|
1 | 1 | # Rainfall Prediction Classifier Using Machine Learning |
2 | 2 |
|
3 | | -**Author:** [@pathananas2007](https://github.com/pathananas2007) |
4 | | - |
5 | | -## 📄 Project Overview |
6 | | -This project implements an **end-to-end machine learning pipeline** to predict rainfall in Melbourne using historical weather data. The workflow includes: |
7 | | -- Data cleaning and filtering |
8 | | -- Feature engineering (Date → Season) |
9 | | -- Preprocessing pipelines (scaling + encoding) |
10 | | -- Model building and hyperparameter tuning for: |
11 | | - - Random Forest |
12 | | - - Logistic Regression |
13 | | - - SVM |
14 | | - - KNN |
15 | | - - Gradient Boosting |
16 | | - - XGBoost |
17 | | -- Model evaluation using **accuracy, confusion matrices, classification reports, ROC curves, and AUC scores** |
18 | | -- Comparison of models to select the best performer |
| 3 | +[](https://www.python.org/) |
| 4 | +[](LICENSE) |
| 5 | +[](https://colab.research.google.com/github/pathananas2007/Rainfall-Prediction-Classifier-Using-Machine-Learning/blob/main/final%202.ipynb) |
| 6 | + |
| 7 | +**Author:** [@pathananas2007](https://github.com/pathananas2007) |
| 8 | + |
| 9 | +--- |
| 10 | + |
| 11 | +## 📄 About |
| 12 | +End-to-end **Rainfall Prediction pipeline** using Python. Implements **data cleaning, feature engineering (Season), preprocessing, and multiple ML models** (Random Forest, XGBoost, SVM, KNN, Logistic Regression, Gradient Boosting) with **hyperparameter tuning, evaluation, and model comparison**. |
| 13 | + |
| 14 | +--- |
19 | 15 |
|
20 | 16 | ## 📊 Dataset |
21 | 17 | - **File:** `data final.csv` |
22 | 18 | - **Source:** [Australian Government Bureau of Meteorology – Climate Data Online](http://www.bom.gov.au/climate/dwo/) |
23 | | -- Contains cleaned weather data for Melbourne, Melbourne Airport, and Watsonia. |
| 19 | +- Contains cleaned weather data for Melbourne, Melbourne Airport, and Watsonia. |
| 20 | + |
| 21 | +--- |
| 22 | + |
| 23 | +## 🐍 Python Version |
| 24 | +This project is tested with **Python 3.11**. |
| 25 | + |
| 26 | +--- |
24 | 27 |
|
25 | 28 | ## 🛠 Dependencies |
26 | | -All required libraries are listed in `requirements.txt`. Key packages: |
27 | | -- pandas |
28 | | -- numpy |
29 | | -- scikit-learn |
30 | | -- xgboost |
31 | | -- matplotlib |
32 | | -- seaborn |
33 | | - |
34 | | -Install dependencies with: |
| 29 | +All required libraries are listed in `requirements.txt`. Key packages: |
| 30 | +- pandas |
| 31 | +- numpy |
| 32 | +- scikit-learn |
| 33 | +- xgboost |
| 34 | +- matplotlib |
| 35 | +- seaborn |
| 36 | + |
| 37 | +Install dependencies with: |
| 38 | + |
35 | 39 | ```bash |
36 | 40 | pip install -r requirements.txt |
37 | | - |
|
0 commit comments