Skip to content

Commit 2bb690a

Browse files
Update README.md
1 parent 98b5e82 commit 2bb690a

File tree

1 file changed

+30
-27
lines changed

1 file changed

+30
-27
lines changed

README.md

Lines changed: 30 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -1,37 +1,40 @@
11
# Rainfall Prediction Classifier Using Machine Learning
22

3-
**Author:** [@pathananas2007](https://github.com/pathananas2007)
4-
5-
## 📄 Project Overview
6-
This project implements an **end-to-end machine learning pipeline** to predict rainfall in Melbourne using historical weather data. The workflow includes:
7-
- Data cleaning and filtering
8-
- Feature engineering (Date → Season)
9-
- Preprocessing pipelines (scaling + encoding)
10-
- Model building and hyperparameter tuning for:
11-
- Random Forest
12-
- Logistic Regression
13-
- SVM
14-
- KNN
15-
- Gradient Boosting
16-
- XGBoost
17-
- Model evaluation using **accuracy, confusion matrices, classification reports, ROC curves, and AUC scores**
18-
- Comparison of models to select the best performer
3+
[![Python](https://img.shields.io/badge/python-3.11-blue)](https://www.python.org/)
4+
[![License](https://img.shields.io/badge/license-MIT-green)](LICENSE)
5+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pathananas2007/Rainfall-Prediction-Classifier-Using-Machine-Learning/blob/main/final%202.ipynb)
6+
7+
**Author:** [@pathananas2007](https://github.com/pathananas2007)
8+
9+
---
10+
11+
## 📄 About
12+
End-to-end **Rainfall Prediction pipeline** using Python. Implements **data cleaning, feature engineering (Season), preprocessing, and multiple ML models** (Random Forest, XGBoost, SVM, KNN, Logistic Regression, Gradient Boosting) with **hyperparameter tuning, evaluation, and model comparison**.
13+
14+
---
1915

2016
## 📊 Dataset
2117
- **File:** `data final.csv`
2218
- **Source:** [Australian Government Bureau of Meteorology – Climate Data Online](http://www.bom.gov.au/climate/dwo/)
23-
- Contains cleaned weather data for Melbourne, Melbourne Airport, and Watsonia.
19+
- Contains cleaned weather data for Melbourne, Melbourne Airport, and Watsonia.
20+
21+
---
22+
23+
## 🐍 Python Version
24+
This project is tested with **Python 3.11**.
25+
26+
---
2427

2528
## 🛠 Dependencies
26-
All required libraries are listed in `requirements.txt`. Key packages:
27-
- pandas
28-
- numpy
29-
- scikit-learn
30-
- xgboost
31-
- matplotlib
32-
- seaborn
33-
34-
Install dependencies with:
29+
All required libraries are listed in `requirements.txt`. Key packages:
30+
- pandas
31+
- numpy
32+
- scikit-learn
33+
- xgboost
34+
- matplotlib
35+
- seaborn
36+
37+
Install dependencies with:
38+
3539
```bash
3640
pip install -r requirements.txt
37-

0 commit comments

Comments
 (0)