Skip to content

Commit d39a5a1

Browse files
committed
Rename master branch to main
1 parent 53840cf commit d39a5a1

File tree

7 files changed

+17
-17
lines changed

7 files changed

+17
-17
lines changed

README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
[![Build Status](https://dev.azure.com/ms/EconML/_apis/build/status/Microsoft.EconML?branchName=master)](https://dev.azure.com/ms/EconML/_build/latest?definitionId=49&branchName=master)
1+
[![Build Status](https://dev.azure.com/ms/EconML/_apis/build/status/Microsoft.EconML?branchName=main)](https://dev.azure.com/ms/EconML/_build/latest?definitionId=49&branchName=main)
22
[![PyPI version](https://img.shields.io/pypi/v/econml.svg)](https://pypi.org/project/econml/)
33
[![PyPI wheel](https://img.shields.io/pypi/wheel/econml.svg)](https://pypi.org/project/econml/)
44
[![Supported Python versions](https://img.shields.io/pypi/pyversions/econml.svg)](https://pypi.org/project/econml/)
@@ -639,7 +639,7 @@ importances = policy.feature_importances_
639639
![image](images/policy_tree.png)
640640
</details>
641641

642-
To see more complex examples, go to the [notebooks](https://github.com/Microsoft/EconML/tree/master/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/).
642+
To see more complex examples, go to the [notebooks](https://github.com/Microsoft/EconML/tree/main/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/).
643643

644644
# For Developers
645645

@@ -656,12 +656,12 @@ We have added pytest marks to some tests to make it easier to run a subset, and
656656

657657
## Generating the documentation
658658

659-
This project's documentation is generated via [Sphinx](https://www.sphinx-doc.org/en/master/index.html). Note that we use [graphviz](https://graphviz.org/)'s
659+
This project's documentation is generated via [Sphinx](https://www.sphinx-doc.org/en/main/index.html). Note that we use [graphviz](https://graphviz.org/)'s
660660
`dot` application to produce some of the images in our documentation, so you should make sure that `dot` is installed and in your path.
661661

662662
To generate a local copy of the documentation from a clone of this repository, just run `python setup.py build_sphinx -W -E -a`, which will build the documentation and place it under the `build/sphinx/html` path.
663663

664-
The reStructuredText files that make up the documentation are stored in the [docs directory](https://github.com/Microsoft/EconML/tree/master/doc); module documentation is automatically generated by the Sphinx build process.
664+
The reStructuredText files that make up the documentation are stored in the [docs directory](https://github.com/Microsoft/EconML/tree/main/doc); module documentation is automatically generated by the Sphinx build process.
665665

666666
# Blogs and Publications
667667

azure-pipelines.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
# https://docs.microsoft.com/azure/devops/pipelines/languages/python
55

66
trigger:
7-
- master
7+
- main
88

99
jobs:
1010
- job: 'EvalChanges'

doc/spec/estimation/dml.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -589,8 +589,8 @@ Usage Examples
589589
==================================
590590

591591
For more extensive examples check out the following notebooks:
592-
`DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
593-
`Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
592+
`DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
593+
`Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
594594

595595
.. rubric:: Single Outcome, Single Treatment
596596

doc/spec/estimation/dr.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -366,7 +366,7 @@ Usage FAQs
366366

367367
If you care more about mean squared error than confidence intervals and hypothesis testing, then use the
368368
:class:`.DRLearner` class and choose a cross-validated final model (checkout the
369-
`Forest Learners Jupyter notebook <https://github.com/microsoft/EconML/blob/master/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
369+
`Forest Learners Jupyter notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
370370
for such an example).
371371
Also the check out the :ref:`Orthogonal Random Forest User Guide <orthoforestuserguide>` or the
372372
:ref:`Meta Learners User Guide <metalearnersuserguide>`.
@@ -516,7 +516,7 @@ Usage FAQs
516516

517517
Check out the following Jupyter notebooks:
518518

519-
* `Meta Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/Metalearners%20Examples.ipynb>`_
520-
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
519+
* `Meta Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_
520+
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
521521

522522

doc/spec/estimation/forest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -315,8 +315,8 @@ Usage Examples
315315
Here is a simple example of how to call :class:`.DMLOrthoForest`
316316
and what the returned values correspond to in a simple data generating process.
317317
For more examples check out our
318-
`OrthoForest Jupyter notebook <https://github.com/Microsoft/EconML/blob/master/notebooks/Orthogonal%20Random%20Forest%20Examples.ipynb>`_
319-
and the `ForestLearners Jupyter notebook <https://github.com/microsoft/EconML/blob/master/notebooks/ForestLearners%20Basic%20Example.ipynb>`_ .
318+
`OrthoForest Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Orthogonal%20Random%20Forest%20Examples.ipynb>`_
319+
and the `ForestLearners Jupyter notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_ .
320320

321321

322322
.. testcode::

doc/spec/estimation/metalearners.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ These methods fall into the meta-learner category because they simply combine ML
1717
so as to get a final stage estimate and do not introduce new estimation components.
1818

1919
For examples of how to use our implemented metelearners check out this
20-
`Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/master/notebooks/Metalearners%20Examples.ipynb>`_. The examples
20+
`Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_. The examples
2121
and documents here are only based on binary treatment setting, but all of these estimators are applicable to multiple treatment settings as well.
2222

2323

@@ -146,9 +146,9 @@ Usage Examples
146146

147147
Check out the following notebooks:
148148

149-
* `Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/master/notebooks/Metalearners%20Examples.ipynb>`_.
150-
* `DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
151-
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
149+
* `Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_.
150+
* `DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
151+
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
152152

153153

154154
.. todo::

doc/spec/estimation/orthoiv.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -77,4 +77,4 @@ Usage Examples
7777
==================================
7878

7979
For more extensive examples check out the following notebooks:
80-
`OrthoIV and DRIV Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/master/notebooks/OrthoIV%20and%20DRIV%20Examples.ipynb>`_.
80+
`OrthoIV and DRIV Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/OrthoIV%20and%20DRIV%20Examples.ipynb>`_.

0 commit comments

Comments
 (0)