@@ -22,27 +22,12 @@ Neural Network API
2222 import torch.nn as nn # neural networks
2323 import torch.nn.functional as F # layers, activations and more
2424 import torch.optim as optim # optimizers e.g. gradient descent, ADAM, etc.
25- from torch.jit import script, trace # hybrid frontend decorator and tracing jit
2625
2726 See `autograd <https://pytorch.org/docs/stable/autograd.html >`__,
2827`nn <https://pytorch.org/docs/stable/nn.html >`__,
2928`functional <https://pytorch.org/docs/stable/nn.html#torch-nn-functional >`__
3029and `optim <https://pytorch.org/docs/stable/optim.html >`__
3130
32- TorchScript and JIT
33- -------------------
34-
35- .. code-block :: python
36-
37- torch.jit.trace() # takes your module or function and an example
38- # data input, and traces the computational steps
39- # that the data encounters as it progresses through the model
40-
41- @script # decorator used to indicate data-dependent
42- # control flow within the code being traced
43-
44- See `Torchscript <https://pytorch.org/docs/stable/jit.html >`__
45-
4631ONNX
4732----
4833
@@ -225,8 +210,10 @@ Optimizers
225210
226211 opt = optim.x(model.parameters(), ... ) # create optimizer
227212 opt.step() # update weights
228- optim.X # where X is SGD, Adadelta, Adagrad, Adam,
229- # AdamW, SparseAdam, Adamax, ASGD,
213+ opt.zero_grad() # clear the gradients
214+ optim.X # where X is SGD, AdamW, Adam,
215+ # Adafactor, NAdam, RAdam, Adadelta,
216+ # Adagrad, SparseAdam, Adamax, ASGD,
230217 # LBFGS, RMSprop or Rprop
231218
232219 See `optimizers <https://pytorch.org/docs/stable/optim.html >`__
0 commit comments