Skip to content

Commit 1f91a9a

Browse files
committed
Replace @appender with inline docstring for DataFrame.groupby
1 parent 337e7dc commit 1f91a9a

File tree

1 file changed

+27
-20
lines changed

1 file changed

+27
-20
lines changed

pandas/core/frame.py

Lines changed: 27 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -9347,7 +9347,7 @@ def update(
93479347
# ----------------------------------------------------------------------
93489348
# Data reshaping
93499349
@deprecate_nonkeyword_arguments(
9350-
Pandas4Warning, allowed_args=["self", "by", "level"], name="groupby"
9350+
Pandas4Warning, allowed_args=["self", "by", "level"], name="groupby"
93519351
)
93529352
def groupby(
93539353
self,
@@ -9396,8 +9396,10 @@ def groupby(
93969396
Sort group keys. Get better performance by turning this off.
93979397
Note this does not influence the order of observations within each
93989398
group. Groupby preserves the order of rows within each group. If False,
9399-
the groups will appear in the same order as they did in the original DataFrame.
9400-
This argument has no effect on filtrations (see the `filtrations in the user guide
9399+
the groups will appear in the same order as they did in the original
9400+
DataFrame.
9401+
This argument has no effect on filtrations (see the `filtrations
9402+
in the user guide
94019403
<https://pandas.pydata.org/docs/dev/user_guide/groupby.html#filtration>`_),
94029404
such as ``head()``, ``tail()``, ``nth()`` and in transformations
94039405
(see the `transformations in the user guide
@@ -9465,16 +9467,19 @@ def groupby(
94659467
94669468
Examples
94679469
--------
9468-
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
9469-
... 'Parrot', 'Parrot'],
9470-
... 'Max Speed': [380., 370., 24., 26.]})
9470+
>>> df = pd.DataFrame(
9471+
... {
9472+
... "Animal": ["Falcon", "Falcon", "Parrot", "Parrot"],
9473+
... "Max Speed": [380.0, 370.0, 24.0, 26.0],
9474+
... }
9475+
... )
94719476
>>> df
94729477
Animal Max Speed
94739478
0 Falcon 380.0
94749479
1 Falcon 370.0
94759480
2 Parrot 24.0
94769481
3 Parrot 26.0
9477-
>>> df.groupby(['Animal']).mean()
9482+
>>> df.groupby(["Animal"]).mean()
94789483
Max Speed
94799484
Animal
94809485
Falcon 375.0
@@ -9485,11 +9490,12 @@ def groupby(
94859490
We can groupby different levels of a hierarchical index
94869491
using the `level` parameter:
94879492
9488-
>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
9489-
... ['Captive', 'Wild', 'Captive', 'Wild']]
9490-
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
9491-
>>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]},
9492-
... index=index)
9493+
>>> arrays = [
9494+
... ["Falcon", "Falcon", "Parrot", "Parrot"],
9495+
... ["Captive", "Wild", "Captive", "Wild"],
9496+
... ]
9497+
>>> index = pd.MultiIndex.from_arrays(arrays, names=("Animal", "Type"))
9498+
>>> df = pd.DataFrame({"Max Speed": [390.0, 350.0, 30.0, 20.0]}, index=index)
94939499
>>> df
94949500
Max Speed
94959501
Animal Type
@@ -9527,7 +9533,7 @@ def groupby(
95279533
2.0 2 5
95289534
NaN 1 4
95299535
9530-
>>> arr = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]]
9536+
>>> arr = [["a", 12, 12], [None, 12.3, 33.0], ["b", 12.3, 123], ["a", 1, 1]]
95319537
>>> df = pd.DataFrame(arr, columns=["a", "b", "c"])
95329538
95339539
>>> df.groupby(by="a").sum()
@@ -9546,18 +9552,21 @@ def groupby(
95469552
When using ``.apply()``, use ``group_keys`` to include or exclude the
95479553
group keys. The ``group_keys`` argument defaults to ``True`` (include).
95489554
9549-
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
9550-
... 'Parrot', 'Parrot'],
9551-
... 'Max Speed': [380., 370., 24., 26.]})
9552-
>>> df.groupby("Animal", group_keys=True)[['Max Speed']].apply(lambda x: x)
9555+
>>> df = pd.DataFrame(
9556+
... {
9557+
... "Animal": ["Falcon", "Falcon", "Parrot", "Parrot"],
9558+
... "Max Speed": [380.0, 370.0, 24.0, 26.0],
9559+
... }
9560+
... )
9561+
>>> df.groupby("Animal", group_keys=True)[["Max Speed"]].apply(lambda x: x)
95539562
Max Speed
95549563
Animal
95559564
Falcon 0 380.0
95569565
1 370.0
95579566
Parrot 2 24.0
95589567
3 26.0
95599568
9560-
>>> df.groupby("Animal", group_keys=False)[['Max Speed']].apply(lambda x: x)
9569+
>>> df.groupby("Animal", group_keys=False)[["Max Speed"]].apply(lambda x: x)
95619570
Max Speed
95629571
0 380.0
95639572
1 370.0
@@ -9580,8 +9589,6 @@ def groupby(
95809589
dropna=dropna,
95819590
)
95829591

9583-
9584-
95859592
_shared_docs["pivot"] = """
95869593
Return reshaped DataFrame organized by given index / column values.
95879594

0 commit comments

Comments
 (0)