88
99from pandas ._config import get_option
1010
11-
1211from pandas .core .dtypes .common import (
1312 is_integer ,
1413 is_list_like ,
@@ -593,43 +592,38 @@ def boxplot(
593592 :context: close-figs
594593
595594 >>> np.random.seed(1234)
596- >>> df = pd.DataFrame(np.random.randn(10, 4),
597- ... columns=['Col1', 'Col2', 'Col3', 'Col4'])
598- >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
595+ >>> df = pd.DataFrame(
596+ ... np.random.randn(10, 4), columns=["Col1", "Col2", "Col3", "Col4"]
597+ ... )
598+ >>> boxplot = df.boxplot(column=["Col1", "Col2", "Col3"]) # doctest: +SKIP
599599
600600 Boxplots of variables distributions grouped by the values of a third
601601 variable can be created using the option ``by``. For instance:
602602
603603 .. plot::
604604 :context: close-figs
605605
606- >>> df = pd.DataFrame(np.random.randn(10, 2),
607- ... columns=['Col1', 'Col2'])
608- >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
609- ... 'B', 'B', 'B', 'B', 'B'])
610- >>> boxplot = df.boxplot(by='X')
606+ >>> df = pd.DataFrame(np.random.randn(10, 2), columns=["Col1", "Col2"])
607+ >>> df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
608+ >>> boxplot = df.boxplot(by="X")
611609
612610 A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
613611 in order to group the data by combination of the variables in the x-axis:
614612
615613 .. plot::
616614 :context: close-figs
617615
618- >>> df = pd.DataFrame(np.random.randn(10, 3),
619- ... columns=['Col1', 'Col2', 'Col3'])
620- >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
621- ... 'B', 'B', 'B', 'B', 'B'])
622- >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
623- ... 'B', 'A', 'B', 'A', 'B'])
624- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
616+ >>> df = pd.DataFrame(np.random.randn(10, 3), columns=["Col1", "Col2", "Col3"])
617+ >>> df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
618+ >>> df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])
619+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])
625620
626621 The layout of boxplot can be adjusted giving a tuple to ``layout``:
627622
628623 .. plot::
629624 :context: close-figs
630625
631- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
632- ... layout=(2, 1))
626+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", layout=(2, 1))
633627
634628 Additional formatting can be done to the boxplot, like suppressing the grid
635629 (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
@@ -644,23 +638,21 @@ def boxplot(
644638 returned by `boxplot`. When ``return_type='axes'`` is selected,
645639 the matplotlib axes on which the boxplot is drawn are returned:
646640
647- >>> boxplot = df.boxplot(column=[' Col1', ' Col2' ], return_type=' axes' )
641+ >>> boxplot = df.boxplot(column=[" Col1", " Col2" ], return_type=" axes" )
648642 >>> type(boxplot)
649643 <class 'matplotlib.axes._axes.Axes'>
650644
651645 When grouping with ``by``, a Series mapping columns to ``return_type``
652646 is returned:
653647
654- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
655- ... return_type='axes')
648+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", return_type="axes")
656649 >>> type(boxplot)
657650 <class 'pandas.Series'>
658651
659652 If ``return_type`` is `None`, a NumPy array of axes with the same shape
660653 as ``layout`` is returned:
661654
662- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
663- ... return_type=None)
655+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", return_type=None)
664656 >>> type(boxplot)
665657 <class 'numpy.ndarray'>
666658 """
@@ -791,43 +783,38 @@ def boxplot_frame(
791783 :context: close-figs
792784
793785 >>> np.random.seed(1234)
794- >>> df = pd.DataFrame(np.random.randn(10, 4),
795- ... columns=['Col1', 'Col2', 'Col3', 'Col4'])
796- >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
786+ >>> df = pd.DataFrame(
787+ ... np.random.randn(10, 4), columns=["Col1", "Col2", "Col3", "Col4"]
788+ ... )
789+ >>> boxplot = df.boxplot(column=["Col1", "Col2", "Col3"]) # doctest: +SKIP
797790
798791 Boxplots of variables distributions grouped by the values of a third
799792 variable can be created using the option ``by``. For instance:
800793
801794 .. plot::
802795 :context: close-figs
803796
804- >>> df = pd.DataFrame(np.random.randn(10, 2),
805- ... columns=['Col1', 'Col2'])
806- >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
807- ... 'B', 'B', 'B', 'B', 'B'])
808- >>> boxplot = df.boxplot(by='X')
797+ >>> df = pd.DataFrame(np.random.randn(10, 2), columns=["Col1", "Col2"])
798+ >>> df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
799+ >>> boxplot = df.boxplot(by="X")
809800
810801 A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
811802 in order to group the data by combination of the variables in the x-axis:
812803
813804 .. plot::
814805 :context: close-figs
815806
816- >>> df = pd.DataFrame(np.random.randn(10, 3),
817- ... columns=['Col1', 'Col2', 'Col3'])
818- >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
819- ... 'B', 'B', 'B', 'B', 'B'])
820- >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
821- ... 'B', 'A', 'B', 'A', 'B'])
822- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
807+ >>> df = pd.DataFrame(np.random.randn(10, 3), columns=["Col1", "Col2", "Col3"])
808+ >>> df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
809+ >>> df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])
810+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])
823811
824812 The layout of boxplot can be adjusted giving a tuple to ``layout``:
825813
826814 .. plot::
827815 :context: close-figs
828816
829- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
830- ... layout=(2, 1))
817+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", layout=(2, 1))
831818
832819 Additional formatting can be done to the boxplot, like suppressing the grid
833820 (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
@@ -842,23 +829,21 @@ def boxplot_frame(
842829 returned by `boxplot`. When ``return_type='axes'`` is selected,
843830 the matplotlib axes on which the boxplot is drawn are returned:
844831
845- >>> boxplot = df.boxplot(column=[' Col1', ' Col2' ], return_type=' axes' )
832+ >>> boxplot = df.boxplot(column=[" Col1", " Col2" ], return_type=" axes" )
846833 >>> type(boxplot)
847834 <class 'matplotlib.axes._axes.Axes'>
848835
849836 When grouping with ``by``, a Series mapping columns to ``return_type``
850837 is returned:
851838
852- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
853- ... return_type='axes')
839+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", return_type="axes")
854840 >>> type(boxplot)
855841 <class 'pandas.Series'>
856842
857843 If ``return_type`` is `None`, a NumPy array of axes with the same shape
858844 as ``layout`` is returned:
859845
860- >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
861- ... return_type=None)
846+ >>> boxplot = df.boxplot(column=["Col1", "Col2"], by="X", return_type=None)
862847 >>> type(boxplot)
863848 <class 'numpy.ndarray'>
864849 """
@@ -1468,10 +1453,13 @@ def line(
14681453 The following example shows the populations for some animals
14691454 over the years.
14701455
1471- >>> df = pd.DataFrame({
1472- ... 'pig': [20, 18, 489, 675, 1776],
1473- ... 'horse': [4, 25, 281, 600, 1900]
1474- ... }, index=[1990, 1997, 2003, 2009, 2014])
1456+ >>> df = pd.DataFrame(
1457+ ... {
1458+ ... "pig": [20, 18, 489, 675, 1776],
1459+ ... "horse": [4, 25, 281, 600, 1900],
1460+ ... },
1461+ ... index=[1990, 1997, 2003, 2009, 2014],
1462+ ... )
14751463 >>> lines = df.plot.line()
14761464
14771465 .. plot::
@@ -1499,7 +1487,7 @@ def line(
14991487 The following example shows the relationship between both
15001488 populations.
15011489
1502- >>> lines = df.plot.line(x=' pig' , y=' horse' )
1490+ >>> lines = df.plot.line(x=" pig" , y=" horse" )
15031491 """
15041492 if color is not None :
15051493 kwargs ["color" ] = color
@@ -1570,8 +1558,8 @@ def bar(
15701558 .. plot::
15711559 :context: close-figs
15721560
1573- >>> df = pd.DataFrame({' lab' : ['A', 'B', 'C' ], ' val' : [10, 30, 20]})
1574- >>> ax = df.plot.bar(x=' lab' , y=' val' , rot=0)
1561+ >>> df = pd.DataFrame({" lab" : ["A", "B", "C" ], " val" : [10, 30, 20]})
1562+ >>> ax = df.plot.bar(x=" lab" , y=" val" , rot=0)
15751563
15761564 Plot a whole dataframe to a bar plot. Each column is assigned a
15771565 distinct color, and each row is nested in a group along the
@@ -1582,10 +1570,18 @@ def bar(
15821570
15831571 >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
15841572 >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
1585- >>> index = ['snail', 'pig', 'elephant',
1586- ... 'rabbit', 'giraffe', 'coyote', 'horse']
1587- >>> df = pd.DataFrame({'speed': speed,
1588- ... 'lifespan': lifespan}, index=index)
1573+ >>> index = [
1574+ ... "snail",
1575+ ... "pig",
1576+ ... "elephant",
1577+ ... "rabbit",
1578+ ... "giraffe",
1579+ ... "coyote",
1580+ ... "horse",
1581+ ... ]
1582+ >>> df = pd.DataFrame(
1583+ ... {"speed": speed, "lifespan": lifespan}, index=index
1584+ ... )
15891585 >>> ax = df.plot.bar(rot=0)
15901586
15911587 Plot stacked bar charts for the DataFrame
@@ -1612,8 +1608,9 @@ def bar(
16121608 :context: close-figs
16131609
16141610 >>> axes = df.plot.bar(
1615- ... rot=0, subplots=True,
1616- ... color={"speed": "red", "lifespan": "green"}
1611+ ... rot=0,
1612+ ... subplots=True,
1613+ ... color={"speed": "red", "lifespan": "green"},
16171614 ... )
16181615 >>> axes[1].legend(loc=2) # doctest: +SKIP
16191616
@@ -1622,14 +1619,14 @@ def bar(
16221619 .. plot::
16231620 :context: close-figs
16241621
1625- >>> ax = df.plot.bar(y=' speed' , rot=0)
1622+ >>> ax = df.plot.bar(y=" speed" , rot=0)
16261623
16271624 Plot only selected categories for the DataFrame.
16281625
16291626 .. plot::
16301627 :context: close-figs
16311628
1632- >>> ax = df.plot.bar(x=' lifespan' , rot=0)
1629+ >>> ax = df.plot.bar(x=" lifespan" , rot=0)
16331630 """
16341631 if color is not None :
16351632 kwargs ["color" ] = color
@@ -1700,8 +1697,8 @@ def barh(
17001697 .. plot::
17011698 :context: close-figs
17021699
1703- >>> df = pd.DataFrame({' lab' : ['A', 'B', 'C' ], ' val' : [10, 30, 20]})
1704- >>> ax = df.plot.barh(x=' lab' , y=' val' )
1700+ >>> df = pd.DataFrame({" lab" : ["A", "B", "C" ], " val" : [10, 30, 20]})
1701+ >>> ax = df.plot.barh(x=" lab" , y=" val" )
17051702
17061703 Plot a whole DataFrame to a horizontal bar plot
17071704
@@ -1710,10 +1707,18 @@ def barh(
17101707
17111708 >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
17121709 >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
1713- >>> index = ['snail', 'pig', 'elephant',
1714- ... 'rabbit', 'giraffe', 'coyote', 'horse']
1715- >>> df = pd.DataFrame({'speed': speed,
1716- ... 'lifespan': lifespan}, index=index)
1710+ >>> index = [
1711+ ... "snail",
1712+ ... "pig",
1713+ ... "elephant",
1714+ ... "rabbit",
1715+ ... "giraffe",
1716+ ... "coyote",
1717+ ... "horse",
1718+ ... ]
1719+ >>> df = pd.DataFrame(
1720+ ... {"speed": speed, "lifespan": lifespan}, index=index
1721+ ... )
17171722 >>> ax = df.plot.barh()
17181723
17191724 Plot stacked barh charts for the DataFrame
@@ -1737,11 +1742,19 @@ def barh(
17371742
17381743 >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
17391744 >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
1740- >>> index = ['snail', 'pig', 'elephant',
1741- ... 'rabbit', 'giraffe', 'coyote', 'horse']
1742- >>> df = pd.DataFrame({'speed': speed,
1743- ... 'lifespan': lifespan}, index=index)
1744- >>> ax = df.plot.barh(y='speed')
1745+ >>> index = [
1746+ ... "snail",
1747+ ... "pig",
1748+ ... "elephant",
1749+ ... "rabbit",
1750+ ... "giraffe",
1751+ ... "coyote",
1752+ ... "horse",
1753+ ... ]
1754+ >>> df = pd.DataFrame(
1755+ ... {"speed": speed, "lifespan": lifespan}, index=index
1756+ ... )
1757+ >>> ax = df.plot.barh(y="speed")
17451758
17461759 Plot DataFrame versus the desired column
17471760
@@ -1750,11 +1763,19 @@ def barh(
17501763
17511764 >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
17521765 >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
1753- >>> index = ['snail', 'pig', 'elephant',
1754- ... 'rabbit', 'giraffe', 'coyote', 'horse']
1755- >>> df = pd.DataFrame({'speed': speed,
1756- ... 'lifespan': lifespan}, index=index)
1757- >>> ax = df.plot.barh(x='lifespan')
1766+ >>> index = [
1767+ ... "snail",
1768+ ... "pig",
1769+ ... "elephant",
1770+ ... "rabbit",
1771+ ... "giraffe",
1772+ ... "coyote",
1773+ ... "horse",
1774+ ... ]
1775+ >>> df = pd.DataFrame(
1776+ ... {"speed": speed, "lifespan": lifespan}, index=index
1777+ ... )
1778+ >>> ax = df.plot.barh(x="lifespan")
17581779 """
17591780 if color is not None :
17601781 kwargs ["color" ] = color
0 commit comments