|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +
|
| 4 | +@author: Sudipto3331 |
| 5 | +""" |
| 6 | + |
| 7 | +##Import libraries as necessary |
| 8 | +import numpy as np |
| 9 | +import xlrd |
| 10 | +from xlwt import Workbook |
| 11 | +def brcond_Seidel(E,err,n): |
| 12 | + |
| 13 | + a=0 |
| 14 | + for i in range(n): |
| 15 | + if E[i]<err: |
| 16 | + a=a+1 |
| 17 | + return a/n |
| 18 | + |
| 19 | +#taking necessary input values from keyboard |
| 20 | +err=float(input('Enter desired percentage relative error: ')) |
| 21 | +ite=int(input('Enter number of iterations: ')) |
| 22 | +relaxation=float(input('Enter relaxation factor: ')) |
| 23 | + |
| 24 | +#Reading data from excel file |
| 25 | +loc = ('data.xls') |
| 26 | + |
| 27 | +wb = xlrd.open_workbook(loc) |
| 28 | +sheet = wb.sheet_by_index(3) |
| 29 | + |
| 30 | +n=sheet.nrows #number of unknown variables |
| 31 | +#Initialize variables |
| 32 | +a=np.zeros([n,n+1]) |
| 33 | +E=np.zeros([n]) |
| 34 | +rel_err=np.zeros([ite,n]) |
| 35 | +X=np.zeros([n]) |
| 36 | +x=np.zeros([ite,n]) |
| 37 | +x_new=np.zeros([ite,n]) |
| 38 | +itern=np.zeros([ite]) |
| 39 | +p=np.zeros([n]) |
| 40 | + |
| 41 | +for i in range(sheet.ncols): |
| 42 | + for j in range(sheet.nrows): |
| 43 | + a[j,i]=sheet.cell_value(j, i) |
| 44 | + |
| 45 | +#Iteration for Gauss Seidel begins here. |
| 46 | +for j in range(ite): |
| 47 | + #storing the values of iteration |
| 48 | + itern[j]=j+1 |
| 49 | + |
| 50 | + for i in range(n): |
| 51 | + summation=0 |
| 52 | + |
| 53 | + for k in range(n): |
| 54 | + |
| 55 | + if k>i or k<i: |
| 56 | + summation=summation+a[i,k]*x[j,k] |
| 57 | + |
| 58 | + x_new[j,i]=(a[i,n]-summation)/a[i,i] #Determining the values of unknown variables |
| 59 | + if j>0: |
| 60 | + x[j,i]=x_new[j,i]*relaxation+(1-relaxation)*x[j-1,i] #Determining the values of unknown variables |
| 61 | + if j==0: |
| 62 | + x[j,i]=x_new[j,i] |
| 63 | + |
| 64 | + #Error calculation |
| 65 | + if j>0: |
| 66 | + rel_err[j,i]=((x[j,i]-x[j-1,i])/x[j,i])*100 |
| 67 | + E[i]=rel_err[j,i] |
| 68 | + |
| 69 | + if j>0: |
| 70 | + Q=brcond_Seidel(E,err,n) |
| 71 | + |
| 72 | + if Q==1: |
| 73 | + break |
| 74 | + |
| 75 | + if j==ite-1: |
| 76 | + break |
| 77 | + |
| 78 | + x[j+1,:]=x[j,:] |
| 79 | + |
| 80 | +num_of_iter=j |
| 81 | +X=x[j,:] |
| 82 | + |
| 83 | +print('The values of the unknown variables are respectively:') |
| 84 | +print(X) |
| 85 | + |
| 86 | +wb = Workbook() |
| 87 | + |
| 88 | +# add_sheet is used to create sheet. |
| 89 | +sheet1 = wb.add_sheet('Sheet 1') |
| 90 | + |
| 91 | +#writing on excel |
| 92 | +sheet1.write(0,n,'Gauss') |
| 93 | +sheet1.write(0,n+1,'Seidel') |
| 94 | +sheet1.write(1,0,'Number of iteration') |
| 95 | + |
| 96 | +for i in range(1,n+1): |
| 97 | + sheet1.write(1,i,'x_'+str(i)) |
| 98 | + |
| 99 | +for i in range(n+1,2*n+1): |
| 100 | + sheet1.write(1,i,'Relative error of x_'+str(i-n)) |
| 101 | + |
| 102 | +for i in range(num_of_iter+1): |
| 103 | + |
| 104 | + sheet1.write(i+2,0,itern[i]) |
| 105 | + for j in range(n): |
| 106 | + sheet1.write(i+2,1+j,x[i,j]) |
| 107 | + sheet1.write(i+2,n+1+j,rel_err[i,j]) |
| 108 | + |
| 109 | +sheet1.write(i+4,0,'The') |
| 110 | +sheet1.write(i+4,1,'unknown') |
| 111 | +sheet1.write(i+4,2,'values') |
| 112 | +sheet1.write(i+4,3,'are:') |
| 113 | +for k in range(n): |
| 114 | + sheet1.write(i+4,k+4,X[k]) |
| 115 | + |
| 116 | +#save the excel file |
| 117 | +wb.save('xlwt example.xls') |
| 118 | + |
| 119 | +#Result Verification |
| 120 | +for i in range(n): |
| 121 | + summation=0 |
| 122 | + for j in range(n): |
| 123 | + summation=summation+a[i,j]*X[j] |
| 124 | + |
| 125 | + p[i]=summation-a[i,j+1] |
| 126 | + |
| 127 | +#The implementation is corrct if verification results are all zero |
| 128 | +print('The verification results are:') |
| 129 | +print(p) |
| 130 | +print('The implementation is corrct if verification results are all zero') |
0 commit comments