@@ -1123,7 +1123,7 @@ cdef class TateAlgebraElement(CommutativeAlgebraElement):
11231123 sage: S.<x,y> = TateAlgebra(Qp(5), log_radii=(1,0))
11241124 sage: f = 5*x
11251125 sage: f.add_bigoh(1)
1126- (5 + O(5^2))*x + O(5 * <x/5 , y>)
1126+ (5 + O(5^2))*x + O(5 * <5*x , y>)
11271127 """
11281128 self ._is_normalized = True
11291129 if self ._prec is Infinity:
@@ -1169,6 +1169,15 @@ cdef class TateAlgebraElement(CommutativeAlgebraElement):
11691169
11701170 sage: A( x + 2* x^ 2 + x^ 3, prec=5)
11711171 ... 00001* x^ 3 + ... 00001* x + ... 00010* x^ 2 + O( 2^ 5 * <x, y>)
1172+
1173+ TESTS::
1174+
1175+ sage: S. <x> = TateAlgebra( R, log_radii=[-1 ])
1176+ sage: S( x, 5)
1177+ ... 0001* x + O( 2^ 5 * <x/2>)
1178+ sage: S. <x> = TateAlgebra( R, log_radii=[1 ])
1179+ sage: S( x, 5)
1180+ ... 000001* x + O( 2^ 5 * <2* x>)
11721181 """
11731182 vars = self ._parent.variable_names()
11741183 s = " "
@@ -1191,14 +1200,14 @@ cdef class TateAlgebraElement(CommutativeAlgebraElement):
11911200 for i in range (len (vars )):
11921201 if lr[i] == 0 :
11931202 sv.append(vars [i])
1194- elif lr[i] == - 1 :
1195- sv.append(" %s *%s " % (su, vars [i]))
11961203 elif lr[i] == 1 :
1204+ sv.append(" %s *%s " % (su, vars [i]))
1205+ elif lr[i] == - 1 :
11971206 sv.append(" %s /%s " % (vars [i], su))
1198- elif lr[i] < 0 :
1199- sv.append(" %s ^%s *%s " % (su, - lr[i], vars [i]))
1207+ elif lr[i] > 0 :
1208+ sv.append(" %s ^%s *%s " % (su, lr[i], vars [i]))
12001209 else :
1201- sv.append(" %s /%s ^%s " % (vars [i], su, lr[i]))
1210+ sv.append(" %s /%s ^%s " % (vars [i], su, - lr[i]))
12021211 sv = " , " .join(sv)
12031212 if self ._prec == 0 :
12041213 s += " O(<%s >)" % sv
@@ -2534,8 +2543,8 @@ cdef class TateAlgebraElement(CommutativeAlgebraElement):
25342543 However `\l og( 1+ x) ` converges on a smaller disk::
25352544
25362545 sage: f. restriction( -1) . log( )
2537- ... 000000001* x + ... 0000000. 1* x^ 3 + ... 111111 * x^ 2 + ...
2538- + O( 3^ 10 * <3 * x, 3 * y >)
2546+ ... 000000001* x + ... 0000000. 1* x^ 3 + ... 11111111 * x^ 2 + ...
2547+ + O( 3^ 10 * <x/3, y/3 >)
25392548
25402549 TESTS::
25412550
@@ -2692,8 +2701,8 @@ cdef class TateAlgebraElement(CommutativeAlgebraElement):
26922701 However `\e xp( x) ` converges on a smaller disk::
26932702
26942703 sage: f. restriction( -1) . exp( )
2695- ... 0000000001 + ... 000000001* x + ... 1111111. 2* x^ 3 + ... 111112 * x^ 2
2696- + ... + O( 3^ 10 * <3 * x, 3 * y >)
2704+ ... 0000000001 + ... 000000001* x + ... 1111111. 2* x^ 3 + ... 11111112 * x^ 2
2705+ + ... + O( 3^ 10 * <x/3, y/3 >)
26972706
26982707 TESTS::
26992708
0 commit comments