|
22 | 22 |
|
23 | 23 | @npxapi_function |
24 | 24 | def _min_max( |
25 | | - x: TensorType[ElemType.numerics, "T"] |
| 25 | + x: TensorType[ElemType.numerics, "T"], |
26 | 26 | ) -> TupleType[TensorType[ElemType.numerics, "T"], TensorType[ElemType.numerics, "T"]]: |
27 | 27 | return tuple_var(var(x, op="ReduceMin"), var(x, op="ReduceMax")) |
28 | 28 |
|
29 | 29 |
|
30 | 30 | @npxapi_inline |
31 | 31 | def _min_max_inline( |
32 | | - x: TensorType[ElemType.numerics, "T"] |
| 32 | + x: TensorType[ElemType.numerics, "T"], |
33 | 33 | ) -> TupleType[TensorType[ElemType.numerics, "T"], TensorType[ElemType.numerics, "T"]]: |
34 | 34 | return tuple_var(var(x, op="ReduceMin"), var(x, op="ReduceMax")) |
35 | 35 |
|
36 | 36 |
|
37 | 37 | @npxapi_function |
38 | 38 | def absolute( |
39 | | - x: TensorType[ElemType.numerics, "T"] |
| 39 | + x: TensorType[ElemType.numerics, "T"], |
40 | 40 | ) -> TensorType[ElemType.numerics, "T"]: |
41 | 41 | "See :func:`numpy.absolute`." |
42 | 42 | return var(x, op="Abs") |
@@ -90,7 +90,7 @@ def log1p(x: TensorType[ElemType.floats, "T"]) -> TensorType[ElemType.floats, "T |
90 | 90 |
|
91 | 91 | @npxapi_function |
92 | 92 | def negative( |
93 | | - x: TensorType[ElemType.numerics, "T"] |
| 93 | + x: TensorType[ElemType.numerics, "T"], |
94 | 94 | ) -> TensorType[ElemType.numerics, "T"]: |
95 | 95 | "See :func:`numpy.negative`." |
96 | 96 | return var(x, op="Neg") |
|
0 commit comments