|
| 1 | +# SLO-Aware Routing with Latency Prediction |
| 2 | + |
| 3 | +This document describes the modifications made to the InferencePool Helm chart to support SLO-aware routing with latency prediction sidecars. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +The SLO-aware routing feature enables intelligent request routing based on predicted latency using machine learning models. The system consists of: |
| 8 | + |
| 9 | +1. **EPP (Endpoint Picker) Container**: Main routing logic with latency prediction enabled |
| 10 | +2. **Training Server Sidecar**: Continuously trains XGBoost models on observed latency metrics |
| 11 | +3. **Prediction Server Sidecars**: Multiple replicas that serve latency predictions for TTFT (Time to First Token) and TPOT (Time Per Output Token) |
| 12 | + |
| 13 | +## Architecture |
| 14 | + |
| 15 | +``` |
| 16 | +┌─────────────────────────────────────────────────────┐ |
| 17 | +│ EPP Pod │ |
| 18 | +├──────────────┬──────────────┬──────────────────────┤ |
| 19 | +│ EPP │ Training │ Prediction Servers │ |
| 20 | +│ Container │ Server │ (3 replicas) │ |
| 21 | +│ │ │ │ |
| 22 | +│ Port 9002 │ Port 8000 │ Ports 8001-8003 │ |
| 23 | +│ (ext-proc) │ (training) │ (prediction) │ |
| 24 | +└──────────────┴──────────────┴──────────────────────┘ |
| 25 | + │ │ │ |
| 26 | + │ └──────┬───────────┘ |
| 27 | + │ │ |
| 28 | + │ Model Training |
| 29 | + │ & Synchronization |
| 30 | + │ |
| 31 | + Routing Decision |
| 32 | + (with latency prediction) |
| 33 | +``` |
| 34 | + |
| 35 | +## Modified Files |
| 36 | + |
| 37 | +### 1. `templates/epp-deployment.yaml` |
| 38 | +- Added support for `sidecars.trainingServer` configuration |
| 39 | +- Added support for `sidecars.predictionServers` with configurable replicas |
| 40 | +- Automatically creates volumes for model storage |
| 41 | +- Injects ConfigMaps for training and prediction server configuration |
| 42 | + |
| 43 | +### 2. `templates/epp-service.yaml` |
| 44 | +- Automatically exposes ports for training server (8000) |
| 45 | +- Automatically exposes ports for prediction servers (8001-8003 by default) |
| 46 | +- Ports are only added when sidecars are enabled |
| 47 | + |
| 48 | +### 3. `templates/latency-predictor-config.yaml` (NEW) |
| 49 | +- Creates ConfigMap for training server configuration |
| 50 | +- Creates ConfigMap for prediction server configuration |
| 51 | +- Supports customizable model paths, retraining intervals, and other parameters |
| 52 | + |
| 53 | +### 4. `values.yaml` |
| 54 | +- Added comprehensive `sidecars` section with commented examples |
| 55 | +- Supports configuration for training and prediction server images, resources, and behavior |
| 56 | + |
| 57 | +### 5. `values-slo-example.yaml` (NEW) |
| 58 | +- Complete working example of SLO-aware routing configuration |
| 59 | +- Demonstrates all required settings including EPP flags, environment variables, and plugin configuration |
| 60 | + |
| 61 | +## Usage |
| 62 | + |
| 63 | +### Quick Start with Example Configuration |
| 64 | + |
| 65 | +```bash |
| 66 | +# Install with SLO-aware routing enabled |
| 67 | +helm install my-slo-pool oci://registry.k8s.io/gateway-api-inference-extension/charts/inferencepool \ |
| 68 | + --namespace inference \ |
| 69 | + --values values-slo-example.yaml \ |
| 70 | + --set inferencePool.modelServers.matchLabels.app=my-model-server |
| 71 | +``` |
| 72 | + |
| 73 | +### Custom Configuration |
| 74 | + |
| 75 | +Create a custom values file: |
| 76 | + |
| 77 | +```yaml |
| 78 | +inferenceExtension: |
| 79 | + image: |
| 80 | + hub: quay.io/your-org |
| 81 | + name: epp |
| 82 | + tag: slo-experimental |
| 83 | + |
| 84 | + flags: |
| 85 | + - name: enable-latency-predictor |
| 86 | + value: "true" |
| 87 | + - name: v |
| 88 | + value: "4" |
| 89 | + |
| 90 | + env: |
| 91 | + - name: PREDICTION_SERVER_URL |
| 92 | + value: "http://localhost:8001,http://localhost:8002,http://localhost:8003" |
| 93 | + - name: TRAINING_SERVER_URL |
| 94 | + value: "http://localhost:8000" |
| 95 | + - name: LATENCY_MAX_SAMPLE_SIZE |
| 96 | + value: "10000" |
| 97 | + |
| 98 | + pluginsCustomConfig: |
| 99 | + slo-plugins.yaml: | |
| 100 | + apiVersion: inference.networking.x-k8s.io/v1alpha1 |
| 101 | + kind: EndpointPickerConfig |
| 102 | + plugins: |
| 103 | + - type: slo-request-tracker |
| 104 | + - type: slo-scorer |
| 105 | + - type: slo-aware-profile-handler |
| 106 | + schedulingProfiles: |
| 107 | + - name: slo |
| 108 | + plugins: |
| 109 | + - pluginRef: slo-request-tracker |
| 110 | + - pluginRef: slo-scorer |
| 111 | +
|
| 112 | + sidecars: |
| 113 | + trainingServer: |
| 114 | + enabled: true |
| 115 | + image: |
| 116 | + hub: quay.io/your-org |
| 117 | + name: latency-training |
| 118 | + tag: latest |
| 119 | + resources: |
| 120 | + requests: |
| 121 | + cpu: "2000m" |
| 122 | + memory: "4Gi" |
| 123 | + limits: |
| 124 | + cpu: "4000m" |
| 125 | + memory: "8Gi" |
| 126 | + |
| 127 | + predictionServers: |
| 128 | + enabled: true |
| 129 | + replicas: 3 |
| 130 | + image: |
| 131 | + hub: quay.io/your-org |
| 132 | + name: latency-prediction |
| 133 | + tag: latest |
| 134 | + resources: |
| 135 | + requests: |
| 136 | + cpu: "500m" |
| 137 | + memory: "1Gi" |
| 138 | + limits: |
| 139 | + cpu: "1000m" |
| 140 | + memory: "2Gi" |
| 141 | +``` |
| 142 | +
|
| 143 | +## Configuration Reference |
| 144 | +
|
| 145 | +### Training Server Configuration |
| 146 | +
|
| 147 | +| Parameter | Description | Default | |
| 148 | +|-----------|-------------|---------| |
| 149 | +| `sidecars.trainingServer.enabled` | Enable training server sidecar | `false` | |
| 150 | +| `sidecars.trainingServer.image.hub` | Container registry | `us-central1-docker.pkg.dev/k8s-staging-images/gateway-api-inference-extension` | |
| 151 | +| `sidecars.trainingServer.image.name` | Image name | `latency-training` | |
| 152 | +| `sidecars.trainingServer.image.tag` | Image tag | `latest` | |
| 153 | +| `sidecars.trainingServer.config.retrainingIntervalSec` | Retraining interval in seconds | `1` | |
| 154 | +| `sidecars.trainingServer.config.minSamplesForRetrain` | Minimum samples before retraining | `100` | |
| 155 | +| `sidecars.trainingServer.config.modelType` | ML model type | `xgboost` | |
| 156 | +| `sidecars.trainingServer.persistence.enabled` | Enable persistent storage for models | `false` | |
| 157 | + |
| 158 | +### Prediction Server Configuration |
| 159 | + |
| 160 | +| Parameter | Description | Default | |
| 161 | +|-----------|-------------|---------| |
| 162 | +| `sidecars.predictionServers.enabled` | Enable prediction server sidecars | `false` | |
| 163 | +| `sidecars.predictionServers.replicas` | Number of prediction server replicas | `3` | |
| 164 | +| `sidecars.predictionServers.image.hub` | Container registry | `us-central1-docker.pkg.dev/k8s-staging-images/gateway-api-inference-extension` | |
| 165 | +| `sidecars.predictionServers.image.name` | Image name | `latency-prediction` | |
| 166 | +| `sidecars.predictionServers.image.tag` | Image tag | `latest` | |
| 167 | +| `sidecars.predictionServers.config.modelSyncIntervalSec` | Model sync interval in seconds | `10` | |
| 168 | +| `sidecars.predictionServers.config.modelType` | ML model type | `xgboost` | |
| 169 | + |
| 170 | +### EPP Environment Variables |
| 171 | + |
| 172 | +| Variable | Description | Default | |
| 173 | +|----------|-------------|---------| |
| 174 | +| `PREDICTION_SERVER_URL` | Comma-separated prediction server URLs | `http://localhost:8001,http://localhost:8002,http://localhost:8003` | |
| 175 | +| `TRAINING_SERVER_URL` | Training server URL | `http://localhost:8000` | |
| 176 | +| `LATENCY_MAX_SAMPLE_SIZE` | Maximum sample size for latency prediction | `10000` | |
| 177 | +| `NEG_HEADROOM_TPOT_WEIGHT` | Weight for TPOT in negative headroom calculation | `0.2` | |
| 178 | +| `NEG_HEADROOM_TTFT_WEIGHT` | Weight for TTFT in negative headroom calculation | `0.8` | |
| 179 | + |
| 180 | +## Building Container Images |
| 181 | + |
| 182 | +### Prerequisites |
| 183 | + |
| 184 | +```bash |
| 185 | +cd /path/to/gateway-api-inference-extension |
| 186 | +git checkout slo-prediction-experimental |
| 187 | +``` |
| 188 | + |
| 189 | +### Build EPP Image |
| 190 | + |
| 191 | +```bash |
| 192 | +export IMAGE_REGISTRY="quay.io/your-org" |
| 193 | +export EPP_TAG="slo-experimental" |
| 194 | +make image-build image-push |
| 195 | +``` |
| 196 | + |
| 197 | +### Build Latency Predictor Images |
| 198 | + |
| 199 | +```bash |
| 200 | +cd latencypredictor-v1 |
| 201 | +
|
| 202 | +# Edit build-deploy.sh to set your registry |
| 203 | +# Then build and push: |
| 204 | +./build-deploy.sh build |
| 205 | +
|
| 206 | +# Tag and push manually |
| 207 | +docker tag latencypredictor-v2-training-server:latest ${IMAGE_REGISTRY}/latency-training:slo-experimental |
| 208 | +docker tag latencypredictor-v2-prediction-server:latest ${IMAGE_REGISTRY}/latency-prediction:slo-experimental |
| 209 | +docker push ${IMAGE_REGISTRY}/latency-training:slo-experimental |
| 210 | +docker push ${IMAGE_REGISTRY}/latency-prediction:slo-experimental |
| 211 | +``` |
| 212 | + |
| 213 | +## Verification |
| 214 | + |
| 215 | +After deployment, verify all containers are running: |
| 216 | + |
| 217 | +```bash |
| 218 | +# Check pod status |
| 219 | +kubectl get pods -n your-namespace |
| 220 | +
|
| 221 | +# Expected: 1 pod with 5 containers (1 EPP + 1 training + 3 prediction) |
| 222 | +
|
| 223 | +# Check EPP logs |
| 224 | +kubectl logs -n your-namespace <pod-name> -c epp |
| 225 | +
|
| 226 | +# Check training server logs |
| 227 | +kubectl logs -n your-namespace <pod-name> -c training-server |
| 228 | +
|
| 229 | +# Check prediction server logs |
| 230 | +kubectl logs -n your-namespace <pod-name> -c prediction-server-1 |
| 231 | +``` |
| 232 | + |
| 233 | +## Service Ports |
| 234 | + |
| 235 | +When sidecars are enabled, the service automatically exposes these ports: |
| 236 | + |
| 237 | +- `9002`: EPP gRPC ext-proc (always) |
| 238 | +- `9090`: EPP metrics (always) |
| 239 | +- `8000`: Training server (when `trainingServer.enabled: true`) |
| 240 | +- `8001-800N`: Prediction servers (when `predictionServers.enabled: true`, N = replicas) |
| 241 | + |
| 242 | +## Plugins |
| 243 | + |
| 244 | +The SLO-aware routing requires these plugins: |
| 245 | + |
| 246 | +- `slo-request-tracker`: Tracks request SLO requirements |
| 247 | +- `slo-scorer`: Scores endpoints based on predicted latency vs SLO |
| 248 | +- `slo-aware-profile-handler`: Handles different scheduling profiles |
| 249 | +- `max-score-picker`: Selects endpoint with maximum score |
| 250 | + |
| 251 | +### Scheduling Profiles |
| 252 | + |
| 253 | +- **default**: Standard routing with queue and kv-cache scoring |
| 254 | +- **slo**: SLO-aware routing using latency predictions |
| 255 | + |
| 256 | +## Troubleshooting |
| 257 | + |
| 258 | +### Sidecars Not Starting |
| 259 | + |
| 260 | +Check if images are accessible: |
| 261 | +```bash |
| 262 | +kubectl describe pod <pod-name> -n your-namespace |
| 263 | +``` |
| 264 | + |
| 265 | +### Training Server Issues |
| 266 | + |
| 267 | +Check ConfigMap and logs: |
| 268 | +```bash |
| 269 | +kubectl get configmap latency-predictor-config -n your-namespace -o yaml |
| 270 | +kubectl logs <pod-name> -c training-server -n your-namespace |
| 271 | +``` |
| 272 | + |
| 273 | +### Prediction Server Issues |
| 274 | + |
| 275 | +Verify prediction servers can reach training server: |
| 276 | +```bash |
| 277 | +kubectl exec <pod-name> -c prediction-server-1 -n your-namespace -- \ |
| 278 | + curl http://localhost:8000/healthz |
| 279 | +``` |
| 280 | + |
| 281 | +## Integration with llm-d |
| 282 | + |
| 283 | +To use this chart in llm-d, update your helmfile: |
| 284 | + |
| 285 | +```yaml |
| 286 | +releases: |
| 287 | + - name: gaie-slo |
| 288 | + namespace: llm-d-slo |
| 289 | + chart: oci://quay.io/your-org/charts/inferencepool |
| 290 | + version: v1.0.1-slo |
| 291 | + values: |
| 292 | + - gaie-slo/values.yaml |
| 293 | + - gaie-slo/values-slo.yaml |
| 294 | +``` |
| 295 | + |
| 296 | +See the main documentation for complete integration instructions. |
0 commit comments