|
| 1 | +""" |
| 2 | +.. _l-plot-gemm-or-matmul-add: |
| 3 | +
|
| 4 | +==================== |
| 5 | +Gemm or Matmul + Add |
| 6 | +==================== |
| 7 | +
|
| 8 | +Order of computation matters. ``1 + 1e-20 - 1 != 1 - 1 + 1e-20`` if the |
| 9 | +precision of the computation is taken into account. |
| 10 | +What an operator Gemm in :epkg:`onnxruntime`, the most simple |
| 11 | +way to represent a linear neural layer. |
| 12 | +
|
| 13 | +A model with three choices |
| 14 | +========================== |
| 15 | +""" |
| 16 | + |
| 17 | +import cpuinfo |
| 18 | +import numpy as np |
| 19 | +import pandas |
| 20 | +import matplotlib.pyplot as plt |
| 21 | +import onnx |
| 22 | +import onnx.helper as oh |
| 23 | +import torch |
| 24 | +from onnx_diagnostic.helpers import max_diff |
| 25 | +from onnx_diagnostic.helpers.onnx_helper import pretty_onnx |
| 26 | +from onnx_diagnostic.reference import OnnxruntimeEvaluator |
| 27 | +from onnxruntime import ( |
| 28 | + InferenceSession, |
| 29 | + SessionOptions, |
| 30 | + __version__ as version_onnxruntime, |
| 31 | + GraphOptimizationLevel, |
| 32 | +) |
| 33 | + |
| 34 | +print(f"onnxruntime version = {version_onnxruntime}") |
| 35 | +print(f"cpu name = {cpuinfo.get_cpu_info()['brand_raw']}") |
| 36 | +if torch.cuda.is_available(): |
| 37 | + print(f"gpu name = {torch.cuda.get_device_name(0)}") |
| 38 | + print(f"cuda version = {torch.version.cuda}") |
| 39 | + |
| 40 | +# %% |
| 41 | +# The version is important. Numerical differences are observed |
| 42 | +# with onnxruntime<=1.22. Let's see how to make them happen. |
| 43 | + |
| 44 | + |
| 45 | +def make_model_gemm(itype: int) -> onnx.ModelProto: |
| 46 | + return oh.make_model( |
| 47 | + oh.make_graph( |
| 48 | + [ |
| 49 | + oh.make_node("Gemm", ["A", "X", "B"], ["GemmOnly"]), |
| 50 | + oh.make_node("Gemm", ["A", "X"], ["gmm"]), |
| 51 | + oh.make_node("Add", ["gmm", "B"], ["GemmAdd"]), |
| 52 | + oh.make_node("MatMul", ["A", "X"], ["mm"]), |
| 53 | + oh.make_node("Add", ["mm", "B"], ["MatMulAdd"]), |
| 54 | + oh.make_node("FusedMatMul", ["A", "X"], ["fmm"], domain="com.microsoft"), |
| 55 | + oh.make_node("Add", ["fmm", "B"], ["FusedMatMulAdd"]), |
| 56 | + ], |
| 57 | + "test", |
| 58 | + [ |
| 59 | + oh.make_tensor_value_info("A", itype, ["a", "b"]), |
| 60 | + oh.make_tensor_value_info("X", itype, ["b", "c"]), |
| 61 | + oh.make_tensor_value_info("B", itype, ["c"]), |
| 62 | + ], |
| 63 | + [ |
| 64 | + oh.make_tensor_value_info("GemmOnly", itype, ["a", "c"]), |
| 65 | + oh.make_tensor_value_info("GemmAdd", itype, ["a", "c"]), |
| 66 | + oh.make_tensor_value_info("FusedMatMulAdd", itype, ["a", "c"]), |
| 67 | + oh.make_tensor_value_info("MatMulAdd", itype, ["a", "c"]), |
| 68 | + ], |
| 69 | + ), |
| 70 | + opset_imports=[oh.make_opsetid("", 22)], |
| 71 | + ir_version=10, |
| 72 | + ) |
| 73 | + |
| 74 | + |
| 75 | +def matrix_diff(tensors): |
| 76 | + mat = np.zeros((len(tensors), len(tensors)), dtype=np.float32) |
| 77 | + for i, t in enumerate(tensors): |
| 78 | + for j in range(i + 1, len(tensors)): |
| 79 | + mat[i, j] = max_diff(t, tensors[j])["abs"] |
| 80 | + mat[j, i] = mat[i, j] |
| 81 | + return mat |
| 82 | + |
| 83 | + |
| 84 | +itype = onnx.TensorProto.FLOAT16 |
| 85 | +dtype = np.float16 |
| 86 | +model = make_model_gemm(itype) |
| 87 | + |
| 88 | +A = np.random.randn(512, 256).astype(dtype) |
| 89 | +X = np.random.randn(256, 256).astype(dtype) |
| 90 | +B = np.random.randn(256).astype(dtype) |
| 91 | +feeds = dict(A=A, X=X, B=B) |
| 92 | + |
| 93 | +# %% |
| 94 | +# We disable all the optimization made by onnxruntime to make |
| 95 | +# the computation follows what we want to verify. |
| 96 | +opts = SessionOptions() |
| 97 | +opts.graph_optimization_level = GraphOptimizationLevel.ORT_DISABLE_ALL |
| 98 | +opts.optimized_model_filepath = "plot_gemm_or_matmul.optimized.onnx" |
| 99 | +sess = InferenceSession(model.SerializeToString(), opts, providers=["CPUExecutionProvider"]) |
| 100 | +results = [A @ X + B, *sess.run(None, feeds)] |
| 101 | +diffs = matrix_diff(results) |
| 102 | + |
| 103 | +print(diffs) |
| 104 | + |
| 105 | +# %% |
| 106 | +onx = onnx.load(opts.optimized_model_filepath) |
| 107 | +print(pretty_onnx(onx)) |
| 108 | + |
| 109 | +# %% |
| 110 | +# It seems some cast were still inserted. |
| 111 | + |
| 112 | +# %% |
| 113 | +# Let's try with CUDA and float32 if it is available. |
| 114 | + |
| 115 | +A = torch.randn((512, 512), dtype=torch.float32) |
| 116 | +X = torch.randn((512, 512), dtype=torch.float32) |
| 117 | +B = torch.randn((512), dtype=torch.float32) |
| 118 | + |
| 119 | +for itype, dtype, device in [ |
| 120 | + (onnx.TensorProto.FLOAT16, torch.float16, "cpu"), |
| 121 | + (onnx.TensorProto.FLOAT, torch.float32, "cpu"), |
| 122 | + (onnx.TensorProto.FLOAT16, torch.float16, "cuda"), |
| 123 | + (onnx.TensorProto.FLOAT, torch.float32, "cuda"), |
| 124 | +]: |
| 125 | + if device == "cuda" and not torch.cuda.is_available(): |
| 126 | + continue |
| 127 | + a = A.to(dtype).to(device) |
| 128 | + x = X.to(dtype).to(device) |
| 129 | + b = B.to(dtype).to(device) |
| 130 | + feeds = dict(A=a, X=x, B=b) |
| 131 | + model = make_model_gemm(itype) |
| 132 | + |
| 133 | + sess = OnnxruntimeEvaluator(model, whole=True) |
| 134 | + results = sess.run(None, feeds) |
| 135 | + diffs = matrix_diff(results) |
| 136 | + print(f"------ dtype={dtype}, device={device!r}") |
| 137 | + print(diffs) |
| 138 | + |
| 139 | +# %% |
| 140 | +# A weird bias |
| 141 | +# ============ |
| 142 | +# |
| 143 | +# In the previous example, the coefficients of the bias |
| 144 | +# are similar to the others coefficients. What if we make them |
| 145 | +# a lot higher. |
| 146 | + |
| 147 | +B = (torch.arange(512, dtype=torch.float32) + 1) / 512 * 16384 |
| 148 | +labels = ["linear", *[o.name for o in model.graph.output], "a @ x + b"] |
| 149 | +all_results = {} |
| 150 | + |
| 151 | +for itype, dtype, device in [ |
| 152 | + (onnx.TensorProto.FLOAT, torch.float32, "cpu"), |
| 153 | + (onnx.TensorProto.FLOAT16, torch.float16, "cpu"), |
| 154 | + # missing implementation in onnxruntime |
| 155 | + # (onnx.TensorProto.BFLOAT16, torch.bfloat16, "cpu"), |
| 156 | + (onnx.TensorProto.FLOAT, torch.float32, "cuda"), |
| 157 | + (onnx.TensorProto.FLOAT16, torch.float16, "cuda"), |
| 158 | + (onnx.TensorProto.BFLOAT16, torch.bfloat16, "cuda"), |
| 159 | +]: |
| 160 | + if device == "cuda" and not torch.cuda.is_available(): |
| 161 | + continue |
| 162 | + a = A.to(dtype).to(device) |
| 163 | + x = X.to(dtype).to(device) |
| 164 | + b = B.to(dtype).to(device) |
| 165 | + feeds = dict(A=a, X=x, B=b) |
| 166 | + model = make_model_gemm(itype) |
| 167 | + |
| 168 | + filename = f"plot_gemm_or_matmul.{itype}.{device}.onnx" |
| 169 | + sess = OnnxruntimeEvaluator( |
| 170 | + model, |
| 171 | + whole=True, |
| 172 | + graph_optimization_level=GraphOptimizationLevel.ORT_DISABLE_ALL, |
| 173 | + optimized_model_filepath=filename, |
| 174 | + ) |
| 175 | + results = [torch.nn.functional.linear(a, x.T, b), *sess.run(None, feeds), a @ x + b] |
| 176 | + all_results[device, dtype] = results |
| 177 | + has_cast = "Cast" in [n.op_type for n in onnx.load(filename).graph.node] |
| 178 | + diffs = matrix_diff(results) |
| 179 | + df = pandas.DataFrame(diffs, columns=labels, index=labels) |
| 180 | + print(f"------ has_cast={has_cast}, dtype={dtype}, device={device!r}, max(b)={b.max()}") |
| 181 | + print(df) |
| 182 | + |
| 183 | +# %% |
| 184 | +# Cast is inserted on CPU because some kernel are not available for |
| 185 | +# float16. Even though, we can see huge discrepancies happening. |
| 186 | +# |
| 187 | +# bias value vs discrepancies |
| 188 | +# =========================== |
| 189 | +# |
| 190 | +# Let's compare GemmOnly (so bias is included) and Gemm+Add. |
| 191 | + |
| 192 | +i, j = 1, -1 |
| 193 | +labs = labels[i], labels[j] |
| 194 | + |
| 195 | +fig, ax = plt.subplots(len(all_results), 2, figsize=(8, 2.5 * len(results))) |
| 196 | +for pos, ((device, dtype), results) in enumerate(all_results.items()): |
| 197 | + m1, m2 = results[i], results[j] |
| 198 | + diff = torch.abs(m1.to(torch.float32) - m2.to(torch.float32)).max(dim=0)[0] |
| 199 | + print(f"labels={labs}, {device}/{dtype}: max(diff)={diff.max()}") |
| 200 | + expand = 0.5 if diff.max() >= 1 else diff.max().detach().cpu() / 2 |
| 201 | + ax[pos, 0].plot(B.tolist(), (diff.detach().cpu() + torch.rand(512) * expand).tolist(), ".") |
| 202 | + ax[pos, 0].set_title(f"{labs[0]}-{labs[1]} {device}/{dtype}") |
| 203 | + |
| 204 | + corr = matrix_diff(results) |
| 205 | + ax[pos, 1].imshow(corr, cmap="Blues", vmin=0, vmax=corr.max()) |
| 206 | + # ax[pos,1].colorbar(label=f'Discrepancies {device}/{dtype}') |
| 207 | + ax[pos, 1].set_xticks(range(len(labels)), labels, rotation=45) |
| 208 | + ax[pos, 1].set_yticks(range(len(labels)), labels) |
| 209 | + ax[pos, 1].set_title(f"max={diff.max()}") |
| 210 | +fig.tight_layout() |
| 211 | +fig.savefig("plot_gemm_or_matmul_add.png") |
| 212 | + |
| 213 | +# %% |
| 214 | +# Discrepancies do not happen all the time but it is very likely to happen. |
| 215 | +# The use of Gemm with a bias not null should be used when torch is doing |
| 216 | +# the same and it seems to depend on the type as well. |
| 217 | +# The difference is even higher for bfloat16. |
0 commit comments