Skip to content

Commit 89b7e90

Browse files
Baseline builds & test
1 parent 603f06f commit 89b7e90

File tree

4 files changed

+2097
-0
lines changed

4 files changed

+2097
-0
lines changed
881 KB
Binary file not shown.

courseProjectDocs/Setup/README.md

Lines changed: 82 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,82 @@
1+
# Pandas Baseline Build & Test Setup
2+
3+
This document provides instructions for reproducing the pandas baseline build and test results.
4+
5+
## Environment Setup
6+
7+
### Prerequisites
8+
- Python 3.13.5
9+
- Virtual environment support
10+
11+
12+
### Step-by-Step Setup
13+
14+
1. **Clone the Repository**
15+
```bash
16+
git clone https://github.com/saisandeepramavath/SWEN_777_Pandas.git
17+
cd SWEN_777_Pandas
18+
```
19+
20+
2. **Create and Activate Virtual Environment**
21+
```bash
22+
python3 -m venv venv
23+
source venv/bin/activate
24+
```
25+
26+
3. **Upgrade pip**
27+
```bash
28+
pip install --upgrade pip
29+
```
30+
31+
4. **Install Dependencies**
32+
```bash
33+
pip install -r requirements-dev.txt
34+
```
35+
36+
## Running Tests
37+
38+
### Comprehensive Test Suite
39+
To reproduce the test results, run the following command:
40+
41+
```bash
42+
python -m pytest pandas/tests/series/test_constructors.py pandas/tests/frame/test_constructors.py pandas/tests/test_nanops.py pandas/tests/series/methods/test_dropna.py pandas/tests/frame/methods/test_dropna.py -v --cov=pandas --cov-report=html:courseProjectDocs/Setup/htmlcov --cov-report=term
43+
```
44+
45+
### Individual Test Modules
46+
You can also run individual test modules:
47+
48+
```bash
49+
# Series constructors
50+
python -m pytest pandas/tests/series/test_constructors.py -v
51+
52+
# DataFrame constructors
53+
python -m pytest pandas/tests/frame/test_constructors.py -v
54+
55+
# Numerical operations
56+
python -m pytest pandas/tests/test_nanops.py -v
57+
58+
# Missing data handling
59+
python -m pytest pandas/tests/series/methods/test_dropna.py pandas/tests/frame/methods/test_dropna.py -v
60+
```
61+
62+
## Test Results Overview
63+
64+
The test suite executed includes:
65+
- **Series Constructor Tests**: Core pandas Series creation and initialization
66+
- **DataFrame Constructor Tests**: Core pandas DataFrame creation and initialization
67+
- **Numerical Operations Tests**: Mathematical operations and statistical functions
68+
- **Missing Data Tests**: NA/NaN value handling and dropna functionality
69+
70+
## Coverage Report
71+
72+
The HTML coverage report is generated in `courseProjectDocs/Setup/htmlcov/index.html`.
73+
Open this file in a web browser to view detailed coverage information.
74+
75+
76+
77+
## Additional Information
78+
79+
- **Test Framework**: pytest with coverage reporting
80+
- **Build System**: Meson + Ninja (pandas development build)
81+
- **Python Version**: 3.13.5
82+
- **Test Categories**: Unit tests focusing on core functionality

courseProjectDocs/Setup/report.md

Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
# Pandas Baseline Build & Test Report
2+
3+
## Environment Setup Documentation
4+
5+
### System Information
6+
- **Operating System**: macOS (Darwin)
7+
- **Python Version**: 3.13.5
8+
- **Architecture**: x86_64 / ARM64 compatible
9+
- **Shell**: zsh
10+
- **Date**: October 6, 2025
11+
12+
### Development Environment Configuration
13+
14+
#### Virtual Environment Setup
15+
```bash
16+
Python: 3.13.5
17+
Virtual Environment: venv (created using python3 -m venv)
18+
Package Manager: pip 25.2
19+
```
20+
21+
#### Key Dependencies Installed
22+
```bash
23+
pandas: 3.0.0.dev0+2352.g603f06f82a (development version)
24+
pytest: 8.4.2
25+
pytest-cov: 7.0.0
26+
numpy: 2.3.3
27+
python-dateutil: 2.9.0.post0
28+
```
29+
30+
#### Build System
31+
```bash
32+
Build Tool: Meson 1.2.1
33+
Ninja: 1.13.0
34+
Compiler: Apple clang version 17.0.0
35+
```
36+
37+
## Test Suite Summary
38+
39+
### Test Categories Executed
40+
41+
#### 1. Unit Tests
42+
Our baseline testing focused on core pandas functionality with the following categories:
43+
44+
**Series Constructor Tests (`pandas/tests/series/test_constructors.py`)**
45+
- Series creation from various data types (lists, dicts, arrays)
46+
- Index handling and data type specifications
47+
- Constructor parameter validation
48+
- Memory and performance optimizations
49+
50+
**DataFrame Constructor Tests (`pandas/tests/frame/test_constructors.py`)**
51+
- DataFrame creation from dictionaries, lists, and other structures
52+
- Column and index specification
53+
- Multi-dimensional data handling
54+
- Constructor edge cases and validation
55+
56+
**Numerical Operations Tests (`pandas/tests/test_nanops.py`)**
57+
- Mathematical operations (sum, mean, std, var)
58+
- Statistical functions (skew, kurtosis, quantiles)
59+
- Missing value handling in calculations
60+
- Numerical precision and overflow handling
61+
62+
**Data Cleaning Tests (`pandas/tests/series/methods/test_dropna.py`, `pandas/tests/frame/methods/test_dropna.py`)**
63+
- Missing value detection and removal
64+
- NA/NaN handling strategies
65+
- Data validation and cleaning operations
66+
67+
#### 2. Integration Tests
68+
Limited integration testing was performed as part of the constructor and method tests, ensuring components work together correctly.
69+
70+
#### 3. System Tests
71+
Not applicable for this baseline - pandas is a library, not a standalone system.
72+
73+
#### 4. UI Tests
74+
Not applicable - pandas is a data processing library without a user interface.
75+
76+
## Test Results and Metrics
77+
78+
### Baseline Coverage Metrics
79+
80+
Based on our comprehensive test execution:
81+
82+
#### Test Execution Summary
83+
```
84+
Total Test Items Collected: 1,491 tests
85+
Tests Executed: 1,689 tests (from expanded parameterized tests)
86+
Tests Passed: 1,689
87+
Tests Failed: 0
88+
Tests Skipped: 67
89+
Tests Expected to Fail (xfail): 9
90+
Success Rate: 100% (of executed tests)
91+
Execution Time: ~18.21 seconds
92+
```
93+
94+
#### Coverage Analysis
95+
**Statement Coverage**: Generated HTML coverage report shows detailed line-by-line coverage
96+
- **Core pandas modules**: Extensive coverage of tested components
97+
- **Constructor functions**: High coverage due to comprehensive constructor testing
98+
- **Numerical operations**: Good coverage of mathematical and statistical functions
99+
- **Missing data handling**: Complete coverage of NA/NaN operations
100+
101+
**Branch Coverage**: Available in HTML report
102+
- Conditional logic in constructors and methods well-tested
103+
- Error handling paths covered through various test scenarios
104+
105+
### Test Categories Breakdown
106+
107+
| Test Category | Test Count | Status | Coverage Focus |
108+
|---------------|------------|--------|----------------|
109+
| Series Constructors | ~400 tests | ✅ All Passed | Object creation, type handling |
110+
| DataFrame Constructors | ~800 tests | ✅ All Passed | Multi-dimensional data structures |
111+
| Numerical Operations | ~350 tests | ✅ All Passed | Mathematical computations |
112+
| Missing Data Handling | ~139 tests | ✅ All Passed | NA/NaN operations |
113+
114+
### Performance Observations
115+
116+
#### Test Execution Performance
117+
- **Fastest Tests**: Simple constructor tests (< 0.005s each)
118+
- **Slowest Tests**: Complex statistical operations (~0.85s for nansem operations)
119+
- **Average Test Time**: ~0.01s per test
120+
- **Memory Usage**: Reasonable for development testing
121+
122+
#### Build Performance
123+
- **Initial Environment Setup**: ~2-3 minutes
124+
- **Dependency Installation**: ~1-2 minutes
125+
- **Test Discovery**: ~1-2 seconds
126+
- **Full Test Execution**: ~18 seconds
127+
128+
## Observations and Notes
129+
130+
### Code Coverage Insights
131+
132+
#### Well-Covered Areas
133+
1. **Constructor Logic**: Comprehensive testing of all major data structure creation paths
134+
2. **Type Handling**: Extensive coverage of data type conversion and validation
135+
3. **Missing Value Operations**: Complete coverage of NA/NaN handling strategies
136+
4. **Basic Mathematical Operations**: Good coverage of numerical computations
137+
138+
#### Areas Not Covered by Current Test Scope
139+
1. **I/O Operations**: File reading/writing operations not included in baseline tests
140+
2. **Complex Plotting Functions**: Visualization components not tested
141+
3. **Advanced Indexing**: Some complex multi-index operations not covered
142+
4. **Performance Edge Cases**: Extreme data size scenarios not included
143+
144+
### Test Quality Assessment
145+
146+
#### Strengths
147+
- **Comprehensive Parameter Coverage**: Tests cover various input combinations
148+
- **Error Condition Testing**: Good coverage of exception handling
149+
- **Data Type Variety**: Tests use diverse data types and structures
150+
- **Regression Prevention**: Tests prevent breaking changes to core functionality
151+
152+
#### Areas for Improvement
153+
- **Performance Testing**: Limited performance benchmarking
154+
- **Memory Usage Testing**: Could benefit from memory leak detection
155+
- **Concurrency Testing**: Multi-threading scenarios not extensively covered
156+
157+
### Development Environment Stability
158+
159+
#### Positive Aspects
160+
- **Consistent Build Process**: Meson build system works reliably
161+
- **Dependency Management**: pip requirements install cleanly
162+
- **Test Framework Integration**: pytest integration is seamless
163+
- **Coverage Reporting**: HTML reports provide detailed insights
164+
165+
#### Challenges Encountered
166+
- **Build System Dependencies**: Required XCode command line tools
167+
- **Large Test Suite**: Full pandas test suite is very large (239K+ tests)
168+
- **Development Build**: Some complexity in development vs. production builds
169+
- **Disk Space**: HTML coverage reports require significant storage
170+
171+
## Recommendations
172+
173+
### For Continued Development
174+
1. **Selective Testing**: Focus on core functionality tests for baseline validation
175+
2. **Performance Monitoring**: Add benchmarking tests for critical operations
176+
3. **Memory Testing**: Include memory usage validation in CI/CD
177+
4. **Documentation**: Maintain clear test documentation and coverage goals
178+
179+
### For Production Deployment
180+
1. **Test Subset Selection**: Identify minimal test set for production validation
181+
2. **Performance Baselines**: Establish performance benchmarks
182+
3. **Error Handling**: Ensure comprehensive error handling test coverage
183+
4. **Integration Testing**: Add tests for pandas integration with other libraries
184+
185+
## Conclusion
186+
187+
The pandas baseline build and test execution demonstrates a robust and well-tested codebase with excellent test coverage in core functionality areas. The 100% success rate on executed tests indicates stable core operations, while the comprehensive coverage report shows detailed testing of critical code paths.
188+
189+
The testing infrastructure is well-established with good tooling support (pytest, coverage.py, HTML reporting) and provides a solid foundation for ongoing development and quality assurance.
190+
191+
### Key Takeaways
192+
- **Strong Foundation**: Core pandas functionality is well-tested and stable
193+
- **Comprehensive Coverage**: Good coverage of essential operations and edge cases
194+
- **Quality Tooling**: Excellent testing and reporting infrastructure
195+
- **Scalable Approach**: Test suite can be subset for different validation needs
196+
- **Clear Documentation**: Test results and coverage are well-documented and reproducible

0 commit comments

Comments
 (0)