@@ -67,6 +67,13 @@ class RISTClassifier(ClassifierMixin, BaseTimeSeriesEstimator):
6767 A list or tuple of transformers will extract intervals from
6868 all transformations concatenate the output. Including None in the list or tuple
6969 will use the series as is for interval extraction.
70+ use_pycatch22 : bool, optional, default=True
71+ Wraps the C based pycatch22 implementation for aeon.
72+ (https://github.com/DynamicsAndNeuralSystems/pycatch22). This requires the
73+ ``pycatch22`` package to be installed if True.
74+ use_pyfftw : bool, default=True
75+ Whether to use the pyfftw library for FFT calculations. Requires the pyfftw
76+ package to be installed.
7077 estimator : sklearn classifier, default=None
7178 An sklearn estimator to be built using the transformed data. Defaults to an
7279 ExtraTreesClassifier with 200 trees.
@@ -117,17 +124,17 @@ def __init__(
117124 n_intervals = None ,
118125 n_shapelets = None ,
119126 series_transformers = "default" ,
120- use_pyfftw = False ,
121- use_pycatch22 = False ,
127+ use_pycatch22 = True ,
128+ use_pyfftw = True ,
122129 estimator = None ,
123130 n_jobs = 1 ,
124131 random_state = None ,
125132 ):
126133 self .n_intervals = n_intervals
127134 self .n_shapelets = n_shapelets
128135 self .series_transformers = series_transformers
129- self .use_pyfftw = use_pyfftw
130136 self .use_pycatch22 = use_pycatch22
137+ self .use_pyfftw = use_pyfftw
131138 self .estimator = estimator
132139 self .random_state = random_state
133140 self .n_jobs = n_jobs
@@ -251,6 +258,7 @@ def predict_proba(self, X: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
251258 def _more_tags (self ) -> dict :
252259 return {
253260 "optional_dependency" : self .use_pycatch22 or self .use_pyfftw ,
261+ "non_deterministic" : True ,
254262 }
255263
256264 @classmethod
@@ -315,6 +323,13 @@ class RISTRegressor(RegressorMixin, BaseTimeSeriesEstimator):
315323 A list or tuple of transformers will extract intervals from
316324 all transformations concatenate the output. Including None in the list or tuple
317325 will use the series as is for interval extraction.
326+ use_pycatch22 : bool, optional, default=True
327+ Wraps the C based pycatch22 implementation for aeon.
328+ (https://github.com/DynamicsAndNeuralSystems/pycatch22). This requires the
329+ ``pycatch22`` package to be installed if True.
330+ use_pyfftw : bool, default=True
331+ Whether to use the pyfftw library for FFT calculations. Requires the pyfftw
332+ package to be installed.
318333 estimator : sklearn classifier, default=None
319334 An sklearn estimator to be built using the transformed data. Defaults to an
320335 ExtraTreesRegressor with 200 trees.
@@ -361,17 +376,17 @@ def __init__(
361376 n_intervals = None ,
362377 n_shapelets = None ,
363378 series_transformers = "default" ,
364- use_pyfftw = False ,
365- use_pycatch22 = False ,
379+ use_pycatch22 = True ,
380+ use_pyfftw = True ,
366381 estimator = None ,
367382 n_jobs = 1 ,
368383 random_state = None ,
369384 ):
370385 self .n_intervals = n_intervals
371386 self .n_shapelets = n_shapelets
372387 self .series_transformers = series_transformers
373- self .use_pyfftw = use_pyfftw
374388 self .use_pycatch22 = use_pycatch22
389+ self .use_pyfftw = use_pyfftw
375390 self .estimator = estimator
376391 self .random_state = random_state
377392 self .n_jobs = n_jobs
@@ -458,6 +473,7 @@ def predict(self, X: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
458473 def _more_tags (self ) -> dict :
459474 return {
460475 "optional_dependency" : self .use_pycatch22 or self .use_pyfftw ,
476+ "non_deterministic" : True ,
461477 }
462478
463479 @classmethod
0 commit comments