@@ -405,7 +405,7 @@ def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs)
405405 * ``'cython'`` : Runs the function through C-extensions from cython.
406406 * ``'numba'`` : Runs the function through JIT compiled code from numba.
407407 * ``None`` : Defaults to ``'cython'`` or globally setting
408- ``compute.use_numba``
408+ ``compute.use_numba``.
409409
410410 engine_kwargs : dict, default None
411411 * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
@@ -694,15 +694,15 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
694694 engine : str, default None
695695 * ``'cython'`` : Runs the function through C-extensions from cython.
696696 * ``'numba'`` : Runs the function through JIT compiled code from numba.
697- * ``None`` : Defaults to ``cython`` or global setting ``compute.use_numba``
697+ * ``None`` : Defaults to ``cython`` or global setting ``compute.use_numba``.
698698
699699 engine_kwargs : dict, default None
700700 * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
701701 * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
702702 and ``parallel`` dictionary keys. The values must either be ``True`` or
703703 ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
704704 ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be
705- applied to the function
705+ applied to the function.
706706
707707 **kwargs
708708 Keyword arguments to be passed into func.
@@ -770,7 +770,7 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
770770 Parrot -0.707107
771771 Name: Max Speed, dtype: float64
772772
773- Broadcast result of the transformation
773+ Broadcast result of the transformation:
774774
775775 >>> grouped.transform(lambda x: x.max() - x.min())
776776 Falcon 40.0
@@ -2347,7 +2347,7 @@ def corr(
23472347 >>> s1.corr(s2, method=histogram_intersection)
23482348 0.3
23492349
2350- Pandas auto-aligns the values with matching indices
2350+ Pandas auto-aligns the values with matching indices.
23512351
23522352 >>> s1 = pd.Series([1, 2, 3], index=[0, 1, 2])
23532353 >>> s2 = pd.Series([1, 2, 3], index=[2, 1, 0])
@@ -2621,7 +2621,7 @@ def unique(self) -> Series:
26212621 return result
26222622
26232623
2624- @set_module ("pandas.api.typing" )
2624+ @set_module ("pandas.api.typing" ) # type: ignore
26252625class DataFrameGroupBy (GroupBy [DataFrame ]):
26262626 _agg_examples_doc = dedent (
26272627 """
0 commit comments