Skip to content

Commit 5b84f1c

Browse files
committed
reverted isnull and notnull due to failing test
1 parent 272ba72 commit 5b84f1c

File tree

1 file changed

+2
-134
lines changed

1 file changed

+2
-134
lines changed

pandas/core/series.py

Lines changed: 2 additions & 134 deletions
Original file line numberDiff line numberDiff line change
@@ -6114,7 +6114,6 @@ def case_when(
61146114
return default
61156115

61166116
# error: Cannot determine type of 'isna'
6117-
61186117
def isna(self) -> Series:
61196118
"""
61206119
Detect missing values.
@@ -6184,80 +6183,14 @@ def isna(self) -> Series:
61846183
return NDFrame.isna(self)
61856184

61866185
# error: Cannot determine type of 'isna'
6187-
6186+
@doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) # type: ignore[has-type]
61886187
def isnull(self) -> Series:
61896188
"""
6190-
61916189
Series.isnull is an alias for Series.isna.
6192-
6193-
Detect missing values.
6194-
6195-
Return a boolean same-sized object indicating if the values are NA.
6196-
NA values, such as None or :attr:`numpy.NaN`, gets mapped to True
6197-
values.
6198-
Everything else gets mapped to False values. Characters such as empty
6199-
strings ``''`` or :attr:`numpy.inf` are not considered NA values.
6200-
6201-
Returns
6202-
-------
6203-
Series
6204-
Mask of bool values for each element in Series that
6205-
indicates whether an element is an NA value.
6206-
6207-
See Also
6208-
--------
6209-
Series.isnull : Alias of isna.
6210-
Series.notna : Boolean inverse of isna.
6211-
Series.dropna : Omit axes labels with missing values.
6212-
isna : Top-level isna.
6213-
6214-
Examples
6215-
--------
6216-
Show which entries in a DataFrame are NA.
6217-
6218-
>>> df = pd.DataFrame(
6219-
... dict(
6220-
... age=[5, 6, np.nan],
6221-
... born=[
6222-
... pd.NaT,
6223-
... pd.Timestamp("1939-05-27"),
6224-
... pd.Timestamp("1940-04-25"),
6225-
... ],
6226-
... name=["Alfred", "Batman", ""],
6227-
... toy=[None, "Batmobile", "Joker"],
6228-
... )
6229-
... )
6230-
>>> df
6231-
age born name toy
6232-
0 5.0 NaT Alfred NaN
6233-
1 6.0 1939-05-27 Batman Batmobile
6234-
2 NaN 1940-04-25 Joker
6235-
6236-
>>> df.isna()
6237-
age born name toy
6238-
0 False True False True
6239-
1 False False False False
6240-
2 True False False False
6241-
6242-
Show which entries in a Series are NA.
6243-
6244-
>>> ser = pd.Series([5, 6, np.nan])
6245-
>>> ser
6246-
0 5.0
6247-
1 6.0
6248-
2 NaN
6249-
dtype: float64
6250-
6251-
>>> ser.isna()
6252-
0 False
6253-
1 False
6254-
2 True
6255-
dtype: bool
62566190
"""
62576191
return super().isnull()
62586192

62596193
# error: Cannot determine type of 'notna'
6260-
62616194
def notna(self) -> Series:
62626195
"""
62636196
Detect existing (non-missing) values.
@@ -6327,75 +6260,10 @@ def notna(self) -> Series:
63276260
return super().notna()
63286261

63296262
# error: Cannot determine type of 'notna'
6330-
6263+
@doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) # type: ignore[has-type]
63316264
def notnull(self) -> Series:
63326265
"""
6333-
63346266
Series.notnull is an alias for Series.notna.
6335-
6336-
Detect existing (non-missing) values.
6337-
6338-
Return a boolean same-sized object indicating if the values are not NA.
6339-
Non-missing values get mapped to True. Characters such as empty
6340-
strings ``''`` or :attr:`numpy.inf` are not considered NA values.
6341-
NA values, such as None or :attr:`numpy.NaN`, get mapped to False
6342-
values.
6343-
6344-
Returns
6345-
-------
6346-
Series
6347-
Mask of bool values for each element in Series that
6348-
indicates whether an element is not an NA value.
6349-
6350-
See Also
6351-
--------
6352-
Series.notnull : Alias of notna.
6353-
Series.isna : Boolean inverse of notna.
6354-
Series.dropna : Omit axes labels with missing values.
6355-
notna : Top-level notna.
6356-
6357-
Examples
6358-
--------
6359-
Show which entries in a DataFrame are not NA.
6360-
6361-
>>> df = pd.DataFrame(
6362-
... dict(
6363-
... age=[5, 6, np.nan],
6364-
... born=[
6365-
... pd.NaT,
6366-
... pd.Timestamp("1939-05-27"),
6367-
... pd.Timestamp("1940-04-25"),
6368-
... ],
6369-
... name=["Alfred", "Batman", ""],
6370-
... toy=[None, "Batmobile", "Joker"],
6371-
... )
6372-
... )
6373-
>>> df
6374-
age born name toy
6375-
0 5.0 NaT Alfred NaN
6376-
1 6.0 1939-05-27 Batman Batmobile
6377-
2 NaN 1940-04-25 Joker
6378-
6379-
>>> df.notna()
6380-
age born name toy
6381-
0 True False True False
6382-
1 True True True True
6383-
2 False True True True
6384-
6385-
Show which entries in a Series are not NA.
6386-
6387-
>>> ser = pd.Series([5, 6, np.nan])
6388-
>>> ser
6389-
0 5.0
6390-
1 6.0
6391-
2 NaN
6392-
dtype: float64
6393-
6394-
>>> ser.notna()
6395-
0 True
6396-
1 True
6397-
2 False
6398-
dtype: bool
63996267
"""
64006268
return super().notnull()
64016269

0 commit comments

Comments
 (0)