | + </div> |
| 90 | + </div> |
| 91 | + |
| 92 | + <H3 style="margin-left:100px;">Some Things to Try</H3> |
| 93 | + <div style="margin-left:110px;width:800px;"> |
| 94 | + <ol> |
| 95 | + <li style="margin-top:1em;"> Start with the default variances of 1 and note the effect of changing the correlation coefficient. What are the possible angles of the major axis of the ellipses you create?</li> |
| 96 | + <li style="margin-top:1em;"> Now set the correlation coefficient to a value close to +1. Adjust the standard deviations for the two random variables. What are the possible angles of the major axis of the ellipses you create?</li> |
| 97 | + <li style="margin-top:1em;"> Now set the correlation coefficient to a value close to -1. Then adjust the standard deviations for the two random variables. What are the possible angles of the major axis of the ellipses you create?</li> |
| 98 | + </ol> |
| 99 | + </div> |
| 100 | + <script> |
| 101 | + const std_x_elem = document.getElementById('std_x'); |
| 102 | + const std_y_elem = document.getElementById('std_y'); |
| 103 | + const rho_elem = document.getElementById('rho'); |
| 104 | + |
| 105 | + const std_x_val_elem = document.getElementById('std_x_val'); |
| 106 | + const std_y_val_elem = document.getElementById('std_y_val'); |
| 107 | + const rho_val_elem = document.getElementById('rho_val'); |
| 108 | + |
| 109 | + std_x_elem.oninput = () => { std_x_val_elem.textContent = std_x_elem.value; updatePlots(); }; |
| 110 | + std_y_elem.oninput = () => { std_y_val_elem.textContent = std_y_elem.value; updatePlots(); }; |
| 111 | + rho_elem.oninput = () => { rho_val_elem.textContent = rho_elem.value; updatePlots(); }; |
| 112 | + |
| 113 | + var firstTime = true; |
| 114 | + |
| 115 | + function updatePlots() { |
| 116 | + const std_x = parseFloat(std_x_elem.value); |
| 117 | + const std_y = parseFloat(std_y_elem.value); |
| 118 | + const rho = parseFloat(rho_elem.value); |
| 119 | + |
| 120 | + const mean = [0, 0]; |
| 121 | + var rho2 = rho; |
| 122 | + if (rho2==1) { |
| 123 | + rho2=0.999; |
| 124 | + } else if (rho2==-1) { |
| 125 | + rho2=-0.999; |
| 126 | + } |
| 127 | + const cov = [[std_x ** 2, rho2 * std_x * std_y], [rho2 * std_x * std_y, std_y ** 2]]; |
| 128 | + |
| 129 | + const x_vals = numeric.linspace(-3, 3, 100); |
| 130 | + const y_vals = numeric.linspace(-3, 3, 100); |
| 131 | + |
| 132 | + const X = []; |
| 133 | + const Y = []; |
| 134 | + for (let i = 0; i < x_vals.length; i++) { |
| 135 | + for (let j = 0; j < y_vals.length; j++) { |
| 136 | + X.push([x_vals[i], y_vals[j]]); |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | + const inv_cov = numeric.inv(cov); |
| 141 | + const det_cov = numeric.det(cov); |
| 142 | + const norm_const = 1 / (2 * Math.PI * Math.sqrt(det_cov)); |
| 143 | + |
| 144 | + const mvn_pdf = (pos, mean, inv_cov) => { |
| 145 | + const exponent = numeric.dotVV(numeric.dot(pos, inv_cov), pos); |
| 146 | + return norm_const*Math.exp(-0.5*exponent); |
| 147 | + }; |
| 148 | + |
| 149 | + const Z = numeric.rep([100, 100], 0); |
| 150 | + for (let i = 0; i < x_vals.length; i++) { |
| 151 | + for (let j = 0; j < y_vals.length; j++) { |
| 152 | + Z[i][j] = mvn_pdf(X[i + x_vals.length * j], mean, inv_cov); |
| 153 | + } |
| 154 | + } |
| 155 | + |
| 156 | + const data_surface = [{ |
| 157 | + z: Z, |
| 158 | + x: x_vals, |
| 159 | + y: y_vals, |
| 160 | + type: 'surface', |
| 161 | + showscale: false // Hide the colorbar |
| 162 | + }]; |
| 163 | + |
| 164 | + const data_heatmap = [{ |
| 165 | + z: Z, |
| 166 | + x: x_vals, |
| 167 | + y: y_vals, |
| 168 | + type: 'heatmap', |
| 169 | + }]; |
| 170 | + |
| 171 | + const layout = { |
| 172 | + margin: { l: 0, r: 0, b: 0, t: 0 }, |
| 173 | + }; |
| 174 | + |
| 175 | + const layout_surface = { |
| 176 | + margin: { l: 0, r: 0, b: 0, t: 0 }, |
| 177 | + uirevision:true, |
| 178 | + scene: { |
| 179 | + camera: { |
| 180 | + eye: { x: -0.5, y: -2, z: 1.5 }, |
| 181 | + up: { x: 0, y: 0, z: 1 }, |
| 182 | + center: { x: 0, y: 0, z: 0 }, |
| 183 | + } |
| 184 | + } |
| 185 | + }; |
| 186 | + var fig = Plotly.react('plot_surface', data_surface, layout_surface); |
| 187 | + Plotly.react('plot_heatmap', data_heatmap, layout); |
| 188 | + } |
| 189 | + |
| 190 | + window.onload = updatePlots; |
| 191 | + </script> |
| 192 | + |
| 193 | + |
| 194 | + |
| 195 | + </body> |
| 196 | +</html> |
0 commit comments