@@ -3803,16 +3803,58 @@ def rolling(
38033803 )
38043804
38053805 @final
3806- @Substitution (name = "groupby" )
3807- @Appender (_common_see_also )
38083806 def expanding (self , * args , ** kwargs ) -> ExpandingGroupby :
38093807 """
3810- Return an expanding grouper, providing expanding
3811- functionality per group.
3808+ Return an expanding grouper, providing expanding functionality per group.
3809+
3810+ Arguments are the same as `:meth:DataFrame.rolling` except that ``step`` cannot
3811+ be specified.
3812+
3813+ Parameters
3814+ ----------
3815+ *args : tuple
3816+ Positional arguments passed to the expanding window constructor.
3817+ **kwargs : dict
3818+ Keyword arguments passed to the expanding window constructor.
38123819
38133820 Returns
38143821 -------
38153822 pandas.api.typing.ExpandingGroupby
3823+ An object that supports expanding transformations over each group.
3824+
3825+ See Also
3826+ --------
3827+ Series.expanding : Expanding transformations for Series.
3828+ DataFrame.expanding : Expanding transformations for DataFrames.
3829+ Series.groupby : Apply a function groupby to a Series.
3830+ DataFrame.groupby : Apply a function groupby.
3831+
3832+ Examples
3833+ --------
3834+ >>> df = pd.DataFrame(
3835+ ... {
3836+ ... "Class": ["A", "A", "A", "B", "B", "B"],
3837+ ... "Value": [10, 20, 30, 40, 50, 60],
3838+ ... }
3839+ ... )
3840+ >>> df
3841+ Class Value
3842+ 0 A 10
3843+ 1 A 20
3844+ 2 A 30
3845+ 3 B 40
3846+ 4 B 50
3847+ 5 B 60
3848+
3849+ >>> df.groupby("Class").expanding().mean()
3850+ Value
3851+ Class
3852+ A 0 10.0
3853+ 1 15.0
3854+ 2 20.0
3855+ B 3 40.0
3856+ 4 45.0
3857+ 5 50.0
38163858 """
38173859 from pandas .core .window import ExpandingGroupby
38183860
0 commit comments