Skip to content

Commit 461b26a

Browse files
committed
Pushing the docs to dev/ for branch: main, commit c8a5f807a365a069b4d96da1a84318ce6253eab7
1 parent 41ed97c commit 461b26a

File tree

3,732 files changed

+99301
-38784
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

3,732 files changed

+99301
-38784
lines changed

dev/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file records the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 15f3f7f61422aa3be0c233c0cff60912
3+
config: 28e0303feb83fffc87fce6385db52319
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

dev/_downloads/006fc185672e58b056a5c134db26935c/plot_coin_segmentation.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@
5353
"name": "python",
5454
"nbconvert_exporter": "python",
5555
"pygments_lexer": "ipython3",
56-
"version": "3.10.18"
56+
"version": "3.11.14"
5757
}
5858
},
5959
"nbformat": 4,
Binary file not shown.

dev/_downloads/02a1306a494b46cc56c930ceec6e8c4a/plot_species_kde.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
This shows an example of a neighbors-based query (in particular a kernel
66
density estimate) on geospatial data, using a Ball Tree built upon the
77
Haversine distance metric -- i.e. distances over points in latitude/longitude.
8-
The dataset is provided by Phillips et. al. (2006).
8+
The dataset is provided by Phillips et. al. (2006) [1]_.
99
If available, the example uses
1010
`basemap <https://matplotlib.org/basemap/>`_
1111
to plot the coast lines and national boundaries of South America.
@@ -29,10 +29,10 @@
2929
References
3030
----------
3131
32-
- `"Maximum entropy modeling of species geographic distributions"
33-
<http://rob.schapire.net/papers/ecolmod.pdf>`_
34-
S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
35-
190:231-259, 2006.
32+
.. [1] `"Maximum entropy modeling of species geographic distributions"
33+
<http://rob.schapire.net/papers/ecolmod.pdf>`_
34+
S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
35+
190:231-259, 2006.
3636
"""
3737

3838
# Authors: The scikit-learn developers

dev/_downloads/02d88d76c60b7397c8c6e221b31568dd/plot_grid_search_refit_callable.py

Lines changed: 16 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
66
This example demonstrates how to balance model complexity and cross-validated score by
77
finding a decent accuracy within 1 standard deviation of the best accuracy score while
8-
minimising the number of :class:`~sklearn.decomposition.PCA` components [1]. It uses
8+
minimising the number of :class:`~sklearn.decomposition.PCA` components [1]_. It uses
99
:class:`~sklearn.model_selection.GridSearchCV` with a custom refit callable to select
1010
the optimal model.
1111
@@ -14,9 +14,11 @@
1414
which falls into the range within 1 standard deviation of the best accuracy
1515
score.
1616
17-
[1] Hastie, T., Tibshirani, R.,, Friedman, J. (2001). Model Assessment and
18-
Selection. The Elements of Statistical Learning (pp. 219-260). New York,
19-
NY, USA: Springer New York Inc..
17+
References
18+
----------
19+
.. [1] Hastie, T., Tibshirani, R., Friedman, J. (2001). Model Assessment and
20+
Selection. The Elements of Statistical Learning (pp. 219-260). New York,
21+
NY, USA: Springer New York Inc.
2022
"""
2123

2224
# Authors: The scikit-learn developers
@@ -47,10 +49,12 @@
4749
# ----------------
4850
#
4951
# We define two helper functions:
52+
#
5053
# 1. `lower_bound`: Calculates the threshold for acceptable performance
51-
# (best score - 1 std)
54+
# (best score - 1 std)
55+
#
5256
# 2. `best_low_complexity`: Selects the model with the fewest PCA components that
53-
# exceeds this threshold
57+
# exceeds this threshold
5458

5559

5660
def lower_bound(cv_results):
@@ -106,7 +110,9 @@ def best_low_complexity(cv_results):
106110
# --------------------------------------
107111
#
108112
# We create a pipeline with two steps:
113+
#
109114
# 1. Dimensionality reduction using PCA
115+
#
110116
# 2. Classification using LogisticRegression
111117
#
112118
# We'll search over different numbers of PCA components to find the optimal complexity.
@@ -367,9 +373,12 @@ def best_low_complexity(cv_results):
367373
# callable with :class:`~sklearn.model_selection.GridSearchCV`.
368374
#
369375
# Key takeaways:
376+
#
370377
# 1. The one-standard-error rule provides a good rule of thumb to select simpler models
378+
#
371379
# 2. Custom refit callables in :class:`~sklearn.model_selection.GridSearchCV` allow for
372-
# flexible model selection strategies
380+
# flexible model selection strategies
381+
#
373382
# 3. Visualizing both train and test scores helps identify potential overfitting
374383
#
375384
# This approach can be applied to other model selection scenarios where balancing
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.

dev/_downloads/0486bf9e537e44cedd2a236d034bcd90/plot_pcr_vs_pls.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@
125125
"name": "python",
126126
"nbconvert_exporter": "python",
127127
"pygments_lexer": "ipython3",
128-
"version": "3.10.18"
128+
"version": "3.11.14"
129129
}
130130
},
131131
"nbformat": 4,

0 commit comments

Comments
 (0)