@@ -296,7 +296,9 @@ Now that we have obtained our ``*.csv`` annotation files, we will need to conver
296296 import io
297297 import pandas as pd
298298 import tensorflow as tf
299-
299+ import sys
300+ sys.path.append(" ../../models/research" )
301+
300302 from PIL import Image
301303 from object_detection.utils import dataset_util
302304 from collections import namedtuple, OrderedDict
@@ -305,13 +307,24 @@ Now that we have obtained our ``*.csv`` annotation files, we will need to conver
305307 flags.DEFINE_string(' csv_input' , ' ' , ' Path to the CSV input' )
306308 flags.DEFINE_string(' output_path' , ' ' , ' Path to output TFRecord' )
307309 flags.DEFINE_string(' label' , ' ' , ' Name of class label' )
310+ # if your image has more labels input them as
311+ # flags.DEFINE_string('label0', '', 'Name of class[0] label')
312+ # flags.DEFINE_string('label1', '', 'Name of class[1] label')
313+ # and so on.
314+ flags.DEFINE_string(' img_path' , ' ' , ' Path to images' )
308315 FLAGS = flags.FLAGS
309316
310317
311318 # TO-DO replace this with label map
319+ # for multiple labels add more else if statements
312320 def class_text_to_int (row_label ):
313321 if row_label == FLAGS .label: # 'ship':
314322 return 1
323+ # comment upper if statement and uncomment these statements for multiple labelling
324+ # if row_label == FLAGS.label0:
325+ # return 1
326+ # elif row_label == FLAGS.label1:
327+ # return 0
315328 else :
316329 None
317330
@@ -331,6 +344,7 @@ Now that we have obtained our ``*.csv`` annotation files, we will need to conver
331344
332345 filename = group.filename.encode(' utf8' )
333346 image_format = b ' jpg'
347+ # check if the image format is matching with your images.
334348 xmins = []
335349 xmaxs = []
336350 ymins = []
@@ -365,7 +379,7 @@ Now that we have obtained our ``*.csv`` annotation files, we will need to conver
365379
366380 def main (_ ):
367381 writer = tf.python_io.TFRecordWriter(FLAGS .output_path)
368- path = os.path.join(os.getcwd(), ' images ' )
382+ path = os.path.join(os.getcwd(), FLAGS .img_path )
369383 examples = pd.read_csv(FLAGS .csv_input)
370384 grouped = split(examples, ' filename' )
371385 for group in grouped:
@@ -387,11 +401,11 @@ Now that we have obtained our ``*.csv`` annotation files, we will need to conver
387401
388402 # Create train data:
389403 python generate_tfrecord.py -- label= < LABEL> -- csv_input= < PATH_TO_ANNOTATIONS_FOLDER> / train_labels.csv
390- -- img_path= < PATH_TO_IMAGES_FOLDER> -- output_path= < PATH_TO_ANNOTATIONS_FOLDER> / train.record
404+ -- img_path= < PATH_TO_IMAGES_FOLDER> / train -- output_path= < PATH_TO_ANNOTATIONS_FOLDER> / train.record
391405
392406 # Create test data:
393407 python generate_tfrecord.py -- label= < LABEL> -- csv_input= < PATH_TO_ANNOTATIONS_FOLDER> / test_labels.csv
394- -- img_path= < PATH_TO_IMAGES_FOLDER>
408+ -- img_path= < PATH_TO_IMAGES_FOLDER> / test
395409 -- output_path= < PATH_TO_ANNOTATIONS_FOLDER> / test.record
396410
397411 # For example
0 commit comments