You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: sphinx/build/html/non-tutorials/scope.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -291,8 +291,8 @@
291
291
measured. This tutorial also demonstrates the use of an external tool
292
292
to visualize breaking bonds, and show the possibility to import
293
293
LAMMPS-generated YAML log files into Python.</p>
294
-
<p>In <aclass="reference internal" href="../tutorial3/polymer-in-water.html#all-atoms-label"><spanclass="std std-ref">Polymer in water</span></a>, two componentstextemdash liquid water
295
-
(flexible three-point model) and a polymer moleculetextemdash are merged and
294
+
<p>In <aclass="reference internal" href="../tutorial3/polymer-in-water.html#all-atoms-label"><spanclass="std std-ref">Polymer in water</span></a>, two component - liquid water
295
+
(flexible three-point model) and a polymer molecule - are merged and
296
296
equilibrated. A long-range solver is used to handle the electrostatic
297
297
interactions accurately, and the system is equilibrated in the
298
298
isothermal-isobaric (NPT) ensemble; then, a stretching force is applied
<p>Next, we combine the <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nve</span></code> with a <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">langevin</span></code> thermostat:</p>
430
+
<p>Next, we use the Newtonian equations of motion with
431
+
a Langevin thermostat by combining the <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nve</span></code> with a
@@ -436,6 +438,12 @@ <h3>System creation and settings<a class="headerlink" href="#system-creation-and
436
438
in the NVT ensemble, maintaining a constant number of
437
439
atoms <spanclass="math notranslate nohighlight">\(N\)</span>, constant volume <spanclass="math notranslate nohighlight">\(V\)</span>, and a temperature <spanclass="math notranslate nohighlight">\(T\)</span> that
438
440
fluctuates around a target value.</p>
441
+
<divclass="non-title-info admonition">
442
+
<pclass="admonition-title">Note</p>
443
+
<p>LAMMPS documentation suggests using damping constants for thermostats that
444
+
are approximately 100 times the timestep value. In this case, a value of
445
+
500 is used, resulting in a relatively weak coupling to the thermostat.</p>
446
+
</div>
439
447
<p>To ensure that the equilibration time is sufficient, we will track the evolution of
440
448
the number of atoms in the central - energetically unfavorable - region,
441
449
referred to as <codeclass="docutils literal notranslate"><spanclass="pre">mymes</span></code>, using the <codeclass="docutils literal notranslate"><spanclass="pre">n_center</span></code> variable:</p>
@@ -496,7 +504,7 @@ <h3>Run and data acquisition<a class="headerlink" href="#run-and-data-acquisitio
496
504
<p>Here, the <codeclass="docutils literal notranslate"><spanclass="pre">chunk/atom</span></code> command discretizes the simulation
497
505
domain into spatial bins of size 2~AA{} along the <spanclass="math notranslate nohighlight">\(x\)</span> direction,
498
506
and the <codeclass="docutils literal notranslate"><spanclass="pre">ave/chunk</span></code> command computes and outputs the number density of
499
-
atoms within each bin to the file <strong>free-sampling.dat</strong>.}
507
+
atoms within each bin to the file <strong>free-sampling.dat</strong>.
500
508
The step count is reset to 0 using <codeclass="docutils literal notranslate"><spanclass="pre">reset_timestep</span></code> to synchronize it
501
509
with the output times of <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">density/number</span></code>. Run the simulation using
502
510
LAMMPS.</p>
@@ -521,7 +529,7 @@ <h3>Data analysis<a class="headerlink" href="#data-analysis" title="Link to this
521
529
is the the density ratio, and compare it
522
530
with the imposed potential <spanclass="math notranslate nohighlight">\(U\)</span> from Eq. <aclass="reference internal" href="tutorial.html#equation-eq-u">(2)</a>.
523
531
The reference density, <spanclass="math notranslate nohighlight">\(\rho_\text{bulk} = 0.0009~\text{Å}^{-3}\)</span>,
524
-
was estimated by measuring the density of the reservoir from the raw density
532
+
was estimated by measuring the density of the reservoir from the density
525
533
profiles. The agreement between the MD results and the imposed energy profile
526
534
is excellent, despite some noise in the central part, where fewer data points
527
535
are available due to the repulsive potential.</p>
@@ -542,8 +550,8 @@ <h3>Data analysis<a class="headerlink" href="#data-analysis" title="Link to this
542
550
<sectionid="the-limits-of-free-sampling">
543
551
<h3>The limits of free sampling<aclass="headerlink" href="#the-limits-of-free-sampling" title="Link to this heading">¶</a></h3>
544
552
<p>Increasing the value of <spanclass="math notranslate nohighlight">\(U_0\)</span> reduces the average number of atoms in the central
545
-
region, making it difficult to achieve a high-resolution free energy profile.
546
-
For example, running the same simulation with <spanclass="math notranslate nohighlight">\(U_0 = 10 \epsilon\)</span>,
553
+
region, making it difficult to achieve a high-resolution free energy profile
554
+
within reasonable simulation times. For example, running the same simulation with <spanclass="math notranslate nohighlight">\(U_0 = 10 \epsilon\)</span>,
547
555
corresponding to <spanclass="math notranslate nohighlight">\(U_0 \approx 10 k_\text{B} T\)</span>, results in no atoms exploring
548
556
the central part of the simulation box during the simulation.
549
557
In such a case, employing an enhanced sampling method is recommended, as done in the next section.</p>
<p>The definition of a variable of loop style serves the same purpose as in
664
+
<aclass="reference internal" href="../tutorial5/reactive-silicon-dioxide.html#reactive-silicon-dioxide-label"><spanclass="std std-ref">Reactive silicon dioxide</span></a>, and we highlight here the particular
665
+
utility of using its value to distinguish the files written by the
666
+
fix <codeclass="docutils literal notranslate"><spanclass="pre">ave_time</span></code> command for the different bias potentials.
667
+
The <codeclass="docutils literal notranslate"><spanclass="pre">spring</span></code> command imposes the additional harmonic potential <spanclass="math notranslate nohighlight">\(V\)</span> with
668
+
the previously defined spring constant <spanclass="math notranslate nohighlight">\(k\)</span> to the atoms in the group <codeclass="docutils literal notranslate"><spanclass="pre">pull</span></code>.
669
+
The center of the harmonic potential, <spanclass="math notranslate nohighlight">\(x_\text{des}\)</span>, successively takes values
658
670
from <spanclass="math notranslate nohighlight">\(-28\,\text{Å}\)</span> to <spanclass="math notranslate nohighlight">\(28\,\text{Å}\)</span>. For each value of <spanclass="math notranslate nohighlight">\(x_\text{des}\)</span>,
659
671
an equilibration step of 40 ps is performed, followed by a step
660
672
of 400 ps during which the position of the particle of
0 commit comments