@@ -490,8 +490,6 @@ def hist_frame(
490490"""
491491
492492
493- @Substitution (data = "data : DataFrame\n The data to visualize.\n " , backend = "" )
494- @Appender (_boxplot_doc )
495493def boxplot (
496494 data : DataFrame ,
497495 column : str | list [str ] | None = None ,
@@ -505,6 +503,171 @@ def boxplot(
505503 return_type : str | None = None ,
506504 ** kwargs ,
507505):
506+ """
507+ Make a box plot from DataFrame columns.
508+
509+ Make a box-and-whisker plot from DataFrame columns, optionally grouped
510+ by some other columns. A box plot is a method for graphically depicting
511+ groups of numerical data through their quartiles.
512+ The box extends from the Q1 to Q3 quartile values of the data,
513+ with a line at the median (Q2). The whiskers extend from the edges
514+ of box to show the range of the data. By default, they extend no more than
515+ `1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest
516+ data point within that interval. Outliers are plotted as separate dots.
517+
518+ For further details see
519+ Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.
520+
521+ Parameters
522+ ----------
523+ data : DataFrame
524+ The data to visualize.
525+ column : str or list of str, optional
526+ Column name or list of names, or vector.
527+ Can be any valid input to :meth:`pandas.DataFrame.groupby`.
528+ by : str or array-like, optional
529+ Column in the DataFrame to :meth:`pandas.DataFrame.groupby`.
530+ One box-plot will be done per value of columns in `by`.
531+ ax : object of class matplotlib.axes.Axes, optional
532+ The matplotlib axes to be used by boxplot.
533+ fontsize : float or str
534+ Tick label font size in points or as a string (e.g., `large`).
535+ rot : float, default 0
536+ The rotation angle of labels (in degrees)
537+ with respect to the screen coordinate system.
538+ grid : bool, default True
539+ Setting this to True will show the grid.
540+ figsize : A tuple (width, height) in inches
541+ The size of the figure to create in matplotlib.
542+ layout : tuple (rows, columns), optional
543+ For example, (3, 5) will display the subplots
544+ using 3 rows and 5 columns, starting from the top-left.
545+ return_type : {'axes', 'dict', 'both'} or None, default 'axes'
546+ The kind of object to return. The default is ``axes``.
547+
548+ * 'axes' returns the matplotlib axes the boxplot is drawn on.
549+ * 'dict' returns a dictionary whose values are the matplotlib
550+ Lines of the boxplot.
551+ * 'both' returns a namedtuple with the axes and dict.
552+ * when grouping with ``by``, a Series mapping columns to
553+ ``return_type`` is returned.
554+
555+ If ``return_type`` is `None`, a NumPy array
556+ of axes with the same shape as ``layout`` is returned.
557+
558+ **kwargs
559+ All other plotting keyword arguments to be passed to
560+ :func:`matplotlib.pyplot.boxplot`.
561+
562+ Returns
563+ -------
564+ result
565+ See Notes.
566+
567+ See Also
568+ --------
569+ Series.plot.hist: Make a histogram.
570+ matplotlib.pyplot.boxplot : Matplotlib equivalent plot.
571+
572+ Notes
573+ -----
574+ The return type depends on the `return_type` parameter:
575+
576+ * 'axes' : object of class matplotlib.axes.Axes
577+ * 'dict' : dict of matplotlib.lines.Line2D objects
578+ * 'both' : a namedtuple with structure (ax, lines)
579+
580+ For data grouped with ``by``, return a Series of the above or a numpy
581+ array:
582+
583+ * :class:`~pandas.Series`
584+ * :class:`~numpy.array` (for ``return_type = None``)
585+
586+ Use ``return_type='dict'`` when you want to tweak the appearance
587+ of the lines after plotting. In this case a dict containing the Lines
588+ making up the boxes, caps, fliers, medians, and whiskers is returned.
589+
590+ Examples
591+ --------
592+
593+ Boxplots can be created for every column in the dataframe
594+ by ``df.boxplot()`` or indicating the columns to be used:
595+
596+ .. plot::
597+ :context: close-figs
598+
599+ >>> np.random.seed(1234)
600+ >>> df = pd.DataFrame(np.random.randn(10, 4),
601+ ... columns=['Col1', 'Col2', 'Col3', 'Col4'])
602+ >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
603+
604+ Boxplots of variables distributions grouped by the values of a third
605+ variable can be created using the option ``by``. For instance:
606+
607+ .. plot::
608+ :context: close-figs
609+
610+ >>> df = pd.DataFrame(np.random.randn(10, 2),
611+ ... columns=['Col1', 'Col2'])
612+ >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
613+ ... 'B', 'B', 'B', 'B', 'B'])
614+ >>> boxplot = df.boxplot(by='X')
615+
616+ A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
617+ in order to group the data by combination of the variables in the x-axis:
618+
619+ .. plot::
620+ :context: close-figs
621+
622+ >>> df = pd.DataFrame(np.random.randn(10, 3),
623+ ... columns=['Col1', 'Col2', 'Col3'])
624+ >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
625+ ... 'B', 'B', 'B', 'B', 'B'])
626+ >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
627+ ... 'B', 'A', 'B', 'A', 'B'])
628+ >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
629+
630+ The layout of boxplot can be adjusted giving a tuple to ``layout``:
631+
632+ .. plot::
633+ :context: close-figs
634+
635+ >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
636+ ... layout=(2, 1))
637+
638+ Additional formatting can be done to the boxplot, like suppressing the grid
639+ (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
640+ or changing the fontsize (i.e. ``fontsize=15``):
641+
642+ .. plot::
643+ :context: close-figs
644+
645+ >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) # doctest: +SKIP
646+
647+ The parameter ``return_type`` can be used to select the type of element
648+ returned by `boxplot`. When ``return_type='axes'`` is selected,
649+ the matplotlib axes on which the boxplot is drawn are returned:
650+
651+ >>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
652+ >>> type(boxplot)
653+ <class 'matplotlib.axes._axes.Axes'>
654+
655+ When grouping with ``by``, a Series mapping columns to ``return_type``
656+ is returned:
657+
658+ >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
659+ ... return_type='axes')
660+ >>> type(boxplot)
661+ <class 'pandas.Series'>
662+
663+ If ``return_type`` is `None`, a NumPy array of axes with the same shape
664+ as ``layout`` is returned:
665+
666+ >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
667+ ... return_type=None)
668+ >>> type(boxplot)
669+ <class 'numpy.ndarray'>
670+ """
508671 plot_backend = _get_plot_backend ("matplotlib" )
509672 return plot_backend .boxplot (
510673 data ,
0 commit comments